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bstract 

 this study, we have investigated the effect of two different organic amendments on trac

etal transfer from soils to crops. Agricultural soils were mixed with (i) biochar (BC) at tw

vels (3% and 6%, w/w), and (ii) compost at one level (30%, w/w). Lettuce (Lactuca sativ

) was planted, and at the end of growth, trace metals (Cd, Cr, Cu, Ni, Pb and Zn) wer

alysed in both plants and soil. To evaluate the bioavailability and mobility of labile trac

etals, different methodologies were used, such as the diffusive gradient in thin film (DGT

chnique, BCR sequential extraction and pore water extraction. It has been observed tha

e lettuces grown in soils with added compost, the amounts of Cd, Cr, Cu and Pb was 1.7

4, 1.3 and 3.7 times lower, respectively, than those found in lettuces planted in soils wit

 amendment. Moreover, the addition of 3% of BC reduced the uptake of Cr (24%) wherea

6% of BC reduced Cr (55%) and Pb (50%) levels. Using the DGT technique in soils wit

fferent organic matter (OM) content, labile fractions of Cr, Cu and Pb were successfull

rrelated (p<0.05) with lettuce total metal concentrations. In conclusion, BCR sequentia

traction and DGT method have shown similar efficiency in front other methodologies

though it seems that DGT-methodology is faster and more cost-effective method tha

quential extraction for predicting metal uptake by plants. 

ywords: organic amendments; agricultural soil; Diffusive gradient in thin film; DGT; 

helex-100 

 

Jo
ur

na
l P

re
-p

ro
of
2 



 

 

1.

M c 

so g 

et t 

du l 

so ., 

20 l 

co s 

th ). 

So o 

de  

an e 

ad n 

co n 

ag t 

si ir 

bi n 

re z 

et r 

st d 

on l 

ch h 

is e 

of ir 

ab g 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Journal Pre-proof
 Introduction 

etal pollution has become a worldwide environmental problem, primarily by anthropogeni

urces (i.e. industrial activities, mining, traffic emissions and agricultural activities) (Huan

 al., 2018). The need to control the amount of metal content in agricultural soils is importan

e to the health risk impact to humans attributed to metal uptake by crops. In agricultura

ils, trace metals are analysed to evaluate their agricultural ecological risk (Mungai et al

16). Total metal concentration is the value commonly used to regulate the trace meta

ntamination in soil. Nevertheless, it does not represent the bioavailable fraction, which i

e fraction absorbed by plants and incorporated into the food chain (Venegas et al., 2016

il metal distribution and mobility depends not only on the chemical composition, it als

pends on the physicochemical properties of the soil such as the organic matter (OM), pH

d exchangeable capacity (Memoli et al., 2018). Stabilization of metals in soil by th

dition of organic amendments (i.e. compost, peat, manures or biosolids) has bee

mmonly used for their immobilization due to the low cost and facility of application i

ricultural soils (Gul et al., 2015; Venegas et al., 2016). These amendments canno

gnificantly decrease the concentration of total trace metals in soil but can reduce the

oavailability for plants. Some studies have reported the effectiveness of compost i

ducing trace metal uptake by plants, such as Cd (Kim et al., 2017), Hg (Restrepo-Sánche

 al., 2015), Pb (Tang et al., 2015) and Zn (Pichtel and Bradway, 2008), whereas othe

udies have shown the opposite (Egene et al., 2018; Riaz et al., 2018a). Differences depen

 the characteristics of the soils, and especially on the quantity and chemica

aracterization of OM of the amendment (Welikala et al., 2018). Nowadays, biochar, whic

 a carbon-rich component produced by the pyrolysis of an organic material in the absenc

 oxygen, is used in soil amendment due to its ability to complex metals besides for the

ilities to increase soil fertilization, water-holding capacity and microbial activity, amon
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her benefits (Abbas et al., 2018; Lahori et al., 2017). Recent studies have reported biocha

 effectively retain different trace metals such as Pb (Ahmad et al., 2012), Cd (Abbas et al

18), Cr and Zn (Trakal et al., 2017), thereby reducing their bioavailability.  

urrently, different methods have been used to study the bioavailability of trace metals. Th

ost employed methods to predict metal uptake by plants are soil solution extraction, whic

 controlled basically by thermodynamic/kinetic parameters (Kabata-Pendias, 2004), an

e BCR sequential extraction method related to the extractable fraction available for plant

hang et al., 2017). However, many processes affect the supply of solutes to plant

iffusional and convective transport to the root) and the biological effectiveness of free io

tivity are still not clear in predicting root uptake by these methods (Dai et al., 2018; Zhan

 al., 2001). 

e diffusive gradient in thin films (DGT) technique was demonstrated to assess meta

oavailability in natural waters (Fernández-Gomez et al., 2011, 2012, 2014; Turull et al

18), sediments (Wu et al., 2018) and soils (Harper et al., 1998). This technique wa

veloped by Davison and Zhang for the in situ determination of kinetically labile meta

ecies in aquatic systems (Davison and Zhang, 1994). More recently, it has bee

monstrated that DGT is a good predictor of metal availability to plants such as Cu (Zhan

 al., 2001), Cd and Pb (Ridoskova et al., 2017), Ni (Gao et al., 2018), and Zn (Tandy e

., 2011). Recently, it has been demonstrated that DGT is useful to explain the mobilit

me trace metals (Pb, Cd and As) in soils amended with biochar (Tang et al., 2019

owever, its ultimate potential uptake by plants was not estimated. 

 the present study, the effect of the addition of two different amendments (biochar an

mpost) on the bioavailability, mobility and uptake of Cd, Cr, Cu, Ni, Pb and Zn by lettuce

actuca sativa) was evaluated. Considering the variation of OM in the soil samples by th

dition of the amendments, DGT-labile metal concentrations in soil were determined an
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rrelated with metal uptake. Besides that, a three-step sequential extraction for soil, tota

etal concentration in soil and the analysis of soil solution were also performed to determin

hich technique is better for predicting plant uptake. 

 Materials and methods 

1 Site description and experimental design 

e agricultural soil samples used in this study were taken from the peri-urban area o

rcelona (Spain) (labelled as AS), and from an agricultural ecological field near Barcelon

belled as C), selected for the purposes of comparison in a pristine area closed to th

lected agricultural area. Both soil sampling sites were sampled to represent an averag

m a mixture of 5 × 10 sub-samples taken from an area of 100 m2 with a depth soil horizo

 0–25 cm. To characterize the soil and separate all the large components of the sample

tones, waste, plants…), a fraction of soil with particle size below 2 mm was obtained b

eving the air-dried sample (Kovaríková et al., 2007). 

e biochar (BC) amendment was produced by Bodegas Torres (Vilafranca del Penedès

rcelona, Spain) from vineyards by pyrolysis at 400–600 °C. After that, biochar wa

ushed and sieved to obtain particle sizes between 0.12 and 2 mm (Hurtado et al., 2017

r biochar, the N2-B.E.T SA was 387 m2 g-1, whereas pore volume and pore size wer

0679 cm3 g-1 and 3.26 nm, respectively. Ultimate analysis of BC resulted in C, H, N and 

ntents of 62.8, 1.1, 0.3 and less than 0.1%, respectively, and a molar H/C ratio of 0.21

ochar conductivity was 2158 ± 46 μS cm-1 and specific weight was 1.72 ± 0.05, wherea

1:10 solid:solution ratio with deionized water had a pH of 9.82 ± 0.04. 

e compost amendment used in this project was manufactured and packaged by NUB

ris (Borstel, Germany), obtained mainly from yellow peat from Sphagnum and OM o
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getal origin, also sieved to obtain particles smaller than 2 mm. The compost density wa

42 g cm-3, OM was 39% and pH ranged from 6.4 to 6.9. 

ter preparing the different soils and the amendments, five sets with different so

mposition were chosen for the experiment: (1) a control pot with the soil recollected from

e ecological soil as the reference site (C); (2) a peri-urban soil from near Barcelona (AS

) AS with 3% (w/w) biochar (BC3); (4) AS with 6% (w/w) biochar (BC6); and (5) AS wit

% (w/w) compost (CP30). The rates of the different amendments were chosen accordin

 previous studies (Fuchs, 2002; Hurtado et al., 2017). The different amendments wer

corporated into the soil 72 h before cultivation of the seedlings (Trupiano et al., 2017). 

2. Plant growth 

ttuce seedlings (Lactuca sativa L.) were planted in 2.5 L cylindrical pots (17 cm diamete

d 15.5 cm depth) filled with 2 kg of air-dried soil. The lettuces were grown for 48 days

ne lettuce was planted per pot, making a total of five replicates per set. During plant growth

e temperature was controlled at ambient temperature between 18 and 23 °C, and th

ount of light was controlled by a fluorescent light with an electronic timer (16 h of ligh

d 8 h of night) (Smolinska, 2015). The pots were rotated randomly every week in 

fferent position to avoid the space influence. Moreover, plants were irrigated manuall

ery day with between 50 and 75 mL per pot (depending on the humidity) of a Tarssa

tritive solution (Green Apple, 2019). 

3. Lettuce analysis 

hen lettuces reached commercial size, leaves and roots were harvested separately an

ashed out with deionized water to remove the soil from the samples. Fresh weight of roo

em and leaf for each plant was assessed. Leaf samples were dried in an oven and store

 4 °C for further analysis. EPA method 200.2 (Martin et al., 1994) was selected for analysi
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 the leaf samples. Briefly, 4 mL of (1+1) HNO3 and 10 mL of (1+4) HCl were added to 

0 g sieved (5-mesh) and dried sample and heated at 95 °C for 30 min in an EvapoClea

stem. An aliquot of 3–4 mL was evaporated during the process. The sample wa

nsferred to a 100 mL volumetric flash and diluted with Milli-Q water. Prior to analysis, 

as centrifuged at 3000 rpm for 20 min and filtrated. All analyses were conducted in triplicat

r set. Moreover, determination of chlorophyll every week and measurements of length

idth and roots at the end of the experiment were done, as the results are shown in figure

 and S2 of supplementary data, respectively. 

4. Soil treatment and DGT measurement 

mixture of soil from all the pots of every set was dried in an oven and stored at 4 °C unt

GT deployment and analysis. Thirty grams of air-dried soil was placed in a Petri dis

hang et al., 1998), saturated with Milli-Q water according to ISO 11464 (ISO, 2006) an

ft to equilibrate for 48 h. Then, DGT devices (DGT Research Ltd., UK) based on Chelex

0  as binding layer were placed on each soil sample and left for 24 h (Zhang et al., 2001

en, the devices were collected and rinsed with deionized water to clean the soil particles

e resin gels were removed from the DGT devices and immersed in 1.5 mL of 1 M HNO

r at least 24 h and stored in a refrigerator at 4 °C until analysis. 

ter DGT deployment, soil solution was centrifuged for 20 min at 3000 rpm at room

mperature. Then, the solutions were filtered with a 0.45 µm polysulfone filter, acidified wit

 (v/v) HNO3 and stored at 4 °C until analysis. Triplicates of blanks were analysed to chec

e quality control of the analysis. 

e average labile metal mass in the resin was calculated using Equation 1. 

M =
Ca(Ve+Vg)

fe
      (1) 
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here Ca is the concentration of analytes in the eluent (ng mL−1), Ve is the volume of th

uent (mL), Vg is the volume of the binding gel (typically 0.15 mL) and fe is the elutio

ficiency for the analyte (commonly used 0.8 for metals). 

sed on the Fick’s law of diffusion, the concentration in DGT (CDGT) was calculated a

llows: 

CDGT =
M∆g

DAt
        (2) 

here M is the mass of the analyte (ng) accumulated in the resin, D is the diffusion coefficien

m2 s−1), t is the deployment time (s), Δg is the thickness and A is the exposure area (3.1

2) (Zhang et al., 1998). 

5. Prediction of plant uptake by DGT 

e effective concentration (CE) represents the hypothetical concentration that should b

eded to accumulate the measured amount of each element on DGT resin if there wa

ly diffusional supply (Wu et al., 2018; Zhang et al., 2001) and it can be calculated from

uation 3: 

CE=
CDGT

Rdiff
         (3) 

here Rdiff represents the ratio of the mean interfacial concentration determined using a 2D

IFS modelling program (Harper et al., 1998; Sochaczewski et al., 2007) to simulate th

ployment in a diffusion only scenario. For 2D-DIFS program, value of Tc was used as th

ffusive case (700 s) (Sochaczewski et al., 2007) and particle concentration (Pc) and so

rosity (φs) were calculated as follow: 

Pc=
m

v
         (4) 
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Φs=
dp

(Pc+dp)
         (5) 

Ds=
D0

1-lnΦs
2         (6) 

here m is the total mass of the particles soil, V is the volume of pore water, dp is the densit

 the soil particles (commonly assumed to be 2.65 g cm-3 in soil) and D0 is the diffusio

efficient in water (Zhang et al., 2004). 

6. Sequential extraction 

BCR three-step sequential extraction (SE) procedure (Guevara-Riba et al., 2004; Memo

 al., 2018) was used to analyse the chemical fractionation of every trace metal in the fiv

fferent sets of the study. First of all, 1 g of dry soil sieved to < 200 µm was used in thi

ocess. To determine the extractable fraction (F1, acid-soluble), 40 mL of 0.1 M acetic aci

as added to the soil sample and shaken for 16 h at 30 rpm at room temperature in an end

er-end shaker. After that, the soil solution was separated by centrifugation at 4500 rpm

r 20 min, filtered with a 0.45 mm filter and stored at 4 °C until analysis. For the reducibl

ction (F2, associated with Fe-Mn oxides), 40 mL of 0.5 M hydroxylamine hydrochloride

justed to pH 1.5 by adding 2 M HNO3, was added to the residue from F1, and the treatmen

as the same as in the first step. In the case of the oxidizable fraction (F3, associated wit

M content and sulfides), 10 mL of 8.8 M hydrogen peroxide was added to the residue from

, digested for 1 h at room temperature and then for 1 h more at 85 °C, reducing the volum

 <3 mL. Another aliquot of 10 mL H2O2 was added and digested for 1 h at 85 °C, reducin

e volume to about 1 mL. Then, the amount was extracted with 50 mL of 1 M ammonium

etate (pH 2, adding HNO3) and shaken for 16 h at 30 rpm at room temperature. Finally

r the residual fraction (F4, associated with primary and secondary well-crystallize

inerals), 10 mL of HNO3 concentrate and 10 mL of HClO4 concentrate were added to th
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mple from F3 and digested for 16 h at 135 °C and then 16 h more at 135 °C to reduce th

ids. To recuperate the sample, 3 mL of HNO3 concentrate was added; 1 mL of ever

mple was diluted with Milli-Q to 25 mL and stored at 4 °C until analysis. After every ste

cept the last one, a washing step is mandatory. The residue was washed with 20 mL o

ionized water, shaken for 15 min and centrifuged, discarding the supernatant. 

 and F2 could be considered bioavailable fractions for living beings, F3 the fraction whic

as potentially bioavailable and could be absorbed by plants in a strong acid medium state

d F4 not bioavailable. 

7. Analytical methods 

) Soil pH and conductivity were determined with deionized water at a 1 : 2 solid : liquid rati

ing a previously calibrated Crison GLP22 pH meter and a previously calibrated Hac

DC401, respectively (Gramlich et al., 2018). 

) The OM was analysed as the percentage loss of ignition using 2.0 g of soil sample from

fferent sets in an oven (Carbolite CWF 1300) at 550 °C for 1 h after initial drying at 90

0 °C for 1 h (Dean, 1974). 

) The concentration of nitrates in the soil was analysed spectrophotometrically as nitrat

trogen (NO3-N) using a Hach Lange DR 3900. For the extraction, 50 mL of KCl was adde

 a 5 g soil sample and shaken for 1 h (Mulvaney et al., 2016). 

) Chlorophyll content in lettuce was measured with a chlorophyll meter (CCM200Plus

pti-Sciences, Hudson, NH, USA) from the absorbance of three leaves from each lettuce

calibration curve to relate the chlorophyll content to the absorbance previously measure

ith a chlorophyll content meter was obtained. Then, samples of leaves were extracted wit

mL of N,N-dimethylformamide and kept in the dark at 4 °C for 48 h. These extracts wer
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easured by spectrophotometric determination (at 647 and 664.5 nm), and total chlorophy

as calculated using Inskeep’s and Bloom’s coefficients (Inskeep and Bloom, 1985; Porra

02). 

) The concentration of trace metals in the soil, soil solutions, SE and lettuce biomass wer

alysed on an inductively coupled plasma mass spectrometer (Thermo Scientific, XSerie

ICP-MS). Standard reference material from spinach leaves (SRM 1570a, National Institut

 Standards and Technology, Gaithersburg) and blanks were analysed to check the qualit

ntrol of the analysis. 

8. Statistical analysis 

esults of the study were reported as the mean ± deviation (SD). Analysis of varianc

NOVA) was used to evaluate the results with IBM SPSS Statistics 23 (SPSS Inc., Chicago

, USA) for parametric values and Mann-Whitney for non-parametric values. Pearson’

ear correlation was used to establish the relationship between the variables (r). Statistica

gnificance was declared when p value was ≤ 0.05. 

 Results and discussion 

1. Trace metals in soil 

ble 1 shows the physicochemical properties and total metal concentration for each set o

periments as well as the different amendments. The mean concentration of trace metal

 the agricultural soils decreased as follows: Zn > Pb > Cu > Cr > Ni > Cd, with value

gher than those found in the crustal earth, except for Cr. In addition, concentrations of Cu

 and Zn were greater than the regulated values (BOE, 2009). Values of trace metals i

ochar and compost did not exceed the maximum levels from regulation RD 865/2010 fo

plication in agricultural soil (BOE, 2010). 
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1.1. Trace metal mobility and bioavailability 

e SE procedure was used to analyse the chemical fractionation of every trace meta

esults for the speciation of trace metals are shown in Fig. 1. In the control soil (C), trac

etals are mostly in non-mobile fractions because most of them are bound to silicates an

imary minerals. In the case of more polluted sites, these metals are highly mobile and als

und to other phases (Rauret, 1998). The percentage of bioavailable trace metals in C wa

wer than in AS, which could be an indicative of past anthropogenic pollution. 

r Cd, the largest fractions found in SE were the exchangeable (24–47%) and reducibl

ctions (45–66%). Concentrations from F3 and F4 were below the detection limit in all sets

gnificant differences (p<0.01) were found in F1 and F2 for the different treatments, wher

P30 was the only set for which F1 was reduced and F2 was increased. The largest fractio

r Cr was F4 (67–90%), which means that it may have originated from the soil paren

aterial (Yutong et al., 2016). No significant differences (p>0.05) were found in F1 betwee

 and the different treatments, while F2 was significantly reduced (p<0.01) in CP30. 

milar tendency was observed for Cu and Ni since both trace metals were retained in th

sidual fraction (35–57% for Cu and 58–64% for Ni), and the exchangeable fraction wa

ry low (1–3% for Cu and 1–5% for Ni). Besides that, on the addition of compost, a grea

crease in F3 was observed (47% for Cu and 29% for Ni) in comparison with AS. In additio

 the different amendments, statistical differences (p<0.01) for Cu were found for BC6 an

P30 in bioavailable forms. In the same way, Ni was significantly reduced (p<0.05) in CP3

t no differences were observed in BC3 or BC6 in comparison with AS. The largest pa

served for Pb was the reducible fraction (67–84%). Fe and Mn hydrous oxides play a

portant role in Pb mobility because of their facility to be its scavengers in soil (Lu et al

18). A significant reduction of Pb percentage in F1 for BC3 and CP30 was observed i

mparison with AS. For F2, only CP30 was significantly reduced (p<0.05). Most of the Z
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ncentration in soil was found in the reducible (44–52%) and residual fractions (31–41%

d only a small part was found in F1 (5–8%) and F3 (7–10%). A significant increas

<0.01) was found in F1 for BC6 and CP30 but no significant differences were found in th

her fractions. 

erefore, it was demonstrated that, in comparison with AS, the addition of compost coul

duce significantly (p<0.05) the bioavailability (F1+F2) of the following trace metals: C

0%), Cr (20%), Cu (67%), Pb (27%) and Ni (20%). It should be noticed that Zn is the onl

e for which bioavailability increased (7%). Zn is very sensitive to pH changes and th

ightly decrease of pH in CP30 could explain the increase of Zn bioavailable in soil (Doelsc

 al., 2010). On the other hand, biochar significantly reduced (p<0.05) the bioavailability o

d in comparison with AS. Also, bioavailability was reduced for Ni (5% for BC3 and 6% fo

6) and Zn (3% for BC3), even though not significantly (p>0.05). On the contrary, a sligh

crease in comparison with AS was found in BC3 for Cu (4.5%) and Pb (26%), whereas 

as in BC6 for Cu (14%) Zn (7%). 

Pearson’s correlation analysis was applied to study the relationship between th

ctionation in soil for each trace metal and the soil properties (Table S1). In the bioavailabl

ctions, OM and pH were the soil properties which affected most directly the distribution o

ce metals. In F3, all metals were positively and significantly correlated (p<0.05) with OM

though Cd was negatively correlated (−0.790, p<0.01), indicating that the amendment

uld facilitate the transformation from the bioavailable Cd to immobilized fractions (Liu e

., 2020) 

2. Metal uptake by lettuce 

ace metal concentrations in lettuces are represented in Table 2.  Jo
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 it can be observed, significant differences for Cd were found by the addition of 3% o

ochar in comparison with AS due to its porosity, functional groups and high pH

mirahmadi et al., 2020). Besides that, adding compost to the soil decreased Cd uptake b

ttuce (89%), although no significant differences were observed. Cd concentration wer

mpliant with the legislation. For Cr and Pb, the uptake by lettuce in BC6 and CP30 set

as significantly reduced (p<0.05). These results showed the effectiveness of the differen

endments studied to reduce both trace metals mobility because of its increasing of EC

d DOC in the soil. In the case of Cu, the addition of compost reduces uptake by lettuce

e to the high affinity of Cu for OM that retain significant concentrations of Cu in the so

akamatsu, 1983). Ni was the only studied trace metal for which no significant effects wer

served for any of the fertilizer sets or even between C and AS. Adding biochar to the so

creased Zn uptake by lettuces. Specifically, the addition of 6% of biochar significantl

creased (p<0.05) the concentration of Zn in leaves in comparison with AS, possibly due t

e Zn concentration from the addition of biochar (the amount of Zn in BC6 is higher tha

e other pots) (Abbas et al., 2017), whereas no significant increase was detected whe

ding 3% of biochar. These results match with previous studies. On the contrary, by th

dition of compost, no significant reduction of uptake by lettuces was found when addin

 of biochar or 30% of compost. 

3. Bioavailability in soil 

3.1. Concentration of trace metals in pore water 

lues of soil pore water trace metals concentration are summarized in Table 3. Meta

ncentrations were above the limit of detection for all trace metals, except for Cd. As it ca

 seen, the addition of biochar increased the concentration of Cr, Cu, Pb and Zn in por

ater, and decreased it for Ni. Our results match those from previous research (Moreno

ménez et al., 2016; Trakal et al., 2017). On the other hand, a significant (p<0.05) decreas
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as observed for Pb in pore water and an increase of Zn concentration by the addition o

mpost, as found in previous studies (Moreno-Jiménez et al., 2016; Riaz et al., 2018b

oreover, significant correlations (p<0.05) between the concentration of trace metals in por

ater and their total concentration in lettuce were found for Cu (r = 0.699, p<0.01), Pb (r 

603, p<0.05) and Zn (r = 0.555, p<0.05). 

3.2. DGT measurements 

omparison of different metal concentrations obtained by DGT measurements from th

fferent studied soils are summarized in Table 4. No data were obtained for Cd since n

etal concentration was detected in the DGT devices. 

lues of CE for Cu and Ni were significantly (p<0.05) reduced in BC6 and CP30 i

mparison with the non-amended soil. The addition of compost and biochar had n

gnificant effects on CE for Cr, Pb and Zn although mean values were lower in compariso

 AS. 

e R value is the ratio calculated by CDGT divided by Csoln and is commonly used t

termine the capability of metal resupply released from the solid phase to soil solution

ndamentally the desorption rates from solid to solution (Degryse et al., 2009; Yao et al

17). In all trace metals, R was < 0.3, indicating a low resupply from the solid phase cause

 slow desorption kinetics in the soil (Egene et al., 2018). Values of R for all trace metal

ere reduced by the addition of 6% of biochar, while only Cu and Zn levels were reduce

 the addition of compost. 

l can be calculated dividing the concentration in the pore water (Csoln) by the initial sorbe

ncentration in soil (Cs) (Lehto, 2016). As it can be seen in Table S2, in the case of Zn, K

ightly increase by the addition of biochar and slightly decrease adding compost. On th

her hand, for the other trace metals, Kdl greatly increased by the addition of compost mos
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ely due to the amount of OM added to the soil, which had a direct impact in the reductio

 trace metals in the soil solution. 

3.3 Comparison of DGT technique to other methods 

 determine which method is better to evaluate the metal uptake in soils with differen

ount of OM, values of trace metals analysed in DGT (CDGT), CE values, soil solutio

ncentration (Csoln), bioavailable fraction from the SE and total metal concentration in so

ere correlated with the trace metal concentration found in lettuce leaves, as it is shown i

ble 5. 

enerally, CDGT and CE are very strongly correlated and some studies which correlate bot

lues with the plant uptake did not find any benefit in calculating CE in the study (Degrys

d Smolders, 2017). However, results from our study show a significant correlatio

tween the CE and uptake by lettuce for Cr (r = 0.528, p<0.05), Cu (r = 0.836, p<0.01) an

 (r = 0.783, p<0.01), in front of the significant correlation between the CDGT and lettuce

r Cu (r = 0.793, p<0.01) and Pb (r = 0.786, p<0.01). In contrast with other studies (Agbeni

d Welp, 2012; Cornu et al., 2016), Cu and Pb were the trace metals for which a significan

rrelation (p<0.01) was found between CE and lettuces. To the best of our knowledge, thi

 the first study that correlates the calculated CE for Cr and its total content in lettuce

sides, a significant correlation was found between Csoln and metal in leaves for Cu (r 

827, p<0.01) and Cr (r = 0.645, p<0.01), but not for Pb. These results match those of Zha

 al. (Zhao et al., 2006) for Cu and Agbenin et al. (Agbenin and Welp, 2012) for Pb. 

 the present study, no correlation at all were found for Ni, in contrast to some studies (Lu

 al., 2014; Zhao et al., 2018), whereas a significant correlation was found with the tota

ncentration in soil (r = 0.641, p<0.05). Similar to a previous research (Gao et al., 2018

e concentrations measured by DGT devices were very low (range of 0.13–0.35 µg L−1), a
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ere R values, the lowest for all the trace metals. It is possible that in the case of Ni, diffusio

 limited at low concentrations (Luo et al., 2014).  

nally, no significant correlation was found between CE of Zn and lettuces, although som

her studies demonstrated the effectiveness of DGT devices applying Chelex-100 (Corn

d Denaix, 2006). On the contrary, previous works (Gramlich et al., 2018; Koster et al

05) demonstrated that the DGT method is not useful for predicting Zn uptake by lettuce

pine, grass and beans. In our study, a significant correlation was found with the total so

ncentration (r = 0.848, p<0.01) and the bioavailable fraction (r = 0.738, p<0.01

ggesting that other factors in soil not considered by DGT may dominate Zn uptake b

ttuces, such as the capacity of the solid phase or its desorption kinetics of Zn (Ernstberge

 al., 2005).  

 Conclusions 

e mean concentration of trace metals in soils with amendments decreased as follows: 

 > Pb > Cu > Cr > Ni > Cd. Values for Cu, Pb and Zn levels were above the acceptable

vels as established by regulatory organizations. It has been demonstrated that the 

dition of compost to soil can significantly reduce metal uptake by lettuce and, indeed, 

e bioavailability of trace metals, except for Ni and Zn, which increased but not 

gnificantly. Similarly, biochar significantly reduced the bioavailability of metals except for

u, Ni and Zn only by the addition of 6% of biochar. These values reflect the effectivity of 

e addition of OM in agricultural soils to retain trace metals, reducing their bioavailability 

r plants. For Cr and Pb, it has been showed that even adding a much lower percentage 

 biochar than compost, the metal retention of both metals was similar in comparison with
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omparing the different methods to correlate the metal uptake by lettuce with different OM

 the addition of two different amendments, our results indicate that DGT measurements

d the sequential extraction are more predictive in front of the pore water extraction and 

tal metal concentration in soil. The bioavailable fraction from SE was significantly 

rrelated with Cr, Cu and Zn, whereas DGT-methodology was significantly correlated wit

r, Cu and Pb. In the same way, it should be highlighted that, in comparison with the 

quential extraction, DGT is a more practical, fast and cost-effective method, becoming 

e best choice for metal bioavailability studies. 
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gure 1. Speciation of trace metals in soil. F1: exchangeable fraction; F2: reducible fraction; F3: 

ganic-bound; F4: residual; C: control; AS: agricultural soil; BC3: AS + biochar (3%); BC6: AS + 

ochar (6%); CP30: AS + compost (30%). 
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Table 1. Characterization of the different sets of the experiment, biochar and compost. Legislation 

of the organic amendments and soil trace metal were also reported. C: control; AS: agricultural 

soil; BC3: AS + biochar (3%); BC6: AS + biochar (6%); CP30: AS + compost (30%); S: for soil; 
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Table 2. Minimum and maximum (in parenthesis) and median concentration (mg kg-1 fresh 

we

AS

 VL1 

Cd 
(0.

0.2 

Cr 
(0.

- 

Cu 
(0.

- 

Ni 
(0.

- 

Pb 
(0.

0.3 

Zn 
(1.

- 

Di

M

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Journal Pre-proof
ight) of trace metals in lettuce from different sample sets. C: control; AS: agricultural soil; BC3: 

 + biochar (3%); BC6: AS + biochar (6%); CP30: AS + compost (30%). 

C AS BC3 BC6 CP30 M

005-0.007) 

0.006a 

(0.050-0.079) 

0.067bd 

(0.091-0.123) 

0.102c 

(0.090-0.102) 

0.096bc 

(0.037-0.061) 

0.047d 

018-0.026) 

0.021a 

(0.064-0.081) 

0.073b 

(0.046-0.067) 

0.059bc 

(0.037-0.058) 

0.047cd 

(0.026-0.035) 

0.031ad 

374-0.459) 

0.415a 

(0.475-0.573) 

0.512ab 

(0.583-0.616) 

0.596bc 

(0.605-0.780) 

0.683c 

(0.366-0.418) 

0.399a 

338-0.436) 

0.392ab 

(0.222-0.269) 

0.241a 

(0.204-0.402) 

0.294ab 

(0.392-0.550) 

0.468b 

(0.283-0.457) 

0.376ab 

005-0.024) 

0.014a 

(0.057-0.081) 

0.073b 

(0.081-0.092) 

0.085b 

(0.042-0.055) 

0.049c 

(0.016-0.026) 

0.020a 

870-2.329) 

2.119a 

(2.669-3.237) 

2.972b 

(3.510-3.671) 

3.587bc 

(3.806-4.138) 

4.012c 

(3.332-4.081) 

3.595bc 

fferent letters indicate a significant difference at p < 0.05 between treatments.  

VL1: Maximum value legislated (European Commission, 2006) 
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Table 3. Pore water metal concentration (µg L-1). C: control; AS: agricultural soil; BC3: AS + 

biochar (3%); BC6: AS + biochar (6%); CP30: AS + compost (30%). 

nd

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Journal Pre-proof
 C AS BC3 BC6 CP30 

Cr 1.72±1.74 2.38±0.08 2.54±0.12 2.78±0.12 1.61±0.06 

Cu 40.19±1.02 58.65±1.13 64.08±2.49 54.69±0.83 38.35±2.80 

Ni 22.13±1.21 109.79±6.42 95.78±13.55 82.81±3.67 36.19±5.61 

Pb nd 1.45±0.46 2.91±0.82 3.14±0.89 nd 

Zn 23.71±20.19 25.74±5.77 19.92±5.39 24.82±4.87 26.53±573 

: non-detected 
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ble 4. Trace metal concentrations found in DGT devices (CDGT), DGT-measured effective 

ncentration (CE) and the ratio (R) calculated by CDGT and Csoln. Mean and standard deviation 

e determined. C: control; AS: agricultural soil; BC3: AS + biochar (3%); BC6: AS + biochar (6%); 

30: AS + compost (30%). 

: non-detected 

 C AS BC3 BC6 CP30 

 (µg L-1) CDGT 0.15±0.05 0.11±0.02 0.15±0.05 0.14±0.05 0.09±0.00 

CE 0.56±0.02 0.60±0.09 0.68±0.23 0.62±0.21 0.43±0.02 

R 0.217 0.045 0.058 0.049 0.058 

 (µg L-1) CDGT 1.78±0.17 2.78±0.08 2.57±0.29 1.79±0.48 1.66±0.24 

CE 10.03±0.92 15.5±0.4 14.3±1.7 8.46±0.26 8.62±0.86 

R 0.044 0.047 0.040 0.033 0.043 

 (µg L-1) CDGT 0.10±0.02 0.35±0.02 0.34±0.06 0.17±0.05 0.15±0.05 

CE 0.69±0.09 1.80±0.26 1.78±0.32 0.91±0.30 0.81±0.28 

R 0.006 0.003 0.004 0.002 0.004 

 (µg L-1) CDGT nd 0.12±0.03 0.12±0.03 0.10±0.01 0.09±0.01 

CE - 0.82±0.19 0.84±0.17 0.70±0.09 0.64±0.04 

R - 0.083 0.047 0.035 0.178 

 (µg L-1) CDGT 2.22±0.56 4.52±1.79 3.66±0.19 2.75±0.23 2.81±1.26 

CE 13.2±2.6 24.5±9.6 19.6±1.0 14.8±1.2 15.2±6.9 

R 0.144 0.182 0.194 0.113 0.102 
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Table 5. Simple linear correlations (r) between trace metal concentrations in lettuces in dry weight 

(d

wa
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(
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St

NS
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w) and trace metal concentration from DGT (CDGT), CE values, total trace metal content in pore 

ter (Csoln), in soil and percentage of bioavailability (F1+F2) from SE. 

ettuces 

dw) 

CDGT CE Csoln 
Bioavailable 

fraction (%) 

Total metal 

concentration in 

soil 

r  r  r  r  r  

r 0.456 NSS 0.528 * 0.645 ** 0.579 * 0.355 NSS 

u 0.793 ** 0.836 ** 0.827 ** 0.721 ** 0.319 NSS 

i 0.086 NSS 0.086 NSS 0.061 NSS 0.290 NSS -0.037 NSS 

b 0.786 ** 0.783 ** 0.361 NSS 0.482 NSS 0.641 * 

n 0.337 NSS 0.221 NSS 0.477 NSS 0.738 ** 0.848 ** 

atistically significant relationship (p < 0.05)* (p < 0.01)** 

S: no statistically significant relationship 
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e tested the effect of biochar and compost applications on lettuce uptake of metals 

ptake of Cd, Cr, Cu and Pb was 2 to 4 times lower with compost than in unamended

s

ochar produces a greater weight of leaves, roots and total biomass of lettuces

ochar also increases leaf length and enhances significantly leaf chlorophyll content

e effective concentration of Cr, Cu and Pb was significant  correlated with metals in

uce
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