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We compute the absorption spectrum of strongly repulsive one-dimensional bosons in a disordered or
quasiperiodic optical lattice. At commensurate filling, the particle-hole resonances of the Mott insulator are
broadened as the disorder strength is increased. In the noncommensurate case, mapping the problem to the
Anderson model allows us to study the Bose-glass phase. Surprisingly, we find that a perturbative treatment in
both cases, weak and strong disorders, gives a good description at all frequencies. In particular, we find that the
infrared-absorption rate in the thermodynamic limit is quadratic in frequency. This result is unexpected since
for other quantities, like the conductivity in one-dimensional systems, perturbation theory is only applicable at
high frequencies. We discuss applications to recent experiments on optical lattice systems and, in particular, the
effect of the harmonic trap.
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I. INTRODUCTION

In recent years, developments in the field of ultracold
atomic gases have considerably enlarged the possibilities for
exploring the physics of strongly correlated systems �1�. For
instance, the study of quantum phase transitions, a subject of
continuous theoretical interest, has been strongly stimulated
by the experimental observation of the superfluid to Mott
insulator transition using optical lattices �2�. Indeed, ultra-
cold atom systems offer us an unprecedented control over the
system parameters, which can allow us to ultimately under-
stand the physics of very hard problems such as the phase
diagram of the Hubbard model in two dimensions �3�.

A particularly interesting and fertile arena is the study of
disordered ultracold atoms. Random potentials can be intro-
duced in a controlled way by laser beams generating speckle
patterns �4–9� or by loading in an optical lattice a mixture of
two kinds of atoms, one heavy and one light. When the
heavy atoms become randomly localized in the lattice, they
will act as impurities for the lighter atoms �10�. Another
available technique is to superimpose two optical lattices
with incommensurate periodicities, thus, generating a quasi-
periodic potential �11�. The quasiperiodic lattices as well as
the speckle patterns have been recently used in the experi-
mental efforts to observe the effects of Anderson localization
in dilute Bose gases expanding in highly elongated traps
�12,13�. Since Anderson localization is a single-particle ef-
fect, the next logical step is to study the interplay of disorder
and interactions in strongly interacting ultracold atomic sys-
tems �14–17�. The latter may be accessible by tuning inter-
particle interactions using Feshbach resonances �18� or by
loading the atoms in sufficiently deep optical lattices �9�
and/or strongly confining them to low dimensions in tight
traps �1�.

In the context of the efforts described above, one of the
experimental challenges is to observe in ultracold gases clear

signatures of the theoretically predicted transition from a su-
perfluid to the Bose-glass phase �19–21�. A pioneering step
in this direction was recently taken by the Florence group by
using lattice modulation spectroscopy �11�. This technique
consists in heating an ultracold gas loaded in an optical lat-
tice by periodically modulating the depth of the lattice
�22–24�. When perturbed in this way, the gas is driven out of
equilibrium and absorbs energy. When the perturbation is
switched off, and after rethermalization, the broadening of
the momentum distribution around zero momentum is taken
as a measure of the energy absorbed by the system during the
lattice modulation �22�. On the theory side, for nondisor-
dered lattices, the calculation of the energy absorption rate
due to the lattice modulation was first performed analytically
within linear-response theory by some of the present authors
�23�. These results were confirmed and extended beyond lin-
ear response using time-dependent density-matrix
renormalization-group methods, both for the case of bosons
�24� and fermions �25�. More recently, for disordered optical
lattices, the energy absorption rate has been numerically cal-
culated using full diagonalization in small systems �26,27�.
Other methods that have also been discussed in the literature
for detecting signatures of the effect of disorder �or quasip-
eriodicity� on interacting boson systems in one dimension
focus on the momentum distribution �16,28�, the expansion
dynamics in quasiperiodic potentials �15�, and the dipole os-
cillations in the presence of defects �29�.

Let us consider a one-dimensional disordered Bose gas
described by the following Hamiltonian:

H = − J�
j

�bj+1
† bj + H.c.� +

U

2 �
j

nj�nj − 1� + �
j

�� j + Vj
ho�nj ,

�1�

where bj denotes the boson annihilation operator at sites j,
nj =bj

†bj being the local density. Here J and U are the usual
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parameters of the Bose-Hubbard model corresponding to the
tunneling rate and the on-site repulsion �U�0�. The last
term in the right-hand side of Eq. �1� accounts for the pres-
ence of both the harmonic trap Vj

ho and the disorder potential
� j.

The distribution of the on-site energies � j in Eq. �1� de-
pends on the specific choice of the random �or pseudoran-
dom� potential. In this work, we extensively compare two
cases

�a�� j uniformly distributed in�− �,�� , �2�

�b�� j = � cos�2�j��, � irrational, �3�

where � measures the strength of the disorder. From the
experimental point of view, speckle patterns and lattice con-
taining heavy atom impurities can be modeled by case �a�,
whereas quasiperiodic potentials obtained by superimposing
two optical potentials with incommensurate periodicities
d1 /d2=� are described by case �b�.

In this work, we assume that the hopping amplitude J in
Eq. �1� is modulated periodically in time according to J�t�
=J+�J cos �t, where � is the modulation frequency. We cal-
culate the energy absorption rate within linear-response
theory, which is valid for weak lattice modulations �J	 J.

We shall restrict ourselves to the strongly repulsive re-
gime of Eq. �1�, where the on-site repulsion is large com-
pared to both the hopping amplitude and the disorder
strength �U
J ,��. We first discuss systems in the thermo-
dynamic limit by setting Vj

ho=0. Effects of the harmonic
trapping potential will be discussed later, in Sec. V. We also
set �=1 to simplify the notation.

In the thermodynamic limit, both the number N of bosons
and the length M of the chain diverge. The ratio �=N /M is
instead finite and corresponds to the filling factor, i.e., the
average number of bosons per lattice site. We must distin-
guish between two physically different situations. For incom-
mensurate fillings �1, the system has gapless excitations.
Thus, a good approximation to the absorption rate at fre-
quencies �	U can be obtained by formally taking U→+�
and mapping the resulting hard-core bosons to noninteracting
fermions using a Jordan-Wigner transformation �see, e.g.,
Ref. �30��. The resulting single-particle problem can be eas-
ily solved for a given choice of �i and Vho and the energy
absorption obtained. On the other hand, for unit filling ��
=1�, the ground state is a Mott insulator with a gap. In this
case, the elementary excitations are particles and holes �23�
and, in a homogeneous system, the absorption can only occur
at frequencies ��U. In the absence of disorder, the response
of the system to the lattice modulation has been computed
using degenerate perturbation theory within the subspace of
particle and hole excitations �23�. The same methods can be
generalized to deal with disordered case, as shown below.

The resulting general picture of the energy absorption is
depicted in Fig. 1. The low frequency 0�W, where W
�max�4J ,2�� is the effective bandwidth, is only present for
incommensurate fillings, �1. A second distribution is cen-
tered at frequency �=U and comes from particle-hole exci-
tations generating doubly occupied sites. The width of this
absorption line is also given by W.

The paper is organized as follows. In Sec. II, we present
the general formalism needed to calculate the absorption rate
for incommensurate and unit filling. In Secs. III and IV, we
present our analytical and numerical results obtained for the
random and the quasiperiodic potential, respectively. In Sec.
V, we discuss the effects of a trapping potential. Finally in
Sec. VI, we provide our conclusions. A derivation of the
general formula �see Eq. �9�� for the absorption rate valid for
weak disorder is given in the Appendix�.

II. ENERGY ABSORPTION: LINEAR-RESPONSE THEORY

For weak perturbations, corresponding to �J	 J, the en-

ergy absorption rate Ė� can be calculated using the linear-
response theory. The general formula has been first derived
in Ref. �23� and in the presence of disorder it takes the form

Ė� =
1

2
�J0

2� Im�− �K���� , �4�

where �K��� is the Fourier transform of the retarded corre-
lation function �K�t�=−i��t���K�t� ,K�0��� of the hopping
operator K=−� j�bj+1

† bj +H.c.�, being ��t� the step function.
In Eq. �4�, the bar means average over different disorder
�Sec. IV� or quasiperiodic �Sec. III� realizations.

In general, the calculation of the correlation function in
Eq. �4� is a complicated many-body problem. However, in
the limit of strong repulsion where U
J ,�, calculations are
considerably simplified by the fact that we can accurately
restrict ourselves to work within a subspace of the total Hil-
bert space, whose detailed structure depends on the filling. In
the case of an incommensurate filling �i.e., �1�, this sub-
space can be described in terms of noninteracting fermion
states �that is, Slater determinants�. For commensurate filling
�i.e., unit filling, �=1�, we can restrict ourselves to the sub-
space with one particle and one hole excitation, as described
below.

A. Incommensurate filling

For filling �1 and large on-site repulsion J ,�	U, we
take the hard-core limit U→+�. Bosons are then mapped
onto noninteracting spinless fermions via the Jordan-Wigner
transformation,

0 W

W

U ω

F

FIG. 1. Sketch of the full absorption spectrum at incommensu-
rate filling. Here, W�max�4J ,2�� is the effective bandwidth. The
peak at ��U stems from particle-hole excitations, whereas the
low-frequency absorption appears as a consequence of the forma-
tion of a Bose glass at incommensurate filling.
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cj = exp	i��
k=1

j−1

nk
bj , �5�

where cj satisfy fermionic commutation relations �cj ,cj�=0
and �cj ,cj

†�=1. Under the above transformation, the Hamil-
tonian �1� is mapped onto the single-particle Hamiltonian

H� = − J�
j

�cj+1
† cj + H.c.� + �

j

� jcj
†cj , �6�

where the on-site repulsion U has disappeared and the hop-
ping operator K in Eq. �4� is now given by K�=−� j�cj+1

† cj
+H.c.�. Notice that the mapping of observables that are non-
local in space is far less trivial, an example is the momentum
distribution studied in Ref. �28� for disordered hard-core
bosons in one dimension.

After some algebra, the absorbtion rate �4� becomes

Ė� =
�J0

2��

2 �
�,�

K���f���� − f�������� + �� − ��� , �7�

where the matrix K is defined as

K�� = �
j

���
*�j + 1����j� + ��

*�j����j + 1��2
. �8�

In the previous expressions �� and ���j� are the eigenvalues
and eigenfunctions of H�, respectively. In Eq. �7�, f���
= �exp���−�� /T�+1�−1 is the Fermi-Dirac distribution func-
tion at a temperature T and chemical potential �. The latter is
fixed by the normalization condition �=��f����. At zero
temperature, the only relevant processes in Eq. �7� corre-
spond to transitions from an occupied level �with energy
����T=0�� to an unoccupied level ������T=0��. In par-
ticular, for unit filling the absorption �7� vanishes, consis-
tently, with the fact that a Mott insulator can only absorb at
much higher frequencies ��U.

In the absence of disorder �i.e., for �i=0 in Eq. �6��, the
hopping modulation commutes with the Hamiltonian H� and,
therefore, the absorption rate vanishes to all orders, even
beyond linear response. In the above expression, this is re-
flected in that, for �i=0, the eigenstates of H� become plane
waves, �k�j��eikj, with energy dispersion �k=−2J cos k �k
being the lattice momentum�. Thus, the matrix �8� is diago-
nal, i.e., Kkk�=4�k,k�cos2 k, which, together with the factor

f��k�− f��k�� in Eq. �7� makes Ė� vanish.
At weak disorder �i.e., J
��, the absorption rate �7� can

be evaluated using the perturbation theory �the details can be
found in the Appendix�, which yields

Ė� =
�J0

2��

2M
�
k,k�

�Vk−k��
2

J2 �f��k� − f��k������ + �k − �k�� , �9�

where Vk= 1
�M

� j=0
M−1eikj� j is the Fourier transform of the dis-

order potential. Equation �9� shows that the perturbation ex-
pansion in disorder is well defined provided the Fourier
transform Vk is finite.

Let us finally consider the so-called atomic limit, which
corresponds to J	� �yet �	U�. In this limit, tunneling can
be neglected and the eigenstates are given by �m�j�=� jm.

From Eq. �8�, we find K j j�=1 if j and j� are nearest neighbor
and zero otherwise. The absorption rate �7� thus reduces to

Ė� =
�J0

2��

2 �
r=�1

�
j=0

L−1

�f�� j� − f�� j+r����� + � j − � j+r� .

�10�

In Sec. III, we shall explicitly compare the results obtained
using exact numerical diagonalization with the above results
obtained both in the limit of weak �9� and strong �10� disor-
ders. Finally, it is important to emphasize that Eq. �7� does
not account for particle-hole excitations, which are relevant
at much higher frequencies ��U. These excitations become
particularly important at unit filling ��=1�, when the strongly
repulsive Bose gas becomes a Mott insulator and the absorp-
tion at low frequency �	U predicted by Eq. �7� vanishes
because there are no empty sites �i.e., holes� in the ground
state. The contribution to the absorption from particle-hole
excitations at unit filling will be discussed next.

B. Unit filling

We next turn our attention to the commensurate case with
�=1. In the strong-coupling regime U
J ,�, the system is
deep in the Mott insulator phase, corresponding to exactly
one particle per site. In Ref. �23�, it was shown that for clean
systems the absorption rate is zero at low frequencies and
exhibits a narrow peak of width �J centered about �=U. In
this section, we consider the broadening of such peak due to
a disorder or quasiperiodic potential �i.

In order to obtain the energy absorption rate within linear
response, we first use the spectral decomposition of the cor-
relation function �K��� in terms of the exact eigenstates of
the unperturbed Hamiltonian. This yields the following ex-
pression for the energy absorption:

Ė� = �J0
2�

�

2 �
n

���n�K��0��2��� + E0 − En� , �11�

where ��n� are the eigenstates of the original Hamiltonian
�1� with energies En, and ��0�= �1,1 , . . . ,1� is the ground
state in the Fock representation corresponding to one boson
per lattice site. The low-energy states are particle-hole exci-
tations ���m , j��= 1

�2
bm

† bm+j��0� corresponding to double oc-
cupation at site m and an empty site m+ j. These excitations
are all degenerate with energy U in the absence of tunneling
and �i.e., for �=J=0�.

For finite values of � and J, the eigenstates �n can be
calculated using degenerate perturbation theory by writing
��n�=�m,j fm,j���m , j��, where the coefficients satisfy

�
m�,j�

���m, j��H���m�, j���fm�,j� = Efm,j . �12�

The above matrix element and the energy absorption can be
computed by taking into account that ���m , j��K��0�=
−�2� j,�1, within the subspace containing just one particle
and one hole. Hence, the matrix elements in Eq. �11� corre-
spond to ��n�K��0�=−�m,r=�1

�2fm,r. Notice that a similar
technique has been recently employed in Ref. �31� to calcu-
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late the dynamic structure factor of a one-dimensional Mott
insulator in a parabolic trap.

In the “atomic limit” where the tunneling can be ne-
glected, Eq. �11� simplifies considerably. Localized particle-
hole excitations become the exact eigenstates ��n�
= ���m , j�� with energy E0+U+�m−�m+j, where E0=�i=1

M �i is
the energy of the ground state for a given realization of �i.
The absorption rate �11� then takes the form

Ė� = �J0
2�� �

r=�1
�
m=1

M

��� − U + �m − �m+r� , �13�

which can be readily evaluated numerically once the disorder
potential is known. We emphasize that Eq. �13� assumes that
the system is a Mott insulator with exactly one atom per site.
This condition is easily satisfied in the strong-coupling re-
gime J ,�	U, where the disorder only broadens the absorp-
tion spectrum without affecting the nature of the ground
state. A finite response at low frequency only occurs for
stronger ��U, where the system is close to the Bose-glass
transition. In this limit, however, the random �or quasiperi-
odic� potential changes the occupation numbers at different
sites, creating holes and doublons, so the ground state is no
longer given by the Fock state ��0� and Eq. �13� ceases to be
valid.

III. RESULTS FOR A DISORDER POTENTIAL

In this section, we assume that the on-site energy �i in Eq.
�1� are random numbers uniformly distributed within the in-
terval �−� ,��. The absorption rate �4� can thus be conve-
niently recast as

Ė� = M�J0
2F , �14�

where F is a dimensionless function that can be numerically
evaluated. The results for incommensurate and commensu-
rate cases are described below.

A. Incommensurate filling

As stated above, the absorption rate is calculated numeri-
cally at zero temperature starting from Eqs. �7� and �8�. In
Fig. 2, we plot the frequency dependence of the response
function F for different fillings and increasing values of dis-
order �=0.1J �upper panel�, �=J �central panel�, and �
=5J �lower panel�. Since, in the fermionic representation, the
Hamiltonian of Eq. �6� is particle-hole symmetric, the ab-
sorption rate in Eq. �7� is unchanged under the transforma-
tion �→1−�, so we restrict our discussion to fillings �
�1 /2.

A noticeable feature of Fig. 2 is that the response at high
frequencies is independent of the filling factor. In this limit,
the relevant processes contributing to the absorption mainly
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FIG. 2. �Color online� Energy absorption rate of hard-core bosons in a random potential: the response function F �see Eq. �14�� is plotted
versus modulation frequency for different filling factors and increasing values of disorder strength: �=0.1J �top panel�, �= J, and �=5J.
Calculations are done on a ring of M =500 lattice sites yielding negligible finite-size effects. The number of disorder realizations used was
Nr=500.
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involve transitions from states far below the Fermi level �i.e.,
���	��� into empty states far above it �i.e., ���
���. As a
result, the Fermi-Dirac distributions in Eq. �7� become irrel-
evant, and thus any dependence on the value chemical po-
tential � disappears.

However, at low frequencies, the absorption rate vanishes
quadratically with frequency for any strength � of the dis-
order. To understand this, let us expand in Eq. �7� the distri-
bution functions f����− f��������−�����f����. Taking into
account that, at zero temperature, ��f���=−���−��, we find
that F�C�2, where the constant

C =
�

2 �
���

K����� − ������ − ��� �15�

can be evaluated numerically. From Eq. �15�, it can be seen
that the constant C is nonzero provided there are nonvanish-
ing matrix elements K�� connecting two states � and � at
the Fermi level ��=��=�.

In the limit of weak disorder corresponding to �	J, the
absorption can be evaluated using Eq. �9�, where �Vk�2
=�2 /3M, as follows from the expression for the Fourier
transform of the disorder potential Vk. Going to the thermo-
dynamic limit and introducing the density of states ����
= �2�J�1−�2 /4J2�−1, we find

F =
��2

24�J4�
a

b d�

�1 − �2/4J2�1 − �� + ��2/4J2
, �16�

where a=max�−2J ,�−�� and b=min�� ,2J−��. Here the
chemical potential � is related to the filling factor by �=
−2J cos ��. By expanding Eq. �16� at low frequencies, we
again obtain that the quadratic behavior discussed above

F =
�2�

6J2 ����2�2 =
�2

24�J4

�2

sin2����
. �17�

It should be noticed that the right-hand side of Eq. �17� di-
verges in the limit of vanishing lattice filling �→0 because
the density of states ���� has a Van Hove singularity at zero
energy in one dimension. Thus, the low filling limit, the qua-
dratic behavior of Eq. �17� is only recovered at increasingly
low frequencies, as shown in Fig. 2 �upper panel�.

In Fig. 3, we show a comparison, in the limit of weak
disorder ��=0.01J�, of the numerical results �open symbols�
obtained using exact diagonalization with the analytical ex-
pression of Eq. �16� �continuous lines�. The agreement is
indeed very good over the entire frequency range. In the
inset, it is demonstrated that numerical results are consistent
with the quadratic behavior of Eq. �17�, expected at low fre-
quencies.

On the other hand, in the opposite limit of strong disorder
�
 J, the tunneling can be neglected. In this limit, the ab-
sorption rate can be evaluated directly from Eq. �10�. Taking
into account that the on-site energies � j at different sites are
completely uncorrelated, we find

F = ���
−�

�̄

d��̄����
�̄

�

d���̄������� + � − ��� , �18�

where �̄ and �̄ are the disorder-averaged chemical potential

and density of states, respectively. In the random potential,
the latter is constant and given by �̄���=1 /2�, and therefore
�̄= �2�−1��. Using Eq. �18�, the following low-frequency
behavior is obtained:

F =
�

4�2��min��̄,� − �� − max�− �,�̄ − ��� . �19�

This behavior is exhibited by the numerics, as shown in Fig.
2 �lower panel, see also discussion further below�. Further-
more, in the low-frequency limit �19�, we again recover the
quadratic behavior described above on general grounds

F =
�

4�2�2. �20�

Notice however that the proportionality constant is now in-
dependent of the filling factor. In Fig. 4, a more detailed
comparison of the numerics with the analytical result of Eq.

0 1 2 3 4
ω/J

0

5e−06

1e−05

1.5e−05

2e−05 ν=0.5
ν=0.3

0 0.1 0.2
0

5e−08

1e−07

FIG. 3. �Color online� Comparison between numerics �symbols�
and analytics �Eq. �9�, solid line� for weak disorder. Here, � /J
=0.01 and we consider two filling factors �=0.3 and �=0.5. The
length of the chain is M =2000 and the number of disorder realiza-
tions is Nr=2000. The inset is a zoom of the low-frequency regime,
where the absorption rate is quadratic in frequency as given by Eq.
�17�.

0 50 100 150 200
ω/J

0

0.2

0.4

0.6

0.8

1

F

ν=0.3
ν=0.5

0 20
0

0.03

FIG. 4. �Color online� Comparison between numerics �symbols�
and analytics �solid line, Eq. �19�� for strong disorder. The value of
the disorder is � /J=100 and the filling factors are �=0.3 and �
=0.5. The length of the chain is M =2000 and the number of disor-
der realizations is Nr=2000. In the inset, we compare our numerics
with the quadratic expansion �20� expected at low frequency. In
both cases, the agreement is quite good.
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�19� for the limit of strong disorder is shown. In the inset, we
also compare our numerical results with the quadratic behav-
ior �20� expected at low frequency. In both cases, the agree-
ment is remarkably good.

B. Unit filling

The absorption rate for �=1 is calculated numerically
starting from Eqs. �11� and �12�. The result is shown in Fig.
5 as a function of frequency for different values of the dis-
order strength � and J=0.01U.

In the absence of disorder ��=0�, the absorption rate can
be evaluated analytically and the dimensionless function F in
Eq. �14� is given by �23�

F =
2�

3J
sin	cos−1�� − U

6J
�
, for�� − U�  6J ,

�21�

and vanishes otherwise. The dashed line in Fig. 5 corre-
sponds to our numerical result for �=0, which fully agrees
with the above formula.

As the strength of disorder is increased, we see from Fig.
5 that the absorption spectrum becomes broader and progres-
sively develops a trianglelike shape as the limit J	� is ap-
proached. This behavior can be obtained analytically starting
from Eq. �13�. In the J	� limit, since the on-site energies at
different lattice sites are uncorrelated, we obtain

F �
��

2�2�
−�

�

d��
−�

�

d����� − U + � − ��� , �22�

where �̄���=1 /2� is the disorder-averaged density of states
in the atomic limit introduced above. Upon integration, Eq.
�22� yields

F �
��

2�2 �2� − �� − U�� , �23�

showing that the line shape of the absorption rate in the
atomic limit is approximately triangular and vanishes at ��
−U�=2� for J	�.

IV. QUASIPERIODIC POTENTIAL

In this section, we assume that the external potential in
Eq. �1� is � j =� cos�2�j�� �15–17�, being � an irrational
number. This quasiperiodic potential distribution is realized
experimentally by superimposing two different periodic po-
tentials with incommensurate lattice periods �11�. Differently
from the disorder potential considered in the previous sec-
tion, where all states are localized �in the thermodynamic
limit� for an arbitrarily small amount of disorder, in the qua-
siperiodic case there is a phase transition �32� at �c=2J: for
�2J all states are extended while for ��2J all states are
exponentially localized.

As described below, we find that the absorption spectra of
bosons in the quasiperiodic potential are remarkably differ-
ent from the spectra described in Sec. III for the bosons
moving on a disorder potential.

A. Incommensurate filling

For lattice fillings �1 �i.e., less than a boson per site�,
we calculate the absorption rate numerically starting from
Eqs. �7� and �8�. We restrict to zero temperature and fix �
=0.771 452 45, which is relevant to the experiments carried
out by the Florence group.

In Fig. 6 we plot the frequency dependence of the re-
sponse function �14� for increasing values of the disorder
strength �. Compared to Fig. 2, we see that the absorption
spectra in quasiperiodic potential exhibit a much richer struc-
ture. Interestingly, the response function becomes very large
�and actually diverges� when � matches special values.
Moreover, for a given filling factor, the absorption rate is
nonzero only within a certain range of frequencies.

These features can again be understood in the limits of
weak and at strong disorder, where results can be obtained
analytically. In the limit �	 J, the absorption rate can be
calculated starting from Eq. �9� and taking the thermody-
namic limit. This yields ��k=−2J cos k�

F =
��

2
� dk

2�

dk�

2�

�V�k − k���2

J2 ��� + �k − �k��

���� − �k����k� − �� , �24�

where the integration over momenta is restricted to �0,2��.
Using that the �modulus square of the� Fourier transform of
the disorder potential is �V�k��2=limM→� �VM�k��2, where

�VM�k��2 =
�2

4M
 ei�k+k0�M − 1

ei�k+k0� − 1
+

ei�k−k0�M − 1

ei�k−k0� − 1
2

, �25�

and k0=2��, for M→�, the right-hand side of Eq. �25�
becomes a series of delta functions
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FIG. 5. �Color online� Energy absorption rate in the Mott insu-
lator phase for hard-core bosons in a random potential: the response
function F �see Eq. �14�� is plotted versus modulation frequency for
fixed J=0.01U and increasing values of the disorder strength
� /U=0�black dotted line� ,0.03,0.06,0.1. The length of the chain
is M =60 and the number of disorder realizations is Nr=200. A
broadening of the absorption peak is observed for increasing
disorder.
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�V�k��2 =
��2

2 �
n=−�

+�

���k + k0 + 2�n� + ��k − k0 + 2�n�� . �26�

Inserting Eq. �26� into Eq. �24�, we obtain

F =
���2

4J2 �
0

2� dk

2�
��� + �k − �k+k0

�

���� − �k����k+k0
− �� . �27�

The integral in Eq. �27� can be evaluated using the identity
a sin k+b cos k=c cos�k+��, where c=�a2+b2 and tan �=
−a /b. Since a=sin k0 and b=1−cos k0, we obtain c
=2 sin�k0 /2� and tan �=−1 / tan�k0 /2�. The zeroes of the �
function in Eq. �27� occur at k=k�=−��arccos�� /2Jc�.
Hence, we obtain

F =
�2

4J2

�/2
��2Jc�2 − �2 �

r=�

��− �r���� + �r� , �28�

where �r=�kr
−�=−2J cos kr−�. Equation �28� shows that

the absorption is finite only in a range of frequencies given
by the conditions �r0 and �r+��0, where �r itself de-
pends on � through the � dependence of kr. Moreover, the
response diverges for �=2Jc, provided this frequency value
is allowed for a given filling factor. Since c=2 sin ��
=1.315 76, the divergence occurs at �=2.631 5J, as found
numerically and shown in Fig. 6 �upper panel�.

For a potential strength comparable to the tunneling rate,
i.e., �� J, the absorption spectrum develops very sharp

peaks as shown in the central panel of Fig. 6. These peaks
gradually disappear as � increases and becomes much larger
than J. In this regime, however, the energy absorption spec-
trum becomes indeed rather similar to the case of weak qua-
siperiodic potential, as can seen by comparing the upper and
lower panels of Fig. 6. This peculiar effect can be explained
analytically starting from Eq. �10�, which applies in the
atomic limit. Introducing the variable y=2��n, in the ther-
modynamic limit, we obtain

F = ���
0

2� dy

2�
��� + � cos y − � cos�y + 2����

���� − � cos y���� + � cos y − �� . �29�

The integral in Eq. �29� becomes the integral in Eq. �27� after
a change of variable k=y+�. We thus obtain

F =
�/2

���c�2 − �2 �
r=�

��� + � cos kr���� − � cos kr − �� ,

�30�

showing that the behavior of the absorption rate at strong
quasiperiodic potential can be obtained from Eq. �28� by
simply replacing 2J with �.

B. Unit filling

We have obtained the absorption spectrum at unit filling
numerically using Eqs. �11� and �12�, for the same value of
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FIG. 6. �Color online� Energy absorption rate of hard-core bosons in a quasiperiodic potential with �=0.771 452 45: the response
function F �see Eq. �14�� is plotted versus modulation frequency for different filling factors and increasing values of disorder strength: �
=0.1J �top panel�, �=J, and �=10J. Calculations are done on a ring of M =1200 lattice sites yielding almost negligible finite-size effects.
The number of disorder realization is Nr=500.
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�=0.771 452 45. The result is plotted in Fig. 7 for fixed
J /U=0.01 and increasing values of the quasiperiodic poten-
tial strength �. The dashed line corresponds to the clean case
�=0, where the absorption rate is given by Eq. �21�.

We see that the shape of the absorption spectrum changes
considerably as � increases. For sufficiently weak quasiperi-
odic potential ��3 J, the spectrum does not become broad,
but instead satellite peaks appear on the sides of the central
absorption feature. For stronger quasiperiodic potentials, the
central peak disappears and the spectrum develops a two
hump structure. To understand these features, let us again
focus on the atomic limit, where the absorption rate can be
obtained analytically using Eq. �13�. Introducing the variable
y=2��n and passing to the continuum limit, we obtain the
result

F = 2���
0

2� dy

2�
��� − U + � cos y − � cos�y + 2���� .

�31�

The integral �31� can be readily evaluated using the identity
a sin y+b cos y=c cos�y+��, where tan �=−a /b and c
=�a2+b2. From Eq. �31� we have that c=2 sin �� and,
therefore,

F =
2�

���c�2 − �� − U�2
, �32�

showing that the absorption rate diverges at the edge, where
��−U�=�c. This means that the shape of the absorption
spectrum changes completely going from weak to strong
quasiperiodic potential, as obtained numerically and shown
in Fig. 7. Finally, in comparing Eqs. �23� and �32�, we see
that in a quasiperiodic potential the absorption spectrum is
�at least in the atomic limit� narrower because c2.

V. EFFECTS OF A PARABOLIC TRAP

In this section, we discuss the effects of a harmonic trap-
ping potential V�z�=m�ho

2 z2 /2 on the absorption spectrum.
Here, m is the atom mass and �ho is the trapping frequency.
In this case, Vj

ho in Eq. �1� is nonzero and given by Vj
ho

=�ho�j−M /2�2, where �ho=m�ho
2 d2 /2, d being the lattice pe-

riod.
We have repeated the calculations of the absorption spec-

trum including Vj
ho and the result is shown in Fig. 8. For a

system of hard-core bosons in the absence of disorder or
quasiperiodic potential, the trap favors the formation of a
Mott insulator in the center surrounded by a superfluid re-
gion at the trap edges. This gives rise to a finite absorption at
low frequency �see inset in the upper panel�, which is related
to the creation of excitations at the edge of the trap. By
contrast, in a uniform system of hard-core bosons, as we
have described in Sec. II, the energy absorption vanishes to
all orders because the hopping operator K commutes with the
Hamiltonian.

Let us next consider the effect of a small amount of dis-
order or a weak quasiperiodic potential. Clearly, the Mott
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FIG. 7. �Color online� Energy absorption in the Mott insulator
phase for bosons in a quasiperiodic potential with �
=0.771 452 45: the response function F �see Eq. �14�� is plotted
versus modulation frequency for fixed J=0.01U and increasing dis-
order strength � /U=0�black dotted line� ,0.03,0.06,0.1. Here,
convergence is achieved for system size L=70. As disorder in-
creases, the response function broadens and changes convexity, as
predicted by Eq. �32�.
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insulator at the center of the trap cannot absorb energy at low
frequency, so the only contribution comes from the outer
shell, where the filling factor is less than unity. In particular,
the low-frequency peak arising from edge excitations frag-
ments in multiple peaks with little spectral weight compared
to the response from the bulk discussed in Secs. III and IV.

We also see in Fig. 8 that the behavior of the absorption
spectrum at frequencies close to the bandwidth crucially de-
pends on whether the applied potential is truly random or
quasiperiodic. Whereas the disordered case exhibits a smooth
behavior in the absorption up to the bandwidth 4J where it
falls to zero, the quasiperiodic one shows a sharp peak lo-
cated at the bandwidth 4Jc, which resembles the divergence
found in the corresponding homogeneous case. Note that the
position of this peak is almost independent on the number of
atoms in the tube and, therefore, the peak should be visible in
a realistic experimental situation, where an average over a
multiple tube setup with variable filling is performed �33�.
The same conclusion applies to the system with strong dis-
order or quasiperiodic potential as can be observed in the
lower panel in Fig. 8. For ��J �Fig. 8, middle panel�, the
peak structure in the quasiperiodic case is more complex
and, thus, the averaging procedure will produce some round-
ing off of the peaks. Still, the absorption can be considerably
larger than in the disordered case and this difference should
be clearly visible.

VI. CONCLUSIONS

In conclusion, we have investigated the energy absorbed
by a disordered strongly interacting Bose gas in the presence
of periodically modulated optical lattices. For filling factor
less than one, the absorption rate has been calculated exactly
in the hard-core limit via the Bose-Fermi mapping. For com-
mensurate filling, corresponding to one boson per lattice site,
the gas is a Mott insulator and can only absorb energy at
much higher frequency �on the order of the repulsive inter-
action U�. The disorder-induced broadening of the absorption
spectrum has been calculated by restricting to the subspace
of particle-hole excitations.

We have performed extensive calculations comparing two
different sources of disorder: a random potential, which is
relevant for current experiments based on speckle patterns,
and a quasiperiodic potential, which is obtained by superim-
posing two optical lattices with incommensurate periods.
Our results indicate that the response of the gas to the lattice
modulation significantly depends on the chosen source of
randomness.
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APPENDIX

In this appendix, we shall derive the asymptotic formula
�9� based on the perturbation theory for weak disorder. For
clarity, we rewrite the general expression �7�

Ė� =
�J0

2��

2 �
k,k�

Kkk��f��k� − f��k������ + �k − �k�� ,

�A1�

using new indices k and k�. Moreover, we find convenient to
introduce the matrix elements

Akk� = �
j

��k
��j + 1��k��j� + �k

��j��k�
�j + 1�� , �A2�

so that Kk,k�= �Ak,k��
2.

In the absence of disorder �=0, the eigenstates are plane
waves �k

0�n�=eikn /�L with energy �k
0=−2J cos k. Therefore,

from Eq. �A2�, we find

Akk�
0 = 2�kk� cos k , �A3�

showing that the matrix A is diagonal in momentum space.
Since the matrix Kkk�

0 =4�k,k� cos2 k is also diagonal, the ab-
sorption rate �7� vanishes.

For �	 J, we formally expand the right-hand side of Eq.
�A2� in powers of the disorder strength Ak,k�=Akk�

0 +Akk�
1

+Akk�
2 +O��3�, so the matrix K takes the form

Kk,k� = Kkk�
0 + Akk�

0 �Akk�
1 + Ak�k

1 + Akk�
2 + Ak�k

2 �+ �Akk�
1 �2 + O��3� .

�A4�

Taking Eq. �A3� into account, we see that the only nondiago-
nal term appearing in the expansion �A4� is �Akk�

1 �2, which is
on the second order in �. This term can be readily evaluated
from Eq. �A2� by applying the first-order perturbation theory
for the eigenstates

�k = �k
0 + �

q�k

��q
0�V��k

0�
�k

0 − �q
0 �q

0. �A5�

After a simple algebra, we obtain

Akk�
1 =

��k
0�V��k�

0 �

�k
0 − �k�

0 2�cos k − cos k�� , �A6�

which is valid up to the linear order in �. Finally, by using
the dispersion relation �k

0=−2J cos k, Eq. �A6� further sim-
plifies yielding

Akk�
1 =

��k
0�V��k�

0 �

J
. �A7�

Substituting Eq. �A6� into Eq. �A1� and replacing the
eigenstates by their zero-order values �k=�k

0, we recover the
asymptotic formula �9�.
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