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Abstract: Titanium alloys have been widely employed in implant materials owing to their biocompatibility.
The primary limitation of these materials is their poor performance in applications involving surfaces
in mutual contact and under load or relative motion because of their low wear resistance. The aim of
this work is to synthesis magnetite coatings on the Ti6Al4V-ELI alloy surface to increase corrosion
resistance and to evaluate its electrochemical behaviour. The coatings were obtained using potentiostatic
pulse-assisted coprecipitation (PP-CP) on a Ti6Al4V-ELI substrate. The preliminary X-Ray Diffraction
(XRD) results indicate the presence of the magnetite coating with 8–10 nm crystal sizes, determined
for the (311) plane. Using X-ray photoelectron spectroscopy (XPS), the presence of the magnetite
phase on the titanium alloy was observed. Magnetite coating was homogeneous over the full surface
and increased the roughness with respect to the substrate. For the corrosion potential behaviour,
the Ti6Al4V-ELI showed a modified Ecorr that was less active from the presence of the magnetite
coating, and the impedance values were higher than the reference samples without coating. From the
polarization curves, the current density of the sample with magnetite was smaller than of bare titanium.
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1. Introduction

The increase in hope and quality of life in patients who have undergone total hip and knee
replacements is of great importance worldwide. Today, the various activities that people undertake
place them at risk and expose them to various types of trauma, for example, from a car accident or
sports practise (the most common incidents). Post-mortem studies of patients who have been prosthetic
carriers for total hip and knee replacements show particle accumulation in various organs. These
particles are released as a result of the corrosion-wear processes of the prostheses and compromise
biocompatibility and biofunctionality, causing irreversible damage to the human body [1–5].

In the medical field, titanium is commonly used in joint replacements and as a component of stents.
Recently, new studies have been performed with the Ti6Al4V-ELI alloy, which has a lower oxygen
content than that in traditional Ti6Al4V; this provides the material with better mechanical performance
and greater corrosion resistance, including improved ductility, fracture resistance, resistance to stress
corrosion, and resistance to crack growth [6–8]. However, it still has a low wear resistance, which
provides a wide area of study by superficially modifying the material with the aim of increasing its
resistance to fretting corrosion. Wear is one of the most serious problems with contacting surfaces in
relative motion, such as hip and knee joints, hydraulic parts, and others.

During the last decade, research on new materials and surface coatings has increased rapidly. One
example is the emergence of a new scientific field called surface engineering, which aims to improve
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the surface behaviour of structural materials to increase the performance and useful life. In terms of
corrosion, surface engineering includes the application of innovative technologies to obtain the desired
properties through various synthesis methods, such as electrodeposition, chemical deposition, hot
dipping, chemical conversion treatments, chemical coprecipitation, magnetron sputtering, physical
vapour deposition (PVD), chemical vapour deposition (CVD), sol-gel, and solid-state reactions.

The electrochemical deposition is a process that occurs at moderate temperatures. The deposition
process requires an electrolytic cell with an anode, a cathode, and an electrolytic conductor. The
electrochemical reactions take place around a cathode (for example a metallic implant) where cations
from electrolytic solution are deposited and reduced. The cations can be Ca2+, Fe2+ and Fe3+ to obtain
hydroxyapatite, HAp or magnetite respectively. The anode currently is a wire of platinum. Both the
anode and cathode are connected to a current generator and a potentiostate.

Magnetite is a common iron oxide that exhibits outstanding physicochemical properties due to
the presence of Fe (II) and Fe (III) in its structure, which has a large surface area. This large surface
area of magnetite may provide higher availability of binding sites for osteoblast adhesion and thus
stimulate cell spread and proliferation, as in the case of a mesoporous hydroxyapatite [9,10].

Its potential field of application is large owing to its properties [11–20]. Magnetite nanoparticles
(MNPs) have been used for biomedical applications, such as biodetection, cell tracking, tissue engineering,
magnetic resonance imaging (MRI)/multimodal optical imaging, targeted drug administration, and
therapeutic hyperthermic cancer treatment [19,21,22]. Magnetite films have wide applications in
magneto-resistive and magneto-optical systems as well as Hall-effect sensors, among others. In addition,
magnetite is used as an electrodeposition coating to restore worn parts, and various applications, such
as hard wear-resistant coatings, biodegradable stents, and electromagnetic recording devices, have been
explored [23].

Magnetite is an inorganic nanomaterial frequently used in both clinical and research applications.
It is used due to their good biocompatibility [24], its intrinsic antimicrobial properties, as well as its
quality to act in synergy with other substances such as antibiotics or natural products [25–27].

Also, antimicrobial nanostructured coating based on Fe3O4 and other compounds like patchouli
essential oil has been studied. The results of this research show the antimicrobial activity and the good
biocompatibility of the obtained coating [28].

Others researchers [29,30] have investigated the incorporation of magnetite to hydroxyapatite
coating deposited on Ti6Al4V metallic alloy. The bioactivity has been increased due to the rate of
formation of bone-like apatite compared to bare hydroxyapatite coating because the wettability of
the composite coating has improved. In corrosion studies, the HAp-Fe3O4 composite showed higher
corrosion resistance than Hap-coated material on Ti6Al4V. The higher content of Fe3O4 with HAp
produced a uniform and adherent layer on the substrate with a better corrosion behavior.

The magnetite—as a coating or as nanoparticles—can be used in a large variety of medical
technological applications. The current work research goes in this direction.

The main aim is the synthesis of magnetite on a Ti6Al4V-ELI alloy using a novel potentiostatic
pulse-assisted coprecipitation (PP-CP) method. Additionally, the physicochemical, topographical, and
electrochemical characterization of magnetite coating on a Ti6Al4V-ELI alloy is performed.

2. Materials and Methods

2.1. Magnetite Coating Synthesis

The substrate consisted of a Ti6Al4V-ELI alloy 12 mm in diameter and 3 mm in thickness, with a
nominal chemical composition (wt%): 6.0 Al, 4.0 V, 0.1 Fe, 0.1 O, 0.03C, 0.01 N, <0.003 H, balance Ti,
with a surface finish obtained using a 1200 grit silicon carbide sheet. The magnetite coatings were
synthesised using the chemical coprecipitation method by applying an external polarisation of 1 V
for 30 min at 54 ± 1 ◦C. Also, 304 stainless steel was used as the anode, and Ti6Al4V-ELI was used as
the cathode. The solution containing Fe2+ and Fe3+ cations consisted of FeCl3·6H2O (2 × 10−3 M) +



Metals 2020, 10, 1640 3 of 15

FeSO4·7H2O (10−3 M). As an oxidant, 10 M NaOH was used. Additionally, the coating formation was
observed as a function of time by monitoring the potential behaviour.

Finally, electrochemical cleaning was performed in a 1% NaCl electrolyte by applying a potential
of 1.5 V for 15 min.

2.2. Surface and Structural Characterisation

The different phases on the surface-coated samples were identified using X-ray diffraction (XRD)
patterns obtained from a Bruker D8 Advance-9 using Cu Kα radiation (d = 1.5406 Å in grazing incidence
configuration). The applied voltage was 35 kV, and the filament current was 25 mA. Angular scanning
was performed from 20◦ to 70◦ with a step size of 0.02◦ and counting time of 1 deg/s. Additionally,
X-ray photoelectron spectroscopy (XPS) analyses were performed using a Thermo Scientific K-alpha
X-ray photoelectron spectrometer equipped with a monochromatic Al K-α X-ray source (1487 eV).
The measurement spot size was 400 µm, and a dual-beam flood gun (DFG) based on simultaneous
very low-energy electrons (~0.2 eV) and low kinetic energy Ar+ ions (5.0 ± 0.2 eV). A base pressure of
1 × 10−7 Pa was maintained in the analytical chamber without a DFG, which rose to 1 × 10−5 Pa when
the DFG was turned on. The X-ray beam intensity was varied by changing the electron current striking
the anode (3 and 6 mA), while the acceleration voltage was maintained at 12 kV. Survey spectra were
collected at a pass energy of 200 eV, while high-resolution spectra were recorded at 40 and 60 eV.

Photoelectrons were detected with a 180◦ double-focusing hemispherical analyser operated in the
constant analyser energy (CAE) mode. Calibration was performed using the binding energy of gold
(Au4f7/2 at 84.00 eV) and copper (Cu2p3/2 at 933.67 eV).

All samples were analysed by an atomic force microscope (AFM) in a Bioscope Catalyst (Bruker,
Santa Barbara, CA, USA) equipped with a link system electron microprobe in tapping mode. The samples
were evaluated using an area of 3 µm × 3 µm. In addition, the average roughness (Ra) and root mean
square roughness (Rq) of the coatings and the metallic substrate were obtained.

Finally, the ellipsometric measurements were performed using the Horiba CTRL-UNIT ellipsometer.
The measurements were performed with the sample 45◦ with respect to the plane of incidence at
633 nm. The centre of the ellipsometer light spot was always positioned in the middle and edge of the
samples. The first layer corresponds to the Ti6Al4V-ELI substrate. The second is the interface between
the titanium substrate and the magnetite coating and its thickness is defined as L1. L2 is the interface of
the magnetite coating and air. The thickness of the magnetite coating measured is taken as the average.

2.3. Electrochemical Characterization

Electrochemical evaluation was performed with a potentiostat-galvanostat Gill AC using Hank’s
solution as the electrolyte. A conventional three-electrode cell was used, with the magnetite-coated
titanium samples as the working electrode, a 304 stainless steel plate as the auxiliary electrode, and
a saturated calomel electrode (ECS) as the reference electrode. The corrosion potential (Ecorr) was
measured as a function of time for 1800 s. Electrochemical impedance spectroscopy (EIS) was performed
at an amplitude of 10 mV and in a frequency range of 100,000 to 0.01 Hz with 10 points per frequency
decade. Finally, cyclic polarisation curves were obtained using a potential scan of −100 to +1000 mV
with respect to the Ecorr at a scanning speed of 0.5 mV/s.

3. Results and Discussion

3.1. Magnetite Coatings Synthesis and Corrosion Potential Result

Figure 1 shows the sequential synthesis scheme used to obtain the magnetite coatings by PP-CP,
where the ferrous (Fe2+) and ferric (Fe3+) ions present in the medium did not have any arrangement
Figure 1a. However, when the potentiostatic pulse was applied, the positively charged ions shifted
towards the cathode (Ti6Al4V-ELI), where they were reduced to form a metallic iron film (Fe0)
(Figure 1b), while the negatively charged ions concentrated near the anode (stainless steel), where they
were oxidised to form sulphate ions and chlorine gas (perchlorate), according to the reactions (1–4).
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Cathodic reactions
Fe3+ + e−→ Fe2+ (1)

Fe2+ + 2e−→ Fe0 (2)

Anodic reactions
Cl−→ ClO4

− (3)

2Cl−→ Cl2 +2e− (4)

The polarisation allowed the ferrous (Fe2+) and ferric (Fe3+) ions near the cathode to be reduced on
the Ti6Al4V-ELI, forming a metallic iron film (Figure 1b) in such a way that when the oxidising agent
(NaOH) was added, the metallic iron film was oxidised, allowing the subsequent reaction to begin with
the precipitated Fe(OH)2. When metallic ions are in contact with a sodium hydroxide solution, it is
well known that magnetite formation begins (Figure 1c,d) with the oxidation of Fe(OH)+ in water [31].
These results are in agreement with those reported by Roonasi and Holmgren regarding magnetite
formation [32,33].

Fe(OH)2 (solid)↔ [Fe(OH)]+(aq) + OH− (5)

The subsequent step is the oxidation of [Fe(OH)]+(aq), as shown in the following reaction:

2[Fe(OH)]+(aq) +
1
2

O2 + H+
↔ [Fe2(OH)3]+3 (6)

However, the intermediate species [Fe2(OH)3]+3
(aq) can be combined with another [Fe(OH)]+(aq)

species to form Fe3O(OH)4
2+

(aq), which has the same Fe (II)/Fe (III) ratio as the magnetite Equation (7).

[Fe2(OH)3]+3
(aq) + [Fe(OH)]+(aq) + 2OH−↔ Fe3O(OH)4

2+
(aq) + H2O (7)

Finally, at a high oxidation rate or low pH value, it will further oxidise to goethite (or other Fe (III)
oxyhydroxides). However, if the concentration of dissolved oxygen in the water is low and the pH is
high, slow oxidation occurs, and dehydroxylation occurs prior to oxidation, such that the intermediate
species transforms into crystalline magnetite according to the following reaction:

Fe3O(OH)4
2+

(aq) + 2OH−↔ Fe3O4(solid) + 3H2O (8)
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The results obtained in this study suggest that reaction (1) has a significant effect on the fractioning
of iron [34], and the applied voltage allows the reduction of cations to Fe0 on the titanium surface,
producing the magnetite film (Fe3O4) preferentially. Nevertheless, the powerful reaction produced
oxidation in all locations where Fe2+ and Fe3+ ions would have been reduced, producing MNPs inside
the solution, which precipitated at the bottom of the electrochemical cell and, due to the magnetic
properties of these nanoparticles, adhered even to the magnetic stirrer, as can be seen in Figure 4.
Therefore, the magnetite obtained in the solution was produced from the following reaction [32]:

Fe2+ + 2Fe3+ + 8OH−↔ Fe3O4 + 4H2O (9)

Furthermore, using the potential behaviour, the magnetite coating formation was supervised
in situ. Figure 2 shows the initial potential behaviour (first 600 s) of the sample in the FeCl3·6H2O
(2 × 10−3 M) + FeSO4·7H2O (10−3 M) solution. Initially, the +0.36 V value corresponds to the passivating
film composed of mainly in TiO2 and probably with a contribution from the Al203 layer [35]. In Figure 2,
it can be seen that for 500 s this potential (+0.36 V) remained stable, then it was applied with −1 V and
the TiAlV-ELI electrode achieved −0.41 V value potential as a consequence of the formation of iron on
the electrode according to reactions (1) and (2). The difference between the applied polarisation and
the measured potential was due to the presence of different resistances in the system as well as the
droop potential. Green bars represent time intervals in which the temperature was stable (Figure 2); the
vertical coloured lines symbolise the temperature modifications, and the horizontal grey line (Figure 2)
shows the fluctuation in the potential as a function of time. The potential oscillates around E ≈ −0.41 V,
and although the temperature increased over time, the potential did not show a significant modification
for this synthesis period. However, at 54 ◦C, 11447 s, and E ≈ −0.57 V, 10 M NaOH was added, causing
the metallic iron film to oxidise and preferentially produce the magnetite coating (Fe3O4) (Figure 1d).
Nevertheless, the powerful reaction produced MNPs inside the solution, which precipitated at the
bottom of the electrochemical cell. The formation of the magnetite coating caused a potential shift
towards negative values (E ≈ −1.3 V for a ∆E ≈ 0.73 V). A stable potential was not observed as it trended
to more positive values (E ≈ −1.23 V); however, after approximately 17 min, the potential decreased to a
stable value (E ≈ −1.43 V), resulting in a total potential difference of ∆E ≈ 0.93 V.

1 
 

 

Figure 2. Potential behaviour during magnetite coating formation.

After synthesis, electrochemical cleaning was performed to eliminate non-adherent oxides, such
as haematite. The potential behaviour was also monitored during electrochemical cleaning. Figure 3
shows stable behaviour for 600 s (E ≈ +0.05 V). After applying a polarisation of 1.5 V, it was observed
that only 1.05 V arrived in the system; this behaviour is due to the droop potential. However, after
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cleaning, the polarisation was suspended, and a shift of E ≈ −0.4 V was measured, which is associated
with the elimination of non-adherent oxides, producing a potential closer to that of the bare substrate.
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3.2. Surface and Structural Results

3.2.1. X-ray Diffraction (XRD)

Figure 4 presents the XRD results for the samples treated for various times during the magnetite
film synthesis. All the obtained films presented diffraction signals corresponding to the (111), (220),
(311), (400), (511), and (440) planes of magnetite (PDF no.: 03-065-3107), at angles of 18.2◦, 30.2◦, 35.5◦,
43.03◦, 57.18◦, and 62.8◦, respectively. However, the signal at 35.5◦ corresponding to the (311) plane is
the characteristic magnetite signal according to References [36–38]. Important evidence of the presence
of magnetite in the synthesis is that particles attached to the magnetic stirrer surface owing to the
magnetic properties of these particles. In addition, an analysis of the particle size determined using
XRD was performed using the Scherrer equation, where it was determined that its size oscillated
around 8–10 nm for the (311) plane (Table 1).

D = 0.9λ/β cos(θ) (10)
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Table 1. Particle sizes.

2θ D (nm) t5 D (nm) t10 D (nm) t15 D (nm) t20 D (nm) t25 D (nm) t30

35.5 9.86 9.64 8.7 7.98 9.17 9.4

3.2.2. X-ray Photoelectron Spectroscopy (XPS)

Surface characterisation of the Ti alloy and the magnetite coating deposited on the titanium was
performed using X-ray photoelectron spectroscopy (XPS) to study the oxidation processes. Figure 5a
shows high-resolution spectra with peaks corresponding to Ti 2p (the main component) with a binding
energy around 454–454.2 eV [39,40], Al 2p (71.0–71.5 eV) [29,30], V 2p (512.0–512.2 eV) [39], and O
1s (530.1–530.2 eV) [40]. It is important to note that the uncoated sample showed binding energies
of each alloying element in a metallic state. After the PP-CP treatment, the signals corresponding to
the alloying elements were in their oxidised forms, indicating that the passive film formed during the
first seconds of the treatment once the alloy was in contact with the cation solution (Fe2+ and Fe3+); a
passive film of titanium, aluminium, and vanadium oxides was formed, which contained the following
oxides with corresponding binding energies: TiO2 (459.0–459.2 eV) [39,40], Al2O3 (74.2–74.8 eV) [39,40],
VO (513.5 eV), V2O3 (515 eV), and VO2 (514.4 eV) [39]. In the spectrum corresponding to O 1s, signals
corresponding to oxides (530.1–530.2 eV), OH- (531.4–531.5 eV), and H2O (532.5–532.7 eV) [39–41]
were observed; thus, it can be clearly seen that for both samples, the greater contribution comes from
the oxide. Figure 5 shows the high-resolution spectrum for Fe 2p, in which the peak at 706.75 eV is the
characteristic bond energy of Fe0 [42]; the peaks centred around 708 and 709.7 eV are attributed to
the Fe (II)-O and Fe (III)-O bonds in the magnetite [43] and were only observed for the sample that
underwent the PP-PC treatment. In addition, satellite peaks for iron were present, including S-Fe0

(714 eV), S-Fe2+ (715 and 714 eV), and S-Fe3+ (719 and 720 eV) [41,44,45].
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Figure 5. High-resolution XPS spectra of samples of Ti6Al4V-ELI and Ti + PP-CP (Fe3O4): (a) Ti 2p, Al
2p, V 2p, O 1s, and Fe 2p; and (b) normalised Fe 2p and O 1s of Ti + PP-CP (Fe3O4).

Figure 5b presents the normalised high-resolution Fe 2p and O 1s spectra with background correction
for the sample that underwent the Ti + PP-PC treatment, and Table 2 presents the corresponding
fit parameters, with the values of the central peaks, area, and full width at half maximum (FWHM)
corresponding to the evaluated sample. According to the literature, the presence of the magnetite
phase on the titanium alloy was observed, and the area for Fe3+ was 1.36 and for Fe2+ was 0.68, which
corresponds to the 2:1 ratio present in the magnetite. Additionally, the presence of Fe0 shows that
not all the cations present on titanium were converted to magnetite as a consequence of the potential
applied throughout the synthesis. There was a competition between the reduction of cations on titanium
and the oxidation of Fe0 until magnetite was formed, which involved having a coating with a greater
thickness and obtaining magnetite in a controlled manner as a consequence of polarisation. In addition,
the nature of the magnetite coating on titanium and that obtained within the solution present different
routes because the coating is presented in an orderly manner, step by step with a low thickness, while
the particles within the solution occur abruptly during the coprecipitation process. Finally, for O 1s, the
parameters are shown in Table 2, which indicate that most of the oxygen was present as O2

− (with an
area of 1.47) and not as OH− or H2O (0.40 and 0.146, respectively).

Table 2. Curve fitting and parameters for the Fe 2p and O 1s XPS spectra of Fe3O4.

Fe 2p Satellite Satellites O 1s

- Fe0 Fe2+ Fe3+ S-Fe0 S-Fe2+ S-Fe3+ O2− OH− H2O

BE 707.08 708.96 710.46 720.09 714.10 718.93 530.53 531.55 532.36
FWHM 1.58 1.71 2.78 1.69 7.71 2.16 1.63 2.58 2.37

Area 1.19 0.68 1.36 0.33 1.78 0.14 1.47 0.40 0.146

3.2.3. Atomic Force Microscope (AFM)

Figure 6 shows the AFM results. The samples with the magnetite coating had an increased
roughness as a consequence of their presence; in addition, magnetite is a highly porous oxide [46–50],
even at nanometric scales. This increased roughness could be associated with higher surfaces where the
film is present and lower surfaces where pores in the magnetite coating are retained. Moreover, it was
determined that the magnetite coating was homogeneous over the full substrate surface and increased
the average roughness (Ra) and the root mean square average roughness (Rq) from 10.5 and 13.7 nm to
31.5 and 38 nm, respectively.

The porosity of nanostructured magnetite coatings could be defects that can facilitate aggressive ion
access to the bare substrate and increase oxidation-reduction reactions. Nevertheless, as a consequence
of the oxidation-reduction reactions, oxides formed in the magnetite pores (mainly of titanium), which
could close the porosity to provide thermodynamic and kinetic stability to the magnetite coating and
increase the corrosion resistance of the substrate temporarily.
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3.2.4. Ellipsometry Results

The approximate thickness of the magnetite coating is given in Table 3.

Table 3. Thickness of the magnetite coating by optic ellipsometry.

Ti6Al4V-Eli + Fe3O4 L1 (nm) L2 (nm) LT (nm) X2

Ti6Al4V-Eli + Fe3O4 . . . middle 209.8 71.4 281.2 14.6
Ti6Al4V-Eli + Fe3O4 . . . edge 273.9 78.3 372.2 16.8

The ellipsometry technique is used to measure thicknesses in smooth surfaces. Magnetite-coated
samples have discontinuities, and this causes interferences when light contacts the coatings. These
interferences complicate the mathematical adjustment to obtain the exact value of the thicknesses. That
is why the deviation is high in the case of magnetite, as observed in Table 3. However, given the high
number of measurements of the thickness in different samples and areas (middle and edges of the
surface), it can be stated that the order of the thickness of the magnetite is about 326 nm.

3.3. Electrochemical Results

3.3.1. Corrosion Potential

The corrosion potential provides thermodynamic information about the materials under study,
in this case bare Ti6Al4V-ELI and that with a magnetite coating (referred to as the reference and
Ti6Al4V-ELI + Fe3O4, respectively). In Figure 7, an Ecorr = −0.43 V is shown for reference, which
displays a shift towards positive or noble values ≈ once it is coated with Fe3O4 (Ecorr = +0.04 V with a
∆Ecorr = 0.47 V). This behaviour is attributable to the presence of the magnetite coating on the titanium
substrate, which reduced the surface activity and produced a shift towards positive or noble values. It
is important to mention that the corrosion potential did not show significant variations during the
evaluation time, demonstrating the thermodynamic stability of the coating. This potential (Ecorr =

+0.04 V) is even more positive than those reported by Fattah-alhosseini et al., who obtained a magnetite
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coating on carbon steel by hydrothermal synthesis that showed a corrosion potential of approximately
−0.2 at room temperature and −0.4 V at higher temperature conditions [46].
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Figure 7. OCP behaviour as a function of time for the bare Ti6Al4V alloy and that coated with magnetite.

3.3.2. Electrochemical Impedance Spectroscopy (EIS)

One of the most commonly used techniques to determine the corrosion rate is EIS. This technique
can discern the resistive, capacitive, and inductive contributions of the substrate, coating, and electrolyte.
The results are presented in Figure 8. The Nyquist diagram shows the highest total impedance values
for the coated sample (Ti6Al4V-ELI + Fe3O4) and does not show a well-defined time constant (capacitive
behaviour), which is associated with the magnetite coating on the titanium surface. This capacitive
behaviour is shown in the Nyquist diagram as a line very close to the imaginary impedance, which
is primarily because the magnetite coating homogeneously covers the Ti6Al4V surface, acting as
a dielectric; this does not allow electrons to flow between the electrolyte and the Ti6Al4V surface,
accumulating charge at the coating-substrate interface. In contrast, for bare titanium (reference), the
Nyquist diagram shows a well-defined time constant (semicircle), which is associated with redox
reactions in contact with Hank’s solution.
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Metals 2020, 10, 1640 11 of 15

The simulation results are presented in Table 4. In general, they have two resistors and a constant
phase element. At high frequencies, for the coated sample, the total resistance is related to the resistance
the electrolyte (Rs) and the resistance of the film (RFe3O4), together with the constant phase element
(CPEFe3O4) associated with the magnetite coating. For the reference sample, the total resistance is
related to the charge transfer resistance (Rtc) and the constant phase element (CPEct). Additionally,
Table 4 shows the equivalent circuit that was used to simulate the electrochemical behaviour of the
coated sample and bare titanium.

Table 4. Contributions to the total resistance obtained using simulations.

Reference Ti6Al4V-ELI+ Fe3O4

Ecorr (V) −0.43 0.04
Rs (Ω·cm2) 44.33 42.86
Rtc (Ω·cm2) 711,070 -

RFe3O4 (Ω·cm2) - 1 × 10+20

CPE Fe3O4 (Ss) 1.94 × 10−5 -
CPE Fe3O4 (Ss) - 479 × 10−5

ndl 0.84 -
nFe3O4 - 0.72

Equivalent
Circuit
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The CPE is empirical, which hinders the physical interpretation of the results. The impedance of
the CPE is given by the following function [51]:

Z(ω) = 1/Y0 (jω)n (11)

where j is the imaginary number (j2 = −1), Y0 is the CPE constant (‘S’),ω is the angular frequency of
the applied signal (rads−1), n = α/(π/2) is the power factor of the CPE, and ω is the phase angle of
the CPE. The factor n is an empirically adjustable parameter, normally between 0.5 and 1. This CPE
describes the behaviour of an ideal capacitor when n is equal to unity. In the other cases, for 0.5 < n <1,
the CPE describes a distribution of dielectric relaxation times in the frequency domain. Many authors
associate the behaviour of the CPE with the fractal nature or roughness of the electrode surface [52].

In our adjustment, ndl and nFe3O4 take values of 0.84 and 0.72, respectively.
The value of nFe3O4 indicates that the coating did not behave as an ideal insulator, which means

that the coating resistance was not infinite, as shown by the obtained coating resistance value (1020
Ω·cm2). In the case of magnetite coatings, it was reported that magnetite is highly porous; therefore,
these responses are associated with this porosity [53–55]. Additionally, Table 4 shows that the Fe3O4

coating resistance was higher than that reported by Suresh et al., who demonstrated magnetite
formation on carbon steel with two time constants. The first is associated with the oxidized electrolyte
interaction (with a resistance of 850 Ω), and the second is associated with the metal oxide interface
(with an impedance of 190,200 Ω) [50].

3.3.3. Cyclic Polarisation Curves

The materials used as prostheses, such as those proposed in this work, tend to form a passive
layer that allows them to increase their useful life for a short period. However, this passive layer tends
to break owing to pitting corrosion. Using polarisation curves, the controlling mechanisms can be
observed as well as the pitting potential (Pp), which indicates the limit above which the formation
and nucleation of pitting begins. The cyclic polarisation curves are shown in Figure 9. The corrosion
potential (Ecorr) and the current density (icorr) are the two parameters that can help establish the
difference between the behaviour of samples evaluated in the simulated physiological medium. For the



Metals 2020, 10, 1640 12 of 15

reference material, the curve begins where indicated by the red arrow and continues until it reaches
an Ecorr of −0.32 V. The icorr increases until the passivation zone, where the current density remains
constant at −7.4 × 10−5 A/cm2. It is important to note that although it was polarised up to 1 V from the
Ecorr, an increase in the Pp and/or the icorr did not occur. In addition, the return signal had a new Ecorr

of 0.13 V. However, this potential is located within the passivation zone, which indicates that the film
was stable; it also has a ∆Ecorr ≈ 0.45 V and current density values that are lower than those of the
initial curve.Metals 2020, 10, x FOR PEER REVIEW 13 of 17 
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A novel potentiostatic pulse-assisted coprecipitation (PP-CP) method was used to synthesize 
magnetite coating on Ti6Al4V-ELI. The experimental conditions proposed in this work allowed us to 
produce a magnetite coating (Fe3O4) on the Ti6Al4V-ELI. 

Using the XRD technique, it was possible to determine the characteristic magnetite signal which 
was mainly composed of nanoparticles of approximately 8–10 nm in size. Moreover, the XPS results 
demonstrated that the oxidation state of the iron coating on the titanium alloy corresponds to 
magnetite. 

The AFM results demonstrated that the average roughness and the root mean square average 
roughness was increased as a consequence of the magnetite coating. 

The electrochemical test demonstrated that the corrosion potential, Ecorr, of the coated magnetite 
samples has a more positive value than bare titanium and thus diminish the susceptibility to pitting 
corrosion. Additionally, using EIS, it was observed that the reference samples had a total impedance 
lower than the Ti6Al4V-ELI + Fe3O4 sample. 
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Figure 9. Cyclic polarisation curves for the reference material and Ti6Al4V-ELI + Fe3O4.

For the Ti6Al4V-ELI + Fe3O4 curve, there is an Ecorr of −0.03 V and a subsequent Ecorr of 0.62 V.
At potential around 0.75 V, there is an abrupt rise in the current density that drops almost instantly. This
may be due to the existence of a metastable pitting in the magnetite-coating system. The return curve
displays the same behaviour described above for the reference sample, but with a ∆Ecorr ≈ 0.65 V (higher
than that of the reference), which could indicate that the substrate was even more stable in the presence
of the magnetite coating. The current density of the sample with magnetite (icorr = −7.4 × 10−3 A/cm2)
was smaller than that of bare titanium, which translates according to Faraday’s laws into a lower
corrosion rate. Finally, it has current density values close to those of the bare material; this behaviour
could be associated with the intrinsic porosity of magnetite [46–50], which indicates that, at least
temporarily, the magnetite coating provides a barrier that does not allow aggressive ions to access the
substrate. However, these porosities could result in a localised and accelerated corrosion rate once the
porosity allows aggressive ions to access the substrate and the corrosion reactions begin.

4. Conclusions

A novel potentiostatic pulse-assisted coprecipitation (PP-CP) method was used to synthesize
magnetite coating on Ti6Al4V-ELI. The experimental conditions proposed in this work allowed us to
produce a magnetite coating (Fe3O4) on the Ti6Al4V-ELI.

Using the XRD technique, it was possible to determine the characteristic magnetite signal which
was mainly composed of nanoparticles of approximately 8–10 nm in size. Moreover, the XPS results
demonstrated that the oxidation state of the iron coating on the titanium alloy corresponds to magnetite.

The AFM results demonstrated that the average roughness and the root mean square average
roughness was increased as a consequence of the magnetite coating.

The electrochemical test demonstrated that the corrosion potential, Ecorr, of the coated magnetite
samples has a more positive value than bare titanium and thus diminish the susceptibility to pitting
corrosion. Additionally, using EIS, it was observed that the reference samples had a total impedance
lower than the Ti6Al4V-ELI + Fe3O4 sample.
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