
Portland State University Portland State University

PDXScholar PDXScholar

Electrical and Computer Engineering Faculty
Publications and Presentations Electrical and Computer Engineering

7-23-2019

Approximate Pattern Matching using Hierarchical Approximate Pattern Matching using Hierarchical

Graph Construction and Sparse Distributed Graph Construction and Sparse Distributed

Representation Representation

Aakanksha Mathuria
Portland State University, aakanksha.mathuria@gmail.com

Dan Hammerstrom
Portland State University

Follow this and additional works at: https://pdxscholar.library.pdx.edu/ece_fac

 Part of the Engineering Commons

Let us know how access to this document benefits you.

Citation Details Citation Details
"Approximate Pattern Matching using Hierarchical Graph Construction and Sparse Distributed
Representation," A. Mathuria, D.W. Hammerstrom, International Conference on Neuromorphic Systems,
Knoxville, TN, July 23-5, 2019

This Conference Proceeding is brought to you for free and open access. It has been accepted for inclusion in
Electrical and Computer Engineering Faculty Publications and Presentations by an authorized administrator of
PDXScholar. For more information, please contact pdxscholar@pdx.edu.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by PDXScholar

https://core.ac.uk/display/372711808?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/ece_fac
https://pdxscholar.library.pdx.edu/ece_fac
https://pdxscholar.library.pdx.edu/ece
https://pdxscholar.library.pdx.edu/ece_fac?utm_source=pdxscholar.library.pdx.edu%2Fece_fac%2F610&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=pdxscholar.library.pdx.edu%2Fece_fac%2F610&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/ece_fac/610
mailto:pdxscholar@pdx.edu

Approximate Pattern Matching using Hierarchical Graph Construction and
Sparse Distributed Representation

Aakanksha Mathuria
 Electrical and Computer Engineering

 Portland State University
 USA

 aakan@pdx.edu

Dan W. Hammerstrom
 Electrical and Computer Engineering

 Portland State University
 USA

 dwh@pdx.edu

ABSTRACT
With recent developments in deep networks, there have been
significant advances in visual object detection and
recognition. However, some of these networks are still easily
fooled/hacked and have shown “bag of features” failures. Some of
this is due to the fact that even deep networks make only marginal
use of the complex structure that exists in real-world images, even
after training on huge numbers of images. Biology appears to take
advantage of such a structure, but how?
In our research, we are studying approaches for robust pattern
matching using still, 2D Blocks World images based on graphical
representations of the various components of an image. Such higher
order information represents the “structure” of the visual object.
Here we discuss how the structural information of an image can be
captured in a Sparse Distributed Representation (SDR) loosely
based on cortical circuits.
We apply probabilistic graph isomorphism and subgraph
isomorphism to our 2D Blocks World images and achieve O (1)
and O (nk) complexity for an approximate match. The optimal
match is an NP-Hard problem. The image labeled graph is created
using OpenCV to find the object contours and objects' labels and a
fixed radius nearest neighbor algorithm to build the edges between
the objects. Pattern matching is done using the properties of SDRs.
Our research shows the promise of applying graph-based
neuromorphic techniques for pattern matching of images based on
such structure.
KEYWORDS
Sparse Distributed Representation, Hierarchical Graph,
Approximate Matching, Graph Isomorphism

1. Introduction
With the recent advances in deep networks, there has been
significant progress in visual object detection and recognition.
However, some of these networks have shown “bag of features”
failures [48] similar to the other traditional object recognition
techniques such as GIST [42], HOG (histogram of oriented
gradients) [43], SIFT (Scale-invariant feature transform) [39, 40]
and special envelope [41]. Deep networks make only marginal use
of the complex structure that exists in real-world images, even after

training on large numbers of images. None of these techniques
actually captures the spatial relationships of the low level or high-
level features, which biological networks appear to do.
Efficient graph representations capture the higher order
information content of the objects and provide algorithmic benefits
when recognizing complex images [33, 35]. Such higher order
information represents the “structure” of the visual objects. Also,
an important difference of the work described here is that we are
using a non-standard representation of the graphical data based on
sparse distributed representations.
Neuromorphic techniques such as Sparse distributed
representations (SDR) of data, shapes, and graphs can play an
important role in complex image processing. SDRs leverage the
unique properties of the objects to provide algorithmic benefits.
The use of sparse representations of data is motivated by a) the
abundance of visual data b) the abundance of features in real life
images and c) the ability of sparse representations to provide speed
up via unique properties (e.g. union) of the representations. An
SDR encodes any type of data into a binary vector which consists
mostly 0’s with a few 1’s. SDR is very memory efficient, as only
a few bits would have to be stored in the memory as the indices of
the active bits. SDRs are the result of various research efforts into
understanding the operation of cortical circuits [1, 2].
In the research described here, we are exploring new ways to
represent images as hierarchical graphs to preserve the connectivity
information among the objects and perform pattern matching using
graph isomorphism. The graph of an image uses objects as the
nodes. It contains the spatial information (connectedness,
adjacency) of the objects in the image. The connections can be
described as the Euclidean distance between the nodes. We
formulate SDRs for all the nodes in the graph using their attribute
information such as the number of edges, their sizes, connectivity
and attributes of their neighbors. Then we use Euclidean distance
criteria to represent the hierarchy in the graph, which can be used
for efficient pattern matching.
An example of a hierarchical graph construction for an image
containing multiple individuals can be used with three levels. For
the first level, we can consider small body parts such as nose,
mouth, eyes, etc. as nodes for a graph representing the face of a
person. Each of these small body parts can be represented by SDRs

with their own attributes. Similarly, graphs of other large body parts
such as hands, legs, etc. can be defined. With the properties of
SDRs such as union, one can define SDRs for the entire graph, in
this case of large body parts such as hands, legs, and face, etc. As a
second level hierarchy, the graph can be constructed of these large
body parts as nodes and connectivity between them and the graph
representing an entire individual. Again, SDR of this entire graph
can be obtained by performing union over the SDRs of the
individual nodes. To construct the graph of the entire image with
different individuals, the SDRs of each person can be considered as
a node of the graph. This type of representation promises an
efficient pattern-matching algorithm when implemented using
graph isomorphism.
To demonstrate these ideas assume simple objects, e.g., rectangles
and triangles, from a 2D blocks world. These are recognized using
traditional algorithms (OpenCV). We then create graphs of these
objects to allow the efficient recognition of more complex objects,
built from the simple objects. Figure 1 and Figure 2 show how real-
world objects can be broken into simple objects that can be easily
and effectively represented using SDRs.

Figure 1: Simple Blocks-World image

Figure 2: Complex Blocks-World image (source:

www.pocketgamer.com)

In this work, we use probabilistic graph isomorphism and subgraph
isomorphism to perform efficient approximate pattern matching in
images. The optimal match is an NP-hard problem. However, with
the help of SDR properties, we can perform graph matching in O(1)
time and further choose k nodes subgraph out of big graph of n
nodes in O(nk) and do the matching in O(1). By combining the
SDRs and graphs, we can perform pattern matching, which
leverages structural information in an efficient manner.

1.1 Our Contributions
• We create a hierarchical graph representation to capture the

structural information of an image.
• We implement the Sparse Distributed Representations for the

hierarchies of a graph, which leverages algorithmic

parallelism and makes computation faster and more power
efficient.

• We demonstrate the approximate graph matching in O(1) and
by choosing k nodes’ subgraph out of n nodes’ big graph in
O(nk), subgraph matching in O(1) instead of solving in non-
polynomial times with the help of SDR properties.

Our method allows us to capture structural information in images
for doing pattern matching and uses very little data.

2. Related work

Object Detection is a very important part of any computer vision
application. There are a number of applications from face detection
and pedestrian detection to image and video retrieval. Object
detection and recognition is an integral part of many common
applications such as video surveillance, image captioning, video
summarization, etc. Many techniques are used to detect the objects
in an image. Some techniques use feature extractors such as SIFT
[38, 39] and HOG [41]. Some use bounding boxes [12] and Contour
detection. Deep learning techniques are starting to solve these
problems but they are easily fooled and do not capture the structure
of the image. 48 (2015) show how it is possible to produce images
which are not recognizable to the human eye but DNNs classify as
familiar objects.
Graphs are useful when one wants to represent the connectivity or
structure of objects. Graphical approaches have been studied for
many years, and yet there are still a number of unsolved problems.
Applications such as document processing, scene processing,
image retrieval [6, 11, 13, and 16] and video summarization [45]
could benefit from such connectivity information. However, due to
the complexity of working with graphs, traditional Computer
Vision techniques often use a ‘Bag of features’ [43, 46] approach
and so are missing information on object structure. For humans,
features being in the wrong position degrade recognition accuracy.
Imagine two images of bicycles, one being with the right position
and orientations and other being with only the right components
and wrong locations. When we classify this image using a ‘bag of
features’ approach both images will be classified as bicycles, but
the second image is not the correct form of a cycle. Being able to
utilize such structure or connectivity information will be of
significant value in image understanding. One approach to
representing structure in deep networks is the development of
Capsules [54] by Geoffrey Hinton and his group. Capsules take
advantage of the fact that spatial relationships can be modelled by
matrix multiplies.
We know that biology makes extensive use of connectivity and
other kinds of structures when doing object recognition. In the work
described here, we are applying sparse distributed representations
to the problem of graph isomorphism which is required if graphical
information is to become a part of the pattern recognition process.
Sparse distributed representation (SDR) is a technique that has
been proposed as one technique that is used by cortical circuits to
represent data. The best description of this technique can be found
in an excellent paper by Jeff Hawkins and his team at Numenta [1,
36]. They have made extensive use of SDRs and are continually
improving their techniques.

Hierarchical temporal memory [1, 34] is a hierarchical,
unsupervised technique, which makes extensive use of SDRs for
processing the input data from a variety of sources [33, 36]. SDRs
are now being used in a number of commercial applications. One
example is an application developed by cortical.io, [1, 2 and, 3],
which performs natural language processing using the Numenta
HTM algorithm.

3. Our Approach

Graphical representations of object structure have significant
potential in helping to recognize complex objects in still and
moving images. However, to use graphs effectively requires the
ability to efficiently capture the graph structure from recognized
features. This is a problem that has been studied and many
techniques have been developed. As mentioned earlier, the
OpenCV library has a number of state of the art feature extractors.
The second problem, finding isomorphism in graphs and
subgraphs, is significantly more computationally intensive. It is
hypothesized that biology uses a number of computational
techniques, but the most intriguing is Sparse Distributed
Representation.
In this section, we describe the image processing pipeline. Figure 3
shows the data flow pattern matching using the combination of
graphs and SDRs. In section 3.1, we describe the process of object
detection and the features extracted using OpenCV. In section 3.2,
we describe how to form a hierarchical graph from the detected
objects as nodes with a fixed-radius nearest neighbors algorithm.
Then in section 3.3, we discuss the possibility of representing
graphs in SDRs and leveraging the massive parallelism, for
example in massively parallel associative memories, that is enabled
by SDRs. We present two algorithms using SDRs for exact and
approximate matching in section 3.4. Finally, we show a specific
example of applying SDRs to the simple 2D Blocks World images
such as triangles and rectangles, which can be combined in
different ways to form complex images.

3.1 Object detection
Object detection in still or moving images is a complex task. Given
an image or a region of interest (ROI), the goal of object detection
is to find the locations of objects in the image and to classify them.
Object detection is a widely studied problem for which numerous
methods have been proposed [11, 22]. Object detection has many

applications such as facial recognition, pedestrian detection, etc.
[21, 23].
In this paper, we are using OpenCV to locate the objects in the
image. Contours, instead of bounding boxes, are used to find
objects and are generated using OpenCV’s findContours()
function, they are defined by a simple, joined curve of continuous
data points along the object boundary. Finding contours works best
when there is a reasonable contrast between the objects and the
background. It also helps if the background is not cluttered and the
objects do not partially occlude one another, though approximate

SDR matching does handle partial occlusion.
Figure 4 shows the detected contours of the coins in green and each
contour is an object. With the help of OpenCV contours, we can
also determine other characteristics of the objects such as moments,
area, perimeter, and bounding rectangles. For our 2D blocks world
application, we compute the object attributes from contour features
such as centers, height, width, angle with the x and y-axis, etc.

Figure 4: Contours detected for the objects in an image

3.2 Hierarchical Graph Construction

Traditional computer vision techniques do not capture the locality
and connectivity of the objects [30]. Traditional (pre-Deep
Network) systems find complex information associated with each
feature, using feature detection algorithms such as SIFT. Then the
discovered features are matched somewhat independently to a set
of features associated with each object, which has been termed a
“bag of features” approach. And even if the arrangement or
orientations are distorted in an image besides just considering the
presence of some certain objects, the methods give unsatisfactory
results [22, 26, 28, and, 29].

Figure 3: Data Flow Pipeline

In this paper, we are representing the images using graphs so that
we get better accuracy with simple or complex images. We are
constructing a hierarchical graph for an image with the help of a
fixed-radius nearest neighbors algorithm. It is clear that biological
vision, at least in mammals, takes advantage of the geometric
relationships of the features with each other, which we refer to as
the “structure” of the object. It appears that visual cortex at the
lowest level of the processing hierarchy stores information about
tiny sections of the visual field such as edges and corners [1]. These
low-level patterns are recombined at higher levels for more
complex components.
In this paper, we assume that all the detected contours in the image
are parts of much more complex objects. This assumes a simple
structural hierarchy. The number of levels can vary based on the
application. In our 2D blocks world, we are only assuming three
levels of hierarchy. The first level of the graph is the OpenCV
detected parts, which are treated as nodes, the second level’s nodes
are the objects made of these parts based on their proximity with
each other and the third level is the image itself.
The first level of the graph (showing the spatial relationships
between components) is constructed using a fixed-radius nearest
neighbors algorithm applied to the parts’ centers. We calculate the
connected components of the graph. In graph theory, a connected
component of an undirected graph is a subgraph in which any
two vertices are connected to each other by more than one path,
and which is connected to no additional vertices in the super-graph
[53]. Figure 5 shows an example of a graph with three connected
components. These connected components are the objects present
in the image. Therefore, the number of connected components is
equal to the number of objects present in the image.

 Figure 5: Hierarchical graph with 3 connected components

The second level of the graph is constructed between these objects
by applying the fixed-radius nearest neighbors algorithm to the new
centers which are calculated from the spatial arithmetic mean of the
old centers. The levels can also be increased by applying the fixed-
radius nearest neighbors algorithm to the new calculated centers
from arithmetic means for the previous level centers.

3.3 Hierarchical Sparse Distributed
Representation

An SDR (Sparse distributed representation) is a large binary vector
with mostly 0’s [52]. Each bit generally carries some semantic
meaning, so if two SDRs have more than a few overlapping 1’s,
then those two SDRs have similar meanings [52]. We can encode
any type of data into an SDR while observing this aspect of the
data. When a new input is presented, it should contribute to
similarity. However, there is no single fixed approach to encoding

(“sparsifying”) the data into an SDR. An effective encoder should
capture as much information on data as possible, which will be
different for different types of data. Purdy, Scott [52] discusses
several objectives, which should be considered while encoding the
data, and it also presents a few encoder examples.
In section 3.2, we described how we generate a hierarchical graph
for the image. In this section, we will describe how we are encoding
graph information into SDRs. Sharing representations in a
hierarchy leads to a generalization of expected behavior. The
patterns learned at each level are reused when combined in novel
ways at higher levels [1]. The higher levels inherit the properties of
lower level components. It makes the computation faster and also
reduces memory requirements [1].
For the graphs we are using, SDRs are determined bottom up. First,
we compute the SDRs for the lowest level and then take a union of
them to form the higher levels. As we mentioned earlier, we are
only considering three levels in this paper. For level one, all the
detected contours in the image, which are the components at that
level, will have a separate and distinct SDR. The fields and length
of the SDR are fixed for all the nodes and levels. We compare and
operate on SDRs bit-by-bit, with each bit having a semantic
meaning so we do need the SDRs of the same dimensionality.
The significance of SDR in a graph is that a single node’s SDR will
be able to store its own information as well as its neighbors’. The
neighbors are defined from the one-hop connectivity. While
designing the encoder, we fix the number of nodes a node can be
connected to. In this paper, we design an encoder which encodes
and stores the graph nodes’ attributes into the SDR. Here we will
be dealing with the block polygons in a simple 2D “blocks world”
image space.

 Figure 6: Figure 5 corresponding graph hierarchy

The attributes are defined as the number of edges, the height-width
ratio, and connectivity (number of neighbors). To store the relative
positions of neighbors, we compute an angle between the node and
the neighbor node. The final SDR of a node consists of five fields
as described in Figure 7. An SDR has two fields, one for the node
and another for the connected neighbors. Each field has sub-fields
to store the node’s attributes and the neighbor node’s relative
positions.
The two considerations for encoding the data into the SDR are
described below:

a. SDRs should be sparse. The sparsity for encoders can vary but
should be relatively fixed for a given application of an encoder
[52]. A very rough rule of thumb is that the number of 1’s
should be the log2 of the dimension. For this, we assign each
field of an SDR a fixed number of bits assuming b and keeping

Level 1–Part level

Level 2–Object level

Level 3–Image level

only w bits ON. This way, each dimension is sparsified by a
w/b factor.

b. The use of SDRs should be mostly independent of the
indexing scheme representing the graph, for example, the
adjacency list or matrix. A single SDR should have a
reasonable knowledge of its surroundings, regardless of the
predefined indexing. Having a certain level of independence
in the indexing is important for the usefulness of SDR for
pattern matching. When storing the neighbors’ attributes into
the SDR, we process them in the clockwise direction, keeping
a particular, invariant, geometric coordinate as the reference.

Figure 7: A graph node's SDR organization

This way, we can compare the SDRs of two different nodes and
find similarity metrics between the two. Therefore, as desired, the
usefulness of SDRs becomes independent of how the nodes in the
graph were originally indexed.
To understand the encoder algorithm, assume a 2D planar labeled
graph, G, having n nodes, where every node is connected sparsely
to, at most m, other nodes, and the nodes are labeled with their
attributes (such as number of edges, height, width and connectivity,
information that is easily attainable from OpenCV). Each node will
have a distinct SDR. Lengths of the SDR’s fields and the number
of ON bits to represent the data in the fields are fixed.
Each field is converted into a sparse representation using two
criteria:

1. For the number of edges and connectivity of the nodes, we
assume s and c bits respectively. This means that we are
limiting the maximum number of sides a polygon can have
and to how many other nodes it can be connected. Among
these s and c bits, we only set one bit ‘ON’. The sparsity of
these fields is 1/s and 1/c respectively. This single set index
bit is the number next to itself as we number the fields’ index
from 0.

For example: If a pentagon node is connected to four other nodes
then the set bits will be the 5th s bit and the 4th c bit. And, the fields

would be (assuming x for the number of edges and y for the
connectivity):

𝑥 = 0000010…0
𝑦 = 000010…0

2. For height, width and angle, we assume b bits for each field.
Among these b bits, we set w bits ‘ON’, making the sparsity
w / b. Starting from the calculated index i, we will take w
consecutive bits and set them ‘ON’.

For a given value v, bucket i (that the number falls into) is
calculated from the approach described below [52]:

a. Calculate the range as 𝒓𝒂𝒏𝒈𝒆 = 𝒎𝒂𝒙𝑽𝒂𝒍𝒖𝒆 −𝒎𝒊𝒏𝑽𝒂𝒍𝒖𝒆
b. Choose the number of buckets into which we will split the

values.
c. For a given value v, the index i is computed as:

𝑖 = 𝑓𝑙𝑜𝑜𝑟[𝑏𝑢𝑐𝑘𝑒𝑡𝑠 ∗	!"#$%&'()*
+'%,*

] (1)

The final SDR of a node of a graph’s lowest level is a fixed length
binary representation assuming length as l and the number of ‘ON’
bits as o.

𝑙 = 𝑠 + 𝑏 + 𝑐 + 𝑐	(𝑠 + 2𝑏) (2)
 𝑜 = 	1 + 𝑤 + 1 + 𝑐	(1 + 2𝑤) = (2 + 𝑤) + 𝑐	(1 + 2𝑤)	 (3)
	

Example: Let’s say we have a graph of 3 nodes. For a node
(triangle) which is connected to the other 2 nodes (rectangle and
pentagon), figure 8 represents the SDR (the maximum number of
neighbors are assumed as 6).
 3.3.1 Sparse distributed representation for higher levels
After calculating the SDRs for each and every node of a level 1
graph, we move up to the hierarchy. For level 2, to determine the
SDRs of the nodes, we combine the SDRs of level 1 by taking the
connected component nodes. We perform ‘union’ operations for
every node present in level 2 and these union SDRs represent a
hierarchical graph’s structure. For example, assume we have a
graph that consists of nine objects and three connected components.
We compute three SDRs for level 2 by performing ‘union’
operations on the objects which belong to the connected
components. These three SDRs are the fixed-length binary
representation of level two graph.
By the union property, a single SDR is able to store a dynamic set
of elements, so when we see the final SDR after performing the
union, it has the information presented in the component node
SDRs. We can also represent the whole graph in a single SDR by
taking the union of all its nodes’ SDRs. This resultant SDR will
have relevant information about the graph and represents our level
3, which is the entire image.

Figure 8: A Sparse Distributed Representation

Even if we have more than three levels in the graph we still only
need to take this bottom-up approach: calculate the SDR for the
lowest level and then start combining (union operation) the SDRs
for higher levels motivated by the approach our brain takes when
processing a piece of new visual information.
The SDRs of image-graphs have three important characteristics,
which allow them to achieve their goal of fast pattern matching in
graphs.
● Each bit in an SDR has semantic meaning.
● Computations with SDRs are independent of the indexing in

graphs and their components.
● SDRs are also sparse enough to reduce spatial complexity.
● The SDRs form a representation that contains the “structure”

of the object and so is useful in downstream object
recognition.
3.4 Graph Matching

Object recognition is the primary operation of any computer vision
system. One obvious method of recognizing an object is by
comparing it to a database of known objects, template matching is
an example of this approach. One way to incorporate more
flexibility into the recognition process is to represent objects by
graphs, which incorporate the structural information in the image.
For example, in computer vision, graphs have been shown to be a
useful tool for representing images. Labeled graphs can capture
significant amount of information on the “structure” of objects.
Using graphs, object recognition requires graph matching [8, 27,
28, 29, and, 30]. Graph isomorphism, which is also known as exact
graph matching, in the area of image recognition. This problem is
known to be solved in non-polynomial time, but here we are
proposing a new method for solving approximate graph
isomorphism to reduce the complexity of pattern matching by
combining graph analytics and sparse distributed representations.
The algorithm is heuristic.
Graph isomorphism can only be applied when the number of nodes
in the graphs are the same. Therefore, we check the number of
nodes in the graphs’ level 1, if equal; we check the isomorphism
between the level 1 SDRs. If not, we move to level 2 and calculate
the sub-graphs of the bigger graph. The sub-graphs respect the
hierarchy. We check the isomorphism for all the sub-graphs whose
number of nodes are equal to the smaller graph’s nodes. If the
smaller graph exists in the bigger graph, the graph is sub-graph
isomorphic.
The computational savings come at the cost of capturing and
representing more complete information in the SDR. Although,
SDR vectors are large the operations using SDRs depend on the
number of active bits, which are much fewer than the total number
of bits. This is an advantage of sparse representations. SDR vectors
contain most of the information about the objects’ geometries and
the structure of an image. More information can be added based on
the application and the dataset. Increasing information improves
robustness. However, this comes with the cost of more false
positives [2]. We realize the match between the SDRs using SDR’s
union property and a threshold Ѳ. Decreasing Ѳ also results in more
false positives. One advantage of the union property is that there is
no risk of false negatives since the overlap gives the perfect match
if the SDR is within the set. However, it does increase the chance

of false positives [2], by increasing the number of active bits in the
resultant SDR.
With the help of SDRs, we have developed a powerful heuristic
search for graph isomorphism in O(l) time, l is the SDR length
which is a constant in our case. A variation of exact match
isomorphism is called subgraph isomorphism. Here one must
determine whether a graph contains a subgraph, which is
isomorphic to another graph. This problem is also known to not be
solvable in polynomial time. Here, we choose k nodes’ subgraph
out of a big graph of n nodes in O(nk) time and with the help of
SDRs, do the matching in O(1). The k nodes' subgraphs respect the
hierarchy. For efficient image matching, an SDR should be
invariant to position, scale, brightness and, rotation of an object. In
this paper, our SDR provides both scale and position invariance.
The graph-matching algorithm using our SDR is shown in Figure
9. In the future, we can apply this technique of merging graph
matching and SDRs to find a solution for probabilistic matching.
We can also use the techniques to find matching patterns in an
image using associative memory.

Figure 9: Graph matching algorithm

4. Experiments

We start with 2D Blocks World images in our experiment. Here we
aim to show that our method detects objects and generates the
hierarchical graph in an image (section 4.1) which is used to create
sparse distributed representations of all the components of the
graphs (section 4.2). Further, the resulting SDRs for the images are

used in graph matching (section 4.3). The algorithm in Figure 9 is
tested on a number of 2D blocks world images which were
generated randomly with some specific directions to meet our
application’s requirement. Here, we show the results of applying
the algorithm to a few images.

4.1 Object Detection and Graph Generation
In this section, we are showing the detected objects and their

generated graphs for the blocks world images. In figure 10, we
show two images with only one object made of composite parts. In
figure 10 a) is the image and b) is the generated graph. Here the
graph is only between the object’s parts and how they are connected
to each other. Figure 11 shows two image graphs with more than
one objects, made of some parts, far enough to be separate objects.
The lowest level (level 1, represented by blue) of the graph
represents connectedness between the basic detected parts, which,
in turn, make complex objects in the image. The second level
(represented by red) shows the graph between more complex
objects. The third level is the image itself. Because of our simple
Blocks World images and to illustrate algorithm operation, we
assume three levels of hierarchy. However, the number of levels
can be increased with the complexity of an image.

4.2 Sparse Distributed Representation
The generated SDRs are large binary vectors representing the
important attributes of the objects. Each detected part in the image
has an SDR of length l. The length of the SDRs is large compared
to the active number of bits. For limiting the size of the SDR, we
assume that maximum connected nodes and maximum number of
edges for a node are 10. The height and width can be in a range
from 1 to 360. To represent the very sparse SDRs, we show only
the indices of ON bits. The computation with SDRs is memory and
time efficient as the computation happens only with the active bits.
Figure 12 shows the SDR of object 0 in figure 11’s image graph 2.
Each and every bit has semantic meaning. Starting some bits
represent the object information and rest of the bits represent the
connected neighbors’ information and their relative position with
the object.

Figure 12: SDR with active bits indices.

Figure 10: Images with one object and generated graphs.

Figure 11: Images with multiple objects and their generated graphs

4.3 Graph Matching
In this section, we calculate the match between the generated
graphs using SDRs overlap. In figure 13, we take two graphs and
check whether the first graph contains a graph, which is isomorphic
to the second graph. This demonstrates whether the object present
in the second image exists somewhere in the first image. Here, we
also show that this check is independent of the graph/object indices.
As one can see in the images, some of the detected parts in the
second image are indexed differently indices in the first image,
which does not affect the final result. This match also demonstrates
the scale and position invariance. For the graphs in figure 13, image
1 and image 2 have two and one object respectively in level 2
represented by red color. We take one object SDR of graph 1 at a
time and compare it with the graph 2 SDR, which realizes a match.

For the given images in figure 13 the SDR overlap exceeds the
threshold. We conclude that graph 2 is sub-graph isomorphic to
graph 1 which also means that the object in the second image exists
in the first image.
It should be noted, that such matching can be done in a
straightforward manner by cortical-like associative memories.

4.4 Result Analysis
Table 1: Result Analysis: Techniques and their complexity

Algorithm Complexity
Graph Isomorphism

NP-intermediate

Sub-graph Isomorphism NP-Complete

Approximate Graph
Isomorphism w/SDR

O(1)

Approximate Sub-graph
Isomorphism w/ SDR

Choosing a k node subgraph out of a
big graph with n nodes – O(nk) and
matching subgraph with k nodes is

O(1)

5. Conclusion
Object recognition continues to be the most important capability in
computer vision. Traditional object recognition techniques were
based on capturing complex features, but the features were mostly
treated as unrelated in any way, the “bag of features” approach.
The actual structure of the features with respect to each other was
rarely attempted, though there has been some work in this area [43,

46]. The bag of features approach loses important information
about the structural relationships of the features with respect to each
other, for example, the spatial relationship between the limbs of an
animal or the formation and shape of vehicles. The structure
captured by our SDR contains important information that may help
with object recognition and complex variations of it are most likely
used in primate vision. Deep networks appear to limit how much
structure they capture. And, they are easily fooled with minor
modification to test images [48]. These failures often have to do
with a common pattern in an arbitrary position a “bag of features”
kind of mistake.
Graph techniques, when paired with biologically inspired
characteristics, have the potential to be an effective method for
object recognition. These techniques leverage the information
about the connectedness between the features, i.e., the “structure”

of an image rather than the traditional methods in which we have
no connectivity between features and objects of the image.
In this paper, we have presented a novel technique to perform
object detection and pattern matching in images with the help of
graph algorithms and Neuromorphic computing techniques. With
these techniques, we can identify connections in images and
represent those as graphs. This enables us to use many graph-based
algorithms for this pattern matching in images. We showed that we
can perform approximate graph matching in O(1) time with the
SDR representations, and further choose k nodes subgraph in O(nk)
and perform subgraph matching with O(1), whereas the classic
techniques take a non-polynomial amount of time. Moreover, we
can also identify partial matching in images based on inherent
properties of SDRs. This work shows a way of using graph-based
techniques for object recognition related tasks in images and
demonstrates the use of Neuromorphic computing techniques for
providing orders of magnitudes of speedups.
The next step in this work is to map the derived SDR to a
biologically inspired associative memory, which will allow us to do
approximate object mapping in the case where parts of the objects
are occluded or noisy.

ACKNOWEDGEMENT
This work was supported in part by the Center for Brain Inspired
Computing (C-BRIC), one of six centers in JUMP, a
Semiconductor Research Corporation (SRC) program sponsored
by DARPA.

REFERENCES
[1] Hawkins, J., Ahmad, S. and Dubinsky, D., 2010. Hierarchical temporal
memory including HTM cortical learning algorithms. Technical report, Numenta, Inc,

Figure 13: Two graphs with sub-graph isomorphism

Palo Alto,
http://www.numenta.com/htmoverview/education/HTM_CorticalLearningAlgorithm
s.pdf.
[2] Ahmad, S. and Hawkins, J., 2015. Properties of sparse distributed representations

and their application to hierarchical temporal memory. arXiv preprint
arXiv:1503.07469.

[3] Rinkus, G.J., 2010. A cortical sparse distributed coding model linking mini-and
macrocolumn-scale functionality. Frontiers in neuroanatomy, 4(17).

[4] Zhu, S. and Hammerstrom, D., 2002, November. Simulation of associative neural
networks. In Neural Information Processing, 2002. ICONIP'02. Proceedings of
the 9th International Conference on (Vol. 4, pp. 1639-1643). IEEE.

[5] Albarelli, A., Bergamasco, F., Rossi, L., Vascon, S. and Torsello, A., 2012,
November. A stable graph-based representation for object recognition through
high-order matching. In Pattern Recognition (ICPR), 2012 21st International
Conference on (pp. 3341-3344). IEEE.

[6] Xirouhakis, Y., Tirakis, A. and Delopoulos, A., 1999. An efficient graph
representation for image retrieval based on color composition.

[7] Ullmann, J.R., 1976. An algorithm for subgraph isomorphism. Journal of the
ACM (JACM), 23(1), pp.31-42.

[8] Zhu, Y., Qin, L., Yu, J.X., Ke, Y. and Lin, X., 2013. High efficiency and quality:
large graphs matching. The VLDB Journal, 22(3), pp.345-368.

[9] Suga, A., Fukuda, K., Takiguchi, T. and Ariki, Y., 2008, December. Object
recognition and segmentation using SIFT and graph cuts. In Pattern Recognition,
2008. ICPR 2008. 19th International Conference on (pp. 1-4). IEEE.

[10] Prasad, B.D.C.N., PESNK, P. and Sagar, Y., 2010. A study on associative neural
memories. Int J Adv Comput Sci App, 1, pp.124-133.

[11] Prabhu, Nikita, and R. Venkatesh Babu. "Attribute-graph: A graph based
approach to image ranking." Proceedings of the IEEE International Conference
on Computer Vision. 2015.

[12] Zhang, Zizhao, et al. "Revisiting graph construction for fast image
segmentation." Pattern Recognition 78 (2018): 344-357.

[13] Johnson, Justin, et al. "Image retrieval using scene graphs." Proceedings of the
IEEE conference on computer vision and pattern recognition. 2015.

[14] Li, Li-Jia, et al. "Object bank: A high-level image representation for scene
classification & semantic feature sparsification." Advances in neural information
processing systems. 2010.

[15] Aditya, Somak, et al. "From images to sentences through scene description
graphs using commonsense reasoning and knowledge." arXiv preprint
arXiv:1511.03292 (2015).

[16] Schuster, Sebastian, et al. "Generating semantically precise scene graphs from
textual descriptions for improved image retrieval." Proceedings of the fourth
workshop on vision and language. 2015.

[17] Xu, Danfei, et al. "Scene graph generation by iterative message passing."
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. Vol. 2. 2017.

[18] Li, Yikang, et al. "Scene graph generation from objects, phrases and region
captions." ICCV. 2017.

[19] Plaza, Laura, Elena Lloret, and Ahmet Aker. "Improving automatic image
captioning using text summarization techniques." International Conference on
Text, Speech and Dialogue. Springer, Berlin, Heidelberg, 2010.

[20] Stenroos, Olavi. "Object detection from images using convolutional neural
networks." (2017).

[21] Zhang, Feihu, et al. "Segment graph based image filtering: fast structure-
preserving smoothing." Proceedings of the IEEE International Conference on
Computer Vision. 2015.

[22] Zitouni, Hilal, et al. "Re-ranking of web image search results using a graph
algorithm." Pattern Recognition, 2008. ICPR 2008. 19th International
Conference on. IEEE, 2008.

[23] Song, Yi-Zhe, et al. "Finding semantic structures in image hierarchies using
Laplacian graph energy." European Conference on Computer Vision. Springer,
Berlin, Heidelberg, 2010.

[24] Hsieh, Liang-Chi, et al. "Canonical image selection and efficient image graph
construction for large-scale flickr photos." Proceedings of the 17th ACM
international conference on Multimedia. ACM, 2009.

[25] Malmberg, Filip, et al. "A graph-based framework for sub-pixel image
segmentation." Theoretical Computer Science 412.15 (2011): 1338-1349.

[26] Lézoray, Olivier, and Leo Grady. Image processing and analysis with graphs:
theory and practice. CRC Press, 2012.

[27] Sanfeliu, Alberto, et al. "Graph-based representations and techniques for image
processing and image analysis." Pattern recognition 35.3 (2002): 639-650.

[28] Shokoufandeh, Ali, and Sven Dickinson. "Graph-theoretical methods in
computer vision." Theoretical aspects of computer science. Springer, Berlin,
Heidelberg, 2002.

[29] Camilus, K. Santle, and V. K. Govindan. "A Review on Graph Based
Segmentation." International Journal of Image, Graphics & Signal Processing 4.5
(2012).

[30] Lézoray, Olivier, and Leo Grady. Image processing and analysis with graphs:
theory and practice. CRC Press, 2012.

[31] Gruen, Armin, Emmanuel P. Baltsavias, and Olof Henricsson, eds. Automatic
extraction of man-made objects from aerial and space images (II). Birkhäuser,
2012.

[32] Johnson, Justin, Agrim Gupta, and Li Fei-Fei. "Image generation from scene
graphs." arXiv preprint (2018).

[33] De Sousa Webber, Francisco. "Semantic Folding Theory And its Application in
Semantic Fingerprinting." arXiv preprint arXiv:1511.08855 (2015).

[34] George, Dileep. How the brain might work: A hierarchical and temporal model
for

learning and recognition. Stanford: Stanford University, 2008.
[35] Hawkins, Jeff, and Sandra Blakeslee. On intelligence: How a new understanding

of the brain will lead to the creation of truly intelligent machines. Macmillan,
2007.

[36] Hawkins, Jeff, and Dileep George. Hierarchical temporal memory: Concepts,
theory and terminology. Technical report, Numenta, 2006.

[37] Pan, Jia-Yu, et al. "Gcap: Graph-based automatic image captioning." Computer
Vision and Pattern Recognition Workshop, 2004. CVPRW'04. Conference on.
IEEE, 2004.

[38] Lowe, David G. "Distinctive image features from scale-invariant keypoints."
International journal of computer vision60.2 (2004): 91-110.

[39] Lowe, David G. "Object recognition from local scale-invariant features."
Computer vision, 1999. The proceedings of the seventh IEEE international
conference on. Vol. 2. Ieee, 1999.

[40] Li, Li-Jia, et al. "Object bank: A high-level image representation for scene
classification & semantic feature sparsification." Advances in neural information
processing systems. 2010.

[41] Oliva, Aude, and Antonio Torralba. "Modeling the shape of the scene: A holistic
representation of the spatial envelope." International journal of computer vision
42.3 (2001): 145-175.

[42] Dalal, Navneet, and Bill Triggs. "Histograms of oriented gradients for human
detection." Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE
Computer Society Conference on. Vol. 1. IEEE, 2005.

[43] Nowak, Eric, Frédéric Jurie, and Bill Triggs. "Sampling strategies for bag-of-
features image classification." European conference on computer vision.
Springer, Berlin, Heidelberg, 2006.

[44] Jiang, Yu-Gang, Chong-Wah Ngo, and Jun Yang. "Towards optimal bag-of-
features for object categorization and semantic video retrieval." Proceedings of
the 6th ACM international conference on Image and video retrieval. ACM, 2007.

[45] Ngo, Chong-Wah, Yu-Fei Ma, and Hong-Jiang Zhang. "Video summarization
and scene detection by graph modeling." IEEE Transactions on Circuits and
Systems for Video Technology15.2 (2005): 296-305.

[46] Faheema, A. G., and Subrata Rakshit. "Feature selection using bag-of-visual-
words representation." Advance Computing Conference (IACC), 2010 IEEE 2nd
International. IEEE, 2010.

[47] S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of features: Spatial pyramid
matching for recognizing natural scene categories. CVPR, 2006.

[48] Nguyen, Anh, Jason Yosinski, and Jeff Clune. "Deep neural networks are easily
fooled: High confidence predictions for unrecognizable images." Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition. 2015.

[49] Yu, Tianshu, et al. "Joint Cuts and Matching of Partitions in One Graph." arXiv
preprint arXiv:1711.09584 (2017).

[50] Zanfir, Andrei, and Cristian Sminchisescu. "Deep Learning of Graph
Matching." Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 2018.

[51] Cui, Yuwei, Subutai Ahmad, and Jeff Hawkins. "The HTM spatial pooler—a
neocortical algorithm for online sparse distributed coding." Frontiers in
computational neuroscience11 (2017): 111.

[52] Purdy, Scott. "Encoding data for HTM systems." arXiv preprint
arXiv:1602.05925 (2016).

[53] Wikipedia contributors. "Connected component (graph theory)." Wikipedia, The
Free Encyclopedia. Wikipedia, The Free Encyclopedia, 18 May. 2018. Web. 3
Jan. 2019

[54] Sabour, Sara, Nicholas Frosst, and Geoffrey E. Hinton. "Dynamic routing
between capsules." Advances in neural information processing systems. 2017.

[55] Felzenszwalb, Pedro F., et al. "Object detection with discriminatively trained
part-based models." IEEE transactions on pattern analysis and machine
intelligence 32.9 (2009): 1627-1645.

	Approximate Pattern Matching using Hierarchical Graph Construction and Sparse Distributed Representation
	Let us know how access to this document benefits you.
	Citation Details

	AakankshaMathuria_July1_2019_ICONS_DanHammerstrom

