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Abstract The Spanish late Miocene locality of Batallones-1 yielded a rich sample of large 

carnivorans, including saber-toothed felids, amphicyonids, and ailurids, but also of smaller 

species, with the small cats being especially interesting. Two species are known from 

Batallones-1, one of them the size of a wildcat, Felis silvestris, the other one the size of a 

caracal, Caracal caracal. The former is represented by skulls, mandibles, and postcranial 

bones, whereas the latter is known from a collection of long bones. Both species are less 

abundant than their larger relatives, the saber-toothed felids Promegantereon ogygia and 

Machairodus aphanistus, but the available sample allows us to assess body proportions and 

adaptations of the smallest species, and to propose a new genus for this feline, Leptofelis 

vallesiensis. Its limb bones are remarkably gracile compared to fossils of the earlier genera 

Pseudaelurus, Miopanthera, and Styriofelis, and comparable in cursorial adaptations to the 

wildcat, very different from extant arboreal cats. While middle Miocene felids were likely 

semi-arboreal forest dwellers, L. vallesiensis would be mostly terrestrial, climbing essentially 

for protection. This indicates an adaptation to a mosaic of habitats, including relatively open 

terrain, and may be related to the climatic changes detected in Eurasia during the late 

Miocene. 

 

Keywords Morphology; Locomotion; Vallesian; Leptofelis.  
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Introduction 

 

Fossils of primitive felids are recorded in several early and middle Miocene sites of Europe, 

Africa, and North America (Thenius 1949; Viret 1951; Crusafont-Pairó 1952; de Beaumont 

1961; Ginsburg 1961a, 1983, 1999, 2002; Crusafont-Pairó and Ginsburg 1973; Rothwell 

2001, 2003; Morales et al. 2003; Werdelin et al. 2010). Concerning those showing feline 

affinities, there are up to four species classically included in the genus Pseudaelurus 

Gervais, 1850: Ps. romieviensis Roman and Viret, 1934, from La Romieu (France, MN4), 

Ps. turnauensis (Hoernes, 1882) from Göriach (Germany, MN 5), Ps. transitorius Depéret, 

1892 and Ps. lorteti Gaillard, 1899, both from La Grive-Saint-Alban (France, MN 7/8). All 

of them are mostly known from cranial and dental fragments, which show a quite similar 

pattern, but unfortunately, very few postcranial bones are known from these early felines, 

and thus it is difficult to make inferences about their locomotor adaptations. A fifth species 

of primitive felid from Sansan (France, MN 6) was also included in Pseudaelurus as Ps. 

quadridentatus (Blainville, 1843) (in fact this form is the type species of the genus), but 

based on its particular features (moderately elongated and laterally flattened upper canines 

and relatively robust Mc I) it is currently considered as the first known saber-toothed felid, 

hence the genus Pseudaelurus should be included within the subfamily Machairodontinae 

(de Beaumont 1978; Werdelin et al. 2010; Salesa et al. 2012a; Peigné 2012). Considering 

this, and the feline dental characters (basically, relatively short upper canines with rounded 

section) that they displayed, most of the other species of Pseudaelurus (i.e., Ps. lorteti, Ps. 

turnauensis, and Ps. transitorius, the last being a junior synonym of Ps. turnauensis) 

mentioned above were assigned in different genera, Styriofelis Kretzoi, 1929, for Ps. 

turnauensis, and Miopanthera Kretzoi, 1938, for Ps. lorteti (Geraads and Peigné 2016). To 
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summarize, in the middle Miocene at least three different taxa are known in Western 

Europe: the primitive machairodontine Ps. quadridentatus, the lynx-sized feline M. lorteti, 

and the wild cat-sized feline S. turnauensis. Nonetheless, we should consider that the 

scarcity of postcranial bones of these taxa is probably concealing a greater generic diversity 

and preventing an in-depth taxonomic knowledge of these early Felinae.  

Cranial remains of European late Miocene Felinae are much better known than 

those from the lower and middle Miocene, and several skulls and mandibles are known 

from different Turolian European localities (Wagner 1857; Schlosser 1924; de Mecquenem 

1924; Riabinin 1927; Kretzoi 1951, 1952; de Beaumont 1961; Schmidt-Kittler 1976; 

Solounias 1981; Forsten and Kaya 1995; Morlo 1997; Ginsburg 1999; Roussiakis 2002; de 

Bonis 2005). All of them were classically assigned to the wildcat-sized Felis attica 

Wagner, 1857, but separated by Salesa et al. (2012a) into the new genus Pristifelis as P. 

attica. Nevertheless, the postcranial skeleton of this animal is as poorly known as those 

from the earliest Felinae. In fact, few papers including comparative descriptions or 

functional inferences on the postcranial anatomy of these Miocene felines have been 

published (de Beaumont 1961, 1986; Salesa et al. 2011). Finally, a new species was 

described from the Vallesian of Batallones-1 and Batallones-3 (Madrid, Spain) by Salesa et 

al. (2012a) under the name of Styriofelis vallesiensis. This is the smallest of the two species 

of Felinae known from these Spanish localies. When Salesa et al. (2012a) assigned the 

small feline from Batallones-1 and Batallones-3 to the genus Styriofelis as the new species 

S. vallesiensis, they chose the most conservative taxonomic point of view based on a set of 

dental similarities between the Batallones sample and the Middle Miocene feline S. 

turnauensis, although in their cladogram these two species are not sister-taxa.  
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Here, we describe the postcranial anatomy of S. vallesiensis, based on a well-

documented sample from Batallones. The objective of our study is first to address the 

generic affinities of the two species of Styriofelis: do their postcrania provide an additional 

support of their close generic relationships? At a wider scale, we also want to address the 

systematic relationships and postcranial functional anatomy of the small- to medium-sized 

felines of the middle and late Miocene of Europe mentioned above: Miopanthera lorteti, 

Styriofelis turnauensis, Styriofelis vallesiensis, and Pristifelis attica. We posit that their 

postcranial anatomy presents marked differences that, in addition to their particular cranio-

dental features, supports both their taxonomic distinction and different adaptations and 

ecology. Thus, in the Systematic Palaeontology section we provide with a proper 

discussion on this issue, and the proposal of the new genus Leptofelis for the species S. 

vallesiensis.  In consequence, we will refer throughout the text to the species from 

Batallones-1 with the new name of Leptofelis vallesiensis. 

 

Material and methods 

 

The studied postcranial fossils of Leptofelis vallesiensis come from the fossil site of 

Batallones-1, which is part of the Cerro de los Batallones paleontological complex, located 

in a low hill of around 700 m of elevation, 30 km south of the city of Madrid (Spain). Up to 

nine localities have been found since 1991 thanks to the exploitation of the hill as an 

opencast mine of sepiolite. The sites were formed through a geological process of piping, 

which consisted in the erosion of the sepiolite levels by water flowing along fractures, 

causing collapses and the development of karst-like (‘pseudokarst’) topography (Pozo et al. 

2004; Calvo et al. 2013). These cavities acted as natural traps for the animals inhabiting the 
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area, mostly carnivorous vertebrates that entered the holes attracted by the carcasses of 

other previously trapped animals (Antón and Morales 2000; Morales et al. 2000). One of 

them, Batallones-1, excavated during 1991-2008, has provided an amazing assemblage of 

Carnivorans, including the ailurid Simocyon batalleri, the amphicyonid Magericyon 

anceps, three species of mustelids, the primitive hyaenid Protictitherium crassum, the 

machairodont felids Machairodus aphanistus and Promegantereon ogygia, and two species 

of felines (Morales et al. 2000, 2004; Antón et al. 2004; Peigné et al. 2005, 2008; Salesa et 

al. 2005, 2006a, b, 2008, 2010a, b; Siliceo et al. 2015, 2017). In their revision of the late 

Miocene felines, Salesa et al. (2012a) proposed the new species Styriofelis vallesiensis for 

the smaller of these two species of Felinae, mainly based on the relative dental similarities 

of this species with the Middle Miocene S. turnauensis. Leptofelis vallesiensis is present in 

two localities of Batallones: Batallones-1 and Batallones-3, separated by no more than one 

hundred meters, and with their saber-toothed felids populations showing enough 

morphological differences to support also a temporal separation between them (Monescillo 

et al. 2014; Siliceo et al. 2014).  

The fossils of L. vallesiensis described here are housed at the Museo Nacional de 

Ciencias Naturales-CSIC (Madrid, Spain). They were found during the excavation 

campaigns of 1991-2008 at the late Vallesian locality of Batallones-1 (Torrejón de Velasco, 

Spain), coordinated by J. Morales. The list of studied material is as follows: BAT-1’06 D4-

64a, BAT-1’06 D4-64b and BAT-1’06 D4-64c, L7-L4; B-4968, right humerus; BAT-1’02 

D6-58, left humerus; B-2074 (5), right radius; B/S-575, left radius; B-2074 (6), BAT-1’08 

C8-24, and BAT-1’06 E5-50, right ulnae; BAT-1’03 D4-239, right Mc I; B-2849, left Mc I; 

BAT-1’03 D5-162, right Mc II; BAT-1’04 D4-184, right Mc III; BAT-1’03 E4-164, right 

Mc IV; BAT-1’04 E5-129, right Mc V; BAT-1’04 E5-212, left Mc V; BAT-1’06 D4-66a, 
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 9 

left and right coxae; BAT-1’06 D4-66b, sacrum; BAT-1’06 D4-67a, right femur; BAT-1’06 

D4-67b, left femur; BAT-1’06 D4-103, right tibia; BAT-1’06 D4-110, left tibia; BAT-1’04 

D6-173, right talus; BAT-1’03 D6-300, left talus; BAT-1’04 D6-173 and BAT-1’06 F5-61, 

right calcanei; BAT-1’04 D6-62 and BAT-1’03 D6-301, left calcanei. 

 Nine species of small extant Felidae were used for anatomical comparisons: 

Caracal caracal (Schreber, 1776), Felis silvestris Schreber, 1775, Felis lybica Forster, 

1780, Leopardus wiedii (Schinz, 1821), Leopardus geoffroyi (d’Orbigny and Gervais, 

1844), Leptailurus serval (Schreber, 1776), Lynx pardinus (Temminck, 1827), Lynx lynx 

(Linnaeus, 1758), and Lynx rufus (Schreber, 1777). We also used specimens from other 

families of Carnivora: the viverrids Genetta genetta Linnaeus, 1758, and Civettictis civetta 

(Schreber, 1776), and the mustelid Martes martes (Linnaeus, 1758). All this material 

belongs to the collections of the Museo Anatómico, Facultad de Medicina, Universidad de 

Valladolid (Spain), and the Comparative Anatomy Collections of the Museo Nacional de 

Ciencias Naturales-CSIC. We also compared the fossils of Leptofelis vallesiensis from 

Batallones-1 with the sample of Miopanthera lorteti (Blainville, 1842) from the classical 

fossil site of Sansan (MN 6, France), belonging to the collections of the Muséum national 

d’Histoire naturelle (Paris, France); comparisons were also made with published material of 

Styriofelis turnauensis (Gaillard 1899; de Beaumont 1961) and M. lorteti (Ginsburg and 

Antunes 1995; Salesa et al. 2011) and the late Miocene feline Pristifelis attica (Roussiakis 

2002). The anatomical descriptions follow the terminology used by Barone (2010), Evans 

(1993), Julik et al. (2012) and the Nomina Anatomica Veterinaria (2012). The 

measurements were taken with digital calipers, and are shown in Fig. 1 and Tables 1–2.  

 

Abbreviations 
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Institutional abbreviations: AMPG PA, Athens Museum of Palaeontology and Geology, 

National and Kapodistrian University of Athens; MAN, Museo Anatómico de la 

Universidad de Valladolid; MNCN, Museo Nacional de Ciencias Naturales-CSIC; L. Gr. 

and LGR, La Grive-Saint-Alban, Muséum d’Histoire Naturelle de Lyon; SNSB BSPG, 

Staatliche Naturwissenschaftliche Sammlungen Bayerns - Bayerischen Staatssammlung für 

Paläontologie und Geologie. 

 

Anatomical and measurement abbreviations: ah, articular proximodistal height; aw, 

articular mediolateral width; dw, distal mediolateral width; Mc, metacarpal; Mt, metatarsal; 

oh, olecranon proximodistal height; pl, proximal craniocaudal length; pw, proximal 

mediolateral width; tl, total proximodistal length.  

 

Use of cladistic terminology 

Unfortunately, and due to the scarcity of postcranial fossils of Miocene felines, no cladistic 

analysis could be performed in the present study. Nevertheless, the discussed characters are 

polarized by outgroup comparisons to non-felid Feliformia or Caniformia on one end, and 

crown-group felids on the other. Given this, and in absence of a proper cladistic analysis, 

we cannot rule out the possibility that apparently plesiomorphic features are actually 

reversals, and that features that appear to be derived are convergences with crown taxa 

(instead of shared derived characters). Only a future cladistic analysis could elucidate these 

issues, but we have considered of interest to use the terms “primitive” and “derived” in the 

context of our discussion on functional adaptations.   
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Data availability Statement 

All data generated or analyzed during this study are included in this published article. 

 

 

Anatomical descriptions and comparisons 

 

In general, the postcranial bones of L. vallesiensis from Batallones-1 show a good state of 

preservation, and practically, all their anatomical structures can be observed. In this section, 

we describe the most remarkable features of this material.   

 

Lumbar vertebrae 

 

Four articulated lumbar vertebrae of L. vallesiensis, the cranial one just preserving its 

caudal half, are known from Batallones-1 (Fig. 2). The most caudal of these vertebrae has a 

craniocaudally shorter body and wider caudal articulation processes than the others, which 

identifies it as the seventh lumbar vertebra, and so the rest are the sixth, the fifth, and a 

caudal fragment of the fourth lumbar vertebrae (formally, L7-L4). Comparing this lumbar 

series with those of the comparative sample of extant felines, the L7 of L. vallesiensis is 

relatively shorter than those of the other species, especially those of F. silvestris, F. lybica 

and Lp. geoffroyi, whereas the L7 of Le. serval, C. caracal, Ly. lynx, Ly. pardinus, and Ly. 

rufus are only slightly craniocaudally longer than that of L. vallesiensis. The costal 

processes are severely broken in all the specimens, but the preserved portions show that 

they were flat and cranially curved. The spinous processes were developed from the cranial 

to the caudal border of the dorsal surface, and at least in the sixth and fifth vertebrae were 

triangular (in the seventh lumbar just the base is preserved), although their tips are broken 
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(Fig. 2a). Both the cranial and caudal articular processes are elliptical and dorsocranially or 

dorsocaudally oriented, respectively; they show this same morphology and orientation in 

the rest of the compared species. In the ventral surface of the body, a shallow central ridge 

is observed in all the compared felines (Fig. 2b).  

 

Humerus 

 

The overall morphology of the humerus of L. vallesiensis is similar to that of other small-

sized felines. The diaphysis is quite straight in cranial view, whereas in lateral view it is 

gently craniocaudally curved (Fig. 3). Among the compared felines, only Le. serval shows 

a slightly straighter diaphysis. In proximal view, the proximal epiphysis of L. vallesiensis 

shows an elliptic articular head, slightly laterally flattened, with a smooth greater tubercle 

developed along the craniolateral margin, and a craniomedially projected lesser tubercle on 

the medial margin. The greater tubercle of Lp. geoffroyi is less cranially expanded onto the 

articular head than those of L. vallesiensis and the other extant compared felines. Also, the 

articular head is rounded (not elliptic) in Lp. wiedii, C. caracal, Ly. lynx, Ly. pardinus, and 

Ly. rufus. The intertubercular groove of L. vallesiensis is well developed and relatively 

wide, very similar to that of the compared felines.  

In medial view, the greater tubercle of L. vallesiensis, as well as those of F. 

silvestris, Le. serval, Ly. lynx, Ly. pardinus, and Ly. rufus is more proximally projected than 

those of Lp. wiedii and Lp. geoffroyi, clearly surpassing the level of the articular head. A 

right humerus of S. turnauensis from La Grive-Saint-Alban illustrated by Galliard (1899), 

with the catalogue number L. Gr. 1216 shows a reduced greater tubercle, similar to those of 

Lp. wiedii and Lp. geoffroyi. In cranial view, the lesser tubercle of L. vallesiensis is 
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medially projected (Fig. 3a), with an almost vertical medial border, and a small, round 

proximal tuberosity that is part of the attachment area of the m. subscapularis, located on 

the medial surface of the lesser tubercle. Leopardus wiedii, Lp. geoffroyi, F. silvestris, Le. 

serval, Ly. lynx, Ly. pardinus, and Ly. rufus show this pattern, although the lesser tubercle 

is much more medially projected than in L. vallesiensis. Just distally to the lesser tubercle, 

there is a short crest that barely extends distally onto the diaphysis, similarly developed in 

all the compared species. The attachment area for the m. subscapularis, which occupies the 

cranial margin of the lesser tubercle, is much more distally elongated in L. vallesiensis, F. 

silvestris, Le. serval, Ly. lynx, Ly. pardinus, and Ly. rufus than in Lp. wiedii, whereas Lp. 

geoffroyi shows an intermediate pattern. In cranial view, two different orientations of the 

proximal margin of the greater tubercle can be clearly observed: in L. vallesiensis, F. 

silvestris, Le. serval, Ly. lynx, Ly. pardinus, and Ly. rufus, this margin is more cranially 

inclined than those of Lp. wiedii and Lp. geoffroyi, probably due to the lesser development 

of the greater tubercle. From the illustration by Gaillard (1899), the primitive S. turnauensis 

shows a close morphology to that of these latter South American felines. The crest of the 

greater tubercle of L. vallesiensis is very gentle, and it extends along the cranial border of 

the humerus until the middle part of the diaphysis, where a very smooth deltoid tuberosity 

is developed; this morphology is also observed in F. silvestris, Lp. wiedii, Lp. geoffroyi, C. 

caracal, and Le. serval, whereas in Ly. lynx, Ly. pardinus, and Ly. rufus the crest is much 

more marked, even ridged. This crest is the attachment area for the mm. pectorales 

(superficialis and profundus) and m. deltoideus, this latter attaching on the deltoid 

tuberosity (Davis 1964; Evans 1993; Barone 2010; Ercoli et al. 2015). 

On the middle of the lateral surface of the greater tubercle of L. vallesiensis, there is 

a marked elliptical scar for the attachment of the m. infraspinatus (Fig. 3b); it has ridged 
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margins, and it is oriented with its proximal border slightly inclined caudally, as in F. 

silvestris and Le. serval, and also as in S. turnauensis; on the contrary, in Ly. lynx, Ly. 

pardinus, Ly. rufus, Lp. wiedii, and Lp. geoffroyi, the scar is almost rounded and sub-

parallel to the diaphysis, although in the two Leopardus species, the scar is relatively 

smaller than those of the other compared felines. In all the compared taxa, the articular 

head is projected caudally, and the neck is marked, clearly distinguished from the head. The 

tricipital line of L. vallesiensis (for the attachment of the lateral branch of the m. triceps 

brachii) is marked, slightly ridged, and it develops from the attachment area for the m. 

infraspinatus, to the distal tip of the deltoid tuberosity. In the compared sample, the line is 

only absent in Lp. wiedii, being especially marked in Le. serval and Ly. pardinus. In L. 

vallesiensis, just distal to the attachment area for the m. infraspinatus, and on the proximal 

end of the tricipital line, there is a rough and irregular scar for the attachment of the m. teres 

minor, similarly marked in F. silvestris and Lp. wiedii, less evident in Lp. geoffroyi, and 

much more developed, even showing a strong ridge, in Le. serval, Ly. lynx, Ly. pardinus, 

and Ly. rufus. Caudal to this attachment area, L. vallesiensis shows a strongly excavated 

groove for the accessory branch of the m. triceps brachii; this area is shallower in F. 

silvestris, Lp. wiedii, and Lp. geoffroyi, whereas in Le. serval, Ly. lynx, Ly. pardinus, Ly. 

rufus, and S. turnauensis, it is more excavated, with a proximal strongly ridged border. 

In the distal epiphysis, the medial epicondyle of L. vallesiensis, Le. serval, and Ly. 

lynx is moderately medially expanded (Fig. 3a), whereas those of F. silvestris, Lp. wiedii, 

Lp. geoffroyi, C. caracal, Ly. pardinus, and Ly. rufus are much more projected. The fossil 

species S. turnauensis and M. lorteti show well-developed medial epicondyles too, much 

more projected than that of L. vallesiensis, as shown by the specimen L. Gr. 1216 (Gaillard 

1899) and an almost complete humerus of the larger M. lorteti from the Portuguese site of 
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Quinta das Flamengas (Ginsburg and Antunes 1995); finally, a distal fragment of a left 

humerus of the Turolian species Pristifelis attica (AMPG PA 2803/91) published by 

Roussiakis (2002) shows a medial epicondyle very similarly developed as that of L. 

vallesiensis. On the other hand, the lateral epicondyle, which shows less projection than the 

medial one, is clearly less expanded in L. vallesiensis than in any of the compared species, 

which are quite similar in the development of this structure (including S. turnauensis, M. 

lorteti, and P. attica). There is a well-developed supracondylar foramen in all the compared 

species, including L. vallesiensis and P. attica. In cranial view, the trochlea is strongly 

distally projected in all the species, although less in Lp. wiedii and Lp. geoffroyi. In medial 

view, the cranial margin of the trochlea is craniodistally oriented in all the species, but 

more projected in Ly. lynx and Ly. rufus than in L. vallesiensis, Lp. wiedii, Lp. geoffroyi, Le. 

serval, Ly. pardinus, and C. caracal. In L. vallesiensis, Lp. geoffroyi, and Le. serval, the 

scar for the attachment of the m. pronator teres, located on the distal end of the 

supracondylar bar, is relatively smaller than those of F. silvestris, Lp. wiedii, C. caracal, 

Ly. pardinus, Ly. rufus, and Ly. lynx, mainly because in all these latter species it is 

proximally extended, significantly increasing the attachment surface of this muscle. Just 

distal to the attachment area for the m. pronator teres there is a similarly sized surface for 

the attachment of the m. flexor carpi radialis; this surface is relatively larger in Lp. wiedii 

than in the rest of the compared species, including L. vallesiensis. In the caudal face of the 

distal epiphysis, the olecranon fossa of L. vallesiensis is deep, with a ridged lateral border, 

as observed in the rest of the compared taxa. This olecranon fossa is relatively wider in F. 

silvestris, Ly. rufus, Lp. wiedii, and Lp. geoffroyi than in L. vallesiensis, Ly. lynx, Ly. 

pardinus, C. caracal, and Le. serval, mostly because the medial margin of the olecranon 

fossa is much more vertical in the latter group, whereas in the former, it opens distally. 
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Also in caudal view, L. vallesiensis shows a relatively mediolaterally narrower distal 

epiphysis than those of the compared felines. The caudal surface of the medial epicondyle 

shows a small round attachment surface for the medial branch of the m. triceps brachii, 

very similarly developed in all the compared species except in Ly. lynx, in which it is very 

smooth, almost unnoticeable. In the distal tip of the medial epicondyle there are a couple of 

elliptical and rough attachment surfaces for the m. flexor carpi radialis and m. palmaris 

longus, which do not show remarkable differences among the studied sample. In the caudal 

surface of the lateral epicondyle of L. vallesiensis there is an excavated groove for the 

articular capsule, especially marked in Le. serval, Ly. lynx, Ly. pardinus, and Ly. rufus. The 

lateral supracondylar crest of L. vallesiensis is slightly ridged, mostly in its distal portion, 

although it continues proximally to the middle of the diaphysis as a smooth but marked 

crest; this pattern is observed in F. silvestris, Lp. wiedii, and Lp. geoffroyi, and in the fossil 

species S. turnauensis and P. attica, whereas in Ly. pardinus, Ly. rufus, C. caracal, and, 

especially in Le. serval, the crest is expanded forming a bony wall; on the other hand, in Ly. 

lynx the crest, although present does not project from the bone surface, and it is formed 

more as a cord rather than as a real crest. On the caudal surface of the crest there is a flat 

and smooth surface for the attachment of the m. anconeus; the size of this surface is related 

to the different development of the lateral supracondylar crest, and thus it is relatively 

larger in Ly. pardinus, Ly. rufus, C. caracal, and, especially in Le. serval. 

 

Radius 

 

The radius of L. vallesiensis is slender, with a straight and strongly craniocaudally flattened 

diaphysis (Fig. 3c, d). The proximal epiphysis is slightly medially inclined; its proximal 
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articulation facet is concave and elliptical, with a marked notch in the middle of its cranial 

margin forming a clear capitular eminence; the lateral margin of this facet is ridged, 

whereas the medial one is inclined distally, developing a smooth and slightly concave 

surface. This pattern is similar in all the compared species, although in Le. serval and F. 

lybica both the cranial notch and capitular eminence are absent, they being less developed 

in C. caracal, Ly. rufus, and Ly. lynx. The proximal epiphysis is inclined medially in all the 

compared species, with the medial border markedly medially projected, whereas the lateral 

one does not stand out from the diaphysis border. The radial tuberosity of L. vallesiensis is 

proximodistally elongated (Fig. 3d), located on the lateral border of the caudal face, and it 

shows a slightly ridged lateral margin; its development is similar in all the compared 

species. The diaphysis of L. vallesiensis, as that of the other compared species, is 

craniocaudally flattened, elongated and quite straight, showing few muscular scars on the 

cranial and caudal faces.  

The distal epiphysis of L. vallesiensis shows a slightly convex cranial face, 

developed as a continuation of the diaphysis, and a concave caudal face, separated from the 

diaphysis by means of a marked ridge; this pattern is also observed in the compared sample 

of felines. The medial border of the distal epiphysis of L. vallesiensis is distally projected in 

a moderate styloid process, very similarly developed in the rest of the studied species. In L. 

vallesiensis, the lateral facet for articulation with the ulna is elliptical and located in the 

craniodistal border of this lateral face; the compared felines show this morphology, 

although in Ly. lynx, Ly. pardinus, Ly. rufus, C. caracal, and Le. serval, the facet is laterally 

projected; also, in the last species, the facet is not elliptical, but round. In L. vallesiensis, the 

medial border of this distal epiphysis has a ridge, as a continuation of the medial margin of 

the radius, for the attachment of the m. brachioradialis; this ridge is slightly more medially 
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projected in F. silvestris, F. lybica, and Lp. geoffroyi, and much more projected in Ly. lynx, 

Ly. pardinus, Ly. rufus, C. caracal, and Le. serval. The cranial face of the distal epiphysis 

of L. vallesiensis shows a couple of bony ridges, proximodistally oriented, developed for 

separating the passages of the tendons of several extensor muscles: a central, 

proximodistally shorter but thicker ridge separates a medial groove for the tendon of the m. 

extensor carpi radialis from a lateral one for the tendon of the m. extensor digitorum 

communis, whereas a lateral ridge separates this latter tendon from that of the m. extensor 

digitorum lateralis, placed into a groove located on the lateral border of the distal epiphysis 

(Evans 1993; Vollmerhaus and Roos 2001; Barone 2010). The development of these bony 

ridges shows differences within the studied feline sample: in F. lybica and Le. serval, the 

lateral ridge is markedly displaced medially in relation to its position in L. vallesiensis, F. 

silvestris, Ly. lynx, Ly. rufus, Ly. pardinus, C. caracal, and Lp. geoffroyi. The distal 

articular facet of L. vallesiensis is well developed, but it does not occupy the whole distal 

surface of the epiphysis; it is strongly concave, sub-elliptical, with a marked ridge on its 

craniolateral margin. This pattern is common to the other felines, although it is remarkable 

that in Le. serval and F. lybica, the lateral border of the facet is expanded in both lateral and 

caudal directions, thus producing an overall slightly larger articular surface for the 

scapholunar than in the rest of the species.  

 

Ulna 

 

The ulna of L. vallesiensis is slender, very similar to that of other felines. The diaphysis 

shows a gentle caudal convex curvature in its distal half, and it is markedly mediolaterally 

flattened (Fig. 3e, f). The olecranon of L. vallesiensis is well developed, similarly elongated 
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as those of the compared felines; its proximal border, in both lateral and medial views, is 

clearly caudally inclined, as in F. silvestris, F. lybica, Lp. wiedii, and Lp. geoffroyi, whereas 

in Ly. lynx, Ly. rufus, Ly. pardinus, C. caracal, and Le. serval, the proximal border of the 

olecranon is almost horizontal due to the greater proximal projection of its caudal border. 

The length of the olecranon is similar in all the compared species, although in Ly. lynx, Le. 

serval, and C. caracal, it is slightly shorter. The olecranon has a pair of proximal tubercles, 

lateral and medial, that correspond to the attachment areas for two muscles involved in the 

extension of the forearm: the m. anconeus, which attaches on the lateral tubercle, expanding 

its attachment surface onto the caudal border of the lateral face of the proximal epiphysis, 

and the medial branch (caput mediale) of the m. triceps brachii, which attaches on the 

medial tubercle (Gonyea 1978; Barone 2010; Julik et al. 2012). In L. vallesiensis, F. 

silvestris, F. lybica, and Le. serval, the medial tubercle is well developed, markedly 

projected proximally, and surpassing the level of the lateral tubercle. Lynx pardinus shows 

the opposite morphology, with the lateral tubercle much more proximally projected than the 

medial one, whereas in Ly. lynx, Ly. rufus, C. caracal, Lp. wiedii, and Lp. geoffroyi both 

tubercles show a similar proximal projection. In cranial view, the tubercles of L. 

vallesiensis, F. lybica, Lp. wiedii, Lp. geoffroyi, Le. serval, Ly. rufus, and Ly. pardinus are 

separated by means of a shallow groove, whereas in F. silvestris, Ly. lynx, and C. caracal 

this groove has a similar width, but it is much deeper.  

On the lateral surface of the proximal epiphysis of L. vallesiensis, originated from 

the level of the middle point of the trochlear notch, there is a proximodistally elongated 

triangular groove for the attachment of the m. extensor digiti I et II (Fig. 3e); the groove 

continues distally onto the diaphysis by means of a caudal ridge until the distal epiphysis, 

thus forming an attachment surface for the m. abductor digiti I longus (=m. extensor carpi 
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obliquus) (Barone 2010; Julik et al. 2012); the most proximal portion of this groove is also 

well marked in F. lybica, F. silvestris, and Le. serval, and much less excavated in Ly. lynx, 

Ly. pardinus, Ly. rufus, C. caracal, Lp. wiedii, and Lp. geoffroyi, probably indicating a 

more powerful m. extensor digiti I et II in the former group. On the medial surface of the 

proximal epiphysis, close to the beginning of the diaphysis there is a proximodistally 

elongated scar for the common attachment of the m. brachialis and m. cleidobrachialis, very 

similarly developed in all the compared species. On the medial surface of the diaphysis 

there is a caudal proximodistally elongated groove for the attachment of the ulnar branch of 

the m. flexor digitorum profundus (Fig. 3f); also, in the distal half of the diaphysis, a 

marked ridge is developed, forming a cranially oriented surface for the attachment of the m. 

pronator quadratus; this structure does not show differences among the compared felines.  

The distal epiphysis of L. vallesiensis shows the basic feline morphology: that is 

mediolaterally flattened with a distocaudally oriented styloid process.  

 

Metacarpal I 

 

The Mc I of L. vallesiensis shows similar proportions as in F. silvestris and F. lybica, 

which have slenderer Mc I than Le. serval, Lp. wiedii, Lp. geoffroyi, Ly. lynx, Ly. rufus, and 

Ly. pardinus. A marked, dorsopalmarly developed ridge (Fig. 4a) divides the base into a 

smooth and dorsally expanded articular surface for the trapezium, and a medial tuberosity 

for the attachment of the m. abductor digiti I longus and one of the dorsal carpometacarpal 

ligaments (Fig. 4b). In proximal view, both parts show a similar width in all the compared 

species. The body is straight and more or less cylindrical in L. vallesiensis, F. silvestris, and 

F. lybica, and relatively shorter and slightly dorsopalmarly flattened in Le. serval, Lp. 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 21 

wiedii, Lp. geoffroyi, Ly. lynx, Ly. rufus, and Ly. pardinus. The head is markedly 

asymmetrical, as the lateral border is much more distally projected than the medial one; on 

its palmar surface, there is a sharp keel, palmarly projected and similarly developed in all 

the compared species. 

 

Metacarpal II 

 

The Mc II of L. vallesiensis shows similar proportions than those of Lp. wiedii, Lp. 

geoffroyi, C. caracal, Ly. lynx, Ly. rufus, and Ly. pardinus, whereas F. silvestris, F. lybica, 

and Le. serval have slenderer Mc II. The overall morphology of this bone is very similar in 

L. vallesiensis and the compared felines. The proximal articular surface has a trapezoid 

shape, with its dorsal border mediolaterally wider than the palmar one. In dorsal view, the 

base is clearly laterally inclined, and it shows a groove for the passage of the radial artery. 

In lateral view (Fig. 4c), the palmar tubercle is large and projected; the groove for 

articulation with the medial face of the Mc III is proximodorsally located and well 

excavated. In medial view (Fig. 4d), the round facet for articulation with the trapezium 

barely surpasses the level of the proximal border in L. vallesiensis, F. lybica, and F. 

silvestris, whereas in Lp. wiedii, Lp. geoffroyi, C. caracal, Le. serval, Ly. lynx, Ly. rufus, 

and Ly. pardinus the facet is more proximally projected, widely surpassing the level of the 

proximal border. Distal to this facet, there is a rough tubercle for the attachment of the short 

interosseous ligament that connects Mc I and Mc II, similarly developed in L. vallesiensis 

and all the compared species. In the palmar border of the base there is a small but distinct 

scar for the attachment of the m. flexor carpi radialis, slightly more distally extended in F. 

silvestris, F. lybica, Le. serval, Ly. lynx, Ly. rufus, Lp. wiedii, and Lp. geoffroyi than in L. 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 22 

vallesiensis, Ly. pardinus, and C. caracal. The body is slightly curved in lateral and medial 

view in all the species, with Ly. lynx and Ly. pardinus showing the straightest ones. The 

distal head of L. vallesiensis, Lp. geoffroyi, C. caracal, and Ly. pardinus has a well-

developed proximopalmarly projected central keel, whereas in F. silvestris, F. lybica, Le. 

serval, Ly. lynx, and Ly. rufus, this structure is clearly reduced. Also, the head is relatively 

smaller in F. lybica, F. silvestris, and Le. serval than in L. vallesiensis and the rest of 

compared species.  

 

Metacarpal III 

 

The Mc III of L. vallesiensis shows similar proportions as in F. silvestris, F. lybica, C. 

caracal, Ly. rufus, and Ly. pardinus; in this group, the Mc III shows indeed an intermediate 

robustness between that of the slenderer Ly. lynx and Le. serval (which show the most 

gracile Mc III) and that of the more robust Lp. wiedii and Lp. geoffroyi. In all the compared 

species, the proximal articular surface is triangular, with a marked notch on its medial 

border; in dorsal view, the base is clearly laterally inclined. The lateral face of the base 

shows the articulation surfaces for the Mc IV (Fig. 4e): a large dorsally located groove and 

a dorsopalmarly elongated facet, located proximally to the former. This facet shows several 

differences within the compared sample of felines: although it occupies the whole 

dorsopalmar margin in all the species, in L. vallesiensis, Ly. lynx, and Le. serval it clearly 

lacks the distal expansion of its palmar end observed in F. silvestris, F. lybica, C. caracal, 

Ly. rufus, Ly. pardinus, Lp. wiedii, and Lp. geoffroyi; all these taxa show a central 

constriction in the facet, more marked in F. silvestris, and absent in L. vallesiensis, Ly. lynx, 

and Le. serval. The medial face of the base (Fig. 4f) shows two articular facets for the Mc 
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II, one dorsally and another one palmarly located, widely separated by a rough fossa. These 

facets show subtle differences within the sample: in Lp. wiedii, Lp. geoffroyi, Ly. pardinus, 

and Ly. rufus the dorsal facet is relatively larger than those of L. vallesiensis, F. silvestris, 

F. lybica, C. caracal, Le. serval, and Ly. lynx, whereas the palmar facet shows less size 

differences. Finally, the head is relatively larger in Lp. wiedii and Lp. geoffroyi than in L. 

vallesiensis and the rest of the compared species. 

 

Metacarpal IV 

 

As in the case of the Mc III, the Mc IV of L. vallesiensis shows similar proportions as those 

of F. silvestris, F. lybica, C. caracal, Ly. rufus, and Ly. pardinus, which are more robust 

than those of Ly. lynx and Le. serval. Leopardus wiedii and Lp. geoffroyi show a much 

more robust Mc IV than the rest of the compared sample. All the compared species show a 

rectangular proximal articular surface, with a medially projected facet for the Mc III; in 

dorsal view, the proximal border of the base is laterally inclined. The lateral face of the 

base (Fig. 4g) is occupied by the articulation surfaces for the Mc V: a large and deep central 

groove and a curved and elongated facet developed along the dorsal, proximal, and palmar 

margins. Except for its shorter dorsopalmar length in Le. serval and Ly. lynx, the 

morphology of this face is very similar in all the compared species. The medial face of the 

base (Fig. 4h) shows two articular facets for the Mc III, both located near the proximal 

border, one dorsally and the other one palmarly located, and widely separated by a smooth 

fossa. Whereas the dorsal facet has a similar development in all the taxa, the palmar facet of 

L. vallesiensis is much less proximodistally expanded, having the shape of a narrow cord, 

very different from the round to triangle facet seen in the rest of the compared felines. 
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Finally, the head is relatively larger again in Lp. wiedii and Lp. geoffroyi than in L. 

vallesiensis and the rest of compared species. 

 

Metacarpal V 

 

The Mc V of L. vallesiensis shows similar proportions to those of F. silvestris, F. lybica, C. 

caracal, Ly. lynx, Ly. rufus, and Ly. pardinus. Once again, the Mc V of Le. serval is the 

most gracile of the sample, whereas those of Lp. wiedii and Lp. geoffroyi are relatively 

much shorter and stouter, with the latter being remarkably robust. In proximal view, the Mc 

V of L. vallesiensis shows a semicircular proximal articulation surface that is divided in 

two parts by means of a marked dorsopalmarly developed groove; this morphology is more 

or less similar in all the compared species. On the lateral face of the base (Fig. 4i) there is 

an elliptical attachment surface for the m. extensor carpi ulnaris, dorsopalmarly elongated 

in L. vallesiensis and Le. serval, and round and more distally expanded in F. silvestris, F. 

lybica, Ly. lynx, Ly. rufus, Ly. pardinus, C. caracal, Lp. wiedii, and Lp. geoffroyi. The 

medial face of the base (Fig. 4j) shows a central medially expanded and proximodistally 

elongated bony sheet, surrounded by a smooth facet occupying the proximal and dorsal 

margins. The head is relatively larger again in Lp. wiedii and Lp. geoffroyi than in L. 

vallesiensis and the rest of compared species. 

 

Os Coxae 

 

The Batallones-1 sample includes the complete right and left os coxae of a single individual 

of L. vallesiensis (Fig. 5). Their general shape and morphology are very similar to those of 
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the compared felines. The acetabular fossa is rounded and located close to the cranial 

margin of the obturator foramen. The wing of the ilium of L. vallesiensis is slender, 

craniocaudally elongated, with more or less parallel dorsal and ventral margins and a gently 

curved cranial border (crest of the ilium). The gluteal fossa is shallow but evident, with a 

thickened dorsal margin. In Ly. lynx, Ly. pardinus, Ly. rufus, F. lybica, F. silvestris, Lp. 

wiedii, and Lp. geoffroyi, the body of ilium shows a central constriction due to the ventral 

projection of the tuber coxae and the marked expansion of the tuber sacrale, whereas in L. 

vallesiensis, C. caracal, and Le. serval, the corpus of the ilium does not show any 

constriction. In the cranioventral margin of the wing of Ly. lynx, Ly. pardinus, Ly. rufus, F. 

lybica, Le. serval, and C. caracal there is a triangular surface, with ridged margins, for the 

attachment of the m. sartorius; this surface is very reduced in L. vallesiensis, F. silvestris, 

Lp. wiedii, and Lp. geoffroyi. The ischiatic spine of L. vallesiensis, Le. serval, and C. 

caracal is located slightly more caudally than in Ly. lynx, Ly. pardinus, Ly. rufus, F. lybica, 

F. silvestris, Lp. wiedii, and Lp. geoffroyi. In dorsal view, the orientation of the wings of L. 

vallesiensis is very similar to that of the compared species, slightly laterally curved but 

keeping the dorsoventral plane. In this dorsal view, the acetabular fossa is slightly more 

laterally projected than in Le. serval, C. caracal, F. lybica, F. silvestris, Lp. wiedii, and Lp. 

geoffroyi, and similar to that of Ly. lynx, Ly. rufus, and Ly. pardinus. The caudal half of 

BAT-1’06 D4-66a is damaged, and the actual shape of the obturator foramen cannot be 

assessed, but it probably was similar to that of the compared species. The ischiatic 

tuberosity of L. vallesiensis and the compared species is rounded and rough, but the 

ischiatic arch shows some differences within the studied sample: in L. vallesiensis, F. 

lybica, Lp. wiedii, and Lp. geoffroyi, the caudal margin of the ischium is straight, and so the 
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ischiatic arch is small, whereas in F. silvestris, Ly. lynx, Ly. pardinus, Ly. rufus, Le. serval 

and C. caracal this margin describes a gentle curvature, producing a wide and larger arch.  

 

Sacrum 

 

A complete sacrum of L. vallesiensis, which was articulated to the left and right os coxae 

described above, is known from Batallones-1. It is composed, as that of other felids, of 

three fused sacral vertebrae. It is triangular in overall shape, with its maximum mediolateral 

width at its cranial margin. This morphology is very similar to that of the compared species, 

although Ly. lynx, Ly. pardinus, Ly. rufus, and C. caracal show a relatively more elongated 

sacrum. The available sacrum of L. vallesiensis is almost complete, but it lacks the dorsal 

spines, which only preserve their lower parts, making it impossible to assess their actual 

development. An intermediate sacral crest, mediolaterally flattened, is preserved in the right 

side: its cranial portion is cranially oriented, whereas the caudal one is smaller, lower, and 

vertical (Fig. 6a). This pattern is also observed in F. silvestris, F. lybica, and Lp. geoffroyi, 

whereas in Ly. lynx, Ly. pardinus, Ly. rufus, Le. serval, and C. caracal, the caudal process 

is absent. In L. vallesiensis, the caudal portion of the lateral sacral crest (=transverse 

process of the last sacral vertebra) is developed as a long and caudally pointed sheet of 

bone, as in F. silvestris and C. caracal. In F. lybica, Lp. geoffroyi, Ly. lynx, Ly. pardinus, 

and Ly. rufus, these processes are shorter and less pointed, whereas in Le. serval they are 

extremely thin and slender. This caudal portion of the lateral crest in the Batallones feline 

shows a central keel, also present, in more or less extent, in the rest of the compared felines. 

The lateral sacral crest is also laterally projected at the level of the second sacral vertebra in 

L. vallesiensis, C. caracal, and Le. serval, it being thus much more developed than in F. 
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silvestris, F. lybica, Ly. lynx, Ly. pardinus, Ly. rufus, and Lp. geoffroyi. At least four dorsal 

sacral formamina are observed in all the compared extant felines, but they are absent in S. 

vallesiensis. On ventral view, the sacrum of L. vallesiensis shows four ventral sacral 

foramina (Fig. 6b), as the rest of the studied felines. 

The wings of the sacrum of L. vallesiensis are very similar to those of the compared 

felines, that is, clearly ventrally projected, with a rough lateral surface. Dorsally, the wings 

contact with the cranial articular surfaces of the sacrum, the articulation area for the last 

lumbar vertebra. These two cranial articular surfaces are separated by a caudally expanded 

notch. In L. vallesiensis, C. caracal, and Le. serval, this notch is relatively wider and less 

caudally expanded than those of F. silvestris, F. lybica, Ly. lynx, Ly. pardinus, Ly. rufus, 

and Lp. geofrroyi.  

 

Femur 

 

The Batallones-1 sample includes two femora of L. vallesiensis belonging to the same 

individual. The femoral head is projected proximomedially by means of a well-developed 

neck and it is located at the same level of the greater trochanter (Fig. 7); only in C. caracal 

and Lp. geoffroyi does the head surpass the level of the greater trochanter. In lateral view, 

the femur of L. vallesiensis has a rough gluteal tuberosity with a strongly ridged cranial 

margin that contacts proximally with the greater trochanter (Fig. 7a); distal to the gluteal 

tuberosity, a less marked ridge continues distally on the lateral border, until the middle of 

the diaphysis. This pattern is seen in the rest of the studied species, and the only remarkable 

difference is the position of the gluteal tuberosity in L. vallesiensis and Lp. wiedii, located 

distal to the lesser trochanter, whereas in the other species it is clearly proximal to this 
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structure. On the proximal tip of the greater trochanter, the attachment areas for the m. 

gluteus profundus and m. gluteus medius show a similar pattern in all the taxa, with the 

attachment area for the m. gluteus medius located proximal to that of the m. gluteus 

profundus, both being restricted to the proximal surface of the greater trochanter. In caudal 

view (Fig. 7b), the proximal epiphysis of L. vallesiensis shows a deep trochanteric fossa, a 

ridged and relatively short intertrochanteric crest, and a caudally projected lesser 

trochanter; in the Batallones feline, as well as in F. lybica, Ly. lynx, Ly. pardinus, Ly. rufus 

and Lp. geoffroyi, the lesser trochanter is located close to the medial margin, but laterally 

displaced in relation to its position in F. silvestris, Le. serval, C. caracal, and Lp. wiedii. 

This different position of the lesser trochanter is also related to the orientation of the 

attachment area for the m. iliopsoas, which is more or less caudally oriented in the former 

group of felines, and medially faced in the latter. 

In the distal epiphysis of L. vallesiensis, the lateral condyle is mediolaterally wider 

than the medial one. In caudal view (Fig. 7b), the medial condyle is vertical, parallel to the 

proximodistal axis of the femur, whereas the lateral one is slightly laterally inclined, with 

its proximolateral vertex showing a proximolaterally oriented expansion. Although F. 

silvestris, Lp. wiedii, and Lp. geoffroyi show this pattern, in Le. serval, F. lybica, Ly. lynx, 

Ly. pardinus, Ly. rufus, and C. caracal, the medial condyle is slightly but clearly laterally 

inclined. Also, in L. vallesiensis, F. silvestris, F. lybica, Lp. wiedii, and Lp. geoffroyi, both 

condyles reach the same level distally, whereas in Le. serval, Ly. lynx, Ly. rufus, Ly. 

pardinus, and C. caracal, the medial condyle distally surpasses the level of the lateral one. 

In caudal view, the intercondyloid fossa of L. vallesiensis is well developed and shows a 

similar mediolateral width than those of the other compared felines. In distal view, all the 

compared taxa show a medial condyle slightly more caudally projected than the lateral one. 
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In lateral and medial views, both the craniocaudal length of the distal epiphysis, and the 

curvature of the femoral trochlea of L. vallesiensis are very similar to those of the other 

compared felines. The trochlea of L. vallesiensis is more proximally extended than those of 

any of the compared feline species (Fig. 7a), which indicates a greater range of patellar 

extension, as has been suggested for other carnivorans (Siliceo 2015).  

 

Tibia 

 

The two tibiae of L. vallesiensis from Batallones-1 are complete but strongly laterally 

compressed, thus preventing a clear assessment of some of their characters. It is slender in 

overall view, with a more or less straight diaphysis and a caudally curved proximal 

epiphysis (Fig. 7c–e). The proximal epiphysis of L. vallesiensis shows a triangular-shaped 

proximal surface, with the two articular condyles (medial and lateral) separated by a rough 

and narrow intercondyloid area. In cranial or caudal views, the lateral condyle in L. 

vallesiensis is located slightly more proximal than the medial one (Fig. 7c), mainly due to 

the ridged medial margin of the lateral condyle (the intercondyloid eminence); this pattern 

is observed in all the compared felines. In proximal view, the cranial border is strongly 

cranially projected, with a marked notch on its lateral margin for the passage of the tendon 

of the m. extensor digitorum longus (Fig. 7e). The medial condyle of L. vallesiensis is 

clearly less caudally projected than the lateral one, as in the rest of the compared felines. 

The tibial tuberosity has a smooth proximal surface separated by a ridge from the cranial 

border, which runs distally until the middle of the cranial margin of the diaphysis. 

The diaphysis of L. vallesisensis and the compared felines is strongly mediolaterally 

flattened on its proximal half, whereas the distal half has a square section. Also, the 
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proximal half is laterally inclined in cranial view and caudally in both lateral and medial 

views; the distal half is quite straight. The morphology of the diaphysis is similar in all the 

compared species, except for the development of a strong ridge, proximodistally developed, 

on the caudal face of the diaphysis of the tibia of L. vallesiensis (Fig. 7c) and Lp. geoffroyi. 

Interestingly, this ridge has been also observed by de Beaumont (1986) in the Asian golden 

cat (Catopuma temminckii) and the fossil feline Pristifelis attica, whereas it is absent in the 

tibia of S. turnauensis figured by de Beaumomt (1961) and that of M. lorteti figured by 

Salesa et al. (2011). Among the studied sample of carnivorans, it is absent in Genetta 

genetta, Martes foina, Gulo, gulo, Meles meles, Ailurus fulgens, and Canis lupus, and 

present in Ursus americanus. This ridge seems to have separated in life the m. flexor 

digitorum lateralis and m. flexor digitorum medialis + m. tibialis caudalis, whose tendons 

run together along the same groove (Barone 2010). These muscles originate on the 

proximal epiphysis of the tibia, and are very closely disposed on the caudal surface of the 

diaphysis (Fisher et al. 2008; Ercoli et al. 2012). Both muscles have strong and long distal 

tendons, but the relation between the fleshy part and the tendon varies among the 

Carnivora, with felids and canids having in general longer tendons (and then shorter fleshy 

parts) than ailurids, ursids, procyonids, or mustelids (Davis 1964; Feeny 1999; 

Vollmerhaus and Roos 2001; Fisher et al. 2008; Ercoli et al. 2012). Thus, the described 

ridge in the caudal face of the tibia of L. vallesiensis and Lp. geoffroyi, which in the former 

reaches the proximal border of the distal epiphysis, would be actually forming a groove for 

the accommodation of the tendons of both muscles, m. flexor digitorum medialis + m. 

tibialis caudalis on the medial side of the ridge, and m. flexor digitorum lateralis on its 

lateral side.  

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 31 

The distal epiphysis of L. vallesiensis strongly resembles that of the compared 

felines, with no feature showing significant differences. 

 

Talus 

 

The overall morphology and proportions of the talus of L. vallesiensis are quite similar to 

those of the compared felines. The trochlea is wide, with a shallow central groove that 

divides it into two asymmetrical lips (Fig. 8a), as the medial one is narrower than the lateral 

one; the distal border of the lateral lip projects distally surpassing the level of the medial 

one, which does not expand onto the neck. In proximal view, the lateral lip is more dorsally 

projected than the medial one in L. vallesiensis and all the compared felines. The proximal 

surface of the trochlea of L. vallesiensis shows a transversal shallow groove and a small, 

medially located talar foramen for the posterior tibial artery, as in F. silvestris, F. lybica, 

Le. serval, Lp. wiedii, Ly. pardinus, and Ly. rufus, whereas in C. caracal, Lp. geoffroyi, and 

Ly. lynx it is absent. In plantar view (Fig. 8b), a relatively narrow sulcus tali separates two 

large articular facets for the calcaneus: the lateral facet is rectangular and strongly concave, 

whereas the medial one is elliptical, convex, and occupies most of the plantar surface of the 

neck, joining the distal articular surface of the talus head by means of a narrow projection; 

this morphology is observed in most of the compared species, although in F. silvestris, F. 

lybica, C. caracal, and Le. serval the medial facet is not connected to the distal facet for the 

navicular. The neck of L. vallesiensis is as long as those of F. silvestris, F. lybica, C. 

caracal, Le. serval, Lp. wiedii, and Lp. geoffroyi, and longer than those of Ly. lynx, Ly. 

pardinus, and Ly. rufus. The head of the talus in all the species is well distinguished from 

the neck as it has a gently ridged dorsal margin; in distal view, the head is elliptical in L. 
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vallesiensis, with the lateral border being slightly orientated dorsally relative to the medial 

one; this orientation is more or less the same in the compared felines, although the head is 

round rather than elliptical in all the species. 

 

Calcaneus 

 

The calcaneus of L. vallesiensis and the compared feline species shows a very similar 

morphology and relative proportions. In dorsal view (Fig. 8c), the fibular tubercle 

(distolateral expansion for the attachment of the ligament calcaneofibular or collaterale tarsi 

laterale longum) shows little lateral projection, and is located close to the distolateral 

border; its morphology is very similar in all the compared species. The sustentaculum tali is 

well medially projected in all the compared species, showing a rounded medial talar facet 

that continues distally through a narrow and long talar facet until the distomedial border of 

the talar surface; this facet is almost dorsally oriented in L. vallesiensis, Lp. wiedii, Lp. 

geoffroyii, F. silvestris, and F. lybica, whereas in C. caracal, Le. serval, Ly. lynx, Ly. rufus, 

and Ly. pardinus, it is clearly dorsomedially oriented. The tuber calcanei is relatively 

slender and mediolaterally flattened in all the compared species. Also, the medial tubercle 

of the tuber is more proximally projected than the lateral one, although in Le. serval and Ly. 

rufus the difference is not so marked. In plantar view (Fig. 8e) the sustentaculum tali shows 

a similar medial projection in all the compared felines, although in C. caracal and Le. 

serval, this structure is slightly more proximally located; the groove for the tendon of the 

m. flexor digitorum lateralis is similarly marked in all the species. On the distal end of this 

plantar face, a scar for the ligament plantare longum is observed. In lateral view, the fibular 

tubercle of L. vallesiensis is located very close to the distal border of the lateral margin, it 
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showing a marked oblique groove, also seen in F. silvestris, F. lybica, C. caracal, Le. 

serval, and Ly. lynx. Plantar to this tubercle, there is a shallow depression with fairly ridged 

plantar and dorsal margins for the attachment of the m. quadratus plantae (Fig. 8e); in L. 

vallesiensis and Lp. geoffroyii, this attachment area is proximally developed until the level 

of the coracoid process, whereas in Lp. wiedii and F. silvestris, it is even more proximally 

elongated, reaching the middle point of the tuber calcanei; on the contrary, the attachment 

surface is reduced in F. lybica, C. caracal, Le. serval, Ly. lynx, Ly. rufus, and Ly. pardinus, 

as it barely surpasses the level of the fibular tubercle. In proximal view, the tuber calcanei 

shows an elliptical shape, dorsoplantarly elongated, with the medial tubercle larger than the 

lateral one. In distal view, the articular facet for the cuboid is almost round in all the 

compared feline species. 

 

Comparative anatomy and biomechanical implications 

 

Lumbar vertebrae 

 

Both the overall morphology and relative proportions of the L7-L5 of L. vallesiensis are 

very similar to those of the compared felines: in all of them the L7 is shorter than the rest of 

the lumbar vertebrae, with F. silvestris, F. lybica, and Lp. geoffroyi showing the relatively 

longest L7 (Fig. 9). In felids and other carnivorans, the extension and flexion movements of 

the lumbar region (and the vertebral column in general) are very important in galloping 

(Hildebrand 1959; Goslow et al. 1973; Gambaryan 1974; Taylor 1978; English 1980; 

Alexander and Jayes 1981). These movements of the column basically contribute to stride 

length and limb speed through the action of the epaxial and abdominal muscles (Hildebrand 
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1959; Goslow et al. 1973; English 1980). Thus, a great flexibility of the lumbar series in 

felines is necessary for increasing both stride length and limb speed, something critical in 

cursorial species such as Acinonyx jubatus (Hildebrand 1959; Gambaryan 1974). A 

relatively short L7 is typical of arboreal viverrids and mustelids, such as G. genetta or 

Martes foina, animals that do not move primarily on the ground, but the relative length of 

this vertebra in A. jubatus is very similar to that of these carnivorans, and slightly shorter 

than those of F. silvestris, F. lybica, and Lp. geoffroyi. In consequence, there are only subtle 

differences in the relative length of L7 among the compared sample of felines, and the 

significance of a relative short L7 in L. vallesiensis (Fig. 9), similar to those of viverrids 

(but also mustelids) should be considered as a primitive feature with no clear functional 

implications.    

 

Humerus 

 

The differences in the lateral width of the humeral head observed among our sample of 

felines have been previously described in other carnivorans; for example, Taylor (1974) 

already noticed it in his study on herpestids and viverrids, with the more terrestrial species 

having mediolaterally flattened heads and a relatively limited range of movement in the 

shoulder, both in the craniocaudal and mediolateral planes. Argot (2001), and Argot and 

Babot (2011) proposed that a similar lateral compression of the humeral head observed in 

Paleocene and Eocene marsupials suggested that movements of the glenohumeral 

articulation were restricted to flexion/extension, indicative of terrestrial habits. This would 

be the case of L. vallesiensis, which has a less rounded humeral head than other compared 

felines, a probable indication of a mostly terrestrial way of life. Other humeral structures 
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have been revealed as good indicators of terrestrial versus arboreal habits in several groups 

of mammals, including the development of the greater tubercle (Jolly 1967; Taylor 1974; 

Fleagle and Simons 1982; Ciochon 1986; Larson and Stern 1989; Gebo and Rose 1993; 

Siliceo et al. 2015). All these authors concluded that the more arboreal species had less 

projected tubercles than those moving mainly on the ground. Focusing on the sample of 

Felinae studied here, Lp. wiedii and Lp. geoffroyi show greater tubercles that are less 

proximally projected than that of L. vallesiensis and those extant species with typically 

terrestrial lifestyles, such as the lynxes and the wildcat (Fig. 10); this is interesting, as Lp. 

wiedii is one of the most arboreal felines, and although Lp. geoffroyi occupies a great 

diversity of habitats, it is often found in woodlands (Sunquist and Sunquist 2009). The 

greater tubercle is the attachment area for the m. supraspinatus, which originates on the 

supraspinous fossa of the scapula (Barone 2010; Julik et al. 2012), extending the humerus 

and rotating it laterally (Taylor 1974; Barone 2010; Ercoli et al. 2015). The proximal 

expansion of the greater tubercle produces the lengthening of the moment arm of the m. 

supraspinatus at the glenohumeral articulation (Jolly 1967; Larson and Stern 1989) and it 

has been interpreted in baboons as a way of achieving a more economical locomotion on 

the ground (Jolly 1967); on the contrary, a less projected greater tubercle produces a shorter 

lever arm for the m. supraspinatus, which favours fast (although weak) flexion of the 

humerus during arboreal locomotion (Jolly 1967; Larson and Stern 1989). It is remarkable 

that the middle Miocene feline S. turnauensis resembles Lp. wiedii and Lp. geoffroyii in this 

feature, suggesting an important arboreal component in its locomotor behavior. On the 

contrary, the development of the greater tubercle of the late Miocene L. vallesiensis 

indicates a primarily terrestrial locomotion, in a similar way to other extant felines. These 

different locomotor adaptations would reflect the climate changes at the beginning of the 
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late Miocene in Europe, which produced the predominance of drier, less structured 

landscapes than those from the more humid middle Miocene (Agustí and Moyà-Solà 1990; 

Agustí et al. 1997; Fortelius and Hokkanen 2001; Hernández-Fernández et al. 2006). 

 Among the Carnivora, the medial epicondyle of the humerus is the attachment area 

for several pronator and flexor muscles of the forearm and carpus (Davis 1964; Barone 

1967, 2010; Taylor 1974; Salesa et al. 2008; Fisher et al. 2009; Julik et al. 2012; Ercoli et 

al. 2015). The degree of medial projection of this humeral structure is an indicator of the 

development of these muscles in fossil carnivorans, and thus it has been used to infer 

several aspects of their paleoecology: those species with reduced medial epicondyles show 

smaller flexor muscles, and have slender limbs, are cursorial hunters, and use to live in 

open, low-structured habitats, whereas those with well-developed medial epicondyles have 

more robust proportions, hunt by ambush, and inhabit highly-structured environments, such 

as woodlands (Argot 2001, 2004; Salesa et al. 2008; Argot and Babot 2011). Thus, the 

smaller development of the medial epicondyle of L. vallesiensis (Fig. 11a) (similar to those 

of Le. serval and Ly. lynx) suggests that this feline was a capable runner, occupying the less 

structured, more open patches of the mixed landscape inferred for the Batallones sites 

(Antón and Morales 2000; Salesa et al. 2006a, 2008; Morales et al. 2008). The extant feline 

F. silvestris, a species of similar size and proportions as L. vallesiensis, occupies a great 

diversity of habitats, including grasslands and more or less dense woodlands (Nowak 2005; 

Sunquist and Sunquist 2009), but it has a more developed medial epicondyle than the 

Batallones feline and the Turolian P. attica. This implies that these two latter species had a 

more limited range of preferred habitats than F. silvestris, favoring more open habitats than 

their extant relative. On the contrary, the much more projected medial epicondyles of the 

middle Miocene species S. turnauensis and M. lorteti suggest their preference for the 
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densely-wooded habitats that predominated during that time. Besides this, the presence of a 

strongly projected medial epicondyle of the humerus has been also associated in Felidae to 

the capture of relatively large prey (Meachen-Samuels and Van Valkenburgh 2009); 

following this interpretation, L. vallesiensis would take small prey, whereas the middle 

Miocene S. turnauensis and M. lorteti would prey upon relatively larger ones.  

 Other features observed in the humerus of L. vallesiensis also seem to be related to 

its running abilities, such as the mediolaterally narrower distal epiphysis (Fig. 12), and 

especially, the narrower olecranon fossa than those of F. silvestris, Ly. rufus, Lp. wiedii, 

and Lp. geoffroyi. This feature groups L. vallesiensis with taxa showing more cursorial 

postcranial skeletons, such as Ly. lynx, Ly. pardinus, C. caracal, and Le. serval, but also 

with the Turolian P. attica, whose narrow olecranon fossa was described by Roussiakis 

(2002). A narrower olecranon fossa prevents the lateral and medial torsion of the ulna in 

mainly terrestrial primates and carnivorans when moving on the ground (Gonyea 1978; 

Brundrett 2002; Argot and Babot 2011), hence the presence of this feature in the humerus 

of S. vallesiensis is an additional evidence supporting an efficient terrestrial locomotion in 

this species. 

 

Radius 

 

The radii of the compared sample of felines, included L. vallesiensis, are similar in 

proportions and morphology. In fact, the most remarkable difference, the absence of notch 

and capitular eminence on the proximal facet, is only shown by Le. serval and F. lybica, 

without a clear functional explanation. Davis (1964) suggested that the capitular eminence 

limits the rotatory mobility of the radius, but Gebo and Rose (1993) noticed its presence in 
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arboreal carnivorans (such as the procyonid Potos flavus), suggesting that this structure 

could not be an impediment for the pronation-supination movements of the forearm when 

climbing. Nevertheless, Heinrich and Rose (1997) suggested that the capitular eminence 

might stabilize the radius when the elbow is flexed, and then its absence in terrestrial forms 

such as Le. serval and F. lybica, which tend to maintain extended limb articulations, would 

be more understandable.  

 The other difference observed within the studied sample of radii is the larger lateral 

and medial development of the distal facet for the scapholunar, again seen only in Le. 

serval and F. lybica. This mediolateral elongation of the facet produces a less rounded 

facet, and thus a restriction in the rotational movements of the scapholunar on the radius, 

and a predominance of the wrist flexion and extension actions. It is not surprising that the 

two species that show this morphology are mostly terrestrial animals that move fast on the 

ground, and it is not strange either that the primitive morphology, a more rounded facet, is 

observed in L. vallesiensis, most of the compared felines, and G. genetta.    

  

Ulna 

 

The caudal border of the olecranon (attachment area for the long branch of the m. triceps 

brachii) is clearly more inflated (proximally projected) in Ly. lynx, Ly. rufus, Ly. pardinus, 

C. caracal, and Le. serval than in L. vallesiensis, F. silvestris, F. lybica, Lp. wiedii, and Lp. 

geoffroyi (Fig. 13). In Viverridae, a greater development of this caudal vertex is indicative 

of a relatively larger long branch of the m. triceps brachii (Taylor 1974). Thus, in the 

lynxes and lynx-like felines, this muscle should be relatively larger than those of L. 

vallesiensis, F. silvestris, F. lybica, Lp. wiedii, and Lp. geoffroyi. Among extant felids, the 
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cursorial species have relatively greater long branches of the m. triceps brachii than those 

species with more robust proportions, as shown by Gambaryan (1974). Nevertheless, 

although our observations seem to indicate a difference in the cursorial capacities of the 

analyzed felines, the group showing more inflated caudal part of the olecranon is composed 

by the largest taxa, and so the observed differences could be strongly influenced by 

allometry. Anyway, the larger size of the long branch of the m. triceps brachii in Ly. lynx, 

Ly. rufus, Ly. pardinus, C. caracal, and Le. serval is also suggested by the presence, in the 

cranial part of the olecranon, of a marked groove for the passage of the tendon of this 

muscle; this feature is typical of terrestrial viverrids, and is lacking in the most arboreal 

forms (Taylor 1974; Feeney 1999).   

 The degree of proximal projection of the olecranon tuberosities seems to be closely 

related to the development of the lateral and medial branches of the m. triceps brachii in 

fossil and extant Felidae (Gonyea 1978; Salesa et al. 2010a, 2011). In L. vallesiensis, F. 

silvestris, F. lybica, and Le. serval (Fig. 14a, d), the lateral tuberosity is much less 

proximally projected than the medial one, a morphology also observed in canids and the 

cursorial felid Acinonyx jubatus (Gonyea 1978); these two latter carnivorans have larger 

medial branches of the m. triceps brachii than those species with larger lateral tuberosities 

in the ulna (Gambaryan 1974; Gonyea 1978). Interestingly, the lateral tuberosity is more 

proximally projected than the medial one in those felids inhabiting woodland habitats, and 

they have significantly larger lateral branches of the m. triceps brachii than those felids that 

occupy low-structured, open landscapes (Gambaryan 1974; Gonyea 1978). Nevertheless, 

Gonyea (1978) also found that several species occupying both open and close environments 

(such as C. caracal, Panthera leo, Ly. lynx, or Ly. rufus) had olecranon tuberosities of 

similar size. All these observations made Gonyea (1978) suggest that the development of 
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the tuberosities was actually an indicator of the degree of deviation of the anterior limb 

from the parasagittal plane during locomotion, with those felids having larger lateral 

tuberosities exhibiting the greatest parasagittal deviation of the elbow during locomotion, 

and those with larger medial tuberosities having little deviation of the forelimb from a 

'pendulum-like' motion, and thus exhibiting high cursorial abilities, such as A. jubatus and 

large canids. Felis silvestris, F. lybica and Le. serval also belong to this latter group, and all 

have a mostly terrestrial way of life, climbing primarily as an escape mechanism (Sunquist 

and Sunquist 2009; Julik et al. 2012). Considering its olecranon morphology, L. vallesiensis 

would fit well within the group of mostly terrestrial and gracile felines, and probably its 

lifestyle was not very different from that of the small species of the genus Felis. The same 

morphology is observed in the middle Miocene, more primitive felines such as M. lorteti 

(Salesa et al. 2011). Nevertheless, this pattern might be the plesiomorphic for Felidae, as it 

is also present in the most primitive felid, Proailurus lemanensis, and the earliest members 

of the saber-toothed subfamily, Pseudaelurus quadridentatus and Promegantereon ogygia 

(Salesa et al. 2010a, 2011).     

 The attachment groove for the m. extensor digiti I et II is more excavated in L. 

vallesiensis, F. lybica, F. silvestris, and Le. serval than in the other species. This muscle 

extends the thumb and assists the m. extensor digitorum communis in extending the carpus 

and the digit II (Davis 1964; Barone 2010; Julik et al. 2012). The attachment surface is 

much shallower in Ly. lynx, Ly. pardinus, Ly. rufus, C. caracal, Lp. wiedii, and Lp. 

geoffroyi, and also in large felids such as Puma concolor, Panthera pardus, or the cursorial 

A. jubatus This similar morphology in felids with differing locomotor adaptations prevents 

the proposal of any functional interpretation explaining the development of the muscle. In 

fact, an ulna of M. lorteti from Sansan illustrated by Salesa et al. (2011) shows a similar 
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pattern to that of L. vallesiensis, and thus a marked groove for the m. extensor digiti I et II 

might be the primitive condition for the Felinae.  

 

Metacarpal I 

 

The Mc I of L. vallesiensis, F. silvestris, and F. lybica are slenderer than those of the 

smaller species Lp. wiedii and Lp. geoffroyi, the larger felines Le. serval, Ly. lynx, Ly. 

rufus, and Ly. pardinus, and the middle Miocene species S. turnauensis and M. lorteti 

(Peigné 2012; Salesa et al. 2012). The main function of the Mc I in Felidae is grasping 

when climbing and hunting, thanks to the abduction of the thumb from the second finger 

(Barone 1967; Gonyea and Ashworth 1975; Gonyea 1978; Akersten 1985; Taylor 1989; 

Anyonge 1996; Turner and Antón 1997; Julik et al. 2012). As a result of its slenderness, the 

thumb of L. vallesiensis, F. silvestris, and F. lybica would be able to withstand smaller 

forces than those of the rest of the compared felines, which has interesting implications for 

their climbing abilities and their ability to subdue prey. For example, if L. vallesiensis 

preyed upon smaller animals that those killed by its middle Miocene counterparts (as the 

morphology of its humerus suggests), it would not be necessary to have the robust Mc I 

observed in the latter species. The extant felines F. silvestris and F. lybica hunt mostly 

small prey (Smithers 1971; Kingdon 1977; Roberts 1977; Sharma 1979; Palmer and Fairall 

1988; Sunquist and Sunquist 2009) using head shaking movements that kill them very fast 

(Leyhausen 1973, 1979; Pellis and Officer 1987). Thus, both species exemplify the 

ecological role that L. vallesiensis probably played in the late Miocene faunas of Europe. 

On the contrary, the middle Miocene primitive saber-toothed felid Pseudaelurus 

quadridentatus had a robust Mc I (Ginsburg 1961a; Salesa et al. 2010a; Peigné 2012), even 
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more than the extant large pantherin felines (Salesa et al. 2010a), in accordance with the 

huge dewclaw and robust forelimbs present in Machairodontinae, traits developed for 

achieving the rapid immobilization of prey (Gonyea 1976a; Emerson and Radinsky 1980; 

Akersten 1985; Rawn-Schatzinger 1992; Turner and Antón 1997; Salesa et al. 2005, 2006a, 

2010a, 2014). The small Mc I of L. vallesiensis would also help in reducing the weight of 

the forelimb, and thus the energy employed when moving on the ground.    

 

Metacarpals II-V 

 

The Mc II-V of L. vallesiensis are very similar to those of the compared felines, with minor 

differences mainly related to their robustness. In general, the metacarpals II-V of L. 

vallesiensis are more robust than those of the most cursorial felines, such Ly. lynx and Le. 

serval, but slenderer than those of the most arboreal and forest-dwelling felines Lp. wiedii 

and Lp. geoffroyi. But, while this observation provides an overall view of the locomotor 

abilities of the hand, there are some features that deserve a more detailed discussion, as 

they seem primitive traits rather than a reflection of functional adaptations. For example, in 

the Mc II, the dorsomedial facet for the trapezium is not proximally projected in L. 

vallesiensis, F. lybica, and F. silvestris, whereas in the rest of the compared species it is 

strongly projected. The viverrids C. civetta and G. genetta, with different locomotor 

adaptations, have non-projected facets, thus probably illustrating the primitive morphology. 

Another probable primitive feature observed in the Mc IV of L. vallesiensi is the palmar 

facet for the Mc III, which is much less proximodistally expanded than in the compared 

felines, showing the same morphology seen in the Mc IV of G. genetta. Interestingly, in the 

terrestrial viverrid C. civetta, this palmar facet is larger, resembling those of the majority of 
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the compared felines. The presence of a large facet between Mc III and IV produces a more 

stable and controlled articulation, an adaptation seen in several cursorial mammals 

(Rasmussen and Simons 2000; Stevens et al. 2009), so its presence in most of the felines as 

well as in terrestrial viverrids fits well with this idea, and would suggest a very primitive 

state in L. vallesiensis, similar to arboreal viverrids. Finally, the facet for the attachment of 

the muscle extensor carpi ulnaris, on the lateral face of the head of the McV, is less distally 

expanded in L. vallesiensis and Le. serval than in F. silvestris, F. lybica, Ly. lynx, Ly. rufus, 

Ly. pardinus, C. caracal, Lp. wiedii, and Lp. geoffroyi. This muscle, despite its name, is a 

flexor of the carpus and an external rotator of the forearm, being developed from the lateral 

epicondyle of the humerus to the base of the Mc V (Evans 1993; Barone 2010). Thus, the 

distal expansion of the attachment surface on the Mc V observed in some species slightly 

increases the length of the tendon, which given the actual size of the muscle, would suggest 

a larger range of carpus flexion rather than a larger muscle.   

 

Os Coxae 

 

The absence of constriction in the ilium of L. vallesiensis, C. caracal, and Le. serval is a 

consequence of the lesser dorsoventral expansion of the wing in relation to those species 

with a more or less developed greater ischiatic notch and an expanded spina alaris (Ly. lynx, 

Ly. pardinus, Ly. rufus, F. lybica, F. silvestris, Lp. wiedii, and Lp. geoffroyi) (Fig. 15). This 

difference affects the attachment area of the m. sartorius, which in felids originates as a thin 

strip on the ventral border of the iliac crest, inserting onto the medial surface of the patella, 

the tibial crest, and the medial condyle of the tibia (Reighard and Jennings 1901; Barone 

2010; Carlon and Hubbard 2012). Its main function is to adduct and rotate the femur, and to 
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extend the tibia (Reighard and Jennings 1901; Evans 1993; Barone 2010; Carlon and 

Hubbard 2012). Thus, in L. vallesiensis, C. caracal, and Le. serval, this muscle would have 

a more dorsal origin than in Ly. lynx, Ly. pardinus, Ly. rufus, F. lybica, F. silvestris, Lp. 

wiedii, and Lp. geoffroyi. This configuration could imply a longer muscle, as its origin is 

more dorsally located, but the difference, when comparing in detail the coxae of L. 

vallesiensis and F. silvestris (very similar in size) seems really small. In any case, the more 

dorsally located origin of the m. sartorius could improve the flexion of the femur during the 

recovery phase of the locomotion, when the limb is preparing for foot-strike, and this bone 

is carried cranially by the contraction of the m. iliopsoas and m. sartorius (Argot 2002). 

Besides this, in L. vallesiensis, the attachment area of the m. sartorius is not a rough and 

dorsally ridged area, such as those of Ly. lynx, Ly. pardinus, Ly. rufus, Le. serval, and C. 

caracal, but a thin bony sheet along the ventrocranial border of the ilium wing. This 

probably implies a relatively weaker m. sartorius, at least regarding its insertion on the 

wing. Nevertheless, this seems to be related to size, given the differences between small 

and large species within the compared sample, and the largest species would need a 

relatively stronger m. sartorius.   

 Another interesting difference in the coxal morphology of L. vallesiensis and the 

compared felines is the position of the ischiatic spine. In the Batallones feline, as well as in 

Le. serval and C. caracal, this structure is more caudally located than in Ly. lynx, Ly. 

pardinus, Ly. rufus, F. lybica, F. silvestris, Lp. wiedii, and Lp. geoffroyi (Fig. 15). In felids, 

the ischiatic spine is the origin surface for the m. gemellus cranialis, whereas the m. 

gemellus caudalis originates on the dorsal border of the ischium between the ischiatic spine 

and the cranial border of the ischiatic tuberosity; both muscles, developed as two small 

flattened fleshy masses, attach into the trochanteric fossa of the femur (Barone 2010; 
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Carlon and Hubbard 2012). Their function is to help the m. obturatorius internus in 

abducting and rotating the femur (Reighard and Jennings 1901; Evans 1993; Barone 2010). 

The more caudal position of the ischiatic spine in L. vallesiensis, Le. serval, and C. caracal 

produces a shorter area for the attachment of the m. gemellus caudalis, and thus a smaller 

muscle. But also, it implies relatively longer fibers in the m. gemellus cranialis in relation 

to those of Ly. lynx, Ly. pardinus, Ly. rufus, F. lybica, F. silvestris, Lp. wiedii, and Lp. 

geoffroyi. In fact, in these latter species, the origin and insertion areas of this muscle are 

located in such a way that the fibers of the muscle are more or less perpendicular to the 

craniocaudal axis of the os coxae. The relative caudal migration of the origin area in L. 

vallesiensis, Le. serval, and C. caracal would make the fibers longer, as well as increasing 

the range of rotation of the femur. Although both mm. gemelli are relatively small in felids 

(Reighard and Jennings 1901), the described difference in their disposition might have an 

important impact on their function as assistant to the m. obturatorius internus. In primitive 

viverrids such as Genetta genetta, the ischiatic spine is as caudally located as in L. 

vallesiensis, Le. serval, and C. caracal, and although this could point towards well-

developed arboreal capacities (because of the greater rotation range of the femur), it could 

be also reflecting a retained, primitive state for this character.  

 The shape of the ischiatic arch clearly distinguishes two groups, one with more or 

less straight caudal margin of the ischium (L. vallesiensis, F. lybica, Lp. wiedii, and Lp. 

geoffroyi) and another one with a curved margin, developing a marked ischiatic arch (F. 

silvestris, Ly. lynx, Ly. pardinus, Ly. rufus, Le. serval, and C. caracal). Once again, Genetta 

genetta shares the pattern observed in the former group. Feeny (1999) related the presence 

of ischiatic arch, with a reduction in the area for the origin of the m. biceps femoris, m. 

semitendinosus, and m. semimembranosus, and an increase in the area for the origin of the 
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m. adductor femoris (=m. adductor magnus et brevis). This muscle adducts and extends the 

coxofemoral articulation (Reighard and Jennings 1901; Evans 1993; Barone 2010). Argot 

(2002) has noticed that the adductor muscles of the thigh are essential in stabilizing the foot 

against the medially lying surface in arboreal forms using a wide range of femoral 

abduction. This means that a strong development of these muscles would point towards 

arboreal capacities, and that fits with the presence of a reduced ischiatic arch in G. genetta 

as well as L. vallesiensis, F. lybica, Lp. wiedii, and Lp. geoffroyi. It is remarkable that Lp. 

wiedii is one of the most arboreal felids (Alderton 1998), but the presence of a similar 

morphology in L. vallesiensis could be indicating the retention of a primitive morphology 

in a species that is not an ecological equivalent of the extant Lp. wiedii.    

 

Sacrum 

 

The sacrum of L. vallesiensis is quite similar to that of other felines. It shows some 

differences, but they do not seem to have a relevant importance. An exception is the wider 

and less caudally expanded notch separating the cranial articular surfaces and by the great 

lateral projection of the lateral sacral crest, both features observed also in C. caracal and 

Le. serval, although to a lesser degree (Fig. 16). The presence of this wider cranial notch in 

the sacrum of these species suggests an also wider range of lateral movements between the 

sacrum and the lumbar series, something that is evident when these bones are articulated 

experimentally (personal observation). The sacrum of G. genetta shows a relatively 

narrower notch than those of L. vallesiensis, C. caracal, and Le. serval (Fig. 16g), whereas 

other arboreal carnivorans, such as Martes foina, exhibit a relatively wide notch (Fig. 16i), 

with its cranial articular surfaces separated in a similar way to those of these former felines. 
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A cranial fragment of sacrum of M. lorteti from Sansan, described by Salesa et al. (2011) 

strongly resembles L. vallesiensis in the development of the notch. Unfortunately, no 

additional sacra of early and middle Miocene felines are known, so we lack data on the 

primitive morphology of this group. It is interesting that both L. vallesiensis and M. lorteti 

show the morphology of the sacral cranial articulation seen in an arboreal mustelid, instead 

of resembling that of semiarboreal viverrids such as G. genetta. In the phylogeny of the 

Carnivora, the families Viverridae and Felidae are closely related, whereas the Mustelidae 

are included in another clade (Gaubert and Veron 2003; Gaubert and Cordeiro-Estrela 

2006; Wolsan and Sato 2010). Thus, the similar sacral morphology observed in M. martes, 

L. vallesiensis, and M. lorteti probably indicates a convergent adaptation for increasing the 

lumbosacral mobility rather than a phylogenetic relationship. 

Besides this, the sacrum of L. vallesiensis, C. caracal, and Le. serval shows a strong 

lateral projection of the lateral sacral crest (Fig. 16b, d), a bony sheet serving as attachment 

surface for the dorsal sacroiliac ligaments and the m. piriformis (Evans 1993; Ercoli et al. 

2013). This might be related with the great lateral mobility of the sacrum of these three 

species, inferred from the morphology of the cranial articular surface, which would need 

relatively stronger ligaments stabilizing this region. 

Some features of the sacrum of mammals can be associated to their tail length; for 

example, Russo and Shapiro (2011) and Russo (2016) found that long-tailed species of 

cercopithecoid primates and felids had significantly more circularly shaped caudal articular 

surfaces, more acute sacrocaudal articulation angles, and more laterally expanded 

transverse processes of the last sacral vertebra. Interestingly, the relative length of the 

sacrum has not been found to be a good indicator of the tail length (Ankel 1965, 1972; 

Ward et al. 1991; Nakatsukasa et al. 2004), although Ly. lynx, Ly. pardinus, Ly. rufus, and 
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C. caracal show relatively elongated and narrower sacra when comparing to those of L. 

vallesiensis, Le. serval, F. silvestris, F. lybica, and Lp. geoffroyi.  

The development of the intermediate sacral crest (bearing two mammillo-articular 

processes) of L. vallesiensis is also observed in F. silvestris, F. lybica, and Lp. geoffroyi, 

species with relatively long tails, whereas in Ly. lynx, Ly. pardinus, Ly. rufus, Le. serval, 

and C. caracal, species with relatively short tails, the caudal process is absent. These 

processes are part of the attachment areas for the mm. intertransversarii dorsales caudae, 

one of the main caudal muscular groups (Evans 1993; Ercoli et al. 2013), and thus a 

reduction of these structures would be expected when the tail is short. Given this, the 

presence of well-developed mammillo-articular processes in extant species with long tails 

would suggest the inclusion of L. vallesiensis in this group. Russo and Shapiro (2011) on 

their study on primates, found that the development of the caudal transverse process of the 

sacrum separated “long” and “tailless” groups from the “short”/“very short” groups, 

although the study did not distinguish “short” and “very short” groups (Tojima 2013). In 

the case of our compared sample of felines, there is no clear relationship between the 

morphology of the caudal transverse process and the length of the tail, as for example Le. 

serval shows an extremely thin and slender process, more developed than those of F. lybica 

and Lp. geoffroyi, which have longer tails. Nevertheless, given the morphology of the other 

discussed features of the sacrum, a relatively long tail can be inferred for L. vallesiensis.  

 

Femur 

 

The femur of L. vallesiensis fits very well within the feline pattern, although it shows some 

differences when compared to those of other felines. The gluteal tuberosity, for instance, is 
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located, like in Lp. wiedii, clearly distal to the lesser trochanter, whereas in the rest of the 

compared species of Felinae it is clearly proximal to this structure (Fig. 17). This 

configuration relates to the relative length of the m. gluteus superficialis, which originates 

on the iliac crest and sacrocaudal aponeurosis, and attaches, after partial fusion with the m. 

gluteofemoralis, onto the gluteal tuberosity (Fisher et al. 2008; Barone 2010; Ercoli et al. 

2013). Given these origin and insertion areas, the distal displacement of the gluteal 

tuberosity in L. vallesiensis and Lp. wiedii would increase the relative length of an 

important part of the fibers of the m. gluteus superficialis. The cranial fibers of the m. 

gluteus superficialis flex and weakly abduct the hip joint, while the caudal ones weakly 

extend and abduct the hip joint (Fisher et al. 2008). Basically, the pattern observed in L. 

vallesiensis and Lp. wiedii could be reflecting a relatively longer m. gluteus superficialis in 

relation to other felines, and its importance in the flexion and extension of the hind limb 

during locomotion. The m. gluteus superficialis is relatively larger in those mammals that 

need a powerful flexion of the hip joint (Endo et al. 2006), and thus, it is especially 

developed in otters and other aquatic species (Gambaryan 1974; Endo et al. 2006). 

Nevertheless, among the sample of large extant felids dissected by Gambaryan (1974), 

there were no significant differences in the relative weight of the m. gluteus superficialis 

with the exception of the jaguar (Panthera onca), which showed a relatively smaller muscle 

(2.7% vs. more than 4.0% in the rest). Thus, the relatively longer m. gluteus superficialis of 

L. vallesiensis and Lp. wiedii, rather than suggesting the presence of a heavier muscle 

would indicate a capacity for rapid movements, as relatively longer muscles produces faster 

contractions (Kardong 2002).       

 The position of the lesser trochanter also affects the function of other important 

muscle, the m. iliopsoas, which basically flexes the coxofemoral articulation, drawing the 
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pelvic limb forward (Evans, 1993; Barone, 2010). Leptofelis vallesiensis, F. lybica, Ly. 

lynx, Ly. pardinus, Ly. rufus, and Lp. geoffroyi show a lesser trochanter located close to the 

medial margin of the femur, but laterally displaced in relation to its position in F. silvestris, 

Le. serval, C. caracal, and Lp. wiedii (Fig. 17). As has been noted, a laterally-located lesser 

trochanter produces lateral rotation as well as flexion at the coxofemoral articulation during 

the contraction of the m. iliopsoas (Howell 1944; Munthe 1989). On the contrary, in those 

carnivorans with more medially placed lesser trochanters, such as canids and hyaenids, the 

pull of the m. iliopsoas is produced primarily in the sagittal plane (Munthe 1989). 

According to this, F. silvestris, Le. serval, C. caracal, and Lp. wiedii would be favouring 

those movements of the femur in the sagittal plane, whereas the others, including L. 

vallesiensis, would be able of a higher rank of femur movements. Within the first group, F. 

silvestris, Le. serval, and C. caracal are slender animals, with relatively long limbs and 

terrestrial habits (Nowak 2005; Sunquist and Sunquist 2009), whereas Lp. wiedii has, on 

the contrary, a more robust proportions and strong climbing abilities (Alderton 1998; 

Sunquist and Sunquist 2009). Nevertheless, if the medially located lesser trochanter were 

indicative of a m. iliopsoas acting close to the sagittal plane and producing strong jumping 

impulse, the observed morphology would fit well with the ecology of F. silvestris, Le. 

serval, C. caracal, and Lp. wiedii, all of them proficient jumpers (Alderton 1998; Sunquist 

and Sunquist 2009). At this respect, it is remarkable that the semiarboreal viverrid Genetta 

genetta, also a good jumper (Jennings and Veron 2009) shows a medially located lesser 

trochanter, as F. silvestris, Le. serval, C. caracal, and Lp. wiedii. The feline from 

Batallones would exhibit a morphology also observed in other extant felines, but derived 

from that of the more primitive viverrids. The same pattern observed in L. vallesiensis is 

present in the femora of S. turnauensis from La Grive-Saint-Alban (LGR 4042) and M. 
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lorteti from Sansan (SAN 879), thus indicating that this character derived as early in the 

evolution of Felinae as the middle Miocene.  

 One of the few differences observed in the distal epiphysis of the femur is the 

orientation of the medial condyle in caudal view, rather vertical in L. vallesiensis, F. 

silvestris, Lp. wiedii, and Lp. geoffroyi, and slightly laterally inclined in Le. serval, F. 

lybica, Ly. lynx, Ly. pardinus, Ly. rufus, and C. caracal. Also, in all these latter species, 

except F. lybica, the medial condyle distally surpasses the level of the lateral one. When the 

tibia flexes on the femur, both the inclination and the distal projection of the medial 

condyle makes the tibia rotate laterally when it flexes on the femur, which all at once 

makes the talus be placed in a more parasagittal position, and so the foot; on the contrary, 

when both the lateral and medial femoral condyles reach the same level distally, the talus is 

located in a more lateral position when the tibia flexes on the femur, which makes the foot 

be rotated laterally. The position of the foot has an enormous importance when running, so 

the observed differences would be separating more cursorial felids from those inhabiting 

more closed environments, and thus retaining full climbing abilities. The morphology of 

the femoral condyles in G. genetta, similar to those of L. vallesiensis strongly supports this 

interpretation.       

 But maybe the most striking feature in the femur of L. vallesiensis is the 

proximodistal development of the trochlea, greater than that of any other of the compared 

felines (Fig. 18). Argot (2003) noticed that the femoral trochlea of canids was 

proximodistally higher than those of other carnivorans including ursids, mustelids, and 

felids, a feature that, following this author, reflected the great range of excursion of the 

patella in cursorial forms. Previously, Howell (1944) had stated that jumping and cursorial 

mammals required stronger extensor muscles of the tibia and have a well-developed 
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trochlea, with high marginal ridges. Arboreal viverrids such as G. genetta also show a 

proximodistally high femoral trochlea, very similar to that of L. vallesiensis, which 

probably indicates a good ability for jumping in both species. Nevertheless, the femoral 

trochlea of the first known felid, the early Miocene Proailurus lemanensis from Saint 

Gérand-le-Puy (MN 2), although being proximodistally higher than those of extant felines, 

it is mediolaterally much wider than that of L. vallesiensis. If this is the primitive 

morphology for Felidae, the pattern seen in extant felines had been achieved by reducing 

the proximodistal height of the trochlea. The middle Miocene felines M. lorteti from 

Sansan (MN 6) and S. turnauensis from La Grive-Saint-Alban (MN 7/8) (de Beaumont 

1961; Salesa et al. 2011), both show a proximodistally shorter trochlea than that of L. 

vallesiensis. Thus, these former species, older than the Batallones feline, already show a 

modern femoral trochlea, very similar to that of extant felines.  

 

Tibia 

 

The tibia of L. vallesiensis shows a similar morphology and proportions to those of other 

compared felines, except for the remarkable development of a strong bony ridge on the 

caudal face of the diaphysis (Fig. 7c, 19a). This structure seems to separate the attachment 

surfaces for the belly masses of the m. flexor digitorum lateralis and m. flexor digitorum 

medialis + m. tibialis caudalis, and it could be helpful in increasing their area (as the 

sagittal crest in the skull increases the attachment area for the m. temporalis), as well as 

stabilizing the muscles by forming a groove to accommodate them. Although the main 

function of both the m. flexor digitorum lateralis and m. flexor digitorum medialis is to flex 

the foot phalanges (Evans 1993; Barone 2010) and, although the latter is an accessory of 
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the former, both have an important participation in the propulsion of the body (Barone 

2010). If these two muscles were relatively larger in L. vallesiensis than in other felines, 

they would have produced stronger propulsive forces in the hind limb. Among our studied 

sample of felines, this ridge is also present in Lp. geoffroyi (Fig. 19b), but de Beaumont 

(1986) described it also in Pristifelis attica and in the Asian golden cat (Catopuma 

temminckii), which means that at least two species of extant felines that do not have either a 

close relationship nor marked ecological differences (Ximenez 1975; Johnson and Franklin 

1991; Mattern and McLennan 2000; Sunquist and Sunquist 2009) do retain this feature 

exhibited by these two late Miocene felines. The sharing of this character by L. vallesiensis 

and P. attica, and its absence in the middle Miocene Styriofelis turnauensis (Fig. 19c) and 

Miopanthera lorteti poses an interesting question of the phylogenetic relationships of these 

taxa (see Taxonomic Discussion section). The caudal crest is also present, although much 

less marked, in ursids (Fig. 19e), which agrees with the great development in this group of 

the attachment area for the m. flexor digitorum medialis + m. tibialis caudalis, something 

that has been associated to plantigrady (Ginsburg 1961b). Nevertheless, when considering 

its presence in some extant species of Felinae whose locomotion probably does not differ 

from that of other species, the developed caudal crest of the tibia of L. vallesiensis cannot 

be considered as an indication of plantigrady in this feline, moreover when the rest of the 

hind limb elements are relatively slender.   

 

Calcaneus 

 

The dorsal orientation of the talar facet of the sustentaculum tali in L. vallesiensis, Lp. 

wiedii, Lp. geoffroyii, F. silvestris, and F. lybica is an important feature (Fig. 20), as it 
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would theoretically imply a greater restriction in the lateral movements of the talus when 

articulating with the calcaneus, an expected feature of the most cursorial species. 

Nevertheless, when calcaneus and talus are experimentally articulated in our sample of 

felines, there are not marked differences in the relative orientation of the talus, as in those 

species having a dorsally oriented talar facet (L. vallesiensis, Lp. wiedii, Lp. geoffroyii, F. 

silvestris, and F. lybica), the matching facet on the talus is less excavated than in felines 

having a dorsomedially oriented talar facet in the sustentaculum tali (C. caracal, Le. serval, 

Ly. lynx, Ly. rufus, and Ly. pardinus). The dorsal orientation of the facet is observed in both 

terrestrial and arboreal small felines, as well as in L. vallesiensis, whereas the most 

cursorial taxa, C. caracal, Le. serval, Ly. lynx, Ly. rufus, and Ly. pardinus, show a more 

dorsomedial orientation. Interestingly, G. genetta shows a similar pattern to that observed 

in the former group, as well as the primitive felids Proailurus lemanensis from Saint 

Gerand-Le-Puy (SG 3532), Promegantereon ogygia from Batallones-1 (B/S-341) (Siliceo 

et al. 2014), and the taxa from Sansan Pseudaelurus quadridentatus (Sa 2427) (Peigné 

2012), S. turnauensis (Sa744) (Peigné 2012), and M. lorteti (Sa 671) (Salesa et al. 2011) 

thus suggesting that this is the primitive condition for Felidae, which later derived in larger 

felines.  

 The attachment area for the m. quadratus plantae shows its greatest size in L. 

vallesiensis, Lp. geoffroyii, Lp. wiedii, and F. silvestris, suggesting the presence of a large 

and fully operative muscle (Fig. 20e, h), whereas it would be reduced (given the 

development of its attachment area) in F. lybica, C. caracal, Le. serval, Ly. lynx, Ly. rufus, 

and Ly. pardinus (Fig. 20f, g). In several mammals, the m. quadratus plantae is a wide band 

arising from the lateral surface of the calcaneus, and extending obliquely across the sole to 

its insertion on the tendinous sheet of the mm. flexores digitorum profundi, formed by the 
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m. flexor digitorum medialis and m. flexor digitorum lateralis (Davis 1964; Barone 1967; 

Ercoli et al. 2013), thus constituting an accessory of it. The m. quadratus plantae has two 

main functions: adjusting the oblique pull of the mm. flexores digitorum profundi, and 

flexing the foot without the involvement of this latter muscle (Reighard and Jennings 1901; 

Barone 1967; Turner and Antón 1997; Vollmerhaus and Roos 2001; Benjamin et al. 2008). 

Ginsburg (1961b) linked the great development of this muscle with plantigrady, but in the 

case of felids, which are digitigrade carnivorans, the presence of a well-developed m. 

quadratus plantare is clearly a primitive feature most likely related to the retention of the 

grasping function of the hind limb (Turner and Antón 1997), and a reduced capacity for 

pedal inversion but powerful flexion capability of the distal phalanges of the foot (Cifelli 

1983). A well-developed depression for the attachment of the m. quadratus planate is found 

in many fossil felids, such as P. lemanensis, Ps. quadridentatus, M. lorteti, Pr. ogygia, and 

Metailurus major (Ginsburg 1961a; Salesa et al. 2011, 2012b; Siliceo et al. 2014) 

indicative of a relative large muscle. Thus, these fossil species did probably exhibit a good 

climbing ability, with the m. quadratus plantae muscle providing extra force and precision 

to the flexion of the foot during this activity (Turner and Antón 1997). In more cursorial 

felids, such as F. lybica, C. caracal, Le. serval, Ly. lynx, Ly. rufus, and Ly. pardinus, both 

the necessity for decreasing the weight of the distal elements of the limbs and the restriction 

of the lateral movements of the foot (Sooriakumaran and Sivananthan 2005) probably 

explain the reduction in the size of the m. quadratus plantae (Ginsburg 1961b). Then, in 

these cursorial felids, the mm. flexores digitorum profundi (m. flexor digitorum medialis 

and m. flexor digitorum lateralis) became primarily flexors of the toes in relation to the 

tibia, their function then changing from grasping to propulsion (Turner and Anton 1997). 
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Taxonomic discussion on “Styriofelis” vallesiensis 

 

When Salesa et al. (2012a) assigned the small feline from Batallones-1 and Batallones-3 to 

the genus Styriofelis as the new species S. vallesiensis, they chose the most conservative 

taxonomic alternative based on a set of dental similarities between the Batallones sample 

and the middle Miocene feline S. turnauensis, although their cladogram did not imply a 

generic identity between both taxa. Nevertheless, the present new study reveals important 

morphological differences in the postcranial skeleton of S. vallesiensis and S. turnauensis, 

strongly suggesting a generic separation between these two Miocene felines. These features 

are: 1) the humerus of S. turnauensis and M. lorteti has a less proximally projected greater 

tubercle, and a much more medially projected medial epicondyle than those of S. 

vallesiensis, both features indicating a strong difference in the locomotion of these felines, 

with the two former species being much less cursorial than the feline from Batallones; 2) 

the Mc I of S. vallesisensis is slenderer than those of S. turnauensis and M. lorteti; 3) both 

S. turnauensis and M. lorteti have proximodistally shorter femoral trochleae than that of S. 

vallesiensis, a feature that links the former species with the extant felines, whereas the 

Batallones feline shows the same morphology observed in some extant viverrids; 4) in S. 

turnauensis and M. lorteti, the attachment area of the m. quadratus plantae is much more 

proximally extended than in S. vallesiensis, suggesting a much larger muscle, typical of 

arboreal felids inhabiting vegetated ecosystems; and 5) the caudal face of the tibiae of P. 

attica and S. vallesiensis shows a marked proximodistally developed ridge, a feature 

completely absent in S. turnauensis and M. lorteti.  

 All these differences, besides suggesting a different lifestyle (with S. vallesiensis 

being a more cursorial animal) support the separation of these felines in different genera. 
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Recently, Geraads and Peigné (2016) have discussed the status of the genus Styriofelis, 

proposing the inclusion of the species lorteti in the genus Miopanthera, which would also 

include the late Miocene Felis pamiri as M. pamiri. This increases the previously assumed 

diversity of the felids from the middle Miocene, as at least three different taxa were present 

at this time: the primitive machairodontine Pseudaelurus quadridentatus, the lynx-sized 

feline Miopanthera lorteti, and the wild cat-sized feline Styriofelis turnauensis. Of these 

three lineages, at least the first two had a continuity in the late Miocene, with 

Promegantereon ogygia (a primitive saber-toothed felid very similar to Ps. quadridentatus) 

and M. pamiri, which would be very close to the pantherin felid clade (Geraads and Peigné 

2016). In both cases, several dental and skeletal similarities support a phylogenetic 

relationship between those forms included in the same lineage (de Beaumont 1975; 

Ginsburg 1983; Salesa et al. 2010b, 2012; Peigné 2012; Geraads and Peigné 2016), but the 

assumption of S. vallesiensis as being part of the S. turnauensis lineage is quite doubtful, as 

now it is clear that both species represent two different felid models characterized by a 

combination of unique dental and skeletal features. Besides this, the other late Miocene 

feline known in the European faunas, the larger P. attica shows a more derived dentition 

than that of S. vallesiensis, which points towards a different generic status (Salesa et al. 

2012). In the present study, we have shown the existence of shared features in the 

postcranial skeleton of P. attica and S. vallesiensis (such as the proximodistally developed 

ridge in the caudal face of the tibia), but there are also some others that distinguish both late 

Miocene felines (such as the smaller projection of the lateral epicondyle of the humerus in 

S. vallesiensis). In absence of a proper cladistic analysis (unapproachable due to the 

scarcity of fossils), these similarities and differences are difficult to assess, but combining 

the results of the phylogenetic tree proposed by Salesa et al. (2012) with the observations of 
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the present study, it seems quite probable that S. vallesiensis and P. attica belonged to the 

same lineage of terrestrial felines, although representing two different genera. For example, 

the presence of a P2 in P. attica, whereas S. vallesiensis retains two small upper deciduous 

premolars, D1 and D2 (see discussion in Salesa et al. 2012) gives an idea of the marked 

phylogenetic separation existing between both taxa. In consequence, a different generic 

name should be proposed for S. vallesiensis in order to separate it from the primitive and 

much more robust S. turnauensis, and from the contemporary and more derived P. attica. In 

absence of any available name, we propose the new genus Leptofelis, with the following 

diagnosis: 

  

Order Carnivora Bowdich, 1821 

Suborder Feliformia Kretzoi, 1945 

Family Felidae Fischer, 1817 

Subfamily Felinae Fischer, 1817 

Genus Leptofelis, new genus 

Leptofelis vallesiensis (Salesa, et al., 2012) 

 

Holotype: BAT-3’09 1576, an almost complete skull from Batallones-3.  

 

Type locality: Batallones-3 (late Miocene, Vallesian, MN 10) (Madrid, Spain). 

 

Other localities: Maragheh (MN 11–12, Iran), and Batallones-1 (MN 10, Madrid). 
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Etymology: from the Greek λεπτός (leptós), meaning “slender”, and from the Latin felis, 

cat. 

 

Diagnosis: That provided by Salesa et al. (2012) and also, postcranial skeleton with a 

combination of primitive and derived features: humerus with a well proximally projected 

greater tubercle and an almost non-projected medial epicondyle; medial tubercle of the ulna 

well developed, markedly proximally projected, and surpassing the level of the lateral 

tubercle; slender Mc I, much less robust than those of middle Miocene felines such as S. 

turnauensis and M. lorteti; mediopalmar facet of the Mc IV base relatively less 

proximodistally expanded than in most felines; relatively short L7; dorsal sacral foramina 

absent; relatively proximodistally elongated femoral trochlea; relatively reduced attachment 

area for the m. quadratus plantae on the lateral face of the calcaneus; presence of a marked 

proximodistally developed ridge on the caudal face of the tibia.  

 

Differential diagnosis: Only postcranial features are considered. Compared to S. 

turnauensis and M. lorteti, humerus with a more proximally projected greater tubercle, and 

a much less medially projected medial epicondyle; Mc I slenderer; proximodistally longer 

femoral trochlea; attachment area of the m. quadratus plantae much less proximally 

extended; caudal face of the tibiae with a marked proximodistally developed ridge. 

Compared to P. attica, lesser projection of the lateral epicondyle of the humerus. 

 

Palaeobiology of Leptofelis vallesiensis 
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The postcranial anatomy of the late Miocene small feline Leptofelis vallesiensis is 

characterized by a combination of derived and primitive characters, a good example of the 

mosaicism typically exhibited by the intermediate forms of several groups of Carnivora. In 

this case, whereas the forelimb of L. vallesiensis is relatively modern, resembling that of 

some extant felines, its hind limb shows a set of primitive features in the pelvis, femur, and 

calcaneus, some of them shared with arboreal extant viverrids, and absent in the living 

felines. This unique combination of traits is different from that seen in the extant members 

of Felinae, but also from that present in the middle Miocene earliest felines.  

Leptofelis vallesiensis had a body mass of around 7–9 kg (see Appendix 1), that is, a 

little larger than the extant F. silvestris and F. lybica, and particular proportions, as its 

brachial index (BIn) was within the range of C. caracal and Lp. geoffroyi, its crural index 

(CIn) is close to those of F. silvestris and Ly. lynx, and its intermembral index (IIn) is 

similar to that of C. caracal and G. genetta (Table 3). These indexes provide information 

on the locomotor adaptations (see Appendix 2), with the most cursorial species of 

Carnivora having relatively longer radii and tibiae than the corresponding humerii and 

femora (Taylor 1974, 1989; Gonyea 1978; Van Valkenburgh 1985, 1987; Anyonge 1996), 

that is, they show BIn and CIn higher or close to 100. In the case of felids, the BIn has also 

been related to habitat complexity, with those species inhabiting highly structured habitats, 

with dense vegetational cover, having relatively shorter forearms (and thus BIn between 

80–90) than those occupying low structured habitats (and showing BIn close to 100) 

(Gonyea 1976a, b, 1978). Considering this, L. vallesiensis would have inhabited highly 

structured habitats, which does not always mean dense-vegetated areas, but a landscape 

composed of relatively open areas mixed with densely-vegetated patches (Fig. 21). This 

kind of environments allows greater species diversity than less structured habitats, by 
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reducing predation efficiency and enabling predator/prey coexistence, and by increasing the 

number of available niches (Menge and Sutherland 1976; Petren and Case 1998). This 

would be an optimal habitat for a small feline such as L. vallesiensis, where it could find 

both refuge and a high diversity of available prey.  

 On the other hand, the IIn provides information on the relative length of the limbs, 

and in most felids, whose hind limb is longer than the forelimb, this index shows values 

below 100. A lower IIn (between 70–80) indicates a particularly long hind limb (Fig. 21), 

which has been related to jumping capacities (Howell 1944; Gonyea 1976b; Taylor 1976). 

The IIn of L. vallesiensis is almost 81, which supports a well development of its jumping 

capacities, as inferred from the morphology of its pelvic limb (see above).  

In summary, L. vallesiensis was very likely a mostly terrestrial species, as shown by 

the morphology and proportions of its forelimb, but retained both primitive knee and ankle, 

associated with efficient jumping, an ability that was probably essential for eluding the 

large carnivorans that inhabited Batallones, such as saber-toothed felids, amphicyonids, 

ursids, ailurids, etc., all of them much larger than L. vallesiensis. This feline would forage 

on the ground, preying upon relatively small vertebrates, and occupying patched areas with 

moderate to dense vegetational cover, which provided the necessary protection to avoid 

detection by other predators, as well as allowing the stalking and hunting of prey. In this 

respect, its adaptation for jumping could improve the ability of L. vallesiensis for capturing 

fast animals, including birds, which would be caught by way of a powerful leap, thus 

resembling the sophisticated hunting method of extant servals and caracals (Sunquist and 

Sunquist 2009).     

 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 62 

References 

 

Agustí J, Cabrera L, Garcés M, Parés JM (1997) The Vallesian mammal succession in the 

Vallés-Penedés basin (northeast Spain): paleomagnetic calibration and correlation with 

global events. Palaeogeogr Palaeoclimatol Palaeoecol 133: 149–180 

 

Agustí J, Moyà-Solà S (1990) Mammal extinctions in the Vallesian (upper Miocene). Lect 

Notes Earth Sc 30: 425–432 

 

Akersten WA (1985) Canine function in Smilodon (Mammalia; Felidae; 

Machairodontinae). Contrib Sci 356: 1–22 

 

Alexander RMcN, Jayes AS (1981) Estimates of the bending moments exerted by the 

lumbar and abdominal muscles of some mammals. J Zool 194: 291–303 

 

Alderton D (1998) Wild Cats of the World. Blandford, London 

 

Ankel F (1965) Der Canalis sacralis als Indikator für die Länge der Caudalregion der 

Primaten. Folia Primatol 3: 263–276 

 

Ankel F (1972) Vertebral morphology of fossil and extant primates. In: Tuttle R (ed) The 

Functional and Evolutionary Biology of Primates. Aldine, Chicago, pp 223–240 

 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 63 

Antón M, Morales J (2000) Inferencias paleoecológicas de la asociación de carnívoros del 

yacimiento de Cerro Batallones. In: Morales J, Nieto M, Amezua L, Fraile S, Gómez E, 

Herráez E, Peláez-Campomanes P, Salesa MJ, Sánchez IM, Soria D (eds) Patrimonio 

Paleontológico de la Comunidad de Madrid. Madrid: Serie “Arqueología Paleontología y 

Etnografía,” Monográfico 6. Consejería de Educación, Comunidad de Madrid, pp 109–201 

 

Antón M, Salesa MJ, Morales J, Turner A (2004) First known complete skulls of the 

scimitar-toothed cat Machairodus aphanistus (Felidae, Carnivora) from the Spanish late 

Miocene site of Batallones-1. J Vertebr Paleontol 24: 957–969 

 

Anyonge W (1993) Body mass in large extant and extinct carnivores. J Zool 231: 339–350 

 

Anyonge W (1996) Locomotor behaviour in Plio-Pleistocene sabre-tooth cats: a 

biomechanical analysis. J Zool 238: 395–413 

 

Argot C (2001) Functional-adaptive anatomy of the forelimb in the Didelphidae, and the 

paleobiology of the Paleocene marsupials Mayulestes ferox and Pucadelphys andinus. J 

Morphol 247: 51–79 

 

Argot C (2002) Functional-adaptive analysis of the hindlimb anatomy of extant marsupials 

and the paleobiology of the Paleocene marsupials Mayulestes ferox and Pucadelphys 

andinus. J Morphol 253: 76–108  

 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 64 

Argot C (2003) Functional adaptations of the postcranial skeleton of two Miocene 

borhyaenoids (Mamalia, Metatheria), Borhyaena and Prothylacinus, from South America. 

Palaeontology 46: 1213–1267 

  

Argot C (2004) Evolution of South American mammalian predators (Borhyaenoidea): 

anatomical and palaeobiological implications. Zool J Linn Soc 140: 487–521 

 

Argot C, Babot J (2011) Postcranial morphology, functional adaptations and palaeobiology 

of Callistoe vincei, a predaceous metatherian from the Eocene of Salta, north-western 

Argentina. Palaeontology 54: 447–480  

 

Barone R (1967) La myologie du lion (Panthera leo). Mammalia 31: 459–516 

 

Barone R (2010) Anatomie comparée des Mammifères domestiques, tome second, 

Arthrologie et Myologie (Quatrième édition). Éditions Vigot, Paris 

 

Beaumont G de (1961) Recherches sur Felis attica Wagner du Pontien eurasiatique avec 

quelques observations sur les genres Pseudaelurus Gervais et Proailurus Filhol. Nouv Arch 

Mus Hist nat Lyon 6: 17–45 

 

Beaumont G de (1975) Recherches sur les Félidés (Mammifères, Carnivores) du Pliocène 

inférieur des sables à Dinotherium des environs d’Eppelsheim (Rheinhessen). Archs. Sci. 

Genève 28: 369–405 

 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 65 

Beaumont G de (1978) Notes complémentaires sur quelques félidés (Carnivores). Archs Sci 

Genève 31: 219–227 

 

Beaumont G de (1986) La patte postérieure de Felis attica Wagn. (Mammifère, Carnivore) 

du Turolien de Grèce. Archs Sci Genève 39: 377–386 

 

Benjamin M, Kaiser E, Milz S (2008) Structure-function relationships in tendons: a review. 

J Anat 212: 211–228 

 

Bonis L de (2005) Carnivora (Mammalia) from the late Miocene of Akkasdagi, Turkey. 

Geodiversitas 27: 567–589 

 

Brundrett KT (2002) Functional morphology of the forelimb in Victoriapithecus and its 

implications for phylogeny within the Catarrhini. Dissertation, University of Chicago, 

Chicago 

 

Calvo JP, Pozo M, Silva PG, Morales J (2013) Pattern of sedimentary infilling of fossil 

mammal traps formed in pseudokarst at Cerro de los Batallones, Madrid Basin, central 

Spain. Sedimentology 60: 1681–1708 

 

Carlon B, Hubbard C (2012) Hip and thigh anatomy of the clouded leopard (Neofelis 

nebulosa) with comparisons to the domestic cat (Felis catus). Anat Rec 295: 577–589 

 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 66 

Cifelli RL (1983) Eutherian tarsals from the late Paleocene of Brazil. Am Mus Novitates 

2761: 1–31 

 

Ciochon RL (1986) The cercopithecoid forelimb: anatomical implications for the evolution 

of African species. Dissertation, University of California, Berkeley 

 

Crusafont-Pairó M (1952) La presencia del Félido Pseudaelurus tournauensis (Hoernes) en 

el Mioceno de Hostalets de Pierola y Sabadell (Vallés-Penedés). Not Com Inst Geol Min 

España 28: 1–15 

 

Crusafont-Pairó M, Ginsburg L (1973) Les Carnassiers fossiles de Los Valles de 

Fuentidueña. Bull Mus natl Hist nat 131: 29–45 

 

Davis DD (1964) The giant panda: a morphological study of evolutionary mechanisms. 

Fieldiana Zool Mem 3: 1-339 

 

Depéret C (1892) La faune de Mammifères miocènes de la Grive-Saint-Alban (Isère) et de 

quelques autres localités du basin du Rhône. Archs Mus Hist nat Lyon 5: 1–93 

 

Emerson SB, Radinsky L (1980) Functional analysis of sabertooth cranial morphology. 

Paleobiology 6: 295–312 

 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 67 

Endo H, Yonezawa T, Rakotondraparany F, Sasaki M, Hasegawa M (2006) The 

adaptational strategies of the hindlimb muscles in the Tenrecidae species including the 

aquatic web-footed tenrec (Limnogale mergulus). Ann Anat 188: 383–390 

 

English AWM (1980) The functions of the lumbar spine during stepping in the cat. J 

Morphol 165: 55–66 

 

Ercoli MD, Álvarez A, Stefanini MI, Busker F, Morales MM (2015) Muscular anatomy of 

the forelimbs of the lesser grison (Galictis cuja), and a functional and phylogenetic 

overview of Mustelidae and other Caniformia. J Mammal Evol 22: 57–91 

 

Ercoli MD, Echarri S, Busker F, Álvarez A, Morales MM, Turazzini GF (2013) The 

functional and phylogenetic implications of the myology of the lumbar region, tail, and 

hind limbs of the lesser grison (Galictis cuja). J Mammal Evol 20: 309–336 

 

Evans HE (1993) Miller’s Anatomy of the dog (3rd edition). Saunders, Philadelphia 

 

Feeny S (1999) Comparative osteology, myology, and locomotor specializations of the fore 

and hind limbs of the North American foxes Vulpes vulpes and Urocyon cinereoargenteus. 

Dissertation, University of Massachusetts, Amherst 

 

Fisher RE, Adrian B, Barton M, Holmgren J, Tang SY (2009) The phylogeny of the red 

panda (Ailurus fulgens): evidence from the forelimb. J Anat 215: 611–635 

 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 68 

Fisher RE, Adrian B, Elrod C, Hicks M (2008) The phylogeny of the red panda (Ailurus 

fulgens): evidence from the hindlimb. J Anat 213: 607–628 

 

Fleagle JG, Simons EL (1982) The humerus of Aegyptopithecus zeuxis: a primitive 

anthropoid. Am J Phys Anthropol 59: 175–193 

 

Forsten A, Kaya T (1995) The hipparions (Mammalia, Equidae) from Gülpinar (Canakkale, 

Turkey). Paläont Z 69: 491–501 

 

Fortelius M, Hokkanen A (2001) The trophic context of hominoid occurrence in the later 

Miocene of western Eurasia – a primate-free view. In: de Bonis L, Koufos G, Andrews P 

(eds) Phylogeny of the Neogene Hominoid Primates of Eurasia. Cambridge University 

Press, Cambridge, pp 19–47 

 

Gaillard C (1899) Mammifères miocènes de La Grive-Saint-Alban (Isère). Archs Mus Hist 

nat Lyon 7: 1–41 

 

Gambaryan PP (1974) How Mammals Run. Anatomical Adaptations. Wiley, New York 

 

Gaubert P, Cordeiro-Estrela P (2006) Phylogenetic systematics and tempo of evolution of 

the Viverrinae (Mammalia, Carnivora, Viverridae) within feliformians: implications for 

faunal exchanges between Asia and Africa. Mol Phylogenet Evol 41: 266–278 

 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 69 

Gaubert P, Veron G (2003) Exhaustive sample set among Viverridae reveals the sister-

group of felids: the Linsangs as a case of extreme morphological convergence within 

Feliformia. P Roy Soc Lond B Bio 270: 2523–2530 

 

Gebo DL, Rose KD (1993) Skeletal morphology and locomotor adaptation in 

Prolimnocyon atavus, an early Eocene hyaenodontid creodont. J Vertebr Paleontol 13: 

125–144 

 

Geraads D, Peigné S (2016) Re-appraisal of ‘Felis’ pamiri Ozansoy, 1959 (Carnivora, 

Felidae) from the Upper Miocene of Turkey: the earliest pantherin cat? J Mammal Evol 

doi:10.1007/s10914-016-9349-6 

 

Gervais P (1850) Zoologie et paléontologie françaises. Nouvelles recherches sur les 

animaux vertébrés dont on trouve les ossements enfouis dans le sol de la France et sur leur 

comparaison avec les espèces propres aux autres regions du globe. Arthus Bertrand, Paris 

 

Ginsburg L (1961a) La faune des Carnivores miocènes de Sansan (Gers). Mem Mus Nat 

Hist Nat, Nouv Ser, C 9: 1–190 

 

Ginsburg L (1961b) Plantigradie et digitigradie chez les carnivores fissipedes. Mammalia 

25: 1–21 

 

Ginsburg L (1983) Sur les modalités d’évolution du genre néogène Pseudaelurus Gervais 

(Felidae, Carnivora, Mammalia). Colloq Internatl CNRS 330: 131–136 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 70 

 

Ginsburg L (1999) Order Carnivora. In: Rössner GE, Heissig K (eds) The Miocene Land 

Mammals of Europe. Verlag Dr Friedlich Pfeil, Munich, pp 109–148 

 

Ginsburg L (2002) Les carnivores fossiles des sables de l’Orléanais. Ann Paleontol 88: 

115–146 

 

Ginsburg L, Antunes MT (1995) Les carnivores du Miocène de Lisbonne (Portugal). Ann 

Paleontol 81: 125–165 

 

Gonyea WJ (1976a) Behavioral implications of saber-toothed felid morphology. 

Paleobiology 2: 332–342 

 

Gonyea WJ (1976b) Adaptative differences in the body proportions of large felids. Acta 

Anat 96: 81–96 

 

Gonyea WJ (1978) Functional implications of felid forelimb anatomy. Acta Anat 102: 111–

121 

 

Gonyea W, Ashworth R (1975) The form and function of retractile claws in the Felidae and 

other representative carnivorans. J Morphol 145: 229–238 

 

Goslow GE, Reinking RM, Stuart DG (1973) The cat step cycle: hind limb joint angles and 

muscles lengths during unrestrained locomotion. J Morphol 141: 1–42 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 71 

 

Heinrich RE, Rose KD (1997) Postcranial morphology and locomotor behaviour of two 

early Eocene miacoid carnivorans, Vulpavus and Didymictis. Palaeontology 40: 279–305 

 

Hernández-Fernández M, Cárdaba JA, Cuevas-González J, Fesharaki O, Salesa MJ, 

Corrales B, Domingo L, Élez J, López-Guerrero P, Sala-Burgos N, Morales J, López-

Martínez N (2006) The deposits of middle Miocene vertebrates of Somosaguas (Pozuelo de 

Alarcon, Madrid): paleoenvironment and paleoclimate implications. Estud Geol-Madrid 62: 

263–294 

 

Hildebrand M (1959) Motions of the running cheetah and horse. J Mammal 40: 481–495 

 

Hoernes VR (1882) Säugetier-Reste aus der Braunkohle von Göriach bei Turnau in 

Steiermark. Jahrb K K Geol Reichs 32: 153–164 

 

Howell AB (1944) Speed in Animals: Their Specialization for Running and Leaping. 

University of Chicago Press, Chicago 

 

Hunt RM Jr (2009) Long-legged pursuit carnivorans (Amphicyonidae, Daphoeninae) from 

the early Miocene of North America. Bull Am Mus Nat Hist 318: 1–95 

 

International Committee on Veterinary Gross Anatomical Nomenclature (2012) Nomina 

Anatomica Veterinaria (5th edition, revised version). World Association of Veterinary 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 72 

Anatomists (W.A.V.A.), Hannover (Germany), Columbia MO (U.S.A.), Ghent (Belgium), 

Sapporo (Japan) 

 

Iwaniuk AN, Pellis SM, Whishaw IQ (1999) The relationships between forelimb 

morphology and behavior in North American carnivores (Carnivora). Can J Zool 77: 1064–

1074 

 

Jennings AP, Veron G (2009) Family Viverridae (civets, genets and oyans). In: Wilson DE, 

Mittermeier RA (eds) Handbook of the Mammals of the World, Vol. 1, Carnivores. Lynx 

Edicions, Barcelona, pp 174–232 

 

Johnson WE, Franklin WL (1991) Feeding and spatial ecology of Felis geoffroyi in 

southern Patagonia. J Mammal 72: 815–820 

 

Jolly CJ (1967) The evolution of the baboons. In: Vagborg H (ed) The Baboon in Medical 

Research. Vol II. University of Texas Press, Austin, pp 23–50 

 

Julik E, Zack S, Adrian B, Maredia S, Parsa A, Poole M, Starbuck A, Fisher RE (2012) 

Functional anatomy of the forelimb muscles of the ocelot (Leopardus pardalis). J Mammal 

Evol 19: 277–304 

 

Kardong KV (2002) Vertebrates: Comparative Anatomy, Function, Evolution. McGraw-

Hill, Boston 

 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 73 

Kingdon J (1977) East African Mammals: An atlas of Evolution in Africa, vol. 3 (A). 

Carnivores. Academic Press, New York 

 

Kretzoi M (1929) Feliden-Studien. Föld Intezet Haziny 24: 1–22 

 

Kretzoi M (1951) The Hipparion-fauna from Csákvár. Föld Közl 81: 402–417 

 

Kretzoi M (1952) Die Raubtiere der Hipparionfauna von Polgárdi. Jahrb Ung Geo Anstalt 

40: 1–42 

Larson SG, Stern JT (1989) Role of supraspinatus in the quadrupedal locomotion of vervets 

(Cercopithecus aethiops): implications for interpretation of humeral morphology. Am J 

Phys Anthropol 79: 369–377 

 

Leyhausen P (1973) On the function of the relative hierarchy of moods. In: Lorenz K, 

Leyhausen P (eds) Motivation of Human and Animal Behavior: An Ethological View. Van 

Nostrand, New York, pp 144–247 

 

Leyhausen P (1979) Cat Behavior. The Predatory and Social Behavior of Domestic and 

Wild Cats. Garland STPM Press, New York 

 

Mattern MY, McLennan DA (2000) Phylogeny and speciation of felids. Cladistics 16: 232–

253 

 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 74 

Meachen-Samuels J, Van Valkenburgh B (2009) Forelimb indicators of prey-size 

preference in the Felidae. J Morphol 270: 729–744 

 

Mecquenem R. de (1924) Contribution à l’étude des fossiles de Maragha. Ann Paleontol 

13: 135–160 

 

Menge BA, Sutherland JP (1976) Species diversity gradients: synthesis of the roles of 

predation, competition, and temporal heterogeneity. Am Nat 110: 351–369 

 

Morales J, Alcalá L, Álvarez-Sierra MA, Antón M, Azanza B, Calvo JP, Carrasco P, Fraile 

S, García-Paredes I, Gómez E, Hernández Fernández M, Merino L, Van Der Meulen A, 

Martín Escorza C, Montoya P, Nieto M, Peigné S, Pérez B, Peláez-Campomanes P, Pozo 

M, Quiralte V, Salesa MJ, Sánchez IM, Sánchez-Marco A, Silva PG, Soria MD, Turner A 

(2004) Paleontología del sistema de yacimientos de mamíferos miocenos del Cerro de los 

Batallones, Cuenca de Madrid. Geogaceta 35: 139–142 

 

Morales J, Alcalá L, Amezua L, Antón M, Fraile S, Gómez E, Montoya P, Nieto M, Pérez 

B, Salesa MJ, Sánchez IM (2000) El yacimiento de El Cerro de los Batallones. In: Morales 

J, Nieto M, Amezua L, Fraile S, Gómez E, Herráez E, Peláez-Campomanes P, Salesa MJ, 

Sánchez IM, Soria D (eds) Patrimonio Paleontológico de la Comunidad de Madrid. 

Editorial de la Comunidad de Madrid, Madrid, pp 179–190 

 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 75 

Morales J, Pickford M, Fraile S, Salesa MJ, Soria D (2003) Creodonta and Carnivora from 

Arrisdrift, early middle Miocene of southern Namibia. Mem Geol Surv Namibia 19: 177–

194 

 

Morales J, Pozo M, Silva PG, Domingo MS, López-Antoñanzas R, Álvarez Sierra MA, 

Antón M, Martín Escorza C, Quiralte V, Salesa MJ, Sánchez IM, Azanza B, Calvo JP, 

Carrasco P, García-Paredes I, Knoll F, Hernández Fernández M, Van Den Hoek Ostende L, 

Merino L, Van Der Meulen AJ, Montoya P, Peigné S, Peláez-Campomanes P, Sánchez-

Marco A, Turner A, Abella J, Alcalde GM, Andrés M, DeMiguel D, Cantalapiedra JL, 

Fraile S, García Yelo BA, Gómez Cano AR, López Guerrero P, Oliver Pérez A., Siliceo G 

(2008) El sistema de yacimientos de mamíferos miocenos del Cerro de los Batallones, 

Cuenca de Madrid: estado actual y perspectivas. Palaeontol Nova 8: 71–114 

 

Morlo M (1997) Die Raubtiere (Mammalia, Carnivora) aus dem Turolium von Dorn-

Dürkheim 1 (Rheinhessen). Teil. 1: Mustelida, Hyaenidae, Percrocutidae, Felidae. Cour 

Forsch Senck 197: 11–47 

 

Munthe K (1989) The skeleton of the Borophaginae (Canidae). Univ Calif Publ Geol Sci 

133: 1–115 

 

Nakatsukasa M, Ward C, Walker A, Teaford M, Kunimatsu Y, Ogihara N (2004) Tail loss 

in Proconsul heseloni. J Hum Evol 46: 777–784 

 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 76 

Nowak RM (2005) Walker’s Carnivores of the World. The Johns Hopkins University 

Press, Baltimore 

  

Palmer R, Fairall N (1988) Caracal and African wild cat diet in the Karoo National Park 

and the implications thereof for hyrax. S Afr J Wildl Res 18: 30–34 

 

Peigné S (2012) Les Carnivora de Sansan. In: Peigné S, Sen S (eds) Mammiféres de 

Sansan. Mém Mus natl Hist nat Paris 203: 559–660 

 

Peigné S, Salesa MJ, Antón M, Morales J (2005) Ailurid carnivoran mammal Simocyon 

from the late Miocene of Spain and the systematics of the genus. Acta Palaeontol Pol 50: 

219–238 

 

Peigné S, Salesa MJ, Antón M, Morales J (2008) A new amphicyonine (Carnivora: 

Amphicyonidae) from the upper Miocene of Batallones-1, Madrid, Spain. Palaeontology 

51: 943–965 

 

Pellis SM, Officer RCE (1987) An analysis of some predatory behaviour patterns in four 

species of carnivorous marsupials (Dasyuridae), with comparative notes on the eutherian 

cat Felis catus. Ethology 75: 177–196 

 

Petren K, Case TJ (1998) Habitat structure determines competition intensity and invasion 

success in gecko lizards. P Natl Acad Sci USA 95: 11739–11744 

 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 77 

Pozo M, Calvo JP, Silva P, Morales J, Peláez-Campomanes P, Nieto M (2004) Geología 

del sistema de yacimientos de mamíferos miocenos del Cerro de los Batallones, Cuenca de 

Madrid. Geogaceta 35: 143–146 

 

Rasmussen DT, Simons EL (2000) Ecomorphological diversity among Paleogene 

hyracoids (Mammalia): a new species of cursorial browser from the Fayum, Egypt. J 

Vertebr Paleontol 20: 167–176 

 

Rawn-Schatzinger V (1992) The scimitar cat Homotherium serum Cope: osteology, 

functional morphology, and predatory behavior. Illinois St Mus Rep Inv 47: 1–80 

 

Reighard J, Jennings HS (1901) Anatomy of the Cat. Henry Holt and Company, New York 

 

Riabinin A (1927) Faune de mammifères de Taraklia. 1. Carnivora vera, Rodentia, 

Subungulata. Trav Mus Géol Leningrad 5: 75–134 

 

Roberts TJ (1977) The Mammals of Pakistan. Ernest Benn, London 

  

Rodríguez J (1997) Análisis de la estructura de las comunidades de mamíferos del 

Pleistoceno de la Sierra de Atapuerca. Revisión de Metodologías. Dissertation, Universidad 

Autónoma de Madrid, Madrid 

 

Roman F, Viret J (1934) La faune de mammifères du Burdigalien de La Romieu (Gers). 

Mém Soc géol France 21: 1–67 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 78 

 

Rothwell T (2001) A partial skeleton of Pseudaelurus (Carnivora: Felidae) from the Nambé 

Member of the Tesuque Formation, Española Basin, New Mexico. Am Mus Novitates 

3342: 1–31 

 

Rothwell T (2003) Phylogenetic systematics of North American Pseudaelurus (Carnivora: 

Felidae). Am Mus Novitates 3403: 1–64 

 

Roussiakis SJ (2002) Musteloids and feloids (Mammalia, Carnivora) from the late Miocene 

locality of Pikermi (Attica, Greece). Geobios 35: 699–719 

 

Russo GA (2016) Comparative sacral morphology and the reconstructed tail lengths of five 

extinct primates: Proconsul heseloni, Epipliopithecus vindobonensis, Archaeolemur 

edwardsi, Megaladapis grandidieri, and Palaeopropithecus kelyus. J Hum Evol 90: 135–

162 

 

Russo GA, Shapiro LJ (2011) Morphological correlates of tail length in the catarrhine 

sacrum. J Hum Evol 61: 223–232 

 

Salesa MJ (2002) Estudio Anatómico, Biomecánico, Paleoecológico y Filogenético de 

Paramachairodus ogygia (Kaup, 1832) Pilgrim, 1913 (Felidae, Machairodontinae) del 

yacimiento vallesiense (Mioceno superior) de Batallones-1 (Torrejón de Velasco, Madrid). 

Dissertation, Universidad Complutense de Madrid, Madrid 

 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 79 

Salesa MJ, Antón M, Morales J, Peigné S (2011) Functional anatomy of the postcranial 

skeleton of Styriofelis lorteti (Carnivora, Felidae, Felinae) from the middle Miocene (MN 

6) locality of Sansan (Gers, France). Estud Geol-Madrid 67: 223–243 

 

Salesa MJ, Antón M, Morales J, Peigné S (2012a) Systematics and phylogeny of the small 

felines (Carnivora, Felidae) from the late Miocene of Europe: a new species of Felinae 

from the Vallesian of Batallones (MN 10, Madrid, Spain). J Syst Palaeontol 10: 87–102 

 

Salesa MJ, Antón M, Peigné S, Morales J (2006b) Evidence of a false thumb in a fossil 

carnivore clarifies the evolution of pandas. P Natl Acad Sci USA 103: 379–382 

 

Salesa MJ, Antón M, Peigné S, Morales J (2008) Functional anatomy and biomechanics of 

the postcranial skeleton of Simocyon batalleri (Viret, 1929) (Carnivora, Ailuridae) from the 

late Miocene of Spain. Zool J Linn Soc 152: 593–621 

 

Salesa MJ, Antón M, Siliceo G, Pesquero MD, Alcalá L (2014) First evidence of pathology 

in the forelimb of the late Miocene saber-toothed felid Promegantereon ogygia 

(Machairodontinae, Smilodontini). Anat Rec 297: 1090–1095 

 

Salesa MJ, Antón M, Turner A, Alcalá L, Montoya P, Morales J (2010b) Systematic 

revision of the late Miocene sabre-toothed felid Paramachaerodus in Spain. Palaeontology 

53: 1369–1391 

 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 80 

Salesa MJ, Antón M, Turner A, Morales J (2005) Aspects of the functional morphology in 

the cranial and cervical skeleton of the sabre-toothed cat Paramachairodus ogygia (Kaup, 

1832) (Felidae, Machairodontinae) from the late Miocene of Spain: implications for the 

origins of the machairodont killing bite. Zool J Linn Soc 144: 363–377 

 

Salesa MJ, Antón M, Turner A, Morales J (2006a) Inferred behaviour and ecology of the 

primitive sabre-toothed cat Paramachairodus ogygia (Felidae, Machairodontinae) from the 

late Miocene of Spain. J Zool 268: 243–254 

 

Salesa MJ, Antón M, Turner A, Morales J (2010a) Functional anatomy of the forelimb in 

Promegantereon ogygia (Felidae, Machairodontinae, Smilodontini) from the late Miocene 

of Spain and the origins of the sabre-toothed felid model. J Anat 216: 381–396 

 

Salesa MJ, Pesquero MD, Siliceo G, Antón M, Alcalá L, Morales J (2012b) A rich 

community of Felidae (Mammalia, Carnivora) from the late Miocene (Turolian, MN 13) 

site of Las Casiones (Villalba Baja, Teruel, Spain). J Vertebr Paleontol 32: 658–676 

 

Schlosser M (1924) Tertiary vertebrates from Mongolia. Palaeontol Sin 1: 1–133 

 

Schmidt-Kittler N (1976) Raubtiere aus dem Jungtertiär Kleinasiens. Palaeontogr Abt A 

155: 1–131 

 

Sharma IK (1979) Habits, feeding, breeding and reaction to man of the desert cat Felis 

lybica (Gray) in the Indian Desert. J Bombay Nat Hist Soc 76: 498–499 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 81 

 

Siliceo G (2015) Anatomía functional y paleobiología de Magericyon anceps 

(Amphicyonidae, Carnivora) del complejo de yacimientos vallesienses (Mioceno superior, 

MN 10) del Cerro de los Batallones (Torrejón de Velasco, Madrid). Dissertation, 

Universidad de Alcalá, Alcalá de Henares 

 

Siliceo G, Salesa MJ, Antón M, Monescillo MGF, Morales J (2014) Promegantereon 

ogygia (Felidae, Machairodontinae, Smilodontini) from the Vallesian (late Miocene, MN 

10) of Spain: morphological and functional differences in two noncontemporary 

populations. J Vertebr Paleontol 34: 407–418 

 

Siliceo G, Salesa MJ, Antón M, Pastor JF, Morales J (2015) Comparative anatomy of the 

shoulder region in the late Miocene amphicyonid Magericyon anceps (Carnivora): 

functional and paleoecological inferences. J Mammal Evol 22: 243–258 

  

Siliceo G, Salesa MJ, Antón M, Peigné S, Morales J (2017) Functional anatomy of the 

cervical region in the late Miocene amphicyonid Magericyon anceps (Carnivora, 

Amphicyonidae): implications for its feeding behaviour. Palaeontology 60: 329–347 

  

Smithers RHN (1971) The Mammals of Botswana. The Trustees of the National Museums 

of Rhodesia, Salisbury  

 

Solounias N (1981) The Turolian fauna from the Island of Samos, Greece. Contrib Vertebr 

Evol 6: 1–232 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 82 

 

Sooriakumaran P, Sivananthan S (2005) Why does man have a quadratus plantae? A review 

of its comparative anatomy. Croat Med J 46: 30–35 

 

Stevens NJ, O’Connor PM, Roberts EM, Gottfried MD (2009) A hyracoid from the late 

Oligocene red sandstone group of Tanzania, Rukwalorax jinokitana (gen. and sp. nov.). J 

Vertebr Paleontol 29: 972–975 

 

Sunquist ME, Sunquist FC (2009) Family Felidae (Cats). In: Wilson DE, Mittermeier RA 

(eds) Handbook of the Mammals of the World, Vol. 1, Carnivores. Lynx Edicions, 

Barcelona, pp 54–169 

 

Taylor CR (1978) Why change gaits? Recruitment of muscles and muscle fibers as a 

function of speed and gait. Am Zool 18: 153–162 

 

Taylor ME (1974) The functional anatomy of the forelimb of some African Viverridae 

(Carnivora). J Morphol 143: 307–336 

 

Taylor ME (1976) The functional anatomy of the hindlimb of some African Viverridae 

(Carnivora). J Morphol 148: 227–254 

 

Taylor ME (1989) Locomotor adaptations by carnivores. In: Gittleman J (ed) Carnivore 

Behavior, Ecology and Evolution. Springer, New York, pp 382–409 

 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 83 

Thenius E (1949) Die Carnivoren von Göriach (Steiermark). S-B öst Akad Wiss math-nat 

Kl Abt 158: 695–762 

 

Tojima S (2013) Tail length estimation from sacrocaudal skeletal morphology in 

catarrhines. Anthropol Sci 121: 13–24 

 

Turner A, Antón M (1997) Big Cats and Their Fossil Relatives: An Illustrated Guide to 

Their Evolution and Natural History. Columbia University Press, New York 

 

Van Valkenburgh B (1985) Locomotory diversity within past and present guilds of large 

predatory mammals. Paleobiology 11: 406–428 

 

Van Valkenburgh B (1987) Skeletal indicators of locomotor behavior in living and extinct 

carnivores. J Vertebr Paleontol 7: 162–182 

 

Viret J (1951) Catalogue critique de la faune des mammifères miocènes de La Grive Saint-

Alban (Isère). Nouv Arch Mus Hist nat Lyon 3: 1–103 

 

Vollmerhaus B, Roos H (2001) Konstruktionsprinzipien an der Vorder- und Hinterpfote der 

Hauskatze (Felis catus). III. Mitteilung: Muskulatur. Anat Histol Embryol 30: 89–105 

 

Wagner A (1857) Neue Beiträge zur Kenntniss der fossilen Säugthier-Ueberreste von 

Pikermi. Abh K Bayerische Akad Wissen 8: 111–158 

 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 84 

Ward C, Walker A, Teaford M (1991) Proconsul did not have a tail. J Hum Evol 21: 215–

220 

 

Werdelin L, Yamaguchi N, Johnson WE, O’Brien SJ (2010) Phylogeny and evolution of 

cats (Felidae). In: Macdonald DW, Loveridge AJ (eds) Biology and Conservation of Wild 

Felids. Oxford University Press, Oxford, pp 59–82 

 

Wolsan M, Sato JJ (2010) Effects of data incompleteness on the relative performance of 

parsimony and Bayesian approaches in a supermatrix phylogenetic reconstruction of 

Mustelidae and Procyonidae (Carnivora). Cladistics 26: 168–194 

 

Ximenez A (1975) Felis geoffroyi. Mammal Species 54: 1–4 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 85 

Figure captions 

 

Fig. 1. Measurements for each studied postcranial element. a, b, left humerus in (a) cranial 

and (b) lateral views. c, lateral view of a right ulna. d, cranial view of right femur. e, lateral 

view of a left coxal. f, dorsal view of a right calcaneus. g, dorsal view of a right talus. h, 

ventral view of a sacrum. Abbreviations: ah, articular proximodistal height; aw, articular 

mediolateral width; dw, distal mediolateral width; oh, olecranon proximodistal height; pl, 

proximal craniocaudal length; pw, proximal mediolateral width; tl, total proximodistal 

length. 

 

Fig. 2. Caudal part of a lumbar region of Leptofelis vallesiensis from Batallones-1 (BAT-

1’06 D4-64a, BAT-1’06 D4-64b and BAT-1’06 D4-64c) in left lateral (a), and ventral (b) 

views. From left to right, L7, L6, L5 and caudal fragment of L4. Scale bar = 20 mm. 

 

Fig. 3. Long bones of Leptofelis vallesiensis from Batallones-1. a, b, BAT-1’02 D6-58, left 

humerus in cranial (a), and lateral (b) views. c, d, B-2074 (5), right radius in cranial (c), 

and caudal (d) views. e, f, Right ulna B-2074 (6) in lateral (e), and medial (f) views. Scale 

bar = 20 mm. 

 

Fig. 4. Metacarpals of Leptofelis vallesiensis from Batallones-1. a, b, BAT-1’03 D4-239, 

right metacarpal I in dorsal (a), and medial (b) views. c, d, BAT-1’03 D5-162, right Mc II 

in lateral (c), and medial (d) views. e, f, BAT-1’04 D4-184, right Mc III in lateral (e), and 

medial (f) views. g, h, BAT-1’03 E4-164, right Mc IV in lateral (g), and medial (h) views. 

i, j, BAT-1’04 E5-129, right Mc V in lateral (i), and medial (j) views. Scale bar = 20 mm. 
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Fig. 5. BAT-1’06 D4-66a, pelvis of Leptofelis vallesiensis from Batallones-1 in left lateral 

(a) and ventral (b) views. Scale bar = 20 mm. 

 

Fig. 6. BAT-1’06 D4-66b, sacrum of Leptofelis vallesiensis from Batallones-1 in dorsal (a) 

and ventral (b) views. Scale bar = 20 mm. 

 

Fig. 7. Long bones of Leptofelis vallesiensis from Batallones-1. a, b, BAT-1’06 D4-67a, 

right femur of in cranial (a), and caudal (b) views. c–e, BAT-1’06 D4-110, left tibia in 

caudal (c), medial (d), and lateral (e) views. Abbreviations: cr, caudal ridge. Scale bar = 20 

mm. 

 

Fig. 8. Tarsals of Leptofelis vallesiensis from Batallones-1. a, BAT-1’04 D6-173, right 

talus in dorsal view (digitally separated from the articulated calcaneum BAT-1’04 D6-174). 

b, BAT-1’03 D6-300, left talus in plantar view. c–e, BAT-1’06 F5-61, right calcaneus in 

dorsal (c), medial (d), and plantar (e) views. Scale bar = 10 mm. 

 

Fig. 9. Ventral view of articulated caudal part of the lumbar region (L7 to L4) of different 

species of Carnivora shown at the same size for a better comparison. a, Genetta genetta. b, 

Martes foina. c, Leptofelis vallesiensis from Batallones-1. d, Felis silvestris. e, Leopardus 

geoffroyi. f, Leptailurus serval. 

 

Fig. 10. Lateral view of the proximal epiphysis of the left humerus of different species of 

Felidae, shown at the same size for a better comparison. a, BAT-1’02 D6-58, Leptofelis 
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vallesiensis from Batallones-1. b, Leopardus geoffroyi. c, Lynx lynx. Abbreviations: gt, 

greater tubercle. 

 

Fig. 11. Cranial view of the distal epiphysis of the left humerus of different species of 

Felidae, shown at the same size for a better comparison. a, BAT-1’02 D6-58, Leptofelis 

vallesiensis from Batallones-1. b, Leopardus geoffroyi. c, Lynx lynx. Abbreviations: me, 

medial epicondyle. 

 

Fig. 12. Caudal view of the distal epiphysis of the left humerus of different species of 

Felidae, shown at the same size for a better comparison. a, BAT-1’02 D6-58, Leptofelis 

vallesiensis from Batallones-1. b, Leopardus geoffroyi. c, Lynx lynx. Abbreviations: le, 

lateral epicondyle. 

 

Fig. 13. Lateral view of the proximal epiphysis of the right ulna of different species of 

Felidae, shown at the same size for a better comparison. a, B-2074 (6), Leptofelis 

vallesiensis from Batallones-1. b, Leopardus geoffroyi. c, Lynx lynx. d, Felis lybica. e, 

Leopardus wiedii. f, Leptailurus serval. Abbreviations: ltb, attachment area for the lateral 

branch of m. triceps brachii. 

 

Fig. 14. Cranial view of the proximal epiphysis of the right ulna of different species of 

Felidae, shown at the same size for a better comparison. a, BAT-1’06 E5-50, Leptofelis 

vallesiensis from Batallones-1. b, Leopardus geoffroyi. c, Lynx lynx. d, Leptailurus serval. 

Abbreviations: lt, lateral tuberosity; mt, medial tuberosity. 
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Fig. 15. Lateral view of the left coxae of different species of Felidae, shown at the same 

size for a better comparison. a, BAT-1’06 D4-66a, Leptofelis vallesiensis from Batallones-

1. b, Caracal caracal. c, Lynx pardinus. Abbreviations: gsn, greater ischiatic notch; sa, 

spina alaris; is, ischiatic spine. 

 

Fig. 16. Sacra of different species of Felidae and Viverridae, shown at the same size for a 

better comparison. a, b, BAT-1’06 D4-66b, Leptofelis vallesiensis from Batallones-1 in 

cranial (a) and ventral (b) views. c, d, Caracal caracal in cranial (c) and ventral (d) views. 

e, f, Felis silvestris in cranial (e) and ventral (f) views. g, h, Genetta genetta in cranial (g) 

and ventral (h) views. i, j, Martes foina in cranial (i) and ventral (j) views. Abbreviations: 

cas, cranial articular surface; lsc, lateral sacral crest. 

 

Fig. 17. Caudal view of the right femur of different species of Felidae, shown at the same 

size for a better comparison. a, BAT-1’06 D4-67a, Leptofelis vallesiensis from Batallones-

1. b, Felis silvestris. c, Caracal caracal. d, Leopardus geoffroyi. e, Lynx lynx. 

Abbreviations: gt, gluteal tuberosity; lt, lesser trochanter. 

 

Fig. 18. Cranial view of the right femur of different species of Felidae and Viverridae, 

shown at the same size for a better comparison. a, BAT-1’06 D4-67a, Leptofelis 

vallesiensis from Batallones-1. b, Felis silvestris. c, Caracal caracal. d, Genetta genetta. 

Arrows indicate the proximal margin of the throclea. 

 

Fig. 19. Caudal view of the left tibia of different species of Felidae. a, BAT-1’06 D4-110, 

Leptofelis vallesiensis from Batallones-1. b, Leopardus geoffroyi. c, SNSB-BSPG 1937 II 
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12806, Styriofelis turnauensis from Wintershof-West. d, Genetta genetta. e, Ursus 

americanus. Abbreviations: cr, caudal ridge. Scale bar 1 (for A–D) = 20 mm Scale bar 2 

(for E) = 40 mm. 

 

Fig. 20. Calcanei of different species of Felidae, shown at the same size for a better 

comparison. a, e, BAT-1’06 F5-61, Leptofelis vallesiensis from Batallones-1 in medial (a) 

and lateral (e) views. b, f, Lynx lynx in medial (b) and lateral (f) views. c, g, Caracal 

caracal in medial (c) and ventral (f) views. d, h, Leopardus wiedii in medial (d) and lateral 

(h) views. Abbreviations: fst, talar facet of the sustentaculum tali; gqp, groove for the m. 

quadratus plantae (arrows indicate the proximal margin of this groove). 

 

Fig. 21. Skeletal (a) and life reconstruction (b) of Leptofelis vallesiensis, based on the 

specimens from Batallones-1 (scale bar = 10 cm). The shown hypothetical coat colour 

pattern is congruent with the phylogenetic inferences about coat pattern evolution in felids 

proposed by Werdelin et al. (2010) (artwork by M. Antón). 

 

Table captions 

 

Table 1. Measurements of the postcranial bones of L. vallesiensis from Batallones-1. 

 

Table 2. Measurements of the postcranial bones of L. vallesiensis from Batallones-1. 

 

Table 3. Brachial, Crural, and Intermembral indices of L. vallesiensis and several species 

of Felidae and Viverridae. Data taken from Salesa (2002). 
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APPENDIX 1 

Body mass estimation in Leptofelis vallesiensis 

 

For the estimation of the body mass of L. vallesiensis we used the specific formulae for the 

family Felidae of Rodríguez (1997) and Anyonge (1993), both based on the following 

measurements of the appendicular skeleton: proximal width of the tibia (PW) and width of 

the femoral head (FHW) (Rodríguez, 1997), and distal articular (condylar) area of femur 

(FDA) (Anyonge, 1993). The results are:  

For the proximal width of the tibia (PW), the formula is: Log Body Mass = 2.8581 

(log PW) - 0.0786. The PW of the tibia BAT-1’06 D4-110 is 25.32 mm, which results in a 

body mass of 8.5 kg. 

For the width of the femoral head (FHW), the formula is: Log Body Mass = 2.9968 

(log FHW) + 0.5668. The FHW of the femur BAT-1’06 D4-67a is 12.54 mm, which results 

in a body mass of 7.21 kg. 

For the femoral distal articular (condylar) area (FDA) the formula is: Log Body 

Mass = 1.32 (log FDA) – 2.16. The FDA was calculated following the methodology of 

Anyonge (1993) for the femora BAT-1’06 D4-67a and BAT-1’06 D4-67b, obtaining areas 

of 222.63 mm2 and 229.168 mm2, respectively. This results in a body mass of 8.68 kg from 

the femur BAT-1’06 D4-67a, and 9.02 kg from the specimen BAT-1’06 D4-67b. 

Thus, the estimated body mass of L. vallesiensis from Batallones-1 is between 7.21 

and 9.02 kg. The published data on the body weight of extant felines shows wider ranges, 

as they take into account the size variation within each species, mostly due to sexual 

dimorphism. Anyway, the estimated body weight of L. vallesiensis is close to the maximum 
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weights of several species of extant small felines such as Felis silvestris, F. chaus, 

Leopardus geoffroyi and Puma yaguarondi (Sunquist and Sunquist, 2009). 

 

APPENDIX 2 

Body proportions in Leptofelis vallesiensis 

 

The body proportions of the feline from BAT-1 have been calculated using the brachial, 

crural and intermembral indexes (Gonyea, 1976a, 1976b; Taylor, 1976; Anyonge, 1996; 

Iwaniuk et al., 1999). The formulae for these indexes are: 

Brachial index (BIn) = (Length radius/Length humerus) x 100. 

Crural index (CIn) = (Length tibia/ Length femur) x 100. 

Intermembral index (IIn) = (Length thoracic limb/ Length pelvic limb) x 100. 

The corresponding measurement were taken on the following bones of L. 

vallesiensis from Batallones-1: Femora (BAT-1’06 D4-67a and BAT-1’06 D4-67b), Tibiae 

(BAT-1’06 D4-110 and BAT-1’06 D4-103), Humeri (BAT-1’02 D6–58 and B-4968) and 

Radii (B/S-575 and B-2074(5)).  

The results of the different indexes for L. vallesiensis are as follows: BIn: 89.16–

91.13; CIn: 103.01–104.04; IIn: 80.23–80.93.  
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Figure 1 Click here to download Figure Fig1.tif 
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Table 1. Measurements of the postcranial bones of L. vallesiensis from Batallones-1. 

Element Number tl pw dw pl 

Right femur BAT-1’06 D4-67a 142.13 26.80 24.73  

Left femur BAT-1’06 D4-67b 141.04 24.88 23.33  

Right tibia BAT-1’06 D4-103 147.28* 25.25 18.21 25.10 

Left tibia BAT-1’06 D4-110 144.86 25.30 18.32 22.84* 

Left radius B/S-575 111.84 9.62 13.60  

Right radius B-2074s 108.32 9.72 13.56  

Left humerus BAT-1’02 D6-58 122.69 17.30 19.72 24.12 

Right humerus B-4968 123.44* 18.00 19.46 23.84 

Left coxal BAT-1’06 D4-66a 99.36 - -  

Right Mc I BAT-1’03 D4-239 13.58 5.14 4.00  

Right Mc II BAT-1’03 D5-162 32.31 4.85 5.57  

Right Mc III BAT-1’04 D4-184 37.71 6.35 5.82  

Right Mc IV BAT-1’03 E4-164 36.37 5.18 5.41  

Right Mc V BAT-1’04 E5-129 29.24 5.18 5.58  

Left Mc V BAT-1’04 E5-212 29.01 5.17 5.63  
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Table 2. Measurements of the postcranial bones of L. vallesiensis from Batallones-1. 

Element Number tl oh ah aw 

Right ulna  BAT-1’08 C8-24 131.06 15.02 16.67 - 

Right ulna  BAT-1’06 E5-50 123.73 13.06 14.80 - 

Right ulna  B-2074(6) 128.12 13.44* 14.84 - 

Sacrum BAT-1’06 D4-66b 33.94 - - - 

Left talus 

Right calcaneus 

BAT-1’03 D6-300 

BAT-1’06 F5-61 

19.42 

33.19 

- 

- 

12.46 

16.36 

13.11 

14.18 

Left calcaneus  BAT-1’04 D6-62 31.34 - 15.68 14.93 

Left calcaneus BAT-1’03 D6-301 34.40 - 16.10 14.39 
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Table 3. Brachial, Crural and Intermembral indexes of L. vallesiensis and several 

species of Felidae and Viverridae. Data taken from Salesa (2002). 

Species BIn CIn IIn 

Felis lybica 98.75 95.35 85.08 

Caracal caracal 91.34 95.45 80.73 

Leopardus pardalis 88.39 95.50 85.14 

Puma yaguarondi 81.86 95.58 77.33 

Profelis aurata 86.11 95.97 80.31 

Prionailurus viverrinus 89.79 96.97 82.92 

Lynx pardinus 96.31 99.72 82.11 

Leopardus wiedii 85.48 100.55 81.05 

Leopardus tigrinus 84.50 100.49 81.07 

Leopardus geoffroyi 89.34 100.09 84.73 

Prionailurus planiceps 88.87 101.69 81.97 

Pardofelis marmorata 83.19 102.69 80.65 

Prionailurus bengalensis 86.90 102.77 83.49 

Lynx lynx 97.89 103.30 82.75 

Felis silvestris 94.59 104.81 86.01 

Leptailurus serval 95.78 101.87 87.38 

Felis chaus 97.66 111.72 93.36 

Catopuma temminckii 87.40 118.42 73.95 

Neofelis nebulosa 81.92 99.21 82.47 

Puma concolor 83.90 93.72 82.70 

Uncia uncia 91.41 103.12 84.93 

Panthera pardus 82.24 92.63 84.95 

Panthera onca 80.80 86.61 87.71 

Acinonyx jubatus 103.30 105.00 90.10 

Panthera leo 95.35 88.77 91.91 

Genetta genetta 85.77 106.05 80.55 

Civettictis civetta 88.64 96.44 81.88 

Leptofelis vallesiensis 89.16–91.13 103.01–104.04 80.23–80.93 
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