
McCalpin

ACELab Technical Report TR-2021-01

Mapping Core and L3 Slice Numbering to Die Location in Intel Xeon Scalable
Processors

Document Revision 1.0
December 10, 2020, revised to 2021-01-13
Status: Release

John D. McCalpin
mccalpin@tacc.utexas.edu
Advanced Computing Evaluation Laboratory
Texas Advanced Computing Center
The University of Texas at Austin
www.tacc.utexas.edu

Copyright 2020,2021 The University of Texas at Austin

Permission to copy this report is granted for electronic viewing and single-copy printing. Permissible uses are
research and browsing. Specifically prohibited are sales of any copy, whether electronic or hardcopy, for any
purpose. Also prohibited is copying, excerpting or extensive quoting of any report in another work without the
written permission of one of the report's authors.

The University of Texas at Austin and the Texas Advanced Computing Center make no warranty, express or
implied, nor assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed.

ACELab TR-2021-01 Xeon Scalable core/L3 locations

McCalpin 1

Mapping Core and L3 Slice Numbering to Die Location in Intel Xeon Scalable

Processors
John D. McCalpin mccalpin@tacc.utexas.edu

Texas Advanced Computing Center
The University of Texas at Austin

Abstract: A methodology for mapping from user-visible core and L3 slice numbers to locations on the processor die is
presented, along with results obtained from systems with Intel Xeon Scalable Processors (“Skylake Xeon” and “Cascade

Lake Xeon”) at the Texas Advanced Computing Center. The current methodology is based on the data traffic counters in the
2-D mesh on-chip-network, with the measurements revealing unexpected and counterintuitive transformations of the

meanings of “left” and “right” in different regions of the chip. Results show that the numbering of L3 slices is consistent
across processor models, while the numbering of cores displays a small number of different patterns, depending on processor

model and system vendor.

1 Introduction

The high-level layout of the various elements (core, L3 cache, etc.) of the two-dimensional mesh architecture of
the Intel Xeon Scalable Processor Family is documented in a variety of publications, using diagrams such as
Figure 1 (from [1]). The diagram clearly shows the two-dimensional mesh structure along with the locations of
the cores, the ``CHA/SF/LLC'' blocks (described in more detail later), the memory controllers, the UPI
interconnect, and the PCIe interfaces.

Curiously, however, Intel provides no information about how the user-visible numbering for the cores,
CHA/SF/LLC blocks, and memory controllers corresponds to physical locations on the processor die. Knowing
the locations is essential for visualization of activity on the chip and for a variety of detailed performance studies
relating to on-chip interconnects, cache coherence, thermal effects, and the trade-offs between locality and
scalability in multicore/manycore processors.

This report describes a methodology for deriving the physical locations of each core number and each L3 slice
number and reports the results for Intel processors in the TACC Frontera and Stampede2 systems. The approach
employs the data traffic counters in the two-dimensional mesh of the processor, with a process pinned to a
specific logical processor while reading data from one or both memory controllers. One might anticipate that
inverting the data to recover the spatial layout would be straightforward, but the measurements were inconsistent
with expected patterns. Eventually it was recognized that an entirely unexpected set of transformations were
required to bring the measurements and expectations into agreement – allowing automated or semi-automated
deduction of the locations of the cores and L3 slices along with full mapping of the data traffic on the mesh.

2 Background

In a previous report [2], we reviewed the most common patterns of logical processor numbering and how these
are related to xAPIC identifiers in recent Intel processor systems. One conclusion of that report is that neither of
these unique identifiers has a fixed relationship with the location of the corresponding physical core on the
processor die of “mainstream” Intel Xeon processors – i.e., there is at least one layer of indirection between the
lowest-level user-visible hardware identifiers (the xAPIC IDs) and the actual hardware.

ACELab TR-2021-01 Xeon Scalable core/L3 locations

McCalpin 2

In the absence of documentation, experimental determination of the locations of the user-visible devices is the
only way forward, but the methodology and the interpretation must take extra care to specify all assumptions
made.

Figure 1: Layout of the major elements in the largest die size of the Xeon Scalable Processor Family.

The abstraction of the xAPIC numbering from physical layout of the underlying hardware means that we need to
define at least one more numbering scheme and corresponding unambiguous nomenclature. For this report, the
physical location of a unit on the mesh will be either shown explicitly on a 2D mesh layout analogous to Figure 1
or will use a two-dimensional subscript notation indicating the row and column starting from the upper left of the
mesh as illustrated in Table 1.

ACELab TR-2021-01 Xeon Scalable core/L3 locations

McCalpin 3

IO0,0 IO0,1 IO0,2 IO0,3 IO0,4 IO0,5
T1,0 T1,1 T1,2 T1,3 T1,4 T1,5

IMC2,0 T2,1 T2,2 T2,3 T2,4 IMC2,5

T3,0 T3,1 T3,2 T3,3 T3,4 T3,5
T4,0 T4,1 T4,2 T4,3 T4,4 T4,5
T5,0 T5,1 T5,2 T5,3 T5,4 T5,5

Table 1: Indexing by (row, column) for IO blocks, Memory Controllers (IMC), and Core+CHA Tiles (T), with the same spatial layout as
Figure 1.

Within a “tile”, there is a “core” with its private L1 and L2 caches, and a “CHA/SF/LLC” block. Although these
units are co-located, there is no “affinity” between the core and the CHA/SF/LLC block. Data accesses that hit in
the core's private L1 and L2 caches remain local. Accesses that miss in a core's private L1 and L2 caches are
distributed across all CHA/SF/LLC blocks in the chip using an undocumented pseudo-random hash function.
(This allows any core to access all CHA/SF/LLC resources on the chip, while distributing accesses approximately
uniformly across those resources.) For L2 miss events, the interface from the core to the mesh inspects the
physical address being accessed, computes the hash function, and sends a directed message on the mesh to the
CHA/SF/LLC responsible for that address.1

Upon arriving at the target CHA/SF/LLC, the units perform their specific functions:

• The “Caching and Home Agent” (CHA) is responsible for the generation and ordering of the coherence
transactions for each request.

• The “Snoop Filter” (SF) maintains a sparse, inclusive directory of the private caches in the chip,
indicating which (if any) additional private caches need to be involved in responding to a request.

• The “Last Level Cache” (LLC, or L3) holds lines recently evicted from L2 caches.
In the interest of brevity, the terms “CHA” or “L3 slice” will be considered synonymous with “CHA/SF/LLC”.

Table 1 defines an unambiguous numbering scheme for the physical positions on the chip – what user-visible
numbering will these be mapped to?

• User-visible numbering for the cores is the “logical processor” number.
o These are explicitly controllable using standard Linux operating system interfaces such as

taskset, numactl, sched_[gs]etaffinity(), or binding options with OpenMP
runtime libraries.

o The relation between logical processor number, socket, and “core id” is described in [2].
• User-visible numbering for the CHA/SF/LLC slices is implicit in the interface to the performance

counters in those units.
o The CHA/SF/LLC performance monitoring interface is MSR-based, with a block of 12

contiguous MSR numbers assigned to each CHA.
o The MSR names include reference to CHAs numbered 0 to 27 [3].

3 Resources for Measurement
Information that may be useful in determining the physical location of each of the elements on the chip is
primarily available via the “uncore performance counters'”, described in [3]. The CHA, M2M (Mesh-2-Memory

1 For remote memory, the access request is sent across the mesh to one of the two “Ultra-Path Interface” (UPI) units in the
box labelled “2x UPI x20” in the upper left corner of Figure 1, where the request is transmitted to the “home” chip of the
physical address for processing. The UPI interface near the upper right side of the figure is not active in the TACC Frontera
node configurations.

ACELab TR-2021-01 Xeon Scalable core/L3 locations

McCalpin 4

controller interface), and M3UPI (Mesh to UPI interface) units all support performance counter events related to
traffic passing through the Common Mesh Stop (CMS) at that location. For most of the results presented here, the
four programmable performance counters in each of the CHA blocks were programmed as described in Table 2.
The names of the directions are in double quotes because of complexities that will be discussed in Section 5.

Counter Event Name UMask Description
0 HORZ_RING_BL_IN_USE LEFT_EVEN + LEFT_ODD Data entering mesh stop going “LEFT”
1 HORZ_RING_BL_IN_USE RIGHT_EVEN + RIGHT+ODD Data entering mesh stop going “RIGHT”
2 VERT_RING_BL_IN_USE UP_EVEN + UP_ODD Data entering mesh stop going “UP”
3 VERT_RING_BL_IN_USE DOWN_EVEN + DOWN_ODD Data entering mesh stop going “DOWN”

Table 2: Performance monitoring events used for monitoring data traffic (BL ring) on the mesh.

The mesh routing policy is to traverse the Y (up/down) axis until reaching the target row, then traverse the X
(left/right) axis to the target mesh stop [4].

An important feature of these counters is they measure traffic only for data entering the mesh stop, not for data
exiting the mesh stop. It is usually possible to measuring exiting traffic at the entrance to the next mesh stop, but
that data is unavailable if the next mesh stop contains a disabled CHA/SF/LLC, or if the next mesh stop is a
different unit type that does not support the mesh traffic performance counters. Note also that the traffic is only
counted upon entering the mesh stop even when the traffic is transitioning from the Y-axis to the X-axis.

Attempts to use the mesh data traffic performance counter events at the M2M units (co-located with the memory
controllers) were unsuccessful, however DRAM CAS Reads could be read at each of the six DRAM channels in
each socket. Other uncore counters were not required to determine the locations of the cores and CHAs but were
used in related analyses.

4 Methodology

Given the resources mentioned in the previous section, one might expect it to be straightforward to determine core
and CHA locations. For example, one might read a large block of memory from a single core, record the mesh
data traffic that occurred, and simply look at the results to see the path that the data must have taken from the two
memory controllers to the requesting core. Unfortunately, the result of such measurements will be a collection of
data that (for most cores) cannot be mapped onto this mesh given the known routing algorithm. A more extensive
set of measurements is therefore required to determine which of the assumptions underlying the analysis proved
to be incorrect.

The methodology for determining core and CHA positions was initially developed and applied to Xeon Platinum
8160 (“Skylake Xeon”) processors in the Stampede2 system. The Xeon Platinum 8160 is a 24-core processor
with 24 enabled CHA/SF/LLC slices. The task of determining the location of the cores and CHAs was made
dramatically more difficult in that initial study because the locations of the disabled cores and CHAs were not
known and had to be derived as part of an integrated analysis. With the Xeon Platinum 8280 processors in the
Frontera system, all cores and CHAs are enabled, so unexpected features in the data collected are due to features
of the system, not due to idiosyncrasies of the specific pattern of disabled cores and CHAs on the chip. To keep
the descriptions as clear as possible, the remainder of this section and Section 5 will consider only the fully
configured 28-core processors, while Section 7 will discuss the extensions required to determine the locations of
disabled cores and CHAs.

A potential complication in interpreting the results arises from the symmetry of the mesh layout. This was
disambiguated by running additional experiments accessing memory in another socket. Such traffic must be

ACELab TR-2021-01 Xeon Scalable core/L3 locations

McCalpin 5

routed via the UPI links in the upper left corner of the mesh.2 When reading socket 0 IMC 0 from any core in
socket 1, the only active mesh link in socket 0 is the “up” link at CHA 0. We therefore conclude that CHA 0 is at
location T1,0 and IMC 0 is at location IMC2,0.

To unambiguously determine the locations of the cores and CHAs, two microbenchmarks were constructed. The
first, CLX_mapper_auto, implements the algorithm presented in pseudo-code in Figure 2. This code collects
mesh traffic data at every CHA before and after a core reads 2 GiB of data from memory. This is repeated with
the process bound to each of the cores in the socket. After the data is collected, a post-processing step compares
the delta counts for each core, CHA, and any link showing ≥ 8/9 of the expected traffic is marked “active”.3 This
test is reading data from memory controllers on both sides of the package. Given the simple Y-X routing used, it
is easy to see that only the CHA that is co-located with a core will have two active mesh inputs (one for data
coming from IMC0 and one for data coming from IMC1), while the remaining CHAs will have either one active
input (if they are on the route from the memory controller to the core), or zero active inputs. For each core, the
code reports which CHA (if any) has exactly 2 active mesh links. An error message is reported if no such CHA is
found for a core, or if more than one CHA has two active links – indicating interference from other processes
running on the system. In practice, the code returns exactly one co-located CHA for each core in almost every run
on a non-shared compute node. (All of the raw data is reported as well, for both visual review and in case
additional post-processing is required.) 	

2 The third UPI link (at IO0,4) is not enabled in any of TACC’s 2-socket systems.

3 The specific cutoff depends on the amount of background activity in the system. The value needs to be a little bit less than 1
because there will typically be a small amount of data retained in the L3 cache that will (in general) arrive at the requesting
core via a different route than the data from memory.

ACELab TR-2021-01 Xeon Scalable core/L3 locations

McCalpin 6

Algorithm	1	Algorithmic	structure	for	CLX_mapper_auto	
allocate	and	initialize	2GiB	array	in	the	memory	of	socket	0	
program	CHA	and	IMC	performance	counters	to	measure	data	traffic	on	mesh	
	
{—Phase	1:	run	read	test	on	each	core	and	collect	CHA	and	IMC	performance	counter	data	—}		
for	core	=0	to	27	do	

bind	to	core	in	socket	0	(i.e.,	logical	processor	number	2	x	core)	
read	all	CHA	and	IMC	performance	counters	⇒	countsbefore		
read	array	(sum	reduction)	
read	all	CHA	and	IMC	performance	counters	⇒	countsafter	

end	for		

{—	Phase	2:	post-processing	—}		
for	core	=0	to	27	do	

for	CHA=0	to	27	do	
for	counter	=	0	to	3	do	

delta	⇐	countsafter	−	countsbefore		
if	delta	≥	8/9	*	expected	then	

mark	link	active	
end	if		

end	for	
if	2	links	are	active	then	

report	that	core	and	CHA	are	co-located	
end	if		

end	for		
end	for	

Figure 2: Outline of the algorithmic structure for CLX_mapper_auto.

The second code, CLX_mapper_imc0, implements a very similar algorithm, except that instead of loading a
contiguous array, the program loads only cache lines from the three DRAM channels of memory controller 0.
This version requires attention to a number of implementation details that are worth noting.

First, unless Sub-NUMA-Clustering (SNC) mode is enabled, addresses within each 4KiB page are distributed
across both memory controllers. Even if the addresses accessed are all managed by IMC0, the core under test
must have its hardware prefetchers disabled to prevent high levels of unintended traffic from IMC1.4

Second, the mapping of physical addresses to memory controllers is not fully described in public documents, nor
are the corresponding configuration registers visible to users, so additional pre-processing is required. Starting at
the beginning of the data array every 8th index (one element per cache line) is tested, and a vector of indices
mapping to IMC0 is generated. The test simply loads an address 1000 times (flushing the address after each
load) between reads of the memory controller performance counters.5 If the number of “active” DRAM channels
is exactly one, and that channel belongs to IMC0 in the target socket, then the array index is appended to a vector
of indices that map to IMC0. This is repeated until the desired number of indices are found.

4 The hardware prefetchers can be disabled by writing the value 0xf to MSR 0x1a4 on each Logical Processor (and are re-
enabled by writing 0x0 to the same MSRs). https://software.intel.com/en-us/articles/disclosure-of-hw-prefetcher-control-on-
some-intel-processors
5 A relatively low number of iterations was possible because the memory controller performance counters are read directly
from user-space using 32-bit unsigned load instructions (after mmap’ing the base of PCI configuration space to a user
pointer). Reading the counters via a kernel interface would have been at least an order of magnitude slower and would have
generated significant unwanted/confusing memory traffic.

ACELab TR-2021-01 Xeon Scalable core/L3 locations

McCalpin 7

The number of cache lines mapping to IMC0 must be chosen so that the array of indices can fit into the L2 data
cache and not generate additional mesh traffic when used. For the 1MiB private L2 caches on Xeon Scalable
processors, the maximum number of 32-bit indices that can be retained is 262,144, but in practice a much smaller
number is used to keep cache misses on the index vector to a minimum – sizes in the range of 64Ki elements to
128Ki elements work well. After performing a number of tests, it became clear that on the Frontera compute
nodes, even-numbered 256-Byte blocks are assigned to IMC0, while odd-numbered blocks are assigned to IMC1.
A variant of the code was produced to exploit this feature, avoiding the need to use an index vector.

Once the vector of indices mapping to IMC0 has been produced, the code performs the same measurements as
CLX_mapper_auto, binding to each core in turn and measuring the data traffic on the entire mesh.

The summary output of CLX_mapper_imc0 is a list of the active links in the system, by package, CHA, and
CHA counter number, along with a count of the total number of active links in each package. As with
CLX_mapper_auto the raw counts are reported as well, for sanity-checking and additional post-processing.
IMC counters are wrapped around the tests for each core to confirm proper placement of the data on IMC0, with
typical runs showing about 99.8% of all memory traffic coming from IMC0.

5 Expectations and Initial Observations

Without knowing where the numbered units are located, it is not possible to jump directly to a visualization of the
data. Instead, for each physical core, the number of “active” links in the “up”, “down”, “left”, and “right”
directions were counted and compared to expected values. Figure 3 provides an example of the expected mesh
data traffic for DRAM reads made by the core in the upper left corner of the processor (T1,0). Recall that the mesh
counters are on the input to each mesh stop. Only the CHA at T1,0 is expected to show active mesh links on two
sides.

Figure 3: Expected "active" mesh links (at the input to the mesh stop) when the core at T1,0 (light green) reads from both memory
controllers. Red arrow and text indicate traffic from IMC0, blue arrow and text indicate traffic from IMC1. The CHA at T1,5 (light orange)
receives traffic from IMC1 in the “up” direction and transfers it to the horizontal mesh. The four CHAs in light blue receive left-bound
traffic and pass it on to the next mesh stop to the left until arriving at the requesting tile.

Following the example in Figure 3 for each core, we expect to see some clear patterns in the number of active
links, even if the link locations are not initially known.

up up

IMC0 IMC1

left left left left left
T1,0 T1,1 T1,2 T1,3 T1,4 T1,5

T2,0

T3,0

T4,0

T5,0

T2,5

T3,5

T4,5

T5,5

ACELab TR-2021-01 Xeon Scalable core/L3 locations

McCalpin 8

Property Set 1: Grouping cores by row
The routing of data traffic on the mesh should give the cores in each row unique properties:

• First row: 6 cores will have 2 CHAs with active links in the “up” direction.
o These will be T1,0 and T1,5, immediately above the memory controllers.

• Second row: 4 cores will have no CHAs with active links in either the “up” or “down” directions.
• Third row: 6 cores will have 2 CHAs with active links in the “down” direction.

o These will be T3,0 and T3,5, immediately below the memory controllers.
• Fourth row: 6 cores will have 4 CHAs with active links in the “down” direction.

o Including the 2 CHAs from the 3rd row plus T4,0 and T4,5.
• Fifth row: 6 cores will have 6 CHAs with active links in the “down” direction.

o Including the CHAs from the 3rd and 4th rows, plus T5,0 and T5,5.
Observations: Measurements on the 28-core Xeon Platinum 8280 processors matched these properties for the
“up” and “down” links in all systems tested. (Processors with less than 28 enabled cores and CHAs will be
considered in Section 7.)

Property Set 2: Core-to-CHA Mapping
As discussed in Section 4, we expect that for each core the measurements will include exactly one CHA with
active (inbound) links on two sides, and that across all cores this will provide a 1:1 mapping of cores to CHAs.
Observations:

• This 1:1 mapping was observed in the measurements on all Xeon Scalable Processors tested.
• For processors with the same number of enabled cores and CHAs (e.g., 28-core/28-CHA on the Xeon

Platinum 8280, 24-core/24-CHA on the Xeon Platinum 8160), the mapping was found to be identical
across nodes when the nodes were the same server model from the same vendor with the same processor
model installed.

• The core-to-CHA mappings were not identical across server models with different distributions of
Logical Processor numbers across sockets (i.e., interleaved vs block-distributed, as discussed in [2]), even
with identical processors and from the same vendor.

• The core-to-CHA mappings were not identical across nodes on a small number of test nodes with 24-
core/26-CHA Xeon Platinum 8260 processors – though these were early access systems and may not have
the same properties as production-level systems.

Property Set 3: Grouping cores by column
A third expected pattern comes from considering the cores by column:

• First column: 4 cores with have 5 CHAs with mesh traffic going in the “left” direction.
o This includes the co-located CHA and the four other CHAs in the same row – excluding the right-

hand column.
• Second column: 5 cores

o Traffic to the “right” at the co-located CHA.
o Traffic to the “left” at the three other CHAs in the same row (excluding the right-hand column).

• Third column: 5 cores
o Traffic to the “right” at the co-located CHA.
o Traffic to the “right” at the CHA in the same row in the second column.
o Traffic to the “left” in the CHAs of the two columns to the right.

• The last columns are expected to repeat with mirror symmetry.
• Therefore, within one of the full rows of six cores, the expected [“left”,“right”] counts by column are:

o [5,0], [4,1], [3,2], [2,3], [1,4], [0,5]
• For the row with the IMCs, the expected counts are [4,1], [3,2], [2,3], [1,4] (excluding cores at each end).

Observations: None of the measurements on any systems matched these patterns. For each core, the sum of the
active “left” and “right” links was 5 (as expected), but the split into “left” and “right” did not follow the expected

ACELab TR-2021-01 Xeon Scalable core/L3 locations

McCalpin 9

pattern. In fact, every core generated the same counts: 3 active “left” links and 2 active “right” links. These links
were activated in the CHAs on the same row as the requesting core, as expected, but otherwise did not make
immediate sense.

6 Layout of Fully Configured 28-core/28-CHA Processors

Many attempts to re-imagine the mesh numbering were attempted, as were interpretations of the mesh as a set of
“flattened rings” (alternating single-hop and double-hop connections to minimize the length of the longest
connection (e.g., [2]), but none of these explained the observations.

Eventually, a “Eureka” occurred, and it was realized that if one assumes that the meanings of “left” and “right”
are swapped in alternating columns, the results exactly match the expected patterns. Compensating for the
left/right mirroring by columns causes the counts of locations of active links to precisely match expectations, and
the methodology of Section 5 is then sufficient to fully determine the physical locations of each of the numbered
core and CHA units (and to allow consistent visualizations of up/down/left/right mesh data traffic).

For the Frontera two-socket compute nodes, the layout of the cores and CHAs is presented in Figure 4. This
pattern applies to all 8008 of the original Frontera two-socket compute nodes but may not apply to the same
processors in different server models.

IO0,0 IO0,1 IO0,2 IO0,3 IO0,4 IO0,5
0 4 36 26 50 2

IMC0 32 24 54 6 IMC1

28 20 52 10 34 30

16 48 12 38 18 14

44 8 40 22 46 42

 IO0,0 IO0,1 IO0,2 IO0,3 IO0,4 IO0,5
0 4 9 14 19 24

IMC0 5 10 15 20 IMC1

1 6 11 16 21 25

2 7 12 17 22 26

3 8 13 18 23 27

Logical Processor locations CHA/SF/LLC locations
Figure 4: (LEFT) Locations of Logical Processors in socket 0 of Frontera Xeon Platinum 8280 compute nodes. In socket 1, the pattern is
the same, but the Logical Processor numbers are larger by 1. (RIGHT) Locations of the numbered CHAs in Frontera compute nodes. The
CHA numbering is local, so this pattern applies directly to both sockets.

It is immediately evident that the CHA numbers follow a simple pattern, starting with zero in the upper left
corner, incrementing down the column (skipping over the IMC block), shifting a row to the right, and repeating
until CHA 27 is located in the lower right corner. This pattern of CHA numbering was seen on all systems with
Xeon Scalable Processors (with modifications for disabled CHAs, as discussed below in Section 7).

It is likewise evident that the Logical Processor numbers follow a much more subtle pattern. (Note that these are
all even numbers because the socket-alternating Logical Processor numbering scheme in the Frontera compute
nodes places all the odd-numbered Logical Processors in socket 1 – where the pattern is exactly analogous).
Unlike the pattern of CHA numbering, the pattern of Logical Processor numbering is different for nodes with
socket-interleaved Logical Processor distribution and nodes with block-distributed Logical Processor numbering.

Examination of the die photo of the 28-core Xeon Scalable Processor shows that the layout of the processor cores
is left-right reversed in alternating columns, as seen in Figure 5. Without special logic to detect and adjust for this
mirroring, it is not surprising that this could cause the observed reversal of the meanings of “left” and “right” in
alternating columns.

ACELab TR-2021-01 Xeon Scalable core/L3 locations

McCalpin 10

Figure 5: Die photo of the XCC (28-core) Xeon Scalable Processor. The cores in columns 0, 2, and 4 (outlined in light blue) are in the
"standard" orientation, while the cores in columns 1, 3, and 5 are laid out with left-to-right mirroring. (Image from [4], annotations
added.)

7 Analysis with Disabled Tiles

For the 24-core/24-CHA Xeon Platinum 8160 processors used in the initial study, the difficulty of the analysis
was compounded by knowing neither the overall mesh layout nor the locations of the disabled tiles. It was also
not certain at the time how the mesh routing worked with disabled tiles, or whether the performance counters
were functional in CHAs with disabled LLCs.

Perhaps the first important result was the recognition that the 24 CHAs associated with “active” LLC slices are
accessed via the MSRs for CHAs 0 to 23, with the remaining four CHAs “inactive” – i.e., the performance
counters were not responsive to writes to the MSRs for CHAs 24 to 27 (though the MSR accesses were not
blocked). This means that there is an indirection layer in the hardware between the CHA number used by the
MSRs and the physical CHAs on the chip, so CHA numbers cannot, by themselves, directly indicate location.

The patterns of active links described in Section 5 were initially envisioned in the slightly more general context of
a chip with four disabled cores and four disabled tiles – all in unknown locations. It was quickly recognized that
the 1:1 mapping of cores to CHAs (“Property Set 2”) holds on all of these processors. Since every core has a co-

ACELab TR-2021-01 Xeon Scalable core/L3 locations

McCalpin 11

located CHA, it must also be true that the disabled cores and disabled CHAs are co-located – significantly
simplifying the possible topologies that must be considered.6

It was also clear in the early analyses that the distribution of “up” and “down” traffic (“Property Set 1”) was
consistent with expected results for chips with four disabled CHAs. Due to the Y-first routing, traffic coming
from the memory controllers only moves vertically in the first and last columns. A disabled CHA in either of
those columns will result in a missing “vertical” link count for all of the cores that are on that row or on a row
further away from the memory controller in the same direction, as illustrated in Figure 6 for a hypothetical chip
with disabled CHAs at T4,0 and T1,5. These observed distributions of the vertical traffic were also sufficient to
confirm that data traffic travels through mesh stops co-located with disabled CHAs, rather than requiring a more
complex routing algorithm. I.e., the actual links traversed do not change, only the number of CHAs that count
the traffic changes.

IO0,0 IO0,1 IO0,2 IO0,3 IO0,4 IO0,5 Vertical traffic for this row
with no disabled CHAs

1 up 1 up 1 up 1 up 1 up disabled 2 up

IMC0 0 up/down 0 up/down 0 up/down 0 up/down IMC1 0 up/down
2 down 2 down 2 down 2 down 2 down 2 down 2 down

disabled 3 down 3 down 3 down 3 down 3 down 4 down

5 down 5 down 5 down 5 down 5 down 5 down 6 down

Figure 6: Impact of disabled CHAs in the IMC columns on vertical mesh traffic counts generated by cores reading from both memory
controllers. The value in each tile indicates the total number of CHAs whose performance counters show vertical traffic counted when the
core at that location reads from both memory controllers. Note that all of that vertical traffic takes place in columns 0 and 5 (marked with
heavy outlines). Values in blue italics are those modified by the disabled CHA above IMC1 (T1,5). Values in red are those modified by the
disabled CHA below IMC0 (T4,0).

Attempting to find the appropriate extensions to mesh traffic counts when grouping cores by column (“Property
Set 3”) was extremely frustrating until the reversal of the meaning of “left” and “right” in alternating columns was
discovered. Once the left-right mirroring is understood, it becomes relatively easy to review the results manually
and apply the observed link traffic counts to unambiguously map cores and CHAs to locations on the mesh. The
number of special cases to consider leaves the procedure rather difficult to automate, so a search for a better
understanding of the algorithm(s) used to number the cores and CHAs in the presence of disabled tiles was
initiated.

Xeon Scalable Processors have a hardware register called CAPID6 in PCI Configuration Space that contains a 28-
bit bitmap of the enabled LLC slices (documented in Section 1.7.1 of [3]). The documentation refers only to the
number of bits set in this register, not to the bit locations, but the fact that it is a bit map (rather than simply a
count of active CHAs) suggests investigating whether the bit locations may relate to fixed physical locations on
the die. The bus numbers for the PCI configuration space registers may vary from system to system, but on the 2-
socket Xeon Scalable Processor systems at TACC, the values can be obtained by a system administrator using the
shell commands:

setpci -s 17:1e.3 0x9c.l
setpci -s 85:1e.3 0x9c.l

6 Many Xeon Scalable Processor models have more enabled LLC slices than cores, but TACC does not have any of these
models in production systems. Limited testing in early access systems with 24-core/26-CHA Xeon Platinum 8260 processors
suggests that these have slightly more complex properties than the 24-core/24-CHA processors discussed in this section.

ACELab TR-2021-01 Xeon Scalable core/L3 locations

McCalpin 12

On the Stampede2 test node c591-101, the first command returns the CAPID6 value from socket 0 and the second
returns the CAPID6 value from socket 1:

0f7dfbef
0fef77bf

The CAPID6 values were collected for almost all (94%) of the Xeon Platinum 8160 processors in the Stampede2
system (including both the Dell nodes in the production cluster and a number of Intel S2600 nodes in test
clusters), and 120 unique CAPID6 bitmap patterns were found. All of the bitmap patterns have exactly two bits
cleared in the upper 14 bits and exactly two bits cleared in the lower 14 bits, but otherwise show no obvious
symmetries or patterns. A handful of nodes with different CAPID6 values were chosen for manual analysis and
comparison between disabled CHA locations based on mesh traffic measurements and cleared bit fields in
CAPID6.

Reviewing the results showed that the CHAs are numbered using a simple extension of the numbering for the
fully configured chips. The CHAs are numbered consecutively starting at the upper left, going down, and then
right, but skipping over the disabled CHAs as well as skipping over the IMCs.

IO0,0 IO0,1 IO0,2 IO0,3 IO0,4 IO0,5
0 4 9 14 19 24

IMC0 5 10 15 20 IMC1

1 6 11 16 21 25

2 7 12 17 22 26

3 8 13 18 23 27

 IO0,0 IO0,1 IO0,2 IO0,3 IO0,4 IO0,5
0 disabled 8 12 16 20

IMC0 4 disabled 15 17 IMC1

1 5 9 14 18 21

2 6 10 disabled 19 22

3 7 11 15 disabled 23

CHA numbering in 28-CHA chip CHA numbering with 4 disabled CHAs
Figure 7: (Right) CHA numbering in a Xeon Platinum 8160 processor with CAPID6 0x0f7dfbef. Cleared bits 4, 10, 17, 23 in CAPID6
correspond to disabled CHAs at the positions of the default numbered CHAs 4, 10, 17, 23 (left).

Attempts to derive an algorithm for the core numbering based on physical position were unsuccessful. However,
the mapping of core number to co-located CHA number is the same in all of the nodes of the same vendor server
model (and same processor), so it suffices to use CAPID6 register to determine the locations of the active CHA
numbers, and then use the measured core-to-CHA mapping to map the locations of the numbered cores.

The CAPID6 value of 0x0f7dfbef was the most commonly observed pattern in the system, accounting for
approximately 23% of all processors. This results in the same CHA numbering in both Dell and Intel systems, but
different mapping of core numbers to locations, as shown in Figure 8. If a processor with the same CAPID6
value were installed in socket 1, the corresponding logical processor numbers in the Dell system are obtained by
adding 1 to the values in Figure 8 (left), and the corresponding logical processor numbers in the Intel system are
obtained by adding 24 to the values in Figure 8 (right). There are tantalizing glimpses of comprehensible patterns
in the layout of the core numbers in both systems, but changes to CAPID6 result in completely different-looking
patterns, making a table look-up a simple and effective choice.

ACELab TR-2021-01 Xeon Scalable core/L3 locations

McCalpin 13

IO0,0 IO0,1 IO0,2 IO0,3 IO0,4 IO0,5
0 disabled 8 10 6 2

IMC0 4 disabled 34 30 IMC1

24 28 32 22 18 26

12 16 20 disabled 42 14

36 40 44 46 disabled 38

 IO0,0 IO0,1 IO0,2 IO0,3 IO0,4 IO0,5
0 disabled 2 3 4 5

IMC0 1 disabled 15 16 IMC1

12 13 14 9 10 17

6 7 8 disabled 22 11

18 19 20 21 disabled 23

Core Numbering in Dell C6420 node Core Numbering in Intel S2600 node
Figure 8: Socket 0 locations of numbered Logical Processors in two systems equipped with Xeon Platinum 8160 processors and CAPID6
values of 0x0f7dfbef. The Dell C6420 node alternates logical processor numbers between sockets (even/odd, so all the logical processor
numbers shown here for socket 0 are even), while the Intel 2600 uses a block distribution (first half/second half, putting logical processors
24 to 47 in socket 1).

As discussed in [2], the CHA numbering scheme results in the first half of the CHA numbers being located on the
left side of the chip and the second half of the numbers on the right side.

When “Sub-NUMA Clustering” (SNC) mode is enabled, the CHAs, cores, and memory controllers on the left side
of the chip are assigned to one NUMA node and those on the right side of the chip are assigned to another NUMA
node. The physical processor cores assigned to each NUMA node are the same, but the numbering of both the
cores and the NUMA nodes themselves differs between the two numbering schemes.

• In the socket-interleaved case (Figure 8, left), the assignments are:
o Logical processors [0,4,8,12,16,20,24,28,32,36,40,44] in the left NUMA node.
o Logical processors [2,6,10,14,18,22,26,30,34,38,42,46] in the right NUMA node.
o In socket 0, the left NUMA node is node 0 and the right NUMA node is node 2.
o In socket 1, the left NUMA node is node 1 and the right NUMA node is node 3.

• In the block-distributed numbering case (Figure 8, right), the assignments are:
o Logical processors [0,1,2,6,7,8,12,13,14,18,19,20] are in the left NUMA node.
o Logical processors [3,4,5,9,10,11,15,16,17,21,22,23] are in the right NUMA node.
o In socket 0, the left NUMA node is node 0 and the right NUMA node is node 1.
o In socket 1, the left NUMA node is node 2 and the right NUMA node is node 3.

Looking for patterns, we note that in the interleaved scheme, bit 2 of the logical processor ID is the same as the
high-order bit of the NUMA node number, while the package number is the low-order NUMA node number. In
the block-distributed scheme, it appears that converting a logical processor ID to the low-order bit of the NUMA
node number requires a division operation (or a table lookup). It is unclear whether these patterns have any
intrinsic relationship with the capabilities of the hardware, or if they are essentially “accidents of history”.

Summary of important results for the Xeon Platinum 8160:

• CHAs associated with “inactive” LLC slices are “inactive”, but the corresponding mesh stop is functional
– passing data through and switching from Y to X directions as needed.

o Performance counters are not available at the mesh stop for inactive CHAs.
• The MSR interface to the CHA/SF/LLC units maps the “P” active units to indices 0 to “P-1”.

o CHA numbers are therefore not directly related to physical location.
o The MSR interfaces for CHAs “P” to 27 remain writable, but the performance counters return

only zero values.
• All active cores are co-located with active CHAs – likewise for inactive cores and CHAs.
• The mapping of Logical Processor number to co-located CHA number is identical in instances of the

same server model with the Xeon Platinum 8160 processor but can differ across models and vendors.

ACELab TR-2021-01 Xeon Scalable core/L3 locations

McCalpin 14

8 An Example Application

Using the understanding of the core and CHA numbering (along with the inversions of the horizontal mesh
directions), the output of CLX_mapper_auto and CLX_mapper_imc0 can be mapped onto a schematic of
the processor chip to allow visual examination of traffic patterns. Figure 9 shows the normalized mesh traffic in
socket 0 of a Frontera compute node while a thread bound to Logical Processor 48 (co-located with CHA 7) is
reading from both memory controllers. Figure 10 shows the traffic when reading data from IMC0 only, using the
index-based version of CLX_mapper_imc0 and a list of 131,072 cache lines mapping to IMC0. In each of
these figures, the label in the center of each box is the CHA number, and the values adjacent to the four edges are
the quantity of incoming mesh data traffic entering from the adjacent box, normalized by the expected traffic for
an active link.

 0.001 0.000 0.000 0.000 0.000 0.001

0.000 0 0.002 0.001 4 0.000 0.006 9 0.000 0.005 14 0.001 0.003 19 0.001 0.002 24 0.000
 0.002 0.010 0.001 0.001 0.001 0.001
 0.001 0.001 0.001 0.001
 IMC0 0.000 5 0.000 0.005 10 0.000 0.003 15 0.000 0.002 20 0.001 IMC1
 0.016 0.001 0.001 0.001
 0.999 0.001 0.002 0.001 0.001 0.998

0.000 1 0.002 0.001 6 0.000 0.007 11 0.000 0.005 16 0.000 0.003 21 0.001 0.002 25 0.000
 0.001 0.025 0.001 0.001 0.001 0.001
 0.999 0.002 0.002 0.002 0.002 0.998

0.000 2 0.002 0.999 7 1.006 0.006 12 1.003 0.005 17 1.001 0.003 22 0.998 0.002 26 0.000
 0.001 0.001 0.001 0.001 0.001 0.001
 0.001 0.009 0.000 0.000 0.000 0.001

0.000 3 0.002 0.001 8 0.000 0.006 13 0.000 0.005 18 0.000 0.003 23 0.001 0.002 27 0.000
 0.001 0.000 0.000 0.000 0.000 0.001

Figure 9: Normalized mesh traffic measurements from CLX_mapper_auto (reading from both memory controllers) on socket 0 of a
Frontera compute node. Mesh locations are labeled by CHA number (in yellow). Values at the edges of each box indicate the inbound
mesh data traffic coming from the adjacent box. The core under test is Logical Processor 48, co-located with CHA 7 (highlighted in red).

In Figure 9, the data is quite clean, with three active links carrying the traffic from IMC0 to the requesting core
and six active links carrying the traffic from IMC1 to the requesting core. These nine active links show a range of
0.998 to 1.006 times the expected traffic of 32Mi increments per active link7. The most active link off of these
expected paths is the inbound traffic in the UP direction at CHA 6 (immediately above the tile with the requesting
core) at only 2.5% of the nominal active link traffic. (The data for socket 1 is not shown but has a maximum
normalized value of less than 0.0005 for this case.)

More detailed inspection of the patterns of the extra traffic near Core 48/CHA 7 shows a reasonable correlation
with the pattern expected if we assume that a small fraction of clean L2 victims are being transferred from Core
48’s L2 cache to the distributed L3 cache. Looking at the inbound links of the four adjacent tiles (CHAs
2,6,8,12), the aggregate (normalized) outbound traffic from the tile containing Core 48/CHA 7 is 0.0424. If this
corresponds to clean L2 victim traffic, it is reasonable to expect it to be uniformly distributed across the 28 L3
slices, and the Y-X routing scheme allows a simple computation of the fraction of the traffic that is expected to be
sent in each direction. Table 3 shows a near perfect match between the observed distribution of outbound traffic
and the expected distribution for L2 victim lines being uniformly distributed across the L3 slices on the chip. The

7 The 2GiB array has 32Mi cache lines, 16Mi of which will come from each IMC. The mesh interface is ½ cache line in
width, so each cache line transfer will increment the corresponding mesh data traffic counter twice.

ACELab TR-2021-01 Xeon Scalable core/L3 locations

McCalpin 15

fraction of L2 victims being sent to the L3 is small – about 2.1% of the total. For the remainder, the hardware
predicts that the lines would be unlikely to be reused from the L3, so they are dropped.8

Direction
Number of LLCs

routed via this
direction

Expected fraction of
outbound traffic in this

direction

Observed fraction of
outbound traffic in

this direction
UP 16 59.3% 58.4%

DOWN 6 22.2% 22.1%
LEFT 1 3.7% 4.2%

RIGHT 4 14.8% 15.2%
Table 3: Distribution of outbound data traffic from the tile containing Core 48/CHA 7. “Expected” traffic distribution is based on the
assumption that outbound data traffic is being distributed uniformly across the L3 slices of the chip.

Figure 10 shows the results for reading CLX_mapper_imc0 for the test running on the same logical processor
(48, co-located with CHA 7). Here the number of cache lines loaded is limited by the number of indices that can
be held in the L2 cache, so the expected traffic per active link is only 1/128th of the expected traffic for the case
shown in Figure 9. The three active links carrying data from IMC0 are the same as in Figure 9, but it is apparent
that the “noise” is significantly larger in this “one-sided” case.

The core performance counter IDI_MISC.WB_UPGRADE reports that only 2.6% of L2 victims are being sent to
the L3, while the sum of the outbound counts from the core under test is about 27% of the array volume loaded.
The difference is accounted for by the overhead required to read the uncore performance counters. Because these
are accessed via MSRs they can only be read in kernel mode. The Linux /dev/cpu/*/msr device driver only allows
one MSR read per kernel call, so the code requires 224 kernel calls to read the four performance counters for each
CHA in each socket. By removing the code under test and repeating the experiment, it was confirmed that most
(65% - 90%, depending on methodology) of the excess mesh data traffic was due to kernel calls to read the uncore
performance counters.

 0.016 0.004 0.000 0.001 0.000 0.001

0.001 0 0.020 0.003 4 0.005 0.041 9 0.005 0.031 14 0.003 0.018 19 0.002 0.009 24 0.001
 0.009 0.063 0.001 0.005 0.002 0.004
 0.004 0.003 0.005 0.002
 IMC0 0.004 5 0.005 0.035 10 0.004 0.025 15 0.004 0.014 20 0.003 IMC1
 0.104 0.002 0.002 0.002
 1.026 0.007 0.006 0.009 0.002 0.004

0.000 1 0.012 0.001 6 0.000 0.038 11 0.001 0.028 16 0.001 0.018 21 0.001 0.008 25 0.000
 0.005 0.162 0.001 0.002 0.002 0.003
 1.025 0.009 0.008 0.010 0.003 0.004

0.000 2 0.010 1.022 7 0.034 0.042 12 0.021 0.033 17 0.011 0.023 22 0.004 0.011 26 0.000
 0.006 0.005 0.003 0.002 0.002 0.003
 0.005 0.059 0.000 0.001 0.000 0.002

0.000 3 0.011 0.001 8 0.000 0.037 13 0.001 0.028 18 0.001 0.019 23 0.001 0.009 27 0.000
 0.004 0.001 0.000 0.001 0.000 0.001

Figure 10: Normalized mesh traffic measurements from CLX_mapper_imc0 (reading from only IMC0) on socket 0 of a Frontera
compute node. Mesh locations are labeled by CHA number (in yellow). Values at the edges of each box indicate the inbound mesh data
traffic coming from the adjacent box. The core under test is Logical Processor 48, co-located with CHA 7 (highlighted in red). The
maximum normalized data traffic on any link in socket 1 is 0.013.

8 Since the test is read-only, almost all lines in the L2 cache are clean.

ACELab TR-2021-01 Xeon Scalable core/L3 locations

McCalpin 16

9 Summary

Although it requires some degree of system-specific validation, the methodology described here makes it possible
to unambiguously map from user-visible core and CHA numbers to locations on the die in Xeon Scalable
Processors. In addition, this methodology has uncovered an unexpected transformation in the meanings of
“LEFT” and “RIGHT” in the on-chip mesh that has almost certainly frustrated prior efforts to use these mesh
traffic counters.

The combination of the core/CHA mapping and clarification of mesh data traffic directions should enable a large
number of new research studies related to the performance characterization of these processors – particularly
those related to mesh throughput limitations and to latency optimization of cache-to-cache transfers.

Caveat Emptor:
The mappings reported here (Figure 4 for the standard compute nodes in the Frontera system, Figure 7 and Figure
8 for the Stampede2 SKX partitions) have been verified on subsets of both systems, and there is no reason to
expect that any of the standard compute nodes will be configured differently. There is, however, ample reason to
be cautious about applying these results to other systems – even those with the same processor model from the
same vendor. The different mapping schemes described in this report and in [2] may not be the only options
available.

10 Acknowledgments
This work has been supported by grants from the National Science Foundation, including award numbers 1663578 and
1854828.

11 References

[1] A. Kumar, “The New Intel Xeon Scalable Processor (Formerly Skylake-SP),” presented at the Hot Chips 29,

Aug. 2017, [Online]. Available: https://www.hotchips.org/wp-content/uploads/hc_archives/hc29/HC29.22-
Tuesday-Pub/HC29.22.90-Server-Pub/HC29.22.930-Xeon-Skylake-sp-Kumar-Intel.pdf.

[2] McCalpin, John D., “Observations on Core Numbering and ‘Core ID’s’ in Intel Processors,” Texas Advanced
Computing Center, Technical Report TR-2020-01, Nov. 2020. [Online]. Available:
http://dx.doi.org/10.26153/tsw/10858.

[3] Intel, “Intel Xeon Processor Scalable Memory Family Uncore Performance Monitoring Reference Manual.”
Intel Corporation, Jul. 2017, [Online]. Available:
https://software.intel.com/content/dam/develop/public/us/en/documents/336274-intel-xeon-processor-
scalable-memory-family-uncore.pdf.

[4] S. M. Tam et al., “SkyLake-SP: A 14nm 28-Core Xeon processor,” in 2018 IEEE International Solid - State
Circuits Conference - (ISSCC), 2018, pp. 34–36, doi: 10.1109/ISSCC.2018.8310170.

