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1  | INTRODUC TION

Soybean rust, caused by the fungus Phakopsora pachyrhizi, is 
one of the most damaging diseases of soybean (Glycine max; 
Hartman et al., 2015). In Brazil, since its discovery in 2002, the 
disease has caused tremendous losses due to yield reduction 

and increased control costs (Godoy et al., 2016), as well as indi-
rect losses due to the development of resistance to fungicides 
in the fungal population (Dalla Lana et al., 2018). Regional to 
local management practices such as mandatory soybean-free 
periods and early sowing of short-cycle cultivars help to reduce 
inoculum levels, but an effective control is only achieved using 
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Abstract
Soybean rust (SBR), caused by Phakopsora pachyrhizi, is the most important yield-
damaging fungal disease of soybean due to severe reduction in healthy leaf area and 
acceleration of leaf fall. In experimental research, SBR severity is estimated visually 
aided/trained by a standard area diagram (SAD) developed and validated during the 
mid-2000s (Old SAD). In this study, we propose a new SAD set for SBR with six true-
colour diagrams following linear increments (c. 15% increments) amended with four 
additional diagrams at low (<10%) severities, totalling 10 diagrams (0.2%, 1%, 3%, 5%, 
10%, 25%, 40%, 55%, 70%, and 84%). For evaluation, 37 raters were split into two 
groups. Each assessed severity in a 50-image sample (0.25%–84%), first unaided and 
then using either the Old SAD or the New SAD. Accuracy, precision, and reliability 
of estimates improved significantly relative to unaided estimates only when aided by 
the New SAD (accuracy >0.95). Low precision (<0.78) and a trend of underestimation 
with an increase in severity were the main issues with the Old SAD, which did not 
differ from unaided estimates. Simulation to evaluate the impact of the errors by 
different methods on hypothesis tests, showed that the new SAD was more power-
ful for detecting the smallest difference in mean control (e.g., 70% vs. 65% disease 
reduction) than the Old SAD; the latter required a 2-fold increase in sample size to 
achieve the same power. There is a need to improve some SADs, taking advantage of 
new knowledge and technology to increase accuracy of the estimates, and to opti-
mize both resource use efficiency and management decisions.
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sequential fungicide sprays during the season (Scherm et al., 
2009; Dalla Lana et al., 2018).

The disease reduces healthy leaf area and, at high intensity, accel-
erates leaf senescence and defoliation. The proportion of diseased 
leaf area (severity) is the main variable used to compare treatments 
(e.g., fungicides and cultivars) for suppressing the disease, protecting 
yield (Scherm et al., 2009; Godoy et al., 2016; Dalla Lana et al., 2018), 
and to predict yield losses (Dalla Lana et al., 2015).

Symptoms of the disease appear as numerous tiny necrotic areas 
where individual clusters of pustules are formed, surrounded by a 
chlorotic halo of variable size. This pattern of symptoms is assumed 
to affect the precision of the estimates, especially for low severi-
ties (Bock et al., 2016). For reducing errors and standardizing visual 
severity estimation of SBR, a standard area diagram (SAD) was de-
veloped and validated during the mid-2000s (hereafter Old SAD; 
Godoy et al., 2006). The Old SAD is composed (as published) of six 
digitally enhanced two-grey colour images of soybean leaflets with 
severity values incrementing logarithmically, which conformed to 
the current concept of SAD technology at the time (Del Ponte et al., 
2017). The Old SAD has been used extensively to standardize ratings 
across raters of the national uniform fungicide trial (UFT) network. 
Visual estimates of severity are provided in a 10-leaflet sample taken 
from each of three canopy heights per plot, which are averaged at 
the plot level (Dalla Lana et al., 2018).

A recent review of SAD research conducted during the last 
25 years highlighted methodological trends in both the development 
and the validation of SAD technology (Del Ponte et al., 2017). These 
included development of sets with an increased number of diagrams 
in (approximately) linear increments (as opposed to log increments), 
digital drawings or true-colour photos, and novel statistical methods 
for assessing accuracy, precision, and reliability of the estimates (Del 
Ponte et al., 2017). Moreover, the use of photographic images has 
increased more recently compared with black and white drawings, 
due to the enhanced realism of the symptoms (Schwanck and Del 
Ponte, 2014; Del Ponte et al., 2019). Nonetheless, it is yet to be clari-
fied for which kind of symptoms such enhancement is advantageous 
and whether it leads to improvements in accuracy of practical signif-
icance. Research in this topic is scarce and results are inconsistent 
(Buffara et al., 2014; Schwanck and Del Ponte, 2014).

Historically, the use of logarithmic increments of severity was 
adapted from an early concept of an ordinal disease scale (H-B 
scale) developed based on the claim that raters were not capable 
of differentiating severity at the midrange (25%–50% or 50%–75%). 
Thus, linear scales would be of limited value and slow down assess-
ments (Horsfall and Barratt, 1945). For diseases where the maximum 
severity is lower than 50%, the number of diagrams has probably 
been affected by the H-B scale paradigm; hence, severity has been 
under-represented from the midrange to upper limits (Del Ponte et 
al., 2017). In fact, raters seem to be capable of distinguishing among 
severity values at the midrange at magnitudes that vary according to 
the kind of symptoms (Nutter and Esker, 2006). The use of linear in-
crements has increased in recent years, but the H-B scale paradigm, 
claiming the Weber-Fechner law of visual acuity, persists in a few 

recently developed SAD studies (Camara et al., 2018; Fantin et al., 
2018; Costa et al., 2019). Depending on the patterns of symptoms, 
overestimation is more common at the lower end (<10% severity). 
To minimize those errors, it has been suggested that linear scales or 
SADs should be amended with a few severity values at the lower end 
(Bock et al., 2010b; Schwanck and Del Ponte, 2014). This approxi-
mately linear scale has been referred to as “amended linear” (Chiang 
et al., 2014; 2016b). Mitigation of overestimation in that range is 
critical due to its negative impact on hypothesis tests verified using 
simulation (Chiang et al., 2016a; 2016b). However, it is also import-
ant that underestimation is minimized at the upper limits (Chiang et 
al., 2016a), particularly in experimental research to evaluate disease 
control efficacy (percentage reduction relative to the untreated), 
which requires estimation of severity values that rarely reach 100% 
(thus no error). Simulation has been used to evaluate the effect of 
sources and magnitude of errors, when using different assessment 
methods and experimental designs, on the hypothesis tests (Bock 
et al., 2010a; Chiang et al., 2016a; 2016b). The combined effect of 
errors of SAD-aided estimates of severity for two treatments of in-
terest, relative to a nontreated check, remains to be explored.

In this study, we hypothesized that errors of severity estimates 
provided unaided or aided by an Old SAD (Godoy et al., 2006) are 
reduced if an amended linear SAD represented by true-colour pho-
tographs is used as an aid. In addition, the impact of the errors of 
the estimates when using the different methods on hypothesis tests 
of treatment comparison was assessed using a simulation approach 
(Bock et al., 2010a; Chiang et al., 2016a). The power of the tests was 
compared for scenarios of incremental differences in disease control 
efficacy between two treatments and increasing number of samples 
within a replicated plot. Increased understanding of the effects of 
assessment methods is critical to ensure that the best options are 
chosen to optimize resource use.

2  | MATERIAL S AND METHODS

2.1 | Sampling and image preparation

Diseased soybean leaves were sourced from (a) naturally infected 
plants of various cultivars evaluated in experimental plots at 
Embrapa Soja station in Londrina (PR, Brazil); and (b) artificially 
inoculated greenhouse plants. For the latter, soybean plants of 
a susceptible cultivar (NA 5909 RG) were grown in the green-
house under high humidity. A spore suspension of P.  pachyrhizi 
(105 spores/ml) was spray-inoculated on the plant leaves during 
flowering (R1) stage. A total of 200 leaves displaying incremen-
tal severity levels, from minimum to maximum as perceived visu-
ally, from both field and greenhouse conditions, were scanned 
using a Hewlett Packard scanner (Model 2130) at a resolution 
of 300 dpi. The proportion of leaf diseased area was determined 
using QUANT image processing and analysis software (Vale et 
al., 2003). Dozens of photographic images were taken from the 
diseased (necrotic and chlorotic) and healthy portions of tissues 
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of several leaves as well as the background. The RGB (red, green, 
blue) coordinates for these samples were used to fit a discriminant 
function, which was further used to estimate the percentage dis-
eased area in the whole set of images after excluding the non-leaf 
image background. These values were assumed to best represent 
the actual severity value. The minimum and maximum severity val-
ues were 0.2% and 84%, respectively.

2.2 | SAD development

The New SAD was designed with 10 severity values following an 
amended linear scale: 3 diagrams were amended between the min-
imum (0.2%) and 10% severity, and 7 other diagrams were defined 
at approximately 15-percentage point intervals (Figure 1). The 
leaflets chosen to represent each value were selected from the 
original sample based on their proximity to the severity levels, leaf-
let integrity, as well as shape and distribution of the lesions typical 
of the most common pattern for a specific severity level. These 
images were slightly enhanced digitally using PhotoImpression 
(ArcSoft) for adjusting severity to match the predefined severity 
value.

2.3 | SAD evaluation

A two-step process was conducted to evaluate the New SAD. 
First, 37 raters with no experience in quantifying plant diseases 
were instructed to assign a percentage value representing the 
relative area of the leaf depicting lesions (necrotic area + chlorotic 
halo) without any aid. Each image of a set of 50 photographic im-
ages of soybean leaflets, with actual severity ranging from 0.25% 
to 84%, embedded in PowerPoint slides, was projected on the 
screen for 30 s. The 50-image validation data set is publicly avail-
able at http://osf.io/pg6qe​. After assessing all images, a 15-min 
break was taken and each rater was randomly assigned one of the 
two groups. One performed the visual assessments using the Old 
SAD (Godoy et al., 2006) as an aid during the assessment, and the 

other used the New SAD (Figure 1). The order of the images was 
randomized in the assessments.

2.4 | Accuracy and reliability of the estimates

The overall accuracy (same as agreement) of the estimates, which 
refers to how close the severity estimates are to the actual severity 
(Madden et al., 2007; Bock et al., 2016), was determined for each 
rater and condition (unaided and SAD-aided) based on the Lin's con-
cordance correlation coefficient (LCC, ρc; Lin, 1989), as suggested 
for plant disease data (Madden et al., 2007; Bock et al., 2010b). In 
addition, the two components of overall accuracy (precision and bias 
correction factor) were explored to investigate the ramifications of 
errors.

2.5 | Comparison of accuracy and reliability 
across methods

A generalized linear mixed model was fitted to LCC parameters data 
for each rater. Assessments (unaided or SAD-aided) and raters were 
considered fixed and random effects in the model, respectively. The 
least square means of each LCC parameter across the assessment 
methods condition were compared based on Tukey's honestly sig-
nificant differences at 5% level of significance.

The inter-rater reliability, or reproducibility, was evaluated using 
two different methods: the intraclass correlation (ICC; Shoukri and 
Pause, 1999) with decisions prior to the analysis made as described 
elsewhere (Schwanck and Del Ponte, 2014), and the overall concor-
dance correlation (OCC), which is an improved LCC method for mul-
tiple raters (Barnhart et al., 2002). The ICCs were compared based on 
the confidence interval.

To check whether the two groups show similar baseline accuracy, 
so that the differences in estimations were not due to one group 
being inherently more apt at providing accurate estimates, the mean 
estimate of LCC parameters for the unaided estimates were com-
pared between the two groups of raters.

F I G U R E  1   Standard area disease 
set (SAD) for aiding visual estimates of 
rust (Phakopsora pachyrhizi) severity 
on soybean (Glycine max) leaves. The 
numbers represent percentage leaf 
area showing symptoms (necrosis and 
chlorosis). [Colour figure can be viewed at 
wileyonlinelibrary.com]

http://osf.io/pg6qe
www.wileyonlinelibrary.com
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The relationship between percentage point error (deviation) of 
the estimates (estimate minus actual) and actual severity, as well as 
the density distribution of errors of estimates, were depicted for 
each of the four groups. Finally, the functional relationship between 
the gain/loss (SAD aided – unaided) in overall accuracy and baseline 
accuracy (unaided) for each rater was also explored.

2.6 | Simulations and the effect of SAD on 
hypothesis testing

The impact of the error of visual estimates of disease severity using 
either SAD was assessed via power analysis of simulated experi-
ments. In brief, we ran virtual experiments to compare the control ef-
ficacy (percentage disease reduction relative to a nontreated check) 
between two treatments of interest (hereafter A and B) at different 
scenarios resulting from the combination of three situations: (a) four 
assessment methods, each using an “average rater” with no or differ-
ent bias in severity estimation (details in next section); (b) incremen-
tal differences (Δ) in percentage point (p.p.) control efficacy (Δ = 0, 5, 
10, or 15 p.p.) between the two fungicides; and (c) incremental num-
ber of leaflets (n) sampled within each replicated plot (5–55, by 10).

For all experiments, severity in both the nontreated check and 
the percentage control efficacy were fixed at 70%. These values 

were defined based on the fact that the leaf is more likely to fall 
when the severity is around 70%–80% (Kumudini et al., 2008). 
Finally, 70% was used to represent a reduction of disease by means 
of any treatment. For soybean rust, this value is within the range of 
efficacies determined for fungicides evaluated for soybean rust in 
experimental trials (Dalla Lana et al., 2018). A total of 160 replicated 
experiments were simulated and two treatments were compared 
statistically with regards to control efficacy, with special interest in 
the power of the assessment methods, or the probability of obtain-
ing a significant result with the correct sign.

2.7 | Power analysis

The simulated experiments were arranged in a completely rand-
omized balanced design with five field plots as replicates. We used 
a t test, similar to previous studies (Bock et al., 2010a; Chiang et 
al., 2014), to compare the control efficacy of the two treatments 
for each scenario that resulted from the combination of the above-
mentioned situations. We were interested in detecting differences 
of control efficacy at incremental magnitudes (effect size), includ-
ing the zero difference. A total of 2 × 104 Monte Carlo simulations 
were performed and the t test p value extracted from each run. 
The proportion of p ≤ .05 gives the power [p(rejectH0 vs H1istrue)], 

F I G U R E  2   (a) Relationship between actual and estimated severity of rust (Phakopsora pachyrhizi) on soybean (Glycine max) leaves without 
Old SAD (UN_Old) and without New SAD (UN_New); (b) relationship between bias correction factor (accuracy) and Pearson's r (precision); 
and (c) box plot of the Lin's concordance correlation coefficient (LCC) parameters statistics for raters' estimations of severity without Old 
and New SAD. [Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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or the probability that the test rejects the null hypothesis  
(H0) when a specific alternative hypothesis (H1) is true. The higher 
the power, the lower the probability of making a type II error,  
and thus more likely to detect an effect if it actually exists  
(Ellis, 2010).

2.8 | Error due to the assessment method

The first source of error was due to bias in the estimates at the 
leaflet unit when using the different methods (except for digital 
analysis). The methods compared based on estimates by an “aver-
age rater” were: (a) the unaided (no SAD) situation; (b) using the Old 
SAD (Godoy et al., 2006) as aid; (c) using the New SAD; and (d) the 
digital image analysis, assumed to have no error. The errors for each 
method based on estimates by an “average rater” were conditioned 
to actual severity as suggested in Figure 2a, which depicts trends 
in the errors over a range of actual severity. The errors were pre-
dicted from the fit of a linear regression model to the data on the 
relationships between error and the actual severity (Figure 3a–c). 
The parameters of the linear regression model fitted to data of each 
method are shown in Table 1.

2.9 | Error due to intraplot severity heterogeneity

The second experimental error was due to the intraplot hetero-
geneity of soybean rust severity, which shows a vertical incre-
mental disease gradient from the bottom to the top of the canopy 
(Garcés and Forcelini, 2013). We assumed severity (S) values to 
be β-distributed Sij  ~  B(αS, βS) with mean μS and standard devia-
tion (due to experimental error) σS. The shape parameters of the β 
distribution are given by

where μ and σ2 are the respective mean and standard deviation of se-
verity. These equations will be used for calculating the shape param-
eters for further variables. The standard deviation was a function of 
mean severity and was given by

The parameter (0.006) gives a maximum σS = 15% at 50% sever-
ity, which was obtained from literature reports of severity variation 
at three canopy heights (Garcés and Forcelini, 2013).

2.10 | Simulation of control efficacies

Control efficacy (C) values were assumed to be normally distributed 
Cij∼N(�C,�

2

C
) with mean μC and standard deviation σC (i = 5, 10, …, n, 

n being the number of sampled leaflets, and j = 1, 2, …, R, R being 
the number of replicates in the experiment). Because n leaflets are 
sampled in each replicate j, the total number of samples is given by 
their product nR.

Given the control efficacies Cf,ij of treatment (f={A, B}) under 
comparison, the percent severity in the treatment (Sf,ij) is given by

The estimate of severity (s) in the treatment (f) aided by each 
method (method =  {no, new, old}), denoted as sf,ij,method and severity 
for the check treatment, denoted as schkij,method which varies with 
severity, due to the SAD error.

The parameters of the linear models for estimating the mean 
error and the standard deviation, conditioned to actual severity, for 
each method, are shown in Table 1 and Figure 3. The mean severity 
of each replicate of each treatment was given by

schkj and sf,j were also calculated similarly to be used in the next 
step. The control efficacies for each treatment before adding the 
method-derived error (c*, hereafter the unbiased estimate) and the 
biased control efficacy due to the method-derived errors (c) is given 
by

2.11 | Data processing and availability

All data processing and analyses, as well as graphical work, were 
performed with R v. 3.5.1 (2019-09-13). Several R packages of the 
tidyverse (Wickham et al., 2019) were used to prepare, transform, 
and visualize the data. R packages for conducting some statistical 
analyses included lme4, emmeans, epiR, irr, car, and broom. The R 
scripts with text annotations were prepared as R Markdown doc-
uments (Xie et al., 2018) and all files were organized as a research 
compendium (Gentleman and Temple Lang, 2007) structured as 
an RStudio project (Gandrud, 2016). To encourage and facilitate 
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reproducibility, a website was generated to navigate through  
the documented code. All files, including the photographic  
images used for validation, are freely available at https​://osf.
io/3zmv8/​.

3  | RESULTS

3.1 | Baseline accuracy

A positive linear relationship was found between unaided esti-
mates, using either the Old or the New SAD, and actual severity, 
and the pattern of the relationship was similar between these two 
groups of raters (Figure 2a). The measures of precision (r) and bias 
correction factor (Cb) of the estimates varied among raters within 
each group and were related in a similar linear fashion between 
the two groups (Figure 2b). Furthermore, the distribution of all 
the LCC parameters suggested that the two groups of raters were, 
on average, similar in their baseline accuracy (Figure 2c). This was 
confirmed by the non-rejection of the null hypothesis for all LCC 
parameters when comparing the unaided estimates of the two 
groups (Table 2).

3.2 | Effect of SAD on accuracy, precision, and 
reliability statistics

When using either SAD, the accuracy and precision of the severity 
estimates were improved in relation to unaided estimates only for 

F I G U R E  3   Relationship between the error (estimate minus actual value) of visual estimates and actual (software-based) estimates of 
soybean rust severity assessed for a collection of 50 leaflets by three groups of raters where the assessments were made unaided (a), 
aided by the Old SAD (b; Godoy et al., 2006) or aided by the New SAD (c). The dashed line represents the no error line and the solid line 
is the fit of the first-order linear model to the data, which was assumed to represent an “average rater” (see model parameters in Table 1). 
(d–f) Relationship between actual (software-based estimates) severity and the mean standard deviation of estimates across raters (17–19 
raters each condition) grouped as in (a) to (c). The coloured line represents the fit of the second-order linear model to the data (see model 
parameters in Table 1). [Colour figure can be viewed at wileyonlinelibrary.com]

TA B L E  1   Parameters for two linear regression models: a first-
order model for predicting the mean (μ) error of visual severity 
estimates conditioned to actual severity (S), for a sample of at 
least 18 raters; and a second-order model for predicting the 
standard deviation (σ) of the visual estimates, by at least 18 raters, 
conditioned to values of actual severity in a sample of 50 soybean 
leaflets. The models were fitted to estimates obtained unaided (no 
SAD), aided by the Old SAD (Godoy et al., 2006) and a New SAD 
(this study)

Method Equation

Unaided �=S+1.145+0.1002S

σ=−1.833+0.7794S−0.00715S2

Old SAD �=S−1.039−0.11694S

�=−0.114+0.6151S−0.006718S2

New SAD �=S+1.411−0.03738S

�=1.061+0.199S−0.001925S2

Note: S represents the actual severity value estimated by image analysis.

https://osf.io/3zmv8/
https://osf.io/3zmv8/
www.wileyonlinelibrary.com
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the group of raters that used the New SAD (Table 2). The lowest 
absolute percentage point errors were observed for this group; 
most deviations were within ±15 p.p. about the actual value. For 
the Old SAD group, errors concentrated within ±30 p.p. about the 
actual severity value (Figure 4a). In general, when not using the 

SAD, both groups tended to slightly overestimate severity, with 
the largest absolute errors, either positive or negative, concen-
trated in the range of 20%–60% actual severity. In general, raters 
of the Old SAD group tended to underestimate severity and the 
magnitude of the errors increased with the increase in actual 

Method N ua υb Cb
c rd ρc

e

New SAD 18 0.01 a 0.99 a 0.99 a 0.96 a 0.96 a

Old SAD 19 −0.26 b 0.98 a 0.92 b 0.77 b 0.83 b

Unaided New 18 0.19 c 1.23 b 0.92 b 0.77 b 0.82 b

Unaided Old 19 0.21 c 1.23 b 0.90 b 0.72 b 0.80 b

Note: Means followed by the same letter in the column are not significantly different (Tukey's HSD, 
5% level).
aLocation shift (u, 0 = no bias relative to the concordance line). 
bScale shift (υ, 1 = no bias relative to the concordance line). 
cBias correction factor (Cb) measures how far the best fitted line deviates from 45° and is a 
measure of accuracy. 
dCorrelation coefficient as a measure of precision (r). 
eLin's concordance correlation coefficient (LCC), that combines both measures of precision (r) and 
accuracy (Cb) to measure overall accuracy (agreement) with the true value. 

TA B L E  2   Generalized linear mixed 
model analysis of the statistics of the Lin's 
concordance correlation coefficient (LCC) 
parameters that represent accuracy (types 
of bias), precision (correlation coefficient) 
of percentage estimates of severity 
of soybean rust by 37 inexperienced 
raters during two assessments unaided, 
or with the use of a new standard area 
diagram set (New SAD) or an Old SAD 
(Godoy et al., 2006) as an aid during visual 
assessment of disease severity

F I G U R E  4   (a) Scatter plot of the relationship between absolute error (estimates minus actual) and actual severity; and (b) their respective 
density plots, of visual estimates of soybean rust severity provided by two groups of raters. Each group, composed of inexperienced raters, 
first provided visual estimates of severity without an aid and then aided with either the Old SAD (Godoy et al., 2006; 19 raters) or the New 
SAD (this study; 18 raters). A set of 50 soybean leaflets with actual severities ranging from 0.25% to 84% were used. The smooth red line in 
(a) is the result of a local polynomial regression fitting (Loess). [Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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severity (Figure 4a,b). The trend of underestimation was also con-
firmed by the negative mean value of the location-shift that repre-
sents constant bias (Table 2).

Results of the ICC and OCC statistics showed an overall improve-
ment in the inter-rater reliability for the group of raters that used 
the New SAD (Table 3). In fact, the between-rater variation in the 
concordance measures, when inspected individually, was highest for 
the Old SAD group, with the precision and overall accuracy of all rat-
ers being consistently below 0.9 (Figure 5a). While bias correction 
factor was above 0.9 for most raters, irrespective of the SAD, the 
precision (Pearson's r) varied the most among raters using the Old 
SAD (r =  .78), which was the main reason for only a fair means of 
overall accuracy (ρc = 0.84), not differing from the unaided estimates 
(Table 2). Moreover, the use of the Old SAD was detrimental (loss of 
overall accuracy up to −0.15) for around one-third of the raters who 
had shown good levels of baseline (unaided) accuracy (Figure 5b).

3.3 | Power analysis of the assessment methods

Use of simulation to ascertain the effect of bias of the two SAD-
aided estimates, considering an “average rater”, the power to de-
tect no difference (Δ = 0 p.p.) in control efficacy was not greater 
than the 0.05 (α) regardless of the method (Figure 6a). The New 
SAD was much more powerful to detect differences in fungicide 
efficacy larger than zero, especially for the lowest tested differ-
ence (Δ = 5 p.p.) in control efficacy (Figure 6b). For this same Δ, the 
power of the Old SAD did not differ from unaided estimates; 40 
samples would be required to detect the difference with a power 
of 0.8. Using the New SAD and the unbiased method (image analy-
sis) the sample size can be reduced to 20 and 10 units, respectively, 
for reaching the same power for Δ = 5 (Figure 6b). As expected, 
the larger the difference in efficacy (Δ  =  10–15), the lower the 
number of samples to achieve the same power (Figure 6c,d). For 
those larger differences, a sample size as low as 10 using the Old 
SAD and only five using the New SAD is sufficient to achieve the 

0.8 power. For the unbiased method, five samples would be suf-
ficient for that range of difference.

4  | DISCUSSION

The development of a New SAD for aiding visual assessment of soy-
bean rust severity was motivated by recent developments in SAD 
technology as well as best practices for development and statistical 
evaluation of the tool (Del Ponte et al., 2017). Although validated and 
considered suitable for aiding soybean rust severity estimation, we an-
ticipated a few issues with the Old SAD. First, besides using a rather 
small number of inexperienced raters (four) during validation, infer-
ences about accuracy and precision of aided estimates were based 
on hypothesis tests applied separately to the linear regression coef-
ficients at the rater rather than the group level, an approach that was 
deemed inappropriate in favour of concordance analysis (Madden et 
al., 2007; Bock et al., 2010b). In the Old SAD paper, the increase in 
accuracy was based on two results: (a) apparent decrease in the er-
rors of estimates; and (b) lower number of raters whose null hypothesis 
of the slope being equal to 1 was not rejected. However, the inter-
cepts for all raters were positive and differed from 0 irrespective of 
the method, evidencing a location bias (Godoy et al., 2006). Moreover, 
although the precision of the SAD-estimates generally increased, the 
calculated average (r = .81) across inexperienced raters was very close 
to our estimate of precision when using the same SAD (r = .78). These 
observations help to explain why the aided estimates with the Old SAD 
did not differ from the unaided estimates in our study using a larger 
number of raters and hypothesis tests on concordance statistics at the 
group level. Finally, we used a much larger number of leaflets display-
ing severity larger than 40% in our validation data set, while only seven 
were used in the previous study (Godoy et al., 2006), thus confirming 
that the errors remained at the upper severity levels.

The general poor performance of the Old SAD compared with the 
New SAD may be due to several issues. First, the Old SAD was de-
veloped based on the (disproven) assumption that the increments be-
tween severities should be based on the (nonexistent) Weber–Fechner 
law (Nutter and Esker, 2006; Bock et al., 2010b). The Old SAD has six 
diagrams and only three from 18% to 78.5%, a range where the error 
of the aided estimates were kept at high magnitude, preventing raters 
from improving accuracy. There is a tendency for an increased number 
of diagrams in recent studies, which is related to the maximum severity 
(Del Ponte et al., 2017). The use of 10 diagrams with severity increasing 
following the amended linear (15% increment) concept (Chiang et al., 
2016a) proved sufficient to increase overall accuracy and reliability of 
the estimates at high levels (>0.95). Further increases in the number 
of diagrams are not encouraged because more choices can slow down 
assessment time duration (Bock et al., 2016). However, new technol-
ogy for delivering digital SADs, such as embedding them in tablet apps, 
which allows for interaction and data storage and processing, may open 
new possibilities and paradigms in SAD use (Del Ponte et al., 2019).

The amended linear SAD displaying true-colour images signifi-
cantly improved overall accuracy and interrater reliability. The use 

TA B L E  3   Measures of inter-rater reliability of severity estimates 
by 37 inexperienced raters during two assessments unaided, or 
with the use of a new standard area diagram set (New SAD) or an 
Old SAD (Godoy et al., 2006) as an aid to assessment of disease 
severity

Method

Intra-class correlation 
coefficient (ICC) ρ 
[95% CI]a

Overall concordance 
correlation (OCC)b

New SAD 0.94 [0.92–0.96] 0.940

Unaided New 0.83 [0.77–0.88] 0.759

Old SAD 0.81 [0.74–0.87] 0.736

Unaided Old 0.83 [0.77–0.89] 0.746

aCalculated with decisions of ICC model described elsewhere 
(Schwanck and Del Ponte, 2014). 
bOverall agreement statistics based on Lin (1989) and Barnhart et al. 
(2002) to evaluate agreement among multiple observers. 
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of true-colour photos may have contributed to the overall improve-
ment but we could not tell this effect apart because the SADs have 
distinct colour schemes. It would be instructive to further modify the 
New SAD and test whether a reduction in the number of colours is of 
any influence in the error of the estimates. A realistic representation 

of lesions may be of more importance for certain patterns, such as 
in the present disease in which the higher the number of lesions, 
the greater the chlorotic area. The topic merits further investigation.

The Old SAD has been widely recommended and used in soy-
bean rust field research, mainly to evaluate fungicide performance 

F I G U R E  5   (a) Distribution of bias correction factor (Cb), Pearson's correlation coefficient (r; precision), and overall accuracy (ρc) statistics 
for two groups of raters that used either the Old SAD (Godoy et al., 2006; 19 raters) or the New SAD (this study; 18 raters) as an aid during 
visual estimation of soybean rust severity on 50 leaflets (a). The gain/loss (ρc SAD-aided minus ρc unaided) in overall accuracy decreased with 
the increase in baseline accuracy (unaided; b, c). [Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E  6   Statistical power of four methods for assessing soybean rust severity determined by Monte Carlo simulations of a t test's 
p value for comparing the percentage control efficacy of two fungicides. Replicated (n = 5 plots) experiments were simulated for each 
method: unbiased estimates are based on digital analysis (no error), visual estimates with no standard area diagram (SAD; unaided) and two 
estimates using a New SAD (this study) and the Old SAD (Godoy et al., 2006). Each method, excepting the unbiased, has inherent errors of 
the estimation by an “average rater”, for scenarios combining incremental differences (percentage points): (a) Δ = 0, (b) Δ = 5, (c) Δ = 10, and 
(d) Δ = 15 in efficacy and incremental number of samples (leaflets) per plot (5–55, by 10 leaflets). While errors varied across the assessment 
methods, error due to intraplot heterogeneity of soybean rust severity was the same across methods. [Colour figure can be viewed at 
wileyonlinelibrary.com]

www.wileyonlinelibrary.com
www.wileyonlinelibrary.com
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in field experimentation (Scherm et al., 2009; Dalla Lana et al., 2018). 
Our results show that its use should be discouraged, not only be-
cause of a clear lack of benefit, but also because of the detrimental 
effect on the estimates of raters who were inherently more accu-
rate. Using simulation, we showed that the use of the New SAD 
may optimize resource use, especially by reducing sample size. In 
the disease assessment protocol of the UFTs for evaluating control 
efficacy, raters are instructed to collect 30 leaflets, 10 from each 
canopy height, and score severity at each leaflet aided or trained by 
Old SAD (Scherm et al., 2009). Results of our power analysis suggest 
an increase in sample size to at least 40 leaflets if the interest is in 
detecting differences in efficacy of at least five percentage points 
between treatments. With the New SAD, a reduction of sample size 
to 20 leaflets would result in considerable savings in time in large 
replicated experiments such as fungicide evaluations that usually 
compare 10–15 products. In a hypothetical situation where a rater 
would take 5 s, on average, to estimate and record severity on each 
leaf, 3.3 hr would be required to estimate severity in 2,400 leaflets 
for the entire experiment (15 treatments × 4 replicates × 40 leaves). 
With a two-fold reduction in sample size, the whole experiment 
could be evaluated in 1.6 hr.

Our results are in agreement with previous reports of in-
creasing type II errors due to increased bias in severity estimates 
(Christ, 1991; Todd and Kommedahl, 1994; Parker et al., 1995; 
Chiang et al., 2014; 2016a; 2016b). The simulation approach we 
used to evaluate the impact of bias on the power of hypothesis 
test was similar to other studies (Bock et al., 2010a; Chiang et al., 
2016a), but the difference here is that we focused on comparing 
control efficacy, not severity directly, thus simultaneously taking 
bias at both high (untreated check) and low (treated) severity into 
account. In conclusion, our results strongly discourage the use of 
the Old SAD. Because soybean rust researchers have become ac-
customed to estimating severity using a tool that introduces un-
desirable bias in the estimates and compromises resource use, it is 
urgent that the New SAD proposed here is adopted as a new stan-
dard and, ideally, that the soybean rust researchers are re-evalu-
ated and retrained.
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