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Summary 
 
Error-based theories of language acquisition suggest that children, like adults, continuously 
make and evaluate predictions in order to reach an adult-like state of language use. However, 
while these theories have become extremely influential, their central claim - that unpredictable 
input leads to higher rates of lasting change in linguistic representations – has scarcely been 
tested. We designed a prime surprisal-based intervention study to assess this claim.  
As predicted, both 5- to 6-year-old children (n=72) and adults (n=72) showed a pre- to post-test 
shift towards producing the dative syntactic structure they were exposed to in surprising 
sentences. The effect was significant in both age groups together, and in the child group 
separately when participants with ceiling performance in the pre-test were excluded.  Secondary 
predictions were not upheld: we found no verb-based learning effects and there was only reliable 
evidence for immediate prime surprisal effects in the adult, but not in the child group. To our 
knowledge this is the first published study demonstrating enhanced learning rates for the same 
syntactic structure when it appeared in surprising as opposed to predictable contexts, thus 
providing crucial support for error-based theories of language acquisition.  

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Liverpool Repository

https://core.ac.uk/display/372712237?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

2 
 

 
1. Introduction 

 
Prediction, the ability to anticipate other people’s upcoming words or actions, plays a key role 

in a wide range of different human behaviours and activities, from making music1 to playing 

volleyball2. Prediction plays such a central role in some theories of cognition that human brains have 

been described as “prediction machines” (p. 81)3. Prediction is particularly important in human 

communication. It has been suggested, for instance, that prediction can contribute to smooth turn-

taking in conversation, not just because it enables us to anticipate when our partner will stop 

speaking and we can begin speaking ourselves, but also because, by successfully predicting 

upcoming words, we can give ourselves time to prepare an appropriate response4. Although 

some scholars question how central prediction’s role in human communication really is5,6, other 

theories go even further and claim that prediction is a key mechanism in language processing 

itself7,8. 
 

While the role of prediction in adult language use is well documented, there is also the further 

possibility that prediction is not just vital for using language, but also for acquiring it in childhood. 

This is the basis of error-based theories of language acquisition. Error-based theories (which can 

explain learning patterns outside of language as well9, 10) suggest that children, like adults, 

continuously predict upcoming words in conversation, and use these predictions to build up their 

competence in their first language by comparing what they predicted to the actual input 

received11,12. One such model, the frequency-based, connectionist Dual-path model11, uses an 

error-based learning mechanism13 to model the acquisition of syntax, the developmental 

phenomenon that is the focus of the current study. In this model, if there is a discrepancy between 

the predicted and actual syntactic structure, an error signal is generated, which is then used to adjust 

the weights that support syntactic knowledge. These weight changes accumulate over time and 

allow children’s syntactic knowledge to gradually approximate the adult state (note, however, that 

this is not a stage-based theory; the process also results in representational change in adults, but less 

obvious change because adults’ representations are less malleable). 
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There are several reasons why error-based theories of language acquisition have gained wide 

support. First, they provide an interactive model that treats language acquisition as the outcome of 

processing. According to error-based theories, children (and, in fact, adults) constantly predict words 

and evaluate predictions while processing language. Every time they make an incorrect prediction, 

linguistic representations change, which, in children, moves them a step closer to the adult state. 

This means that error-based theories allow for the possibility that limitations in processing might 

influence acquisition. Second, rather than simply seeking to define children’s state of knowledge 

at different developmental stages, these models explain how children move from one knowledge 

state to another. For instance the Dual-path model11 not only describes the error-based learning 

mechanism (that adjusts weights supporting linguistic knowledge in response to error signals), 

but also demonstrates how this mechanism leads to changes in performance over development 

(from being able to identify agent and patient roles in intermodal preferential looking 

experiments at an early age, to producing correct sentences with novel verbs later on). Error-

based learning theories thus provide a specific learning mechanism that can be tested 

experimentally. Third, models implementing error-based learning mechanisms are supported by 

experimental data and provide explanations for developmental phenomena that are challenging 

for earlier language acquisition theories. For instance, an error-based noun-acquisition model 

proposed by Ramscar and colleagues12 explains how overgeneralised forms (like “mouses”) 

disappear from children’s productions in the absence of explicit correction. When children 

predict the overgeneralized “mouses” form but hear “mice” instead, the associations between the 

plural of “mouse” and “mouses” weaken due to the error signal resulting from the incorrect 

prediction, while associations with “mice” are strengthened. Over time, children start producing 

and predicting the more strongly associated “mice” form instead of “mouses”. 
 

Despite widespread enthusiasm for theories that embrace the role of prediction as a 

learning mechanism, there remains a major problem. There is to date only limited evidence that 
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children actually do generate linguistic predictions, and what evidence there is does not show that 

these predictions are used for learning. The most promising aspect of error-based theories – that 

they propose a viable and intuitive language learning mechanism – has therefore yet to be 

systematically tested. The goal of the present study is to examine the role of prediction in 

language acquisition by assessing whether less predictable (more surprising) input leads to more 

lasting change than more predictable input. Below we review the current state of the literature, 

particularly previous developmental studies on prediction, before discussing the aims of the 

current study in more detail. 

Language acquisition plays a central role in developmental research on prediction, and 

several experimental studies assess the relationship between prediction and learning. Some 

studies concentrate on the relationship between predictive abilities and certain aspects of 

language proficiency14-17. For example, Mani and Huettig14 found that toddlers’ prediction 

skills (measured using a version of the preferential looking paradigm) significantly correlated 

with their productive, but not their receptive vocabulary. Other studies have assessed the nature 

of children’s linguistic predictions in order to examine whether they could form the basis of 

learning18-21. Gambi and colleagues19 found that children can use semantic associations as a 

basis for their predictions18 and combine them with predictions based on syntactic knowledge22, 

showing that children’s predictions could be a viable basis for language acquisition. 
 

Studies targeting prediction in childhood typically use the visual word paradigm, and have 

been successful in demonstrating that children use anticipatory eye-gazes to visual scenes to 

predict upcoming words in sentences. However, they do not investigate whether this effect then 

leads to subsequent learning. They only study whether or not children make predictions; they do 

not examine whether the learning mechanism compares these predictions to actual input or 

whether the outcome of this comparison leads to subsequent language change. In other words, 

this paradigm does not address whether predictions form part of an error-based learning 

mechanism. 
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There is also another, perhaps more fundamental, problem with using the visual world 

paradigm to study prediction. This is that so-called predictive looking could, in fact, be a result of 

a process of integration. In these studies, children listen to sentences where the final word is 

highly predictable, while their eye-movements on an array of pictures are recorded14,18,19. Such 

studies have shown that children as young as 2 years old tend to look longer at pictures of objects 

that would be a more predictable ending for the sentence after hearing the verb, but before 

hearing the last word14. For example, they are more likely to look at a picture of a cake rather 

than a picture of a stone after hearing “The boy eats the big …”, that is, before the sentence has 

been completed. These looks are referred to as anticipatory gazes and are regarded as evidence 

for prediction. However, according to Rabagliati, Gambi and Pickering23, it is possible that these 

effects are the result of integration and not prediction. If so, children would be looking at the 

picture of a cake after hearing eat because they chose cake as the most fitting sentence ending 

among the given picture alternatives, not because they predicted cake themselves. This means 

that instead of pre-activating upcoming words, children simply incorporate words based on the 

available visual input (see a similar discussion in the context of EEG research24). If so, these 

studies might not be providing an accurate measure of children’s predictions. 
 

In summary, while some studies have shown a correlation between prediction and learning, 

and others have shown the potential for prediction to act as a learning mechanism, no studies, to 

our knowledge, have directly assessed whether predictions lead to lasting changes in underlying 

linguistic representations – that is, whether they actually contribute to learning in children (though 

see25,26 for adult participants). In addition, doubts have been expressed in the literature about 

whether the visual word paradigm really measures prediction or integration. 
 

Our study aims to directly investigate both of these issues. We tested whether predictions lead 

to language learning in childhood using a novel method – prime surprisal26,27 – to assess whether 
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less predictable linguistic input leads to more lasting language change than more predictable input1. 

This method not only provides us with information about the immediate and longer-term outcome of 

correct and incorrect predictions, but also overcomes the problems inherent in using the looking-

while-listening paradigm, as it does not involve pictures of more or less predictable sentence endings, 

and so the responses cannot be guided by visual input.2 

Prime surprisal studies are based on the priming paradigm28,29, which is often used to 

examine syntactic development30,31. In priming studies, participants are exposed to a prime 

sentence involving a particular syntactic structure (e.g., active or passive), and then asked to 

respond to a target stimulus (e.g., a video that they must describe). If participants reuse the 

previously-processed structure, especially if prime and target sentence share no content, this 

shows that they have access to the shared (abstract) structural representation underlying the 

prime and target sentence. This methodology has been particularly useful in demonstrating at 

what age children develop knowledge of different, abstract syntactic structures. Prime surprisal 

takes this method a step further by contrasting priming effects in response to predictable and 

surprising stimuli. 
 

Prime surprisal studies typically feature syntactic structures that can appear in different 

forms with similar meanings. Dative structures, for instance, appear both as prepositional datives 

(PD, e.g. ‘The student gave the report to the teacher’) and double object datives (DOD, e.g. ‘The 

student gave the teacher the report’). While DODs appear more often in adult language use 

overall, every verb has its own specific preferences: for instance, while the verb give occurs 

more often in a DOD structure than in a PD structure, the verb bring prefers the PD structure. 

 
1 Footnote added after Stage 2 review:  Within the Dual-path model (that is tested here), any non-immediate priming 
effect (even one that lasts for only a few intervening sentences) must reflect long-term weight changes (i.e. learning), 
since immediate activation effects decay instantly.  In other words, learning is defined as weight change in the model 
and delayed priming is a manifestation of that weight change. The goal of the current study was to contrast 
immediate priming effects (measured directly after the prime sentence with minimal or no intervening linguistic 
input between prime and target) with lasting effects (that persist over multiple intervening sentences involving 
stimuli that contain the structure that has been primed, here datives).  
2 Footnote added after Stage 2 review: While the current study also used visual input (videos that the participants 
describe) we have not used this to measure predictive processes. The videos were only included to encourage 
participants to produce comparable dative sentences. 
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Children need to acquire these links in order to produce well-formed sentences and avoid 

incorrect verb-structure pairings (such as ‘*the student spoke her teacher the answer’). 

Prime surprisal studies with both child and adult participants have found enhanced priming 

effects when a structure appeared with a mismatching as opposed to a matching verb26,27. 

According to the Dual-path model, these effects result from the error-based prediction mechanism: 

after hearing a verb, children predict the dative structure that most often follows that particular verb. 

If they end up hearing a different structure to the one they predicted, the learning mechanism 

produces an error signal, which they then use to adapt their syntactic knowledge accordingly. In a 

previous prime surprisal study27, for instance, priming effects were larger when a DOD structure 

appeared with the verb bring (PD-biased) than when it appeared with the verb give (DOD-

biased), without verb repetition between prime and target sentences. According to the Dual-path 

model, this occurs because, in the mismatching condition (e.g. DOD with bring), participants are 

likely to make a prediction error. They are likely to predict that the PD-biased verb will be 

followed by the structure that appears more often with that verb (PD). For example, after hearing 

“the boy brings...” participants are more likely to predict “... the present to the girl” (PD) than 

“...the girl the present” (DOD). Since this prediction will turn out to be incorrect, an error signal 

will be generated, which will, in turn, lead to a change in the weights supporting syntax and to a 

higher likelihood of the participant reproducing the structure that they have just heard. No such 

effect occurs in the matching condition: here, when a structure appears with a matching verb 

(e.g. DOD with give), the participants are more likely to successfully predict the upcoming 

structure, which means that no error signal will be produced. In other words, according to the 

Dual-path model, the error signals and weight changes that lead to immediate prime surprisal 

effects are actually a consequence of the long-term learning that will eventually result in adult-

like syntactic preferences. 
 

Although the verb-structure links leading to prime surprisal effects form a key part of 

syntactic knowledge, they are not fully adult-like at 5-6 years of age. According to error-based 

learning theories children make predictions from early on, but these early predictions are based 
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on limited linguistic input and therefore are more often incorrect. The older children are, the 

more adult-like their language becomes and the more correct predictions they make. At the age 

of five, children have already accumulated enough knowledge to have verb-structure preferences 

similar to those of adults, but since these preferences are based on less linguistic input, they are 

weaker and more malleable. Children’s weaker representations lead to stronger priming effects27 

and, according to error-based theories, more learning as well. In contrast, the more developed 

adult system is less sensitive to the error signals produced by unexpected sentences, resulting in 

smaller priming and learning effects. 

Prime surprisal effects provide promising evidence for prediction in both children and 

adults, and suggest that incorrect predictions influence subsequent behaviour in the short term. 

However, the key prediction of this account is that incorrect predictions lead to learning. To test 

this, we need to demonstrate that prime surprisal leads to lasting cumulative language change as 

well. To do this, we have developed a new design which combines the prime surprisal method 

with a paradigm designed to assess whether the original priming effects are cumulative and 

persistent (see Kaschak and colleagues’ work32 for an adult study). Studies in this paradigm  

typically start with a baseline phase where participants’ unbiased rates of the target construction 

are assessed (e.g. how many DODs and PDs they produce), followed by a test or bias phase 

where participants are biased towards the production of one of the structures (e.g. are only 

exposed to PDs or DODs). Finally, in a post-test phase, participants’ rates of target construction 

are re-assessed to see whether they have shifted towards the structure they were biased towards 

in the previous phase. 
 

Developmental studies using similar designs have shown that children’s production 

frequencies can be shifted towards a less frequent structure by exposure in the bias phase33-35. 

These results are in line with the predictions of the Dual-path model, but, due to the set-up of 

these experiments, they could have originated from sources other than error-based learning. For 

instance, some studies did not contrast the effects resulting from experience with less-expected 

structures with the effects resulting from experience with more-expected structures, in which 
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case the post-test shift could be the result of cumulative facilitation from processing a structure 

multiple times rather than error-based learning34,35. Other studies included primes in the post-

test phase (as well as the bias phase), meaning that the effects from the bias phase and those of 

immediate priming are measured on the same target items, making it difficult to tease apart long 

and short-term effects33. The implication is that the strong prediction of the Dual-path model 

that less predictable (i.e. more surprising) linguistic input leads to more lasting language change 

still needs to be systematically tested. 
 

We conducted a four-phase experiment with child and adult participants featuring both 

predictable and surprising structures in the bias phase, and only including target structures in the 

baseline and post-test phase. This way, we were able to directly contrast lasting language change 

resulting from more or less expected structures, and clearly differentiate between immediate and 

lasting effects of predictability. Furthermore, instead of simply contrasting effects of overall 

more or less expected structures (e.g. DODs vs. PDs), we contrasted the effects of the same 

structure presented in a more or less predictable environment (by consistently presenting PD and 

DOD structures with either matching or mismatching verbs in a within-participant design, see 

Table 1.). 

This allowed us to get clearer results from the child participants, whose overall dative 

preferences are inconsistent and not yet adult-like36, but who have already been shown to be 

sensitive to verb-bias effects27. Furthermore, by featuring the same number of PD and DOD 

structures in both conditions, and only varying how likely it is that participants correctly 

predict them, we could ensure that the potential differences between results in each condition 

are due to differences in predictability. 
 

In sum, error-based models that posit prediction as a learning mechanism provide a very 

promising avenue for understanding the language acquisition process. However, there is limited 

evidence for the existence of linguistic prediction in childhood, and its contribution to learning 

has not been systematically examined. To our knowledge, this is the first study that directly 
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targets the role of prediction in language development by assessing whether unpredictable input 

leads to more lasting language change than predictable input. 

 

 
2. Methods 

The goal of this study was to examine the role of error-based learning in acquisition by 

assessing whether less predictable (more surprising) linguistic input leads to more lasting language 

change than more predictable input. To achieve this, we used the prime surprisal paradigm in a four-

phase experiment, designed to induce error-based learning via prime surprisal. The prime surprisal 

paradigm capitalises on the fact that some verbs are substantially more likely to appear in one dative 

sentence structure than another in English, and are thus surprising, despite being grammatical, in the 

alternative structure. Error-based learning predicts a bigger change in children’s syntactic 

representations (i.e. learning) after surprising (e.g. PD-biased verb in a DOD structure) than 

unsurprising (DOD-biased verb in a DOD structure) primes. 
 

Learning is defined as a change in the underlying syntactic representations and is 

operationalised as a change in performance from pre- to post- intervention in a production task. 

More specifically, learning was deemed to have occurred if the children were significantly more 

likely to use the primed dative structure post-intervention than pre-intervention (i.e. there was a 

change in the strength of the children’s underlying syntactic representations induced by the 

priming). 

In the first, baseline phase of the study, we assessed participants’ baseline rates of dative 

production (i.e. how many DODs and PDs they produced). Participants described target video 

animations depicting transitive actions with dative sentences, but were free to choose either PD 

or DOD structures, and the experimenter described filler videos depicting non-causal actions that 

could be described with intransitive sentences. 

The second, priming (or bias) phase was designed to elicit immediate prime surprisal 

effects27, and biased the participants towards one of the dative structures. Here, participants 



 

11 
 

described target video animations depicting transitive actions in a similar way to the baseline 

phase, but the experimenter preceded these participant descriptions by describing prime 

animations using either DOD or PD structure. Both structures were consistently paired with 

either matching or mismatching verbs in the prime sentences (e.g. PDs only appeared with 

matching verbs, while DODs only appeared with mismatching verbs for group A and vice versa 

for group B). This way, participants in group A were always subjected to PDs in predictable 

sentences and DODs in surprising sentences. 

The third, post-test phase was similar to the baseline phase, but the goal was to reassess 

participants’ rates of dative production. If less predictable input leads to more lasting language 

change than more predictable input (as suggested by error-based learning theories), we expected 

participants’ production in this phase to shift towards the structure they were exposed to with a 

mismatching verb in the bias phase (i.e. DODs for participants in group A) compared to the 

baseline-phase. In order to eliminate the influence of lexically-based long-term priming effects, 

we used different verbs in the bias and test phases. 

While the main focus of this study was abstract error-based learning, the second post-test 

aimed to assess potential verb-specific learning effects. This phase was similar to the pre- and 

post-test phases, but the target sentences uttered by the participants reused the PD- or DOD-

biased verbs that were featured as primes in the bias phase. This way, we were able to detect a 

possible change in participants’ verb-specific syntactic representations without interfering with 

the abstract priming effects in the previous phases. If there is verb-specific error-based learning, 

we expect an enhanced shift towards the dative structure the verb previously appeared with 

when the structure did not match the verb’s bias. For instance, for the PD-biased verb bring, we 

expected a bigger shift towards the structure for participants for whom it consistently appeared 

with the mismatching DOD structure than for participants for whom it appeared with the 

matching PD structure. 
 

Unpublished results from Fisher and Lin37 show that training with less expected sentences 

can lead to larger shifts in dative production than training with more predictable sentences if the 
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verb is shared between training and test. Replicating these results in our study would serve as a 

good basis for comparison with our main focus, abstract error-based learning. This study was 

pre-registered on the Open Science Framework (OSF); the accepted Stage 1 registration can be 

viewed at (https://osf.io/khym8/). 

 
[Table 1 here] 

 
 

2.1 Participants 
 

72 5- to 6-year-old children (47 female, mean age 76.15 months, SD = 9.59 months) and 72 

adults (62 female), all monolingual English-speakers, participated in the study. The child 

participants were recruited from schools in the area and the departmental database, while the adult 

participants were recruited from the university’s student participation pool. 

Ten child and two adult participants who produced ‘other’ responses for more than half of 

the target trials in the test, post-test or second post-test phases were excluded. These participants 

were replaced in order to obtain 72 sets of data in each age group. Exclusion criteria for the 

target sentences will be discussed in the 2.7. Coding section. 

These age groups have shown sensitivity to verb-bias manipulations both in the target 

verb and in the prime verb (prime surprisal) conditions in a priming study involving dative 

structures.27 Children of this age consistently produce both PD and DOD structures (with an 

average DOD production of approximately 30%) in corpus-based studies38 and similar 

frequencies were observed in priming studies using a similar paradigm to our own27,31, 

therefore no floor or ceiling effects were expected to occur in this study. 
 

We determined our sample sizes based on power calculations carried out to allow both of 

our key comparisons of interest and our manipulation check to be powered adequately. We 

carried out two sets of power calculations across 1000 iterations on simulated binomial data 

using mixed effects models, based on those that were used to carry out analyses on our observed 

data (See 3. Statistics and data analyses section). Maximal models were fitted to the simulated 

data. If the model failed to converge on 20% of the simulations, it was rejected and simplified 
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before the power analysis was repeated. As our main point of interest in this study was the 

performance of the child participants, our calculations were based on the effect sizes expected in 

this group. 

Our first power calculation was carried out on our key comparison of interest assessing 

whether less predictable (more surprising) input leads to more lasting syntactic representation 

change than predictable input (see power calculation: https://osf.io/9ecjh/ and details of the 

analyses this calculation is targeting in Section 3.1.). As there are currently no data available for 

our main comparison in the literature, we estimated our simulated effect sizes based on studies 

targeting contrasts that are in some respects similar to ours, such as 4 year-olds’ post-intervention 

performance in a study involving the passive structure34, an adult intervention study featuring the 

dative structure32, and a developmental study involving 5-6 year olds looking at immediate 

prime surprisal effects featuring the dative structure27. The effect sizes most relevant to our 

comparison in the following studies were: 11% post-test shift in a passive intervention study with 

4 year olds34, an average 7% post-intervention shift in a dative study featuring adults32, and 16% 

higher priming after mismatching primes than matching ones in an immediate prime surprisal 

study in 5-6 year olds.27 Based on the above results we expect at least a 10% shift in both bias 

groups towards the structure participants were biased towards in the bias phase. In order to 

ensure that the study was adequately powered even if there were smaller than expected effect 

sizes, we estimated an average 5% shift in both bias groups (showing that participants’ 

production in the post-test phase shifts towards the structure they were exposed to with a 

mismatching verb in the bias phase). Based on corpus-based studies38 and priming studies using 

similar materials to our own27,31 we estimated an average 30% baseline DOD-production in the 

pre-test phase in both bias groups. Our power calculation showed that our key comparison of 

interest (post-test differences based on bias group captured by the prime-bias variable) had 93% 
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power when featuring 66 participants. We planned to include 72 participants in each age group in 

order to have equal numbers of participants in the 8 counterbalance groups and to account for 

10% potential data loss. 

We also carried out a separate power calculation to ensure that our manipulation check 

(immediate prime surprisal effect in the test-/or bias-phase, see power calculation: 

https://osf.io/x2ykf/ and details of the analyses this calculation is targeting in Section 3.2.) was 

adequately powered. As this phase aimed to replicate the effects in Peter et al.’s study27 we 

simulated data based on the response frequencies in the 5- to 6-year-old group. We estimated 

an average DOD production of 24% and 35% in the matching PD and DOD prime conditions 

and 19% and 41% in the mismatching PD and DOD prime conditions. Our power analysis 

targeted the interaction of prime structure and verb bias. Based on these estimates, the power 

analysis returned 81.3% power when including 66 participants. With the inclusion of an extra 

6 participants (to account for 10% potential data loss), this phase of the study was therefore 

also sufficiently powered. 

 
 

2.2 Design 
 

The between-subject variables were age (adults vs. children) and prime bias (DOD-bias 

and PD-bias), and the within-subject variables were verb-bias match (match or mismatch), 

prime-type (DOD and PD) and phase (pre-test, bias phase, post-test and second post-test). The 

dependent variable was the choice of dative structure in the target trials. 

 
 

2.3 Predictions 
 

We had four main predictions, which are discussed in more detail in Section 3 

(Statistics and data analyses). 

1. Immediate prime surprisal: we expected to replicate the effects found in Peter et al.‘s 
 

study27 and find increased priming if the verb bias and the prime structure did not 

match in the prime sentence. 
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2. Learning about abstract structures: we expected that less predictable (more 

surprising) input would lead to more learning than predictable input. Therefore, we 

expected that participants’ production in the post-test would shift towards the structure 

they were exposed to with mismatching verbs in the bias phase. 

3. Verb based learning: due to the larger learning effects resulting from unpredicted input, 

we expected that participants would be more likely to reuse the structure the target verb 

previously appeared in if that structure did not match the verb’s bias. 

4. Stronger effects in the child than in the adult group: due to the weaker and more 

malleable verb-biases in children compared to adults, we expected that the three 

above effects (immediate prime surprisal, learning about abstract structures and verb-

based learning) would be larger for children than adults. 

 
 

2.4. Visual stimuli 
 

The study featured video animations created in Moho 12, which were presented in E-prime 

2.0 software39. Each participant saw 120 videos: 60 videos depicting transitive actions that can be 

described with prepositional or double object datives for the prime and target sentences and 60 

videos depicting non-causal actions for the filler sentences. 
 

The cartoons included 10 pairs of donor and recipient characters. Half of them were 

cartoon characters that are familiar to British children with proper noun names: Tigger and 

Piglet, Dora (the Explorer) and Boots, Marge and Homer, Lisa and Bart and Bob (the Builder) 

and Wendy. The other characters were referred to with determiner and noun NPs: the prince and 

the princess, the king and the queen, the student and the teacher, the doctor and the nurse and 

the boy and the girl. Particular donor and recipient characters were always featured together. A 

further 10 items acted as objects and were referred to with indefinite determiner and noun NPs: a 

ball, a toy, an orange, a cake, a peach, a sandwich, a pencil, a book, a napkin, and an apple. The 

objects were consistently paired with one pair of characters (e.g. the ball was always featured 

with Bob and Wendy). 
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In the bias phase, prime videos were always paired with a target video that included 

different characters from those in the prime. In order to control for the possibility that direction 

of transfer might influence structure choice, the animations depicted the direction of motion of 

transfer actions equally often from right-to-left and from left-to-right. 

 
 

2.5. Sentence stimuli 
 

The study contained 120 sentences (including 60 verb stems) per participant: 16 prime and 

16 target sentences plus 32 fillers in the bias phase, 10 target and 10 filler sentences in the pre- and 

post-test phases and 8 target and 8 filler sentences in the second post-test. The prime sentences 

appeared half the time as DOD sentences and half the time as PD sentences. Both structures were 

consistently paired with either matching or mismatching verbs in the prime sentences (e.g. PDs 

only appeared with matching verbs while DODs only appeared with mismatching verbs for 

participant A and vice versa for participant B). The target sentences were produced by the 

participant (as either DOD or PD sentences) based on the video stimuli. 
 

For instance, a prime-target trial in the bias phase included a prime sentence such as “The 

king brought the queen a cat.” (DOD) or “The king brought the cat to the queen.” (PD) and 

participants completed a sentence stem such as “Lisa dropped…” as a target sentence. 

In order to avoid lexically-based long-term priming effects, we used a different set of 

verbs in the bias phase- and in the pre- and post-test phases. The study involved the following 

two sets of verbs, featured here with their DOD frequencies in the Manchester corpus40 in 

brackets (for the computation of the dative frequencies see41). The first set of verbs was used in 

the pre- and post-test phases. This set contained 3 equi-balanced verbs: feed (52%), slide (56%), 

and throw (49%), and one PD- and one DOD-biased verb: bring (27%) and give (89%). The 

second set of verbs was featured in the test-phase and repeated in the second post-test. This set 

contained four PD- biased verbs: leave (32%), sell (24%), send (44%) and take (15%) and four 

DOD-biased verbs: award (83%), hand (63%), offer (77%) and show (93%). 
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We selected the above verbs based on the frequency of their dative occurrences in the 

Manchester corpus40. These verbs have yielded immediate prime surprisal effects in other studies 

featuring similar age-groups to ours27, as well as in our pilot study featuring 5- to 6-year-old children. 
 
We aimed to select verbs that had strong verb biases for the bias-phase (as prime surprisal is 

defined as the negative logarithm of the verb bias25), but our choices were constrained by the 

limited number of verbs that appeared often in dative structures in the Manchester corpus40. 
 

To control for sentence-specific preferences, we created eight counterbalance groups to 

ensure that 1. if the DOD structure consistently appeared with matching verbs in one 

counterbalance group, it appeared with mismatching verbs in the other (and vice-versa for the PD 

structure), and 2. if a verb appeared with a DOD in a counterbalance group, it appeared with a PD 

in the other, and 3. if a target sentence appeared in the pre-test in one counterbalance group, it 

appeared in the post-test in the other. 

Semi-randomised3 stimulus lists were created in which the prime and target sentences 

always followed each other in the bias phase and the same verb did not appear twice in 

immediate succession. In the test- or bias-phase there was always a pair of filler sentences after 

every target sentence. In the other phases, filler and target phrases alternated with each other.  

 
2.6. Procedure 

 
The study used the bingo game paradigm27,31. It took the form of a bingo game in 

which experimenter and child took turns to describe cartoon animations or pictures on a 

laptop computer. 
 

The experimenter introduced the characters involved in the tasks by showing the 

participants cards featuring the characters. The experimenter and the participant sat in front of 

the computer side by side.4 The experimenter described the first cartoon and asked the 

 
3 Footnote added after Stage 2 review: We used a semi-randomised approach to ensure that lists adhere to the above 
criteria.  
4 Footnote added after Stage 2 review: Before the study began, the participants were given the following 
instructions: “We will be watching videos and describing them to each other. When the video appears on my side of 
the screen (experimenter points to the left side of the screen) I will be describing the video to you and you will have 
to repeat what I said. When the video appears on your side (experimenter points to the right side of the screen) you 
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participant to repeat the sentence. The participant was then asked to produce a target sentence 

by describing a cartoon animation on the other side of the screen. To ensure that participants’ 

responses contain the target verb, a stem-completion technique was used (e.g. the boy gave...) 

27.5 Each target sentence was immediately followed by an intransitive filler sentence. 

 
After every two or three sentences, a smiley or frowny face appeared to signal whether a 

bingo card was available. If it was, the child or the experimenter got the card and could add it to 

their bingo grid. The first person to fill the bingo grid with bingo cards was the winner of the 

game, and the experiment was designed so that the participant always won. 

Before beginning the study, there was a practice session to ensure that the participants 

understood the task. The practice session included intransitive sentences featuring three 

characters each (e.g. “The king and the queen were playing with the cat.”). In order to 

encourage the production of full datives in the main study, we asked participants to mention all 

three characters in their descriptions during the practice session. To further encourage the 

production of full datives in the study, the first verb featured as a target in both the pre- and 

post-test phase was a verb that cannot be used as an intransitive. 

The bingo paradigm paired with the stem-completion technique has been successfully 

used to elicit dative sentences in similar age groups and has resulted in low exclusion rates.27,31 

Furthermore, both the child and adult participants enjoyed participating in our pilot study 

featuring this paradigm and all participants completed the session. 
 

After completing the bingo game, we measured children’s baseline language abilities 

following a Stage 1 reviewer’s request. As we aimed to capture individual differences in 

children’s morphosyntactic abilities, we initially planned to use the Sentence Imitation Task 

from the Early Repetition Battery42 (SIT). However, as members of our research group have 

 
will describe the video to me, but I will always start the sentence for you. You will have to repeat what I said, and 
finish the sentence. Sometimes we will see a happy or a sad face. If it’s a happy face, we get to pick a card and check 
whose Bingo board it belongs to. If it’s a sad face, we don’t pick a card that time.” 
5 Footnote added after Stage 2 review: The experimenter described the videos instead of using pre-recorded 
materials as the Bingo paradigm relies on the interaction between participant and experimenter to keep the child 
engaged through the study.  
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found ceiling effects with a similar population to the one included in our study using SIT, we 

proposed using the Test for Reception of Grammar 243 (TROG) instead. After discussion with 

the editor, we administered both tests, but as a ceiling effect - defined as over 70% of the 

children providing a correct answer for at least 25 out of the 27 items - occurred in the SIT, we 

included only the children’s TROG scores in our analyses. The study lasted approximately 45 

minutes, including a break, and participants received a sticker after the practice session.  

 

2.7. Coding 
 

The experiment was audiotaped, allowing the transcription and coding of the utterances 

off-line. The first author transcribed the utterances. Then two coders who were both blind to the 

experimental condition coded them. The first coder coded all utterances and a second coder 

coded 10% of the utterances in order to compute the Cohen’s kappa interrater reliability.44 

Inter-rater reliability was high at 99.8% agreement, Cohen’s Kappa = .99.  Coders resolved 

potential discrepancies by revisiting the sentences in question and the mutually decided code 

was included in the dataset. 
 

A target response was considered a DOD if it contained the correct target verb followed 

by two noun phrases, and a PD if it contained the correct target verb followed by a noun phrase 

and a prepositional phrase headed by ‘to’. Responses were coded as ‘other’ if (a) the participant 

failed to repeat the prime correctly (even after help), (b) if the participant produced a non-target 

verb, or (c) if the target sentence could not be classified as a DOD or PD response based on the 

above criteria (e.g. target responses containing a preposition other than ‘to’ or incomplete 

datives such as ‘the king gave the ball’). 

 
 

3. Statistics and data analyses 

The data were analysed in R version 3.6.345, through a series of logistic mixed-effects 

models46,47 fit using the lme4 1.1-23 package with the nloptwrap optimizer. These models were 

initially specified with subject and item as random grouping factors, each including all of the 
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relevant within-subject and within-item fixed-effects as random slopes with their associated 

correlation parameters. Where necessary, these models were simplified until there were no issues 

with convergence or singular variance-covariance matrices. The models were then assessed for 

overparameterization using a principal components analysis on the random effects structure, with 

further simplifications being performed if required48,49. In all models, the dependent measure was 

the binomially-coded production of DOD structures (DOD=1, PD=0). The factors were coded 

with effect/sum contrasts50,51, while age (in months) was entered as a continuous variable and 

was centred to reduce multi-collinearity52. Confidence intervals ( Est. [CI]) for the model 

estimates were obtained using parametric bootstrapping (r = 1000). The confirmatory tests of the 

hypotheses and their p-values were obtained by sequentially removing individual contrasts from 

the fixed-effect structure and running log-likelihood-ratio tests (χ2). However, we did not remove 

any fixed-effects for the purpose of model selection or criticism; all fixed parameters were 

retained, even when they did not improve the model's goodness of fit.   

At the request of a stage 1 reviewer, we also performed a parallel series of Bayesian mixed-

effects models to match the frequentist analyses. These were implemented using the rstanarm 

2.19.3 package, which provides frontend functions for using Stan53 in an R environment. As we 

did not describe the Bayesian analyses in detail in the registered report, these are regarded as 

exploratory analyses. Consistent with the frequentist analyses, we first attempted to include all 

relevant within-subject and within-item fixed-effects as random slopes. The models were then 

simplified to address any issues with convergence or an excessive number of divergent 

transitions when the target average acceptance probability was set at 0.99. In some cases, it was 

necessary to remove control covariates (e.g., TROG score) from the fixed-effect structure to 

reach a model specification supported by the data. However, we only considered removing fixed-

effect parameters when their variance estimates were close to zero and the random-effects 

structure could not be simplified any further. None of the parameters that directly address our 

core hypotheses were removed. In accordance with the recommendations for binomial outcome 

measures54, we utilised weakly informative priors on a student t distribution for the model 
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intercept and predictors. The algorithm took 10,000 posterior estimates of each parameter (5000 

samples across 4 Markov chains, with a warm-up of 2500 samples). We report the mean 

posterior Beta estimate, 95% credibility intervals (Mean [95% CrI]), and the posterior probability 

of the parameter estimate being larger than (for positive estimates) or smaller than (for negative 

estimates) zero (P).  

A key advantage of Bayesian analyses, compared to the frequentist approach, is that the 

interpretation of the Bayesian probability estimates (P) and credible intervals (Crl) is more 

intuitive than that of the frequentist p-value and confidence intervals55,56,57. Bayesian posterior 

probability allows us to determine the probability of the true effect being different than zero, 

given our data (without any reference to a null hypothesis), while credible intervals identify the 

upper and lower bounds of where the true mean lies with 95% certainty (for a 95% CI). Thus, 

Bayesian analyses allow us to make statements about the likelihood of an effect given the data, in 

a way that is not possible based on frequentist estimates. It is worth noting that while Bayesian 

and frequentist approaches allow us to quantify our effects in different ways, they tend to lead to 

similar conclusions when used with weak and uninformative priors (such as the ones used in our 

analyses). 

We carried out three sets of analyses on different subsets of the response data to 1) explore 

whether less predictable (more surprising) linguistic input leads to more persistent language 

change than more predictable input with no repetition of verbs (our main hypothesis); 2) assess 

whether we replicated the prime surprisal effects found in Peter et al. 27; and 3) explore whether 

less predictable (more surprising) linguistic input leads to more lasting language change than 

more predictable input for repeated verbs. We assessed our fourth hypothesis (4) that stronger 

effects would be observed in the child than in the adult group in each section separately to 

determine which learning or priming effects are different in the two age groups. In the following 

sections, we describe all analyses involving data from both age groups together, but in order to 

explore the group-specific patterns in more detail, we also carried out analyses on the data from 

the two age groups separately. The main effects of age in months and TROG score (centred and 
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rescaled) were added to the models examining data from the child group separately. All analysis 

scripts and relevant datasets can be accessed on https://osf.io/r8exu/. 

 

[Figure 1 here] 

 

3.1. Key comparison of interest – Abstract learning effects 

 H2a – participants’ production in the post-test shifts towards the structure they 

were exposed to with mismatching verbs in the bias phase and H2b – the shift described in 

H2a is stronger in the child than in the adult group 

This analysis tested the central prediction of error-based learning theories: that less 

predictable (more surprising) input leads to higher rates of lasting syntactic 

representational change than predictable input by testing whether the post-test scores 

differ in the two bias-groups, while controlling for the pre-test performance. (Note that 

this is the second prediction presented in section 2.3. above, but we present it first here as 

it was our key analysis.) It was carried out on the target items from the post-test phase and 

the full model included (a) bias group (depending on whether participants were biased 

towards DOD or PD structures in the bias-phase), (b) pre-test score (how many DODs per 

datives a participant produced in the pre-test phase) and (c) age group (children or adults, 

in the combined model), as fixed effects, by-subject random intercept with no random 

slopes and by-item random intercept with  random slopes for bias phase, pre-test score 

and age-group, in the combined analyses. If participants are influenced by input 

predictability, we expected to find a main effect of bias group showing that participants’ 

dative production in the post-test phase is different in the two bias-conditions and that 

they shifted towards the structure they heard with a mismatching verb in the bias phase 

(H2a). We also expected a stronger pre- to post-test shift in the child than in the adult 

group, demonstrated by an interaction between bias group and age-group (H2b). 
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We carried out two sets of analyses here, our pre-registered analysis and an 

exploratory analysis, where we excluded participants who showed ceiling performance in 

the baseline phase. In the pre-registered analysis we found that both age groups showed a 

pre- to post-test shift towards the dative structure they were exposed to in surprising (as 

opposed to predictable) sentences in the bias phase. This result is in line with the central 

claim of error-based theories: that unpredictable input leads to higher learning rates than 

predictable input. In the full dataset, this difference was significant in the frequentist 

analysis and the Bayesian posterior probability was high (96.88%), supporting Hypothesis 

2a.  However, the effect did not reach significance in the either of the age groups 

separately, though the Bayesian posterior probability was high, especially in the child 

group (adult group = 82.77%; child group = 91.22%). In addition, despite the numerically 

larger shift in the child compared to the adult group, the interaction of bias group and age 

group did not reach significance. Thus, we found no reliable support for Hypotheses 2b in 

our pre-registered analysis. As per a reviewer’s request the pre-registered analysis is only 

discussed in detail in the supplementary materials. 

We hypothesize that the lack of significant results in the separate age groups was 

due to interference from participants who showed a ceiling performance in the baseline 

phase and thus could only be shifted in one direction. We a addressed this possibility in 

exploratory analyses discussed below. 

 

3.1.1. Exploratory post-test phase analyses: excluding participants who showed 

a ceiling performance in the pre-test phase 

One potential reason for the lack of significant results in the separate age groups, 

particularly the child group (for which the study was powered), is interference from 

ceiling performance in the pre-test phase. For instance, if a participant already produces 

100% DODs in the pre-test phase, they can only shift towards higher PD (and not higher 

DOD) production in the post-test phase, meaning that it becomes impossible to 
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adequately measure the effect of our main manipulation (positive or negative pre- to post-

test shift in DOD production depending on bias group). While we expected no ceiling 

performance, some participants (21 adults and 14 children) produced exclusively PDs or 

exclusively DODs in the pre-test. Thus, we conducted a set of exploratory analyses 

including only the participants who produced both PDs and DODs in the pre-test phase, 

replicating the analyses discussed above. These exploratory analyses included 109 

participants, 51 adults and 58 children. While this analysis is a better test of our main 

question, the reduction in participant size led to decreased statistical power. 

3.1.1.1. Both age-groups 

The maximal frequentist model supported by the data included bias-group, age 

group and pre-test score as fixed effects and subject and item as random intercepts with 

pre-test score as a random slope for item. The Bayesian model included the same fixed 

effects with subject and item as random intercepts with bias group as a random slope for 

item.   

We observed the expected significant pre- to post-test shift in the combined group: 

children showed an average 8.12%, while adults an average 3.38% pre- to post-test shift 

(p = 0.018, Bayesian posterior probability: 97.25%). In addition, pre-test score had a 

significant positive effect showing that participants with higher baseline DOD-

performance also produced more DODs in the post test (all ps < 0.001, Bayesian posterior 

probabilities > 99.95%). Adults produced overall more DODs than children, but this 

effect did not reach significance (p= 0.67, Bayesian posterior probability: 96.33%). 

Importantly, children showed a larger pre- to post-test shift than adults, but this effect did 

not reach significance either (p = 0.52, Bayesian posterior probability: 74.08%).  

 

[Figure 2 here] 

 
[Table 2 here] 

3.1.1.2. Adult and child groups 
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In the adult group, the maximal frequentist model supported by the data included 

bias group and pre-test-score as fixed effects and by-subject and by-item random 

intercepts with no random slopes, while the Bayesian model included the maximal effect 

structure. In the child group, the maximal frequentist model supported by the data 

included bias group, pre-test-score, age in months and TROG score as fixed effects and 

by-subject and by-item random intercepts with by-item random slopes for pre-test score. 

The Bayesian analysis included the same fixed effects in addition to a by-subject random 

intercept with no random slopes and a by-item random intercept with random slopes for 

bias-group. Importantly, we observed the expected pre- to post-test shift in all analyses in 

this dataset. Children produced 8.94% more DODs in the DOD and 7.31% more PDs in 

the PD bias group at post-test compared to pre-test, while adults showed a 1.96% pre- to 

post-test shift in the DOD and 4.81% shift in the PD bias group. The effect of bias group 

was significant when we analysed data from the two age groups together (p = 0.018, 

Bayesian posterior probability: 97.25%), and, this time, in the child group separately as 

well (p = 0.037, Bayesian posterior probability: 92.54%). The bias group effect did not 

reach significance in the adult group separately (p = 0.36, Bayesian posterior probability: 

78.85%). In addition, pre-test score had a significant positive effect in each exploratory 

analysis (all ps < 0.001, Bayesian posterior probabilities > 99.95%).  

 

3.1.2. Summary of the results in the post-test phase  

In summary, the full dataset and the smaller but more representative subset dataset 

(that included only participants with no ceiling performance in the pre-test) both showed 

the expected bias-group-dependent pre- to post-test shifts. While in the pre-registered 

analyses the bias-group difference only reached significance in the combined dataset, in 

the exploratory analyses both the combined and the child group separately showed a 

significant bias-group difference. These results provide crucial initial evidence for the 
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central claim of error-based theories, that unpredictable input leads to higher rates of 

lasting language change than predictable input. 

 

3.2. Confirming expected effects – Immediate prime surprisal 

Hypothesis 1 – H1a - Immediate priming effects are increased if the prime structure 

appeared with a mismatching as opposed to a matching verb (immediate prime surprisal 

effect) and H1b – The immediate prime surprisal effects are larger in the child than in the 

adult group  

This analysis served as a manipulation check: to confirm the differences in predictability 

between the different bias conditions (that are designed to lead to long-term changes in the 

post-test phase), we assessed whether they replicated the immediate prime surprisal effects 

found by Peter and colleagues27. 

These analyses were carried out on the target sentences from the bias phase. The full model 

included as fixed effects: (a) prime-structure (DOD or PD) (b) prime-bias match (depending on 

whether the prime verb’s bias matches or mismatches the prime structure) and (c) age-group 

(children or adults, in the combined model), and by-subject and by-item random intercepts and 

fully-crossed random slopes for prime type and prime-bias match (and by-item random intercepts 

for age-group in the combined analysis). Immediate structural priming is demonstrated if there is 

a greater proportion of DOD responses after DOD than PD primes, and an immediate prime 

surprisal effect is demonstrated if there is a significant interaction between prime structure and 

prime-bias match, showing that priming effects were larger if the prime verb’s bias did not match 

the prime structure (H1a). 

In line with the prediction of error-based learning theories that error-based learning results 

in greater changes to children’s linguistic representations than to adults’, we also expected a 

three-way interaction between prime structure, prime-bias match and age-group, showing that 

the prime surprisal effect (difference between priming after matching and mismatching verbs) is 

larger for the children than the adults (H1b). 
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3.2.1. Both age groups 

The maximal frequentist model supported by the data included prime-structure, prime-bias 

match and age group as fully-crossed deviation-coded fixed effects and random intercept for 

subject (without random slopes), plus the random intercept for item with verb match as a random 

slope. The Bayesian analysis featured the same fixed effects with random intercepts for subject 

and item and no random slopes. 

The frequentist model showed a main effect of age group, indicating that, overall, adults 

produced more DODs than children (p < .001, Bayesian posterior probability: 100%). There was 

also a main effect of prime structure, suggesting that participants were more likely to produce 

DODs after hearing DOD than PD primes (p = .015, Bayesian posterior probability: 97.29%). 

Prime structure and age group produced a significant interaction (p = .028, Bayesian posterior 

probability: 97.29%), indicating a larger priming effect in the child than in the adult group, as 

predicted. In terms of prime surprisal, there was a numerically larger priming effect after 

mismatching (surprising) than matching (predictable) primes, but this interaction did not reach 

significance (p = .412, Bayesian posterior probability: 77.26%). Figure 2 suggests that a prime 

surprisal effect may exist in the adult, but not the child group, although the three-way interaction 

of prime-bias match, prime structure and age group did not reach significance (p = .337, 

Bayesian posterior probability: 80.84%). To explore the group-specific patterns in more detail, 

we carried out additional analyses on the data from the two age groups separately. 

[Figure 3 here] 

 
[Table 3 here] 

3.2.2. Adult and child groups 

In the adult group the maximal frequentist model supported by the data included prime-

structure and prime-bias match as fixed effects and random intercepts for subject and item with 

by verb-bias match random slopes for item, while the Bayesian analysis included the maximal 

model. In the child group, we fitted the same model used in our power calculations (Section 2.1), 
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with the addition of age and syntactic knowledge as predictors. In addition to these fixed effects, 

the maximal frequentist model supported by the data also included a by-subject random intercept, 

and a by-item random intercept with random slopes for prime-bias match. The Bayesian model 

reported here includes prime structure and prime-bias match as fully-crossed fixed effects, with 

TROG score and age added as covariates and with random intercepts for subject and item and 

random slopes for prime type and verb-bias match for both intercepts. 

While the frequentist model detected a significant priming effect in the child group (p = 

.001, Bayesian posterior probability: 99.63%), there was no evidence for priming in the adult 

group (p = .76, Bayesian posterior probability: 61.40%). The effect of prime surprisal 

(demonstrated by an interaction between prime structure and prime-bias match) did not reach 

significance in either age group separately (adults: p = .18, children: p = 0.9). However, the 

pattern of responses was different in the two groups. While adults showed the expected 

numerically larger priming effects after surprising prime sentences, children did not show this 

pattern (see Figure 2.).  Furthermore, while the Bayesian posterior probability of prime surprisal 

was relatively high in the adult group (89.03%), it was very low in the child group (54.08%). In 

addition, TROG score also had a significant main effect (p = .020, Bayesian posterior 

probability: 98.37%) in the child group, as children with more advanced syntactic knowledge 

(measured by the TROG test) were more likely to produce DODs. The frequentist model also 

showed a significant four-way interaction between prime structure, prime-bias match, age, and 

TROG score (p < .001). However, the Bayesian analysis did not include this interaction as we 

had to simplify the model structure due to convergence issues. This four-way interaction suggests 

that children who are younger and have lower TROG scores are more likely to show a sensitivity 

to the prime surprisal manipulation (the interaction of prime structure and prime bias-match). We 

are cautious in our interpretation of this finding since there were no other significant lower-level 

interactions in the model and we could not compute Bayesian estimates for this interaction 

(though it should be noted that the models were checked for overparameterisation, see 3. 

Statistics and data analysis section). 
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3.2.3. Summary of the pre-registered analyses in the bias-phase  

There was an immediate structural priming effect, in that participants were more likely to 

produce DODs after hearing DOD rather than PD primes, though this result reached significance 

only in the child group, not the adult group, in the age-group specific analyses. Contrary to our 

prediction, however, there was no immediate prime surprisal effect when both age groups were 

considered together, nor in the child and adult groups when considered separately (though there 

was a numerical prime surprisal effect in the adult group alone). Thus, neither Hypothesis 1a 

(replication of prime surprisal effects) nor Hypothesis 1b (larger prime surprisal effects in the 

child than in the adult group) were supported by the current dataset. 

 

3.2.4. Exploratory bias phase analyses – including baseline DOD performance 

We carried out a number of exploratory analyses to investigate these results further; all 

focussed on determining whether our design choices could be responsible for the lack of a prime 

surprisal effect. Two of these analyses are reported only in the supplementary materials as they 

suggested that the confound proposed (bias group assignment and increasing predictability of the 

verb-structure parings during the bias phase) did not affect our results. Below, we report the 

results of a third exploratory analysis that examined whether participants’ baseline performance 

affected the likelihood of them showing prime surprisal effects.  We repeated the analyses 

described above with the addition of baseline DOD performance (as measured in the pre-test 

phase) in the adult and the child group separately.  

 

[Table 4 here] 

 

The maximal models included the same predictors as described in the pre-registered 

analyses with the addition of baseline DOD-performance as a co-variate. In the adult group, the 

maximal frequentist model supported by the data also included the random intercept for subject, 
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and the random intercept of item with a random slope for verb-bias match. The Bayesian model 

contained the same fixed effects, with by-subject random intercepts with fully crossed random 

slopes for prime type and prime-bias match and by-item random intercepts with random intercept 

for verb-bias match and pre-test score. In the child group the maximal frequentist model 

supported by the data included the fully crossed fixed effects of prime type, verb-bias match, age 

group and TROG score, with pre-test score as a co-variate and by-subject and by-item random 

slopes and by-item random intercepts for verb-bias match. The model supported by the data in 

the Bayesian analysis included prime structure and prime-bias match as fully-crossed fixed 

effects and age, TROG score and baseline DOD-performance as co-variates, with by-subject and 

by-item random slopes, prime type and verb-bias match random slopes for both item and subject 

and by-item random intercepts for pre-test score. 

As in the pre-registered analyses, we found a significant priming effect in the child (p = 

.001, Bayesian posterior probability: 99.78%), but not in the adult group (p = .76, Bayesian 

posterior probability: 63.43%). As expected, pre-test performance had a significant positive main 

effect showing that participants with high DOD-production in the pre-test were also more likely 

to produce more DODs in the bias phase (both ps < .001, Bayesian posterior probabilities: 

100%). The most important result of this analyses is that prime surprisal had a significant effect 

in the adult group when baseline DOD performance was included (p = .049, Bayesian posterior 

probability: 97.71%). While children still did not show a significant prime surprisal effect (p = 

.36), the posterior probability of this effect was higher in this analysis (79.42%) than in the 

analysis without baseline DOD performance (54.08%). As in the pre-registered child group 

analysis, the frequentist model also produced a significant four-way interaction between prime 

structure, prime-bias match, age, and TROG score (p = .002), though again this interaction was 

not included in the Bayesian analysis as we had to simplify the model structure due to 

convergence issues. As before, we are cautious in our interpretation of this finding due to the lack 

of corresponding lower-level interactions and the absence of the Bayesian estimates. 
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3.2.5. Summary of bias group results 

In summary, we found a structural priming effect (participants were more likely to produce 

DODs after hearing DOD than PD primes) in both the pre-registered and in the exploratory 

analyses that included baseline DOD performance. However, this effect only reached 

significance in the child but not in the adult group. While participants overall were more likely to 

repeat the previously heard dative structure when it was surprising as opposed to predictable, this 

immediate prime surprisal effect did not reach significance in our pre-registered analyses and 

was only significant in the separate adult group in our exploratory analyses. 

 

3.3. Additional analyses of potential interest – verb-based learning 

Hypothesis 3 – H3a - Verb-based long-term effects of input predictability and H3b – 

the shift described in H3a is stronger in the child than in the adult group 

The third set of analyses was carried out on the target sentences from the second post-test 

phase and the goal was to detect verb-specific long-term priming effects. Here we had to deviate 

from our pre-registered analyses. We mistakenly specified the inclusion of a binary verb-bias 

predictor (depending on whether the verb featured here as a target is overall PD- or DOD-biased) 

in our analyses. However, due to our between-participants design in the bias phase, verb bias and 

bias group are not independent predictors. Instead, to target potential verb-based learning effects, 

we included verb-bias match in the bias phase (match or mismatch), prime structure in the bias 

phase (PD or DOD) and a continuous predictor of verb bias (based on the counts from the 

Manchester corpus). If there is verb-based learning, we expect an interaction between verb-bias 

match and prime structure. The maximal models included (a) prime-structure (PD or DOD 

depending on which structure the verb appeared in during the bias phase), (b) prime-bias match 

(depending on whether the prime verb’s bias matches or mismatches the prime structure), (c) 

verb-bias (based on the Manchester corpus) and (c) age-group (adults or children, in the 

combined analysis), and by-subject and by-item random intercepts and random slopes for prime-

structure and prime-bias match in the full model. 



 

32 
 

 Here we expected to see a main effect of prime structure showing that participants are 

more likely to reuse the structure in which they previously heard the verb and a main effect of 

verb-bias, thereby replicating Peter et al27. Crucially, a lasting verb-specific prime surprisal effect 

(H3a) would be demonstrated by an interaction between prime-structure and prime-bias match 

showing that participants are more likely to reuse the structure the target verb previously 

appeared in if that structure did not match the verb’s bias. H3b, a larger verb-based learning 

effects in the child then in the adult group would be demonstrated by a three-way interaction 

between prime-structure, prime-bias match and age-group. 

 

3.3.1. Both age-groups together  

The maximal frequentist model supported by the data included prime-structure, verb-bias 

match (depending on whether the verb featured here appeared in a matching or mis-matching 

sentence), verb bias (proportion of DODs per dative occurrence in the Manchester corpus) and 

age-group (adults or children) as fixed effects and subject as a random intercept with a random 

slope for verb bias match, and a by-item random intercept with a random slope for age group. 

The Bayesian model included the maximal effect structure.  

The frequentist model detected a significant effect of age-group (p < .001, Bayesian 

posterior probability: 100%) and verb bias (p < .003, Bayesian posterior probability: 97.77%), 

suggesting that participants in the adult group were more likely to produce DODs, and that 

participants produced more DODs with verbs that had a higher DOD-bias in the Manchester 

corpus. Importantly, the main effect of prime type also reached significance (p < .001, Bayesian 

posterior probability: 99.80%), indicating that participants overall were more likely to produce 

DODs with verbs that were featured in DOD (as opposed to PD) sentences in the bias phase. 

However, the interaction of prime structure and prime-bias match did not reach significance (p = 

0.98; Bayesian posterior probability: 50.31%). Thus, we found no evidence for Hypothesis 3a - 

verb-based learning effects - in this analysis. Furthermore, the interaction of prime structure, 

prime-bias match and age group did not reach significance either (p = 0.95, Bayesian posterior 
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probability: 58.18%), providing no evidence for Hypothesis 3b, larger verb-based learning effects 

in the child than in the adult group. 

 
[Figure 4 here] 

 
 

[Table 5 here] 

3.3.2. Adult and child group 

In the adult group, the maximal frequentist model supported by the data included prime-

structure, verb-bias match and verb bias as fixed effects and by-subject and by-item random 

intercepts with verb-bias random slopes for subject. The Bayesian model included the same fixed 

effects and by-subject and by-item random intercepts and by-subject random slopes for prime 

type and by-item random slopes for verb-bias match. The maximal frequentist model supported 

by the data in the child group included prime-structure, verb-bias match, verb bias, age and 

TROG score as fixed effects and by-subject and by-item random intercepts without random 

slopes. The Bayesian model supported by the data included prime-structure, verb-bias match and 

verb bias as fixed effects and by-subject and by-item random intercepts and by-subject random 

intercepts for verb-bias match and by-item random slopes for prime type. 

The pattern of results was similar in the two age groups. The main effects of prime 

structure (adults: p = .006, Bayesian posterior probability: 96.84%; children: p = .026, Bayesian 

posterior probability: 98.68%) and verb bias (adults: p = .007, Bayesian posterior probability: 

95.26%, children: p = .006, Bayesian posterior probability: 96.84%) were significant, showing 

that participants were more likely to produce a DOD structure if they heard the target verb in a 

DOD structure in the bias-phase and if the verb was more DOD-biased. In the child group this 

structure repetition was significantly stronger in children with higher TROG scores (p = .042, 

this interaction was not included in the Bayesian analyses). Importantly, the interaction of prime 

type and prime bias match did not reach significance in the separate age groups either (both ps > 

0.85). The Bayesian analysis suggested that the posterior probability of a verb-based learning 

effect is 68.29% in the adult and 59.96% in the child group. Despite the lack of evidence for 
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verb-based learning effects, the frequentist model in the child group showed a significant four-

way interaction between prime structure, prime-bias match, age, and TROG score (p = .025; this 

interaction was not included in the Bayesian models as we had to simplify the model structure 

due to convergence issues). This four-way interaction suggests, that younger children who have a 

lower trog score are more likely to show sensitivity to our verb-dependent error-based learning 

measure (the interaction of prime structure and verb-bias match in the bias phase). As with the 

four-way interactions discussed in the bias phase, we are cautious in our interpretation of this 

finding due to the lack of most corresponding lower-level interactions and the absence of the 

Bayesian estimates. 

 

3.3.3. Summary of the results of the second post-test-phase  

While both age groups were more likely to re-use the dative structure they heard the verbs 

with in the bias phase, this effect was not modulated by whether the structure was surprising or 

predictable. This study therefore provided no evidence for Hypothesis 3a, verb-specific error-

based learning effects. As we found no significant interaction between prime type, verb-bias 

match and age group, this analysis did not support Hypothesis 3b (larger verb-based learning 

effects in the child than in the adult group) either. 

 
 

[Table 6 here] 
 

3.4. Discussion 

The goal of the current study was to evaluate the central prediction of error-based theories 

of language acquisition: that surprising linguistic input leads to higher rates of learning than 

predictable input. To achieve this, we embedded a prime surprisal study in a four-stage 

intervention study to assess both the short and longer-term effects of predictability.  

The most important result of the study was that we found support for the above claim. In 

the first (pre-test) phase of the study, we assessed participants’ baseline rates of dative 

production. In the second (bias) phase we presented participants with surprising and unsurprising 
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sentences, designed to bias them towards one of the dative structures. In the third (post-test) 

phase, we reassessed participants’ spontaneous rates of dative production. As expected, we found 

that both adults and children showed an accelerated learning rate for the same structure if it was 

previously presented in a surprising as opposed to predictable context. Both age groups were 

more likely to produce DODs in the DOD- as opposed to the PD-bias group in the post-test 

phase. Furthermore, both adults’ (average 4.25% shift) and children’s (average 6.12% shift) pre- 

to post-test production shifted towards the dative structure they were exposed to in surprising 

sentences in the previous phase. This effect (difference between DOD- and PD-bias group, with 

baseline DOD production taken into account) was significant in the pre-registered analyses that 

included both the adult and the child group. In addition, although the frequentist analysis did not 

reach significance in either the adult or child groups separately, the Bayesian analysis suggested 

that the posterior probability of these effects was high, especially in the child group (adult group: 

82.77%, child group: 91.22%). In sum, even though participants in both groups heard the same 

number of DOD and PD structures, their production changed based on which structure was 

predictable and which one was surprising in the previous phase. This is crucial evidence for a 

central prediction of the Dual-path model11: an increased learning rate for the same structure 

when it appeared earlier in a surprising as opposed to a predictable sentence.  

As the magnitude of the pre- to post-test shift in the child group was similar to what we 

estimated in our power calculations (average 5% shift in the power calculation and an average 

6.12% shift in the child dataset), the lack of significant effects when we analysed the child group 

data alone was surprising. We surmised that this might have been due to ceiling performance: 14 

children and 21 adults produced only DODs or only PDs in the pre-test phase. Thus, we carried 

out a set of exploratory analyses excluding participants with ceiling pre-test performance, which 

demonstrated significant learning effects when we analysed data from the two age groups 

together, and, this time, in the child group separately as well.  

To our knowledge, this is the first study that has found such learning effects, providing 

initial experimental evidence for a central claim of error-based learning theories: that surprising 
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input leads to more learning compared to predictable input. These results are also in line with 

previous studies demonstrating that children’s production frequencies can be shifted towards a 

less frequent structure by exposure in the bias phase30,34. Our study contributes to this literature 

by specifically showing that these differences can be traced back to input predictability. 

A secondary goal of the study was to determine if we could replicate the immediate prime 

surprisal effects found in previous studies.26,27 We found larger priming effects after surprising 

as opposed to predictable primes in the adult group, but neither the priming nor the prime 

surprisal effect reached significance in the pre-registered analyses. The Bayesian analysis showed 

that the posterior probability of priming was 61.40% while the posterior probability of prime 

surprisal was 89.03%. Children showed a significant priming effect (Bayesian posterior 

probability: 99.63%), but there was no sign of prime surprisal in this group (Bayesian posterior 

probability: 54.08%).  

This failure to replicate immediate structural priming and prime surprisal effects was 

unexpected, so we explored potential explanations in exploratory analyses. Our study had a 

between-subjects design in the bias phase, where participants either heard only DOD-biased 

verbs (paired with either DOD (predictable) or PD (surprising) structures), or only PD-biased 

verbs (paired with either PD (predictable) or DOD (surprising) structures), see Table 1.).  This is 

unlike previous prime surprisal studies in which all participants heard all four types of sentences. 

While this design was necessary to contrast learning rates for predictable versus surprising 

sentences and thereby test our primary hypothesis, it may have interfered with any immediate 

prime surprisal effects. Two of these analyses (reported in supplementary materials) did not 

change the pattern of results. The third analysis in which we included baseline DOD performance 

in the models, to control for the effect of participants’ individual differences in baseline 

performance, was reported above. Here, adults showed significant prime surprisal effects when 

their baseline DOD-production rate was taken into account (Bayesian posterior probability: 

97.71%), although there was no significant prime surprisal effect in the child group (Bayesian 
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posterior probability: 79.42%). The Bayesian posterior probability of a prime surprisal effect was 

higher in the child group when baseline dative production was taken into account (79.42% as 

opposed to 54.08%). It is possible that, due to the large variability in children’s DOD production, 

prime surprisal in childhood is particularly sensitive to the difference between within and 

between-participant designs. (Note though that these exploratory analyses may have been 

underpowered as our power-calculation did not include the additional baseline predictor.)  

While we cannot be certain of the source of the discrepancy between longer-term learning 

effects and immediate prime surprisal in the child group, it is worth noting that the pattern we 

observed is not compatible with the Dual-path model. This model suggests that immediate 

priming effects are the product of the same learning mechanism that leads to long-lasting changes 

in syntactic knowledge. It would therefore predict similar effects with respect to immediate prime 

surprisal and learning. The disconnect between these effects raises questions about whether 

learning and priming are always induced by the same mechanism. However, as the main goal of 

our study was not to assess the relationship between immediate prime surprisal and long-term 

learning, the results of this comparison must be interpreted with caution and followed up in 

further studies.  

The last phase of the study, the second post-test, targeted verb-dependent error-based 

learning effects. In this phase, we expected participants to be more likely to use the same dative 

structure that specific verbs appeared with in the bias phase. We also expected that the likelihood 

of structure repetition would be higher if the structure was unexpected in the bias phase. While 

we found that participants in both age groups were significantly more likely to repeat the 

structures the verb appeared with previously, this effect was not modulated by how surprising the 

structure was (it did not reach significance in the frequentist analyses and the Bayesian analyses 

suggested that the posterior probability of this effect is between is 50.97% and 68.29% 

depending on age group). This study therefore does not provide evidence for verb-dependent 

error-based learning effects. At first glance, these results seem to be in conflict with unpublished 

results from Fisher and Lin37 who detected stronger verb-based learning effect after 
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unpredictable verb-structure pairings. However, it is not possible to draw strong conclusions 

based on the absence of these effects in the current study, since the final phase of the study was 

exploratory and provided a less sensitive test of learning than the main test of abstract learning. 

The partially between-participant design led to both uneven target verb-bias rates and uneven 

baseline DOD-rates in the different conditions that may have masked any learning effects. 

Furthermore, both participants’ abstract learning effects and their previous dative production 

with the same verbs may have interfered with the results in this phase. 

Finally, we assessed whether the priming and learning effects we found were sensitive to 

age and syntactic knowledge.  The Dual-path model predicts that learning effects should decrease 

as the learner accumulates more linguistic knowledge and develops stronger linguistic 

representations. In our study, this prediction would be supported if children consistently showed 

both larger learning and prime surprisal effects than adults (H1b, H2b and H3b) and if, within the 

child group, these effects were larger in children who were younger or had less advanced 

syntactic knowledge. The current study did not find any conclusive evidence for any such effects. 

While both the abstract (post-test phase) and verb-based learning effects (second post-test phase) 

were numerically larger in the child than in the adult group, the interaction of learning effect and 

age group did not reach significance in any of our analyses. In addition, there was no significant 

effect of immediate prime surprisal in the child group during the bias phase.  

The contribution of age and syntactic knowledge (measured by the TROG test) also did not 

lead to a clear conclusion. As suggested by the Dual-path model, younger children and those with 

lower TROG scores showed larger learning and prime surprisal effects in most analyses, except 

in the post-test phase, where TROG score had a positive effect. However, none of these effects 

reached significance. Despite the lack of lower level-interactions, the frequentist models detected 

a significant interaction of immediate prime surprisal age and TROG score and verb-based 

learning, age and TROG score, indicating that younger children with lower TROG scores 

demonstrate larger prime surprisal and verb-based learning effects. While these results are in line 

with the predictions of the Dual-path model, in the absence of lower-level interactions and 
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Bayesian estimates, we cannot be certain that these effects are reliable. Our study therefore does 

not provide conclusive evidence regarding the contribution of age and syntactic knowledge to the 

learning mechanism in question, and this question needs to be addressed in future studies which 

are designed (and adequately powered) for exploring these comparisons. 

The current study had three main limitations. First, as our main interest was surprisal-

dependent abstract learning, we had to induce different levels of predictability for the different 

dative structures, which led to compromises when designing phases targeting immediate prime 

surprisal and verb-based learning. We have discussed these modifications and their potential 

consequences in the previous sections. Second, as we targeted a previously untested question, we 

had to base our power calculations on effects corresponding to similar, but not identical research 

questions. As a result, we were unable to account for all the factors that emerged. Thus, it is 

crucial for future studies to replicate our results using power calculations that are updated based 

on the current data. The final limitation of our study lies in the nature of our method, the prime 

surprisal paradigm. While it can directly address potential changes in language production 

depending on the predictability of the input, it does not give us any information about on-line 

processing differences between predictable and surprising sentences. Future work should 

therefore combine this method with on-line measures such as EEG or eye-tracking in order to 

explore how these learning effects unfold over time.  

 

3.5. Conclusion 

Our study embedded the prime surprisal paradigm in a four-stage intervention study to address a 

strong, but as yet not directly tested, claim of error-based learning theories that surprising input 

leads to more learning than predictable input. Although we did not replicate all the results from 

the previous literature (in particular, the lack of immediate prime surprisal in our child group was 

unexpected), we confirmed our primary hypothesis: that less predictable (more surprising) input 

leads to higher rates of lasting syntactic representational change compared to predictable input. 

Both adults’ and children’s dative production shifted towards the (surprising) structure they were 



 

40 
 

biased towards in the previous phase. To our knowledge, this is the first demonstration that 

exposure to the same syntactic structure leads to an increased learning rate if this structure was 

presented in a context that made it surprising rather than predictable. The present work also 

contributes by establishing an experimental paradigm that can be used to target further aspects of 

error-based learning theories of language acquisition in the future. 
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6.1 Tables 

Table 1 
 

 

 

 

 

 

Group  A   
DOD bias 

Group B   
PD bias 

 
Structure Verb bias Structure Verb bias 

 Baseline phase 
Experimenter Filler NA Filler NA 
Participant Dative Equi-biased Dative Equi-biased 
Experimenter Filler NA Filler NA 
Participant Dative Equi-biased Dative Equi-biased 

 Bias phase 
Experimenter DOD PD-biased DOD DOD-biased 
Participant Dative PD-biased Dative PD-biased 
Experimenter PD PD -biased PD DOD-biased 
Participant Dative DOD-biased Dative DOD-biased 
Experimenter DOD PD-biased DOD DOD-biased 
Participant Dative PD-biased Dative PD-biased 
Experimenter PD PD-biased PD DOD-biased 
Participant Dative DOD-biased Dative DOD-biased 
 Post-test phase 
Experimenter Filler NA Filler NA 
Participant Dative Equi-biased Dative Equi-biased 
Experimenter Filler NA Filler NA 
Participant Dative Equi-biased Dative Equi-biased 
 Second post-test phase 
Experimenter Filler NA Filler NA 
Participant Dative PD-biased Dative DOD-biased 
Experimenter Filler NA Filler NA 
Participant Dative PD -biased Dative DOD-biased 
Experimenter Filler NA Filler NA 
Participant Dative PD-biased Dative DOD-biased 
Experimenter Filler NA Filler NA 
Participant Dative PD-biased Dative DOD-biased 

 
 
Table 2 
 
 Frequentist  Bayesian 
Comparison Est. [CI] χ2 p  Mean [95% CrI] P(β > 0) 
 Both age groups 
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Intercept -0.12 [-0.83, 0.58] NA NA  -0.13 [-0.89, 0.64] 64.32% 
Pre-test score 1.38 [0.85, 1.93] 28.94 < .001  1.37 [0.86, 1.92] 100% 
Bias Group 0.75 [0.05, 1.46] 5.60 0.018  0.7 [-0.02, 1.44] 97.09% 
Age_group 0.71 [-0.04, 1.52] 3.35 0.067  0.71 [-0.06, 1.49] 96.33% 
Bias Group:Age_group -0.37 [-1.8, 0.97] 0.41 0.52  -0.46 [-1.86, 0.95] 74.08% 
 Adult group 
Intercept 0.31 [-0.38, 1.04] NA NA  0.32 [-0.46, 1.09] 80.33% 
Pre-test score 1 [0.46, 1.54] 12.01 < .001  1.01 [0.41, 1.65] 99.94% 
Bias Group 0.4 [-0.43, 1.25] 0.83 0.363  0.38 [-0.59, 1.32] 78.85% 
 Child group 
Intercept -0.4 [-1.44, 0.7] NA NA  -0.37 [-1.57, 0.8] 26.79% 
Pre-test score 2.08 [0.93, 3.2] 10.57 0.001  1.97 [0.83, 3.17] 99.98% 
TROG score -0.06 [-0.71, 0.6] 0.00 0.952  -0.08 [-0.79, 0.6] 59.17% 
Age -0.1 [-0.79, 0.59] 1.03 0.311  -0.07 [-0.89, 0.68] 56.69% 
Bias Group 1.14 [-0.15, 2.39] 4.35 0.037  1 [-0.36, 2.43] 92.46% 
TROG score:Age -0.19 [-0.94, 0.51] 0.04 0.85  -0.22 [-0.97, 0.54] 72.3% 
TROG score:Bias Group 0.61 [-0.73, 1.94] 0.30 0.583  0.61 [-0.74, 2.02] 81.15% 
Age:Bias Group -1.11 [-2.57, 0.3] 3.31 0.069  -1.15 [-2.68, 0.38] 93.3% 
TROG score:Age:Bias Group -0.28 [-1.67, 1.16] 0.16 0.694  -0.21 [-1.71, 1.3] 61.33% 
 
Table 3 
 

  Frequentist  Bayesian 

Comparison Est. [CI] χ2 p  Mean [95% CrI] P(β > 0) 

 Both age groups 

Intercept -0.4 [-0.94, 0.19] NA NA  -0.39 [-1.01, 0.22] 89.75% 

Prime type 0.33 [0.08, 0.57] 5.86 0.015  0.34 [-0.01, 0.68] 97.29% 

Verb match 0.03 [-0.26, 0.33] 0.14 0.704  0.06 [-0.2, 0.32] 32.7% 

Age group 2.48 [1.92, 3.03] 69.38 < .001  2.49 [1.94, 3.07] 100% 

Prime type:Verb match -0.41 [-1.48, 0.68] 0.67 0.412   -0.41 [-0.64, 1.51] 77.26% 

Prime type:Age group -0.54 [-1.03, -0.03] 4.84 0.028  -0.51 [-1.03, 0.01] 97.29% 

Verb match:Age group 0.22 [-0.27, 0.71] 0.7 0.402  0.1 [-0.44, 0.62] 63.64% 

Prime type:Verb match:Age group -1.04 [-3.28, 1.15] 0.92 0.337   -0.97 [-3.2, 1.2] 80.84% 

 Adult group 

Intercept 0.84 [0.23, 1.45] NA NA  0.86 [0.21, 1.51] 99.33% 

Prime type 0.05 [-0.27, 0.38] 0.09 0.759  0.06 [-0.37, 0.48] 61.40% 

Verb match 0.16 [-0.24, 0.55] 0.65 0.422  0.13 [-0.34, 0.6] 71.43% 

Prime type:Verb match -0.93 [-2.3, 0.42] 1.76 0.185   -0.89 [-2.31, 0.56] 89.03% 

 Child group 

Intercept -2.09 [-2.79, -1.25] NA NA  -1.79 [-2.57, -1.07] 100% 

Prime type 0.97 [0.33, 1.53] 10.4 0.001  0.74 [0.21, 1.3] 99.63% 

Verb match 0.26 [-0.43, 0.91] 0.19 0.667   -0.04 [-0.61, 0.53] 56% 

Age -0.88 [-1.41, -0.25] 1.17 0.279  -0.41 [-0.86, 0.04] 96.34% 

TROG 0.63 [0.08, 1.12] 5.4 0.02  0.5 [0.04, 1] 98.37% 

Prime type:Verb match -1.9 [-3.86, 0.18] 0.01 0.904   -0.09 [-1.84, 1.69] 54.08% 

Prime type:Age 0.26 [-0.39, 0.89] 0.13 0.721   NA NA  
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Verb match:Age 0.15 [-0.51, 0.79] 0.98 0.322   NA NA  

Prime type:TROG -0.21 [-0.79, 0.37] 0.37 0.545   NA NA  

Verb match:TROG -0.01 [-0.6, 0.56] 0.28 0.598   NA NA  

Age:TROG 0.61 [-0.03, 1.15] 0.03 0.852   NA NA  

Prime type:Verb match:Age -2.5 [-4.8, -0.08] 0.8 0.372   NA NA  

Prime type:Verb match:TROG 0.34 [-1.77, 2.51] 0.03 0.872   NA NA  

Prime type:Age:TROG -0.43 [-1.02, 0.23] 0.07 0.786   NA NA  

Verb match:Age:TROG -0.57 [-1.17, 0.07] 3.22 0.073   NA NA  

Prime type:Verb match:Age:TROG 3.57 [1.18, 5.67] 10.89 < .001   NA NA  
 
Table 4 
 

  Frequentist  Bayesian 
Comparison Est. [CI] χ2 p  Mean [95% CrI] P(β > 0) 
 Adult group 

Intercept 0.37 [-0.21, 0.97] NA NA  0.39 [-0.26, 1.05] 88.61% 
c_baseline 0.89 [0.59, 1.18] 29.56 < .001  0.9 [0.55, 1.26] 100% 
Prime type 0.05 [-0.29, 0.38] 0.1 0.757   0.06 [-0.29, 0.41] 63.43% 
Verb match 0.16 [-0.25, 0.54] 0.66 0.416  0.14 [-0.33, 0.6] 71.82% 
Prime type:Verb match -1.1 [-2.18, -0.03] 3.89 0.049   -1.16 [-2.33, 0.02] 97.71% 
 Child group 

Intercept -1.43 [-2.11, -0.67] NA NA  -1.18 [-1.9, -0.47] 99.94% 
c_baseline 1.08 [0.56, 1.53] 19.18 < .001  1.17 [0.65, 1.72] 100% 
Prime type 0.97 [0.37, 1.51] 10.52 0.001  0.71 [0.21, 1.23] 99.78% 
Verb match 0.27 [-0.45, 0.92] 0.21 0.649   -0.05 [-0.61, 0.49] 56.96% 
Age -0.75 [-1.2, -0.22] 2.77 0.096  -0.42 [-0.8, -0.04] 98.36% 
TROG 0.43 [-0.03, 0.84] 3.38 0.066  0.37 [-0.02, 0.78] 96.93% 
Prime type:Verb match -1.99 [-3.68, -0.13] 0.84 0.359   -0.61 [-2.1, 0.87] 79.42% 
Prime type:Age 0.26 [-0.38, 0.87] 0.11 0.74   NA NA  
Verb match:Age 0.14 [-0.51, 0.75] 0.99 0.32   NA NA  
Prime type:TROG -0.2 [-0.75, 0.35] 0.37 0.54   NA NA  
Verb match:TROG 0 [-0.52, 0.52] 0.31 0.577   NA NA  
Age:TROG 0.39 [-0.16, 0.85] 0.01 0.929   NA NA  
Prime type:Verb match:Age -1.32 [-3.3, 0.72] 0.06 0.805   NA NA  
Prime type:Verb match:TROG 0.43 [-1.31, 2.21] 0 1   NA NA  
Prime type:Age:TROG -0.43 [-1.02, 0.24] 0.06 0.808   NA NA  
Verb match:Age:TROG -0.59 [-1.21, 0.1] 3.18 0.074   NA NA  
Prime type:Verb match:Age:TROG 2.88 [0.81, 4.66] 9.73 0.002   NA NA  
 
Table 5 
 
  Frequentist  Bayesian 
Comparison Est. [CI] χ2 p  Mean [95% CrI] P(β > 0) 
 Both age groups 

Intercept -0.23 [-0.85, 0.4] NA NA  -0.24 [-0.92, 0.44] 76.56% 
Verb bias 0.96 [0, 1.86] 8.81 0.003  0.99 [0.03, 1.97] 97.77% 
Age group 3.75 [2.13, 5.07] 34.34 < .001  3.77 [2.55, 5.14] 100% 
Verb match -0.41 [-0.84, 0.01] 1.94 0.164   -0.45 [-1.08, 0.18] 92.64% 
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Prime type 0.81 [0.36, 1.27] 13.94 < .001  0.91 [0.3, 1.58] 99.8% 
Age group:Verb match 0.17 [-0.68, 1.03] 0.15 0.7  0.35 [-0.8, 1.55] 71.66% 
Age group:Prime type -0.04 [-0.88, 0.77] 0.01 0.932  0.03 [-1.14, 1.22] 52.22% 
Verb match:Prime type -0.07 [-4.19, 3.81] 0 0.984   -0.06 [-4.09, 3.97] 50.97% 
Age group:Verb match:Prime type -0.15 [-4.97, 4.67] 0 0.952   -0.47 [-5.13, 4.24] 58.18% 
 Adult group 

Intercept 1.87 [-0.07, 3.26] NA NA  0.87 [0.52, 1.28] 100% 
Verb bias 1.29 [-0.21, 2.58] 7.07 0.008  0.49 [-0.34, 1.3] 89.19% 
Prime type 0.83 [0.19, 1.45] 7.7 0.006  0.45 [-0.02, 0.93] 96.84% 
Verb match -0.33 [-0.95, 0.3] 1.18 0.278   -0.11 [-0.59, 0.36] 68.71% 
Prime type: Verb match -0.56 [-7.4, 5.13] 0.03 0.852   -0.72 [-4.04, 2.45] 68.29% 
 Child group 
Intercept -2.39 [-3.42, -0.84] NA NA  -2.12 [-3.13, -1.26] 100% 
Verb bias 0.84 [-0.24, 1.8] 7.32 0.007  0.86 [-0.17, 1.87] 95.26% 
Prime type 0.68 [-0.51, 1.78] 4.97 0.026  0.89 [0.1, 1.72] 98.68% 
Verb match -0.58 [-1.72, 0.69] 2.23 0.136   -0.66 [-1.54, 0.2] 93.17% 
AgeTR -0.56 [-1.49, 0.59] 0.03 0.866  NA  NA  
TROG 0.57 [-0.5, 1.41] 2.61 0.106  NA  NA  
Prime type:Verb match -1.59 [-7.33, 4.18] 0.02 0.901  0.56 [-3.93, 5.12] 59.96% 
Prime type:Age -0.23 [-1.31, 0.84] 0.02 0.875  NA NA 
Verb match:Age -0.35 [-1.42, 0.78] 0.49 0.483  NA NA 
Prime type:TROG 0.81 [-0.33, 1.8] 4.12 0.042  NA NA 
Verb match:TROG -0.35 [-1.38, 0.74] 1.16 0.281  NA NA 
Age:TROG 0.88 [-0.35, 1.85] 0.99 0.321  NA NA 
Prime type:Verb match:Age -2.34 [-6.33, 2.01] 0.58 0.445  NA NA 
Prime type:Verb match:TROG -1.17 [-4.88, 3.01] 0.8 0.372  NA NA 
Prime type:Age:TROG -0.01 [-0.93, 0.92] 0.01 0.92  NA NA 
Verb match:Age:TROG 0.28 [-0.78, 1.31] 0.47 0.49  NA NA 
Prime type:Verb match:Age:TROG 3.96 [-0.58, 7.7] 5.05 0.025  NA NA 
 
Table 6 
 

  Age group  

  Adults Children Both groups 
together 

 
Bias phase - 

Prime surprisal  
(priming)  

     
✔ (✘) 

Baseline DOD production 
included 

     
✘ (✔)  

     
✔ (✔) 

Prime surprisal n.s. 

 
Post-test phase - 

Abstract learning  

 

✔ 
n.s. 

 

✔ 
No ceiling in 

pre-test 

 

✔ 
  

Second post-test phase -  
Verb-based learning 
(structure repetition) 

 
    ✘(✔)  

   
   ✘(✔)  

     
✘(✔) 

 
 
 



 

47 
 

6.2 Table and Figure captions 
 
 
Table 1.  
General study design showing different trials and verb biases in each phase – in the bias phase dark grey cells 
signal surprising prime sentences while light grey cells stand for predictable primes. When the structure is 
specified as ‘DOD’ or ‘PD’, the experimenter produces a full (DOD or PD) dative, and when it’s specified as 
‘Dative’ the participant completes a sentence stem with their choice of a dative structure. 
 
Table 2 
Results of the exploratory frequentist and the Bayesian analyses in the post-test phase per age group, excluding the 
ceiling participants. Boldface indicates significant results according to the frequentist analyses. 
 
Table 3. 
Results of the pre-registered frequentist and the Bayesian analyses in the bias phase per age group. Boldface 
indicates significant results according to the frequentist analyses. NA signifies values that were not computed by the 
Bayesian model. 
 
Table 4. 
Results of the exploratory frequentist and the Bayesian analyses in the bias phase per age group. Boldface indicates 
significant results according to the frequentist analyses. NA signifies values that were not computed by the Bayesian 
model. 
 
Table 5. 
Results of the pre-registered frequentist and the Bayesian analyses in the second post-test phase per age group. 
Boldface indicates significant results according to the frequentist analyses. NA signifies values that were not 
computed by the Bayesian model. 
 
Table 6.  
Appearance of expected response patterns per study phase and age group. In the Bias phase the table shows whether 
participants demonstrated immediate prime surprisal and structural priming effects, the latter in brackets. In the 
Post-test phase the table shows whether participants showed more learning for abstract structures after surprising 
as opposed to predictable sentences. In the Second post-test phase the table shows whether verb-based learning 
rates were higher in surprising sentences. In brackets we can see whether participants were likely to use the dative 
structure in Phase 4 that specific verbs appeared with in the bias phase. 
 
Figure 1 
Analysis flowchart detailing pre-registered and exploratory hypotheses in the different stages of the study. All 
analyses were carried out using both frequentist and Bayesian mixed effects models. 
 
Figure 2. 
Pre-to post-test difference per age group and bias group, only including participants who did not show a 
ceiling performance in the pre-test. The dashed line represents no pre- to post-test change while the solid 
lines show the average per age- and bias-group shifts. For each condition, the violin lines represent the 
probability density of the data, and the jittered points show the pre-to post-test shift of each individual 
subject. 
 
Figure 3 
Proportion of DOD production in the bias phase by age group and condition. For each condition, the shaded bars 
show the mean DOD production, the violin lines represent the probability density of the data, and the jittered points 
show the mean DOD production levels of each individual subject averaged across all trials in the given condition. 
 
Figure 4. 
 Proportion of DOD production in the second post-test phase per age group and condition. For each condition, the 
shaded bars show the mean DOD production, the violin lines represent the probability density of the data, and the 
jittered points show the mean DOD production levels of each individual subject averaged across all trials in the 
given condition. 
 
 


