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Abstract  

We are increasingly surrounded by sensors gathering massive amounts of data, and patterns 

in continuous variables are often discovered by using artificial neural networks (ANN), while 

linear regression (LR) is useful for detecting linear relationships. LR also provide preliminary 

estimates of potentially complex associations, and serve as a benchmark for the performance 

of ANNs. We show that while cross-validation (CV) is indispensable for insuring the robustness 

of the discovered patterns, it systematically leads, when combined with LR, to specific 

artefacts that underestimate the extent of the associations between predictor and target 

variables. We explain how this previously unnoticed type of artefact arises specifically from 

the combination of CV with LR and does not affect non-linear methods such as ANN. We also 

demonstrate through simulations that ANN were able to discover a wide range of complex 

associations missed by LR. The results were confirmed by the analysis of physiological, 

behavioural and subjective data collected from N=31 human subjects performing laparoscopy 

training experiments. 
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Introduction 

Linear regression (LR) can be useful not only for discovering patterns in experimental data, 

but also as a baseline for benchmarking and validating new analysis techniques, especially 

novel or unfamiliar ones. For example an artificial neural-network (ANN) may reveal 

multidimensional, nonlinear relationships that are inaccessible by linear regression (LR). 

However it may have features that need further study and validation by comparing to an 

alternative method. As a well-established and relatively transparent method, LR is particularly 

suited for this role (e.g. [1,2]).  

 

Cross-validation (CV) is commonly employed for developing and assessing the accuracy of  

ANNs [3]. It involves reserving part of the available data for training the ANN, and the rest for 

testing its accuracy. Given a fixed set of data, repeated CV with different training/test groups 

can minimize overfitting. In benchmarking performance, it is desirable to assess all the 

analysis techniques on an equal footing. This may involve using the same data set, as well as 

the same way of measuring accuracy. Thus it may appear sensible to use CV to measure the 

accuracy of both the ANN and LR. However this is not necessarily the case, as we show 

below. 

 

The above scenario is not the only reason for wanting to combine LR with CV. CV is a good 

way of assessing the predictive power of data models. The relationships discovered by LR 

applied to the entire data set may be driven by a small number of outliers and the LR may be 

overfitted; that is, latch on to the patterns that exist only in the current data. Repeated LR using 

different subsets of data may be a better indicator of how well the results will hold up when 

new data arrive. In fact hold out methods, where the data set is split into training and testing 

sets, are recommended for LR in the literature [4–8]. 

 

However CV in combination with LR has an inevitable and underappreciated defect associated 

with finite samples: excluding part of the data generates spurious negative correlations 

between the actual and predicted targets. This effect is stronger smaller the data set. In this 

paper we illustrate how this bias comes about, use experimental and simulated data to explore 

its effects under various types of predictor-target dependence, and recommend alternative 

metrics for quantifying accuracy. The experimental data came from our previous study on 

measuring the cognitive load experienced by novice trainees during laparoscopic surgery 

training [2]. 
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Method  

Given a set of continuous valued data {𝑥𝑛 , 𝑦𝑛}, 𝑛 =  1, … , 𝑁𝐷 , various techniques may be 

employed to discover relationships among the predictors 𝑥𝑛 and  the targets 𝑦𝑛. An important 

goal is to be able to predict target values if predictor values become available that are not in 

the current data set. It is therefore necessary to find relationships that are generalizable. For 

this purpose, cross-validation (CV) is the method of choice. K-fold CV consists of randomly 

partitioning data into  disjoint groups, holding out one of these as the testing partition, 

developing the prediction model using all of the remaining partitions (training set), having the 

model predict the targets in the testing set, then comparing the predictions with the actual 

values. This procedure is repeated 𝑘 times and the resulting accuracy is averaged. Since 

partitioning in a large data set may be done in numerous different ways, the k-fold CV may 

then be repeated a number of times for better statistical validity. When 𝑘 = 𝑁𝐷 , this approach 

is referred to as leave-one-out cross-validation (LOOCV) and each partitioned test data set 

has a size of 𝑁𝐷 = 1. 

 

With continuous valued targets, a good way to determine the accuracy of prediction is to 

calculate the Pearson correlation 𝑟 between the predicted, ȳ, and actual target values. In this 

paper we used linear regression (LR) and artificial neural networks (ANN) for prediction. The 

cascade-forward ANN was used with two hidden layers and the Levenberg-Marquard 

backpropagation algorithm. In what follows, we use the acronym LR-FULL to denote LR 

applied to the full data set; LR-CV for cross-validated linear regression; and ANN-CV for cross-

validated ANN. 

 

We conducted simulations where targets were calculated from predictors according to the 

formula 𝑦(𝑖) =  ∑ [𝑎𝑥𝑛
(𝑖)

+  𝑏(𝑥𝑛
(𝑖)

)2    + 𝑐 𝑓(𝑥𝑛
(𝑖)

)]
𝑁𝑝
𝑛=1 + 𝑣 𝜙𝑖 , with 𝑖 = 1, … , 𝑁𝐷 . The predictors 

and noise ( 𝜙𝑖) were chosen as random deviates from the standard normal distribution or a 

uniform distribution over the unit interval. Size of the data set was 𝑁𝐷, and the amplitude of 

the noise was controlled by 𝑣. The other coefficients were chosen to generate different types 

of dependence of the target on the predictors: independence, 𝑎 = 𝑏 = 𝑐 = 0  ; linear 

dependence, 𝑎 = 1, 𝑏 = 𝑐 = 0 ; quadratic dependence, 𝑎 = 𝑐 = 0 , 𝑏 = 1 ; and an additional 

nonlinear dependence, 𝑎 = 𝑏 = 0 , 𝑐 = 1 ), given by 𝑓(𝑥) = cos (6𝑥3).  Pearson correlation 

between predictor and targets was denoted 𝑟0 . The noise amplitude 𝑣 = √𝑟0
−2 − 1  was used 

to create linear dependence with 𝑟0 > 0. 
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For multivariate 𝑥𝑛 , the coefficient of determination tends to increase with the number of 

predictors, regardless of the actual dependence between 𝑥𝑛  and 𝑦𝑛 . This is a well-known 

artefact of multiple regression. Consequently it is advisable to use, 𝑅𝑎𝑑𝑗
2  , the adjusted R-

squared which compensates for this increase, instead of the coefficient of determination [9]. 

For multivariate predictors, we used 𝑅𝑎𝑑𝑗 , the square root of the absolute value of adjusted 

R-squared (which can become negative). This quantity, which we refer to as adjusted R, 

provided a value that was commensurate with 𝑟 . 

 

To confirm our results in an experimental setting, we used the data collected from 31 

participants in a previous study that investigated the ability of physiological variables to track 

the cognitive load associated with laparoscopic surgery (LS) training [2]. The study measured 

the responses described by the heart rate and prefrontal cerebral oxygenation, derived from 

concurrent near-infrared spectroscopy (fNIRS) recorded from novice subjects. As they 

performed tasks on a LS trainer box, the subjects in these experiments responded to randomly 

timed auditory stimuli by pressing a pedal and their reaction times were recorded. The non-

response rate was calculated as the rate at which a subject failed to respond before the next 

stimulus onset. They reported their experience by filling out a NASA-TLX questionnaire after 

each session. Fingertip blood samples were taken at baseline and immediately after 

completion of all three LS tasks to determine the serum cortisol and brain-derived neurotropic 

factor (BDNF) concentrations. The study postulated that the physiological metrics (predictors) 

would track the overall effort as indexed by the traditional secondary task and subjective 

methods (targets).  

 

Three tasks were performed by each participant (the final one being a repetition of the first). 

The data from the 3 tasks were pooled, so that every distinct predictor-target analysis 

contained N=93 data points. To summarise the predictor variables described subjects' 

physiology: plasma cortisol concentration (ng/ml), brain derived neurotropic factor (BDNF) 

concentration (pg/ml), heart rate (HR) (min−1), and left prefrontal oxygenated haemoglobin 

concentration changes (mM) denoted HbO. The target variables described the subjects' 

behaviour or subjective status: task completion time (CT) (min), error rate (ER) (min−1 ), 

reaction time (RT) (s), Non-response rate (NRR) ( s−1), and the average NASA-TLX score. 
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Results 

In this section we first present the explanation of the underlying mechanisms that create 

spurious correlations when CV and linear regression are combined (Figure 1). We show 

simulations with various types of predictor-target dependence in Figure 2. Next, we explore 

multivariate linear regression (Figure 3) and, finally, apply the concepts discussed to 

experimental data (Table 1). 

 

Although the correlation 𝑟   between the actual and predicted targets is generally a good 

indicator of the strength of the discovered patterns, it becomes unreliable when LR and CV 

are used in combination. Our first task was to elucidate the underlying reasons for this problem 

in a small data set consisting of only 𝑁𝐷 = 10 predictor-targets pairs. The linear dependence 

of the targets on the predictors with added noise was generated in accordance with 𝑦 = 𝑥 +

𝑣𝑄, a special case of the general formalism described in the Methods section. This equation 

follows straightforwardly from a general noisy linear dependence by rescaling and shifting the 

predictor and target variables. 

 

We chose to work with it since it has the advantage of having only one parameter, 𝑣 , that 

determines the strength of the noise relative to the predictor's variability. The correlation 𝑟0 

between the predictor and target could be adjusted by changing 𝑣.  

 

Figure 1a shows a data set generated from uncorrelated targets and predictors. In this case 

the regression (thick solid black) line showed a negative correlation due to small sample effect. 

In order to investigate the effects of cross validation, we held out individual (test) points and 

replotted the resulting regression line obtained from the remaining (training) points. The figure 

shows that a new, slightly shifted, regression line (red, dotted) was obtained by holding out 

the point labelled 1. Another shift (blue, dashed) in the regression line occurred when point 2 

was held out. Similar shifts occurred when any other part of the data were held out. It was the 

general pattern of these shifts that collectively distorted the value of 𝑟, as we explain next.  
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Note that when LR was used on the full data set, the predicted value,  ȳ𝐹𝑈𝐿𝐿 , of a target was 

given by a point on the thick black regression line that corresponds to 𝑥. But when LR was 

combined with CV, the predicted target value ȳ𝐶𝑉 of the same target was given by a point on 

a different regression line. Thus in going from the full to the training data set, the prediction 

was changed by an amount 𝛥ȳ =  ȳ𝐶𝑉 −  ȳ𝐹𝑈𝐿𝐿. The key issue of interest was that this shift 

was not independent of the target's value; in fact 𝛥ȳ was negatively correlated with 𝑦.This fact 

Figure 1. The effects of cross-validation on linear regression with simulated predictor-targets. 

(a) Linear regression with 𝑁𝐷 = 10  data points. The solid line shows the regression to the full 

data set. The dotted (red) line shows the regression line when the point labelled 1 is held out. 

The dashed (blue) line shows the regression line when the point 2 is held out. (b) Each point 

represents a target 𝑦  (from subplot (a)) and the corresponding value ȳ predicted by regression 

on the full set of data. The arrows represent how ȳ changes when prediction is done by leave-

one-out cross-validation. 𝑁𝐷 = 10 . (c) The correlation r  between predicted and actual targets 

versus the correlation 𝑟0 between linearly dependent predictor and targets. The thick solid blue 

curve is for cross-validated linear regression. The thick dotted black curve is for linear 

regression on the full data set. The shaded region around these curves represent the standard 

deviation of the variability obtained by 100 repetitions of the simulation. The dashed thin black 

line shows the locus of 𝑟 = ±𝑟0 . 𝑁𝐷 = 10 . (d) Same as in (c) but with a larger data set, 𝑁𝐷 =

100.  
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is illustrated in Figure 1b which shows each ȳ𝐹𝑈𝐿𝐿 against the corresponding 𝑦 as a point. How 

the prediction changed with CV (i.e. 𝛥ȳ) is illustrated by an arrow. This change occurred 

because removing a low target value slightly raised the mean of the remaining set of targets, 

causing an upward shift in the regression line.  

 

And removing a high target value caused an opposite shift. Thus lower values of the target 

had their predictions raised while higher values had them lowered. This inevitably led to a 

downward bias in 𝑟, the correlation between actual and predicted targets. This downward bias 

is shown by the difference between the dotted line in Figure 1b that was fitted to the pairs 𝑦 & 

ȳ𝐶𝑉, as compared with the solid line that was fitted to the pairs 𝑦  & ȳ𝐹𝑈𝐿𝐿. 

 

What was described so far was based on uncorrelated predictors and targets. We next 

investigated how the downward  bias was affected by various degrees of the true correlation 

𝑟0 between the predictors and targets. Figure 1c shows that regression on the full data set 

yielded values of 𝑟 that closely reflected 𝑟0, when the magnitude of 𝑟0 was sufficiently high 

(except for a small positive bias when 𝑟0 ≈ 0). This was consistent with the acknowledged 

utility of 𝑟 as a metric that indicates the effectiveness of the prediction method. The most 

salient feature in Figure 1c is, however, the negative bias in 𝑟  that resulted from cross-

validated regression, as shown by the thick solid blue curve. The figure shows that this 

negative bias increased with decreasing magnitude of 𝑟0. Since Figure 1a-c were for a small 

data sets (𝑁𝐷 = 10) only, we performed simulations with larger data sets and found that the 

biases in (c) were reduced with increasing 𝑁𝐷. Figure 1d shows an example of this reduction 

with 𝑁𝐷 = 10.  

 

The results described so far were for linear dependence of targets on predictors. In Figure 2 

we show how the mechanism explained above created similar results under various other 

types of dependence. Each column of the figure is for a different type of dependence, with the 

leftmost column showing independent predictor-targets. The top row in the figure shows the 

scatter plots of the predictor and targets. In each subplot, the Pearson correlation is shown in 

the top left. When the targets were independent (Figure 2a), the regression on the full data set 

showed no correlation between the actual and predicted targets (LR-FULL, Figure 2b). 

When the same data points were used in cross-validated linear regression, a strongly negative 

correlation was found (LR-CV, Figure 2c) 
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This finding might have been puzzling were it not for the explanation offered in Figure 1. Figure 

2d confirmed that ANN was free of this artefact. ANN found a small, positive correlation that 

was spurious, possibly a finite-sample effect.  

 

The second column of Figure 2 (linear dependence) showed that the negative bias of LR-CV 

was minimised when the target was strongly correlated with the predictor (as expected from 

Figure 2. Simulated univariate data with various types of dependence. Columns correspond 

to no dependence (a-d), linear (e-h), quadratic (i-l), and other nonlinear (m-p) dependence. 

The top row shows scatter plots of the predictor and targets. The second row shows the actual 

targets v predicted values determined using linear regression on the full data set (LR-FULL). 

The third row is for cross-validated linear regression (LR-CV). The bottom row is for the cross-

validated artificial neural network (ANN-CV). Cross-validation was repeated 100 times with 

different partitioning. 0.23 = , 100DN = . 
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Figure 1c). In the case of quadratic and other nonlinear dependences (third and rightmost 

columns of Figure 2), LR-CV compared to LR-FULL showed a small negative bias. In those 

cases, LR was not able to discover the targets' relationship to the predictor, while ANN-CV did 

so with a nearly perfect correlation between the actual and predicted targets. 

  

Next we investigated how the effects explained in Figure 1 play out in the case of multivariate 

prediction, with multiple types of simulated dependence. Figure 3a shows that, for independent 

predictor-targets, LR-CV (thin blue curve) had a negative bias that tended to diminish with 

increasing number of predictors 𝑁𝑃 while ANN-CV (dashed red) yielded 𝑟0 ≈ 0 for any 𝑁𝑃. LR- 

FULL (thick gray) increased with  . Although the figure shows up to 10 predictors, we verified 

that 𝑟 ⟶ 1 as 𝑁𝑃 ⟶ 𝑁𝐷. The adjusted R (dashed gray) did not increase, but was not as close 

to zero as was ANN-CV. Figure 3b shows that all of the methods under discussion successfully 

discovered the linear relationship. In the case of quadratic dependence (Figure 3c), LR-CV 

showed a strong negative artefact, LR-FULL displayed a positive bias that increased with 𝑁𝑃, 

and adjusted R remained close to zero indicating the inability of LR to find the quadratic 

dependence. ANN-CV was able to indicate the dependence, although it found it increasingly 

difficult to do so with increasing  𝑁𝑃 . A similar situation obtained with the other nonlinear 

dependence (Figure 3d), although the ANN was even less successful with increasing 𝑁𝑃.  

 

Figure 3. Prediction metrics for simulated multivariate data as a function of the number of 

predictors. (a) No dependence between predictor and target; (b) linear dependence; (c) 

quadratic dependence; (d) other nonlinear dependence. Thick gray curve (LR-FULL) is the 

Pearson correlation between actual targets and their values predicted by regression on the 

full data set. The dotted gray curve is the adjusted R. The thin (blue) and thick (red) curves 

are, respectively, for the cross-validated linear regression and ANN. 0.23 = , 100DN = . 
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Having examined the adverse effects of combining CV with LR through simulations, we next 

turned to the experimental data set explained in the Methods section. Table 1 shows that for 

the pair Cortisol-Error rate, LR-FULL was 0.01 suggesting that the two variables were 

independent. This may have led to the expectation that cross-validated LR-CV would also be 

nearly zero. However LR-CV was -0.80. Numerous other similar cases were exemplified in 

the table, for example for the pair HbO and Reaction time, and the pair Heart Rate and 

Completion Time. In fact, LR-CV was smaller than LR-FULL for every predictor-target pair. 

Such large differences were not observed in the case of the ANN-CV. The mean difference 

between LR-CV and LR-FULL was -0.28, while the mean difference between ANN-CV and 

LR-FULL was -0.08. 
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Table 1. Metrics that quantify the prediction of experimental data. For each predictor-target 

pair, the table shows the Pearson correlation ( 0r ) between the predictor and target, the 

Pearson correlation between the actual and predicted target for linear regression on the full 

data set (LR-FUL), cross-validated linear regression (LR-CV), and cross-validated neural 

network (ANN-CV). There were 93DN =  data points in each set. 

  TARGET 

  

Completion 

time 

Error 

rate 

Reaction 

time 

Non-response 

rate 

NASA-TLX 

avg. 

Cortisol 

0r  0.04 0.01 0.19 0.13 0.13 

LR-FULL 0.04 0.01 0.19 0.13 0.13 

LR-CV -0.39 -0.80 0.09 0.01 -0.04 

ANN-CV 0.00 -0.21 0.06 -0.04 -0.04 

BDNF 

0r  0.26 0.05 -0.01 0.13 0.29 

LR-FULL 0.26 0.05 0.01 0.13 0.29 

LR-CV 0.19 -0.36 -0.81 0.03 0.23 

ANN-CV 0.14 -0.20 -0.02 0.02 0.34 

Heart 

Rate 

0r  0.09 -0.19 -0.29 -0.29 0.18 

LR-FULL 0.09 0.19 0.29 0.29 0.18 

LR-CV -0.26 0.07 0.24 0.18 0.04 

ANN-CV 0.04 -0.05 0.27 0.36 0.09 

HbO 

0r  0.05 -0.16 -0.02 0.01 0.24 

LR-FULL 0.05 0.16 0.02 0.01 0.24 

LR-CV -0.28 0.06 -0.59 -0.53 0.16 

ANN-CV 0.09 0.06 -0.04 0.18 0.18 
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Discussion and Conclusions 

The correlation 𝑟 between the actual and predicted values, is often used as a measure of the 

quality of the prediction. In this paper we showed that 𝑟  is negatively biased when the 

prediction method is linear regression with cross-validation. The bias was greater for smaller 

data sets and when the true correlation between the predictor and target was low. This bias 

was caused by the fact that removing part of the data (test set), as part of the process of CV, 

caused the statistics of the remaining data (training set) to change, and this resulted in 

changes to the predicted values which are anti-correlated with the actual values of the target. 

Both linear regression and cross-validation are widely used techniques, and their combination 

appears to be recommended in some textbooks (e.g. [4,7]) as a way of mitigating overfitting. 

We have shown, for the first time in peer-reviewed literature to our knowledge, that this 

combination can create serious problems in the analysis of experimental data (e.g. Table 1). 

We also explained the underlying reasons (Figure 1) and demonstrated its effects through 

simulations (Figure 2 and Figure 3). 

 

The most obvious way to reduce the bias is to use larger data sets (Figure 1d); however in 

practice this is often not possible, as data may be difficult or expensive to obtain. Another well-

known approach in cross-validation is to use stratification during partitioning. This way the 

membership of every partition is chosen, to the extent possible, to represent the population. 

For continuous data, however, stratification is not well-defined (Witten et al., 2016). We 

implemented stratification (after arbitrarily binning the targets) but this did not eliminate the 

problem. In a further attempt to mitigate the bias, we devised a modified CV procedure that 

involved choosing members of a partition in pairs, so that the mean of each pair was as close 

as possible to the population mean. For example the points 1 and 2 in Figure 1a could form 

such a pair. This paired-CV procedure reduced but did not eliminate the problem, hence was 

not further pursued. Nonetheless the reduction of the bias through paired-CV helped further 

confirm of the explanation given in Figure 1.  

 

Our results suggest that cross-validation should be avoided when prediction is done by linear 

regression. We recommend, instead, that regression be applied to the full data, after 

implementing alternative ways of avoiding overfitting (such as removing outliers). Figure 1c-d 

indicate that regression on the full data set generates a bias when 𝑟0 is small, in this case a 

small positive value of 𝑟. In order to understand the origin of this bias, note that although the 

predictor and targets may be uncorrelated (𝑟0 = 0) a finite sample will in general contain a 
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(usually small) positive or negative correlation between them. Regardless of whether this 

predictor-target correlation is positive or negative, it will result in a positive correlation between 

the actual and predicted targets; hence 𝑟 will tend to deviate upward from zero. 

 

For multivariate predictors, the correlation between actual and predicted targets in the full data 

also cannot be used, because this quantity spuriously increases as the number of the type of 

predictors increases. In this case, the adjusted-R is the preferable metric for quantifying the 

outcome of linear regression (Figure 3). Our results indicate that, provided these precautions 

are heeded, linear regression remains an effective way of discovering patterns in data as well 

as of providing a performance benchmark for more sophisticated analysis techniques.  
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