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Abstract 

Trials of interventions that aim to slow disease progression may analyse a continuous outcome by 

comparing its change over time – its slope – between the treated and the untreated group using a 

linear mixed model. In order to perform a sample size calculation for such a trial, it is necessary to 

have estimates of the parameters that govern the between- and within-subject variability in the 

outcome, which are often unknown. The algebra needed for the sample size calculation can also be 

complex for such trial designs. We have written a new user-friendly Stata program, slopepower, 

that performs sample size or power calculations for trials that compare slope outcomes. The 

package is based on linear mixed model methodology, described for this setting by Frost, Kenward 

and Fox (“Optimizing the design of clinical trials where the outcome is a rate. Can estimating a 

baseline rate in a run-in period increase efficiency?”, Statist Med (2008) 27:3717–3731, DOI: 

10.1002/sim.3280). In the first stage of this approach, slopepower obtains estimates of mean 

slopes, together with variances and covariances from a linear mixed model fitted to previously 

collected user-supplied data. In the second stage, these estimates are combined with user input 

about the target effectiveness of the treatment and design of the future trial in order to give an 

estimate of either a sample size or a statistical power. In this paper, we present the slopepower 

program, briefly explain the methodology behind it, and demonstrate how it can be used to help 

plan a trial and compare the sample sizes needed for different trial designs. 

 

1. Introduction 

Sample size is a critical design consideration when planning a randomised controlled trial (RCT). 

Given an estimate of the target treatment effect, a formula for the variance of the treatment effect 

(which will depend on the trial design and analysis model), and the acceptable type I and type II 

error rates, it is calculated with a simple algebraic formula [1]. However, for some designs and 

analysis models the algebra to obtain the formula for the treatment effect variance can be complex, 

and it can be difficult to derive reasonable guesses for the parameters that appear in that formula.  

Consider a disease where progression can be measured by a continuous variable that is expected to 

deteriorate over time. Now consider an intervention whose aim is to slow that disease progression: 

we could use the continuous outcome as our trial outcome and see whether it responds to 

treatment over time. In such a trial, this outcome is typically recorded at participants’ baseline visits 

(prior to treatment allocation) and at least one follow-up visit with the aim of comparing randomised 

groups.  

One way to analyse such an outcome is to use a linear mixed model (LMM) [2-5]. In the simple case 

of a single follow-up measure and no missing data, a properly specified LMM can also be expressed 

as a Generalised Least Squares model [6] and will give the same estimated treatment effect as 

ANCOVA, albeit with reported standard errors that are only asymptotically equal [6-8]. When there 

are multiple follow-up times, LMMs offer a flexible way of modelling the data which allows various 

assumptions to be made about the way the outcome changes over time. For example, it could be 

assumed that the outcome will change linearly over time in both groups and hence that the 
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treatment difference between the groups is proportional to time [6]. LMMs also provide a 

convenient way of handling missing data, provided that a missing at random assumption can be 

made [9]. 

Specifying the treatment effect variance formula from such a LMM for a sample size calculation 

requires knowledge of all of the parameters that govern between- and within-subject variability in 

outcomes, which are often unknown. In such situations, it is possible to use data from any relevant 

previously conducted longitudinal studies to estimate these parameters. We introduce a new 

package slopepower that translates a two-stage approach for estimating these parameters and 

performing sample size calculations [6, 10] into a user-friendly program, appropriate for planning 

two-arm parallel trials comparing slopes where the treatment is expected to slow disease 

progression by a constant amount throughout follow-up and where the outcome is expected to 

change linearly over time. 

slopepower estimates sample size by first fitting a LMM to a user-supplied longitudinal dataset 

and extracting estimates of slopes and components of between- and within-person variability. It 

then combines these estimates with other user inputs, including the number and spacing of the 

visits planned, to calculate the required sample size for a proposed RCT. 

In Section 2 we summarise existing methodology for estimating sample sizes for this design; in 

section 3 we describe the slopepower command; in section 4 we provide some examples of how 

to use slopepower; and in section 5 we give a short conclusion. 

2. Methods 

2.1. Future trial set-up and analysis method 

It is important to base a sample size calculation on the model that will be used to analyse the trial. In 

this section, we therefore describe the sort of trial that slopepower could be applied to and the 

model that we assume will be used to analyse it. As described in Section 1, we consider a parallel-

arm trial in which the outcome of interest is a continuous measurement of disease that is expected 

to change over time and to respond to treatment. We consider that the outcome will be measured 

at a baseline visit and at least one follow-up visit, which occur at fixed time points for all 

participants.  

When analysing this outcome, we assume that it can be modelled as a linear change over time in the 

control group, with treatment acting to lessen that change proportionally over time. The analysis 

model can be written as follows: 

 𝑦𝑖𝑗 = 𝛽0 + 𝛽1𝑡𝑗 + 𝛽2𝑔𝑖𝑡𝑗 + 𝑎𝑖 + 𝑏𝑖𝑡𝑗 + 𝜖𝑖𝑗      (1) 

where 𝑦𝑖𝑗  is the outcome for person 𝑖 at time point 𝑗, 𝛽0 is the expected mean baseline 

measurement of the outcome in both arms, 𝛽1 is the change in the outcome over time (slope) in the 

control group, 𝑡𝑗 represents the times of the visits, 𝛽2 is the treatment effect (i.e. the difference in 

slopes between the arms), 𝑔𝑖 is an indicator which is 0 in the control group and 1 in the active group 

for the 𝑖th person, 𝑎𝑖  is a random person-level intercept, 𝑏𝑖 is a random person-level slope and 

𝜖𝑖𝑗~𝑁[0, 𝜎𝜖
2] is a normally distributed random error term. The person-level random effects are 

assumed to be distributed as follows: 

(
𝑎𝑖
𝑏𝑖
)~𝑁 [(

0
0
) , (

𝜎𝑎
2 𝜎𝑎𝑏

𝜎𝑎𝑏 𝜎𝑏
2 )] 



Note that in this model the baseline measure of the outcome, 𝑦𝑖0, is treated as a correlated 

outcome. We assume that randomisation is successful, so that there is no expectation of a 

difference between the two groups at baseline (i.e. at 𝑡0 = 0), and estimate a single intercept for 

both arms. After baseline, it is assumed that the outcome changes linearly over time, and that the 

treatment effect is therefore also constant and linear over time. In this formulation, the treatment 

effect is defined as the difference between the slope in the treated arm compared to that in the 

untreated arm. 

Once the analysis model is specified, the treatment effect and its variance and thus sample size 

requirements follow from the theory of linear mixed models [6]. A general formulation for a linear 

mixed model is 

𝒀|𝒖~𝑵[𝑿𝜷 + 𝒁𝒖 ; 𝑹] for 𝒖~𝑵[𝟎 ; 𝑮]      (2) 

where 𝒀 is the vector of outcome variables, 𝑿 is the design matrix, 𝜷 is the vector of fixed effects, 𝒁 

is the design matrix for the random effects, 𝒖 is the vector of random effects which are assumed to 

be distributed multivariate normally with mean 𝟎 and covariance matrix 𝑮 (note that this 𝑮 is a 

matrix and shouldn’t be confused with the group indicator 𝑔𝑖). Conditionally on the random effects, 

𝒀 is assumed to have covariance matrix 𝑹.  

Now let us rewrite our model in a form that is not conditional on the random effects 𝒖. Marginally, 

equation (2) implies that  

𝒀~𝑵[𝑿𝜷 ;  𝚺] where 𝚺 = 𝑹 + 𝒁𝑮𝒁𝑻       (3) 

Here 𝚺 is the variance-covariance matrix for unconditional 𝒀, and can be found from 𝑹, 𝒁 and 𝑮. 

Provided that there is a postulated fixed value for the variance-covariance matrix then  

𝜷̂ = (𝑿𝑻𝚺−𝟏𝑿)−1𝑿𝑻𝚺−𝟏𝒀       (4) 

and 

V(𝜷̂) = (𝑿𝑻𝚺−𝟏𝑿)−1         (5) 

Equation (4) can be used to estimate the treatment effect, while equation (5) defines a variance-

covariance matrix for the estimated fixed parameters that permits calculation of the standard error 

of the treatment effect.  

In order to illustrate these equations, let us relate matrix equation (2) to our particular analysis 

model in equation (1) for the simple case of a two-person trial (one person per treatment group) 

with a baseline visit and two follow-up visits. In this case, we see that: 

𝒀 =

(

  
 

𝑦10
𝑦11
𝑦12
𝑦20
𝑦21
𝑦22)

  
 
;𝑿 =

(

 
 
 

1 0 0
1 𝑡1 0
1 𝑡2 0
1 0 0
1 𝑡1 𝑡1
1 𝑡2 𝑡2)

 
 
 
;𝜷 = (

𝛽0
𝛽1
𝛽2

) ;𝒁 =

(

 
 
 

1 0 0 0
1 𝑡1 0 0
1 𝑡2 0 0
0 0 1 0
0 0 1 𝑡1
0 0 1 𝑡2)

 
 
 
;𝒖 = (

𝑎1
𝑏1
𝑎2
𝑏2

) ; 



𝑹 =

(

 
 
 
 

𝜎𝑒
2 0 0 0 0 0

0 𝜎𝑒
2 0 0 0 0

0 0 𝜎𝑒
2 0 0 0

0 0 0 𝜎𝑒
2 0 0

0 0 0 0 𝜎𝑒
2 0

0 0 0 0 0 𝜎𝑒
2)

 
 
 
 

;𝑮 =

(

 
 

𝜎𝑎
2 𝜎𝑎𝑏 0 0

𝜎𝑎𝑏 𝜎𝑏
2 0 0

0 0 𝜎𝑎
2 𝜎𝑎𝑏

0 0 𝜎𝑎𝑏 𝜎𝑏
2
)

 
 

 

𝜮 from equation (3) therefore becomes a 6 x 6 matrix of form: 

(
𝜮∗ 𝟎
𝟎 𝜮∗

) ; 

where 0 is a 3 x 3 matrix of zeros and: 

𝜮∗ = (

𝜎𝑎
2 + 𝜎𝑒

2 𝜎𝑎
2 + 𝑡1𝜎𝑎𝑏 𝜎𝑎

2 + 𝑡2𝜎𝑎𝑏
𝜎𝑎
2 + 𝑡1𝜎𝑎𝑏 𝜎𝑎

2 + 2𝑡1𝜎𝑎𝑏 + 𝑡1
2𝜎𝑏

2 + 𝜎𝑒
2 𝜎𝑎

2 + (𝑡1 + 𝑡2)𝜎𝑎𝑏 + 𝑡1𝑡2𝜎𝑏
2

𝜎𝑎
2 + 𝑡2𝜎𝑎𝑏 𝜎𝑎

2 + (𝑡1 + 𝑡2)𝜎𝑎𝑏 + 𝑡1𝑡2𝜎𝑏
2 𝜎𝑎

2 + 2𝑡2𝜎𝑎𝑏 + 𝑡2
2𝜎𝑏

2 + 𝜎𝑒
2

) 

and we can see that the algebra to obtain 𝑉(𝜷̂) from equation (5) is already fairly complex, even for 

this simple example. slopepower can perform the matrix calculations necessary to obtain 𝑉(𝜷̂) 

and hence the standard error for the estimated treatment effect, as we shall see in the next section.  

2.2. Predicting a sample size for a future trial 

Now that we have set up our trial design and analysis model, we can move on to how we would 

calculate a sample size for such a trial. For a sample size calculation, we need a formula for the 

variance of the treatment effect estimate, and we have shown how we can calculate this in the 

previous section. Since the matrices in equation (5) can get very large, we will use a simplifying trick 

– we shall first calculate the treatment effect standard error for a two-person trial 𝑠∗. Since the 

standard error for the treatment effect from a trial with 𝑁 independent subjects in each arm is 

𝑠∗ √𝑁⁄   it follows from standard theory that the sample size required to identify a postulated 

treatment difference 𝛽2 with statistical power 1 − 𝛽 and two-sided significance level 𝛼 is  

𝑁 = [
(𝑧1−𝛼/2+𝑧1−𝛽)𝑠

∗

𝛽2
]
2

       (6) 

Note that 𝑠∗ will depend on the design matrix 𝑿 (which is itself dependent upon the number and 

spacing of the trial visits) and the variances and covariances from 𝑹 and 𝑮 (𝜎𝑒
2, 𝜎𝑎

2, 𝜎𝑏
2 and 𝜎𝑎𝑏). 

Generally, appropriate values for these variances and covariances will not be known a priori, but 

estimates for these quantities can be obtained by fitting an appropriate linear mixed model to a 

previously collected data set. 

slopepower therefore estimates sample size in a two-stage process. In the first, it fits a linear 

mixed model to a user-supplied longitudinal dataset and extracts estimates of slopes and 

components of between- and within-person variability. In the second, it combines these estimates 

with other user inputs to calculate the required sample size for a proposed RCT, based on the 

analysis model given above in equation (1) and the sample size formula in equation (6).  

2.3. Stage 1: slope and variance parameter estimation 

slopepower uses Stata’s mixed command with the restricted maximum likelihood (reml) option 

to fit a linear mixed model relating the outcome to time since study entry, using data supplied by the 

user. The data could be one of three different types:  



1. Single group: dataset contains data from subjects with the disease of interest who are 

considered to be similar to the control group in the prospective trial. These may be subjects 

who are not receiving any treatment, for example, or are receiving standard of care. For 

simplicity, we shall refer to these subjects as untreated subjects. Such data could be from an 

observational study, or from the control arm of a previously conducted RCT. 

2. Two group, observational: optionally, the data can also include subjects without the disease 

(healthy controls).  

3. Two group, RCT: again optionally, the data can include subjects with the disease who are 

receiving an additional treatment, possibly the treatment of interest in the future RCT 

(treated subjects).  

First let us consider a single group data set that contains only untreated subjects with the disease 

(situation 1 above). The outcomes 𝑦𝑖𝑗  for person 𝑖 at occasion 𝑗 are modelled as a linear function of 

time elapsed since baseline 𝑡𝑖𝑗  with random intercepts 𝑎𝑖, slopes 𝑏𝑖, and residual errors 𝜖𝑖𝑗: 

𝑦
𝑖𝑗
= 𝛽0

′ + 𝛽1
′ 𝑡𝑖𝑗 + 𝑎𝑖 + 𝑏𝑖𝑡𝑖𝑗 + 𝜖𝑖𝑗         (7) 

(
𝑎𝑖
𝑏𝑖
)~𝑁((

0
0
) , (

𝜎𝑎
2 𝜎𝑎𝑏

𝜎𝑎𝑏 𝜎𝑏
2 )), 𝜖𝑖𝑗~𝑁(0, 𝜎𝜖

2) 

Note that we have marked the coefficients from the model in equation (7) with primes to distinguish 

them from the coefficients in the proposed analysis model for the future RCT from equation (1). 

Note also that time is now indexed by 𝑖 and 𝑗, since if the data are from an observational study then 

visit times might vary by participant. For each person, the baseline visit is at time zero: 𝑡𝑖0 = 0, and 

slopepower will rescale the times in the data set if this is not the case. 

The expected slope from the user-supplied data in equation (7) is 𝛽1
′ . This describes the expected 

change in the outcome per unit of time that would be seen without treatment in a person who has 

the disease under study. In this first stage, slopepower simply collects and stores the parameters 

from the model: 𝛽1
′ , 𝜎𝑎

2, 𝜎𝑏
2, 𝜎𝑎𝑏 and 𝜎𝑒

2, which will be used in stage 2 calculations. 

If the supplied dataset also includes healthy controls (two group, observational data, situation 2) 

then parameters are estimated separately in each group, such that the healthy controls have their 

own intercept, slope over time, and variances and covariances. It is possible to have slopepower 

run this model leaving out the random slopes over time for healthy controls (i.e. neglecting 𝜎𝑏
2 and 

𝜎𝑎𝑏 for healthy controls), since the variability over time in healthy controls can sometimes be very 

small, leading to convergence issues in a model that tries to estimate these parameters. 

Under this scenario, slopepower will store the slope (𝛽1,𝑢𝑠
′ ), variances and covariances 

(𝜎𝑎
2, 𝜎𝑏

2, 𝜎𝑎𝑏, 𝜎𝜖
2) from the untreated subjects. It will also store the slope (𝛽1,ℎ𝑐

′ ), only, from the 

healthy control group.  

Finally, if the data set is from a previous RCT and includes treated subjects (two group, RCT data, 

situation 3), then the model in equation (1) is used. In this model both groups have the same 

intercept, since we expect the two groups to have the same mean at baseline under randomisation, 

but the slopes over time are allowed to differ. The variance parameters are constrained to be the 

same in the two groups. 

In this final scenario, slopepower will store the difference between the slopes in the treated and 

untreated groups (𝛽2
′ ) and the joint variances and covariances (𝜎𝑎

2, 𝜎𝑏
2, 𝜎𝑎𝑏, 𝜎𝜖

2).  



2.4. Stage 2: treatment effect variance estimation, sample size calculation 

In the second stage, slopepower assumes the trial under consideration will be analysed using the 

model in equation (1). slopepower builds 𝜮 for a two-person trial using equation (3) and the 

estimated variance and covariance parameters obtained from the first stage (𝜎𝑎
2, 𝜎𝑏

2, 𝜎𝑎𝑏 , 𝜎𝜖
2). It then 

calculates the standard error of the treatment effect for this two-person trial, 𝑠∗, by using equation 

(5). 𝑠∗ depends on the design matrix 𝑿, which is specified by the user, who tells slopepower the 

number and spacing of the visits for the future trial. Once 𝑠∗ is obtained, equation (6) is used to 

calculate the sample size. 

In addition to 𝑠∗, equation (6) depends on the target treatment effect. The program allows three 

scenarios regarding the effectiveness of the treatment under study. In these scenarios, the 

treatment effect is defined as being: 

1. towards no annual change, i.e. it will reduce the rate of (future) change by a certain 

proportion of the way to zero. Under this scenario, a 100% effective treatment is defined as 

one that would halt change, but not reverse it. Using single group data without healthy 

controls or trial data from unrelated interventions implies this scenario. In this situation, the 

target treatment effect used in the sample size calculation, 𝛽2, is calculated from the slope 

obtained from the user supplied data (𝛽1
′) and the user-supplied effectiveness, which we 

shall denote as 𝑒 and which takes a value between 0 and 1: 

𝛽2 = 𝑒 × 𝛽1
′  

2. towards the slope observed in healthy controls, i.e. it will reduce the rate of change over-

and-above that seen in a disease-free population (the ‘excess’ rate of change) by a certain 

proportion. Under this scenario, a 100% effective treatment would slow the change in 

subjects with the disease to the change observed in healthy controls, but would not halt or 

reverse it. Using two group observational data that includes healthy controls implies this 

scenario, and the target treatment effect in this case is calculated as: 

𝛽2 = 𝑒 × (𝛽1,𝑢𝑠
′ − 𝛽1,ℎ𝑐

′ ) 

where 𝛽1,𝑢𝑠
′  is the slope of the untreated subjects and 𝛽1,ℎ𝑐

′  is the slope of the healthy 

controls obtained from the user specified data. 

Note that the slope in the healthy controls could be interpreted as an upper limit on what is 

achievable with treatment, particularly when the outcome is expected to change over time 

even in healthy people. For example, say the outcome is a measure of cognitive decline in 

patients with Huntington’s disease, and we know that even healthy people experience 

cognitive decline due to aging effects. Then even a very effective treatment for patients with 

Huntington’s disease is unlikely to eliminate or reduce cognitive decline to a level below that 

of the aging effects. 

3. equal to a previously observed treatment effect. For example, if a data set from a previously 

conducted trial of the same or a similar treatment is available (perhaps a phase II trial that is 

being used to plan a phase III trial), the treatment effect observed in the previous trial can 

be used. Using such trial data, along with the appropriate usetrt option (described in 

Section 3.2.2), implies this scenario. In this case, the target treatment effect is calculated as: 

𝛽2 = 𝛽2
′  

where 𝛽2
′  is the difference in slopes between the treatment and control arms from the 

model fitted to the user supplied RCT data set. 

Note that it is also possible to use a treatment effect that is proportional to the previously 

observed treatment effect in the previously conducted trial. This can be done by running the 

model under treatment effectiveness scenario 3 in order to obtain the sample size when 



targeting the previously observed treatment effect, and then multiplying by the appropriate 

inflation factor (see example in Section 4.1.3). 

slopepower will use the user-supplied effectiveness (or the previously observed treatment effect, 

if specified) to calculate the target treatment effect for the future trial. It will then combine this with 

𝑠∗ to calculate either the sample size or the power using equation (6).  

The sample size calculated by slopepower thus depends upon the design matrix 𝑿 (which is itself 

dependent upon the number and spacing of the trial visits) as well as the various components of 

variance and covariance that were estimated from the user-supplied data. These are assumed to be 

equal to what would be seen in a future trial setting. 

Note that by fitting a model to data observed at discrete time points, slopepower can estimate 

the variance of the treatment effect for designs incorporating visits at any time points, including 

ones not in the original study. Trialists can use this flexibility to explore the sample size implications 

for a range of designs that differ in length, number and timing of interim visits and/or dropout 

patterns. We illustrate this in Section 4.2. 

2.5. Sample size adjustment for trial dropouts 

To compensate for individuals who withdraw early from the trial, slopepower can optionally 

adjust the required sample size using a pattern-mixture approach as advocated by Dawson and 

Lagakos [11,12] and described by Frost and colleagues [6]. This approach is (appropriately) less 

conservative than up-scaling the estimated sample size according to the anticipated proportion of 

individuals who reach the final visit. This is appropriate when interim data will be used to estimate 

the treatment effect, as is the case when using a mixed model such as that in equation (1) to analyse 

the trial. 

In brief, slopepower assumes that individuals will be separated into strata according to dropout 

patterns. The approach first estimates for each such stratum the necessary sample size in the 

hypothetical situation that all individuals are in that stratum. The overall sample size is computed as 

the reciprocal of the weighted mean of the reciprocals of these strata-specific sample sizes, with the 

weights equal to the proportions of individuals anticipated to have each missing data pattern. Note 

that slopepower allows for missing data due to trial dropout, but not for other patterns such as 

missed visits that result in intermittent missing values during follow-up. 

2.6. Some notes of caution 

It is important that the data set used for the first stage of model fitting is from a population that is 

sufficiently similar to that in the proposed trial that we can generalise the estimates of the variance 

parameters to the planned RCT. In practice, that might mean that similar inclusion criteria are used 

in the previous data set to those proposed in the future trial, and that the untreated subjects suffer 

from a similar severity of disease to that expected in the participants of the planned trial at baseline. 

It may be that no such data set exists, and in such a case it might be necessary to collect some data 

in a pilot study. 

Note that, as always, variances and covariances will be estimated more precisely given more people 

and time points in the data set. Users should proceed with caution, especially if they have a small 

data set, and be aware that their sample size estimates will contain uncertainty due to the 

estimation of the variance parameters in the first stage. slopepower can be run with Stata’s 

bootstrap prefix in order to obtain a 95% CI for a sample size estimate, although the user should 

be sure to take the structure of the data into account when doing so. Care should also be taken 

when bootstrapping small datasets, particularly those with outlying values, as the coverage of a 



bootstrap confidence interval might then not be close to its nominal value. In addition, if the 

estimated slope in the user-supplied data set is not large relative to its standard error (as a rule of 

thumb we recommend that the ratio of the magnitude of the estimate to its slope should be greater 

than 2.5), it is possible that the bootstrap samples will yield estimates of the mean slope that are 

both negative and positive, meaning that some of the bootstrap samples will relate to trials that are 

trying to reduce a positive slope whilst others will relate to trials that are trying to reduce the 

magnitude of a negative slope, hence rendering the confidence interval meaningless. Such cases 

should, however, be unlikely, since if a trial is being contemplated to reduce a slope then there 

should be strong evidence of a trend over time such that the estimated slope is substantially larger 

than its standard error in the user-supplied data set. An example of how bootstrap can be used 

with slopepower is given in section 4.1.2. 

As with any statistical model it is possible to make out-of-sample predictions. slopepower does 

not give a warning when estimating sample sizes for trials of duration longer than the maximum 

length of follow-up observed in the given data, so users should be aware of the assumptions that are 

made when doing this. Similarly, slopepower interpolates between time-points. This is a 

necessary assumption to make in order to be able to consider trial designs with visit spacing that 

differs from the original data set, but users should be aware that it is assumed that the model holds 

across the time scale of interest. 

Also note that, other than subject-specific random effects, slopepower has no capability to model 

dependency between observations, such as centre- or visit-specific effects. This implies that, 

conditional on subject, observations are assumed to be independent. 

 

3. The slopepower command 

The syntax of slopepower is as follows: 

slopepower depvar [if] [in] , subject(varname) time(varname) 

schedule(numlist) [obs nocontrols rct casecon(varname) 

treat(varname) dropouts(numlist) scale(#) alpha(#) power(#) n(#) 

effectiveness(#) usetrt iterate(#) nocontvar] 

3.1. Description 

slopepower will calculate sample size or power for trials where the outcome is a slope, using a 

two-stage approach. In the first stage, slopepower uses data in memory (provided by the user) to 

estimate the necessary slopes, variances and covariances. In the second stage it uses these 

estimates, along with user-specified information, to calculate a sample size or power. 

The user-provided dataset can be of three basic types as described in Section 2.3: containing 

subjects with the disease who are untreated (or minimally treated, for example receiving standard of 

care) only, containing untreated subjects with the disease and healthy controls, or a previous RCT 

containing subjects who are untreated and subjects who are treated. In all cases, the data should 

contain repeated measurements of the outcome in long format (see reshape for more details). A 

linear mixed model is run (using mixed) on the data in memory to estimate the relevant 

parameters. The data in memory are not altered by slopepower. 



3.2. Options 

3.2.1. Options for data in memory 

subject(varname) is the unique identifier for participants in the user-supplied data set 

time(varname) is the time variable of visits in the dataset. This can be in any units (eg days, 

months, years). It is assumed to be time since start of observation for each individual. If it is not (for 

instance if it is an actual calendar date) slopepower will issue a warning and rescale it accordingly. 

obs and rct tell Stata the nature of the data in memory. obs should generally be used for 

observational data, and rct for previously collected trial data (with an exception mentioned below). 

Exactly one of obs and rct must be specified. 

nocontrols should be used with obs if all the subjects in your observational data have the 

condition of interest (i.e. if there are no healthy controls). 

casecon(varname) specifies the variable used to identify cases in observational data; it can only 

be used with obs. It must be a binary 0/1 variable, with cases coded as 1. 

treat(varname) specifies the treatment variable when you are using RCT data; it can only be 

specified with the rct option. It must be a binary 0/1 variable, with the experimental group coded 

as 1. 

3.2.2. Options for planned trial 

schedule(numlist) specifies the visit times for the proposed trial. A baseline visit at time 0 is 

assumed; this list should describe subsequent visits, in whole number units of time. The default is to 

use the same time unit as the time variable in the dataset. To use a different timescale, specify how 

many time units make one schedule unit in the scale option. 

dropouts(numlist) specifies the estimated proportion of dropouts you expect at each study 

visit. It must correspond exactly to the schedule list. Each number in the list is a proportion between 

0 and 1; this is the fraction of subjects (of those who start the trial) you estimate will fail to attend 

that visit. We follow the pattern mixture method of Dawson and Lagakos (see section 2.5). 

scale(#) specifies the ratio between the time and visit timescales. For instance, if the time 

variable in your dataset is in days, and you wish to have visits annually for three years, you would 

specify scale(365) and schedule(1 2 3). 

alpha(#) sets the significance level (also known as Type I error rate) to be used in the planned 

study. The default is alpha(0.05). 

power(#) sets the power for the planned study. The default is power(0.8). This option is required 

to compute the sample size. 

n(#) specifies the total number of participants who will be in the trial. If an odd number is given, 

𝑛 − 1 will be used to allow equal numbers per arm. This option is required to compute the power. 

Only one of power and n may be specified. 

effectiveness(#) and usetrt specify the effect size you would like to be able to detect in 

the future trial. effectiveness specifies this effect size as a proportion of the difference 

between cases and healthy controls in the observational data in memory. If RCT data, or 

observational data with no healthy controls, are used effectiveness is a proportion of the 

difference towards a slope of 0. This must be a number between 0 and 1; the default value is 0.25. 



usetrt specifies that, when RCT data is used, the planned study is targeting the same effect size as 

observed in the previous data set. You can only specify one of effectiveness and usetrt. 

3.2.3. Model options 

iterate(#) is used as an option in the mixed command, which specifies the maximum number 

of iterations allowed in the mixed model. 

nocontvar specifies that the mixed model should not estimate a random slopes variance 

parameter or the covariance between random slopes and intercepts for healthy controls. This is only 

applicable when you are using observational data with healthy controls. Ignoring this variance and 

covariance may help the model to converge. 

 

4. Examples 

4.1. How to use the code 

In this section, we use simulated data to illustrate the options described above. The three examples 

given cover the three types of data which can be used with slopepower: single group data (with 

only untreated subjects); two group, observational (with untreated subjects and healthy controls); 

and two group, RCT (treated and untreated subjects).  

These example datasets together contain three groups of people: 

a. People with Huntington’s Disease (HD), who are receiving standard of care (untreated subjects) 

b. People without HD (or the genetic mutation which leads to it) (healthy controls) 

c. People with HD, who are being treated as part of a trial (treated subjects) 

Section 4.1.1 describes the situation when you have a dataset containing only people from group (a). 

Section 4.1.2 describes a dataset consisting of people from groups (a) and (b), and Section 4.1.3 is for 

a dataset consisting of groups (a) and (c). 

In all datasets, we have assumed that the “cases” (or untreated subjects) are people with HD, a 

neurodegenerative disorder in which cognitive functioning typically declines during disease 

progression. The outcome of interest is their score on the Symbol Digits Modalities Test [13], a 

measure of cognitive function taking integer values between 0 and 110 with higher scores indicating 

better function. We have not simulated any missing data. In all cases the data are in long format, 

ready for use with slopepower. 

4.1.1. Single group data with untreated subjects only 

We have simulated three years of data on 200 people with HD, with measurements recorded each 

year; the visit variable indicates the year of follow-up. Values for SDMT are simulated according to 

the model in equation (7) using parameter values of 𝛽0
′ = 34, 𝛽1

′ = −1.8, 𝜎𝑎
2 = 100, 𝜎𝑏

2 = 2, 𝜎𝑎𝑏 = 5 

and 𝜎𝜖
2 = 10. Outcome values are then truncated at zero and rounded to the nearest integer. Code 

for generating the data is given in the appendix. Data for the first two participants are shown below: 

  +-------------------+ 

  | id   visit   sdmt | 

  |-------------------| 

  |  1       0     41 | 

  |  1       1     33 | 

  |  1       2     25 | 

  |  1       3     30 | 



  |-------------------| 

  |  2       0     16 | 

  |  2       1     14 | 

  |  2       2     13 | 

  |  2       3      6 | 

  +-------------------+ 

We first show the syntax to plan an RCT with annual visits over two years, assuming no dropouts, 

with 80% power to detect a treatment effect that will eliminate one-third of the slope. Note that 

here the assumed effectiveness is towards “no annual change” or a slope of zero. The obs option 

identifies the data in memory as being observational (although note that it would be possible to use 

a data set containing only the untreated arm from an RCT with this option), and, with no healthy 

controls in the dataset, we use the nocontrols option. The default values of 5% Type I error and 

80% power are used.  

. slopepower sdmt , schedule(1 2) subject(id) time(visit) obs nocontrol 

effectiveness(0.33) 

 

Data characteristics: 

        Number of observations in model = 800 

                  Participants in model = 200 

                         Slope of cases = -1.672 

 

Parameters for planned study: 

                                  alpha = 0.050 

                                  power = 0.800 

                          effectiveness = 0.330 

  target treatment difference in slopes = 0.552 

             number of follow-up visits = 2 

                schedule (and dropouts) : 1, 2 

                                  scale = 1 

 

  Estimated sample size: 

                                      N = 712 

                              N per arm = 356 

 

 

This shows that that a total sample size of 712 will be required for the planned trial. The first section 

of the output shows three results from the linear model run on the data in memory: the number of 

observations and subjects that were included in the model, and the estimated slope from the data. 

The remaining output confirms the user-contributed parameters, or the defaults used if they were 

not specified, and gives the target treatment effect that slopepower calculates from the model 

slope estimates and the user-inputted effectiveness: this is 𝛽2 in equation (6). Finally, slopepower 

gives the estimated sample size both as a total and per arm.  

Visits do not have to be scheduled at regular intervals. If you wish to extend the above trial to five 

years, with no additional interim visits you would specify the command below. However, note that 

this is extending the estimates out of the initial sample duration. Here we have also assumed that 

10% of participants would be lost to follow-up between the visit at year two and the final visit. 

. slopepower sdmt , schedule(1 2 5) subject(id) time(visit) obs nocontrol 

effectiveness(0.33) dropouts(0 0 0.1) 

 

Data characteristics: 

        Number of observations in model = 800 

                  Participants in model = 200 

                         Slope of cases = -1.672 

 



Parameters for planned study: 

                                  alpha = 0.050 

                                  power = 0.800 

                          effectiveness = 0.330 

  target treatment difference in slopes = 0.552 

             number of follow-up visits = 3 

                schedule (and dropouts) : 1 (0), 2 (0), 5 (0.1) 

                                  scale = 1 

 

  Estimated sample size: 

                                      N = 328 

                              N per arm = 164 

 

 

Here the sample size is reduced due to the extended follow-up, despite the loss to follow-up, which 

is shown as a proportion in brackets after each visit in the schedule list. 

If you wish to schedule visits every six months, you must use the scale option to indicate that half a 

unit in the observed timescale is equivalent to one unit in the RCT timescale. Hence the timescale 

specified in the command below is in increments of six months, and the trial is scheduled to last two 

years. 

. slopepower sdmt , schedule(1 2 3 4) scale(0.5) subject(id) time(visit) 

obs nocontrol effectiveness(0.33) 

 

Data characteristics: 

        Number of observations in model = 800 

                  Participants in model = 200 

                         Slope of cases = -0.836 

 

Parameters for planned study: 

                                  alpha = 0.050 

                                  power = 0.800 

                          effectiveness = 0.330 

  target treatment difference in slopes = 0.276 

             number of follow-up visits = 4 

                schedule (and dropouts) : 1, 2, 3, 4 

                                  scale = .5 

 

  Estimated sample size: 

                                      N = 620 

                              N per arm = 310 

 

Again, the sample size is slightly reduced compared to the first example, due to an increase in 

efficiency gained from the interim visits. Also note that the slope observed in the data has halved; 

this is because it is reported in the units of the planned trial, so here it relates to a difference per six 

months (rather than per year as in the earlier examples). 

4.1.2. Observational data with cases and healthy controls 

Here we have simulated 250 people with HD and 250 without, with dates of observation used rather 

than visit number. For cases (or untreated subjects), the SDMT score was generated as above. For 

controls, we assumed a mean at baseline of 53 and an increasing average annual change (due to a 

practice effect) of 0.9. Variance and covariance parameters of 𝜎𝑎
2 = 75, 𝜎𝑏

2 = 1, 𝜎𝑎𝑏 = 1 and 𝜎𝜖
2 =

10 were used for healthy controls. Data for the first control and the first case are shown below: 

  +------------------------------------------+ 

  |  id              case       vdate   sdmt | 

  |------------------------------------------| 



  |   1   Healthy control   11jul2009     40 | 

  |   1   Healthy control   21jun2010     46 | 

  |   1   Healthy control   06jul2011     41 | 

  |   1   Healthy control   06may2012     45 | 

  |------------------------------------------| 

  | 251              Case   06jun2009     35 | 

  | 251              Case   13aug2010     34 | 

  | 251              Case   31aug2011     36 | 

  | 251              Case   05sep2012     39 | 

  +------------------------------------------+ 

Note that case is a labelled numeric variable, and takes value 0 for healthy controls and 1 for cases. 

Since we now have healthy controls in our data we drop the nocontrols option, and instead use 

case to tell slopepower which variable identifies the untreated subjects in our data set. Because 

the time variable is a date (recorded in days), and we wish to specify our RCT schedule in years, we 

use the scale option. 

. slopepower sdmt , schedule(1 2) scale(365) subject(id) time(vdate) obs 

case(case) effectiveness(0.33) 

WARNING: time variable did not start at zero for all participants. Times 

have been adjusted such that the first visit for each person is treated as 

time zero. 

 

 

Data characteristics: 

        number of observations in model = 2000 

        number of participants in model = 500 

          observed difference in slopes = -2.690 

                         slope of cases = -1.715 

              slope of healthy controls = 0.975 

 

Parameters for planned study: 

                                  alpha = 0.050 

                                  power = 0.800 

                          effectiveness = 0.330 

  target treatment difference in slopes = 0.888 

             number of follow-up visits = 2 

                schedule (and dropouts) : 1, 2 

                                  scale = 365 

 

  Estimated sample size: 

                                      N = 296 

                              N per arm = 148 

 

The first thing to note is that because the time variable is a date, slopepower has issued a 

warning to let you know that it has been transformed in the model so that the earliest date for each 

individual is at time zero – this is necessary to ensure the intercept is estimated at baseline and that 

the covariance between the random slopes and intercepts is correctly estimated. Note that now 

there are two slopes reported in the output – one for the cases and one for the healthy controls. The 

effectiveness is now applied to the difference between these two slopes, which is also provided in 

the output.  

The output shows that a total sample size of 296 will be required for the planned trial. The 

decreased sample size compared to that in the previous section is partly because here we have an 

estimate for the slope of healthy individuals, so instead of relating our effectiveness to no change 

over time (a slope of zero) we relate it to the difference between the slope in untreated subjects and 



that in healthy controls. Hence the target treatment effect is larger here than above, even though an 

effectiveness of 0.33 was specified both times, since the healthy controls have a positive slope. 

Let us suppose that we are interested in obtaining a bias-corrected and accelerated bootstrap 

confidence interval for this predicted sample size. We can do this by using the following command: 

. bootstrap r(sampsize), cluster(id) idcluster(id2) strata(case) rep(2000) 

seed(123) bca jack(n(r(obs_in_model))): slopepower sdmt, schedule(1 2) scale(365) 

subject(id) time(vdate) obs case(case) effectiveness(0.33) 

 

WARNING: time variable did not start at zero for all participants. Times have been 

adjusted such that the first visit for each person is treated as time zero. 

 

 

Warning:  Because slopepower is not an estimation command or does not set 

e(sample), bootstrap has no way to determine which observations are used 

          in calculating the statistics and so assumes that all observations are 

used.  This means that no observations will be excluded from the 

          resampling because of missing values or other reasons. 

 

          If the assumption is not true, press Break, save the data, and drop the 

observations that are to be excluded.  Be sure that the dataset in 

          memory contains only the relevant data. 

(running slopepower on estimation sample) 

WARNING: time variable did not start at zero for all participants. Times have been 

adjusted such that the first visit for each person is treated as time zero. 

 

 

Jackknife replications (500) 

----+--- 1 ---+--- 2 ---+--- 3 ---+--- 4 ---+--- 5  

..................................................    50 

[some output suppressed] 

..................................................   500 

 

Bootstrap replications (2000) 

----+--- 1 ---+--- 2 ---+--- 3 ---+--- 4 ---+--- 5  

..................................................    50 

[some output suppressed] 

..................................................  2000 

 

Bootstrap results 

 

Number of strata   =         2                  Number of obs     =      2,000 

                                                Replications      =      2,000 

 

      command:  slopepower sdmt, schedule(1 2) scale(365) subject(id) time(vdate) 

obs case(case) effectiveness(0.33) 

        _bs_1:  r(sampsize) 

 

                                    (Replications based on 500 clusters in id) 

------------------------------------------------------------------------------ 

             |   Observed   Bootstrap                         Normal-based 

             |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

       _bs_1 |        296    30.0739     9.84   0.000     237.0562    354.9438 

------------------------------------------------------------------------------ 

 

. estat bootstrap, bca 

 

Bootstrap results 

Number of strata   =          2                 Number of obs     =      2,000 

                                                Replications      =       2000 

 

      command:  slopepower sdmt, schedule(1 2) scale(365) subject(id) time(vdate) 

obs case(case) effectiveness(0.33) 

        _bs_1:  r(sampsize) 

 



                                    (Replications based on 500 clusters in id) 

------------------------------------------------------------------------------ 

             |    Observed               Bootstrap 

             |       Coef.       Bias    Std. Err.  [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

       _bs_1 |         296    -17.738   30.073902         262        402 (BCa) 

------------------------------------------------------------------------------ 

There are several important things to note about the bootstrap command. First, we have specified 

that we require bootstrapped confidence intervals for the sample size, which is saved by 

slopepower as r(sampsize). Second, we need to use the cluster option so that people, 

rather than individual data points, are sampled from the data set. We also need to use the 

idcluster option, with a new identifier called id2, so that if one person appears twice in a 

bootstrapped sample they are treated as two separate people rather than as one person with twice 

as many data points than as in the data itself. Third, we need the option strata so that cases and 

healthy controls are sampled separately. Finally, because we want a bias-corrected and accelerated 

CI, we have to tell Stata where slopepower saves the number of observations in each model using 

the jack(n(r(obs_in_model))) option. Opting for a bias-corrected and accelerated 

confidence interval is recommended because the distribution of estimated sample sizes across the 

bootstrap samples is likely to be skewed. We can see in this example that the CI extends 

substantially further above the central value (up to a sample size of 402) than it does below it (down 

to a sample size of 262). 

It is also possible to calculate the power for a specified sample size by using the n() option instead 

of power(). Note that this n refers to the total sample size, and assumes a 1:1 ratio between the 

two treatment groups. Here we also assume a dropout rate of 5% per year of those who start the 

trial. 

. slopepower sdmt , schedule(1 2) scale(365) subject(id) time(vdate) obs 

case(case) effectiveness(0.33) n(200) dropouts(0.05 0.05) 

WARNING: time variable did not start at zero for all participants. Times 

have been adjusted such that the first visit for each person is treated as 

time zero. 

 

 

Data characteristics: 

        number of observations in model = 2000 

        number of participants in model = 500 

          observed difference in slopes = -2.690 

                         slope of cases = -1.715 

              slope of healthy controls = 0.975 

 

Parameters for planned study: 

                                  alpha = 0.050 

                            specified N = 200 

                               actual N = 200 

                              N per arm = 100 

                          effectiveness = 0.330 

  target treatment difference in slopes = 0.888 

             number of follow-up visits = 2 

                schedule (and dropouts) = 1 (0.05), 2 (0.05) 

                                  scale = 365 

Estimated power: 

                                  power = 0.597 

 

The estimated power is 60%. The other main difference in output here is that two values for the 

total N are given: the value specified by the user, and the value actually used in the power 

calculation, which is either n, or n-1 if the user specified an odd number. 



4.1.3. RCT data with treated and untreated groups 

The simulated RCT data contains 75 people who received treatment and 75 who did not receive 

active treatment. In this dataset, the outcome was generated from a model with an intercept of 34, 

a slope in the untreated arm of -1.8 units/year, a slope in the treated arm of -0.8 units/year, and 

variance and covariance parameters as in section 4.1.1.  

Example data from one participant in each arm is shown here: 

  +-----------------------------+ 

  | id     treat   visit   sdmt | 

  |-----------------------------| 

  |  1   Placebo       0     35 | 

  |  1   Placebo      .5     36 | 

  |  1   Placebo       2     34 | 

  |-----------------------------| 

  | 76     Treat       0     29 | 

  | 76     Treat      .5     33 | 

  | 76     Treat       2     35 | 

  +-----------------------------+ 

 

Again, note that treat is a labelled numeric variable, where “Placebo” (untreated arm) takes value 

0 and “Treat” (treated arm) takes value 1. 

If the aim of the planned study is to be able to detect the same effect size as in the previous RCT, 

then the usetrt option should be used. Here, we show the syntax to produce a sample size 

estimate for a three-year study with one interim visit at year two, and loss to follow-up of 10% per 

year of those who start the trial. Note that we now use the rct option instead of obs. 

. slopepower sdmt , schedule(2 3) subject(id) time(visit) rct treat(treat) 

usetrt dropout(0.2 0.1) 

 

Data characteristics: 

        number of observations in model = 450 

        number of participants in model = 150 

          observed difference in slopes = -0.747 

                   slope of control arm = -1.852 

              slope of experimental arm = -1.104 

 

Parameters for planned study: 

                                  alpha = 0.050 

                                  power = 0.800 

                          effectiveness =    . 

  target treatment difference in slopes = 0.747 

             number of follow-up visits = 2 

                schedule (and dropouts) : 2 (0.2), 3 (0.1) 

                                  scale = 1 

 

  Estimated sample size: 

                                      N = 318 

                              N per arm = 159 

 

Here, we see that a sample size of 318 is required to be able to detect a 0.75 units per year change in 

annual decline that was seen in the previous RCT.   

Suppose that the previous RCT is a pilot study or phase II trial, and that the investigators suspect that 

due to its small size the treatment effect might have been overestimated. They may wish to plan the 

future RCT such that it has power to detect a treatment effect that is 50% of that observed 

previously. To do this we can multiply the sample size above by 4 (i.e. one over 0.5 squared), so we 



would need a sample size of 1272. More generally, note that if we want a sample size for a target 

treatment effect that is 𝑝 times that observed in the previous trial, 𝑁𝑝, we need to multiply the 𝑁 

that uses the previously observed treatment effect (318 in this example) by 𝑝−2. This follows from 

equation 6: 

𝑁𝑝 = [
(𝑧1−𝛼/2 + 𝑧1−𝛽)𝑠

∗

𝑝𝛽2
]

2

=
1

𝑝2
[
(𝑧1−𝛼/2 + 𝑧1−𝛽)𝑠

∗

𝛽2
]

2

=
1

𝑝2
𝑁 

Note that if we had data from a previous RCT that was trialling a completely different treatment to 

that under consideration in the future trial, we might have decided to use only the untreated arm as 

our dataset and used the options for a single group of untreated subjects as shown in section 4.1.1. 

4.2. Exploring future trial designs with slopepower  

slopepower can be used to explore sample sizes under a variety of scenarios, which may be of use 

when planning the future trial. Here we suppose we are planning a three-year study, using the 

observational dataset described in section 4.1.1, and targeting the same 33% effectiveness. We 

assume that we will be able to recruit a total of 450 participants, and report the estimated power for 

a number of different scenarios that explore different patterns of follow-up visits and dropouts. The 

code to obtain these results is given in the Appendix. 

Planned trial design Dropouts Power 
Baseline and final visit (three years) only None 79.8% 

Annual follow-up visits None 81.7% 
Six-monthly follow-up visits None 86.5% 

Baseline and final visit (three years) only 5% per year 73.2% 
Annual follow-up visits 5% per year 77.1% 

Six-monthly follow-up visits 5% per year 82.8% 
Baseline and final visit (three years) only 10% per year 64.8% 

Annual follow-up visits 10% per year 71.6% 
Six-monthly follow-up visits 10% per year 78.3% 

Table 1. Estimated power for different trial designs and dropout scenarios 
 
As can be seen from Table 1, adding extra follow-up visits increases the power. For example, when 

there are no dropouts, the power increases from around 80% with a single follow-up visit to almost 

87% with six-monthly follow-up visits. As the anticipated rate of dropouts increases, the trial designs 

that include extra follow-up visits become increasingly efficient, as they allow data collected at 

interim visits to be used in the analysis. Note that in this simulated example when 10% of 

participants are expected to be lost each year, adding six-monthly visits recovers information to the 

extent that it achieves nearly the same power as a trial with a single follow-up visit with no 

dropouts. 

 

5. Conclusion 

We have presented a new Stata program, slopepower, that can be used to perform sample size or 

power calculations for trials that compare rates of change in an outcome (the slope) over time. 

slopepower can be used for any continuous clinical trial outcome that is expected to change at a 

constant rate over time and where a treatment is expected to slow that rate. This might include 

continuous outcomes such as log10-transformed total kidney volume [14], disease severity scores 

such as the Amyotrophic Lateral Sclerosis Functional Rating Scale-Revised [15], body mass index [16], 



carotid intima-media thickness [17], biomarkers such as log10-transformed C-reactive protein 

degraded by matrix metalloproteinases 1 and 8 [18], or variables measuring lung function such as 

forced expiratory volume [19] or forced vital capacity [20].  

The package is based on linear mixed model methodology, described for this setting by Frost et al. 

[6], and requires a user-supplied data set containing longitudinal data on a similar population to that 

expected in the future trial. In the first stage of this approach, slopepower obtains estimates of 

the mean rate of change in the outcome, together with variances and covariances, from a linear 

mixed model fitted to user-supplied data. In the second stage, these estimates are combined with 

user input on the target effectiveness of the treatment and design of the future trial to give an 

estimate of either a sample size for, or the statistical power of, the future trial. This program 

provides, to our knowledge for the first time, a convenient way to calculate such estimates for trials 

with repeated measures that aim to alter rates of change in an outcome. 
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8. Appendix 

Here we provide the code used to simulate example data sets used in section 4. All data was 

generated using Stata 16. 

* Data for example 4.1.1: single group data, untreated subjects only 

set seed 5221 

 

* create data set of 200 people 

clear 

set obs 200 

gen id = _n 

 

* draw random person intercepts and slopes 

drawnorm a b, cov(100, 5 \ 5, 2) 

 

* create more visits 



expand 4 

bys id: gen visit = _n - 1 

 

* generate sdmt from model in equation (7) 

gen sdmt = 34 -1.8 * visit + a + b * visit + rnormal(0, 10^0.5) 

su sdmt 

 

count if sdmt < 0  

 

* truncate at zero and round to nearest integer to create a score like sdmt 

replace sdmt = round(sdmt) 

replace sdmt = 0 if sdmt < 0 

 

* drop person intercept and slope which are no longer needed 

drop a b 

 

save slpower1, replace 

 

 

* list of two ids from paper 

list if id == 1 | id == 2, sep(4) noobs 

 

 

* slopepower commands from paper 

slopepower sdmt , schedule(1 2) subject(id) time(visit) obs nocontrol /// 

 effectiveness(0.33) 

 

slopepower sdmt , schedule(1 2 5) subject(id) time(visit) obs nocontrol /// 

 effectiveness(0.33) dropouts(0 0 0.1) 

 

slopepower sdmt , schedule(1 2 3 4) scale(0.5) subject(id) time(visit) /// 

 obs nocontrol effectiveness(0.33) 

 

 

* Data for example 4.1.2: two group data, observational, untreated subjects and 

*healthy controls 

set seed 1146 

 

* create data set of 500 people, with 250 untreated subjects and 250 healthy 

*controls 

clear 

set obs 500 

gen id = _n 

gen case = (_n > `=_N/2') 

 

* draw two sets of random intercepts and slopes and use a, b for cases and c, d for 

*controls 

drawnorm a b, cov(100, 5 \ 5, 2) 

drawnorm c d, cov(75, 1 \ 1, 1) 

 

* create more visits 

expand 4 

bys id: gen visit = _n - 1 

 

* generate sdmt from model in equation (7) 

gen sdmt = 34 - 1.8 * visit + a + b * visit + rnormal(0, 10^0.5) if case == 1 

replace sdmt = 53 + 0.9 * visit + c + d * visit + rnormal(0, 10^0.5) if case == 0 

su sdmt 

 

count if sdmt < 0 

 

* truncate at zero and round to nearest integer to create a score like sdmt 

replace sdmt = round(sdmt) 

replace sdmt = 0 if sdmt < 0 

 

* generate visit dates that vary for each individual 

gen vdate = (visit * 365) + date("5 July 2009" , "DMY") 

replace vdate = vdate + int(rnormal(0, 50)) 



format vdate %td 

 

* drop visit, person intercept and slope which are no longer needed 

drop visit a b c d 

 

* label case variable 

lab def case_lab 0 "Healthy control" 1 "Case"  

lab val case case_lab 

 

order id case vdate sdmt 

 

save slpower2, replace 

 

 

* list of two ids from paper 

list if id == 1 | id == 251, sep(4) noobs 

 

 

* slopepower commands from paper 

slopepower sdmt , schedule(1 2) scale(365) subject(id) time(vdate) /// 

 obs case(case) effectiveness(0.33) 

  

bootstrap r(sampsize), cluster(id) idcluster(id2) strata(case) rep(2000) /// 

 seed(123) bca jack(n(r(obs_in_model))): slopepower sdmt, schedule(1 2) /// 

 scale(365) subject(id) time(vdate) obs case(case) effectiveness(0.33) 

estat bootstrap, bca 

 

slopepower sdmt , schedule(1 2) scale(365) subject(id) time(vdate) /// 

 obs case(case) effectiveness(0.33) n(200) dropouts(0.05 0.05)  

 

  

 

* Data for example 4.1.3: two group, rct, untreated subjects (cases) and treated 

*subjects 

set seed 1021 

 

* create data set of 150 people, with 75 in each treatment arm 

clear 

set obs 150 

gen id = _n 

gen treat = (_n > `=_N/2') 

 

* draw random person intercepts and slopes 

drawnorm a b, cov(100, 5 \ 5, 2) 

 

* create more visits 

expand 3 

bys id: gen visit = _n - 1 

replace visit = 0.5 if visit == 1 

 

* generate sdmt from model in equation (7) 

gen sdmt = 34 - 1.8 * visit + 1 * treat * visit + a + b * visit + rnormal(0, 

10^0.5)  

 

replace sdmt = round(sdmt) 

 

 

* label treatment variable 

lab def treat_lab 0 "Placebo" 1 "Treat" 

lab val treat treat_lab 

 

 

* drop person intercept and slope which are no longer needed 

drop a b 

 

 

save slpower3, replace 

 



 

* list of two ids from paper 

list if id == 1 | id == 76, sep(3) noobs 

 

 

* slopepower commands from paper 

slopepower sdmt , schedule(2 3) subject(id) time(visit) rct treat(treat) /// 

 usetrt dropout(0.2 0.1) 

 

 

 

*********************** 

* commands to produce Table 1 

* 

 

* use same dataset as first example 

use slpower1, clear 

 

* no dropout 

slopepower sdmt , schedule(3) subject(id) time(visit) obs nocontrol /// 

 effectiveness(0.33) n(450) 

slopepower sdmt , schedule(1 2 3) subject(id) time(visit) obs nocontrol /// 

 effectiveness(0.33) n(450) 

slopepower sdmt , schedule(1 2 3 4 5 6) scale(0.5) subject(id) time(visit) /// 

 obs nocontrol effectiveness(0.33) n(450) 

 

* 5% dropout per year = 15% over 3 years 

slopepower sdmt , schedule(3) subject(id) time(visit) obs nocontrol /// 

 effectiveness(0.33) n(450) dropout(0.15) 

slopepower sdmt , schedule(1 2 3) subject(id) time(visit) obs nocontrol /// 

 effectiveness(0.33) n(450) dropout(0.05 0.05 0.05) 

slopepower sdmt , schedule(1 2 3 4 5 6) scale(0.5) subject(id) time(visit) /// 

 obs nocontrol effectiveness(0.33) n(450) /// 

 dropout(0.025 0.025 0.025 0.025 0.025 0.025) 

 

* 10% dropout 

slopepower sdmt , schedule(3) subject(id) time(visit) obs nocontrol /// 

 effectiveness(0.33) n(450) dropout(0.3) 

slopepower sdmt , schedule(1 2 3) subject(id) time(visit) obs nocontrol /// 

 effectiveness(0.33) n(450) dropout(0.1 0.1 0.1) 

slopepower sdmt , schedule(1 2 3 4 5 6) scale(0.5) subject(id) time(visit) /// 

 obs nocontrol effectiveness(0.33) n(450) /// 

dropout(0.05 0.05 0.05 0.05 0.05 0.05) 

 

 


