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ABSTRACT 
With recent developments in deep networks, there have been 
significant advances in visual object detection and 
recognition.  However, some of these networks are still easily 
fooled/hacked and have shown “bag of features” failures. Some of 
this is due to the fact that even deep networks make only marginal 
use of the complex structure that exists in real-world images, even 
after training on huge numbers of images. Biology appears to take 
advantage of such a structure, but how? 
In our research, we are studying approaches for robust pattern 
matching using still, 2D Blocks World images based on graphical 
representations of the various components of an image. Such higher 
order information represents the “structure” of the visual object. 
Here we discuss how the structural information of an image can be 
captured in a Sparse Distributed Representation (SDR) loosely 
based on cortical circuits.  
We apply probabilistic graph isomorphism and subgraph 
isomorphism to our 2D Blocks World images and achieve O (1) 
and O (nk) complexity for an approximate match. The optimal 
match is an NP-Hard problem. The image labeled graph is created 
using OpenCV to find the object contours and objects' labels and a 
fixed radius nearest neighbor algorithm to build the edges between 
the objects. Pattern matching is done using the properties of SDRs. 
Our research shows the promise of applying graph-based 
neuromorphic techniques for pattern matching of images based on 
such structure. 
KEYWORDS 
Sparse Distributed Representation, Hierarchical Graph, 
Approximate Matching, Graph Isomorphism 
 

1. Introduction 
With the recent advances in deep networks, there has been 
significant progress in visual object detection and recognition.  
However, some of these networks have shown “bag of features” 
failures [48] similar to the other traditional object recognition 
techniques such as GIST [42], HOG (histogram of oriented 
gradients) [43], SIFT (Scale-invariant feature transform) [39, 40] 
and special envelope [41]. Deep networks make only marginal use 
of the complex structure that exists in real-world images, even after 

training on large numbers of images. None of these techniques 
actually captures the spatial relationships of the low level or high-
level features, which biological networks appear to do. 
Efficient graph representations capture the higher order 
information content of the objects and provide algorithmic benefits 
when recognizing complex images [33, 35]. Such higher order 
information represents the “structure” of the visual objects.  Also, 
an important difference of the work described here is that we are 
using a non-standard representation of the graphical data based on 
sparse distributed representations. 
Neuromorphic techniques such as Sparse distributed 
representations (SDR) of data, shapes, and graphs can play an 
important role in complex image processing. SDRs leverage the 
unique properties of the objects to provide algorithmic benefits. 
The use of sparse representations of data is motivated by a) the 
abundance of visual data b) the abundance of features in real life 
images and c) the ability of sparse representations to provide speed 
up via unique properties (e.g. union) of the representations. An 
SDR encodes any type of data into a binary vector which consists 
mostly 0’s with a few 1’s.  SDR is very memory efficient, as only 
a few bits would have to be stored in the memory as the indices of 
the active bits. SDRs are the result of various research efforts into 
understanding the operation of cortical circuits [1, 2]. 
In the research described here, we are exploring new ways to 
represent images as hierarchical graphs to preserve the connectivity 
information among the objects and perform pattern matching using 
graph isomorphism. The graph of an image uses objects as the 
nodes. It contains the spatial information (connectedness, 
adjacency) of the objects in the image. The connections can be 
described as the Euclidean distance between the nodes. We 
formulate SDRs for all the nodes in the graph using their attribute 
information such as the number of edges, their sizes, connectivity 
and attributes of their neighbors. Then we use Euclidean distance 
criteria to represent the hierarchy in the graph, which can be used 
for efficient pattern matching. 
An example of a hierarchical graph construction for an image 
containing multiple individuals can be used with three levels. For 
the first level, we can consider small body parts such as nose, 
mouth, eyes, etc. as nodes for a graph representing the face of a 
person. Each of these small body parts can be represented by SDRs 



 
 

 
 

with their own attributes. Similarly, graphs of other large body parts 
such as hands, legs, etc. can be defined. With the properties of 
SDRs such as union, one can define SDRs for the entire graph, in 
this case of large body parts such as hands, legs, and face, etc. As a 
second level hierarchy, the graph can be constructed of these large 
body parts as nodes and connectivity between them and the graph 
representing an entire individual. Again, SDR of this entire graph 
can be obtained by performing union over the SDRs of the 
individual nodes. To construct the graph of the entire image with 
different individuals, the SDRs of each person can be considered as 
a node of the graph. This type of representation promises an 
efficient pattern-matching algorithm when implemented using 
graph isomorphism.  
To demonstrate these ideas assume simple objects, e.g., rectangles 
and triangles, from a 2D blocks world.  These are recognized using 
traditional algorithms (OpenCV). We then create graphs of these 
objects to allow the efficient recognition of more complex objects, 
built from the simple objects. Figure 1 and Figure 2 show how real-
world objects can be broken into simple objects that can be easily 
and effectively represented using SDRs. 

 
Figure 1: Simple Blocks-World image 

 

 
Figure 2: Complex Blocks-World image (source: 

www.pocketgamer.com) 
 
In this work, we use probabilistic graph isomorphism and subgraph 
isomorphism to perform efficient approximate pattern matching in 
images. The optimal match is an NP-hard problem. However, with 
the help of SDR properties, we can perform graph matching in O(1) 
time and further choose k nodes subgraph out of big graph of n 
nodes in O(nk) and do the matching in O(1). By combining the 
SDRs and graphs, we can perform pattern matching, which 
leverages structural information in an efficient manner. 

1.1 Our Contributions 
• We create a hierarchical graph representation to capture the 

structural information of an image. 
• We implement the Sparse Distributed Representations for the 

hierarchies of a graph, which leverages algorithmic 

parallelism and makes computation faster and more power 
efficient. 

• We demonstrate the approximate graph matching in O(1) and 
by choosing k nodes’ subgraph out of n nodes’ big graph in 
O(nk), subgraph matching in O(1) instead of solving in non-
polynomial times with the help of SDR properties.  

Our method allows us to capture structural information in images 
for doing pattern matching and uses very little data.  

 
2. Related work 

Object Detection is a very important part of any computer vision 
application. There are a number of applications from face detection 
and pedestrian detection to image and video retrieval. Object 
detection and recognition is an integral part of many common 
applications such as video surveillance, image captioning, video 
summarization, etc. Many techniques are used to detect the objects 
in an image. Some techniques use feature extractors such as SIFT 
[38, 39] and HOG [41]. Some use bounding boxes [12] and Contour 
detection. Deep learning techniques are starting to solve these 
problems but they are easily fooled and do not capture the structure 
of the image. 48 (2015) show how it is possible to produce images 
which are not recognizable to the human eye but DNNs classify as 
familiar objects. 
Graphs are useful when one wants to represent the connectivity or 
structure of objects. Graphical approaches have been studied for 
many years, and yet there are still a number of unsolved problems. 
Applications such as document processing, scene processing, 
image retrieval [6, 11, 13, and 16] and video summarization [45] 
could benefit from such connectivity information. However, due to 
the complexity of working with graphs, traditional Computer 
Vision techniques often use a ‘Bag of features’ [43, 46] approach 
and so are missing information on object structure. For humans, 
features being in the wrong position degrade recognition accuracy.  
Imagine two images of bicycles, one being with the right position 
and orientations and other being with only the right components 
and wrong locations. When we classify this image using a ‘bag of 
features’ approach both images will be classified as bicycles, but 
the second image is not the correct form of a cycle.  Being able to 
utilize such structure or connectivity information will be of 
significant value in image understanding. One approach to 
representing structure in deep networks is the development of 
Capsules [54] by Geoffrey Hinton and his group. Capsules take 
advantage of the fact that spatial relationships can be modelled by 
matrix multiplies. 
We know that biology makes extensive use of connectivity and 
other kinds of structures when doing object recognition. In the work 
described here, we are applying sparse distributed representations 
to the problem of graph isomorphism which is required if graphical 
information is to become a part of the pattern recognition process. 
Sparse distributed representation (SDR) is a technique that has 
been proposed as one technique that is used by cortical circuits to 
represent data.  The best description of this technique can be found 
in an excellent paper by Jeff Hawkins and his team at Numenta [1, 
36]. They have made extensive use of SDRs and are continually 
improving their techniques. 



 

Hierarchical temporal memory [1, 34] is a hierarchical, 
unsupervised technique, which makes extensive use of SDRs for 
processing the input data from a variety of sources [33, 36]. SDRs 
are now being used in a number of commercial applications.  One 
example is an application developed by cortical.io, [1, 2 and, 3], 
which performs natural language processing using the Numenta 
HTM algorithm. 
 

3. Our Approach 
 
 
 
 
 
 
 
 
 
Graphical representations of object structure have significant 
potential in helping to recognize complex objects in still and 
moving images. However, to use graphs effectively requires the 
ability to efficiently capture the graph structure from recognized 
features. This is a problem that has been studied and many 
techniques have been developed. As mentioned earlier, the 
OpenCV library has a number of state of the art feature extractors. 
The second problem, finding isomorphism in graphs and 
subgraphs, is significantly more computationally intensive. It is 
hypothesized that biology uses a number of computational 
techniques, but the most intriguing is Sparse Distributed 
Representation.  
In this section, we describe the image processing pipeline. Figure 3 
shows the data flow pattern matching using the combination of 
graphs and SDRs. In section 3.1, we describe the process of object 
detection and the features extracted using OpenCV. In section 3.2, 
we describe how to form a hierarchical graph from the detected 
objects as nodes with a fixed-radius nearest neighbors algorithm. 
Then in section 3.3, we discuss the possibility of representing 
graphs in SDRs and leveraging the massive parallelism, for 
example in massively parallel associative memories, that is enabled 
by SDRs. We present two algorithms using SDRs for exact and 
approximate matching in section 3.4. Finally, we show a specific 
example of applying SDRs to the simple 2D Blocks World images 
such as triangles and rectangles, which can be combined in 
different ways to form complex images. 

3.1 Object detection 
Object detection in still or moving images is a complex task. Given 
an image or a region of interest (ROI), the goal of object detection 
is to find the locations of objects in the image and to classify them. 
Object detection is a widely studied problem for which numerous 
methods have been proposed [11, 22]. Object detection has many 

applications such as facial recognition, pedestrian detection, etc. 
[21, 23]. 
In this paper, we are using OpenCV to locate the objects in the 
image.  Contours, instead of bounding boxes, are used to find 
objects and are generated using OpenCV’s findContours() 
function, they are defined by a simple, joined curve of continuous 
data points along the object boundary. Finding contours works best 
when there is a reasonable contrast between the objects and the 
background. It also helps if the background is not cluttered and the 
objects do not partially occlude one another, though approximate 
 
 
 
 
 
 
 
 
 
 
 
 
 
SDR matching does handle partial occlusion.  
Figure 4 shows the detected contours of the coins in green and each 
contour is an object. With the help of OpenCV contours, we can 
also determine other characteristics of the objects such as moments, 
area, perimeter, and bounding rectangles. For our 2D blocks world 
application, we compute the object attributes from contour features 
such as centers, height, width, angle with the x and y-axis, etc. 
 

 
Figure 4: Contours detected for the objects in an image 

 
3.2 Hierarchical Graph Construction 

Traditional computer vision techniques do not capture the locality 
and connectivity of the objects [30]. Traditional (pre-Deep 
Network) systems find complex information associated with each 
feature, using feature detection algorithms such as SIFT.  Then the 
discovered features are matched somewhat independently to a set 
of features associated with each object, which has been termed a 
“bag of features” approach. And even if the arrangement or 
orientations are distorted in an image besides just considering the 
presence of some certain objects, the methods give unsatisfactory 
results [22, 26, 28, and, 29]. 

Figure 3: Data Flow Pipeline 



 
 

 
 

In this paper, we are representing the images using graphs so that 
we get better accuracy with simple or complex images. We are 
constructing a hierarchical graph for an image with the help of a 
fixed-radius nearest neighbors algorithm. It is clear that biological 
vision, at least in mammals, takes advantage of the geometric 
relationships of the features with each other, which we refer to as 
the “structure” of the object. It appears that visual cortex at the 
lowest level of the processing hierarchy stores information about 
tiny sections of the visual field such as edges and corners [1]. These 
low-level patterns are recombined at higher levels for more 
complex components. 
In this paper, we assume that all the detected contours in the image 
are parts of much more complex objects. This assumes a simple 
structural hierarchy. The number of levels can vary based on the 
application. In our 2D blocks world, we are only assuming three 
levels of hierarchy. The first level of the graph is the OpenCV 
detected parts, which are treated as nodes, the second level’s nodes 
are the objects made of these parts based on their proximity with 
each other and the third level is the image itself. 
The first level of the graph (showing the spatial relationships 
between components) is constructed using a fixed-radius nearest 
neighbors algorithm applied to the parts’ centers. We calculate the 
connected components of the graph. In graph theory, a connected 
component of an undirected graph is a subgraph in which any 
two vertices are connected to each other by more than one path, 
and which is connected to no additional vertices in the super-graph 
[53]. Figure 5 shows an example of a graph with three connected 
components. These connected components are the objects present 
in the image. Therefore, the number of connected components is 
equal to the number of objects present in the image. 
 
 
 
 
 
 
 
 
 
       Figure 5: Hierarchical graph with 3 connected components                         
 
The second level of the graph is constructed between these objects 
by applying the fixed-radius nearest neighbors algorithm to the new 
centers which are calculated from the spatial arithmetic mean of the 
old centers. The levels can also be increased by applying the fixed-
radius nearest neighbors algorithm to the new calculated centers 
from arithmetic means for the previous level centers. 

3.3 Hierarchical Sparse Distributed 
Representation 

An SDR (Sparse distributed representation) is a large binary vector 
with mostly 0’s [52]. Each bit generally carries some semantic 
meaning, so if two SDRs have more than a few overlapping 1’s, 
then those two SDRs have similar meanings [52]. We can encode 
any type of data into an SDR while observing this aspect of the 
data. When a new input is presented, it should contribute to 
similarity. However, there is no single fixed approach to encoding 

(“sparsifying”) the data into an SDR. An effective encoder should 
capture as much information on data as possible, which will be 
different for different types of data. Purdy, Scott [52] discusses 
several objectives, which should be considered while encoding the 
data, and it also presents a few encoder examples. 
In section 3.2, we described how we generate a hierarchical graph 
for the image. In this section, we will describe how we are encoding 
graph information into SDRs. Sharing representations in a 
hierarchy leads to a generalization of expected behavior. The 
patterns learned at each level are reused when combined in novel 
ways at higher levels [1]. The higher levels inherit the properties of 
lower level components. It makes the computation faster and also 
reduces memory requirements [1]. 
For the graphs we are using, SDRs are determined bottom up. First, 
we compute the SDRs for the lowest level and then take a union of 
them to form the higher levels. As we mentioned earlier, we are 
only considering three levels in this paper. For level one, all the 
detected contours in the image, which are the components at that 
level, will have a separate and distinct SDR. The fields and length 
of the SDR are fixed for all the nodes and levels. We compare and 
operate on SDRs bit-by-bit, with each bit having a semantic 
meaning so we do need the SDRs of the same dimensionality. 
The significance of SDR in a graph is that a single node’s SDR will 
be able to store its own information as well as its neighbors’.  The 
neighbors are defined from the one-hop connectivity. While 
designing the encoder, we fix the number of nodes a node can be 
connected to. In this paper, we design an encoder which encodes 
and stores the graph nodes’ attributes into the SDR. Here we will 
be dealing with the block polygons in a simple 2D “blocks world” 
image space.  
 
 
 
 
 
 
 
 
        Figure 6: Figure 5 corresponding graph hierarchy  
 
The attributes are defined as the number of edges, the height-width 
ratio, and connectivity (number of neighbors). To store the relative 
positions of neighbors, we compute an angle between the node and 
the neighbor node. The final SDR of a node consists of five fields 
as described in Figure 7. An SDR has two fields, one for the node 
and another for the connected neighbors. Each field has sub-fields 
to store the node’s attributes and the neighbor node’s relative 
positions. 
The two considerations for encoding the data into the SDR are 
described below: 

a. SDRs should be sparse. The sparsity for encoders can vary but 
should be relatively fixed for a given application of an encoder 
[52].  A very rough rule of thumb is that the number of 1’s 
should be the log2 of the dimension. For this, we assign each 
field of an SDR a fixed number of bits assuming b and keeping 

Level 1–Part level 

Level 2–Object level 

Level 3–Image level 



 

only w bits ON. This way, each dimension is sparsified by a 
w/b factor.  

b. The use of SDRs should be mostly independent of the 
indexing scheme representing the graph, for example, the 
adjacency list or matrix. A single SDR should have a 
reasonable knowledge of its surroundings, regardless of the 
predefined indexing. Having a certain level of independence 
in the indexing is important for the usefulness of SDR for 
pattern matching. When storing the neighbors’ attributes into 
the SDR, we process them in the clockwise direction, keeping 
a particular, invariant, geometric coordinate as the reference.  

 

 
Figure 7: A graph node's SDR organization 

 

 
 
 
 
 
 
 
 

 
This way, we can compare the SDRs of two different nodes and 
find similarity metrics between the two. Therefore, as desired, the 
usefulness of SDRs becomes independent of how the nodes in the 
graph were originally indexed. 
To understand the encoder algorithm, assume a 2D planar labeled 
graph, G, having n nodes, where every node is connected sparsely 
to, at most m, other nodes, and the nodes are labeled with their 
attributes (such as number of edges, height, width and connectivity, 
information that is easily attainable from OpenCV). Each node will 
have a distinct SDR. Lengths of the SDR’s fields and the number 
of ON bits to represent the data in the fields are fixed. 
Each field is converted into a sparse representation using two 
criteria: 

1. For the number of edges and connectivity of the nodes, we 
assume s and c bits respectively. This means that we are 
limiting the maximum number of sides a polygon can have 
and to how many other nodes it can be connected. Among 
these s and c bits, we only set one bit ‘ON’. The sparsity of 
these fields is 1/s and 1/c respectively. This single set index 
bit is the number next to itself as we number the fields’ index 
from 0. 

For example: If a pentagon node is connected to four other nodes 
then the set bits will be the 5th s bit and the 4th c bit. And, the fields 

would be (assuming x for the number of edges and y for the 
connectivity): 

𝑥 = 0000010…0 
𝑦 = 000010…0 

2. For height, width and angle, we assume b bits for each field. 
Among these b bits, we set w bits ‘ON’, making the sparsity 
w / b. Starting from the calculated index i, we will take w 
consecutive bits and set them ‘ON’. 

 
For a given value v, bucket i (that the number falls into) is 
calculated from the approach described below [52]: 

a. Calculate the range as 𝒓𝒂𝒏𝒈𝒆 = 𝒎𝒂𝒙𝑽𝒂𝒍𝒖𝒆 −𝒎𝒊𝒏𝑽𝒂𝒍𝒖𝒆 
b. Choose the number of buckets into which we will split the 

values. 
c. For a given value v, the index i is computed as: 

𝑖 = 𝑓𝑙𝑜𝑜𝑟[𝑏𝑢𝑐𝑘𝑒𝑡𝑠 ∗	!"#$%&'()*
+'%,*

]          (1) 

The final SDR of a node of a graph’s lowest level is a fixed length 
binary representation assuming length as l and the number of ‘ON’ 
bits as o. 

𝑙 = 𝑠 + 𝑏 + 𝑐 + 𝑐	(𝑠 + 2𝑏)                                          (2)                     
  𝑜 = 	1 + 𝑤 + 1 + 𝑐	(1 + 2𝑤) = (2 + 𝑤) + 𝑐	(1 + 2𝑤)	           (3) 
	
 

 
 

 
Example: Let’s say we have a graph of 3 nodes.  For a node 
(triangle) which is connected to the other 2 nodes (rectangle and 
pentagon), figure 8 represents the SDR (the maximum number of 
neighbors are assumed as 6).    
     3.3.1 Sparse distributed representation for higher levels 
After calculating the SDRs for each and every node of a level 1 
graph, we move up to the hierarchy. For level 2, to determine the 
SDRs of the nodes, we combine the SDRs of level 1 by taking the 
connected component nodes. We perform ‘union’ operations for 
every node present in level 2 and these union SDRs represent a 
hierarchical graph’s structure. For example, assume we have a 
graph that consists of nine objects and three connected components. 
We compute three SDRs for level 2 by performing ‘union’ 
operations on the objects which belong to the connected 
components. These three SDRs are the fixed-length binary 
representation of level two graph. 
By the union property, a single SDR is able to store a dynamic set 
of elements, so when we see the final SDR after performing the 
union, it has the information presented in the component node 
SDRs. We can also represent the whole graph in a single SDR by 
taking the union of all its nodes’ SDRs. This resultant SDR will 
have relevant information about the graph and represents our level 
3, which is the entire image. 

Figure 8: A Sparse Distributed Representation 



 
 

 
 

Even if we have more than three levels in the graph we still only 
need to take this bottom-up approach: calculate the SDR for the 
lowest level and then start combining (union operation) the SDRs 
for higher levels motivated by the approach our brain takes when 
processing a piece of new visual information. 
The SDRs of image-graphs have three important characteristics, 
which allow them to achieve their goal of fast pattern matching in 
graphs. 
● Each bit in an SDR has semantic meaning. 
● Computations with SDRs are independent of the indexing in 

graphs and their components. 
● SDRs are also sparse enough to reduce spatial complexity. 
● The SDRs form a representation that contains the “structure” 

of the object and so is useful in downstream object 
recognition. 
3.4 Graph Matching 

Object recognition is the primary operation of any computer vision 
system. One obvious method of recognizing an object is by 
comparing it to a database of known objects, template matching is 
an example of this approach. One way to incorporate more 
flexibility into the recognition process is to represent objects by 
graphs, which incorporate the structural information in the image. 
For example, in computer vision, graphs have been shown to be a 
useful tool for representing images. Labeled graphs can capture 
significant amount of information on the “structure” of objects. 
Using graphs, object recognition requires graph matching [8, 27, 
28, 29, and, 30]. Graph isomorphism, which is also known as exact 
graph matching, in the area of image recognition. This problem is 
known to be solved in non-polynomial time, but here we are 
proposing a new method for solving approximate graph 
isomorphism to reduce the complexity of pattern matching by 
combining graph analytics and sparse distributed representations. 
The algorithm is heuristic. 
Graph isomorphism can only be applied when the number of nodes 
in the graphs are the same. Therefore, we check the number of 
nodes in the graphs’ level 1, if equal; we check the isomorphism 
between the level 1 SDRs. If not, we move to level 2 and calculate 
the sub-graphs of the bigger graph. The sub-graphs respect the 
hierarchy. We check the isomorphism for all the sub-graphs whose 
number of nodes are equal to the smaller graph’s nodes. If the 
smaller graph exists in the bigger graph, the graph is sub-graph 
isomorphic. 
The computational savings come at the cost of capturing and 
representing more complete information in the SDR.  Although, 
SDR vectors are large the operations using SDRs depend on the 
number of active bits, which are much fewer than the total number 
of bits. This is an advantage of sparse representations. SDR vectors 
contain most of the information about the objects’ geometries and 
the structure of an image. More information can be added based on 
the application and the dataset. Increasing information improves 
robustness. However, this comes with the cost of more false 
positives [2]. We realize the match between the SDRs using SDR’s 
union property and a threshold Ѳ. Decreasing Ѳ also results in more 
false positives. One advantage of the union property is that there is 
no risk of false negatives since the overlap gives the perfect match 
if the SDR is within the set. However, it does increase the chance 

of false positives [2], by increasing the number of active bits in the 
resultant SDR. 
With the help of SDRs, we have developed a powerful heuristic 
search for graph isomorphism in O(l) time, l is the SDR length 
which is a constant in our case. A variation of exact match 
isomorphism is called subgraph isomorphism. Here one must 
determine whether a graph contains a subgraph, which is 
isomorphic to another graph. This problem is also known to not be 
solvable in polynomial time. Here, we choose k nodes’ subgraph 
out of a big graph of n nodes in O(nk) time and with the help of 
SDRs, do the matching in O(1). The k nodes' subgraphs respect the 
hierarchy. For efficient image matching, an SDR should be 
invariant to position, scale, brightness and, rotation of an object. In 
this paper, our SDR provides both scale and position invariance.  
The graph-matching algorithm using our SDR is shown in Figure 
9. In the future, we can apply this technique of merging graph 
matching and SDRs to find a solution for probabilistic matching. 
We can also use the techniques to find matching patterns in an 
image using associative memory. 

 

      
Figure 9: Graph matching algorithm 

 
4. Experiments 

We start with 2D Blocks World images in our experiment. Here we 
aim to show that our method detects objects and generates the 
hierarchical graph in an image (section 4.1) which is used to create 
sparse distributed representations of all the components of the 
graphs (section 4.2). Further, the resulting SDRs for the images are 



 

used in graph matching (section 4.3). The algorithm in Figure 9 is 
tested on a number of 2D blocks world images which were 
generated randomly with some specific directions to meet our 
application’s requirement. Here, we show the results of applying 
the algorithm to a few images. 

4.1 Object Detection and Graph Generation 
In this section, we are showing the detected objects and their 

generated graphs for the blocks world images. In figure 10, we 
show two images with only one object made of composite parts. In 
figure 10 a) is the image and b) is the generated graph. Here the 
graph is only between the object’s parts and how they are connected 
to each other. Figure 11 shows two image graphs with more than 
one objects, made of some parts, far enough to be separate objects. 
The lowest level (level 1, represented by blue) of the graph 
represents connectedness between the basic detected parts, which, 
in turn, make complex objects in the image. The second level 
(represented by red) shows the graph between more complex 
objects. The third level is the image itself. Because of our simple 
Blocks World images and to illustrate algorithm operation, we 
assume three levels of hierarchy. However, the number of levels 
can be increased with the complexity of an image. 

 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

4.2 Sparse Distributed Representation 
The generated SDRs are large binary vectors representing the 
important attributes of the objects. Each detected part in the image 
has an SDR of length l. The length of the SDRs is large compared 
to the active number of bits. For limiting the size of the SDR, we 
assume that maximum connected nodes and maximum number of 
edges for a node are 10. The height and width can be in a range 
from 1 to 360. To represent the very sparse SDRs, we show only 
the indices of ON bits. The computation with SDRs is memory and 
time efficient as the computation happens only with the active bits. 
Figure 12 shows the SDR of object 0 in figure 11’s image graph 2. 
Each and every bit has semantic meaning. Starting some bits 
represent the object information and rest of the bits represent the 
connected neighbors’ information and their relative position with 
the object.  
 
 
 
 
 

Figure 12: SDR with active bits indices. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

Figure 10: Images with one object and generated graphs. 

Figure 11: Images with multiple objects and their generated graphs 



 
 

 
 

4.3 Graph Matching 
In this section, we calculate the match between the generated 
graphs using SDRs overlap. In figure 13, we take two graphs and 
check whether the first graph contains a graph, which is isomorphic 
to the second graph. This demonstrates whether the object present 
in the second image exists somewhere in the first image. Here, we 
also show that this check is independent of the graph/object indices. 
As one can see in the images, some of the detected parts in the 
second image are indexed differently indices in the first image, 
which does not affect the final result. This match also demonstrates 
the scale and position invariance. For the graphs in figure 13, image 
1 and image 2 have two and one object respectively in level 2 
represented by red color. We take one object SDR of graph 1 at a 
time and compare it with the graph 2 SDR, which realizes a match. 
 
 
 
 
 
 
 
 
 
 
 
For the given images in figure 13 the SDR overlap exceeds the 
threshold. We conclude that graph 2 is sub-graph isomorphic to 
graph 1 which also means that the object in the second image exists 
in the first image. 
It should be noted, that such matching can be done in a 
straightforward manner by cortical-like associative memories. 
 

4.4 Result Analysis 
Table 1: Result Analysis: Techniques and their complexity 

Algorithm Complexity 
Graph Isomorphism 

 
NP-intermediate 

 
Sub-graph Isomorphism NP-Complete 

Approximate Graph 
Isomorphism w/SDR 

 

O(1) 
 

Approximate Sub-graph 
Isomorphism w/ SDR 

Choosing a k node subgraph out of a 
big graph with n nodes – O(nk) and 
matching subgraph with k nodes is 

O(1) 
 

5. Conclusion 
Object recognition continues to be the most important capability in 
computer vision.  Traditional object recognition techniques were 
based on capturing complex features, but the features were mostly 
treated as unrelated in any way, the “bag of features” approach.  
The actual structure of the features with respect to each other was 
rarely attempted, though there has been some work in this area [43, 

46]. The bag of features approach loses important information 
about the structural relationships of the features with respect to each 
other, for example, the spatial relationship between the limbs of an 
animal or the formation and shape of vehicles.  The structure 
captured by our SDR contains important information that may help 
with object recognition and complex variations of it are most likely 
used in primate vision. Deep networks appear to limit how much 
structure they capture.  And, they are easily fooled with minor 
modification to test images [48].  These failures often have to do 
with a common pattern in an arbitrary position a “bag of features” 
kind of mistake. 
Graph techniques, when paired with biologically inspired 
characteristics, have the potential to be an effective method for 
object recognition. These techniques leverage the information 
about the connectedness between the features, i.e., the “structure”  

 
 
 
 
 
 
 
 
 

 
of an image rather than the traditional methods in which we have 
no connectivity between features and objects of the image. 
In this paper, we have presented a novel technique to perform 
object detection and pattern matching in images with the help of 
graph algorithms and Neuromorphic computing techniques. With 
these techniques, we can identify connections in images and 
represent those as graphs. This enables us to use many graph-based 
algorithms for this pattern matching in images. We showed that we 
can perform approximate graph matching in O(1) time with the 
SDR representations, and further choose k nodes subgraph in O(nk) 
and perform subgraph matching with O(1), whereas the classic 
techniques take a non-polynomial amount of time. Moreover, we 
can also identify partial matching in images based on inherent 
properties of SDRs. This work shows a way of using graph-based 
techniques for object recognition related tasks in images and 
demonstrates the use of Neuromorphic computing techniques for 
providing orders of magnitudes of speedups. 
The next step in this work is to map the derived SDR to a 
biologically inspired associative memory, which will allow us to do 
approximate object mapping in the case where parts of the objects 
are occluded or noisy. 
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