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Key Points 

Question: Can investigation of sub-components of the high-density lipoprotein (HDL) pathway, 

measured through nuclear magnetic resonance spectroscopy, point to specific therapeutic targets 

for prevention of coronary heart disease (CHD)?  

Findings: Using individual-level data from seven longitudinal studies including 28,597 participants 

and 4197 CHD events, we identified two components of the HDL pathway that were associated with 

reduced, and one that was associated with increased, risk of CHD.   

Meaning: These sub-components of the HDL pathway, if causally related to atherogenesis, offer a 

route to more precise therapeutic targets for prevention of CHD.  
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Abstract  

Importance: Cholesterol content in high-density lipoprotein particles (HDL-C) is associated inversely 

with coronary heart disease (CHD), but findings from Mendelian randomization studies and 

randomized trials of HDL-C raising drugs have questioned whether this link is causal.  However, these 

analyses do not exclude a causal role for specific HDL sub-fractions of different density, mobility, size 

and composition.  

Objective: To determine whether sub-components of the HDL pathway exhibit differing 

relationships with CHD risk. 

Design: In seven longitudinal studies, we used factor analysis to reduce 21 measures of HDL particle 

size and lipid content to a smaller number of factors representing different components of the HDL 

pathway. We constructed factor scores and modelled their associations on CHD risk in adjusted Cox 

regression analyses. We pooled results using random-effects meta-analysis. 

Setting: Seven population-, individual-, occupational- or community-based longitudinal studies in the 

UK and Finland. 

Participants: 28,597 participants (49% female, mean age 59.6 years) contributed to the analysis. 

Exposures: Sub-components of the HDL pathway, characterized by 21 measures of HDL size and lipid 

content based on nuclear magnetic resonance spectroscopy. 

Main Outcomes: Incident fatal or non-fatal CHD. 

Results: We identified 4 HDL components with highly replicable across studies; 3 were indices of 

particle size/composition (extra-large (XL), large (L) and medium/small (MS)), and the other an index 

of triglycerides (TG) carried in HDL of all sizes. After up to 17 years of follow-up, 4179 incident CHD 

cases occurred. After adjusting for age, sex, ethnicity, smoking, systolic blood pressure, body mass 

index, diabetes and LDL-C, higher levels of the XL and MS factors were linked to a reduced risk of 

CHD (hazard ratio per 1 standard deviation (SD) increase 0.88 [95% CI 0.85, 0.92] and 0.91 [0.87, 
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0.94]). In contrast, a SD increase in the level of the TG factor was associated with increased risk of 

CHD (1.10 [1.07, 1.14]). 

Conclusions and Relevance: We found qualitative differences between sub-components of the HDL 

pathway and the risk of developing CHD. Discovery of the biological determinants of these 

components, possibly through genetic analysis, will facilitate selection of drug targets and inform 

trial design.   
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Introduction 

There is extensive epidemiological evidence that high levels of cholesterol in high density 

lipoproteins (HDL-C) is associated with reduced risk of cardiovascular events
1
. These observations led 

to a drug-discovery pipeline which employed HDL-C as target, and this biomarker informed 

compound selection and trial design
2
. As a result, several drugs that raise HDL-C by the modulation 

of several protein-targets were identified that were expected to decrease the risk of cardiovascular 

events. However, randomized trials of drugs to raise HDL-C yielded inconsistent results
3-6

; for 

example the CETP inhibitor anacetrapib4 was shown to reduce coronary heart disease (CHD) risk, 

while niacin5, which targets a different protein, had no discernible effect. This suggests that HDL-C is 

incapable of distinguishing which protein is a valid therapeutic target for CHD prevention.  

Some7, but not all8, Mendelian randomization studies designed to ascertain causality of HDL-C 

(instead of the protein target of HDL-C raising drugs), suggest that HDL-C is unlikely to be causally 

related to coronary atherosclerosis. However, evidence from genome-wide association studies 

indicates that variants at certain HDL-C raising loci do exhibit associations with CHD9, 10, whilst others 

do not, again suggesting that HDL-C is incapable of distinguishing which gene-encoded proteins are 

valid therapeutic targets for CHD prevention.  

Measurement of cholesterol content in HDL particles alone may not capture the full complexity of 

the HDL pathway, which is composed of a heterogeneous family of lipoprotein particles of different 

density, mobility, size and composition that are under the control of different enzymatic processes11, 

which may have diverse biological functions and hence a differential role in the origins of 

cardiovascular events12. In support of this is the finding that rare genetic disorders of enzymes that 

control HDL metabolism seem to affect different sub-classes of HDL particles and this is associated 

with different phenotypes
13

. Moreover, some recent assays that measure HDL-C efflux capacity have 

shown this to be associated with CHD, independently of HDL-C
14, 15
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To quantify the associations of specific components of the HDL pathway in the development of CHD, 

we used Nuclear Magnetic Resonance (NMR) spectroscopy
16

  to measure 21 biomarkers 

encompassing lipoprotein size and composition in seven longitudinal studies with 28,597 

participants and 4197 coronary events. 
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Methods 

Studies contributing data to this analysis 

Data from the British Regional Heart Study (BRHS), British Women’s Heart and Health Study 

(BWHHS), FINRISK, PROspective Study of Pravastatin in the Elderly at Risk (PROSPER), Southall And 

Brent REvisited (SABRE), United Kingdom Collaborative Trial of Ovarian Cancer Screening (UKCTOCS) 

and the Whitehall-II study (WHII) were used for this investigation. Study details have previously been 

described
17-23

 and are also summarized in Online-only material. Figure 1 presents the flow of 

participants selected for these analyses. Study design, outcome definition, and time of blood 

sampling used for NMR spectroscopy is described in eTable 1. 

 

HDL particles analysis using NMR spectroscopy 

Serum blood samples were collected and stored after fasting in all studies according to study 

protocols, except those in FINRISK, which were after absorption was likely to be complete (median 5 

hrs; 5.2% <4 hrs after last meal), and UKCTOCS, which were not taken in the fasting state. 

Biomarkers were quantified using high-throughput NMR spectroscopy (Nightingale Health Ltd, 

Helsinki, Finland), which provides simultaneous quantification of routine lipids, lipoprotein subclass 

profiling with lipid concentrations within 14 subclasses, fatty acid composition, and various low-

molecular weight metabolites including amino acids, ketone bodies and glycolysis-related 

metabolites in molar concentration units. Details of the experimentation and epidemiological 

applications of the NMR platform are described elsewhere16, 24.  

We selected 21 HDL biomarkers from the NMR output for this analysis, including lipoprotein 

components (free cholesterol (FC), cholesterol esters (CE), phospholipids (PL) and triglycerides (TG)) 

in each size class (extra-large (XL), large (L), medium (M) and small (S)), the concentration of particles 

circulating in each size class and the mean diameter of all HDL particles (eTable 2).  We excluded 
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HDL biomarkers that represent the direct sum of other measured lipids and derived biomarkers such 

as fractions. 

 

Ascertainment of coronary heart disease 

Incident CHD events were defined as non-fatal myocardial infarction (MI) and fatal cardiac death in 

all studies. Some studies additionally included coronary artery by-pass (CABG), percutaneous 

transluminal coronary angioplasty (PTCA), unstable angina and definite angina. Outcome definitions 

used in each study are in eTable 1.   

Statistical analysis 

We employed a two-stage analysis to investigate the association of specific components of the HDL 

pathway with incident CHD. This approach was applied independently in each study using individual 

patient data; see Online-only material for full technical details. 

In the first stage we used unsupervised factor analysis to estimate ‘latent’ (i.e. unobserved but 

inferred through statistical modelling from observed variables) HDL factors as summary measures 

that attempt to capture systematic information from the correlation matrix of the 21 biomarkers. 

We fitted a saturated 15-factor model and, to determine the optimal number of factors, looked for 

eigenvalue >1 (Figure 2) and a threshold that provided a consistent solution across studies and was 

supported by plausible biological interpretations of the factors generated. We used maximum 

likelihood estimation followed by oblique quartimin rotation and defined resultant loadings ≥0.4 (in 

absolute value) as salient25. We assessed consistency of between-study solutions with a coefficient 

of variation (CV).  From the optimal solution we predicted factor scores for individuals using the 

regression method
25

.  

In the second stage we explored the relationship between HDL factor scores and incident CHD in 

participants free of CHD at baseline in a complete-case analysis with Cox regression. Scores from 
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each HDL factor were standardized (mean=0, SD=1).  We evaluated factors jointly in a model 

adjusted for age, then progressively introduced confounders of CHD risk: sex, ethnicity, smoking, 

systolic blood pressure (SBP), body mass index (BMI), prevalent Type-2 diabetes mellitus, and LDL-C 

where available.  We further adjusted for TG not carried by HDL as a sensitivity analysis; we use non-

HDL-TG rather than total-TG to avoid collinearity with the HDL-TG present in both. We did not adjust 

for HDL-C, as its components (free-cholesterol and cholesterol-ester within each particle size) are 

already included in factor scores. In each study we excluded covariates with >10% missingness from 

modelling.  

We pooled study-specific regression results in a random-effects meta-analysis using the 

DerSimonian-Laird estimator of between-study variability, and quantified heterogeneity with the I2 

statistic26.   

We used R (R Foundation for Statistical Computing, Vienna, Austria; http://www.r-project.org) for all 

statistical analyses; version 3.0.2 for meta-analysis.  
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Results 

A total of 33,364 subjects (47% women) with a mean age of 59.6 years contributed data to the factor 

analyses. In the regression analysis of the associations between factor scores and incident CHD, we 

excluded 1632 (4.3%) due to missing covariate or outcome data and 3135 (9.4%) due to history of 

CHD at or prior to baseline. Baseline characteristics of the participants and proportion of missingness 

for data used in both analyses are shown in Table 1 and eTables 3 and 4.  After a follow-up for CHD 

that ranged from a mean of 2.7 years in PROSPER to 17.3 years in SABRE, 4179 incident CHD events 

were accrued among the 28,597 participants with complete data and no history of CHD at baseline. 

 

NMR spectroscopy vs. enzymatic HDL-C measurements 

We found the degree of correlation within studies between levels of HDL-C determined using 

enzymatic methods versus those determined using NMR spectroscopy to be between 0.76 and 0.90. 

There was good agreement between each one’s association with CHD in all studies with the two HRs 

varying by <15% (eTable 5).  

 

HDL factors 

The pattern of correlation among HDL biomarkers was consistent across studies (eFigure 1) as was 

the distribution of HDL-C subfractions across total HDL-C (eFigure 2). Screeplots for all seven studies 

suggested the presence of 3 to 5 HDL factors (Figure 2). Content from the 4-factor solution was the 

most consistent between studies (Figure 3 and eFigure 3). Each study estimated: a factor denoted 

extra-large (XL) that, when factor loadings were averaged, loaded highly on the 5 XL-HDL biomarkers 

(particle concentration, phospholipids, triglycerides, and free and esterified cholesterol) and the 

mean HDL particle diameter; a large (L) factor that loaded highly on the 5 L-HDL biomarkers and the 

mean HDL particle diameter; a medium/small (MS) factor that loaded highly on the 5 M-HDL 
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biomarkers and 4 S-HDL biomarkers (excluding triglycerides); and a triglyceride (TG) factor that 

loaded highly only on triglycerides in all particle sizes.   

The pattern of factor loadings was highly consistent between the seven studies: the median CV 

within each factor was 5.6, 10.1, 10.2 and 13.1% in XL, L, MS and TG respectively (eTable 6).  The 

solution was also highly specific, with 17 out of 21 HDL biomarkers being associated with only one 

factor, even though in an unsupervised factor analysis they could load to all factors. Exceptions were 

the mean HDL diameter (associated with the XL and L factors) and triglycerides components in XL-, L- 

and M-HDL particles (associated with their relevant size factor and with the TG factor). 

We observed moderate correlations between the XL and L factors (mean r=0.58) and between the L 

and MS factors (mean r=0.36). All other correlations among factors were <0.2; in particular, the MS 

factor did not correlate with XL (mean r=0.06) or TG (mean r=0.02). Correlation patterns were highly 

consistent across studies, with all CVs <12% (eTable 7).   

HDL factors vs. HDL-C 

HDL-C was positively correlated with the XL (mean r= 0.67), L (r=0.79), and MS (r=0.63) HDL factors. 

These were driven by the correlations of HDL-C sub-fractions with their respective factors. HDL-C 

was negatively correlated with the TG factor (r=-0.32) (eFigure 4).  Despite these moderate to strong 

correlations, HDL cholesterol sub-fractions make up less than half of the HDL factor scores: 42% of 

XL; 32% of L; 42% of MS and 25% of TG (eFigure 5 and eTable 6). 

Where data was available we examined correlations between the HDL factors and HDL2-C, HDL3-C 

and apolipoprotein-B (eTable 8).  HDL2-C was strongly correlated with the XL, L and MS factors 

(mean r=0.56, 0.76 and 0.71) and HDL3-C moderately so (r=0.45, 0.49 and 0.36). With the TG factor, 

they were correlated in opposite directions (HDL2-C: -0.39, HDL3-C: 0.24). These findings indicate a 

lack of specificity between HDL2-C and HDL3-C and the HDL factors. Apolipoprotein-B was 

uncorrelated with the XL and MS factors (r<0.01 and r=-0.02, respectively), but moderately 

negatively correlated with the L factor (r=-0.23) and positively correlated with the TG factor (r=0.57). 
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Association between HDL factors and CHD 

In 5 out 7 studies all potential confounders were available. Due to unavailability or missingness >10% 

UKCTOCS did not adjust for smoking, SBP and diabetes and WH-II did not adjust for BMI. Details of 

how we accounted for this in the meta-analysis are available in the Online-only Material.  UKCTOCS 

did not record whether participants had a history of CHD prior to the time of serum sampling, so 

such participants (if any) could not be excluded or adjusted for and were included in the analysis. 

Figure 4 describes the summary results of the progressively adjusted Cox models on the four HDL 

factors. After adjusting for age and the other three factors an SD increase in the XL factor was 

associated with a 14% reduction in the risk of CHD (HR 0.86, 95% CI [0.81,0.91]), in the MS factor 

with an 8% reduction (0.92 [0.88,0.96]) and in the TG factor with a 15% increase (1.15 [1.11,1.19]).  

The progressive adjustment of established confounders for CHD (sex, ethnicity, smoking, SBP, BMI, 

diabetes, LDL-C) had minimal effect on these estimates and reduced between-study heterogeneity. 

After all adjustments there was evidence of 12% (0.88 [0.85, 0.92]) and 9% (0.91 [0.87, 0.94]) 

reduction in CHD risk per SD increase in the XL and MS factors and a 10% (1.10 [1.07, 1.14]) increase 

in risk per SD increase in the TG factor, with little heterogeneity between studies (all I2≤12%).  There 

was no evidence of an association between the L factor and CHD (1.00 [0.92, 1.08]; I2=66%). eFigure 

6 shows study-specific HRs for the minimally- and maximally-adjusted models.  

Associations of the XL, L and MS factors with CHD did not change after further adjustment by non-

HDL triglycerides. However, the TG factor lost a substantial amount of precision, likely due to 

collinearity between this factor and TG in other lipoproteins, which were strongly correlated in most 

studies (range: 0.39, 0.88). Our results were unaltered by excluding data from the statin arm of 

PROSPER.  
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Discussion  

In this analysis including up to 33,364 individuals and 4,197 coronary events, we provide evidence 

indicating heterogeneous associations between components of the HDL-pathway, proxied through 

four HDL factors, with the risk of CHD. The HDL components represented by HDL biomarkers 

covering size and composition on extra-large and medium/small particles were inversely associated 

with CHD, while the triglyceride component was directly associated after adjustment for potential 

confounders including LDL-C. No association was observed for the component represented by 

biomarkers covering size and composition of large particles.  

The potential benefits of the HDL-components we identified, compared with HDL-C, can be 

illustrated through an analogy on total-cholesterol versus LDL-C. Initial technology suitable for 

population-based studies was capable of capturing only total-cholesterol, and this measurement, in 

studies like the Framingham Heart Study27, showed a harmful association with CHD. Improvements 

in technology made the measurement of major cholesterol sub-fractions possible and revealed 

opposite associations: LDL-C was harmful but HDL-C was protective. In this study, further 

improvements in technology through NMR spectroscopy allowed us to uncover heterogeneous 

associations within the HDL pathway.  

The four HDL components described in this analysis were highly reproducible across seven studies, 

despite important differences in study design and participant characteristics. This high 

reproducibility suggests these factors are very likely to have distinctive biological determinants. We 

anticipate that discovery of their biological determinants using genomics, proteomics and functional 

assays could help refine selection of intervention targets. Given the qualitatively different 

associations with CHD, genomic studies aimed for target selection should consider the potential 

associations that each gene-encoded protein may have on four HDL components modelled jointly.  

Until now, target-selection, compound development, early pre-clinical and randomized trials have 

used HDL-C as the sole metric to drive the drug-discovery process. With this approach, if two distinct 
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drug targets (and associated compounds) had a similar effect on HDL-C concentration, they would be 

expected to have similar therapeutic efficacy against CHD. However, evidence from large-scale 

phase-3 trials, other observational studies showing that HDL-C protection disappears with 

adjustment for other HDL particles
28, 29

, and the results we present in this paper do not support this 

hypothesis.  

Additional support for the HDL factors we identified comes from the good agreement with the five 

HDL subclasses (extra-large, large, medium, small and very small) proposed by Rosenson et al
13

. 

These categories were proposed as a new nomenclature to capture the diverse data around HDL 

physical properties derived from various HDL measurement techniques, but not including the 

specific NMR platform used in this report.  Although previous studies28-30 have attempted to uncover 

the impact of HDL sub-classes on CHD using NMR, our study provide novel lines of evidence. First, 

previous studies only measured HDL particle size and not composition within HDL sub-classes. 

Therefore, their results do not truly capture the impact of HDL as a pathway. An example of this is 

that role of triglycerides carried only within HDL particles was not assessed in previous studies. 

Second, our study covering seven cohorts includes ten times more CHD cases than any of previous 

studies, refuting any concern on inconsistency of findings. Taking into consideration those 

differences, our findings also mirror those from the VA-HIT trial, which found that medium and small 

HDL particles were protective against CHD while the large particles were not. 

Our analysis has several strengths. First, we observed reproducible estimates for the HDL 

components in independent, unsupervised factor analyses across seven diverse study populations. 

Second, despite using an unsupervised strategy that allows each biomarker to associate with all 

factors, the final composition of the factors had high specificity (17 of 21 loading on a single factor) 

and strong biological plausibility. For example, the biomarkers that formed the XL, L and MS factors 

were largely represented by particle concentrations, phospholipids, free-cholesterol and cholesterol 

esters from their respective HDL-subclasses. Third, we observed minimal between-study 

heterogeneity in regression estimates for three of the four factors. Fourth, several publications
31-33
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have shown the validity of the NMR platform used in this analysis. For example, genetic 

determinants of major lipid fractions measured through NMR are consistent with those discovered 

by enzymatic methods
31

. We also showed strong correlation between NMR HDL-C and enzymatic 

HDL-C and concordant CHD protective associations across all studies.   

We chose not to use total HDL-C for the construction of the factors. Instead we used their 

components and hence did not adjust estimates for total HDL-C, as the variables that comprise it 

were already included in the factors. Adjustment would be desirable if the aim was to propose to 

use these new HDL factors as better measures of “risk prediction” for CHD. Instead our goal was to 

identify components of the HDL pathway relevant for drug-discovery. By analogy, total cholesterol, 

instead of LDL-C, is the biomarker used in “risk prediction” models like Framingham34 or the Pooled 

Cohort Equations35, despite being of less value for drug-discovery. 

Several findings indicate that the HDL factors are distinct from cholesterol carried across HDL 

particles of different size.  First, free-cholesterol and cholesterol ester within HDL particles 

accounted for less than half of the value of HDL factor scores. Second, HDL2-C and HDL3-C were not 

strongly correlated with the HDL-factors. Third, despite HDL-C having moderate-to-strong 

correlations with the HDL-factors, the factors that showed associations with CHD were largely 

uncorrelated between themselves.   

Even though we had access to a large sample and standardized analysis plan, our results need to be 

replicated in other large-scale surveys such as the UK-Biobank or the Mexico City Prospective study 

where the same NMR platform-based output should be available in the near future. This increased 

sample size will allow robust detection of small associations such as those we report in the current 

study and avoid use of heterogeneous datasets in terms of study design, outcome ascertainment 

and missingness and avoid the need for assumptions related to meta-analytic techniques. Additional 

advantages of studies like UK-Biobank
36

 and INTERVAL
37

, with genomics and serum NMR 
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measurements, are the possibility to explore if the associations of HDL factors with incident CHD are 

likely to be causal.  

In conclusion, our HDL factor analysis uncovered the presence of heterogeneous associations 

between HDL-pathway factors and CHD and suggests that the full biological effect of these pathways 

is unlikely to be captured by HDL-C alone.  If our findings are validated in independent cohorts in 

future analyses using genetics and proven to be causal, this will help to precisely inform the 

selection of drug targets and to guide the drug discovery process from pre-clinical phase to phase-3 

trials.  
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Figure legends 

Figure 1: Participant flow for each study 

Figure 2:  Screeplot of eigenvalues (solid lines, left y-axis) and cumulative proportion of variance 

explained (dashed lines, right y-axis) for each factor from the saturated 15-factor factor analysis 

solutions in seven studies. The grey and pink horizontal lines denote an eigenvalue of 1 and 

cumulative variance explained of 80% respectively.  The vertical line indicates the optimal number of 

factors with most eigenvalues greater than 1 and >80% of variance explained. 

Figure 3: HDL biomarker factor loading patterns for 4 latent factors for each of the seven studies. 

Biomarkers with factor loadings outside the range of +/-0.4 factor loading (as indicated by the 

dotted lines) are considered ‘high’ loading.   

Figure 4: Associations between HDL factors and the risk of CHD in 28 597 participants with no history 

of CHD at the time of serum sampling.  The factors are jointly modelled and minimally adjusted for 

age, then cumulatively by sex, ethnicity, smoking, systolic blood pressure, body mass index, 

diabetes, LDL-cholesterol concentration and non-HDL triglyceride concentration.  Estimates 

represent the effect for a 1-SD increase in the normalised factor scores. 
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Tables 

Table 1: Baseline subject demographics for CHD regression analyses (n=28,597). All numbers are mean (SD) or n (%). 

 BRHS  

(n=3535) 

BWHHS 

 (n=3391) 

FINRISK  

(n=7328) 

PROSPER  

(n=3071) 

SABRE  

(n=2644) 

UKCTOCS  

(n=3163) 

WHII  

(n=5465) 

Age (years) 68.6 (5.49) 68.64 (5.48) 47.77 (13) 75.6 (3.32) 51.92 (7.08) 64.73 (6.2) 55.56 (6.01) 

Gender (female) 0 (0%) 3391 (100%) 3754 (51%) 1770 (58%) 388 (15%) 3163 (100%)   1561 (29%) 

Ethnicity (white)  3512 (99%) 3378 (>99%) 7328 (100%) 3071 (100%) 1246 (47%) 3068 (97%)   5101 (93%)  

Smoking (current) 455 (13%) 369 (11%) 1740 (24%)   934 (30%)   588 (22%) NA 541 (9.9%) 

Systolic BP (mmHg) 149.7 (23.7) 153.2 (25.3) 135.7 (19.9) 155.9 (22) 124.3 (17.5) NA 123 (16.4) 

BMI (kg/m
2

) 26.84 (3.63) 27.4 (4.82) 26.61 (4.52) 29.28 (146) 26.12 (3.77) 27.02 (5.37) 26.03 (3.88) 

<25 

25-30 

>30 

1100 (31%)   

1869 (53%) 

  565 (16%) 

1295 (38%)   

1338 (39%)   

757 (22%) 

2897 (40%)   

3012 (41%)   

1418 (19%) 

1139 (37%)   

1323 (43%)   

608 (20%) 

1082 (41%)   

1220 (46%)   

341 (13%) 

1273 (40%)  

1164 (37%)   

740 (23%)   

2049 (37%)   

2061 (38%)   

640 (12%) 

Diabetes(yes) 205 (5.8%) 302 (8.9%) 393 (5.4%) 245 (8%) 303 (11%) NA 264 (4.8%) 

Total cholesterol (mmol/l)* 6.026 (1.07) 6.655 (1.18) 5.547 (1.06) 5.033 (1.08) 6.004 (1.1) NA 5.942 (1.04) 

NMR Total cholesterol 

(mmol/l) 

4.532 (0.92) 6.011 (1.33) 5.329 (1.11) 4.218 (0.951) 3.958 (0.905) 4.94 (1.05) 5.071 (0.909) 

HDL cholesterol (mmol/l)* 1.329 (0.341) 1.665 (0.455) 1.401 (0.362) 1.397 (0.388) 1.29 (0.365) NA   1.464 (0.393) 

NMR HDL cholesterol 

(mmol/l) 

1.197 (0.306) 1.676 (0.451) 1.581 (0.389) 1.359 (0.279) 1.041 (0.234) 1.624 (0.411) 1.514 (0.329) 

LDL cholesterol (mmol/l)* 3.893 (0.963) 4.165 (1.07) 3.485 (0.933) 3.125 (0.974) 3.92 (0.964) NA 3.863 (0.933) 

NMR LDL cholesterol 

(mmol/l) 

1.815 (0.515) 2.436 (0.75) 1.919 (0.602) 1.388 (0.494) 1.42 (0.453) 1.803 (0.584) 1.895 (0.486) 

Triglycerides (mmol/l)* 1.827 (1.07) 1.833 (0.952) 1.483 (1.03) 1.38 (0.654) 1.888 (1.39) NA 1.355 (0.864) 

NMR Triglycerides (mmol/l) 1.561 (0.744) 1.664 (0.84) 1.306 (0.683) 1.288 (0.56) 1.006 (0.401) 1.721 (0.895) 1.241 (0.468) 

Non-HDL triglycerides 

(mmol/l)* 

1.404 (0.709) 1.49 (0.798) 1.132 (0.63) 1.149 (0.527) 0.8975 (0.377) 1.529 (0.842) 1.102 (0.441) 

On lipid-lowering 

medication** 

192 (5.4%) 201 (5.9%) 185 (2.5%)  1503 (49%) 4 (<1%) NA 119 (2.2%) 

Prior history of CHD 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) NA 0 (0%) 
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Had CHD event 331 (9.4%) 248 (7.3%) 802 (11%) 217 (7.1%) 821 (31%) 1565 (49%)   195 (3.6%) 

Follow-up time (years) 8.57 (2.64) 10.49 (2.7) 13.87 (2.79) 2.71 (0.58) 17.26 (5.48) 5.20 (2.27) 6.23 (1.24) 

*fasting measures; **number in pravastatin arm of the PROSPER trial; NA, not available. 
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Figure 1: Participant flow for each study 

 

NA: not available.  

Study participants (n=37 599)

BRHS: n=4252
BWHHS: n=4286

FINRISK 1997: n=8447
PROSPER: n=5804

SABRE (Southall arm): n=3694
UKCTOCS (CHD cases/controls): n=3246

WHII (Phase 5): n=7870

Participants with complete NMR HDL profiles n=33 406 (89%)

Participants included in factor analysis (n=33 364, 89%)

BRHS: n=3965 (93%)
BWHHS: n=3777 (88%)
FINRISK: n=7602 (90%)

PROSPER: n=5359 (92%)
SABRE: n=3297 (89%)

UKCTOCS: n=3194 (98%)
WHII: n=6170 (78%)

Participants included in outcome analysis (n=28 597, 76%)

BRHS: n=3535 (83%)
BWHHS: n=3391 (79%)
FINRISK: n=7328 (87%)

PROSPER: n=3071 (53%)
SABRE: n=2644 (72%)

UKCTOCS: n=3163 (97%)
WHII: n=5465 (69%)

Excluded (n=4767, 13%)
Missing data: Prior history of CHD:
BRHS: 137 (3.2%) 293 (6.9%)
BWHHS: 151 (3.5%) 235 (5.5%)
FINRISK: 12 (<1%) 262 (3.1%)
PROSPER: 109 (1.9%) 2179 (38%)
SABRE: 487 (13%), 166 (4.5%)
UKCTOCS: 31 (<1%) [15 cases, 16 controls] NA
WHII: 705 (9.0%) 0 (0%)
Total 1632 (4.3%) Total 3135 (8.3%)

Excluded for miscellaneous administrative reasons (n=42, <1%)
BRHS: 2 (<1%)
BWHHS: 0 (0%)
FINRISK: 0 (0%)
PROSPER: 22 (<1%)
SABRE: 5 (<1%)
UKCTOCS: 6 (<1%) [6 cases, 0 controls]
WHII: 7 (<1%)

Excluded because no blood samples available OR poor quality blood 
sample OR NMR assay partially or completely failed (n=4193, 11%): 
BRHS: 285 (6.7%)
BWHHS: 509 (12%)
FINRISK: 845 (10%)
PROSPER: 423 (7.3%)
SABRE: 392 (11%)
UKCTOCS: 46 (1.4%) [37 cases, 9 contols]
WHII: 1693 (22%)
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Figure 2:  Screeplot of eigenvalues (solid lines, left y-axis) and cumulative proportion of variance explained 

(dashed lines, right y-axis) for each factor from the saturated 15-factor factor analysis solutions in seven studies. 

The grey and pink horizontal lines denote an eigenvalue of 1 and cumulative variance explained of 80% respectively.  

The vertical line indicates the optimal number of factors with most eigenvalues greater than 1 and >80% of variance 

explained. 
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Figure 3: HDL biomarker factor loading patterns for 4 latent factors for each of the seven studies. Biomarkers with 

factor loadings outside the range of +/-0.4 factor loading (as indicated by the dotted lines) are considered ‘high’ 

loading.   
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Figure 4: Associations between HDL factors and the risk of CHD in 28 597 participants with no history of CHD at the time of serum sampling.  The factors are jointly 

modelled and minimally adjusted for age, then cumulatively by sex, ethnicity, smoking, systolic blood pressure, body mass index, diabetes, LDL-cholesterol 

concentration and non-HDL triglyceride concentration.  Estimates represent the effect for a 1-SD increase in the normalised factor scores. 
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Table 1: Baseline subject demographics for CHD regression analyses (n=28,597). All numbers are mean (SD) or n (%). 

 BRHS (n=3535) BWHHS (n=3391) FINRISK (n=7328) PROSPER (n=3071) SABRE (n=2644) UKCTOCS (n=3163) WHII (n=5465) 

Age (years) 68.6 (5.49) 68.64 (5.48) 47.77 (13) 75.6 (3.32) 51.92 (7.08) 64.73 (6.2) 55.56 (6.01) 

Gender (female) 0 (0%) 3391 (100%) 

 

3754 (51%) 1770 (58%) 388 (15%) 3163 (100%)   1561 (29%) 

Ethnicity (white)  3512 (99%) 3378 (>99%) 7328 (100%) 3071 (100%) 1246 (47%) 3068 (97%)   5101 (93%)  

Smoking (current) 455 (13%) 369 (11%) 1740 (24%)   934 (30%)   588 (22%) NA 541 (9.9%) 

Systolic BP (mmHg) 149.7 (23.7) 153.2 (25.3) 135.7 (19.9) 155.9 (22) 124.3 (17.5) NA 123 (16.4) 

BMI (kg/m
2
) 26.84 (3.63) 27.4 (4.82) 26.61 (4.52) 29.28 (146) 26.12 (3.77) 27.02 (5.37) 26.03 (3.88) 

<25 

25-30 

>30 

1100 (31%)   

1869 (53%) 

  565 (16%) 

1295 (38%)   

1338 (39%)   

757 (22%) 

2897 (40%)   

3012 (41%)   

1418 (19%) 

1139 (37%)   

1323 (43%)   

608 (20%) 

1082 (41%)   

1220 (46%)   

341 (13%) 

1273 (40%)  

1164 (37%)   

740 (23%)   

2049 (37%)   

2061 (38%)   

640 (12%) 

Diabetes(yes) 205 (5.8%) 302 (8.9%) 393 (5.4%) 245 (8%) 303 (11%) NA 264 (4.8%) 

Total cholesterol (mmol/l)* 6.026 (1.07) 6.655 (1.18) 5.547 (1.06) 5.033 (1.08) 6.004 (1.1) NA 5.942 (1.04) 

NMR Total cholesterol (mmol/l) 4.532 (0.92) 6.011 (1.33) 5.329 (1.11) 4.218 (0.951) 3.958 (0.905) 4.94 (1.05) 5.071 (0.909) 

HDL cholesterol (mmol/l)* 1.329 (0.341) 1.665 (0.455) 1.401 (0.362) 1.397 (0.388) 1.29 (0.365) NA   1.464 (0.393) 

NMR HDL cholesterol (mmol/l) 1.197 (0.306) 1.676 (0.451) 1.581 (0.389) 1.359 (0.279) 1.041 (0.234) 1.624 (0.411) 1.514 (0.329) 

LDL cholesterol (mmol/l)* 3.893 (0.963) 4.165 (1.07) 3.485 (0.933) 3.125 (0.974) 3.92 (0.964) NA 3.863 (0.933) 

NMR LDL cholesterol (mmol/l) 1.815 (0.515) 2.436 (0.75) 1.919 (0.602) 1.388 (0.494) 1.42 (0.453) 1.803 (0.584) 1.895 (0.486) 

Triglycerides (mmol/l)* 1.827 (1.07) 1.833 (0.952) 1.483 (1.03) 1.38 (0.654) 1.888 (1.39) NA 1.355 (0.864) 

NMR Triglycerides (mmol/l) 1.561 (0.744) 1.664 (0.84) 1.306 (0.683) 1.288 (0.56) 1.006 (0.401) 1.721 (0.895) 1.241 (0.468) 

Non-HDL triglycerides (mmol/l)* 1.404 (0.709) 1.49 (0.798) 1.132 (0.63) 1.149 (0.527) 0.8975 (0.377) 1.529 (0.842) 1.102 (0.441) 

On lipid-lowering medication** 192 (5.4%) 201 (5.9%) 185 (2.5%)  1503 (49%) 4 (<1%) NA 119 (2.2%) 

Prior history of CHD 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) NA 0 (0%) 

Had CHD event 331 (9.4%) 248 (7.3%) 802 (11%) 217 (7.1%) 821 (31%) 1565 (49%)   195 (3.6%) 

Follow-up time (years) 8.57 (2.64) 10.49 (2.7) 13.87 (2.79) 2.71 (0.58) 17.26 (5.48) 5.20 (2.27) 6.23 (1.24) 

*fasting measures; **number in pravastatin arm of the PROSPER trial; NA, not available. 
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