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Abstract

A beam is a common structural element designed to resist loading. Applications

of beams can be found in industrial, mechanical, aerospace and other engineering

disciplines. Some examples are a doorway beam, a diving board, a snowboard, a

rail and an aeroplane wing.

Underestimated loads during the design stage, looseness during the manufac-

turing stage, mechanical vibrations, corrosive environment, collisions may intro-

duce some damage to beams. If no action is taken, the damage can turn into a

fault or a breakdown of the whole system. Hereof, the entirety of beams is a crucial

issue. Cracks, delaminations or changes of elastic parameters can be localised and

assessed at a relatively early stage using non-destructive testing methods, such as

the X-ray, the lamb waves, the acoustic emission. Inherently, these methods are

expensive; they require arduous work to examine the entire structure and can-

not always be applied to temperature-sensitive materials. Recently, modal-based

methods have gained attention of many researchers. These methods are based

on the idea that any damage alters physical properties of the structure (mass,

stiffness) which in turn change the modal properties (natural frequencies, mode

shapes, modal damping). Although several research papers have indicated that

changes in the natural frequencies can follow damage severity, they are unable to

provide spatial information. To overcome this limitation, advanced modern type

signal processing techniques such as wavelets can be used.

This dissertation concerns non-inverse and inverse problems of beams with

different boundary conditions. It is proposed to solve the forward problem of

the vibration analysis using the Haar wavelets, their integration and the modal

properties, such as natural frequencies and mode shapes. The numerical examples

indicate that the proposed approach is fast and accurate.

The inverse problems deal with damage parameter quantification: damage

with different severity in two sets of different locations can produce identical

changes of the natural frequencies. In this dissertation, it is proposed to solve
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the inverse problem of damage quantification with the aid of the Haar wavelets

and machine learning. Two datasets and two machine learning methods are ex-

amined with the aim to highlight the most promising approach. The first dataset

is based on the natural frequency parameters. For the second dataset, the mode

shapes are transformed into the Haar wavelet transform coefficients. Back propa-

gation neural networks and random forests are trained to predict the location and

severity of the induced damage. The comparison of the approaches shows that the

Haar wavelet transformation is more sensitive to the damage localisation, while

the natural frequency parameters are more sensitive to the damage severity quan-

tification. In most simulation cases of the damaged beams, the neural networks

produce as precise predictions of the damage characteristics as the random forests;

however, the random forests are easier to adjust and train.

The results presented in the dissertation can help understand behaviour of

more complex structures under similar conditions, provide apparent influence on

design concepts of structures, and enable new possibilities for operational and

maintenance concepts.
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Chapter 1

Introduction

1.1 Motivation and research background

A beam is one of the oldest structural elements [Timo 83]. It is capable of

withstanding loading actions, such as biaxial bending, transverse shears, axial

stretching or compression and possibly torsion primarily by resisting bending

[Das 11, Xuan 14, Niga 20]. The simplicity of the governing equations makes the

static and dynamic behaviour of the beams easy to analyse and manipulate. The

manufacturing process of beams is facilitated by their simple geometries. There-

fore, beam type structures are widely used in steel construction and machinery

industries [Orha 07]. Some examples of beams are turbine rotor blades, railway

lines, flexible satellites, aeroplane wings, gun barrels, robot arms and long-span

bridges.

The application of beams in contemporary manifold structures requires smart

design and multi-purpose simulation tools. Such tools help improve structure

properties and determine internal forces, stresses, deformations of structures under

various loading effects.

In practical terms, beams may exhibit different types of damage, such as

cracks, delaminations or changes of stiffness coefficients. The cause of damage

is diverse: a design flaw, poor manufacture and severe environmental conditions.

In order to identify and assess damage, engineers are in demand for handy tools.

For instance, aircraft engineers need to assess turbine blades for the presence of

cracks or delaminations; agricultural engineers need to consider vibrations and

pressure in cutting tools; flat bridges have to be periodically checked for load-

bearing capacities.
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A literature study has shown that periodic visual inspections are often non-

efficient, costly and require the components to be visually accessible [Ooij 14].

The inspections based on acoustics, magnetic field, eddy current, radiographs and

thermal fields are time-consuming and complicated if a structural component is

tightly fixed deep in the system or made of cold-work material.

A promising alternative to the existing damage identification methods can

be found in the modal analysis. It is based on the principle that a reduction

in the structural stiffness produces changes in the dynamic characteristics of the

structure, such as natural frequencies, mode shapes, and damping ratios [Haki 14].

Constant monitoring for the changes in the dynamic response with a small number

of sensors helps early indicate, localise and estimate damage severity [Hadj 05b,

Rosa 09, Kona 11]. However, it is noted that the natural frequencies can only

follow the damage severity, but damage locations do not influence the frequencies

much; the modal assurance criterion is, in contrast, less sensitive to damage com-

pared with the natural frequencies; the coordinate modal assurance criterion can

localise damage in the beams but cannot follow severity [Ndam 02]. Therefore, it

is recommended to incorporate the structural properties with modern statistical

methods for accurate damage identification [Wang 18].

The statistical methods, such as correlation functions and coefficients, au-

toregressive models, machine learning methods properly address the modern-type

vibration-based methods. The description of each method can be found in a great

number of articles, for example, [Wu 09, Osta 13, Jaya 15, Uber 16]; therefore,

the explanation of each method lies beyond the scope of the present thesis. At

large, the statistical methods overcome the drawbacks of common non-destructive

testing techniques and traditional methods by the ability to extract information

from raw data. On the other hand, an optimal feature vector selection for the

data-driven methods can be challenging. The vector is frequently dependent on

the structure, the damage type, the goal of the investigation, advantages and dis-

advantages of the classifier. Yet, the choice of a proper statistical method for the

damage quantification is complicated: no systematic comprehensive overview or

comparison between the performances of different methods have been made thus

far. The present thesis slightly fills the gap and compares the performance of

two machine learning methods (the supervised neural networks and the random

forests) on beams with various types of induced damage.

Merging data-driven machine learning with the modal analysis and signal pro-

cessing, the present thesis proposes a new theoretical approach to the damage

quantification problem. Namely, to overcome the limitations of the modal data

and increase the accuracy of predictive models, a search for an informative fea-
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ture vector is conducted in the field of wavelets. The wavelet analysis represents

a modern-type windowing technique for signal decomposition into logarithmically

scaled regions [Misi 13]. A different view of data (signal) reveals aspects of data

that other signal analysis techniques miss [Misi 96]. The application of the wavelets

in engineering is on the rise and still requires additional research. Hereof, one of

the main questions of the present thesis is whether the mode shape decomposition

by the wavelets produces informative data and it may be successful applied to the

machine learning techniques.

1.2 Research scope

The purpose of the present thesis is to describe a theoretical framework for the

vibration analysis and damage parameter quantification with the aid of wavelets

and machine learning with a general aim to contribute to the safety of beam type

elements. Since the topic is broad, the main concepts and scope of the research

have to be established.

Damage in structural engineering is defined as a deviation in normal behaviour

of the structure. The deviation is measured on the basis of two different states,

one of which is assumed to represent the initial state of the structure. The fluc-

tuation in structural behaviour is usually accounted by the changes in material

or geometric properties. These changes alter stiffness, mass, energy dissipation

properties and redistribute internal forces. A reduction in the structural stiffness

produces changes in dynamic characteristics. If no action is taken, damage can

lead to a fault - a situation when the structure does not operate. The present

thesis addresses only damage and its parameter quantification; the study on faults

is considered as a different discipline of research which is beyond the scope of this

thesis.

The most typical types of damage that may appear in structural elements are

cracks, delaminations, wrinkles, foreign objects, dents, scratches, buckles, gouges,

nicks, erosion, debonding [Brah 15, Guem 20] (Figure 1.1 [Guem 20]). The present

thesis investigates the most common or dangerous ones: cracks, delaminations and

concentrated point masses (research on buckling is not included into the thesis;

however, some results can be found in [Hein 12a]). Most boundary conditions

and beam properties in the simulation cases presented in the thesis are chosen

according to the ones given in the literature to compare the results obtained by

alternative numerical methods.
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demonstrates high activity. Some of the most cited references for each technique are included in the
table; a discussion on recent papers, restricted to the last five years, is given later in this article.

Table 1. Classification of Structural Health Monitoring (SHM) Technologies.

Physical Principle Techniques Main Sensor Type Range Refs

Continuous
Mechanics

Vibration methods Accelerometers Global local [5–9]

Strain-based methods Fiber optic sensors Mid-range [10–17]

Elastic waves
Guided waves PZT Mid-range (m) [18–28]

Acoustic emission PZT, AE probes Mid-range (m) [29,30]

Phased arrays PZT Mid-range (m) [31,32]

Fluid dynamics Comparative vacuum
monitoring (CVM)

Patch with
microchannels Local [33,34]

Electricity and
magnetism

Electromechanical
impedance (EMI) PZT Local [35,36]

Electrical impedance
tomography CNT-doped resins Local [37,38]

Eddy currents Eddy probes Local [39,40]

State of the art for SHM can be found in general textbooks [41,42], and even more favorably, in the
proceedings of the biennial International Workshops on SHM (IWSHM) and European Workshops on
SHM (EWSHM) conferences. Recent EWSHM proceedings are available at the website www.ndt.net,
under a Creative Commons license.

4. In-Service Damages in Composite Structures

The usage of advanced composite structures has required the development of advanced NDT
procedures to cover both manufacturing defects and the damages that happen during service. The
most typical defects/damages that may appear in polymeric composite laminates are (Figure 2):

Single and multiple delaminations: This is a separation between two or more layers. It is the most
frequent type of damage for composite materials. It may appear due to residual stresses during the
manufacturing phase or due to low-velocity impacts during machining or in-service.

Figure 2. Typical defects/damages in composite laminates. From left to right, top to bottom:
delamination with internal ply failures, external wrinkle, foreign object, internal and edge delaminations,
internal wrinkle, distributed porosity, and debonding.

Figure 1.1: Some typical types of damage. From left to right, top to bottom: delamination
with internal ply failures, external wrinkle, foreign object, internal and edge delaminations,
internal wrinkle, distributed porosity, and debonding.

Ideally, small damage can be automatically detected, described and classified

at an early stage of its development with a major aim to predict the life cycle of the

whole constructions. The corresponding protocol of the damage identification pro-

cess is shown in Figure 1.2 [Fan 11]. Considerably, no single existing approach can

solve all the damage identification problems sraightforwardly in virtue of various

damage types, an abundance of physical models and complexity of mathematical

models [Marw 00, Fan 11]. Therefore, each milestone of the damage identification

process is investigated separately.

DETECTION
gives a quantitative indication that damage might be present

CLASSIFICATION
gives information about the type of the damage

LOCALISATION
gives information about the probable position of the damage

ASSESSMENT
gives an estimate of the extent of the damage

PREDICTION
gives information about safety of the structure

Figure 1.2: Hierarchy of damage identification process.
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The present thesis focuses on Levels 1, 3 and 4. Formerly, Level 1 of dam-

age detection is treated as a non-inverse problem. The wavelet integration is a

novel approach adopted towards the calculation of natural frequencies. In case of

discrepancy in the calculated and measured values, the presence of damage can

be detected. Here, it has to be noted that the present thesis does not discuss

the problems arising from measuring and cleansing the modal data (for example,

filtering noise, spike removal, removal of outliers, treatment of missing data).

Level 3 and 4 in Figure 1.2 are considered the most difficult tasks in the

vibration-based damage identification process since they do not have an explicit

analytical solution [Wang 18]. Highly non-linear relationship between the vibra-

tion responses and the damage parameters requires adoption of soft optimisation

algorithms, such as genetic algorithm, simulation annealing, support vector ma-

chine [Fan 11]. In the present thesis, the inverse problems are tackled with su-

pervised machine learning (the artificial neural networks and the random forests)

since it is a frequently used and accurate tool for finding relationships between non-

linear data [Aydi 14]. The research on the support vector machines [Hein 11c] for

damage quantification has not shown promising results, and it is not included into

the thesis.

Apparently, supervised machine learning requires some amount of training, val-

idation and testing data. The two possible sources of the vibration-based data are

the model-based methods and response-based methods. The model-based methods

assume the availability of a detailed numerical model of the damaged structure;

while the response-based methods depend only on experimental response data

from the structure [Fan 11]. To accumulate enough data for machine learning via

an experiment means to make copies of the system of interest and damage it in all

the ways that might occur naturally. This is out of the scope of the present the-

sis. The data for machine learning are obtained using the model-based methods;

the dynamic response measurement, environmental effects and excitation/sensing

problems are not taken into account in the present thesis.

The model-based methods require a proper mathematical model. In me-

chanics, several theories are associated with beam deformation/displacement and

stresses. Some of them are the Euler-Bernoulli beam theory, the Timoshenko

beam theory and the two-dimensional elastic theory. In the present thesis, the

Euler-Bernoulli beam theory underlies the research since it is the simplest model

widely applicable to long slender beams. Following the Euler-Bernoulli beam the-

ory, the modal properties (the natural frequencies and modal shapes) are drawn.

Pilot research on the other types of beams, such as the Timoshenko beams and

nano-beams, can be found in [Hein 12a, Hein 12b, Fekl 15, Hein 19b].
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Once the modal data are obtained numerically, the mode shapes are decom-

posed into the Haar wavelet transform coefficients to form a feature vector for

machine learning. The artificial neural networks and the random forest are trained

on these data. In line, the machine learning methods are trained on the natural

frequency parameters. The performances of the methods are compared to each

other with the aim to highlight the most promising technique and features. No

relevant framework for the damage quantification (modal properties coupled with

the Haar wavelets and machine learning) has been found in the literature.

1.3 Objectives and research questions

Broadly, the dissertation aims at the development of a theoretical framework for

vibration analysis and modal-based damage quantification in beams with the aid

of the Haar wavelets and supervised machine learning with a general goal to con-

tribute to the safety of beam type elements. In detail, the present thesis addresses

the following research questions.

• Can the free vibration of beams be systematically studied with the aid of

the Haar wavelet integration?

• Which method produces more accurate predictions of the damage param-

eters: the feed-forward back propagation neural networks or the random

forests?

• Which features produce more accurate results on the damage parameter

quantification using the supervised machine learning methods: the natural

frequency parameter based features or the mode shape decomposition into

the Haar wavelet transform coefficients?

To answer these questions, multiple simulation studies are conducted (see

Chapter 4-8).

1.4 Contribution

The author’s main contribution consists of:

• providing an overview on solving the differential equation of the free vibra-

tion of beams with the aid of the Haar wavelets;
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• calculating the dimensionless natural frequency parameters of uniform or

non-uniform homogeneous or non-homogeneous intact Euler-Bernoulli beams

with classical or elastic boundary conditions with the aid of the Haar wavelets

and their integration;

• calculating multiple datasets (the natural frequency parameter based and

the Haar wavelet transform coefficient based), which describe different types

of damage;

• adapting the feed-forward neural networks with back propagation training

algorithms for damage parameter quantification in Euler-Bernoulli beams

or supports;

• adapting the random forests for damage parameter quantification in Euler-

Bernoulli beams or supports;

• comparing the results of the machine learning methods proceeding from the

nature of the feature vector.

At large, the main contribution of the thesis lies in the development of the

guidelines for the characterisation of vibrating beams and different types of dam-

age in them. The framework is based on the changes in the dynamic behaviour

of beams coupled with the Haar wavelets and the machine learning methods.

The conducted research can serve as a reference in future numerical studies on

(non-)inverse problems. Also, the highlighted approaches can be used in the design

of beam-like structures and contribute to the development of a tool for structural

health monitoring.

1.5 Significance of the research

Structure failure and costly repairs due to different damage causes can be pre-

vented if appropriate retrofitting is carried in time [Wang 18]. Although many

parameter identification methods have been described in the literature, there are

still numerous difficulties in their practical application (see Section 2.1). Nev-

ertheless, engineers are in a constant need for a simple, effective and reliable

non-destructive procedure that allows to diagnose and quantify damage in var-

ious structures. Hereof, the present thesis contributes to developing a technique

for modal-based damage identification. Multiple simulation cases conducted in the

thesis demonstrate that the proposed methods of the Haar wavelets and machine

learning are capable of dealing with a range of structural damage scenarios even

when the damage is very small or large.
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1.6 Thesis outline

The present thesis explains the transverse vibration of uniform and non-uniform

homogeneous and non-homogeneous intact and damaged Euler-Bernoulli beams

on classical and elastic supports and demonstrates the integration of the Haar

wavelets and the machine learning methods for solving non-inverse and inverse

problems in dynamic systems. Nine chapters of the thesis are grouped into four

parts.

Chapter 2 and 3 provide an overview of the methodology and mathematical

models used in the thesis. These chapters explain fundamental concepts of the

Euler-Bernoulli beam theory,lateral vibration, damage quantification, wavelets and

machine learning. The chapters are supposed to help the reader go through the

rest of the thesis.

Chapter 4 describes the Haar wavelet integration for solving non-inverse prob-

lems of intact beam vibrations. The procedure is illustrated through multiple

simulation studies conducted on various mathematical models of the beams.

Chapter 5, 6, 7 and 8 belong to the third part of the thesis. Based on the ana-

lytical computational simulations of beam-like structures, a comprehensive study

on several damage quantification algorithms is provided to illustrate the validity

and effectiveness of the Haar wavelets and supervised machine learning in different

scenarios (quantification of cracks, delaminations, point masses and changes of the

stiffness coefficients in elastic supports).

Concluding remarks and directions for future research are given in Chapter 9.
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Chapter 2

Methodology

This chapter highlights conceptual approaches used in the vibration analysis and

damage parameter identification. Particular emphasis is placed on the Haar wave-

lets and machine learning in a volume required for solving (non-)inverse problems

described in the thesis.

2.1 Related research on damage identification

To ensure the reliability of structures and prevent damage transition into a fault,

a broad range of damage identification techniques have been developed. A classi-

fication of the most commonly used methods is shown in Figure 2.1 [Ooij 14].

Visual approaches focus on the inspection of accessible surfaces. The ap-

proaches are often highly subjective; the reports and analysis lack an adequate

evidential basis for making decisions [Haki 15]. Digital image processing facili-

tates a standard visual inspection for damage detection but does not reveal inner

damage [Ruck 06b]. Therefore, visual approaches are often used for rough estima-

tions and critical damage detections.

The electromagnetic approaches are based on the response of electric currents,

magnetic fields, or both. In civil structures, damage is most often assessed by

X-ray. This implies that the damaged region is easily accessible. A novel active

infrared thermography method is based on the eddy current pulsed thermography

and potentially effective to detect multiple hidden cracks on corroded metal sur-

faces [Xu 16]. However, the application of the method is limited by the shape of

the structure and material sustainability to heating [Guem 20].
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Figure 2.1: A classification of damage identification approaches.

The present thesis addresses changes in the dynamic responses as an alterna-

tive and promising approach for damage identification. The structural vibrations

and electro-mechanical impedance techniques operate at a relatively low-frequency

range (100 − 104 and 103 − 105 Hz, respectively). The methods can be applied to

complex and large structures; the results of measurements are relatively easy to

interpret [Ooij 14]; however, to increase the sensitivity and accuracy of the meth-

ods, additional manipulations on the modal data have to be performed. The high

frequency methods (104 − 107 Hz) use acoustic emission, acousto-ultrasonics and

ultrasonic testing techniques. These methods are more sensitive to damage detec-

tion than low frequency methods. However, the most significant disadvantages of

the high-frequency techniques are localised time-consuming scanning process and

problematic interpretation of wave forms, particularly in the case of non-flat or

composite structures. A comprehensive review of the structural vibration-based

damage detection methods can be found in multiple papers, for example, [Doeb 98,

Zou 00, Samu 05, Word 08, Word 09, Fan 11, Hoss 17, Chen 18, Gome 19]. This

thesis uses the vibration-based structural damage detection methods as a starting

point for further soft optimisation procedures.

In case of vibration-based damage identification, a structure is equipped with

an array of actuators and sensors which excite and record the dynamic response

[Aydi 14]. The measured response signal is then processed in the time, frequency

29



or modal domains and compared to the model values. Notably, the modal do-

main methods have attracted the attention of researchers. Such methods are

cost-effective and are relatively easy to operate [Zou 00]. They can provide global

and local damage information since insignificant changes in the physical proper-

ties of a structure (natural frequencies, mode shapes and modal damping) result

in detectable variations in modal parameters [Wei 04].

The modal-based methods that use the natural frequency change as a pri-

mary feature for damage detection is attractive to many researchers. This is due

to the fact that the natural frequencies can be measured from a few accessible

points on the structure and are generally less contaminated by experimental noise

[Fan 11, Aydi 14]. However, the frequency-based methods have several limita-

tions. According to Fan and Qiao [Fan 11], the damage identification methods

based on frequency change can be successfully applied to simple structures (typ-

ically, a slender beam-type structure with an artificially induced crack) in a con-

trolled laboratory condition such as for quality control in manufacturing. The

application of the methods to real structures is limited by complex mathematical

models; the frequency-based methods do not account for small or multiple dam-

ages since the frequency change is insignificant and may be buried in the changes

caused by environmental or operational conditions. Furthermore, the changes in

the lower modal frequencies are unable to provide spatial information about dam-

age [Farr 01, Karb 09]. An exception to this limitation occurs if a sufficient number

of frequencies with significant enough changes are used to determine the location

of the damage [Doeb 98]. Wang [Wang 18] proposes to solve the damage locali-

sation problem by incorporating the frequencies with other structural properties

and/or data correlation techniques.

A second group of the modal-based damage identification methods uses the

mode shapes - a dynamic property of the structure which represents the pattern

(mode) of an object at a particular natural frequency. According to Yan et al.

[Yan 07] and Kim et al. [Kim 03], the mode shapes contain local information that

enables to identify damage location even in case of multiple damages. Hu et al.

[Hu 06] and Liu et al. [Liu 05] state that the first five mode shapes are the most

sensitive and informative for damage identification. Furthermore, compared to the

natural frequencies, the mode shapes are less affected by environmental changes

such as temperature. Nevertheless, a few problems also exist with the mode shape

based damage identification methods. Firstly, a series of sensors are required to

measure the mode shapes. Secondly, the measured mode shapes are more affected

by noise than the natural frequencies. Thirdly, the mode shapes are only sensitive

to damage in the particular area of a structures (for instance, in the mid-span of a
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clamped-clamped beam), and without further signal processing or pattern recog-

nition techniques they can only be adopted for preliminary damage localisation

rather than accurate localisation or quantification of damage [Wang 18]. As an ef-

fort to enhance the sensitivity of vibration-based damage detection, methods that

use both natural frequencies and mode shapes are proposed in [Aydi 14, Tan 17]

as promising techniques for damage identification.

The third group of the modal-based methods relies on the mode shape deriva-

tives, such as mode shape curvatures, modal strain energy and modal flexibility.

It is noted that for beams, plates, and shells there is a direct relationship between

curvature and bending strain [Raza 06]. Some researchers discuss practical issues

of measuring strain directly or computing it from the displacements or accelera-

tions [Doeb 98]. Chance et al. [Chan 94] points out that numerical calculation

of the curvatures from the mode shapes results in unacceptable errors. Pandey

et al. [Pand 91] state that the absolute changes in the mode shape curvature

are a good indicator of damage for the beam structures modelled using the finite

element method (FEM). Nevertheless, the difference in the modal curvature for

higher modes shows several peaks at the damage location and also at other posi-

tions, which may lead to a false indication of damage [Waha 99]. To reduce the

possibility of a false alarm, it is suggested to use only the first few low curvature

mode shapes for damage identification.

This thesis proposes to address the damage quantification problem using the

natural frequencies and mode shapes. The limitations of the modal data are

overcome by wavelets and machine learning.

2.2 Wavelets

In 2000, Quek et al. [Quek 01] conducted a sensitivity analysis of crack detection

in simply supported and clamped beams under a static load. The authors found

that the wavelets were sensitive to the curvature of the deflection profile calculated

with the aid of the FEM. Using the vibration data and the Haar/Gabor wavelets,

multiple cracks were detected. Notably, the Haar wavelets exhibited superior

performance for detecting discrete cracks whose length ratio to the depth of the

beam was as low as 1/150. The observation of the wavelet sensitivity to the non-

linear structure changes was confirmed experimentally by Rucka and Wilde in

[Ruck 06a, Ruck 06b]. Inspired by these articles, the wavelets were applied to the

vibration and damage parameter quantification in this thesis.
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A wavelet is a mathematical function that can be presented as a wave-like

oscillation with an amplitude that begins at zero, increases, and then decreases

back to zero [Farr 17]. Such a function is used to decompose a given function

or continuous-time signal into different scale components. Each scale component

can be assigned a frequency range and then be studied with a resolution that

matches its scale. The most popular wavelet families are Daubechies, Coiflet,

Symlet; however, these wavelets do not have an analytical expression. The Haar

wavelets are mathematically the simplest wavelets which have an analytical ex-

pression [Lepi 14].

A wavelet transform is the representation of a function by wavelets. The

transform can be classified into discrete (DWT) and continuous wavelet transform

(CWT). Both can be used to represent continuous–time (analogue) signals. CWTs

operate over every possible scale and translation whereas DWTs use a subset of

scale and translation values or a representation grid [Farr 17].

The wavelet transform has advantages over the traditional Fourier transform

in terms of representing functions that have discontinuities and sharp peaks as

well as accurately deconstructing and reconstructing finite, non-periodic and/or

non-stationary signals [Farr 17]. Furthermore, the wavelet-based methods do not

require the analysis of complete structure. Due to the time-frequency localisation,

the wavelet transform can reveal some hidden parts of data that other signal

analysis techniques fail to detect [Yan 07].

The wavelet transform has been applied in many fields, including vibration-

based damage detection ([Liew 98, Wang 99a, Quek 01, Hong 02, Gent 03, Yam 03,

Douk 03, Yan 04, Han 05a, Ruck 06a, Zhu 06, Umes 09, Zhen 09, Srin 10, Cao 11]).

In this thesis, the Haar wavelets and their integration are used to calculate the

natural frequencies of various (non-)uniform and (non-)homogeneous beams or

decompose mode shapes into a set of the Haar wavelet transform coefficients to

form a feature vector for machine learning methods. The idea originates from

Hein [Hein 07] who has successfully combined the Haar wavelets and the neural

networks for solving the inverse problem of elastic foundation parameter identifi-

cation in vibrating delaminated beams.

2.2.1 Haar wavelets

The present thesis focuses on the discontinuous Haar wavelet functions, which

are mathematically the simplest wavelets [Lepi 14]. Chen and Hsiao [Chen 97,

Hsia 99] demonstrated that these wavelets could successfully approximate the
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derivatives of functions for solving differential equations. This approach was de-

veloped further by Lepik [Lepi 05].

The Haar wavelet is the first known and yet the simplest wavelet introduced in

1909 by Alfred Haar. This wavelet is also known as the length-2 Daubechies filter

[Aziz 13]. The main properties of the Haar wavelet are orthogonality and compact

support. The scaling function for the family of the Haar wavelets is symmetric

and discontinuous (Figure 2.2a). It resembles a step function which is defined as

[Aziz 13]:

h1(ξ) =

1, for ξ ∈ [0, 1),

0, elsewhere.
(2.1)

The mother wavelet for the Haar wavelet family is anti-symmetric (Figure 2.2b),

and it is defined as:

h2(ξ) =


1, for ξ ∈ [0, 12 ),

−1, for ξ ∈ [ 12 , 1),

0, elsewhere.

(2.2)

All the other functions in the Haar wavelet family are defined on the subinter-

vals of [0, 1]. The daughter functions are generated from the mother wavelet h2(ξ)

by scaling and shifting it along the abscissa [Lepi 14]:

hi(ξ) =


1, for ξ ∈ [ξ(1), ξ(2)),

−1, for ξ ∈ [ξ(2), ξ(3)),

0, elsewhere,

(2.3)

where

ξ(1) =
k

m
, ξ(2) =

k + 0.5

m
, ξ(3) =

k + 1

m
. (2.4)

Integer k is the translational parameter or the shifting factor (k = 0, 1, ...,m− 1),

m is the dilatation parameter or the factor of scale (m = 2j and j = 0, 1, ..., J),

j indicates the level of the wavelet. Integer J is the maximal level of resolution

and M is the resolution coefficient (M = 2J). The relation between i, m and k is

expressed as i = m+ k+ 1. Two of the daughter wavelets h3 and h4 are shown in

Figure 2.2 c and d.
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Figure 2.2: The Haar wavelets: (a) the scaling function h1, (b) the mother wavelet h2,
(c) the daughter wavelet h3 (J = 1, m = 2, k = 0, ξ(1) = 0, ξ(2) = 1/4, ξ(3) = 1/2),
(d) the daughter wavelet h4 (J = 1, m = 2, k = 1, ξ(1) = 1/2, ξ(2) = 3/4, ξ(3) = 1).

The Haar wavelets can also be used to present any function in the discrete

form. Several techniques are described in [Addi 02, Lepi 14]. In this thesis, the

collocation points method [Lepi 14] is used since it is applicable for the mode shape

representation in the form of a limited feature matrix vector. The values of the

collocation points are defined by [Lepi 14]:

ξl =
l − 0.5

2J+1
=
l − 0.5

2M
, (2.5)

where l = 1, 2, ..., 2M . The collocation points divide the interval ξ ∈ [0, 1) into

2M parts; each part is of length 4ξ = 1/(2M).

The wavelet function values of (2.3) in the collocation points are presented in

the Haar matrix H, whose dimensions are 2M × 2M . The elements of the matrix

are H2M×2M (i, l) = hi(ξl). An example of the Haar matrix for M = 2 is presented

below:

H4×4 =



1
8

3
8

5
8

7
8

h1 1 1 1 1

h2 1 1 −1 −1

h3 1 −1 0 0

h4 0 0 1 −1

. (2.6)

Any function y(ξ), which is integrable in the interval [0, 1), can be expanded

into the Haar series [Lepi 14]:

y(ξ) =

∞∑
i=1

cihi(ξ), (2.7)
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where ci are the wavelet coefficients, which can be calculated by minimizing the

integral square error (see [Hsia 99]). In the present thesis, the sum is limited with

2M terms. The discrete form of (2.7) with 2M is

y(ξl) =

2M∑
i=1

cihi(ξl), (2.8)

where ξl (l = 1, 2, ..., 2M) are the collocation points. The matrix form of (2.8) is

y = cH, (2.9)

where H is the Haar matrix, c = (ci) and y = (yl) are 2M dimensional row vectors.

The Haar wavelet coefficients can be found by:

c = yH−1, (2.10)

whereH−1 is the inverse of the Haar matrix. Replacing c into (2.7) with i = 1, ..., 2M ,

the wavelet approximation of function y with the level of resolution J can be

obtained. The accuracy of the approximation is discussed in several articles

([Lepi 14, Maja 15, Maja 18]). Equation (2.10) is called the forward discrete

transform, and (2.9) is called the inversed discrete transform. Since H2M×2M

and H−12M×2M contain many zeros, the Haar transform is much faster than the

Fourier transform [Hsia 99].

2.3 Machine learning

Damage quantification on the basis of the modal data is an inverse problem. That

means, damage of different severity in two different locations can produce identical

changes in the modal parameters. Since the problem cannot be solved directly,

function fitting methods are needed. The present thesis addresses the damage

quantification problem via machine learning.

The Statistical Analysis System Institute defines machine learning as follows:

“it is a method of data analysis that automates analytical model building. Using

algorithms that iteratively learn from data, machine learning allows computers to

find hidden insights without being explicitly programmed where to look” [SAS ].

Such properties fit particularly well to the present thesis on the parameter quan-

tification in dynamic systems. In the context of damage identification, machine

learning means that a model can learn to detect and assign a damage status to a

given feature vector from the structure. In the present thesis, the feature vector is
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formed using the natural frequency parameters and/or the Haar wavelet transform

coefficient derived from the mode shapes with a general aim to highlight sensitive

features for damage assessment and localisation.

Once features are determined, the map between the features and the damage

parameters can be constructed. Many algorithms are available for this purpose.

Two the most popular types of machine learning algorithms are [Word 11]:

• unsupervised learning algorithms: the algorithms are not provided with the

correct values during the training process; opposite, these algorithms look

for the features in the data themselves. According to Worden [Word 09],

this mode of learning only applies to damage detection (Figure 1.2).

• supervised learning algorithms: in these algorithms, the target values are

known and are given to the algorithm; during training, the machine learning

system tunes itself so that the calculated outputs closely match to the target

values; once the system is tuned, it is able to predict outputs to the unknown

data.

In the present thesis, the supervised learning algorithms are used since both,

the inputs and outputs, are available - the datasets are calculated numerically

using the models described in Chapter 3. Furthermore, the supervised learning

algorithms perform well on the following types of tasks:

• regression: assigning real floating-point value to the feature vector;

• classification: assigning labels to the feature vector.

Prediction of damage parameters (location and severity) is a regression task.

In the present thesis, the damage status is predicted using a supervised function

approximation in terms of the artificial neural networks and the random forests.

The techniques are described in the next subsections.

2.3.1 Artificial neural networks

The artificial neural network (ANN) is defined by the inventor of a neurocomputer

Hecht-Nielsen as “a computing system made up of a number of simple, highly

interconnected processing elements, which process information by their dynamic

state response to external inputs” [Caud 88]. Specifically, a basic component of

any ANN is an artificial neuron (node or processing unit). A neuron receives
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signals from other neurons:

X =

x1...
xn

 . (2.11)

On the way to the neuron, the signal passes through synapses. A synapse de-

notes the strength of the connection between two nodes. Mathematically, it is

represented as a floating-point value, which is positive or negative. The synaptic

weights of a neuron can be presented as a vector:

W =
(
w1 ... wn

)
. (2.12)

The “learning” part of an ANN means continuous adjustment of these weight

values.

In the present thesis, a sum net function is used to sum all the input signals

weighted by the corresponding synaptic weights and the bias b:

NET = WX + b =
(
w1 ... wn

)x1...
xn

+ b = w1x1 + ...+ wnxn + b. (2.13)

The output of the sum net function is a positive or negative floating-point

value which is passed to the activation function. ANNs can learn the non-linear

relationship between input and output vectors if the activation function is non-

linear. ANNs support various non-linear activation functions. The most popular

activation functions are sigmoidal and hyperbolic tangent [Word 11]. In this thesis,

the Elliot symmetric sigmoid activation function is used. It works approximately

four times faster than the symmetric sigmoid since it does not use exponents

[Beal 16].

How many neurons are needed to train an ANN to make reliable predictions

and not to memorise patterns? This is one of the most challenging questions.

An optimum number of neurons can be ascertained after conducting empirical

analysis. Some general guidelines on choosing the number of neurons can be found

in [Sing 03, Beal 16].

Different distribution of neurons among the input-hidden-output layers, the

number of layers and the input-output procedures influence the architecture and

the scope of an application [Hoss 17]. In the present thesis, the multilayer feed-

forward network (MLFFNN) is used. According to [Shar 13], the MLFFNN is
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a universal approximator which can be used when little prior knowledge of the

relationship between inputs and targets is available. The MLFFNN with one

hidden layer generally produces excellent results [Sing 03, Beal 16]. If the results

are not adequate, more layers might be added; notably, more training data are

needed in such case.

Broadly, to train an MLFFNN is not an easy process since it has hidden

layers. The optimal values of the hidden neuron outputs are not known. Hence,

the weight of each hidden neuron cannot be adjusted appropriately knowing only

the overall error value in the output layer of the network. According to several

authors [Hayk 99, Word 11, Niel 15], the most appropriate technique for training

the MLFFNN is back propagation learning, or simply propagation of error. It

is a supervised learning algorithm introduced by Bryson and Ho in 1969 and

rediscovered by Werbos in 1974 [Hayk 99]. The process consists of two passes

through the network: the forward propagation and the backwards propagation.

The input vector is fed into the network during the forward propagation and then

transmitted to the output layer through the hidden layers. The output of the

network is then compared to the desired output and an error value is calculated

for each of the neurons in the output layer. The error values are then propagated

backwards.

The loss (also cost or error) function shows the effectiveness of the training

process (correction of weights): how far the computed values of the output neurons

are away from the target values. Mathematically, the desired value of the cost

function is a global minimum as it is the point where the error of the training

is the lowest. To reach the global minimum by minimising the cost function is

not easy as the process is tangled by local minima. Furthermore, the presentation

of the training set to the system only once rarely gives the desired result. That

means, the system has to go through the same training set once again and discover

more relevant associations between the input and output values by adjusting the

weights. This leads to the error-performance surface or simply the error surface.

The true error surface is averaged over all possible input-output examples. For

the network to improve the training performance, the operating point has to move

down towards the global minimum on the error surface.

The procedure used to carry out the learning process in the ANN is called

an optimisation algorithm. The algorithm finds a set of weights and biases which

makes the cost as small as possible. Some optimisation algorithms are the gradient

descent, the conjugate gradient, the Newton method, the Quasi-Newton method

and the Levenberg-Marquardt algorithm [Hayk 99]. The algorithms have differ-

ent characteristics and performance in terms of memory requirements, processing
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speed, and numerical precision. The description of each technique is out of the

scope of the present thesis (detailed information about the optimisation algorithms

can be found in various resources, for example, [Hayk 99, Niel 15]).

A list of the optimisation algorithms implemented in the MATLAB Neural

Network Toolbox training functions can be found in [Beal 16] (the choice of the

computational environment was motivated by the availability and popularity of

machine learning libraries at the beginning of the PhD studies). According to

Lahiri and Ghanta [Lahi 09], no algorithm is cross-functional to suit to all prob-

lems; therefore, a quantitative analysis has to be performed in order to find a

suitable optimisation algorithm for the damage parameter quantification problem.

Table 2.1 [Beal 16] summarises the Matlab training functions used in the present

thesis having regard to the optimisation algorithms implemented in them.

Table 2.1: Training functions of the ANNs.

Training Abbr. Description
function
trainrp RP Resilient back propagation is a network training function that updates

weight and bias values according to the resilient back propagation algo-
rithm. It is a simple batch mode training algorithm with fast conver-
gence and minimal storage requirements.

trainscg SCG Scaled conjugate gradient back propagation is a network training func-
tion that updates weight and bias values according to the scaled con-
jugate gradient method. The method performs well particularly for
networks with a large number of weights.

trainbfg BFG Broyden-Fletcher-Goldfarb-Shanno back propagation is a network train-
ing function that updates weight and bias values according to the quasi-
Newton method. It requires more storage and has more computation
in each iteration than the conjugate gradient method, but usually con-
verges in fewer iterations.

trainlm LM Levenberg-Marquardt back propagation is a network training function
that updates weight and bias values according to Levenberg-Marquardt
optimization. It is the fastest training algorithm for networks of mod-
erate size, but slower than the gradient methods.

trainbr BR Bayesian regularisation back propagation is a network training func-
tion that updates the weight and bias values according to Levenberg-
Marquardt optimization. It minimises the combination of squared errors
and weights penalising large weights, and then determines the correct
combination to produce a network that generalises well. The method
performs well even on small noisy datasets since it does not require the
validation dataset to be separated from the training dataset.

2.3.2 Random forests

This subsection is partially based on the article [Jaan 16].

The random forest (RF) is a classifier defined by Breiman for classification

and regression problems. The statistical method is based on a large set of un-
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pruned decision trees known as classifiers. The unpruned decision trees, or the full

trees, arrange information in a tree-like structure: leaves represent classifications

which are referred to as labels, non-leaf nodes are features, and branches represent

conjunctions of features that lead to the classifications. This structure is used

to predict potential values of data attributes. A collection of the unpruned trees

forms an ensemble or a forest.

The idea of combining multiple decision trees originated with Williams in 1987

[Will 87]. Ho [Ho 95] developed it further: for constructing each tree, he used a

fixed portion of randomly selected features or a subspace. The method is known

as the random decision forest. A bit later, Dietterich [Diet 00] proposed an idea

of the random subspaces for constructing each node of the tree; in other words, to

use a fixed portion of randomly selected features at each split of the node. Finally,

in 2001 Breiman [Brei 01] formulated the whole RF algorithm as follows.

1. Generate n random sets (bootstrap replicate sets) of the original dataset,

where n denotes the number of trees in the ensemble. The size of each ran-

dom set is the same as the size of the original set of the data; however, in the

bootstrap replicate set, the patterns are random: some patterns are chosen

several times from the original set, some are not present in the replicate set

at all. Each bootstrap replicate set does not contain approximately one-third

of the original observations; these are called the “out-of-bag” patterns.

2. Grow the forest of the unpruned classification or regression trees with as

a small subset of observations at each leaf as possible. For each tree, use

the corresponding bootstrap set and recursively apply the following sub-

algorithm to construct each tree:

(a) choose a random sample of predictors p without replacement (if p is

equal to the size of the original set, the case is called bagging);

(b) choose a predictor out of p which produces the best split;

(c) split the set into two subsets at the node;

(d) repeat the procedure for each subsequent split until the tree is as large

as desired.

Importantly, pruning is not allowed at this stage [Rio 14].

3. Evaluate each observation using all the trees using the out-of-bag set.

4. Predict new observations by aggregating the predictions of each tree of the

forest (that means, the majority votes for the classification tasks or an av-

erage result for the regression tasks).
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Proceeding from the description of the algorithm, the RF has three parameters

at most to adjust:

• n - the number of trees (the generalisation error converges as the number of

trees in the forest becomes larger),

• p - the number of random features to be used at each node (the smaller is

number p, the more reduced the correlation is);

• the number of observations that the terminal nodes may contain (the smaller

the number, the more sensitive to noise the tree is).

The other parameters (the variables in the bootstrap sets and nodes) are random.

The detailed guidance on adjusting these parameters can be found in [Liaw 02].

Some of them are listed below.

• The best way to determine how many trees are necessary is to compare the

predictions made by a forest to the predictions made by a subset of the

forest. When the subsets work as well as the full forest, the number of trees

is enough.

• For selecting p, Breiman suggests trying the default number, a half of the

default, and doubled of the default, and pick the best (for the regression

tasks, the default p is 1/3 of the number of the features in the patterns (P );

in case of the classification task, the default p is
√
P ).

The double randomness (at the generation of the bootstrap sets via bagging

and the random subspaces at the nodes) decorrelates the trees in the ensemble

allowing highly correlated variables to play almost equivalent roles. The decision

based on the output from all the classifiers increases the accuracy of the prediction

made by one tree-structured classifier and makes the RF more stable and less prone

to overfitting. This explains the efficiency and popularity of the RFs in relation

to other classification and regression algorithms, such as discriminant analysis,

support vector machines and ANNs. Furthermore, the RF is simple, fast (can be

easily parallelised) and robust to the outliers and noise [Brei 01].

Due to the numerous advantages, the RF has been adopted towards data

mining, image analysis and applied statistics. Wu et al. [Wu 14] successfully

applied the RFs to the study on imbalanced text categorisation. Calderoni et

al. [Cald 15] developed a complex method for indoor localisation using the RF

classifiers. Tüselmann et al. [Tuse 15] described a new method based on the RF

for determining journal rankings. In the field of structural engineering, only a

few papers on the application of the RFs can be found. For example, Sainlez and
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Heyen [Sain 10] conducted performance monitoring of an industrial boiler in 2010.

Tooke et al. [Took 14] used the RFs to predict the age of buildings. Zhou et

al. [Zhou 14] applied the RFs for damage detection in a four-storey steel building

model. Nevertheless, a larger number of articles addressed the inverse problems of

structural mechanics by applying the predecessors of the RF, for example, CART

and C4.5 methods in [Yang 05, Sun 07, Karb 14].

2.4 Evaluation criteria

A predictive model building with the aid of the machine learning methods refers

to selecting the “optimal” architecture, data representation, training algorithm,

training parameters, and terminating criteria such that some desired level of per-

formance is achieved. With this, validation is a critical aspect of any model con-

struction and evaluation. Verification helps measure and compare the performance

of different models as well as evaluate the superiority of model architecture, learn-

ing algorithm, or application of the model.

Although no single well-formulated theoretical methodology exists for the ma-

chine learning model verification, the verification process is usually based upon

some specified network performance measure on the data that have not been used

in the model construction - a testing set (this implies that the initial data set is

split into the training, validation and test sets). The evaluation criterion quantifies

the prediction error. In the present thesis, the mean square error (MSE) is used

since it is widely used in most articles on computational mechanics:

MSE =
1

N

N∑
i=1

(yi − ti)2, (2.14)

where N is the number of patterns in the set, yi and ti denote the predicted output

and the target value, respectively. The criterion estimates the distance between

the original outputs and the estimated outputs avoiding the error sign by squaring

and shows the average magnitude of the forecast error.

In order to compare the results of multiple tests and machine learning tech-

niques, all the programs were written in the Matlab environment. The programs

were run on a MacBook Pro laptop with a 2.5 GHz Intel Core i5 processor and

8GB 1600 MHz RAM.

42



2.5 Conclusion

In this chapter, a classification of damage identification approaches was given

schematically. Particular emphasis was placed on the Haar wavelets and some

machine learning methods since these would be the main tools for solving non-

inverse and inverse problems described in the thesis.
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Chapter 3

Mathematical models

In the vibration analysis, the model-based methods require mathematical mod-

elling, derivation of the governing equations, solution of the equations, and in-

terpretation of the results [Rao 05]. However, it is impossible to consider all the

details in the mathematical analysis if the vibrating system is very complex. In

such cases, the overall behaviour of the complex system can be determined by

considering a simple model. To a vast extent, several theories are associated with

beam deformations/displacements and stresses, such as Rayleigh, Euler-Bernoulli,

Timoshenko. To come up with a suitable mathematical model for a vibrating sys-

tem, some judgement has to be made. Linear models permit quick solutions and

are simple to handle; however, non-linear models sometimes reveal specific char-

acteristics of the system that cannot be predicted using the linear models. In the

present thesis, the Euler-Bernoulli beam theory underlies the research since it is

the simplest beam model and yet widely used in engineering. Proceeding from the

beam theory, various mathematical models of (non-)homogeneous (non-)uniform

beams with (non-)classical boundary conditions and the corresponding equations

of motion are presented in detail. The derived analytical models are used in the

pertinent (non-)inverse problems of the thesis.

3.1 Uniform beams

3.1.1 Governing equations of Euler-Bernoulli beams

The Euler-Bernoulli beam theory is the oldest beam model, yet it is commonly

used in civil engineering. The Euler-Bernoulli beam theory is a simplified theory of

deformation of a thin elastic beam. Due to the bending moment and the transverse
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displacements, the theory comprises the strain energy and kinetic energy. The key

kinematic assumptions of the Euler-Bernoulli beam theory are:

• the cross-sections of the beam are rigid;

• the cross-sections remain planar and normal to the deformed axis of the

beam.

The Euler-Bernoulli beam theory provides a reasonable approximation for

many problems, including the calculation of load-carrying capacity, deflections and

internal forces of beams. Based on the Euler-Bernoulli beam theory, the following

assumptions are used in the present thesis:

1. geometry: the thickness and width of the beam are significantly smaller

compared with the length;

2. stresses: the load distribution is lateral; the stresses perpendicular to the

beam length are much smaller than parallel and can be neglected;

3. neutral axis: the neutral axis undergoes no extension;

4. deformation: the beam deformations are dominated by pure bending and

considerably small compared with the thickness of the beam;

5. normality: the plane sections that are perpendicular to the neutral axis

remain so at bending; each fibre in the cross-section changes length propor-

tional to its distance from the neutral axis;

6. linearisation: the angular distortion due to the shear force is negligible

compared with the bending deformation.

A sample uniform homogeneous beam and its properties are shown in Figure

3.1 and Table 3.1. In the uniform beam, the material density ρ, the cross-section

A and the bending stiffness EI are constants. The combination of the tensile

and compressive stresses in the fibres of the beam produces the internal bending

moment. According to the Euler-Bernoulli beam theory, the bending moment M

is proportional to the curvature of the bending [Bala 04]:

M(x, t) = EI
∂2y(x, t)

∂x2
. (3.1)

In Figure 3.1, the balance of the forces in y direction is

V (x, t) + p(x, t)dx−
(
V (x, t) +

∂V (x, t)

∂x
dx

)
= 0. (3.2)
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Figure 3.1: An Euler-Bernoulli beam: (a) bending of the beam; (b) equilibrium for a
small beam element (the bending moments M(x, t) and the shear forces V (x, t) are positive
in the clockwise direction).

Table 3.1: Beam properties.

L length of the beam
b width of the beam
h thickness of the beam
A cross-sectional area of the beam
ρ linear mass density per unit length
E elasticity modulus
I second moment of area or moment of inertia

(in case of a rectangular beam: I = bh3

12
[Bala 04])

x axial coordinate along the neutral axis
t time

y(x, t) vertical displacement of the beam
M(x, t) internal bending moment
V (x, t) shear force
p(x, t) load density (force per unit length of the beam)
W (x) mode shape
ω natural frequency of vibration

fcnf circular frequency of vibration
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Rearranging (3.2), the load-deflection equation is as follows:

p(x, t) =
∂V (x, t)

∂x
. (3.3)

Thus, the loading per unit length of the beam relates to the change of the shear

force along the beam.

The balance of moments at the rightmost edge point x + dx (Figure 3.1) of

the beam element is

M(x, t) + V (x, t)dx+ p(x, t)dx
dx

2
−
(
M(x, t) +

∂M(x, t)

∂x
dx

)
= 0. (3.4)

Neglecting the second-order term p(x, t)dxdx2 , the shear-deflection equation is

obtained

V (x, t) =
∂M(x, t)

∂x
. (3.5)

Thus, the shear force relates to the change of the bending moment along the beam.

Substituting (3.1) and (3.5) into (3.3), the following relation is obtained

p(x, t) =
∂2

∂x2

(
EI

∂2y(x, t)

∂x2

)
= EI

∂4y(x, t)

∂x4
. (3.6)

For a beam subjected to the free vibration (no external forces are applied)

about its own static equilibrium position under the weight of the beam, the load per

unit length is equal to the inertia force due to the internal load times acceleration

[Pras 11]:

p(x, t) = −m∂2y(x, t)

∂t2
. (3.7)

Taking into account (3.6) and (3.7), expressing the mass of the beam via its

density and volume (m = ρA), the governing differential equation associated with

the free transverse vibration of the Euler-Bernoulli beam is

EI

(
∂4y(x, t)

∂x4

)
+ ρA

∂2y(x, t)

∂t2
= 0. (3.8)

The equation (3.8) involves a fourth order derivative with respect to the axial

coordinate and a second order derivative with respect to time. The solution of

(3.8) is sought using the method of separation of variables [Karn 01]:

y(x, t) = W (x)T (t), (3.9)
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where W is independent of time and T is independent of coordinate. Substitut-

ing (3.9) into (3.8), dividing it by ρAW (x)T (t) and rearranging the terms, the

following equation is obtained [Bala 04]

EI

ρAW (x)

d4W (x)

dx4
= − 1

T (t)

d2T (t)

dt2
. (3.10)

The left term of (3.10) does not convert if t changes, and vice versa, the right

term of (3.10) does not convert if x changes; therefore, the ratio on each side must

be a constant; that is

EI

ρAW (x)

d4W (x)

dx4
= − 1

T (t)

d2T (t)

dt2
= ω2

∗, (3.11)

where ω2
∗ is a positive constant (this requirement can be verified due to the na-

ture of the particular vibration problem), and ω∗ is the natural frequency of free

vibrations. Introducing the natural frequency parameter k∗:

k4∗ =
ω2
∗ρA

EI
, (3.12)

(3.10) takes the form of two differential equations:

d4W (x)

dx4
− k4∗W (x) = 0. (3.13)

d2T (t)

dt2
+ ω2

∗T (t) = 0. (3.14)

A general solution of (3.13) for a mode shape (eigenfunction) is given by [Cocs 11]

W (x) = C1sin(k∗x) + C2cos(k∗x) + C3sinh(k∗x) + C4cosh(k∗x), (3.15)

where Ci (i = 1,..,4) are the arbitrary constants of the integration to be deter-

mined later from the boundary conditions and W (x) is the mode shape of the

beam. Since the beam vibrates periodically with no damping (free vibration), it

has an infinite number of mode shapes and natural frequencies derived from the

trigonometric general solution (Figure 3.2 [Kova 10]). The natural frequency of

vibration associated with a particular mode shape can be found from (3.12):

ω∗ = k2∗

√
EI

ρA
, (3.16)
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Figure 3.2: The first five mode shapes and natural frequencies.

which is related to the circular natural frequency as follows:

fcnf = 2πω∗. (3.17)

For the convenience of further calculations, the first, second and third deriva-

tives of the general solution W (x) are calculated and presented as follows:

dW

dx
= C1k∗cos(k∗x)− C2k∗sin(k∗x) + C3k∗cosh(k∗x) + C4k∗sinh(k∗x),

d2W

dx2
= −C1k

2
∗sin(k∗x)− C2k

2
∗cos(k∗x) + C3k

2
∗sinh(k∗x) + C4k

2
∗cosh(k∗x),

d3W

dx3
= −C1k

3
∗cos(k∗x) + C2k

3
∗sin(k∗x) + C3k

3
∗cosh(k∗x) + C4k

3
∗sinh(k∗x).

(3.18)

The unknown constants Ci and the natural frequency parameter k∗ can be

determined from the boundary conditions of the beam.

3.1.2 Boundary conditions

Various boundaries restrict lateral or rotational movements so as to satisfy stability

conditions and limit the deformations to a certain allowance. Classical boundary

conditions of the beam are tabulated in Table 3.2 [Bala 04]. A simply supported

beam is supported by a pin (hinged) at one end and a roller at the other end
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Table 3.2: Classical boundary conditions at the left and right ends of the beam.

free ends bending moment = 0 Left end: EI
∂2y(0, t)

∂x2
= 0, EI

∂3y(0, t)

∂x3
= 0

shear force = 0 Right end: EI
∂2y(L, t)

∂x2
= 0, EI

∂3y(L, t)

∂x3
= 0

pinned (hinged) ends deflection = 0 Left end: y(0, t) = 0, EI
∂2y(0, t)

∂x2
= 0

bending moment = 0 Right end: y(L, t) = 0, EI
∂2y(L, t)

∂x2
= 0

guided (sliding) ends slope = 0 Left end:
∂y(0, t)

∂x
= 0, EI

∂3y(0, t)

∂x3
= 0

shear force = 0 Right end:
∂y(L, t)

∂x
= 0, EI

∂3y(L, t)

∂x3
= 0

clamped (fixed) ends deflection = 0 Left end: y(0, t) = 0,
∂y(0, t)

∂x
= 0

slope = 0 Right end: y(L, t) = 0,
∂y(L, t)

∂x
= 0

(sliding end). A beam with a fixed (clamped) support at one end with no support

(free) at the other end is called a cantilever.

In many practical applications, it is needed to store or deposit mechanical

energy emerging during the vibration. Unlike the classical boundary conditions,

the elastic boundaries fulfil these tasks particularly well. The elastic boundaries

are usually made of springs (such as an extension spring, a compression spring,

a torsion spring, or a flexure spring). In most applications, it is assumed that

the springs have negligible mass and damping. The boundary conditions in the

presence of the translational or rotational springs at x = 0 can be presented as

follows:

EI
∂3y(0, t)

∂x3
+KT y(0, t) = 0,

EI
∂2y(0, t)

∂x2
−KR

∂y(0, t)

∂x
= 0.

(3.19)

Some non-classical boundary conditions at the left end of the beam are tabulated

in Table 3.3 [Bala 04]. The multipliers KT and KR are the stiffness coefficients

of the translational and rotational springs, respectively. The boundary conditions

at the right end of the beam can be formulated analogically [Bala 04]. The first
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Table 3.3: Non-classical boundary conditions at the left end of the beam.

free end with a translational spring EI
∂2y(0, t)

∂x2
= 0

EI
∂3y(0, t)

∂x3
+KT y(0, t) = 0

free end with a rotational spring EI
∂2y(0, t)

∂x2
−KR

∂y(0, t)

∂x
= 0

EI
∂3y(0, t)

∂x3
= 0

pinned end with a rotational spring y(0, t) = 0

EI
∂2y(0, t)

∂x2
−KR

∂y(0, t)

∂x
= 0

sliding end with a translational spring
∂y(0, t)

∂x
= 0

EI
∂3y(0, t)

∂x3
+KT y(0, t) = 0

free end with a rotational and a translational springs EI
∂2y(0, t)

∂x2
−KR

∂y(0, t)

∂x
= 0

EI
∂3y(0, t)

∂x3
+KT y(0, t) = 0

few calculated natural frequencies, mode shapes and node points of intact Euler-

Bernoulli beams with different boundary conditions subjected to free vibration

can be found in [Bala 04].

3.1.3 Euler-Bernoulli beam with a mass point

The present subsection of the thesis is based on the article [Hein 09]. The section

provides an analytical solution to the free vibrations of Euler-Bernoulli beams of

length L with a concentrated point mass M0 located at x = L1 (Figure 3.3).

The governing equation of motion of the Euler-Bernoulli beam and its solution

are shown in (3.8) and (3.15). According to de Rosa [Rosa 96], the mode shape of

a vibrating beam with a discrepancy can be presented as a system of two mode
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Figure 3.3: An Euler-Bernoulli beam with a concentrated point mass.

shapes W1(x) and W2(x) (the approach is used in all solutions of this thesis):W1(x) = C1sin(k∗x) + C2cos(k∗x) + C3sinh(k∗x) + C4cosh(k∗x), x ∈ [0, L1]

W2(x) = C5sin(k∗x) + C6cos(k∗x) + C7sinh(k∗x) + C8cosh(k∗x), x ∈ [L1, L].

(3.20)

The unknown constants Ci(i = 1, .., 8) can be determined from the boundary

conditions (Table 3.2 or 3.3) and the continuity conditions at x = L1 [Karn 01]:

W1 = W2,

dW1

dx
=
dW2

dx
,

d2W1

dx2
=
d2W2

dx2
,

d3W1

dx3
+ αk4∗W1 = −d

3W2

dx3
,

(3.21)

where α is the mass ratio defined by M0/(ρA). The first three conditions originate

from the continuity requirements of deflection, slope and bending moment at x =

L1, whereas the fourth requirements shows the discrepancy of the shear force

depending on mass. The differentiation of the mode shape is shown in (3.18).

3.1.4 Euler-Bernoulli beam with cracks

This subsection is based on the article [Fekl 13a] in which an open crack in a

homogeneous Euler-Bernoulli beam is discussed.

According to Rizos et al. [Rizo 90], a cracked uniform beam can be simulated

as two uniform beams joined together by a rotational spring at the crack due to

the localised crack effect. The continuity and compatibility conditions at the crack
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(x = L1) take the form:

W1 = W2,

d2W1

dx2
=
d2W2

dx2
,

d3W1

dx3
=
d3W2

dx3
,

W1 + c
d2W1

dx2
= W2,

(3.22)

where W1 and W2 are the mode shapes of the left and right beam sections, re-

spectively. The bending constant of the massless spring c is presented as follows

[Dima 13]:

c = 5.346
h

EI
J(
a

h
), (3.23)

where h is the thickness of the beam, a is the depth of the crack and J( ah ) is the

dimensionless local compliance function proposed by Paipetis, Dimarogonas and

Chondros [Dima 13]:

J(
a

h
) = 1.8624(

a

h
)2 − 3.95(

a

h
)3 + 16.375(

a

h
)4 − 37.226(

a

h
)5 + 76.81(

a

h
)6−

−126.9(
a

h
)7 + 172(

a

h
)8 − 143.97(

a

h
)9 + 66.56(

a

h
)10.

(3.24)

The governing equation of motion of the Euler-Bernoulli beam shown in (3.8)

can be solved using (3.20) taking into account the boundary conditions (Table 3.2

or 3.3) and the continuity and compatibility conditions (3.22).

3.1.5 Euler-Bernoulli beam with cracks and on elastic foun-

dation

This subsection is based on the article [Jaan 16] in which a cracked Euler-Bernoulli

beam on an elastic foundation is investigated.

The soil-structure interaction problems play an important role in civil engi-

neering constructions, such as pipelines, road surfaces, building foundations. Some

problems (for instance, contact pressure distribution, cracks in the medium) can

be idealised and solved by modelling beams on an elastic foundation.

Several mathematical models of elastic foundations can be found in literature,

for example, Winkler, Pasternak, Vlasov, Filonenko-Borodich, Leontiev models;

however, the first two models are widely used in engineering for static and dynamic

analysis due to their simplicity. The present subsection of the thesis focuses on

the beams on the Pasternak foundation.
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In the Winkler one parameter model, the foundation is composed of infinitely

close elastic springs which are independent of each other; the vertical surface dis-

placement of the beam is assumed to be proportional to the contact pressure

at any point. Pasternak improved the Winkler model by adding shear interac-

tions. The Pasternak two parameter model represents a system of closely placed

elastic springs coupled to each other with the elements which transmit the shear

force proportional to the slope of the foundation surface [Cele 11]. The Pasternak

foundation model is used in several soil structure interactions, for example, road

pavement, rigid concrete pavement for highways and airports, a bridge resting on

elastomeric bearings or excavation retaining walls and tunnels in the soil.

In Figure 3.4, a clamped Euler-Bernoulli beam of length L is placed on the

Pasternak foundation. The beam has n cracks. According to Rizos et al. [Rizo 90],

Figure 3.4: A clamped beam on Pasternak foundation.

Shifrin and Ruotolo [Shif 99], a beam with n cracks can be modelled as a beam

divided into n+ 1 sections connected by elastic springs. The differential equation

of the transverse vibration in each region x ∈ [xi, xi+1] of the beam placed on the

Pasternak foundation is as follows [Elis 01a]:

EI
∂4yi(x, t)

∂x4
−G2

∂2yi(x, t)

∂x2
+G1yi(x, t) + ρA

∂2yi(x, t)

∂t2
= 0, (3.25)

where G1 is the Winkler foundation modulus, G2 is the shear modulus of the

Pasternak foundation, i is the number of the section (i = 1, ..., n+ 1) and yi(x, t)

is the transverse deflection in the i-th section. The solution of (3.25) is sought

in the form shown in (3.9). Substituting (3.9) into (3.25), the equation of the

transverse vibration (3.25) takes the form of:

d4Wi(x)

dx4
− µd

2Wi(x)

dx2
+ (γ − k̃)Wi(x) = 0, (3.26)

where

µ =
G2

EI
, γ =

G1

EI
, k̃ =

mω2
∗

EI
. (3.27)
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The characteristic equation of (3.26) can be presented as follows:

λ4 − µλ2 + (γ − k̃) = 0 (3.28)

and the general solution of (3.26) for the present vibration problem can be pre-

sented as follows [Rosa 99]:

Wi = C1,ie
λ1x + C2,ie

λ2x + C3,ie
λ3x + C4,ie

λ4x, (3.29)

where λ1, ..., λ4 are the roots of (3.28) and C1,i, ..., C4,i are the integration con-

stants. The equation (3.26) should be solved separately for each beam section i

(i = 1, ..., n+1). The solution for the whole beam can be put together taking into

account the continuity and boundary conditions presented in (3.22) and Table 3.2

or 3.3.

3.2 Non-uniform beams

3.2.1 Non-uniform Euler-Bernoulli beam on elastic supports

The present subsection refers to the article [Fekl 10] in which the governing equa-

tion of the transverse vibrations of the Euler-Bernoulli beam with a varying cross-

sectional area is presented.

In this subsection, a non-uniform beam of length L is considered. The beam

has a variable cross-section along its length (Figure 3.5); variables KRL and KRR

denote the stiffness coefficient of the corresponding rotational springs at the left

Figure 3.5: A linearly tapered beam with rotational and translational elastic constraints.

and right ends of the beam, respectively; variables KTL and KTR denote the

stiffness coefficient of the corresponding translational springs at the left and right

ends of the beam. The moment of inertia and the cross-sectional area are functions
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of the coordinate, that is I(x) and A(x). From (3.6) - (3.9), the equation of the

transverse vibrations of a tapered beam can be presented as follows:

d2

dx2 [EI(x)d
2W (x)
dx2 ]− ω2

∗ρA(x)W (x) = 0, (3.30)

where W (x) is the mode shape, A(x) is the cross-sectional area at the point x,

I(x) is the moment of inertia, ρ is the mass density of the beam material and E

is Young’s modulus. In the present thesis, it is assumed that the functions I(x)

have derivatives up to the second order. From (3.30), it yields

d4W (x)

dx4
I(x) + 2

d3W (x)

dx3
dI(x)

dx
+
d2W (x)

dx2
d2I(x)

dx2
− ω2

∗ρ

E
A(x)W (x) = 0. (3.31)

The boundary conditions in the presence of the translational and rotational

spring constraints at x = 0 are presented as follows [Hsu 08]:

d
dx [EI(x)d

2W (x)
dx2 ] +KTLW (x) = 0,

EI(x)d
2W (x)
dx2 −KRL

dW (x)
dx = 0.

(3.32)

The boundary conditions at x = L can be formulated analogically. The solution

of (3.31) is sought with the aid of the Haar wavelets in Chapter 4.

3.2.2 Non-homogeneous Euler-Bernoulli beam with delam-

inations

This subsection is based on the article [Hein 11b]. The section provides a mathe-

matical model for composite beams with delaminations.

The free vibration of a laminated beam with n non-overlapping delaminations

is considered. The laminated beam is presented as a combination of 3n+ 1 beam

sections connected at the delamination boundaries. Each beam section is treated

as a classical Euler-Bernoulli beam model with Li >> h. It is assumed that the

Euler-Bernoulli beam has a constrained mode, a rigid connector and a bending-

extension coupling [Shu 04a]. The geometry of the beam is shown in Figures 3.6

and 3.7 [Shu 04a].

The governing equation for the intact beam sections is [Shu 04b]

Di
∂4yi(x, t)

∂x4
+ ρiAi

∂2yi(x, t)

∂t2
= 0, (3.33)
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Figure 3.6: A beam with n non-overlapping delaminations.

where i is the beam section (i = 1, ..., 3n+1); yi(x, t) is the vertical displacement of

the i-th beam section; Di is the bending stiffness; ρi is the density of the material;

Ai is the cross-sectional area; x is the axial coordinate and t is the time. Using

the classical laminate theory, the bending stiffness Di for the composite laminates

can be determined as follows [Redd 97]:

Di = D∗i −
B2
i

Fi
, (3.34)

where

D∗i =
b

3

ni∑
k=1

Q̄k(z3k − z3k−1), (3.35)

Bi =
b

2

ni∑
k=1

Q̄k(z2k − z2k−1), (3.36)

Fi = b

ni∑
k=1

Q̄k(zk − zk−1), (3.37)

Q̄k = Q
(k)
1 cos4ϕ+Q

(k)
2 sin4ϕ+ 2(Q

(k)
1 + 2Q

(k)
3 )sin2ϕcos2ϕ, (3.38)
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Q
(k)
1 =

E(k)
a

1−ν(k)
12 ν

(k)
21

,

Q
(k)
2 =

E
(k)
l

1−ν(k)
12 ν

(k)
21

,

Q
(k)
3 = G

(k)
12 ,

ν
(k)
21 =

ν
(k)
12 E

(k)
l

E
(k)
a

,

(3.39)

where D∗i is the bending stiffness of the i-th section, Bi is the coupling stiffness of

the i-th section, Fi is the extensional stiffness of the i-th section, Q̄k is the stiffness

coefficient of the k-th lamina, b is the width, ni is the number of the lamina, ν
(k)
12

and ν
(k)
21 are the longitudinal and transverse Poisson’s ratios, respectively, E

(k)
a

and E
(k)
l are the axial and lateral Young’s moduli, respectively, ϕ is the angle of

the k-th lamina orientation and zk and zk−1 are the locations of the k-th lamina

with respect to the mid-plane of the i-th beam section and G
(k)
12 is the in-plane

shear modulus (Figure 3.7).

Figure 3.7: A beam section with a delamination.

According to the constrained model [Shu 04b], the beam sections in the de-

laminated zone are forced to vibrate together. Hereof, the governing equations are

(Di1 +Di2)
∂4yi(x, t)

∂x4
+ (ρi1Ai1 + ρi2Ai2)

∂2yi(x, t)

∂t2
= 0, (3.40)

where i1 = 2, 5, . . . , 3n−1; i2 = 3, 6, . . . , 3n. The governing equations of the intact

regions are shown in (3.33).
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The solution to the beam as a whole is obtained in terms of the solutions of all

beam components by enforcing the appropriate boundary and continuity condi-

tions. In Figure 3.6, the continuity conditions for deflection, slope and shear force

at the coordinate of the cross-section between (s1) and (s2) − (s3), for example,

x = a1 are

W1 = W2,
dW1

dx = dW2

dx ,

D1
d3W1

dx3 = (D2 +D3)d
3W2

dx3 ,

D1
d2W1(a1)

dx2 +
h2
1

4L2

(
F2F3

F2+F3

)
(dW1(a1)

dx − dW4(a2)
dx ) = (D2 +D3)d

2W2(a1)
dx2 ,

(3.41)

where a1 denotes the coordinate of the cross-sections between (s1) and (s2)− (s3),

whereas a2 is the coordinate between (s2)− (s3) and (s4) beam sections; h1 is the

thickness of the intact section s1; F2 and F3 are calculated from the continuity

conditions of shear and moment at the delamination boundaries. The detailed

derivation of conditions (3.41) is presented in [Shu 04a]. Similarly, the continuity

conditions can be derived at x = a2, . . . , a2n. The boundary conditions at the

supports x = 0, x = L are shown in Table 3.2 or 3.3.

3.2.3 Non-uniform axially functionally graded Euler-Bernoulli

beam with elastic supports

This subsection is based on the article [Hein 11a] in which the Euler-Bernoulli

beam with elastic boundary conditions, varying cross-sectional area and material

properties along the axis is discussed.

In this subsection of the thesis, an axially graded Euler-Bernoulli beam of

length L is considered. It is assumed that the material properties and the cross-

section of the beam vary continuously along the length of the beam: E = E(x) and

ρ = ρ(x). For the simplicity of further calculations, a new quantity is introduced

k4∗ =
ω2
∗ρ0A0

E0I0
, (3.42)

where k4∗ is the natural frequency parameter, and ρ0, A0, E0, I0 denote the values

of ρ,A,E, I at x = 0, respectively.

The equation of motion for the transverse vibrations takes the form of:

d2

dx2 [E(x)I(x)d
2W (x)
dx2 ]− k4∗ρ(x)A(x)W (x) = 0. (3.43)
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In the present thesis, it is assumed that the functions E(x) and I(x) have deriva-

tives up to the second order. From (3.43), it yields

d4W (x)
dx4 E(x)I(x) + 2d

3W (x)
dx3

[
dE(x)
dx I(x) + dI(x)

dx E(x)
]

+

+d2W (x)
dx2

[
d2E(x)
dx2 I(x) + 2dE(x)

dx
dI(x)
dx + d2I(x)

dx2 E(x)
]
−

−k4∗W (x)ρ(x)A(x) = 0, x ∈ [0, L].

(3.44)

The boundary conditions in the presence of the translational and rotational

spring constraints (KTL, KRL) at x = 0 are presented as follows:

d
dx [E(x)I(x)d

2W (x)
dx2 ] +KTLW (x) = 0,

E(x)I(x)d
2W (x)
dx2 −KRL

dW (x)
dx = 0.

(3.45)

The boundary conditions at x = L can be formulated analogically. The equation

(3.44) does not have an analytical solution. In the present thesis, the problem is

solved using the Haar wavelets and their integration in Chapter 4.

3.2.4 Conclusion

This chapter addressed the free vibration of various beams. Namely, the follow-

ing mathematical beam models were discussed in detail: a uniform beam with

classical and elastic boundary conditions, a uniform beam with a point mass, a

uniform beam with cracks, a uniform beam on the Pasternak foundation, a non-

uniform beam with elastic boundary conditions, a non-homogeneous beam with

delaminations and a non-uniform axially functionally graded beam with elastic

boundary conditions. The governing equations of the free vibrations were derived

for each model separately. The present chapter was essential for understanding

the free vibration of beams and generating datasets for the inverse problems of

the formulation.
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Chapter 4

Numerical solutions using

Haar wavelets

In this chapter, the non-inverse problems of various vibrating beams are solved

in a novel way. The natural frequency parameters are calculated using the Haar

wavelet integration. The calculated results tightly agree with the ones available in

the literature. The approach can serve as a theoretical foundation for modal-based

methods.

4.1 Literature review

One of the means to conduct the vibration based structural damage detection is

to use model based methods. The damage locations and severities are revealed

through the comparison of the system response obtained during the exploitation

to the response of the mathematically modelled system. Such an approach is

commonly used in the consistency based diagnosis [Comb 02].

The response of a mathematically modelled system can be obtained analyt-

ically or numerically. The former approach can be applied to only some simple

models like uniform homogeneous beams, non-uniform beams with a few particular

types of cross-section variations and some non-homogeneous beams with gradient

change of the material property [Caru 09, Huan 10]. Most often the exact so-

lutions to such problems are given in terms of special functions, such as Bessel

functions [Conw 65, Nagu 94], trigonometric functions [Elis 01b], hypergeometric

functions [Wang 67, Caru 09]. Largely, the limitation of the analytical approaches
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is explained by the complexity of the equations of mode shapes which are linear

differential with multiple coefficients.

In aeronautical and civil engineering, non-uniform non-homogeneous struc-

tures on elastic supports are frequently needed. The mode shapes of such con-

structions generally do not have analytical forms and, therefore, must be approx-

imated using semi-analytical methods or numerical methods. For example, Klein

[Klei 75] used the finite element method (FEM) and the Rayleigh-Ritz method

to analyse behaviour of non-uniform beams. Grossi and Arenas [Gros 96] investi-

gated tapered beams with elastically restrained ends using the Rayleigh-Ritz and

the Rayleigh-Schmidt methods. Ho and Chen [Ho 98] studied the vibrations of

elastically restrained non-uniform beams applying a differential transform. Hsu

and Chen [Hsu 08] provided a semi-analytical solution to the free vibration of

non-uniform beams with elastically end constraints utilising contemporary com-

putational facilities. The solution was based on a modified Adomian decomposition

method. Rousseau and Tippur [Rous 01], Kapuria et al. [Kapu 08], Kahya and

Turan [Kahy 17] studied vertically functionally graded beams with the aid of the

FEM. In practice, the application of the FEM based methods is limited if the size

of the system extremely large (millions of degrees of freedom). In such cases, the

simulation time on a cluster or a supercomputer can vary from hours to days or

weeks [Kono 18].

In the present thesis, the transverse vibration of beams are investigated from

a new angle by means of wavelets and their integration. The wavelet transform

has been applied to solving differential and integral equations since the 1990s.

The approach has not been widely accepted since a large number of wavelets,

such as Daubechies, Symlet, Coiflet, do not have an explicit expression; there-

fore, an analytical differentiation or integration of such wavelets is not possible

[Lepi 14]. Nevertheless, there are several wavelets which have clearly defined ana-

lytical expressions for the scaling function and the mother wavelet, for example, the

Haar, Morlet, Gabor, Shannon, Legendre, Chebyshev, B-spline wavelets [Lepi 14].

These wavelets have been applied in multiple practical applications. Neild et al.

[Neil 03] and Haigh et al. [Haig 02] used the harmonic wavelets for structural vi-

bration analysis. Le [Le 17], Lardies and Gouttebroze [Lard 02] applied the Morlet

wavelet for identification of modal parameters. Janeliukstis et al. [Jane 17] ap-

plied the wavelet transform to damage identification in beam structures. Mahdavi

and Razak [Mahd 13] compared Chebyshev and the Haar wavelet approaches to

each other in the vibration analysis of framed structures. In several papers, the

wavelet-based solutions were combined with the FEM, for example, Han et al.

[Han 07], Zhang et al. [Zhan 11], Yang et al. [Yang 14].
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The present thesis focuses on the Haar wavelets since they are the simplest

wavelets. The inspiration was found in several articles. Chen and Hsiao [Chen 97,

Hsia 99] demonstrated that the Haar wavelets could successfully approximate the

derivatives of functions in solving differential equations. The approach was further

developed by Lepik [Lepi 05]. Hein successfully applied the Haar wavelets for

elastic foundation parameter identification in delaminated beams [Hein 07]. Wang

and Deng [Wang 99b] addressed a structural damage detection technique based

on the Haar wavelet analysis of spatially distributed structural response. The

authors stated that the technique did not require the analysis of the complete

structure in question, nor any knowledge of the material properties and prior

stress states of the structure. Chun and Zheng [Chun 07], and Shvartsman and

Majak [Shva 16] studied axially functionally graded structures with the aid of

Haar wavelets. The authors investigated simply supported rectangular plates with

an arbitrary distribution of material properties in the transverse directions. In

the present chapter, the Haar wavelets and their integration were applied to the

calculation of dynamic response of homogeneous and non-homogeneous uniform

and non-uniform intact Euler-Bernoulli beams with different boundary conditions.

4.2 Haar wavelet integrals

The present subsection refers to the article [Hein 11a].

In this chapter, the free vibration of beams are solved with the aid of the

Haar wavelet integration. These integrals were calculated analytically taking into

account the values in each region in the range of [0, 1) [Hein 11a, Lepi 14]:

pα,i(ξ) =

∫
...

∫
︸ ︷︷ ︸
α -times

hi(ξ)dξ
α =



0 for ξ < ξ(1) ,

1
α! (ξ − ξ

(1))α for ξ ∈ [ξ(1), ξ(2)) ,

1
α! [(ξ − ξ

(1))α − 2(ξ − ξ(2))α]

for ξ ∈ [ξ(2), ξ(3)) ,

1
α! [(ξ − ξ

(1))α − 2(ξ − ξ(2))α + (ξ − ξ(3))α]

for ξ > ξ(3),

(4.1)
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where ξ(1), ξ(2) and ξ(3) are defined in (2.4), α is the order of integration, i is the

number of the wavelet. Equation (4.1) is valid for i > 1. In case of i = 1 and

ξ(1) = 0, ξ(2) = ξ(3) = 1 and the integral of the wavelet h1(ξ), the equation is

pα,1(ξ) =
1

α!
ξα. (4.2)

Figure 4.1 [Kalp 07] shows the Haar scaling function h1(ξ), the Haar wavelets

(i = 2, ..., 8) and their integrals.

8

Figure 4.1: The Haar wavelets: scaling function (i = 1), the wavelets of resolution
J = 0, 1, 2 (left), and the corresponding integrals of the wavelets (right).

Evaluating the integrals of (4.1) in the collocation points, a 2M × 2M matrix

P (α) is obtained

P (α)(i, l) = pα,i(ξl). (4.3)

In the vibration problems, the boundary conditions are essential; therefore,

the values at the ends of the beam pα,i(0) and pα,i(1) are calculated and presented

as 2M dimensional vectors.

The advantage of the integration consists in the fact that the calculation of

matrices H(i, l) and P (α)(i, l) is carried out only once.
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4.2.1 Haar wavelet method for solving free vibration prob-

lems

The Haar wavelet integrals were applied to the mathematical models described

in Subsections 3.2.1 and 3.2.3. The fourth derivative of (3.44) was sought in the

simplest approximation form:

W IV (ξ) =
d4y(ξ)

dξ4
=

2M∑
i=1

cihi(ξ), (4.4)

where ci are the unknown wavelet coefficients and ξ = x/L. Integrating (4.4) four

times, the following equations are obtained

W ′′′(ξ) =
2M∑
i=1

cip1,i(ξ) +W ′′′(0),

W ′′(ξ) =
2M∑
i=1

cip2,i(ξ) +W ′′′(0)ξ +W ′′(0),

W ′(ξ) =
2M∑
i=1

cip3,i(ξ) + 1
2W

′′′(0)ξ2 +W ′′(0)ξ +W ′(0),

W (ξ) =
2M∑
i=1

cip4,i(ξ) + 1
6W

′′′(0)ξ3 + 1
2W

′′(0)ξ2 +W ′(0)ξ +W (0),

(4.5)

where p1,i, p2,i, p3,i, p4,i are obtained from (4.1). In (4.5), the constants of the

integration W (0), W ′(0), W ′′(0), W ′′′(0) can be evaluated from the boundary

conditions. Some examples, used in the following subsections of this chapter, are

described below.

(i) Cantilever beams (clamped-free or CF)

One end of the beam (ξ = 0) is clamped, while the other end (ξ = 1) is free.

Hence, the boundary conditions for the cantilever are W (0) = W ′(0) = 0 and

W ′′(1) = W ′′′(1) = 0. The system of equations is derived from (4.5):

W ′′′(1) =
2M∑
i=1

cip1,i(1) +W ′′′(0) = 0,

W ′′(1) =
2M∑
i=1

cip2,i(1) +W ′′′(0) +W ′′(0) = 0.

(4.6)

From (4.6), W ′′(0) and W ′′′(0) are obtained as follows:
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W ′′(0) =
2M∑
i=1

ciq1,i,

W ′′′(0) = −
2M∑
i=1

cip1,i(1),

(4.7)

where q1,i = p1,i(1)−p2,i(1). According to (4.5), the mode shape W (ξ) is described

by the following equation:

W (ξ) =

2M∑
i=1

ci

[
p4,i(ξ)−

1

6
p1,i(1)ξ3 +

1

2
q1,iξ

2

]
. (4.8)

(ii)Simply supported beams (SS)

In the simply supported beam, the boundary conditions areW (0) = W ′′(0) = 0

and W (1) = W ′′(1) = 0. The system of equations is as follows:

2M∑
i=1

cip2,i(1) +W ′′′(0) = 0,

2M∑
i=1

cip4,i(1) + 1
6W

′′′(0) +W ′(0) = 0.

(4.9)

From (4.9), the following equations are obtained:

W ′′′(0) = −
2M∑
i=1

cip2,i(1),

W ′(0) = 1
6

2M∑
i=1

ciq2,i,
(4.10)

where q2,i = p2,i(1)− 6p4,i(1). The equation of the mode shape takes the form of:

W (ξ) =

2M∑
i=1

ci

[
p4,i(ξ)−

1

6
p2,i(1)ξ3 +

1

6
q2,iξ

]
. (4.11)

(iii) Clamped beams (CC)

The boundary conditions for the clamped beam are W (0) = W ′(0) = 0 and

W (1) = W ′(1) = 0. The system of equations is as follows:
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W ′′′(0) = 6
2M∑
i=1

ciq3,i,

W ′′(0) =
2M∑
i=1

ciq4,i,
(4.12)

where q3,i = 2p4,i(1) − p3,i(1) and q4,i = 2p3,i(1) − 6p4,i(1). The mode shape is

described by the equation as follows:

W (ξ) =

2M∑
i=1

ci

[
p4,i(ξ) + q3,iξ

3 +
1

2
q4,iξ

2

]
. (4.13)

(iv) Clamped - pinned beams (CP)

One end of the beam (ξ = 0) is fixed and the other end (ξ = 1) is simply

supported. Thus, the corresponding boundary conditions are W (0) = W ′(0) = 0

and W (1) = W ′′(1) = 0. From (4.5), the following system of equations is obtained

W ′′′(0) =
2M∑
i=1

ciq5,i,

W ′′(0) =
2M∑
i=1

ciq6,i,
(4.14)

where q5,i = 3p4,i(1) − 3
2p2,i(1) and q6,i = −q5,i − p2,i(1). The mode shape is

described as follows:

W (ξ) =

2M∑
i=1

ci

[
p4,i(ξ) +

1

6
q5,iξ

3 +
1

2
q6,iξ

2

]
. (4.15)

(v) Elastic supports for a tapered beam described in Subsection 3.2.1

It is assumed that the elasticity modulus E is constant, but the cross-section

and the second moment of area vary along the longitudinal axis (A = A(ξ) and

I = I(ξ)). The boundary conditions for the beam on elastic supports (translational

and rotational springs with the stiffness coefficients KTL and KRL at the left end

of the beam; translational and rotational springs with the stiffness coefficients KTR

KRR at the right end of the beam) are described in (3.32). These are rewritten
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for the left and right ends of the tapered beam as follows:

[I(ξ)W ′′(ξ)]′ + ktlW (ξ) = 0, (4.16)

I(ξ)W ′′(ξ)− krlW ′(ξ) = 0, (4.17)

[I(ξ)W ′′(ξ)]′ − ktrW (ξ) = 0, (4.18)

I(ξ)W ′′(ξ) + krrW
′(ξ) = 0, (4.19)

where

ktl =
KTLL

3

E
, krl =

KRLL

E
, ktr =

KTRL
3

E
, krr =

KRRL

E
. (4.20)

Taking into account (4.5) and the coordinate at the left end (ξ = 0), equations

(4.16) and (4.17) take the form of

I ′(0)W ′′(0) + I(0)W ′′′(0) + ktlW (0) = 0, (4.21)

I(0)W ′′(0)− krlW ′(0) = 0. (4.22)

Taking into account (4.5) and the coordinate at the right end (ξ = 1), equations

(4.18) and (4.19) take the form of

I ′(1)

[
2M∑
i=1

cip2,i(1) +W ′′′(0) +W ′′(0)

]
+ I(1)

[
2M∑
i=1

cip1,i(1) +W ′′′(0)

]
−

− ktr

[
2M∑
i=1

cip4,i(1) +
1

6
W ′′′(0) +

1

2
W ′′(0) +W ′(0) +W (0)

]
= 0, (4.23)

I(1)

[
2M∑
i=1

cip2,i(1) +W ′′′(0) +W ′′(0)

]
+

+ krr

[
2M∑
i=1

cip3,i(1) +
1

2
W ′′′(0) +W ′′(0) +W ′(0)

]
= 0. (4.24)

The system of (4.21), (4.22), (4.23) and (4.24) is linear; hence, W (0), W ′(0),

W ′′(0) and W ′′′(0) can be found.
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Once the governing equation for a uniform beam (3.13), a non-uniform beam

(3.31) or a non-homogeneous tapered beam (3.44) and the boundary conditions

are determined in the analytical form, the governing equation can be presented as

a matrix equation:

cR = 0. (4.25)

In case of a cantilever, the governing equation (3.44) is presented by the Haar

wavelets and their integrals by substituting (4.4) - (4.8) into (3.44), taking into

account (4.25) and discretising the results. The matrix R takes the form:

R = BT1 UH +BT2 U
[
P (1) − P (1)(1)U

]
+BT3 U

[
P (2) − P (1)(1)(ξ) + q1(ξ)2

]
−

− k4BT4 U
[
P (4) − 1

6
P (1)(1)(ξ)3

]
, (4.26)

where P (α)(1) = pα,i(1), q1 = P (1)(1)−P (2)(1), (ξ) = (ξ1...ξ2M ) and (ξ)n denotes

the elementwise multiplication of coordinates. U is a unit row vector (used to

put the matrices into the same dimension), k is the natural frequency parameter,

which is determined as k = k∗L and k∗ is determined in (3.42), and

B1 = E(ξ)I(ξ),

B2 = E′(ξ)I(ξ) + E(ξ)I ′(ξ),

B3 = E′′(ξ)I(ξ) + 2E′(ξ)I ′(ξ) + E(ξ)I ′′(ξ),

B4 = ρ(ξ)A(ξ),

(4.27)

are row vectors evaluated at ξ = ξl (l = 1, ..., 2M) and element-wise multiplication

is applied at the right side. For (3.13) and (3.31), the matrix equations can be

derived analogically.

The system (4.26) is linear and homogeneous with regard to the coefficients

ci, and it contains the natural frequency parameter. The natural frequency can

be calculated as follows:

ω = k2

√
E0I0
ρ0A0

L4. (4.28)

To derive a non-trivial solution, the determinant of the system must be zero.

According to this requirement, the values of the natural frequency parameters can

be evaluated.
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4.3 Numerical examples

4.3.1 Uniform homogeneous beams

The mathematical model of a homogeneous cantilever with a uniform cross-section

is described in Subsection 3.1.1. In such a beam, the bending stiffness and mass are

constants. Using (3.13), (4.4) and (4.8), introducing the dimensionless longitudinal

coordinate ξ = x/L and applying the method of determinants, the dimensionless

natural frequecy parameters (DFPs) are computed (kn = L

√
ωn

√
ρA
EI , n = 1, ..., 5).

The results for different levels of resolution J are shown in Table 4.1. For reference,

the table also contains the results obtained with the aid of the initial parameters

method by Karnovsky [Karn 01]. The results are compared on the mean square

error (MSE) given in 2.14 and the relative error (RE):

RE =
1

N

N∑
n=1

∣∣∣∣1− yc
yt

∣∣∣∣ 100%, (4.29)

where yt is the target value and yc is the computed value.

Table 4.1: The first five kn for the uniform cantilever.

n [Karn 01, p.142] J = 2 J = 3 J = 4 J = 5 J = 6
1 1.8751 1.8783 1.8759 1.8753 1.8752 1.8752
2 4.6941 4.7342 4.7040 4.6966 4.6948 4.6943
3 7.8548 7.9991 7.8899 7.8635 7.8570 7.8554
4 10.9956 11.3505 11.0805 11.0166 11.0008 10.9969
5 14.1372 14.8408 14.3045 14.1784 14.1475 14.1398

MSE 0.1287 0.0073 0.0004 0.0000 0.0000
RE (%) 2.2133 0.5312 0.1314 0.0337 0.0095

In Table 4.1, it is seen that a higher wavenumber n in kn requires a higher

resolution for a more accurate result. Nevertheless, the presented approach allows

reaching high accuracy using relatively a small number of the collocation points.

4.3.2 Homogeneous beams with non-uniform cross-section

The proposed approach of the Haar wavelet discrete transform and integration

(HWTI) is applied to a wedge beam with a rectangular cross-section and clamped-

free ends with the aim to calculate the DFPs. The corresponding mathematical

model is described in Subsection 3.2.1. Specifically, the shape of the beam, the
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breadth and the height of the beam can be described by the formulae [Hsu 08]:

h(ξ) = h0 [1 + (βh − 1)ξ] , (4.30)

b(ξ) = b0 [1 + (βb − 1)ξ] , (4.31)

where b0 = b(0), h0 = h(0) and βb stand for the ratio between the breadths at

the beginning and at the end of the beam; βh is the ratio between the heights,

respectively. Hence, the area and the moment of inertia take the following form:

A(x) = b0h0 [1 + (βb − 1)ξ] [1 + (βh − 1)ξ] , (4.32)

I(x) =
b0h

3
0

12
[1 + (βb − 1)ξ] [1 + (βh − 1)ξ]

3
. (4.33)

For (3.31), the first and the second derivatives of I(x) are needed:

I ′(ξ) = {(βb − 1)[1 + (βh − 1)ξ]3+

+ 3[1 + (βb − 1)ξ][1 + (βh − 1)ξ]2(βh − 1)}b0h
3
0

12
, (4.34)

I ′′(ξ) =
b0h

3
0

2
(βh − 1)[1 + (βh − 1)ξ]{(βb − 1)[1 + (βh − 1)ξ]+

+ (βh − 1)[1 + (βb − 1)ξ]}. (4.35)

The DFPs are calculated by substituting (4.32) - (4.35) into (3.31), using (4.4)

and (4.5).

In Table 4.2, the first two squared DFPs (k2n = ωnL
2
√

ρ0A0

E0I0
, n = 1, 2) are

presented for the clamped-free wedge beam (βb = 1, βh = β, A0 = A(0), ρ0 = ρ(0),

n = 1, 2) (here and in the following tables the choice of the varying parameters

was motivated by the reference calculations available in literature). In Table 4.3,

the first two squared DFPs (k2n, n = 1, 2) are presented for the truncated cone

beam (βb = βh = β). Taking into account the results of the previous example

(Subsection 4.3.1), the level of resolution is set to J = 5 and J = 6. The DFPs are

squared to make the comparison with the calculations carried out by Hsu [Hsu 08]

who in turns compared the results with Naguleswaran [Nagu 94]. According to

the results, the HWTI approach works accurately with an insignificant error.
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Table 4.2: The first two k2n for the wedge cantilever (βb = 1, βh = β).

n = 1 n = 2
HWTI HWTI HWTI HWTI

β [Hsu 08] J = 5 J = 6 [Hsu 08] J = 5 J = 6
0.1 4.6307 4.6305 4.6307 14.9308 14.9248 14.9293
0.2 4.2925 4.2922 4.2924 15.7427 15.7408 15.7422
0.3 4.0817 4.0816 4.0817 16.6252 16.6263 16.6255
0.4 3.9343 3.9343 3.9343 17.4879 17.4908 17.4886
0.5 3.8238 3.8239 3.8238 18.3173 18.3215 18.3183
0.6 3.7371 3.7373 3.7371 19.1138 19.1190 19.1151
0.7 3.6667 3.6670 3.6668 19.8806 19.8863 19.8820

MSE 0.0000 0.0000 0.0000 0.0000
RE (%) 0.0043 0.0011 0.0220 0.0055

Table 4.3: The first two k2n for the cone cantilever (βb = βh = β).

n = 1 n = 2
HWTI HWTI HWTI HWTI

β [Hsu 08] J = 5 J = 6 [Hsu 08] J = 5 J = 6
0.1 7.2049 7.2055 7.2050 18.6802 18.6763 18.6792
0.2 6.1964 6.1962 6.1963 18.3855 18.3798 18.3840
0.3 5.5093 5.5089 5.5092 18.6412 18.6385 18.6405
0.4 5.0090 5.0088 5.0090 19.0649 19.0651 19.0649
0.5 4.6252 4.6251 4.6251 19.5476 19.5501 19.5482
0.6 4.3188 4.3189 4.3188 20.0500 20.0541 20.0510
0.7 4.0669 4.0671 4.0670 20.5554 20.5607 20.5568

MSE 0.0000 0.0000 0.0000 0.0000
RE (%) 0.0044 0.0012 0.0182 0.0046

Next, the boundary conditions of the cone have been changed from the classical

ones for the equally varying translational spring constraints on the left and right

ends of the beam (ktl = ktr, whereas krl = krr = 0). The first two DFPs (kn,

n = 1, 2) of the vibrating cone with breadth and height ratios βb = βh = 1.4

are calculated substituting (4.32) - (4.34) into (4.21) - (4.24), and applying the

procedure described in Subsection 4.2.1. The calculations are carried out for J = 5.

The results are presented in Table 4.4. For reference, the table also contains

the results obtained by Hsu in [Hsu 08]. The insignificant relative error in the

computations of the DFPs shows that the provided method of the HWTI is capable

of calculating different frequencies for both small and large translational springs.

Although the results in Table 4.4 are precise, an attempt to improve the ac-

curacy for k3 has been done on the account of resolution J . For the calculation of

the third DFPs (k3), the resolution J has been increased from five to seven (the

model and the conditions of the cone have been remained unchanged). The results

are presented in Table 4.5. The accuracy of the calculations has been improved
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Table 4.4: The first two kn for the cone (βb = βh = 1.4) with equally varying translational
spring constraints on the left and right ends (ktl = ktr), whereas krl = krr = 0; J = 5.

n = 1 n = 2
ktl = ktr [Hsu 08] HWTI [Hsu 08] HWTI

0.001 0.21656 0.2166 0.31795 0.3180
0.01 0.38510 0.3851 0.5639 0.5654
0.1 0.68462 0.6846 1.00528 1.0053

1 1.21404 1.2140 1.78509 1.7851
10 2.10096 2.1009 3.13023 3.1303

100 3.07241 3.0723 5.06670 5.0668
1000 3.37553 3.3754 6.56963 6.5697
MSE 0.0000 0.0000

RE (%) 0.0015 0.0036

with the increase of the resolution. Nonetheless, it can be so only to a certain

extent of the resolution: with the growth of the resolution, the values in matrices

become indefinitely small and the calculations become inaccurate [Lepi 05].

Table 4.5: The third DFPs (k3) for the cone (βb = βh = 1.4) with varying translational
spring constraints on the left and right ends (ktl = ktr), whereas krl = krr = 0; J = 5,6,7.

HWTI HWTI HWTI
ktl = ktr [Hsu 08] J = 5 J = 6 J = 7

0.001 5.19178 5.1927 5.1920 5.1918
0.01 5.19196 5.1929 5.1922 5.1920
0.1 5.19381 5.1948 5.1940 5.1939

1 5.21223 5.2132 5.2125 5.2123
10 5.39376 5.3948 5.3940 5.3938

100 6.71152 6.7125 6.7118 6.7116
1000 9.28876 9.2894 9.2889 9.2888
MSE 0.0000 0.0000 0.0000

RE (%) 0.0163 0.0040 0.0009

Next, a truncated tapered beam with a continuously varying cross-section is

considered

b(ξ) = b0
√
ξ,

h(ξ) = h0ξ,
(4.36)

where b0 and h0 are the breadth and depth of the beam at the right end ξ = 1

(ξ = x/l). In other words, the beam has a parabolic-taper width and a linear-taper

height. The truncation factor η (0 ≤ η < 1) describes the beam at one end; the

length of the truncated tapered beam is evaluated as follows:

L = (1− η)l, (4.37)
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where l is the length of the sharp ended beam (η = 0) and L is the length of the

truncated tapered beam (without the part at the sharp end) (Figure 4.2 [Zhou 00]).

In the present example, the truncated tapered beam is clamped at ξ = 1 and free

at ξ = η.

Figure 4.2: A truncated beam with a parabolic-taper width.

The first three DFPs (k2n, n = 1, ..., 3) for the truncated beam (η varied from

0.1 to 0.8 with 0.1 increment) are calculated and presented in Table 4.6. The ac-

curacy of the HWTI method is assured from the comparison study with [Zhou 00]:

the relative error is small (less than one per cent).

Table 4.6: The first three k2n for the tapered cantilever with a parabolic-taper width, a
linear-taper height and truncate factor η.

η n = 1 n = 2 n = 3
[Zhou 00] HWTI [Zhou 00] HWTI [Zhou 00] HWTI

J = 5
0.1 5.8382 5.8383 16.696 16.6901 34.854 34.8190
0.2 5.1971 5.1867 17.005 17.0005 38.293 38.2848
0.3 4.7577 4.7574 17.600 17.5988 41.660 41.6669
0.4 4.4478 4.4477 18.257 18.2587 44.857 44.8742
0.5 4.2100 4.2101 18.922 18.9250 47.907 47.9306
0.6 4.0198 4.0199 19.576 19.5807 50.836 50.8638
0.7 3.8628 3.8630 20.215 20.2207 53.664 53.6955
0.8 3.7301 3.7303 20.838 20.8437 56.453 56.4426
MSE 0.0000 0.0000 0.0018
RE (%) 0.0252 0.0288 0.0757

J = 6
MSE 0.0000 0.0000 0.0001
RE (%) 0.0235 0.0049 0.0169

J = 7
MSE 0.0000 0.0000 0.0001
RE (%) 0.0232 0.0029 0.0148

Finally, the HWTI approach has been examined on the tapered cantilever with

parabolic thickness (h(ξ) = h0(1 − ξ2)) and a circular cross-section (Figure 4.3

[Caru 09]).
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Figure 4.3: A parabolic cantilever with parabolic thickness h(ξ) = h0(1 − ξ2) and a
circular cross-section.

In such a case, the cross-section area A, the moment of inertia I and the

parabolic radius variation R are described by the formulae [Caru 09]:

R(ξ) = R0(1− ξ2),

A(ξ) = πR2
0(1− ξ2)2,

I(ξ) =
πR4

0

4 (1− ξ2)4,

(4.38)

where R0 is the reference radius at ξ = 0 regardless where the fixed end (ξ = ξ1)

of the cantilever is.

The results of the calculations of the first two squared DFPs (k2n, n = 1, 2)

and the comparison are provided in Table 4.7. The calculated results correspond

to Caruntu’s research [Caru 09] in which the author used an analytical approach

in terms of hypergeometric functions. The relative error is less than one per cent.

Table 4.7: The first two k2n of the cantilever with a circular cross-section and parabolic
thickness h(ξ) = h0(1 − ξ2) versus the dimensionless coordinate of the fixed end.

n = 1 n = 2
HWTI HWTI HWTI HWTI

ξ1 [Caru 09] J = 5 J = 6 [Caru 09] J = 5 J = 6
-0.7 1.011 1.0028 1.0087 8.727 8.7001 8.7201
-0.6 1.572 1.5682 1.5711 10.57 10.5539 10.5632
-0.5 2.238 2.2357 2.2371 12.55 12.5449 12.5492
-0.4 3.020 3.0192 3.0198 14.75 14.7451 14.7470
-0.3 3.940 3.9394 3.9397 17.23 17.2265 17.2273
-0.2 5.026 5.0263 5.0264 20.07 20.0747 20.0748
-0.1 6.322 6.3217 6.3217 23.40 23.4001 23.3999

0 7.886 7.8857 7.8857 27.35 27.3542 27.3538
0.1 9.805 9.8053 9.8053 32.15 32.1529 32.1523
0.2 12.21 12.2122 12.2122 38.12 38.1183 38.1174
0.3 15.31 15.3134 15.3134 45.75 45.7554 45.7539
0.4 19.45 19.4545 19.4545 55.90 55.9045 55.9019
0.5 25.26 25.2580 25.2580 70.07 70.0771 70.0728
0.6 33.97 33.9693 33.9692 91.29 91.2953 91.2880
0.7 48.49 48.4945 48.4945 126.6 126.6097 126.5970

MSE 0.0000 0.0000 0.0001 0.0000
RE (%) 0.0859 0.0292 0.0434 0.0172
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4.3.3 Uniform axially functionally graded beams

In this subsection, a uniform beam with a rectangular cross-section is considered.

The flexural rigidity and mass density are variable along the longitudinal axis. The

governing equation of the transverse vibration of the axially functionally graded

beam (AFG) take the form:

E(ξ)W IV (ξ) + 2E′(ξ)W ′′′(ξ) + E′′(ξ)W ′′(ξ)− k4m(ξ)W (ξ) = 0. (4.39)

The material properties Q(ξ) (Young’s modulus, the mass density) of the AFG

beam vary as follows [Huan 10]:

Q(ξ) =


Q0(1− eβξ−1

eβ−1 ) +Q1
eβξ−1
eβ−1 , β 6= 0,

Q0(1− ξ) +Q1ξ, β = 0,

(4.40)

where Q0, Q1 are the property values at the ends of the beam (ξ = 0, ξ = 1);

β is the gradient parameter which describes the volume fraction change of two

components in the material. The chosen components are aluminium and zirconia

with the following properties [Huan 10]:

• Al : E0 = 70GPa, ρ0 = 2702kg/m3,

• ZrO2 : E1 = 200GPa, ρ1 = 5700kg/m3.

The material property change along the axis is shown in Figure 4.4 (ξ = 0 is an

aluminium-rich end and ξ = 1 is a zirconia-rich end) [Huan 10].

Figure 4.4: Variation of the graded material properties.

The first DFPs (k21) for the AFG beams with simply supported ends (S-S),

clamped ends (C-C) and clamped-pinned ends (C-P) are calculated and presented

in Table 4.8. The results are compared with the calculations conducted by Huang

and Li [Huan 10]. The relative error is less than one per cent.
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Table 4.8: The first k21 of the axially functionally graded beam (aluminium-zirconia)
versus the material gradient parameter β; J = 5.

β S-S C-C C-P
[Huan 10] HWTI [Huan 10] HWTI [Huan 10] HWTI

J = 5
-10 11.4532 11.4481 24.0576 24.0269 16.4775 16.3837
-3 11.2443 11.2422 23.9456 23.9384 16.0219 16.0307
0 10.8663 10.8660 24.3752 24.3749 15.8734 15.8729
3 10.3669 10.3670 24.9375 24.9371 15.7171 15.7171
10 9.9358 9.9366 24.7949 24.8080 15.4956 15.4930
MSE 0.0000 0.0002 0.0018
RE (%) 0.0149 0.0428 0.1288

J = 6
MSE 0.0000 0.0001 0.0013
RE (%) 0.0039 0.0224 0.1082

4.3.4 Non-uniform axially functionally graded beams

In the present subsection, AFG beams on elastic supports are considered. The

flexural rigidity and mass density of the beam vary in the following form:

D(ξ) = D0 [1 + αcos(πξ)] ,

ρ(ξ) = ρ0 [1 + βcos(πξ)] ,
(4.41)

where |α| < 1 and |β| < 1 are the parameters. The conditions insure that D(ξ)

and ρ(ξ) are positive. In the present model, the ends of the beam are fixed by

elastic spring supports described in (3.45).

In Table 4.9, the first DFPs (k21) are tabulated for the beam with a varying

bending stiffness coefficient, fixed stiffness coefficients of the translational and

rotational springs at the right end (ktr = krr = 1) and varying stiffness coefficients

of the translational and rotational springs at the left end (ktl = krl).

Table 4.9: The first k21 for the beams with varying left-side elastic constraints (ktl = krl);
the supports at the right end are fixed (ktr = krr = 1); the beam properties are α = β;
J = 6.

ktl = krl
α = β 1.0 2.0 3.0 4.0 5.0

-0.2 1.4407 2.0732 2.5756 3.0206 3.4419

-0.1 1.3866 1.9939 2.4705 2.8855 3.2678

0 1.3439 1.9325 2.3912 2.7868 3.1460

0.1 1.3096 1.8839 2.3292 2.7110 3.0551

0.2 1.2818 1.8446 2.2795 2.6510 2.9843
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In Figure 4.5, the first mode shapes with respect to maximum value of the AFG

Euler-Bernoulli beams with varying flexural rigidity and mass density (4.41) are

shown; the elastic supports at the ends of the beam are ktl = krl = 5, ktr = krr = 1.

The normalised first mode shapes for the AFG beams with varying left-side elastic

constraints (ktl, krl) are shown in Figure 4.6: the elastic supports at the right end

are fixed to the value ktr = krr = 1, the parameters are α = β; the flexural rigidity

D(ξ) is set to 0.2. The calculation have been carried out using the HWTI method

at the resolution level J = 6.

Figure 4.5: Normalised first mode shapes of the AFG Euler-Bernoulli beam with varying
flexural rigidity and mass density.

Figure 4.6: Normalised first mode shapes of the AFG Euler-Bernoulli beam with different
elastic supports at the left end ktl = krl, at the right end ktr = krr = 1 and flexural rigidity
D(ξ) = 0.2.
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Finally, the HWTI method is applied to the AFG beams with elastic supports

at the ends and an additional intermediate rigid support at ξ = γ. The varying

flexural rigidity and mass density of the AFG beam are described in (4.41). The

boundary conditions at the ends of the beam are described in Subsection 3.45.

Apart from two conditions on each end of the beam, an additional condition for

the intermediate support is as follows:

W (γ) = 0. (4.42)

Using (4.5), (4.42) is rewritten for the vertical displacement W (γ):

W (γ) =
∑2M
i=1 ci

[
p4,i(γ) + 1

6q5,iγ
3 + 1

2q6,iγ
2
]
. (4.43)

In Table 4.10, the calculated first DFPs (k21) for the fixed stiffness coefficients

of the translational and rotational springs krr = ktr = krl = ktl = 1, varying

α = β and different values of γ are tabulated. It can be seen that in the case of

symmetric boundary conditions, the DFPs are not the same. This is explained by

the non-symmetric AFG material of the beam.

Table 4.10: The first k21 of the beam with varying flexural rigidity and location of the
intermediate rigid support; the elastic end constraints are fixed to the values krr = ktr =
krl = ktl = 1; J = 6.

γ
α = β 0.1 0.3 0.5 0.7 0.9

-0.2 1.9010 2.7984 3.9982 3.9408 3.2291
-0.1 1.9455 2.8924 4.0273 3.8223 3.1267

0 1.9930 2.9880 4.0431 3.7079 3.0308
0.1 2.0436 3.0868 4.0476 3.5978 2.9405
0.2 2.0979 3.1902 4.0418 3.4919 2.8552

In Figure 4.7, the normalised first mode shapes of the AFG beams with flexural

rigidity, mass density D(ξ) = ρ(ξ) = 0.2, elastic supports at the ends ktl = krl =

ktr = krr = 1 and a rigid intermediate support at γ are shown.

4.4 Conclusions

The governing equation of the free transverse vibration of intact beams was pre-

sented in a matrix form using the Haar wavelet series and their integrals. The

Euler-Bernoulli theory of bending was used to describe the motion of the beams.

The dimensionless natural frequencies were determined for the uniform homogeneo-
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Figure 4.7: Normalised first mode shapes of the non-uniform AFG Euler-Bernoulli beam
with elastic supports at the ends and a rigid intermediate support.

us/non-homogeneous and non-uniform homogeneous beam models under various

classical and elastic boundary conditions by requiring that the resulting govern-

ing equation, presented as a linear and homogeneous system of equations, had a

non-trivial solution. The computed results agreed well with analytical and numer-

ical results given in the literature. The considered models and results indicated

that the HWTI method was accurate. Next, the proposed method was applied to

non-uniform non-homogeneous Euler-Bernoulli beams. The dimensionless natu-

ral frequencies were calculated for non-uniform axially functionally graded Euler-

Bernoulli beams. No reference was found in literature; therefore, the obtained

results could serve as a theoretical foundation for natural frequency based meth-

ods and further research.

To sum up, the HWTI provides a unified and systematic procedure for the

calculation of the natural frequency parameters and mode shape function. The

benefits of the approach are its simplicity and sparse matrices. High accuracy is

obtained even with a small number of grid points.
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Chapter 5

Open cracks

In this chapter, the discrete Haar wavelet transform (DHWT), the artificial neural

networks (ANNs) and the random forests (RFs) are applied to quantify the location

and severity (the ratio of the crack depth to the height of the beam) of cracks in the

Euler-Bernoulli type beam. In this regard, the first mode shape is decomposed into

the Haar wavelet transform coefficients (HWTCs) with a small level of resolution.

The obtained coefficients are used in the feature vector. In line, the machine

learning methods are trained on the dimensionless natural frequency parameters

(DFPs). The results of the approaches are compared to each other. The present

chapter is partially based on the articles [Jaan 16, Hein 19a].

5.1 Related work

Cracks are the most common defects in mechanical structures [Elsh 18]. They

appear in structural elements mainly due to a manufacturing defect, mechanical

vibrations or cyclical loading [Niga 20]. Cracks present a threat to the whole

structure since they change the behaviour of a construction to a considerable

degree - the formation of a crack causes a stiffness reduction with an inherent

reduction in the natural frequencies, an increase in the modal damping, changes

in the mode shapes and an increase in the overall flexibility of the system [Abou 87,

Elsh 18]. Hereof, detection of cracks at an early stage can increase the safety of a

construction and help in scheduling maintenance procedures.

Modelling cracks or crack-like defects in beams has been the concern of struc-

tural engineering since the middle of the 20th century, after the concepts of fracture

mechanics were defined [Erog 17]. In 1957, Irwin came up with the idea that a
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crack in the elastic element caused local flexibility due to the strain energy concen-

tration. He modelled the strain concentration using an equivalent spring [Erog 17].

This idea led Papaeconomou and Dimarogonas [Papa 89] to the development of

a more general factor called the stress intensity factor. The factor was used to

calculate spring constants. Another approach to model a crack was proposed by

Petrovski [Petr 81] which was based on the section modulus.

Some researchers modelled the Euler-Bernoulli beam equation so that the effect

of a crack was taking into account. Christides and Barr [Chri 84] developed a

cracked Euler-Bernoulli beam theory. They considered an exponential decay in

the stress field due to the crack and incorporated the effect by introducing a

parameter. The decay rate parameter had to be found from experimental or

numerical analyses. Chondros et al. [Chon 98] developed a continuous cracked

beam vibration theory. They considered that a crack introduced the continuous

change in the flexibility and modelled it by incorporating a displacement field

consistent with the singularity. A finite element method (FEM) was also used to

model vibrations of cracked components. Haisty and Springer [Hais 88] developed

a beam element to be used in the finite element codes. The crack was simulated as a

linear spring for axial vibrations and as a torsional spring for bending vibrations.

Gounaris and Dimarogonas [Goun 88] developed a finite element for a cracked

prismatic beam for structural analysis based on the compliance matrix. All these

studies created the background for the crack identification problem, including

a recent area of interest in engineering which is crack modelling in nano-beam

structures [Loya 09, Akba 17, Hein 19a].

The model-based crack identification problem as a forward problem stands

for determining changes in structural dynamic characteristics of a given struc-

ture based on damage location and severity [Fan 11]. Shen and Pierre [Shen 90]

suggested an approximate Galerkin solution to the one-dimensional cracked beam

theory developed by Christides and Barr (the decay rate) for free bending of sim-

ply supported beams with pairs of symmetric open cracks. Fernadndez-Sadez et

al. [Fern 99] constructed the transverse deflection of the cracked beam by adding

polynomial functions to the intact beams. The admissible function, which satis-

fied the boundary and the kinematic conditions, and the Rayleigh method were

used to obtain the closed-form expressions for the fundamental frequency. An

analytical approach based on the transfer matrix method was described by Attar

[Atta 12]. Liang et al. [Lian 92] addressed the issue of frequency sensitivity in

a simply supported beam or a cantilever with one crack. They developed ana-

lytical relationships between the eigenfrequencies and the magnitude/location of

the crack. This method required the symbolic computation of the characteris-

82



tic equation. Rezaee and Hassannejad [Reza 11] proposed an approach based on

the mechanical energy balance: the response of the cracked beam was obtained

repetitively calculating the total mechanical energy corresponding to the initial

conditions of the beam in terms of the specified point and its amplitude. Caddemi

and Calio [Cadd 09] proposed the differential quadrature method which addressed

discretisation, approximation and weight coefficients of the elastically supported

cracked cantilever and irregular plates; yet, the accuracy of the method depended

on the sampling points.

The exact close form solution of a uniform Euler-Bernoulli column with the

presence of multiple cracks was proposed by Caddemi and Calio in 2008 [Cadd 08]

and further developed by Caddemi and Morassi in 2013 [Cadd 13]. The Dirac’s

delta function and a rotational spring were used to model flexibility due to the

crack. The authors stated that frequency sensitivity turned to be proportional to

the potential energy stored at the cracked cross-section of the intact column.

Researchers have tackled the inverse problem of crack identification using a

proper analytical model, signal analysis, an efficient numerical and optimisation

technique or a combination of several methods. Close attention has been devoted

to the changes in the fundamental frequencies, mode shapes or dynamic flexibility

[Atta 12]. Rizos et al. [Rizo 90] proposed a method based on the flexural vibration

of uniform beams by representing the crack section as a rotational spring. The

method required measurements of the amplitude at any two locations along the

beam. A new technique for crack detection in beam structures based on kurto-

sis was presented by Hadjileontiadis et al. [Hadj 05a]. Specifically, the location

of the crack was determined by the abrupt changes in the spatial variation of

the analysed response, while the size of the crack was related to the estimate of

the kurtosis. Compared to other crack detection methods, the proposed kurtosis

based prediction scheme was attractive due to low computational complexity and

inherent robustness against noise. Hu and Afzal [Hu 06] proposed a statistical

algorithm for damage detection in timber beam structures calculating deviations

in the mode shapes before and after damage. Although the method based on the

mode shapes could accurately predict the location and size of the damage, the

utility of it in practical applications was limited due to the requirement of a large

number of sensors at every point of the structure.

In many studies, crack identification is determined by tracking changes in the

first few natural frequencies. Owolabi and Seshadri [Owol 03] detected cracks in

aluminium beam experimentally by measuring acceleration frequency response at

seven different points on each beam model using a dual channel frequency anal-

yser. The damage detection schemes depended on the measured changes in the first
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three natural frequencies and the corresponding amplitudes of the measured accel-

eration frequency response functions. Baviskar et al. [Bavi 11] observed changes

in the natural frequency due to the crack propagation both theoretically using fi-

nite element analysis software and experimentally using the fast Fourier transform

analyser. The results of both methods were in good agreement. Meshram and

Pawar [Mesh 15] revealed a relationship between a single crack depth, location

and natural frequency using the finite elemental analysis. Barad et al. [Bara 13]

detected the crack (its size and location) on the surface of a beam type element

using the first two natural frequencies. Liang et al. [Lian 92] proposed a method

similar to [Atta 12], but it required measurement of three transverse natural fre-

quencies of the beam. The method was extended to the stepped beams [Nand 97a],

to the cantilevers with inclined edge cracks and internal cracks [Nand 97b], and

to the geometrically segmented beams [Chau 00]. Messina et al. [Mess 98] linked

damage locations and extents with the frequency changes using a sensitivity ma-

trix that could be obtained from the intact model. The authors set the objective

function as the multiple damage location assurance criterion (MDLAC) and found

the optimal solution that maximised the MDLAC using a traversal search strategy.

The approach provided good predictions of both the location and the absolute size

of the cracks. Lee [Lee 09] solved the inverse problem of crack identification using

the Newton–Raphson method. The identified crack locations and sizes were in

excellent agreement with the actual ones; however, the method had serious lim-

itations in its application if the number of cracks in the beam was not known a

priori.

Noteworthy, Han et al. [Han 05b] reported in their research that the natural

frequency shift was not sensitive to cracks. Salawu [Sala 97] confirmed that the

natural frequency changes alone might not be sufficient for the unique identification

of damage location. Specifically, cracks with similar depths but at two different

locations caused the same amount of the frequency change (Figure 5.1 [Mahm 99]).

Recently, the ANNs have received wide acceptance for damage identification in

civil structures [Haki 15]. This is due to the fact that ANNs are capable of pattern

recognition, classification and signal processing. In [Mahm 99], Mahmoud and

Kiefa investigated a steel cantilever beam with a single edge crack. They used the

general regression neural networks (GRNN) and the first six natural frequencies

in order to predict the crack size and location. The natural frequencies were

calculated using M-matrix technique and the Newton-Raphson method. Mahmoud

and Kiefa drew several important conclusions:
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is learned, a stable set of weights adaptively evolves which

will provide good answers for all of the sample decisions or

predictions. The real test of neural networks occurs when

the trained network is able to produce good results for new

data.

The key aspect of building successful neural networks

is knowing when to stop training. If the network is trained

too little, the net will not learn the patterns and if the

network is trained too much, the net will learn the noise

or memorize the training patterns and not generalize well

with new patterns. In the present study, overtraining was

prevented using so-called net-perfect algorithm [23]. This

algorithm optimizes the network by applying the current

network to an independent test set during training. The

algorithm ®nds the optimum network for the data in the

test set (which means that the network is able to general-

ize well and give good results on new data). It does this

by computing the mean-squared error between actual and

predicted for all outputs over all patterns. Then it

computes the squared error for each output in a pattern,

totals them and then computes the mean of that number

over all patterns in the test set. Then for GRNN networks,

the algorithm optimizes the smoothing factor based upon

the values in the test set. It does this by trying different

smoothing factors and choosing the one that minimizes

the mean-squared error between the actual and predicted

answers.

General regression neural networks (GRNN) work by

measuring how far a given sample pattern is from patterns

in the training set in N-dimensional space, where N is the

number of inputs in the problem. When a new pattern is

presented to the network, that input pattern is compared in

N-dimensional space to all of the patterns in the training set

to determine how far in distance it is from those patterns.

The output that is predicted by the network is a proportional

amount of all of the outputs in the training set. The propor-

tion is based upon how far the new pattern is from the given

patterns in the training set. In this study, the method of

measuring the distance between patterns was the so-called

city block distance metric. The city block distance metric

[22] is the sum of the absolute values of the differences in all

dimensions between the pattern and the weight vector for

that neuron. One advantage of the city block distance is that

it is computationally fast.

The GRNN used in this study was genetic adaptive, i.e. it

uses a genetic algorithm to ®nd an input smoothing factor

adjustment. This is used to adapt the overall smoothing

factor to provide a new value for each input. Genetic algo-

rithms use a `®tness' measure to determine which of the

individuals in the population survive and reproduce [25].

The ®tness for GRNN is the mean-squared error of the
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Fig. 3. Nomographs of v1 and v2 for different crack sizes (a/h) and crack locations (x/L).

Fig. 4. Block diagram of general regression neural network (GRNN).

Figure 5.1: Nomographs for the first two natural frequencies (ω1 and ω2) with different
crack sizes (a/h) and crack locations (x/L).

• the first two natural frequencies (ω1, ω2) are not enough to predict the depth

a/h and location x/L of the crack since the natural frequencies vary in a

cyclic manner (Figure 5.1). For example, the crack of a/h = 0.5 located at

x/L = 0.067 has the same values of ω1 and ω2 as the crack of a/h = 0.65

and x/L = 0.333;

• if the crack depth is smaller than a/h = 0.2, it is difficult to quantify since

the change in the natural frequencies are small (Figure 5.2 [Mahm 99]).

growth under spectrum loading of Mirage aircrafts [11, 12],

to analyze stable crack growth of welded specimens [13],

and to detect crack-tip severity in a highly inhomogeneous

medium subject to thermal shock [14].

Meanwhile, a recent study by Kaminski [15] showed the

possibility of using a neural network to categorize the crack

location in one of ®ve discrete locations at which the data

were generated. Kaminski's study was performed using a

total of 40 experimental data patterns generated by Gomes

and Silva [16] on free-free beams. He used a back propaga-

tion NN architecture in which the ®rst ®ve natural frequen-

cies in addition to the crack size were used as inputs.

In this paper, the feasibility of using neural networks to

predict not only the crack size, but also its location in struc-

tures, is investigated based only on change of vibration

characteristics owing to crack presence. Both crack size

and location are considered as continuous variables over a

wide range of size and location, rather than categorization of

location at only ®ve discrete positions as in Kaminski [15].

The next section illustrates the need for using an advanced

tool, such as NN, to deduce crack size and location from

natural frequency measurements in cracked beams. Then a

description of the NN used in this study is given, and ®nally

the results of the NN approach are presented.

2. Problem de®nition

Recently, the ®rst author has developed a so-called M-

matrix technique to predict the change of natural frequency

of beams owing to crack presence [17]. The approach is

based on structural dynamics principles and is valid for

transverse vibration of Euler±Bernoulli beams. The crack

¯exibility was included in the analysis using fracture

mechanics principles. Fig. 1 shows the effect of relative

crack size (a/h) on the normalized natural frequency (vi/

vi0) for a uniform cantilever beam 0.0125 £ 0.0125 £
0.5 m; the crack is located at distance x � 0.05 m from

the clamped end (where a is the crack height, h is the

beam depth, L is the beam span, and vi and vi0 are the

natural frequencies of the cracked and uncracked beam,

respectively). As shown in the ®gure, the deeper cracks

have a larger drop in natural frequency.

The situation is not as simple for the crack location deter-

mination. Fig. 2 shows the variation of vi/vi0 with crack

location x/L for a crack of constant size (a/h � 0.432).

The reader is reminded that in this paper crack size refers

to the ratio a/h and crack location refers to the ratio x/L. The

cyclic trend shown in the ®gure complicates the inverse

procedure: given vi, it becomes dif®cult to estimate crack

size a/h and crack location x/L. To illustrate this point,

consider Fig. 3 which shows nomographs of v1 against v2

for different crack sizes (a/h) and crack location (x/L) for a

cantilever beam 0.0125 £ 0.0125 £ 0.57 m. The complex

trend shown makes the problem indeterminate: a crack of a/

h� 0.5 located at x/L� 0.067 has the same values of v1 and

v2 as another crack of a/h � 0.65 and x/L � 0.333. The

conclusion is clear then that two values of vi are not enough

to solve for the unknown a/h and x/L.

Similar complicated trends were noted in graphs of v1

against v3 and v2 against v3. It may be concluded, therefore,

that more than two natural frequency values are needed to

estimate crack size and location. This requires an advanced

tool of optimization and arti®cial neural networks offer an

attractive and powerful tool for this purpose.

An arti®cial neural network is usually de®ned as a

network composed of a large number of processors

(neurons) that are massively interconnected, operate in

parallel, and learn from experience (examples). The arti®-

cial neural network used in the present study is of the

general regression neural network (GRNN) type. A brief

description of the algorithm is given in the next section.

However, a thorough treatment of the subject of arti®cial

neural network methodology is beyond the scope of this

paper. The basic architecture of arti®cial neural networks

has been widely covered elsewhere [19±22, 24].

3. Neural network algorithm

Conventional nonlinear regression techniques involve a

priori speci®cation of the form of the regression equation

with subsequent statistical determination of some undeter-

mined constants. The disadvantage of such techniques is

that the regression is constrained to yield a `best ®t' for

the speci®ed form of regression equation. If the speci®ed

form is a poor guess and not appropriate for the database to

which it is applied, this constraint will lead to poor predic-

tions. The general regression neural network (GRNN), on

the other hand, is a one-pass learning algorithm which can

be used for estimation of continuous variables, and

converges to the underlying regression surface. The princi-

pal advantages of GRNN are its quick learning and fast

convergence to optimal regression surface as the number

of samples becomes large. Other types of neural network
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Fig. 1. Variation of the natural frequency with crack depth.
Figure 5.2: Variation of the natural frequencies with different crack depths.

The calculations by GRNN in [Mahm 99] showed that the network was capable

of identifying the cracks in the range 0.08 < a/h 6 0.82 quite accurately.
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He et al. [He 01] implemented genetic algorithms for shaft crack detection.

In the research, the authors formulated shaft crack detection as an optimisation

problem by means of the finite element method. The accuracy of the crack location

prediction was 98.46 per cent, and the accuracy in the case of the crack depth

prediction was 88.22 per cent.

Hakim et al. [Haki 15] applied ANNs to detect cracks in I-beams, particularly

the locations of two cracks and the severity (the cracks had the same depths).

For the ANN training, 52 patterns of 3D finite element simulations and 52 exper-

imentally obtained patterns were used. Each pattern contained the first natural

frequency and 14 mode shape values of the first mode at the points on the cen-

treline of the beam except the points at the ends. The optimal feed-forward back

propagation ANN had the architecture of 15-8-4-3. The MSE of the test was

0.00449. The R-value of the crack severity and two locations of the cracks were

0.9925, 0.9680 and 0.9700, respectively. Later, Hakim et al. improved the results

using an ensemble of five ANNs. Each ANN with the architecture of 15-8-4-3 was

trained with the data which contained one of the first five natural frequencies and

its mode shape values. The MSE was 0.0037. The R-value of the crack severity

and two locations of the cracks were 0.9898, 0.9856 and 0.9855, respectively. It was

also concluded that the identification of the crack location was a more challenging

task than identifying of the crack depth.

In 2015, Sutar et al. [Suta 15] tried to realise an ANN-based controller for

crack identification in an aluminium cantilever. The input parameters to the

controller were relative divergence of the first three natural frequencies obtained

experimentally (Figure 5.3 [Suta 15]) and the output parameters were crack depth

Figure 5.3: A block diagram of the experimental set-up to measure natural frequencies.

and location in the dimensionless form. A three-layered feed-forward back propa-

gation ANN with nine neurons in the hidden layer was used for the training. The

results showed that the mean absolute percentage error between the actual and
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the predicted responses was less than 15 per cent. The authors assumed that the

result could be improved if the number of natural frequencies in the feature vector

was increased.

Although the results look promising, some issues need to be discussed and

resolved. Firstly, in engineering “data are often the result of expensive experiments

and will be in short supply; in this case, the only way to ensure generalisation

is to restrict the number of weights in the network” [Word 11]. Secondly, the

nature of the data is a critical aspect. According to Ndambi et al. [Ndam 02],

natural frequencies can follow the damage severity but are not influenced by the

crack damage locations; the modal assurance criterion is, in contrast, less sensitive

to crack damage compared with the natural frequencies; the coordinate modal

assurance criterion can localise damage in the beams but cannot follow severity

and spreading; the damage indices method based on the strain energy appears to

be more precise than the other methods in damage localisation, but the difficulty

remains when the damage is spread out over a certain length of the beam. To

overcome the stated issues, it is proposed to transform the numerically calculated

or measured mode shapes into the Haar wavelet coefficients (Subsection 2.2.1) as a

part of the data processing procedure since the wavelet transform can reveal some

hidden parts of data that other signal analysis techniques fail to detect [Yan 07].

The obtained data are used for the ANN and RF training. The results of different

machine learning methods and datasets are compared to each other with the aim

to highlight the most promising approach. No related work has been found in the

literature.

5.2 Quantification of the crack

The present simulation study was based on the free vibration of a uniform homo-

geneous Euler-Bernoulli type beam with a crack. The left end of the beam was

clamped and the right end was free. The ratio between the beam height and length

was set to 0.25. A crack of an arbitrary depth (D) was modelled to occur at an

arbitrary point of the beam (L). The corresponding mathematical model of the

cracked beam was described in Subsection 3.1.4.

5.2.1 Datasets

An essential prerequisite to train a predictive model is to identify a set of features

that may serve as indicators of the phenomenon in question. The literature review

shows that most of the studies consider the first three natural frequencies as input
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features [Erog 16]. The frequencies are obtained experimentally or calculated using

the FEM or power series technique. According to Mahmoud and Kiefa [Mahm 99],

the fewer the number of the natural frequencies, the less accurate predictions of

the ANNs are.

In the present study, a more rigorous approach was adopted. It was assumed

that the predictive model could be built in a more manageable way using the

Haar wavelet transform. In order to evaluate the hypotheses, two sets of data

were calculated numerically. In the first set, each pattern contained the scaled

values of the crack depth, location, and the first eight DFPs of vibration (ki,

i = 1, ..., 8). The DFPs were calculated using the equations from Subsection 3.1.4.

The calculated DFPs related to the ones available in [Rosa 09]. The calculated

first mode shapes and DFPs are shown in Figure 5.4. The first 25 patterns are

tabulated in Table A1 (Appendix A).
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Figure 5.4: The first mode shape (left) and DFPs (right) in function of the crack location
(L) and the crack depth (D).

In the second set of data, each pattern contained the scaled values of the crack

depth, location, and 64 HWTCs (hj , j = 1, ..., 64). The coefficients were calculated

using (2.7) - (2.10) and normalised as follows:

• calculate the first DFP of the cracked cantilever and obtain the Haar wavelet

transform coefficients of the first mode shape yc;

• calculate the first DFP of the intact cantilever and obtain the Haar wavelet

transform coefficients of the first mode shape yi;

• calculate the difference yc − yi;

• normalise the results.
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In total, each dataset contained 750 patterns. The location and depth of the

cracks in the patterns were chosen randomly. On practical grounds, the minimum

and maximum values of the crack depth were set to 0.01 and 0.5. The location

values of the cracks were set in the range from 0.001 to 0.99 (Figure 5.5).

Figure 5.5: Distribution of crack characteristics (L - location, D - depth).

The calculation of the first eight DFPs took 15 times more time than the

calculation of 64 HWTCs. According to Majak [Maja 18], the calculation time

depended on the mesh used and the accuracy required. The computing time of

the DFPs could be reduced substantially by applying higher-order methods which

allowed to achieve high accuracy with a smaller mesh.

Before providing the ANNs with the data, the correlation between the crack

characteristics and other features was observed (Figure 5.6). A few individual

metrics from the HWTC-based dataset had a strong positive or negative corre-

lation (R > |0.7|) with the crack location. A moderate negative correlation was

observed between a few individual metrics from the DFP-based dataset and the

crack depth. There were no individual metrics which strongly correlated with both

characteristics at the same time (Tables 5.1 and 5.2). This was in line with the

conclusions presented by Mahmoud and Kiefa [Mahm 99].

Figure 5.6: Correlation between crack characteristics and the DFPs or the HWTCs.
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Table 5.1: Correlation between the DFPs and the crack characteristics.

Crack f1 f2 f3 f4 f5 f6 f7 f8

L 6.21e-1 5.5e-2 -1.78e-1 -2.1e-1 -1.9e-1 -1.9e-1 -1.67e-1 -1.81e-1

D -4.88e-1 -6.31e-1 -5.97e-1 -6.18e-1 -6.32e-1 -6.32e-1 -5.74e-1 -5.86e-1

Table 5.2: Correlation between the HWTCs and the crack characteristics.

Crack h1 h5 h8 h9 h16 h32 h62 h63

L 8.68e-1 -8.06e-1 7.27e-1 -7.81e-1 8.46e-1 8.35e-1 7.13e-1 -7.76e-1

D 7e-3 -6.5e-2 1.3e-2 -4.8e-2 5.2e-2 5.8e-2 4.6e-2 5.4e-2

The correlations between the features themselves were not studied in the thesis

as it would not have added any impact to the research. The primary goal of the

present study was to obtain models with remarkable predictive accuracy rather

than to obtain explainable models.

Next, to assess the influence of the training pattern amount on the predictive

accuracy, 700 patterns were randomly divided into reasonably small parts, 100

patterns in each portion (Figure 5.7). In the eighth portion, there were 50 patterns

that were used for testing the predictive models.

Figure 5.7: Distribution of the training patterns.

Before providing the machine learning methods with the feature vectors, the

data were scaled to fall in the range of zero and one:

xS =
x− xmin

xmax − xmin
(5.1)

where xS was the scaled value of x; xmax and xmin were the maximum and mini-

mum values of the variable x in the dataset.
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5.2.2 Feed-forward neural networks with back propagation

ANN model building refers to selecting an “optimal” network topology, data repre-

sentation, training algorithm, training parameters, and terminating criteria, such

that some desired level of performance is achieved [Twom 95]. In the present

study, different feed-forward back propagation ANNs were examined. The follow-

ing factors were manipulated:

• the training algorithm,

• the number of neurons in the hidden layer,

• the size of the training set,

• the features in the training patterns.

Each ANN was constructed using the fitnet function in the MATLAB en-

vironment. The ANNs were trained by one of the following training function

(Table 2.1): Levenberg-Marquardt (LM), scaled conjugate gradient (SCG), re-

silient back propagation (RP), Broyden–Fletcher–Goldfarb–Shanno (BFGS), and

Bayesian regularisation (BR). For the RP, the learning rate was set to 0.01.

To avoid the construction of unreasonably large ANNs, the number of hidden

layers was set to one. According to Beale et al. [Beal 16], “a network of two layers,

where the first layer is sigmoid and the second layer is linear, can be trained to

approximate any function arbitrarily well”. Following this recommendation, the

Elliot sigmoid function was chosen for the hidden layer and the linear transfer

function - for the output layer.

The number of neurons in the input layer was dictated by the input variables

of the model. The number of neurons in the hidden layer was initially set to ten

and gradually increased to 150 with the increment of 20 neurons in order to find

a reasonable solution. The number of neurons in the output layer was set to two:

one for the crack location and one for the crack extension. A general architecture

of the ANN is shown in Figure 5.8 [Beal 16].

Figure 5.8: Feed-forward back propagation ANN.
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To speed up the learning process [Beal 16], the training was performed in the

batch mode (the weights and biases were updated after all inputs were presented).

The network training was stopped at one of the following conditions:

1. the magnitude of the gradient was less than 1e− 7,

2. the number of the validation checks reached 6,

3. the number of the epochs reached 1000,

4. the performance value became 1e-4.

The training time was not limited.

The number of the training patterns was initially set to 100 and gradually

increased to 700 with step 100. Each ANN was trained 50 times starting at

randomly chosen initial conditions in the weight space in the range of −1 to 1.

The test set contained 50 patterns that were not shown to the ANNs during

the training. The assessment of different ANN performances was made on this set

on the basis of the mean square error (MSE).

Table 5.3 shows the results of the training and testing of the ANNs provided

with the DFPs. Table 5.4 shows the results of the training and testing of the

ANNs provided with the HWTCs. Both tables show the average MSE of 50 test

crack quantification (localisation and extension) and 50 trainings. The tables also

show the correlation parameter (the R-value) for the predicted location and depth

of the test cracks, the average learning time per network training, the number of

the neurons in the hidden layer, the number of the patterns in the training set and

the reason of training stop according to the list above.

In the case of training on the DFPs, the lowest average MSE of 50 runs to

quantify 50 cracks from the test set was 3.4e-3. The average R-value for predicting

the location was 9.765e-1; the average R-value for the prediction of the depth was

9.713e-1. The results were obtained by the ANNs with ten neurons in the hidden

layer trained by the Levenberg-Marquardt using 700 training patterns with eight

DFPs in each.

The results of the scaled conjugate gradient, resilient propagation and BFGS

back propagation functions were mutilated by overfitting: the MSE was higher on

the testing set than on the training set.
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According to Table 5.3, the Bayesian regularisation also showed accurate re-

sults on the crack quantifications. The training was stopped due to the maximum

number of epochs (in the pre-set training determination conditions, the maximum

number of the epoch was 1000). The increase of the epochs up to 6000 resulted

in significant improvement in predictive accuracy: the average training MSE was

2.2e-3, the average testing MSE was 2.2e-3, the average R-value of the crack local-

isations was 9.745e-1, and the average R-value of the crack depth quantifications

was 9.620e-1. The average time per training increased more than six times.

In case of training on the HWTCs, the lowest average MSE of 50 runs to

quantify 50 cracks from the test set was 3.1e-3. The average R-value for the

prediction of the location was 9.998e-1; the average R-value for predicting the

depth was 8.389e-1. The average result was obtained by the ANN with ten neurons

in the hidden layer. The network was trained by the Bayesian regularisation using

300 training patterns and 1000 epochs. In each pattern, there were the first eight

HWTCs out of 64. An increase of the epochs from 1000 to 4500 or 6000 did not

show any satisfactory improvement in the prediction accuracy.

Next, for the most promising approaches (the Levenberg-Marquardt and DFPs;

the Bayesian regularisation and HWTCs), the influence of the neurons, the train-

ing patterns and their amount on the predictive accuracy of the ANNs to quantify

the cracks are shown in Figure 5.9. The approach based on the DFP dataset re-

quired at least 700 training patterns in order to learn the relationship between the

inputs and outputs. In the case of the HWTC dataset, 300 training patterns were

sufficient.

Afterward, in order to improve predictive accuracy, an ensemble of 50 individ-

ual ANNs was created. The idea originated from the articles [Marw 99, Haki 15,

Beal 16], in which the ensembles of ANNs produced better results than individual

networks. Figure 5.10a shows the results of 50 ANNs with ten neurons in the hid-

den layer trained by the Levenberg-Marquardt and 700 training patterns contain-

ing eight DFPs. The MSE of the predicted parameters of the cracks from the test

set reduced from 3.3e-3 to 1.3e-3 (MSED = 9e-4, MSEL = 1.6e-3). Figure 5.10b

shows the results of 50 ANNs with ten neurons in the hidden layer trained by the

Bayesian regularisation and 300 training patterns containing eight HWTCs. The

MSE of the predicted parameters of the cracks from the test set reduced from

3.1e-3 to 2.3e-3 (MSED = 4.6e-3, MSEL = 7e-6). The target (calculated) crack

characteristics and the predicted values are visualised in Figures 5.10 and 5.11. In

most cases, large errors occurred from the quantification of the crack depth.

94



(a) Averaged MSE of crack predictions by Levenberg-Marquardt and eight DFPs.

(b) Averaged MSE of crack predictions by Bayesian regularisation and eight HWTCs.

Figure 5.9: Average MSE of quantification 50 cracks using varying number of hidden
neurons and training patterns.

95



(a) Crack characteristics predicted by an ensemble of 50 ANNs trained by Levenberg-Marquardt
and 700 training patterns containing eight DFPs.

(b) Crack characteristics predicted by an ensemble of 50 ANNs trained by Bayesian regularisation
and 300 training patterns containing eight HWTCs.

Figure 5.10: Characteristics of 50 test cracks: x - predicted depth and location; o - target
values.
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Nevertheless, the ensemble of the ANNs provided with the DFPs predicted

crack depth more precisely than the ensemble of the ANNs provided with the

HWTCs (R = 9.772e-1 and R = 8.871e-1, respectively). The observation was in

line with the correlation coefficients (Tables 5.1 and 5.2). In the case of location

predictions, the results were vice versa. The R-value between the outputs and the

crack location targets was very close to 1 (in the case of the HWTCs R = 9.999e-1,

and in the case of the DFPs R = 9.908e-1, respectively), which indicated a close

fit and accurate performance of the ANNs. The observation was also in line with

the correlation coefficients (Tables 5.1 and 5.2).

(a) Location prediction. (b) Depth prediction.

(c) Location prediction. (d) Depth prediction.

Figure 5.11: Correlation plot for the predicted characteristics of 50 cracks: (a), (b)
predictions based on eight DFPs; (c), (d) predictions based on eight HWTCs.

The error distributions for both approaches are shown in Figure 5.12. For the

HWTCs, the absolute error of the crack localisation was less than 0.0051 in 49
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cases. For the DFPs, the absolute error of the crack depth quantification was less

than 0.044 in 48 cases.
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(a) Errors in location prediction.
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(b) Errors in depth prediction.
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(c) Errors in location prediction.
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(d) Errors in depth prediction.

Figure 5.12: Error distribution for the predicted characteristics of 50 cracks: (a), (b)
predictions based on 8 DFPs; (c), (d) predictions based on 8 HWTCs.

To improve the results, the methods were combined: the ensemble of 50 ANNs

provided with the DFPs was used to predict the crack depths, and the ensemble

of 50 ANNs provided with the HWTCs was used to predict the location of the

cracks. In such a case, the average MSE of the crack quantification was 2e-4

(MSED = 5e-4, MSEL = 2e-7), the R-value for the prediction of the location was

1.00, and the R-value for predicting the depth was 9.868e-1. The absolute error

of the crack localisation was less than 0.0021 and the absolute error of the crack

depth quantifications was less than 0.044 in 48 cases (Figure 5.13). The increased

accuracy could be explained by the fact that each ANN had one output neuron

instead of two and an ensemble of 50 ANNs produced more accurate predictions

than a single ANN. Nevertheless, the combined approach could not follow the

severity of cracks if it was located very close to the free end of the beam.
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(a) Location prediction. (b) Depth prediction.
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(c) Location prediction.
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(d) Depth prediction.

(e) Characteristics of the target and predicted cracks.

Figure 5.13: The results of the complex approach: 50 ANNs trained on the DFPs to
predict the depth of the cracks; 50 ANNs trained on the HWTCs to localise the cracks.
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5.2.3 Random forest

Next, the previous simulation study on the crack quantification was examined by

the RFs. Providing the same mathematical models and datasets, it was assumed

that the RFs were easier to tune due to the smaller number of the hyperparameters,

the training time could be shorter and the performance could be at least as accurate

as of the ANNs. To test the hypothesis, the following configurations of the RFs

were manipulated:

• the number of predictors in samples (8 DFPs; 8, 16, 32, 48 or 64 HWTCs);

• the number of predictors without replacement in samples p (1/6, 1/2 and

2/3 of the predictors in the pattern);

• the number of trees (10, 20, 30, 40, 50, 75, 100, 150, 200, 250, 300, 400, 500,

750, 1000);

• the number of training patterns (100, 200, ..., 700).

Each RF configuration was tested 50 times on 50 cracks from the testing set.

Tables 5.5 and 5.6 show the average MSE and the configurations of the RFs with

the lowest MSE.

Table 5.5: The most accurate results of 50 crack quantifications using the RFs and DFPs
(L - location, D - depth of the crack).

Crack Nr of Nr of Predictors Nr of Avr. Avg. Avg.
charac training predictors without trees test R training
teristic patterns in a pattern replacement (p) MSE time
L 500 8 4 20 2.0e-3 9.896e-1 0.1108

500 8 6 10 2.1e-3 9.885e-1 0.0674
600 8 4 10 2.1e-3 9.880e-1 0.0619
500 8 4 40 2.2e-3 9.888e-1 0.2112
600 8 4 400 2.3e-3 9.881e-1 2.1502

D 700 8 6 50 8e-4 9.841e-1 0.3847
700 8 4 100 8e-4 9.821e-1 0.6683
600 8 6 300 8e-4 9.826e-1 2.0682
700 8 6 750 8e-4 9.820e-1 5.7232
700 8 4 40 9e-4 9.812e-1 0.2739

In the case of training on the DFPs, the lowest average MSE to localise and

estimate the severity of 50 cracks after 50 runs were 2.0e-3 and 8e-4, respectively.

The corresponding average R-value of the location prediction was 9.896e-1; the

average R-value of predicting the depth was 9.841e-1. The results were obtained

by the RF with 20 trees provided with 500 training patterns and by the RF with

50 trees provided with 700 training patterns, respectively.
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Table 5.6: The most accurate results of 50 crack quantifications using the RFs and the
HWTCs (L - location, D - depth of the crack).

Crack Nr of Nr of Predictors Nr of Avr. Avg. Avg.
charac training predictors without trees test R training
teristic patterns in a pattern replacement (p) MSE time
L 700 8 6 10 8e-6 9.999e-1 0.0653

700 8 6 20 9e-6 9.999e-1 0.1201
700 8 6 100 1.1e-5 9.999e-1 0.5646
500 8 6 10 1.2e-5 9.999e-1 0.0587
500 8 6 100 1.4e-5 9.999e-1 0.4883

D 700 16 11 10 6.1e-3 8.491e-1 0.1365
700 64 43 100 6.3e-3 8.395e-1 2.9505
700 64 43 150 6.4e-3 8.361e-1 4.4674
700 64 32 75 6.4e-3 8.374e-1 1.7222
700 64 32 150 6.4e-3 8.378e-1 3.4962

In the case of training on the HWTCs, the lowest average MSE of 50 runs to

localise and estimate the severity of the test cracks were 8e-6 and 6.1e-3, respec-

tively. The average R-value for the prediction of the location was 9.999e-1; the

average R-value for predicting the depth was 8.491e-1. The results were obtained

by the RF with ten trees provided with 700 training patterns.

As in the case with the ANNs, the dataset of eight DFPs produced more

accurate predictions of the crack depths; meanwhile, the dataset of eight HWTCs

produced more precise predictions of the crack locations. On this premise, the

combined approach (RFs, DFPs and HWTCs) was tested. The results are shown

in Figure 5.14. In this case, the average MSE of the crack quantification was 4e-4

(MSED = 8e-4, MSEL = 8e-6), the R-value for the prediction of the location

was 9.999e-1, and the R-value for the prediction of the depth was 9.841e-1. The

absolute error of the crack localisation was less than 0.0044 in 48 cases and the

absolute error of the crack depth quantification was less than 0.045 in 45 cases.

In comparison with the ANNs, the RFs produced slightly less accurate pre-

dictions of the crack characteristics. Nevertheless, the RFs configuration required

less hyperparameters to adjust and the training time was notably shorter.
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(a) Location prediction. (b) Depth prediction.
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(c) Location prediction.
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(d) Depth prediction.

(e) Characteristics of the target and predicted cracks.

Figure 5.14: The results of the complex approach: 50 RF trained on the DFPs to predict
the depth of the cracks; 50 RFs trained on the HWTCs to predict location of the crack.
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5.3 Quantification of two cracks

The proposed approach of the DFPs, the HWTCs and the ensembles was applied

to the quantification of multiple cracks in the beam. The predictive models which

produced the most promising results of one crack characteristics were verified

whether they could quantify the characteristics of two cracks in the beam. As

distinct from the previous simulation studies, the number of epochs was increased

from 1000 to 10000. The settlement was motivated by the complexity of the task

to quantify four characteristics of the cracks and the enhanced performance of the

Bayesian regularisation with numerous iterations.

In the present simulation study, the beam was placed on the Pasternak elastic

foundation (G1 = 10, G2 = 2.5π2 ). One end of the beam was clamped, the other

one was pinned (Figure 5.15). The ratio between the beam height and length was

set to 0.1. The beam length was scaled to 1. The corresponding mathematical

model was described in Subsections 3.1.4 and 3.1.5.

Figure 5.15: A clamped-pinned beam with two cracks and on the Pasternak elastic foun-
dation.

Two cracks were induced at the arbitrary points along the beam. One crack

was induced from 0.1 to 0.7 units from the left side of the beam (L1); the second

crack was induced from 0.1 to 0.8 units from the first crack (L2) so that both cracks

were in the range within 0.1 and 0.8 units. On practical grounds, the minimum

and maximum values of crack depths (D1, D2) were set between 0.01 and 0.5

(Figure 5.16).

Figure 5.16: The dataset of two cracks in the beam.

103



The dynamic response of the cracked beam (the first mode shape and the

first eight DFPs) was computed using the equations from Subsections 3.1.2 and

3.1.5. In the first dataset, the records contained scaled characteristics of the cracks

(location and depth) and the first eight DFPs. In the second set of data, each

record contained scaled crack characteristics, and 64 HWTCs. The coefficients

were calculated using (2.7) - (2.10) and normalisation. In total, each dataset

contained 1230 patterns: 1110 records were used for training and 120 records were

used for testing the predictive models.

Figure 5.17 shows the results obtained by the ensembles of the ANNs. In

particular, the depths of two cracks were predicted by two ensembles with 50

ANNs in each. Each ANN had ten hidden nodes in the hidden layer. The ANNs

were trained by the Bayesian regularisation and provided with the dataset of the

DFPs. The training was stopped when the number of epochs reached 10000. The

MSE of the first crack depth was 1.1e-3 and of the second crack depth was 1.0e-3.

The R-values were 9.515e-1 and 9.586e-1, respectively. The locations of the cracks

were predicted by the other two ensembles of 50 ANNs. Each ANN also had

ten hidden nodes in the hidden layer. The ANNs were trained by the Bayesian

regularisation and provided with the dataset of the HWTCs. The feature vector

contained the first eight HWTCs out of 64. The training was stopped when the

number of epochs reached 10000. The MSE of the first crack location was 2.1e-3

and the MSE of the distance between two cracks was 1.9e-3. The R-values were

9.553e-1 and 9.677e-1, respectively.
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Figure 5.17: Correlation and error distribution of the predicted cracks by the ensemble
of the ANNs: (a)-(b) location from the left side of the beam; (c)-(d) distance between two
cracks; (e)-(f) depth of the first crack; (g)-(h) depth of the second crack.
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Figure 5.18 shows the results obtained by the RFs. Specifically, the depths

of two cracks were predicted by two RFs with 50 trees in the forest trained inde-

pendently. Each RF was provided with the same DFP-based dataset. The feature

vector contained eight DFPs (six predictors without replacement). The MSE of

the first crack depth was 6.3e-6 and of the second crack depth was 5.9e-6. The

R-values were 9.998e-1 and 9.998e-1, respectively. The locations of the cracks

were predicted by the other two RFs with ten trees in each forest. The RFs were

provided with the HWTC-based dataset. The feature vector contained the first

eight HWTCs out of 64 (six predictors without replacement). The MSE of the

first crack location was 2.4e-5 and the MSE of the distance between two cracks

was 2.1e-5. The R-values were 9.997e-1 and 9.997e-1, respectively.
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Figure 5.18: Correlation and error distribution of the predicted cracks by the ensemble
of the RFs: (a)-(b) location from the left side of the beam; (c)-(d) distance between two
cracks; (e)-(f) depth of the first crack; (g)-(h) depth of the second crack.

5.4 Discussion and conclusions

The primary aim of the present chapter was to find an efficient model for the

crack quantification in the beam. The feed-forward back propagation ANNs and

the RFs were incorporated into the search for an accurate predictive model of

the formulations. Another objective of the study was connected to the datasets,

specifically to the feature vectors and the size of the training set. Two sets of data

were calculated numerically. The first one contained the first eight DFPs; the

other one - up to 64 HWTCs derived from the first mode shape. The hypotheses

were evaluated on the testing set (not shown to the models in advance).

107



The results of one crack quantification showed that the ensemble of 50 ANNs

produced as accurate predictions as the RFs. However, if two cracks had to be

quantified, the RFs slightly outperformed the ensemble of the ANNs. Notably, the

RFs had fewer hyperparameters to tune and the training process was remarkably

shorter than in the case of the ANNs.

Analysing the results of the predictions, it was found out that the depth of

cracks was more difficult to predict accurately than the location. The dataset of

eight DFPs produced more accurate predictions of the crack depths, but not of

the crack location. This was in line with the correlation analysis, Mahmoud and

Kiefa [Mahm 99], and Ndambi et al. [Ndam 02] results: the natural frequencies

could follow the damage severity but were not influenced by the crack damage

locations. The hypothesis on the sensitivity of the Haar wavelet transform coeffi-

cients towards the crack localisation was decisively confirmed; however, the Haar

wavelet transform method could not follow the severity of the crack.
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Chapter 6

Elastic supports

The present chapter focuses on the Euler-Bernoulli beam with elastic supports.

The supports are simulated by the spring model. The inverse problem of the stiff-

ness parameter identification is solved using the modal domain, the feed-forward

back propagation neural network (ANN), the random forests (RF) and the discrete

Haar wavelet transform (HWT). In particular, the first mode shape is decomposed

into the Haar wavelet transform coefficients (HWTCs) with a small level of res-

olution. The obtained coefficients are used in the feature vector. In line, the

machine learning methods are trained on the dimensionless natural frequency pa-

rameters (DFPs). The results of the approaches are compared to each other. The

foundation for this chapter can be found in [Fekl 13b, Fekl 14].

6.1 Related work

Structural supports play an important role in engineering. They do not only firmly

carry a structure, but are used to improve the overall constructional performance.

For example, the fundamental frequency can be increased if a beam has additional

internal point supports. If supports are rigid, the optimum locations of the sup-

ports are the nodal points of the highest vibration mode [Cour 66]. If supports

are elastic and the stiffness parameter of the supports exceeds a certain minimum

value, the optimum locations of the supports are still the same as in the case of

rigid supports - no decrease in the fundamental frequency is observed [Akes 88].

Compared to the rigid supports, the elastic supports have the advantage of

hardening or softening the non-linear behaviour of the structure. Furthermore,

both horizontal and vertical elastic supports reduce the dynamic coefficient of dis-
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placement [Liu 13]. Therefore, beams with elastic supports are frequently used in

spring-beam coupled systems, cable-arch structures, fluid-conveying pipes, frames

and trusses, railway tracks, towers, piles, tall buildings, robot arms and other

technical applications [Wu 06, Ronu 19].

It is theoretically and practically proved that a long-term performance of sup-

ported constructions greatly depends on the stiffness parameters of their supports

[Wang 06]. Due to environmental conditions or damage, the stiffness characteris-

tics of supports can change. The decreased stiffness may lead to the collapse of the

whole construction if no preventive maintenance measures are taken on time. To

avoid loss of functionality or catastrophic failure, it is vital to monitor the stiffness

characteristics of supports.

Different boundary conditions and supports have been analysed in a large

number of papers. Most of the papers are devoted to the vibration of beams with

classical boundary conditions. Fewer papers are focused on the beams with elastic

supports. Some of them are [Sait 79, Glab 99, Nagu 02, Bane 04, Xant 07, Hsu 08,

Silv 09, Wang 13, Lore 18]. The exact expressions for the natural frequencies and

mode shapes of the beam with one end hinged and restrained by a rotational spring

and the other end free were derived by Chun [Chun 72]. The effects of rotational

and transversal supports at one end of the beam was studied in [Afol 86] and Lau

[Lau 84]. Lau expanded Rutenbergs research on the free vibration of the uniform

beams with a rotational constraint and presented a closed-form solution to the

beam with rotational and translational supports at some point of the beam.

The frequency equation of the beam with an intermediate elastic support us-

ing the continuity conditions at the supported point was presented by Chellapilla

[Chel 89]. Albarracin et al. [Alba 04] described the effect of an intermediate

support mathematically when the ends of the beam were elastically constrained.

Opposite, Rao and Mirza [Afol 86], and Li [Li 00] studied the vibrations of the

beams restrained by two transverse springs and two rotational springs. The nu-

merical results presented in the papers demonstrated that the natural frequencies

and the mode shapes were sensitive to the position and stiffness of the intermedi-

ate elastic supports. The authors also stated that the stiffness parameter of the

elastic supports considerably caused the first few modes shapes and was negligible

on the higher frequencies.

Sato et al. [Sato 08] demonstrated that a beam on equidistant elastic supports

could be considered as a beam on an elastic foundation in static and free vibration

problems. Nevertheless, the presented model was valid for a limited range of

support stiffness, spacing and flexural rigidity of the beam. The proposed model
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was suitable for simplified analysis of the global behaviour of some structures, such

as floating tunnels.

The stiffness parameter identification from the governing equation of the free

vibration of beams with elastic springs at the ends of the beam is an inverse prob-

lem and cannot be solved analytically. Therefore, alternative methods have to be

sought. ANNs and RFs are a promising tool in the search for the relationships

between the dynamic response of the beam and the corresponding stiffness param-

eters of elastic supports. The present chapter is focused on the Euler-Bernoulli

beam with non-classical (elastic) supports. The supports are simulated by the elas-

tic spring model. Two datasets are calculated numerically: the first eight dimen-

sionless natural frequency parameter based dataset (DFP) and 16 Haar wavelet

transform coefficient based dataset (HWTC). The HWTCs are obtained from the

first mode shape. No alternative research has been found in the literature.

6.2 Quantification of the stiffness parameters

In the present simulation study, a uniform homogeneous Euler-Bernoulli beam was

considered. The left end of the beam was clamped, the right end of the beam was

supported by elastic supports (Figure 6.1). Different stiffness parameters of the

translational spring (kt) and the rotational spring were investigated (kr).

Figure 6.1: A uniform homogeneous Euler-Bernoulli beam with a clamped left end and
an elastically supported right end.

6.2.1 Datasets

In order to get a general understanding of the variational trend of the non-

dimensional natural frequency parameters (DFPs) and the stiffness parameters

of the elastic supports, more than 3000 different cases are plotted in Figure 6.2.

It is seen that the stiffness parameter of the rotational spring has less influence on

the first DFP than the stiffness parameter of the translational spring. The finding

about the influence of the stiffness parameters on the DFP is in line with [Kim 01].
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Figure 6.2: The first DFP in function of the translational (kt) and rotational (kr) springs.

In the present simulation study on the stiffness parameter quantification, 3000

different cases were chosen randomly (Figure 6.3). The minimum and maximum

values of the stiffness parameter of the translational spring were set to 10 and 1490.

The minimum and maximum values of the stiffness parameter of the rotational

spring were set to 10 and 9990. The boundaries were set considering the influence

of the stiffness parameters on the DFPs and practical applications of the springs.

Figure 6.3: Distribution of stiffness characteristics.

With regard to the quantification of the crack characteristics presented in

Chapter 5 (the DFPs were more sensitive to the crack depth and the HWTCs were

more sensitive to the crack localisation), two sets of data were calculated: the DFP-

based dataset and the HWTC-based dataset. The calculations were motivated by

the assumption that the combined approach of the DFPs and the HWTCs could

quantify the stiffness parameters of the springs more accurately than any partic-

ular dataset. Hereof, for the chosen cases (Figure 6.3), the first eight DFPs (ki,
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i = 1, ..., 8) were calculated using the equations from Subsections 3.1.1 and 3.1.2.

For the second set of data, the first mode shape was transformed into 16 HWTCs

using normalisation and equations (2.7) - (2.10) and taking into account the re-

sults presented in [Vika 12, Fekl 13b]. The calculation of the HWTCs was more

than 20 times faster than the calculation of the DFPs.

The correlation between each DFP (ki) or HWTC (hj) and the stiffness pa-

rameters are presented in Figure 6.4. Both the DFPs and the HWTCs correlate

with the stiffness parameter of the translational spring; the correlation between the

DFPs or HWTCs and the stiffness parameter of the rotational spring is insignifi-

cant. It is also noted that the third DFP correlates with the stiffness parameter of

the translational spring; in the case of the rotational spring, the eighth DFP (out

of the first eight DFPs) correlates the most with the stiffness parameter.

Figure 6.4: Correlation between the stiffness parameters (kt, kr) and the DFPs (left) or
the HWTCs (right).

Taking into account the results of the correlation analysis (Figure 6.4), the

following datasets were formed:

Table 6.1: Configurations of the datasets for stiffness parameter prediction.

Set Feature Feature

number nature coefficients

1 ki
2 i = 1, ..., 8

2 ki
2 i = 6, 7, 8

3 hj j = 1, ..., 16

4 ki
2,hj i = 1, j = 1, ..., 16

5 ki
2,hj i = 3, j = 1, ..., 16

6 ki
2, hj i = 8, j = 1, ..., 16

Before providing the machine learning methods with the data, the calculated

values were scaled within the range of zero and one using (5.1). Each dataset was

split into two sets: the training set with 2400 records and the test set with 600

records. The comparison of different training models was made on the bases of

the MSE (2.14).
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6.2.2 Feed-forward neural networks with back propagation

In the present simulation study, the stiffness parameters of the springs were pre-

dicted by feed-forward back propagation ANNs with one hidden layer. The net-

works were trained using one of the training functions given in Table 2.1. Taking

into account the results published in [Fekl 13b, Fekl 14], it was proposed to predict

the stiffness parameter of the springs one-by-one (one output per network). The

number of the hidden neurons was gradually increased from 10 to 50 with a step

of 10 in order to select the most promising network structure. The differentiable

transfer function in the hidden layer was Elliot sigmoid; the linear transfer func-

tion was used in the output layer. The training of the ANN was stopped when

an acceptable level of error was achieved (MSE = 1e-4), or when the number of

the iterations exceeded the preset maximum (epoch = 1000), or the number of the

validation checks reached the predefined value (validation checks = 6).

Tables 6.2 and 6.3 summarise the results of different trainings. Each row of

the tables shows the lowest MSE of the five-fold cross-validation using a particular

training function; the number of the hidden nodes are given in the parentheses.

Table 6.2: The lowest MSE of the five-fold cross-validation using a particular training
function and dataset to predict the stiffness parameter of the translational spring kt.

Func. Set 1 Set 2 Set 3 Set 4 Set 5 Set 6

LM 6e-7(10) 3e-4(20) 3e-4(20) 4e-4(10) 3e-6(50) 1e-5(10)

SCG 3e-4(10) 8e-4(10) 1.4e-3(30) 7e-4(20) 2e-4(30) 6e-4(10)

RP 7e-4(20) 6e-4(50) 7e-4(10) 7e-4(10) 5e-5(40) 1e-4(10)

BFGS 2e-4(10) 6e-4(40) 6e-4(50) 6e-4(50) 7e-5(40) 9e-5(10)

BR 5e-8(20) 3e-4(40) 1e-4(10) 3e-4(20) 5e-7(30) 1e-5(40)

Table 6.3: The lowest MSE of the five-fold cross-validation using a particular training
function and dataset to predict the stiffness parameter of the rotational spring kr.

Func. Set 1 Set 2 Set 3 Set 4 Set 5 Set 6

LM 2.22e-2(50) 2.5e-3(50) 8.32e-2(10) 8.29e-2(10) 6.82e-2(40) 2.08e-2(50)

SCG 5.29e-2(30) 5.01e-2(10) 8.36e-2(10) 8.35e-2(10) 8.39e-2(10) 7.12e-2(20)

RP 4.70e-2(30) 3.01e-2(50) 8.37e-2(10) 8.38e-2(40) 8.36e-2(20) 6.14e-2(40)

BFGS 3.84e-2(40) 1.81e-2(40) 8.30e-2(40) 8.34e-2(20) 8.05e-2(30) 5.10e-2(40)

BR 4.4e-3(10) 1.1e-3(10) 8.24e-2(20) 8.17e-2(30) 6.34e-2(20) 8.4e-3(20)

According to the results, the stiffness parameter of the rotational spring was

more challenging to predict than the stiffness parameter of the translational spring.

The most accurate predictions of the stiffness parameter of the translational spring

were made by the ANNs with 20 hidden nodes trained by the Bayesian regularisa-
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tion. If the ANN was provided with the first eight DFPs (dataset 1), an average

MSE was 5e-8 and the R-value was 1.00. The most accurate predictions of the

stiffness parameter of the rotational spring were made by the ANN with ten hid-

den neurons trained by the Bayesian regularisation using the sixth, seventh and

eight DFPs (dataset 2). The MSE of the five-fold validation was 1.1e-3 and the

R-value was 9.934e-1.

Furthermore, the results in Table 6.2 indicated that the combination of the

third DFP and 16 HWTCs (dataset 5) and the ANN with ten hidden neurons

trained by the Bayesian regularisation also produced quite accurate results on the

stiffness parameter of the translational spring (MSE was 5e-7 and the R-value was

1.00). The other results based on the HWTCs or a combination of the HWTCs

and DFPs were around e-4 or e-5. According to Table 6.3, the combination of

the eighth DFP and 16 HWTCs (dataset 6) and the ANN with 20 hidden nodes

trained by the Bayesian regularisation produced relatively accurate results on the

stiffness parameter of the rotational spring in comparison with other combinations

of the DFPs and the HWTCs (MSE was 8.4e-3 and the R-value was 9.482e-1). The

other results based on the HWTCs or a combination of the HWTCs and DFPs

were around e-2. The observations tied in the correlation analysis (Figure 6.4).

Next, two of the most promising ANNs trained by the Bayesian regularisation

were merged into a complex approach and examined on the test set with 600

records. The first ANN predicted the stiffness parameter of the translational

spring. The ANN had 20 hidden nodes; it was trained on the records which

contained eight DFPs. The second ANN predicted the stiffness parameter of the

rotational spring. The ANN had ten hidden nodes; it was provided with the records

which contained the sixth, seventh and eighth DFPs. The results are shown in

Figure 6.5. For clarity and descriptive reasons, the stiffness parameters are shown

in the unscaled format. In the case of the stiffness parameter of the translation

spring, the R-value was 1.00. The absolute error was less than 0.006 in 600 cases.

In the case of the stiffness parameter of the rotational spring, the R-value was

1.00. The absolute error was less than 20 in 593 cases.

For the comparison, Figure 6.6 shows the unscaled results of the predictions

based on the combined data of the DFP and HWTCs. The predictions were made

by the ANN trained by the Bayesian regularisation. In the case of the translational

spring, the ANN had ten hidden neurons; it was provided with the testing data

formed according to dataset 5. The R-value was 1.00, and the absolute error was

less than 0.5 in 592 cases. In the case of the rotational spring, the ANN had 20

hidden neurons; it was provided with the testing data formed according to dataset

6. The R-value was 9.7568e-1, and the absolute error was less than 80 in 368 cases.
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(a) Translational spring stiffness. (b) Rotational spring stiffness.
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(c) Translational spring stiffness.
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(d) Rotational spring stiffness.
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(e) Observed and predicted stiffness parameters of the
translational and rotational springs.

Figure 6.5: The results of the ANNs trained to predict stiffness parameters of the trans-
lational (kt) and rotational (kr) springs using the DFPs.
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(a) Translational spring stiffness. (b) Rotational spring stiffness.
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(c) Translational spring stiffness.
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(d) Rotational spring stiffness.
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(e) Observed and predicted stiffness parameters of the
translational and rotational springs.

Figure 6.6: The results of the ANNs trained to predict stiffness parameters of the trans-
lational (kt) and rotational (kr) springs using the HWTCs.
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In comparison with the results presented in [Fekl 13b, Fekl 14], the HWTCs

did not produce accurate predictions of the stiffness parameters of the springs.

The reasons could be seen in the scope of the task. In the previous articles, the

rotational spring parameter was fixed to a particular value (kt = 10). In the

present simulation study, the stiffness parameter of both springs was predicted

sequentially.

6.2.3 Random forest

Next, the previous simulation study was examined using the RFs. The following

RF configurations were considered:

• the number of predictors in samples (8 in dataset 1, 3 in dataset 2, or 16 in

dataset 3, or 17 in datasets 4, 5, 6);

• the number of predictors without replacement in samples p (1/6, 1/2 and

2/3 of the predictors in the pattern or all);

• the number of trees (10, 20, 30, 40, 50, 75, 100, 150 , 200, 250, 300, 400,

500, 750, 1000).

The five-fold cross-validation was conducted on the datasets described in Ta-

ble 6.1. Each set contained 2400 records. Table 6.4 shows the MSE and the

corresponding RF configuration which produced the lowest error.

Table 6.4: The lowest MSE and the configuration of the corresponding RF provided with
a particular dataset to predict the stiffness parameters of the translational and rotational
springs.

Parameter Dataset Predictors p Nr of MSE

in a pattern trees

kt dataset 1 8 6 50 5e-6

dataset 2 3 3 150 8e-4

dataset 3 16 11 200 2e-4

dataset 4 17 8 100 2e-4

dataset 5 17 17 10 1e-5

dataset 6 17 17 400 1e-4

kr dataset 1 8 8 150 1.5e-3

dataset 2 3 3 200 2.2e-3

dataset 3 16 16 50 1.54e-2

dataset 4 17 17 300 1.5e-2

dataset 5 17 17 250 1.34e-2

dataset 6 17 17 1000 3.2e-3
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Similar to the results produced by the ANNs, the stiffness parameter of the

rotational spring was harder to predict than the stiffness parameter of the transla-

tional spring. Also, the DFP-based dataset produced the most promising results.

The accuracy of the stiffness parameter predictions was MSE = 5e-6, R = 9.999e-1

for the translational spring and MSE = 1.5e-3, R = 9.912e-1 for the rotational

spring. The corresponding predictions based on the combination of the HWTCs

and the DFP were MSE = 1e-5, R = 9.999e-1 (dataset 5) and MSE = 3.2e-3,

R = 9.817e-1 (dataset 6). The results tied in the correlation analysis (Figure 6.4):

the third DFP correlated the most with the stiffness parameter of the translational

spring and the eights DFP correlated the most with the stiffness parameter of the

rotational spring.

Next, two of the most promising RFs were merged into a complex approach

and examined on the test set with 600 records. The first RF was trained on the

records which contained eight DFPs. The second RF was provided with the records

which contained the sixth, seventh and eighth DFPs. The results are shown in

Figure 6.7. For clarity and descriptive reasons, the stiffness parameters are shown

in the unscaled format. In the case of the stiffness parameter of the translation

spring, the R-value was 9.999e-1, and the absolute error was less than 2 in 583

cases. In the case of the stiffness parameter of the rotational spring, the R-value

was 9.991e-1, and the absolute error was less than 151 in 187 cases.

For the comparison, Figure 6.8 shows the unscaled results of the predictions

based on the combined data of the DFP and HWTCs. In the case of the trans-

lational spring, the RF was provided with the testing data formed according to

dataset 5. The R-value was 9.999e-1; the absolute error was less than 2.2 in 583

cases. In the case of the rotational spring, the RF was provided with the testing

data formed according to dataset 6. The R-value was 9.820e-1; the absolute error

was less than 200 in 217 cases.

6.3 Discussion and conclusions

A large number of studies are focused on the Euler-Bernoulli beams with clas-

sical boundary conditions. From the viewpoint of engineering, elastic boundary

supports are more significant and practical. Motivated by such limitation, the

Euler-Bernoulli beam resting on elastic supports were investigated in the present

chapter. The supports were simulated by the elastic spring model.

The solution procedure for predicting the stiffness parameters of the elastic

supports was developed by generalising the procedure described in the previous

119



(a) Translational spring stiffness. (b) Rotational spring stiffness.
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(c) Translational spring stiffness.
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(d) Rotational spring stiffness.
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(e) Observed and predicted parameters of the translational
and rotational stiffness parameters.

Figure 6.7: The results of the RF trained to predict stiffness parameters of the transla-
tional (kt) and rotational (kr) springs using the DFPs.
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(a) Translational spring stiffness. (b) Rotational spring stiffness.
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(c) Translational spring stiffness.
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(d) Rotational spring stiffness.
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(e) Observed and predicted parameters of the translational
and rotational stiffness parameters.

Figure 6.8: The results of the RF trained to predict stiffness parameters of the transla-
tional (kt) and rotational (kr) springs using the HWTCs.
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chapter. The solution was based on the DFPs and the first mode shape decompo-

sition into the HWTCs. The elastic parameters of the supports were predicted by

the ANNs and the RFs.

The simulation study indicated that the stiffness parameter of the rotational

spring was more harder to predict than the stiffness parameter of the translational

spring. The results of the predictions showed that the overall efficiency of the

predictions based on the DFPs was substantially higher (over e-5) and the iden-

tified parameters were similar to the expected ones than the results based on the

HWTCs. Hereof, the hypothesis on the sensitivity of the Haar wavelet transform

coefficients towards the stiffness parameters was not confirmed. This could be

explained by the fact that the HWTCs had a low correlation with the stiffness

parameter of the springs.
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Chapter 7

Point mass

The inverse problem of determining the location and mass ratio of a concentrated

point mass attached to the homogeneous Euler–Bernoulli beam is considered in

this chapter. Under the assumption that the size of a point mass is small compared

to the total mass of the beam, it is shown that the problem can be solved in terms

of point-mass-induced changes in the natural frequencies or mode shapes. The

predictions of the point mass location and mass ratio are made by the artificial

neural networks (ANNs) or the random forests (RFs). The dimensionless natural

frequency parameters (DFPs) or the first mode shape transformed into the Haar

wavelet transform coefficients (HWTCs) are used at the inputs of the machine

learning methods. The foundation for this chapter laid [Hein 09].

7.1 Related work

Effective methods for timely identification of concentrated point masses on vibrat-

ing beams is an issue of increasing interest in several fields, such as electronics,

aerospace, naval engineering. Some applications with an attached mass to a vibrat-

ing beam are plane wings with a turbine, slabs supporting engines or motors which

are not directly accessible from the exterior. Apart from the applications, many

engineering simulations require numerical computations to describe the behaviour

of the structures carrying their own weight and imposed loading. Such simulations

help analyse the influence of concentrated masses on the resonant frequencies of

beams.

Numerous papers have been published on the exact and approximate analy-

ses of the concentrated mass and vibrating systems. The problem of a vibrating

123



simply supported beam carrying a concentrated mass at its centre was solved an-

alytically by Chen [Chen 63] using the method of the frequency determinant. It

was, however, claimed that, with this method, the number of the beam equations

increased as the number of the attached masses increased. The eigenfunction of

the beam–mass systems was obtained by satisfying the differential equation of

motion and by imposing the corresponding boundary and compatibility condi-

tions associated with the masses by Rosa et al. [Rosa 96]. The Laplace trans-

formation technique was used to formulate the frequency equation for elastically

restrained beams carrying intermediate concentrated masses by Liu et al. [Liu 88].

Laura et al. [Laur 83] used polynomial coordinate functions to study continuous

beams subjected to the axial forces and carrying concentrated masses. Hamdan et

al. [Hamd 94] compared the results of the exact solution with the Rayleigh-Ritz

method, the Galerkin method and the FEM. The comparison showed that the

FEM was preferable due to numerical stability, accuracy and convergence rate for

small attached inertia values.

Extensive research on determining the natural frequencies of vibrating beams

and plates with attached loading was conducted by Low. He derived two analyt-

ical expressions using eigenfunctions and Rayleigh’s method [Low 93, Low 97c].

The methods were compared to each other in [Low 03]. Low concluded that the

Rayleigh method with simple shape functions could provide good approximation

and thus could replace solving the eigenfrequency equations. The time saving by

using Rayleigh’s method became more significant as the number of masses carried

by the beam increased. Low [Low 94] also presented the research on an equivalent-

center method for obtaining the frequencies of the loaded beams. The method was

complemented with the use of the strain energy and the stiffness ratios [Low 01].

The Rayleigh-Ritz method was used in the studies on rectangular plates and beams

carrying a concentrated mass [Low 97a, Low 97b, Low 98]. Low et al. presented

both experimental and theoretical results and showed that the correlation between

theory and experiments was much improved when the stretching effect was con-

sidered. In the latest research on the beam system carrying a single mass, Low

calculated the eigenvalues by virtue of Dunkerley’s formula [Low 00].

A large number of research papers propose machine learning methods for pre-

dicting the natural frequencies of beams and plates carrying a point mass (a

non-inverse problem). The basic idea in such vibration-based machine learning

approaches relies on the fact that the vibration-based parameters depend on the

physical properties of the system structures. Changes in the mass ratio and lo-

cation result in detectable alterations in the natural frequencies, displacements or

mode shapes. Özkaya and Pakdemirli [Ozka 99] used a feed-forward back propa-
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gation ANN, the mass ratio and the location of the point mass to predict the first

five natural frequencies of the beam. Nikoo et al. [Niko 18] used ANNs to model

the frequency of the first mode.

Many modern engineering problems require the identification of mass load-

ing on the basis of the dynamic responses (an inverse problem). The solution

uniqueness of such problems is not guaranteed; therefore, approximation methods

are needed. Hosseini and Abbas [Hoss 12] studied the deflection of the clamped

beams struck transversely by a mass using the linear regression and various ANNs.

Material properties and geometry of the beam were selected as the independent

variables of the model to predict the deflection of the beam. It was found out that

a simple feed-forward back propagation network was either as good as or even

slightly better than the linear regression or other sophisticated networks, such as

the cascade-forward back propagation network or the radial basis function net-

work. The analysis of the sensitivity of different variables showed that raw input

variables performed better than (non-normalised) grouped variables.

Other studies on the natural frequencies of beams and rods carrying masses

can be found in [Nagu 02, Rosa 03, Su 05, Baro 15]. However, none research has

been found on the concentrated point mass identification using the mode shape

transformed into a set of the HWTCs. The idea of the wavelet packets and ANN-

based parameter identification originates in [Hein 07]. This chapter demonstrates

that both the ANNs and the RFs, and the DFPs and the HWTCs are capable

of predicting the mass ratio and location of the attached concentrated point mass

quite precisely.

7.2 Quantification of the point mass

In this simulation study, a homogeneous Euler–Bernoulli type cantilever carrying a

concentrated point mass in different locations was investigated. The beam length

was scaled to 1. A point mass of arbitrary mass ratio (M) was modelled to occur

at the arbitrary point of the beam (L).

7.2.1 Datasets

For the present task, 860 different cases of a point mass placed on the cantilever

were considered. The mass ratio and the location of the point mass were chosen

randomly. The point mass ratios were chosen in the range from one to 100; the lo-

cations were chosen in the scaled range from 0.001 to 0.991 (Figure 7.1). The corre-

sponding eight DFPs (ki, i = 1, ..., 8) for each concentrated point mass were calcu-
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Figure 7.1: The dataset of the point masses.

lated using the equations from Subsection 3.1.3. Sixteen HWTCs (hj , j = 1, ..., 16)

were calculated using (2.7) - (2.10) and normalisation. The calculated values of

the first DFPs and the mode shapes had good agreement with the results obtained

by Low [Low 94]. The confirmation can also be seen in Figure 7.2 which displays

the scaled first mode shape of each case and the first DFPs. The smooth graphs

indicate the accuracy of the calculations. Here it should be noted that the cal-

culation of 16 HWTCs was 22 times faster than the calculation of the first eight

DFPs.
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Figure 7.2: The scaled first mode shapes (left) and the first DFPs (right) of the dataset.

The correlation between the DFPs and the point mass ratios/locations are

shown in Figure 7.3 (left); the correlation between the HWTCs and the point mass

ratios/locations are shown in Figure 7.3 (right). The mass ratio hardly correlates

to any feature. The point mass location closely correlates to the first DFP, or the

first, fourth, fifth, eighth, ninth and sixteenth HWTCs (R > |0.7|).
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Figure 7.3: Correlation between point mass parameters (L, M) and the first eight DFPs
(left) or 16 HWTCs (right).

Next, the influence of each independent parameter on the point mass quantifi-

cation was analysed: each input neuron was eliminated in turns and its influence

on the prediction was evaluated using the mean square error (MSE). The network

architecture considered in the sensitivity analysis had one hidden layer with ten

hidden neurons. The maximum value of epochs was set to 1000. The training

function was Levenberg-Marquardt, the transfer function in the hidden layer was

Elliot sigmoid, the linear transfer function was used in the output layer. In the

test, the weights of the ANNs were set to the same initial values. The results are

shown in Tables 7.1 and 7.2.

Table 7.1: Influence of each DFP on the point mass quantification (M - mass ratio, L -
location).

k1 k2 k3 h4 k5 k6 k7 k8

M 7.19e-2 1.28e-2 6.30e-3 4.00e-3 4.80e-3 9.20e-3 5.00e-3 6.40e-3

L 8.60e-3 1.60e-3 1.00e-4 4.00e-4 7.00e-4 6.00e-4 5.00e-4 1.00e-4

Table 7.2: Influence of each HWTC on the point mass quantification (M - mass ratio, L
- location).

h1 h2 h3 h4 h5 h6 h7 h8

M 7.00e-2 7.39e-2 7.42e-2 7.6e-2 6.35e-2 9.45e-2 7.38e-2 7.42e-2

L 2.10e-5 2.01e-6 4.22e-5 8.83e-6 4.94e-5 5.18e-5 4.09e-5 4.46e-5

h9 h10 h11 h12 h13 h14 h15 h16

M 6.97e-2 7.97e-2 7.86e-2 7.60e-2 8.18e-2 7.03e-2 7.69e-2 6.48e-2

L 2.00e-5 3.94e-5 2.62e-5 8.07e-6 3.83e-5 3.57e-6 1.89e-5 3.12e-5

The results showed that the first DFP played an important role in the point

mass quantification - if the first DFP was eliminated from the input feature vector,

the prediction error increased. This observation coincided with the correlation

analysis (Figure 7.3). Concerning the HWTCs, the sixth coefficient fluctuated the

predictive accuracy of the point mass.
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Since the results of the analysis were slightly different, the machine learning

methods were examined on the datasets described in Table 7.3.

Table 7.3: Configurations of the datasets for the point mass prediction.

Set Parameter Feature Feature
number to predict nature coefficients

1 M ki
2 i = 1, 2, 6

2 M ki
2 i = 1, 2, 3, 4, 8

3 M ki
2 i = 1, ..., 8

4 M hj j = 1, 2, 3, 4, 6, 7, 8, 10, 11, 12, 13, 14, 15
5 M hj j = 1, ..., 16
6 M ki

2, hj i = 1, j = 1, ..., 16
7 L ki

2 i = 1, 3, 2, 4
8 L ki

2 i = 1, ..., 8
9 L hj j = 1, 5, 9, 3, 4, 8
10 L hj j = 1, ..., 16
11 L ki

2, hj i = 1, j = 1, ..., 16

In the following machine learning tests, 860 patterns were divided into two

sets: 774 patterns were used for training and 86 patterns were held back for

the independent test and method evaluations. Before applying the data into the

training and testing of the machine learning methods, the values were scaled within

the range of zero and one.

7.2.2 Feed-forward neural networks with back propagation

In the present simulation study, a feed-forward back propagation ANN with one

hidden layer was used. The network was trained using one of the training functions

given in Table 2.1.

Taking into account the results published in [Fekl 09], the point mass param-

eters were predicted one-by-one (one output per network). The number of the

hidden neurons was increased gradually from 10 to 50 with an increment of 10

neurons in order to select the most promising network structure. The differen-

tiable transfer function in the hidden layer was Elliot sigmoid; the linear transfer

function was used in the output layer. The training of the ANN was stopped when

an acceptable level of error was achieved (MSE = 1e-4), or when the number of

the iterations exceeded the preset maximum (epoch = 1000), or the number of the

validation checks reached the predefined value (validation−checks = 6).

Tables 7.4 and 7.5 summarise the results of different trainings. Each row

describes the network configuration which produces the lowest MSE of the five-

fold cross-validation using a particular training function, the number of hidden

neurons and the dataset.
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Table 7.4: The lowest MSE of five-fold cross-validation using a particular training function,
the number of hidden neurons and the dataset features to predict the mass ratio.

Training function MSE Hidden neurons Dataset

LM 2.6e-3 10 3

SCG 2.17e-2 50 2

RP 1.64e-2 30 3

BFGS 1.82e-2 50 3

BR 2.1e-3 10 3

Table 7.5: The lowest MSE of five-fold cross-validation using a particular training function,
the number of hidden neurons and the dataset features to predict the location.

Training function MSE Hidden neurons Dataset

LM 3e-6 10 11

SCG 2e-4 40 10

RP 1.64e-2 50 10

BFGS 6e-4 50 10

BR 3e-7 10 10

According to the results, the mass ratio was harder to predict than the point

mass location. It was noted that the dataset with eight DFPs performed better

on the prediction of the mass ratios (MSE = 2.1e-3); however, the dataset of

16 HWTCs performed better on the prediction of the location (MSE = 3e-7). An

optimal network structure had ten hidden neurons and the Bayesian regularisation

training function.

Next, two ANNs with ten hidden neurons and the Bayesian regularisation

training function were examined on the set of independent data. One ANN was

trained on the first eight DFPs to predict the mass ratios, and the second ANN was

trained on 16 HWTCs to predict the locations of the concentrated point masses.

The histogram of errors, correlation and the predicted values against the target

(observed) values are plotted in Figure 7.4. For clarity and descriptive reasons,

the mass ratios are shown in the unscaled format. The MSE of the point mass

localisation was 2e-7; the MSE of the mass ratio quantification was 1.6e-3. The

R-values were 1.00 and 9.61e-1, respectively. The absolute error of the point mass

localisation was less than 0.0015 in 85 cases out of 86; the absolute error of the

mass ratio quantification was less than 0.9 in 85 cases.
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(a) Point mass ratios. (b) Point mass locations.
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(c) Mass ratio prediction.
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(d) Location prediction.
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(e) Predicted and target parameters of point masses.

Figure 7.4: Results of two ANNs trained to predict mass ratios and locations of the
concentrated point masses using the DFP and the HWTCs.
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7.2.3 Random forest

Next, the previous simulation study was examined using the RFs. The following

RF configurations were considered:

• the number of predictors without replacement in samples p (1/6, 1/2 and

2/3 of the predictors in the pattern or all);

• the number of trees (25, 50, 75, 100, 150 , 300, 500, 750, 1000).

The five-fold cross-validation was conducted on the datasets described in Table 7.3.

Each set contained 774 records. Table 7.6 shows the lowest MSE and the config-

urations of the corresponding RF.

Table 7.6: The lowest MSE of five-fold cross-validation to quantify point mass using the
RFs and a particular dataset.

Parameter Dataset Predictors p Nr of MSE
in a pattern trees

M DFPs 8 8 75 3.9e-3
HWTCs 16 8 500 8.76e-2

L DFPs 8 6 50 2e-4
HWTCs 16 16 150 6e-6

As in the case of the ANNs, the RFs produced accurate results if they were

provided either with the DFPs (dataset 3) or the HWTCs (dataset 10); the combi-

nation of the DFPs and HWTCs did not produce promising results. In the case of

training on the DFPs, the lowest MSE of the point mass localisation was 2e-4; the

result was obtained using an RF with 50 trees and six DFPs without replacement.

The lowest MSE to estimate the mass ratios was 3.9e-3; the result was obtained

using an RF with 75 trees and all DFPs without replacement. In the case of

training on the HWTCs, the lowest MSE to localise the point masses was 6e-6.

The result was obtained using an RF with 150 trees and all HWTCs were used

at the nodes without replacement. The lowest MSE to estimate the mass ratio of

the point masses was 8.67e-2 using an ensemble of 500 trees and eight HWTCs

without replacement.

Next, two RFs were merged to form a combined approach of the DFPs and

the HWTCs. Namely, the locations were predicted by the ensemble of 150 trees

provided with the HWTCs, and the mass ratios were predicted by the ensemble

of 75 trees provided with the DFPs. The combined approach was tested on the

testing set with 84 records. The results are visualised in Figure 7.5e. The MSE

of the point mass localisation was 6e-6, the R-value was 9.998e-1. The absolute
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(a) Point mass ratios. (b) Point mass locations.
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(c) Mass ratio prediction.
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(d) Location prediction.
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Figure 7.5: The results of two ensembles of the RFs trained to predict mass ratios and
locations using the DFP and the HWTCs.
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error was less than 0.007 in 84 cases. The MSE of the mass ratio estimation was

3.7e-3, the R-value was 9.781e-1. The absolute error was less than 0.5 in 34 cases.

On the whole, as in the case with the ANNs, the RFs provided with the dataset

of DFPs produced more accurate predictions of the mass ratios; meanwhile, the

RFs provided with the dataset of HWTCs produced precise predictions of the

locations of the concentrated point masses.

7.2.4 Discussion and conclusions

The development of effective methods for timely identification of a concentrated

point mass on vibrating beams is an increasing interest in several fields. Motivated

by the need for a fast and accurate tool for quantifying the concentrated point

masses, an Euler-Bernoulli type cantilever was investigated in the present chapter.

The concentrated point mass quantification solution was based on the DFPs

and the first mode shape decomposition into 16 HWTCs. The ANNs and the RFs

predicted the mass ratio and location of the point masses.

According to Tables 7.4, 7.5, 7.6 and Figures 7.4, 7.5, the ANN trained by

the Bayesian regularisation training function was either as good as or even slightly

better than other ANNs or RFs. The results also indicated that using the HWTCs

at inputs might be more beneficial for the localisation of the concentrated point

masses than the DFPs. On the other hand, the DFP-based methods predicted the

mass ratio of the concentrated point masses more precisely.
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Chapter 8

Delamination

The inverse problem of determining the delamination status (location and size) in

the composite non-homogeneous Euler–Bernoulli type beam is considered in this

chapter. It is shown that the delamination status can be predicted using the first

eight natural frequency parameters (NFPs) or the first mode shape transformed

into 16 Haar wavelet transform coefficients (HWTCs) by the artificial neural net-

works (ANNs) or the random forest (RFs). The present simulation study is a

general treatment to the problems stated in [Hein 11b, Fekl 12].

8.1 Related work

Laminate is a type of material made of two or more layers joined by adhesive. The

layers can be of the same material, such as laminated glass, plywood, or different

materials, such as a sheet of glass sandwiched between plastic. In comparison to

homogeneous beams, the combination of materials facilitates to get a laminate

with higher stiffness properties as well as improved fatigue resistance, functional

properties and durability of the structural element. Due to the advanced proper-

ties, the laminates are frequently used in mechanical, civil, marine, automotive,

and other high-performance structures [Jafa 13].

Despite the multiple advantages of laminates, some materials used in the layers

might be sensitive to damage. Loading, strain, stress, an impact of foreign ob-

jects, chemical corrosion, ageing, cutting or drilling may force the layers to stratify

and cause delamination. Delamination is probably the most dangerous defect in

composite materials [Pati 17]. It can appear suddenly without any prior notice

and keep developing to collapse the structural member. Composite materials with
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delamination can lose up to 60 per cent of their stiffness and remain visibly un-

changed [Pati 17]. Nevertheless, the presence of a delamination in the composite

structure affects its integrity as well as its mechanical properties [Luo 00].

According to Yang et al. [Yang 09], common non-destructive techniques, such

as ultrasonic testing and radiography are expensive for extensive use in practice.

Therefore, industries are focused on structural health monitoring (SHM) methods.

The advantage of such methods is that they allow monitoring structural integrity

online without dismantling structures. Some applications of the SHM methods

can be found in [Yam 03, Card 04, Frit 05, Tuck 11]. This chapter is focused on

one of the SHM methods which is based on the vibrations with the purpose to

quantify delaminations in beams.

The vibration-based methods use a dynamic response of the structure. In the

case of delamination, the local physical parameters of the structure, such as mass

and stiffness are changed. These local parameters influence the modal parameters

and the vibration responses of the structure.

One of the earliest models for the vibration analysis of composite beams with

delaminations was proposed by Ramkumar et al. [Ramk 79]: four Timoshenko

beams were connected at the delamination edges to simulate a composite beam

with one through–width delamination. The obtained frequencies were consistently

lower than the results of the experimental measurements. Wang et al. [Wang 82]

improved the analytical solution by including the coupling between flexural and

axial vibrations of the delaminated sublaminates. Using an isotropic beam with

splits and the classical beam model, Wang et al. derived natural frequencies

close to the experimental results. Later, Mujumdar and Suryanarayan [Muju 88]

pointed out that some mode shapes computed by Wang et al. were physically un-

acceptable because of possible overlapping between the delaminated sublaminates.

To avoid incompatibility, the sub-beams located in the delaminated region were

assumed to remain close during the vibrational motion. The model was called

the “constrained mode model” in contrast with the “free mode model” proposed

by Wang.

Delaminations and their effects on the vibration behaviour of composite beams

were investigated with the aid of the FEM in [Naga 10, Kuma 13, Jafa 13, Gowd 17].

The results showed that the natural frequencies were reduced with an increase of

the delamination size; however, the natural frequencies were higher in the simply

supported composite beams than in the cantilevers due to the increased bending

stiffness. Also, the natural frequencies of symmetric laminates were found to be

higher than of the cross-ply laminate [Gowd 17].
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Yet, the FEM-based numerical simulations are popular, they are often time-

consuming. If the input parameters need to be adjusted, even slightly, the sim-

ulations have to be re-done from scratch [Kono 18]. Recently, many researchers

have used ANNs or genetic algorithms (GAs) and shifts in frequencies to detect

various types of damage in beams. Okafor et al. [Okaf 99] trained a feed-forward

back propagation neural network (FFBPANN) on the first four natural frequen-

cies. The network had 4-10-1 neurons in its layers. The trained ANN predicted

the size of the dimensionless delamination between 0.22 and 0.82 quite accurately

(the error was close to zero), but underpredicted the dimensionless delamination

of the size below 0.08. Chakraborty [Chak 05] trained a FFBPANN on the first

ten natural frequencies. The network had 10-9-3 neurons in its layers. The trained

ANN predicted the lengthwise location, size and shape of the delamination in the

plate. The network could predict the delamination size and shape almost accu-

rately with a very small error; however, the network could not precisely predict

the delamination location. Adams [Adam 94] trained an FFBPANN using the

first five mode shapes obtained from the modal testing; the predicted values of

the axial location and size had the maximum error of 27 per cent and ten per

cent, respectively, in comparison with the measured frequencies. Watkins et al.

[Watk 02] trained an FFBPANN using the first five natural frequencies in the

feature vector to predict the lengthwise location and size of the delaminations

prescribed in the mid-plane of the cantilever (between the fourth and fifth plies).

The delamination size and location predictions had an average error of 5.9 and 4.7

per cent, respectively. Krawczuk and Ostachowicz [Kraw 02] quantified delami-

nations in composite beams using a GA by minimising the error function which

expressed the discrepancy between the measured and theoretical frequencies. It

was demonstrated that the GA could predict the delamination location and mag-

nitude at a high level of accuracy. However, in comparison to ANN, GAs-based

structural damage detection required repeatedly searching from numerous damage

parameters to find the optimal solution of the objective function (measured data)

[Nag 02]. When the measured data and the structural damage parameters to be

determined were multitudinous, the efficiency of the method was often not feasible

to online damage detection of in-service structures [Yam 03].

A large number of studies investigate a single relatively large delamination in

the mid-plane of the structural element. The solution is sought in the shifts of

the mode shapes or natural frequencies. Yet, changes in the structural dynamic

performance caused by the structural damage that is less than one per cent of the

total structural size are unnoticeable [Yang 09, Yam 03, Kim 03]. Recently, the

wavelet transform-based method for vibration signal analysis has been adopted in
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many fields due to its time-frequency localisation. Chui [Chui 97] points out that

the local singularity in the time-sequence signal can be more clearly exhibited if

the signal is decomposed with the aid of the wavelet transform. When the struc-

tural vibration response signal in the time domain is decomposed into multiple

sub-signals, the change corresponding to the structural damage in each sub-signal

may manifest notable difference, and some of the sub-signals may possess high sen-

sitivity to small damage in structures [Yam 03]. Therefore, the wavelet transform

has been applied to the vibration-based structural damage detection by several

authors [Yam 03, Yan 04, Han 05a, Zhu 06, Ruck 06a, Zhen 09]. By now, non-

sufficient interest has been paid to the discrete Haar wavelet functions, which are

mathematically the simplest wavelets. Chen and Hsiao [Chen 97, Hsia 99] have

demonstrated that these wavelets can successfully approximate the derivatives of

functions for solving differential equations. The approach has been developed

further by Lepik [Lepi 05].

In the present chapter, it is proposed to apply the Haar wavelets to the first

mode shape. According to several authors [Zou 00, Kim 03, Dera 08], the mode

shape approach is much more sensitive to the local delaminations in comparison

with the changes in natural frequencies. The ANNs or RFs are used to establish

the relationship between the structural vibration response (NFPs or HWTCs) and

the structural damage status. The results of the approaches are compared to each

other. No similar research has been found in the literature.

8.2 Quantification of the delamination

In the following simulation study, a composite cantilever made of T300/934 graphite

and epoxy with stacking sequence of [00/900]2s was considered. The dimensions

of the eight-ply beam were 127 × 12.7 × 1.016 mm3. The material properties for

the lamina were E11 = 134GPa, E22 = 10.3 GPa, G12 = 5 GPa, ν12 = 0.33 and

ρ = 1.48 × 103 kg/m3. A delamination of an arbitrary length (L2) was modelled

to occur at the arbitrary axial (L1) and ordinate (H1) locations of the beam.

8.2.1 Datasets

The basic idea of the present research was to establish an input-output relation-

ship between the modal response and the delamination status using the ANNs and

the RFs. To employ and compare the approaches, the vibration response of the

composite beam with different delaminations was calculated considering the di-

mensions of the graphite/epoxy cantilever. The delamination location values from
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the left end L1 varied from 0.001 to 0.111 metres; the values of the delamination

extension L2 were randomly set in the range from 0.001 to 0.125 metres. Since the

cantilever was vertically symmetric, only half of the cantilever layers was analysed

(Figure 8.1).
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Figure 8.1: Randomly generated delamination properties: L1 - delamination location
from the left side of the beam; L2 - delamination length.

Next, 1000 sample delamination feature indexes and the first eight NFPs

(ki, i = 1, .., 8) were calculated using equations from Subsections 3.2.2 and 3.2.3.

The calculated values of the first NFP were compared with the ones available in lit-

erature (Table 8.1). A good agreement was observed between the results obtained

in the present thesis, experiments [Shu 04a] and the FEM [Shen 90, Shu 04a].

Table 8.1: Primary frequencies of the composite cantilever.

Delamination Present Shu, Della Shen, Pierre Shu, Della
length (mm) (Hz) [Shu 04a] [Shen 90] [Shu 04a]
0.0 82.02 81.88 82.04 81.86
25.4 79.93 80.47 80.13 81.84
50.8 74.36 75.36 75.29 76.81
76.2 65.07 66.14 66.94 67.64
101.6 54.75 55.67 57.24 56.95

The HWTCs were obtained using equations from Subsections 3.2.2 and 3.2.3,

normalisation and the Haar wavelet transform (2.7) - (2.10). Each record contained

16 HWTCs and the delamination status. The first mode shape was used since it

was the most informative [Cao 11, Hein 11b].

According to the correlation analysis (Figure 8.2), the NFPs closely correlated

(R > |0.7|) to the extension of the delamination. The NFPs and HWTCs had a

moderate correlation (R > |0.4|) to the axial location of the delamination. A weak
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correlation was observed between the NFPs or HWTCs and the ordinate location

of the delamination.

Figure 8.2: Correlation between the delamination status and the NFPs (left) or the
HWTCs (right).

Taking into account the results published in [Hein 11b], three datasets were

formed. The first set of data was based on the first eight NFPs, the second dataset

was based on 16 HWTCs and the third set of data was based on the first NFP and

16 HWTCs. Before training and testing the machine learning methods, all values

were scaled within zero and one. The comparison of different predictive models

was based on the mean square error (MSE).

8.2.2 Feed-forward neural network with back propagation

Comprehensive research on various homogeneous and composite beams with de-

laminations and different boundary conditions was published in [Fekl 12]. The

investigation on the ANN architecture and training functions showed that the

ANN made the most accurate predictions with ten hidden neurons trained by

the Bayesian regularisation training function. The ANN were provided with eight

NFPs or 16 HWTCs. The predictive model worked well if one parameter was

predicted. If the ANN had to predict two parameters of the delamination status

at the same time, the prediction error notably increased. Therefore, in the present

simulation study on the delaminated graphite/epoxy cantilever, the problem of the

formulation was solved in a slightly different way. Specifically, a chain of three in-

dependent ANNs was constructed. Each ANN predicted only one parameter: the

delamination extension, the axial location and the ordinate location. The number

of hidden neurons was set to ten. The differentiable transfer function in the hid-

den layer was Elliot sigmoid; the linear transfer function was used in the output

layer. The training of the ANNs was stopped when an acceptable level of error

was achieved (MSE = 1e-4), or when the number of the iterations exceeded the

preset maximum (epoch = 1000), or the number of the validation checks reached

the predefined value (validation−checks = 6).
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The five-fold cross-validation was conducted using 850 records (150 patterns

were held back for the independent test). According to the results presented in

Table 8.2, the dataset of the NFPs was sensitive to the extent of the delamina-

tion (MSE = 3.2e-3, R = 9.729e-1) and its ordinate location (MSE = 8.02e-2,

R = 6.889e-1). The dataset of the first NFP and 16 HWTCs quantified the axial

location of the delamination more precisely (MSE = 1.2e-3, R = 9.931e-1) than

the other two datasets.

Table 8.2: MSE of five-fold cross-validation to predict the axial location (L1), the ordinate
location (H1) and the extend of the delamination (L2) using various datasets by ANNs.

Parameter Dataset 1 Dataset 2 Dataset 3

to predict (8 NFPs) (16 HWTCs) (16 HWTCs

& 1st NFP)

L1 5.9e-3 3.4e-3 1.2e-3

L2 3.2e-3 6.8e-3 3.3e-3

H1 8.02e-2 1.131e-1 9.25e-2

Following on from the results presented in Table 8.2, a chain of three ANNs

was constructed and examined on the testing set of 150 records:

1. the delamination axial location was predicted by the ANNs provided with

the records from dataset 3;

2. the delamination extent was predicted by the ANNs provided with records

from dataset 3 (the choice was motivated by the computation time: despite

a slightly better performance on the NFPs, the calculation of the HWTC

was significantly faster than the calculation of the first eight NFPs);

3. the delamination ordinate location in the beam was predicted by the ANNs

trained on the dataset 1.

The histogram of errors and correlation are plotted in Figure 8.3. For clarity

and descriptive reasons, the delamination characteristics are shown in the unscaled

format. The MSE of the axial localisation was 9e-4; the MSE of the delamina-

tion extent was 2.4e-3; the MSE of the ordinate localisation was 7.83e-2. The

R-values were 9.945e-1, 9.816e-1 and 6.917e-1, respectively. The absolute error

of the quantification of the delamination axial localisation was less than 0.012 in

all 150 testing cases; the absolute error of the quantification of the delamination

extent was less than 0.014 in 148 cases; the absolute error of the quantification of

the ordinate location was less than 0.0003 in 150 cases.
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According to Figure 8.3, the extent of the delamination and its location from

the left side of the cantilever was easier to predict than the ordinate location of the

delamination. This could be explained by the fact that one NFP or HWTC based

feature vector might correspond to different ordinate location values. Therefore,

the following assumption was made: once the delamination extent was predicted,

it could also be used as an input feature. In other words, in order to predict the

ordinate location of the delamination, its extent and the first eight NFPs had to

be identified. The assumption about improving the accuracy of the ordinate local-

isation prediction by adding the knowledge of the delamination extent improved

the results: the MSE decreased from 7.83e-2 to 2.42e-2 (Figure 8.3 (g) and (h)).

An assumption about improving the accuracy of the ordinate localisation predic-

tion by adding the knowledge of the delamination axial location was disproved:

MSE = 6.53e-2, R = 7.540e-1 (Figures 8.3 (i) and (j)).
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Figure 8.3: Correlation and error distribution of the predicted delamination statuses by
the ANNs: (a)-(b) axial location; (c)-(d) delamination length; (e)-(f) ordinate location; (g)-
(h) delamination ordinate location predicted with the additional input feature L2; (i)-(j)
delamination ordinate location predicted with the additional input feature L1.
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8.2.3 Random forest

Next, the previous simulation study was examined using the RFs. The following

RF configurations were considered:

• the number of predictors in samples (eight NFPs or 16 HWTCs or 17 which

are NFP and 16 HWTCs);

• the number of predictors without replacement in samples p (1/6, 1/2 and

2/3 of the predictors in the pattern or all);

• the number of trees (25, 50, 75, 100, 150 , 300, 500, 750, 1000).

The most promising results are shown in Table 8.3. Each row of the table

shows the MSE of the five-fold cross-validation and the configurations of the cor-

responding RFs. The common tendency of the delamination status quantification

by the RFs was similar to the ANNs. The dataset based on 16 HWTCs and the

first NFP produced more precise results on the delamination size (MSE = 1.2e-3,

R = 9.899e-1) and its axial location (MSE = 5.946e-4, R = 9.967e-1); while the

dataset based on the first eight NFPs produced more accurate results on the de-

lamination ordinate location (MSE = 7.35e-2, R = 7.183e-1).

Table 8.3: The lowest MSE of five-fold cross-validation to predict delamination status by
RFs.

Parameter Dataset Predictors p Nr of MSE

in a pattern trees

L1 dataset 1 8 5 25 9e-4

dataset 2 16 8 25 7e-4

dataset 3 17 9 75 5e-4

L2 dataset 1 8 5 25 1.9e-3

dataset 2 16 16 25 3.4e-3

dataset 3 17 17 50 1.2e-3

H1 dataset 1 8 4 500 7.35e-2

dataset 2 16 16 150 9.45e-2

dataset 3 17 17 100 7.92e-2

Three of the most promising RFs were merged to form a combined approach

of the NFPs and the HWTCs. The results of predicting 150 test delaminations

are plotted in Figure 8.4. The axial location of the delaminations was predicted

by the ensemble of 75 trees trained on the HWTCs and the first NFP. The MSE

was 4e-4, the R-value was 9.974e-1 and the absolute error was less than 0.009 in

149 cases. The length of the delaminations was predicted by the ensemble of 50

trees using the HTWTCs and the first NFP. The MSE was 1.2e-3, the R-value was
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9.903e-1, and the absolute error was less than 0.009 in 145 cases. The ordinate

location of the delaminations was predicted by the ensemble of 500 trees using the

NFPs. The MSE was 7.34e-2, the R-value was 7.198e-1, and the absolute error

was less than 0.009 in 148 cases.

Figure 8.4 (g)-(j) were based on the assumption about improving the prediction

accuracy of the delamination ordinate locations by adding the knowledge of the

delamination axial location or its length. As in the case with the ANNs, the

knowledge of the delamination axial location did not improve the accuracy of the

predictions. If the length of the delamination was added into the feature vector,

the accuracy increased significantly. The MSE decreased from 7.34e-2 to 3.72e-2.

The absolute error was less than 0.0002 in 150 cases.
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Figure 8.4: Correlation and error distribution of the predicted delamination statuses by
the RFs: (a)-(b) axial location; (c)-(d) delamination length; (e)-(f) ordinate location; (g)-
(h) delamination ordinate location predicted with the additional input feature L2; (i)-(j)
delamination ordinate location predicted with the additional input feature L1.
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8.3 Discussion and conclusions

Delamination is internal damage that is not visible from the outside. Nevertheless,

the presence of delamination in the laminate reduces the stiffness of the structure,

its strength and the natural frequencies. Therefore, the development of effective

methods for timely identification of the delamination is very actual.

In the present chapter, the Euler-Bernoulli composite cantilever was inves-

tigated for delamination quantification. In comparison to [Hein 11b], the Haar

wavelet transform and machine learning methods were extended to a more com-

plex inverse problem - delamination localisation (lengthwise and height-wise) and

its extension. The five-fold cross-validation revealed that the delamination axial

localisation and its extension were more precisely predicted if the feature vector

contained both the first NFP and 16 HWTCs. However, the delamination ordi-

nate localisation was more precisely predicted if the feature vector contained eight

NFPs. The prediction of the delamination ordinate localisation could be improved

if the feature vector contained the value of the delamination extent.

On the whole, the NFPs/HWTCs and machine learning allowed fast and ac-

curate predictions of the delamination status even if the delamination size was

less than one per cent of the beam length. Noteworthy, the RFs were capable

of learning the information regarding the induced delamination in the laminate

notably better than the ANNs.
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Chapter 9

Conclusion

As one of the oldest structural elements, beams are widely used in many differ-

ent fields of engineering. Hereof, modelling the dynamic behaviour of intact and

damaged beam type structures is a vast subject. The present thesis focuses on

the Euler–Bernoulli type beams since it is the oldest and yet widely used theory

about slender beams.

The interest in detecting and quantifying damage at the earliest possible stage

is pervasive throughout civil and military engineering. Visual or localised exper-

imental methods, such as magnetic field methods, radiography, or thermal field

methods require the structural element of the inspection to be readily accessible.

The requirement cannot always be met if the structure is complex and the element

is mounted. The need for quantitative global damage detection methods has led

to the research and development of methods that examine changes in the vibra-

tion characteristics of the structure. The basic idea behind this technology is that

the modal parameters (natural frequencies, mode shapes and modal damping) are

functions of the physical properties of the structure (mass and stiffness). Changes

in the physical properties cause detectable changes in the modal properties.

The present thesis provided new insight into the non-inverse and inverse prob-

lems of the free vibration of intact and damaged beams with classical and elastic

boundary conditions as a key step of the damage quantification problem. The par-

tial differential equations of the vibrations were solved using analytical approxi-

mate methods. It was demonstrated that the dynamic response of the intact beams

could be calculated using the Haar wavelet integrations. The numerical examples

indicated that the proposed approach was simple, fast and accurate. The relative

error was less than 0.1 per cent if the level of resolution was equal to six (J = 6).
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Further investigation of the approach carried by Majak [Maja 18, Kirs 18] revealed

even more accurate results on the vibration analysis proposing the higher-order

Haar wavelet method.

The second part of the thesis concerned the problems where the desired re-

sponse, such as the mode shapes and the natural frequency parameters of the

system were known (calculated numerically), but the damage parameters were un-

known - the inverse problems. These problems were difficult to solve since a unique

solution was rarely possible. Therefore, alternative computational solutions had to

be sought. In the present thesis, different types of damage (cracks, delaminations,

mass points, stiffness coefficients in elastic supports) in the Euler-Bernoulli type

beams were quantified. The algorithm of the damage quantification involved the

calculation of datasets and tuning the machine learning methods. To generate the

datasets, the governing vibration equation of the beam had to be solved (the natu-

ral frequency parameter based dataset), and the mode shapes transformed into the

Haar wavelet transform coefficients (the Haar wavelet transform coefficient based

dataset). Damage characteristics (location and severity) were predicted by the

feed-forward back propagation neural networks or the random forests. The neural

networks were chosen since they were proven to be effective mapping tools for

various problems; however, the random forests were chosen since they had fewer

hyperparameters to tune. Multiple simulation cases indicated that

• the Haar wavelet transform coefficient based dataset could be more than ten

times faster obtained than the natural frequency parameter based dataset;

• the Haar wavelet transform coefficients were more sensitive to the damage

location quantification, while the natural frequency parameters were more

sensitive to the damage severity quantification (Table B1 in Appendix B);

• in most cases, the artificial neural networks made as precise predictions

as the random forests; an exception was the quantification of the stiffness

parameters in the elastic supports: the neural networks made significantly

more precise predictions than the random forests (Table B1 in Appendix B).

At large, the proposed approach of the machine learning, the modal data and

the Haar wavelets can be referenced as an alternative method for vibration analysis

and damage quantification; it can be used in further theoretical non-inverse and

inverse problem applications or be applied in the diagnostics of damaged beams.

That is, architects and practitioners can use the described approach in modelling

and simulations on the structural elements.
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Future directions

A systematic approach for vibration analysis and damage quantification in beams

was in focus in the present thesis. The approach was based on the Haar wavelets:

integrals and transform. Multiple simulation studies on intact and damaged beams

showed accurate results. Nevertheless, a further comparative study on the main-

stream methods in engineering could give a clear picture of the advantages and

limitations of the method.

The combined approach of the modal data, Haar wavelets and machine learn-

ing produced accurate results on quantification of various types of damage: open

cracks, elastic supports, a concentrated point mass and delamination. As fu-

ture work, the proposed approach could be applied to the investigation of other

structural elements (I-beams, T-beams, rods, ties, shells, plates), material consti-

tutive models (elastic-plastic or plastistic models), and types of damage (breathing

cracks, subsurface cracks, transverse cracks, necks, debonding, faults, fractures).

As a starting point, the following research papers on the Timoshenko beam model,

buckling and nano-cracks [Hein 12a, Hein 12b, Hein 19b] could be used (the papers

were not discussed in the present thesis).

A comparative study of damage detection methods based on laboratory tests

of two cracked beams conducted by Ndambi et al. [Ndam 02] showed that the

natural frequencies could follow the damage severity, but were not influenced by

the crack damage locations; the modal assurance criterion was, in contrast, less

sensitive to crack damage compared with the natural frequencies; the coordinate

modal assurance criterion could localise damage in the beams, but could not fol-

low severity; the damage indices method based on the strain energy appeared to

be more precise than the other methods in damage localisation, but the difficulty

remained when the damage was spread out over a certain length of the beam.

Hereof, as future work and the continuation of the present research, damage quan-

tification could be studied providing the machine learning methods with other

modal properties.

In the present thesis, the mathematical relationship between the numerically

calculated structural vibration response and the structural damage status was es-

tablished using the feed-forward back propagation neural networks and the random

forests. In the field of machine learning, more advanced methods are developed

every year. As a continuation of the present research, more sophisticated neural

networks could be examined for damage quantification (provided more data on

intact and damaged beams are available).
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The main focus of the present thesis was restricted to the damage localisa-

tion and assessment problems. The damage classification problems were set out

of the scope. In order to provide a cohesive approach to damage identification

(Figure 1.2), collaborative research on damage classification is needed.

At large, the present thesis proposed a theoretical approach for vibration anal-

ysis and damage parameter quantification. All the data used in the simulation

studies were obtained numerically. The present thesis did not discuss the problems

arising from the arrangement of experiments and measured modal data cleansing

(filter noise, spike removal, removal of outliers, treatment of missing data). In

order to apply the proposed numerical approach not only to the modelling and

beam like structure behaviour simulation tasks, but also in practice, the approach

has to be validated by the experiment and experimental data.

150



References

[Abou 87] J. Aboudi. Stiffness reduction of cracked solids. Engineering

Fracture Mechanics, Vol. 26, No. 5, pp. 637–650, 1987. 81

[Adam 94] P. Adams. Damage detection in composite structures using

piezoelectric materials (and neural net). Smart Material Struc-

tures, Vol. 3, pp. 318–328, 1994. 136

[Addi 02] P.S. Addison. The illustrated wavelet transform handbook. Institute

of Physics Publishing, 2002. 34

[Afol 86] D. Afolabi. Natural frequencies of cantilever blades with

resilient roots. Journal of Sound and Vibration, Vol. 110, pp. 429–

441, 1986. 110

[Akba 17] K. M. Akbarzadeh, M. Shaat, A. Abdelkefi, et al. Nonlocal

modeling and buckling features of cracked nanobeams with

von Karman nonlinearity. Journal of Applied Physics, Vol. 123,

No. 62, 2017. 82
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[Guem 20] A. Güemes, A. Fernandez-Lopez, A.R. Pozo, and J. Sierra-

Perez. Structural health monitoring for advanced composite

structures: A Review. Journal of Composites Science, Vol. 4,

p. 13, 01 2020. 22, 28

[Hadj 05a] L.J. Hadjileontiadis, E. Douka, and A. Trochidis. Crack

detection in beams using kurtosis. Computers and Structures,

Vol. 83, No. 1213, pp. 909–919, 2005. 83

[Hadj 05b] L.J. Hadjileontiadis, E. Douka, and A. Trochidis. Fractal

dimension analysis for crack identification in beam struc-

tures. Mechanical Systems and Signal Processing, Vol. 19, No. 3,

pp. 659–674, 2005. 21

158



[Haig 02] S. Haigh, B. Teymur, G. Madabhushi, and D. Newland. Ap-

plications of wavelet analysis to the investigation of the dy-

namic behavior of geotechnical structures. Soil Dynamics and

Earthquake Engineering, Vol. 22, pp. 995–1005, 2002. 62

[Hais 88] B. S. Haisty and W. T. Springer. A general beam element

for use in damage assesement of complex structures. Journal

of Vibration, Acoustics, Stress and Reliability in Design, Vol. 110,

pp. 389–394, 1988. 82

[Haki 14] S.J.S. Hakim, H.A. Razak, S. A. Ravanfar, et al. Structural

damage detection using soft computing method, pp. 143–151. Springer,

2014. 21

[Haki 15] S.J.S. Hakim, H.A. Razak, and S.A. Ravanfar. Fault diag-

nosis on beam-like structures from modal parameters using

artificial neural networks. Measurement: Journal of the Interna-

tional Measurement Confederation, Vol. 76, pp. 45–61, 2015. 28, 84,

86, 94

[Hamd 94] M.N. Hamdan and L.A. Latif. On the numerical convergence

of discretization methods for the free vibrations of beams

with attached inertia elements. Journal of Sound and Vibration,

Vol. 169, pp. 527–545, 1994. 124

[Han 05a] J.-G. Han, W.-X. Ren, and Z.-S. Sun. Wavelet packet based

damage identification of beam structures. International Journal

of Solids and Structures, Vol. 42, No. 26, pp. 6610–6627, 2005. 32,

137

[Han 05b] Y. Han, A. Misra, and D. Mateescu. A method for crack

detection in structures using piezoelectric sensors and actu-

ators. In: Proceedings of 2005 International Conference on MEMS,

NANO and Smart Systems, pp. 353–354, 2005. 84

[Han 07] J.-G. Han, W.-X. Ren, and Y. Huang. A wavelet-based

stochastic finite element method of thin plate bending. Ap-

plied Mathematical Modelling, Vol. 31, pp. 181–193, 2007. 62

[Hayk 99] S. Haykin. Neural Networks: A Comprehensive Foundation. Prentice

Hall., 1 Ed., 1999. 38, 39

159



[He 01] Y. He, D. Guo, and F. Chu. Using genetic algorithms and fi-

nite element methods to detect shaft crack for rotor-bearing

system. Mathematics and Computers in Simulation, Vol. 57, No. 12,

pp. 95–108, 2001. 86

[Hein 07] H. Hein. Determination of foundation characteristics of vi-

brating beams using wavelet transform and neural network.

Proceedings of Society for Optical Engineering, Vol. 6763, pp. 1–9,

2007. 32, 63, 125

[Hein 09] H. Hein and L. Feklistova. Identification of mass location on

vibrating beams using Haar wavelets and neural networks.

Proceedings of 22nd Nordic Seminar of Computational Mechanics,

pp. 105–108, 2009. 51, 123

[Hein 11a] H. Hein and L. tova. Free vibrations of non-uniform and

axially functionally graded beams using Haar wavelets. En-

gineering Structures, Vol. 33, No. 12, pp. 3696–3701, 2011. 59, 63

[Hein 11b] H. Hein and L. Feklistova. Computationally efficient delam-

ination detection in composite beams using Haar wavelets.

Mechanical Systems and Signal Processing, Vol. 25, No. 6, pp. 2257–

2270, 2011. 56, 134, 138, 139, 146

[Hein 11c] H. Hein and L. Feklistova. System Modeling for Delamina-

tion Detection using Support Vector Machines and Neural

Networks. In: Proceedings of the 24th Nordic Seminar on Compu-

tational Mechanics, pp. 73–76, 2011. 24

[Hein 12a] H. Hein and L. Feklistova. Free vibration and buckling of

functionally graded Euler-Bernoulli and Timoshenko beams

using Haar wavelets. In: Days on Diffractioin 2012: Abstracts,

p. 55, 2012. 22, 24, 149

[Hein 12b] H. Hein and L. Feklistova. Free vibration and stability anal-

ysis of functionally graded Timoshenko beams. In: Abstracts

of 10th World Congress on Computational Mechanics, p. 287, 2012.

24, 149

[Hein 19a] H. Hein and L. Jaanuska. Comparison of machine learning

methods for crack localization. Acta et Commentationes Univer-

160



sitatis Tartuensis de Mathematica, Vol. 23, pp. 125–142, 2019. 81,

82

[Hein 19b] H. Hein and L. Jaanuska. Modal-based parameter identifi-

cation in vibrating nano-beams using machine learning. In:

AIP Conference Proceedings, p. 330005, 07 2019. 24, 149

[Ho 95] T.K. Ho. Random decision forests. In: Proceedings of the

Third International Conference on Document Analysis and Recogni-

tion, Vol. 1, pp. 278–282, IEEE Computer Society, Washington, DC,

USA, 1995. 40

[Ho 98] S.H. Ho and C.K. Chen. Analysis of general elastically end

restrained non-uniform beams using differential transform.

Applied Mathematical Modelling, Vol. 22, No. 45, pp. 219–234, 1998.

62

[Hong 02] J.-C. Hong, Y.Y. Kim, H.C. Lee, et al. Damage detection

using the Lipschitz exponent estimated by the wavelet trans-

form: applications to vibration modes of a beam. International

Journal of Solids and Structures, Vol. 39, No. 7, pp. 1803–1816, 2002.

32

[Hoss 12] M. Hosseini and H. Abbas. Neural network approach for pre-

diction of deflection of clamped beams struck by a mass.

Thin-Walled Structures, Vol. 60, pp. 222–228, 2012. 125

[Hoss 17] M.S. Hossain, Z.C. Ong, Z. Ismail, et al. Artificial neural

networks for vibration based inverse parametric identifica-

tions: A review. Applied Soft Computing, Vol. 52, pp. 203–219,

2017. 29, 37

[Hsia 99] C.-H. Hsiao and W.-J. Wang. State analysis of time-varying

singular nonlinear systems via Haar wavelets. Mathematics

and Computers in Simulation, Vol. 51, No. 12, pp. 91–100, 1999. 32,

35, 63, 137

[Hsu 08] J.-C. Hsu, H.-Y. Lai, and C.K. Chen. Free vibration of non-

uniform Euler-Bernoulli beams with general elastically end

constraints using Adomian modified decomposition method.

Journal of Sound and Vibration, Vol. 318, No. 45, pp. 965–981, 2008.

56, 62, 71, 72, 73, 110

161



[Hu 06] C. Hu and M.T. Afzal. A statistical algorithm for comparing

mode shapes of vibration testing before and after damage in

timbers. Journal of Wood Science, Vol. 52, No. 4, pp. 348–352, 2006.

30, 83

[Huan 10] Y. Huang and X.-F. Li. A new approach for free vibration of

axially functionally graded beams with non-uniform cross-

section. Journal of Sound and Vibration, Vol. 329, No. 11, pp. 2291–

2303, 2010. 61, 76, 77

[Jaan 16] L. Jaanuska and H. Hein. Crack identification in beams using

Haar wavelets and machine learning methods. International

Journal of Mechanics, Vol. 10, pp. 281–287, 2016. 39, 53, 81

[Jafa 13] R.A. Jafari-Talookolaei, M. Kargarnovin, and M. Ahma-

dian. Dynamic response of a delaminated composite beam

with general lay-ups based on the first-order shear deforma-

tion theory. Composites Part B Engineering, Vol. 55, pp. 65–78,

2013. 134, 135

[Jane 17] R. Janeliukstis, S. Rucevskis, M. Wesolowski, et al. Multi-

ple damage identification in beam structure based on wavelet

transform. Procedia Engineering, Vol. 172, pp. 426–432, 2017. 62

[Jaya 15] M. Jayawardhana, X. Zhu, R. Liyanapathirana, et al. Sta-

tistical damage sensitive feature for structural damage de-

tection using AR model Coefficients. Advances in Structural

Engineering, Vol. 18, No. 10, p. 15511562, 2015. 21

[Kahy 17] V. Kahya and M. Turan. Finite element model for vibra-

tion and buckling of functionally graded beams based on the

first-order shear deformation theory. Composites Part B: Engi-

neering, Vol. 109, pp. 108–115, 2017. 62

[Kalp 07] R. Kalpana and S. Raja Balachandar. Haar wavelet method

for the analysis of transistor circuits. AEU - International Jour-

nal of Electronics and Communications, Vol. 61, No. 9, pp. 589 – 594,

2007. 64

[Kapu 08] S. Kapuria, M. Bhattacharyya, and A.N. Kumar. Bending

and free vibration response of layered functionally graded

162



beams: A theoretical model and its experimental validation.

Composite Structures, Vol. 82, No. 3, pp. 390–402, 2008. 62

[Karb 09] V.M. Karbhari. Structural health monitoring of civil infrastructure

systems. Woodhead Publishing, United Kingdom, 2009. 30

[Karb 14] A. Karbassi, B. Mohebi, S. Rezaee, et al. Damage prediction

for regular reinforced concrete buildings using the decision

tree algorithm. Computers and Structures, Vol. 130, pp. 46–56,

2014. 42

[Karn 01] I.A. Karnovskii and I.O. Lebed. Formulas for structural dynam-

ics. McGraw-Hill, 2001. 47, 52, 70

[Kim 01] H.K. Kim and M.S. Kim. Vibration of beams with generally

restrained boundary conditions using Fourier series. Journal

of Sound and Vibration, Vol. 245, pp. 771–784, 2001. 111

[Kim 03] J.-T. Kim, Y.-S. Ryu, H.-M. Cho, et al. Damage identi-

fication in beam-type structures: frequency-based method

vs mode-shape-based method. Engineering Structures, Vol. 25,

No. 1, pp. 57–67, 2003. 30, 136, 137

[Kirs 18] M. Kirs. Evaluation of Haar wavelet method for analysis of func-

tionally graded and nanostructures. PhD thesis, Tallinn University of

Technology, 2018. 148

[Klei 75] L. Klein. Transverse vibrations of non-uniform beams. Jour-

nal of Sound and Vibration, Vol. 37, pp. 491–505, 1975. 62

[Kona 11] P. Konar and P. Chattopadhyay. Bearing fault detection of

induction motor using wavelet and Support Vector Machines

(SVMs). Applied Soft Computing, Vol. 11, No. 6, pp. 4203–4211,

2011. 21

[Kono 18] O. Kononenko and I. Kononenko. Machine learning and fi-

nite element method for physical systems modeling. ArXiv,

pp. 1–5, 2018. 62, 136

[Kova 10] V.K. Kovalev. Lecture notes. 2010.

[https://www.turbinist.ru/1004-metodicheskoe-posobie-po-

opredeleniyu-chastot-sobstvennyx-kolebanij-uzlov-i-detalej.html].

48

163



[Kraw 02] M. Krawczuk and W. Ostachowicz. Identification of delam-

ination in composite beams by genetic algorithm. Science and

Engineering of Composite Materials, Vol. 10, pp. 147–155, 2002. 136

[Kuma 13] S.K. Kumar, R. Ganguli, and D. Harursampath. Partial de-

lamination modeling in composite beams using a finite el-

ement method. Finite Elements in Analysis and Design, Vol. 76,

pp. 1–12, 2013. 135

[Lahi 09] S.K. Lahiri and K.C. Ghanta. Artificial neural network

model with the parameter tuning assisted by a differential

evolution technique: The study of the hold up of the slurry

flow in a pipeline. Chemical Industry and Chemical Engineering

Quarterly, Vol. 15, No. 2, pp. 103–117, 2009. 39

[Lard 02] J. Lardies and S. Gouttebroze. Identification of modal pa-

rameters using the Wavelet transform. International Journal of

Mechanical Sciences, Vol. 44, pp. 2263–2283, 2002. 62

[Lau 84] J. Lau. Vibration frequencies and mode shapes for a con-

strained cantilever. Journal of Applied Mechanics, Vol. 51, pp. 182–

187, 1984. 110

[Laur 83] P.A.A. Laura, P. Vernieredeirassar, and G.M. Ficcadenti.

A note on transverse vibrations of continuous beams subject

to an axial force and carrying concentrated masses. Journal

of Sound and Vibration, Vol. 86, pp. 279–284, 1983. 124

[Le 17] T.-P. Le. Use of the Morlet mother wavelet in the frequency-

scale domain decomposition technique for the modal identifi-

cation of ambient vibration responses. Mechanical Systems and

Signal Processing, Vol. 95, pp. 488–505, 2017. 62

[Lee 09] J. Lee. Identification of multiple cracks using natural fre-

quencies. Journal of Sound and Vibration, Vol. 320, pp. 482–490,

2009. 84
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Appendix A

Table A1: First 25 patterns used for predicting the depth and location of the crack in the
free vibrating Euler-Bernoulli cantilever (kn is a frequency parameter).

location depth k1 k2 k3 k4 k5 k6 k7 k8

0.001 0.44 1.4367 4.1245 7.2044 10.3140 13.4386 16.5703 19.7059 22.8439

0.005 0.39 1.5102 4.1869 7.2685 10.3826 13.5146 16.6551 19.8006 22.9490

0.005 0.39 1.5102 4.1869 7.2685 10.3826 13.5146 16.6551 19.8006 22.9490

0.008 0.35 1.5666 4.2411 7.3241 10.4405 13.5768 16.7231 19.8750 23.0304

0.01 0.43 1.4573 4.1662 7.2725 10.4091 13.5610 16.7201 19.8830 23.0482

0.012 0.17 1.7805 4.5090 7.6033 10.7075 13.8305 16.9655 20.1087 23.2578

0.012 0.27 1.6710 4.3565 7.4408 10.5548 13.6915 16.8404 19.9966 23.1574

0.016 0.5 1.3591 4.1332 7.2740 10.4393 13.6158 16.7969 19.9802 23.1643

0.017 0.07 1.8562 4.6535 7.7961 10.9252 14.0601 17.1992 20.3415 23.4865

0.019 0.34 1.5862 4.2887 7.4036 10.5518 13.7195 16.8963 20.0777 23.2613

0.02 0.22 1.7317 4.4485 7.5538 10.6823 13.8326 16.9950 20.1644 23.3377

0.021 0.47 1.4073 4.1739 7.3238 10.5002 13.6887 16.8819 20.0766 23.2712

0.022 0.28 1.6635 4.3708 7.4846 10.6294 13.7956 16.9722 20.1541 23.3382

0.025 0.22 1.7334 4.4596 7.5772 10.7182 13.8804 17.0535 20.2321 23.4127

0.025 0.43 1.4676 4.2207 7.3738 10.5558 13.7513 16.9515 20.1527 23.3525

0.026 0.23 1.7229 4.4480 7.5682 10.7135 13.8800 17.0569 20.2387 23.4217

0.03 0.27 1.6790 4.4053 7.5395 10.7030 13.8863 17.0776 20.2707 23.4616

0.031 0.38 1.5405 4.2868 7.4460 10.6358 13.8400 17.0480 20.2546 23.4560

0.032 0.31 1.6317 4.3631 7.5096 10.6872 13.8823 17.0832 20.2835 23.4788

0.033 0.29 1.6566 4.3892 7.5345 10.7099 13.9034 17.1026 20.3010 23.4937

0.038 0.45 1.4484 4.2520 7.4487 10.6693 13.8971 17.1217 20.3362 23.5333

0.042 0.49 1.3933 4.2388 7.4566 10.6935 13.9326 17.1630 20.3756 23.5581

0.043 0.04 1.8690 4.6833 7.8423 10.9845 14.1292 17.2743 20.4188 23.5619

0.043 0.09 1.8470 4.6463 7.8010 10.9488 14.1038 17.2603 20.4141 23.5617

All MatLab pieces of code and datasets can be found at https://owncloud.ut.

ee/owncloud/index.php/s/pycY9epDTLyZ4tR
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Appendix B

Table B1: A summary table of parameter quantifications.

NFP HWTC NFP+HWTC

ANN RF ANN RF ANN RF

1 crack L MSE 1.6e-3* 2.0e-3 7e-6* 8e-6 2e-7H 8e-6H

R 9.908e-1* 9.896e-1 9.996e-1* 9.999e-1 1.00 9.999e-1

D MSE 9e-4* 8e-4 4.6e-3* 6.1e-3 5e-4F 8e-4F

R 9.772e-1* 9.841e-1 8.871e-1* 8.491e-1 9.868e-1 9.841e-1

Ref. Fig. 5.10a, Tab. 5.5 Fig. 5.10b, Tab. 5.6 Fig. 5.13 Fig. 5.14

5.11, 5.12 5.11, 5.12

2 cracks L1 MSE 2.1e-3H 2e-5H

R 9.553e-1 9.997e-1

L2 MSE 1.9e-3H 2e-5H

R 9.677e-1 9.997e-1

D1 MSE 1.1e-3F 6e-6F

R 9.515e-1 9.998e-1

D2 MSE 1.0e-3F 5e-6F

R 9.586e-1 9.998e-1

Ref. Fig. 5.17 Fig. 5.18

elastic kt MSE 5e-8 5e-6 1e-4 2e-4 5e-7∗∗ 1e-5∗∗

supports R 1.00 9.999e-1 9.990e-1 9.984e-1 1.00 9.999e-1

kr MSE 1.1e-3 1.5e-3 8.24e-2 1.54e-2 8.4e-3∗∗ 3.2e-3∗∗

R 9.934e-1 9.912e-1 4.00e-2 9.123e-1 9.482e-1 9.817e-1

Ref. Tab. 6.2, Tab. 6.4 Tab. 6.2, Tab. 6.4 Tab. 6.2, Tab. 6.4

6.3 6.3 6.3

point L MSE 2e-5 2e-4 3e-7 6e-6 2e-7H 6e-6H

mass R 9.997e-1 9.982e-1 1.00 9.999e-1 1.00 9.998e-1

M MSE 2.1e-3 3.9e-3 6.56e-2 8.76e-2 1.6e-3F 3.7e-3F

R 9.581e-1 9.797e-1 4.902e-1 3.888e-1 9.617e-1 9.781e-1

Ref. Tab. 7.5, Tab. 7.6 Tab. 7.5, Tab. 7.6 Fig. 7.4 Fig. 7.5

7.4 7.4

delami- L1 MSE 5.9e-3 9e-4 3.4e-3 7e-4 9e-4∗∗ 4e-4∗∗

nation R 9.685e-1 9.948e-1 9.808e-1 9.959e-1 9.945e-1 9.974e-1

L2 MSE 3.2e-3 1.9e-3 6.8e-3 3.4e-3 2.4e-3∗∗ 1.2e-3∗∗

R 9.729e-1 9.848e-1 9.440e-1 9.715e-1 9.816e-1 9.903e-1

H MSE 8.02e-2 7.35e-2 1.131e-1 9.45e-2 7.83e-2F 7.34e-2F

R 6.889e-1 7.183e-1 5.191e-1 6.145e-2 6.917e-1 7.198e-1

Ref. Tab. 8.2 Tab. 8.3 Tab. 8.2 Tab. 8.3 Fig. 8.3 Fig. 8.4

* the result is obtained by the ANN with two output neurons

** the result is obtained combining NFPs and HWTCs
F the result is obtained using NFP based dataset
H the result is obtained using HWTC based dataset
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Kokkuvõte (Summary in Estonian)

Haari lainikute meetod omavõnkumiste analüüsiks ja parameetrite

määramiseks

Tala on konstruktsioonielement, mille ülesandeks on vastu pidada erinevatele

koormustele. Projekteerimisel alahinnatud koormused, ebatäpsused tootmisel,

söövitav keskkond, konstruktsiooni vananemine ekspluatatsiooni käigus võivad ta-

lasid kahjustada ning põhjustada kogu konstruktsiooni purunemist. Seetõttu ta-

lade dünaamilise käitumise modelleerimine ja ekspluatatsiooni jälgimine on jätku-

valt aktuaalne teema konstruktsioonide mehaanikas.

Konstruktsioonielementides toimunud muutuste (näiteks pragude või delam-

inatsiooni) kindlakstegemisel kasutatavad eksperimentaalsed meetodid (röntgen,

ultraheli, magnetväli, termoväli, akustika ja teised meetodid) võimaldavad fik-

seerida toimunud muutused, kuid need meetodid on kallid ja ressursimahukad.

Viimasel ajal on pälvinud teadlaste tähelepanu modaalsed meetodid. Sellised

meetodid põhinevad asjaolul, et konstruktsiooni mistahes purunemine muudab

füüsikalisi omadusi (massi, jäikust, võnkeenergia hajumist), mis omakorda muu-

davad modaalseid omadusi, näiteks vabavõnkumise sagedusi (natural frequencies)

ja moode (mode shapes).

Käesolevas väitekirjas käsitletakse Euler-Bernoulli tüüpi talasid, kuna see on

enim kasutatav teooria õhukeste talade kohta. Töö annab uue vaatenurga vabavõn-

kumise sageduste ja purunemise parameetrite määramise kohta. Töös pakutakse

välja Haari lainikute meetod sageduste arvutamiseks ja andmete töötlemiseks.

Haari lainikud on matemaatiliselt lihtsaimad lainikud. Haari lainikuid on võimalik

kasutada funktsioonide approksimeerimisel.

Haari lainikuid on edukalt kasutatud diferentsiaalvõrrandite lahendamiseks.

Käesolevas töös Peatükis 4 on Haari lainikuid ja nende integreerimist rakendatud

vabavõnkumise ülesannete korral, kus lahendatavaks võrrandiks on muutuvate kor-

dajatega diferentsiaalvõrrand, millel puudub analüütiline lahend (näiteks ebaüht-

lase ristlõikega tala, materjali funktsionaalse gradientjaotusega tala). Mitmed

arvutused on kinnitanud, et pakutud lähenemisviis on kiire ja täpne tala vabavõn-

kumiste sageduste arvutamisel.

Väitekirja Peatükid 5-8 käsitlevad vabavõnkumisega seotud pöördülesandeid:

pragude, delaminatsioonide, massipunktide, elastsete tugede jäikuse parameetrite

määramist modaalsete omaduste kaudu. Kuna purunemise asukoha ja ulatuse

arvutamine võnkumise diferentsiaalvõrrandist ei ole analüütiliselt võimalik, peab

lahendusi otsima arvutuslike meetodite abil, näiteks masinõppe abil. Antud töös

182



kasutatakse tehisnärvivõrke (Artificial Neural Networks) ja juhumetsi (Random

Forest). Tehisnärvivõrgud on laialt levinud masinõppe meetod, mille peamiseks

eeliseks teiste meetodite ees on võime olemasolevate näidete põhjal õppida. Vaba-

võnkumisega seotud ülesannete lahendamiseks pole tarvis enam ise kõiki parameet-

reid arvutada, vaid piisab, kui on olemas teatud hulk näiteid oodatavate parameet-

rite kohta, ning nende näidete abil treenitud tehisnärvivõrk on suuteline ülejäänud

tulemusi ise identifitseerima. Tehisnärvivõrkude suureks puuduseks on suur hulk

võrgu ja treenimisalgoritmi parameetreid. Alternatiivina tehisnärvivõrkudele vaa-

deldakse juhumetsi, mis on samuti tuntud masinõppe meetod, kuid parameetreid

on vähem.

Andmekogumite genereerimiseks lahendati võnkumisevõrrand, ning tulemusi

töödeldud Haari lainikute abil. Eesmärgiks on olnud vaatluse all olevate tala

mudelite korral hinnata ning võrrelda tehisnärvivõrkude ja juhumetsade abil iden-

tifitseeritud purunemise parameetreid. Arvutuslikud mudelid näitasid, et:

• Haari lainikute abil genereeritud andmekogumite arvutamiseks kuluv aeg

oli üle kümne korra väiksem kui vabavõnkumiste sagedustele põhinevate

andmekogumite arvutusaeg;

• Haari lainikute koefitsiendid olid tundlikumad purunemise asukoha para-

meetrite suhtes, samas vabavõnkumiste sageduste parameetrid olid tund-

likumad purunemise ulatuse suhtes (Lisa B Tabel B1);

• enamikel juhtudel andis tehisnärvivõrk sama täpseid ennustusi kui juhumet-

sad; erandiks oli jäikuse parameetrite määramine elastsetes tugedes: tehis-

närvivõrgud tegid oluliselt täpsemaid ennustusi kui juhumetsad (Lisa B

Tabel B1).

Käesolevas väitekirjas pakutud meetodeid saab kasutada teistes teoreetilistes

ülesannetes vabavõnkumiste ja purunemiste uurimiseks või rakendada talade pu-

runemise diagnostikas. Näiteks arhitektid ja praktikud saavad kirjeldatud lähene-

misviisi kasutada projekteeritavate struktuurielementide käitumise simulatsiooni-

des. Pakutud ennustusmudeleid on võimalik tulevikus integreerida konstrukt-

sioonide diagnostika riistvarasse, mis põhineb vabavõnkumiste sagedustele või

moodidele.
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2006 – 2009 Tartu Ülikool, matemaatika-informaatikateaduskond, magistriõpe,
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