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Abstract		

Bayesian	inference	offers	an	optimal	means	of	processing	environmental	information	and	so	an	

advantage	in	natural	selection.	We	consider	the	apparent,	recent	trend	in	increasing	dysfunctional	

disagreement	in	e.g.	political	debate.	This	is	puzzling	because	Bayesian	inference	benefits	from	

powerful	convergence	theorems,	precluding	dysfunctional	disagreement.	Information	overload	is	a	

plausible	factor	limiting	the	applicability	of	full	Bayesian	inference,	but	what	is	the	link	with	

dysfunctional	disagreement?	Individuals	striving	to	be	Bayesian-rational,	but	challenged	by	

information	overload,	might	simplify	by	using	Bayesian	Networks	or	the	separation	of	questions	into	

knowledge	partitions,	the	latter	formalized	with	quantum	probability	theory.	We	demonstrate	the	

massive	simplification	afforded	by	either	approach,	but	also	show	how	they	contribute	to	

dysfunctional	disagreement.		

	

Keywords:	Bayesian	inference,	disagreement,	entrenchment,	rationality,	decision	making		
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1. Background		1	

	2	

“Truthiness	is	tearing	apart	our	country	...	It	used	to	be,	everyone	was	entitled	to	their	own	3	

opinion,	but	not	their	own	facts.	But	that's	not	the	case	anymore.”		4	

–Stephen	Colbert,	January	2006	5	

	6	

Living	organisms	depend	on	the	optimal	processing	of	environmental	information,	for	example,	7	

regarding	foraging,	mate	selection,	or	the	assessment	of	predation	risks.	Environmental	information	8	

is	typically	uncertain,	and	so	has	to	be	processed	probabilistically.	The	established	standard	for	9	

probabilistic	inference	is	Bayesian	Probability	Theory	([1];	we	will	refer	to	it	as	just	Bayesian	theory	10	

or	occasionally	full	Bayesian	theory,	for	emphasis).	Bayesian	theory	provides	a	set	of	mutually	11	

coherent	principles	for	probabilistic	reasoning	on	uncertain	premises.	Bayesian	theory	benefits	from	12	

powerful	normative	arguments,	such	as	the	Dutch	Book	Theorem,	which	shows	that	Bayesian	13	

probabilities	will	never	lead	to	inconsistencies,	such	as	certain	loss	in	a	combination	of	gambles	[1].	14	

Accordingly,	Bayesian	reasoning	is	often	characterized	as	rational.	There	is	an	immense	body	of	work	15	

successfully	validating	Bayesian	models	of	human	cognition	[2-4];	these	models	are	not	universally	16	

successful,	but	they	are	successful	enough	to	allow	confidence	that	humans	can	be	sometimes	17	

rational	in	the	Bayesian	sense.		18	

	 Moreover,	for	non-human	animals,	it	has	been	argued	that	Bayesian	inference	confers	a	19	

natural	selection	advantage	[5-6]	and	there	have	been	simulations	of	how	natural	selection	enables	20	

the	computation	of	Bayesian	priors	across	generations	[7]	or	other	aspects	of	Bayesian	behaviour	[8]	21	

(the	first	step	in	probabilistic	inference	is	the	determination	of	priors,	that	is,	the	assumptions	22	

regarding	the	probabilities	of	relevant	events	prior	to	any	new	information).	Evidence	for	animal	23	

behaviour	consistent	with	Bayesian	inference	has	been	observed	in,	for	example,	foraging	[9]	or	24	

mating	([10];	overview	in	[11).	The	requirement	of	optimality	in	animal	behaviour	is	often	grounded	25	

in	Bayesian	terms,	even	acknowledging	that	Bayesian	consistency	may	be	focused	on	particular	26	

environments	or	circumstances	[8,12].		27	

	 However,	for	both	humans	and	non-human	animals,	there	have	been	inconsistencies	28	

between	Bayesian	principles	and	behaviour.	For	humans,	some	evocative	examples	have	been	29	

produced	by	the	influential	work	of	Tversky	and	Kahneman.	For	example,	Tversky	and	Kahneman	30	

described	a	hypothetical	person,	Linda,	as	outgoing,	concerned	with	equality,	and	intellectually	31	

restless	[13].	Naïve	participants	considered	it	more	likely	that	Linda	is	a	bank	teller	and	a	feminist,	32	

than	just	a	bank	teller.	Such	conjunction	fallacies	challenge	Bayesian	intuition	at	a	fundamental	level;	33	

it	is	like	judging	that	it	is	more	likely	to	rain	and	snow	in	December,	than	just	snow.	Interestingly,	34	
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analogous	fallacies	appear	in	animal	behaviour	too.	For	example,	rhesus	macaques	can	show	35	

ambiguity	aversion	[14]	and	pigeons	sometimes	show	the	less	is	more	effect,	whereby	a	desirable	36	

food	plus	a	less	desirable	food	is	perceived	less	appealing	than	the	desirable	food	alone	[15].		37	

	 As	Valone	([11],	p.257)	noted,	“Greater	attention	needs	to	be	devoted	to	understanding	38	

when	and	when	not	to	expect	Bayesian	updating	and	to	determine	the	limits	of	Bayesian	updating	in	39	

animals.”	The	exact	point	applies	to	human	behaviour	too.	Here	we	pursue	a	novel	perspective	to	40	

the	emergence	of	non-Bayesian	behaviour	in	humans,	motivated	by	the	apparent	increase	in	41	

dysfunctional	disagreement	in,	e.g.,	modern	political	debate.	We	call	dysfunctional	disagreement	42	

when	it	appears	impossible	for	two	parties	to	converge,	regardless	of	iterations	and	evidence.	Our	43	

analysis	is	not	restricted	to	political	debate,	but	it	is	easier	to	develop	the	argument	this	way.		44	

The	evidence	for	increasing	dysfunctional	disagreement	and	deterioration	in	the	quality	of	45	

political	debate	is	strong.	For	example,	consider:	the	emergence	of	“truthiness”,	as	in	Colbert’s	46	

quote	above	(based	on	his	satirical	show),	which	can	be	defined	as	"truth	that	comes	from	the	gut,	47	

not	books"	[16];	the	increasing	dissemination	of	“fake	news”	[17]	and	their	ability	to	set	the	political	48	

agenda	[18];	the	intense	polarization	surrounding	recent	political	events	(e.g.,	the	Brexit	referendum	49	

vote	in	the	UK).	Kahan	([19],	p.1)	offers	an	evocative	quote:	“Never	have	human	societies	known	so	50	

much	about	mitigating	the	dangers	they	face	but	agreed	so	little	about	what	they	collectively	know.”		51	

	 It	is	tempting	to	consider	these	points	unsurprising,	because	there	is	a	staggering	range	of	52	

factors	contributing	to	disagreement,	particularly	when	people	rely	on	false	information		[20].	53	

Disagreement	may	arise	due	to	emotional	influences.	Emotion	can	overwhelm	objective	information	54	

[21]	or	bias	the	activated	information	[22].	Some	theorists	suggest	that	all	reasoning	is	motivated	55	

[23],	so	that	discourse	is	guided	just	by	insistence	on	a	particular	position.	Differences	in	values	can	56	

result	in	persistent	disagreement	[24].	For	example,	conflicts	between	a	refutation	message	for	a	57	

prior	position	and	valued	self-conceptions	may	lead	people	to	become	more	entrenched	[25].	There	58	

are	several	related	biases.	For	example,	the	disconfirmation	bias	is	scepticism	for	premises	59	

incongruent	with	one’s	beliefs	[26].	The	“mybias”	is	collecting	information	and	assessing	evidence	in	60	

a	way	biased	in	favour	of	a	person’s	beliefs	[27].	Mybias	is	especially	problematic	in	information-rich	61	

societies,	since	plurality	and	freedom	of	expression	mean	that	one	can	find	supporting	opinions	for	62	

any	position.	For	example,	Del	Vicario	et	al.	[28]	argued	that	information	related	to	distinct	63	

narratives	generates	homogeneous,	polarized	communities	on	Facebook.	Such	echo	chambers	could	64	

embody	contradictory	perspectives	between	them	[29]	and	lead	to	distorted	pictures	regarding	65	

consensus.		66	

	 We	focus	on	individuals	striving	to	be	as	Bayesian	as	possible,	be	up	to	date	with	the	67	

relevant	information,	and	be	willing	to	put	aside	their	egos	in	the	interest	of	resolving	disagreements	68	
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constructively.	We	call	such	individuals	well-meaning,	and	also	suggest	that	they	can	set	aside	69	

unmovable	personal	values	(i.e.,	we	need	not	worry	about	disagreement	from	values,	[24]).	Such	70	

well-meaning	individuals	should	be	able	to	avoid	most	of	the	‘standard’	sources	of	disagreement.	71	

For	example,	in	dual	decision	routes	analytic	vs.	intuitive	components	[30]	correspond	to	thoughtful	72	

vs.	spontaneous	cognition.	Bayesian	inference	might	be	predominantly	localized	in	the	analytic	73	

route;	but,	the	relative	balance	between	different	routes	is	partly	under	conscious	control,	74	

depending	on	effort,	time	etc.	Or	Bayesian	inference	might	be	reflected	in	the	intuitive	route,	with	75	

non-Bayesian	behaviour	arising	from	limitations	from	working	memory	or	language	when	accessing	76	

the	basis	of	intuitive	judgments	[31].	But,	it	should	be	possible	to	reduce	such	limitations,	with	77	

effort.	Also,	decision	biases	might	be	avoidable	with	the	adoption	of	behavioural	rules	[32];	it	is	78	

known	that	emotions	can	be	monitored	and	their	impact	on	behaviour	limited	[33];	etc.		79	

Here	is	the	paradox:	more	people	are	educated	than	ever	before	in	history,	there	is	more	80	

insight	regarding	decision	biases,	we	have	better	understanding	of	the	importance	of	the	common	81	

good,	and	access	to	information	has	never	been	easier.	All	these	factors	should	increase	our	capacity	82	

for	Bayesian	cognition.	At	the	very	least,	we	can	assume	that	the	proportion	of	well-meaning	83	

individuals	in	society	has	not	changed,	maybe	even	increased	(would	we	not	like	to	consider	84	

ourselves	as	well-meaning?).	So,	why	does	it	appear	that	increasingly	there	is	dysfunctional	85	

disagreement	surrounding	many	current	debates?	86	

	 We	suggest	that,	even	for	well-meaning	individuals,	information	overload	challenges	our	87	

capacity	for	Bayesian	thought,	in	a	way	that	leads	to	dysfunctional	disagreement.	It	is	easiest	to	88	

make	our	case	in	relation	to	political	debate,	but	the	ideas	are	general.	First,	we	ask	whether	there	is	89	

increasing	information	overload	in	political	debate.	The	case	is	straightforward.	One	cause	of	90	

information	overload	is	the	multiplicity	of	media	and	ways	to	disseminate	information	in	modern	91	

society.	Practically	every	second,	the	internet,	television	,	mobile	phones	etc.	pump	out	massive	92	

amounts	of	news,	comments	on	the	news,	and	comments	on	the	comments.	Another	cause	is	that,	93	

in	a	technologically	advanced	society,	some	debates	are	complex,	for	example,	because	they	relate	94	

to	technological	innovations	that	cannot	be	easily	comprehended	in	lay	terms.	Access	to	information	95	

has	never	been	easier	and	we	enjoy	unprecedented	benefits	from	technological	advancement,	yet	96	

these	factors	contribute	to	massive	information	overload.		97	

Second,	we	consider	whether	information	overload	might	contribute	to	dysfunctional	98	

disagreement.	There	are	indications	that	this	is	the	case	[34].	Allenby	and	Sarewitz	[35]	suggest	that	99	

the	technological	complexity	of	modern	society	is	such	that	informed	decisions	are	beyond	the	100	

scope	of	comprehension	for	the	majority	of	us.	John	[36]	suggests	that	scientists	best	serve	society	101	

by	relaxing	the	maxims	of	transparency	and	openness—not	because	openness	and	transparency	are	102	
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undesirable,	but	because	too	much	information	may	damage	public	trust	in	science,	because	the	103	

public’s	folk	philosophy	of	science	is	at	odds	with	the	actual	workings	of	science.	There	is	clearly	a	104	

pessimistic	view	concerning	whether	people	can	deal	with	the	information	complexity	in	modern	105	

political	debates	[37-38].		106	

	 We	develop	a	precise	link	between	information	overload	and	non-Bayesian	inference	and	107	

consider	the	implications	for	dysfunctional	disagreement,	even	for	well-meaning	individuals.	It	is	108	

interesting	that	animal	behaviour	researchers	have	also	considered	whether	information	overload	109	

(environmental	complexity)	might	challenge	Bayesian	processes	[39].		110	

	111	

2. Outline	of	Methods		112	

We	consider	two	well-meaning	individuals,	Alice	and	Bob,	debating	a	question	and	examine	their	113	

capacity	for	avoiding	dysfunctional	disagreement,	under	conditions	of	information	overload.	114	

Convergence	means	agreement	on	at	least	the	probabilities	for	question	outcomes,	noting	that	in	115	

complex	debates	it	is	rarely	the	case	there	are	uncontested	observations,	even	for	good	faith	actors.	116	

We	quantify	information	overload	in	terms	of	the	number	of	ancillary	questions,	which	inform	our	117	

decision	on	a	key	question.	For	example,	suppose	Alice	is	interested	in	the	Brexit	question.	She	could	118	

inform	her	eventual	decision	on	Brexit	by	considering	questions	such	as	‘Will	Brexit	be	good	for	the	119	

economy?’,	‘Will	Brexit	be	good	for	employment	rights’	etc.,	noting	that	each	of	these	questions	120	

could	be	further	broken	down.	There	is	information	overload	when	the	number	of	these	ancillary	121	

questions	increases	beyond	a	‘practical’	point.		122	

	 Can	well-meaning	individuals	agree	to	disagree?	Bounded	rationality	is	the	form	of	123	

rationality	which	emerges	when	the	resources	of	the	reasoning	agent	are	insufficient	for	full	124	

rationality.	So,	what	are	forms	of	bounded	rationality	under	conditions	of	information	overload	and	125	

the	implications	for	dysfunctional	disagreement?		126	

	127	

3. Disagreement	and	Bayesian	rationality		128	

	129	

Consider	well-meaning	Alice	and	Bob	debating	a	complex	political	question	and	assume	they	share	130	

their	questions	and	outcomes.	They	then	use	their	respective	information	to	define	a	probability	131	

distribution	and	update	their	beliefs	as	rational	Bayesian	agents.	Is	it	possible	for	Alice	and	Bob	to	132	

dysfunctionally	disagree?	Suppose	Alice	and	Bob	have	different	information	regarding	a	Brexit	133	

question,	but	share	priors	and	have	common	knowledge	of	each	other’s	posteriors	(posteriors	are	134	

the	updated	probabilities,	once	some	new	information	has	been	received).	Then	Aumann’s	[40]	135	

theorem	guarantees	that	Alice	and	Bob’s	posteriors	will	be	the	same,	that	is,	two	rational	agents	will	136	
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eventually	converge.	Moreover,	this	convergence	can	be	achieved	with	a	reasonable	amount	of	137	

effort	[41].	The	requirement	of	common	priors	may	appear	stringent;	however,	it	can	be	replaced	by	138	

milder	ones	[42].	Even	without	common	priors,	Bayesian	Alice	and	Bob	willing	to	share	information	139	

must	eventually	converge.	The	Bernstein,	von	Mises’s	theorem	guarantees	that	Bayesian	updating	140	

will	converge	posteriors	(as	long	as	there	is	no	‘zero	priors’	trap,	[43]).	Finally,	some	of	these	results	141	

depend	on	honest	exchange	of	information.	For	well-meaning	Alice	and	Bob	this	should	be	142	

straightforward,	assuming	they	can	agree	on	acceptable	error	bounds.	Overall,	well-meaning	143	

Bayesian	Alice	and	Bob	committed	to	full	Bayesian	inference	cannot	agree	to	disagree	[41-42].		144	

	 How	practical	is	it	for	Alice	and	Bob	to	be	fully	Bayesian	under	conditions	of	information	145	

overload?	The	essential	idea	is	this	(see	also	Supplementary	Material	1).	Consider	a	finite	set	Ω	of	all	146	

possible	elementary	events	(the	most	specific	events	which	can	occur)	and	all	possible	subsets,	147	

including	the	null	set	∅	and	Ω	itself.	This	set	theoretic	representation	of	events	is	appropriate	if	each	148	

event	is	either	true	or	not	true1.	We	can	perform	logical	operations	on	these	subsets,	union,	149	

intersection,	and	complementation,	which	correspond	to	the	familiar	operations	of	conjunction,	150	

disjunction,	and	negation.	The	requirement	that	each	of	these	operations	produces	a	subset	of	Ω	151	

enables	an	algebra	over	the	space	of	subsets,	which	is	a	Boolean	algebra	(because	the	operations	152	

obey	commutativity,	associativity,	and	distributivity).	We	can	then	define	a	probability	measure	over	153	

these	subsets,	which	is,	a	map	from	the	space	of	subsets	to	the	real	number	interval	[0, 1],	with	154	

normalization	1	for	Ω.		155	

	 Consider	Alice	confronted	with	questions	A,B,C,D…,	each	of	which	can	have	possible	156	

outcomes	A1…An,	B1…Bm	etc.	Each	block	of	question	outcomes	generates	its	own	Boolean	algebra,	157	

𝛽(𝐴),	𝛽(𝐵),	…	Before	Alice	can	engage	with	probabilistic	reasoning	for	a	question,	she	first	needs	to	158	

construct	these	individual	Boolean	algebras,	which	involves	a	process	of	specifying	conjunctions,	159	

disjunctions,	and	negations	of	outcomes.	But,	for	a	Bayesian	Alice	confronted	with	questions,	A,	B,	…	160	

F,	it	is	insufficient	to	have	𝛽(𝐴),	𝛽 𝐵 … 𝛽(𝐹).	For	a	consistent	joint	probability	distribution	across	161	

any	combination	of	question	outcomes,	she	also	needs	to	construct	a	bigger	Boolean	algebra	162	

𝛽 𝐴,𝐵,… 𝐹 ,	which	integrates	the	algebras	for	the	individual	questions	in	a	consistent	way.	This	163	

larger	algebra	requires	knowledge	of	conjunctions	and	disjunctions	for	all	the	individual	question	164	

outcomes	𝐴! ,… ,𝐹!,	belonging	to	the	different	algebras	𝛽(𝐴),	𝛽(𝐵),	…	𝛽(𝐹).		165	

The	problem	of	intractability	of	full	Bayesian	representations	is	well	known,	cf.	the	idea	of	166	

magic	sets	in	Artificial	Intelligence	[44].	We	illustrate	it	in	the	case	of	debating	e.g.	Brexit	and	167	

																																																													
1	On	any	Boolean	algebra,	it	is	possible	to	define	a	truth	function	taking	values	‘true’	or	‘not	true’.	On	

a	partial	Boolean	algebra,	see	below,	such	a	truth	function	cannot	be	introduced.		
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ancillary	questions,	such	as	whether	Brexit	might	be	good	for	the	economy,	labour	laws,	etc.	If	we	168	

had	nine	binary	ancillary	questions,	then	the	elementary	events	would	be	enumerated	as		169	

1.	Brexityes,	X1yes…X9yes	170	

2.	Brexityes,	X1yes…X9no	171	

…	172	

1024.	Brexitno,	X1no…X9no	173	

Given	these	210=1024	elementary	events,	we	can	evaluate	any	more	elaborate	question,	for	174	

example,	a	conjunction	involving	some	question	outcomes	vs.	others,	such	as	175	

𝑃𝑟𝑜𝑏(𝑋1!"#&𝑋2!"# 𝑜𝑟 𝑋3!"#&𝑋5!").	But,	the	immense	expressive	power	of	Bayesian	theory	176	

comes	with	the	price	of	requiring	knowledge	of	the	joint	probability	distribution	–	here,	the	177	

probabilities	of	all	1024	elementary	events.	The	more	questions	we	have,	the	more	complex	the	178	

joint	probability	distribution	and	so	any	probabilistic	inference.	As	the	number	of	questions	n	and	179	

outcomes	per	question	k	increase,	the	number	of	terms	in	the	joint	probability	distribution	increase	180	

as	𝑘!.		181	

To	quantify	complexity,	we	adopt	an	information-theoretic	coding	scheme	and	compute	182	

information	costs	([45-46];	Supplementary	Material	1).	The	coding	cost	of	D	numbers	can	be	183	

specified	by	dividing	the	relevant	number	range	into	D	bins	and	assigning	each	number	to	one	bin,	184	

which	requires	log! 𝐷	bits	for	each	number	for	a	total	of	𝐷 log! 𝐷	bits.	This	is	intuitive	because	if	the	185	

D	numbers	were	uniformly	distributed,	we	would	have	enough	bins	to	just	make	them	discriminable	186	

(if	D=100,	these	statements	are	equivalent	to	representing	the	numbers	with	two	decimal	places;	187	

Supplementary	Material	2).	Therefore,	the	information	cost	for	representing	probabilistic	188	

information	for	n	questions	with	k	outcomes	each	is	 𝑘! − 1 log!(𝑘! − 1)	bits,	approximated	as	189	

𝑘! log! 𝑘!.		190	

Information	overload	clearly	undermines	full	Bayesian	inference.	Consider	a	person	living	in	191	

an	isolated	community	a	hundred	years	ago.	He	would	be	confronted	with	a	fairly	limited	range	of	192	

questions,	each	of	which	would	be	affected	by	relatively	few	events.	So,	it	would	be	undemanding	to	193	

create	a	Boolean	algebra	of	all	questions,	including	conjunctions,	disjunctions	etc.	Today,	especially	194	

in	political	debate,	we	are	confronted	with	questions	of	immense	complexity.	Consider	Alice	faced	195	

with	the	Brexit	dilemma.	There	are	hundreds	of	questions	relevant	to	resolving	the	dilemma,	across	196	

several	categories,	for	example,	relating	to	finance,	immigration,	security,	and	so	on.	Alice	does	not	197	

have	the	time	or	resources	(mental	or	otherwise)	to	create	a	full	Boolean	algebra	for	all	questions	198	

and	their	outcomes.		199	

	 When	confronted	with	a	complex	probability	distribution,	a	powerful	approach	is	sampling	200	

algorithms,	such	as	Markov	Chain	Monte	Carlo	(MCMC)	methods	[3,47-48].	An	MCMC	method	will	201	
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approximate	Bayesian	computations,	by	employing	samples	from	the	probability	distribution,	202	

instead	of	the	full	distribution.	Such	samples	are	often	selected	to	favour	more	probable	parts	of	the	203	

distribution	and	depending	on	the	similarity	of	the	parts	already	selected.	However,	in	the	present	204	

case,	sampling	approximations	will	not	help:	when	faced	with	problems	of	increasing	complexity,	205	

sampling	from	the	full	distribution	will	delay,	but	not	avoid,	the	exponential	explosion	of	probability	206	

terms.		207	

	208	

4. Bayesian	Networks		209	

	210	

The	first	approach	we	consider	for	mitigating	the	problems	of	complex	distributions	is	Bayesian	211	

Networks	[e.g.,	49].	Suppose	we	recognize	that	in	many	cases	questions	will	be	independent	of	each	212	

other,	so	that	e.g.	𝑃𝑟𝑜𝑏 𝐴 𝐵 = 𝑃𝑟𝑜𝑏(𝐴)	or	conditionally	independent	so	that	e.g.	213	

𝑃𝑟𝑜𝑏 𝐴&𝐵 𝑋 = 𝑃𝑟𝑜𝑏(𝐴|𝑋) ∙ 𝑃𝑟𝑜𝑏(𝐵|𝑋).	Clearly,	such	an	approach	has	simplifying	potential,	since	214	

a	complex	conditional	probability	𝑃𝑟𝑜𝑏 𝐴 𝑋!,𝑋!,𝑋!,𝑋!… 	might	be	easily	computable	as	e.g.		215	

𝑃𝑟𝑜𝑏 𝐴 𝑋! .	The	way	to	formalize	assumptions	about	conditional	independence	is	Bayesian	216	

Networks.	Bayesian	Networks	represent	(acyclic)	probabilistic	relations	between	a	set	of	variables,	217	

such	that	each	variable	is	a	node	and	causal	relations	are	represented	as	directed	edges.	The	218	

simplifying	potential	of	Bayesian	Networks	rests	with	their	Markov	property:	without	causal	219	

dependencies	there	are	no	conditional	dependencies.	So,	simplification	depends	on	the	causal	220	

structure.	Note,	there	is	extensive	evidence	for	the	psychological	plausibility	of	Bayesian	Networks	221	

[50-51],	even	if	it	is	unclear	whether	they	suffice	for	a	cognitive	theory	of	causality	[52].	Presently,	222	

we	are	only	concerned	with	the	way	the	local	Markov	property	can	simplify	probabilistic	223	

information.		224	

If	Alice	and	Bob	are	overwhelmed	by	the	complexity	of	their	representations,	they	could	use	225	

Bayesian	Networks	as	a	simplifying	tactic.	But	it	is	unlikely	they	will	develop	similar	causal	structures	226	

for	their	representations,	as	these	would	depend	on	their	experience,	education,	background	etc.	227	

Bayesian	Networks	Alice	and	Bob	with	different	causal	structures	means	that	the	powerful	classical	228	

convergence	theorems	(Aumann’s	theorem;	the	Bernstein,	von	Mises’s	theorem)	no	longer	hold.	229	

Alice	and	Bob	could	now	find	themselves	in	a	state	of	dysfunctional	disagreement,	even	though	they	230	

are	fully	rational	given	their	representations	(which	correspond	to	different	assumptions	regarding	231	

causal	structure).	Alice	and	Bob	could	seek	convergence	by	communicating	their	causal	structure,	232	

but	such	knowledge	is	often	hard	to	articulate.	Note,	there	have	been	attempts	to	explain	233	

dysfunctional	disagreement	with	Bayesian	Networks	with	hidden	nodes	corresponding	to	e.g.	234	
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attitudes	which	prevent	convergence	[53-54].	The	present	point	is	related,	but	instead	concerns	the	235	

inevitable	incidental	differences	in	causal	structures.		236	

	 To	estimate	the	complexity	of	probabilistic	inference	with	Bayesian	Networks,	consider	237	

classical	Alice	contemplating	six	binary	questions	related	to	the	Brexit	question.	Without	the	Markov	238	

property	the	probability	distribution	for	a	particular	combination	of	question	outcomes	would	look	239	

like	240	

𝑃𝑟𝑜𝑏(𝑋1!"#,𝑋2!"#,𝑋3!"#,𝑌1!"#,𝑌2!"#,𝑌3!"#,𝐵𝑟𝑒𝑥𝑖𝑡!"#) =241	

𝑃𝑟𝑜𝑏 𝑋1!"# 𝑋2!"#,𝑋3!"#,𝑌1!"#,𝑌2!"#,𝑌3!"#,𝐵𝑟𝑒𝑥𝑖𝑡!"# ∙242	

𝑃𝑟𝑜𝑏 𝑋2!"# 𝑋3!"#,𝑌1!"#,𝑌2!"#,𝑌3!"#,𝐵𝑟𝑒𝑥𝑖𝑡!"# …𝑃𝑟𝑜𝑏(𝐵𝑟𝑒𝑥𝑖𝑡!"#).	The	Markov	property	243	

allows	us	to	assume	certain	questions	to	be	independent.	For	example,	regarding	𝑃𝑟𝑜𝑏 𝐴 𝑋,𝑌)	we	244	

may	be	able	to	write	𝑃𝑟𝑜𝑏 𝐴 𝑋,𝑌) = 𝑃𝑟𝑜𝑏 𝐴 𝑋).	Suppose	that	Alice	employing	a	Bayesian	245	

Network	assumes	partial	conditional	independence,	so	that	conditionalizations	depend	on	m	246	

variables.	Then,	we	would	write,	if	m=2,	247	

𝑃𝑟𝑜𝑏(𝑋1!"#,𝑋2!"#,𝑋3!"#,𝑌1!"#,𝑌2!"#,𝑌3!"#,𝐵𝑟𝑒𝑥𝑖𝑡!"!) =248	

𝑃𝑟𝑜𝑏 𝑋1!"# 𝐴!"#,𝐵!"# ∙ 𝑃𝑟𝑜𝑏 𝑋2!"# 𝐶!"#,𝐷!"# …,	where	A,	B	are	two	questions	on	which	X1	249	

depends	etc.	As	long	as	m<<n,	each	term	requires	𝑘!	probabilities	(ignoring	‘-1’),	for	a	total	of	250	

approximately	𝑛 ∙ 𝑘!	probabilities	[55].	The	associated	coding	complexity	for	the	joint	probability	251	

distribution	given	a	particular	Bayesian	Network	is	𝑛 ∙ 𝑘! log! 𝑛 ∙ 𝑘! 	bits.	We	also	need	the	252	

information	cost	of	specifying	a	Bayesian	Network,	and	can	show	that	overall	the	information	cost	253	

for	probabilistic	information	encoded	using	a	Bayesian	Network	is	 𝑛 ∙ 𝑘! log! 𝑛 ∙ 𝑘! +254	

𝑛 log!
𝑛 − 1
𝑚 + log!𝑛 		(Supplementary	Material	2).	255	

	256	

5a.	Quantum	Probability	Theory	–	disagreement		257	

We	call	quantum	theory	the	probability	rules	from	quantum	mechanics,	without	the	physics.	258	

Behaviours	that	appear	classically	erroneous	can	sometimes	have	simple	explanations	in	quantum	259	

theory,	which	motivates	the	psychological	plausibility	of	such	models	[56-58].		260	

	 Informally,	quantum	theory	is	just	like	Bayesian	theory	for	subsets	of	questions	(compatible	261	

sets,	see	below),	but	across	these	subsets	apparent	classical	errors	can	arise.	These	incompatible	262	

sets	are	like	knowledge	partitions,	segments	of	knowledge	such	that	within	each	segment,	but	not	263	

across	segments,	reasoning	is	rational.	Knowledge	partitions	can	emerge	as	a	simplifying	strategy	in	264	

complex	problems	[59-60].	For	example,	when	learning	an	association	between	two	variables	based	265	

on	a	complex	function,	a	natural	approach	is	to	learn	the	association	in	smaller	ranges,	but	in	a	way	266	

that	the	corresponding	parts	are	not	integrated	with	each	other.	Well-meaning	Alice	dealing	with	267	

Brexit	might	try	to	be	rational	for	specific	subsets	of	questions,	but	without	trying	to	integrate	the	268	
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Boolean	algebra	for	one	theme	with	another.	For	example,	if	Alice	works	in	the	financial	sector,	she	269	

may	be	able	to	create	a	full	Boolean	structure	regarding	the	financial	implications	from	Brexit	and	so	270	

be	rational	for	such	questions.	At	the	same	time,	Alice	is	so	busy	with	the	construction	of	this	finance	271	

Boolean	algebra,	that	she	does	not	have	time	to	do	the	same	for	other	Brexit	questions,	e.g.,	relating	272	

to	security.	Arguably,	this	is	what	we	are	seeing	in	modern	society:	individuals	highly	knowledgeable	273	

and	rational	in	specific	areas	but	who,	when	asked	to	consider	questions	across	other	areas,	may	be	274	

challenged	and	even	produce	inconsistent	beliefs.	275	

In	quantum	theory,	instead	of	a	set	Ω	of	elementary	events,	we	have	a	Hilbert	space	H,	such	276	

that	each	vector	in	H	corresponds	to	an	elementary	event	(a	Hilbert	space	is	essentially	a	complex	277	

vector	space	with	a	scalar	product).	Question	outcomes	correspond	to	subspaces	in	H;	each	278	

subspace	is	associated	with	a	projector	P	(which	‘lays’	down	a	vector	onto	a	subspace);	in	279	

psychological	theory,	the	mental	state	is	represented	by	a	normalised	vector	in	H;	probabilities	are	280	

computed	by	projecting	the	state	vector	onto	subspaces	and	squaring	the	length	of	the	projections.	281	

Different	partitions	in	H	are	defined	by	sets	of	basis	vectors.	For	example,	in	a	standard	coordinate	282	

space,	we	might	have	three	basis	vectors	along	the	x,y,z	directions.	Basis	sets	are	not	unique.	If	we	283	

apply	the	same	rotation	to	each	of	our	current	vectors	x,y,z,	we	will	end	up	with	a	new	set	of	basis	284	

vectors	x’,y’,z’.	Two	sets	of	basis	vectors	can	be	related	to	each	other	using	a	generalised	kind	of	285	

rotation.		286	

	 Projectors	can	be	compatible,	in	which	case	we	have	a	Boolean	algebra	exactly	as	in	the	287	

classical	case,	or	incompatible,	when	the	Boolean	algebra	structure	breaks	down.	That	is,	288	

considering	sets	𝐴,	𝐵,	𝐶	…	of	projectors,	such	that	within	each	set	projectors	are	compatible,	but	289	

across	incompatible	sets,	one	cannot	combine	Boolean	algebras	𝛽(𝐴),	𝛽(𝐵)…into	one	large	Boolean	290	

algebra.	Each	event	in	this	larger	structure	is	no	longer	either	true	or	not	true	(before	measurement)	291	

and	distributivity	is	no	longer	obeyed.	Instead,	we	have	a	partial	Boolean	algebra,	which	is	a	292	

collection	of	Boolean	algebras	pasted	together,	so	that	where	any	two	Boolean	algebras	overlap,	293	

their	operations	agree.	Conjunctions	and	disjunctions	preserve	their	Boolean	features	only	within	294	

the	same	Boolean	algebra.	Conjunctions	of	incompatible	questions	have	a	sequential	form	and	295	

𝑃𝑟𝑜𝑏 𝑃! ∧ 𝑡ℎ𝑒𝑛 𝑃! ≠ 𝑃𝑟𝑜𝑏 𝑃! ∧ 𝑡ℎ𝑒𝑛 𝑃! .	Also,	a	definite	answer	for	a	question	can	create	296	

uncertainty	for	other	incompatible	ones.		297	

Quantum	theory	can	simplify	probabilistic	inference	with	incompatibility,	which	allows	Alice	298	

to	squeeze	information	about,	say,	100	questions	(which,	even	if	binary,	will	require	a	classical	space	299	

of	2100	dimensions)	into	a	space	of,	say,	10	dimensions.	If	quantum	Alice	organizes	her	large	set	of	300	

Brexit	questions	into	incompatible	themes,	each	theme	corresponds	to	a	basis	set	in	the	same	small	301	

dimensionality	space	and	the	representation	of	new	themes	need	only	involve	a	change	of	basis,	302	
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instead	of	enlargement	of	the	original	space.	However,	incompatibility	contributes	to	dysfunctional	303	

disagreement.		304	

One	implication	of	incompatibility	is	that	quantum	Alice	is	more	likely	to	display	(classical)	305	

fallacies,	which	may	undermine	her	arguments.	Incompatibility	has	been	linked	with	conjunction	and	306	

disjunction	fallacies	[61],	question	order	effects	[62],	violations	of	normative	constraints	in	causal	307	

reasoning	[51],	and	disjunction	effects	[63].	Moreover,	incompatibility	leads	to	contextuality	in	308	

meaning.	If	quantum	Alice	and	Bob	have	different	partial	Boolean	algebras,	they	may	think	they	are	309	

talking	about	the	same	question,	have	the	same	data,	and	fail	to	agree,	because	they	are	talking	310	

about	different	questions	(Figure	1).	Such	ideas	resemble	proposals	in	social	psychology	about	how	311	

earlier	questions	can	activate	thoughts	or	perspectives	for	later	ones	[64].	Contextuality	arises	in	312	

quantum	theory	because	the	meaning	of		question	A	is	determined	by	considering	the	set	of	313	

questions	compatible	with	A	(and	some	of	these	questions	might	be	incompatible	with	each	other)	314	

and	because	the	meaning	of	question	A	may	be	affected	by	considering	prior	questions	incompatible	315	

with	A.		316	

Contextuality	contributes	to	dysfunctional	disagreement.	First,	quantum	Alice	and	Bob	are	317	

no	longer	aided	by	Aumann’s	theorem	[65].	Common	knowledge	in	the	quantum	case	is	not	318	

equivalent	to	common	knowledge	in	the	classical	case,	because	the	former	lacks	conjunctions.	319	

Additionally,	questions	incompatible	with	common	knowledge	will	produce	interference	terms	so	320	

that	Alice	and	Bob	will	not	update	probabilities	consistently	with	each	other.	Second,	collective	321	

decision-making	typically	benefits	from	communal	knowledge	effects,	such	as	the	community	of	322	

knowledge	effect,	wisdom-of-the-crowds,	and	Condorcet’s	Jury	theorem.	Such	effects	are	not	323	

specific	to	Bayesian	inference,	but	they	are	consistent	with	it.	However,	all	three	are	undermined	by	324	

contextuality.	Regarding	community	of	knowledge,	Sloman	and	Fernbach	[66]	argued	that	in	a	325	

complex	world	we	increasingly	benefit	from	each	other’s	expertise	and	sometimes,	as	a	result,	326	

overestimate	our	own	knowledge	(a	knowledge	illusion).	The	wisdom-of-the-crowds	effect	is	the	327	

proposal	that	an	averaged	judgment	across	observers	can	be	more	accurate	than	most	individual	328	

judgments,	assuming	primarily	independence	of	observations	and	that	individual	estimates	are	329	

normally	distributed	around	the	correct	outcome	[67].	Finally,	the	Condorcet	Jury	theorem	shows	330	

that	a	majority	decision	(e.g.,	in	a	jury)	is	increasingly	likely	to	be	correct,	as	we	add	voters	whose	331	

(individual)	probability	that	they	are	correct	is	just	over	0.5.	Regarding	community	of	knowledge	and	332	

wisdom	of	the	crowds,	if	Alice	and	Bob	are	debating	contextual	question	A,	then	Alice	may	be	333	

thinking	of	AX	and	Bob	of	AY,	where	X,	Y	indicate	differing	meanings.	This	casts	doubt	on	the	334	

rationality	of	putting	Alice’s	and	Bob’s	intuitions	together.	Such	problems	are	likely	to	be	335	
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accentuated,	because	employing	a	partial	Boolean	algebra	may	lead	to	overconfidence	336	

(Supplementary	Material	3).	337	

	338	

	339	

Figure	1.	Alice	and	Bob	are	interested	in	whether	Brexit	may	increase	the	price	of	imported	cheese,	340	

C.	Alice	considers	C	with	questions	related	to	immigration,	while	Bob	with	finance	questions.	As	a	341	

result,	Alice	and	Bob	develop	meanings	for	the	C	question	which	are	different,	even	though	they	342	

think	they	are	considering	the	same	question.		343	

	344	

5b.	Quantum	Theory	–	coding	costs	345	

	346	

Within	a	single	partition,	we	have	a	classical	probability	distribution	for	the	corresponding	questions,	347	

encoded	in	the	mental	state	vector.	We	need	to	specify	the	mental	state	for	one	partition	and	the	348	

way	partitions	relate	to	each	other;	the	latter	is	encoded	in	transformation	operators	called	unitary.	349	

So,	the	information	cost	for	probabilistic	inference	for	quantum	Alice	depends	on	three	elements,	350	

the	mental	state	vector	for	one	partition,	unitary	operators,	and	the	cost	of	allocating	questions	to	351	

partitions.	The	mental	state	vector	and	unitary	operators	are	specified	in	terms	of	parameters	which	352	

are	real	numbers.	Regarding	information	costs,	we	follow	from	the	above	approach	to	assume	that	F	353	

real	parameters	(assumed	in	a	certain	range)	can	be	approximately	specified	using	𝐹 log! 𝐹	bits.	354	

	 Label	the	dimensionality	of	each	partition	as	N.	The	mental	state	vector	in	N	dimensions	has	355	

N-1	real	parameters	corresponding	to	amplitudes	and	N-1	real	parameters	for	the	phases.	This	is	356	

because	the	N	amplitudes	are	constrained	by	the	normalization	condition	and,	regarding	the	N	357	

phases,	the	quantum	state	is	the	same	up	to	an	overall	phase	factor.	The	corresponding	information	358	
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cost	is	2 ∙ 𝑁 − 1 log! 𝑁 − 1 ,	which	can	be	approximated	as	2 ∙ 𝑁 log!𝑁.	What	is	N?	Suppose	c	359	

partitions	are	employed	and	that	all	partitions	have	the	same	number	of	questions.	Then,	in	each	360	

partition	we	have	𝑛/𝑐	questions,	k	outcomes	each,	so	that	𝑁 = 𝑘!/!.	The	overall	information	cost	361	

involves	additional	terms,	for	how	information	in	one	partition	relates	to	information	in	other	362	

partitions.	This	cost	is	2 ∙ 𝑘!/! log! 𝑘!/! + 𝑐 − 1 ∙ !!
!
log!

!!
!
+ log!

!!
!
! !

!!! + log!
!!! !!!

!!!!
	363	

(Supplementary	Material	2).	Note,	the	dimensionality	of	quantum	Alice’s	probability	space	turns	out	364	

to	be	only	𝑁 = 𝑘!/!,	which	seems	like	a	huge	saving	compared	to	Bayesian	Alice	for	whom	𝑁 = 𝑘!;	365	

but	this	simplification	is	partly	offset	by	the	complexity	of	specifying	partition	relations.			366	

	367	

	 6.	Comparisons		368	

	369	

A	well-meaning	Alice	overwhelmed	by	the	complexity	of	her	joint	probability	distribution	might	seek	370	

to	simplify	the	representations	either	by	employing	Bayesian	Networks	or	dividing	her	questions	into	371	

(incompatible)	partitions.	For	the	latter	two	schemes,	the	critical	parameters	are,	respectively,	m	372	

(the	average	number	of	questions	each	one	question	depends	on)	and	c	(the	number	of	partitions).	373	

Both	parameters	concern	the	extent	of	dependence	of	questions	amongst	themselves	and,	374	

specifically,	the	length	of	conditional	probabilities	(Supplementary	Material	2).	Regarding	m,	this	375	

interpretation	follows	directly	from	the	definition	of	a	Bayesian	Network,	while	in	the	quantum	case	376	

classical	conditionalization	occurs	only	within	knowledge	partitions.	Therefore,	it	is	natural	to	set	377	
!
!
= 𝑚	or	𝑐 = !

!
.		378	

We	provide	indicative	estimates	regarding	the	simplification	from	Bayesian	Networks	and	379	

quantum	theory	relative	to	Bayesian	theory,	varying	question	numbers	from	5	to	15	and	question	380	

outcomes	from	2	to	4,	Figure	2.	The	vertical	axis	shows	information	cost	for	scheme	A	(e.g.,	Bayesian	381	

theory)	minus	B	(e.g.,	Bayesian	Networks).	Recall,	lower	information	costs	are	more	advantageous,	382	

so	that	when	A-B>>0,	then	B	is	superior	to	A.	In	all	cases,	probabilistic	reasoning	with	either	Bayesian	383	

Networks	or	quantum	theory	affords	overwhelming	simplification	relative	to	Bayesian	theory.	This	is	384	

a	demonstration	of	the	essential	point	that	information	overload	will	drive	even	well-meaning	Alice	385	

to	make	representational	approximations,	putatively	employing	Bayesian	Networks	or	knowledge	386	

partitions.		387	

	 We	also	observe	a	marginal	advantage	of	quantum	theory	over	Bayesian	Networks,	though	388	

this	conclusion	is	sensitive	to	the	complexity	of	the	relation	between	partitions.	Overall,	the	389	

quantum	approach	to	simplification	seems	advantageous,	thus	providing	a	strong	expectation	of	390	

dysfunctional	disagreement	due	to	incompatibility	and	partitions.		391	
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	392	

	

Bayesian	theory	minus	Bayesian	Networks	

(m=n/3).	

	

Bayesian	theory	minus	quantum	theory	(c=3).	

	
Bayesian	Networks	(m=n/3)	minus	quantum	

theory	(c=3).		

	

Bayesian	Networks	(m=3)	minus	quantum	

theory	(c=n/3).	

	393	

Figure	2.	We	plot	information	cost	given	one	scheme	minus	information	cost	given	another	scheme,	394	

labelled	Diff	(in	bits).	The	superior	scheme	has	lower	information	cost.	Horizontal	axes	represent	395	

number	of	questions	(n)	and	outcomes	per	question	(k);	complexity	increases	with	both	n	and	k.	396	

Note,	m=3	for	Bayesian	Networks	translates	to	three	questions	per	knowledge	partition	in	QPT.		397	

	398	

	 7.	Concluding	comments		399	

	400	

We	considered	how	dysfunctional	disagreement	can	arise	for	well-meaning	individuals,	because	of	401	

information	overload.	The	notion	of	being	well-meaning	is	primarily	underwritten	by	an	assumption	402	

of	rational	cognition,	in	the	Bayesian	sense.	There	is	a	strong	consensus	that	Bayesian	rationality	is	403	

achievable	to	some	extent	[1-4].	Our	aim	has	been	to	understand	how	information	overload	can	404	

challenge	full	Bayesian	rationality,	how	Bayesian	Networks	and	quantum	theory	offer	flavours	of	405	

limited	or	local	Bayesian	rationality,	and	the	implications	for	dysfunctional	disagreement.		406	

	 Regarding	dysfunctional	disagreement,	a	full	Bayesian	would	quickly	find	it	impossible	to	407	

build	the	required	Boolean	algebra,	for	complex	problems.	Alice	can	simplify	with	Bayesian	408	
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Networks,	truncating	her	probability	distributions	with	assumptions	about	the	causal	structure	409	

between	her	questions.	Alice	and	Bob	may	find	themselves	failing	to	converge	if	their	Bayesian	410	

networks	are	different;	Aumann’s	[40]	and	the	Bernstein,	von	Mises’s	theorems	no	longer	hold.	411	

Alternatively,	Alice	can	simplify	using	knowledge	partitions	[59]	dividing	her	questions	into	sets,	such	412	

that	within	each	knowledge	partition	she	is	fully	Bayesian,	but	across	partitions	apparent	errors	413	

arise.	With	knowledge	partitions,	Aumann’s	and	the	Bernstein,	von	Mises’s	theorems	also	no	longer	414	

hold	and,	in	addition,	the	resulting	contextuality	challenges	the	community	of	knowledge	effect	[66],	415	

wisdom-of-the-crowds	[67],	and	Condorcet’s	Jury	theorem.		416	

	 Is	it	possible	for	Bayesian	Networks	or	quantum	Alice	and	Bob	to	converge?	In	the	former	417	

case,	they	need	to	share	their	causal	structure.	However,	it	seems	unlikely	this	would	occur,	because	418	

we	are	often	unaware	of	the	causal	dependencies	impacting	on	inference.	In	the	latter	case,	Alice	419	

and	Bob	need	to	share	their	partitions	(and	information	on	how	partitions	relate	to	each	other),	and	420	

in	addition	be	careful	to	respond	to	a	question	in	the	same	context	(Figure	1).	We	agree	with	Lissack	421	

[68]	who	argued	that	truthiness	can	be	reduced	if	Alice	and	Bob	“Try	to	see	things	from	my	422	

viewpoint.”	However,	we	think	quantum	Alice	and	Bob	will	not	engage	with	such	a	process,	because	423	

contextuality	is	not	recognized	in	probabilistic	inference.		424	

	 Our	focus	has	been	dysfunctional	disagreement,	because	this	is	an	under-researched	topic	425	

and	because	the	link	with	information	overload	is	intuitive.	More	generally,	there	have	been	long	426	

research	traditions	concerning	the	way	complexity	undermines	Bayesian	rationality.	The	present	427	

framework	can	shed	light	into	other	instances	of	behaviour	apparently	problematic	from	a	full	428	

Bayesian	perspective,	because	of	complexity,	bearing	in	mind	that	there	will	be	behaviours	outside	429	

any	probabilistic	framework.	For	example,	the	emergence	of	some	conjunction	fallacies,	as	in	the	430	

Linda	example	[13],	could	be	traced	to	lack	of	familiarity	with	partition	combinations.	It	is	possible	431	

that	we	have	a	local	partition	for	professions	and	one	for	personal	characteristics,	like	feminism,	432	

without	making	the	effort	to	combine	them	together.	Conversely,	the	less	is	more	effect	in	animal	433	

behaviour	[15]	seems	harder	to	understand	as	complexity-driven	bounded	rationality.		434	

In	closing,	to	the	long	list	of	factors	contributing	to	dysfunctional	disagreement,	we	add	435	

differences	in	causal	structure	and	contextuality,	from	information	overload.	A	surprising	implication	436	

is	that	more	information	or	nuanced	perspectives	may	exacerbate	disagreement	by	further	437	

encouraging	truncated	probability	distributions	or	incompatible	representations	as	simplifying	438	

tactics.	For	some	important	modern	debates,	such	as	Brexit,	it	may	seem	that	we	have	forgotten	439	

how	to	evaluate	arguments	using	easily	verifiable	facts,	but	increasing	information	may	not	help	or	440	

indeed	be	harmful	[36-38].	A	precise	understanding	of	the	impact	of	information	overload,	as	we	441	

have	offered,	will	hopefully	contribute	to	mitigating	interventions.		442	
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Supplementary	Material	1	–	dynamics	and	additional	details	for	quantum	

theory.		

Dynamics	for	Bayesian	theory.	In	the	main	text	we	focused	the	complexity	discussion	for	both	

Bayesian	theory	and	quantum	theory	on	static	representations.	However,	decision	models	are	

invariably	dynamic,	so	that	probabilistic	decision	models	invoke	the	Bayesian	and	quantum	rules	for	

how	probabilities	change	with	time.	The	complexity	picture	is	essentially	unchanged;	we	offer	in	this	

subsection	some	corresponding	notes	for	Bayesian	theory	and	in	the	next	subsection	for	quantum	

theory,	also	including	some	additional	details	for	quantum	theory,		

The	most	basic	mechanism	for	probabilistic	updating	in	Bayesian	theory	is	Bayesian	

updating,	based	on	Bayes’s	law.	But	Bayesian	theory	also	allows	for	a	dynamical	evolution	of	

probabilities.	Generally,	for	each	question	A,	B,	C…	𝑃𝑟𝑜𝑏! = 𝑃𝑟𝑜𝑏! 𝑥, 𝑡 , 𝑥 = 1,… 𝑘 	is	a	

probability	vector	with	the	index	x	enumerating	question	outcomes.	For	each	𝑃𝑟𝑜𝑏!(𝑡),	the	system	

of	Kolmogorov	forward	equations	is	!!"#$!(!)
!"

= 𝐾! ∙ 𝑃𝑟𝑜𝑏!(𝑡),	where	𝐾!,	the	intensity	matrix	for	

question	A,	is	a	transition	matrix	which	determines	which	elements	of	𝑃𝑟𝑜𝑏! 𝑥, 𝑡 	grow	more	or	less	

probable.	For	a	collection	of	questions,	we	write	!"#$% !,!
!"

= 𝐾!" ∙ 𝑃𝑟𝑜𝑏 𝑗, 𝑡!!
!!! ,	where	the	index	i	

selects	a	term	in	the	complete	joint	distribution,	and	the	summation	over	j	is	over	all	other	terms	

(marginals	need	not	be	enumerated	separately	as	they	are	recoverable	from	the	joint).	The	Bayesian	

dynamical	picture	is	dynamics	on	a	family	of	vectors;	however,	for	any	realistic	situation	with	

𝑛, 𝑘 ≫ 1	we	would	have	a	large	number	of	differential	equations.		

Quantum	theory	is	likely	to	be	unfamiliar	to	many	readers,	from	either	animal	or	human	behaviour.	

Nevertheless,	it	is	essentially	just	a	way	to	assign	probabilities	to	question	outcomes,	alternative	to	

Bayesian	theory.	Quantum	theory	is	an	important	part	of	the	quantum	mechanics	theory	of	physics,	

but	it	can	be	employed	in	any	situation	where	there	is	a	need	to	quantify	uncertainty.	We	offer	here	

Figure	SM1,	which	helps	illustrate	some	of	the	basic	ideas	in	quantum	theory.	Recall	that	question	

outcomes	are	subspaces.	In	the	same	way	we	can	have	a	set	of	basis	vectors	for	the	entire	space,	we	

can	also	define	a	subspace	with	a	set	of	basis	vectors.	In	Figure	SM1,	we	consider	three	question	

outcomes.	E,	~E	(not	E),	and	G,	all	represented	

as	one-dimensional	subspaces.		
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Figure	SM1.	We	consider	two	incompatible	binary	questions,	(G,	~G;	we	only	show	the	former)	and	

(E,	~E).	Recall,	probabilities	are	computed	as	the	squared	length	of	projections.	First,	consider	a	

mental	state	along	the	G	ray	(a	ray	is	a	one-dimensional	subspace).	This	means	that	the	decision	

maker	is	certain	about	this	question	outcome,	G.	However,	this	certainty	implies	unavoidable	

uncertainty	for	the	E	question,	since	there	are	non-zero	projections	from	G	to	the	E	(red)	and	~E	

(green)	rays.	Therefore,	it	is	impossible	to	resolve	both	questions	concurrently.	Second,	consider	an	

uncertain	mental	state	(as	labelled).	From	such	a	mental	state	resolving	the	G	and	then	E	question	

(shown)	will	produce	a	different	probability	than	resolving	first	E	and	then	G	(not	shown).	This	

illustrates	the	non-commutativity	of	projectors	for	incompatible	questions.	

	

Regarding	the	dynamical	evolution	of	probabilities	in	quantum	theory,	the	analogue	of	the	

forward	Kolmogorov	equation	in	quantum	theory	is	Schrödinger’s	equation,	which	is	!" !
!"

=

−𝑖𝐻𝜓 𝑡 ,	so	that	𝜓 𝑡 = 𝑒!!∙!∙!  𝜓 0 = 𝑈(𝑡)𝜓 0 ,	where	𝐻	is	the	Hamiltonian,	a	transition	matrix	

which	determines	which	elements	of	𝜓 𝑡 	increase	or	decrease	in	amplitude,	and	𝑈(𝑡)	is	a	unitary	

operator.	If	we	have	compatible	questions,	then	the	dimensionality	of	the	space	and	dynamics	are	

equivalent	to	the	Bayesian	case.	For	example,	for	independent	questions	A,	B	,	the	overall	

Hamiltonian	can	be	written	as	a	sum	of	tensor	products,	𝐻 = 𝐻!⊗ 𝐼! + 𝐼!⊗ 𝐻!,	so	that	
!"(!)
!"

=

𝑒!!∙!∙ !!⊗!!!!!⊗!! = 𝑒!!∙!∙!! ⊗ 𝑒!!∙!∙!!𝜓 𝑡 ,	where	the	state	vector	matches	the	structure	of	the	

Hamiltonian,	in	the	expanded	space.	For	incompatible	questions,	there	is	one	Hamiltonian	for	all	

questions	and	the	time	evolved	state	can	be	used	to	answer	any	question.	For	example,		!" !
!"

=

−𝑖𝐻𝜓 𝑡 ,	𝑃𝑟𝑜𝑏 𝐴;𝜓 𝑡 = 𝑃!𝜓 𝑡 !	and	for	another	question	B	(which	may	not	even	be	known	in	

advance),	𝑃𝑟𝑜𝑏 𝐵;𝜓 𝑡 = 𝑃!𝜓 𝑡 !,	where	𝑃!,	𝑃!	can	be	related	by	a	unitary	transformation.	

Outcome	combinations	for	incompatible	questions	also	do	not	evolve	separately,	e.g.,	𝑃𝑟𝑜𝑏 𝐴 ∧

𝑡ℎ𝑒𝑛𝐵;  𝜓 𝑡 = |𝑃!𝑃!𝜓 𝑡 |!.		

Note,	in	Bayesian	theory	the	dynamical	equation	operates	directly	on	probabilities,	so	given	

a	Bayesian	initial	state	obeying	the	law	of	total	probability,	any	time-evolved	state	will	also	obey	the	

law	of	total	probability.	By	contrast,	in	quantum	theory	the	dynamical	equation	operates	on	

amplitudes,	which	lead	to	probabilities	using	Born’s	rule.	So,	an	initial	state	can	be	made	to	obey	the	

law	of	total	probability,	but	a	time-evolved	state	need	not	do	so	(Pothos	&	Busemeyer,	2009).		

	

We	can	now	consider	the	complexity	situation	for	the	Bayesian	and	quantum	dynamical	evolution	

of	probabilities.	Essentially,	the	comparative	picture	for	relative	complexities	does	not	change,	but	a	
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detailed	complexity	calculation	will	be	unnecessarily	involved.	For	completeness,	we	offer	some	

brief	notes.		

It	is	straightforward	to	see	that	incompatibility	simplifies	not	only	representation,	but	also	

dynamical	processing.	Recall,	if	Bayesian	Alice	considers	questions	𝐴!,𝐴!…𝐴!,	each	with	k	

outcomes,	then	she	needs	one	differential	equation	for	each	term	in	the	joint	probability	

distribution	𝑃𝑟𝑜𝑏(𝐴! = 𝐴!! ,𝐴! = 𝐴!! …𝐴! = 𝐴!!)	and	then	the	probability	for	a	particular	

outcome	for	a	question	is	recovered	from	marginalizing	across	these	(𝑘!)	terms.	The	increase	in	

equations	is	exponential	in	number	of	questions	and	n-power	in	question	outcomes.	Quantum	Alice	

considering	incompatible	questions	𝐴!,𝐴!…𝐴!	needs	a	single	differential	equation	to	determine	

the	outcome	of	a	single	question	𝐴!	(2 ∙ 𝑘	real	equations),	regardless	of	n.	If	quantum	Alice	

introduces	more	questions,	then	for	each	one	of	them	she	needs	to	determine	a	unitary	

transformation	relating	the	new	question	basis	to	a	canonical	one,	whose	specification	requires	

maximally	~𝑘×𝑘	equations	(in	practice,	we	would	expect	quantum	Alice	to	employ	far	fewer	

constraints	in	determining	the	unitary	transformation).	Relatedly,	quantum	Alice	is	able	to	encode	

more	efficiently	(some)	interrelatedness	information	in	dynamical	processing,	relative	to	a	Bayesian	

Alice.	Consider	a	single	question,	k	outcomes.	Both	Bayesian	and	quantum	Alice	need	to	specify	their	

mental	state,	k	vs.	(approximately)	2k	values,	assuming	quantum	Alice	employs	a	superposition.	

Bayesian	Alice	can	include	interrelatedness	information	in	the	intensity	matrix,	but	new	

interrelatedness	patterns	require	different	intensity	matrices	(size	~𝑘×𝑘).	If	quantum	Alice’s	

Hamiltonian	is	incompatible	with	the	question	operator	(this	would	be	generally	the	case	for	non-

trivial	dynamics),	then	interrelatedness	information	in	phase	differences	will	impact	on	time-evolved	

amplitudes.	

	

Additional	references	

Pothos,	E.M.	&	Busemeyer,	J.R.	(2009).	A	quantum	probability	explanation	for	violations	of	'rational'	

decision	theory.	Proceedings	of	the	Royal	Society	B,	276,	2171-2178.		
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Supplementary	Material	2	–	coding	costs	supplements	
In	this	section	we	provide	some	additional	technical	details,	regarding	coding	costs	for	full	Bayesian	

Alice,	Bayesian	Networks	Alice,	and	quantum	Alice.		

First,	we	consider	the	basic	problem	of	encoding	D	probabilities.	At	the	heart	of	the	

argument	in	main	text	is	the	way	complexity	of	probabilistic	inference	is	quantified.	The	most	basic	

problem	is	how	to	represent	D	probabilities.	Note,	this	representation	must	be	approximate,	since	

otherwise	we	are	left	with	real	numbers	and	the	information	cost	of	specifying	a	real	number	is	

infinite.	The	initial	proposal	is	that	if	we	have	D	probabilities,	then	minimally	we	need	to	employ	D	

bins	in	the	relevant	range,	so	that	each	probability	is	in	principle	discriminable	assuming	they	are	

uniformly	distributed.	In	practice,	this	assumption	will	rarely	be	true,	so	that	if	we	insist	on	complete	

discriminability	we	may	need	more	bins	in	certain	parts	of	the	range	and	fewer	bins	in	other	parts	of	

the	range;	for	D	numbers,	D	can	be	considered	a	reasonable,	on	average	estimate	for	the	number	of	

bins	required.		

	 We	next	consider	whether	the	constraint	that	probabilities	have	to	sum	to	1	can	reduce	the	

information	cost	for	approximately	representing	D	probabilities.	We	first	have	to	order	the	

probabilities	from	largest	to	smallest,	which	costs	log! 𝐷!	bits.	Regarding	the	assignment	of	the	first,	

largest	probability,	we	have	D	possibilities.	Regarding	the	assignment	of	the	second	probability,	note	

that	the	first	and	the	second	largest	probabilities	cannot	sum	to	greater	than	1.	Therefore,	for	the	

second	largest	probability,	the	available	choices	are	D/2	at	most.	For	example,	if	the	first	probability	

is	higher	than	0.5,	then	the	second	has	to	be	lower	than	0.5,	hence	the	number	of	available	bins	

would	be	fewer	than	D/2.	Alternatively,	if	the	first	highest	probability	is	lower	than	0.5,	then	both	

the	first	and	the	second	highest	probabilities	have	to	be	lower	than	0.5;	in	either	case,	we	(still)	have	

fewer	than	D/2	available	bins	for	assigning	the	second	probability.	When	assigning	the	third	largest	

probability,	likewise	the	available	choices	are	D/3	etc.,	until	the	smallest	probability.	So,	overall,	the	

total	number	of	possible	assignments	is	given	by		

𝐷 ∙
𝐷
2
∙
𝐷
3
∙ …

𝐷
𝐷

=
𝐷!

𝐷!
	

The	corresponding	information	cost	is	log!
!!

!!
,	so	the	total	(taking	into	account	the	cost	of	ordering	

probabilities	too)	is	log!
!!

!!
+ log! 𝐷! = log! 𝐷!,	as	before.	Therefore,	the	normalization	constraint	

for	numbers	which	are	probabilities	cannot	reduce	the	information	representation	cost,	compared	

to	assuming	we	just	have	numbers	in	a	certain	range.		

	 There	are	several	alternative	coding	schemes	regarding	probabilities	specifically.	For	

example,	suppose	Alice	initially	places	all	probabilities	in	the	first	bin.	Then,	she	considers	how	many	

of	these	probabilities	would	be	high	enough	to	be	assigned	to	(at	least)	the	second	bin.	These	
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probabilities	are	at	most	D/2,	so	we	need	to	select	𝐷/2	items	out	of	𝐷	–	there	are	 𝐷
𝐷/2 	ways	of	

doing	so,	requiring	log!
𝐷
𝐷/2 	bits.	This	procedure	can	be	repeated	until	we	run	out	of	bins.	

However,	in	each	step	we	also	need	to	specify	the	number	of	probability	terms	which	go	forward	(to	

the	next	bin),	requiring	log!𝐷.	Another	coding	scheme	would	involve	again	starting	with	ordering	

probabilities.	Then	Alice	knows	that	after	assigning	the	largest	number	the	next	one	cannot	be	larger	

than	1 − 1/𝐷,	the	second	largest	one	cannot	be	larger	than	1 − 2/𝐷	etc.	This	is	because	the	first	

probability	is	the	highest	one	and	the	lowest	value	for	this	probability	is	1/𝐷.	The	smaller	number	of	

bins	that	Alice	can	drop	for	consideration	after	the	first	assignment	is	one.	So,	for	the	first	

probability	she	has	D	bins	available,	for	the	second	number	D-1	bins	available	etc.	This	means	that	

the	information	cost	of	assigning	all	probabilities	to	bins	(i.e.,	representing	all	probabilities)	is	

2 log! 𝐷!	However,	a	simple	computational	analysis	shows	that	such	alternative	schemes	are	

generally	inferior	to	the	proposed	one,	that	D	probabilities	require	𝐷 log! 𝐷	bits	for	their	

approximate	representation.		

	 There	are	two	more	issues	to	consider.	First,	there	have	been	proposals	for	adaptive	

approaches	for	estimating	probabilities,	based	on	the	observed	frequencies.	However,	such	

proposals	do	not	concern	the	representation	of	(just)	the	numbers	corresponding	to	the	various	

probabilities.	That	is,	presently,	we	are	not	interested	in	estimating	a	probability	from	observed	

frequencies,	rather	the	cost	of	representing	the	numbers	corresponding	to	the	different	

probabilities.	Second,	it	might	be	tempting	to	employ	the	actual	probabilities	to	specify	an	entropy-

like	code.	Recall	the	definition	of	Shannon’s	entropy,	which	is	that	for	objects	x1,	x2,	x3…with	

probabilities	p1,	p2,	p3,	the	most	efficient	code	per	object	is	given	(on	average)	by	its	entropy	

measure.	However,	the	code	for	each	object	is	different	from	the	code	required	to	represent	the	

probability	–	a	number.	Put	differently,	if	an	object	is	more	likely,	its	Shannon	code	will	be	lower	

because	the	frequency	of	the	object	will	be	higher,	but	there	is	no	sense	in	which	a	probability	

number	p1=0.02	will	need	more	or	fewer	bits	than	p2=0.98,	since	in	both	cases	we	are	representing	a	

number	with	a	required	precision.		

	

Second,	we	consider	some	additional	detail	concerning	the	information	cost	of	specifying	the	

structure	of	a	Bayesian	Network.	A	Bayesian	Network	has	a	number	of	nodes	equal	to	the	number	

of	questions,	n.	For	each	node,	we	have	a	fan-in	of	m.	We	need	to	identify	which	m	connections,	out	

of	a	possible	n-1	ones,	are	made	to	this	particular	node,	and	there	are	 𝑛 − 1𝑚 	ways	to	select	m	

elements	from	n-1	ones.	This	requires	log!
𝑛 − 1
𝑚 + log!𝑛	bits	for	each	node	(note,	the	

information	cost	is	unchanged	for	each	node	because	there	are	no	restrictions	in	the	number	of	
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times	a	particular	node	can	connect	to	other	nodes).	The	final	cost	for	the	structure	is	given	by	

𝑛 log!
𝑛 − 1
𝑚 + log!𝑛 ,	because	we	have	n	different	nodes	and	also	we	need	to	encode	the	cost	

for	specifying	the	integer	m,	which	is	log!𝑛	(this	term	will	typically	be	dwarfed	by	the	rest).	

	

Third,	we	consider	some	additional	detail	concerning	the	information	cost	of	representing	

probability	information	with	quantum	theory.	Recall,	in	main	text	we	noted	how	in	quantum	theory	

question	outcomes	correspond	to	subspaces.	As	noted,	a	subspace	is	specified	by	a	set	of	basis	

vectors,	which	is	a	collection	of	orthonormal	vectors,	called	eigenstates,	that	span	the	subspace.	A	

partition	in	the	overall	space	can	also	be	defined	by	a	set	of	basis	vectors.	The	idea	of	basis	vectors	is	

essential	in	understanding	how	partitions	can	be	related	to	each	other,	with	unitary	transformations.		

Each	basis	vector	for	a	partition	corresponds	to	a	unique	combination	of	outcomes	in	the	

partition.	For	example,	suppose	we	have	a	partition	with	three	binary	compatible	questions	X1,	X2,	

X3,	then	the	partition	will	be	eight-dimensional	(2x2x2).	Each	of	the	eight	basis	vectors	will	have	the	

form	𝑋1!"#𝑋2!!"𝑋3!"#,	𝑋1!"#𝑋2!"#𝑋3!",	etc.	Consider	a	different	partition	of	Y1,	Y2,	Y3	binary	

questions,	compatible	with	each	other	and	incompatible	with	the	X	ones.	A	unitary	operator	relates	

basis	vectors	in	one	partition	to	basis	vectors	in	the	other,	which	means	how	a	particular	

combination	of	outcomes	for	X	questions	depends	on	particular	combination	of	outcomes	for	Y	

questions.	In	the	most	complex	case,	a	particular	combination	of	question	outcomes	for	the	X	

questions	can	depend	on	all	possible	combinations	of	question	outcomes	for	the	Y	questions	(in	N	

dimensions,	the	corresponding	unitary	would	have	𝑁!	parameters).	We	think	that	psychologically	

this	is	implausible.		

It	is	straightforward	to	show	that	knowledge	of	a	sequential	conjunction	for	two	

incompatible	questions	allows	one	constraint	in	the	specification	of	the	corresponding	unitary	

operator.	The	more	the	conjunctions	that	quantum	Alice	can	specify	between	the	X	and	Y	question	

outcomes,	the	richer	the	eventual	specification	of	U	(that	is,	the	richer	Alice’s	understanding	of	the	

relation	between	the	two	knowledge	partitions).	Note,	this	discussion	shows	that	there	is	potentially	

more	structure	in	a	quantum	theory	representation	than	in	a	Bayesian	Networks	one	(cf.	Pothos	et	

al.,	2017).	The	role	of	Bayesian	Networks	is	to	simplify	dependences	between	variables,	but	a	

Bayesian	Network	itself	does	not	provide	guidance	regarding	how	one	conditional	probability	should	

relate	to	another.	By	contrast,	in	quantum	theory	the	separation	of	questions	into	knowledge	

partitions	needs	to	be	accompanied	by	information	on	how	the	questions	in	one	partition	relate	to	

the	ones	in	others.		

How	much	effort	will	quantum	Alice	plausibly	invest	in	specifying	the	relation	between	

knowledge	partitions?	Consider	Dirlam’s	(1972)	estimate	of	optimal	chunk	sizes,	assuming	a	



28	 	 dyfunctional	disagreement	
	

hierarchically	organized	memory.	He	suggested	that	at	each	node	in	the	hierarchy	there	should	be	

three	to	four	branches	–	and	so	three	to	four	associations	with	other	elements	in	the	hierarchy.	Also,	

limits	in	environmental	sampling	have	been	related	to	additional	reinforcement	when	learning	high	

correlations	(Hourihan	&	Benjamin,	2010;	Kareev,	2000)	or	the	facilitation	of	complex	learning	

through	a	more	structured	development	of	the	relevant	knowledge	(Elman,	1993;	Newport,	1990;	

Plunkett	&	Marchman,	1993);	such	limits	might	restrict	quantum	Alice’s	ability	to	develop	a	complex	

understanding	of	the	relation	between	knowledge	partitions.	Likewise,	we	suggest	that	quantum	

Alice	will	seek	to	understand	the	relation	between	partitions	employing	only	a	few	constraints	per	

relation,	as	4𝑛/𝑐	per	U	for	n	questions	and	c	partitions.	Assuming	there	are	c	knowledge	partitions,	

quantum	Alice	needs	to	specify	the	relation	between	any	one	of	them	and	a	canonical	one,	so	that	

the	information	cost	of	the	corresponding	U’s	is	 𝑐 − 1 ∙ !!
!
log!

!!
!
	(as	above,	since	for	each	U	we	

have	to	represent	4𝑛/𝑐	real	numbers).		

	 We	next	consider	the	information	cost	of	dividing	questions	into	c	partitions.	The	

dimensionality	of	each	partition	is	𝑁 = 𝑘!/!;	for	example,	𝑁 = 8	indicates	that	we	have	clusters	of	

three	binary	questions.	Since	each	partition	has	𝑛/𝑐	questions,	we	need	to	identify	which	𝑛/𝑐	

questions	out	of	n	ones	belong	to	it.	This	is	given	by	log!
𝑛
!
!
+ log! 𝑛	for	the	first	partition,	

log!
𝑛 − !

!
!
!

+ log! 𝑛 − !
!
	for	the	second	partition	etc.,	for	a	total	of		 log!

𝑛 − 𝑖 !
!

!
!

+!!!
!!!

log! 𝑛 − 𝑖 !
!

= log!
!!!!! !

!
! ! !!(!!!)!! !

+ log! 𝑛 − 𝑖 !
!

!!!
!!! .	Regarding	the	first	term	in	the	

summation,	observe	that	the	numerator	for	𝑖 = 𝑐 − 1	is	part	of	the	denominator	for	𝑖 = 𝑐 − 2,	and	

so	on,	so	all	these	terms	simplify	to	give	log!
!!
!
! !

!.	Also,	the	second	term	in	the	summation	

amounts	to	log!
!!! !!!

!!!!
.		

	 Overall,	as	stated	in	main	text,	if	quantum	Alice	considers	n	questions	with	k	outcomes	each,	

divided	into	c	equally	sized	partitions,	the	information	cost	is	2 ∙ 𝑘!/! log! 𝑘!/! + 𝑐 − 1 ∙
!!
!
log!

!!
!
+ log!

!!
!
! !

!!! + log!
!!! !!!

!!!!
,	arranged	so	that	we	consider	first	the	cost	of	the	mental	

state,	then	the	cost	for	the	unitaries	capturing	the	relations	between	partitions,	and	finally	the	cost	

of	allocating	questions	to	partitions.		
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Supplementary	Material	3	

We	think	that	employing	a	partial	Boolean	algebra	is	likely	to	lead	to	overconfidence.	A	psychological	

sense	of	uncertainty	is	often	quantified	using	entropy,	𝑆 = − 𝑝! log 𝑝!! ,	where	the	summation	

ranges	across	all	outcomes	to	a	question.	Entropy	is	higher	when	more	options	are	equiprobable	and	

the	more	certain	we	are	regarding	the	resolution	of	a	question,	the	lower	the	entropy;	e.g.,	if	

regarding	a	binary	question	we	have	Prob(Yes)=0.9,	entropy	will	be	lower	compared	to	if	

Prob(Yes)=0.6.	Consider	quantum	Alice	contemplating	the	Brexit	issue,	which	consists	of	several	

specific	questions.	The	entropy	function	is	additive	and	so	Alice’s	total	entropy	will	be	the	sum	of	

individual	question	entropies.	Suppose	Alice	simplifies	her	Brexit	Boolean	algebra,	so	that	she	

considers	only	2-3	questions	in	her	preferred	basis	set.	Given	the	small	number	of	questions,	she	can	

plausibly	devote	sufficient	effort	to	each	question	and	move	from	a	state	of	higher	uncertainty	to	

one	of	lower	uncertainty	(e.g.,	with	binary	questions,	suppose	that	initially	Prob(Q1,	yes)=0.6,	

Prob(Q2,	yes)=0.4,	Prob(Q3,	yes)=0.5,	but	after	some	thought	Prob(Q1,	yes)=0,8,	Prob(Q2,	yes)=0.1,	

and	Prob(Q3,	yes)=0.9).		

Suppose	Bob	employs	a	more	faithful	Boolean	algebra,	consisting	of	20	questions.	Bob	will	

have	a	more	accurate,	nuanced	picture	for	Brexit.	However,	if	we	assume	that	Alice	and	Bob	have	

the	same	amount	of	time	for	their	deliberation,	then	Bob	will	be	able	to	devote	less	time	per	

question	than	Alice,	and	so	the	reduction	in	uncertainty	for	Bob’s	(already	more	numerous)	

questions	will	be	lower	than	that	for	Alice.	After	deliberation,	on	average,	Alice	is	likely	to	end	up	

with	questions	of	lower	entropy	than	Bob	(Figure	SM2).	Additionally,	the	maximum	possible	entropy	

increases	with	the	dimensionality	N	as	𝑁 log𝑁.	So,	if	information	overflow	encourages	Alice	to	

squeeze	a	complicated	dilemma	into	a	small	space	(using	incompatibility),	Alice	may	end	up	being	

more	confident	than	Bob,	even	though	her	representation	is	less	accurate.	There	is	some	indirect	

support	for	this	idea.	First,	it	appears	that	increasing	information	can	increase	confidence,	without	

increasing	accuracy	(e.g.,	Chervany	and	Dickson,	1974;	Davis	et	al.,	1994;	Paese	and	Sniezek,	1991).	

Second,	the	Dunning-Kruger	effect	is	the	observation	that	low	ability	individuals	can	have	a	harder	

time	recognizing	their	limitations	and	so	are	more	likely	to	feel	overconfident	(Kruger	&	Dunning,	

1999).		
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Figure	SM2.	Alice	employs	a	more	simplified	representation	for	her	problem	and	so	can	devote	more	

time	per	question	than	Bob,	assuming	that	Alice	and	Bob	have	the	same	amount	of	time	for	their	

deliberation.	The	blue	outline	shows	uncertainty	before	deliberation	and	the	red	filler	after	

deliberation.	Alice	may	end	up	resolving	to	a	more	satisfactory	extent	her	fewer	questions	–	and	so	

feel	more	confident	than	Bob	–	but	this	is	largely	because	Bob’s	picture	was	more	nuanced	and	

accurate	to	start	with.		
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Supplementary	Material	4—some	additional	computational	results	

For	Bayesian	Networks,	more	costly	representations	will	involve	a	more	complex	causal	structure,	

when	m=n/3;	this	is	the	version	we	compared	with	full	Bayesian	theory	in	main	text.	We	show	here	

that	even	more	simplification	can	be	achieved	if	the	causal	structure	is	simpler,	with	m=3	(Figure	

SM3a).	For	quantum	theory,	more	costly	representations	will	involve	fewer,	larger	partitions	when	

c=3;	this	is	the	version	we	compared	with	Bayesian	theory	in	main	text.	We	show	here	that	greater	

simplification	can	be	achieved	when	there	are	more	numerous,	simpler	partitions,	with	c=n/3.		

Overall,	Bayesian	Networks	will	afford	more	simplification	when	m=3	than	when	𝑚 = 𝑛/3	

(conditionalizations	are	simpler	in	the	former	case).	Quantum	theory	will	afford	more	simplification	

when	𝑐 = 𝑛/3	than	when	c=3	(there	are	more	partitions	in	the	former	case).	So,	the	versions	of	

Bayesian	Networks	and	quantum	theory	considered	here	are	even	more	advantageous	relative	to	

Bayesian	theory,	compared	to	the	versions	in	main	text.		

	

	

Figure	SM3a.	Bayesian	Networks	(m=n/3)	minus	

Bayesian	Networks	(m=3).	The	graph	shows	that	

the	more	complex	causal	structure	(m=n/3)	is	

most	costly	than	the	simpler	one	(m=3).	

	

Figure	SM3b.	Quantum	theory	(c=3)	minus	

quantum	theory	(c=n/3).	The	graph	shows	that	

fewer,	larger	partitions	(c=3)	are	more	costly	

than	more	numerous	ones	(c=n/3).	

		

	 The	final	issue	is	whether	the	overwhelming	advantage	of	coding	schemes	based	on	

Bayesian	Networks	or	quantum	theory,	over	full	Bayesian	theory,	can	be	reduced,	if	some	sampling	

approach	is	incorporated	in	the	coding	schemes.	We	think	this	is	not	the	case.	We	can	demonstrate	

this	by	offering	variants	of	the	top	two	panels	in	Figure	2	in	main	text,	but	with	an	assumption	that	

only	0.01%	of	the	probability	terms	comprising	the	full	distributions	are	encoded	(we	do	this	

conservatively	and	approximately,	by	reducing	the	probability	terms,	but	not	scaling	down	any	of	the	

other	costs).	Observing	Figures	SM4a	and	SM4b,	it	is	clear	that	an	exponential	increase	in	
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complexity,	with	increasing	questions	and	question	outcomes	still	occurs.	So,	our	essential	point	

(that	Bayesian	Alice	will	be	challenged	by	the	information	cost	of	complex	debates)	remains,	even	if	

there	are	two	mitigating	factors	concerning	the	urgency	of	simplification:	first,	reducing	the	

probability	terms	means	that	there	will	be	many	situations	for	which	full	Bayesian	will	be	as	good	as	

or	even	better	than	an	approach	based	on	Bayesian	Networks	or	quantum	theory.	This	is	evident	in	

the	figures,	because	we	are	plotting	only	data	points	for	which	full	Bayesian	encoding	is	inferior.	

Where	the	figures	show	blank,	full	Bayesian	encoding	is	superior	(e.g.,	when	n=10	and	we	are	

considering	binary	questions).	Second,	the	onset	of	the	exponential	increase	in	complexity	occurs	

later.	So,	Bayesian	Alice	invoking	sampling	approximations	will	be	confounded	by	information	

overload	only	after	more	questions	and	outcomes	per	questions,	compared	to	Bayesian	Alice	

without	sampling	approximations.	Notice	that	in	main	text	Figure	2	the	vertical	axis	for	‘Diff’	(the	

information	cost	advantage)	extends	to	1.5x108,	whereas	presently	this	extends	to	only	about	

40,000,	given	the	same	ranges	for	n,	k.		

Notwithstanding	these	points,	please	also	bear	in	mind	that	we	have	explored	the	impact	

from	a	massive	reduction	in	probability	terms	–	0.01%	reduction	means	that	for	10	binary	questions,	

instead	of	considering	1024	probability	terms	to	represent	her	probability	information,	sampling	

Alice	will	only	consider	less	than	one	term	(let’s	say	one	term).	Clearly,	in	such	cases	we	have	to	

consider	just	how	much	accuracy	Alice	is	willing	to	sacrifice.		

	

Figure	SM4a.	Bayesian	theory	minus	Bayesian	

Networks	(m=n/3),	retaining	only	0.01%	of	

probability	terms.	Points	for	which	Diff<0	are	not	

plotted.		

	

Figure	SM4b.	Bayesian	theory	minus	quantum	

theory	(c=3),	retaining	only	0.01%	of	probability	

terms.	Points	for	which	Diff<0	are	not	plotted.	

	

	


