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Introduction

Soil-transmitted helminth (also known

as ‘‘geohelminth’’) infections are among

the most common chronic infections

worldwide. The World Health Organiza-

tion (WHO) estimates that almost 900

million children require treatment (also

known as deworming) for geohelminth

infection, while the 2010 Global Burden of

Disease Study estimates that more than

5.2 million disability-adjusted life years

(DALYs) are attributable to geohelminth

infection [1,2]. In 2001, the World Health

Assembly resolved to treat 75% of children

at risk for morbidity from these geohel-

minths by 2010. However, WHO reported

that by 2010 only approximately one-third

of all children at risk had achieved access

to mass drug administration (MDA).

Treating the remaining two-thirds by

2020 is the target of the 2012 London

Declaration for Neglected Tropical Dis-

eases [3].

The 2012 London Declaration and the

global aspirations for universal deworming

arise partly from studies conducted over

the last two decades demonstrating the

severe morbidity and poor cognitive,

intellectual, and physical child develop-

ment in populations with endemic geohel-

minth infections, and the resulting eco-

nomic losses [4,5]. Nutritional deficiencies,

including protein malnutrition and micro-

nutrient losses secondary to geohelminth

infection, represent a potentially important

mechanism by which geohelminths weak-

en their host, causing ill health and

disability [5]. There is growing evidence

that serum levels of multiple micronutri-

ents, including vitamin A, iron, copper,

selenium, cobalt, and zinc, are reduced by

geohelminth infection and some evidence

that these effects can be reversed by

deworming [6,7]. In some cases, micronu-

trient supplementation has been added in

order to complement local or regional

deworming efforts.

Here we focus on iron and vitamin A

deficiencies, two major micronutrient def-

icits which have been causally linked to

geohelminthiases. We specifically explore

the relative benefits of vitamin A supple-

mentation for children with ascariasis

infection and iron supplementation for

children with trichuriasis and hookworm

infections, with and without deworming,

and consider whether there are circum-

stances in which deworming programs

should be complemented by micronutrient

programs.

Vitamin A

Vitamin A deficiency is defined by

WHO as a serum retinol level

,0.35 mmol/L [8]. Several studies have

linked human Ascaris lumbricoides infec-

tion to vitamin A deficiency with robust

evidence for a relationship between high

intensity ascaris infection and lower levels

of vitamin A (,0.70 mmol/L) [9]. The

relationships between trichuris and hook-

worm infections and vitamin A deficiency

are less well documented; therefore, this

discussion is limited to ascariasis.

Not all children with ascariasis meet

WHO criteria for vitamin A deficiency,

although serious health consequences have

been observed in the children who still have

relatively lower vitamin A levels

(,0.70 mmol/L). Xeropthalmia, a severe

complication of vitamin A deficiency that

sometimes leads to blindness, is found more

commonly in children with ascariasis [10].

As well as having direct effects, severe

vitamin A deficiency can have significant

indirect consequences, for example, in-

creasing susceptibility to potentially fatal

illnesses such as measles and lower respira-

tory infections [11]. As a result, the link

between vitamin A deficiency and ascariasis

has potentially important consequences for

global health, especially since ascariasis

may be the most common chronic child-

hood infection worldwide [12].

While the exact mechanism of deficien-

cy induced by ascariasis remains unclear,

studies have established that children

absorb less vitamin A following oral

supplementation when they are infected

[13]. Mucosal changes in the gastrointes-

tinal tract with ascariasis, including blunt-

ing of the intestinal villi and morphological

changes in the intestinal crypts, may

explain the malabsorption [14]. Similarly,

the ability of the intestinal tract to absorb

vitamin A, a fat-soluble vitamin, may be

influenced by the impaired capacity for

intestinal fat absorption in children with

ascariasis infection [13].

Methods of improving vitamin A status

in children have been explored in relation

to supplementation and deworming, alone

and in combination. There is extensive

literature on the benefits of vitamin A

supplementation alone on the community

health of preschool-age pediatric popula-

tions, although a recent large-scale trial in

India and associated meta-analysis of all

large-scale trials suggests that the effect in

terms of mortality prevention may be less

than sometimes suggested [15]. In com-

munities in which vitamin A deficiency

coexists with geohelminth infection, de-

worming alone and in combination with

vitamin A supplementation has been

explored as a means to correct or reduce

deficiency in infected children. A popula-

tion study in Uttar Pradesh, India, found

that twice-yearly deworming alone on

lightly infected children did not result in
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either significant weight gain or a reduc-

tion in mortality [16]. Studies of pre-

school-age children in Bangladesh, India,

and Indonesia, however, showed that

combined deworming and supplementa-

tion with beta-carotene, an inactive form

of vitamin A, resulted in the greatest rise in

serum retinol levels, as compared to

children treated with deworming alone

or beta-carotene supplementation exclu-

sively [17,18]. While there is some evi-

dence to suggest an added benefit to

combined deworming and vitamin A

supplementation, a number of studies in

similar settings have either been unable to

reproduce this positive outcome or have

not specifically tested the combined inter-

vention [19,20]. Thus, while the WHO

and the United Nations Children’s Fund

(UNICEF) recommend that benzimid-

azole anthelminthics can be safely coad-

ministered with vitamin A [21], the

potential synergies of deworming with

vitamin A supplementation are neither

well documented nor consistent. There is a

need for additional studies, especially

randomized clinical trials, given the fre-

quent coexistence of dietary deficiency

and infection in endemic areas.

Iron

In contrast to its relationship with

vitamin A, a strong association has not

been identified between ascariasis infection

and anemia. Most of the pediatric studies of

geohelminth infection and the level of

anemia have examined the relationship

with either whipworms (Trichuris trichiura)

or hookworms (Necator americanus or

Ancylostoma duodenale). Most of these

studies have examined subjects aged 2–15

years, in which anemia is defined as a

hemoglobin concentration of ,11.5 g/dL

[22]. Moderate-to-heavy hookworm infec-

tion in children (and light hookworm

infection in both pregnant and nonpreg-

nant adults) and heavy pediatric trichuriasis

can result in anemia, although the precise

burden of infection that serves as a

threshold for clinical anemia varies de-

pending on the host’s existing iron stores.

In the case of hookworm infection, iron

deficiency anemia occurs when adult

hookworms attach to the mucosa and

submucosa, where they cause intestinal

blood loss [23]. In a systematic review,

Smith and Brooker showed that moderate-

to-heavy-intensity hookworm infections

were typically associated with low hemo-

globin levels in school-age children [24].

Among adults, even light infections can

produce anemia, especially in pregnant

women [25]. In areas where hookworm

transmission is intense, such as in Zanzi-

bar, 25% of all anemia, 35% of iron-

deficiency anemia, and 73% of severe

anemia were attributable to hookworm

[26]. In sub-Saharan Africa, hookworm

and malaria coinfections are common and

are often additive in terms of producing

severe anemia [27]. Heavy infections with

whipworm are also linked to anemia

through a combination of blood loss as a

result of trichuris dysentery syndrome and

chronic inflammation (anemia of chronic

disease) due to trichuris colitis [28,29].

There is substantial evidence that iron-

deficiency anemia from causes in early

childhood can result in intellectual, cogni-

tive, and behavioral deficits; several differ-

ent mechanisms have been proposed,

including altered dopaminergic function

[30]. Moderate-to-heavy hookworm infec-

tions and trichuriasis specifically have in

some circumstances been shown to lead to

failure to achieve intellectual potential

[31] and cognitive impairment [32].

Malaria occurring in combination with

hookworm infection has been identified as

a potential risk factor, exacerbating the

cognitive deficits [33]. Anemia and a

moderate-to-heavy parasite burden of

either helminth species were identified as

independent risk factors for stunting [34].

Both stunting and cognitive delay have

been shown to have lifelong consequences

for the productive potential of children.

In their systematic review of interven-

tions to reduce hookworm anemia follow-

ing deworming, Brooker and Smith deter-

mined that, for children and adults,

albendazole had demonstrated benefit (a

mean increase of 1.89 g/l), whereas the

benefits from mebendazole did not reach

statistical significance [35], findings that

appear consistent with previous observa-

tions of higher hookworm cure rates from

albendazole versus mebendazole [36].

Whether including iron supplementation

with deworming adds substantially to the

overall benefit is unclear. Brooker and

Smith’s systematic review found no added

benefit of combining deworming with iron

supplementation [35]. However, a study

from Sierra Leone demonstrated additive

benefit of deworming and iron-folate

supplementation in pregnant women with

hookworm [37], while both in Sri Lanka

and India there was added benefit from

adding mebendazole to iron supplementa-

tion [38,39]. This seems to suggest that the

effectiveness of MDA might be increased

by routine iron supplementation of preg-

nant women, but further studies are

required to determine whether iron

supplementation is relevant to other

populations. Such studies should also take

into account the greater blood loss from A.
duodenale compared to N. americanus
[40] so that the benefits of iron supple-

mentation in a given location may reflect

the relative prevalence of these endemic

hookworm species.

Conclusions

More than a thousand million deworm-

ing treatments have been delivered for the

three common (and coendemic) geohel-

minths. The evidence presented here

suggests that adding micronutrient supple-

mentation may provide additional bene-

fits, but the case is far from clear. With

vitamin A, there are demonstrable addi-

tive effects in some settings, but in others

there is no clear benefit or no clear

difference from supplementation alone.

With iron supplementation, in contrast,

there does not appear to be a significant

added benefit over deworming alone

except in two cases: first, in pregnant

women in hookworm endemic areas and,

second, in those with very intense infection

and existing anemia. Individuals in both

situations could benefit from a combina-

tion of deworming and supplementation.

Delivering a bundled package for de-

worming and micronutrient supplementa-

tion would have financial implications.

These implications are potentially much less

for vitamin A supplements than for iron

since the delivery regime for the former is

similar in frequency to deworming—once or

twice a year. Thus, in theory they could be

delivered together using the same delivery

platform. However, current evidence does

not provide clear guidance that this would

be beneficial under most circumstances.

It would not appear practical to inte-

grate deworming with iron supplementa-

tion since the latter requires an extended

regime of daily or weekly supplementation

over several weeks. Such an approach is

currently adopted as part of clinical case

management and is appropriate to the

setting of antenatal care or the manage-

ment of severe anemia. Thus, in popula-

tions in which hookworm is a significant

hazard and MDA for deworming is

offered, it would be useful to ensure that

those responsible for case management in

the community were aware of the partic-

ular synergies with iron supplementation,

especially for pregnant women.

It is perhaps worth emphasizing that our

hesitancy in recommending cointervention

is because of practical and cost-efficiency

issues and not because of the lack of

evidence of a causal link between worm

infection and micronutrient deficiency.

Even if helminth infection is merely
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associated with risk of micronutrient defi-

ciency, with no proven causation, then

linking micronutrient supplementation to

deworming programs would still be justified

on the grounds that poor children would

likely benefit from both interventions.

Further operational studies are needed to

explore how best to take advantage of this

huge opportunity to target children at high

risk for both conditions.

Adding supplementation to deworming

programs might offer benefits, but the

current state of evidence appears insuffi-

cient to justify the potentially significant

additional costs and complexity. A firmer

recommendation would require further

randomized clinical trials across different

epidemiologic settings.
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