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Long-range coherent interactions between quantum emitters are instrumental for quantum information
and simulation technologies, but they are generally difficult to isolate from dissipation. Here, we show how
such interactions can be obtained in photonic Weyl environments due to the emergence of an exotic bound
state whose wave function displays power-law spatial confinement. Using an exact formalism, we show
how this bound state can mediate coherent transfer of excitations between emitters, with virtually no
dissipation and with a transfer rate that follows the same scaling with distance as the bound state wave
function. In addition, we show that the topological nature of Weyl points translates into two important
features of the Weyl bound state, and, consequently, of the interactions it mediates: first, its range can be
tuned without losing the power-law confinement, and, second, they are robust under energy disorder of the
bath. To our knowledge, this is the first proposal of a photonic setup that combines simultaneously
coherence, tunability, long range, and robustness to disorder. These findings could ultimately pave the way
for the design of more robust long-distance entanglement protocols or quantum simulation implementa-
tions for studying long-range interacting systems.
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Obtaining long-distance coherent interactions is one of
the current frontiers in atomic physics. Such interactions
can be harnessed, for example, to induce long-distance
entanglement between emitters [1], create large optical
nonlinearities [2], or study long-range interacting many-
body physics in the context of quantum simulation [3–10],
where they are known to lead to qualitatively different
physics than short-ranged interactions. Unfortunately, these
long-range coherent interactions are difficult to isolate from
dissipation. For example, free-space photons can mediate
coherent interactions between emitters scaling with the
distance (r) as ∝ 1=r3. However, these interactions are
unavoidably accompanied by individual and collective
dissipation that scales in a similar fashion [11,12]. An
elegant way of overcoming this fundamental problem
consists of modifying the photonic environment around
the emitters [13], e.g., by placing the emitters in gapped
electromagnetic media like photonic crystals [14–16].
When the emitter’s transition frequency lies within a
photonic band gap, the vanishing density of states cancels
dissipation, while localizing the photonic excitations
around the emitter, forming a so-called atom-photon bound
state (BS) [17]. Remarkably, these BSs can still mediate
coherent interactions through the overlap of the BS wave
function of the different emitters. Although tunable through
the detuning between the emitter’s transition frequency and
the band edge [3–10,18,19], photonic band gap BSs are
exponentially localized, losing the power-law scaling of the

interactions. In systems featuring two-dimensional
photonic Dirac points, one can recover the power-law
scaling for the interaction [20,21], but at the expense of
sacrificing the tunability of the interactions.
In this Letter, we show that photonic Weyl environments

[22–33] can mediate coherent interactions between quan-
tum emitters featuring negliglible dissipation, power-law
scaling, tunability, and robustness to disorder. By using a
fully nonperturbative approach, we find that, when the
frequency of the emitter matches that of the Weyl point, an
exotic BS with power-law localization emerges around the
emitter. This finding is in stark contrast to a recent study
reporting that the strength of light-matter interaction
vanishes when the emitter’s transition is tuned to the
Weyl point frequency [34]. In addition, by computing
the exact dynamics of two emitters, we numerically
corroborate that this Weyl bound state can mediate coherent
power-law interactions between the emitters with virtually
no dissipation. Finally, we show that this bound state wave
function, and the corresponding interaction between QEs it
mediates, inherit two important features from the topologi-
cal protection of Weyl points [35]. First, the photonic band
structure around the Weyl points can be modified without
opening a band gap; this enables tuning the power-law
exponent of the interaction 1=rα, with α taking values in the
interval ½3=2; 3�, depending on the configuration of the
system. Second, this power-law behavior is robust to a
certain degree of disorder in the bath, as it occurs in other

PHYSICAL REVIEW LETTERS 125, 163602 (2020)

0031-9007=20=125(16)=163602(6) 163602-1 © 2020 American Physical Society

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digital.CSIC

https://core.ac.uk/display/372713005?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://orcid.org/0000-0002-2236-8821
https://orcid.org/0000-0001-6876-8022
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.125.163602&domain=pdf&date_stamp=2020-10-14
https://doi.org/10.1103/PhysRevLett.125.163602
https://doi.org/10.1103/PhysRevLett.125.163602
https://doi.org/10.1103/PhysRevLett.125.163602
https://doi.org/10.1103/PhysRevLett.125.163602


topological BSs [36–38]. The combination of all these
features in the same platform (i.e., a single platform
enabling coherent, power-law, no dissipative, tunable,
and robust to disorder interactions between QEs) has to
our knowledge never been predicted or reported in any
other photonic environment.
To illustrate our findings we consider a three-

dimensional photonic lattice with the nearest-neighbor hop-
ping pattern of strength J and alternating phases sketched in
Fig. 1(a). The corresponding bath Hamiltonian can be
written as follows (taking ℏ ¼ 1 and using a rotating frame
such that the Weyl point frequency is the energy reference):

HB ¼ J
X

r

½ð−1Þxþyðc†rcrþaẑ − c†rcrþaŷÞ

þ c†rcrþax̂ þ H:c:� þM
X

r

ð−1Þxþyc†rcr; ð1Þ

where c†r (cr) creates (annihilates) a bosonic mode at
position r, a is the lattice constant, and M is an alternating
on-site energy offset. The motivation for choosing this
discrete lattice model is twofold. First, it captures well most
of the features of the continuum models, while opening the
possibility of analytical and numerical understanding of the
studied phenomena. Second, this class of discrete lattice
models can be readily implemented in recent quantum
optical setups based on cold atoms [39,40] or coupled
microwave resonators [41,42]. In this discrete model the
photonic timescale is given by J−1, while the relevant
emitter’s interaction timescale scales as J=g2. Thus, the
separation of timescales between the two is guaranteed as
long as g < J. Effects associated to the spatial dependence of
the electric field density of the system’s eigenmodes or the

role of polarization cannot be accounted for by a discrete
model and will be addressed in future work.
By imposing periodic boundary conditions, HB can be

diagonalized, leading to two energy bands ω�ðkÞ associ-
ated to the bipartite nature of the lattice [43]. Figures 1(b)
and 1(c) display ω�ðkÞ and its corresponding density of
states DðωÞ, respectively, for M ¼ 0. Our calculations for
jMj > 0 show that the band structure hosts the expected
Weyl points as long as jMj ≤ 2J, leading to singular band
gaps at the Weyl frequency. When jMj ¼ 2J, Weyl points
with opposite chirality meet in the reciprocal space and
annihilate in pairs, opening a band gap around the Weyl
frequency that enlarges its width as jMj is further increased.
In this work, we are particularly interested in the

quantum optical behavior of quantum emitters interacting
through such a photonic Weyl environment [50]. To model
each emitter we use a two-level system (fjgi; jeig), whose
transition frequency is assumed to be locally coupled to a
specific site of the lattice. Assuming that the light-matter
coupling is given by the scalar and real parameter g, the full
Hamiltonian of the system can be written as

H ¼ HB þ
X

j

Δσjee þ gðcrσjeg þ H:c:Þ; ð2Þ

where σjμν ¼ jμjihνjj denotes the spin operator of the jth
emitter, and Δ is the detuning between the emitters’
transition frequency and the Weyl point. For definiteness,
in this Letter we focus on the regime where jΔj ≪ J, such
that the emitter only probes the bath’s density of states
around theWeyl frequency. We leave the study of the rest of
regions of DðωÞ [e.g., of the kinks observed in Fig. 1(c)] to
future works, since they can also be the source of nontrivial
quantum optics phenomena [51].
We first analyze the configuration in which a single

emitter is coupled to a localized mode of the A sublattice
(similar results are obtained when it couples to the B
sublattice). We follow the canonical approach used in the
literature to study systems hosting BSs, which consists of
studying first the dynamical consequences of the BS in
spontaneous emission [52–58], and then characterizing
its properties using the secular equation of the full
Hamiltonian H of Eq. (2) [59,60].
The spontaneous emission problem considers an excited

emitter with no photons in the bath as the initial state, i.e.,
jΨ0i ¼ jei ⊗ jvaciB, and then studies its relaxation into the
bath due to the interaction with it. The excited state
probability amplitude is given by

CeðtÞ ¼ hΨ0je−iHtjΨ0i; ð3Þ

where jCeðtÞj2 represents the excited state population of the
emitter. Perturbative approaches, like Fermi’s Golden rule
[61] or the Born-Markov approximation [17], predict just
an exponential decay jCeðtÞj2 ≈ e−Γt, with a decay rate

(b)

(c)

(a)

FIG. 1. (a) Schematics of the analyzed system. Blue (red)
shallow cylinders represent sites belonging to the A (B) sub-
lattice. Solid and dashed arrows correspond to positive and
negative first-neighbor hoppings, J, respectively. M denotes
the sublattice frequency offset, whereas a is the lattice constant.
(b) Band structure of the system shown in (a), as calculated for
M ¼ 0. The frequency of the Weyl point (ωW) is marked with an
arrow. (c) Density of states, DðωÞ, associated to the bath with
M ¼ 0.
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proportional to the density of states, Γ ∝ DðωÞ. Thus, for
an emitter in resonance with the Weyl point of our system
(Δ ¼ 0), those approaches predict jCeðtÞj2 ¼ 1, irrespec-
tive of the value of M and J [see dashed black line in
Fig. 2(a)]. For the studied problem, however, an exact
calculation of the dynamics of jCeðtÞj2 can be done using
resolvent operator techniques [17,62] and exploiting the
fact that H preserves the number of excitations in the
system [43].
The main panel of Fig. 2(a) shows the calculated exact

dynamics of jCeðtÞj2 for a fixed value of g (g ¼ 0.5J) and
three representative values of M (M ¼ 0, J, 2J). As seen,
the results display a rather different behavior from those
expected from a perturbative prediction. In particular,
irrespective ofM, the emitter initially relaxes until a certain
time when the evolution quenches to a finite value
jCeðt → ∞Þj2 < 1. We note that in these calculations,
while for M ¼ 0 the quantum emitter is fully tuned to
the Weyl point frequency (Δ ¼ 0), forM ≠ 0 the emitter is
slightly detuned from the Weyl point (by Δ ¼ Δc) to
compensate for the spectral shift coming from the inter-
action with the bath [43]. The fractional decay of the initial
excitation observed in main panel of Fig. 2(a) is known to
be the dynamical signature of the emergence of a BS in the
system [52], as recently confirmed experimentally in
standard photonic band-gap environments [40].
Remarkably, for the caseM ¼ 0, we found the following

analytical expression for the steady-state value of the
emitter’s population jCeðt → ∞Þj2 ≈ ½1þ 0.25ðg=JÞ2�−2,
which unveils the scaling of the non-Markovian correction
with the light-matter coupling strength g [43] [the

perturbative prediction jCeðtÞj2 ≈ 1 is recovered for
g=J ≪ 1]. On the other hand, the inset of Fig. 2(a) shows
the numerical results for the dependence of the emitter’s
stationary-state population with M (computed also for
g ¼ 0.5J). As observed, jCeðt → ∞Þj2 is approximately
constant for jMj < 2J—the abrupt change observed at
jMj ≈ 2J corresponds to the band-gap opening in the
system. The above findings show the limited value of
the results reported in Ref. [34], which by applying a purely
perturbative approach, completely neglect all nonperturba-
tive phenomena associated to light-matter interaction in
Weyl-point photonic environments.
Having identified the emergence of a BS in the emitter

dynamics, now we turn to characterize its wave function
[hereafter we refer to this bound state as Weyl bound state
(WBS)]. Since the WBS exists within the single excita-
tion subspace, its wave function can be written
as jψWBSi ¼ ðCWBS

e σeg þ
P

r C
WBS
r c†rÞjgi ⊗ jvaciB, where

the probability amplitudes fCWBS
e ; CWBS

r g can be obtained
by solving the secular equation HjψWBSi ¼ EWBSjψWBSi
for EWBS ¼ 0. In the following, we focus on analyzing the
projection of the wave function over the photonic degrees
of freedom, jCWBS

r j.
Figure 2(b) summarizes the obtained spatial distribution

for jCWBS
r j, as calculated forM ¼ 0, J, and 2J. Upper panels

of Fig. 2(b) render the corresponding three-
dimensional visualizations, whereas the lower panels display
specific cuts along the x, y, and z directions. As seen, for
M ¼ 0, theWBS’s photonic component localizes around the
QE mostly in an isotropic fashion, featuring a spatial decay
that fits an inverse square power law. The physical origin of

(b)(a)

FIG. 2. (a) Exact dynamics of the emitter’s excited state population, jCeðtÞj2, calculated for M ¼ 0, M ¼ J, and M ¼ 2J (shown as
purple, orange, and green lines, respectively). The dashed line stands for the Markovian prediction. Inset shows jCeðt → ∞Þj2 versusM
(the cases displayed in the main figure are marked with the corresponding color code). In all displayed results, Δ ¼ Δc and g ¼ 0.5J is
assumed. (b) Left, center, and right upper panels display the three-dimensional distribution of the normalized photonic component of the
Weyl bound state for M ¼ 0, J, and 2J, respectively. Lower panels show cuts of the corresponding spatial distributions along the x, y
directions and z direction, as a function of the distance d to the quantum emitter. In these panels, blue (red) bars identify the sites
belonging to the A (B) sublattice, respectively. For each value of M, the emitter is detuned from the Weyl frequency by the associated
critical value Δc.
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this power-law confinement, also obtained at longer distances
(see Ref. [43]), can be associated to the particular form of the
dispersion relation around the Weyl frequency. Moreover, the
topological protection of Weyl points implies that, by varying
jMj ∈ ½0; 2JÞ, one can change locally the band structure
without opening a band gap. This fact brings in the possibility
to modify the spatial distribution of the WBS while preserv-
ing its power-law character. The middle and right panels of
Fig. 2(b) show that the power-law exponents governing the
bound state’s confinement, 1=dα, can actually be varied in the
interval α ∈ ½3=2; 3�, depending on M and the spatial
direction under consideration. The obtained power law and
tunable spatial decay of the WBS represents a whole new
instance of a light-matter bound state that, as we discuss
below, enables a novel platform for long-distance interaction
between quantum emitters.
The physical relevance of these tunable BS becomes

most apparent when more than one emitter is coupled to the
bath. In the following we focus on the case of two QEs—
initially prepared such that the first one is excited while the
other is in its ground state—and discuss exact calculations
obtained through the application of the resolvent operator
method to the case of two emitters [43]. The insets of
Figs. 3(a)–3(c) display the excited state population of the
two emitters (jC1;2ðtÞj2) forM ¼ 0, J, and 2J. The depicted
dynamics correspond to a spatial configuration in which the
two emitters, both of them coupled to a site belonging to the
A sublattice, are spaced a distance a along the z axis. As
seen, we obtain a set of coherent oscillations whose period
increases with M. Remarkably, as shown in main panels of
Figs. 3(a)–3(c), the dependence of the exchange frequency
(J12) with the vertical separation between emitters (d12)
replicate the power-law spatial confinement of the WBS
photonic wave function found in the single emitter sce-
nario. Analytical insight into these numerical results can be
obtained by applying a perturbative (Markovian) approach
to the configuration considered in Fig. 3. Specifically, by
formulating the problem in terms of a basis of symmetric
and antisymmetric states, and making use of the vanishing
density of states at the Weyl frequency, it can be shown [43]
that the temporal evolution of the excited state population
of the emitters can be expressed in a simple closed form as
jC1=2ðtÞj2 ≈ cos2ðJM12tÞ=sin2ðJM12tÞ, where JM12 is the excita-
tion exchange frequency within the Markovian approxi-
mation. The difference between this analytical prediction
and the numerical results of the nonperturbative approach
shown in insets of Figs. 3(a)–3(c) lies in the fact that the
oscillations predicted by the nonperturbative method are
not complete, reaching a maximal value that coincides with
the steady state population jCeðt → ∞Þj2 for each value of
M. This, in turn, corroborates that the WBS is indeed
mediating the interaction between the emitters.
Finally, we explore whether the above discussed topo-

logical protection of Weyl points translates into the WBS, and
consequently to the interactions it mediates. To do that, we

study the robustness of the WBS against on-site energy
disorder of the bath. Specifically, we consider a finite system
with ∼105 sites and we focus on M ¼ 0 (a similar analysis
can be performed forM ¼ J andM ¼ 2J). Then, we include
diagonal energy disorder characterized by a strength value
dM, so that the on-site energy of each localized mode is
taken from a uniform random distribution within the
range ½−dM; dM�. Direct diagonalization of the system’s
Hamiltonian for 103 random configurations and the sub-
sequent statistical treatment yields the results shown in Fig. 4.
For clarity, as the M ¼ 0 case is isotropic along the three
Cartesian directions, we only display the x direction. Blue and
red crosses depict the average value of the normalized jCWBS

r j
for A or B sites along the studied direction and shadow areas
span their corresponding standard deviation. We observe that
the original power-law behavior is maintained for the sites
belonging to the B sublattice with very small deviation up to
dM ¼ 0.6J. In addition, we observe that, despite the fact that
the projection of the WBS over sublattice A sites vanishes in
the non-disorder case, the presence of disorder introduces in

FIG. 3. (a),(b),(c) Frequency of the population’s exchange
experienced by two vertically aligned emitters as a function of
the separation between them for M ¼ 0, J, and 2J, respectively.
Both emitters feature Δ ¼ Δc and are coupled to sites belonging
to the A sublattice. Gray dashed lines display the power law
behavior associated to the Weyl bound state’s confinement in the
single emitter case. Insets show the dynamics of the excited state
populations corresponding to two emitters (jC1ðtÞj2 and jC2ðtÞj2,
solid and dotted lines, respectively), coupled to two different
lattice sites with relative position r2 − r1 ¼ aẑ. In this calculation
g ¼ 0.5J is assumed.
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those sites a similar power law as that found for B
sites, accompanied by a significant increase of statistical
deviation.
Summing up, we have unveiled the existence of a power

law, tunable, and robust to disorder atom-photon bound
state appearing when quantum emitters interact with
photonic Weyl environments with optical transitions close
in energy to the Weyl points. Using an exact dynamical
treatment, we have also evidenced that these Weyl bound
states can mediate coherent interactions between the
emitters with no associated dissipation, and that those
interactions inherit the properties of the Weyl bound state.
Beyond the particular realization reported here, we believe
that the concept of using topological protected points to
enable tunable, robust, and long-range interactions could be
exported to other setups to find different power-law
behaviors, and, more generally, it could also stimulate
further research of quantum optical phenomena in other
topological photonic systems.
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