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Plasmon bands in metallic nanostructures
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The photonic band structure of a three-dimensional lattice of metal spheres is calculated using an embedding
technique, in the frequency range of the Mie plasmons. For a small filling factor of the spheres, the Maxwell-
Garnett theory gives an almost exact description of the dipole modes, and the multipole modes are fairly
dispersionless. For a larger filling factor, crystal field effects modify the multipole frequencies, which show
dispersion. These multipole bands are enclosed between the dipole modes. For touching spheres, there is a
wide continuum of plasmon modes between zero frequency and the bulk metal plasmon frequency, which yield
strong absorption of incident light. These plasmon modes are responsible for the blackness of colloidal silver.
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An isolated free-electron metallic sphere shows Mie plasand the equation is only solved explicitly in this region. The

mons at frequencies embedding potential, in reality a surface tensor operator, en-
sures that the surface parallel components of Ehand H

_ [ ] fields match across the boundary between the vacuum and

@= D\ 5 @) the metal spheres. The electromagnetic field is expanded in

) terms of any suitable basis g@te use vector plane waves
where w, is the bulk plasmon frequency, aihds the quan-  the region between the spheres, and because this field has no
tum number identifying the multipole. This assumes thediscontinuities the expansion converges very well. In the

Drude dielectric function case of nonmetallic dielectric spheres, the convergence is at
2 least an order of magnitude better than a direct plane wave

w)=1- ®p ) expansion through the whole of spagtiee usual method for

o(w+iln)’ finding photonic band structurg® in the difficult case of

. N . . metallic spheres, the embedding method continues to con-
wherer is the scattering time. In a lattice, crystal field effectsverge well. Of course there is a price to pay, and this is the

shift the Mie plasmon frequencies, an effect which has beegyg|yation of the embedding tensor which replaces the me-
studied both experimentally and theoreticdllJhese theo- tallic spheres. This involves finding the exact solution of
retical studies have generally been restricted to the dipolgiaxwell's equations inside the spheres for each multipole
plasmons and their crystal field, but recently a number ot frequencyw, but we have derived straightforward expres-
methods have been developed for a full solution of Max-sions that may readily be coded.
well's equations in periodic structurés® There have been The multipoles of the embedding tensor are cut off at a
photonic band structure calculations of lattices of metallicmaximum valuel 5, imposing a limit to the plasmon modes
rods! cylinders® and sphere%:'? The plasmon modes and on each sphere. Without this, the density of states increases
their interaction with light have been studied by Yannopapasvithout limit as w approaches the planar surface plasmon
et al,'%in the low filling fraction regime. frequencyw,/\2 [the limit of largel in Eq. (1)]. It is also

In this paper, we use the embedding method to solvéecessary for convergence of the plane wave expansion.
Maxwell’s equations,and consider the evolution of plasmon There is a physical plasmon cutoff i, due to Landau
bands in a lattice of nanoscale metallic spheres as the sphefl@mping, though this is larger than the values we use. Con-
size increases from very small, practically the isolated spher&0lling Ina also enables us to study the evolution of the
limit, to touching spheres. Our band structures and densitieBlasmon bands in more detail. Unlike in scattering theory
of states show clearly the interaction of light with such sys-Where |y, is similarly imposed, all higher values ¢fare
tems, and the way that the plasmons are affected by thi@cluded in our embedding, but with a different boundary
crystal field. We find that the presence of structured metafondition, that the surface parallel componentsHo¥anish
introduces a continuum of plasmon modes, which yieldon the surface of the sphere.
strong absorption of incident light and are responsible for the The system we shall discuss here is a face-centered-cubic
unique optical properties of colloidal metals. (fce) lattice of metallic spheres in vacuum, the spheres being

In the photonic embedding method, the dielectricdescribed by the Drude dielectric function of H@). The
objects—here metallic spheres—are replaced by an embegcaling property of Maxwell's equations makes it natural to
ding “potential” over their surface. This is added to the waveuse the dimensionless reduced frequeiacywa/2mc and
equation for the uniform vacuum region between the sphereseduced wave vectdc=ka/ 27, wherea is the conventional
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FIG. 1. ny, spectral density for fcc lattice of metal sphers, FIG. 2. Band structure for fcc lattice of metal sphefiesp.5,
=2, ©p=0.1, Ima=3, atk=(0.03,0,0) (solid ling) and (0.1,0,0 3, =0.1, inT'X direction (solid lines and shaded ajedhe dashed
(dashed ling line represents the free-space dispersion relatioh. Filled circles

are results from the Maxwell-Garnett theory.
lattice constant. Throughout this paper we use the reduced

value of w,=0.1; takingw,=15 eV for Al, this corresponds ; : ;

P P ' oo gence. Increasing,, does not change the light line and flat
to a lattice constant ca=83 A The reduced lifetime is dipole modes, but gives the flat multipole bands at the fre-
taken to be 1000, a value which enables us to separate Spefiencies given by Eql) filling the shaded area of Fig. 2.
tral features. We note that quantum size effects are likely to At low filling fractions, the interaction between the

be impo.rtant in the small spheres we study here—this will bespheres can be considered within the Maxwell-Garnett
treated in later work. approximationt4 For the light mode that we see in Fig. 2, we

In the embedding method, with a frequency-dependeni,, yefine a frequency-dependent effective dielectric func-
embedding tensor, it is most straightforward to use a planet-I

wave expansion for the Green function between the spheres,
and from this we calculate the spectral densityw) (pro- €ori( @) = KY@2, (3)
portional to the energy densjtyintegrated through the o

vacuum region. Figure 1 shows a typical spectral density, foRNd the Maxwell-Gamnett approximation then gitfes

a fcc lattice of metal spheres with reduced radig7r/a

=2, corresponding to an actual radius 6£26.3 A and a Eeii(w) =1 —f

filling fraction of 54%, atE:(0.0S,0,0) and(0.1,0,0 [the

X point corresponds tk=(1,0,0]. In this calculation

Imax=3, and convergence has been achieved with 18 trans- 4 1

verse and 181 longitudinal plane waves. The number of Eeff(“’):1+fm' (5

transverse waves stays very low over the frequency range

shown, but the number of longitudinal waves increases as thideref is the filling fraction,m=(1-f)/3, andn=(1+2f)/3.

radius of the sphere decreases &pg increases. The large The filled circles in Fig. 2 show the results for the dispersion

number of longitudinal waves required is characteristic ofcalculated from Eqs(3) and(4). There is, not surprisingly,

plasmon systems. The almost constant features of Fig. 1 b@recise agreement with our calculated results for the light

tweenw=0.055 and 0.085 are the multipole plasmons with adipole mode.

nondegenerate dipole plasmon at the top of this frequency The concept of effective dielectric function is particularly

range. The dispersing peaks below and above this range auseful for understanding optical absorption, which is dictated

the light line coupled to a doubly degenerate dipole mode. by the poles ofe.r. Conversely, the energy loss of fast
From the peaks in the spectral density we plot the photocharged particles is dictated by the polesegf. An inspec-

nic band structure. We begin by considering a fcc lattice oftion of Egs.(4) and(5) shows that in the isolated sphere limit

relatively small spheres wiff=0.5, an actual radius of 6.6 A (f—0) both optical absorption and energy loss occur at the

and a filling fraction of 0.8%. The band structure fg,  Mie dipole frequency ofv,/ V3. At finite filling fraction, the

=1 (solid lines in Fig. 2 shows flat dipole modes at the Mie Maxwell-Garnett approximation predicts optical absorption

frequency opr/\@ (solid horizontal ling and the doubly at \s’mwp and energy loss atnwp. These are, respectively, the

degenerate light lingsolid lines below and above the flat limit of the lower branch of the light line and the starting

dipole modeg At the crossing point the light lines mix with frequency of the upper branch.

two of the dipole modes, but with small spheres the interac- At a sphere radius af=1.2, filling fraction 12%, we find

tion and the splitting are small. This calculation required 2that the plasmon frequencies deviate from the isolated sphere

transverse and 1591 longitudinal plane waves for converresults. The circles of Fig. 3 show the band structure with

[1-ew)]t-m @

and
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FIG. 3. Band structure for fcc lattice of metal sphemés1.2, FIG. 4. Band structure for fcc lattice of metal sphemés2.0,
@p=0.1, Imax—, in I'X direction (solid lines and shaded apea w,=0.1, Ino=2, in I'X direction (solid lines. Filled circles are
Circles are results obtained with,,=1. Maxwell-Garnett calcula- results from the Maxwell-Garnett theory.
tions, not represented here, nearly coincide Wjth=1 results.

la=1. We see that the interaction with the light line pro- SPectral density associated with higmultipole plasmons
duces a greater splitting of the dipole modes than in Fig. 2¢10s€ t0 the planar surface plasmon limitegf/ v2=0.07, in
which is indeed accurately reproduced by Maxwell-Garnetthe middie of the multipole plasmon region. We can then plot
theory. Increasind,,, (solid lines of Fig. 3 barely affects the band structure in the largig,, limit, Fig. 6 (convergence
the lower and upper branch of the light line, only introducinghas been achieved witly,.,=8), where the multipole bands
virtually flat multipole modes at the Mie frequencies of Eq. lie in the shaded area enclosed by the dipole bands. The

(1) which fill the shaded area of Fig. 3. dipole bands themselves have been pushed out compared
A calculation of the band structure of a simple cubic lat-with |,,,,=2 (shown in Fig. 6 by circles
tice of Drude spheres wit,=0.06 and filling fraction of It is clear from our results far=2, showing an increase in

12% was carried out by Pendhpy using a transfer-matrix dipole band gap ak,, increases, that part of the band gap
scheme. We have calculated the band structure for those peesults from the interaction of the dipole modes with the
rameters, and have found that it has almost exactly the sanmeultipole modes. This interaction means that the multipole
form as the band structure of Fig. 3. This disagrees, howevemodes can be excited by both photons and by fast charged
with the band structure reported in Ref. 9, which shows flaparticles. This contrasts with the apparent absence of inter-
low-energy bands absent in the band structure of Fig. 3action in Fig. 3 foff=1.2.

These probably originate from spurious modes associated The behavior of the multipoles is more extreme once the
with the edges and corners that are present in the transfespheres touck, corresponding t6=2.2, and a filling frac-
matrix discretization procedure. tion of 74%. Figure 7 shows the band structure with,

The plasmon band structure is much more interesting a£12. The multipole modes in the shaded area are still
T=2, filling fraction 54%, with greater interaction between
all the modes. Figure 4 exhibits the band structurel fQx y T y T y T
=2, in theT'X direction. We have also looked at this band '*®[
structure in thd"W direction, and have found that along this
direction all the states are nondegenerate, with eight plasmol
bands(there is nol=0 plasmon. Figure 4 shows that the
Maxwell-Garnett dispersion calculated from E¢®). and(4)
starts to become somewhat inaccurate, as its assumptiorg
begin to break down. We also note that unlike in the case o
smaller filling fractions, where the high multipole plasmons
cut across the upper branch of the light line and lie higher
than the flat dipole plasmon modes, here the dipole plasmon
enclose the multipole modes.

As |,a Increases, there are so many plasmon bands tha M

they become difficult to track individually. However, we can % Y —
see the general behavior by studying the spectral density.
Figure 5 shows the spectral density kat(0.5,0,0 for T FIG. 5. n, spectral density for fcc lattice of metal sphergs,
=2 and various values ofy 2, 6, 8, 10, and 12. We see that =2, ,=0.1, atk=(0.5,0,0. Solid line, | ,,=2; long-dashed line,
there is very little difference in the overall structure for I,,.=6; short-dashed lind,,=8; dotted line,l,.=10; dashed-
Imax= 6, the only difference being the large increase of thedotted line,l,=12.
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FIG. 6. Band structure for fcc lattice of metal spheiés2.0,
@p=0.1,l g, in X direction(solid lines and shaded apedhe
circles show the dipole bands of Fig. 4, obtained Wjth=2.

bounded by the dipole modes, butlgg, increases the mul-
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FIG. 7. Band structure for fcc lattice of touching metal spheres,
T=2.2,wp=0.1,I14=12, inI'X direction. Filled circles are results
from the Maxwell-Garnett theory.

of multipole modes nearly spanning these limits, with corre-

tipole modes steadily broaden, pushing the lower dipolesponding optical absorption. This is the reason for the strik-

branch toward$o=0 and the upper branch towards. The

ing blackness of colloidal silver.

upper branch appears to have reached its upper limit by

Imax=12, just beloww,, the lower branch is still moving
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