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Abstract

This paper presents a highly efficient and effective approach to bound the responses and probability of failure1

of linear systems where the model parameters are subjected to combinations of epistemic and aleatory uncer-2

tainty. These combinations can take the form of imprecise probabilities or hybrid uncertainties. Typically,3

such computations involve solving a nested double loop problem, where the propagation of the aleatory4

uncertainty has to be performed for each realisation of the epistemic uncertainty. Apart from near-trivial5

cases, such computation is intractable without resorting to surrogate modeling schemes. In this paper, a6

method is presented to break this double loop by virtue of the operator norm theorem. Indeed, in case lin-7

ear models are considered and under the restriction that the model definition cannot be subject to aleatory8

uncertainty, the paper shows that the computational efficiency, quantified by the required number of model9

evaluations, of propagating these parametric uncertainties can be improved by several orders of magnitude.10

Two case studies involving a finite element model of a clamped plate and a six-story building are included11

to illustrate the application of the developed technique, as well as its computational merit in comparison to12

existing double-loop approaches.13

Keywords: Uncertainty Quantification, imprecise probabilities, operator norm theorem, linear models,

decoupling

1. Introduction14

Many of the current advanced modelling approaches in an engineering context rely heavily on problems15

formulated over a continuum domain, which is also referred to as continuum physics. Typical examples16

include material deformation in an elastic continuum under external loading conditions for the calculation17

of strains and stresses over a spatial domain (= continuum mechanics), the assessment of the dynamical18

response of such continuum to external loads (= structural dynamics) or fluid flow analysis in a spatial19

continuum for the study of local particle velocities or fluid pressure values (= computational fluid dynamics).20



Once the fundamental constitutive equations and required boundary conditions are formulated over the21

considered continuum, the numerical modelling strategy typically consists of discretising the continuous22

domain over time and/or space, after which the discretised version of the problem is formulated in a finite-23

dimensional system of equations (e.g., using finite elements or volumes). Many modelling approaches based24

on this principal idea have been developed and extensively refined over the past decades, resulting in several25

commercial codes and wide academic and industrial application. However, it is more and more acknowledged26

that one deterministic ‘nominal’ analysis (i.e., under the assumption of full and deterministic knowledge on27

any property appearing at any time and location in the continuum) is often insufficient to fully assess the28

problem at hand. Especially from an engineering perspective, correctly assessing the uncertainty in the29

analysis outcome is of crucial importance to ensure reliability of a designed structure or component. This30

motivates the use of non-deterministic modelling techniques to account for potential lack-of-knowledge in31

both the model form (i.e., the application of the correct equations in the continuum problem) as well its32

parameters. In this manuscript, only the case of parametric uncertainty is further considered.33

In the context of performing non-deterministic analysis, several parameters and inputs of the continuum34

that is modelled have to be represented by an uncertainty model. This model represents a predefined35

description of the inherent variability, vagueness, ambiguity, lack of knowledge or a combination of these36

factors into a mathematically rigorous framework that allows for eliciting the uncertainty in the response37

of the continuum under consideration. Several categories of parameters and inputs can be defined in this38

context, based on their origin as aleatory uncertainty (inherent variation) or/and epistemic uncertainty (lack39

of knowledge) [1]:40

Type I: Parameters without any uncertainty, modelled as a crisp number41

Type II: Parameters containing only epistemic uncertainty, appearing as unknown-but-fixed constants or42

variable properties43

Type III: Parameters containing only aleatory uncertainty, appearing as random variables with a fully44

prescribed stochastic description45

Type IV: Parameters containing both aleatory and epistemic uncertainties, represented as imprecise prob-46

abilities47

The correct approach to deal with these types of non-determinism is inherently linked with their def-48

inition. The modelling and simulation of Type-II uncertain parameters typically is performed via the49

framework of interval or fuzzy analysis [2]. For the remainder of this paper, a Type-II uncertain parameter50

θ ∈ θII is represented as belonging to an interval θI , i.e., θ ∈ θII := θI = [θ, θ], where θ and θ represent the51

lower and upper bounds. In other words, the uncertainty an analyst has concerning the true value of θ is52
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translated towards fixed bounds between which the valued is deemed to lie, without assigning a likelihood53

to any value within these bounds [3]. The main advantage of this class of methods is that intervals require54

only very few data points to make an objective worst-case estimate of the bounds on the structural behavior55

of the model under consideration, conditional on the data [4]. Furthermore, recent developments allow56

for estimating robust interval bounds given only limited data, for instance based on worst-case likelihood57

estimation (see e.g., [5, 6]), or Chebyshev’s inequality. As a drawback, intervals provide only the worst58

and best case structural response to the analyst [7, 8]. Furthermore, the modelling of dependencies between59

uncertain parameters requires dedicated methods based on the projection of θI to a non-orthogonal basis [9],60

the admissible set decomposition method [10] or using affine arithmetic [11]. Alternatively, also convex set61

approaches can be applied to represent Type-II uncertain properties [12].62

The variability in type-III uncertain parameters is usually characterized by a probability density function63

fΦ(ϕ) that represents the likelihood that a parameter ϕ assumes a certain value within a specified range. To64

infer the likelihood that the model assumes a certain response, given this uncertain parameter or input, fΦ(ϕ)65

is propagated through the model. A vast literature amount of literature exists on computing central moments66

or expected values of a response of interest of the model, based on fΦ(ϕ) [13]. Recent developments in this67

context include advanced sampling schemes such as multilevel approaches [14], Subset simulation [15] or68

importance sampling [16, 17], techniques based on surrogate modelling [18, 19] or stochastic linearization [20,69

21]. A good overview of stochastic methods in engineering applications is given by [22].70

Type-IV uncertainties, which are used to represent deep uncertainties (sometimes also referred to as71

polymorphic [23]) can be defined using several highly advanced modelling techniques, including probability72

boxes [24], Evidence theory [25] or possibility functions [26]. The most straightforward way to model an im-73

precise probability is probably using interval or fuzzy probabilities [27], where intervals (or fuzzy numbers)74

are assigned to the central moments of a type-III uncertain parameter. Recent advances in propagation75

algorithms include methods based on Polynomial Chaos Expansions [28, 29], interval predictor models [30],76

methods based on importance sampling [31] potentially in combination with a high-dimensional model repre-77

sentation of the underlying numerical model [32, 19], techniques based on affine arithmetic [33] or multi-level78

strategies [34]. Furthermore, also efficient interval Monte Carlo [35, 36] or techniques based on linear pro-79

gramming [37] have been introduced in this context. Finally, also highly performing methods for performing80

state-estimation of nonlinear systems based on Kalman filtering have been recently introduced [38]. A good81

recent overview of imprecise probabilistic approaches is given by [39] or by [40] on the topic of hybrid anal-82

ysis. Recent applications include the study of the uncertainty in the mechanical properties of wood [41],83

assessing the effect of geometric imperfections in cylindrical shells [42], structural reliability analysis [43] or84

real-time predictions of mechanised tunneling processes [44].85
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However, most methods to propagate type-IV uncertain properties still rely on some sort of double86

loop approach where the propagation of the aleatory part of the uncertainty has to be performed for each87

realization of the epistemic uncertainty, or vice-versa. Apart from the case where near-trivial simulation88

methods are considered, this impedes their application without resorting to surrogate modelling. Despite89

the fact that these approaches are highly performing, they still rely on an approximate relation between90

input and output. This contribution elaborates on previous work of the authors [45], where a highly efficient91

approach to decouple the “double-loop” based on operator norm theory was presented in the context of linear92

structures that are excited with a zero-mean imprecisely defined stochastic ground acceleration. This paper93

extends these developments to (1) account for non-homogeneous loads and (2) include epistemic uncertainty94

in the structural model itself, hence making it applicable to both the case where a model is subjected to a95

type-IV load (i.e., an imprecise probability) or combinations of Type-II, Type-III and Type-IV uncertainties96

(i.e., hybrid uncertainty). The results show that also in these cases, a method based on operator norm97

theory is capable of successfully decoupling the double-loop, resulting in a gain in computational efficiency98

of several orders of magnitude compared to traditional double-loop methods, as evidenced by the significant99

decrease in required number of model evaluations in the included case studies. The paper is structured100

as follows: Section 2 discusses the background behind imprecise probabilistic analysis with linear models;101

Section 3 presents the operator norm framework to efficiently propagate imprecise probabilities; Section 4102

shows two numerical examples involving a finite element model of a clamped plate, as well as a 6-story103

building; Section 5 lists the conclusions of the work.104

2. Imprecise probabilistic analysis105

2.1. Model definition106

The main idea to fully decouple the propagation of epistemic and aleatory uncertainty is based on107

previous work of the authors [45], where they showed that operator norm theory can be used to successfully108

decouple the epistemic and aleatory uncertainty of the response associated with a crisp, linear structural109

model subject to imprecise stochastic loading (that is, loading described by means of Type-IV uncertainty).110

The current contribution expands on the type of problems considered in the aforementioned work. In111

particular, the scope of application of the method is on models whose response can be cast in the following112

form:113

y(θ,ϑ, z) = A(θ)z(ϑ), (1)

with y ∈ Rdy the response of the model under consideration (e.g., a mechanical stress or temperature distri-114

bution), θ ∈ T ⊂ Rdθ a vector of model parameters (e.g., a constitutive material model or the description of115

a boundary condition) belonging to an admissible set T (e.g., non-negative stiffness values or temperatures).116
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A : Rdz 7→ Rdy is herein a linear map that describes the physical behaviour of the continuum that is being117

modelled, which is in an engineering context often represented via a finite element or finite difference model.118

For example, within the framework of structural mechanics, A corresponds to the inverse of the stiffness119

matrix. The parameter z is the input to the model (e.g., a distributed load, pressure distribution or thermal120

flux) and is parameterized by a vector ϑ ∈ Rdϑ . In essence, the model form in Eq. (1) corresponds to the121

class of linear models that represent a discretized formulation of the continuum physics at hand (e.g., finite122

element models), that are furthermore subjected to a stochastic process load that can be recast in a series123

expansion form that allows separating the stochastic content from the temporal dependence, such as for124

instance the Karhunen-Loève series expansion (see Appendix A).125

2.2. Crisp Failure Probability126

In a classical reliability engineering context, the analyst is interested in computing the probability of127

failure Pf of the structure given a predefined type-III uncertainty in its definition or the imposed load128

condition. To account for such aleatory uncertainty, the model introduced in Eq. (1) becomes:129

y(θI ,ϑI ,xIII) = A(ϕIII ,θI)z(ξIII ,ϑI), (2)

with x = [ϕ, ξ], with ϕ ∈ Rdϕ and ξ ∈ Rdξ , and where ϕIII and ξIII represent type-III uncertain properties of130

the structural model and the model input, respectively. These properties are represented by their respective131

probability density functions fΦ(ϕ) and fΞ(ξ). In this case, the probability of failure Pf is readily defined132

as:133

Pf =

∫
x∈Rdx

IF (x) fX (x)dx, (3)

where fX (·) is the joint distribution function of fΦ(ϕ) and fΞ(ξ) in dx = dϕ + dξ dimensions, and IF (·) is134

an indicator function whose value is equal to one in case of a failure event and zero otherwise:135

IF =


1 yi(θI ,ϑI ,xIII) ≥ yt i = 1, . . . , dy

0 otherwise
(4)

with yt a predefined threshold value, corresponding to a structural failure. It should be noted that the136

probability integral in Eq. (3) usually comprises a high number of dimensions, as nx may be in the order of137

hundreds or thousands, while the performance function is known point-wise only for specific realizations x of138

X. This precludes the application of quadrature schemes for evaluating Pf and favor the application of sim-139

ulation methods, see e.g. [46]. However, also the application of simulation methods can be computationally140
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costly since repeated evaluations of Eq. (1) are required.141

2.3. Imprecise failure probability142

The computation of a crisp failure probability requires the exact definition of the probability density143

functions fΦ(ϕ) and fΞ(ξ). However, in many real life situations, the analyst only has partial information144

about these quantities. As a result, also type-II and type-IV uncertainties have to be taken into account145

during the modelling phase. To account for various sources of uncertainty in the description of the different146

model quantities, as described in the introduction, the description of the model that is introduced in Eq. (1)147

is as such extended as:148

y(θII ,ϑII ,ϕIII , ξIII) = A(ϕIII ,θII)z(ξIII ,ϑII), (5)

where the index II in θ and ϑ denote that these parameters are subjected to epistemic uncertainty, modelled149

for instance as intervals θI and ϑI or fuzzy sets. Please note that y is in effect a type-IV uncertain150

parameter due to the presence of both epistemic (type-II) and aleatory (type-III) uncertain parameters.151

Note furthermore that in the notation followed in this equation, the implicit assumption is made that a152

type-IV uncertain parameter (e.g., a Normal random variable prescribed by an interval-valued mean and153

standard deviation) can be separated into an epistemic and aleatory part. This assumption is warranted154

when the distribution can be recast into an affine form depending on its defining parameters, as is the case155

for many commonly used density functions, or when the quantity is prescribed by a random field via the156

Karhunen-Loève series expansion (see also Appendix A).157

Furthermore, since z and A are a function of both a Type II and a Type III valued parameter, they158

become Type IV valued by construction. As an example, the case presented in Eq. (5) can correspond to159

a model of a structure that is excited by a load which is governed by both a stochastic and an interval160

component (such as e.g., an imprecise stochastic process as described in [47]) where some parameters of the161

model are also described by either stochastic parameters, intervals or a combination of both.162

In the more general case of models described by Eq. (5), the definition of a crisp probability of failure163

is no longer possible. In this case, due to the effect of the type-II uncertain parameters θII and ϑII , Pf164

becomes a type-II uncertainty as well. In case the type-II uncertainties are modelled as intervals, the two165

following optimization problems over the set {θII ;ϑII} have to be jointly considered to bound Pf :166

P f = min
θII ,ϑII

(PF (θII ,ϑII)) (6)

= min
θII ,ϑII

(∫
x∈Rnx

IF (xIII ,θII) fX (xIII ,ϑII)dx

)
, (7)

6



to determine the lower bound of the probability of failure, and167

P f = max
θII ,ϑII

(PF (θII ,ϑII)) (8)

= max
θII ,ϑII

(∫
x∈Rnx

IF (xIII ,θII) fX (xIII ,ϑII)dz

)
, (9)

to determine the upper bound. During each step of these optimizations, a full computation of Pf has to be168

performed according to Eq. (3) for each crisp value of θ ∈ θII and ϑ ∈ ϑII . As a side remark, it should be169

noted that in case fuzzy sets are applied to represent the type-II uncertainty, a third layer is added to the170

double loop, as a fuzzy set is usually decomposed into a set of intervals according to the α-level optimization171

method [2].172

3. Operator norm theory to propagate Imprecise Probabilistic uncertainty173

As is clear from the previous section, the propagation of imprecise probabilities through a numerical174

model to infer bounds on the probability of failure usually comprises a high computational cost due to the175

associated double loop problem. This section presents an approach to efficiently and effectively decouple the176

aleatory from the epistemic uncertainty, and hence, break the double loop associated with solving Eq. (6)177

and Eq. (8) by virtue of operator norm theory. This section deepens the theory behind this development and178

generalizes the approach that was presented in [45] to account for epistemic uncertainty in the structural179

model definition, as well as non-homogeneous loading conditions.180

3.1. The operator norm: theoretical aspects181

Let D : Rdv 7→ Rdr be a continuous linear map between two normed vector spaces Rdv and Rdr and182

||•||p(i) be a particular Lp(i) norm on these vector spaces with i ∈ [1,∞), then there exist a number c ∈ R183

and vector v ∈ Rdv such that following inequality always holds:184

||Dv||p(1)≤ |c|·||v||p(2) , (10)

where ||v||p(i) is constructed according:185

||v||p(i) =

(
dv∑
i=1

|vi|p
(i)

)1/p(i)

, (11)

with vi ∈ v and where |•| denotes the absolute value of •.186

The linear operator D maps the input vector v to an output vector r, that is r = Dv. Such map has a187

clear analogy with Eq. (1), where A maps the model input z to its response y (i.e., the numerical model of188
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the continuum under consideration). As an example and to clarify this point, substitution of Eq. (1) into189

Eq. (10) gives:190

||Az||p(1)≤ |c|·||z||p(2) , (12)

and hence:191

||y||p(1)≤ |c|·||z||p(2) . (13)

Note that for the sake of notational simplicity, the dependence of the model quantities on the various192

parameters is omitted at this point and z is used to indicate a general input to the model. Physically193

speaking, these equations state that the length of the uncertain model input z, quantified via a pre-described194

Lp(i)-norm, can be increased in the maximal case with a factor c when applying the linear mapping described195

in Eq. (1). While Eqs. (12) and (13) reveal a clear physical connection between linear maps D and A, it196

should be noted that in more general cases, they are not necessarily equal, as discussed in the forthcoming197

sections.198

A measure for how much a certain deterministic linear map D increases the length of the uncertain model199

input v in the maximum case, is given by the operator norm ||D||p(1),p(2) , which is defined in a deterministic200

sense (i.e., for one realization of the uncertain parameters) as:201

||D||p(1),p(2) = inf
{
c ≥ 0 : ||Dv||p(1) ≤ |c| · ||v||p(2) ∀v ∈ Rnv

}
, (14)

or equivalently:202

||D||p(1),p(2) = sup

{
||Dv||p(1)
||v||p(2)

: v ∈ Rnv with v 6= 0

}
. (15)

The calculation of a particular ||D||p(1),p(2) norm evidently depends on the particular choice of p(1) and203

p(2). An overview of different operator norm formulations, given p(1) and p(2), is given in Table 1 (taken204

from [48]). The columns in this matrix indicate the Lp norm on the domain of D, whereas the rows indicate205

the norm on its co-domain.206

Table 1: Formulations for commonly applied operator norms

L1 L2 L∞
L1 Maximum L1 norm of a

column of D
Maximum L2 norm of a
column of D

Maximum absolute value
of D

L2 NP-hard Maximum singular value of
D

Maximum L2 norm of a
row of D

L∞ NP-hard NP-hard Maximum L1 norm of a
row of D
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3.2. The operator norm: bounding imprecise failure probabilities207

As indicated in Eq. (6) and Eq. (8), a double loop approach is required when computing the bounds on208

the probability of failure of a model that is subjected to combinations of Type-II, Type-III and Type-IV209

uncertainty. However, the preceding discussion shows that for linear, continuous models, a measure exists210

that represents the magnitude with which a certain model input is amplified towards the output. This211

notion allows us to decouple Eq. (6) and Eq. (8). For that purpose, assume that Eq. (5) can be recast as:212

y(θII ,ϑII , zIV ) = D(θII ,ϑII)e(xIII), (16)

By virtue of the operator norm theorem, decoupling is applied by first determining those realisations θ∗,ϑ∗213

of the epistemically uncertain parameters that provide the extrema in terms of the amplification of the input214

(which according to Eq. (16), correspond to e) to y and hence, Pf . These realisations are determined by215

looking for those realisations of θ and ϑ that yield an extremum in the operator norm ||D||p(1),p(2) by solving216

following optimization problems:217

θ
∗
II ,ϑ

∗
II = argmin

θ∈θII ,ϑ∈ϑII

||D(θ,ϑ)||p(1),p(2) (17)

and218

θ∗
II ,ϑ

∗
II = argmax

θ∈θII ,ϑ∈ϑII

||D(θ,ϑ)||p(1),p(2) (18)

As such, Eq. (6) and Eq. (8) can be reformulated as:219

P f = PF (θ
∗
II ,ϑ

∗
II) (19)

=

∫
x∈Rnx

IF
(
xIII ,θ

∗
II

)
fX
(
xIII ,ϑ

∗
II

)
dx, (20)

to determine the lower bound of the probability of failure, and220

P f = PF (θ
∗
II ,ϑ

∗
II) (21)

=

∫
x∈Rnx

IF

(
xIII ,θ

∗
II

)
fX

(
xIII ,ϑ

∗
II

)
dz, (22)

to determine the upper bound. As such, the double loop is effectively broken since the propagation of221

epistemic and aleatory uncertainty is fully decoupled. The specific calculation of ||D||p(1),p(2) is highly case222

dependent, as it depends both on the definition of A, as on the types of uncertainty that are present in223

the model. The next sections will explore how several types of uncertainty, according to the classifica-224

tion provided in the introduction of this paper can be fitted into the operator norm framework. Finally,225
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note that the integrals corresponding to P f and P f can be computed using any asymptotic approxima-226

tion (FORM/SORM) or simulation method (Monte Carlo sampling, line sampling, directional importance227

sampling, SubSet simulation, etc.), depending on the problem at hand.228

3.3. Imprecisely defined zero-mean load with a deterministic model229

In case a deterministic model with imprecisely defined load is considered, the model that is presented in230

Eq. (5) can be rewritten as:231

yi(θI , zIV ) = Ai(θI)z(ξIII ,ϑII). (23)

where yi denotes the ith response of the system and Ai the linear map of the input of the model to this232

response.233

In case z(ξIII ,ϑII) is a zero-mean stochastic load that is represented via the well-known Karhunen-Loève234

expansion (see Appendix A), this equation can be rewritten as:235

yi(θI , zIV ) = Ai(θI)B(ϑII)ξIII , (24)

where ξIII is an nKL-dimensional vector of i.i.d. standard normal random variables and B(ϑII) ∈ Rnz×nKL236

is a matrix collecting the basis functions of the Karhunen-Loève expansion that are obtained by solving the237

corresponding homogeneous Fredholm integral equation of the second kind. The form of this equation allows238

for a straightforward application of the operator norm framework, as also discussed in [45], by plugging it239

in into Eq. (25) as:240

||AiBξ||p(1)≤ |c|·||ξ||p(2) . (25)

Hence, the operator norm for the ith response can in this case be computed as:241

||Ai||p(1),p(2) = sup

{
||AiBξ||p(1)

||ξ||p(2)
: ξ ∈ Rnξ with ξ 6= 0

}
. (26)

For the case of multiple responses y = yi, i = 1, . . . , ny the computation only changes slightly.242

Indeed, in this case a linear map Ai(θI)B(ϑII) : Rnξ 7→ R, with its corresponding operator norm243

||Ai(θI)B(ϑII)||p(1),p(2) has to be considered for each of the ny responses of interest. In this case, a compos-244

ite operator norm ||Ã(θI ,ϑII)||p(1),p(2) has to be constructed to consider the joint effect of θI and ϑII on all245

responses yi, i = 1, . . . , ny. The construction of the composite operator norm depends on the definition of246

how the different model responses contribute to the structure as being ‘failed’. For instance, in the simplest247

case when for all responses of interest the failure domain corresponds to their respective maxima in case248
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they are all bounded from above, ||Ã(θI ,ϑII)||p(1),p(2) can be computed as:249

||Ã(θI ,ϑII)||p(1),p(2) = max
i

||Ai(θI)B(ϑII)||p(1),p(2) . (27)

3.4. Imprecisely defined load with a deterministic model250

The implicit assumption of a zero-mean load precludes the application of this framework to many realistic251

engineering cases such as e.g., wind loads on a building or mechanical loads on machinery parts. Evidently,252

when such load can be decomposed into a deterministic mean value and a stochastic variation around this253

mean, the application of the operator norm again becomes trivial. The real challenge is to account for loads254

with a non-zero mean component z0 that may non-linearly depend on some type-II uncertain parameters255

ϑz0 . In this case, Eq. (23) has to be rewritten as:256

yi(θI , zIV ) = Ai(θI)
(
z0
(
ϑz0
II

)
+ z (ξIII ,ϑII)

)
, (28)

which, taking the Karhunen-Loève series expansion of the stochastic part into account, becomes:257

yi(θI , zIV ) = Ai(θI)z0
(
ϑz0
II

)
+Ai(θI)B(ϑII)ξIII . (29)

It is clear that this equation no longer fits the required form to apply the operator norm framework, as258

prescribed in Eq. (16). However, since the equation still represents an affine transformation from ξ to yi, it259

can be rephrased via augmented matrix formulation as:260

yi(θI , zIV )
1

 = Ti

(
θI ,ϑ

z0
II ,ϑII

)ξIII
1

 , (30)

with Ti

(
θI ,ϑ

z0
II ,ϑII

)
∈ R(ny+1)×(nξ+1) a block-matrix that is defined as:261

Ti

(
θI ,ϑ

z0
II ,ϑII

)
=

[Ai(θI)B(ϑII)]
[
Ai(θI)z0

(
ϑz0
II

)]
0 1

 . (31)

It is straightforward to prove that this formulation is completely equivalent to the original formulation262
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given in Eq. (16). As such, the operator norm can in this case be computed as:263

||Ti||p(1),p(2) = sup



∣∣∣∣∣∣
∣∣∣∣∣∣Ti

ξ
1

∣∣∣∣∣∣
∣∣∣∣∣∣
p(1)∣∣∣∣∣∣

∣∣∣∣∣∣
ξ
1

∣∣∣∣∣∣
∣∣∣∣∣∣
p(2)

: ξ ∈ Rnξ with ξ 6= 0


; (32)

the extension of this equation to multiple responses is analogous to Eq. (27) and will not be discussed in264

detail.265

3.5. Imprecisely defined load with a type-II uncertain model266

In case the model, represented by the linear map Ai becomes subjected to type-II uncertainty as well,267

a response of the structure to a non-zero mean load can be described as:268

yi(θII , zIV ) = Ai(θII)z0
(
ϑz0
II

)
+Ai(θII)B(ϑII)ξIII . (33)

This corresponds for instance to a continuum problem where a structure is subjected to an imprecise269

stochastic load (e.g., a wind load with an imprecisely defined spectrum), but where the analyst furthermore270

has insufficient data to make crisp decisions on the actual parameters of the structure, such as e.g., Young’s271

modulus of applied materials. In general, this allows the analyst to jointly take epistemic uncertainty in the272

model definition as well as in the stochastic load definition into account. This statement holds as long as273

the linear map (e.g., representing the inverse of the stiffness matrix in a linear elastic case) has an explicit274

dependence on the epistemically uncertain model parameters under consideration.275

In this case, the augmented matrix Ti

(
θII ,ϑ

z0
II ,ϑII

)
∈ R(ny+1)×(nξ+1) can be described as:276

Ti

(
θII ,ϑ

z0
II ,ϑII

)
=

[Ai(θII)B(ϑII)]
[
Ai(θII)z0

(
ϑz0
II

)]
0 1

 . (34)

with the corresponding operator norm given by Eq. (32). It is important to note that in general, it is not277

possible to account for Type-III uncertainties in the model definition, as such formulation does not allow278

for rephrasing the model in the prescribed format to apply the operator norm theory (see Eq. (16)).279

3.6. Practical computation of the operator norms280

The definitions of the operator norm, as e.g., given in Eq. (32) is not possible without defining the281

norms on both sides of Eq. (10). In real life applications, this selection should be made with care since282

the applicability of the method depends on it. In the following we give some pointers on how this selection283
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should be made. In essence, the selection of the value of p(1) is inherently connected to the definition of the284

reliability problem under consideration. For instance, if failure is described as one of the responses exceeding285

a prescribed threshold within a certain time interval, which corresponds to the first-excursion probability,286

then the infinity norm such that p(1) → ∞ is a suitable selection, as illustrated in earlier work of the authors287

in [45] and [49]. Regarding p(2), numerical experience suggest that it should be selected such that p(2) = 2,288

as this can be loosely interpreted as the energy content associated with the external loading. Based on the289

information in Table 1, taking p(1) → ∞ and p(2) = 2 for the case of calculating the probability of failure,290

the operator norm corresponds to the largest L2 norm of a row of the matrix representing the linear map.291

In the zero-mean load case with a deterministic linear map, the operator norm is as such computed as:292

||D(θI ,ϑII)||p(1),p(2) = max
k=1,...,ny

||Mi,k:(θI ,ϑII)||2 (35)

with Mi(θI ,ϑII) = Ai(θI)B(ϑII), and where the subscript k : denotes taking the kth row of the ma-293

trix Mi(θI ,ϑII). Similarly, the operator norm for case where a non-zero mean load is considered can be294

computed as:295

||D(θI ,ϑ
z0
II ,ϑII)||p(1),p(2) = max

k=1,...,ny

||Ti,k:(θI ,ϑ
z0
II ,ϑII)||2. (36)

Note that the maximum is taken over the first ny rows of Ti,k:(θI ,ϑ
z0
II ,ϑII). This is reasonable, since the296

last row of the matrix is related with the value 1 in the left-hand side of the equation, which is an artefact297

from the reformulation in the augmented matrix form. Finally, operator norm for the general load case in298

combination with a linear map that is subjected to epistemic uncertainty can be computed as:299

||D(θII ,ϑ
z0
II ,ϑII)||p(1),p(2) = max

k=1,...,ny

||Ti,k:(θII ,ϑ
z0
II ,ϑII)||2. (37)

Those parameters of the imprecise stochastic input to the model can then in the most general case be300

determined by solving the following constrained optimization problems:301

[ϑ∗,ϑz0,∗,θ∗] = argmin
ϑ∈ϑII ,ϑ

z0∈ϑz0
II ,θ∈θII

||D(θII ,ϑ
z0
II ,ϑII)||p(1),p(2) (38)

[ϑ∗,ϑz0,∗,θ∗] = argmax
ϑ∈ϑII ,ϑ

z0∈ϑz0
II ,θ∈θII

||D(θII ,ϑ
z0
II ,ϑII)||p(1),p(2) (39)

To solve these optimization problems, any numerical optimizer can be used, depending on the convexity302

and smoothness of the functional relation between ||D||p(1),p(2) and [ϑ,ϑz0 ,θ]. Concerning the computational303

cost of performing these optimization problems, following remarks should be made:304

• In case the model is deterministic (i.e., considering θI), repeated evaluations of Eq. (38) and Eq. (39)305
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for several values of ϑ ∈ ϑII and ϑz0 ∈ ϑz0
II do not require a re-evaluation of Ai, which is convenient306

from a numerical standpoint in case this map is represented by e.g., a finite element model. It should307

furthermore be noted that in case the load becomes interval-valued (i.e., ϑ, ϑz0 and/or ξ become308

interval valued), this problem reduces to a regular propagation of intervals on the structure. In this309

case, the presented approach reduces to the well-known anti-optimisation framework for propagating310

intervals [4].311

• In case the model is subjected to epistemic uncertainty, a re-evaluation of Ai for each realisation of312

θ ∈ θII is required to assess the effect of θ on the operator norm. More specifically, at each step313

of the optimiser, the linear map Ai has to be constructed. For example, in the case of static finite314

element model, the computation of Ai corresponds to assembling the stiffness matrix of the model and315

taking its inverse. Alternatively, in case dynamic time domain calculations are performed, the impulse316

response functions of the model have to be computed, as e.g., discussed in [45]. Since this can entail317

a non-negligible calculation cost, this step of the procedure might consume a considerable amount of318

computational power. Nonetheless, it is still orders of magnitude more efficient than having to solve a319

reliability problem at each step of the optimisation (as performed in a classical double-loop approach).320

4. Numerical examples321

4.1. Example 1: a fully clamped plate322

4.1.1. Model introduction and uncertainty definition323

The first example deals with a model of a thin steel plate of 1 [m] by 1 [m] that is fully clamped at one324

side. The plate is subjected to a distributed load over the top surface, and its displacement u is computed325

using a finite element model consisting of 100 evenly distributed linear shell elements, resulting in 121 nodes.326

As such, there are 110 active nodes in the model. In the analysis, the degrees of freedom per node correspond327

to one translation and two rotations. The distributed load is modelled as the sum of a mean component328

with a zero-mean isotropic two-dimensional Gaussian random field that is governed by a squared exponential329

covariance kernel, and is modeled as:330

F (r,ϑII , ξ) = 1ϑ1 ∗ sin(π/ϑ2) + ϑ3B(ϑ4, r)ξ (40)

with ϑ = [ϑI1, ϑ
I
2, ϑ

I
3, ϑ

I
4] the set of epistemic uncertainties, r ∈ Ω ⊂ R2 a spatial coordinate inside the model331

geometry Ω = [0, 1]2 m, 1 ∈ R110 a vector whose components are equal to 1, B(ϑ4, r) ∈ R100×10 the basis332

of the random field obtained via the Karhunen-Loève expansion retaining the first 10 eigenmodes and ξ a333

vector containing 10 standard normal random variables (see also Appendix A). Physically speaking, ϑ3334
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represents the standard deviation of the random field load and ϑ4 the correlation length. The corresponding335

equilibrium equation associated with the finite element model of the plate is represented as:336

K(θ)u = G (1ϑ1 ∗ sin(π/ϑ2) + ϑ3B(ϑ4, r)ξ) , (41)

with K ∈ R330×330 the stiffness matrix of the plate; θ = [E, t], with E representing Young’s modulus and t337

the thickness of the plate; G is a matrix that couples the loading with the degrees-of-freedom of the finite338

element model; and u ∈ R330 the resulting displacement vector. It is assumed that the degrees-of-freedom339

of the finite element model have beer ordered such that the first 110 components of u correspond to vertical340

displacements. The linear map that has to be used to compute the operator norm is as such given as:341

Ti (θ,ϑ) =

[K−1(θ)Gϑ3B(ϑ4, r)
] [

K−1(θ)G (1ϑ1 ∗ sin(π/ϑ2))
]

0 1

 (42)

and the corresponding augmented matrix is computed similarly to Eq. (34). Failure of the plate is in this342

case study defined as the situation where the displacement ui of the left free corner node of the plate exceeds343

a threshold, specifically |ui| > 0.15 [m], i = 110. Hence, the operator norm is computed with p(1) → ∞ and344

p(2) = 2. In this case study, following intervals are considered: ϑ1 = [7.5; 12.5] [N], ϑ2 = [1; 5], ϑ3 = [0.5; 1.5]345

[N], ϑ4 = [0.5; 3.0] [m], E = [1.85; 2.25] · 10+11 [Pa] and t = [4.8; 5.2] [mm].346

Those parameters that yield the bounds of the probability of failure are determined by solving the347

following optimization problems:348

θ∗,ϑ∗ = argmin
θ∈θI ,ϑ∈ϑI

max
k=1,...,ny

||Ti,k:(θII ,ϑII)||2 (43)

to determine those parameters that yield the lower bound and:349

θ∗,ϑ∗ = argmax
θ∈θI ,ϑ∈ϑI

max
k=1,...,ny

||Ti,k:(θII ,ϑII)||2 (44)

to determine those parameters that yield the upper bound, with θ = [E, t].350

4.1.2. Univariate uncertainty propagation351

The effect of varying each epistemically uncertain parameter separately on the operator norm ||D||p(1),p(2)352

as well as on the probability of failure Pf of the plate is shown in Figure 1. These plots are obtained by353

drawing 100 Latin Hypercube samples in between the bounds of the intervals on the 6 epistemic parameters354

under the assumption of a uniform distribution, and computing the corresponding operator norm and failure355

probability. Note that this uniform distribution is solely applied to visualize the relationship between these356
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parameters, ||D||p(1),p(2) and Pf . The operator norm is computed using Eq. (37), whereas the probability of357

failure is computed using FORM. Since the limit state function is linear with respect to ξ and the stochastic358

dimension of the problem is low, this is a reasonable choice that furthermore allows a rigorous study of359

the problem within reasonable computational cost. From this figure, it is clear that a perfect correlation360

exists between the extrema in ||D||p(1),p(2) and Pf . However, to compute ||D||p(1),p(2) , no propagation of361

the aleatory uncertainty through the model is required. This illustrates that in a univariate case, those362

values for the epistemic parameters that yield the extrema in Pf can be determined without having to363

solve the probability integrals at each step of the optimization, as is the case in Eq. (6) and Eq. (8). For364

the tested parameters, this relationship is furthermore smooth, enabling the use of highly-efficient gradient365

based optimization algorithms such as Quasi-Newton approaches.366

Figure 1: Effect of varying each parameter separately on the operator norm ||D||p(1),p(2) (orange plus signs) as well as on the
probability of failure Pf (blue dots)
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4.1.3. Joint uncertainty propagation367

To solve this case using operator norm theory, the optimization problems defined in Eq. (43) and Eq. (44)368

are solved using Particle Swarm Optimization (PSO) [50]. Afterwards, based on the result of these opti-369

mizations, the corresponding probabilities of failure are computed using FORM. The main computational370

cost in this approach lies in the repeated evaluation of the inverse of the stiffness matrix of the plate to371

compute ||D||p(1),p(2) at each iteration of the optimizer.372

To verify the accuracy of the obtained results, as well as to highlight the effectiveness and efficiency of373

the operator norm approach, the results obtained via this method are compared to two other commonly374

applied approaches to solve this type of problems:375

Vertex analysis: The outer optimization loop, as introduced in Eq. (6) and Eq. (8) is replaced by a376

combinatorial search of the vertices of the epistemic hyper-cube defined by ϑI × EI × tI , where ×377

denotes the Cartesian product. FORM is used to compute the probability of failure for each vertex.378

Solving the double loop directly: The propagation is performed by solving Eq. (6) and Eq. (8) directly,379

where for each step of the Particle Swarm Optimization in the outer loop, a FORM estimate of Pf is380

performed.381

The main computational cost in these approaches lies in the repeated solution of the probability integral382

to estimate Pf for each vertex. Specifically, this calculation has to be performed for each particle position383

in the particle swarm optimization procedure. All computations are performed on a server equipped with384

512 GB of RAM and a 64-core AMD EPYC 6701 CPU @ 2.65 GHz. A single evaluation of this FE model385

requires approx. 15 [s] on this machine (including computational overhead).386

The results of these computations are illustrated in Table 2; also the operator norms corresponding to387

the bounds corresponding to the optimum that is obtained by the Vertex Analysis and Double loop approach388

are listed for the sake of comparison. As can be noted, the results obtained by the optimization over the389

Operator Norm and the double loop match up to the numerical precision of the Particle Swarm Optimizer.390

This shows that also in case all parameters are jointly considered, the decoupled propagation using the391

operator norm is capable of predicting the correct bounds on the probability of failure. It is important to392

note that this estimate comes at a greatly reduced computational cost, since no repeated solution for Pf is393

required, as is evidenced in the Table. Indeed, the computation of the upper bound for instance using the394

operator norm required 880 model evaluations to determine ϑ∗ + an additional 33 evaluations to compute395

Pf using FORM. The double loop approach on the other hand required 22957 model evaluations to derive396

the same estimate. It should furthermore be noted that this difference will be further amplified in case397

simulation methods are used to determine Pf . This Table also shows that the Vertex method, although in398
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this case also highly efficient since both bounds are obtained in the same propagation loop, fails to provide399

the correct bounds, which is caused by the non-monotonous relationship between Pf and ϑ2.400

Table 2: Results obtained by (1) applying the Vertex analysis, (2) optimising over the operator norm and (3) solving the double
loop problem on the case with an epistemically uncertain linear map

Vertex analysis min||D||p(1),p(2) minPf

ϑ∗ ϑ∗ ϑ∗ ϑ∗ ϑ∗ ϑ∗

||D||p(1),p(2) 0.0208 0.0859 0.0208 0.1112 0.0208 0.1112
Pf 8.67 · 10−06 0.2907 8.67 · 10−06 0.4889 8.67 · 10−06 0.4889
n0 FE solutions 1794 640 + 47 880 + 33 18156 26539

4.2. Example 2: building model401

The second example involves the six story reinforced concrete building model depicted in Figure 2, which402

is borrowed from [51]. Each floor plan is of square shape with side length 32 m and story height of 3.6 [m].403

All floor slabs possess a thickness of 20 cm and are supported by a C-shaped shear wall of 20 [cm] thickness404

and 16 columns of square cross section with side length 40 [cm]. The Young’s modulus is set equal to405

2.3 × 1010 [Pa]. It is assumed that the building undergoes small displacements and hence, it is modeled406

as linear elastic. The behavior of the building is characterized by means of a finite element model that407

comprises about 9500 shell and beam elements and more than 50 × 103 degrees-of-freedom. The building408

is excited by a stochastic ground acceleration along the y direction. This ground acceleration is generated409

considering a modulated Clough-Penzien (CP) model (see Appendix B), with nominal parameters ϑ =410

[ωg, ωf , ζg, ζf , S0, c1, c2] = [4π [rad/s], 0.4π [rad/s], 0.7, 0.7, 3 × 10−4 [m2/s3], 0.14, 0.16]. The total duration411

of the acceleration is 20 s and the time step discretization is ∆t = 0.01 s. Due to design purposes, it is of412

interest to control that the interstory drifts along the y direction do not exceed a threshold level of 2× 10−3413

times the story height. These interstory drifts are controlled at five points, between nodes n2-n1, n3-n2,414

n4-n3, n5-n4 and n6-n5, as illustrated in Figure 2. The probability of failure, represented by a first excursion415

probability, is computed using Directional Importance Sampling [17] with a sample size of 500 deterministic416

model evaluations. In this case study, 13 epistemically uncertain parameters are considered on top of this417

aleatory uncertain load: the 7 parameters corresponding to the modulated Clough-Penzien autocorrelation418

spectrum, as well as Young’s modulus of each floor slab of the building. These values are represented in419

Table 3.420

The interstory drift values are computed using the convolution method explained in Appendix C. Via421
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Figure 2: Example 2 – Isometric view of the building model

this approach, a linear map A is calculated per interstory drift as:422

Ai =


aT
i,1

aT
i,2

...

aT
i,2001

 , (45)

with i = 1, 2, ..., 5. Then, based on this set of 5 maps, the following optimization problems are solved to423

Table 3: Bounds of the epistemic parameters in the building model

Lower bound Upper bound
ωI
g 2.40π [rad/s] 8π [rad/s]
ωI
f 0.24π [rad/s] 0.8π[rad/s]
ζIg 0.6 0.85

ζIf 0.6 0.85

SI
0 2.25× 10−4 [m2/s3] 3.75× 10−4 [m2/s3]
cI1 0.12 0.16
cI2 0.14 0.18
E 2.07× 10+10 [Pa] 2.53× 10+10 [Pa]
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determine those epistemic parameters that provide the bounds on the probability of failure:424

[E∗,ϑ∗] = argmin
E∈EI ,ϑ∈ϑI

max
i

max
l

Ai,l: (46)

to determine those parameters that yield the lower bound and:425

[E∗,ϑ∗] = argmax
E∈EI ,ϑ∈ϑI

max
i

max
l

Ai,l: (47)

to determine those parameters that yield the upper bound. These optimization problems are solved using426

Particle Swarm Optimization. The corresponding probability of failure values are subsequently computed427

via Directional Importance Sampling.428

Also in this case study, the presented approach based on operator norm theory is compared against two429

other commonly applied approaches to illustrate the effectiveness and efficiency. Specifically, it is compared430

against:431

• a vertex analysis, where all combinations of the bounds of the parameters in ϑI are combined, leading432

to 213 = 8192 computations of the probability of failure and hence, 4096000 deterministic model433

evaluations434

• Quasi Monte Carlo simulation under the assumption of a uniform distribution between the bounds in435

ϑI comprising of a Sobol sequence with 10000 points, leading to 10000 computations of the probability436

of failure and hence, 5000000 deterministic model evaluations,437

The results of the propagation of the uncertainty through the building model, obtained by perform-438

ing the three propagation approaches as discussed above are illustrated in Table 4. In this table, D̃ =439

maximaxl Ai,l:. From this table, it is clear that the Operator norm optimization is perfectly capable of440

bounding the probability of failure on the structure, given the sources of uncertainty, at greatly reduced441

computational cost in comparison to the other approaches. In fact, the upper bound of Pf is not perfectly442

captured by the Vertex method, which can be explained by a possible non-monotonic relationship between443

the parameters and input of the model and Pf , which is caused interplay between the frequency content of444

the non-stationary stochastic base excitation with resonances inside the structure. Since the Vertex method445

requires such monotonicity, it underestimates the upper bound. Finally, it is shown that applying Quasi446

Monte Carlo simulation to replace the outer loop in this case gives a large under-estimation of the bounds447

on Pf , despite the extremely high computational cost.448

These conclusions are furthermore confirmed by Figure 3. This figure shows Pf plotted against ||D̃||p(1),p(2) ,449

where Pf is obtained by performing a Vertex analysis (blue crosses), Quasi Monte Carlo sampling (orange450
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Table 4: Results obtained by (1) applying the Vertex analysis, (2) replacing the outer loop with Quasi Monte Carlo and (3)
optimizing over the operator norm

||D̃||p(1),p(2) Pf n0 FE solutions

Vertex analysis ϑ∗ 0.0012 6.328 · 10−08

4096000
ϑ∗ 0.0025 0.0855

Quasi Monte Carlo ϑ∗ 0.0013 9.0432 · 10−07

5000000
ϑ∗ 0.0023 0.0481

min||A||p(1),p(2)
ϑ∗ 0.0012 6.59 · 10−08 500+3000
ϑ∗ 0.0025 0.0894 500+2100

dots) and the optimization approach based on operator norm theory that is introduced in this paper (black451

diamonds). This figure furthermore shows that a reasonably smooth and monotonically increasing relation-452

ship between Pf and ||D̃||p(1),p(2) exists.453

Figure 3: Results of the propagation of the uncertainty through the building model, obtained by performing a Vertex analysis
(blue crosses), Quasi Monte Carlo sampling (orange dots) and the optimization approach (black diamonds).

5. Conclusions454

This paper presents a new approach to efficiently and effectively bound the responses and probability455

of failure of a model that is affected by combinations of epistemic, aleatory and imprecise probabilistic456

uncertainty. Whereas such propagation is typically performed following a double-loop approach, the devel-457

opments in this paper allow for propagating these sources of uncertainty with a strict decoupling between458

aleatory and epistemic uncertainty by virtue of the operator norm theorem.459
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The paper shows that, under the specific scope of linear models subjected to epistemic uncertainty to460

which an imprecise probabilistic load is applied, a gain in computational efficiency with several orders of461

magnitude can be obtained. Two case studies highlight the effectivity and efficiency of the method, especially462

in comparison to naive double-loop approaches. As limitations of the method, it should be noted that (1)463

only linear models can be considered due to the definition of the operator norm theorem and (2) aleatory464

uncertainty within the linear map (i.e., the structural model) is not possible due to the non-separability of465

the sources of uncertainty in this case.466
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Appendix A. Karhunen-Loève expansion473

Assume a stochastic process p(t, ξ). This process is represented at discrete time instants by means of474

the Karhunen-Loève expansion as:475

p (ξ) = µp +ΨΛ1/2ξ, (A.1)

or equivalently:476

p (ξ) = µp +Bξ, (A.2)

where p denotes a nT × 1 vector containing the sample of the loading; nT is the total number of time477

steps, which is equal to nT = T/∆t + 1; ξ is a realisation of the random variable vector Ξ which follows a478

nKL-dimensional standard Gaussian distribution; nKL is the number of terms retained in the KL expansion;479

Ψ is a nT ×nKL matrix whose columns contain the eigenvectors associated with the largest nKL eigenvalues480

of the discrete autocovariance matrix Γ of the Gaussian process; µp is the mean of the stochastic process; Λ481

is a nKL × nKL matrix whose diagonal contains the largest nKL eigenvalues of the covariance matrix of the482

stochastic process and B a matrix collecting the eigenvectors scaled by the square root of the eigenvalues of483

the covariance matrix. As is clear from this formulation, in case the central moments of the process become484

interval valued, a definition of the process of clearly separated aleatory and epistemic parameters is obtained485

in an affine form.486
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Appendix B. Clough-Penzien spectrum487

488

One of the most commonly used parametric models for the power spectral density associated with ground489

acceleration is the Kanai-Tajimi spectrum (see, e.g. [52]), whose physical basis consists of a white noise490

process of spectral intensity S0 associated with the bedrock excitation that passes through a linear soil filter491

characterized in terms of a natural frequency ωg and damping ζg. A drawback of the Kanai-Tajimi spectrum492

is that its associated velocity and displacement power spectra are not defined as the circular frequency tends493

to zero (ω → 0). Such issue is remedied by the Clough-Penzien power spectrum, which passes the signal494

produced by the Kanai-Tajimi spectrum through an additional linear filter with natural frequency ωf and495

damping ζf . The expression for the Clough-Penzien power spectrum SCP is given by [52, 53]:496

SCP(ω) =
ω4
g + (2ζgωgω)

2(
ω2
g − ω2

)2
+ (2ζgωgω)

2
· ω4(
ω2
f − ω2

)2
+ (2ζfωfω)

2
· S0 (B.1)

Typical values for the filter parameters associated with the Clough-Penzien power spectrum as suggested497

in [54] are shown in Table B.5. The autocorrelation function RCP (τ) associated with the Clough-Penzien

Soil type ωg [rad/s] ζg ωf [rad/s] ζf
Firm 8π 0.60 0.8π 0.60

Medium 5π 0.60 0.5π 0.60
Soft 2.4π 0.85 0.24π 0.85

Table B.5: Filter parameters associated with Clough-Penzien power spectrum
498

power spectrum is calculated taking the inverse Fourier transform of SCP; the reader is referred to [55]499

for the exact formulations. The above discussion assumes that the ground acceleration can be modeled500

as a wide-sense stationary stochastic process. It is clear that this is a simplifying assumption, as ground501

acceleration exhibits a non stationary behavior. A possible means for including such effect in the Clough-502

Penzien model consists of modulating the white noise bedrock process by means of a deterministic function503

of time m(t) (see, e.g. [56]). Here, the so-called Shinozuka and Sato modulating function [57] is considered:504

m(t) =
1

c3

(
e−c1t − e−c2t

)
(B.2)

where c1 and c2 are parameters of the model and c3 is defined such that the maximum value of the modulating505

function is equal to unity, yielding:506

c3 =
c1

c2 − c1
e

c2
c2−c1

ln
(

c2
c1

)
(B.3)
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Appendix C. Calculation of the response of a linear structure by means of the convolution507

integral508

Assume that the response y(t, ξ) of a linear structure corresponds to the dynamic displacement of a509

certain degree-of-freedom, where the dynamics of the structure are represented by:510

Mη̈(t, ξ) +Cη̇ (t, ξ) +Kη (t, ξ) = ρp (t, ξ) , (C.1)

with t ∈ [0, T ] and η(0, ξ) = η̇(0, ξ) = 0; and where t denotes time, η ∈ RnD , η̇ ∈ RnD and η̈ ∈ RnD511

are vectors that represent the displacement, velocity and acceleration; M ∈ RnD×nD , C ∈ RnD×nD , and512

K ∈ RnD×nD are the mass, (classical) damping and stiffness matrices. The stochastic Gaussian loading513

p(t, ξ) is coupled to the degrees-of-freedom of the structure by means of vector ρ.514

Such response can be calculated by means of the convolution integral:515

y (t, ξ) =

∫ t

0
h (t− τ) p (t, ξ) dτ, (C.2)

where h(t) is the unit impulse response function, which is defined as:516

h(t) =

nD∑
v=1

γTϕvϕ
T
v

ϕT
v Mϕv

1

ωv,d
e−ζvωvt sin(ωv,dt), (C.3)

where ϕv, v = 1, . . . , nD are the eigenvectors associated with the eigenproblem of the undamped equation of517

motion; ωv, v = 1, . . . , nD are the natural frequencies of the system; ζv, v = 1, . . . , nD are the corresponding518

damping ratios; ωd,v = ωv

√
(1− ζ2v ), v = 1, . . . , nD are the damped frequencies; γ is a vector that retrieves519

the degree-of-freedom of interest; and (.)T denotes transpose.520

Taking into account the representation of the stochastic loading in terms of the Karhunen-Loève expan-521

sion as described in Appendix A and time discretization step ∆t, the convolution integral in Eq. (C.2) can522

be approximated as a summation, where the dynamic response of interest evaluated at time tk is:523

y(tk, ξ) =

k∑
l1=1

∆tϵl1h(tk − tl1)

nKL∑
l2=1

ψl1,l2

√
λl2ξl2

 (C.4)

= aT
k ξ, k = 1, . . . , nT , (C.5)
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where ψl1,l2 is the (l1, l2)-th element of matrix Ψ; ak is a vector of dimension nKL × 1 such that:524

ak =



∑k
l1=1∆tϵl1h(tk − tl1)ψl1,1

√
λ1∑k

l1=1∆tϵl1h(tk − tl1)ψl1,2

√
λ2

...∑k
l1=1∆tϵl1h(tk − tl1)ψl1,nKL

√
λnKL ,

 (C.6)

and ϵl1 is a coefficient depending on the numerical integration scheme used in the evaluation of the convo-525

lution integral. For the case where the trapezoidal integration rule is chosen, ϵl1 = 1/2 if l1 = 1 or l1 = k;526

otherwise, ϵl1 = 1.527

528
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