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Shock buffet on wings is a phenomenon caused by strong shock-wave/boundary-layer in-
teraction resulting first in self-sustained flow unsteadiness and eventually in a detrimental
structural response called buffeting. While it is an important aspect of aircraft design and
certification, particularly for modern transonic air transport, not all of the underlying mul-
tidisciplinary physics are thoroughly understood—yet very little work has been done in that
direction on practical aircraft cases. This work builds upon the triglobal shock-buffet stability
study by Timme [1] while aiming to investigate the impact of a flexible wing structure in these
extreme flow conditions. The implementation of the coupled Jacobian matrix in an industrial
solver enables the first triglobal stability analysis of a fluid-structure coupled system, utilising
the implicitly restarted Arnoldi method with a sparse iterative Krylov solver and novel pre-
conditioner. The chosen test case is the NASA Common Research Model for which both fluid
modes on the rigid (yet statically deformed) wing and modes describing the dynamic aeroelas-
tic behaviour (computed from a standard flutter analysis) guide the process. First, geometric
asymmetry resulting from a static aeroelastic simulation based on a finite-element model of the
wind-tunnel geometry modifies the global modes of the previous fluid-only symmetric full-span
analysis. Second, flutter stability analysis at wind-tunnel flow conditions below shock-buffet
onset finds no instability in the structural degrees of freedom, whereas in shock-buffet flow with
globally unstable fluid modes additional marginally unstable structural (and fluid) modes are
identified. Third, the coupled triglobal stability tool is indeed instrumental in identifying those
physically dominant modes where a standard pk-type analysis fails. Together with our compan-
ion paper [2], we contribute to the question on how the presence of the flexible wing structure
impacts on the otherwise pure aerodynamic three-dimensional shock-buffet dynamics.

Nomenclature
1 = Identity matrix
J = Jacobian matrix
M,C, K = Mass, damping, stiffness matrices
m = Number of structural degrees of freedom
ny = Number of fluid degrees of freedom
P = Preconditioner matrix
R = Residual vector
S = Schur complement matrix
w = State vector
X = Structural vector
n = Vector of generalised coordinates
A=o0+iw = Eigenvalue with growth rate o = Re(1) and angular frequency w = Im(Q)
D = Modal matrix from structural vibration analysis
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I. Introduction

Aeroelasticity is the field of aerospace engineering that combines aerodynamic, elastic and inertial systems and
was established over a century ago [3H3]]. Since then, its study has clarified many important phenomena that plagued
engineers and helped design countless aeroplanes, bridges, wind turbines and more. Static and dynamic instabilities
such as divergence, violent flutter, limit-cycle oscillation and shock buffet (and its structural buffeting response) are
detrimental to the safety, efficiency and comfort of an aeroplane and can even cause disastrous destruction. Therefore,
the accurate and fast prediction of these phenomena is critical to inform aircraft design iterations. Major advances in
numerical analysis of fluids and structures have offered invaluable insights in this process.

Shock buffet is a phenomenon whereby the interaction between a shock wave and a boundary layer results in strong,
self-excited oscillations. While it has been known since the 1960s, a definite physical explanation incorporating all
underlying multidisciplinary aspects still alludes researchers and design engineers alike. Since its discovery, experimental
research has significantly increased its understanding and continues to this day [6H8]. One of the first explanations of
shock buffet on aerofoils was given in [9], proposing an acoustic feedback loop that sustains the shock oscillations and
several subsequent experimental studies supported the theoretical findings [[7,[10]. For finite wings, on the other hand,
spanwise outboard propagation of buffet cells has also been observed experimentally [8}!11] and numerically [12, [13]].
The first numerical work to identify a global instability linked to aerofoil shock buffet was presented in [[14}[15]]. Since
then, various studies have expanded on these findings, most recently by introducing generic infinite-wing geometries
and investigating the impact of key geometric wing sizing parameters such as aspect ratio and sweep angle [16H18]].
Practical finite-wing aircraft cases have also been studied by global stability analysis [1 19} 20].

The mutual interaction between a flexible structure and shock buffet has been investigated previously, too. Importantly,
it has been shown, for a pitch-plunge (and variants thereof) typical section aerofoil, that the introduction of an elastic
structure has the ability to destabilise an otherwise stable flow [21]]. That work also points out limitations of traditional
flutter methods, such as a pk-type analysis, in tracing all relevant modes, prompting the development of more advanced
methods. This is congruent with our discussion. The phenomenon of lock-in was found in different numerical studies.
For instance, one degree-of-freedom pitch and two degree-of-freedom pitch-plunge typical section aerofoils were
studied in [22] and the relation between the frequencies of the elastic structure and shock buffet was found critical in
the analysis of lock-in and limit-cycle oscillations. Lock-in was also shown to be caused by fluid-mode flutter and not
only as a resonance mechanism [23]]. Experimental work on a finite wing found that weak shock-wave/boundary-layer
interaction does not affect the structural system strongly, despite large flow field fluctuations [24]. With increasing
shock strength due to higher free-stream Mach number, however, strong fluid-structure coupling was observed, despite
weaker fluctuations in the flow overall, and the aeroelastic system responded to the unsteady flow excitation.

This contribution builds upon previous work in [1], that studied the fluid-only shock-buffet instability on a finite-wing
aircraft. We introduce a coupled Jacobian matrix, accounting for the fluid-structure interaction, to enable the search for
dominant fluid modes while at the same time determining the impact of the flexible wing structure. Previous work used
the Schur complement method to trace aeroelastic modes describing the wing vibration [25} 26]. This formulation,
which can be shown to be equivalent to legacy tools in industrial flutter analysis, is an efficient way of establishing
the flutter boundary while making use of computational fluid dynamics functionality for the aerodynamics. However,
it is unsuitable for finding fluid instabilities due to the mathematical structure of the coupled physics. The method
introduced herein does not require any rearrangement or decomposition of the matrix eigenvalue problem. Our coupled
solution approach with an inner-outer iterative structure relying on the shift-invert spectral transformation necessitated
the implementation of a novel preconditioner for the inner sparse iterative linear equation solver, while offering speed-up
compared to block-Jacobi type preconditioning. In previous work, the aerostructural coupled system has been solved in
the context of adjoint gradient computation. Discipline-specific preconditioners from the fluid and structural solvers
were reused in [27] in a block-Jacobi fashion, noting that discarding the off-diagonal coupling terms allows for easier
parallelisation. Block-Jacobi and Gauss—Seidel preconditioners for a three-field formulation were compared in [28]].
While this is an intricate discussion, clear performance gains were realised overall when including various coupling
terms. A similar strategy of observing the discipline coupling is followed in our work.

This paper continues with a description of the physical models and implementation details in Section[[ll The focus is
on the coupled Jacobian matrix and the adaptation of the iterative inner-outer eigenvalue solver, using the implicitly
restarted Arnoldi method from the Arpack linear algebra library and a bespoke sparse iterative linear solver, all made
available in the industrial DLR-TAU solver. The adoption of the Sherman—Morrison—Woodbury formula for the parallel
inversion of block-arrowhead matrices in deriving a preconditioner for the coupled fluid-structure system and its benefits
are discussed, too. As test case for method verification, the Goland wing is briefly considered. Results for the NASA
Common Research Model are scrutinised in Section



I1. Theory and Numerical Methods

A. Physical Models
The starting point of our work is the set of governing equations in semi-discrete form
dw
— =R(w), 1
=R M

where w is the state vector and R is the corresponding residual vector, which both comprise two parts, w = [w§ ,wihT
and R = [R;, RT]T, representing the fluid and structure, respectively. In addition, the latter expression depends on a
number of parameters which are not explicitly stated herein.

The fluid system is governed by the Reynolds-averaged Navier—Stokes (RANS) equations in three-dimensional
space coupled with a suitable turbulence model. The fluid state vector w s of conservative variables is given by
wr = [p,pu,pE, p7]T, where p is the density, u the Cartesian velocity-field vector, E the energy and ¥ the working
variable of the turbulence model, when using the negative Spalart—Allmaras model [29]. The governing equations

written in integral form in the arbitrary Lagrangian Eulerian formulation can be stated as

4 wde+/ (F-F,-wgx)- -ndS = Qdv, 2)
dr Jou 82 (1) Q)
where Q is a time-dependent discrete control volume enclosed by 0Q, the vectors F and F,, are the inviscid and viscous
fluxes, respectively, n is the outward normal vector to Q, X is the mesh velocities vector and Q is the source term of
the turbulence model. The discretised RANS equations (plus turbulence model) provide the fluid part of eq. @) and R
encompasses the last two integrals and an additional term arising from the discrete geometric conservation law. The
dimension of the fluid system, ny, is given by the number of mesh points times the number of conservative variables.
The structural system is governed by the second-order ordinary differential equation,

Mis+Cxg+Kxg = f, 3)

where M, C and K represent the constant mass, damping and stiffness matrices, respectively, f are any present forces,
specifically the aerodynamic forces in our case, and x ¢ are the structural coordinates. The deformation of the structure, x g,
is given by x; = @5, where @ is a matrix consisting of the spatial mode shapes of the structural system and 7 gives the
temporal amplitude of each mode shape to the resulting deformation. Matrix @, together with the in-vacuum structural
frequencies, is obtained from a vibration analysis of the underlying finite-element model. The structural equation of
second-order is both projected into the modal space (using m dominant modes with lowest frequency) and rewritten as a
first-order equation by standard augmentation, giving wy = [p7, /7|7 and Rj is the structural residual defined by

R, = Dw, +0EDT f(w ;. w,), )

where D = [0, I; ~®T K&, ~®T CP] and E = [0, I]7, with I being the m x m identity matrix. The mass ratio 1} is the
result of writing the equation in dimensionless form and is a function of reference density and length in our formulation.
If the mode shapes are mass normalised such that the generalised mass matrix is @' M@ = I, the generalised stiffness
matrix, @7 K®, is a diagonal matrix containing the squares of the angular frequencies of each mode. The dimension
of the fluid problem, nr, is much larger than that of the structural problem, 2m, due to both the requirements on the
resolution of the non-linear fluid flow and the linear nature of the structural model with constant mass, damping and
stiffness matrices. We discard structural damping throughout in the following.

With the governing equations of the fluid and structural systems defined, we can return to eq. (I). Decomposing the
unknown fluid and structural variables into steady-state base and perturbation vectors via w(f) = w + w (¢) results, after

some more manipulation, in the linearised algebraic equations of the form
dw
—=Jw 5
m &)

where J = dR/dw is the coupled Jacobian matrix, which is a large, sparse matrix consisting of four blocks
J=[Jsr dgsiJsp o Iss], with Jyp = QEDT A f /0wy and J = D + 9EDT 4 f /0w . If a solution ansatz of the form
w (1) = wel is taken, eq. (5) can be recast as an eigenvalue problem,

W =Jw, (6)
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where A4 = 0 + iw denotes the eigenvalue, which is a complex number consisting of a growth rate o and angular
frequency w, and w is the corresponding eigenvector containing the complex amplitudes describing the coherent
dynamics. When o is greater than zero, the system is said to be globally unstable and this is what must be prevented
within the aircraft flight envelope. Hence, the solution of this eigenvalue problem is desired as a first step in the analysis
(once a non-linear equilibrium solution w of eq. (IJ) is available).

B. Numerical Approach

Base State Calculation

The RANS equations (plus turbulence model) are solved using the industrial DLR-TAU code which uses a
second-order, finite-volume, vertex-centred spatial discretisation [30]. The inviscid fluxes are computed using a central
scheme with matrix artificial dissipation. The Green—Gauss theorem is used to evaluate the gradients of flow variables for
viscous fluxes and source terms, where needed. Turbulence closure is provided by the negative Spalart—Allmaras model
using the Boussinesq eddy-viscosity assumption. The far-field boundary is realised by the method of characteristics
while the no-slip condition on viscous walls is enforced strongly. Additionally, when a symmetry plane boundary
condition is required (specifically, for our wing test case to verify the implementation), this is imposed by removing
components of the momentum equations normal to the plane. The steady-state flow solution is converged to low residual
levels using the backward Euler method with lower-upper symmetric Gauss—Seidel iterations and local time-stepping. A
geometric multi-grid method is also used to improve convergence rates.

The static aeroelastic solution of the coupled system is obtained by solving ® K& n = & f (wy, 1) iteratively,
whereby the flow solver is integrated into the multidisciplinary simulation environment FlowSimulator, see for
instance [31]. Note, since in the typical scenario the aerodynamic and structural points do not coincide, resulting in a
coordinate mismatch between @ and f, the structural deformations have been splined to the aerodynamic surface mesh
points, using radial basis function interpolation in a pre-processing step.

Aeroelastic Triglobal Stability Calculation

The Jacobian matrix blocks of the linearisation are calculated on the statically deformed geometry for subsequent
stability analysis. Matrices J¢y and Jgr are computed from a hand-derived, analytical formulation, while J¢g is
computed using a central finite-difference residual evaluation on the deformed volume mesh. Forming J is trivial due
to the modal nature of the structural system. Note that the viscous contribution to the aerodynamic forces f is discarded
herein, leaving the pressure components only. Details on the meaning and simplifications can be found in [26], while a
thorough discussion of the linear harmonic solver in DLR-TAU can be found in [32].

In previous work [26} |33} 134], the coupled fluid-structure system was solved using the Schur complement eigenvalue
method. This method utilises the Schur complement matrix S to solve for the structural part of the eigenvalue problem
in eq. (6). Rearranging gives

S(ws = g, (N

where S(2) is expressed as
S(A) =Js = Jyp Jpp — A g, (8)

and A is an eigenvalue of the uncoupled structural system. This is an important condition, as will be seen below. The
second part of the right-hand side of eq. (8) is dubbed the interaction matrix Q = Jg¢ (J55 — Al )‘IJfS and can be formed
in both the frequency and time domain. It was noted by the authors that determining the values of the Schur complement
matrix requires considerable computational effort, if not done effectively. As it depends on the steady-state solution
and the eigenvalue, scanning over a large parameter space quickly becomes prohibitive, and thus approximations are
needed. While multiple approaches to approximating matrix Q were offered, a linear spline interpolation was chosen as
a surrogate herein while iterating to the eigensolution. Depending on using either A or iw in forming matrix Q, the
Schur complement method can be shown to be equivalent to either a classical p or pk flutter analysis [35].

There are two requirements for the Schur complement method to work; an appropriate shift based on the structural
(in-vacuum) frequencies (or a previously converged solution) and the matrix decomposition with relevant eigenmodes
from Jg. Whilst the former can be obtained through engineering insight even for a fluid mode, it is not possible to
obtain the latter when interest is in modes emerging from the fluid system. Hence, a coupled eigenvalue solver is needed,
incorporating the full Jacobian matrix. This can be done by using the methods available through the Arpack library.



Table 1 Typical parameter settings used for inner-outer eigenvalue solver.

Parameter Value
Maximum number of eigenmodes per shift 5
Maximum number of outer iterations 1
Size of Krylov space for outer iterations 30
Convergence criterion on outer iterations 106
Size of Krylov space for inner iterations 120
Number of deflation vectors for inner iterations 20
Convergence criterion on inner iterations 107

The implicitly restarted Arnoldi method, as implemented in the Arpack library, is a routine for finding a set of
eigenvalues for large sparse matrices [36]. Starting with a random vector v, the algorithm computes, in principle, the
so-called Krylov subspace, ‘K = [v, Jv, J2v, .. 0 ’_lv] of dimension r. After each multiplication with J, the resulting
vector is orthonormalised and added as column to a matrix V,.. Following projection, a few Ritz eigenvalues A, and
corresponding Ritz approximate eigenvectors w = V,.y,. (where eigenvector y,. is associated with 4,.) of the Hessenberg
matrix H, = V}JV, are good approximations of those of /. A major advantage is that the algorithm needs only to
compute the matrix-vector product Jv, so the full matrix J does not need to be stored explicitly. The algorithm can also
be run in shift-invert mode to find the largest eigenvalues closest to a user-defined complex-valued shift { by operating
on v with (J — £I)~! instead of J. To achieve this, a linear system of the size of the coupled problem needs to be
solved and a practical way is using an iterative Krylov subspace solver. An inner-outer iterative eigenvalue method is
thus established, whereby the outer implicitly restarted Arnoldi process is used to find the eigenvalues while an inner
iterative solver enables the shift-invert operation. The generalised conjugate residual method with deflated restarting
(GCRO-DR) is used as the inner iterative solver [37]. Following the insight gained in [[1], typical parameter settings for
the eigenvalue computations discussed herein are summarised in table [T}

The GCRO-DR method is an iterative methods for solving systems of linear equations [38} [39]. It utilises the
restarted Arnoldi method for solving the system Ax = b by seeking a solution vector x that minimises the norm of
the residual ||b — Ax||. Specifically, compared with the standard generalized minimal residual method, GCRO-DR
recycles the Krylov subspace between restarts, with the potential both to accelerate convergence and to reduce the
required size of the subspace. A preconditioned version of Krylov subspace methods is needed in practice to achieve
convergence, with the preconditioner P~! being an approximation of A~!. Ideally, P~! should be as close to A™! as
possible, without incurring a large computational cost for both computing and applying the preconditioner. In doing so,
using preconditioning reduces the condition number of the system and can offer significant speed-up.

When running the linear harmonic solver in DLR-TAU in parallel, the implementation approximates the fluid-only
matrix used for preconditioning by a block-Jacobi form of J¢¢. Specifically, when running on n cores, the Jacobian
matrix J sy would be split into n block-rows (one block-row per core including all entries needed for global matrix-vector
products), and only the diagonal block of it is used for preconditioning. This matrix] is then factorised by the
incomplete lower-upper method with O level of fill-in, denoted ILU(0). However, such approach poses a challenge for a
fluid-structure coupled system in parallel, as the coupling matrices, J ¢, and Jyr, would be discarded, when using an
equivalent block-Jacobi formulation extended to the structural degrees-of-freedom. A new preconditioning approach,
henceforth referred to as the arrowhead preconditioner, was used in the parallel implementation to address this coupling
challenge. Initial testing was done with a simple case, specifically the coarse-mesh Goland wing described below, as the
corresponding coupled Jacobian matrix was small enough to fit into memory of a single core and be factorised using
ILU(0), without discarding the coupling blocks. The results from these sequential tests were then used as a benchmark
to verify the implementation of the various code additions in parallel and assess the performance.

Arrowhead Preconditioner
When using the fully coupled Jacobian matrix in parallel, block-Jacobi preconditioning discards the coupling
matrices, Jyr and Jzg. Therefore, incorporating these matrices in the formulation grants a better approximation of the

*Note that it was found beneficial for reasons of rate of convergence and stability to factorise a matrix which combines Jacobian matrices arising
from approximate first-order and exact second-order spatial schemes [40].



Algorithm 1 Preprocessing stage for arrowhead preconditioner P~!

Require: ILU decomposition of J¢f ; = (LU);, coupling matrices J,; and Jyr ; (all local to each core i), and J
1: Create Y; = (LU )l._ 1.[ fs,i and store on respective core
2: Create G; = Jgr; ¥; and sum globally to create G = 3; G; on each core
3: Create F by inverting (J& — G) and store on each core > done on each core, as F' is only of size J

Algorithm 2 Compute stage to obtain P~y

Require: LU;,Y;, F, fluid vector v ¢ ; (local to each core i) and structural vector v,
1: Compute wy; = (LU) vy,
2: Create z; = Jgr,; w,; and sum globally to obtain z = }; z;
3: Compute wy = —F(z — vy)
4: Compute wy; =wy; +Y;wg

inverse. This is possible by utilising an identity from a recent paper by Stanimirovi¢ et al. [41]], which gives the inverse
of a block-arrowhead matrix based on the Sherman—Morrison—Woodbury formula.
Block-arrowhead matrices have the form of

A O 0 ... B
0 A, 0 ... B
P=]l0 0 . R 9
: : A, B,
¢, C ... ¢, D

resembling our specific problem, where we define A; = J¢y ; (i.e. the local diagonal blocks of J¢ ¢ ), B; = J¢si, Ci = Jgr
and D = Jg. Subscripts i = 1,...,n denote the core number. Here, although all off-diagonal blocks of J¢ are
discarded like before for the fluid-only problem, all elements of the other matrices are kept. The inverse of P is then
given by

AT 00 0\ [aip
0 Agl o ... 0 AE]Bz
Pl=lo o - | o R (aa) oy sy -), (10)

P A0 A,'B,
0O 0 ... 0 0 =1
where matrix F is define as |

F= D—anc,-A;‘B,-
i=1

and / is the identity matrix of the same dimensions as D. Computing the factor Ai_1 B; in F essentially requires applying
the ILU factorisation of the fluid Jacobian matrix J ¢ ; to the 2m columns of matrix J¢,; (on each core locally). However,
this needs to be done only once and for all, so computing Ai‘lBi and F can be done as a preprocessing step, described in
algorithmm The additional memory requirements are one matrix of size J; and one of size Jy. Preconditioning a
random vector v is explained in algorithm[2} Compared to applying the block-Jacobi variant, besides operations on the
negligible size of the structural system, only two additional matrix-vector products (one with matrix Jsr; and one with
matrix ¥;), a vector-vector addition of size n s and one global sum of size 2m are needed, which makes the computational
overhead acceptable. Note, since matrix Js is very sparse with the only non-zero entries coming from the surface
points where the generalised forces are integrated, matrix-vector products with this matrix are relatively cheap.

For debugging and verification purposes, the Goland wing was introduced. This wing is cantilevered with a constant
4%-thick, symmetric, parabolic-arc aerofoil and a span of 20 ft and chord of 6 ft. The structure is modelled by a
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Fig. 1 Part of eigenspectrum for Goland wing test case (medium mesh) as computed by a pk-type method,
showing trace with respect to altitude and eigenvalue at target altitude of 30 000 ft, compared with implicitly
restarted Arnoldi method (IRAM) as implemented in DLR-TAU through coupling with Arpack library. An
exact p-type analysis, without approximations on the linearised aerodynamic response, is also shown.

finite-element method (FEM), with details to be found in [42]]. Two fluid meshes are used; one coarse mesh with
approximately 20 000 points and one medium mesh with 400 000 points. Inviscid flow at a reference free-stream Mach
number of M = 0.845 and zero degree angle of attack is assumed. The target altitude for the aeroelastic analysis
is 30000 ft. The steady-state solution for the Goland wing was computed using the Euler equations. To solve the
eigenvalue problem in DLR-TAU, a maximum of 1 outer iteration was set with a Krylov space of 25 and a convergence
criterion of 107, The Krylov space for the inner iterations was 150 with 20 deflation vectors and a convergence
criterion of 10719, This was done twice at shifts of £ = 0.05 + 0.15; and 0.05 + 0.45i, corresponding to the vicinity
of the wind-off structural frequencies. Solely for debugging purposes, the relevant modes were first computed on the
coarse mesh using three different methods, specifically the herein introduced coupled eigenvalue solver (running both
sequential and parallel modes), the Schur complement method and a direct matrix solution using Matlab (which also
makes use of the implicitly restarted Arnoldi eigenvalue method), after exporting the coupled matrix, and the agreement
was excellent throughout. The same modes were computed on the medium mesh, using the Schur complement approach
as both a pk- and p-type method, with details discussed in [25]], as well as with our inner-outer iterative scheme through
Arpack. Figure [I] shows the relevant part of the eigenspectrum. Indeed, the agreement of these different methods,
specifically between the new coupled solver and the p-type analysis, indicates that the coupled eigenvalue solver has
been implemented correctly, opening up the method to larger, more practical cases.

The speed-up gained by using the block-arrowhead preconditioner compared to the block-Jacobi preconditioner
(easily implemented by setting all elements of the coupling blocks, /¢, and J¢s, in the preconditioner to zero) was
insignificant for the inviscid Goland case without strong shock waves, whereas a 20% reduction in iteration count was
observed from a limited number of trials for the significantly stiffer aircraft case in transonic turbulent flow (discussed in
the next section), solving to an inner convergence tolerance of 107,

ITI. Results and Discussion

The NASA Common Research Model (CRM) was designed to resemble a modern passenger aeroplane and exists
both as physical (for wind-tunnel testing) and computational models. It was designed as a universal test case for
researchers to compare new ideas and results [43]]. The wing has an aspect ratio of 9, a taper ratio of 0.275 and a
quarter-chord sweep angle of 35°. For this paper, the scaled-down wind-tunnel wing/body/horizontal-tail version was
used with a mean aerodynamic chord of 0.189 m, a full span of 1.586 m and a reference area of 0.280 m”. The pylons
and nacelles were discarded and the tail-setting angle was 0°. The computational mesh was generated for the half-span
simulations in [[1]] with the SOLAR mesh generator [44] and, upon mirroring with respect to the centre plane, the
full-span case has approximately 12.3 x 10® mesh points with 3.3 x 10° points on solid walls. Additionally, the spherical
far-field boundary is located 100 semi-span lengths away. The Reynolds number based on mean aerodynamic chord is
Re = 5.0 x 10° and the reference free-stream Mach number is M = 0.85, chosen based on runs 153/182 of the European
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Fig. 2 Representative structural mode shapes for NASA CRM test case with corresponding frequencies. Sur-
face colours indicate the modal deformation in z-direction. Peculiar features on the aircraft surface are the
various cut-outs on the wind-tunnel model for experimental sensors and to house the instrumentation.
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Fig. 3 Bending and twist deformation over dimensionless span location i at @ = 3.0° comparing experimental
data from the ETW campaign and static aeroelastic results emphasising differences on port and starboard wing.

Transonic Windtunnel (ETW) test campaign [43]]. The finite-element model represents the wind-tunnel geometr and,
following a modal structural analysis, the first 30 normal modes with lowest frequency are kept [46]]. Importantly, the
structural frequency range covers the shock-buffet frequency range previously identified. Figure 2] shows some of these
modes, rescaled by a factor of 0.2 for visualisation purposes. The following results are stated in their non-dimensional
form, based on the mean aerodynamic chord and reference free-stream values, unless explicitly specified otherwise.

Validation of Simulation Setup

The static aeroelastic solution of the aircraft model was computed at angle of attack @ = 3.0° to match the loaded
wind-tunnel shape and surface pressure data from run 182 in the ETW campaign. Figure [3]shows the bending and twist
deformations on the port and starboard wing (evaluated at 50% chord) compared with those measured using stereo
pattern tracking via markers distributed on the wing surface. Overall good agreement can be observed with a maximum
bending of approximately 17 mm and a wash-out twist of —1.1° at the wing tip. Importantly, an asymmetry between
the port and starboard wing is also clearly visible in the numerical data. The cause of this asymmetry lies in the high
fidelity of the finite-element model which takes into account the different cut-outs on each wing to house experimental
sensors and related instrumentation. These features propagate to the normal mode shapes and their frequencies. For
instance, the two first bending modes (one for port and one for starboard) have structural frequencies of 39.4 Hz and

found at https:/commonresearchmodel.larc.nasa.gov/
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Fig. 4 Comparison of experimental and numerical surface pressure coefficient at angle of attack a = 3.0° at
eight spanwise locations. Streamwise coordinate x is normalised by corresponding local chord length c.

40.9 Hz, respectively. The corresponding surface pressure coefficient of the steady base flow can be found in fig. [4
with good agreement to the experimental measurements at most spanwise stations. A discussion on the seemingly
missing experimental data points around the mid semi-span was given in [1}/46]. Differences in the pressure coefficient
between port and starboard wing are minor and not noticeable to the naked eye. A similar comparison at angle of attack
a = 3.75°, which is a key data point in our study and, importantly, used as coupled equilibrium solution (i.e. the steady
base state) for all the subsequent analyses herein on the asymmetric geometry (asymmetric with respect to the fuselage
centre plane), can be found in [2]] and shows similar levels of agreement overall.

Flutter Analysis

Initially, eleven samples of the interaction matrix Q were computed using the linearised frequency-domain solver,
assuming simple harmonic structural motion at reduced frequencies in the range w = 0 to 3 in increments of 0.3. The
sampling frequency range corresponds to the wind-off structural frequencies, once made dimensionless based on the
actual wind-tunnel flow conditions. This was done at two angles of attack @ = 3.0° and 3.75°. Upon inspection of the
results at the higher angle of attack, additional samples were added in regions of significant activity, bringing the total
to 23. Figure[5]shows the absolute value of some selected entries of matrix Q. At the lower angle of attack, the matrix
elements show a smooth trend with respect to the frequency. At the higher angle of attack, which describes a shock-buffet
condition in the fluid-only analysiﬂ the entries have significant variation in the frequency range where the band of
aerodynamic modes with increased growth rate is observed [1], specifically between approximately w = 2.0 and 3.0,
indicating a strong coupling between the fluid and structure. The cause lies both in the proximity of the sampling
frequency to some eigenvalues of the coupled system and in the non-normality of the governing equations [47]]. For
instance, the significant peaks at a forcing frequency of approximately w = 2.7 coincide with one computed eigenvalue,
labelled ¢', of the band of shock-buffet modes shown in fig. below.

Figure [6]shows the predicted eigenvalues from the flutter analysis at angles of attack & = 3.0° and 3.75° at the target
flow condition encountered in the wind-tunnel environment. Since tracing the eigenmodes is somewhat arbitrary and
would depend on how the test point is reached in the wind tunnel, we chose to increase the density until the simulated
flow condition matches the experiment, while keeping all other variables, specifically velocity, temperature and pressure,
frozen. The target corresponds to a density of 1.53 kg m™. The eigenvalues at = 3.0° show no instabilities, indicating
the system is stable. At @ = 3.75°, it is visible that modes with frequencies below approximately w = 1.7 have changed
very little compared with the lower angle of attack. At the same time, instabilities are found for structural modes 19, 20,

¥Interpreting a linearised frequency-domain aerodynamic response to a structural forcing in globally unstable flow should be done carefully.
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Fig. 5 Magnitude of complex values for various entries of matrix Q at @ = 3.0° and 3.75° in log-scale, along
with the linear spline interpolation used for mode tracing, over sampling frequency w.

21 and 27. Mode 28 (denoted o), starting at a frequency of 2.72, did not trace correctly and instead jumped onto a
different mode, despite the additional samples around this frequency to avoid heavy reliance on interpolation. This
was attributed to the fact that the interaction matrix Q, and therefore S(2) in eq. , shows extreme variation due to
the shifted matrix (Jsy — AJ) being close to singular. This provides another reason for the use of the coupled Arpack
method, besides the ability to compute fluid modes in the first place, as it can distinguish between fluid and structural
modes in highly contested regions. It has been noted that the second term of matrix Ji = D + #E®’ 0 f /0w can often
be discarded [34]]. This was confirmed herein for the CRM test case by evaluating the sensitivity of the generalised
forces with respect to the modal amplitudes (at fixed flow solution). The added term had negligible influence on the
results. Viscous force contributions were also discarded for similar reasons.

Aerodynamic Global Stability Analysis

We are now interested in elucidating the impact of the asymmetrically deformed full-span wing geometry on the
aerodynamic stability characteristics at angle of attack @ = 3.75°. For the eigenspectra computed by Arpack, multiple
shifts were used to cover the relevant frequency range. Figure[7|shows the eigenspectra of the fluid-only system on the left,
as computed on the perfectly symmetric case (symmetric with respect to the fuselage centre plane) and the asymmetric
case from our static aeroelastic simulation, cf. the deformation presented in fig. |3} The full-span symmetric data are
taken from [[1] and the labelling follows accordingly. While the symmetric, pre-deformed geometry (corresponding to
deformations measured in run 182 of the experimental campaign) gives two nearly identical unstable eigenvalues at
approximately A = 0.16 + 2.37i, the asymmetric geometry from the static coupling simulation results in two visibly
distinct eigenvalues. In the symmetric case, the corresponding eigenvectors revealed symmetric/anti-symmetric coherent
spatial structures of equal amplitudes on both wings. Interestingly, for the asymmetric, statically deformed geometry, on
the other hand, the coherent spatial structures of the two unstable modes, while appearing similar to the coherent features
on the symmetric geometry, now dominate one wing each, as presented in fig.[§] The figure shows the magnitude
of the unsteady surface pressure coefficient of the two unstable global shock-buffet modes, labelled b in fig.[/] and a
visualisation of coherent structures through the volumetric iso-surfaces of the real part of the x-momentum pu at values
of £0.01. Note that the mode with the highest growth rate shows activity on the port wing. Another mode, labelled c’,
migrated significantly, approaching the unstable region, and we will return to discussing this mode shortly.

Coupled Aeroelastic Global Stability Analysis
The ramification of including a flexible aircraft structure in the stability analysis is now elucidated. Figure[7/on
the right gives the eigenspectra as computed by Arpack for the fluid-only system, labelled asym. (fluid-only), and for

10



3.0

. 03X
X——®
X-0
25 .
. x
2.0 . x ®
: ——x
X%f“
2 2
15 .
- 0u
1.0 e
)
o
i
0.5 x  3.00° * s
o
e 375 ox ™

-0.05 —-0.04 —0.03 —0.02 —0.01 0.00 0.01 0.02
Re(A)

Fig. 6 Eigenvalues from flutter analysis at @ = 3.0° and 3.75° at the flow condition encountered in the wind-
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Fig.7 Comparison of eigenspectra showing (left) fluid-only results for symmetric versus asymmetric geometry
and (right) asymmetric fluid-only versus coupled results. Modes are labelled according to [1], along with mode c’,
which migrates into the unstable region in the coupled system. All unannotated coupled modes in the right plot
are structural modes. Note the red box indicating the relevant region from fig. @ for reference.

the coupled system, labelled asym. (coupled). All structural modes found with the pk-type flutter analysis (bar the
aforementioned difficulties with mode 28) were also found by the Arpack eigenvalue analysis of the coupled system,
further supporting the notion that the implementation is working correctly. Multiple interesting features can be observed.
The discussion focuses on three regions of the eigenspectrum, specifically the leading shock-buffet modes b, the unstable
structural modes around w = 1.8, and the unstable modes 27, 28 and ¢’ at approximately w = 2.7.

First, the two unstable shock-buffet modes, denoted b, are also observed in the coupled system, albeit at slightly
decreased frequencies and increased growth rates. This suggests that including a flexible structure could destabilise an
otherwise stable fluid-only mode at a reduced angle of attack. These shock-buffet modes again emphasise a separate
wing each, as pictured in fig.[9] and the surface flow characteristics (not included in the plot for reasons of clarity) are
very similar to their fluid-only counterparts in fig.[§] An interpretation could be that the shock-buffet unsteadiness
remains the dominant physics even when including the flexible wing structure. Having said this, the structural part
of the eigenvectors shows highest activity (i.e. deformation) on the same wing as the coherent spatial flow features,
revealing a coupling effect. To be clear, magnitude of wing deformation is visualised through the relation |% | = @|#}|.

Second, for the group of eigenvalues around w = 1.8, the Arpack method does indeed identify three unstable
structural modes, specifically modes 19, 20 and 21, also found by the earlier flutter analysis. The coherent flow features of
these modes’ eigenvectors (not explicitly shown herein for reasons of brevity) closely resemble those of the shock-buffet
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Fig. 9 Visualisation of unstable shock-buffet modes of fluid-structure coupled system (labelled b in fig. .
Surface contours show magnitude of unsteady deformation in z-direction derived from structural part 7ij of
coupled eigenvector, while volumetric iso-surfaces illustrate real part of x-momentum pu at values of +0.01.
Underlying eigenvectors are unit length. A strong resemblance to the fluid-only modes in fig. @can be observed.

modes b. Having said this, a correlation between the frequencies of coherent modes and their spatial amplitudes was
observed in [1]], which is also seen in the coherent flow features of the structural modes. The spanwise wavelengths are
larger than those of the shock-buffet modes b, in accordance with their lower frequencies. Furthermore, the largest
entries in the structural part # of their unit-length eigenvectors correspond to position 19, 20 and 21, respectively, by
at least an order of magnitude higher amplitude compared to the other entries. Consequently, the structural motion
described by these coupled modes is rather similar to that of their respective wind-off structural mode shapes.

Third, from the group of eigenvalues around w = 2.7, the structural mode labelled Mode 28 in fig. |7} which the
pk-type Schur complement method was unable to trace, is now identified to be unstable. The coherent flow features
of eigenmodes 27 and 28 are similar to one of the shock-buffet modes b emphasising the port wing, but have smaller
spanwise wavelengths, as is expected from their higher frequencies. Their frequencies are close to the wind-off structural
frequencies of modes 27 and 28, and the largest entry, by an order of magnitude, in their respective vector 7 again agrees
with the mode number. Consequently, comparing fig. 2] with fig. [T0} the wing deformations are similar. As this is also
the case for the second group of interesting (unstable) modes around w = 1.8, it is reasonable to conclude that Mode
28 originated in the structural system, even though the pk flutter method failed in tracing it. Also, the one remaining
unstable mode at A = 0.02 + 2.71/ did not originate in the structure, but is indeed mode ¢’, originating in the fluid system,
which migrated into the unstable half-plane due to strong fluid-structure interaction. The coupled mode ¢’ has coherent
flow features around the port wing, shown in fig.[I0} and these are very similar to those of its fluid-only counterpart
(not shown herein). Its corresponding vector # has a largest entry 28, with entries 27 and 29 following closely. This is
further evidence that it is unlikely a structural mode. Besides our earlier statement that the coupling of aerodynamics
with a flexible wing structure can destabilise the global flow field earlier, a second finding in this regard is the ability
to destabilise additional, otherwise stable, fluid-only modes. For further insight into these unstable structural modes,
consult our companion paper which discusses unsteady time-marching fluid-structure coupled simulations on the same
geometry while focussing both on the initial growth of disturbances and the non-linear saturation [2].
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Fig. 10 Visualisation of unstable mode ¢’ (left) and structural mode 28 (right) of the coupled system. Chosen
variables and styles are identical to those in fig. g}

IV. Conclusion

To investigate the mutual interaction between a flexible wing structure and the shock-buffet phenomenon (which is
self-sustained even without wing vibration), the linear harmonic incarnation of the industrial DLR-TAU solver was
successfully modified to implement a fluid-structure coupled system enabling its global mode computation using the
shift-invert implicitly restarted Arnoldi method as outer iteration together with an inner sparse iterative linear equation
solver. Preconditioning the inner Krylov iterative method using a novel approach based on a so-called block-arrowhead
matrix offers speed-up gains in parallel computation needed for a stiff practical aircraft case in transonic turbulent flow.
The new code additions permit the first computation of dominant fluid modes together with modes originating in the
structural system, even in close frequency proximity, when a conventional pk-type flutter analysis can fail.

The chosen test case is the NASA Common Research Model with limited experimental data from a European
Transonic Windtunnel test campaign. Static aeroelastic deformations together with the steady base flow at two angles of
attack show good agreement with wind-tunnel data, and those results are used as equilibrium solution for the subsequent
linearised analyses. Importantly, an asymmetric wing deformation (with respect to the fuselage centre plane), as a
consequence of using a finite-element structural model of the actual wind-tunnel geometry, is observed, resulting in
pairs of global modes with each mode of a pair emphasising a different wing. This is in stark contrast to a previous
stability study on a perfectly symmetric full-span geometry giving pairs of symmetric/anti-symmetric global modes. For
routine flutter analyses, aerodynamic influence matrices were computed with the linear harmonic solver following modal
structural excitation. Despite the large number of samples in the shock-buffet frequency range, the pk flutter method was
unable to trace all structural modes unambiguously, owing to a strong interaction between fluid and structure. Finally,
the coupled global mode approach succeeded in correctly identifying all structural modes as well as the previously
found fluid modes. Most interestingly, several unstable structural modes appear in the shock-buffet frequency range in
addition to yet another unstable mode linked to the fluid. This mode is stable in the fluid-only system, indicating the
inclusion of a flexible structure could see previously stable modes become unstable. Its coherent spatial characteristics
from the eigenvector are similar to those of its fluid-only counterpart, whilst the structural part is strongly influenced by
the surrounding structural modes close to that frequency. This suggests that fluid-structure interaction should not be
discarded when investigating shock-buffet and buffeting phenomena.
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