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Highlights 

 The thermal management strategies of PEMFC are reviewed 

 The waste heat recovery pathways of PEMFC are presented  

 The challenges and prospects of the aforementioned areas are discussed  
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Abstract 

Despite that the Proton Exchange Membrane Fuel Cell (PEMFC) is considered to be an efficient 

power device; around half of the energy produced from the electrochemical reaction is dissipated as 

heat due to irreversibility of the cathodic reaction, Ohmic resistance, and mass transport 

overpotentials. Effective heat removal from the PEMFC, via cooling, is very important to maintain the 

cell/stack at a uniform operating temperature ensuring the durability of the device as excessive 

operating temperature may dry out the membrane and reduces the surface area of the catalyst hence 

lowering the performance of the cell. In addition to cooling, capturing the produced heat and 

repurposing it using one of the Waste Heat Recovery (WHR) technologies is an effective approach to 

add a great economic value to the PEMFC power system. Global warming, climate change, and the 

high cost of energy production are the main drivers to improve the energy efficiency of PEMFC using 

WHR. 

This paper presents an overview of the recent progress concerning the cooling strategies and WHR 

opportunities for PEMFC. The main cooling techniques of PEMFCs are described and evaluated with 

respect to their advantages and disadvantages. Additionally, the potential pathways for PEMFC-WHR 

including heating, cooling, and power generation are explored and assessed. Furthermore, the main 

challenges and the research prospects for the cooling strategies and WHR of PEMFCs are discussed.  
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1. Introduction 

The unfavourable environmental impact of fossil fuel and its role in global warming and pollution 

continue to receive public and government attention where finding an alternative energy source is at 

the centre of any new legislation and a hot discussion topic in the parliament. Hydrogen was always 

regarded as an alternative to the traditional fossil fuel which can be burned, in the internal combustion 

engines, or used in the fuel cells, such as PEMFC, to generate power; virtually without producing any 

Greenhouse Gas (GHG) emissions [1], [2]. PEMFCs are promising power generation devices which 

were suggested for a wide range of applications such as automotive [3], railway [4], aviation and 

aerospace [5], maritime [6], portable devices [7], power plants [8], and energy storage systems [9]. 

PEMFC produces electricity as a result of the electrochemical reaction between hydrogen and oxygen 

[10]–[12]. Along with the electricity, heat and water are also produced as by-products in the PEMFC. 

Effective management of the produced heat and water is extremely important to enhance the energy 

efficiency and the durability of the device [13]. Heat/thermal management of the PEMFC is normally 

achieved via employing a suitable cooling strategy depending on the power and application of the 

stack. Cooling the fuel cell device can be either passive or active. In the passive cooling, the heat is 

dissipated via natural convection, conduction and radiation modes without using any external device. 

Such cooling is normally secured through the use of heat spreader and heat pipes. Passive cooling is 

simple, inexpensive, easy to implement, and has high energy efficiency and low noise due to the 

absence of fan. However, it has very low cooling capacity and can only be used for small PEMFCs 

[14]. Active cooling utilizes an external device, such as a fan or blower, to enhance heat transfer and 

to achieve the required amount of heat rejection. Normally in the active cooling, the PEMFC heat is 

transferred to a cooling fluid which passes through the stack increasing its temperature. The 

temperature of the cooling fluid is then decreased actively in the radiator which releases the heat to 

the environment. In some cases, the thermal management via active cooling requires controlling the 

main operation parameters of the system, such as coolant flow rate and coolant inlet temperature, 

using a proper control system such as proportional integral (PI) controller [15]–[17]. 
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Improving the energy efficiency of the PEMFC is the key for making the technology more 

economically viable while maintaining its sustainability. Waste heat recovery (WHR) has emerged as 

an effective strategy for enhancing the energy efficiency of the PEMFC and reducing its operational 

cost while minimizing GHG emissions. WHR means capturing the heat loss within the system and 

utilizing it instead of discharging it to the environment [18], [19]. The captured waste heat can be 

converted back to electricity, mechanical power, or additional heat for use in targeted functions 

allowing for energy-saving [20]. The viability and limitations of WHR for a particular system depend 

on the temperature of the waste heat source [21]. Thus, the temperature of the waste heat is the main 

factor that determines the possible exploiting routes of it. In the context of an industrial process, waste 

heat temperature ranges from as low as 30°C to more than 1000°C [22]. Accordingly, waste heat is 

normally classified into high, medium and low-grade heat corresponding to the temperature level of 

>400 °C, 100–400 °C, and < 100 °C, respectively [23], [24]. Generally, the higher the temperature of 

the waste heat, the better its quality, and the easier to be retrieved. Recovering low-grade heat is more 

challenging and less feasible than recovering high and medium grade heat [22]. The temperature of 

waste heat from both low temperature (LT) and high temperature (HT) PEMFCs is between 60°C and 

200°C [25]–[27]. Generally, the waste heat of HT-PEMFC has better quality than that of LT-PEMFC 

since it has a higher temperature levels of up to 200 °C [28]. However, the waste heat of both LT-

PEMFC and HT-PEMFC falls within the low-medium grade category imposing some WHR 

difficulties.  

Due to their significant impacts on the performance, energy efficiency, and sustainability, the thermal 

management and WHR of PEMFCs have gained a great deal of studies in the recent years leading to 

dramatic and interesting developments in the field. This paper aims to presents the latest trends in 

those interconnected areas highlighting the main challenges and identifying related prospects.  

2. Mechanisms of heat generation and heat transfer in a PEMFC 

Generally, the heat in a PEMFC is generated from different sources including electrochemical 

reactions between the hydrogen and oxygen, Ohmic resistance of the membrane, and condensation of 
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water vapour [29]. As it is known, the fuel cell generates electrical power from an electrochemical 

reaction between hydrogen and oxygen; hence the chemical energy of the fuel which is not converted 

into electricity is released as heat. Heat accounts for around 50% of the total energy produced by the 

electrochemical reactions [30]. Thus, the heat flux of a fuel cell can be quantified as shown in 

equation 1 

                     1 

Where      is the thermal voltage;       is the cell operating voltage; and i is the current density. 

       represents the imaginary maximum possible cell potential assuming full conversion of the 

chemical energy into electrical power.        equals either to 1.25 V if it is calculated based on higher 

heating value (HHV) with liquid water as a by-product of the reaction or 1.48 V if it is calculated 

based on lower heating value (LHV) with water vapour as the by-product of the reaction. It is clear 

from the equation that     increases as the current density increases and the cell voltage decreases. 

The heat of the PEMFC is generated in certain regions of the cell leading to non-homogenous 

temperature distribution within the device. The local heat flux greatly affects the performance and the 

durability of PEMFCs. Accurate estimation of the local heat generation within each region of the cell 

is somewhat complex. According to Ramousse et al [31], part of PEMFC heat is generated due to 

Joule effects, i.e. the protonic resistance of the electrolyte, and it is localized in the membrane region. 

Another part of the heat is produced at the electrodes and it is due to the electrochemical reactions 

taking place at those regions. Additionally, part of the heat is generated due to water sorption 

phenomena and it is localized at the membrane–electrode interfaces. Finally, some heat might be 

generated in the GDL layer due to the condensation of water. The generated heat within the PEMFC 

is transferred via different modes. Convective heat transfer occurs between the solid surfaces of the 

cell components and the flowing reactants; and conductive heat transfer occurs in the solid and/or 

porous materials of the device including electrolyte, electrodes and current interconnect layers [32].  

3. Thermal management strategies of PEMFC stacks 
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Thermal management of the PEMFC means removing the heat produced by the device and 

maintaining an acceptable working temperature for it. The thermal management is achieved via 

applying one of four main cooling strategies including heat spreader, air cooling, liquid cooling, and 

phase change cooling as shown in Figure 1. Choosing a suitable cooling strategy for a specific PEMFC 

depends mainly on its power level. Each cooling method employs specific cooling materials which 

must be non-toxic, non-flammable, and chemically compatible with the materials used for the PEMFC 

components [33].  

3.1 Heat spreaders 

The heat spreader is one of the passive cooling techniques for PEMFC. This cooling method provides 

many advantages including the simple design, low parasitic loses, and no need for coolant circulation 

systems; thereby improving the overall efficiency of the stack [34]. The heat spreaders of the PEMFC 

can be in the form of a highly thermally conductive material, heat pipes, or vapour chamber.  

3.1.1. Heat spreader in the form of highly thermally conductive material  

In this method, highly thermally conductive materials are used as spreaders that absorb the heat from 

the central region of PEMFC stack and then transfer it to the edge of the cells and finally dissipate it 

to the surrounding air through natural convection [35]. Copper, with its excellent thermal conductivity 

(about 400 W/m K), is the most commonly used material for fabricating heat spreaders. Aluminium is 

another suitable material for application as heat spreaders for lightweight PEMFC stack due to its 

combined high thermal conductivity (about 200 W/m K) and low-density characteristics. Additionally, 

carbon nanotube (CNT) and graphene, with their thermal conductivities in the range of 3000–

5000 W/m K, may also be employed as high-rate heat spreader materials [36]. Furthermore, low-

density graphite-based material such as expanded graphite and pyrolytic graphite with thermal 

conductivity of 600–1000 W/mK could also be used [34]. 

The feasibility of applying a highly thermal conductivity pyrolytic graphite sheet (PGS) as heat 

spreaders for the thermal management of single-cell and small-to-medium-sized PEMFC stack was 

investigated by many researchers [37]–[39]. Wen and Huang [37] used a PGS heat spreader for single 
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PEMFC. It was shown that using PGS can enhance cell performance at high cathode flow rates. Also, 

PGS allowed for achieving a more uniform temperature distribution with less maximum temperature 

than those observed without using PGS. Wen et al. [38] extended the previous work by using the PGS 

for thermal management of PEMFC stack. It was reported that the using of PGS as heat spreader can 

increase the maximum power and improve the performance of the stack as well as addressing the 

water flooding issue at the low cathode flow rates.  

3.1.2. Heat-pipe based heat spreader 

Heat pipes are passive and very efficient heat transfer devices with high thermal conductivity in the 

range of 2100–50000 W/mK [34]. The Conventional Heat Pipe (CHP) can be simply described as an 

evacuated tube containing a working fluid in both vapour and liquid phases and a wick structure to 

return the condensed working fluid to the evaporator section, as shown in Figure 2 [40], [41].  

Over the past years, heat pipes were successfully employed as cooling elements for different types of 

electronic devices [43]. Many studies have proved the suitability of different types of heat pipes 

including Loop Heat Pipe (LHP), Pulsating Heat Pipe (PHP), and micro Heat Pipe (μHP) for thermal 

management of PEMFC. μHPs can be used for PEMFC with low power output (<10 W) [44]. LHPs 

are suggested for PEMFCs with output power in the range of 10–100 W [44]. PHPs are suitable for 

PEMFC having high power (>100 W) [44]. The heat pipes can be embedded into the bipolar plates of 

the PEMFC stack to meet the different heat dissipation requirements [45]. Oro and Bazzo [46] 

proposed a thin flat heat pipe, which employs microgrooves for capillary pumping of the working 

fluid, as a cooling device for PEMFC. It was shown that the heat pipe can provide sufficient cooling 

for PEMFC rejecting up to 12 W at the evaporator section and maintaining the operating temperature 

within the desirable range. LHP with flat bifacial evaporator was proposed as a heat exchanger for 

PEMFC [47]. Planar bifacial made of sintered stainless steel (AISI 316) porous plates were used as 

wick while methyl alcohol was employed as working fluid. It was shown that for the applied power in 

the range of 10-30 W, the operating temperature of the LHP was less than 85 °C for the horizontal 

position which confirms its suitability for many PEMFC heat removal applications. A cooling system 

composed of heat pipes and Capillary Pumped Loop (CPL) was used for thermal control of PEMFC 
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stack [48]. The heat pipes were made of seamless stainless steel (316L) tubes with stainless steel mesh 

as wicks and deionized water as working fluid. The proposed cooling system was capable of 

dissipating the heat and maintaining the suitable operation temperature for PEMFC. Clement and 

Wang [49] designed and analysed PHP as a heat dissipation device for PEMFC. The heat pipe was 

constructed from a copper tube and tested with three different working fluids including acetone, 

methanol, and deionized water. The best performance was obtained from PHP with methanol 

occupying a filling ratio of 45%. The aforementioned heat pipe reached the steady-state stage within a 

short time and exhibited the smallest temperature differences during the transient stage. PHP was 

capable of dissipating around 120 W at the evaporator section which proves its potential to be used as 

a passive cooling device for PEMFC.   

3.1.3. Vapour chamber 

Vapour chamber (VC) is another passive heat transfer device that can be used as a heat spreader in 

PEMFC. VCs have the same working concepts of heat pipes but they are different in shape, 

processing, and heat transfer patterns [45]. Zhao et al. [45] proposed an innovative VC concept for 

cooling of PEMFC stack. The proposed VC consists of two etched copper shell plates as the 

evaporation and the condensation sections and employs sintered copper powder and deionized water 

as a wick structure and working medium, respectively. The obtained results showed that the vapour 

chamber has excellent cooling characteristics including quick thermal response and high thermal 

conductivity. It was reported that VC can satisfy the cooling requirements of low-power PEMFCs. 

3.2 Air-cooling 

In this cooling strategy, heat dissipation is achieved via air which is passing either in the cathode or in 

dedicated cooling plates [50]. The air-cooling method has received a good deal of interest due to its 

simplicity and potential to integrate the cooling channels into the cathode allowing for reducing the 

size, weight, cost, and control complexity of the device [51], [52]. Air-cooling is only suitable for 

small PEMFCs with low power while it is deemed not efficient for large PEMFC due to the 

significant increase in the parasitic losses [28], [53].  
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The main parameters that affect the performance of air-cooling are the inlet temperature and the mass 

flow rate of air as well as the configuration of the flow field [54]. Proper design of the coolant flow 

field is an important aspect of air-cooling to achieve uniform temperature distribution within the cell. 

The performance of the coolant flow field is normally assessed via different performance metrics such 

as average        and maximum        temperatures, pressure drop     , and Index of Uniform 

Temperature (IUT). IUT measures the deviation of the surface temperature from the average 

temperature (      of the heat transfer surface. Generally, a smaller IUT indicates a more uniform 

distribution of the temperature and a better cooling performance where the surface with perfectly 

uniform temperature distribution has an IUT of 0 [55]. Using Computational Fluid Dynamic (CFD) 

tool, Ravishankar and Prakash [56] investigated the influence of channels configurations on the 

thermal characteristics of an air-cooled PEMFC. Six different designs were considered for air flow 

channels including serpentine, spiral, divided serpentine, divided spiral, distributed serpentine and 

distributed spiral, as sketched in Figure 3.   ,     , and IUT metrics were used to compare the 

different channels configurations. Divided spiral design, with the greater number of channels bends, 

exhibited a greater pressure drop among all designs. On the other side, distributed serpentine design 

was the one which showed the best performance in terms of temperature distribution uniformity. 

According to this study, there is no single design that satisfies well all the desirable performance 

metrics. Shahsavari et al. [57] numerically investigated the thermal behaviour of a PEMFC with 

combined oxidant and cooling channels as shown in Figure 4. It was revealed that the air velocity and 

in-plane thermal conductivity of the bipolar plate are the key factors that affect the temperature 

distribution in the cell. Matian et al. [58] investigated the influence of air channel size on the 

performance of the air-cooling system for PEMFC stack. The suggested designs integrate the air-

channels and the reactants channels on the same plate, as shown in Figure 5. It was shown that the 

plate with bigger air channels provides more uniform temperature distribution due to the greater 

amount of air that can pass through these channels and the greater amount of heat that can be removed 

from the system.  
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The possibility of using open-pore cellular foam (OPCF) made of metals as air flow passages in air-

cooled PEMFCs was also investigated in the literature [14], [59]. OPCF is characterized by high 

surface to volume ratio and randomly distributed tortuous ligaments creating randomly interrupted 

flow passages and a greater degree of coolant re-circulation thus enhancing the temperature 

uniformity and heat transfer in both axial and transverse directions [14]. Additionally, the low 

electrical resistance and the lightweight of the metallic OPCF can enhance the electrical performance 

of the cell while reducing its weight [14]. Odabaee et al. [59] used thin-layer of aluminium OPCF as 

cooling plates which are inserted at the back of the bipolar plates and in between the cells. The 

reported results revealed that air-cooling using OPCF as cooling plates requires half of the pumping 

power compared to water-cooling. Lee et al [60] employed foam material on the cathode in air-cooled 

PEMFC to prevent the membrane dehydration and associated unstable performance issues. It was 

found that the foam material can improve the water retention in the membrane and provide more 

uniform distribution of the temperature and current density leading to higher overall cell performance. 

3.3 Liquid cooling 

3.3.1 Via water  

Since the specific heat for water is almost four times greater than that of air, using water as a coolant, 

instead of air, enhances the cooling effectiveness and reduces the heat exchanger size. The water-

cooling is preferred over the air-cooling for high cooling loads and it is mostly used for large PEMFC 

stack with a power greater than 5 kW, such as those used in Fuel Cell Electric Vehicle (FCEV) [29], 

[61]. The working fluid in this type of cooling is mostly deionized water which flows in the cooling 

channels within the bipolar plates or in dedicated cooling plates [61]. The typical cooling cycle using 

water is shown in Figure 6. The water passes through the PEMFC absorbing its heat and then goes 

through a radiator which rejects its heat to the environment reducing its temperature and finally it is 

pumped back to the PEMFC to repeat the cooling cycle. The primary aim of the PEMFC cooling 

plates is to reduce the maximum temperature achieved within the cell preventing the overheating of 

the membrane. Additionally, the cooling plates play an important role in creating more uniform 

temperature distribution within the cell with less local hot spots. The local hot spots with very high 
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temperature may dry out the membrane reducing its proton conductivity and deteriorating the 

performance of PEMFC [34]. Generally speaking, the uniform temperature distribution allows for 

better performance and durability of PEMFCs as well as easier operational control [61]. 

Similar to air-cooling, the geometrical configuration of the coolant flow passages plays a significant 

role in the heat removal effectiveness of water-cooling systems. Chen et al. [62] studied the influence 

of coolant flow field configuration on the performance of water cooling plates by assessing IUT and 

   responses. The modified serpentine-type flow field was found to exhibit the best cooling 

performance in terms of IUT. However, the parallel flow field showed a lower    meaning that it 

requires less power to transmit the cooling fluid. Baek et al. [61] investigated numerically, using CFD, 

the cooling performance of six different coolant flow field designs shown in Figure 7.   ,     , and 

IUT were calculated for all presented designs and compared. It was noted that the multi-pass 

serpentine flow field (MPSFF) designs, models C and D in Figure 7, yield a more uniform 

temperature distribution without compromising the pressure drop. Using numerical simulations, 

Afshari et al. [63] examined the cooling behaviour of straight and zigzag-shaped water flow channels 

illustrated in Figure 8. The obtained results indicated that the zigzag configuration is better than the 

straight one providing a more uniform temperature distribution but with higher pressure drop. 

Ghasemi et al. [64] numerically examined the performance of six cooling flow fields namely; 

serpentine, multi-pass serpentine, serpentine, parallel-serpentine, spiral, and parallel as sketched in 

Figure 9. The spiral flow field was found to offer the lowest IUT and highest    compared to the 

other designs.  

In the numerical simulations of the aforementioned investigations, the generated heat in PEMFC was 

idealized as a constant uniform heat flux and applied to the CFD model of the cooling plate. However, 

in the actual PEMFC, the heat generated by the cell is not uniformly distributed. To address the 

aforementioned issue, Rahgoshay et al. [65] adopted the electrochemistry model within ANSYS- 

FLUENT to capture the actual heat generated within the PEMFC as a result of the electrochemical 

reaction. A 3D model of PEMFC with cooling plates is constructed. The cooling performance of 

serpentine and parallel flow fields with water coolant was compared numerically and it was found that 
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the serpentine configuration can provide a 24% improvement in IUT and better overall cooling 

behaviour.   

3.3.2 Via nanofluids 

Nanofluids have received increased research attention for different heat transfer applications due to 

their superior thermal properties [66]. Benefitting from nanotechnology, nanofluids are prepared by 

dispersing nanoscale metallic and non-metallic particles into a heat transfer liquid such as water, 

ethylene glycol, propylene glycol, and oils [67]. Using nanofluids as coolants for PEMFC provides 

several advantages [68]. First, the suspended nanoparticles, with their very large specific surface 

areas, enhance substantially the thermal characteristics of the nanofluids including thermal 

conductivity, convective heat transfer coefficient, and thermal diffusivity and viscosity. Additionally, 

the nanoparticles can immobilize the negative and positive ions from the base fluid eliminating the 

need for using deionizing filter within the cooling cycle [68]. Furthermore, some types of nanofluids 

have very low freezing points and this can be considered as an advantage for those fuel cells operating 

in extremely cold weather. Finally, nanofluids, with their enhanced heat transfer properties, allow for 

reducing the size of the heat exchanger and the parasitic losses of the cooling system. Islam et al. [69] 

demonstrated that the frontal area of the heat exchanger for a 2.4 kW PEMFC can be reduced by 21% 

when using 0.05% volume concentration of nanoparticles in 50/50 water (W)/ethylene glycol (EG) 

base fluid. Zakaria et al. [70] adopted Al2O3 nanofluid for cooling the PEMFC. Different volume 

concentrations of Al2O3 nanoparticles were dispersed in water and 60/40 W/EG mixture. The authors 

reported that the cooling rate was increased by 187% when using 0.5% volume concentration of Al2O3 

in water. However, despite the excellent cooling performance, higher pressure drop and voltage drop 

were observed when using the aforementioned concentration of Al2O3. Thus, 0.1% volume 

concentration of Al2O3 dispersed either in water or in 60/40 W/EG was reported to be the preferred 

nanofluids for PEMFCs [70], [71]. Zakaria et al. [72] also investigated the performance of SiO2/water 

nanofluids in cooling PEMFCs employing a cooling plate with parallel flow field for the proposed 

nanofluid. The results confirmed the cooling superiority of SiO2 nanofluids as the average 
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temperatures of the cooling plate with the nanofluids was 15% - 20% less than that observed when 

using conventional water coolant. 

Similar to water cooling, the nanofluids coolants need to flow in mini/micro channels to deliver the 

required cooling for the device. Several studies have analysed the flow and thermal behaviour of 

nanofluids in mini/micor channels similar to those used in the cooling plates of PEMFC and all 

reported promising findings in terms of exceptional heat transfer behaviour [73], [74].    

3.4 Phase change cooling 

This cooling technique uses a Phase Change Material (PCM) as a coolant and employs its latent heat 

to dissipate the heat of a PEMFC stack [50], [75]. Such method is attractive for PEMFC with high 

cooling demands as it offers some advantages over the water-cooling strategy in terms of enhancing 

the heat removal rate, reducing the coolant flow rate and flow parasitic losses, decreasing pumping 

requirements, and providing more uniform temperature distribution [29], [33], [76]. The phase change 

cooling can be either evaporative cooling or two-phase cooling with boiling. Instead of circulating the 

liquid water in separate cooling channels/plates as in the water-cooling system, evaporative cooling is 

achieved through injecting the liquid water directly with the reactants, i.e. air and hydrogen, in their 

flow channels [50], [77]–[79]. During the process, the injected liquid water evaporates removing the 

heat and humidifying the cells of the PEMFC stack. The exhaust water vapour is then directed to a 

condenser to be cooled down and converted back to liquid water which is stored in a tank for future 

use. The distinct advantages of this cooling method are that the injected water serves a dual function 

of cooling and humidify the cells without the need for external humidifiers and separate cooling 

plates. Fly and Thring [50] compared a conventional water-cooled PEMFC to the evaporative-cooled 

ones. It was found that the evaporation cooling allows for reducing the radiator frontal area by around 

27%. Using porous bipolar plates is another way of the evaporative cooling in PEMFCs. In this 

method, the porous bipolar plates allow for both thermal and water management of the PEMFC 

preventing the drying out or flooding of the membrane [80].  
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The two-phase cooling with boiling provides very high cooling capacity and it is applied using a 

working fluid with relatively low boiling temperature such as HFE-7100 for LT-PEMFC and water 

for HT-PEMFC [81], [82]. HFE-7100, which has a boiling temperature of 61
o
C, was regarded as a 

promising boiling coolant for LT-PEMFC [33], [83], [84]. Choi et al [83] compared the performance 

of two-phase HFE-7100 and single-phase water cooling systems and reported a better overall thermal 

management of the two-phase cooling method in terms of providing more uniform temperature 

distribution and higher thermal stability.  

4. Waste heat recovery in PEMFC 

Recently, WHR in PEMFCs has attracted increased research interest and many studies have explored 

the possible options for the useful utilization of the generated heat using different conversion systems 

[85]. The main WHR routes of PEMFC are categorised into internal usage within the PEMFC system 

to either preheat the reactants or release hydrogen from Metal hydrides (MH) tank, provide heating in 

Combined Heat and Power (CHP) system, drive chillers in Combine Cooling and Power (CCP) 

system, and power generation as summarized in Figure 10. 

4.1 Internal usage within the PEMFC system 

Metal hydrides (MH), such as MgH2, Mg2NiH4 and LaNi5H6, are promising hydrogen storage 

materials for on-board hydrogen applications such as FCEV. Such materials discharge hydrogen 

through an endothermic reaction known as dehydrogenation. One of the possible usages of the 

PEMFC waste heat is to improve the hydrogen discharge rate of MH. In order to deliver adequate 

amounts of hydrogen from MH, the temperature of MH should be maintained in the range of 20-30 

o
C. However, sometimes it is challenging to keep the temperature of MH within the suitable range 

without using an external heat source. Thus, the waste heat of the PEMFC can be used to increase the 

temperature of MH and improve the hydrogen release rate. Tetuko et al. [86] developed a 

mathematical model, using Mathlab, to simulate the thermal coupling of 500 W PEMFC and LaNi5 

based MH hydrogen storage system using heat pipes. The model results revealed that less than 20% of 

the PEMFC waste heat is needed by MH canister to deliver the required discharge rate of the 
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hydrogen. Similar findings were reported by Tetuko et al. [87] who also established a thermal 

coupling between the PEMFC and MH using heat pipes to transfer the heat from the fuel cell to 

canister.  It was proved through experimental and theoretical analysis that a 30% of the heat generated 

by a 130 W fuel cell is sufficient to keep the MH canister at the desirable temperature for effective 

release of hydrogen. Mahmoodi and Rahimi [88] optimized the geometrical configuration of the heat 

pipes that can be used for thermal coupling of PEMFC and MH tank. It was reported that the best 

performance of the hydrogen releasing process at 25 bar can be obtained by using four heat pipes 

covered by 10 fins. MH based thermal energy storage system was proposed by Nasri et al. [89] to 

recover the waste heat from FCEV powertrain and reuse it for heating the battery or the cabin during 

the start-up or during the drive, respectively. The MH tank, as a heat storage device, generates cooling 

during the hydrogen desorption process while produces heating during the hydrogen absorption. It 

was reported that the proposed WHR recovery system can increase the range of the FCEV from 152 

km to 178 km.  

In addition to using PEMFC waste heat for MH applications, some studies have shown the 

effectiveness of the PEMFC-WHR system for preheating the reactants of PEMFCs operating in an 

extremely cold environment. In very cold weather conditions, i.e. sub-zero temperatures, PEMFC 

undergoes freeze-thaw cycle operations which lead to ice formation, membrane dehydration, 

performance degradation, and start-up issues [90]. Nguyen et al. [91]  conducted an exergy analysis 

for a PEMFC with WHR system which aims to increase the inlet temperature of the reactants above 

the freezing points. A comparison was made between the proposed WHR system and the traditional 

system which uses an external heater to increase the inlet temperature of the reactants. The modelling 

results, obtained using Mathlab, demonstrated that around 30% of the PEMFC output electrical power 

can be saved upon adopting the WHR system for preheating the reactants. 

4.2 Provide heating in CHP system 

PEMFCs can be used in a CHP system to simultaneously produce both heat and electrical power for 

residential applications as demonstrated in Figure 11.  In such systems, PEMFC waste heat is captured 
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during the operation and then used for heating the rooms or obtaining hot water for shower, laundry 

and washing [92]. CHP system increases the efficiency and sustainability of the power system by 

reducing the energy cost and minimizing the GHGs [85]. Fuel cell-based micro-CHP systems offer a 

significant saving in the primary energy consumption and a major reduction in the carbon emissions 

compared to conventional gas-fired boiler/central power stations [93]. Comparing with the 

conventional CHP systems, PEMFC based CHP systems are characterized by higher overall 

efficiency and higher power to heat ratio [94]. It should be noted that in PEMFC based CHP, part of 

the PEMFC waste heat is used in a fuel processor to produce hydrogen-rich feed streams from natural 

gas or methanol that then can be used as a fuel for the stack [92].  

Chen et al. [95] assessed and optimized the performance of PEMFC based residential combined 

cooling, heating and power system (CCHP) consisting of 5 kW PEMFC stack, humidifier, 

compressor, heat exchanger for WHR, hot water tank, and a small absorption chiller. The proposed 

system aimed for simultaneous generation of electric power, space heating/cooling, and hot water. It 

was found that decreasing the operating temperature of PEMFC, and increasing both the relative 

humidity and the pressure of the reactants allows for enhancing the exergy efficiency of the CCHP 

system and reducing the GHG emissions. The thermal and economic performance of a PEMFC-based 

micro-CHP system for the household applications was investigated by Chang et al. [96]. The system 

compromised of a 2kW PEMFC and a lithium-ion battery as an energy storage device that can be 

charged by either PEMFC stack or commercial electricity during off-peak hours. The modelling 

results, obtained via MATLAB, indicated that the average total efficiency of the CHP system with 

battery storage can reach 81.24% which is 11.02% higher than that CHP system without the battery. It 

was also found that using battery storage system can reduce the daily hydrogen consumption and daily 

costs by 14.47% and 9.5%, respectively.  

4.3 Drive chillers in CCP system 

The waste heat of PEMFC can be used for cooling purposes by driving chillers that require low 

temperature to operate such as absorption and adsorption chillers. Some investigations showed the 
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possibility of recovering the PEMFC waste heat in absorption chiller, i.e. absorption refrigerator, to 

desorb the refrigerant out of absorbent, as shown in Figure 12, for cooling purposes [97]. The most 

common absorption chiller systems use either lithium bromide-water (LiBr-water) or water-ammonia 

(water-NH3) as absorbent-refrigerant pairs. Such chiller systems can be activated using heat sources 

with temperatures of 120–170 °C and 80-200 °C for LiBr-water and water-NH3, respectively. HT-

PEMFC with waste heat temperature of up to 200 °C is more suitable to drive the generator of the 

absorption chiller system. Yang and Zhang [98] numerically investigated the feasibility of combining 

a PEMFC with an absorption refrigerator to simultaneously generate cooling and electrical power. It 

was found that the PEMFC-chiller combined system outperformed the stand-alone PEMFC showing 

an increase of 5.3% and 6.8% in the maximum power density and the corresponding efficiency, 

respectively.  

In addition to absorption chiller, adsorption chiller, that uses solid-vapour pairs, such as silica gel-

water, zeolite-water and activated carbon-methanol, is another WHR option of PEMFC for Combined 

Cooling Power (CCP) generation. Adsorption chillers are considered to be more suitable for heat 

recovery from LT-PEMFC due to fact that they can be driven by heat sources with a temperature of 

60-120 °C [34]. Oro el al. [99] studied the possibility of using chemisorption chiller, employing 

ammonia as refrigerant and NaBr impregnated in expanded graphite as adsorbent, as a heat recovery 

system for PEMFC stack. The mathematical modelling results confirmed the capability of the 

aforementioned CCP system to produce up to 400 W cooling that increased the overall efficiency of 

the system to around 63%    

4.4 Power generation 

The last WHR option for PEMFC is to employ special thermodynamic power cycles, such as Organic 

Rankine Cycle (ORC), and heat to power technologies, such as thermoelectricity generator, which can 

operate using low-grade heat sources to produce additional electrical power. ORC has the same 

working principles as the normal Rankine steam cycle but it employs working fluid with a low boiling 

point, most commonly Butane, Propane, R123, R245fa and R134a, which can operate within the 
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temperature range of 65–250 °C in the evaporator [100]. The simple ORC cycle, as shown in Figure 

13, consists of evaporator, condenser, turbine and pump. The PEMFC waste heat is used in the 

evaporator to heat the working fluid which turns into a gaseous state and then spins a turbine 

connected to an electrical generator. Zho et al. [101] employed mathematical models to evaluate the 

performance of a hybrid power system consisting of a PEMFC stack and ORC cycle. A parametric 

analysis was conducted to identify the influence of main factors, such as fuel flow rate, PEMFC 

operating pressure, turbine inlet pressure, and turbine backpressure, on the system performance. It was 

reported that the electrical efficiency of the hybrid system is 5% greater than that of the one without 

ORC heat recovery system. Sheshpoli et al [102], [103] performed a thermodynamic analysis of a 

multi-purposes hybrid PEMFC-WHR system. The proposed functions of the WHR system were 

releasing the hydrogen from MH tank; preheating the hydrogen to the stack temperature, and 

generating power using a recuperative ORC. It was reported that the overall thermal efficiency and 

the power of the system depend on turbine pressure ratio, type and mass flow rate of the working 

fluid. 

Beside ORC cycle, using the other power cycles, such as Kalina cycle and transcritical carbon dioxide 

(CO2), for recovering PEMFC waste heat was also presented in some studies. Ahmadi et al [104] 

proposed transcritical CO2 cycle coupled with liquefied natural gas (LNG) cycle for PEMFC-WHR. 

Sensitivity analysis and optimization study were conducted to understand the influence of the main 

parameters and identify those that can maximize the energy efficiency. It was found that using the 

proposed WHR system can increase the output power and efficiency of the PEMFC by 39% and 33%, 

respectively.    

In addition to power cycles, Thermoelectricity Generator (TEG) can be used to convert the waste heat 

of PEMFC to electrical power. TEG converts heat flux directly into electrical energy using semi-

conductive materials with high electrical conductivity and low thermal conductivity through a seebeck 

effect. A standard TEG can operate with a hot plate temperature of 60–180 °C which is within the 

temperature range of PEMFC and therefore such generators were considered as a viable option to 

recover the PEMFC waste heat. Experimental and theoretical investigations were conducted by 
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Sulaiman et al. [105] on using TEG for WHR from a 2 kW PEMFC. It was shown that the TEG can 

produce up to 218 mW of maximum electrical power at 1 kW of PEMFC power. In another study, a 

thermal coupling system between PEMFC,  TEG, and MH cylinder is proposed for efficient WHR 

from PEMFC [106]. The hot side of the TEG is connected to the PEMFC via an air duct while the 

cold side is connected to MH cylinder for heat dissipation without any active energy consumption. A 

dynamic mathematical model was developed to predict the characteristic performance of the proposed 

WHR system. The results revealed that the TEG power via this thermal coupling is limited to 20 mW 

for a PEMFC power of 1 kW. However, such system was reported to be more efficient than cooling 

the cold side of the TEG via natural or fan cooling. 

5. Remaining challenges and prospects 

5.1 Cooling strategies 

A summary of the advantages and drawbacks of all cooling methods for PEMFC is presented in Table 

1. For small portable and mobile PEMFC stacks, such as those used in electronic devices and drones, 

the ideal design is the one that requires minimum thermal management equipment. The heat spreader 

is the most suitable cooling strategies for such PEMFCs. In addition to the cooling capability, the size 

and weight of the cooling device are crucial factors that should be considered carefully when 

designing cooling surfaces for small PEMFCs. Developing compact, lightweight, and highly efficient 

heat transfer device is a challenging design task which requires using advanced multi-objective 

optimization techniques to satisfy the conflicting requirements of the design. The endeavour to 

enhance the performance of the cooling surface via applying optimization techniques might result in 

greatly complex geometrical shapes which are extremely expensive to manufacture using traditional 

methods. However, the design freedom feature of Additive Manufacturing (AM) opens up 

possibilities for building nonlinear complex shaped surfaces for tailored thermal management 

properties. Also, AM is a tool-less production method that enables consolidation of multiple 

components into one part to save space and weight as well as shortening the assembly time [107]–

[109]. The recent advancements in AM technology allowed fabricating complex cooling surfaces 
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made of highly thermally conductive materials, such as silver, for thermal management applications. 

For example, Selective Laser Melting (SLM) method of AM was successfully used to 3D printing of 

pure and alloyed silver components for various applications [110]–[112]. Also, complex-shaped 

lattice structures based on triply periodic minimal surfaces (TPMS) were successfully printed and 

used as heat exchanger materials in various applications [113]–[117]. Thus, adopting AM for thermal 

management applications of PEMFC is expected to receive increased attention in future research 

studies. 

For liquid cooling method, water was the most used coolant and very limited attention was given to 

using other types of the working fluid. For this, researching alternative coolant suitable for PEMFC 

and their cooling performance could be a topic of interest for future work.   

To achieve a well-balanced cooling capacity and energy efficiency, there might be a need to use 

multiple cooling techniques in one hybrid cooling system. However, such hybrid cooling systems 

have received no attention in the literature and for this, they are recommended for future 

investigations. 

5.2 Waste heat recovery 

The advantages and drawbacks of the different PEMFC-WHR technologies are summarized in Table 

2. Generally, utilizing a WHR system involves additional overall construction cost and some 

environmental consequences but the overall gain from using it is still positive. Recovering the low-

grade waste heat, such as the waste heat of PEMFC, is considered to be more challenging than 

recovering medium–high temperature waste heat [23]. One of the main obstacles when recovering 

PEMFC waste heat is the need to use a large heat exchanger to achieve optimum heat transfer due to 

the low heat transfer rate associated with recovering low-temperature waste heat. 

Despite the research work done on investigating the PEMFC-WHR options, the majority of these 

studies only focused on parametric analysis and thermodynamic performance evaluations and no 

attention was paid for evaluating the economic feasibility. It is correct that all WHR options can 

improve the energy efficiency of the PEMFC system but not all of them are beneficial economically 
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as some of them might require significant investment [118]. Identifying the most suitable WHR 

option, technically and economically, for a specific fuel cell system is not a straight forward task and 

therefore a further research work is needed to provide a comprehensive understanding of the WHR 

system performance from both thermodynamic and economic perspectives. 

Additionally, assessing the environmental impact and sustainability of the PEMFC-WHR system, 

using Life cycle assessment (LCA) tool, is another area which requires further attention in order to 

provide valuable insights into the environmental performance of the proposed system and its 

environmental benefits and drawbacks.  

In order to achieve the utmost outcome of the WHR system, different responses and features, such as 

size, cost, performance, and so on, need to be satisfied and balanced simultaneously and this cannot 

be achieved without employing advanced optimization approaches. Thus, the use of multi-objective 

optimization algorithms in this field is expected to grow and become a topic of future studies.  

Also, the majority of PEMFC-WHR studies are conducted using modelling techniques and there is a 

lack of experimental work. Thus, more experimental investigations are required in order to confirm 

the conclusion drawn by the modelling studies.   

The majority of studies on using thermodynamic cycles to recover the PEMFC waste heat have 

focused on using the ORC cycle. However, the other possible thermodynamic cycles, such as Kalina 

cycle, have received very limited attention [119]. Kalina cycles can be used effectively to recover 

low-grade waste heat with temperature ranging between 80 and 400°C which is suitable for both LT-

PEMFC and HT-PEMFC [22]. Kalina cycles offer many advantages compared to ORC including 

superior performance, higher flexibility, and reduced heat transfer temperature difference between its 

working fluid and heat source. Thus, such cycle is another possible route that requires further 

investigation as WHR option for PEMFC.  

6. Conclusion 
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Thermal management of PEMFC through maintaining its temperature at an appropriate level and 

limiting the uncontrolled elevation of it is critical for achieving the stable performance and high 

efficiency of the device. There are different cooling strategies for thermal management of PEMFC. 

Air-cooling and water-cooling circuits in which multi-channel cooling plates are used to circulate the 

coolants within the stack is the current practice in the fuel cell industry to remove the PEMFC heat. 

Water-cooling is the favourable option for PEMFC stacks with power capacity greater than 5 kW 

while air-cooling is used when the power output is less than 5 kW. Cooling using nanofluids is a 

promising new trend allowing for greater cooling capacity while minimizing the size and weight of 

the cooling system. Also, phase change cooling is another strategy to achieve higher heat removal 

capacity suitable for large PEMFC with high power. Phase-change cooling is particularly beneficial in 

terms of reducing the size of the cooling system compared to the water cooling one. Passive cooling 

devices including heat spreaders and heat pipes were also used as heat management devices.  

PEMFCs are considered among the promising technologies driving the transformation towards 

decarbonised and more sustainable societies. However, increasing the energy efficiency of a PEMFC 

continues to remain a challenge for this technology. Energy prices are increasing globally so there is 

an urgent necessity for any emerging energy technology, such as PEMFC, to increase efficiency and 

reduce the cost in order to remain competitive. WHR of PEMFC is among the promising options to 

improve the efficiency of a PEMFC power system. The waste heat recovered from the PEMFC can be 

used to generate power meaning that less hydrogen fuel is required to operate a given energy 

consuming terminal. The suggested WHR options for the PEMFC are: i) producing electrical power 

using appropriate thermodynamic power cycles, such as ORC, or direct heat to power approach, such 

as TEG; ii) simultaneous generation of heating, cooling, and electricity using CHP and CCP systems; 

iii) improving the hydrogen discharge rate from a MH; and iiii) preheating the reactants in cold 

weather. 

Despite the recent intensive work presented in the literature on the cooling and WHR of PEMFC, the 

majority of the work is based on modelling approach and more reliable experimental investigations 

and comprehensive environmental assessment are still required to confirm the effectiveness, 
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sustainability and economic viability of the proposed cooling and WHR systems. Also, widening the 

adoption of modern manufacturing technique, such as 3D printing, and developing more innovative 

materials will definitely address some of the challenges and allow for the development of effective 

cooling and WHR systems.  
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Figure 1: Main cooling strategies of PEMFC 
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Figure 2: Heat pipe working concept [42]  
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Figure 3: Air-flow cooling channels design [56] 
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  Figure 4: PEMFC design with combined oxidant and cooling channels [57] 
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Figure 5: Cooling plates designs investigated by [58] 
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Figure 6: Typical cooling system of PEMFC using water 
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Figure 7: Coolant flow field designs studied by Baek et al. [61]  
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Figure 8: Straight and zigzag flow channels [63] 
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Figure 9: Coolant flow fields investigated by Ghasemi et al. [64]:  (a) serpentine (b) multi-pass serpentine (c) 

serpentine with different distances between the channels (d) parallel-serpentine (e) spiral (f) parallel 
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Figure 10: PEMFC waste heat recovery options 
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Figure 11: Illustration of PEMFC-based CHP system 
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Figure 12: Illustration of an absorption chiller system using PEMFC waste heat to drive the generator 
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Figure 13: Illustration of ORC system using PEMFC heat in the evaporator 
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Table 1: Advantages and drawbacks of PEMFC cooling methods 

PEMFC cooling 

method 

Summary 
Advantages Drawbacks 

Heat spreader 

Passive cooling technique 

achieved using highly 

thermally conductive material 

or heat pipes 

 Simple design and 

operation 

 Doesn’t require a coolant 

circulation system 

 Only suitable for PEMFC with a low 

power level 

Air-cooling 

Uses either extra amounts of 

air in the cathode or separate 

air channels to provide the 

required cooling for the 

device 

 Low cost 

 Requires less 

maintenance  

 Has high reliability 

 Low cooling performance, thus it is 

only suitable for small devices 

Liquid cooling 

Deionized water or nanofluids 

are used as coolants. The 

cooling channels can either be 

integrated into the bipolar 

plate or in dedicated cooling 

plates.  

 Excellent cooling 

performance particularly 

when using nanofluids. 

 Can control and optimize 

the cooling capacity. 

 Has low energy efficiency due to high 

parasitic losses. 

 Requires coolant circulation system and 

thus it needs greater space to 

accommodate the extra components. 

Phase-change cooling 

Uses the latent heat of the 

coolant to maintain the 

acceptable operating 

temperature of the PEMFC. It 

can be either boiling or 

evaporative cooling. 

 Simple cooling system 

with high capacity and 

compact size  

 Doesn’t require coolant 

circulation system 

 More expensive compared to the other 

passive cooling. 

 The evaporation rate is hard to be 

controlled 
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Table 2: Advantages and drawbacks of PEMFC-WHR routes 

PEMFC-WHR route Advantages Drawbacks 

Releasing hydrogen 

from MH tanks 

 Enhancing the hydrogen discharge rate from the MH tanks without 

the need for an external heat source or increasing the size of the MH 

tanks 

 Improving the efficiency of the PEMFC system by reducing the 

parasitic energy consumption required in case of using other sources 

of heat 

 Additional components are required to facilitate the 

thermal coupling between the MH tank and the PEMFC 

which may increase the overall mass of the power system 

 Metal fins should be mounted on the external surface of 

MH tanks when it is coupled with air-cooled PEMFC to 

enhance the heat transfer coefficient. Those fins increase 

the MH tank volume. 

Preheating the 

reactants 

 Highly beneficial for PEMFC systems operating in cold weather 

 Can reduce the start-up time of the PEMFC system in cold weather 

 Decreasing the energy demand of the system by eliminating the need 

for an external heater. 

 More complicated design of the PEMFC system.  

Provide heating in 

CHP 

 Reducing the overall GHG emissions. 

 Reducing electricity costs 

 PEMFC-based CHP has a shorter start-up time compared to SOFC-

based CHP.  

 High initial and investment cost. 

Drive chillers in CCP 

system 

 CCP allows for reducing demand on electricity supply required for 

cooling 

 Absorption and adsorption chillers have low environmental impact as 

they use environmentally friendly  refrigerants 

 Suitable for WHR from both HT-PEMFC and LT-PEMFC using 

absorption and adsorption chillers, respectively.   

 Relatively-high capital cost  

 The PEMFC waste heat is only suitable to drive 

absorption and adsorption chillers which have lower 

cooling performance and a lower coefficient of 

performance (COP) in comparison with the conventional 

vapour compression refrigeration systems 

Power generation using 

ORC 

 Generating additional power and improving the efficiency of the 

PEMFC system 

 ORC is suitable for low-grade waste heat because it uses working 

fluids with low evaporation temperature. 

 ORC has less erosion risk than that of the steam cycle as the working 

fluid within the ORC remains dry throughout the process  

 ORC has higher cost and produces less power than a 

steam cycle operating with similar conditions. 

 Working fluids of ORC are combustible and this might 

cause a serious environmental hazard in case of leaking.  
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Power generation using 

TEG 

 Environmentally friendly approach to enhance the efficiency of the 

PEMFC  

 TEG can convert low quality thermal energy into electricity 

 TEG has no moving parts and allows for silent operation  

 TEG doesn’t require fuel or working fluids to operate.  

 TEG has smaller size than traditional engines  

 TEG has high durability  

 TEG is expensive and less efficient than the other heat 

engines 

 

                  


