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Abstract

Over the past decade, a branch of machine learning, called deep learning, has achieved

remarkable successes in various computer vision tasks such as image classification, object

detection, semantic segmentation, action recognition and image description generation.

Deep learning aims at discovering multiple levels of distributed representations, which have

been validated to be discriminatively powerful in many tasks. Distributed representation

describes the same data features across multiple scalable and interdependent layers. Each

layer defines the information with the same level of accuracy, but adjusted for the level of

scale. The performance of deep learning methods depends heavily on the choice of data

representation (or features) on which they are applied. Representation learning aims to

learn representations of input data typically by transforming it or extracting features from

it, which makes it easier to perform a task like classification or prediction.

Representation learning has been studied for many years in the field of conventional

computer vision algorithms. The development and deployment of representation learning in

deep learning algorithms are of vital importance since powerful deep models are proposed

and also show an improving effect in many real-world applications. Focussing on deep

learning, representation learning is the consequence of the function a model learns when

the learning is captured in the parameters.

This thesis focus on representation learning in deep learning, starting from the re-

cent progress in representation learning mechanism, followed by several contributions

on representation learning targeting diverse applications in computer vision, including
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vehicle re-identification (re-ID), traffic scene recognition, face recognition and few-shot

classification.

For the traffic scene recognition, our contribution is twofold: firstly, we propose a novel

traffic scene recognition methodology in the setting of granular computing, which involves

the creation of information granulation by extracting the deep features upon local regions

of the image for a compact feature representation, and design classifiers fusion method

to further improve the performance of traffic scene recognition. Information granulation

involves the process of data abstraction and derivation of knowledge from information or

data. The second contribution is the creation of a new traffic scene dataset, named the

“WZ-traffic”. The WZ-traffic dataset consists of 6,035 labeled images which belong to 20

categories collected from both an image search engine as well as from personal photographs.

The experiment results demonstrate that our method dramatically improves traffic scene

recognition and brings potential benefits to many other real-world applications.

For the task of vehicle re-ID, most existing algorithms are developed in the fully-

supervised setting, requiring access to a large number of labeled training data. To alleviate

the large demand of training data and improve the performance of representation learning,

we propose a semi-supervised deep learning scheme which makes learning rich feature

representations from a limited number of labeled data possible. Secondly, we present a

re-ranking algorithm for ranking optimization which is first introduced for the vehicle re-ID

task. Since the sample label is not required, the process of the re-ranking algorithm can

be performed in unsupervised learning. The experimental results show that the proposed

networks achieved state-of-the-art performance on several benchmark datasets.

Although various face recognition methods in controlled environments have been

proposed and achieved promising performance, there are still many challenges posed by

uncontrolled environments.In this thesis, we design more powerful representation learning

algorithms to address the challenges of various variations, including disguise accessories,

illumination and pose. The experimental results show that the proposed networks achieved

iii



Deep Representation Learning in Computer Vision and Its Applications Fangyu Wu

state-of-the-art performance on several benchmark datasets.

For the few-shot classification, there are two main contributions in this thesis: firstly, we

attempt to tackle the few-shot classification problem based on a novel representation learning

model, named Capsule network, which combines the 3D convolution-based dynamic routing

procedure to obtain a deep feature representation with semantic and spatial information.

Secondly, we propose a novel attentive prototype concept to take account of all the instances

in a given support class. Each instance is weighted by the reconstruction errors between

the query and prototype candidates from the support set. The attentive prototype is

robust to outliers by design and allows the performance to be improved by refraining from

making predictions in the absence of sufficient confidence.

In conclusion, comprehensive research was carried out for the feature representation

learning in computer vision and its applications, which include traffic scene recognition,

vehicle re-ID, face recognition in uncontrolled environment and few-shot classification.

Related research topics have also been discussed, for example, alleviating the large demand

of training data by semi-supervised learning and domain adaptation. For the above

computer vision applications, this thesis presents several contributions which proved to be

effective in improving existing methods.
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Chapter 1

Introduction

1.1 Overview

Machine learning has powered many aspects of modern society: from conventional industry

to current internet business such as web search engine, social networks, and content filtering.

It is continuing to increase its impact on modern life. To name a few, the functionalities

of machine learning include recognizing objects in images, translating one language to

another, matching news items and recommending news based on user’s interests.

Recently, one of the branches of machine learning family called deep learning has

shown dominant performance in tasks mentioned previously and becomes increasingly

important in machine learning and artificial intelligence. Conventional machine learning

techniques were usually limited in their ability to process natural data in their raw form.

For decades, constructing pattern recognition system required careful engineering and

considerable domain expertise to design a feature extractor that transformed the raw data

into a suitable internal representation, often a classifier or predictor, could classify or

predict patterns in the input. These hand-crafted features, if not appropriately designed,

could severely deteriorate the system performance. On the other hand, deep representation

learning, is a set of learning methods that can be fed with only raw data and automatically

discover the internal representation of the data during the process of learning.

Zeiler et al. [281] has given an empirical view of what the representation learning

means, taking the example of one of the most popular models in deep learning called

Convolutional Neural Network (CNN) [131]. In [281], the authors visualize each of the

layers in the trained CNN to find what each layer represents. Interestingly, an image, for
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Chapter 1. Introduction 2

example, comes in the form of an array of raw pixels, and the learned features in the first

layer of representation usually represent the presence of edges at particular orientations

and locations in the image. The second layer typically detects motifs by spotting specific

arrangements of edges, regardless of small variations in the edge positions. The third

layer may assemble motifs into larger combinations that correspond to parts of familiar

objects, and subsequent layers would detect objects as combinations of these parts. The

representation of the CNN becomes more abstract in the higher layers than the lower

layers. The CNN is an example of representation learning, and show excellent performance

in various machine learning tasks.

Despite their success, CNN suffer from inherent limitations: firstly, a deep CNN is

trained with sufficient training samples, however, it’s infeasible to annotate sufficient

training samples in some tasks. Instead of only relying on the labeled data, an alternative

scheme is with the help of a Generative Adversarial Network (GAN) [81] to learn good

feature representation. GAN was first proposed to generate realistic images. GAN learns

generative models without explicitly defining a loss function from the target distribution.

Instead, GAN introduces a discriminator network which tries to differentiate real samples

from generated samples. The whole network is trained using this adversarial training

strategy. Recently, GAN have also been applied to image-to-image translation [299] which

aims at learning a mapping function between two domains.

Secondly, although the pooling layer of CNN brings the advantages of reducing the

computational complexity and translation invariance, it also loses the location information

of relevant features. In addition to position, other instanced parameters, such as scale and

rotation, which describe the characteristics of the object, cannot be effectively taken into

account in the convolutional network. Hinton et al. introduced an efficient way to handle

these instantiation parameters by a Capsule network [96]. A Capsule represents an object

or a part of an object, whose activity vector encodes the instantiation parameters of that

part.

More specifically, a Capsule network replaces the mechanisms of CNN’s convolution

kernel, which works independently of each other. If two convolution kernels are trained to

activate two specific parts of an object, the same amount of activation will be generated

regardless of the relative position of the object. Capsule network works by implementing a

group of neurons to encode the spatial information and the probability of objects’ existence.

The length of the Capsule vector is the probability of the features in the image, and the

orientation of the vector will represent its instantiation information. There are two different
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capsule layers in the Capsule network proposed in [96]: a primary capsule layer groups

convolutions to work together as a capsule unit, and a digit capsule layer obtained by

calculating the agreement among different capsules through dynamic routing.

In this thesis, following the basic idea of the GAN and Capsule network, we em-

ployed, extended and improved the current representation learning methods in several

computer vision tasks, including traffic scene recognition, vehicle re-ID, face recognition in

uncontrolled environments and few-shot classification. In this thesis, the four important

computer vision applications can be realized with the aid of the representation learning

to improve the final performance in a challenging dataset. For traffic scene recognition,

the compact representation associated with the traffic scene obtained from extracting the

CNN features upon local regions of the image. For the vehicle re-ID, a semi-supervised

deep learning scheme for vehicle re-ID task makes learning rich feature representations of

vehicles from a limited number of labeled data. For the face recognition in uncontrolled

environments with disguise accessories, illumination and pose, the representation learning

is to achieve with the related research topics, including unsupervised domain adaptation,

image-image translation and meta-learning, respectively. For the few-shot classification,

feature representation was created from a Capsule network-based embedding module.

1.2 Motivations and Challenges

1.2.1 Motivations

As a paradigm shift in feature generation, representation learning techniques are considered

as an important and inevitable part of state-of-the-art pattern recognition systems. These

techniques attempt to extract and abstract essential information from raw input data.

Representation learning-based methods of feature generation are in contrast to classical

feature generation methods which are mainly based on the prior knowledge of the expert

about the task. Moreover, deep representation learning has promoted the development

of computer vision. Deep representation learning methods are necessary for AI-level

applications that need to learn complicated functions that represent high-level abstractions.

Existing deep representation learning approaches, exclusively rely on deep CNN to compute

a holistic feature of each input image, which has several well-known problems: (1) A

large number of annotated images are required by the CNN-based methods to obtain high

performance, which is an obstacle for some computer vision tasks. (2) the pooling operation
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discards the location information of an entity that the network may attempt to identify; (3)

the spatial relationships between simple objects are missing. CNN inadequately learn to

recognize the relationships between parts, wholes, and the importance of their instantiation

makes it less competent to be an effective learner.

Inspired by above considerations, our main motivations for this thesis are to research the

solutions of the CNN’s limitations of representation learning in computer vision. Besides,

we test the feasibility of the proposed methods for diverse and challenging real-world

applications in computer vision, which include the traffic scene recognition, vehicle re-ID,

face recognition in uncontrolled environments and few-shot classification.

1.2.2 Challenges

• Traffic scene recognition is a challenging task for still images. A traffic scene is

generally composed of a collection of entities (e.g., objects) organized in a highly

variable layout. Hence, a recognition model must fully consider the geometric

invariance and transfer information about local elements from a still image. The

challenge for this task is employ deep representation learning to discover the local

information in an image.

• As discussed previously, the CNN-based method requires access to a large number of

labeled training data. However, the data annotation is costly, the vehicle bounding

box must be drawn and match a vehicle ID label, which results in the insufficiently

labeled training data for vehicle re-ID. The challenge lies in applying a semi-supervised

learning paradigm to exploit unlabelled data and improving the performance of the

vehicle re-ID task.

• Many innovative methods have been put forward for face recognition and verification,

and the accuracy of recognizing clear human faces in well-controlled environment

is generally very high. However, the accuracy of current automated human face

recognition systems degrades for uncontrolled conditions like pose, illumination,

expression, and occlusion, etc. The challenge for this task is how to employ the

representation learning to address the changes in lighting conditions, pose and disguise

accessories. The reliability and robustness are important for these face recognition

applications, particularly in security systems.

• The few-shot classification in computer vision is difficult since it tackles the problem

4



Chapter 1. Introduction 5

of classifying unseen data instances into new categories, given just a small number of

labeled instances in each class. Besides, using the limited training samples to learn

an embedding space with the representation learning is a challenging task, which

tries to achieve a high-level intelligence since humans can rapidly learn novel visual

concepts from only one or a few examples and then reliably recognize them later.

1.3 Thesis Contributions

• A comprehensive analysis of the representation learning in computer vision is pre-

sented in this thesis. Four applications of computer vision and deep learning, namely,

the traffic scene recognition, vehicle re-ID, face recognition in uncontrolled envi-

ronments and few-shot classification are discussed. Especially, in both of the four

applications, representation learning methods are used to improve system perfor-

mance.

• For the task of traffic scene recognition, an end-to-end representation learning network

is proposed to extract feature maps from the local region to improve the discriminating

capability of the model for the task. It is worthy to mention that this is one of the

early attempts to implement local deep-learned feature extraction in a CNN model.

(Chapter 3)

• For the task of vehicle re-ID, we adopted a GAN to generate unlabeled samples

and enlarge the training set. A semi-supervised learning scheme with the CNN was

proposed accordingly, which assigns a uniform label distribution to the unlabeled

images to regularize the supervised model and improve the performance of the vehicle

re-ID system. Besides, an improved re-ranking method based on Jaccard distance and

k-reciprocal nearest neighbors is proposed to optimize the initial rank list. (Chapter

4)

• For the task of face recognition in uncontrolled environment, we propose representation

learning methods for different variations, including disguise accessories, illumination

and pose. Most existing disguised face recognition approaches follow a supervised

learning framework. However, due to the domain shift problem, the CNN model

trained on one dataset often fail to generalize well to another dataset. We proposed

a novel Unsupervised Domain Adaptation Model (UDAM) to address the challenging

5



Chapter 1. Introduction 6

face recognition with domain bias. Following this idea, we further address the domain

bias between the near infrared (NIR) image and the visual light (VIS) image via

NIR-VIS image translation. The NIR-VIS image conversion model can transform

near-infrared facial images into their corresponding VIS images while maintaining

sufficient identity information to enable existing VIS facial recognition models to

perform recognition. (Chapter 5)

• For the pose-robust face recognition, we propose a deep meta Capsule network-based

Equivariant Embedding Model (DM-CEEM) with three distinct novelties. First, the

proposed RB-Capsule network allows DM-CEEM to learn an equivariant embedding

for pose variations and achieve the desired transformation for input face images.

Second, we introduce a new version of a Capsule network called RB-Capsule network

to extend Capsule network to perform a profile-to-frontal face transformation in deep

feature space. Third, we train the DM-CEEM following the meta-learning strategy

by treating a single overall classification target as multiple sub-tasks that satisfy

specific unknown probabilities. In each sub-task, we sample the support and query

sets randomly. (Chapter 5)

• We propose a new feature representation learning structure to encode relative spatial

relationships between features by applying a Capsule network for few-shot classi-

fication. Besides, a new triplet loss designated to enhance the semantic feature

embedding where similar samples are close to each other while dissimilar samples are

farther apart; and an effective non-parametric classifier termed attentive prototypes

in place of the simple prototypes in current few-shot classification. The proposed

attentive prototype aggregates all of the instances in a support class, which are

weighted by their importance, defined by the reconstruction error for a given query.

Extensive experiments on three benchmark datasets demonstrate that our approach

is effective for the few-shot classification task. (Chapter 6)

1.4 Thesis Structure

A diagram of the thesis structure is shown in Figure 1.1. A general introduction of

the topic and background is provided in the introduction, followed by the preliminaries

of deep learning and the representation learning applied in this thesis. Subsequently,

four applications, namely, the traffic scene recognition, vehicle re-ID, face recognition in
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uncontrolled environments and few-shot classification, are introduced with representation

learning. Specifically, the topics which are all powered by the application of the proposed

representation learning methods. Lastly, a conclusion of this thesis and future works are

introduced in the last chapter.

Figure 1.1: The structure of this thesis.
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Chapter 2

Preliminaries of Deep Learning

and Representation Learning

2.1 Preliminaries of Deep Learning

Deep learning algorithms are subsets of machine learning algorithms, that aim to discover

multiple levels of distributed representations. Recently, various deep learning algorithms

have been proposed to solve traditional machine learning problems. This chapter aims to

introduce the preliminaries of deep learning algorithms which are related to the research

topic of the thesis, followed by the introduction and review of the representation Learning

mechanism.

2.1.1 Overview of Deep Learning

Deep learning originated from the study of Artificial Neural Networks (ANNs), which are

computation models inspired by biological neural networks in human brains and have been

extensively studied since the 1980s. An ANN consists of a collection of connected artificial

neurons which simulate the neurons in a biological brain. It can be roughly characterised by

the weights between layers of neurons whose output is computed based on some non-linear

transformation function. At each layer, neurons compute a weighted sum of the inputs

from the previous layer, using Wx + b where W is a weight vector and b is a bias, and

pass the result through a non-linear activation function σ, e.g., tanh, sigmoid and rectified

linear unit (ReLU) [176].
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One of the major reasons that ANNs with multiple fully connected layers have not gained

popularity in many real-world applications for decades is their computation complexity. The

idea of deep learning, also inspired by biological processes, powered by high-performance

computing hardware, has made very deep models computationally feasible for real-world

applications. For example, in a convolutional network, the connectivity between neurons

resembles the organization of neurons in the animal visual cortex [130]. Each cortical neuron

only responds to stimuli within a limited region of a visual field (also known as the receptive

field); in a recurrent network, weights are shared among layers which not only reduces

the number of parameters to be learned but also generalises better for input sequences

of different lengths [130]. Training deep neural networks is notoriously expensive and

would not be practical without the employment of high-performance computing hardware,

e.g., Graphics Processing Units (GPUs). The highly parallel structure ensures efficient

processing of large numbers of data blocks in parallel, making it suitable for training deep

neural networks that have thousands of neurons performing the same computation at

each layer. In recent years, deep learning methods have achieved results superior to other

state-of-the-art machine learning methods and even human experts in many application

areas.

2.1.2 Logistic Regression

Logistic Regression is a classical learning algorithm and a fundamental part of the neural

network model [175]. Logistic Regression introduces the Logistic function into the Linear

Regression model.

The distribution function of the Logistic distribution defines as:

P (x;µ, s) =
1

e(−(x−µ)/s)
(2.1)

The Logistic Regression model implements the following conditional probabilistic

distribution:

P (y = 1|x) =
e(w·x+b)

1 + e(w·x+b))

P (y = 0|x) =
1

1 + e(w·x+b))

(2.2)

where x is the input, and y is the output. w is the weight vector, b is the bias and w · x is

10
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the dot product of w and x.

Equation 2.2 can get the conditional probabilities of the output to be 1 and 0 given

the input samples.

The odds of an event is the ratio of the probability of happening of this event to the

probability of not happening. If the probability of an event happening is P , then the odds

of this event is p
1−p , also, the log odds of the event is logit(P ) = log p

1−p .

For the Logistic Regression model, the log odds of the event is hence log P (y=1|x)
1−P (y=1|x) = w·x,

which indicates that the log odds of the Logistic Regression is a linear function of the input

x.

Figure 2.1: The neural network interpretation of Logistic Regression.

2.1.3 Basic Neural Network Model

From the viewpoint of a neural network, the Logistic Regression can be interpreted as one

layer neural network. A Sigmoid (Logistic) activation function is the non-linear mapping

function, which is shown in Figure 2.1.

If the multi-layer mapping is embedded in this system, it can form a neural network
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learning model, or more specific, a feed-forward neural network [134] [237]. The feed-

forward networks, or Multi-layer Perceptron (MLP), are vital in deep learning models. A

feed-forward network aims to approximate some non-linear functions. The feed-forward

networks are of extreme importance to machine learning practitioners.

Figure 2.2: The structure of a feed-forward neural network.

They form the basis of many critical applications. For example, the convolutional

network used for object recognition from images is a specific kind of feed-forward network.

Feed-forward networks are a conceptual stepping stone on the path to recurrent networks,

which power many natural language applications. Feed-forward neural networks are called

networks because they are typically represented by composing together many different

functions. The model is a directed acyclic graph that describes how the functions are

composed together.

A general structure of the feed-forward network is shown in Figure 2.2. Each layer of

the neural network performs matrix operation and nonlinear mapping. We can regard the

neural network model as universal approximator [99], which approximates the measurable

function to the required accuracy.

2.1.4 Convolutional Neural Network

CNN [131] is a particular type of neural network for processing data that has a known

grid-like topology. Examples include natural language or speech data, which can be

considered a 1D grid taking samples at regular intervals; and visual data, which can be

considered a 3D grid of pixels. A typical CNN usually consists of a number of convolutional

12
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layers, pooling layers, and fully connected layers as its hidden layers as illustrated in Figure

2.3. The convolutional layer aims to learn filters that represent features of the input (e.g.,

a particular shape) and generate a feature map. The pooling layer performs non-linear

downsampling, which combines a cluster of neurons at one layer into a single neuron in the

next based on non-linear functions such as max pooling and average pooling. Then, fully

connected layers are added on the top of convolutional and pooling layers for final output.

Figure 2.3: A typical CNN for hand-written digits recognition [133].

Convolution Operation

The convolution operation on a continuous function is defined in Equation 2.3. It can be

interpreted as using a kernel function w(a) to calculate a weighted average of function x(a)

and w(a).

s(t) =

∫
x(a)w(t− a)da (2.3)

From the Latin ‘convolvere’, ‘to convolve’ means to roll together. For mathematical

purposes, convolution is the integral measuring of how much two functions overlap as one

passes over the other. Think of convolution as a way of mixing two functions by multiplying

them. The convolutional operation can also defines as an asterisk, in Equation 2.4.

s(t) = (x× w)(t) (2.4)

In the case of CNN terminology, the function x and w represent the input and kernel,

respectively.

In most cases, the data used are sampled not in every instance, but at a certain interval,

in other words, these data are discredited. The time index t, consequently, then takes on
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only integer values. The discrete convolution is defined in Equation 2.5.

s(t) = (x× w)(t) =
∞∑

a=−∞
x(a)w(t− a) (2.5)

In machine learning applications, the input is usually a multi-dimensional array of data,

and the kernel is usually a multi-dimensional array of parameters adopted by the learning

algorithm. These multi-dimensional arrays will be referred as tensors.

In practice, the infinite summation can be implemented as a summation over a finite

number of array elements. The tensors are considered zero everywhere except where the

data is stored in the multi-dimensional arrays.

Also, convolutions can be used over more than one axis at a time. For instance, if

a two-dimensional image I is taken as our input, a two-dimensional kernel K is utilized.

Then, the two-dimensional convolution can be defined in Equation 2.6.

S(i, j) = (I ×K)(i, j) =
∑
m

∑
n

I(m.n)K(i−m, j − n) (2.6)

Since the convolution operation is commutative, alternatively, Equation 2.6 can also be

written as:

S(i, j) = (I ×K)(i, j) =
∑
m

∑
n

I(i−m, j − n)K(m,n) (2.7)

A commonly used effective operation process of convolution in a CNN is described by

Figure 2.4.
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Figure 2.4: An illustration of the convolutional operation in CNN.

Pooling Operation

A typical layer of a CNN consists of three steps. In the first step, the layer performs

several convolutions in parallel to produce a set of linear activations. In the second step,

each linear activation is run through a non-linear activation function, such as the ReLU

function [127]. This step is sometimes called the detector stage. In the third stage, a

pooling function used to modify the output of the layer.

This section aims to give a general introduction to pooling. A pooling operation

replaces the neural network output at a specific location with a summary statistic of the

nearby outputs. The most commonly used pooling in CNN is max-pooling. Pooling helps

to make the representation approximately invariant to small translations of the input.

Invariance to the translation means that if the input is translated by a small amount, the

values of most of the pooled outputs do not change, which increases the robustness of the

neural recognition network. The application of pooling can be seen as adding an infinitely

strong prior that the function that the layer learns must be invariant to small translations.

When this assumption is correct, it can significantly improve the statistical efficiency of

the network.

The max-pooling operation is shown in Figure 2.5. In each color-indicated grid, the

max-pooling selects the maximum value to replace the data in the original grid, and form

a new tensor as an output of the max-pooling layer.
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Figure 2.5: An illustration of the max pooling operation in a CNN.

Stochastic Pooling

A disadvantage of max-pooling is that it is sensitive to over-fitting on the training set,

making it hard to generalize well during testing [279]. To solve this problem, Zeiler et al.

[280] proposed a stochastic pooling approach which replaces the conventional deterministic

pooling operations with a stochastic procedure, by randomly picking the activation within

each pooling region according to a multinomial distribution. This stochastic nature is

helpful in preventing the overfitting problem.

Spatial Pyramid Pooling (SPP) and Region-of-Interest Pooling (RoI pooling)

The CNN model requires a fixed-sized input image. This restriction may bring problems

for images of arbitrary sizes, especially in the CNN-based object detection schemes. To

eliminate this limitation, He et al. [88] replaced the last pooling layer with a SPP, for

object recognition. The SPP can extract fixed-length features from arbitrary images (or

region candidates), and can be applied in a CNN structure for arbitrary tasks, to improve

the performance of the CNN model.

Subsequently, Girshick [77] proposed a simplified SPP layer for object recognition,

called RoI pooling. This pooling layer is simpler and also enables the CNN model to

handle arbitrary-sized input images. More importantly, the RoI Pooling layer enables the

parameter sharing in the computation-intensive convolutional layers [77]. This research
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is extremely important in object detection. Most subsequent research [200] [78] [87], for

various tasks, employed the RoI pooling layer to deal with input images.

Spatial Transformers

Due to the typically small spatial support for max-pooling, the spatial invariance is only

realised over a deep hierarchy of max-pooling and convolutions, and the intermediate

features in a CNN model are not invariant to large transformations of the input data [32]

[138]. To mitigate this issue, Jaderberg et al. [106] proposed an important model, the

spatial transformer networks, which explicitly allows the spatial transformation of data in

the network. The spatial transformers result in arbitrary CNN models that learn invariance

to translation, scale, rotation and more generic warping. Also, the spatial transformer can

be interpreted as an attention mechanism, but is more flexible and can be trained purely

with back-propagation without reinforcement learning techniques.

Capsule Networks

Geoffrey Hinton pointed out many drawbacks of the max-pooling operation such as the

side effect of ‘coarse coding’ [95]. To address this issue, Sabour et al. [208] proposed the

‘Capsule Networks’ in which a dynamic routing scheme is proposed between the capsules

to replace the max-pooling. This type of ‘routing-by-agreement’ is more effective than the

primitive form of routing in max-pooling, which allows neurons in one layer to ignore all

but the most active feature detector in a local pool. This research is considered as a recent

breakthrough in the deep learning area [265].

Activation Function

Activation in a neural network provides non-linear mappings that take the inputs and do

some mathematical operations. Many such activation functions exist and are discussed as

follows:

Sigmoid (Logistic)

This non-linearity takes an input a real-valued function and outputs value in the range of

0 and 1. It has been widely applied in neural networks for a long time. However, it suffers

from saturating and vanishing gradient problem. The Equation 2.8 defines the Sigmoid
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function.

Sigmoid(x) =
1

1 + e−x
(2.8)

Tanh

As shown in Equation 2.9, it is clear that Tanh can be considered as a scaled up version of

a sigmoid, outputting values in the range of -1 and 1. The problem of saturating gradients

also exists with this function. The Tanh function is widely applied in Recurrent Neural

Networks (RNNs).

Tanh(x) =
ex − e−x

ex + e−x
= 2Sigmoid(2x)− 1 (2.9)

ReLU

ReLU is a linear activation function which has a threshold at zero as shown in Equation

2.10. The convergence of gradient descent has been proved to be accelerated by applying

ReLU [127].

ReLU(x) = max(0, x) (2.10)

Training

In deep learning, each layer transforms the input data into a more abstract representation

and the model learns to choose the best features that can improve performance. It can be

used for both supervised learning and unsupervised learning tasks. In supervised learning,

the objective is usually to learn a complex, non-linear function that maps the input to the

output. This requires learning algorithms to generalize from the training data to unseen

data in a “reasonable” way. An objective function is normally used to measure the error

(or distance) between the predicted output and the desired output. A common objective

function for classification tasks is Cross Entropy (CE), as shown in Equation 2.11, where x

is an instance in the training set, p(x) is the true probability distribution of the dependent

variable while q(x) is the predicted probability distribution.

CE = −
∑
x

p(x)logq(x) (2.11)

A common objective function for regression tasks is Mean Squared Error (MSE), as

defined in Equation 2.12, where |X| is the size of the training set, y is the ground truth,

and ŷ is the network output for regression problem.
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MSE =
1

|X|
∑
x

(y(x)− ŷ(x))2 (2.12)

Some deep learning models can also be trained in unsupervised ways in which the

output tries to recover the input and the objective is to minimise the reconstruction.

For example, the work in [97] showed that deep belief networks can be trained in an

unsupervised manner (pre-training), followed by a supervised fine-tuning, which resulted

in superior performance.

After determining objective function, deep models are then trained to minimise the

objective function with backpropagation and gradient descent techniques. Backpropagation

algorithm distributes the error computed at the output layer backwards and the gradients

of weights at different layers are calculated. At each layer, the gradient descent algorithm

computes a gradient vector, and adjusts the weight vector along the opposite direction of

the gradient vector to minimise the objective function. In practice, gradient-based learning

algorithms, e.g., Stochastic Gradient Descent (SGD) [202], Adam [118] and RMSprop [246],

have been widely adopted together with backpropagation for neural network training.

Regularisation

One of the common goals of machine learning algorithms is to generalise to unseen data.

Overfitting happens when a model learns too well the details and the noise from training

data while ignoring the general patterns, thus results in poor generalisation. Regularisation

is a critical instrument in preventing overfitting. Some of the most common regularisation

techniques for deep learning are: dataset augmentation, L1 and L2 regularisation, early

stopping, and dropout, as suggested in [80].

Dataset augmentation

Overfitting can be a common problem when size of training data is too small compared

with the number of model parameters to be learned. While an existing dataset may

be limited, for some applications one may create synthetic data through a number of

operations, e.g., rotate, scale and inject random unrelated images to enlarge a dataset.

Besides creating synthetic data, multi-task learning and transfer learning techniques are

also commonly used. In multi-task learning, related tasks using different datasets can

be learned simultaneously. The work in [122], [230], [102] applied multi-task learning to
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jointly learn people’s movement and transportation mode patterns. Often when a training

dataset may be too specific or small to learn a good model from scratch, transfer learning

can be applied by pre-training a model with large available dataset and then fine-tuning

the model with the data for specific tasks.

L1 and L2 regularisation

To prevent model from becoming too complex (e.g., large weights) and learning all the

details and noise in the training dataset, a regularisation term can be added to the objective

function. L1 regularisation (or Lasso regression) and L2 regularisation (or Ridge regression)

are commonly used not only in deep learning but also many other machine learning

algorithms. L1 regularisation is defined using absolute values of the weights and can

perform some sort of feature selection, while L2 regularisation is defined using the squared

values of the weights to penalise large model parameters.

Early stopping

In an ideal situation, as a model sees more data both training and test errors should

constantly decrease. However, after certain number of epochs, the model may start to

overfit and learn noise in the training set. In this case, the training error keeps going down

while the test error starts to increase. Early stopping is used here to find the right moment

to stop training to minimise the test error.

Dropout

It refers to a strategy that randomly drops out some units (hidden and visible) in a deep

neural network to make nodes become more insensitive to the weights of the other nodes.

It provides a way of approximately combining many different neural network architectures

efficiently [231]. Subsequently, Warde-Farley [257] analysed the feasibility of the drop-outs

and pointed out that drop-out is an effective ensemble learning method.

Pre-training and Fine-tuning

One of the purposes of pre-training for deep learning practitioners is preventing overfitting.

It is associated with data augmentation and transfer-learning. Pre-training means initialis-

ing the CNN model with a set of pre-trained parameters rather than randomly-initialised
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ones. Also, the deep neural networks are highly non-linear function. The backpropagation

algorithm might lead the neural networks to local minima. Pre-training can provide a good

start point for the initialisation of the parameters of the deep neural networks. It is a very

popular practice in deep learning area, due to the advantages that it can accelerate the

learning process and improve the generalisation capability. Erhan et al. [56] conducted an

extensive research on why the pre-training steps help in raising the system performance.

Deep learning researchers employ well-known CNN architecture pre-trained on ImageNet

[42] dataset and fine-tune the model for the task at hand.

Common CNN Architectures

In this section, some of the commonly used CNN architectures in computer vision are

presented.

LeNet

This CNN architecture was one of the pioneering research in CNNs by LeCun et al. [132].

In this research, the hand-written digits were recognised by a CNN. It finds application in

reading zip codes, digits, and so on. The lack of high-level computing machines at that

time restricted the large-scale application of CNNs.

AlexNet

This architecture developed by Alex Krizhevsky, Ilya Sutskever and Geoff Hinton [127] is

credited as the first work in CNNs to popularise it in the field of computer vision. The

network was similar to LeNet, but instead of alternating convolution layers and pooling

layers, AlexNet had all the convolutional layers stacked together. Also, they proved the

feasibility of ReLU function in training large-scale CNN. Moreover, compared to LeNet,

this network is much bigger and deeper. AlexNet was able to win the ImageNet Large

Scale Visual Recognition Challenge-2012 (ILSVRC-2012) [42]) competitions achieving top-1

and top-5 error rates on test dataset.

GoogleNet

This CNN architecture from Szegedy et al. [239] from Google won the ILSVR- C 2014

competition. They proposed a new architecture called Inception (v1) that gives more
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utilisation of the computing resources in the network. GoogleNet is a particular incarnation

that has twenty-two layers of Inception module but with less parameter compared to

AlexNet. Later, many improvements had been made on Inception-v1, with the principle

being the introduction of batch normalisation which led to Inception-v2 by Ioffe et al.

[104]. More refinements were added to this version, and the architecture was referred to as

Inception-v3 [240]. Also, the Inception network is continuing to be developed [238].

VGG-Net

A famous structure, developed by Karen Simonyan and Andrew Zisserman [224], called

VGG-Net, has been adopted by many types of research for various computer vision tasks.

The authors of [224] have done a through analysis of the depth factor in a CNN, keeping

all other parameters fixed. This trial could have led to a vast number of parameters in the

network, but it was efficiently controlled by using tiny 3x3 convolution filters in all layers.

The VGG-Net was the runner-up in ILSVRC 2014 contest.

Residual-Net

A severe problem, preventing the CNN to be deeper, is the vanishing gradient problem [89].

He et al. developed a CNN framework by utilising a residual connection between layers,

which can reduce the vanishing gradient effect on the training of a very deep network [89].

A primary drawback of this framework is that it is much expensive to evaluate due to the

significant number of parameters. However, the number of parameters can be reduced to

an extent by removing the first Fully-Connected layer (most of the parameters are in this

layer in a CNN), without any effect on the final performance.

2.1.5 Recurrent Neural Networks (RNNs)

A RNN [55] contains links among neurons, and after unfolding it forms a directed graph

along a sequence. This allows RNN to process data that can be modelled as temporal

sequences of variable lengths, x = (x1, ..., xT ). At each time step t, the hidden state ht of

the RNN is updated using ht = f(ht−1, xt), where f is a non-linear function, which can be

as simple as an sigmoid function and as complex as a long short-term memory unit. The

Figure refrnn shows the unfolding of the computational graph of a RNN. A computational

graph is a way to formalize the structure of a set of computations, such as those involved

in taking inputs and parameters to outputs and final loss function.
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Figure 2.6: The unfolding of the computational graph of a RNN [130].

RNNs use the internal states to capture dependency among input data in a sequence,

which makes them suitable to tasks such as natural language processing, speech recognition

and smart city applications in which data demonstrates strong temporal correlations. As

vanilla RNNs suffers from various limitations, they have not been used in any real-world

applications. In what follows, we present two important RNN units: Long Short-Term

Memory (LSTM) and Gated Recurrent Unit (GRU), and two widely used architectures:

Bi-directional RNN and RNN encoder-decoder.

Long Short-Term Memory

Vanilla RNNs have difficulties in modelling long sequences as the gradients in parameter

updates tend to either explode or vanish during backpropagation. LSTM has been proposed

to solve the vanishing and exploding gradient problem by introducing the idea of Constant

Error Carousels (CEC) [98]. In the original LSTM, the activation function of the unit is

replaced by the identity function in the CEC to enforce constant error flow. Later, various

extended models have been proposed, e.g., by adding forget gate and peephole connection

[83] in order to address the limitations of the original LSTM [98].
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Figure 2.7: Long Short-Term Memory [180].

We briefly introduce the LSTM unit, following the notations used in [83], [180]. As

shown in Figure 2.7, it contains a cell C, an input gate i, an output gate o and a forget

gate f . The subscript t represents a particular time step. A standard LSTM updates the

hidden state h by iterating the following steps shown in Equation 2.13, where all the W

and U matrices are the learnable weights and the b vector represents the bias term (We

ignore the subscripts for simplicity).

ft = σ(Wfxt + Ufht−1 + bf )

it = σ(Wixt + Uiht−1 + bi)

Ct = ft ∗ Ct−1 + it ∗ tanh(WCxt + UCht−1 + bC)

ot = σ(Woxt + Uoht−1 + bo)

ht = ot ∗ tanh(Ct)

(2.13)

Gated Recurrent Unit

GRU, as shown in Figure 2.8, is another RNN unit introduced by Cho et al. [29]. It

contains two gates: update gate z and reset gate r, where the update gate helps the model

determine how much of the past information to remember and the reset gate is used to
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decide how much of the past information to forget. The hidden state h is then updated

iteratively using the following procedure shown in Equation 2.14, where all the W and U

matrices are the learnable weights and the b vector represents the bias terms.

Figure 2.8: Gated Recurrent Unit (GRU) [180].

zt = σ(Wzxt + Uzht−1 + bz)

rt = σ(Wrxt + Urht−1 + br)

ht = (1− zt) ∗ ht−1 + zt ∗ σh(Whxt+

Uh(rt ∗ ht−1) + bh)

(2.14)

Bi-directional RNN

A standard RNN can learn representations from data from previous time steps; however,

representations from future time steps may help better understand the context and eliminate

ambiguity. For example, in handwriting recognition, the performance can be significantly

enhanced if the letters located before and after the current letter were known. Bi-directional

RNNs [216] was proposed by stacking two LSTM RNNs, one processing the sequence from
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left to right, the other one from the opposite direction, and finally concatenating the output

of the two RNNs. With this structure, the output layer can integrate information from

both past and future states.

Bi-directional RNNs have been commonly used in natural language processing [235] and

speech recognition [83]. For sensor data processing, recent studies applied Bi-directional

LSTM to recognise human activities [174], [52]. In this task, the input is a discrete

sequence of equally spaced samples {x1, x2, ..., xt}, where each data point xt is a vector of

individual samples observed by sensors at time t. The samples are segmented into windows

of maximum time T and fed into the network with one direction from time 1 to T and

another direction from time T to 1. The network can output the probabilities of different

activity labels after a softmax layer. Both work [174], [52] reported the state-of-the-art

performance compared to conventional techniques.

RNN Encoder-Decoder

In some applications, the input and output sequences have different lengths, e.g., in

machine translation, the input sentence and the desired target sentence usually have

different lengths. An important and effective technique for such application is the RNN

based encoder-decoder architecture [29]. It contains two RNNs, one learns to encode an

input sequence of certain length into a context vector representation (the encoder) and the

other learns to decode the context vector representation back into an output sequence of

different length (the decoder).

The architecture allows some smart city applications to produce a sequence of predictions

for time series data. For example, in air quality and water quality prediction task, the

work in [145] designed an encoder to find a suitable representation of the past observation

data and used a decoder to generate a sequence of output, i.e., the air and water quality

measurement in the next few minutes or even hours. In addition, the work applied spatial

attention in the input layer and embed some external factors, e.g., time, weather and point

of interests, in the context vector to further improve prediction results.

2.1.6 Generative Adversarial Networks (GANs)

The Theory of the GANs

GANs are an example of the generative model. GANs was first proposed in [81] in 2014. It

is proposed initially to generate realistic images given a random signal. The fundamental
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idea of GANs is to set up a game between two players. One of them is the generator, which

creates samples that are intended to come from the same distribution as the training data.

The other player is the discriminator which tries to differentiate the generated samples from

real samples. The discriminator learns using traditional supervised learning algorithms,

discriminating inputs into two categories (whether from generated or real samples). The

generator is trained to deceive the discriminator. This is an adversarial game in which

the generator tries to generate samples more like the real ones while the discriminator

is trained to better discriminate between the generated and real samples. The generator

must learn to make samples that are indistinguishable from the genuine samples to make

the game successful, and hence, the generator network can learn to generate samples that

are drawn from the same distribution as the training data.

In the original GANs, the adversarial framework applied when the models are both

MLP [81]. In fact, CNNs can also be used in this framework [194], also RNNs [274].

To learn the generator’s distribution pg over data x, the GANs define a prior on input

noise variables pz(Z), then represent a mapping to data space as G(z; θg), where G is the

generator which is represented by a differentiable function such as neural networks. The

discriminator is another neural network, D(x; θd) which outputs a single value, representing

whether the samples are generated or real. Then the discriminator D is trained to maximise

the probability that the correct labels are assigned to the training samples and generated

samples. The generator, G, is trained simultaneously to minimize log(1−D(G(z))). In

summary, the D and the G play a two-player minimax game as described in Equation 2.15.

The structure of a typical GANs model is shown in Figure 2.9.

minmaxV (D,G) = ExPdata(x)[logD(x)] + Ezpz(z)[log(1−D(G(z)))] (2.15)
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Figure 2.9: The structure of a typical GANs model [81].

The GANs framework is not restricted in image generation, in fact, it can be applied

in many tasks. For instance, language generation is an essential task in natural language

processing and also has significant practical value. Yu et al. [274] propose the SeqGAN for

language generation. As explained in Equation 2.15, the generator and discriminator are

trained simultaneously, which means that the gradient can be back propagated from the

discriminator to the generator, since image generation is a continuous process. However,

language generation is a discontinuous, often token by token. To directly apply GANs on

the task of language generation is infeasible. To tackle this difficulty, Yu et al. [274] propose

to use reinforcement technique in which the probability of the generated samples to be

real is considered as a reward value for the generator. Hence, with the aid of reinforcement

learning algorithms, the SeqGAN can be trained, with improving results over conventional

supervised learning.

2.2 Representation Learning

2.2.1 Overview of Representation Learning

Representation Learning (RL) or feature learning is the task of finding a transformation of

raw data in a way to improve the performance of machine learning tasks such as regression

and classification. In fact, RL is essential for approaching real artificial intelligence.

Moreover, RL is commonly considered as a potential candidate solution for numerous

complex problems of data science. Furthermore, RL methods attempt to make some

important concepts of real-world intelligence possible. As mentioned by Bengio and LeCun
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[12], the most important reason that makes some methods of RL successful is their ability

to utilize some general priors related to real-world intelligence. Some of these priors

include smoothness, multiple explanatory factors, the sparsity of features, transfer learning,

independence of features, natural clustering and distributed representation, semi-supervised

learning, and hierarchical organization of features [14]. A typical RL method will be more

powerful and valuable if it covers a larger set of the above mentioned general priors.

The performance of machine learning methods is heavily dependent on the choice

of data representation (or features) on which they are applied. We hypothesize that

this is because different representations can entangle and hide more or less the different

explanatory factors of variation behind the data. Although specific domain knowledge

can be used to help design representations, learning with generic priors can also be used,

and the quest for AI is motivating the design of more powerful representation-learning

algorithms implementing such priors.

As there are a variety of RL methods, different categorization of them is manageable.

One possibility is to categorize RL methods into four main approaches, including sub-space

based RL approaches which look for representations in the sub-spaces of the original feature

space, manifold based RL approaches that represent raw data based on the embedded

manifold hidden in the original space, shallow RL approaches, and deep RL approaches.

It is possible to consider RL methods in term of using or not using supervisory

information for generating representations. Majority of RL methods such as principal

component analysis (PCA), independent component analysis (ICA), restricted Boltzmann

machines (RBM) perform unsupervised RL thus, they do not incorporate any class label

or other supervisory information in the process of learning representations. In contrast to

unsupervised RL methods, supervised RL methods like linear discriminant analysis (LDA)

family, incorporate supervisory information in the process of learning representations.

However, there are some RL methods that are naturally unsupervised but, they use

additional information in the process of learning representations; hence, they are called soft

supervised RL methods. Semi-supervised RL methods utilize both labeled and unlabeled

data for generating representations. Worth to mention that the main focus of RL methods

is on the unsupervised and semi- supervised methods of feature generation.

It is supposed that RL is the task of looking for a transformation (mapping) function

f : XD → Y d, which transforms (maps) data from the original feature space X, with

the dimension D, to the representation space Y, with the dimension d. Dimensionality

of the representation space is usually much smaller than the dimensionality of original
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feature space. As an exception, in order to force generated representations to have a

specific property, their dimension may be much greater than the dimension of data in the

original space. Moreover, in some methods of RL like CNNs for classification, the output

(results of mapping) is an encoding which is consistent with the final output of the pattern

recognition system. In other words, the final output of the transformation is the predicted

value of such tasks. Some RL methods have intermediate transformations and consequently

representations organized into multiple layers. Such representation methods with multiple

hierarchical layers are elaborated in the later sections.

2.2.2 Sub-space Based Representation Learning Approaches

Sub-space based approaches as almost early methods of RL attempt to look for a sub- space

in the original feature space that better represents the original data. This representation is

achieved by projecting data of the original feature space into new sub-space by applying

the learned transformation function; the generated representation has some properties

corresponding to the way base functions of the transformation are formed. In sub-space

based RL methods, new features are commonly generated by a linear combination of

original features through base functions; the base functions of transformation are learned

by analyzing data in the original feature space. During the learning process of the

base functions, independence, orthogonality, and sparsity as potential properties may be

obtained. In the sections ahead, the most popular sub-space based RL methods, including

PCA family, metric multi-dimensional scaling (MDS), ICA family, and LDA family, are

considered.

Principal Component Analysis Family

PCA as a global method is one of the oldest techniques of unsupervised data representation

which focus on the orthogonality of generated features [19]. The main purpose of PCA

is to generate a low dimensional representation of the original observations and preserve

maximum variance of the original data as well. The base functions of trans- formation

are actually principal components hidden in the original data. A solution for finding

transformation matrix is to use a portion of eigenvectors of the covariance matrix of the

original data. The number of selected eigenvectors determines the dimension of the new

representation. The eigenvalue corresponding to each eigenvector measures its importance

in term of the amount of held variance.
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PCA is suffering from the fact that the principal components are created by an explicit

linear combination of all of the original observations. This phenomenon does not allow to

interpret each principal component independently. In order not to use all of the original

variables is to utilize Sparse PCA (SPCA) which reduce the dimensionality of the data by

adding sparsity constraint to the original variables [301].

As it is the case in many real-world applications, if the generation mechanism of data

is non-linear, the original PCA fails to recover true intrinsic dimensionality of the data.

This is considered a shortcoming of PCA which is relieved by its kernelized version known

as Kernel PCA (KPCA) [214].

It is also possible to derive PCA within a density estimation framework based on a

probability density model of the observed data. In this case, the Gaussian latent- variable

model is utilized to derive probabilistic formulation of PCA. Latent-variable formulation

of obtaining principal axes leads naturally to an iterative and computationally efficient

expectation-maximization solution for applying PCA commonly known as Probabilistic

PCA [293].

Metric multi-dimensional Scaling

Metric multi-dimensional scaling is a linear technique for generating representations. In

contrast to PCA which project data into a sub-space that preserves maximum variance,

MDS project data into a sub-space which preserve pairwise squared distance. In other

words, MDS attempts to preserve the dot product of samples in the new representation

space [2]. The idea of distance preservation used in MDS has been used in one way or

another in some manifold learning. As Eigen decomposition of the Gram matrix which

holds pairwise dot product of samples is required for MDS, kernel PCA can be considered

as a kernelized version of MDS, where the inner product in the input space is replaced by

kernel operation in the Gram matrix.

Independent Component Analysis Family

ICA is another popular technique of sub-space based RL which is very similar to PCA.

In contrast to PCA which uses variance as second-order statistical information, ICA uses

higher order statistics for generating representations. Using higher order statistics force

generated features to be mutually independent [34]. In a topological variation of ICA,

independence assumption of generated features is removed and a degree of dependence
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based on the distance between generated features is assigned. Mentioned distances lead to

generate a topological map which is used by some applications of computer vision [103].

Kernel ICA is another variation of original ICA which uses calculated correlation in the

reproducible kernel Hilbert space for generating non-linear representations [9].

Linear Discriminant Analysis Family

LDA is a global and supervised method of RL. In this method, the transformation matrix

is obtained in a way to generate features that hold maximum variance an also bring

maximum class separability by utilizing the within-class and the between-class amount of

variances exist in the data. In other words, the transformation matrix is computed in a way

that the amount of between-class variance relative to the amount of within class variance

is maximized. Generating features that satisfy class separability property is desirable

for many applications [64]. An incremental version of LDA is also proposed for those

applications which demand generated representation space be updated at the arrival of

new data sample [74]. To conclude sub-space based RL methods, many methods try to find

sub-space in one way or another. This sub-space has some properties that are transferred to

the generated features. The advantage of sub-space methods of representation generation is

computational efficiency thanks to eigen decomposition technique. As sub-space methods

are linear in nature, they cannot be successful when the original data are generated non-

linearly. In the case of non-linearity, for better representation, other RL methods such as

manifold family are potential candidates to be considered in the next section.

2.2.3 Manifold Based Representation Learning Approaches

Among the family of RL approaches, manifold based methods have attracted attention

due to their non-linear nature, geometrical intuition, and computational feasibility. A

strong assumption in most manifold learning methods is that the data appears in the

original high dimensional feature space approximately belongs to a manifold with an

intrinsic dimension less than the dimension of original space. In other words, the manifold

is embedded in the original high dimensional feature space. The goal of manifold based

RL methods is to find this low dimensional embedding and consequently generating a

new representation of original observations based on the founded embedding. In contrast

to sub-space based RL approaches which usually perform dimensionality reduction and

consequently linear RL, manifold based approaches reduce the dimension in a non-linear
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fashion by attempting to uncover intrinsic low-dimensional geometric structures hidden in

the original high dimensional observation space.

Manifold based RL methods are categorized into three main groups of local, global, and

hybrid; each method attempts to preserve different geometrical properties of the underlying

manifold while attempting to reduce the dimension of original data.

Local Methods of Manifold Learning

Local manifold learning methods attempt to capture local interactions of samples in

the original feature space and transfer captured interactions to the generated new low-

dimensional representation space. The strategies followed by local methods of manifold

learning lead to map nearby points of the original feature space to nearby points in the

newly generated low-dimensional representation space. Computational efficiency and

representation capacity are two characteristics of local methods. Computations of local

methods are efficient because the matrix operands that exists in local methods are usually

sparse.

Laplacian eigenmaps [11], local linear embedding (LLE) [203], and Hessian eigenmaps

[50] are representative methods of local manifold learning family. Laplacian eigenmaps

captures local interactions of data by utilizing Laplacian of the original data graph.

Sensitivity to noise and outliers are considered as a shortcoming of Laplacian eigenmaps.

Representations generated by LLE are invariant under rotation, translation, and scaling as

geometrical transformations. Hessian eigenmaps is the only method of manifold learning

capable of dealing with non-convex data. As all the methods based on Hessian operator

needs to calculate second derivatives, they are sensitive to noises, especially in high

dimensional data.

Global Methods of Manifold Learning

The fact that representations generated by global methods of manifold learning cause

the nearby points to remain nearby and also faraway points remain faraway, tends these

methods to give more faithful representation than local methods.

Isometric feature mapping or shortly ISOMAP is the most popular global method of

manifold learning. ISOMAP uses the geodesic distance between all pairs of the data points

to uncover the true structure of the manifold. Using geodesic distance instead of Euclidean

distance leads faraway points in the original space to remains faraway in the representation
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space. The reason for this desirable property is that some points that are close in term

of Euclidean distance may be far in term of geodesic distance. In fact, geodesic distance

allows learning the global structure of the data. ISOMAP is also considered as a variant of

the MDS algorithm in which the Euclidean distances are changed to the Geodesic distances

along the manifold [245].

Experimental result demonstrates ISOMAP cannot scale well for large datasets as it

demands huge amounts of memory for storing distance matrices. In order to increase its

scalability, landmark ISOMAP (L-ISOMAP) has been proposed by using a subset of data

points known as landmark points [222].

Hybrid Methods of Manifold Learning

As mentioned previously, both local and global methods of manifold learning have their

own advantages and disadvantages in terms of representation capability and computational

efficiency. Hybrid methods of manifold learning usually attempt to globally align local

manifolds and gain benefits of computational efficiency of local methods and quality

representation generation of global methods. In other words, hybrid methods generate

representations approximately as good as global methods by an efficient cost of local

methods. Some of the well-known hybrid methods of manifold learning are conformal

ISOMAP [222], manifold charting [18], and diffusion maps [33].

To conclude, manifold based methods of RL exist in different categories with different

properties. Early local methods are sensitive to noises and outliers. Moreover, proper

parameter tuning is mandatory for some methods. Experiments demonstrate global

methods of manifold learning gives a better representation than local methods. However,

this excellence comes with a higher cost of computation. As the computational cost of

local methods is more reasonable, some hybrid methods attempt to follow the path of local

methods for obtaining representations with the capability as close as global methods. Some

manifold learning methods have a close relationship to sub- space based methods such as

MDS and Kernel PCA. Despite many progress in manifold learning methods, the problem of

manifold learning from noiseless and sufficiently dense data still remains a difficult challenge.

Although manifold learning methods generate representations better than sub-space based

approaches, still we need better methods for generating representations that meet the

requirements of real-world intelligence.
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2.2.4 Shallow Representation Learning Approaches

The focus of this section is the consideration of shallow RL approaches in term of rep-

resentation capability and computational efficiency. As a matter of fact, sub-space and

manifold based RL approaches are under the umbrella of shallow architectures. Also, some

machine learning techniques such as multilayer perceptron with less than five layers and

local kernel machines are considered as shallow architecture methods; these techniques

generate a limited representation of input data in their mechanism prior to producing any

prediction output.

In order to represent any function or learn behavior and underlying structure of any

data by using shallow architectures, an exponential number of computational elements

with respect to the input dimension is required. As a result, shallow methods are not

compact enough. Compactness means fewer computational elements and consequently

fewer free parameter tuning. Accordingly, non-compact nature of shallow methods of RL

lead these methods to have poor generalization property.

As the majority of shallow architecture RL methods are indeed local estimators, they

exhibit poor generalization while learning highly varying functions. The reason for lack

of generalization, in this case, is that local estimators partition input space into regions

whose number relates to the number of variations in the target function. Each partition

needs its own parameters for learning the shape of that region. As a result, much more

training examples are needed to support the training of variations in the target function.

Kernel machines and many unsupervised RL methods such as ISO-MAP, LLE, and Kernel

PCA are good examples of local estimators which are considered as shallow architecture

RL techniques. In order to tackle limitations of kernel machines as local estimators,

some techniques are needed to learn better feature space and consequently learning highly

varying target functions in an efficient manner. Worth to mention, if the variations of target

function are independent, no learning algorithm will perform better than local estimators

[13]. Restricted Boltzmann machines (RBM) and autoencoders as shallow architecture

methods of RL are introduced in the sections ahead.

Restricted Boltzmann Machines

Restricted Boltzmann machines (RBMs) are actually energy-based probabilistic graphical

models which attempt to learn the distribution of input data. As Figure 2.10 depicts,

a typical RBM has two layers of visible and hidden nodes. The visible layer nodes are
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connected to the hidden layer nodes via weight matrix W . There are no visible-visible

and hidden-hidden connections hence, these types of Boltzmann machines are so-called

restricted. RBMs are able to compactly represent any distribution in case of providing

enough hidden nodes. The scaler energy associated to each configuration of the nodes in a

typical RBM is defined by Equation 2.16 as energy function and the probability distribution

via mentioned energy function is described by Equations 2.17, 2.18, and 2.19. Here, b and

c refer to the biases of visible and hidden nodes respectively [65].

Figure 2.10: The architecture of a typical restricted Boltzmann machine [283].

E(v.h) = −bv − ch− hWv (2.16)

p(x) =
e−F (x)

Z
(2.17)

Z =
∑
x

e−F (x) (2.18)

F (x) = −log
∑
h

e−E(x,h) (2.19)

In order to learn the desired configuration, the energy function should be modified through

a stochastic gradient descend procedure on the empirical negative log-likelihood of the
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data-set whose distribution needs to be learned. Equations 2.20 and 2.21 defines required

log-likelihood and loss functions respectively. In these equations, h and D refers to the

model parameters and training data respectively. The parameter set (h) which needs to be

optimized include, weight matrix W , biases of visible nodes b, and biases of hidden nodes

c. Gradient of negative log likelihood as described by Equation 2.22 has two terms refereed

as positive and negative phases. Positive phase deals with the probability of the training

data while, negative phase deals with probability of samples generated by the model itself.

The negative phase allows to check what have been learned by the model up to current

iteration. In order to make computation of the gradient tractable, the expectation of all

possible configuration of visible nodes v under model distribution P is estimated via a

fixed number of model samples known as negative particles. The negative particles N

are sampled from P by running a Markov chain with Gibbs sampling as its transition

operator. In order to efficiently optimize model parameters, contrastive divergence (CD) is

utilized. CD-k initialize the Markov chain using one of the training examples and limits the

transition just to k step. Experimental results demonstrate the value 1 for k is appropriate

for learning data distribution [93]. For better performance, construction and training of

RBMs need some proper settings, including the number of hidden units, the learning rate,

the momentum, the initial values of weights, the weight-cost, and the size of mini batches

of the gradient descent. To clarify the effect of these meta-parameters on each other, by

having more hidden nodes, the representation capacity of RBMs increases with the cost of

increasing training time. In addition, types of units to be used and decision on whether to

update the states of each node stochastically or deterministically are important [94].

L(θ.D) =
1

N

∑
x(i)∈D

logp(x(i)) (2.20)

l(θ.D) = −L(θ.D) (2.21)

− δlogp(x)

δθ
≈ −δF (x)

δθ
− 1

|N |
∑
x∈N

δF (x)

δθ
(2.22)

As the training of a typical RBM is converged, it is ready to generate a new repre-

sentation in the hidden layer for any data presented to its visible layer. RBMs are also

considered as multi-clustering methods which are a kind of distributed representation.

Distributed representation as a requirement for real-world intelligence is the capability

which leads each hidden node concerns one specific aspect of the data which have been
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presented to its visible nodes. Distributed representation of RBMs enable generalization

to a new combination of values of learned features beyond those have been seen during

its training. RBMs are used in a variety of applications including analysis of complex

computer tomography images [251].

Autoencoders

Autoencoders are actually unsupervised neural networks trained via back-propagation

algorithm with the setting that target values are the input values [204]. A typical au-

toencoder is composed of an encoding unit that generates representations, decoding unit

that reconstructs input from representation, and one hidden or representation layer which

desired to captures main factors of variations hidden in the data. Early autoencoders

attempt to learn a function which is an approximation to the identity function.

By applying some constraints on the autoencoder network and specifically its objective

function, more interesting structures hidden in the data will be discovered. These constraints

usually appear in different forms of regularization. Simplest regularization technique is

the weight decay which forces the weights to be as small as possible. Going from linear

hidden layer to non-linear one leads the autoencoders to capture multi-modal aspects

of the input distribution [109]. Sparsity is a solution for preventing autoencoders from

learning the identity function. In this setting, which is known as over-complete setting,

the size of hidden layer is greater than the size of the input layer and many of the

hidden nodes get zero or near zero values [196]. In order to force the hidden layer to

learn more robust and generalized representation, denoising autoencoders that lead the

network to learn representation from a corrupted or noisy version of the data are proposed.

Representations generated from noisy data are more robust than their previous counterparts

[253]. Variational autoencoders (VAEs) as a generative variation of autoencoder networks,

attempt to generate new samples to exploring variations hidden in the data. In contrast

to other methods of sample generation which are random, VAEs generate samples in the

direction of existing data to fill the gaps in the latent space thanks to their continuous

latent space [120].

2.2.5 Deep Representation Learning Approaches

Deep architectures are among potential solutions for tackling previously mentioned limita-

tions of shallow RL approaches. As deep architectures of RL cover more general priors of
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real-world intelligence, they are considered as the most promising paradigms for solving

complex real-world problems of artificial intelligence up to know. In other words, multiple

layers of representation in deep architectures facilitate the reorganization of feature space

that causes machine learning methods to learn highly varying target functions. Deep RL

methods are necessary for AI-level applications which need to learn complicated functions

that represent high-level abstractions. Deep representations are obtained by utilizing deep

architectures that are the composition of multiple stacked layers. These multiple processing

layers attempt to automatically discover abstractions from lowest level observations to the

highest level concepts. Abstractions in different layers allow building concept hierarchy as

a necessity for real-world intelligence. In other words, higher layers attempt to amplify

important aspects of raw data and suppress irrelevant variations [130].

Neural networks are considered as the most promising path for approaching deep RL.

A typical deep neural network (DNN) is actually a network with multiple stacking layers

of simple non-linear processing units. Because of the large number of layers and units

per layer, training of such large networks demands a huge number of training data and

computational power for better generalization.

Training of a typical DNN is commonly based on error gradient back propagation

which relies on multiple passes over training data. As the number of parameters in DNNs

is huge, too many training data and consequently long iterations are needed for proper

optimization. In order to decrease the training time of DNNs as a large scale machine

learning problem, stochastic gradient descend (SGD) has been proposed [17].

Training of deep neural networks is a difficult optimization problem because of vast

parameter space with too many local optima and plateau which their computed gradient

is zero. In order to train DNNs, layer-vise unsupervised pre-training, convolution, auto-

associators, dropout, and other techniques are utilized. These techniques cause construction

of special types of deep neural networks including, Deep Belief Networks, Convolutional

Neural Networks, Deep Auto-encoding networks, and Dropout Networks respectively.
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Chapter 3

Deep Multiple Classifier Fusion for

Traffic Scene Recognition

Recent success in supervised learning can arguably be attributed to the paradigm shift from

engineering representations to learning representations. Especially in the supervised setting,

effective representations can be acquired directly from the labels. The goal of supervised

learning is to learn a model p(y|x). Here x could be real-valued high-dimensional vectors

representing the raw contents of an image, an audio waveform, or sensory data in general,

and y could be a low-dimensional vector representing a label in the case of classification.

In this chapter, we have introduced a novel deep learning with multiple classifier fusion

approach that emphasizes local-aware representation learning. With the local deep-learned

features, the network can further import local region information from input, providing

discriminative feature learning result for the representation learning component.

3.1 Introduction

Recognizing the traffic scene in front of a vehicle is an important task for autonomous driving

[101]. Knowledge of the current traffic scene information can have several benefits: e.g.,

augmenting the driver’s situational awareness, reducing driver workload, and automating

all or part of the driving process. Despite the progresses in scene recognition [49], [84],

[229], understanding the traffic scene in various environments remains largely unsolved.

This is mainly due to the complexity of the traffic situations. First, many different

traffic participants may be present and there are a variety of geometric layouts of roads
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and crossroads. Furthermore, illumination conditions such as cast shadows caused by

infrastructure or vegetation add extra complexities.

A traffic scene is generally composed of a collections of entities (e.g. objects) organized

in a highly variable layout. This high variability in appearance has made reliable visual

representation the primary choice in solving this problem. Among them, an image has

been represented as bags of locally extracted visual features according to bag-of-features

(BOF) methods, such as Scale Invariant Feature Transform (SIFT) [182] and Histogram

of Oriented Gradient (HoG) [41]. For many high level vision tasks, these features can be

pooled into an invariant image representation, e.g., Bag of Visual Words (BoVW) [38],

Fisher Vectors (FV) [49], and Vector of Locally Aggregated Descriptors (VLAD) [110].

However, the rich variabilities hidden in the image cannot be reflected by the dominate

patch encoding strategies, which are based on hand-crafted features. Recently, CNN

have brought breakthroughs in image representations by emphasizing the significance of

learning robust feature representations from raw data [127], [223]. CNN has the ability to

detect complex features automatically by training multi-layer of convolutional filters in an

end-to-end network, which is a prerequisite for many computer vision tasks, such as action

recognition [268], vehicle recognition [262], [263] and object detection [77]. Despite these

achievements, there are still some limitations in deep CNN, such as the lack of geometric

invariance and the limitations in transferring information about local elements. Besides, a

single classifier may have its own advantages and disadvantages in the classification task

[298]. For the task of traffic scene recognition, a single classifier may be capable of learning

some, but not all, specific characteristics of the traffic scene. So it is worth exploring

multi-classifier fusion applied to traffic scene recognition to improve the classification

performance.

To address the above issues, in this chapter, we propose a novel traffic scene recognition

methodology in the setting of granular computing, which involves the creation of information

granulation by extracting the CNN features upon local regions of the image for a compact

representation, and design multiple levels of classifiers fusion method through fusing the

outputs of the two ensemble classifiers (Random Forests and Gradient Boosted Trees)

with the outputs of the selected single classifier. Second, we discuss how to improve the

recognition rate by using the deep multi-classifier fusion method from the perspective of

granular computing. Therefore, we are able to create information granulation and diverse

classifiers to advance the performance.

To summarize, our main contributions are listed as follows:
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• A deep multiple classifier fusion method based on granular computing has been

proposed to create information granulation and multi-level of granularity, thus

improve the performance for traffic scene recognition.

• A unified end-to-end deep network is built to integrate all algorithmic components,

which makes the training process efficient and effective.

• We conduct extensive experiments and improve state-of-the-art traffic scene recogni-

tion performance on two benchmark datasets, WZ-traffic and FM2, and demonstrate

the effectiveness of our proposal.

The rest of the chapter is organized as follows. In Section 3.2, we offer a brief overview

of traffic scene recognition, multi-classifier fusion and granular computing. Section 3.3

provides a detailed description of the proposed methods. We also present how granular

computing concepts are employed to design the framework for deep multi-classifier fusion.

In Section 3.4, we describe the details of the new traffic scene dataset “WZ-traffic” which

contains 20 traffic scenes classifications. For comparisons with other research, we conduct

an analysis of the WZ-traffic and FM2 datasets, and discuss the results in terms of multiple

comparison settings. In Section 3.5, we highlight the contributions of this work and suggest

some future directions for research in this area.

3.2 Related Work

As an emerging research topic, traffic scene recognition has recently attracted significant

interest [243], [169], [244]. In this section, we focus on three relevant research areas: traffic

scene recognition, multi-classifier fusion and a review of granular computing concepts.

3.2.1 Traffic Scene Recognition

The automatic recognition of visual scenes is an important issue and plays a significant

role in automatic transportation and traffic surveillance. A number of studies have been

carried out under the daunting challenges of recognizing the traffic scene, mostly aimed

at automatically analyzing the road environment, or detecting and classifying possible

objects in the traffic scene, such as pedestrians and vehicles. For example, [57] proposed

an urban scene understanding method by exploiting a pre-training classifier to label the

segmentation regions. Also, a road classification scheme was introduced by [243], which
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utilized the color, texture and edge features of the image sub-region. They then applied a

convolutional network for the classification task.

Recently, based on the general data mining process, Taylor et al. [244] put forward a

novel data mining methodology for driving-condition monitoring via CAN-bus data. In

[162] a generalized Haar filter based deep network was applied for the object detection

tasks in traffic scenes. A novel concept of the atomic scene has been proposed by [23], they

established a framework for monocular traffic scene recognition by decomposing a traffic

scene into atomic scenes.

3.2.2 Multi-classifier Fusion.

The effectiveness in solving classification tasks has been proven by many machine learning

algorithms, such as the support vector machine (SVM) [36], k-nearest neighbours (KNN)

[4], decision tree (DT) [79] and random forest (RF) [40]. A simple practice is to retain the

best classifier and disregard the others after evaluating their performance. Alternatively,

one could fuse the information provided by them, to achieve a better recognition rate.

Recently, multi-classifier fusion has attracted attention in various computer vision tasks to

achieve an improved performance. The final result of the classifiers fusion depends on the

method of combining the decisions from different classifiers in accordance with the fusion

rule.

In [128], six simple classifier fusion methods were theoretically studied, including

minimum, maximum, median, average, oracle and majority votes. Due to the simplicity

and good performance of these strategies, they may be the most obvious choice when

building a multi-classifier system.

To determine the support Si(x) for class xi, using the fusion rule R to perform a

majority voting on the class-related probability predicted by each classifier, it can be

defined as,

Si(x) = R(P1,i(x), , ..., PL,i(x)), i = 1, 2, ...,m. (3.1)

In the majority voting method, the class label of x predicted by each classifier should

be computed firstly. Then, the support Si(x) can be robustly estimated as,

Si(x) =
v + 1

L+m
(3.2)
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where v represents the number of votes received by the class xi. Compared to frequency-

based probability estimation, this probability usually does not affect the final result, while

avoiding the problem of certain class labels that do not appear in the basic classifier output

[53].

Fusion of feature sets and classifiers for facial expression recognition has been studied

in [278]. Toufiq et al. [248] developed a dynamic decision selection method for face

recognition that uses the least amount of facial information to take correct decision. In

[177], a random subspace ensemble of SVM classifiers has been trained for scene recognition,

and then the sum rules were used to combine the classifier results. In this work, we present

a multi-classifier fusion approach by using various classifiers in the setting of ensemble

learning which leads to an improvement in the recognition accuracy.

3.2.3 A Review of Granular Computing Concepts

From the aspect of philosophical perspectives, granular computing is a way of structured

problem solving at the practical level [270]. There are two commonly concepts in granular

computing: granules and granularity [188], [189]. In theory, a granule is defined as a

collection of smaller units that can form a larger unit.

Various granules involves horizontal relationships and hierarchical relationship. If

different granules involves horizontal relationships when if they are located in the same or

different levels of granularity. Otherwise, these granules are in hierarchical relationships.

For structural information processing, there are different levels of granularity for different

sizes of granules. In ensemble learning, an ensemble of classifiers is viewed as a granule.

Also, if the combination of classifiers involves different levels, each level represents a level

of granularity.

In general, there are two main operations in granular computing including granulation

and organization. The granulation operation aims at decomposing larger granules in

a higher level of granularity into smaller granules at a lower level of granularity, while

organization intends to integrate several parts into one. When designing the top-down

and bottom-up approaches from a computer science perspective [269], the operations of

granulation and organization are widely used, respectively [160].

In the content of set theory, a set of any formalism is regarded as a granule and each

element in a set can be viewed as a particle. There are different formalisms of sets such

as probabilistic sets [151], fuzzy sets [275], [137], interval-valued intuitionistic fuzzy sets
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[8, 25] and rough sets [188]. They belong to information granulation which is one of the

fundamentals of granular computing. In particular, a probability set can be considered a

deterministic set when all elements belong to the set. Probabilistic sets provide a chance

space to each set and view it as a granule. The chance space will be divided into subspaces

which can be viewed as particles that are considered to be randomly selected to activate

the occurrence of an event. Therefore, a whole chance space integrates all these particles.

The fuzzy sets view each set as a granule and gives each element a certain degree of

membership in that set [27], [26]. In other words, each element belongs to a certain degree

of a fuzzy set. In the setting of granular computing, a particle represents each part divided

from the membership. In the context of rough set context, each set is viewed as a granule.

As described in [151], rough sets use a boundary region to recover some elements with

insufficient information.

Based on the above description, granular computing is effective in simplifying complex

problems by breaking them down into several sub-problems. It can also be used to

quantitatively measure qualitative properties in the context of information granulation. In

practical applications, the theory of granular computing has been widely used to promote

other research fields, such as computational intelligence [54], [116] and artificial intelligence

[72], [165].

3.3 Overview of the Proposed Method

In this section, we describe the details of local deep-learning feature extraction and present

the multi-classifier fusion framework. As illustration in Figure 3.1, the proposed method

consists of four steps: 1) generating region proposals, 2) transfer learning, 3) reduction

of feature dimensions, and 4) classification. The main components in our method will be

described in detail. In addition, we will analyze the creativity of the method from the

perspective of granular computing.

3.3.1 Region Proposal and Transfer Learning

In the setting of granular computing [149], a granule generally represents a large particle,

which consists of smaller particles that can form a larger unit. Different from most existing

methods which use global features extracted from whole images, we consider each image x

as a granular and obtain a collection of local features from sub-granules: x = {x1, x2, ....xn}.
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Figure 3.1: The workflow of our proposed traffic scene recognition system. The granulation
operation includes generate region proposals (sub-granules) for each image (granule) and
performs transfer learning to obtain local deep-learnt features. In the organization operation,
we analyze the principle component to reorganize the local deep-learnt features and reduce
their dimension of it. The type of traffic scenes can be recognized with multi-classifier
fusion that also belongs to the organization operation.

So we capture contextual information from neighboring scenes and objects while preserving

key local features. We start our work with a set of region proposals from images to pursue

accuracy with affordable computing costs, each region proposal is viewed as a sub-granule

of the original image. After observing the experimental results, we find that the top 1,000

ranked region proposals are sufficient for the representation of an image.

Once we have the 1,000 region proposals which were generated from the original images

by the EdgeBoxes algorithm, we start the transfer learning in the second stage. We

formalize transfer learning as follows: Given a source domain DS and a target domain DT ,

the learning task for DS and DT are TS and TT , respectively. We aim to use the knowledge

from DS and TS to boost the learning ability of the target predictive function fT (·) in TT ,

where DS 6= DT , TS 6= TT . Transfer learning is particularly relevant when, given labeled

source domain data DS and target domain data DT , we find that |DT | � |DS |.
In this chapter, we transfer knowledge from the ImageNet object recognition task P1

to the target problem of traffic scene recognition P2. In P1, we have the task of object
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classification with source domain data D1 = {(x1i , y1i)} from ImageNet that consists of

natural images x1i ∈ X1 with labels. In P2, we have a traffic scene prediction task with

target domain data D2 = {(x2i , y2i)} that consists of traffic scene images x2i ∈ X2 and

image labels. ImageNet is an object classification image dataset which consists of 14 million

images belonging to 1,000 classes, major breakthroughs have been achieved with the help

of sufficient data and CNN models in many computer vision tasks. CNN models trained

on the ImageNet dataset are recognized as good generic feature extractors, with low-level

and mid-level features such as edges and corners that are able to generalize to many new

tasks. We achieve knowledge transfer using the parameters from VGG16 models trained

on ImageNet. The VGG16 model has been fine-tuned on the traffic scene dataset using

SGD with momentum.

We consider two ways of adapting the original VGG16 network. The first approach is

to add a dropout layer before the final convolutional layer to reduce the risk of overfitting.

Second, we modify the last fully-connected layer to have K neurons to predict the K-

classes, where K is the number of the traffic scene types in the training set. We regard

the traffic scene recognition as a multi-class classification problem, and apply the cross-

entropy loss to transfer the model outputs to the value of probability for all classes. This

corresponds to

l = −
K∑
k=1

log(σp(k)q(k)) (3.3)

where σ denotes the softmax activation function, p(k) ∈ [0, 1] is the predictive probabil-

ity of the input image belonging to class K and q(k) denotes the ground truth distribution.

Different with some methods which obtain features from the pooling layer, we extract the

4,096-dimensional feature vector from the first full connection layer (FC layer) for the

region proposals generated from each image. However, it is time-consuming to extract the

features of multiple regions (sub-granule) in the CNN.

To reduce the computational cost and run time, we implemented our algorithm on

top of a fast R-CNN [77], in which the RoI projection scheme will complete the feature

extraction of an image in only one feed forward process. Fast R-CNN is originally used for

object detection and requires object category labels and annotations of bounding boxes.

Usually, the annotations are done manually in general applications. In our work, the

parts instances are viewed as objects and annotated automatically. We show the feature

extraction process in Figure 3.2.
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3.3.2 Dimensionality Reduction

As has being pointed out in [110], reducing the dimension of the original feature appro-

priately would further improve the recognition performance. Therefore, after extracting

the CNN features from regions, we used principal component analysis [3] to reduce the

feature dimension. However, it is not practical to perform conventional PCA training on

all features due to the large number of features. We first randomly select some sample

features for training and reduce the CNN features from 4,096 to 256 dimensions. Then we

perform PCA on all the remaining features. In addition, we further investigate the effect

of feature dimensions on overall recognition performance by comparing the performance of

512 dimensions.

Figure 3.2: The process of deep feature extraction. Process the input traffic scene images

(granule) contains a set of region proposals (sub-granule) through the CNN model, after

generating the conv5 feature map of the image, the RoI pooling layer will extract features

with one feed forward process.

3.3.3 Design of Multi-classifier Fusion Framework

There are two principles for multi-classifier fusion: a) each individual classifier has its own

advantages; b) as indicated in [298], complementary advantages could to be achieved by

encouraging diversity amongst the different classifiers.

Figure 3.3 shows the process of multi-classifier fusion. Firstly, we train several single

classifiers including the popular SVM, KNN and MLP that have different learning strategies.

To boost the recognition performance, in step 2, more diverse decision trees are obtained
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by training two decision tree ensembles including Random Forests and Gradient Boosted

Trees. To reduce the risk of over-fitting and to improve the level of generalization, we

adopt the 10-fold cross validation to train and validate each classifier. Finally, we apply an

algebraic rule to fuse the results of the two ensemble classifiers with the single classifiers to

further improve the recognition performance. In particular, the proposed method involves

the different levels of granularity. Each ensemble can be viewed as a granule, Random

Forests and Gradient Boosted Trees are two independent granules. The final ensembles

are organized to include the two ensembles and the single classifiers. Each of the levels of

ensembles actually represents a level of granularity.

Figure 3.3: Step 1: train three single classifiers; Step 2: In order to increase the diversity of

decision tree classifiers, two decision tree sets are trained by using RF and GBT respectively;

Step 3: the trained single classifiers is combined with the decision tree sets through algebraic

fusion.

Voting is the most popular method of classifier combination in the field of classifier

fusion. In particular, voting-based set classification can be achieved by selecting the classes

provided by most classifiers as their output, i.e. majority voting. In this way, voting-based

ensemble classification is implemented.

Different from majority voting, weighted voting is another way of voting in which the

class output is calculated with the weight of each single classifier. The class that obtains

the highest weight will be derived for finally classifying an instance. The overall confidence

(accuracy) of a classifier evaluated on a validation set will be used to estimate the weight

of this classifier.

The precision or recall for a specific class are also used to measure the confidence in the
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class level [150]. Also, due to the high degree of diversity between different instances, the

confidence in classifying an instance cannot be represented by the confidence level measured

for the classifier or each individual class. In our proposed framework, we use algebraic rules

[298], which are based on the median/maximum/average of the hidden output (posterior

probability of each class) to achieve the fusion of these classifiers trained by using different

learning algorithms. Our traffic scene recognition algorithm is summarized in Algorithm 1.

Algorithm 1 Proposed traffic scene recognition pipeline

Input: Static traffic scene recognition dataset D including Dtrain, Dval and Dtest.
Output: The prediction labels for Dtest.
/*Granulation operation*/
1: Create region proposal (sub-granule) for traffic scene images (granule) in D.
2: Perform transfer learning using Dtrain and Dval (see Section 3.3.1).
3: Extract the local deep-learnt feature matrix Htrain, Hval and Htest of the selected

regions for each image in Dtrain, Dval and Dtest.
/*Organization operation*/
4: Analyze the principal components in Htrain to obtain the transformation matrix T .
5: for i = 1 to Dtrain do
6: Use the first i transformation vectors of T to compute. Htraintransform

by projecting
Htrain to the subspace of the principal components.

7: Evaluate the performance of Htraintransform
and save the result as scoresi.

8: end for
9: Obtain the i in which the Htraintransform

achieves the best scores. Tselect is the first i
transformation vectors of T .

10: Compute Ltrain, Lval and Ltest by projecting Htrain, Hval and Htest to the principal
components subspace using Wselect.

11: Train three basic classifiers KNN, SVM and MLP and two decision tree ensembles RF
and GBT using Ltrain, Lval.

12: Obtain the posterior probability matrix Ptest of the three basic classifiers and two
decision tree ensembles on Ltest.

13: Fuse the multiple Ptest using algebraic rules.

.

3.3.4 Application of Granular Computing Concepts

We design the deep multi-classifier fusion method in the setting of granular computing,

which is a paradigm of information processing. In the local deep-learned feature extraction
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part, granulation is operated through decomposing the information of the original images

into multiple region proposals which involves local information. Organization is operated

through analyzing the principal components to reduce the feature dimensions. Different

from general feature selection, we reorganize the various features into a low-dimension

features with no information loss. A principal component is a feature that is regarded as a

large information particle, which contains a plurality of features called small information

particles. The whole process of dimensionality reduction belongs to information fusion,

which utilizes the organizational operations in granular computing.

On the other hand, the framework of multi-classifiers fusion involves multiple levels

of classifier fusion, and we view each of the levels as a specific level of granularity. In

this setting, a primary ensemble containing three base classifiers is viewed as a granule at

the basic level of granularity, whereas the final ensembles which may involves both base

classifiers and lower level ensembles is viewed as a granule at the top level of granularity.

Multi-classifier Fusion vs. Deep multi-classifier fusion. Multi-classifier fusion

and the proposed deep multi-classifier fusion have the same objective of outputting the

prediction labels for the testing data. Multi-classifier fusion focuses on the classification task

and leverages different classifiers to improve the performance. Deep multi-classifier fusion

seamlessly integrates the two components including local deep-learned features extraction

framework (step 1 to step 3 of Algorithm 1) and multi-classifier fusion into a unified system.

In principle, the two components should collaborate with each other effectively: the former

operation of granulation is essentially decomposition of the whole into multiple parts in a

top-down information processing manner through extracting features from local patches

through the FC layer of the CNN, whereas the latter organization operation is essentially

the integration of multiple parts in a bottom-up information processing manner through

achieving the complementary advantages of the different classifiers.

3.4 Experiments and Results

We will first describe the implementation details, and then briefly outline the experimental

set up and performance comparison on the WZ-traffic and FM2 datasets.
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3.4.1 Implementation Details

Deep Feature Extraction. Our experiments were conducted under the Linux operating

system. The implementation of the deep feature extraction was undertaken on the Caffe

deep learning framework [112]. We employed the VGG16, VGG-M-1024 and Cafenet

models which were pre-trained on ImageNet, and then fine-tuned on specific datasets. We

set the maximum number of training iterations and the learning rate to 10,000 and 0.0001,

respectively. Other parameters are the same as the fast R-CNN [77].

Setting of Multi-classifier Fusion. The multi-classifier fusion experiment was built on

the KNIME Analysis Platform, which has abundant nodes for applying machine learning

algorithms. All experiments were conducted with 10-fold cross-validation. We divided each

dataset into 10 parts including 7 parts for training and 1 parts for validation and the rest

for testing. The performance of the three popular standard learning methods, SVM, KNN

and MLP, were initially evaluated. We used the RBF kernel in the SVM learner and set

the values of the sigma and overlap penalty to 13 and 1, respectively.

For the K nearest neighbors, we set the value of K equal to 7. In addition, we trained

the MLP classifier through 150 iterations with 2 hidden layers and 10 units in each layer.

Then we used the random forest learner (RF) and gradient boosted trees learner (GBT)

to improve the performance of decision tree learning. As for random forest learner, the

information gain ratio was used for the split criterion in the tree ensemble learner, we

set the ensemble size, which means the number of decision trees that make up a random

forest to 150. In addition, for the gradient boosted trees learner, the tree depth, number of

models and learning rate were set as 10, 20 and 0.1, respectively. In the multi-classifier

fusion stage, the mean, median and maximum rule of algebraic fusion were used to boost

the prediction accuracy.

3.4.2 WZ-traffic Dataset

Although the task of traffic scene has already been studied for many years, there is still a

lack of high quality traffic scene datasets. The existing dataset [221, 220] only collected

images from the perspective of the driver, the position and orientation of the camera were

changed slightly between videos. In addition, the categories of traffic scene in [221, 220] are

also insufficient. Therefore, it’s necessary to collect a traffic scene dataset with sufficient

variations in traffic scene types, background and viewpoints.

To facilitate the research on traffic scene recognition and evaluate the proposed approach,
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we created a new dataset of labeled traffic scenes, called the WZ-traffic dataset [261]. It

contains 6,035 labeled images of 20 categories: highway, country road, gas station, indoor

parking, outdoor parking, crossing, city stress, scenic gate, bridge, car wash, train station,

autodrome, traffic circle, tunnel, tunnel entrance, bus station, booth, bus parking and

traffic jams. The images were collected by us from both an image search engine as well as

from personal photographs, and took into account sufficient variations in the background

and viewpoints. Figure 3.4 presents sample examples from the corresponding traffic scene

categories in this dataset.

Figure 3.4: Some examples of the WZ-traffic dataset.

We followed the step of deep feature extraction as previously explained, and applied

multiple classifier fusion for the final prediction. To compare and evaluate the performance

from different models, we selected the pre-trained CNN models VGG16, VGG-M-1024

and CaffeNet for following fine-tuning. We implemented the training process in the fast

R-CNN framework [77]. After applying the region proposal algorithm, EdgeBoxes [300],

to each image, we extracted the FC features from each region. Multi-classifier fusion was
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Table 3.1: VGG16: Mean AP result on the WZ-traffic dataset [261] using different methods.

Method Mean AP(%)

FC features (pre-trained model)
83.12

[224]
FC features (fine-tuned model) 85.71
1,000 regions+FC features+PCA256 87.43
1,000 regions+FC features+PCA512 87.10
2,000 regions+FC features+PCA256 87.30
3,000 regions+FC features+PCA256 87.12

accomplished after PCA dimensionality reduction and feature clustering. More details

about the experiment procedure are described as follows:

(1) Result from VGG16.

First, the fine-tuned CNN model and the pre-trained CNN model were applied to

extract FC features. As shown in Table 3.1, with the same experimental setting, the fine-

tuned model obtains about a 3% improvement (from 83.12% to 85.71%) in the recognition

performance. This result indicates that the fine tuning of the CNN model can significantly

boost the feature representation ability. Then, we provided recognition results for 2,000

and 3,000 boxes per image to verify that 1,000 regions per image are sufficient for deep

feature representation. From Table 3.1, we can clearly observed that 1,000 boxes yields the

best performance. To reduce the feature dimension, the PCA was used to reduce the CNN

features from 4,096 dimensions to 256. We repeated the same experimental process and

reduced the CNN features to 512 dimensions for comparison. It can be clearly seen, from

Table 3.1, that the mAP results of 512 dimensions are slightly worse. Hence, the CNN

features of 1,000 regions with 256 dimensions will be the focus for most of the experiments.

Table 3.2 shows the results for different single classifiers and multi-classifFier fusion.

The outputs of the two ensemble classifiers (Random Forests and Gradient Boosted Trees)

were fused with the outputs of the 3 single classifiers to further advance the performance

further. The three multi-classifier fusion methods prove their capabilities of improving

the recognition performance compared with the single classifiers. The highest recognition

rates were obtained from the mean-based fusion method. Overall, the results show very

supportive evidence for multi-classifier fusion towards advancing the overall classification

performance.
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Table 3.2: VGG16: Mean AP result on the WZ-traffic dataset [261] with individual and
fusion classifiers.

Method (VGG16) Mean AP(%)

MLP [71] 87.43
SVM [36] 88.26
KNN [4] 86.57
RF [40] 86.43
GBT [66] 88.06

Median-based fusion 89.90
Maxmium-based fusion 90.15
Mean-based fusion 90.30

(2) Results from VGG-M-1024 and CaffeNet.

To compare the performance with other CNN models, we select the middle scale

CNN model VGG-M-1024 and small scale CNN model CaffeNet. The experiments were

undertaken using the same conditions as VGG 16. Comparing the deep multi-classifier

fusion methods result with VGG-M-1024 and CaffeNet which are 88.90% and 88.11%,

respectively, in terms of the recognition rate, VGG16 performs better than VGG-M-1024

and CaffeNet models. Figure 3.5 shows the confusion matrix of our best recognition results

on the WZ-traffic dataset. From the confusion matrix, we can observe that the proposed

method performed well in recognizing tunnel, traffic circle and car wash. For the other

types of traffic scene, our method also performed reasonably well.

3.4.3 FM2 Dataset

The FM2 dataset was introduced by Sikiric et al. [220] and contains 6,237 traffic scene

images from the perspective of the driver. The images were extracted from videos of several

drives on European roads, obtained using a camera installed in a vehicle. The traffic scene

consists of dense traffic, highway, overpass, road, tunnel, exit, toll booth and settlement.

Figure 3.6 provides some examples of the traffic dataset FM2.

There are no ground-truth regions provided in FM2 dataset, therefore, we fine-tuned

the pre-trained VGG16 model which achieved the best performance on the WZ-traffic

dataset compared with VGG-M-1024 and CaffeNet. When the training process of the

CNN model was completed, we extracted the CNN features for the top 1,000 regions
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Figure 3.5: Confusion matrix of the best recognition results on the WZ-traffic dataset [261]
(mean AP is 90.30%). The labels in the leftmost column and on the bottom represent the
ground truth, the number in each row represents the corresponding prediction results.

identified by Edgeboxes. Multi-classifier fusion was accomplished after PCA dimensionality

reduction. We can observe the following results from Table 3.3 and Table 3.4: On this

dataset, satisfactory results are obtained when only the image-level CNN features are

considered. Besides, the performance increased 0.87% (from 96.25% to 97.12%) when

we implement the multi-classifier fusion on CNN feature. This improvement proves the

complementarity of multi-classifier fusion and CNN features. Compared with the other

methods shown in Table 3.5, we also obtained the most state-of-the-art results on the FM2

dataset.

Ablation Study

To verify the effectiveness of components in proposed method, we conducted ablation

experiments on the FM2 for traffic scene recognition.
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Table 3.3: VGG16: Mean AP result on the FM2 dataset [220] with different methods.

Method (VGG16) Mean AP(%)

FC features(pre-trained model) [224] 93.41
FC features(fine-tuned model) 95.65
PCA256+FC features 96.25

Table 3.4: VGG16: Mean AP result on the FM2 dataset [220] with individual and fusion
classifiers.

Method (VGG16) Mean AP(%)

MLP [71] 96.25
SVM [36] 96.46
KNN [4] 95.87
RF [40] 96.13
GBT [66] 95.70

Median-based fusion 96.82
Maxmium-based fusion 96.95
Mean-based fusion 97.12
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Figure 3.6: Some examples of the FM2 Dataset [220].

Impact of transfer learning: We directly extracted the CNN features from the first

fully connected layers of the fine-tuned VGG16 model for each image without applying the

region proposal algorithm to generate candidate objects. As shown in Table 3.3, the mAP

accuracy is 95.65%. We evaluate the stand-alone performance of the fine-tuned VGG16

model by comparing the results of pre-trained VGG16 model in Table 3.3. The fine-tuned

model produces a 2.24% improvement (from 93.41% to 95.65%) over the pre-trained model.

Impact of dimension reduction: In the test phase, we used the EdgeBoxes algorithm

to generate 1,000 region proposal for each image, which are represented by 4,096-dimensional

CNN features. To reduce the amount of feature computation and improve the performance,

we perform dimension reduction on the CNN feature through PCA algorithm and reduce

the CNN features to 256 dimensions. Table 3.3 shows that the mAP accuracy increases

0.6% (from 95.65% to 96.25%). In this setting, the multi-classifier fusion has not been

taken into account.

Impact of Deep multi-classifier fusion: Finally, we fuse the hidden outputs (prob-

ability for each class) of the SVM, KNN, MLP, RF and GBT classifiers through the mean,

median and maximum rule of algebraic fusion. Table 3.4 shows the detailed comparison

results between our methods and five single classifiers baseline methods. Experimental

results indicate that adding the multi-classifier fusion does improve the overall performance

and the best performance in terms of mAP accuracy of mean-based fusion is 97.12%, Figure

3.7 presents the confusion matrices of the best recognition results on the FM2 database.
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From the confusion matrix, we can see that the proposed method recognizes most of the

traffic scene well, such as highway, tunnel and settlement. Figure 3.8 shows some correctly

recognized examples in this dataset. For example, our method recognized Figure 3.8 (a)

as booth with a 99.99% (0.9999) probability. We also compared our method with the

state-of-the-art method in Table 3.5, and the comparisons indicate the competitiveness of

the proposed method on the FM2 dataset.

Figure 3.7: Confusion matrix of the best recognition results (mean AP is 97.12%) on the

FM2 database [220]. The labels in the leftmost column and on the bottom represent the

ground truth, the number in each row represents the corresponding prediction results.

3.5 Conclusion

In this chapter, we have proposed a novel deep multi-classifier fusion method in the setting

of granular computing to improve the performance of traffic scene recognition. Different

with the existing popular methods, we address the task of traffic scene recognition by

creating information granulation and organization in a unified end-to-end deep network.
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Figure 3.8: Some examples of correct recognition in the FM2 dataset [220], the predicted
label and corresponding probability are provided for each image.

Table 3.5: Mean AP result on the traffic scene dataset FM2 compared previous results in
[220].

Method Mean AP(%)

BoW [39] 93.55
LLC [255] 92.68
SFV [125] 95.09
GIST[181] 93.30

Ours (Deep Multiple Classifier Fusion) 97.12

Specifically, the deep multi-classifier fusion method combines the advantages of local

deep-learned features and multi-classifiers fusion. Through extracting CNN features of

region proposal generated for each image, the information granulation will be created. In

addition, organization is implemented by analyzing the principal components to reduce the

feature dimensions. We also introduced a multi-classifier fusion method involves multiple

levels of granularity to improve the performance. Thus, the deep multi-classifier fusion

architecture makes it easy to handle the complex traffic scene. We conducted experiments

on two different traffic scene datasets, including a public dataset and our own dataset.

The experimental results show that the information of the local patches and the global

background are significant to improve the performance of traffic scene recognition, while
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the deep multi-classifiers fusion method brings performance improvement to traffic scene

recognition. In the future, the deep multi-classifier fusion will be further improved to

study the relationship between classes in a granular computing setup. Specifically, we

will identify the relationships between information granules where each class is viewed as

a granule. Besides, the proposed method in this chapter only take class labels of traffic

scene into consideration. However, we find the attributes (e.g., weather conditions and

road structures), containing detailed local descriptions, are beneficial in allowing the traffic

scene recognition model to learn more discriminative feature representations. Therefore,

we will propose an attribute-scene recognition network based on the complementarity of

attribute labels and class labels in the future. We systematically investigate how the traffic

scene and attribute recognition benefit each other.
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Chapter 4

Vehicle Re-identification in Still

Images: Application of

Semi-supervised Learning and

Re-ranking

The great success in applying deep neural networks to image classification, object detection

and semantic segmentation has inspired us to explore their full ability in a wide variety of

computer vision tasks. Unfortunately, training deep neural networks often requires a large

amount of labeled data to learn adequate feature representations for visual understanding

tasks. This greatly limits the applicability of deep neural networks when only a limited

amount of labeled data is available for training the networks. Therefore, there has been an

increasing interest in literature to learn deep feature representations in an unsupervised

fashion to solve emerging visual tasks with insufficient labeled data. This chapter studies

learning the representations of image in unsupervised and semi-supervised scenarios for

vehicle re-ID task. Firstly, we obtain the unlabeled vehicle images by training the DCGAN

which generated the distribution of photo-realistic images as a whole so that better feature

representations can be derived from the trained generator. We then fine-tune the CNN

model using the labeled dataset and unlabeled data to output feature representations with

sufficient information. Finally, we perform the re-ranking step to improve the vehicle re-ID

performance based on the feature representations of samples.
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4.1 Introduction

With the explosive growth of video data captured by various surveillance cameras, there is

an increasing demand for improved surveillance video analysis capabilities which require a

large number of vehicle related tasks, such as vehicle detection, classification and verification.

In this work, we focus on the task of vehicle re-ID in still images, which aims to quickly

discover, locate and track the target vehicles across multiple cameras, thus automating

the time consuming manual task. Vehicle re-ID has practical applications in surveillance

systems and intelligent transportation [285]. In vehicle re-ID systems, a query image, also

called a probe image, is compared with the gallery images that contain various vehicles

captured by multiple cameras. Normally, a rank list is generated that has several matched

images from the gallery set. Figure 4.1 further explains the vehicle re-ID task.

Traditionally, the combination of sensor data and multiple clues are used to solve the

task of vehicle re-ID, such as the transit time [147] and the wireless magnetic sensors [129].

However, these methods are sensitive to the fickle environment (e.g., thunder and lightning)

and require the extra cost of additional hardware. In addition, the license plate is an

important clue which contains the unique ID of vehicle, thus the technologies related to

license plate have been proposed in [201], [82]. Nevertheless, it is easy to occlude, remove,

or even forge the license plate, especially in criminal circumstances. To alleviate these

limitations, we focus on this task based on its visual appearance, which is essential for

fully-fledged vehicle re-ID system.

To this end, the discriminative features should be extracted to distinguish different

vehicles for robust vehicle re-ID [10]. Basically, there exists two challenges. (1) Different

lighting and complex environments causes difficulties for appearance-based vehicle re-ID.

Also, large variations in appearance will produce if capture vehicle using different cameras.

How to take such large intra-class variance into account for feature representation is crucial.

(2) Compared with the person re-ID, vehicle re-ID is more challenging as different vehicles

can be visually very similar to each other, especially when they are from the same category.

Figure 4.2 further explains the situations of intra-class variance and inter-class similarity.

The deep embedding method has shown generalization abilities and promising perfor-

mance in the re-ID task, aiming to learning compact features embedded in some semantic

spaces through a deep CNN. The objective of embedding is typically to express as pulling

the features from similar images closer and pushing the features from dissimilar images fur-

ther away. Among these methods, learning identity-sensitive and view-insensitive features
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Figure 4.1: Explanation of the task of vehicle re-ID. Given a snapshot of a vehicle (the
probe), a re-ID system retrieves from a database (the gallery) which contains a list of other
snapshots of vehicles, usually taken from different cameras at different time, and ranks
them by decreasing similarities to the probe.

are crucial to ensure the learning effectiveness of the CNN model. Hence rich labeled data

from different camera views are required to learn a feature representation that is invariant

to the appearance changes. However, relying on manually labelled data for each camera

view results in poor scalability. This is due to two reasons: (1) It’s a tedious and difficult

task for humans to match an identity correctly among hundreds of data from each camera.

(2) In real-world applications, there are a large number of cameras in a surveillance network

(e.g., those in an airport or shopping mall), it’s infeasible to annotate sufficient training

samples from all the camera views. Therefore, these practical issues severely limit the

applicability of the existing vehicle re-ID methods.

To alleviate the large demand of training data, the approaches of semi-supervised

learning have been proposed recently which uses the unlabeled samples to boost the

performance on a specific task. It is driven by the practical value in learning faster, cheaper,

and better feature representations. Semi-supervised learning attempts to obtain a deep

model that can more accurately predict unseen test data than a deep model learned only

from labeled training data. Common semi-supervised learning methods include variants of

generative models [119], co-training [287] and graph Laplacian based methods [51].

Above works in semi-supervised learning are based on the fact that sufficient unlabeled

data is available. However, if the number of unlabeled sample is scarce or difficult to

collect, traditional semi-supervised methods may become useless. In our work, instead of

using unlabeled data from the real sample space, we propose a semi-supervised feature
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Figure 4.2: Examples explaining the intra-class variance and inter-class similarity. (a) Due
to the different viewing angles and illuminations levels of cameras, the images of each row
on the left column from the same vehicle produce the significant intra-class variance. (b)
The images of each row on the right column belonging to the different vehicles from the
same class and produce inter-class similarities. It’s challenging to distinguish the vehicles
with similar appearance.

embedding method which directly uses a GAN to generate unlabeled samples. Goodfellow

et al. [81] first proposed the GAN to obtain the optimal discriminator network between

real samples and generated samples based on the min-max game between generator and

discriminator. Besides, the performance of image generator network will be improved

simultaneously. Rather than investigating how to enhance the quality of the generated

samples [194], [7], our research will focus on how to use GAN to promote the performance

of classifiers. Specifically, we incorporate the generated samples with original training

images to train CNN models with semi-supervised learning.
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Figure 4.3: The workflow of the proposed method. There are three stages: (1) Generation

of unlabeled data by using the original training set of vehicles to train the GAN [194]; (2)

Semi-supervised learning by combining the labeled training set with vehicle ID and the

unlabeled images data to fine-tune the CNN model with LSRO; (3) Feature extraction and

rank optimization. We achieve an initial ranking based on the pairwise Euclidean distance

of deep feature for the probe and each image in gallery set. To improve the initial ranking

list, we finally add the re-ranking step.

As illustrated in Figure 4.3, there are three stages in the proposed algorithm. Initially,

we obtain the generated vehicle images by using the original images in training set to train

DCGAN [194]. In the second stage, we improve the discriminative power of the deep model

for the re-ID task by using a larger training set which includes unlabeled images. More

precisely, we use the initially labeled target dataset plus the unlabeled data generated in

stage one to fine-tune the CNN model. In this manner, the improved ResNet-50 model [89]
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is trained with all the data simultaneously. This stage is in the setting of semi-supervised

learning, as the training dataset includes images with labels and images without labels.

Although significant progress has been achieved from previous researches of appearance

based deep learning approaches for vehicle re-ID, their ranking accuracies are often unsatis-

factory. To further improve the performance of vehicle re-ID, a technique is presented that

uses a distance metric for rank optimization in the third stage. Specifically, we apply the

trained CNN model from the second stage to extract the CNN features for probe image

and each vehicle in gallery set. The initial ranking list can be achieved by calculating

the pairwise Euclidean distances between the probe and the gallery. Then we compute

the Euclidean distance and the Jaccard distance by comparing their k-reciprocal nearest

neighbor set. We integrate the Euclidean distance and the Jaccard distance to obtain the

proposed ranking list. We validate the performance of the proposed technique on three

publically available vehicle re-ID datasets, VeRi-776 [158], VehicleID [152] and VehicleReID

[277] dataset, all with promising results.

Our contributions can be summarized as follows:

• We propose a semi-supervised deep learning scheme for vehicle re-ID task which

makes learning rich feature representations of vehicles from a limited number of

labeled data possible.

• We present a re-ranking algorithm for ranking optimization which is firstly introduced

for the vehicle re-ID task. Since the sample label is not required, the process of the

re-ranking algorithm can be performed in unsupervised learning.

• We conduct extensive experiments and improve state-of-the-art vehicle re-ID perfor-

mance on two benchmark datasets, VeRi-776 [158] and VehicleID [152] and demon-

strate the effectiveness of our proposal. We apply the single shot setting on the

VehicleReID [277] dataset for the first time and achieved promising results, providing

baseline data for subsequent research.

4.2 Related work

As an emerging research topic, vehicle re-ID has recently attracted great significant interest

[158], [152], [277], [157], [35]. In this section, we review the relevant works from three

aspects: semi-supervised learning, re-ranking for person re-ID and vehicle re-ID.
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4.2.1 Semi-supervised Learning

Semi-supervised learning exploits both the labeled data and unlabeled data to perform the

learning task and bridges the gap between the fully-supervised learning and unsupervised

learning. Some research exploits weak label annotations for each bounding box [185], or

image [191] to enrich the training data. Compared with strong annotations, i.e., pixel-wise

segmentations, weak annotations for bounding boxes and images cost less time. Therefore,

they generally assume that there are a large number of weak annotations available for

training, while the amount of training images with strong annotations are limited. In

this setting, weakly annotated samples are used to update the supervised deep model by

iteratively inferring and refining hypothetical segmentation labels.

A framework of semi-supervised feature selection has been introduced in [22], both

labeled and unlabeled training data are exploited to analyse the feature space. The

researches in [210], [179], [135] explore the idea of assigning virtual labels to the generated

samples in the setting of semi-supervised learning. Salimans et al. [210] and Odena et al.

[179] proposed an all-in-one method which simply take all the generated images as a new

class. In practice, N defines the number of classes in the real training sets, then N + 1

is assigned to each generated sample. However, the generated samples tend to belong to

the classes in N rather than the N + 1 class due to the fact that they are generated from

distribution of the real samples. Without using an extra class, the method of assigning

virtual label to generated samples has been proposed in [135], which exploits the maximum

predicted probability generated for unlabeled image. After fedding an unlabeled sample

into network, it will be fitted to a certain pre-defined class after several training epochs.

A virtual label smoothing regularization for outliers (LSRO) was introduced by Zheng

et al. [295] to address the over-fitting problem in [135]. LSRO assigns a uniform label

distribution on generated samples to regularize the training process of deep network.

4.2.2 Re-ranking for Person re-ID

Recently, several re-ranking methods are proposed to improve the performance of person

re-ID by optimizing the original ranking list [163], [166]. In [143], a re-ranking model is

developed by analyzing the correlation of nearest neighbors of each pair images. Garcia et

al. [69] introduced a re-ranking method for person re-ID, in which the content and content

information are both considered to remove ambiguous samples. A bidirectional ranking

method has been proposed in [139], which joins the contextual similarities with content
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similarities to revise the initial ranking list.

Some researchers have exploited the nearest neighbors of the multiple baseline methods

to the re-ranking task [271], [272]. In [271], the common nearest neighbors of local and

global features are combined as new queries, then aggregate the global and local feature

to optimize the initial ranking list. Ye et al. [272] calculated both the similarity and

dissimilarity of the k-nearest neighbor set from different baseline methods to optimize the

initial ranking list. These re-ranking methods have made contributions to discover the

potential information from the k-nearest neighbors.

However, the overall performance from the above works may be restricted if the k-

nearest neighbors are used to achieve the task of re-ranking directly, because false matches

are often included. In the literature, the k-reciprocal nearest neighbor [111], [193] is

effective to increase the amount of true matches on the top-k images. We regard the two

images as k-reciprocal nearest neighbors [193] if they are both ranked between top-k in

the ranking list when the other image is used as the probe. In this chapter, we propose an

effective re-ranking method for vehicle re-ID and study the importance of the k-reciprocal

neighbors.

4.2.3 Vehicle re-ID

In recent years, the researches on various computer vision tasks have achieved significant

progresses, including object matching [241], [61], traffic scene recognition [260], action

recognition [256], [268] and vehicle related works [35], [153]. Several researchers have

proposed to apply the visual characteristics and the semantic attributes for vehicle retrieval.

A vehicle retrieval and detection system was presented in [62], in which the task of attribute

recognition and vehicle retrieval were both achieved. Liu et al. [158] exploited the real-world

spatial-temporal environment to achieve a content assisted search for vehicle re-ID. There

are some works focused on applying the LDA [291], [114] to optimize distance metrics in

re-ID tasks. LDA learns a transformation matrix for feature space from high-dimensional to

low-dimensional while preserving the class discrimination information as much as possible

[232]. In [187], Local Fisher Discriminant Analysis was employed to learn a distance metic.

Wu et al. [264] approximated the variations of intra-class and inter-class by training a

hybrid deep architecture with an LDA criterion.

Additionally, hybrid features have been proposed to enhance the recognition of vehicle

characteristics in some published works. For example, Cormier et al. [35] proposed a mixed
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descriptor for low resolution vehicle re-ID, in which the local variance and local binary

patterns (LBP) were combined. Liu et al. [153] presented a vehicle re-ID method that

incorporated the feature of metric learning and vehicle model into one network. Despite

these progresses on vehicle re-ID, how to exploit unlabeled samples and the re-ranking

algorithm have not been well investigated in detail, which can significantly influence vehicle

recognition performance. In this work, we propose to use GAN generated samples and

re-ranking to boost the vehicle re-ID performance of off-the-shelf CNN.

4.3 Proposed Approach

4.3.1 Generative Adversarial Networks

A generator and a discriminator are two sub-networks in the GAN [81]. A generator

produces a model distribution by transforming a random noise seed. A discriminator

then tries to distinguish between samples between that model distribution and the target

distribution. The training process of adversarial can be regarded as a minimax game: both

the generator and discriminator oppose each other’s objective and minimize its own cost,

which leads a converged status that minimize the distance between the distribution of real

samples and generated samples.

However, GANs have been known to be unstable to train, often resulting in generators

that produce nonsensical outputs. There have been very limited published studies in

trying to understand and visualize what GANs learn, and the intermediate representations

of multilayer GANs. To solve these problems, DCGAN [194] improves the architectural

topology of GANs, which makes them stable to train in most settings. Compared with

GAN, DCGAN modifies the network details based on the original framework structure.

Recently, many other variants of GAN have been proposed, such as conditional GAN [105]

and stackedGAN [284]. While most of the previous researches are focus on studying the

methods of generating more complex sample by training with high-quality images of objects.

However, we do not focus on investigating more sophisticated sample generation methods,

we aim to generate generate unlabeled samples from the low-quality surveillance image of

vehicles. In consideration of all the above reasons, we choose to apply the DCGAN network

[194] as the image generated model, thus helping improve the discriminative learning.

Five deconvolution functions are used to expand the tensor, which is defined as a data

container with an N-dimensional array. The stride of the deconvolution filters 2 and their
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size is 5×5. Following with a tanh activation function, we add one deconvolutional layer

with a stride of 1 and kernel size 5×5 to fine-tune the result. An image can then be

drawn from the generator net after training. We combine the original training set with the

generated images and then fed them into the discriminator network. Five convolutional

layers with a stride of 2 and kernel size 5×5 are used to identify whether the generated

images are fake.

4.3.2 Label Smoothing Regularization for Outliers

Our model computes the probability of each class n ∈ {1, 2, ..., N}: p(n|x) = exp(zn)∑N
n=1 exp(zn)

for each training image x. Here, N is the number of pre-defined classes in the training set

and zn represents the logits or unnormalized log-probabilities. We normalize the ground-

truth distribution over labels q(n|x) for image x so that
∑

n q(n|x)=1. We define the he

cross-entropy loss as Equation 4.1, which omits the dependence of p and q on example x.

l = −
N∑
n=1

log(p(n))q(n) (4.1)

Minimizing the cross-entropy loss is equal to maximize the expected log-likelihood of a

label, which is selected according to its ground-truth distribution q(n). Cross-entropy loss

is widely appied for gradient training of deep models. The gradient can formulated as
∂l
∂zn

= p(n) − q(n), the bounded range for it defined as [−1, 1]. Suppose there exsits a

single ground truth label y, we can express the q(n) as:

q(n) =

{
0 n 6= y

1 n = y
(4.2)

In this case, the objective of minimizing the cross-entropy loss is equal to maximize the

predicted probability of the expected log-likelihood of the ground truth label. For a

particular image x with ground truth y, the log-likelihood is maximized for q(n), which

equals to 1 for n = y. This maximum is not achievable for finite zn but is approached if

zy > zn for all n 6= y, which means the logit of ground-truth label is larger than other logits.

However, two problems can be caused. First, it may result in overfitting: the generalize

can not be guaranteed if the model assigns full probability to the ground-truth label for

each training example. Second, the model is overconfident about its predictions, resulting
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in a larger difference between the maximum logit and all other logits.

To address the second problem, the label smoothing regularization (LSR) has been

introduced in [240] to encourage the model to be less confident. While it not consistent

with the goal of maximizing training tags, it does regularize the model and make it more

adaptable. In [240], the label distribution qLSR(n) is written as:

qLSR(n) =

{
ε
N n 6= y

1− ε+ ε
N n = y

(4.3)

where ε ∈ [0, 1] is a smoothing parameter. If set ε to zero, Equation 4.3 will reduce to

Equation 4.2. On the contrary, the model may not be able to predict ground truth label if

ε is too large. Therefore, the value of ε equals 0.1 in most cases. The cross-entropy loss

evolves to Equation 4.4 by considering Equation 4.1 and Equation 4.3:

lLSR = −(1− ε)log(p(y))− ε

N

N∑
n=1

log(p(n)) (4.4)

In order to use the generated images in the process of deep feature learning, Zheng et

al. [240] propose the label smoothing regularization for outliers (LSRO) method, which

extends LSR [240] from the fully-supervised learning to the semi-supervised learning. It

assumes the generated samples do not belong to any pre-defined class and sets the virtual

label distribution to be uniform over all classes. Therefore, the maximum probability

that is produced for the generated samples will be very low, which makes the network

cannot make prediction for them. So the class label distribution for the unlabeled samples

qLSRO(n) is defined as:

qLSRO(n) =
1

N
(4.5)

We combine Equation 4.1, Equation 4.2 and Equation 4.5 to rewrite the cross-entropy loss:

lnew = −(1− Z)log(p(y))− Z

N

N∑
n=1

log(p(n)) (4.6)

For a real training image, Z = 0. For a generated training image, Z = 1. Therefore, the

loss for the real images and generated images are different in the system. During the
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training process, we define the loss of LSRO on a generated sample as follows:

lLSRO =
1

N

N∑
n=1

log(p(n)) (4.7)

With the help of LSRO, we can regularize the model by processing more training

images (outliers) that are located near the real training images in the sample space, which

introduces more variances such as lighting and color. For example, if only one black-color

vehicle exists in the training set, the discriminative power of the model will be limited

because the model may be misled and regarded the black-color as discriminative feature.

By adding generated images, such unlabeled black-color vehicle, the classifier will be

punished if it misjudges the labeled black-color vehicle. In this manner, the network will

be encouraged to look for more underlying causes and to be less prone to over-fitting.

4.3.3 Re-ranking Method

Problem Definition. Given a gallery set G = {gi|i = 1, ..., T} and a probe vehicle image

b, where i defines the index of each image and T is the size of the gallery. After comparing

the Euclidean distance between probe b and each image in gallery gi, we reorder the indices

of images in G so that {g1, g2, ..., gT } correspond to L(b,G). The similarities between b and

gi satisfy S(b, g1)>S(b, g2)>S(b, g3)> · · ·>S(b, gT ). The objective of re-ranking method is

to make more true matches rank top in the ranking list, thus improve the performance of

the vehicle re-ID.

K-reciprocal Nearest Neighbors. Following [193], we define the k-nearest neighbors

as the top-k samples of the ranking list of a probe b, it can be expressed as R(b, k):

R(b, k) = {g1, g2, ..., gk} (4.8)

A potential assumption is that the returned image can be used for the subsequent re-ranking

when it ranks within the k-nearest neighbors of the probe. However, some traditional

methods which directly using the top-k images in the ranking list to perform re-ranking

may introduce noise into the system and affect the final result. Therefore, we apply the

k-reciprocal nearest neighbor R∗(b, k) [111], [193] to solve this problem. It can be defined

as:

R∗(b, k) = {gi|(gi ∈ N(b, k)) ∧ (b ∈ N(gi, k))} (4.9)
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Algorithm 2 Rank Aggregation Algorithm

Input: A probe image b and a gallery set G = {gi|i = 1, ..., T}
Output: A rank list for the probe image
Offline:
1: Compute the pairwise Euclidean distance between the probe vehicle b and images in

gallery set.
2: Reorder the indices of images in G by sorting the pairwise Euclidean distance.
3: Correspond the set {g1, ...gT } to the initial ranking list L(b,G), and obtain the top-k

galleries R(b, k) from L(b,G) of the probe image.
4: Query each image gi in the gallery G.
5: Obtain the top-k galleries R(gi, k) of each image gi.

Online:
6: for i = 1 to |L(b,G)| do
7: gi is the i-th item in L(b,G)
8: Get the k-reciprocal nearest neighbors of probe b by Equation 4.9
9: Add more positive samples into Rnew(b, k) by Equation 4.10

10: end for
11: for i = 1 to |R∗(b, k)| do
12: gi is the i-th item in R(b, k)
13: Compute the new distance dj(b, gi) between b and gi by the Jaccard metric of their

k-reciprocal sets as Equation 4.11
14: Compute the final distance df between b and gi as Equation 4.12
15: end for
16: Use the final distance to obtain the new rank list revised ranking list Lnew(b,G)

.

Rank Aggregation. Compared with the k-nearest neighbors, the k-reciprocal nearest

neighbors are more relevant to probe b. However, the true matches may not appear in the

R∗(b, k) due to the variations in occlusions, illuminations, poses and views. To solve this

problem, for each sample q in R∗(b, k), we add the half of the samples in its k-reciprocal

nearest neighbors set into another set Rnew(b, k) as the following step:

Rnew(b, k)← R∗(b, k) ∪R∗(q, 1

2
k) (4.10)

Therefore, Rnew(b, k) includes more images that are more relevant to the samples in

R∗(b, k). Then we consider the Rnew(b, k) as contextual knowledge and re-calculate the

distance between the deep features of the probe and the images in gallery set. As described
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in [272], the similarity of two images is higher if more duplicate samples in their k-reciprocal

nearest neighbor sets. We calculate the new distance between the k-reciprocal sets of b

and gallery gi according to the Jaccard metric:

dj(b, gi) = 1− |Rnew(b, k) ∩Rnew(gi, k)|
|Rnew(b, k) ∪Rnew(gi, k)|

(4.11)

Inspired by [297], the original distance and the Jaccard distance are aggregated to emphasize

the importance of the original distance and improve the initial ranking list. We define the

final distance df as:

df (b, gi) = (1− λ)dj(b, gi) + λd(b, gi) (4.12)

where λ represents the weight of original distance in the final distance, and d represents

the Euclidean distance. Finally, we obtain the new ranking list for probe b Lnew(b,G) by

sorting the final distance df . We denote the size of Rnew(b, k) and R(b, k) as k1 and k2,

respectively. Our rank aggregation algorithm is summarized in Algorithm 1.

4.3.4 Complexity Analysis

In the proposed re-ranking method, calculating the pairwise distance of all image pairs

requires a large amount of computational cost. We define the gallery size as t, O(t2) and

O(t2 log t) represent the computation complexity of distance measure and the ranking

process, respectively. Since the work of calculating the pairwise distance and obtaining the

initial ranking list for the probe can be done in advance offline, the computation costs will

be reduced in practical applications. Therefore, the computation costs include only O(t)

and O(t log t), the former representing the calculation of pairwise distance between probe

and gallery, the latter representing the complexity of ranking all final distances.

4.4 Experiments Results and Discussion

4.4.1 Datasets Introduction

Extensive experiments are conducted on three vehicle re-ID benchmark datasets: VeRi-776

[158], VehicleID [152] and VehicleReID dataset [277].

VeRi-776 [158] consists of 50,000 labeled images of 776 vehicles collected by 20 cameras

in a road network in 24 hours. The specific information of vehicles are also provided, such

as car model, camera locations and license plates. The dataset has been divided into two
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parts, a training set and a testing set. The training set contains 37,778 images of 576

vehicles, and the testing set consists of 9,919 images belong to 200 vehicles. For the vehicle

re-ID task, the 1,678 probe vehicle images in testing set are selected randomly to search

the other images in testing set.

VehicleID [152] is currently the largest publicly available vehicle re-ID dataset. It

contains 222,628 images belonging to 26,328 vehicles collected from the traffic surveillance

system. There are two parts in the dataset: a training set and a testing set. The training

set contains 113,346 images belong to 13,164 vehicles and the testing set contains 109,282

images captured from 13,164 vehicles. The testing data provides three subsets including

small, medium and large scale for the vehicle re-ID task.

VehicleReID [277] contains 1,232 vehicle image pairs obtained from two surveillance

cameras. The appearance of the same vehicle is changed by variations of viewpoints,

illuminations and the locations of cameras.There are 553 vehicles from camera view A and

530 from camera view B, with 423 common vehicles in both views.

4.4.2 Implementation Details

CNN Baseline The ResNet-50 [89] model, which pre-trained on the ImageNet dataset is

slightly improved and used in our experiments as the basic CNN network. We fine-tune the

model using the training set to classify the training identities. ResNet-50 is a state-of-the-art

architecture that exhibits top performance in several tasks in the field of computer vision,

such as face identification, object classification and action recognition. It is composed of

multiple basic blocks that are serially connected to each other and introduces shortcut

connections summed after every few layers, so as to represent residual functions. In such

way, it allows for a very deep architecture without hindering the learning process and

at the same time shows less complexity in comparison to other networks of even smaller

depth. Although there exists deeper versions of ResNet, we choose the 50-layer variant as

the baseline model, as computation time is still crucial for this task.

We use the Matconvnet [252] package to implement the network training and resize all

the images to 256 × 256. During training, random horizontal flipping is applied to crop

the images to 224 × 224 randomly. A dropout layer has been inserted before the final

convolutional layer to reduce the possibility of overfitting. Assume the original training set

has K vehicle identities, we add K neurons in the last fully-connected layer to predict the

K-classes. In most existing deep re-ID models, the final convolution layer will compute

76



Chapter 4. Vehicle Re-identification in Still Images: Application of Semi-supervised
Learning and Re-ranking 77

the feature vector. Inspired by [156], which demonstrates that the useful information

of mid-level identity-sensitive can be obtained before the last fully-connected layer in a

DNN, as shown in Figure 4.4, we thus concat the 5a, 5b and 5c convolutional layers of the

ResNet-50 structures into a 2048-dim feature vector after the last fully-connected layer.

Figure 4.4: The structure of the improved ResNet-50 model. There are two modifications

in the ResNet-50 model structure, 1) we add a dropout layer before FC layer to reduce the

possibilities of overfitting; 2) we concat the 5a, 5b and 5c convolutional layers to obtain

mid-level identity-sensitive information.

The GAN model We used the Tensorflow [1] and DCGAN package to train the GAN

model. Before training, we resize all the images in the training set to 128×128 and perform

randomly flipped on them. The model is trained with mini-batch SGD with a mini-batch

size of 64. We use a zero-centered Normal distribution to initialize the weights and set the

standard deviation as 0.02. We apply the Adam stochastic optimization with parameters

β1 and β2 which are used to define a memory for Adam, and average the gradient and

squared gradient, respectively. Following the practice in [118], the good default settings

for the tested machine learning problems are β1 = 0.9, β2 = 0.99. During testing, we

fed a 50-dim random vector with Gaussian noise distribution into the GAN to generate

vehicle images. Finally, all the generated samples are resized to 256 × 256 and are used in

training the CNN with the LSRO. Figure 4.5 illustrates the generated and real samples on

these three datasets. Although human can easily recognize the generated samples as fake,

they are still effective in promoting the performance by adding the LSRO as virtual labels
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in our experiment.

Figure 4.5: Examples of original images in training set and images generated by GAN

from (a) VeRi-776 [158], (b) VehicleID [152], (c) VehicleReID [277].

Evaluation Metrics We use Mean Average Precision (mAP) and Cumulative Match

Curve (CMC) to measure the re-ID performance.

Mean Average Precision: The mAP metric evaluates the overall performance of

re-ID. For each probe image b, average precision is calculated as follows:

ρ =

∑n
k=1 P (k)× rel(k)

Ngt
(4.13)

where k defines the rank in the list of retrieved vehicles, n denotes the number of retrieved

vehicles, Ngt is the number of ground truth retrievals for the probe. P (k) denotes the

precision at cut-off k, rel(k) indicates whether the k-th recall image is right match or not.
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So we define the mAP as follows:

mAP =

∑Q
b=1 ρ

Q
(4.14)

where Q denotes the number of probe images.

Cumulative Match Characteristics: The CMC curve describes the expectation of

positive samples within the first k ranks, we calculate the CMC value for top k ranks as

follows:

CMC@k =

∑Q
i=1 f(bi, k)

Q
(4.15)

where bi is i-th probe vehicle, f(bi, k) is an indicator function which equals to 1 when the

positive samples are within the top k ranks, otherwise, it equals to 0.

4.4.3 Semi-supervised Learning Results

Performance Comparisons on VeRi-776 Dataset The proposed method was evalu-

ated on the VeRi-776 dataset [158] firstly which is the only existing vehicle re-ID dataset

providing spatial and temporal annotations. We used the previously explained semi-

supervised learning of the CNN model, and applied the re-ranking for the final identification.

The CMC metric and mAP are adopted for the evaluation. We describe the details of

experiment procedure and three comparative settings as follows:

(1) The CNN baseline.

Following the procedure of training and testing described in Section 4.4.2, the final

results of the VeRi-776 dataset are reported in Table 4.1, Table 4.2 and Table 4.3. To

evaluate the stand-alone performance of ResNet-50, we extracted the CNN feature

from the first FC layer for each vehicle image and directly apply it for vehicle re-ID as

a comparative baseline. As shown in Table 4.1, the CNN model with dropout layer

gains about 5.46 points increase in mAP, from 48.90% to 54.36%. To select the best

dropout rate, the extensive comparative experiments were further performed. As can

be seen in Table 4.1, the best performance was achieved when the dropout rate is 0.9.

Therefore, in our implementation, the final result of CNN baseline has a Rank-1 match

rate of 85.88% and 54.59% mAP. We also compared the result of CNN baseline with

other published vehicle re-ID results, from Table 4.2, the CNN baseline achieves better

79



Chapter 4. Vehicle Re-identification in Still Images: Application of Semi-supervised
Learning and Re-ranking 80

Table 4.1: Match rate (CMC@Rank-R, %) and mAP (%) under different dropout rate on
the VeRi-776 dataset [158]

Methods Rank-1 Rank-5 Mean AP

CNN baseline (Without dropout layer) 82.54 90.52 48.90
CNN baseline (Dropout rate 0.5) 84.74 92.49 54.36
CNN baseline (Dropout rate 0.6) 86.23 92.37 53.95
CNN baseline (Dropout rate 0.7) 85.52 92.13 53.17
CNN baseline (Dropout rate 0.8) 85.76 92.67 54.47
CNN baseline (Dropout rate 0.9) 85.88 92.85 54.59

Table 4.2: Match rate (CMC@Rank-R, %) and mAP (%) for different methods on the
VeRi-776 dataset [158]

Methods Rank-1 Rank-5 Mean AP

FACT [157] 50.95 73.48 18.49

FACT+Plate-SNN+STR [158] 61.44 78.78 27.77

Siamese-CNN+Path-LSTM [219] 83.49 90.04 58.27

VGG+C+T+S [290] 86.59 92.85 57.40

CNN Baseline (Ours) 85.88 92.85 54.59

SSL (Ours) 88.57 93.56 61.07

SSL+re-ranking (Ours) 89.69 95.41 69.90

performance than previous works [158], [157]. There are no unlabeled samples in this

scenario and the re-ranking methods have not been taken into account. We report

the results of semi-supervised learning with different numbers of generated images in

Table 4.3. The performance of vehicle re-ID has been improved when we fed different

numbers of unlabeled data into the process of CNN training, which implies that CNN

features alone are insufficient compared with semi-supervised learning.

(2) Semi-supervised learning with different numbers of generated images.

We trained DCGAN on the VeRi-776 training set, and combined the original training

set with the generated images to fine-tune the CNN model. We evaluated the effect of

the number of generated images on re-ID performance. Since unlabeled data is easy

to obtain, we hope that as the number of unlabeled images increases, the model will

obtain more general information. We compare the number of real training images

(37,778) with the number of generated images fed into network, then two conclusions
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Table 4.3: Match rate (CMC@Rank-R, %) and mAP (%) after using different numbers of
generated images on the VeRi-776 dataset [158]

The number of generated images Rank-1 Rank-5 Mean AP

0 (basel.) 85.88 92.85 54.59
2,000 86.12 92.96 55.43
5,000 86.78 93.21 57.68
8,000 88.31 93.35 59.34
10,000 88.97 93.56 61.07
30,000 88.19 93.54 59.00
50,000 87.90 92.90 59.10
70,000 87.34 92.61 58.87

are obtained after analyzing the results in Table 4.3. First, the baseline has been

consistently improved by adding different numbers of generated images. Adding

approximately 2 times generated images (70,000) that of the real training set still

obtain +1.44 points improvement to rank-1 match rate.

Second, the peak performance is achieved when 0.3 times generated images (10,000)

that of the real training set are added. From Table 4.3, when 10,000 generated images

are added to the semi-supervised learning, the re-ID performance on VeRi-776 has

been significantly improved. We observed the improvement of 3.09 points (from 85.88%

to 88.97%), 0.71 points (from 92.85% to 93.56%) and 6.48 points (from 54.59% to

61.07%) in the Rank-1, Rank-5 match rates and mAP, respectively. Too many or

too few images generated images incorporated into the semi-supervised learning will

produce negative impacts on the model.

In semi-supervised learning with LSRO, generated images are used to learn more

discriminative features and reduce the possible of over-fitting by assigning a uniform

label distribution to the generated images to regularize the CNN model. When we

incorporate too few GAN samples, the regularization ability of the LSRO is inadequate.

In contrast, if we add too many GAN samples to fine-tune the network, the CNN

model will tend to converge towards assigning a uniform label distribution to all the

training images, which lead to overfitting and affect the discriminative learning from

real images.Therefore, we recommend to make a trade-off of GAN samples to avoid

poor regularization and overfitting.

(3) Ranking Optimization with different metrics.

81



Chapter 4. Vehicle Re-identification in Still Images: Application of Semi-supervised
Learning and Re-ranking 82

Table 4.4: Match rate (CMC@Rank-R, %) and mAP (%) for the compared methods on
the VeRi-776 dataset [158]

Methods Rank-1 Rank-5 Mean AP

SSL+KISSME 86.84 92.37 60.12

SSL+KISSME+ re-ranking 88.66 94.62 64.71

SSL+XQDA 87.49 93.80 60.11

SSL+XQDA+ re-ranking 88.72 94.92 67.48

We set the parameter k1 =50, k2 = 10, and λ=0.3 which have the best performance

in the test. After adding the step of re-ranking, the Rank-1, Rank-5 match rates

and mAP are further improved to 89.69%, 95.41% and 69.90%. Table 4.2 compares

the performance of our best approach and semi-supervised learning with re-ranking,

against other state-of-the-art methods.

We compare our results with the methods in [158],[157], in which the hand crafted

features were adopted for vehicle re-ID. It can be observed that our method achieves

significant improvement over them, proving the advantage of deep feature. In [158],

the license plate information (Plate-SNN) and spatio-temporal information were addi-

tionally used to improve the performance of vehicle re-ID. Compared with [158], our

method based on vehicle appearance further yields an improvement of 28.25 points

(from 61.44% to 89.69%) in Rank-1, 16.63 points (78.78% to 95.41%) in Rank-5 and

42.13 points (from 27.77% to 69.90%) in mAP. We also compare our method with the

appearance-based deep learning approach [290], which improved triplet-wise training

of CNN for vehicle re-ID. As shown in Table 4.2, the proposed method with both

semi-supervised learning and re-ranking leads to significant improvements compared

with the best method (VGG+C+T+S) in [290]. The CMC curves of the proposed

methods are shown in Figure 4.6 (a).

Moreover, experiments conducted with two popular metric learning methods, KISSME

[123] and Cross-view Quadratic Discriminant Analysis (XQDA) [146] verify the effec-

tiveness of our ranking optimization method on different distance metrics as shown

in Table 4.4. In [123], the Mahalanobis distance is learned by considering the log

likelihood ratio test of two Gaussian distributions. Based on the idea of KISSME [123],

the XQDA further learns a discriminant subspaces with more efficient metrics.
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Figure 4.6: The CMC curves of the proposed methods on VeRi-776 (a), VehicleID (b),

VehicleReID (c). The recognition rate shows the percentage of the probes that are correctly

recognized within the top k matches in the gallery. The numbers in the legend of curves

are the top 1 value of CMC.

Performance Comparisons on VehicleID Dataset We provide our results from the

largest vehicle re-ID dataset [152] in Table 4.5 to further demonstrate the effectiveness of

the proposed method. Following the dataset setting in [152], we randomly select one image

from each vehicle and put it into gallery set, then the remaining images are all used as

probe images. The details of the three testing subsets are listed in Table 4.6. We preform

the testing process with different values of k1, k2 and λ, and obtain the best performance

when k1=10, k2=6 and λ=0.3. The evaluation procedure was repeated for 10 times to

evaluate model prediction accuracy and obtain the final CMC curve.

The detailed match rates from Rank-1 to Rank-50 of the proposed methods evaluated

on the three scale test subset are presented in Figure 4.6 (b). For VehicleID dataset, we

fine-tuned the improved ResNet-50 model by using the combination training set of original

training set and 40,000 generated images. The vehicle re-ID results of our proposed method

on three scale test subsets are shown in Table 4.5. Compared with the best state of the art

method [290], the proposed method improves the Rank-1 and Rank-5 match rates for large

subset by 2.44 points (from 84.23% to 86.67%) and 2.16 points (from 88.67% to 90.83%),

respectively, which proves once again that our method has significant advantages. Four

examples are shown in Figure 4.7. The proposed method, semi-supervised learning+re-

ranking, effectively ranks more positive samples at the top of the ranking list which are

not included in the ranking list of our baseline.
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Table 4.5: Match rate (CMC@Rank-R, %) and mAP (%) of the comparison methods on
the VehicleID dataset [152]

Methods Small Medium Large

VGG+Triplet Loss [48]

Rank-1

40.40 35.40 31.90
VGG+CCL [152] 43.60 37.00 32.90

Mixed Diff+CCL [152] 49.00 42.80 38.20
VGG+C+T+S [290] 69.90 66.20 63.20

Baseline (Ours) 81.93 81.44 81.37
GAN+LSRO (Ours) 85.72 85.12 84.23

GAN+LSRO+ re-ranking (Ours) 88.67 88.13 86.67

VGG+Triplet Loss [48]

Rank-5

61.70 54.60 50.30
VGG+CCL [152] 64.20 57.10 53.30

Mixed Diff+CCL [152] 73.50 66.80 61.60
VGG+C+T+S [290] 87.30 82.30 79.40
CNN Baseline (Ours) 86.93 86.44 86.67

SSL (Ours) 89.12 88.12 88.67
SSL+re-ranking (Ours) 91.92 91.81 90.83

CNN Baseline (Ours)
mAP

70.13 66.67 65.47
SSL (Ours) 74.13 69.84 68.74

SSL+re-ranking (Ours) 76.42 71.39 70.59

Table 4.6: The three subset of testing set for the VehicleID Dataset [152]

Number of images Small Medium Large

Gallery size 6,493 11,777 17,377

Probe size 800 1,600 2,400

Performance Comparisons on the VehicleReID Dataset Furthermore, we study

the effectiveness of our method on the VehicleReID dataset by using the single shot setting.

There are 423 vehicles from both camera view A and camera view B, for solving the vehicle

re-ID task, we chosen this subset from the original sets. We randomly split the vehicles in

both camera A and camera B into two almost equal subsets, where 211 vehicles for training

and 212 vehicles for testing. Among the 212 vehicles for testing, we treat the images from

camera A as the probe set and use the images from camera B as the gallery set. During

the testing process, we search the 212 test vehicles in all vehicles from camera B.

We followed the semi-supervised learning method to fine-tune the CNN model as

previously explained, and applied the ranking optimization algorithm for the final prediction.
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Figure 4.7: Four examples of vehicle re-ID results (Rank-5) on the VehicleID dataset. For
each probe, the ranking results produced by our baseline are presented in the first row, the
second row corresponds to our proposed method (Semi-supervised learning+re-ranking)
which improves the baseline ranking results. The green box indicates a true matches, the
red box identifies the false matches.

Table 4.7: Match rate (CMC@Rank-R, %) and mAP (%) for the compared methods on
the VehicleReID dataset [277]

Methods Rank-1 Rank-5 Mean AP

CNN Baseline (Ours) 59.04 66.45 62.53

SSL (Ours) 64.05 72.56 66.64

SSL + re-ranking (Ours) 65.58 74.29 70.12

Specifically, the DCGAN was trained to generate unlabeled vehicle images, then we

combined the generated images with original training set to fine-tune the improved ResNet-

50 model. The ranking optimization was accomplished after the initial list generated by

the Euclidean distance. We set the appropriate value to k1=6, k2=3 and λ=0.8. The

testing phase is repeated for 10 times with the average results reported in Table 4.7. Our

semi-supervised learning method gains 5.01 points improvement in Rank-1 match rate

and significant 4.11 points improvement in mAP for CNN baseline. After applying the

re-ranking algorithm, our method further gains an improvement of 1.53 points in Rank-1

match rate and 3.48 points in mAP. Experimental results demonstrate that our method is

also effective on the re-ID problem of single-shot setting. Figure 4.6 shows the CMC curve

on the VehicleReID dataset.
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4.5 Further Evaluation

4.5.1 The Impact of the Scale of Random Vector Fed to the GAN.

The generator, G, used in GAN input a random noise vector z which passed through each

layer in the network and generates a fake sample G(z) from the final layer. We evaluate

whether the scale of the random vector z fed to the GAN impacts the performance of

vehicle re-ID. To investigate the effect, we tried three different ranges of the random vector,

i.e., [-0.5,0.5], [-1,1], and [-1.5,1.5], with a normal distribution. The results of vehicle re-ID

on the VeRi-776 dataset are presented in Table 4.8. We find that the [-0.5,0.5] yields higher

re-ID performance than the other two ranges. The visual examples are shown in Figure

4.8. We find that visual examples of [-1.5,1.5] show obvious differences among the three

ranges, with some strange shapes of vehicles. Typically, a larger range may contain some

strange variations and affect the quality of generated images.

Figure 4.8: The GAN generated images with different scales of the random vector, i.e.

[-0.5,0.5], [-1.0,1.0], [-1.5,1.5]. We hardly find any significant visual differences between

them.

4.5.2 Analysis of the Parameters of Ranking Optimization Method

The parameters of ranking optimization method are evaluated in this sub-section. We

observe the influence of k1, k2 and λ on the VeRi-776 dataset. Figure 4.9 (a)(b) show

the impact of the size of k-reciprocal neighbors set on Rank-1 match rate and mAP. As

k1 grows, the Rank-1 match rate first increases with fluctuations, and then starts a slow
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Table 4.8: Match rate (CMC@Rank-R, %) and mAP (%) after using the GAN generated
images with different scales of the random vector on the VeRi-776 dataset [158]

Random Range Rank-1 Rank-5 Mean AP

[-0.5,0.5] 89.65 95.41 68.97

[-1,1] 89.46 95.12 68.46

[-1.5,1.5] 89.13 94.97 68.40

decrease after k1 passes the optimal point at around 50. Similarly, the mAP increases

with the growth of k1, and it starts to slowly decline after k1 passes the optimal point.

If k1 is too large, more false matches will be included in the k-reciprocal set and cause

performance degradation.

Figure 4.9: (a)(b): The impact of the parameter k1 on the performance of the VeRi-776

dataset. The k2 was fixed at 10 and λ set to 0.2; (c)(d): The impact of the parameter k2

on the performance of VeRi-776 dataset. The k1 was fixed at 50 and λ set to 0.2; (e)(f):

The impact of the parameter λ on the performance of VeRi-776 dataset. The k1 was fixed

at 50 and k2 at 10.

The impact of k2 is shown in Figure 4.9 (c)(d). Obviously, the performance will increase

as k2 grows within a reasonable range (e.g, smaller than 10). However, the performance

declines when the value of k2 is too large due to the set includes more false matches. In

fact, it is very important to set an appropriate value to k2 and thus further enhance the

performance.

Figure 4.9 (e)(f) show the impact of the parameter λ. The Jaccard distance is only

considered when λ equals zero, in contrast, the Jaccard distance is left out when λ equals

one, and the result is obtained using only the original distance. It can be observed that

our method consistently outperforms the CNN baseline when the Jaccard distance is only

87



Chapter 4. Vehicle Re-identification in Still Images: Application of Semi-supervised
Learning and Re-ranking 88

considered, which indicates that the proposed Jaccard distance is effective for re-ranking.

Moreover, the performance is further improved when we consider the importance of original

distance and set the value of λ arounds 0.2.

4.6 Conclusion

In this chapter, we proposed an effective semi-supervised learning approach augmented

with ranking optimization for the vehicle re-ID problem. Specifically, a DCGAN model is

exploited to generate the unlabelled images and effectively demonstrate their regularization

ability when trained with an improved ResNet-50 baseline model. The unlabeled generated

images are used to assist the labeled training images for simultaneous semi-supervised

learning. We also addressed the re-ranking task by improving the k-reciprocal Nearest

Neighbors method. The final distance based on the aggregation of the original distance and

Jaccard distance produces effective improvement of the re-ID performance on VeRi-776,

VehicleID and VehicleReID datasets. Our experimental results indicate that the proposed

methods significantly outperforms state-of-the-arts methods on the VeRi-776 and VehicleID

dataset. The proposed model has two sub-networks during the training process including a

DCGAN and a CNN model with LSRO, which makes the end-to-end training impossible. In

the future, we will extend the proposed method to the end-to-end network for vehicle re-ID.

The advantage of end-to-end training is that we do not need supervision for individual

sub-modules of the system.
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Chapter 5

Face Recognition in Uncontrolled

Environments

Recognizing people is one of the most important topics in computer vision and pattern

recognition. Among various biometrics used for person recognition, the face is one of

the most popular, since this ubiquitous biometric can be acquired in unconstrained

environments while providing strong discriminative features for recognition. For this reason,

face recognition became an extremely important tool that is used for video-surveillance

and security systems, video-analytics software, and thousands of applications in our daily

lives like entertainment, smart shopping, and automatic face tagging in photo collections.

For many applications, the performance of face recognition systems in controlled

environments has now reached a satisfactory level; however, there are still many challenges

posed by uncontrolled environments. Some of these challenges are posed by the problems

caused by variations in disguise accessories, illumination, face pose, expression, and etc.

To some extent, current state-of-the-art systems are able to cope with variability due to

pose, illumination, expression, and size, which represent the challenges in unconstrained

face recognition. In this chapter, we will address the face recognition problem under

different variations, including disguise accessories, illumination and pose. For the disguised

face recognition, we propose a framework based on the image-image translation method

which collects a dataset of disguised faces that has the similar style to the target domain.

We further improve the image-image translation method and apply it to near infrared

face recognition to synthesize the visible light face images from near infrared inputs,

thereby solving the illumination change problem. Compared with the variations of disguise
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accessories and illumination, pose variations are more difficult to solve. Therefore, we

propose a novel meta learning framework to learn face representations equivariant that is

different from the disguised and near infrared face recognition methods.

5.1 Unsupervised Domain Adaptation for Disguised Face

Recognition

5.1.1 Introduction

Within the past decades, face recognition (FR) has received a tremendous amount of

attention owing to its wide range of potential applications, e.g., identity authentication,

public security and surveillance. Many innovative and novel methods have been put forward

for the tasks of visual face recognition and verification. Meanwhile, great challenges have

been confronted by current FR systems, particularly when the accuracy significantly

decreases while recognizing the same subjects with disguised appearances, such as wearing

a wig or eyeglasses, changing hairstyle and so on [46].

Disguise usually involves intentional and unintentional changes on a face through which

one can either impersonate or confuse someone’s identity. Figure 5.1 clearly shows two

examples of face obfuscation, in which the appearance of a subject can be varied by using

different disguise accessories. To make automatic face recognition secure and usable, it is

necessary to address the disguise problem. Current research in disguised face recognition

(DFR) typically is based on a single-domain setting [45], [225]. Specifically, an algorithm

first learns a CNN model from the training data, and then applies it to the test data.

When the training data and testing data shares the same distribution, the learnt CNN

model generally works well, since in this case the training error is an optimal estimate of

the test error.

However, in real world applications, there is a need for transferring the learned knowledge

from a source domain with abundant labeled data to a target domain where data is unlabeled

or sparsely labeled. When CNN models trained on one domain and used on another domain

with different distributions, the performance drops dramatically due to the domain bias

[247]. To this end, we propose to solve the disguise face recognition task using domain

adaptation [15], [250], which attempts to transfer the rich knowledge from the source

domain, which is fully annotated, to another, different but related, domain to obtain a

better CNN model.
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Figure 5.1: Two samples of images with different disguise accessories.

Recently, attention transfer has been proposed and successfully adopted in several

domain adaptation tasks [276], [142], which attempts to transfer attention knowledge from

a powerful deeper network that is trained with sufficient training samples to a shallower

network that can be trained with limited training data with the goal of improving the

performance of the latter. However, it is still challenging to train such a high-quality

cross-domain model for the DFR due to the large domain shift in the images. To deal with

the large domain shift between source domain and target domain for the DFR, we can

adopt the data in source domain to synthesize disguised face images as similar as the data

in target domain by using GAN model, which has been proven to generate impressively

realistic faces through a two-player game between a generator and a discriminator. For

the GAN model, there are many promising image-to-image translation developments [155],

[299], but they do not necessarily preserve the identity label of an image. Although the

generated image may “look” like that it comes from the auxiliary domain, the underlying

identity may be lost after image-image translation. Consequently, the desired model for

our task is that it can generate disguised face images which should simultaneously preserve

the identity label in source domain and transform helpful content information in target

domain.

Inspired by the above discussions, we propose a novel Unsupervised Domain Adaptation

Model (UDAM), which jointly transfer the rich knowledge from the source domain and

discriminative representation end-to-end that mutually boost each other to achieve the

disguised face recognition of target domain. In particular, UDAM includes a Domain

Style Adaptation subNet (DSN) and a Attention Learning subNet (ALN) to learn the
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representations. The DSN introduces unsupervised cross-domain adversarial training

and a “learning to learn” strategy with the Siamese discriminator to achieve stronger

generalizability and high-fidelity, underlying identity preserving face generation. In this

setting, the model can satisfy the specific requirement of retaining identity information

after image-image translation in the disguised face recognition, and we are able to create a

dataset which has the similar style of the target domain in an unsupervised manner. ALN

is a CNN for disguised face recognition with our proposed attention transfer strategy. The

CNN model is trained by taking advantage of the sufficient labeled generated images, unlike

previous approaches that distill knowledge through class probabilities [92], we propose to

learn class-specific energy functions on spatial attention map, which is helpful to obtain an

effective CNN model that less affected from the domain shift.

Our contributions can be summarized as follows:

• We present a deep architecture unifying image-image translation and disguised face

recognition in a mutual boosting way, which inherits the merits of existing domain

bias disguised face recognition methods. The proposed model achieves consistent

improvement on both controlled and in-the-wild datasets.

• The local and global structural consistency of the style-translated disguised face

images has been effectively enforced through pixel cycle-consistency and discriminative

loss. Besides, the class-discriminative spatial attention maps from the CNN model

trained by source domain are leveraged to boost the performance of disguised face

recognition in target domain.

5.1.2 Proposed Method

Problem Definition

Suppose a labeled dataset A, is used to train a CNN model Mc of disguised face recognition.

If the trained Mc is directly applied to a target unlabbeled dataset B collected from an

entirely different domain with a different set of identities/classes, the model tends to have

poor performance, due to the significant differences between A and B. Therefore, we

attempt to learn an optimal CNN model for B using knowledge transferred from A.

92



Chapter 5. Face Recognition in Uncontrolled Environments 93

Figure 5.2: UDAM for disguised face recognition. First, we predict face and landmark
location by MTCNN [286], then the Domain Style Adaptation subNet translates the style
of the labeled images from a source dataset to the style of the target dataset. Finally, we
train the CNN model with the translated images and use Attention Learning subNet to
obtain the disguised face recognition.

UDAM

As shown in Figure 5.2, the proposed UDAM consists of a DSN and an ALN that jointly

generate the domain-aware data and learn the disguised face representation end-to-end.

We now present each component in detail.

DSN. We first introduce a mapping function G from source domain A to target domain

B and train it to produce images that fool an adversarial discriminator DB. Conversely,

the adversarial discriminator attempts to classify the real target data from the source

generated data. This corresponds to the loss function:

LBadv
(G,DB , Px, Py) =Ey∼py [(DB(y)− 1)2]+

Ex∼px
[(DB(G(x))2],

(5.1)

where px and py denote the sample distributions in the source and target domain,

respectively. However, with large enough capacity, a network can map the face images in

the source domain to any random permutation of images in the target domain. As a result,

it is undesirable in the DFR task, where we have to ensure the quality of the generated
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faces. Thus, we introduce another mapping F from target to source and train it according

to the same GAN loss, i.e.,

LAadv
(F,DA, Py, Px) =Ex∼px

[(DA(x)− 1)2]+

Ey∼py
[(DA(F (y))2],

(5.2)

We then introduce a cycle-consistency loss [299] to recover the original image after a cycle

of translation and reverse translation, thereby enforcing cycle-consistency and preserving

local structural information of the face images in source domain. The cycle-consistent loss

can be expressed as:
Lcyc(G,F ) =Ex∼px

[||F (G(x))− x||1]+

Ey∼py
[||G(F (y))− y||1],

(5.3)

To encourage the domain style adaptation to preserve the identity information for each

translated image, inspired by [43], we add the contrastive loss [86] in the cycle-consistency

loss function to learn a latent space that constrains the learning of the mapping function.

We use the contrastive loss [86] to train the Siamese network as follows:

Lcon(l, i1, i2) = (1− l) {max(0,m− d)}2 + ld2, (5.4)

where i1 and i2 are a pair of input vectors, which are selected in an unsupervised manner.

d denotes the Euclidean distance between normalized embeddings of two input vectors, and

l represents the binary label of the pair. If i1 and i2 are positive image pair, l equals one.

On the contrary, if i1 and i2 are negative image pair, l equals zero. m ∈ [0, 2] represents

the margin that defines the separability in the embedding space. The loss of the negative

training pair is not back-propagated in the system when m equals zero. Both positive and

negative sample pairs are considered if m is larger than zero. A larger m means that the

loss of negative training samples has a higher weight in back propagation.

Based on the prior knowledge that the set of ID information is different in the source

and target domains, there are two types of negative training pairs designed for generators G

and F : 1) G(iA) and iB, 2) F (iB) and iA. Thus, a translated image should be of different

ID information from any target image. Accordingly, the two dissimilar images are pushed

away by the network. Taken together, the final Domain Style Adaptation subNet objective

can be written as in Equation 5.5 by considering Equations 5.1, 5.2, 5.3, and 5.4:

Lsum = LBadv
+ LAadv

+ Lcyc + Lcon (5.5)
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ALN. Given that the style-translated dataset consisting of the translated images and their

associated labels, the ResNet-50 [89] model is slightly improved and used in our experiments

as the base network. It is pre-trained on the ImageNet [205] dataset, and fine-tuned on the

translated images to classify the training identities. We discard the last 1000-dimensional

classification layer and add two FC layers. Besides, to reduce the possibility of overfitting,

a dropout layer [231] has been inserted before the final convolutional layer. The last FC

layer is modified to have N neurons to predict the N -classes, where N is the number of

the classes in the training set.

Once we obtain the CNN model for the style-translated dataset, we can further

address the domain shift problem by using spatial attention map to exploit features from

the convolutional layer. Class information and more general convolutional feature are

incorporated through attention map, hence more transitions can be made across domains.

Let n ∈ (1, 2, ..., N) be the n-th pre-defined class of the real images in the target domain,

where N is the number of classes. For a particular example x with single ground-truth

label y, the last convolutional layer of the trained CNN model will produce K feature maps

Ak. The image x is first forwardly propagated through the trained CNN model, then we

adopt the Grad-CAM [217] to generate the spatial attention map L(x, yn) by a weighted

combination of the convolutional feature maps,

L(x, yn) = ReLU(
∑
x

αynk A
k) (5.6)

The importance of the k-th feature map for the prediction class yn will be captured by

the weight αynk through calculating the back propagating gradients to the convolutional

feature map Ak. For the spatial attention map of each image, an energy function has been

defined as E(L(x,yn)∑N
n=1 E(L(x,yn))

, which is the largest when y = yn, and smaller otherwise. We

define E based on a simple yet effective observation: Assuming that the CNN model has

been pre-trained on the style-translated source domain to predict certain identity, given an

image and its spatial attention map corresponding to an identity, if the facial attribute

of the identity exists in the certain region, the attention map will generate the higher

activations in the corresponding region. Therefore, a sliding window with size of 4 × 4

and step size of 1 will be applied over L(x, yn). Then we calculate the sum of the value

of L(x, yn) within each sliding window as the local activation. We use the energy E to

express the maximum of all local activations. For the target domain with N classes, we

calculate the output score over each label as the mean energy across all local activations,
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score(x, yn) =
1

N

∑
C

E(L(x, yn)), (5.7)

where C denotes the number of local activations. We infer the one with highest score as

the predicted label,

yp = argmax
yn

score(x, yn) (5.8)

5.1.3 Experiment

Figure 5.3: The illustration shows samples images with different disguises from both the
Simple and Complex face disguise (FG) datasets.

Datasets

The Simple and Complex Face Disguise Dataset [225] contain 2000 images of 25 people

with 10 different disguises varied each with (i) Simple and (ii) Complex backgrounds that

contain people with 8 different background illuminations in the wild. The dataset is split

into three fixed parts: 1000 training images, 500 validation images and 500 test images.

The example images from each dataset are shown in Figure 5.4. We can observe that
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Figure 5.4: Sample images from the IIIT-Delhi Disguise Version 1 Face Database (ID V1
Database).

the samples from the complex background dataset have a relatively complex background

compared to the simple dataset.

The IIIT-Delhi Disguise Version 1 Face Database (ID V1 Database) [46] contains 681 visible

spectrum images of 75 participants with disguise variations. The dataset is randomly

divided into a training set with 35 subjects and a testing set with the remaining 40 subjects.

All the face images are almost taken under constant illumination with neutral expression

and frontal pose. The sample images from the database are shown in Figure ??.

Implementation Details

Domain Style Adaptation model. We used Tensorflow [1] to train Domain Style

Adaptation subNet using the training images of the dataset. Before the training process,

we apply the MTCNN [286] to perform face detection for datasets and reduce the negative

affect of the background. With an initial learning rate of 0.0002, and model stops training

after 7 epochs. During the testing procedure, we employ the Generator G for Simple and

Complex FGD → ID V1 Database translation and the Generative F for ID V1 Database

→ Simple and Complex FGD translation. The translated images are used to fine-tune the

CNN model.

Feature learning. Specifically, ResNet-50 [89] pre-trained on ImageNet [205] is used for

fine-tuning on the translated images. We modify the output of the last fully-connected

layer to 25 and 35 for Simple and Complex FGD and ID V1 Database, respectively. A

mini-batch SGD is used to train the CNN model on a GTX 1080 GPU. The initial learning
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rate is set to 0.001, and decays to 0.0001 after 10 epochs. The trained CNN is then used

to generate spatial attention maps for test images in target domain. We set the size of the

attention map for ResNet-50 is 7×7.

Experiment results and Evaluation

To help analyze our model and show the benefit of each module, we design several

unsupervised comparison methods as follows:

Setting-1: Source domain to target domain (S2T). This baseline uses the disguised face

images in source domain to fine-tune the pre-trained CNN model and then tests it on

target domain.

Setting-2: S2T DSN(without contrastive loss). We first train the DSN (without contrastive

loss) using the source domain, and the generated disguised face images are used to train

the CNN model.

Setting-3: S2T DSN. This baseline preserves the identity information for each translated

image by adding contrastive loss to setting 2.

Setting-4: S2T UDAM(DSNALN). Proposed unsupervised domain adaptation method in

this paper.

We first evaluated our method on the Simple and Complex Face Disguise Dataset, which

is a disguised face dataset in the wild with varied disguises, covering different backgrounds

and under varied illuminations. We translated the image style of ID V1 Database (source

domain) to Simple and Complex Face Disguise Dataset (target domain) and then use the

translated images to train the disguised face recognition model. Finally, we evaluated the

methods on the test set of Simple and Complex Face Disguise Dataset.

Table 5.1 shows the detailed comparison results between our methods and three

aforementioned baseline methods. The proposed method outperforms all the corresponding

baselines with 8% to 12.6% improvement and 7.2% and 14.7% on the DFR accuracy for

simple and complex version, respectively. We attribute this to the image generator and

attention learning strategy in our method. Based on the results in Table 5.1, it is clear that

S2T DSN(without contrastive loss) can achieve better performance with the S2T baseline,

demonstrating its efficacy to transfer style across domains. With the help of contrastive

loss, we preserve the identity information during the image translation process leading to

3% and 5.1% improvement over the Setting-2 for simple and complex version, respectively.

Examples of translated images by DSN are shown in Figure 5.5.
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Figure 5.5: Upper right: FGD images which are translated to ID V1 style; Lower right: ID
V1 images translated to FGD style.

Table 5.1: Face disguise classification accuracy (%) of our four unsupervised comparative
settings on the Simple and Complex Face Disguise Dataset.

Method Simple FGD Complex FGD

S2T 54.6% 51.4%
S2T DSN (without Lcyc) 56.2% 53.8%
S2T DSN 59.2% 58.9%
S2T UDAM (DSN&ALN) 67.2% 66.1%

Since all of the previous approaches are not unsupervised learning setting, we compared

our method with the state-of-the-art supervised learning methods including DFI [225] and

ITE [46] in Table 5.4. For complex FGD, we arrive at an accuracy = 66.1%, which is

+3.5% higher than the best results in [225]. Compared with the second best method, ITE

[46], our unsupervised domain adaptation method is +1.7% and +12.7% higher in accuracy

for Simple and Complex FGD, respectively. The comparisons indicate the competitiveness

of the proposed method on the simple and complex FG dataset.

To further test the effectiveness of our method, we treated the Simple and Complex Face

Disguise Dataset and ID V1 Database as source domain and target domain, respectively. In

Table 5.3, we show the face recognition performance comparison of our method with some
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Table 5.2: Comparison with state-of-the-art methods on Simple and Complex Disguised
Face Dataset.

Method Simple FGD Complex FGD

DFI [225] 78.4% 62.6%
ITE [46] 65.2% 53.4%

S2T UDAM (DSN&ALN) 67.5% 66.1%

Table 5.3: Face disguise classification accuracy (%) on the IIIT-Delhi Disguise Version 1
Face Database (ID V1 Database).

Method ID VI Database

NoImage+ResNet 41.3%

S2T 29.7%
S2T DSN (without Lcyc) 35.8%
S2T DSN 39.2%
S2T UDAM (DSN&ALN) 45.2%

baselines. There are several findings from the results. Firstly, the recognition accuracy

shown in the last column of this table indicates that the proposed model drastically improve

the performance, and the degree of improvement varies between 6% and 15.5%. This well

verifies the proposed method is effective when the data in the target domain is limited and

unlabeled, which is the general scenario for unsupervised domain adaptation problems.

Moreover, the joint learning scheme of domain style adaptation and attention transfer

learning also helps, since the two sub-nets leverage each other during end-to-end training

to achieve a final win-win outcome.

We can not find existing methods that conduct experiments on this dataset under the

same conditions with us. Thus we directly create baseline NoImage+ResNet, where we

directly use the training set of ID V1 to fine-tune a ResNet-50 model. Table 5.3 shows our

methods can achieve better recognition accuracy of 45.2%.

5.1.4 Conclusion

In this paper, we proposed a novel UDAM to address the challenging face recognition

with domain bias. UDAM unifies a Domain Style Adaptation subNet (DSN) and a

Attention Learning subNet (ALN) for disguised face recognition in an end-to-end deep
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architecture. The DSN introduces unsupervised cross-domain adversarial training to

provide style-translated images for effective attention transfer learning from ALN. Besides,

the underlying (latent) ID information for the disguised face images also has been preserved

after image-image translation. We conducted experiments on the Simple and Complex

FGD and ID V1 Database, and shown the efficacy of the proposed method to adapt the

domain shift problem, especially when the images in the target domain is unlabeled.

5.2 Image-Image Translation to Enhance Near Infrared Face

Recognition

5.2.1 Introduction

Facial recognition has become one of the most active research areas in the field of computer

vision due to its potential value for many applications such as security systems and

surveillance. Despite significant progress in this domain, illumination has been regraded as

one of the most significant impact factors in face recognition [107]. In this paper, we focus

on NIR face recognition, which has the features of being insensitive to illumination changes

and can perform well even in near darkness [198]. Many algorithms have been proposed

to recognize faces in NIR images in recent years [282], [58]. A common drawback of all

these methods is that they exploited hand-crafted features without applying a deep, global

representation of the facial images, which has been shown to produce superior results for

face recognition.

Our work is motivated by two recent developments. Firstly, the existing visible light

domain (VLD) face recognition systems have achieved impressive performance [215], [258],

owning to the development of deep networks and large face datasets [100], [85]. For example,

in [215], 200 million images captured from 8 million subjects were used to train a deep

network which achieve the best performance on a standard unconstrained face recognition

benchmark called Labeled Faces in the Wild (LFW) [100]. With these significant advances,

existing VLD-based face recognition systems should be extended to other research areas

which are less well studied, such as near-infrared imaging (low-light). Unfortunately, due

to the relatively small amount of training data available and the domain bias between

near-infrared and visible light, the same success in VLD is not easily replicated in the

near-infrared domain. This observation inspired us to resort to synthesize visible light face

images from NIR inputs, which solves the illumination change problem and, at the same
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time, is able to work with pre-existing face recognition systems.

Secondly, with the development of the GAN method, the community has made significant

progress in solving image-image translation problems [154], [299]. Recently, SPGAN [44]

introduced the Siamese network based on the CycleGAN framework in [299] to learn the

image translation between two different domains and preserve the identity information

of the person. However, these GAN based methods require sufficient input-output image

pairs for training, which is not available for the near infrared domain with limited samples.

To address this problem, it is important to introduce datasets that include sufficient near

infrared and visible light image pairs.

Considering the above two issues, we makes two contributions. The first contribution

is the creation of two new NIR datasets, named the “Outdoor NIR-VIS Face (ONVF)

database” and “Indoor NIR Face (INF) database”. The ONVF dataset contains 30,000

image pairs of 1,000 identities collected by a visible light camera and a near-infrared camera.

The INF dataset consists of 470 near-infrared images which belong to 94 people captured

by a near-infrared camera. The the details of the databases are described in Section 5.2.3.

As a second contribution, we propose a novel near infrared facial recognition method.

To start, a Multi-Task Cascaded Convolutional Network (MTCNN) [286] is applied to

achieve face detection and alignment, which is useful for handling background and occlusion

variations in images. Then, the ONVF dataset is used to train a NIR-VIS image translation

model that translates the near infrared face image to a visible light face image. After the

translation, the generated VLD face is fed into an existing pre-trained VLD deep neural

network face recognition model [215]. The intention is that better recognition results

can be obtained without retraining or changing the VLD model. The framework of our

proposed method is illustrated in Figure 5.6. The experimental results on the INF and

CSIST [267] databases confirm that the proposed method achieves a favorable performance

compared with published state-of-the-art methods [16], [148].
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Figure 5.6: The workflow of the proposed approach. There are three stages: (1) Face

detection and alignment using MTCNN [286]; (2) NIR-VIS Image translation by combining

the cycle-consistency loss and contrastive loss; (3) Translated VIS face image recognition

which obtains a 128 dimension feature vector for each translated VIS face image in the

test set. Finally, the predict label will be output by the classifier.

5.2.2 Proposed Method

In this section, the proposed method is described, which consists of three steps: 1)

Face detection and alignment, 2) NIR-VIS image translation, 3) Face embedding and
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classification.

Face Detection and Alignment

Zhang et al. [286] proposed the MTCNN framework that exploits the inherent correlation

between detection and alignment to improve their performance. In our work, we apply the

MTCNN network to implement a face detection model on the ONVF dataset and CSIST.

It essentially consists of three stages: (1) We exploit a list of candidate windows which are

generated by the proposed network (P-Net) to classify the face and non-face and estimate

the bounding box regression vector as the face position. (2) A large number of wrong

candidates will be rejected by feeding all the candidates to a Refining Network (R-Net).

(3) Another CNN, called O-Net, outputs the five facial landmarks.

NIR-VIS Image Translation

The goal of NIR-VIS image translation is to train a generator G that can transform the

near infrared image X into its corresponding visible image Y , where the visible image

Y contains sufficient identity information for the facial recognition task. To this end,

we utilised image-image translation methods which aim at learning a mapping function

between the two domains. Conditional GAN [105] is a representative method by using

paired training data to produce impressive transition results. However, it is difficult to

obtain sufficient paired training data in the real world. In [299], this framework has been

extended to unsupervised image-to-image translation, meaning there is no requirement

for image pairs. In our work, we applied the CycleGAN framework [299] to transform a

NIR image to a VIS image. Two generator-discriminator pairs are introduced, G,DNIR

and F,DV IS which map a sample from the NIR domain to the VIS domain and produce a

sample that is indistinguishable from those in the VIS domain. For generator G and its

associated discriminator DV IS , we express the adversarial loss as

LV ISadv
(G,DV IS , Px, Py) =Ey∼py

[(DV IS(y)− 1)2]+

Ex∼px
[(DV IS(G(x))2],

(5.9)

where px and py denote the sample distributions in the NIR and VIS domains, re-

spectively. For generator F and its associated discriminator DV IS , the adversarial loss
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is
LNISadv

(F,DA, Py, Px) =Ex∼px
[(DA(x)− 1)2]+

Ey∼py [(DA(F (y))2],
(5.10)

Due to the lack of paired training data, there exists multiple alternative mapping

functions. To restore the original image after a cycle of translation and reverse translation,

we then introduced a cycle-consistency loss [299] as:

Lcyc(G,F ) =Ex∼px [||F (G(x))− x||1]+

Ey∼py
[||G(F (y))− y||1],

(5.11)

Similarity preservation is an important principle to exploit synthesised images generation

from some GAN-based image-image translation schemes. In our work, additional constraints

have been set on the mapping function to meet this special requirement for face image

generation. Specifically, inspired by the success in [44], we add the contrastive loss [86] in

the cycle-consistency loss function to learn a latent space that constrains the learning of

the mapping function.

Lcon(l, i1, i2) = (1− l) {max(0,m− d)}2 + ld2, (5.12)

where i1 and i2 are a pair of input vectors, which are selected in an unsupervised manner.

d denotes the cosine distance between the normalized embedding of two input vectors and

l represents the binary label of the pair. If i1 and i2 are a positive image pair, l equals one.

On the contrary, if i1 and i2 are a negative image pair, l equals zero. Suppose two samples

denoted as xNIR and xV IS come from the NIR domain and VIS domain, respectively. We

define two positive pairs: 1) xNIR and G(xNIR), 2) xV IS and F (xV IS). The positive image

pairs contain the same person, the only difference is that they have different styles (NIR or

VIS). In the learning procedure, we encourage the whole network to pull these two images

close. There are also two types of negative training pairs designed for generators G and F :

1) G(xNIR) and xV IS , 2) F (xV IS) and xNIR.

The separability in the embedding space has been represented as m ∈ [0, 2]. When m

equals zero, there is no back-propagation for the negative training pair. If m is larger than

zero, the system will consider the loss of both the positive and negative sample pairs. A

larger m means that the loss of negative training samples have a higher weight for the

back propagation. Taken together, the final NIR-VIS translation objective can be written
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as in Equation 5.13 by considering Equations 5.9, 5.10, 5.11, and 5.12:

Lsum = LBadv
+ LAadv

+ Lcyc + Lcon (5.13)

Face Embedding Module

A high-performance facial embedding module is critical to the entire facial recognition

system. In this paper, our face embedding module is based on FaceNet [215] which is

a deep metric learning network that uses two different CNN structures, [239] and [281].

We use the Inception-ResNet-v1 model, which achieves similar precision but with fewer

parameters and lower computational complexity. First, the face-embedded module has

been considered as a black box (Figure 5.7), and the Inception-ResNet-v1 model is the

most important part of this end-to-end system. There is a batch input layer and deep

CNN (Inception-ResNet-v1) in our network, which is then followed by L2 standardized for

face embedding. The training network is then trained through the triples loss [239]. The

basic idea is that the distance between the vectors of facial images from the same person is

very small.

Figure 5.7: The Face Embedding Module.

5.2.3 Experiments

Datasets Introduction

ONVF database. The database was collected by our research team in the summer session

of 2018 and the procedure lasted for several days. We captured the facial images from

1,000 subjects without constraints on the illumination and pose, each subject providing

about 30 NIR and 30 VIS face images. There are different variations in the sample images

such as pose, expression and focus, etc. During the process of collecting the database, we

use JAI cameras with 1/2.7inch HM2131 image sensor which is sensitive to the NIR band.
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The active light source was in the NIR spectrum between 780nm - 1,100nm and it was

mounted on the camera. We applied the full ONVF database to train a NIR-VIS image

translation model.

INF database. The INF database consists of 94 students from the University, including

57 male and 37 females. During the recording, a subject was asked to sit in front of the

camera and their normal frontal face images were collected. The camera-face distance was

between 80-120 cm, a convenient range for the user. There are 5 NIR face images per

subject at a resolution of 640×480 pixels. In our experiments, we randomly selected 235

images for training and 235 images for testing.

CSIST database. There are two image sets in the CSIST database [267]: Lab1 and

Lab2. Lab1 consists of 500 NIR images and 500 visible images captured from 50 subjects.

In Lab2, 1000 NIR images and 1000 visible images are collected from 50 subjects under

different illumination conditions. The image sizes for the Lab1 and Lab2 databases is

100×80 pixels. We randomly selected 50% of the database images for training and 50% for

testing.

Implementation Details

Firstly, we implemented the facial detection and alignment using MTCNN [286], the facial

images generated by the face pre-processing are 640×640 pixels. Then, we use the large

ONVF database to train our NIR-VIS image translation model in Tensorflow [1]. During

training, we set the initial learning rate and training epoch as 0.0002 and 7, respectively.

During the testing procedure, we employed the trained NIR-VIS image translation model

to translate the NIR face images in the INF database and CSIST database to visible facial

images. Examples of images translated by NIR-VIS image translation are shown in Figure

5.8. Also, to carry out comparative studies, we also trained the CycleGAN using the same

settings.
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Figure 5.8: Example images translated from NIR to VIS.

For the Face Embedding Module, we extracted an image-level CNN based on the

Inception-ResNet-v1 network [238] which was trained on a subset of the MSCeleb-1M

database [85] and validated on the LFW database [100]. The model’s architecture follows

the Inception-ResNet-v1 network [238]. The input image size of the Inception-ResNet-v1

model is 160×160 pixels.

5.2.4 Results and Discussion

To help analyze our model and show the benefit of each module, we designed three baselines

as follows:

Plain Near Infrared. No transformation was applied on this baseline. This baseline will

indicate the effect of the domain gap between NIR and VIS on the face recognition models

trained solely using VIS images.

CycleGAN. We first train the CycleGAN (without contrastive loss) using the ONSF

Database, and the generated visual face images are fed into the face embedding model.

MTCNN+CycleGAN. Before training the CycleGAN, we added the face detection and

alignment step by using MTCNN.
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Table 5.4: NIR face image recognition accuracy (%) on the INF database

Method INF database

Plain Near Infrared 79.8

CycleGAN 34.9

MTCNN+CycleGAN 97.5

Proposed method 99.8

Table 5.5: NIR face image recognition accuracy (%) on the CSIST database.

Method Lab 1 Lab 2

SMRSN [16] - 86.4

Score-level fusion [148] - 88.63

Plain Near Infrared (ours) 65.2 77.2

CycleGAN (ours) 45.4 38.6

MTCNN+CycleGAN (ours) 94.2 86.3

Proposed method (ours) 99.6 90.7

The results on the INF dataset can be seen in Table 5.4. As can be seen from these

results the proposed method outperforms all the baselines. Also, it is noteworthy to mention

that the MTCNN leads to a 62.6% improvement which indicates that the face detection and

alignment is able to further improve the system performance. The improvement brought

by the contrastive loss is also validated on this dataset, with a 2.3% improvement over the

second baseline.

We then recorded the recognition accuracy of our methods on the CSIST database as

shown in Table 5.5. The MTCNN+CycleGAN method has an Average Precision (AP)

value of 94.2% and 86.3% for Lab1 and Lab2, respectively, which is higher than the Plain

Near Infrared and CycleGAN performance. This highlights the importance of reducing the

domain bias that exists between the NIR and VIS images. With the help of contrastive

loss, we preserve the identity information during the image translation process leading

to a 5.4% and 4.4% improvement over the second baseline for Lab1 and Lab2 versions

respectively.

The following observations can be made: (1) For the CSIST database, our method

outperformed most of the previous methods which are only based on the near infrared

domain. (2) The NIR-VIS image translation model is more effective at training a generator

that can preserve the personal identity in the generated images. (3) The proposed model
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shows good potential to achieve better results. Future work can be undertaken by fine-

tuning the face embedding model on a specific dataset.

5.2.5 Conclusion

In this paper, we introduced the large ONSF database which includes various changes

in pose, expressions and focus. We also created another INF database in the laboratory

environment to test the performance of near infrared facial recognition. We propose a novel

near infrared facial recognition method in an end-to-end deep architecture which includes

face detection and alignment, NIR-VIS image translation and a face embedding module.

This is the first time that it has been proposed to apply the image-image translation

method to enhance the performance of near-infrared facial image recognition. This is

achieved by synthesizing a virtual sample from an input near infrared face image. Using

this approach, we reduce the intra-personal difference caused by the completely different

illumination. Therefore, we can achieve much better recognition results by applying the

existing pre-trained VLD deep neural network face recognition model. The proposed

method was tested on the INF database and the CSIST dataset, with promising results.

5.3 Pose-robust Face Recognition by Deep Meta Capsule

Network-based Equivariant Embedding

5.3.1 Introduction

Face recognition (FR) is one of the most actively researched topics in computer vision

owing to its wide range of potential applications. Recently, many innovative methods

based on deep learning have been put forward for face recognition and verification [234],

[215], and the accuracy of recognizing clear human faces in well-controlled environments

is generally very high. However, great challenges have been confronted by the efforts of

developing pose-robust face recognition. A recent study [218] shows that the performance

of most FR algorithms are reduced by more than 10% from frontal-frontal to frontal-profile

face verification. This indicates that pose variation is still the most important challenge in

real-world face recognition. The pose is defined as a combination of viewpoint and facial

configuration. In this work, we aim to develop effective model for recognizing unconstrained

faces with large pose variations.
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The mainstream methods of Pose-Robust Face Recognition can be divided into two

categories. First, some works employ face frontalization [209], [20], [249] to synthesize a

frontal face from a given profile before recognition. Although it’s an effective preprocessing

method, achieving face frontalization with extreme profile faces is still challenging. Second,

other studies design one joint model [234], [215], [115] or multiple pose-specific models [47],

[167] to learn discriminative features directly from the non-frontal faces.

Recently, Cao et al. [21] proposed a deep residual equivariant mapping (DREAM) block

to perform face frontalization in the deep feature space rather than in the image space.

However, an important shortcoming of DREAM is the inaccurate hypothesis of the feature

equivariance of CNNs. Despite their success, CNNs suffer from inherent limitations, most

significantly the fact that CNNs lacks of transformation equivariant representations. This

limitation has stimulated significant research in recent years [73]. Besides, the DREAM

block trained using an existing face recognition loss (e.g., verification loss and identification

loss) can hardly explain the generalization ability of metric from training set to testing

set. Conversely, without the limit of singel objective on the overall training set, sampling

sub-tasks from the original task may be useful for learning the potentially transferable

information .

In this study, we aim to learn face representations equivariant to pose variations and

propose a novel meta learning framework for Pose-Robust Face Recognition (PRFR). It is

desirable that if the input image is transformed, e.g., by an out-of-plane rotation or pose

variation, the learnt model should make predictions in a co-transformational way. Using

this approach, we can actually map the features of the input image with arbitrary poses to

the front space through the mapping function. With the help of meta learning, it helps

the model to adapt to new tasks efficiently via extracting useful transferable knowledge

from a set of auxiliary tasks.

The task of designing equivariant features has been extensively researched recently.

For example, some work is devoted to extracting invariant local descriptors [161] on top

of an equivariant detector [168]. Many papers have also studied the explicit inclusion of

equivalence in representations [213], [228]. Recently, group equivariant CNNs [30], [31]

have been proposed to ensure predictive responses to specific transformations of inputs. In

particular, through constraining the CNN model family, the rotation of the input results in

a corresponding rotation of its subsequent representation. However, these techniques are

the most common design for the rotation and translation of inputs and fail to generalize to

continuous transformation of deeper combinations. Recently, the Capsule network has been
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introduced by Hinton et al. [96], [208] as an explicit step towards achieving equivariance.

The motivation of the Capsule network is that the information processing should resemble

a parse tree and the connections between layers should be determined by an iterative

routing operation.

Based on the above discussion, we propose a deep meta Capsule network-based archi-

tecture Equivariant Embedding Model (DM-CEEM) for Pose-robust Face Recognition. In

DM-CEEM, we formulate a pose equivariant embedding learning process following meta

learning strategy and achieve the desired transformation for the input face image. Inspired

by recent progress in equivariant learning, we introduce a new version of a capsule network

called RB-Capsule network, which learns face representations equivariant to pose variations.

In RB-Capsule network, we replace a single feature by a pose vector that represents the

different internal properties, then generates residuals to convert a profile face to a frontal

face. The residuals are generated according to the previous feature representation via some

additional weight layers. In addition, the amount of residuals are adaptively controlled by

a soft-gate warping-block. In this way, no residual is added to a frontal face while adding

more residuals to extreme profile faces. We follow the practice of episodic training in [254]

which is the most popular and effective meta learning methodology [226]. Specifically, we

randomly sample a subset from the original training set as a sub-task in each episode and

divide it into a support set and a query set, and optimize the model to match the query

sample with positive support samples by distance. We make extensive comparisons with

published state-of-the-art methods on the IJB-A and CFP datasets. Experiment results

demonstrate our DM-CEEM can significantly improve the performance pose-robust face

recognition. To summarize, our main contributions are listed as follows:

• A novel deep meta Capsule-based architecture Equivariant Embedding method (DM-

CEEM) is proposed to learn feature equivariant to pose variations in the framework

of meta-learning and improve the performance for pose-robust face recognition.

• We propose a new version of a Capsule network called RB-Capsule network, which is

the first attempt to extend Capsule network to perform face transformations in the

deep feature space

• We construct a unified end-to-end deep network to integrate the algorithmic compo-

nents, thereby making the training process efficient and effective.

• We conduct extensive experiments and improve state-of-the-art pose-robust face
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recognition performance on two benchmark datasets, IJB-A and CFP and demonstrate

the effectiveness of our proposal.

5.3.2 Related Work

Our work is mostly related to the Capsule network, meta-learning and face recognition,

and we start with a brief review of them.

Capsule network. The traditional CNN is not effective in capturing the hierarchical

structure of the entities in the images [184], [259]. Hinton et al. [96] proposed the concept of

“capsules” to learn part-whole relationships and preserve the spatial information. Capsule

network was first introduced by Sabour et al. [208], which has attracted a lot of attention

from researchers as a more effective image recognition algorithm. In [207], the matrix

capsule learns the relationship between the observer (the pose) and the entity. Besides,

a number of approaches have been introduced to implement and improve the capsule

architecture [124], [294], [140]. Rajasegaran et al. [195] proposed a deep capsule network

architecture called DeepCaps that increases its performance on more complex datasets.

Recently, Capsule network has also been introduced into many applications. In [108],

the standard CNNs have been replaced by capsule networks as discriminators. Aryan et al.

[172] utilizes a consistent dynamic routing mechanism to achieve the task of lung cancer

screening. Turab et al. [288] successfully propose CNN-Capsule network for remote sensing

image scene classification. Our work can be regarded as an improved version of capsules,

which capsules to synthesize frontal faces with arbitrary poses in the deep feature space.

Meta Learning. The objective of meta-learning is to learn an embedding model so

that the base learner can generalize well across tasks. For example, there are some meta

learning methods [5], [28] interpret gradient update as a parametric and learnable function

instead of a fixed ad-hoc routine. MAML [63] provides another promising direction in

which learners’ initial parameters can be learned for rapid adaptation. Several recent works

[113], [173], [212] maintain the knowledge through memory-augmented models and access

important and previously unseen information related to new tasks. Matching Networks

[254] and its later developments [226], [70] is to learn a set of classifiers through prior

tasks, and address the few shot learning problem by weighting these nearest neighbor

classifiers. Different from the goal of Matching Networks and Prototypical Networks [226]

that matching few-shot samples into positive classes using their neighbors in the support

set, we focus on more general equivariant embedding learning for face recognition tasks,
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rather than few-shot learning.

Face Recognition. Research on CNNs has significantly pushed forward the develop-

ment of face recognition techniques. To alleviate the training time problem and learn a

compact embedding for face representation, a light CNN framework has been introduced

in [234]. Schroff et al. proposed a unified system for face verification, recognition and

clustering [215]. Recently, pose variations have been taken into account in a number of

recent works [218], [167], [296]. For examples, some researchers have proposed the methods

for detecting and deforming 3D facial markers [242], face frontalization [249] and training

deep models for learning pose-specific identity features [167]. Zhao et al. [292] propose a

pose invariant model (PIM) which aggregates a discriminative learning sub-net (DLN) and

a face frontalization sub-net (FFN). The generation of high fidelity frontalized face images

in PIM makes it essentially a pixel-level alignment method. In contrast, the method in

[90] explicitly considers feature-level alignments and use deformable convolutions with a

spatial displacement field to extract deep feature for face recognition. Different with the

existing research that require well-designed data augmentation or multi-task training, our

approach is easy to implement and light-weight.

5.3.3 Background

Equivariance is a desirable property for a computer vision system. If an input image is

transformed, e.g., by a rotation, then the system should make inferences in a predictable

way via a co-transformed representation. We define f : X → Y as a function and Pφ and

Qφ are two sets of transformations parametrized by φ. f is equivariant to P and Q if

f(Pφ(x)) = Qφ(f(x)) (5.14)

where Pφ and Qφ are a pair of transformations whose order with f can be exchanged when

one is replaced with another. This means that first using f and then transforming the

output with Q is same with transforming the input with P and then using f . We can

assume that the neural network is equivariant, if network is able to against transformations

automatically in P . This approach decreases the necessary of data augmentation as the

implicit transformations hidden in data augmentation have already been learnt by the

network. Conventional CNN architectures have the built-in translational equivariance,

which means that the CNN does not have to learn the shifted versions of the same patterns.

114



Chapter 5. Face Recognition in Uncontrolled Environments 115

5.3.4 Deep Meta Capsule Network-based Equivariant Embedding Model

Our goal is to learn face representations equivariant to pose variations and achieve trans-

formation from profile face to frontal face in the deep embeddings space. As shown in

Figure 5.9, the proposed DM-CEEM extends from an Capsule Network, and consists of a

RB-Capsule network and a soft-gate warping-block that jointly learn discriminative and

robust face representations disentangled from pose variance and perform face recognition

end-to-end. In this section, we will introduce the problem formulation and describe the

proposed method in detail.

Figure 5.9: The framework of the Capsule network-based Equivariant Embedding Model

(CEEM). The procedure consists of RB-Capsule network and Soft-gate warping-block.

5.3.5 Problem Formulation

We denote a Capsule network as a function φ that maps an image x ∈ X to a representation

vector φ(x) ∈ Rd. If the transformation t of the input image can be transferred to the

representation output, the representation φ is equivariant. Therefore, we can obtain the
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equivariance with t when a map Mt exists, such that,

∀x ∈ X : φ ≈Mtφ(x) (5.15)

To facilitate the discussion, we suppose that frontal face image xA and profile face

image xB are two types of face images. Inspired by Equation 5.15, we hope to use a

mapping function Mt to obtain a transformed representation of a profile face image xA, so

that Mtφ(xB) ≈ φ(xA). To facilitate the incorporation of Mtφ(xB) in a Capsule network,

we define it as a sum of the original profile feature φ(xB) with residuals provided by a

residual function R(φ(xB)) weighted by a yaw coefficient Y (xB). It can be expressed as:

φ(gxB) = Mtφ(xB)

= φ(xB) + y(xB)R(φ(xB))

≈ φ(xA)

(5.16)

After this transformation, the fixed representation φ(xB) + y(xB)R(φ(xB)) will be mapped

to the frontal face space. We design the RB-Capsule network as a new version of Capsule

network to obtain φ(xB) and R(φ(xB)), and use the soft-gate warping-block to provide a

higher magnitude y(xB) of residuals R(φ(xB)).

5.3.6 RB-Capsule Network

In pose-robust face recognition, the equivariant representation extracted from deep models

is an essential function for feature learning. As explained in Section 5.3.1, we aim to

propose a method to make the representation robust to pose variation. To fulfill this goal,

we integrate a residual block with DeepCaps [195]. During training, DeepCaps learns an

equivariant mapping between the input images and generated vector, and the residual

block is to learns the latent space that bridges the discrepancy between profiles and frontal

faces.

There are two main capsule types in the original Capsule network [208], namely the

PrimaryCapsules and the DigitCaps. In Capsule network, 256 channels will be produced

by an initial convolution layer and then rearranges another set of convolutions into

32×8D PrimaryCapsules. Using the mechanism of dynamic routing by agreement, the

PrimaryCapsules are routed to the next DigitCaps layer. Therefore, the similar votes from

PrimaryCapsules will contribute more strongly to the target DigitCaps. The dynamic
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routing will update the contribution of votes. Based on the similarity between the output

DigitCaps and the prediction vector, the dynamic routing will update the contribution

of votes. Therefore, after the pervious previous layer of capsules (PrimaryCapsule layer)

ûj|i providing the prediction vectors, where i denotes the index of a single capsule in the

PrimaryCapsule layer and j represents the index of the DigitCaps capsule, the output

vector (DigitCaps) is computed as,

sj =
∑
i

cij ûj|i (5.17)

where cij represents the coupling coefficients weighting the contributions of different

prediction vectors,

c
(fout)
ij =

exp(bij)∑
k exp(bik)

(5.18)

where bij represents the log probability that the ith PrimaryCapsule should be coupled

to the jth DigitCaps capsule. The sum of the weights of the contributions of the ith

PrimaryCapsule to each DigitCaps capsule in the next layer are normalized to one.

DeepCaps is a deep capsule network architecture proposed in [195] to improve the

performance of the capsule networks for more complex image datasets. It extends the

dynamic routing algorithm in [208] to stacked multiple layers, which essentially uses a 3D

convolution to learn the spatial information between the capsules. The model consists

of four main modules: skip connected CapsCells, 3D convolutional CapsCells, a fully-

connected capsule layer and a decoder network. The skip-connected CapsCells have three

ConvCaps layers, the first layer output is convolved and skip-connected to the last layer

output. The motivation behind skipping connections is to borrow the idea from residual

network to sustain a sound gradient flow in a deep model. The element-wise layer is used

to combine the outputs of the two capsule layers after skipping the connection. DeepCaps

has a unit with a ConvCaps3D layer, in which the number of route iterations is kept at 3.

Then, before dynamic routing, the output of ConvCaps is flattened and connected with the

output of the capsule, which is then followed by 3D routing (in CapsCell 3). Intuitively,

this step helps to extend the model to a wide range of different datasets.

RB-Capsule network shares the upper part of Deepcaps, starting from the skip connected

CapsCells, through the 3D convolutional CapsCells, a fully-connected capsule layer and and

ending with a decoder network if needed. We set the number of routing iterations as three

in all the experiments and the fully-connected capsule layer computes the 32-D feature
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finally. The Residual block has three fully-connected layers with Parametric Rectified

Linear Unit (PReLU) as the activation function. Then we fed the output of the digit

capsule into a decoder consisting of 3 fully connected layers. Specifically, we train it by

using SGD to minimizing the Euclidean distance between the frontal feature and the

mapped profile feature.

min
θR

E||φ(x) + y(x)R(φ(x));−φ(xA)||22 (5.19)

where θR represents the parameters of R(·). The parameters of the y(·) branch are

fixed. A dropout layer has been inserted before the last fully connected layer during the

training process. In this work, we train the RB-Capsule network in the framework of

meta-learning on multiple sub-tasks sampled from MS-Celeb-1M dataset.

Soft-gate warping-block

The soft-gate warping-block generates the soft yaw coefficient y(x). Given an input face

image, the head rotation estimator in the soft-gate warping-block will estimate the head

rotation via the deepgaze algorithm presented in [186]. Then we non-linearly mapped the

yaw angle to a positive value in the range of [0, 1] as Equation 5.20.

y(x) =
x−min

max−min
(5.20)

Based on this mapping, once the head rotation is greater than 60o, the coefficient

quickly reaches a value of 1 while more residuals are exerted to the extreme profile faces.

To facilitate the incorporation of Mtφ(xB) in a Capsule network, we define it as a sum of

the residuals weighted by a yaw coefficient with original face feature.

Therefore, the fixed representation φ(xB) + y(xB)R(φ(xB)) will be mapped to the deep

space of frontal face via performing this transformation. With the help of yaw coefficient

y(x) ∈ [0, 1], Equation 5.16 is able to cope with input images of arbitrary pose. If the face

deviates more from the frontal posture, then a higher range of magnitude will be provided.

Intuitively, in the case where a face image that is frontal, y(x) = 0. During the process

of decreasing the degree of head rotation from 90o to 0o, the value of y(x) is gradually

increased from 0 to 1.

The design of soft-gate warping-block is requisite and essential. If not using it, the model

will blindly add residuals R(φ(x)) to the input images of any poses, thus the performance
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of face recognition will be affected. We view the design of combining a soft control gate as

a correction mechanism that adopts the degree of head rotation to influence the process of

feed-forward. The soft-gate warping-block determines the amount of the residuals to be

fed into the next stage. It is worth emphasizing that the angles of pitch and roll are not

considered in the model. The outputs of the residual block in the RB-Capsule and soft

gate are multiplied and added to the initial representation φ(x). The final out of feature

representation can be expresses as φ(x) + y(x)R(φ(x)).

Training algorithm

In our DM-CEEM method, the learning process and generalization ability of the model can

be better explained by formulating learning process in a meta way instead of considering

a single objective with the overall observation of training data. The single training goal

is divided into multiple sub-tasks, and learn the meta metrics applicable to all sub-tasks.

In our assumption, the test task and all sub-tasks are instances sampled from a task

distribution p(T ).

We formulate the objective function of the proposed DM-CEEM method as:

θ = argmin
θ

ETk∼p(T )[Lk(θ;Xk,Yk)] (5.21)

where Lk(θ;Xk,Yk) represents the objective function of sampled sub-task Tk. Specifically,

assume there are N -class in training set, M(M ≤ N) classes will be randomly sampled from

the original task to construct a new task. Similar to the form of meta learning, we randomly

sample a support set S = {smi |i = 1, ...nms } and a query set Q =
{
qmi |i = 1, ...nmq

}
for the

sub-task Yk), where m = 1, ...,M is the different classes. For simplicity, we set the number

of support samples and query samples for the different classes to be the same, i.e. nms = ns

and nmq = nq. In each episode, we learn the model to correctly verify the query sample

from Q with support samples in S. The overall formulation of our DM-CEEM method is:

θ = argmin
θ

ETk∼p(T )[ES,Q∼Tk [Lk(θ;Q,S]] (5.22)
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5.3.7 Experiments

Experimental Settings

Dataset. To demonstrate the performance of our approach, we conduct our experiment

on two datasets: Celebrities in Frontal-Profile (CFP) dataset [218] and the IARPA Janus

Benchmark A (IJB-A)[121]. CFP is a challenging dataset for examining the problem of

pose-robust face recognition ‘in the wild’. It contains 500 celebrities, each with 10 frontal

and 4 profile face images. There are two evaluation protocols: frontal-frontal (FF) and

frontal-profile (FP) face verification, each having 10 subset with 350 pairs of same-people

and different-people. IJB-A is another large posture database and consists of 5, 396 images

and 20, 412 video frames belonging to 500 subjects. The faces in the IJB- A dataset cover

full pose variation (yaw angles between −90o to +90o), which is more challenging than the

CFP dataset.

Implementation Details. We select a small subset of MS-Celeb-1M [85] as our

training and testing sets. There are 16,104 images from 157 identities and 3,000 images

from 36 identities in the training partition and testing partition, respectively. We resize all

face images in the training and testing sets to 112 × 112. To evaluate the performance of

the proposed method on the CFP dataset, we follow the standard 10-fold protocol in [218]

and measure the cosine distance between the feature representations of the queries. For the

IJB-A dataset, we follow the standard protocol in [249] and evaluate the performance of

our method on both the identification (1:N) and face verification tasks (1:1). We implement

the DM-CEEM using the PyTorch and employs the Adam optimization method as the

gradient descent algorithm to perform the training. We set the class number of each

sub-task and the number of support samples in each episode as 16 and 5 respectively. The

initial learning rate is 0.0001 and the number of episode is 2,000,000 to quickly converge to

an optimal solution quickly.

Evaluation on Celebrities in the Frontal-Profile (CFP) dataset

Our experiments on the CFP dataset required a shorter training time with the small size

of the training data. Our system does not perform any supervised training using the

target dataset; supervised training is only performed on the MS-Celeb-1M, which contrasts

sharply with the previous works of [24] and [21], which train deep networks using the

CASIA-WebFace dataset and the VGG-Face dataset respectively and require substantial
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Table 5.6: Equal error rate (EER) for different methods on the CFP dataset [218] with the
Frontal-Profile setting.

Method Training Data Equal error rate (%)

TPE [211] CASIA-WebFace 8.85
FV-DCNN [24] CASIA-WebFace 8.00
PIM [292] MS-Celeb-1M 7.69
DREAM [21] MS-Celeb-1M 6.43
p-CNN [273] CASIA-Webface 5.94

ResNet-18 MS-Celeb-1M 9.23
ResNet-50 MS-Celeb-1M 8.13
DM-CEEM (Proposed method) MS-Celeb-1M 4.72

training times and sufficiently labeled data.

We also explore the influence of using different component combinations of the proposed

DM-CEEM, our baseline, two single CNN model (ResNet 18 and ResNet-50) trained on

the subset of MS-Celeb-1M, respectively. As shown in Table 5.6, the DM-CEEM performs

better than the CNN model and has a greater improvement on CFP. Meanwhile, the

DM-CEEM achieves a faster convergence compared to the CNN model. The results reveal

that the DM-CEEM has a better robustness on the face recognition dataset, in which the

face images have complex internal pose variations. Figure 5.10 shows some sample image

pairs from the CFP where our method is able to successfully verify the pairs whereas both

ResNet-18 and ResNet-50 failed.

Figure 5.10: Examples of sample face pairs from the CFP dataset[218], the proposed

method verifies them successfully.

Table 5.6 shows that our face verification performance comparisons with state-of-the-art

methods on the CFP dataset. Our experiment result, which is obtained by DM-CEEM
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trained with a subset of MS-Celeb-1M, outperforms the state-of-the-art results [273], [21].

Experimental results on IJB-A with Full Pose Variation

In order to further test the effectiveness of our proposed algorithm, we also conduct

experiments on the IJB-A database. We presents the results of the proposed method in

Table 5.7, also comparing to existing results for the Verification and Identification protocol

in IJB-A. All the methods are tested with the same setting. Note that the training set of

IJB-A is not used by any methods for comparison.

Table 5.7: The performance of face verification and face identification for different methods
on the IJB-A benchmark [121]. Results reported are the ‘average±standard deviation’ (%)
over the 10 folds specified in the IJB-A protocol. Symbol ‘-’ defines that the metric is not
available for that protocol. f.t. indicates fine tuning a deep network multiple times for
each training split.

Method
Verification Identification

TAR @ FAR=0.01 TAR @ FAR=0.001 Rank-1 Rank-5
DR-GAN[249] 77.4±2.7 53.9±4.3 85.5±1.5 94.7±1.1
PAMs [167] 82.6±1.8 65.2±3.7 84.0±1.2 92.5±0.8
TA (f.t.) [37] 93.9±1.3 - 92.8±1.0 -
PIM [292] 93.3±1.1 87.5±1.8 94.4±1.1 -
QAN (f.t.) [159] 94.2±1.5 89.3±3.9 - -
DREAM [21] 94.4±0.9 86.8±1.5 92.6±1.1 96.8±1.0
HF-PIM [20] 95.2±0.7 89.7±1.4 96.1±0.5 97.9±0.2

DeepCaps with meta-learning 89.4±0.9 77.1±1.2 90.6±1.0 94.0±0.3
DM-CEEM (Proposed method) 97.8±0.4 92.9±0.8 97.2±0.6 98.7±0.3

It is noteworthy that the baseline alone achieved Rank-1 recognition accuracy of 90.6%

and Rank-5 recognition accuracy of 94% on the identification task. As shown in Table

II, by replacing the Capsule network with RB-Capsule network and adding the Soft-gate

warping-block, our method significantly improves the performance on IJA-B dataset. We

observed improvement of +6.6% (from 90.6% to 97.2%) and +4.7% (from 94% to 98.7%) on

Rank-1 accuracy and Rank-5 accuracy on the identification task, respectively. Compared

with the best state-of-the-art method [20], the proposed model improves the face verification

accuracy (TAR@FAR=0.001) and Rank-1 match rates by 2.6% (from 95.2% to 97.8%) and

1.1% (from 96.1% to 97.2%), respectively, which proves once again that our method has

significant advantages.
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Further Discussions of Equivariance Embedding of Faces

Head rotation is the most visible property of an entity and one of the easiest operations to

a face. To recognize the face image with random rotations, the proposed DM-CEEM learns

the equivariant embedding taking rotation as the most significant instantiation parameter.

Since the equivariant representations are nonlinear (after squashing), we expect to find the

cosine similarity, or equivalently, inner product of vectors of these representations after

normalization. An important observation is that,

(DM − CEEM(rot(B, d)), DM − CEEM(A))

≈ (DM − CEEM(rot(A, d)), DM − CEEM(B))
(5.23)

Figure 5.11: Face image with head rotation iteratively.

Where A, B are two face images, d defines the degree of head rotation. This

suggests that rotation indeed dominates the embedding space. We further compare
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(DM −CEEM(rot(A, d)), DM −CEEM(A)) with (Capsule(rot(A, d)), Capsule(A)) and

(CNN(rot(A, d)), CNN(A)) when degree d varies. As illustrate in Figure 5.11, we find

that for DM-CEEM, the inner product is still high when d > 60, for Capsule, the inner

product decrease as d increases when d < 90. However, the curve is more complex with

the change of d and the inner product is smaller than 0.5 when d > 30.

5.3.8 Conclusion

This paper has proposed a deep meta Capsule network-based Equivariant Embedding

Model (DM-CEEM) to improve the performance of pose-robust face recognition. Different

with the existing popular methods, we address the problem of learning an equivariant

embedding for pose variations in a unified end-to-end deep network. In addition, we first

propose to consider the target of single overall face recognition as multiple sub-tasks that

satisfy a certain unknown probability, and randomly sample the support and query sets in

each sub-task in one episode. Specifically, DM-CEEM combines the advantages of Capsule

network and achieves the desired transformation in deep feature space in the framework of

meta-learning. Through a new version of a capsule network called RB-Capsule network, a

pose vector and corresponding residuals are generated to represent the different internal

properties. We also introduced a soft-gate warping-block to adaptively control the amount

of residuals. Thus, the DM-CEEM architecture makes it easy to handle profile faces and

acquires the equivariance. Our experimental results indicate that the proposed methods

significantly outperforms state-of-the-arts methods on the CFP and IJB-A datasets.
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Chapter 6

Attentive Prototype Few-shot

Classification with Capsule

Network-based Embedding

Representation learninghas shown its effectiveness in many tasks of Chapter 2-5, including

traffic scene recognition, vehicle re-ID and face recognition in uncontrolled environment.

Previous works have proposed several techniques by using GANs for unsupervised repre-

sentation learning and adopting the deep models (Capsule network and CNNs) for learning

deep feature representation. However, most of these representation learning models need

large amounts of data and many iterations to train their large number of parameters. When

the training samples are scarce, it becomes challenging to learn to recognize new concepts

due to the overfitting problem. In this chapter, we consider learning representation in

the setting in which we have to recognize novel visual categories from very few labelled

examples. The availability of only one or very few examples challenges the standard ‘fine-

tuning’ practice in deep learning. Specifically, we focus on the setting where there exists

a good common representation between source and target. If the learned representation

is good enough, it is possible that a few samples are sufficient for learning the target the

target task, which can be much smaller than the number of samples required to learn the

target task from scratch. Besides, the proposed technique in this chapter is not limited to

few-shot classification and is extensible to other tasks of Chapter 2-5 as well.
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6.1 Introduction

Deep learning has been greatly advanced in recent years, with many successful applications

in image processing, speech processing, natural language processing and other fields.

However, the successes usually rely on the condition to access a large dataset for training.

If the amount of training data is not large enough, the deep neural network would not

be sufficiently trained. Consequently, it is significant to develop deep learning for image

recognition in the case of a small number of samples, and enhance the adaptability of deep

learning models in different problem domains.

Few-shot classification is one of the most promising research areas targeting deep

learning models for various tasks with a very small amount of training dataset [183], [199],

[206], [226], [236], [254], i.e., classifying unseen data instances (query examples) into a set

of new categories, given just a small number of labeled instances in each class (support

examples). The common scenario is a support set with only 1∼10 labeled examples per

class. As a stark contrast, general classification problems with deep learning models [127],

[239] often require thousands of examples per class. On the other hand, classes for training

and testing sets are from two exclusive sets in few-shot classification, while in traditional

classification problems they are the same. A key challenge, in few-shot classification, is to

make best use of the limited data available in the support set in order to find the right

generalizations as required by the task.

Few-shot classification is often elaborated as a meta-learning problem, with an emphasis

on learning prior knowledge shared across a distribution of tasks [170], [226], [254]. There

are two sub-tasks for meta-learning: an embedding that maps the input into a feature space

and a base learner that maps the feature space to task variables. As a simple, efficient

and the most popularly used few-shot classification algorithm, the prototypical network

[226] tries to solve the problem by learning the metric space to perform classification. A

query point (new point) is classified based on the distance between the created prototypical

representation of each class and the query point. While the approach is extensively applied,

there are a number of limitations that we’d like to address and seek better solutions.

Firstly, the prototypical representations [226], [254], generated by deep Convolutional

Neural Networks, cannot account for the spatial relations between the parts of the image

and are too sensitive to orientation. Secondly, a prototypical network [226] divides the

output metric space into disjoint polygons where the nearest neighbor of any point inside

a polygon is the pivot of the polygon. This is too rough to reflect various noise effects in
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the data, thus compromising the discrimination and expressiveness of the prototype. It

has been well-known that the performance of such a simple distance-based classification is

severely influenced by the existing outliers, especially in the situations of small training

sample size [68].

From the aforementioned discussion, we intend to improve the prototype network by

proposing a capsule network [208] based embedding model and reconstruction-based proto-

typical learning within the framework of meta-learning. There are two main components

in the proposed scheme: a capsule network-based embedding module which create feature

representations, and an improved non-parametric classification scheme with an attentive

prototype for each class in the support set, which is obtained by attentive aggregation over

the representations of its support instances, where the weights are calculated using the

reconstruction error for the query instance.

The training of the proposed network is based on the metric learning algorithm with

an improved triplet-like loss, which generalizes the triplet network [215] to allow joint

comparison with K negative prototypes in each mini-batch. This makes the feature

embedding learning process more tally with the few-shot classification problem. We further

propose a semi-hard mining technique to sample informative hard triplets, thus speeding

up the convergence and stabilize the training procedure.

In summary, we proposed a new embedding approach for few-shot classification based

on a capsule network, which features the capability to encode the part-whole relationships

between various visual entities. An improved routing procedure using the DeepCaps

mechanism [195] is designed to implement the embedding. With a class-specific output

capsule, the proposed network can better preserve the semantic feature representation,

and reduce the disturbances from irrelevant noisy information. The proposed attentive

prototype scheme is query-dependent, rather than just averaging the feature points of a

class for the prototype as in the vanilla prototype network, which means all of the feature

points from the support set are attentively weighted in advance, and then the weighting

values completely depend on the affinity relations between two feature points from the

support set and the query set. By using reconstruction as an efficient expression of the

affinity relation, the training points near the query feature point acquire more attention in

the calculation of the weighting values.

The proposed approach has been experimentally evaluated on few-shot image classifica-

tion tasks using three benchmark datasets, i.e. the miniImageNet, tieredImageNet and

Fewshot-CIFAR100 datasets. The empirical results verify the superiority of our method
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over the state-of-the-art approaches. The main contributions of our work are two-fold:

• We put forward a new few-shot classification approach with a capsule-based model,

which combines a 3D convolution based on the dynamic routing procedure to obtain

a semantic feature representation while preserving the spatial information between

visual entities.

• We propose a novel attentive prototype concept to take account of all the instances

in a given support class, with each instance being weighted by the reconstruction

errors between the query and prototype candidates from the support set. The

attentive prototype is robust to outliers by design and also allows the performance

to be improved by refraining from making predictions in the absence of sufficient

confidence.

6.2 Related work

6.2.1 Few-shot Classification

Few-shot classification aims to classify novel visual classes when very few labeled samples

are available [59], [60]. Current methods usually tackle the challenge using meta-learning

approaches or metric-learning approaches, with the representative works elaborated below.

Metric learning methods aim to learn a task-invariant metric, which provide an embed-

ding space for learning from few-shot examples. Vinyals et al. [254] introduced the concept

of episode training in few-shot classification, where metric learning-based approaches learn

a distance metric between a test example and the training examples. Prototypical networks

[226] learn a metric space in which classification can be performed by computing distances

to prototype representations of each class. The learned embedding model maps the images

of the same class closer to each other while different classes are spaced far away. The

mean of the embedded support samples are utilized as the prototype to represent the class.

The work in [141] goes beyond this by incorporating the context of the entire support set

available by looking between the classes and identifying task-relevant features.

There are also interesting works that explore different metrics for the embedding

space to provide more complex comparisons between support and query features. For

example, the relation module proposed in [236] calculates the relation score between query

images to identify unlabeled images. Kim et al. [117] proposed an edge-labeling Graph
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Neural Network (EGNN) for few-shot classification. Metric-based task-specific feature

representation learning has also been presented in many related works. Our work is a

further exploration of the prototype based approaches [226], [236], aiming to enhance the

performance of learning an embedding space by encoding the spatial relationship between

features. Then the embedding space generates attentive prototype representations in a

query-dependent scheme.

6.2.2 Capsule Networks

The capsule network [96] is a new type of neural network architecture proposed by Geoffrey

Hinton, with the main motivation to address some of the shortcomings of CNNs. For

example, the pooling layers of CNNs lose the location information of relevant features, one

of the so-called instantiation parameters that characterize the object. Other instanced

parameters include scale and rotation, which are also poorly represented in CNNs. Capsule

network handles these instantiation parameters explicitly by representing an object or a

part of an object. More specifically, a capsule network replaces the mechanisms of the

convolution kernel in CNNs by implementing a group of neurons to encode the spatial

information and the probability of the existence of objects. The length of the capsule

vector is the probability of the features in the image, and the orientation of the vector will

represent its instantiation information.

Sabour et al. [208] first proposed a dynamic routing algorithm for capsule networks

in 2017 for the bottom-up feature integration, the essence of which is the realization of a

clustering algorithm for the information transmission in the model. In [208], a Gaussian

mixture model (GMM) was integrated into the feature integration process to adjust

network parameters through EM routing. Since the seminal works [96], [208], a number of

approaches have been proposed to implement and improve the capsule architecture [124],

[140], [195], [294].

Many applications have been attempted by applying capsule networks, for example,

intent detection [266], text classification [190] and computer vision [288], [289]. A sparse,

unsupervised capsules network [197] was proposed showing that the network generalizes

better than supervised masking, while potentially enabling deeper capsule networks. Ra-

jasegaran et al. [195] proposed a deep capsule network architecture called DeepCaps that

adapts the original routing algorithm for 3D convolutions and increases its performance on

more complex datasets.
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6.3 Method

6.3.1 Problem Definition: Few-shot Classification

Few-shot classification is to recognize novel categories with only one or few labeled examples

by transferring visual patterns obtained from base categories to describe the novel categories.

The problem is usually formulated with three datasets: a training set Dtrain, a support set

Dsupport and a query set Dquery. The categories in Dtrain are defined as base categories

Cbase. The categories in Dsupport and Dtest are novel categories which are exclusive with

the training set Dtrain. If the support set contains M categories and each category has K

image examples, this few-shot classification problem is defined as M -way K-shot learning.

We follow the practice of episodic training in [254] which is the most popular and effective

meta learning methodology [226], [236].

6.3.2 Approach Details

In this section, we first revisit the DeepCaps network [195], which is designed for more

complex image datasets. We then extend it to the scenario of few-shot classification and

describe the proposed algorithm in detail.

DeepCaps Revisit

DeepCaps is a deep capsule network architecture proposed in [195] to improve the perfor-

mance of the capsule networks for more complex image datasets. It extends the dynamic

routing algorithm in [208] to stacked multiple layers, which essentially uses a 3D convo-

lution to learn the spatial information between the capsules. The model consists of four

main modules: skip connected CapsCells, 3D convolutional CapsCells, a fully-connected

capsule layer and a decoder network. The skip-connected CapsCells have three ConvCaps

layers, the first layer output is convolved and skip-connected to the last layer output. The

motivation behind skipping connections is to borrow the idea from residual networks to

sustain a sound gradient flow in a deep model. The element-wise layer is used to combine

the outputs of the two capsule layers after skipping the connection.

DeepCaps has a unit with a ConvCaps3D layer, in which the number of route iterations

is kept at 3. Then, before dynamic routing, the output of ConvCaps is flattened and

connected with the output of the capsule, which is then followed by 3D routing (in CapsCell

3). Intuitively, this step helps to extend the model to a wide range of different datasets.
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For example, for a dataset composed of images with less rich information, such as MNIST,

the low-level capsule from cell 1 or cell 2 is sufficient, while for a more complex dataset, we

need the deeper 3D ConvCaps to capture rich information content. Once all capsules are

collected and connected, they are routed to the class capsule through the fully-connected

capsule layer.

Figure 6.1: Framework of the proposed method for few-shot classification. We perform
joint end-to-end training of the Embedding Module (modified DeepCaps) together with
the Prototypical Learning via an improved triplet-like loss from the training dataset. The
well-learned embedding features are used to compute the distances among the query images
and the attentive prototype generated from the support set. The final classification is
performed by calculating the posterior probability for the query instance.

Network Architecture

As explained in the Introduction, our proposed model has two parts: (1) a modified

DeepCaps network with improved triplet-like loss that learns the deep embedding space,

and (2) a non-parameter classification scheme that produces a prototype vector for each

class candidate, which is derived from the attentive aggregation over the representations of

its support instances, where the weights are calculated using the reconstruction errors for

the query instance from respective support instances in the embedding space. The final

classification is performed by calculating the posterior probability for the query instance

based on the distances between the embedding vectors of the query and the attentive

prototype. Figure 6.1 schematically illustrates an overview of our approach to few-shot
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image classification. Each of the parts is described in detail below.

Embedding module. We follow the practice of episodic training in [254] which is the

most popular and effective meta learning methodology [226], [236]. We construct support

set S and query set Q from Dtrain in each episode to train the model.

S = {s1, s2, .., sK} ,

Q = {q1, q2, ..., qN} ,
(6.1)

where K and N represent the number of samples in the support set and query set for

each class, respectively. As shown in Figure 6.2, we first feed the samples S and Q into

the convolution layer and CapsCells, then the collected capsules are routed to the class

capsules after the Flat Caps layer. Here, the decision making happens via L2 and the input

image is encoded into the final capsule vector. The length of the capsule’s output vector

represents the probability that the object represented by the capsule exists in the current

input. We assume the class capsules as P ∈ Y b×d which consists of the activity vectors for

all classes, where b and d represents the number of classes in the final class capsule and

capsule dimension, respectively. Then, we only feed the activity vector of predicted class

Pm ∈ Y 1×d into the final embedding space in our setting, where m = argmaxi(||Pi||22).
The embedding space acts as a better regularizer for the capsule networks, since it is

forced to learn the activity vectors jointly within a constrained Y d space. The function

of margin loss used in DeepCaps enhances the class probability of the true class, while

suppressing the class probabilities of the other classes. In this paper, we propose the

improved triplet-like loss based on an attentive prototype to train the embedding module

and learn more discriminative features.

Attentive prototype. The prototypical network in [226] computes a D dimensional

feature representation pi ∈ RD, or prototype, of each class through an embedding function

fφ : RD → RM with learnable parameters φ. Each prototype is the mean vector of the

embedded support points belonging to its class:

pi =
1

|si|
∑

(xi,yi)∈si

fφ(xi) (6.2)

where each xi ∈ si is the D-dimensional feature vector of an example from class i. Given a

distance function d : RD × RD → [0,+∞), prototypical networks produce a distribution

over classes for a query point x based on a softmax over distances to the prototypes in the

132



Chapter 6. Attentive Prototype Few-shot Classification with Capsule Network-based
Embedding 133

Figure 6.2: The architecture of the embedding module in which obtains only the activity
vectors of the predicted class.

embedding space:

pφ(y = t|x) =
exp(−d(fφ(x), pt))∑
t′ exp(−d(fφ(x), pt′ ))

(6.3)

Learning proceeds by minimizing the negative log-probability J(φ) = −logpφ(y = t|x)

of the true class t via SGD. Most prototypical networks for few-shot classification use

some simple non-parametric classifiers, such as kNN. It is well known that non-parametric

classifiers are usually affected by existing outliers [67], which is particularly serious when the

number of samples is small, the scenario addressed by few-shot classification. A practical

and reliable classifier should be robust to outliers. Motivated by this observation, we

propose an improved algorithm based on the local mean classifier [171]. Given all prototype

instances of a class, we calculate their reconstruction errors for the query instance, which are

then used for the weighted average of prototype instances. The new prototype aggregates

attentive contributions from all of the instances. The reconstruction error between the

new prototype and the query instance not only provides a discrimination criteria for the

classes, but also serves as a reference for the reliability of the classification.

More specifically, with K support samples {xi1, xi2, ..., xiK} selected for class i, a

membership γij can be defined for a query instance q by employing normalized Gaussian
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functions with the samples in support sets, e.g.,

γij =
exp(

||q−xij ||2
2σ2

i
)∑K

l=1 exp(
||q−xil||2

2σ2
i

)
, j = 1, ...,K, i = 1, ...,M (6.4)

where xij are the j-th samples in class i, and σi is the width of the Gaussian defined for

class i, and we set the value σi relatively small (e.g, σi=0.1).

Then, for each class i, an attentive prototype pattern q̂i can be defined for a query

sample q

q̂i =

∑K
j=1 γijxij∑K
l=1 γij

, i = 1, ...,M (6.5)

Where γij is defined in Equation 6.4 and q̂i can be considered as the generalized support

samples from class i for the query instance q. Here we want to ensure that an image

qa (anchor) of a specific class in the query set is closer to the attentive prototype of the

positive class q̂p (positive) than it is to multiple q̂n (negative) attentive prototypes.

||qa − q̂p||22 + α < ||qa − q̂n||22,∀qa ∈ Q. (6.6)

f where α is a margin that is enforced between positive and negative pairs, Q is the query

set cardinality MN . The loss that is being minimized is then:

MN∑
m=1

[
||f(qam)− f(q̂pm))||22 − ||f(qam)− f(q̂nm)||22 + α

]
+

(6.7)

For image classification, a query image can be classified based on the comparison of

the errors between the reconstructed vectors and the presented image. That is, a query

image q is assigned to class m∗ if

m∗ = argmin
m

errm (6.8)

where errm = ||q − q̂m||,m = 1, ...,M .

Improved Triplet-like loss. In order to ensure fast convergence it is crucial to select

triplets that violate the triplet constraint in Equation 6.7. The traditional triplet loss

interacts with only one negative sample (and equivalently one negative class) for each

update in the network, while we actually need to compare the query image with multiple
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different classes in few-shot classification. Hence, the triplet loss may not be effective for

the feature embedding learning, particularly when we have several classes to handle in the

few-shot classification setting. Inspired by [6], [227], we generalize the traditional triplet loss

with E-negatives prototypes to allow simultaneous comparisons jointly with the E negative

prototypes instead of just one negative prototype, in one mini-batch. This extension makes

the feature comparison more effective and faithful to the few-shot classification procedure,

since in each update, the network can compare a sample with multiple negative classes.

In particular, we randomly choose the E negative prototypes q̂ne , e = {1, 2, ..., E} to

form into a triplet. Accordingly, the optimization objective evolves to:

L(qam, q̂
p
m, x̂

n
m) =

MN∑
m=1

1

E

E∑
e=1

[
||f(qam)− f(q̂pm))||22

−||f(qam)− f(q̂ne
m )||22 + α

]
+

(6.9)

For the sample qam in the query set, the optimization shall maximize the distance to the

negative prototype qnm to be larger than the distance to the positive prototypes qpm in the

feature space. For each anchor sample qam, we then learn the positive prototype qpm from

the support set of the same class as qam and further randomly select E other negative

prototypes whose classes are different from qam. Compared with the traditional triplet loss,

each forward update in our improved Triplet-like loss includes more inter-class variations,

thus making the learnt feature embedding more discriminative for samples from different

classes.

Mining hard triplets is an important part of metric learning with the triplet loss, as

otherwise training will soon stagnate [91]. This is because when the model begins to

converge, the embedding space learns how to correctly map the triples relatively quickly.

Thus most triples satisfying the margin will not contribute to the gradient in the learning

process. To speed up the convergence and stabilize the training procedure, we propose a

new hard-triplet mining strategy to sample more informative hard triplets in each episode.

Specifically, triplets will be randomly selected in each episode as described above, we then

check whether the sampled triplets satisfy the margin. The triplets that have already met

the margin will be removed and the network training will proceed with the remaining

triplets.
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6.4 Experiments

Extensive experiments have been conducted to evaluate and compare the proposed method

for few-shot classification using on three challenging few-shot classification benchmarks

datasets, miniImageNet [254], tieredImageNet [199] and Fewshot-CIFAR100 (FC100) [183].

All the experiments are implemented based on PyTorch and run with NVIDIA 2080ti

GPUs.

6.4.1 Datasets

miniImageNet is the most popular few-shot classification benchmark proposed by [254]

and derived from the original ILSVRC-12 dataset [205]. It contains 100 randomly sampled

different categories, each with 600 images of size 84 × 84 pixels. The tieredImageNet

[199] is a larger subset of ILSVRC-12 [205] with 608 classes and 779,165 images in total.

The classes in tieredImageNet are grouped into 34 categories corresponding to higher-level

nodes in the ImageNet hierarchy curated by humans [42]. Each hierarchical category

contains 10 to 20 classes, which are divided into 20 training (351 classes), 6 validation (97

classes) and 8 test (160 classes) categories. Fewshot-CIFAR100 (FC100) is based on

the popular object classification dataset CIFAR100 [126]. Oreshkin et al. [183] offer a

more challenging class split of CIFAR100 for few-shot classification. The FC100 further

groups the 100 classes into 20 superclasses. Thus the training set has 60 classes belonging

to 12 superclasses, the validation and test data consist of 20 classes each belonging to 5

superclasses each.

6.4.2 Implementation Details

Following the general few-shot classification experiment settings [226], [236], we conducted

5-way 5-shot and 5-way 1-shot classifications. The Adam optimizer is exploited with an

initial learning rate of 0.001. The total training episodes on miniImageNet, tieredImageNet

and FC100 are 600,000, 1,000,000 and 1,000,000, respectively. The learning rate is dropped

by 10% every 100,000 episodes or when the loss enters a plateau. The weight decay is set

to 0.0003. We report the mean accuracy (%) over 600 randomly generated episodes from

the test set.
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Few-shot classification method 5-Way 1-Shot 5-Way 5-Shot

Matching Networks [254] 43.56 ± 0.84 55.31±0.73
MAML [63] 48.70±1.84 63.11±0.92
Relation Net [236] 50.44±0.82 65.32±0.70
REPTILE [178] 49.97±0.32 65.99±0.58
Prototypical Net [226] 49.42±0.78 68.20±0.66
Predict Params [192] 59.60±0.41 73.74 ± 0.19
LwoF [75] 60.06±0.14 76.39 ± 0.11
TADAM [183] 58.50±0.30 76.70±0.30
EGNN [117] – 66.85
EGNN+Transduction [117] – 76.37
CTM [141] 62.05±0.55 78.63±0.06
wDAE-GNN [76] 62.96±0.15 78.85±0.10
MetaOptNet-SVM-trainval [136] 64.09±0.62 80.00±0.45
CTM, data augment [141] 64.12±0.82 80.51±0.13
Baseline 59.71±0.35 75.21±0.43
Ours 63.23±0.26 80.17±0.33
Ours, data augment 66.43±0.26 82.13±0.21

Table 6.1: Few-shot classification accuracies (%) on miniImageNet.

6.4.3 Results Evaluation

Comparison with the baseline model. Using the training/testing data split and

the procedure described in Section 6.3, the baseline in Table 6.1, Table 6.2 and Table

6.3 evaluate a model with modified DeepCaps, without the attentive prototype. The

accuracy is 75.21±0.43%, 78.41±0.34% and 59.8±1.0% and in the 5-way 5-shot setting

on miniImageNet, tieredImageNet and FC100 respectively. Our baseline results are on a

par with those reported in [236], [226]. As shown in Table 6.1, Table 6.2 and Table 6.3,

using the attentive prototype strategy in the model training with improved triplet-like

loss, our method significantly improves the accuracy on all three datasets. There are

obvious improvements of approximately +4.96% (from 75.21% to 80.17%), +4.83% (from

78.41% to 83.24%), +2.5% (from 57.3% to 59.8%) under the 5-way 5-shot setting for

miniImageNet, tieredImageNet and FC100, respectively. These results indicate that the

proposed approach is tolerant to large intra- and inter-class variations and produces marked

improvements over the baseline.

Comparison with the state-of-the-art methods. We also compare our method

with some state-of-the-art methods on miniImageNet, tieredImageNet in Table 6.1 and
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Few-shot classification method 5-Way 1-Shot 5-Way 5-Shot

MAML [63] 51.67±1.81 70.30±0.08
Meta-SGD [144], reported by [206] 62.95±0.03 79.34±0.06
LEO [206] 66.33±0.05 81.44±0.09
Relation Net [236] 54.48±0.93 71.32±0.78
Prototypical Net [226] 53.31±0.89 72.69±0.74
EGNN [117] – 70.98
EGNN+Transduction [117] – 80.15
CTM [141] 64.78±0.11 81.05±0.52
MetaOptNet-SVM-trainval [136] 65.81±0.74 81.75±0.53
CTM, data augmention [141] 68.41±0.39 84.28±1.73
Baseline 63.25±0.31 78.41±0.34
Ours 65.53±0.21 83.24±0.18
Ours, data augmention 69.87±0.32 86.35±0.41

Table 6.2: Few-shot classification accuracies (%) on tieredImageNet.

Table 6.2, respectively. On miniImageNet, we achieve a 5-way 1-shot accuracy

=63.23±0.26, 5-way 5-shot accuracy =80.17 ± 0.33% when using the proposed

method, which has a highly competitive performance compared with the state-of-the-art.

On tieredImageNet, we arrive at 5-way 1-shot accuracy = 65.53±0.21, 5-way 5-shot

accuracy =83.24 ± 0.18% which is also very competitive. The previous best result was

produced by introducing a Category Traversal Module [141] and data augmention that can

be inserted as a plug-and-play module into most metric-learning based few-shot learners.

We further investigate whether the data augmention could work on our model. By training

a version of our model with basic data augmentation, we obtain the improved results

5-way 5-shot accuracy = 82.13±0.21% on miniImageNet. On tieredImageNet, we

also observe a performance 5-way 5-shot accuracy = 86.35±0.41%.

For the FC100 dataset, our proposed method is superior to all the other methods [63],

[183], [233] in accuracy. The comparisons consistently confirm the competitiveness of the

proposed method on few-shot image classification. In terms of size and computational

cost, for the models trained on mini-ImageNet, the proposed model has only 7.22 million

parameters, while the ResNet-18 used in the existing SOTA approach has 33.16 million

parameters. We also tested both models’ inference time, ResNet-18 takes 3.65 ms for a 64 ×
64 ×3 image, while our model takes only 1.67 ms for a 64 × 64 ×3 image. In summary, our

proposed attentive prototype learning scheme improve over the previous methods, mainly
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Few-shot classification method 5-Way 1-Shot 5-Way 5-Shot 5-Way 10-Shot

MAML [63] 38.1±1.7 50.4±1.0 56.2±0.8
TADAM [183] 40.1±0.4 56.1±0.4 61.6±0.5
MTL [233] 45.1±1.8 57.6±0.9 63.4±0.8
Baseline 44.2±1.3 57.3±0.8 62.8±0.6
Ours 47.5±0.9 59.8±1.0 65.4±0.5

Table 6.3: Few-shot classification accuracies (%) on the FC100 dataset.

Few-shot classification method
miniImageNet tieredImageNet

5-Way 5 shot 10-Way 5 shot 5-Way 5-shot 10-Way 5-shot

Prototypical Net [226] 68.20 - 72.69 -
Ours (average mechanism) 76.32 58.41 80.31 62.17
Ours (attentive prototype) 80.17 63.12 83.24 66.33
Relation Net [236] 65.32 – 71.32 –
Relation Net [236]

80.91 64.34 83.98 67.86
(our implementation)

Table 6.4: Ablation study on the attentive prototype and embedding module.

due to the better embedding space provided by the capsule network and the attentive

prototyping scheme. The importance value is used as the weighting value for the support

set instances, which is completely dependent on the affinity relationship between the two

feature points from the support set and the query. The importance weighting values vary

exponentially, with larger value reflecting nearby pairs of feature points and a smaller value

for the distant pair. This conforms that the feature points from the support set that are

nearer to the query feature point should be given more attention.

Ablation study: To verify the effectiveness of components in the proposed method, we

conducted ablation experiments on the miniImageNet and tieredImageNet datasets. First,

to investigate the contribution of the designed attentive prototype method, we compare

the performance of the proposed method with vanilla prototypical networks [226]. Then,

we verify the effectiveness of our proposed feature embedding module by embedding it into

the metric-based algorithm Relation Net [236].Table 6.4 summarizes the performance of

the different variants of our method.

1)Attentive prototype: In vanilla prototypical networks [226], the prototypes are defined

as the averages the embed features of each class in the support set. Such a simple class-wise
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(a) 5-way 5-shot setting

(b) 10-way 5-shot setting

Figure 6.3: The t-SNE visualization [164] of the improved feature embeddings learnt by
our proposed approach..

feature takes all instances into consideration equally. Our attentive prototype scheme is

a better replacement. A variant of DeepCaps is applied with improved triplet-like loss

to learn the feature embedding instead of a shallow CNN network. To further verify the

effectiveness of our attentive prototype, we also compared the average-based prototypes

created from our embedding framework. The experimental results on miniImageNet

and tieredImageNet are summarized in Table 6.4. It can be observed that the attentive

prototype gains an approximately 3%-4% increase after replacing the average mechanism.

This shows that the attentive prototypes can be more ‘typical’ when compared to the

original average vectors by giving different weights for different instances.

2)Embedding module: The embedding is switched from four convolutional blocks in

Relation Net [236] to the modified DeepCaps model and the supervision loss is changed to

the improved triplet-like loss. Table 6.4 shows the results obtained by the improvements

over the Relation Net. We find that the improved Relation Net exceeds the original model

by approximately +10%. This shows the ability of the proposed capsule network-based

embedding network to improve the performance of the metric based method. Figure 6.3

visualizes the feature distribution using t-SNE [164] for the features computed in 5-way
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Few-shot classification method 5-Way 1-Shot 5-Way 5-Shot

Setting-1 59.71±0.35 75.21±0.43
Setting-2 61.76±0.12 78.45±0.23
Setting-3 63.23±0.26 80.17±0.33

Table 6.5: Few-shot classification accuracies (%) on miniImageNet.

5-shot setting and 10-way 5-shot setting. As can be clearly observed, the improved Relation

Net model has more compact and separable clusters, indicating that features are more

discriminative for the task. This is caused by the design of the embedding module.

3)Improved Triplet-like loss: To help analyze our model and show the benefit of

improved Triplet-like loss, we design several comparison methods as follows: Setting-1:

Baseline model (modified DeepCaps); Setting-2: Using the attentive prototype strategy in

the model training; Setting-3: Based on the Setting 2, we add the improved triplet-like

loss to make the feature comparison more effective. With the help of improved triplet-like

loss, we observed an improvement of +1.5% as shown in Table 6.5. Thus making the learnt

feature embedding more discriminative for samples from different classes.

6.5 Conclusion

In this paper, we proposed a new few-shot classification scheme aiming to improve the

metric learning-based prototypical network. Our proposed scheme has the following

novel characteristics: (1) a new embedding space created by a capsule network, which is

unique in its capability to encode the relative spatial relationship between features. The

network is trained with a novel triple-loss designed to learn the embedding space; (2) an

effective and robust non-parameter classification scheme, named attentive prototypes, to

replace the simple feature average for prototypes. The instances from the support set

are taken into account to generate prototypes, with their importance being calculated

by the reconstruction error for a given query. Experimental results showed that the

proposed method outperforms the other few-shot classification algorithms on all of the

miniImageNet, tieredImageNet and FC100 datasets. However, the proposed method in this

chapter merely consider instant pairwise query-support relationships but fail to explore

support-support relationships among the labelled support samples, let alone that among

the unlabeled ones. In the future, we will explicitly explore the relationships between
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each two samples and propose to propagate information from relevant samples for feature

embedding enhancement.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

A summary of the conclusions of this thesis is given below:

• In Chapter 1, we first give an overview of the research topics, followed by the

motivations and challenges in the research topics and then present the general

architecture of the thesis and summarise the main contributions of the thesis.

• The recent development of machine learning and its applications are introduced,

followed by a description of relevant deep learning theories and the recent development

of the representation learning. In Chapter 2, We also presents a comprehensive review

of the recent literatures of the related deep learning models.

• In Chapter 3, a deep multiple classifier fusion method based on granular computing is

proposed to create information granulation and multi-level of granularity. Especially,

the unified end-to-end deep network is built to integrate all algorithmic components,

which makes the training process efficient and effective. We collect a new traffic scene

dataset, named the ’WZ-traffic’. It consists of 6,035 labeled images which belong to

20 categories collected from both an image search engine as well as from personal

photographs. This method achieved the state-of-the-art results on two benchmark

datasets: WZ-traffic and FM2 dataset.

• In Chapter 4, we propose a semi-supervised learning system based on the Convolu-

tional Neural Network (CNN) and re-ranking strategy for Vehicle re-ID. Specifically,
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we adopt the structure of Generative Adversarial Network (GAN) to obtain more

vehicle images and enrich the training set, then a uniform label distribution will be

assigned to the unlabeled samples according to the Label Smoothing Regularization

for Outliers (LSRO), which regularizes the supervised learning model and improves

the performance of re-ID. To optimize the re-ID results, an improved re-ranking

method is exploited to optimize the initial rank list. Experimental results on publi-

cally available datasets, VeRi-776, VehicleID and VehicleReID, demonstrate that the

method significantly outperforms the state- of-the-art.

• In Chapter 4, a Generative Adversarial Network (GAN) was adopted to generate

unlabeled samples and enlarge the training set. A semi-supervised learning scheme

with the Convolutional Neural Networks (CNN) was proposed accordingly, which

assigns a uniform label distribution to the unlabeled images to regularize the su-

pervised model and improve the performance of the vehicle re-ID system. Besides,

an improved re-ranking method based on Jaccard distance and k-reciprocal nearest

neighbors is proposed to optimize the initial rank list. Extensive experiments over

the benchmark datasets VeRi-776, VehicleID and VehicleReID have demonstrated

that the proposed method outperforms the state-of-the-art approaches for vehicle

re-ID.

• In Chapter 5, we address the face recognition problem under different variations, in-

cluding disguise accessories, illumination and pose. For the disguised face recognition,

we propose a novel Unsupervised Domain Adaptation Model (UDAM), which jointly

transfer the rich knowledge from the source domain and discriminative representation

end-to-end that mutually boost each other to achieve the disguised face recognition

of target domain. For the near infrared face recognition, we first propose to apply

the image-image translation method to enhance the performance of near-infrared

facial image recognition. Using this approach, we reduce the intra-personal difference

caused by the completely different illumination. Therefore, we can achieve much

better recognition results by applying the existing pre-trained VLD deep neural

network face recognition model. For the pose-robust face recognition (PRFR), we

aim to learn face representations equivariant to pose variations and propose a novel

meta learning framework. It is desirable that if the input image is transformed,

e.g., by an out-of-plane rotation or pose variation, the learnt model should make

predictions in a co-transformational way. Using this approach, we can actually map
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the features of the input image with arbitrary poses to the front space through the

mapping function. With the help of meta learning, it helps the model to adapt to new

tasks efficiently via extracting useful transferable knowledge from a set of auxiliary

tasks.

• In Chapter 6, we further work on the well-known few-shot learning method known

as prototypical networks for better performance. Our contributions include (1) a

new embedding structure to encode relative spatial relationships between features by

applying capsule network; (2) a new triplet loss designated to enhance the semantic

feature embedding where similar samples are close to each other while dissimilar

samples are farther apart; and (3) an effective nonparametric classifier termed

attentive prototypes in place of the simple prototypes in current few-shot learning.

The proposed attentive prototype aggregates all of the instances in a support class

which are weighted by their importance defined by the reconstruction error for a

given query. The reconstruction error allows the classification posterior probability

to be estimated, which corresponds to the classification confidence score. Extensive

experiments on three benchmark datasets demonstrate that our approach is effective

for the few-shot classification task.

• This thesis comprehensively studies the recent development of representation learning

in computer vision and deep learning. In four application cases: the traffic scene

recognition, vehicle re-identification, face recognition under uncontrolled environments

and few-shot learning, the representation learning methods have shown powerful

capability of extracting useful information. Also, several related research topics have

been discussed, including the granular computing, semi-supervised learning, domain

adaptation and meta-learning.

7.2 Future work

• Video analysis. The applications of computer vision in this thesis center on images,

with less focused on sequences of images (i.e. video frames). We will garner more

attention on video-based tasks in the future. Video allows for deeper situational

understanding, because sequences of images provide new information about action.

Future works include the following tasks: 1) Abnormal Event Detection. Pedestrian

abnormal event detection is an active research area to improve traffic safety for
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intelligent transportation systems (ITS). We will propose an efficient method to

automatically detect and track far-away pedestrians in traffic video to determine the

abnormal behavior events. 2) Behavior Prediction. We will propose a representation

learning method to track an obstacle through a sequence of images and understand

its behavior to predict the next move.

• Self-supervised representation learning. The future research will study the

self-supervised learning method that focuses on beneficial properties of representation

and their abilities in generalizing to real-world tasks. Self-supervised representation

learning is a promising subclass of unsupervised learning, which provides an opportu-

nity for better utilizing unlabeled data by setting the learning objectives to learn

from the internal cues. The feature representation obtained by self-supervision can

be used in downstream tasks such as classification, object detection, segmentation,

and anomaly detection.

• Representation learning with 3D Data. In this thesis, we solved many 2D

computer vision tasks and achieved promising performance. The increasing abundance

of 3D data encouraged us to exploit this richer content for addressing several computer

vision problems related to understanding 3D scenes in the future. Indeed, the

possibility of using the additionally provided attributes of depth and full 3D geometry

represents an important advantage that can significantly boost the performance of

several applications.
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