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The optical properties of infinite planar array of scattering particles, metasurfaces and metagratings, are
attracting special attention lately for their rich phenomenology, including both plasmonic and high-refractive-
index dielectric meta-atoms with a variety of electric and magnetic resonant responses. Herein we derive a
coupled electric and magnetic dipole analytical formulation to describe the reflection and transmission of such
periodic arrays, including specular and diffractive orders, valid in the spectral regimes where only dipolar
multipoles are needed. The two-dimensional lattice Green function is rewritten in terms of a one-dimensional
(chain) version that fully converges in the complex frequency plane and can be easily calculated. Modes emerging
as poles of such lattice Green function can be extracted, as evidenced by calculating resonances and bound states
in the continuum for an array of Si spheres. This formulation can be applied to investigate a wealth of plasmonic,
all-dielectric, and hybrid metasurfaces and metagratings of interest throughout the electromagnetic spectrum.

DOI: 10.1103/PhysRevB.102.125411

I. INTRODUCTION

Planar arrays of resonant particles are attracting a great
deal of attention nowadays. Widely known as metasurfaces
(subwavelength lattice constant, thus in the nondiffraction
spectral regime) and metagratings (diffraction being relevant),
they exhibit fascinating properties that indeed hold promise
of infinitely thin optical devices performing a wealth of
functionalities [1–13]. Although consisting in the beginning
of metallic meta-atoms [5,14–16] typically supporting local-
ized plasmons (mostly electric dipole) resonances, they have
been extended in recent years to include high-refractive-index
(HRI) particles which possess Mie resonances with a (lowest-
order) magnetic dipole character [17–23].

Furthermore, the unconventional optical properties of
metasurfaces stem not only from the resonant properties of the
meta-atoms themselves, but also from multiple scattering ef-
fects through coupling with guided-mode or lattice resonances
[24–31]. Dealing with such complex interactions between
particle and lattice resonances in planar infinite arrays by
means of full wave numerical calculations is a formidable
task even for common available solvers, which in turn cannot
shed much light onto the underlying physics. In this regard,
coupled-dipole formulations have been developed since long
ago [32,33], extended to a wealth of configurations typi-
cally involving a finite number of dipoles. The widely em-
ployed discrete dipole approximation is an extension of such
coupled-dipole formulations to deal with macroscopic ob-
jects discretized through volume (dipolar) elements [34,35].
Nonetheless, very few works have investigated infinite dipolar
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arrays thoroughly, especially for two-dimensional (2D) planar
arrays involving both electric and magnetic dipole resonances
[17,36–44], the latter crucial to account for lowest-order Mie
resonances of HRI particles.

In this regard, a formulation that rigorously addresses lat-
tice interactions is paramount to properly describe collective
resonances and especially bound states in the continuum with
diverging Q factors in metasurfaces [9,43–49]. Metasurfaces
operating at/near such resonances hold indeed promise of a
variety of planar devices with functionalities such as sensing
[50,51], filtering [52], lasing [53–56], and enhanced nonlin-
earities [57].

In this work we analyze analytically the reflection and
transmission of two-dimensional lattices of one or various
meta-atoms supporting electric and/or magnetic dipolar res-
onances with arbitrary orientation in and out of plane. We de-
velop a coupled electric and magnetic dipole (CEMD) formu-
lation that fully accounts for the coupling between those elec-
tric and magnetic dipolar fields. In fact, this CEMD formu-
lation has been successfully exploited to deal with HRI disk
metasurfaces [43] and rod dimer arrays [44], but most details
remain unpublished. Here we also incorporate a significant
improvement, pertaining to the calculation of the so-called 2D
lattice Green function (from which all relevant magnitudes
are derived): Rather than extracting it numerically through
convergence, we rewrite it in terms of a one-dimensional (1D)
lattice Green function that can be easily evaluated. Finally, we
also analyze the emergence of various lattice modes from the
poles of the thus obtained Green function.

II. FORMULATION OF THE SCATTERING PROBLEM

Let us consider an infinite set of identical particles arranged
in a rectangular array. Without loss of generality, the particle
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labeled as (n, m) is placed at

rnm = xnx̂ + ynŷ = nax̂ + mbŷ, (1)

where a and b are the lattice constants along the x and y
axis, respectively. The array is then illuminated by an ex-
ternal plane wave �(0)(r), with incident wave vector k(0) =
k(0)

x x̂ + k(0)
y ŷ + k(0)

z ẑ, while the time dependence exp (−iωt )
will be assumed for all the fields; ω is the angular frequency,
related to the modulus of the wave vector through k = ω/c,
c being the speed of light. In what follows, �(r) stands for
the electromagnetic field components needed to fully describe
the scattering problem, namely, the electric and/or magnetic
fields and/or any combination of both; thus, its representation
depends on the basis.

Each particle in the array is excited by the external plane
wave plus the waves scattered from the rest of the array. The
self-consistent incident field �inc(r) on the (n, m) = (0, 0)
particle (r00 = 0) is then given by the solution of

�inc(0) = �(0)(0) +
∑
nm

′k2←→G (−rnm)←→α �inc(rnm), (2)

where
∑

nm
′ means that the sum runs for all indices except

for (n, m) = (0, 0).
←→
G (r) and ←→

α are matrices representing
the dyadic Green function and the dipolar polarizability of the
particles, respectively, and their representations depend on
the chosen basis to describe the electromagnetic fields �(r).
The dyadic Green function is obtained from the scalar Green
function g(r) by applying a linear differential operator L that
also depends on the chosen basis (see below).

For a periodic array and plane-wave illumi-
nation the Bloch’s theorem holds, �inc(rnm) =
�inc(0) exp(ik(0)

x na) exp(ik(0)
y mb) = �inc(0)eiφnm , and the

self-consistent incident field can be written as

�inc(0) = �(0)(0) + k2

[∑
nm

′←→G (−rnm)eiφnm

]
←→
α �inc(0)

≡ �(0)(0) + k2←→G b
←→
α �inc(0). (3)

We have defined
←→
G b, the lattice “depolarization” dyadic (or

return Green function), as

←→
G b ≡

∑
nm

′←→G (−rnm)eiφnm . (4)

←→
G b tells us about the coupling strength between particles,

and is crucial to determine all the lattice properties. Next,
the solution of the self-consistent equation can be formally
written as a function of the external plane wave as

�inc(0) = [
←→

I − k2←→G b
←→
α ]−1�(0)(0), (5)

where
←→

I is the unit dyadic.
Once we know the self-consistent incoming field [Eq. (5)]

the field scattered by the (n, m) particle is given by

�scat(r) = k2←→G (r − rnm)←→α �inc(rnm), (6)

and the total scattered field can be written as

�scat-tot(r) = k2

{∑
nm

←→
G (r − rnm)eiφnm

}
←→
α �inc(0)

≡ k2←→G ±
(r)←→α �inc(0), (7)

where the tensor lattice sum
←→
G

±
(r) can be written

as a sum over all diffracted spectral orders (l, p =
. . . ,−2,−1, 0, 1, 2 . . . ) as

←→
G

±
(r) ≡

∑
nm

←→
G (r − rnm)eiφnm

=
∑
l,p

←→
G

±
l peik(l )

x xeik(p)
y ye±ik(l,p)

z z

=
∑
l,p

←→
G

±
l peiφ±

l p(r), (8)

where, for k(0)
z > 0, “+” (“−”) corresponds to upward scat-

tered waves in the region z > 0 (downward reflected waves in
the region z < 0). k(l )

x , k(p)
y , and k(l,p)

z are the wave vectors of
the diffracted orders

k(l )
x = k(0)

x − 2π

a
l, k(p)

y = k(0)
y − 2π

b
p,

k(l p)
z =

√
k2 − (

k(l )
x

)2 − (
k(p)

y
)2

. (9)

Similar to the dyadic Green function, the tensor lattice sum
can be written as the differential operator L applied to a scalar
quantity ∑

l,p

←→
G

±
l pe±iφl p(r) =

∑
l,p

i

2abk(l p)
z

Le±iφl p(r). (10)

Finally, using Eq. (5) in Eq. (7), the reflected and transmitted
fields are then given by

�r(r) = k2←→G −
(r)←̃→α �(0)(0), (11)

�t(r) = �(0)(r) + k2←→G +
(r)←̃→α �(0)(0), (12)

where ←̃→
α is the renormalized (dressed) polarizability

←̃→
α = ←→

α [
←→

I − k2←→G b
←→
α ]−1 = [←→α −1 − k2←→G b]−1.

(13)

Writing
←→
G

±
(r) as a sum over diffracted spectral orders, the

field scattered into each diffractive mode is

�(l,p)
r (r) = k2←→G −

l p
←̃→
α �(0)(0)eiφ−

l p(r), (14)

�
(l,p)
t (r) = k2←→G +

l p
←̃→
α �(0)(0)eiφ+

l p(r). (15)

III. LATTICE DEPOLARIZATION GREEN FUNCTION
FOR ARBITRARY 2D ARRAYS

The optical properties of periodic arrays are then described

by the lattice depolarization Green function
←→
G b, that ac-

counts for the electromagnetic field scattered by all the array

over its own particles. The evaluation of
←→
G b can be done

in real space, but the convergence is in general very low.
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Although there are mathematical techniques to improve the
convergence [58], it is more convenient to transform the
sum from the real to the reciprocal space. For example, for
complex frequencies the sum cannot be evaluated in the real
space. Actually, the (complex) resonant frequencies of the
metasurface can be only found in the reciprocal space, which
in turn yields more physical insights and approximate ex-
pressions close to the Rayleigh-Wood anomalies. To simplify
the expressions, the sum for a 2D array of particles will be
described below as that for a 1D array, namely, a chain of
particles. To this end, let us first study the scattering properties
of a chain of particles.

A. Scattered field by a chain of particles

The scattering properties of an individual particle are de-
rived from the scalar Green function g(r − r′), defined as the
solution of the Helmholtz equation with a point source located
at r = r′:

∇2g(r − r′) + k2g(r − r′) = −δ(r − r′), (16)

where r is the observation point, r′ is the position of the
emitter/source, and k is the wave vector in the media. The
scalar Green function in three dimensions (3D) is a spherical
wave that propagates away from its origin

g(r − r′) = eik|r−r′|

4π |r − r′|
=

∫
dQxdQy

4π2
eiQx(x−x′)eiQy(y−y′) i

2q
eiq|z−z′ |,

q =
√

k2 − Q2
x − Q2

y , (17)

wherein we have used the Weyl expansion to express it as a

sum of plane waves. The dyadic Green function
←→
G (r − r′) is

obtained from the scalar Green function as Lg(r − r′).
Now, let us consider a periodic chain of particles along the

x axis located at the position rn,

rn = xnx̂ = nax̂, (18)

a being the separation between particles. Upon the incidence
of an external plane wave (with incident wave vector k(0) =
k(0)

x x̂ + k(0)
y ŷ + k(0)

z ẑ), the scattering properties of the chain
of particles are defined by the next sum in the real space

[analogous to
←→
G

±
(r) for 2D arrays]:∑

n

G(r − rn)eik(0)
x na = L

∑
n

g(r − rn)eik(0)
x na, (19)

where k(0)
x is the projection of the incident wave vector along

the x axis. The linear differential operator is made of spatial
derivatives, independent of the summation variable n, so we
place it out of the summation in the latter equation. After some
algebraic manipulations (using the Weyl representation), the
sum in the real space can be rewritten in the reciprocal
space as∑

n

g(r − rn)eik(0)
x na =

∑
l

eik(l )
x x i

4a
H0(k(l )

‖ ρ), (20)

where H0 is the zeroth-order Hankel function of the first type
with ρ = (y2 + z2)1/2 in its argument being the radial distance
to the chain of particles; k(l )

‖ and k(l )
x are the wave-vector

components of the diffracted waves

k(l )
‖ =

√
k2 − (

k(l )
x

)2
, k(l )

x = k(0)
x − 2π

a
l. (21)

The scalar Green function in 2D with translational symmetry
along the x axis (i.e., for an infinitely long cylinder where the
x axis is the cylinder axis) is

g2D(r − rn) = i

4
H0

(√
k2 − k2

x |r − rn|
)
eikxx. (22)

Thus, Eq. (20) can be written as∑
n

g(k, r − rn)eik(0)
x na =

∑
l

1

a
g2D

(
k, k(l )

x , r − rn
)
, (23)

where we have explicitly added the wave vector as an argu-
ment in the scalar Green functions (normally this is omitted).

Therefore, from Eq. (23) we can infer that a chain of
particles behaves effectively as an infinitely long cylinder
that is, however, excited by both propagating and evanescent
plane waves. There is always a propagating wave that coin-
cides with an incident external plane wave, while the rest of
propagating waves appears as a diffraction phenomenology
when the lattice constant a exceeds the incoming wavelength
λ = 2π/k. Thus, only terms with Im[k(l )

‖ ] = 0 survive in the
far field, whereas in the near field there are contributions from
all waves.

The other key element to describe the optical response of a
chain of particles is the lattice depolarization Green function,
that is defined for this system as

←→
G b-Ch

(
a, k, k(0)

x

) = L
∑

n

′g(r − rn)eik(0)
x na. (24)

Importantly,
←→
G b-Ch can be expressed in terms of analytical

functions called polylogarithm functions.

B. Rectangular arrays

Now we have the tools to tackle the problem of the two-
dimensional rectangular array of particles. By using L, Eq. (4)
can be rewritten as

←→
G b ≡

∑
nm

′←→G (−rnm)eiφnm

= L
∑
nm

′g(−rnm)eiφnm . (25)

From Eq. (23) we learn that a 2D array of particles can be seen
as a 1D array of chains of particles. Assuming that the chains
are along the x axis, the effective cylinders (that the chains
represent) are placed at rm = mbŷ. Within this convention, it
is straightforward to show that

←→
G b = ←→

G b-Ch + 1

a

(∑
l

←→
G

(l )

b-1D

)
, (26)

where
←→
G b-Ch is the “depolarization” dyadic of a chain of par-

ticles defined in Eq. (24) and
←→
G

(l )

b-1D is the “depolarization”
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FIG. 1. Real part of the xx matrix term in Eq. (27) for different
values of l at kb = π , k(0)

x = 0.7k cos(α), k(0)
y = 0.7k sin(α), and

α = 10◦. Also, the value of m(l ) is indicated for each diffractive order.

dyadic of a 1D array of cylinders (with their axis along the x
axis):

←→
G

(l )

b-1D

(
b, k, k(0)

y , k(l )
x , r

) = L
∑

m

′g2D
(
k, k(l )

x ,−rm
)
eik(0)

y mb.

(27)

In both cases, all arguments of the functions are shown explic-

itly. The importance of writing
←→
G b as shown in Eq. (26) is

that analytical expressions are available for Eqs. (24) and (27)
in the reciprocal, although some care must be taken regarding
the convergence of the expressions. For large |k(l )

x | 	 k, the
convergence of Eq. (27) worsens. Thus, if m(l ) is defined as
the number of terms needed to achieve convergence, m(l ) will
increase with increasing |k(l )

x |. Fortunately, Eq. (26) presents a

good convergence with respect to the index l (
←→
G

(l )

b-1D goes
rapidly to zero as l increases), and only a few orders are
needed to achieve accurate results.

For the sake of clarity, we plot in Fig. 1 the numerical
values of the xx matrix term (the other terms present a similar

behavior) of
←→
G

(l )

b-1D [see Eq. (A2)] for an arbitrary set of
parameters: we choose kb = π , k(0)

x = 0.7k cos(α), k(0)
y =

0.7k sin(α), and α = 10◦. Only the real part is plotted because
the convergence of the imaginary part is much faster. In fact,
a diffractive order l at real frequencies only contributes to
the imaginary part if Im[k(l )

‖ ] = 0. This is important because
the imaginary part of the depolarization Green function is
directly related to the optical theorem. Therefore, inaccurate
calculations of such imaginary part can lead to nonphysical
results in the calculation of the reflectance, transmittance, and
absorption.

From Fig. 1, it is clear that only a few terms in the sum
of Eq. (26) are needed to achieve a good convergence. In this
specific case, the contribution of higher orders is negligible
beyond |l| > 2. As a general recipe, it is necessary to sum
all terms where Re[k(l )

‖ ] > 0 plus two/three additional terms

(this condition reduces to Im[k(l )
‖ ] = 0 at real frequencies). In

addition, we have estimated the value of m(l ) as the number of
terms needed in the sum to reduce the error in Eq. (27) below
10−3. This means that the correction of the m(l ) + 1 term is
smaller than the millionth part of the total sum. Remarkably,

only 9 terms are needed to converge to an accurate value to
order l = 0, and 120 terms are enough for |l| = 1. As l is
increased, m(l ) becomes higher, but their contributions to the
final result become negligible. Nonetheless, an increase of
m(l ) is expected with the decrease of the value of the sum
since more accuracy is necessary for the sum to converge.
Alternatively, if m(l ) were defined in relation to the total sum
of all directive orders l (with respect to the blue pillar in
Fig. 1), the value of m(l ) would be smaller.

C. 2D arrays with arbitrary lattice symmetry

For completeness, let us next consider a generic 2D array
of particles defined by the lattice constants a and b with
corresponding lattice vectors forming an angle θ between
them. Then, if the primitive vector associated to the lattice
constant a is taken along the x axis, the position of the particle
labeled as (n, m) becomes

rnm = (na + m cos θ )x̂ + m sin θ ŷ. (28)

For example, the rectangular lattice is recovered for θ = π/2,
while θ = π/3 and a = b yield a triangular lattice. Using this

description the lattice depolarization dyadic
←→
G b follows the

same expression shown in Eq. (26) but with some changes in
the arguments of the functions:

b → b sin θ, (29)

k(0)
y → k(0)

y + 2π

a
l
cos θ

sin θ
. (30)

Note that the expression that replaces k(0)
y also depends on the

diffraction order index l .
←→
G b-Ch does not change

←→
G Ch

(
a, k, k(0)

x

) → ←→
G Ch

(
a, k, k(0)

x

)
, (31)

while the arguments of
←→
G b-1D are modified

←→
G

(l )

b-1D

(
b, k, k(0)

y , k(l )
x

)
→ ←→

G
(l )

b-1D

(
b sin θ, k, k(0)

y + 2π

a
l
cos θ

sin θ
, k(l )

x

)
. (32)

The same changes will affect the wave-vector components of
the diffracted orders. Specifically,

k(p)
y → k(l p)

y = k(0)
y + 2π

a
l
cos θ

sin θ
− 2π

b sin θ
p, (33)

while k(l )
x is unaffected. Thus, the tensor lattice sum compo-

nents are modified as
←→
G

±
l peiφ±

l p(r,θ ) = i

2ab sin θk(l p)
z

Leiφ±
l p(r,θ ), (34)

where we add the θ argument to the phase to account for the
changes in the diffracted order wave vector.

D. Complex unit cells

In general, the unit cell may in turn be composed of more
than one particle. The self-interaction between the particles of

the same kind is still described by
←→
G b, but it is necessary to

also account for the interaction between the different particles
within the unit cell. Interestingly, this interaction is easy to
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express in the reciprocal space through the tensor lattice sums

by
←→
G i j = [

←→
G

+
(ri − r j ) + ←→

G
−

(ri − r j )]/2, where ri and
r j are the positions of particles i and j within the unit cell,
respectively. Nonetheless, if two different particles are in the
same xy plane, the convergence is slow, but it can be improved
using convergence techniques.

IV. RESONANCES AND BOUND STATES
IN THE CONTINUUM IN METASURFACES

In order to find the resonant states of the metasurfaces, we
need to find solution to Eq. (5) in the absence of the external
wave. At the condition 
 (0) = 0, Eq. (5) becomes a homoge-
neous linear system of equations that supports solutions only
when

|←→I − k2←→G b
←→
α | =

∣∣∣∣ 1

k2←→α − ←→
G b

∣∣∣∣ = 0. (35)

The complex frequencies at which Eq. (35) is satisfied are
the eigenfrequencies, denoted by ν. In the latter eigenmode
equation, it is more convenient to use the second expression
than the first one. Also, in this context, k(0)

x and k(0)
y are

the in-plane wave-vector components of the surface wave
represented by the resonant mode, not related to any external
wave. The eigenmode equation is written in the case of one
particle per unit cell. For complex unit cells, ←→

α is a matrix

with the polarizability terms of all particles. In addition,
←→
G b

must be replaced by a matrix that contains
←→
G b and also the

interaction matrices
←→
G i j (the specific form of these matrices

to be determined by the basis chosen to describe the fields).

Since
←→
G b and

←→
G i j can be expressed in the reciprocal space,

Eq. (35) can be thus employed to solve for the resonant modes
of the metasurface.

Below the light line (and below diffraction), the solutions
of Eq. (35) are real and determine the dispersion relation of
guided modes that propagate along the metasurface. Opposite,
above the light line the solutions are normally given by
complex frequencies. The quality factor of the resulting mode
is defined as the ratio between the real and the imaginary
parts of the frequency, informing us of how fast the system
leaks energy out to the continuum of radiation. However, it
is also possible to find real solutions in this region, called
bound states in the continuum (BICs) [43,44]. Although they
are embedded in the continuum of radiation, for symmetry
reasons or interference effects these states remain localized
within the metasurface without emitting energy to the far
field [46].

V. PRACTICAL CASE: SQUARE ARRAY
OF DIELECTRIC SPHERES

Let us consider a specific case: A square array of dielectric
spheres of constant dielectric permittivity ε = 3.5 (similar to
that of Si in the visible and near IR), with normalized lattice
constant a/R = b/R = 4, where R is the sphere radius. To
describe the electromagnetic field, we choose the following

basis:

�(r) =
[

E(r)
ZH (r)

]
, E(r) =

⎡⎣Ex(r)
Ey(r)
Ez(r)

⎤⎦, H (r) =
⎡⎣Hx(r)

Hy(r)
Hz(r)

⎤⎦,

(36)

E(r) and H (r) being the electric and magnetic vector fields
defined in Cartesian coordinates and Z = (μ0/ε0)1/2 the vac-
uum impedance. The linear differential operator L takes the
form

L =
([

I + ∇∇
k2

]
i ∇

k × I

−i ∇
k × I

[
I + ∇∇

k2

]). (37)

We assume that the sphere electrodynamic response can be
fully described by its electric and magnetic dipolar contribu-
tions in terms of a polarizability tensor [59,60] ←→

α :

←→
α =

(
α(e) 0
0 α(m)

)
, (38a)

k2α(e) = i
6π

k
a1

←→
I , k2α(m) = i

6π

k
b1

←→
I , (38b)

where α(e) and α(m) are the electric and magnetic polariz-
abilities, and a1 and b1 are the (dimensionless) Mie coeffi-
cients [33].

Within this description and for incidence along the x
axis, the specular reflectance R0, for both p- and s-polarized
fields, is

R(p)
0 =

(
k2

2kab cos θ0

)2∣∣γ (p)(̃α(m)
y + α̃(e)

z sin2 θ0

+ 2k2Gbyzα̃
(m)
y α̃(e)

z sin θ0
) − α̃(e)

x cos2 θ0

∣∣2
, (39a)

R(s)
0 =

(
k2

2kab cos θ0

)2∣∣γ (s)
(̃
α(e)

y + α̃(m)
z sin2 θ0

+ 2k2Gbyzα̃
(e)
y α̃(m)

z sin θ0
) − α̃(m)

x cos2 θ0

∣∣2
, (39b)

where θ0 is the angle of incidence (k(0)
z = k cos θ0, k(0)

x =
k sin θ0), and the renormalized polarizability terms in α̃ are

k2α̃
(e)
i =

(
1

k2α(e)
− Gbii

)−1

, (40a)

k2α̃
(m)
i =

(
1

k2α(m)
− Gbii

)−1

, (40b)

with

γ (p) = 1

1 − k4G2
bzxα̃

(m)
x α̃

(e)
z

, (41a)

γ (s) = 1

1 − k4G2
bzxα̃

(e)
x α̃

(m)
z

, (41b)

Gbii and Gbzx being the matrix elements of
←→
G b. The polar-

ization is defined in such away that p (respectively, s) stands
for transverse magnetic (TM) [respectively, transverse electric
(TE)]. It should be noted that this convention is the opposite of
that in Ref. [30], where the “transverse” polarization was de-
fined for the sake of convenience with respect to the cylinder
axis, rather than with respect to the plane of incidence.
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On the other hand, Eq. (35) can be used to find the resonant
modes supported by the metasurface. For those modes prop-
agating along the x axis (k(0)

x 
= 0 and k(0)
y = 0), although in

this case the wave vector is not related to any incident external
plane wave, Eq. (35) reduces to∣∣η(e)

x

∣∣ × ∣∣η(m)
x

∣∣ × ∣∣η(em)
yz

∣∣ × ∣∣η(me)
yz

∣∣ = 0, (42)

with

η(e)
x = 1

k2α̃
(e)
x

, η(em)
yz = 1

k4α̃
(e)
y α̃

(m)
z

− G2
byz,

η(m)
x = 1

k2α̃
(m)
x

, η(me)
yz = 1

k4α̃
(m)
y α̃

(e)
z

− G2
byz. (43)

Each term in Eq. (42) is associated to a different resonant
surface mode. The solutions of η(e)

x and η(m)
x represent co-

herent oscillations of electric and magnetic dipoles along
the x axis, respectively. Since the imaginary part of 1/α̃(e,m)

x
(for lossless particles) vanishes only at k(0)

x � k, they can
never lead to a BIC; inside the continuum of radiation they
represent broad resonant (leaky) modes that radiate energy
to the far field. More interesting are the terms η(em)

yz and
η(me)

yz . They represent hybrid modes where electric (magnetic)
dipoles along the y axis are coupled with magnetic (electric)
dipoles along the z axis. These terms can yield BICs due to
the mutual interference between the different dipolar modes,
although in general they correspond to broad resonant modes.
Nonetheless, at k(0)

x = 0, both Gbyz = 0 and the imaginary
part of 1/α̃z are zero. Then, the dipolar modes are decoupled
and the metasurface can support a BIC given by the in-phase
oscillation of dipoles along the z axis. This BIC is the typical
one used in several applications [53,54]. In addition, all terms
can support guided modes in the region defined by k(0)

x � k
and k(0)

x � 2π/a − k (with k � 0, and k(0)
x � 0), where the

imaginary part (for lossless particles) of Eq. (42) is identically
zero.

To show the interplay of the resonant mode on the prop-
erties of the metasurface, we study the specular reflectance
R0 for both polarizations. First, in Fig. 2(a) the specular

FIG. 2. (a) Color map of the reflectance for TM polarization for
a square array of dielectric spheres of constant dielectric permittivity
ε = 3.5 (similar to that of Si in the visible and near IR), with
normalized lattice constant a/R = b/R = 4, where R is the sphere
radius. Dispersion relations of the resonant surface modes given by
the zeros of η(e)

x and η(me)
yz are superimposed as dashed color lines,

while the white dashed lines delimit the diffractive region. (b) Q
factor of the surface modes.

reflectance for TM polarized light and the dispersion relation
of the resonant modes are shown as a function of the normal-
ized frequency and angle of incidence. Due to the symmetry
of the resonant modes, not all of them can be exited at a given
polarization (keep in mind that k(0)

y = 0), so we only show the
modes related to the zeros of η(e)

x and η(me)
yz . Since the incident

polarization determines the nature of the mode (electric or
magnetic), for the sake of clarity the superscript is replaced
by a number that labels the mode solution. As expected, the
resonances of the reflectance coincide with dispersion relation
of the surface modes. In addition, their widths agree with the
Q factor of the modes, displaying in Fig. 2(b). The Q factor
is calculated as the ratio between the real and imaginary parts
of the eigenfrequency ν = ν ′ + iν ′′. For simplicity we only
represent the modes in the nondiffracting region (delimited
by the white dashed line), but Eq. (42) still has solutions in
this region.

Around ka/(2π ) = 0.56 there is the η(1)
yz resonant (leaky)

surface mode. Its associate resonance in the reflectance spec-
tra is broad at normal incidence, and it becomes narrower as
long as the angle of incidence increases. The Q factor of the
leaky surface mode diverges at k(0)

x = k, a point where the
leaky mode becomes a guided mode. Later, as the frequency
increases in the reflectance we find a narrow resonance around
ka/(2π ) = 0.72, related to the η(2)

yz surface mode. At normal
incidence this mode represents a symmetry protected BIC
(in-phase oscillation of electric dipoles along the z axis)
that becomes broader as the angle of incidence increases.
However, due to diffraction, the dispersion relation of the
modes stops at the diffraction line. Finally, the last surface
mode enclosed in the studied frequency windows is η(1)

x . The
width of the surface resonance is almost constant as a function
of the angle of incidence and as before its dispersion relation
stops at diffraction.

The agreement between the dispersion relation of the sur-
face resonant modes and the resonances in the reflectance
spectra is further confirmed for TE incident waves, as it can
be seen in Fig. 3. Now, for this polarization η(m)

x and η(em)
yz

are the relevant modes that can be excited by the incident

FIG. 3. (a) Color map of the reflectance for TE polarization for
a square array of dielectric spheres of constant dielectric permittivity
ε = 3.5 (similar to that of Si in the visible and near IR), with
normalized lattice constant a/R = b/R = 4, where R is the sphere
radius. Dispersion relations of the resonant surface modes given by
the zeros of η(m)

x and η(em)
yz are superimposed as dashed color lines,

while the white dashed lines delimit the diffractive region. (b) Q
factor of the surface modes.
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external wave. Around ka/(2π ) = 0.57, at normal incidence
there are two modes, η(1)

x and η(1)
yz . The characteristics of η(1)

x
are similar to the ones observed in TM polarization for its
electric counterpart. The mode is relatively broad and presents
low dispersion in frequency that ends up at the diffraction
line. Opposite, η(1)

yz possess more interesting features. First,
at normal incidence it represents a symmetry-protected BIC
given by in-phase oscillation of magnetic dipoles along the
z axis. As k(0)

x increases, the surface mode becomes broader
and evolves until a minimum in the Q factor. From this point,
the mode becomes narrower again and the Q factor finally
diverges around θ = 48◦; the surface modes turns into an
accidental BIC given by the destructive interference at the far
field between the emission of the electric dipoles along the y
axis and the magnetic dipoles along the z axis. Lastly, the Q
factor decreases to another minimum and diverges once again
at θ = 90◦, where the surface mode becomes a guided mode.
For the sake of completeness, the last surface mode shown
in Fig. 3 is η(2)

yz , placed around ka/(2π ) = 0.75. This mode
is much broader than η(1)

yz , although both modes come from
the same term (η(em)

yz ). Also, its dispersion relation stops at the
diffraction line.

The mode η(1)
yz that comes from η(em)

yz is very narrow in all
regions, so its features on the reflectance spectra [Fig. 3(a)]
are hidden by the dashed line that marks the dispersion
relation. Thus, let us take a closer view of this region in
Fig. 4(a), where a zoom on the reflectance for TE polarization
is done. Strong asymmetry Fano resonances in the reflectance
can be appreciated throughout all angles of incidence. The
asymmetry of the resonance will depend on the interference
given by the rest of surface modes present in the metasurface.
Also, the resonance shows vanishing features distinctive of
BIC at normal incidence, around θ = 48◦ and at grazing
incidence, that corresponds to the symmetry-protected BIC,
the accidental BIC, and the connection to the guided mode,
respectively.

In order to characterize the surface hybrid mode, Fig. 4(b)
shows the imaginary part of the eigenvalue (inversely propor-
tional to the Q factor), whose zeros coincide with the BICs
(and with the guided mode). In addition, the color of the
line represents the eigenvector of the mode. The red color
means that the mode is made purely of magnetic dipoles
along the z axis, while the line turns into blue as long as
the nature of the mode becomes more hybrid. As predicted,
the eigenvalue of the symmetry-protected BIC has no py

component, it is formed only by the oscillation of magnetic
mz dipoles. Contrary, the accidental BIC is a hybrid mode,
where the mutual interference between the emission of py and
mz cancels out at that specific configuration.

Narrow resonances in the reflectance spectra are normally
associated with large enhancements in the near-field distri-
bution. As a representative case, we show in Figs. 4(c)–4(e)
the norm of the electric field in one unit cell at the frequency
of the symmetry-protected BIC, calculated through numerical
methods (COMSOL). At normal incidence, the coupling to
the BIC is forbidden and the near field is dominated by the
resonance of the magnetic dipoles along the x axis (η(m)

x ),
as can be seen in the different plane cuts, where the fields
present a minimum along the x axis. The maximum of the
near-electromagnetic field is about three times higher than

FIG. 4. (a) Zoom to the reflectance for TE polarization from
Fig. 3 in the region of the accidental BIC. The white dashed line
delimits the diffractive region. (b) Imaginary part of the eigenvalue
of the narrow η(em)

yz mode. (c)–(g) Near-field distributions at (c)–(e)
ka/(2π ) ∼ 0.57 (symmetry-protected BIC) and (f), (g) ka/(2π ) ∼
0.53 (accidental BIC) for different angles of incidence. The incident
wave goes from top to bottom and the plane of incidence is the xz
plane.

the incident external field, in concordance with the relative
small quality factor of the corresponding resonance Q f > 102.
Notably, when the angle of incidence is slightly modified,
the field distribution entirely changes. Now, the small field
component of the incident wave perpendicular to the meta-
surface couples efficiently with the narrow resonance related
to the quasi-BIC. The field distribution is mainly given by
the oscillation of magnetic dipoles along the z axis, and the
near field is enhanced by several orders of magnitude (above
103). In fact, due to the huge enhancement at the quasi-BIC,
the wave scattered to the far field cannot be appreciated in
Fig. 4(e), unlike that in Figs. 4(c) and 4(d). As a final remark,
recall that the field enhancement diverges together with the Q
factor as the angle of incidence goes to zero, although exactly
at normal incidence there is no plane-wave coupling to the
BIC as mentioned above; in practice, inherent losses of real
materials will prevent this divergence. Note that due to the
high symmetry along the z axis, the fields at the yz plane (not
shown here) are very similar to those at the xz plane.

When the angle of incidence increases, the nature of the
resonant η(em)

yz mode becomes hybrid, and this can be also
observed in the near field. In Figs. 4(f) and 4(g), the near field
at the resonant condition is shown for θ = 50◦, slightly above
(in angles) the accidental BIC condition (θa-BIC ∼ 48◦). The
electromagnetic field presents features of both contributions:
Namely, magnetic dipoles along the z axis and electric dipoles
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along the y axis. Also, since the field is calculated at the
resonance of the reflectance, the field enhancement is huge,
close to 103.

VI. CONCLUSIONS

We have developed a coupled electric and magnetic dipole
(CEMD) analytical formulation to describe the reflection and
transmission of planar arrays of electric and/or magnetic
particles, including specular and diffractive orders, and modes
emerging as poles of such lattice Green function can be
extracted. The formulation is largely simplified by rewriting
the 2D lattice Green function in terms of a 1D (chain) version
that fully converges. Electric and/or magnetic dipoles with all
three orientations arising in turn from a single or various meta-
atoms per unit cell are considered. Analytical expressions for
the emergence of either guided or resonant modes are given,
along with corresponding Q factors, which allow us to identify
bound states in the continuum. By way of example, both
symmetry-protected and accidental BICs are identified for a
square array of all-dielectric spheres with constant dielectric
permittivity close to that of Si in the visible and near IR. De-
spite being limited to dipolar meta-atoms, this formulation can
be exploited to deal with metasurfaces and metagratings of
interest throughout the electromagnetic spectrum, bearing in
mind that most plasmonic, all-dielectric, and/or hybrid meta-
atoms, either at or out of resonance, behave in many spectral
regimes as a combination of electric and magnetic dipoles.
In this regard, future work incorporating higher complexity

in the optical response of the meta-atoms such as core-shell
particles and/or higher-order multipoles [19,61,62] will no
doubt enrich the phenomenology.
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APPENDIX A: LATTICE DEPOLARIZATION DYADIC
FOR AN ARRAY OF CYLINDERS

When the electromagnetic field is described as shown in
Eq. (36), the lattice depolarization dyadic for an array of

cylinders (with their axes along the y axis)
←→
G b-1D can be

written as

←→
G

(l )

b-1D(b, k, ky, kx ) =
(

Gb-1D G(EM )
b-1D

−G(EM )
b-1D Gb-1D

)
, (A1)

where the matrix terms of Gb-1D and G(EM )
b-1D are

(Gb-1D)xx = k2
‖

k2

(
i

[
1

2q0b
− 1

4

]
+ 1

2b

∞∑
m=1

(
i

qm
+ i

q−m
− 2

km

)
+ 1

2π

[
ln

k‖b

4π
+ γe

])
, (A2)

(Gb-1D)yy = i

[
q2

0 + k2
x

2k2q0b
− 1

8

k2 + k2
x

k2

]
+ 1

4π

[
ln

k‖b

4π
+ γe

]
k2 + k2

x

k2
+ 1

8

K2
0 − q2

0

k2
+ π

6k2b2

+ 1

2k2b

∞∑
m=1

(
i
k2 − K2

m

qm
+ i

k2 − K2
−m

q−m
− k2 + k2

x − 2k2
m

km

)
, (A3)

(Gb-1D)zz = i

[
K2

0 + k2
x

2k2q0b
− 1

8

k2 + k2
x

k2

]
+ 1

4π

[
ln

k‖b

4π
+ γe

]
k2 + k2

x

k2
− 1

8

K2
0 − q2

0

k2
− π

6k2b2

+ 1

2k2b

∞∑
m=1

(
i
k2 − q2

m

qm
+ i

k2 − q2
−m

q−m
− k2 + k2

x + 2k2
m

km

)
, (A4)

(Gb-1D)xy = −kx

k

(
i

K0

2kq0b
+ i

2kb

∞∑
m=1

(
Km

qm
+ K−m

q−m

)
− 1

2π

K0

k

)
, (A5)

(
G(EM )

b-1D

)
yz = −(

G(EM )
b-1D

)
zy = kx

k

(
i

[
1

2q0b
− 1

4

]
+ 1

2b

∞∑
m=1

(
i

qm
+ i

q−m
− 2

km

)
+ 1

2π

[
ln

k‖b

4π
+ γe

])
, (A6)

(
G(EM )

b-1D

)
zx = −(

G(EM )
b-1D

)
xz = i

K0

2kq0b
+ i

2kb

∞∑
m=1

(
Km

qm
+ K−m

q−m

)
− 1

2π

K0

k
. (A7)

b is the distance between cylinders and

km = 2mπ

b
, Km ≡ ky − km,

qm =
√

k2
‖ − K2

m, k2
‖ = k2 − k2

x . (A8)

125411-8



COUPLED ELECTRIC AND MAGNETIC DIPOLE … PHYSICAL REVIEW B 102, 125411 (2020)

The rest of the matrix elements are equal to zero. For kx = 0 (incidence perpendicular to the cylinder) we recover the expressions
given in Ref. [30].

APPENDIX B: LATTICE DEPOLARIZATION DYADIC FOR A CHAIN OF PARTICLES

Using the same description for the electromagnetic field as in Appendix A, the lattice depolarization function of a chain of

particles (placed along the x axis)
←→
G b-Ch is written as

←→
G b-Ch

(
a, k, k(0)

x

) =
(

Gb-Ch G(EM )
b-Ch

−G(EM )
b-Ch Gb-Ch

)
, (B1)

and the matrix elements of Gb-Ch and G(EM )
b-Ch are

(Gb-Ch)xx = − i

2a3k2π
{ak[Li2(ei(k−kx )a) + Li2(ei(k+kx )a)] + i[Li3(ei(k−kx )a) + Li3(ei(k+kx )a)]}, (B2)

(Gb-Ch)yy = − i

4a3k2π
{−ia2k2[Li1(ei(k−kx )a) + Li1(ei(k+kx )a)]

+ ak[Li2(ei(k−kx )a) + Li2(ei(k+kx )a)] + i[Li3(ei(k−kx )a) + Li3(ei(k+kx )a)]}, (B3)

(Gb-Ch)zz = (Gb-Ch)yy, (B4)(
G(EM )

b-Ch

)
yz = −(

G(EM )
b-Ch

)
zy = i

4a3k2π
{−ia2k2[Li1(ei(k−kx )a) − Li1(ei(k+kx )a)] + ak[Li2(ei(k−kx )a) − Li2(ei(k+kx )a)]}. (B5)

a is the distance between particles and Lis(z) is the polylogarithm function, also known as Jonquiére’s function. For the special
case of s = 1, the polylogarithm function is Li1(z) = −ln(1 − z). The rest of the matrix elements are equal to zero.
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