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Abstract 

Animal models are widely used in research aimed at advancing human healthcare, 

although their utility for this purpose is more often presumed, than studied. In this thesis I 

evaluate the contribution of animal models to current knowledge of Major Depressive Disorder 

(MDD), a poorly understood mental disorder of multifactorial origin that affects thousands of 

people worldwide. My hypothesis is that if animal models are contributing meaningfully to 

medical advances, then animal studies will be well cited by human medical literature. 

Accordingly, and after conducting a pilot study on ADHD (Chapter 2), I conducted a 

citation analysis on studies which used rats (Chapter 3) and non-human primates (NHP) 

(Chapter 4) as models for MDD research. The number of citations of these papers by human 

medical papers was low. 

To determine if the low number of citations could be caused by the need for sufficient 

evidence to accumulate within a field, before a medical breakthrough can be reached, I 

determined if the citations were by papers on the same disorder, or on unrelated disorders 

(Chapter 5). 

 In an attempt to determine if low citation numbers are common to all indirect research 

approaches, I compared the number and relevance of citations of in silico, in vitro and NHP 

studies, by human medical papers. Other research approaches more effectively informed human 

research, than NHP models (Chapter 4). I also quantified the citations of other research methods 

by subsequent animal studies. Citations were low, contrary to common expectations that in vitro 

and in silico inform subsequent animal studies (Chapter 6). 

Overall, these results indicate that animal models make poor contributions to human 

mental disorders research. This merits a change in the extant paradigm in biomedical research, 

at least in some human disorders, as proposed in Chapter 7. 

 

Key words: animal use alternatives, Major Depressive Disorder, citation analysis, rats, 

non-human primates. 
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Resumo 

A experimentação animal é amplamente utilizada na investigação biomédica, 

nomeadamente na área da saúde mental. O objetivo desta tese é avaliar o contributo dos 

modelos animais para o conhecimento atual sobre as doenças mentais utilizando como estudo 

de caso a Perturbação Depressiva Major (PDM). 

A doença mental pode ser descrita como um padrão comportamental derivado de causas 

biológicas e ambientais que provoca sofrimento e incapacidade funcional aos indivíduos 

afetados. Existem mais de 200 perturbações mentais, estas são particularmente complexas não 

só devido à sua origem multifatorial, mas também devido à multiplicidade dos seus sintomas- 

alguns impossíveis de mimetizar em modelos animais (e.g. sentimento de culpa excessiva no 

caso da PDM).  

A PDM é o tipo mais grave e prevalente de depressão. Caracteriza-se pela existência de 

um episódio depressivo major. Durante este período com duração mínima de duas semanas, os 

indivíduos afetados podem experimentar alterações aos seus padrões habituais de sono e 

alimentação, humor deprimido, sentimentos de fadiga, perda de interesse e prazer nas atividades 

quotidianas, sentimentos de auto desvalorização, ideação suicida entre outros.  

É fundamental compreender qual o contributo real da investigação com modelos animais 

para as doenças mentais. Esta compreensão é relevante não só pelas questões éticas levantadas 

pelo uso de animais em procedimentos- frequentemente invasivos e dolorosos- mas também 

pelos recursos alocados a este tipo de investigação, que poderiam estar afetos a outros modelos 

de investigação, mais promissores para a evolução da medicina. 

Milhares de animais são utilizados anualmente para aumentar o nosso conhecimento 

sobre a PDM, porém o seu real contributo nunca foi sistematicamente avaliado, sendo esse o 

objetivo geral desta tese. 

Se os estudos efetuados em modelos animais forem suficientemente relevantes é esperado 

que haja transferência de conhecimento de uma área para outra i.e. dos modelos animais para 

os humanos. Para testar esta hipótese foram formuladas um conjunto de previsões. Se os estudos 

efetuados em modelos animais forem suficientemente relevantes espera-se que: 

 (Quase) todos sejam citados pelo menos uma vez nos artigos médicos sobre a patologia 

sobre a qual incidem; 

 O número de citações em artigos com humanos seja elevado; 



IX 

 

 As citações sejam importantes para a hipótese ou método dos artigos em que são 

citados; 

 O número de citações recebidas pelos estudos efetuados em modelos animais seja 

superior ao número de citações recebidas pelos estudos efetuados noutros modelos 

indiretos; 

O primeiro capítulo empírico desta tese (Capítulo 2) consiste num estudo piloto para testar 

e ajustar a metodologia escolhida. Assim, optei por estudar a Perturbação de Hiperatividade 

com Défice de Atenção (PHDA), uma patologia menos estudada que a PDM mas que partilha 

com esta características relevantes (e.g. o facto de ser uma doença de origem multifatorial com 

sintomas impossíveis de mimetizar em modelos animais). O facto de a PHDA ser menos 

estudada tornou possível analisar todos os artigos publicados sobre a mesma recorrendo a 

modelos animais. Assim, comecei por localizar no PubMed todas as publicações disponíveis 

sobre esta patologia que descrevem investigação original com modelos animais. Seguidamente, 

e recorrendo ao Web of Science, contabilizei todas as citações recebidas por estes artigos e 

determinei se as mesmas pertenciam a artigos de investigação com humanos, experimentação 

animal, artigos de revisão ou outro tipo de artigos (e.g. artigos de in vitro). Dos 211 artigos 

localizados, 43% nunca foram citados em publicações subsequentes de investigação humana. 

Adicionalmente, cerca de metade das 6,406 citações recebidas por estes artigos pertenciam a 

artigos de experimentação animal, enquanto apenas cerca de 8% provinham de artigos de 

investigação clínica. Os artigos humanos sobre PHDA que citaram os artigos analisados foram 

lidos cautelosamente por dois investigadores que determinaram qual a relevância do artigo 

citado para o artigo que o citava, concluindo que apenas cinco artigos foram relevantes para a 

hipótese em estudo. Este estudo conclui que o contributo da experimentação animal para a 

compreensão e tratamento desta patologia tem sido muito reduzido. 

O Capítulo 3 descreve os resultados da análise de citações realizada em artigos originais 

sobre PDM que usaram ratazanas como modelos. Usando o PubMed e o Scopus localizei 178 

publicações, citadas 8,712 vezes. Porém, tal como sucedeu no estudo descrito no Capítulo 2, 

apenas uma pequena percentagem (menos de 10%) das citações obtidas proveio de artigos 

originais de investigação com humanos, enquanto, mais de metade das citações recebidas pelos 

artigos localizados foram de artigos subsequentes de experimentação animal. Cerca de 30% dos 

artigos analisados não foram citados em nenhuma publicação médica com pacientes humanos 

e 49% não foram citados por nenhuma publicação médica sobre a PDM. 

O quarto capítulo descreve um estudo comparativo entre várias metodologias. Mais 

concretamente localizei no PubMed todos os estudos recorrendo a modelos in vitro, in silico e 
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primatas não-humanos (PNH) focados na investigação da PDM. Com recurso ao Web of 

Science, analisei as citações dos artigos localizados, comparando as médias de citação de cada 

artigo. Foi possível concluir que os artigos que recorriam à metodologia in vitro eram, em 

média, os mais citados. No que se refere às citações feitas por artigos de medicina humana, 

tanto os artigos in vitro como os artigos in silico foram mais citados, em média, que os artigos 

de PNH. Para as citações de artigos de medicina humana sobre depressão, os artigos in vitro 

foram, em média, significativamente mais citados. Tal como no estudo descrito no Capítulo 2 

desta tese, os artigos humanos sobre depressão que citaram os artigos em estudo foram lidos 

por dois investigadores, a fim de determinar a relevância dos mesmos para os artigos que os 

citam. Embora a amostra fosse insuficiente para obter uma potência de teste razoável, é visível 

uma diferença prática: A probabilidade de um estudo com PNH contribuir com relevância para 

um estudo subsequente em humanos é de apenas 16%, enquanto que tanto os artigos in vitro 

como os artigos in silico apresentam uma probabilidade de 25%. 

O Capítulo 5 é um estudo piloto que inclui 50 publicações aleatórias (25 de PHDA e 25 

de PDM). Após verificar que os estudos biomédicos com modelos animais são maioritariamente 

citados por estudos subsequentes que também recorrem a modelos animais tornou-se 

imperativo verificar se estes estudos eram na mesma doença ou se incidiam sobre outras 

doenças. Se a primeira opção se verificasse, isso poderia indiciar que há necessidade de 

acumular uma grande quantidade de dados até alcançar uma descoberta relevante para a 

investigação com pacientes humanos. No segundo caso, poderia indiciar a existência de um 

efeito lock-in, isto é, o paradigma alimentar-se a si mesmo por resistência à mudança. Os 

resultados deste estudo revelaram que a maioria dos estudos que citavam a amostra não eram 

na mesma doença indiciando a existência do efeito lock-in. 

O sexto capítulo tem por objetivo testar se, pelo menos no caso da PDM, o paradigma 

vigente da investigação biomédica é, efetivamente, aplicado. As boas práticas e a legislação 

vigente em vários países requerem que sempre que possível os modelos animais sejam 

substituídos por métodos alternativos. Quando tal não é possível, o número de animais 

utilizados deve ser reduzido ao mínimo e o seu sofrimento deve ser, por todos os meios, 

minimizado. Assim, na investigação biomédica os modelos in vitro e in silico são habitualmente 

utilizados como um primeiro passo que irá determinar que medicamentos e/ou intervenções 

prosseguem para os ensaios com modelos animais. Os artigos analisados revelam que do total 

de citações recebidas pelos artigos in vitro apenas 18% são provenientes de artigos que 

recorreram a modelos animais. No que concerne aos modelos in silico, apenas 5% das citações 

recebidas por estes artigos são oriundas de artigos que utilizaram modelos animais. Os 
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resultados revelam que, pelo menos no que se refere à PDM, as recomendações legais e de boas 

práticas não estão a ser cumpridas. Porém a amostra é muito pequena (38 artigos in vitro e 29 

in silico), pelo que as interpretações decorrentes dos mesmos devem ser feitas com cautela. 

O Capítulo 7 é um artigo teórico que propõe uma mudança de paradigma na investigação 

biomédica. Atualmente a legislação que regula a investigação biomédica com animais baseia-

se no utilitarismo, enquanto a investigação biomédica com seres humanos segue princípios 

deontológicos. Este capítulo explora as fragilidades do utilitarismo para esta finalidade, 

utilizando como exemplo os PNH, propondo que sejam adotados na investigação biomédica os 

mesmos princípios deontológicos que regem a investigação com seres humanos. 

Os resultados desta tese indicam que a investigação com modelos animais contribuiu 

pouco para o conhecimento atual sobre a etiologia, patogénese e, sobretudo cura, da PDM. Os 

dados obtidos sugerem, também, que esta tendência pode ser comum a outras doenças mentais. 

Os resultados apontam, ainda, no sentido de haver outras abordagens de investigação mais 

promissoras para o desenvolvimento da medicina. Em face dos resultados apresentados parece 

necessária do ponto de vista ético, mas acima de tudo, do ponto de vista dos necessários 

impactos positivos para a própria medicina, uma mudança de paradigma na investigação 

biomédica. Considerando o exposto, espero, com este trabalho, contribuir para essa mudança 

de paradigma. 

 

Palavras-chave: alternativas à experimentação animal, Perturbação Depressiva Major, 

Depressão Major, análise de citações, ratazanas, primatas não-humanos. 
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Chapter 1. Introduction 

Animal Experimentation 

Animal experimentation can be defined as the use of non-human animals in scientific 

experiments that seek to control variables that affect the animals’ behaviour or biological 

systems. Animal experimentation is at least 2500 years old (Mayir et al., 2016). It became more 

popular during the Renaissance, expanded substantially in the second half of the XIX century 

and has been increasing ever since (Knight, 2019). 

At least 192.1 million animals are used annually worldwide in scientific procedures 

(Taylor & Alvarez, 2020). According to the latest available data (from 2015 to 2017) on the use 

of animals for scientific purposes within the European Union (EU), the majority of the 9.58 

million animals were used for basic or applied research, as shown in Figure 1.  

 

 

Figure 1. 1 Animals used in EU member states in 2011 by research purpose (adapted from EC, 2020) 

 

Fundamental research corresponds to studies conducted with the aim of increasing 

scientific knowledge, without an obvious practical application (Organisation for Economic Co-

operation and Development – OECD, 2015). It includes basic biomedical research which 

comprises all the research on mechanisms that underlie the formation and function of 

molecules, organs and functioning living organisms. This knowledge may later contribute to 

understand how disease, trauma, or genetic mutations modify normal physiological and 

behavioural processes (National Research Council – NRC, 2005).  
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Biomedical research (the research area dedicated to the study of the prevention, aetiology, 

pathogeneses and treatment of human disorders) is presumably the one that uses more animals 

either within basic biomedical research either in applied research. 

Within biomedical research, animal experiments are used to a) understand physiology, 

mechanisms and function of biological tissues, organs or systems (fundamental research), b) 

provide insights into the biology of different disorders  (research and development of human 

medicine), c) investigate the safety and efficacy of proposed treatments prior to exposure of 

humans in trials (toxicological and other safety evaluation and production and quality control 

of products for human medicine), d) educate and train physicians, e) diagnosis of diseases, f) 

oncological therapies, pharmaceutical research and development, combined drug testing and 

genetics (labelled as “Other” in Figure 1.1). 

Animal experimentation: a necessary evil? 

The controversy around the use of animals for research purposes is not new, it begun at 

least two centuries ago (for a review see Germain et al., 2017). For many years, the controversy 

around animal experimentation happened in the ethical domain and almost restricted to 

biomedical research. On the one hand, supporters of animal experimentation claimed that even 

though this practice may require animal suffering it is done for a greater good: to understand 

and ultimately cure human disorders. On the other hand, objectors to animal experimentations 

claimed that animals have intrinsic value and are not ours to be used, regardless of the potential 

benefits for human health (Germain et al., 2017).  

In more recent years, a new line of argument within objectors to animal experimentation 

has arisen: the efficacy and transferability arguments. The drug development crises (i.e., 

decreasing number of drugs approved per million invested) gained public attention after the 

Food and Drug Administration (FDA) published a report stating that 92% of drugs that succeed 

in pre-clinical stages of drug development fail in human clinical trials (FDA, 2004). Since then 

a new era has begun: the discussion around the use of animals on biomedical research moved 

to a common ground: the defence of public health. Nonetheless the controversy has not 

decreased: while supporters of the use of animal models claim that they are crucial for 

understanding and ultimately cure human disorders, objectors to the use of animal models claim 

that the differences between humans and non-human animals are impossible to overcome 

(Germain et al., 2017). With this new focus of the discussion, it has moved from the ethical to 

scientific ground, and an effort to measure the contribution of animal experimentation to 

medical progress has begun and increased exponentially throughout the past few decades. 
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How can we measure the contributions of animal experimentation to medical 

progress? 

Society often relies on expert opinion to evaluate the contribution of animal models to 

biomedical progress, despite the fact that an opinion is not an evidence-based tool. In an 

interesting analysis on the claims about the contribution of animal models to biomedical 

progress, Matthews concluded that the popular statement “virtually every medical achievement 

of the last century has depended directly or indirectly on research with animals” (2008, p. 96) 

is, in fact, a declaration prepared by the Research Defence Society and signed by 500 

researchers.  

Surveys (e.g., Plous, 1996; Metzger, 2015) are a more systematic way of accessing 

opinions and may provide robust data on the perceptions about animal experimentations and its 

contribution to biomedical progress, but do not provide robust evidence on its actual 

contribution. 

For many years, the assertions on the utility of animal models to biomedical research were 

based upon historical analysis, investigations into the development of treatments, and critical 

reviews of animal models. Historical accounts are disputed. A classical example is the 

discovery of the role of the pancreas in diabetes. Many claim that we owe this discovery to 

experiments conducted by Minkowski and von Mering with dogs in the second half of the XIX 

century (von Mering & Minkowski, 1889, as cited in Bliss, 1982). Others argue that this 

medical breakthrough was made by Thomas Cawley one-hundred years earlier while 

performing autopsies on patients who died from diabetes (Cawley, 1788, as cited in Fadali, 

1996). In more recent years, retrospective analysis into the development of treatments have 

increased with contradictory results: some authors conclude that animal models were unhelpful 

or even harmful for human health (e.g., Bailey, 2008; Fadali, 1996; Greek & Menache, 2013), 

while others conclude the opposite (NRC, 2004). 

Recently more objective tools to evaluate such contribution have arisen. 

Citation Analysis 

One of the best tools to assess the impact of animal research on the development of human 

medicine is citation analysis. In brief, a citation analysis is a way of estimating the impact of a 

paper by counting the number of times that paper has been cited. In a citation analysis one can 

also identify patterns of citation (e.g., what sort of paper cite the target paper) (Garfield & 

Merton, 1979). Assuming that the studies cited by authors guided and influenced their work 
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(Burright et al., 2005), then determining the frequency with which animal studies are cited 

within human medical papers allows us to measure the impact of animal research on medical 

progress. Several authors have conducted such citation analysis and have demonstrated low 

citation frequency (of papers using animal models) in later human medical papers, and, have 

subsequently concluded that animal experiments have made poor contribution towards 

advancing the biomedical progress (e.g., Dagg, 2000; Dagg & Seidle, 2004; Hackam & 

Redelmeier, 2006; Lindl et al., 2004; Shapiro, 1998). 

Systematic reviews 

Systematic reviews are literature reviews focused on a research question that try to 

identify, appraise, select and synthesize all high quality research evidence relevant to that 

question. They are generally considered the best tool to produce evidence about the value of 

animal studies (Pound et al., 2004) not only because they are designed to include as much high 

quality evidence as possible, minimise sources of conscious or unconscious bias, but also 

because they evaluate experimental designs through rigorous and objective peer-reviewed 

protocols, applying the scientific method itself to the task of reviewing research evidence. 

In the XXI century the number of systematic reviews shedding light on this issue has 

increased (e.g., Banwell et al., 2009; Corpet & Pierre, 2005; Macleod et al., 2005; O'Collins et 

al., 2011; Perel et al., 2007). 

The above systematic reviews have revealed:  

 Poor transferability of animal outcomes to human clinical trials; 

 Significant methodological and design flaws in the clear majority of animal 

experiments; 

 Insufficient reporting of experimental design and conduct details, which hinders 

reproducibility; 

 Simultaneous occurrence of animal and clinical trials rather than sequentially as 

expected given that the animal experiments should be conducted first, to allow 

detection of possible toxicity. A recent study (Pound & Nicol, 2018) examined the 

same interventions as a previous systematic review from Perel et al. (2007) noting also 

that in some cases (e.g., Tirilazad, a drug to treat acute ischaemic stroke) animal trials 

continued to be conducted even after systematic reviews of the clinical trials on the 

same drugs were published. 

These findings have worried the scientific community that has been making increasing 

efforts to correct the above mentioned flaws, either through refining animal experiments 
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(Fabian-Jessing, 2018; Garner, 2014) or implementing reporting checklists (e.g., Animals in 

Research: Reporting In Vivo Experiments – ARRIVE guidelines or Gold Standard Publication 

Checklist – GSPC scale, developed by Kilkenny et al., 2010 and Hooijmans et al., 2010, 

respectively). When Macleod, Sena and colleagues updated their systematic review performed 

in 2009 on the efficacy of interleukin-1 receptor antagonist in animal models of stroke (Banwell 

et al., 2009), they found out that more recent studies have corrected some methodological flaws, 

both in the experimental design and in reporting, making the animal trials more promising, in 

the authors’ opinion (McCann et al., 2016). 

Systematic reviews are increasingly encouraged within biomedical research resorting to 

animal models (Pound & Nicol, 2018). They help prevent unwarranted experimental 

duplication (Leenaars et al., 2012) and ensure the use of a suitable animal model (Hooijmans et 

al., 2010). However, even when systematic reviews are performed, if one of the search 

components is the animal species in which the experiment will be performed, as recommended 

by Leenaars et al. (2012), it is likely that experiments with the same goal but an alternative 

approach (e.g., in vitro, non-invasive experiments on human beings) will be excluded. 

 In other words, systematic reviews and reporting guidelines represent a huge step 

forwards for evidence-based research, as well as the achievement of 3Rs (Replacement, 

Reduction, Refinement) principles, as described by Russel and Burch (1959). However, they 

fail to guarantee that the first R (replacement) is properly achieved, i.e., they do not prevent the 

use of animals in experiments that could be performed without them. It is important to mention 

that replacement is the most important of the 3Rs, since the other two are seen as intermediate 

steps to reduce animal suffering whenever replacement cannot be achieved. As stated by Russel 

and Burch (1959, p. 34) “Replacement is always a satisfactory answer, but reduction and 

refinement should, whenever possible, be used in combination.” 

To achieve the replacement goal, citation analysis are powerful tools, since they allow to 

identify research fields where the contribution of animal models are likely to fail, regardless of 

the methodological quality. For instances, Lindl and colleagues (Lindl et al., 2005; Lindl & 

Voelkel, 2011) have urged ethic committees for a restriction of harmful animal experiments 

after conducting a citation analysis on the publications derived from approved animal 

biomedical experiments performed at three German universities. The approved animal 

experiments stated in their application that the results would contribute to new human therapies 

or gain results with direct clinical impact. However, this was only the case in less than 1% of 

the citations. Similarly, Knight (2007) conducted a citation analysis on the contribution of 

chimpanzee studies to the development of medical treatment to human diseases concluding, not 
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only that the citation frequency of chimpanzee papers was low, but also that the cited papers 

contributed less to the human medical paper than papers resorting to other methods (e.g., in 

vitro papers). Interestingly, a recent citation analysis conducted by Adnan and Ullah (2018) 

also showed that in vitro studies were the most cited amongst the endodontic (dental specialty) 

research field. 

Animal models in mental disorders research 

There are no certainties about the number of animals used on behalf of mental disorder 

research, since these disorders are investigated across different subjects (e.g., genetics, 

neurology, psychology). In 1998, Shapiro estimated that at least 8% of all animal research 

happened in psychology research. It is reasonable to assume that in genetics and neurology this 

number increases substantially. There is a growing number of transgenic models to study mental 

disorders which per se increases dramatically the number of animals used due to technicalities 

related to the generation of transgenic animal models (for a review see Bailey, 2019). 

Mental disorders comprise a broad range of problems, with different symptoms. 

However, they are generally characterized by some combination of abnormal thoughts, 

emotions, behaviour and relationships with others (World Health Organization – WHO, 2018). 

Mental disorders affect 970 million people worldwide (Ritchie & Roser, 2018) and it is 

estimated that they are responsible for 32.4% of years lived with disability (Vigo et al., 2016). 

Mental illness has relatively low direct costs in healthcare systems, but its indirect costs 

(translated in high productivity loss and impact on economic growth) are tremendous. It is 

estimated that the total economic costs of mental illness are higher than the costs of cancer or 

diabetes (Trautmann et al., 2016). 

Mental disorders are complex, multifactorial origin disorders (Uher & Zwicker, 2017). 

They include behavioural symptoms easily observable in non-human animals (e.g., 

repetitive/restricted behaviours in Autism) as well as symptoms that are impossible to mimic in 

animal models (e.g., feeling of guilt in Major Depressive Disorder – MDD or auditory 

hallucinations giving commands in Schizophrenia). To overcome this limitation, researchers 

try to establish animal models that mimic clusters of observable symptoms (e.g., Yen et al., 

2013), which are sometimes similar in very different human disorders. For example, weight 

loss can be a symptom of MDD but also of Nervous Anorexia (American Psychiatric 

Association – APA, 2013). Also the same animal model is used for totally different disorders. 

For instances DAT knock-out mice is used to model Attention Deficit Hyperactivity Disorder 
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(ADHD), but are also used to model Parkinson or Schizophrenia (Gainetdinov, 2008). Despite 

these limitations, researchers who resort to animal models within mental disorder research 

consider them invaluable tools within their research fields (e.g., Gainetdinov, 2008; Nilsson, 

2019). 

There are probably hundreds of opinion papers on the contribution of animal models to 

mental disorders (e.g., Papassotiropoulos & de Quervain, 2015; Richter-Levin et al., 2019; 

Söderlund & Lindskog, 2018). Some include retrospective analysis to the development of 

treatments (e.g., Menache, 2012) or extensive reviews (e.g., Shapiro, 1998). But, to my 

knowledge, apart from Shapiro’s book (1998) which also includes empirical data, before this 

thesis there were no evidence-based papers aiming to evaluate the contribution of animal 

models to the understanding and treatment of mental disorders. Shapiro (1998) selected a 

sample of nine investigators from among those who published studies resorting to three animal 

models of eating disorders (sham feeding, tail pinch, and activity wheel) and resorted to Mc 

Ardle, an expert on citation analysis, to verify the number of citations and relevance of citations 

each original animal study to model human eating disorders received. He concluded that seven 

out of ten studies received no subsequent relevant citations (Shapiro, 1998). 

MDD: a case study 

There are more than 200 classified mental disorders, grouped into 20 classifications such 

as neurodevelopmental disorders or anxiety disorders (APA, 2013). Here, I choose to focus on 

MDD as a case study. 

MDD is the most severe of the eight forms of depression (APA, 2013). It is characterized 

by a constant depressed mood or diminished pleasure, along with four out of the following 

symptoms: substantial weight loss or gain; insomnia or hypersomnia; psychomotor agitation or 

retardation; tiredness or lack of energy; feelings of unimportance; disproportionate or 

inappropriate guilt; less ability to reason, concentrate or decide; persistent thoughts of death 

(for a more detailed review on MDD see Chapter 3). MDD is also the most prevalent and 

disabling depression type (Malhi & Mann, 2018). 

It is particularly interesting and up-to-date to study the contribution of animal models to 

MDD research because common procedures to study MDD include the forced swim test or the 

learned helplessness protocols. These are procedures considered severe under the current 

European legislation (Directive 2010/63/EU), transposed to Portugal through Decree-Law 113/ 

2013. The legislation clearly states that severe procedures should only be used when the 



9 

 

expected benefits are significant. Furthermore, it was recently pointed out that out of 47 

different test drug compounds for antidepressant treatment, for which efficacy was tested via 

forced swim test, not even one is currently on the market to treat human depression (Trunnell, 

2018). The lack of reliability (Trunnell, 2019) in addition to the severity of the procedures led 

to a recent call to ban this test (Reardon, 2019). 

Thesis aim and outline 

The overall aim of this thesis is to evaluate the contribution of animal models to mental 

disorders research, using MDD as a case study. If animal model studies are sufficiently relevant 

we can expect knowledge transfer from one area to another, i.e., from animal to human studies. 

More precisely if animal model studies are sufficiently relevant it is expected that: 

 all animal papers are cited at least once in the medical articles on the same disorder; 

 a substantial proportion of citations received by papers describing animal studies 

should be made by human medical papers; 

 citations should be important to the hypothesis or method of the citing paper; 

 the number of citations received from animal model studies should be greater than the 

number of citations received from studies performed in other indirect models. 

The thesis aim and testing hypothesis are explored, tested and discussed in Chapters 2 to 

5. The aim of each thesis chapter is described below. 

 Chapter 2 is a published paper: Carvalho, C., Crespo, M. V., Bastos, L. F., Knight, A., 

& Vicente, L. (2016). Contribution of animal models to contemporary understanding 

of ADHD. ALTEX – Alternatives to Animal Experimentation, 33(3), 243-249. https:// 

doi.org/10.14573/altex.1507311. It addresses the contribution of animal models 

towards current knowledge of ADHD. This is done through a citation analysis as 

previously described and a systematic qualitative analysis of citations, which consists 

in two independent raters evaluating the contribution of each animal research paper 

cited to the respective citing study. In this case, the contribution of each animal paper 

on ADHD cited in each human medical paper on ADHD that cited it. This study is 

considered a pilot study for this thesis. On the one hand, ADHD shares traits with 

MDD (e.g., barely understood complex disorder with multifactorial origins). On the 

other hand, the number of published papers on ADHD using animal models is small 

in comparison to MDD, which allowed me to assess all published papers (instead of a 

sample). No one has ever conducted such study on this disorder before. Being able to 
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analyse all the published papers on ADHD was valuable for several reasons:  it 

presents new scientific data, which is very robust since it is not a sample but the whole 

population of published papers; it allows me to compare data from two mental 

disorders. If similar results are found amongst these disorders they hint the conclusions 

might be extrapolated for all complex and multifactorial origin mental disorders.  

Besides, this research allowed me to test and adjust the chosen methodology for the 

main research of my thesis. In this first study, I do not discriminate amongst the 

citations of subsequent animal research papers which are on ADHD and which are on 

other subjects. These data could have been useful for discussion, so I collected them 

in all MDD research. The lack of interrater reliability found in the initial qualitative 

analysis of citations led to a refinement of this methodology which was used later in 

this paper and in a paper describing MDD data (Chapter 4).  

 Chapter 3 is the unpublished version of the subsequently published paper in Frontiers 

in Psychology on 14th July: Carvalho, C., Peste, F. Marques, T. A., Knight, A., & 

Vicente, L. (2020). The contribution of rat studies to the current knowledge of Major 

Depressive Disorder. Frontiers in Psychology, 11, 1486. 

https://doi.org/10.3389/fpsyg.2020.01486. Here we examine the contribution of rat 

studies to current knowledge of MDD through a citation analysis. 

 Chapter 4 is a published paper: Carvalho, C., Varela, S. A., Bastos, L. F., Orfão, I., 

Beja, V., Sapage, M., Marques, T.A., Knight, A., & Vicente, L. (2019). The relevance 

of in silico, in vitro and non-human primate based approaches to clinical research on 

major depressive disorder. Alternatives to Laboratory Animals, 47(3-4), 128–139. 

https://doi.org/10.1177/0261192919885578. Here we conduct a citations analysis and 

qualitative analysis of citations on in silico, in vitro and non-human primate original 

papers aiming at understanding MDD. 

 Chapter 5 is a published book chapter: Carvalho, C., Alves, D., Knight, A., & Vicente, 

L. (2019). Is animal-based biomedical research being used in its original context?. In 

K. Herrmann, & K. Jayne (Eds.), Animal experimentation: Working towards a 

paradigm change (pp. 376-390). Brill. https://doi.org/10.1163/9789004391192_017. 

In this chapter we examine a small sample of ADHD and MDD papers to determine if 

the citations the papers received are by papers on the same disorder or for different 

topics.  

https://doi.org/10.3389/fpsyg.2020.01486
https://doi.org/10.1177/0261192919885578
https://doi.org/10.1163/9789004391192_017
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 Chapter 6 is the unpublished version of the subsequently published paper in PloS ONE 

on 24th June: Carvalho, C., Varela, S., Marques, T. A., Knight, A., & Vicente, L. 

(2020). Are in vitro and in silico approaches used appropriately for animal-based major 

depressive disorder research? PLoS ONE, 15 (6), e0233954. 

https://doi.org/10.1371/journal.pone.0233954.  In this paper, I count the number of 

citations in vitro and in silico papers received from animal papers, comparing to the 

citations they received by in silico, in vitro and human medical papers. 

 Chapter 7 is an opinion paper: Carvalho, C., Gaspar, A., Knight, A., & Vicente, L. 

(2019). Ethical and scientific pitfalls concerning laboratory research with non-human 

primates, and possible solutions. Animals, 9(1), 12. https://doi.org/10.3390/ani90100 

12. It discusses the ethical frameworks behind animal research and proposes a 

paradigm change. This is the only chapter/paper without empirical data. 

 This thesis ends with an integrating discussion on the results obtained as well as their 

scientific and ethical implications – Chapter 8. 
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Summary 

Attention Deficit Hyperactivity Disorder (ADHD) is a poorly understood 

neurodevelopmental disorder of multifactorial origin. Animal-based research has been used to 

investigate ADHD etiology, pathogenesis and treatment, but the efficacy of this research for 

patients has not yet been systematically evaluated. Such evaluation is important given the 

resource consumption and ethical concerns incurred by animal use. 

We used the citation tracking facility within Web of Science to locate citations of original 

research papers on animal models related to ADHD published prior to 2010 identified in 

PubMed by relevant search terms. Human medical papers citing those animal studies were 

carefully analyzed by two independent raters to evaluate the contribution of the animal data to 

the human studies. 

211 publications describing relevant animal studies were located. Approximately half 

(3,342) of their 6,406 citations were by other animal studies. 446 human medical papers cited 

121 of these 211 animal studies, a total of 500 times. 254 of these 446 papers were human 

studies of ADHD. However, only eight of the cited animal papers (cited 10 times) were relevant 

to the hypothesis of the human medical study in question. Three of these eight papers described 

results from both human and animal studies, but their citations solely referred to the human 

https://doi.org/10.14573/%20altex.1507311
https://doi.org/10.14573/%20altex.1507311
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data. Five animal research papers were relevant to the hypotheses of the applicable human 

medical papers. 

Citation analysis indicates that animal research has contributed very little to 

contemporary understanding of ADHD. To ensure optimal allocation of Research & 

Development funds targeting this disorder the contribution of other research methods should be 

similarly evaluated. 

Keywords: ADHD; animal models; citation analysis. 

Introduction 

Attention Deficit Hyperactivity Disorder (ADHD) is a neurodevelopmental disorder that 

affects around 2.2% of children worldwide, although considerable variation exists among 

different countries (Erskine et al., 2013). 

Its main symptoms include failing to pay close attention to details, difficulties in listening 

and sustaining attention, difficulties in organization, as well as in following instructions, 

hyperactive behaviors that include running and climbing excessively, restlessness and excessive 

talking (APA, 2013). This can be a strongly disabling condition, since it significantly affects 

academic and professional outcomes as well as social and family bonds (APA, 2013). 

There are no certainties about what causes this disorder, however, it is consensual that it 

has a multifactorial origin (APA, 2013). Several authors have suggested the involvement of 

different brain areas in the etiology of ADHD, namely fronto-striatal, fronto-parieto-temporal, 

fronto-cerebellar and fronto-limbic networks (Rubia et al., 2014). More recently, genetic studies 

have proposed the existence of some genetic propensity for this disorder (Martin et al., 2014). 

There is also evidence that family environment and exposure to harmful environmental 

substances play a role (Ni and Gau, 2014; Han et al., 2015; Neugebauer et al., 2015). 

Even though the number of studies aiming to improve the comprehension of the etiology, 

pathogenesis, and evolution and ultimately cure of this disorder has increased in recent years, 

there is still a scarcity of relevant knowledge and an urgent need for more effective studies. 

This need is strengthened by recent studies that suggest that ADHD’s prevalence might be 

increasing worldwide. For example, an American survey ascertained that from 1998-2000 

through 2007-2009 the prevalence of ADHD in the US increased among children aged 5-17 

years from 6.9% to 9.0% (Akinbami et al., 2011). Due to resource and financial constraints it 

is important to assess which research methods are the most promising in this field. 
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Since the mid-20th century animal research has been a very widely used biomedical 

research methodology. Furthermore, even though functional investigation methods of the brain 

are the leading technology in contemporary brain disorder research (Marcucci and Vandresen, 

2006; Labate et al., 2013), the emergence and development of transgenic animal models has 

also led to an exponential growth of animal use in neuroscience research, including in ADHD 

(Porter et al., 2015). Within ADHD, animals are used to model ADHD-related behaviors and 

traits (Yen et al., 2013), to seek understanding of ADHD’s biochemical pathways (Yen et al., 

2013; Huang et al., 2015) as well as responses to putative drugs (Dudley et al., 2013) and other 

therapies (Ouchi et al., 2013). 

However, the benefits of animal models have always been simply assumed. To date the 

contribution of animal models of ADHD have not been subjected to significant critical scrutiny 

within peer-reviewed literature. And yet their use is substantially consumptive of research 

resources and animals lives. To prevent the poor design and reporting of many animal 

experiments, tools for assessing methodological quality and experimental designs have 

emerged (Hooijmans et al., 2010; Kilkenny et al., 2012). These tools represent an important 

step forward towards evidence-based research as well as the achievement of Reduction and 

Refinement principles. However, they fail to guarantee that the first R (Replacement) is 

appropriately achieved, i.e., they do not prevent the use of animals in experiments that could be 

performed by non-animal means. 

A systematic evaluation of the contribution of animal models to specific human disorders 

might prevent the use of animals in studies aiming for a better understanding of those disorders. 

To conduct such evaluation, we performed a citation analysis and a systematic qualitative 

analysis of citing publications. Assuming that the studies cited by authors guide and influence 

their work (Burright et al., 2005), citation analysis provides a partial measure of the impact of 

cited studies. Previous citation analyses in other fields have demonstrated poor contributions of 

animal studies to human medical papers (Hackam and Redelmeier, 2006; Knight, 2007). To our 

knowledge however, such a systematic qualitative analysis of citations has not yet been 

conducted in the ADHD field. The number of published animal studies on ADHD was small 

enough to allow us to perform a citation analysis on all published papers. 
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Methods 

Citation analysis 

The citation analysis was performed between January 2012 and December 2014. PubMed 

was searched for articles using animal models to investigate ADHD. We searched PubMed 

using Medical Subject Heading search terms (MeSH terms): “ADHD” AND title/abstract: 

“animal” OR “rat” OR “mice” OR “mouse” OR “Rattus” OR “Mus” OR “pig” OR “Cavia” OR 

“Sus” OR “rabbit” OR “Leporidae” OR “Drosophila” OR “primate” OR “monkey” OR 

“Macaca” OR “macaque” OR “Cebus” OR “dog” OR “Canis” OR “cat” OR “Felis”. MeSH 

terms are a comprehensive list of key terms related to each disorder designed to identify all 

relevant studies in an area (Uman, 2011). So, searching for ADHD retrieves other 

nomenclatures for the same disorder such as hyperkinetic disorder or minimal brain 

dysfunction. 

We included journal papers, books, research reports and conference proceedings written 

in English or Portuguese. We restricted our search to publications prior to December 31, 2010, 

to allow adequate time for citation of articles. 543 articles were retrieved. Since our goal was 

to evaluate the impact of original animal research papers, we used PubMed filters to exclude 

review articles (“review”, “systematic review”, “meta-analysis”, “bibliography”) as well as 

opinion articles (“biography”, “autobiography”, “comment”, “editorial”, “interview”). 

The remaining 211 papers (see supplementary file at http://dx.doi.org/10.14573/altex. 

1507311s) were subjected to a subsequent citation analysis using the cited reference search 

facility within Web of Science. For each animal study, we recorded the total number of times 

it was cited, and allocated each citation to one or more of seven categories (animal research 

papers, human papers, review articles, editorials, in vitro papers, in silico papers and non-

invasive animal papers). Whenever it was not possible to define the category of the citing paper 

(due to language barriers or absence of the abstract), the paper was allocated as “not available”. 

If more than one category could be assigned to a paper (e.g., animal research and human paper), 

then that paper was allocated to multiple categories. 

Using Pearson’s Chi-square goodness-of-fit test for distributions, we investigated 

whether there was a significant difference between the number of citations of the animal articles 

by human papers and by animal research papers. The Chi-square goodness-of-fit test is used to 

test whether a sample of observations has approximately the same frequency distribution as a 

specified probability distribution. This test is especially useful for assessing the distribution of 

discrete and categorical variables (Freund et al., 2010). 

http://dx.doi.org/10.14573/altex.%201507311s
http://dx.doi.org/10.14573/altex.%201507311s
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To evaluate the number of citations that the animal papers received we built density plots, 

i.e., relative frequency divided by bin width, using the statistical software R. A density plot is 

a graphical method for examining how well an empirically derived density function fits a 

theoretical density function for a specified probability distribution (Cox, 2005). In our data the 

papers cited more frequently received citation frequencies that were increasingly distant from 

each other, apparently following a geometric progression. Hence, it was more suitable to use 

logarithmic intervals. Owing to the occurrence of zero citations within human medical papers 

and the impossibility to use logarithm zero, we used 0.5 as the logarithm for the “No citations” 

cluster. 

Systematic qualitative analysis of citations 

The total citations of animal studies by medical papers on humans (500) were 

encompassed in 446 articles on humans. Of the latter, 254 were papers on ADHD, and 192 were 

papers on other topics. 10 human ADHD papers were excluded from the subsequent qualitative 

analysis due to being either written in a language other than Portuguese or English, or because 

the papers were unavailable. 

The remaining 244 papers on human ADHD were analyzed by two independent raters to 

evaluate the contribution of each animal research paper cited to the respective human study, as 

well as the goal of the latter. 

To determine the foci of the human studies both raters allocated the human papers to one 

or more of the following categories defined prospectively: 

1. Clinical trials: Papers aiming to test a new drug targeting ADHD. 

2. Treatment trials: Papers aiming to study the effect of an existing drug in a new 

population. This category includes papers on drug-drug interaction and the use of a 

known drug for a new purpose. 

3. Genetics: Papers aiming to explore specific genes, gene sequences or patterns that may 

be involved in the etiology of ADHD. 

4. Psychology: Papers aiming to explore psychological variables that may be involved in 

the etiology of ADHD, including personality or cognitive traits and behavioral 

patterns. 

5. Epidemiology: Papers aiming to understand natural or social environmental factors that 

might contribute to the etiology of ADHD. 
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6. Neurology: Papers that used fMRI, PET scans or other neurological examinations to 

study brain areas involved in ADHD. 

7. Comorbidities: Papers aiming to identify and explore the interactions between ADHD 

and other disorders. 

8. Biochemistry: Papers aiming to describe the biochemical changes that occur in ADHD. 

9. Physiology: Papers aiming to describe physiological changes in ADHD. 

Concerning the relevance of the animal papers cited, the two independent raters classified 

each animal study as being: 

 Redundant: When the animal study was only mentioned amongst other studies as an 

example. When there were multiple studies used as an example of one or more points, 

the raters were instructed to only rate the study as redundant if there were older or 

human studies stating exactly the same points. 

 Minor Relevance: When the animal study was cited in the discussion or introduction 

providing information not directly related to the hypothesis. 

 Relevant to the Hypothesis: When the animal study was cited in the introduction, 

providing information relevant for the hypothesis explored in the human medical 

paper. 

 Relevant for Methods: When the human paper used the same methodology as the 

animal paper, with the exception of species. 

The above categories were defined prospectively and the same criteria were used by both 

raters. 

Animal papers cited in clinical and treatment trials (human categories 1 and 2) were 

analyzed separately since we also wanted to determine if the animal data had translated to the 

human situation, i.e., when an animal study was used as a reference for the human trial, the 

raters independently investigated whether the animal results were in agreement with the human 

results. 

Whenever there was a disagreement between the raters either in determining the category 

of the human medical paper or in determining the relevance of the animal paper, a consensus 

was reached after detailed discussion. 
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Results 

Citation analysis 

The 211 original animal studies focused on ADHD that were published before the end of 

2010 and identified by PubMed search (see supplementary file at http://dx.doi.org/10.14573/ 

altex.1507311s) were cited 6,406 times by December 2014. However, 43% of these animal 

studies were never cited in papers describing human studies. As shown in Figure 1, animal 

studies were mainly cited by other animal research papers (3,342), followed by review articles 

(2,010), human studies (500), in vitro papers (168), non- invasive animal papers (100), in silico 

papers (46) and editorials (14). Nine animal papers were cited in papers that included both 

animal research and human studies. 226 citing papers were unavailable for categorization due 

to being unavailable to us or written in a language other than English or Portuguese. Pearson’s 

Chi-square test suggested that, by conventional criteria, the difference between the number of 

citations by animal research papers and by human studies was statistically significant (Chi-

square = 2102.28; p < 0.0001). 

 

Fig. 1: Number of citations of animal papers on ADHD by category of 

citing papers 

http://dx.doi.org/10.14573/%20altex.1507311s
http://dx.doi.org/10.14573/%20altex.1507311s
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Fig. 2: Density vs number of citations by all papers 

Each point represents the average number of citations within each interval. The 

intervals are defined by the power of two (e.g., the interval 23 includes articles 

that received from 8 citations to 15 citations). The use of [ ) means that 2k is 

included in the interval and 2k+1 is excluded from the interval. 

 

 

Fig. 3: Density vs number of citations by human papers 

Each point represents the average number of citations within each interval. The 

intervals are defined by the power of two (e.g., the interval 23 includes articles 

cited from 8 citations to 15). The use of [ ) means that 2k is included in the 

interval and 2k+1 is excluded from the interval. 
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Fig. 4: Relevance of the animal papers cited by human papers on ADHD 

for the citing paper 

Figure 2 shows that below value 25 (< 32 citations) the density plots were similar, 

meaning that a published animal paper focused on ADHD had a similar probability of being 

cited anywhere from one to 31 times. However, the likelihood of such a paper being cited 34 

times or more descended abruptly. Figure 3 shows a more linear descending curve, evidencing 

that an animal paper on ADHD was likely to be cited very few times or not at all by human 

medical papers. The number of citations by human medical papers above value 23 (cited 16 

times or more) was residual. 

Systematic qualitative analysis of citations 

Of the 244 papers focused on human ADHD that cited animal studies, 81 were on 

genetics, 58 on treatment trials and on neurology each, 45 on psychology, 38 on comorbidity 

studies, 28 on biochemistry, 7 on epidemiology, 3 on clinical trials, and 2 on physiology. No 

pattern was identified between the categories of the human studies and the relevance of the 

animal papers cited. 

Figure 4 presents a frequency histogram of the relevance categories of the animal papers 

cited in human papers in all categories except the clinical and treatment trials. The vast majority 

of citations of the animal papers was redundant or had minor relevance for the human paper. 
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No animal paper was relevant for the methods and only eight papers (cited 10 times) were 

relevant for the hypothesis explored in the human paper. 

Of the eight animal papers considered relevant for the hypoth-esis, three were papers 

describing both animal research and hu-man studies. Within these three papers, only the human 

studies were relevant for the citation in question. Therefore, five (2.3%) of the 211 animal 

studies focused on ADHD contributed to the hypothesis of a later human ADHD study. 

The three clinical trials that cited animal papers did not use these animal studies for the 

hypothesis, methods or results.Therefore, investigation of translational research was not 

applicable. 

Of the 58 treatment trials, four used animal papers for the hypothesis. The results in three 

out of four animal papers were in agreement with the results of the respective treatment trials. 

Discussion 

To our knowledge, this paper provides the first systematic study of the contribution of 

animal-based research to contemporary understanding of ADHD. 

We acknowledge that this study had several limitations: 

Firstly, due to resource constraints we were unable to search a greater number of search 

engines (e.g., Web of Science, CAB Abstracts, Scopus) to increase the likelihood that we 

retrieved all animal papers investigating ADHD. We were similarly unable to examine the 

reference lists of retrieved papers in the hope of locating additional relevant papers. This means 

that some relevant publications may not have been located. Additional relevant studies may 

also exist in so-called “grey literature” such as unpublished reports of various kinds. However, 

it is reasonable to expect that most experiments that made a significant contribution to human 

healthcare advancements would have been published in a biomedical journal, and further, that 

most such journals would have been indexed in PubMed. Accordingly, we expect that our 

results are conservative, compared to the overall results that would have been achieved had it 

been possible to examine every single publication relevant to our re- search question. 

Secondly, we used MeSH term search for ADHD, which means that all papers 

investigating this disorder should have been retrieved. However, we acknowledge that a 

minority of papers focused on this disorder may not have been labeled within PubMed standard 

MeSH terms for ADHD (e.g., due to labelling errors) and so may not have been located by our 

search. 
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Finally, we recognize that there is a level of difficulty in objectively determining the 

relevance of a cited paper to the paper citing it. Even though we have tried to avoid bias by 

using two raters, the initial assessment was sometimes divergent between the raters, requiring 

further discussion to reach a consensus. Hence we acknowledge that different raters using the 

same criteria might have rated some papers differently. However, we believe these would 

comprise only a small minority. 

The citation analysis showed that 43% of the 211 animal studies were never cited by 

subsequent human studies and less than 8% of the total number of citations of the animal studies 

was by human medical papers. The systematic qualitative analysis narrowed that number 

further, since only eight animal papers (3.68%) seemed to be relevant to the hypothesis of a 

human medical study (Fig. 4). Only human data reported in three of these was actually relevant 

to the hypothesis. In sum, amongst the 57% of animal studies that were cited by human medical 

papers, the ones that may have significantly contributed to medical advances could be narrowed 

down to five articles, i.e., 2.3% of the overall total. 

Those five articles were all published between the years 1999 and 2010 and all used 

genetically modified mice or rats as the animal model. However, this may simply have been a 

reflection of the animal species most used within the larger population of animal studies 

examined. These results suggest that more recent articles may be more effective than older ones. 

Only one gathered data from mice and a non-human primate model (rhesus monkeys), 

contradicting claims that the use of non-human primates is crucial for our understanding and 

treatment of the attention functions compromised in ADHD (e.g., Roelfsema and Treue, 2014). 

Three of the five studies aimed to explore the mechanisms by which psychostimulants or 

other drugs act. One study aimed for a better understanding of dopaminergic pathways and the 

other study aimed to understand the effects of a knockout gene on visual-spatial abilities. 

The animal studies appeared to influence mainly subsequent animal studies. This data 

emphasizes one of the major obstacles within contemporary scientific research: the segregation 

between research fields. If we exclude review papers and editorials, we can observe that the 

proportion of animal studies cited by original papers within other fields is considerably lower 

than the citations by other animal papers (Fig. 1). With respect to citation rates, there is a 

startling gap between animal and human studies. 

In addition to animal research, the contribution of other research fields to the 

understanding, prevention and treatment of ADHD needs to be evaluated. Even though there 

are numerous reviews of candidate animal models for ADHD (Arime et al., 2011; Leo and 
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Gainetdinov, 2013), to our knowledge, there are no reviews of the contribution of other 

methods, e.g., in silico models. 

The use of animal models in biomedical research consumes considerable research 

resources and raises serious ethical questions. These resources are then unavailable to other 

research methods or strategies for advancing healthcare. Hence, it is essential to ensure their 

efficiency and effectiveness. 

Some studies have used citation analysis or systematic reviews to examine the 

contribution of animal models to other health disorders (Hackam and Redelmeier, 2006; Knight, 

2007) and some of these studies (Pound et al., 2004; Knight, 2007), have implied that the 

citations of animal studies by human medical papers are often of little relevance for the human 

paper that was citing them. Even weaknesses of citation analysis identified by several 

researchers (Brooks, 1985; Garfield, 1998; Bornmann and Daniel, 2008) are fully addressed 

with a subsequent systematic qualitative analysis of citations. 

Hence, our results suggest that animal studies rarely contributed significantly to 

contemporary understanding of ADHD. 

In the future, ethics committees and funding agencies should consider this, prior to 

supporting the use of animal models in ADHD research. We hope that the methodology 

presented in this paper will be applied to similarly assess the contribution of animal research to 

other human disorders. 
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Abstract 

Objectives: To examine the contribution of rat studies to the current understanding of 

Major Depressive Disorder (MDD), by counting the number of citations of original publications 

on this disorder resorting to rat models and their subsequent use in eight different research 

categories. 

Design: Citation analysis. 

Study selection: Publications prior to December 2013 that described original data using 

rat models within studies of MDD.   

Data sources: To identify the publications, the bibliographic databases SCOPUS and 

PubMed were used. The citations analysis was made using the citing tracking facility within 

Scopus and Web of Science.  
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Data extraction: Resulting citations were thematically coded in eight categories, and 

descriptive statistics were calculated. 

Results: 178 publications describing relevant rat studies were identified. They were cited 

8,712 times. More than half (4,633) of their citations were by other animal studies. 794 (less 

than 10%) were by human medical papers. 

Conclusions: Citation analysis indicates that rat model research has contributed very little 

to the contemporary understanding of MDD. This supports a paradigm change within this 

investigative research field. 

Keywords: Major Depressive Disorder, animal models, animal use alternatives, citation 

analysis 

Introduction 

Depression is the leading cause of disability worldwide (World Health Organization – 

WHO, 2019). Nowadays it is judged to affect more than 320 million people of all ages and 

genders (Global Burden of Didease 2015 Disease and Injury Incidence and Prevalence 

Collaborators, 2016), even though it is more frequent in women than man (Ferrari et al., 2013). 

Currently, and according to DSM-5 (American Psychiatric Association – APA, 2013), 

there are eight main forms of depression: MDD, Persistent Depressive Disorder, Dysphoric 

Disorder and Disruptive Mood Dysregulation Disorder, Substance/Medication-Induced 

Depressive Disorder, Depressive Disorder Due to Another Medical Condition, Other Specified 

Depressive Disorder. MDD is the most severe, prevalent and disabling depression type (Malhi 

& Mann, 2018). It is characterized by a persistent depressed mood or loss of pleasure, along 

with four out of the following symptoms: significant weight loss or gain; insomnia or 

hypersomnia; psychomotor agitation or retardation; fatigue or loss of energy; feelings of 

worthlessness or excessive or inappropriate guilt; diminished ability to think, concentrate or 

make decisions; recurrent thoughts of death (APA, 2013). For MDD to be diagnosed, the patient 

needs to fulfil five diagnostic criteria out of a pool of nine, which means that the same disorder 

may present differently in different subjects (Kaufman, 2018). The variety of both symptoms 

biomarkers has led to the recent suggestion that there might be several subtypes of MDD 

(Beijers et al., 2019). 

MDD aetiology is not completely understood yet. Most authors agree that there is a 

combination of biological and environmental factors that determine the triggering of the 

disorder (Mandelli & Serretti, 2013). Biological factors to take into account include genes, 
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neurotransmitters and hormones, while environmental factors include childhood trauma, 

stressful life events, sexual abuse, low educational attainment and differences in personality 

traits. 

Evidence suggests that there are genetic factors involved, but even though more than 100 

candidate genes have been investigated, a clear connection between specific genes and MDD 

has not yet been established (Shadrina et al., 2018). Furthermore, studies suggest that variations 

in different genes, each with a minor effect, combine to increase the risk of developing this 

disorder (Wray et al., 2018). Most studies suggest that MDD patients have imbalanced brain 

chemistry at neurotransmitters level (Beijers et al., 2019). Amongst those, the majority of the 

studies indicate dopamine, norepinephrine and serotonin as the most implicated in MDD 

aetiology (Belujon & Grace, 2017). Others stress the involvement of glutamate (Réus et al., 

2018). Nonetheless, some studies find no differences in neurotransmitters between MDD 

patients and healthy controls (for a review see Beijers et al., 2019). Similarly, it is widely 

accepted that hormones play a role in MDD aetiology (Druzhkova et al., 2019) but there is no 

clear-cut connection between a specific hormone secretion and MDD. For example, 

Asadikaram et al. (2019) found differences between MDD patients and healthy controls in 

hormone levels of adrenocorticotropic hormone, testosterone, thyroid‐stimulating hormone, 

free thyroxine index and cortisol/dehydroepiandrosterone sulfate (DHEA‐S), while others 

consider vasopressin and oxytocin to play a pivotal role in MDD aetiology (for a review see 

Iovino et al., 2018). 

Recent studies also suggest that there is a link between inflammation and MDD, 

suggesting that MDD has an inflammatory subtype (Beijers et al., 2019), but the claims that 

inflammation has a role in aetiology of MDD are still being disputed (Miller, 2018). The same 

happens with changes in gut microbiome in MDD patients (Winter et al., 2018). While the link 

between gut microbiome and depression is well documented, the question of the causality in 

the connection between the two remains to be robustly answered (Winter et al., 2018). It is 

important to mention that these patterns may be true for all biological changes found in MDD 

patients. It is almost impossible to determine if the biological changes caused MDD or if MDD 

caused the biological changes. Conversely, most environmental factors involved in MDD are 

definitely a primary cause. In this regard, the big unanswered question that remains is why does 

the same life event trigger MDD in one person and not in another.  

Amongst the most documented environmental factors linked to MDD are childhood 

traumas, which also cause biological changes in the brain of MDD patients (Yu et al., 2019), 

stressful life events, sexual abuse, low educational attainment (Peyrot et al., 2013) and 
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personality traits (Bensaeed et al., 2014). Other disorders and traits are also strong predictors 

for MDD. For example, a big longitudinal study showed that people who present anxiety traits 

in their twenties are more prone to develop MDD in their thirties (Gustavson et al., 2018). Also 

Parkinsons’, Migrains’, Alzheimers’ patients, amongst others, have high prevalence of MDD 

(Ketharanathan et al., 2014; Muneer et al., 2018; Tao et al., 2019). 

It is not always possible to determine a proximal cause. MDD may have seasonal or peri-

partum onset, as well as being induced by other disorders (e.g., Parkinson) or substance 

ingestion, but it can also emerge without an obvious reason (APA, 2013). 

MDD pathogenesis is as diverse as its aetiology. Even though there are several different 

treatment courses available (for a review see for example Pandarakalam, 2018), 50 to 60% of 

patients develop treatment resistant depression, i.e., do not enter remission even after trying 

different courses of treatment (Kraus et al., 2019), and only 52% of patients achieve a full 

recovery (Novick et al., 2017).   

Due to its complexity, MDD is particularly hard to study, but its severity, prevalence and 

significant economic burden make it a moral and sociological imperative to keep investing this 

research field. Yet, its research funding has been scarce when compared to other disorders (e.g. 

cancer) (Ledford, 2014).  

Randomised controlled trials (RCTs) are considered to be the gold standard for empirical 

research (Hariton & Locascio, 2018), namely in MDD’s potential treatments and interventions 

(Monsour et al., 2019). But RCT are the final step, they are expensive and of limited use, since 

they are insufficient to predict the responses of more diverse populations of patients in real-life 

environments. Some authors consider observational longitudinal studies to be more useful in 

understanding the aetiology and pathogenesis of human disorders (Frieden, 2017) pointing out 

that they also overcome ethical and practical limitations of RCTs such as the insufficient study 

duration or the disregard of unpredictable variables that affect patients in their daily lives (Song 

& Chung, 2010). Others stress the importance of basic and applied research aiming to 

understand MDD’s mechanisms in a controlled environment (e.g., Papassotiropoulos & de 

Quervain, 2015). 

In this regard, advanced magnetic resonance imaging techniques used in patients and 

healthy controls can be a powerful tool regarding the physiological and metabolic 

characterization of brain tissue, in the same way that single photon emission computed 

tomography and positron emission tomography imaging modalities provide valuable data on 

brain function and activity (Tsougos et al., 2019).  
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Post-mortem studies as well as cell-based disease modelling are another valuable set of 

tools in understanding the biology of psychiatric disorders. As cellular biology techniques 

evolve new ways to generate and preserve human cells in vitro emerge (e.g. induced pluripotent 

stem cells, trans differentiation technologies for deriving neurons from adult humans, 

Vadodaria et al., 2018). However, they are insufficient to fully understand the pathways and 

progression of complex disorders. Some authors assert that systems biology might be the 

answer as it can integrate and model different levels of human experimental data – molecular, 

cellular, tissue, organ, clinical and population disorders (Langley, 2014). Others claim that the 

only way to overcome such limitations is resorting to animal models, which are seen as crucial 

for MDD research (e.g., Akil et al., 2018; Wang et al., 2017), despite their well-recognized 

limitations with respect to human predictively (Akil et al., 2018). 

To overcome these limitations, combinations of different animal models are proposed 

(Akil et al., 2018), different transgenic lines of rats are generated (Bailey, 2019) and efforts are 

made to overcome the biological differences between species that keep emerging as 

extrapolation barriers (Hodge et al., 2019). All the above involve high economic costs and 

consume a tremendous amount of animal lives. The reason behind this is because it is assumed 

that animal use is unavoidable and its withdraw would jeopardize human health. However, very 

few studies have addressed the contribution of animal models to MDD research through 

significant critical scrutiny within peer-reviewed literature. Specifically, to our knowledge, the 

contribution of rats for this aim has never been evaluated in such terms, even though rodents 

are undoubtedly the most frequently used animals regarding this context. Even though mice are 

by far the most used rodents in biomedical research an initial search in PubMed, a search engine 

that comprises more than 30 million papers for biomedical literature, indicated that species 

within genus Rattus were highly used in MDD research, which made them an interesting case 

study. To evaluate the contribution of animal models to MDD research is important for ethical 

and economic reasons. As a society, we should make an informed decision on whether we 

should proceed refining animal models until we find a suitable one or if we should halt the 

current paradigm and invest more in other methods that might be more promising as well as 

cheaper and less ethically contentious (Carvalho et al., 2019). 

To conduct such evaluation, we performed a citation analysis on original publications 

describing rat data within MDD research. A citation analysis as defined by Garfield & Merton 

(1979) consists in determining the number of citations target papers (in this case original papers 

resorting to rat models to study MDD) receive as well as determining citation patterns- in this 

case which sort of papers are citing the target papers (e.g. research papers, review papers).  
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Granting that the studies cited guide and influence authors work (Burright et al., 2005), such 

citation analysis can be used to evaluate the contribution of rat studies to current knowledge in 

MDD, as has been done for other disorders (e.g., Carvalho et al., 2016; Knight, 2007; Long et 

al., 2014) as well as for other species in regard to MDD research (Carvalho et al., 2019). 

If rat studies are informing the human medical research community, then we expect that: 

1. All of the papers would be cited at least once in subsequent human medical papers; 

2. The proportion of citations by human medical papers would be substantially higher 

when compared to other research categories. 

Methods 

The citation analysis was performed between January and August of 2019. PubMed and 

SCOPUS were searched for publications using rat models to investigate MDD. We searched 

PubMed using Medical Subject Heading search terms (MeSH terms): “Depressive Disorder, 

Major” AND “rat” OR “rodent”. MeSH terms are a comprehensive list of key terms made 

available by PubMed designed to identify all relevant studies in an area (Uman, 2011). So, 

searching for “Major Depressive Disorder” retrieves other nomenclatures for the same disorder 

such as melancholia. Similarly, the search term “rat” retrieves papers using all rat species. We 

used PubMed filters to exclude review articles (“review”, “systematic review”, “meta-

analysis”, “bibliography”) as well as opinion articles (“biography”, “auto-biography”, 

“comment”, “editorial”, “interview”). Since Scopus does not have the MeSH term tool we used 

the search terms “Major depressive disorder” AND (“rat” OR “rattus”) in the search fields. We 

included journal papers, books, research reports and conference proceedings written in English 

or Portuguese, which are within our language proficiency. We restricted our search to 

publications prior to December 31, 2013, to allow adequate time for citation of articles to occur.  

Since our goal was to evaluate the contribution of animal models - particularly rat models- 

to current knowledge of MDD, we excluded from our analysis all the papers that reported 

animal and human data, as well as papers reporting other species’ data (e.g. mice). 

The retrieved papers were subjected to a subsequent citation analysis using the cited 

reference search facility within Scopus and Web of Science. 

Web of Science is a major scientific citation indexing service that encompasses over 

50,000 scholarly books, 12,000 journals and 160,000 conference proceedings. Scopus is the 

largest citation database; it covers nearly 36,377 titles from approximately 11,678 publishers. 
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For each rat study, we recorded the total number of times it was cited, and allocated each 

citation to one or more of eight categories, defined prospectively: 

 Animals. This category included invasive procedures as defined by Knight (2011), i.e., 

interfering with bodily integrity (whether through puncture or incision) or production 

of genetically modified animals. This category also included severe procedures (as 

defined by current European Legislation Directive 2010/63/EU) commonly used in 

mental disorder research such as inescapable electroshock or isolating social animals 

for long periods.  

 Humans. This category included papers that used human participants. They included 

clinical or treatment trials (either drug trials or non-pharmacological treatments), 

papers aiming to explore psychological, social, biochemical, physiological, genetic or 

neurological variables related to MDD; as well as papers aiming to understand the 

relationship between MDD and other disorders (co-morbidities) in human patients 

 Reviews. This category included narrative reviews, systematic reviews, meta-analysis 

as well as extensive opinion papers that did not report original empirical data. 

 Editorials. This category included editorials, comments and clinical guides. 

 In vitro. This category included exclusively cell-line data. Whenever the source of the 

tissue or cell was a human participant (either alive or post-mortem) or a laboratory 

animal killed for such purpose the paper was allocated into “human paper” or “animal 

research paper”, respectively. 

 In silico. This category included data obtained via computer simulations of human 

data.   

 Social. This category included human surveys or other social perception papers.  

 Non-invasive. This category included ethological research that relied solely on 

behavioral observation.   

Whenever it was not possible to define the category of the citing paper (due to language 

barriers or absence of the abstract), the paper was denoted “not available” and removed from 

the sample. If more than one category could be assigned to a citing paper (e.g., animal research 

and human paper), then that paper was allocated to every appropriate category. 

To evaluate if the proportions of citations made by human publications and animal 

publications on MDD were different we used a t-test. Results were considered statistically 

significant when P < 0.05. The analyses were performed in R 3.6.1 (R Core Team, 2019). 
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Results 

The 178 original rat studies focused on MDD that were published before the end of 2013 

were cited 8,712 times by August, 2019. Of these 178, 87 (49%) studies were never cited in 

subsequent publications describing human studies on MDD, and 53 (30%) were never cited in 

any publications related to human research. 

 As shown in Figure 1, rat studies were mainly cited by other animal research papers 

(4,633), followed by review papers (2,909), human studies (794), in vitro papers (211), 

editorials (58), in silico papers (57), non-invasive animal papers (eight) and human social 

papers (one). 230 citations were unavailable to us due to assess or language barrier. These were 

removed from further analysis. 

 

Figure 3.1 Frequency of citations by category established in this study  

 

The proportion of citations by human medical papers is 9.1 % while the proportion of 

citations by animal experimentation papers is 53.2%. This corresponds to a mean difference 

between the proportions of citations by human and by animals of -44% (p<<0.001). Beyond the 

statistical significance, this is certainly a considerable practical difference that reflects almost 

83% (100 (9.1 – 53.2)/9.1)) less citations by human papers than by animal papers. 
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Discussion 

The majority of the rat papers located in this study were cited by subsequent animal 

research papers, but about half (49%) of the original papers retrieved were never cited in 

subsequent papers related to MDD in humans, and in fact about a third (30%) were never cited 

in any subsequent human studies. 

Our citation analysis reveals that only around a tenth (9.1%) of the total number of 

citations were by human medical papers. This contradicts the assumption that citations made 

by human medical papers constitute a considerable proportion of the total number of citations, 

compared to the other categories, and raises doubts about the justification for these studies. 

The results of our study are in agreement with previous studies that empirically evaluated 

the contribution of animal models to human healthcare, concluding that the contribution is poor 

(for a review see Knight, 2019). Clearly, biomedical research resorting to animal models is not 

normally considered significant, or particularly visible to, the human medical research 

community.  

Supporters of animal models of human disorders claim that this happens: a) due to 

differences in the way basic animal work and human clinical trials are conducted, and propose 

a change to a translational biomarker-based approach within early steps of pre-clinical research 

(Garner, 2014); b) failings in study design, conduct, analysis and reporting (Pound & Ritskes-

Hoitinga, 2018), which could be resolved with better reporting and better methodological 

quality (Fabian-Jessing et al., 2018). 

Opponents of the use of animal models point out that animal models lack external validity 

i.e. findings derived in one setting, population or species cannot be reliably applied to other 

settings, populations and species, which is unavoidable since animal models: a) oversimplify 

complex human disorders and the conditions in which they occur; b) are unsuitable models due 

to species differences, proposing as a possible solution a shift towards human-based non-

clinical research (Pound & Ritskes-Hoitinga, 2018). 

This paradigm change towards human-based research is gaining more and more 

supporters (e.g., Langley, 2014; Pound & Ritskes-Hoitinga, 2018; Ram, 2019). But the 

resistance from animal researchers in face of this shift remains significant and is evident not 

only in the slowness to recognize the growing body of evidence against the use of animals as 

models, but also in the emphasis placed on refinement of animal use (Franco & Olsson, 2014) 

(the third R as defined by Russel and Burch (1959), instead of on the first and most important 

R – replacement with non-animal alternatives). Considering this, Frank (2005) proposed that 
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animal experimentation constitutes a good example of path dependency, which is a well-

documented phenomenon that states that what has occurred in the past persists because of 

resistance to change. 

Our results also show that more than half (53%) of the citations our target papers received 

were by subsequent animal papers, which strengthens the idea of the path dependency 

phenomenon described above. It can be argued that there is a need to have a substantial amount 

of animal research before achieving a critical mass that can lead to useful breakthroughs in 

human health, which might explain the high level of citations of animal papers by subsequent 

animal papers. Nonetheless, it does not explain the low level of citations by human papers, 

especially when this does not appear to be a trend in human-based approaches (in vitro and in 

silico) which received more citations by human medical papers in a small study we previously 

conducted (Carvalho et al., 2019). Furthermore, a recent citations analysis in another field of 

human health research also found in vitro papers to be the most cited papers, above reviews and 

animal experimentations papers (Adnan & Ullah, 2018). 

We acknowledge that this study has certain limitations. Even though we used two big 

bibliographic databases to attempt to locate all publications that met our search criteria, we 

acknowledge that a small minority of relevant papers may not have been retrieved (e.g. due to 

labelling errors).  

Similarly, we did not take note of certain citations such as self-citations, in-house citations 

and content-irrelevant citations. Such citation types were not considered significant in several 

studies and were similarly dismissed in recent studies (Huang et al., 2019).  

Finally, we did not analyse the quality of citing papers as in previous studies (Carvalho 

et al., 2016; Carvalho et al., 2019). Doing so might have resulted in a lower number of rat papers 

cited by human studies into MDD, if only good quality citing papers were included. This might 

have resulted in an even lower, but a truer, indication of the contribution of rat models for 

current knowledge of MDD. 
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Abstract 

Major depressive disorder (MDD) is the most severe form of depression and the leading 

cause of disability worldwide. When considering research approaches aimed at understanding 

MDD, it is important that their effectiveness is evaluated. Here, we assessed the effectiveness 

of original studies on MDD by rating their contributions to subsequent medical papers on the 
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subject, and we compared the respective contribution of findings from non-human primate 

(NHP) studies and from human-based in vitro or in silico research approaches. For each 

publication, we conducted a quantitative citation analysis and a systematic qualitative analysis 

of the citations. In the majority of cases, human-based research approaches (both in silico and 

in vitro) received more citations in subsequent human research papers than did NHP studies. In 

addition, the human-based approaches were considered to be more relevant to the hypotheses 

and/or to the methods featured in the citing papers. The results of this study suggest that studies 

based on in silico and in vitro approaches are taken into account by medical researchers more 

often than are NHP-based approaches. In addition, these human-based approaches are usually 

cheaper and less ethically contentious than NHP studies. Therefore, we suggest that the 

traditional animal-based approach for testing medical hypotheses should be revised, and more 

opportunities created for further developing human-relevant innovative techniques. 

Keywords: animal use alternatives, in silico, in vitro, major depressive disorder, non-

human primate, three Rs 

Introduction 

According to the World Health Organization, depression is the leading cause of morbidity 

worldwide. It affects more than 300 million people of all ages and is a major contributor to the 

overall global burden of disease.1 People who suffer from depression are more prone to an early 

death either by suicide or through the development of other conditions such as cancer, heart 

disease or stroke.2,3 In addition, these patients are also more prone to a number of other disorders 

(e.g. osteoporosis)4 that, although not life-threatening, do significantly impact not only quality 

of life but also public health and national economies. 

Accordingly, major investment has been dedicated to research aiming to improve the 

understanding of all eight forms of depression.5 Major depressive disorder (MDD) is the most 

severe type and the third leading cause of long-term disability.6 Besides, the few studies that 

have comprehensively investigated the impact of MDD in Europe (from 2004 to 2010) have 

shown that MDD was the costliest brain disorder in Europe, accounting for at least 1% of the 

total European economy.7,8 In the United States, the economic burden of MDD alone was 

US$210.5 billion in 2010.9 

Clinical research is expensive, time-consuming and potentially ethically contentious. For 

instance, every patient who enrols in a clinical trial is subject to an increased level of risk with 

respect to deviations from their regular clinical care, particularly with regard to the occurrence 
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of unexpected effects from exposure to a new treatment. Non-clinical (i.e. preclinical) research, 

often involving non-human animals and human-based in vitro and in silico approaches, is 

sometimes valuable in the early steps of biomedical research to simplify and accelerate drug 

and treatment discovery. However, to optimise the outcomes of this non-clinical research, it is 

crucial to evaluate the research approaches that might have the most potential for patient 

treatment results. 

Animal-based research has been accepted as the ‘gold standard’ approach for preclinical 

biomedical research and testing since the second half of the 20th century.10 Within this 

approach, non-human primate (NHP) research has been considered particularly relevant, due to 

the similarity between humans and NHPs. However, this similarity has led to NHPs being 

afforded various degrees of legal protection in different regions of the world. For example, 

Europe,11 the United States12 and New Zealand13 have imposed considerable restrictions to the 

use of NHPs for scientific purposes. These restrictions are due to the understanding that 

subjecting NHPs to laboratory confinement alone, even before considering the use of any 

invasive or intrusive procedures, has resulted in psychosomatic injury, mutilation and 

physiological traits that have been compared to those exhibited by people with post-traumatic 

stress disorder.13–20 Moreover, NHPs are expensive to acquire21 and are the most expensive 

animals to maintain.22 The legislation on animal use for experimental purposes of several 

countries (e.g. Directive 2010/63/EU) requires a cost–benefit assessment to be carried out prior 

to conducting a procedure on a non-human animal. For each project, the likely harm to the 

animal should be balanced against the potential benefits, and the project should only go ahead 

if the expected benefits outweigh the harms inflicted to the animals involved. 

Considering all of the above, it is assumed that when research is conducted on NHPs, due 

to the ethical and economic concerns surrounding this practice, this research should provide 

highly relevant data that lead to concrete improvements in patient outcomes. While some 

authors assert that animal research approaches, and those involving NHPs in particular, are 

crucial for biomedical progress,23 an increasing number of evidence-based papers show that the 

contribution of animal-based research to the advancement of human healthcare has been poor,24 

including in the case of MDD.25 However, it is yet to be established whether this poor 

contribution is due to the intrinsic limitations of all non-clinical research, or whether human-

based (in vitro and in silico) non-clinical research approaches are more effective in helping 

biomedical progress, at least when seeking to understand complex disorders of a multifactorial 

origin, such as MDD. 
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In vitro and in silico methods that directly rely on human-based knowledge and/or 

material are thought to potentially allow for faster development of medical treat- ments.26,27 

Usually, they are also more cost-effective than animal-based methods. However, despite 

yielding data of sufficient value to further disease understanding in humans, and providing the 

means to test new therapies, such non-animal methods are still judged against the standard 

biomedical research paradigm. Indeed, they are seen as incomplete on their own and considered 

to be preliminary steps prior to (often contradictory) animal testing.28,29 

To shed light on this debate, the current study examines and compares the contribution of 

results from NHP studies, as well as from in silico-based and in vitro-based approaches, to 

clinical studies on MDD. This allows us to: (a) evaluate whether the low transferability of 

knowledge to clinical research is a common trait of all non-clinical research approaches; and 

(b) evaluate the specific relevance of NHP studies and human-based in silico and in vitro 

approaches to human clinical studies. 

Considering the dominance of NHP studies within the current preclinical research 

paradigm, we expect the findings from these studies to have a higher contribution to subsequent 

clinical research than findings from in silico-based and in vitro-based studies. A similar or lower 

contribution from NHP studies would suggest that clinical research is becoming less reliant on 

this more costly and ethically questionable type of research, thus suggesting that the time for a 

paradigm shift has come. 

Methods 

The design of this study was based on a previously developed method consisting of a 

quantitative citation analysis and a systematic qualitative analysis of citations.30 

Quantitative citation analysis 

Bibliographic search: The citation analysis was performed between September 2016 and 

June 2017. The PubMed bibliographic database was searched for papers that described studies 

employing either NHPs, or in vitro or in silico research approaches, to investigate MDD. The 

following Medical Subject Heading (MeSH) search terms were used: ‘Depressive Disorder, 

Major’ AND MeSH terms: ‘primate’ OR ‘ape’ OR ‘macaque’ OR ‘macaca’ OR ‘rhesus’ OR 

‘chimpanzee’ OR ‘bonobo’ OR ‘gorilla’ OR ‘gorila’ OR ‘Pan’ OR ‘orangutang’ OR 

‘orangutan’ OR ‘Orang utan’ OR ‘orangutan’ OR ‘ourang-outang’ OR ‘Pongo’ OR ‘gibbon’ 

OR ‘Hylobates’ OR ‘Colobus’ OR ‘Baboon’ OR ‘Papio’ OR ‘Mandrillus’ OR ‘Mandrill’ OR 
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‘Cebus’ OR ‘Cebuella’ OR ‘Brachyteles’ OR ‘Loris’ OR ‘Nycticebus’ OR ‘lemur’ OR 

‘Callithrix’ OR ‘in silico’ OR ‘computer model’ OR ‘mathematical model’ OR ‘computer 

simulation’ OR ‘in vitro’ OR ‘cell culture’ OR ‘culture technique’ OR ‘cell line’ OR ‘organ 

culture’ OR ‘tissue culture’. 

MeSH terms are a comprehensive list of key terms related to each human disorder, 

designed to identify all relevant studies in a given area.31 Thus, searching for ‘Depressive 

Disorder, Major’ retrieves other nomenclatures for the same disorder (e.g. Melancholia). There 

were no exclusive MeSH terms for NHPs, so the search retrieved additional papers with non-

human animals that were excluded by manual sorting. All in vitro-based and in silico-based 

papers that used animal data (e.g. rat cell line data) were also excluded. 

Papers from scientific journals, books, research reports and conference proceedings 

written in English, Portuguese or Italian were included (being within the authors’ linguistic 

fluencies). PubMed filters were used, in order to exclude review papers (‘review’, ‘systematic 

review’, ‘meta-analysis’, ‘bibliography’), as well as editorials and other types of non-research 

papers (‘biography’, ‘auto-biography’, ‘comment’, ‘opinion paper’, ‘interview’), since the aim 

of the study was to evaluate the impact of original data. The search was restricted to publications 

prior to 31 December 2011, to allow adequate time for subsequent citation of papers.32 Nineteen 

NHP study-based papers, 29 in silico-based papers and 38 in vitro-based papers describing data 

from original MDD research were retrieved (see Appendix 1). 

Citation data: A citation analysis on the retrieved papers was performed by using the 

cited reference search facility within the Web of Science bibliographic database. For each 

retrieved paper, the subsequent papers that cited it were identified, and three types of citation 

data were recorded: 

 the total number of times that the retrieved paper was cited; 

 the total number of times that the retrieved paper was cited per research category; and 

 the total number of times that the retrieved paper was cited per research subject, that 

is, on MDD or other subjects, as detailed below. 

Each citing paper was ascribed to one or more of the following eight research categories: 

‘invasive animal research’; ‘human research’; ‘review’; ‘opinions’ (including editorials, 

comments or replies to comments); ‘in vitro’; ‘in silico’; ‘non-invasive animal research’ (e.g. 

observational studies with wild animals); and ‘other human studies’ (e.g. on social perceptions). 

The term ‘human research’ referred to any human-based research that might involve, among 
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other things, the analysis of biological samples, epidemiological and behavioural studies, 

medical case studies and clinical studies. A citing paper could be allocated to more than one 

category, if it described different research approaches. Whenever the category of the citing 

paper could not be defined (due to language barriers or absence of an abstract), the paper was 

labelled as ‘not available’ and removed from further analysis. 

Among the categories ‘human research’, ‘in silico’, ‘in vitro’ and ‘invasive animal 

research’, it was also recorded whether the citing paper focused on MDD or on other subjects. 

Statistical analysis: To test for differences between the numbers of citations across 

research approaches, three generalised linear models (GLMs), each with a Poisson response 

and a log link function, were implemented. Each model tested one of the following response 

variables: (a) the total number of citations; (b) the total number of citations by papers in the 

category ‘human research’; and (c) the total number of citations by papers in the category of 

‘human research’ that focused specifically on MDD. In each model, the only explanatory 

variable was the type of research approach, of which there were three: NHP studies, in silico-

based approaches and in vitro-based approaches. The GLM’s goodness of fit was evaluated by 

visual inspection of the diagnostic plots. Additionally, a Gaussian GLM was used to evaluate 

whether the proportions of citations by human research papers, and by human research papers 

specifically on MDD, were different across the three approaches. The analyses were performed 

in R 3.6.1,33 by using the function glm. The results were considered significant when p < 0.05. 

Systematic qualitative analysis of citations 

Citing papers featuring human research specifically on MDD were systematically 

analysed by two independent raters, to qualitatively evaluate the contribution of knowledge 

from NHP studies, or from in vitro-based or in silico-based research approaches, to the 

respective human clinical study. Each study was rated according to the following classes, which 

were defined prospectively, as in Carvalho et al.30: 

 Redundant: when the cited study was only mentioned among other studies as an 

example. In the case where multiple studies were used as examples of one or more 

points, the raters were instructed to rate the study as redundant only if there were older 

or human studies stating exactly the same points. 

 Minor relevance: when the cited study was cited in either the Discussion or the 

Introduction, to provide information not directly related to the hypothesis explored in 

the human study. 
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 Relevant to the hypothesis: when the cited study was cited in the Introduction, to 

provide information relevant to the hypothesis explored in the human study. 

 Relevant to the methods: when the human study used the same methodology as that 

described in the cited paper, with the exception of species differences in the case of 

NHP study methods. 

A paper considered to be ‘relevant’ could be both relevant for the hypothesis and the 

methods. The other options in the classes are mutually exclusive. In all cases, disagreement 

between the raters was resolved via detailed discussions until a consensus was reached. 

Whenever it was not possible to assess the contribution of a cited paper to a human study 

due to unavailability of the full publication on the human study, the human research paper was 

labelled as ‘not available’ and removed from further analysis. 

A statistical test was used for comparing proportions (Pearson’s z2 test implemented via 

R’s prop.test function), in order to assess differences between the three cited approaches (i.e. 

NHP studies, and in vitro-based and in silico-based approaches). Since, even for the pair with 

the largest difference, the null hypothesis of equal proportions could not be rejected under the 

usual significance levels, corrections for multiple comparisons were not attempted. 

Results 

Citation analysis 

NHP study-based results: Nineteen publications featuring NHP studies in the field of 

MDD research were retrieved, which were subsequently cited 841 times in total. Of these 19 

papers, five featured both human and NHP data. 

The subsequent citing papers belonged to the following categories: invasive animal 

research (312); reviews (245); human research (152); in vitro research (81); in silico research 

(14); non-invasive animal research (6); and opinions, including editorials, comments or replies 

to comments (4). Eighty-five citing papers were not categorised due to being unavailable or 

written in a language other than English, Portuguese or Italian. 

Of the 312 citations by animal research papers, 63 were specifically focused on MDD; of 

the 152 citations by human research papers, 71 were specifically focused on MDD. 

In silico-based approach results: Twenty-nine publications describing the use of in silico-

based approaches in the context of MDD research were retrieved, which were subsequently 

cited 806 times in total. Of these 29 papers, seven featured both patient data and computer 
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simulations. The subsequent citing papers belonged to the following categories: human research 

(317); in silico research (193); reviews (193); invasive animal research (44); in vitro research 

(17); and opinions (17). Fifty-eight citing papers were not categorised due to being unavailable 

or written in a language other than English, Portuguese or Italian. 

Of the 317 citations by human research papers, 94 specifically focused on MDD; of the 

193 citations by in silico- based research papers, 36 specifically focused on MDD. 

In vitro-based approach results: Thirty-eight publications describing the use of in vitro-

based approaches in the context of MDD research were retrieved, which were subsequently 

cited 2,574 times in total. All of the in vitro-based papers used samples of human biological 

material, mostly being obtained from MDD patients (in 34 out of the 38 studies). 

The subsequent citing papers belonged to the following categories: in vitro research 

(1,239), resorting to the use of human biological material (789), laboratory animal biological 

material (373) or biological material from both sources (12); human research (978), of which 

189 studies solely used human participants without concurrent use of in vitro-based research 

approaches; reviews (844); invasive animal research (464), of which 79 studies solely used live 

animals without concurrent use of in vitro-based research approaches; opinions (27); and in 

silico research (16). One hundred and fifty-four citing papers were not categorised due to being 

unavailable or written in a language other than English, Portuguese or Italian. 

Of the 978 citations by human research papers, 482 specifically focused on MDD; of the 

1,239 citations by in vitro research papers, 487 specifically focused on MDD. 

Comparison of citations of papers based on NHP studies, in vitro approaches and in silico 

approaches 

An inspection of the diagnostic plots showed no reason for concern with regard to the 

GLM fit. Among the papers using an in vitro-based approach, one was frequently cited (711 

citations). We performed the analysis both with and without this potential outlier and found no 

significant differences between the two scenarios. 

The GLM estimated the average number of citations per paper for each of the three 

approaches (Figure 1 (a)). Each NHP paper was cited 42.05 times (standard error (SE): 1.450). 

Papers based on in silico approaches were cited less frequently than this (26.87 times; i.e. -

15.18, SE: 0.946), and papers based on in vitro approaches were cited more frequently (69.57 

times; i.e. +27.52, SE: 1.371). Both differences were statistically significant (p < 0.0001). 

With regard to the average number of subsequent citations by human research papers 

(Figure 1 (b)), each NHP paper was cited 2.03 times (SE: 0.08). In comparison, papers based 
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on in vitro and in silico approaches were more frequently cited (+ 1.09, SE: 0.09 and + 0.33, 

SE: 0.10, respectively). These differences were statistically significant (p < 0.001). 

 

Figure 1. The number of citations received by the retrieved papers, according to research approach. A 

bibliographic search was carried out to retrieve papers on MDD, which were categorised as based on NHP studies 

or in silico or in vitro approaches, according to the research method described. A citation analysis was then 

performed to identify papers that subsequently cited these retrieved papers. The graphs show: (a) the total number 

of times that the retrieved papers were cited, according to their research approach; (b) the number of times that 

the retrieved papers were cited by papers on human research, according to their research approach; and (c) the 

number of times that the retrieved papers were cited by papers on human research specifically focused on MDD, 

according to their research approach. For visualisation purposes, the largest observation in the ‘In vitro’ category 

was excluded from the data used to generate the graphs. MDD: major depressive disorder; NHP: non-human 

primate. 

When looking at the average numbers of citations by human research papers specifically 

focused on MDD (Figure 1 (c)), each NHP paper was cited 1.27 times (SE: 0.12), which was 

not statistically different from the number of citations of papers based on in silico approaches 

( 0.12, SE: 0.16). In these MDD-specific publications, papers based on in vitro approaches 

received, on average, more citations (+ 1.3, SE: 0.13) than papers based on NHP studies, and 

the difference was statistically significant (p < 0.001). 

The estimated proportion of citations of NHP papers by human research papers was 0.13 

(SE: 0.05). This proportion was significantly higher for papers based on in silico approaches 

(+0.20, SE: 0.07, p 0.004) and also for papers based on in vitro approaches (+ 0.30, SE:  0.07,   

p < 0.0001). 
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The estimated proportion of citations of NHP papers by human research papers 

specifically focused on MDD was 0.06 (SE: 0.03), which was not significantly different from 

the proportion of citations of papers based on in silico approaches (+ 0.06, SE: 0.04, p   0.1389). 

The proportion of citations in these MDD-specific publications, of papers based on in vitro 

approaches (+ 0.14, SE: 0.04), was significantly different from that of the NHP papers (p = 

0.001). 

Systematic qualitative analysis of citations 

Of the 71 human research papers specifically focused on MDD that cited NHP papers, 50 

(70%) were fully available for further analysis, along with 401 of the 482 (83%) human research 

papers on MDD that cited in vitro-based papers, and 58 of the 94 (62%) human research papers 

on MDD that cited in silico-based papers. It was judged that eight of 50 (16%), 15 of 58 (25%) 

and 100 of 401 (25%) of citations of papers based on NHP studies, in silico and in vitro 

approaches, respectively, were relevant to the hypothesis and/or the methods in the citing 

human research paper on MDD (see Table 1). 

Table 1. The relevance of cited NHP study-based, in silico-based or in vitro-based papers to subsequent (i.e. citing) human research 

papers focused on MDD.a 
 

 
Citations which are: 

Papers 

based on 

NHP studies 

Papers based 

on in silico 

approaches 

Papers based 

on in vitro 

approaches 

 
To

tal 

Redundant or of minor relevance 42 (84%) 43 (75%) 301 (75%) 386 

Relevant to the hypothesis or to the 
methods 

8 (16%) 15 (25%) 100 (25%) 123 

Total 50 58 401 509 

MDD: major depressive disorder; NHP: non-human primate. 
aThe relevance or redundancy of the cited paper to the hypothesis or methods of the citing MDD paper was evaluated by two 

independent raters. Bold: total value. 

The statistical test used to compare the proportions did not reveal any significant 

differences between the proportions of relevant citations between NHP–in vitro, NHP–in silico 

and in vitro–in silico (p = 0.31, 0.20 and 1, respectively). 

Discussion 

We quantitatively and qualitatively analysed the contribution of NHP, in vitro and in 

silico-based research approaches to the contemporary understanding of MDD. Of the three 

approaches analysed, NHP studies seemed to be the approach that was least likely to contribute 

to furthering progress in this field of human medical research. Of the three, the human-based in 

vitro approach seemed to influence human research to the greatest extent, judging by the 
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number of citations. However, all three approaches seemed to be equally relevant in informing 

the hypothesis and/or methods of subsequent human research studies. 

Overall, our results suggest that these less funded non-animal research approaches34 are 

more or equally effective than heavily invested animal-based research in reaching their final 

goal — which is to inform clinical research to improve human healthcare. Our quantitative 

results showed that in silico-based and in vitro-based approaches contributed more than NHP 

study-based approaches to human medical research, as the proportion of cited papers featuring 

the former two approaches was higher than the proportion of cited papers featuring the latter. 

NHP study-based papers were mainly cited by other papers on animal experimentation, which 

suggests that they are mainly contributing to subsequent animal research rather than to advances 

in human healthcare. In vitro studies seemed to be the most effective approach, since this 

approach received significantly more citations in total, and by human research papers either 

specifically focused on MDD or on other general medical areas. 

Of the five analysed NHP study-based papers that were relevant to the citing human 

research papers on MDD in terms of their hypothesis, method or both, one featured both NHP 

and human research data. This paper was cited twice, and both citing papers referred to the 

human research data rather than to the NHP data. Another one of these five NHP papers was 

considered relevant to the methods and was cited once. The citing paper described both human 

and rhesus monkey data, and the citation was relevant to the methods used with the rhesus 

monkeys. After excluding these cases, only three out of the 19 NHP studies were relevant to 

the hypothesis and/or methods of the subsequent human research studies on MDD. 

The results of our citation analysis also suggest that the widely accepted approach to 

testing medical hypotheses — which relies on in vitro-based and in silico-based research as a 

preliminary step prior to animal testing — is not actually working as intended, since clinical 

papers tend to cite in silico-based and in vitro-based papers directly too. However, citations of 

in silico-based and in vitro-based papers in subsequent publications on human clinical studies 

of MDD constituted a low percentage (50% or less) of the total citations received in all three 

analysed categories. This may be explained by the complexity of MDD, which shares certain 

genetic factors, phenotypic traits and possible neurologic pathways with a number of other 

disorders. Hence, a human study on anorexia might cite a non-clinical study on MDD focused 

on weight loss, since weight change is one of the symptoms of MDD. 

As to the qualitative results, the judged relevance of the initially retrieved papers to the 

publications subsequently citing them was low for all three analysed research approaches. Even 

though a higher percentage of cited in silico-based and in vitro-based papers were relevant to 
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the hypothesis and/or methods used by the citing clinical studies, the differences between the 

three approaches, in the extent of their judged relevance, were deemed insignificant. However, 

the size of the observed effect — where the proportion of citations of NHP-based papers was 

much lower than that of in silico-based or in vitro-based papers — suggests that, while not 

statistically significant (due to lack of statistical power), there might be a relevant practical 

difference. 

Several important developments in in vitro technologies (e.g. organs-on-chips35) and in 

in silico technologies (e.g. advanced artificial intelligence based on sophisticated machine 

learning tools36) have been published since 2011. Such studies have been excluded from our 

analysis, in order to ensure that sufficient time is given to allow for subsequent citation of the 

resulting papers. However, it is reasonable to expect that these cutting-edge technologies are 

currently being widely used to generate and test new hypotheses in human medicine.27 

Similarly, induced pluripotent stem cells, even though they have been worked on and developed 

for more than a decade,37 have only recently been recommended for MDD research.38 In light 

of the above, it would be interesting to repeat the current study a decade from now to investigate 

whether this has led to an increase in the number of subsequent citations of in vitro-based and 

in silico-based papers on MDD, in both MDD-focused and general human research 

publications. 

We recognise that our study has certain limitations. Due to resource constraints, we were 

unable to use a greater number of search engines (e.g. CAB Abstracts). This would have 

increased the likelihood of retrieving all in silico-based, in vitro-based and NHP study-based 

papers on MDD, which would have increased our sample size and thus made it more 

comprehensive. Similarly, we were unable to examine the reference lists of many of the 

retrieved papers, in order to locate additional relevant papers. This inevitably means that some 

relevant publications might not have been identified. Because the sample size was small, our 

results should be interpreted with this caveat. 

Finally, we are aware of the difficulty in objectively determining the relevance of a cited 

paper to the publication citing it. We used two different raters, in order to attempt to decrease 

any error in subjective assessment. Occasionally, the raters differed in their initial assessment, 

indicating that, even when the same criteria are used for assessment, differences can sometimes 

arise. However, our experience suggests that these differences would relate to only a small 

proportion of the papers assessed. Despite the limitations in the citation search and in the 

systematic qualitative analysis of the citation value, we consider that the method we followed 
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is useful when evaluating the effectiveness of different research approaches. We hope that 

similar studies adopt this methodology, in order to investigate other medical disorders. 

Our results suggest that the contribution of NHP studies to the current understanding of 

MDD is poor, and that other approaches with potentially superior relevance to humans should 

be used. Our results also shed light on the controversy around the efficacy of NHP-based 

research for investigating human disorders. This controversy is long-standing, with some 

authors claiming that their use is crucial for medical advancement,23 while others assert the 

opposite.39,40 However, ongoing scientific advances in non-animal methods for the acquisition 

of knowledge and the development of new treatments may provide future alternative solutions 

to help avoid the dilemmas and concerns surrounding NHP use. 

Conclusions 

To our knowledge, this is the first study to compare the effectiveness of original studies 

involving the use of NHP, in vitro and in silico research approaches to inform the medical 

research community within the MDD field. Our results suggest that, in this field of medical 

research, human-based in vitro and in silico research approaches are more promising than NHP 

studies, in generating new hypotheses and methods for subsequent clinical research. 

Given the scientific advances in human-based research methods, we suggest that our 

methodology could be used in the future to analyse the impact of more recent technologies in 

informing human medical research. Such analysis could examine if and how the standard 

paradigm for testing medical hypotheses is still being followed, from applied research, through 

animal use in preclinical testing, and on to clinical research and development. It could also 

provide further insight into how the ‘gold standard’ that considers in vitro-based and in silico-

based research approaches as merely preliminary steps prior to animal testing could be 

challenged and revised. Given the scientific and ethical solutions that innovative human-based 

approaches are providing, with relatively little investment when compared to the investments 

in animal-based research, a reallocation of resources is clearly warranted in favour of 

researching and developing the use of such approaches as part of human medical research. 
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1. Introduction 

Since the second half of the twentieth century, non-human animals (hereinafter referred 

to as animals) have been widely used as models for researching human disorders. Historically, 

this occurred for two main reasons: a) animals are complex living systems; and b) it is 

considered less ethically-contentious as well as easier, quicker, and cheaper to use animals than 

humans. Their benefit for biomedical advancement is assumed even though systematic 

evaluations, though uncommon, suggest otherwise. It is crucial to evaluate whether animal-

based biomedical research successfully benefits medical research—even through indirect 

https://doi.org/10.1163/%209789004391192_017
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pathways—or if it is being used merely to justify further animal-based research. In this chapter 

we demonstrate that there is a lack of communication between animal-based research and 

clinical research. We discuss possible reasons for this and reflect on whether animal use in 

biomedical research is, indeed, fulfilling its primary purpose. 

Humans share a long evolutionary story with the rest of the animal kingdom, which 

explains common physiological and behavioral traits and adaptations. For example, basal 

ganglia, a set of subcortical nuclei involved in several motor functions, are present throughout 

vertebrate taxa and are largely similar across species (Lee et al., 2015). Similarly, the rise of 

body temperature as a response to infection is shared by humans and other mammals (Nesse 

and Williams, 1996; Schaffner, 2006). Even poikilothermic (cold-blooded) animals, such as 

lizards, tend to move to warmer places when they are ill, until their body temperature is several 

degrees above normal (Nesse and Williams, 1996). The relatively recent decoding of genomes 

had shown an impressive number of genes shared between ourselves and taxonomically-distant 

species, such as the frog (Hellsten et al., 2010). These similarities provided the basis for the 

untested assumption that animals provide good research models for human disorders. 

However, we know that minimal biological changes can create significant differences 

between species and individuals. For example, Darwin’s finches comprise 14 closely related 

species that vary dramatically in their feeding habits, despite their biological proximity (Lack, 

1947). Even amongst individuals of the same species, slight and almost undetectable differences 

can cause very different adaptive responses. For example, human beings with sickle cell trait 

may have increased protection from malaria but risk sudden death by hypoxia, when visiting 

high altitudes or performing intense physical exertion (Scheinin and Wetli, 2009; Webber et 

al., 2016), safe activities for most people. 

Despite individual differences, it is obvious that human beings are the best biomedical 

model for human disorders. However, clinical research is time consuming and can have severe 

ethical constraints, which is one of the main reasons why animals are widely used as models 

for human disorders. Recent in vitro developments have allowed us to create cultures of human 

cells and tissues (e.g., Petropolis et al., 2016; Wilson, Ahearne and Hopkinson, 2015) that are 

considered superior to using animal samples for human-based research (Clemedson et al., 1998; 

Huhtala et al., 2008; Petropolis et al., 2016). Nonetheless, among the scientific community, the 

main obstacle to the total replacement of animal use in biomedical research is not a desire to 

study cells, tissues, or organs, but the desire to study entire, functioning bodily systems. This is 

considered necessary when objectives include understanding a drug effect in the whole 
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organism or trying to understand the etiology and pathogenesis of multifactorial disorders, such 

as mental disorders. 

In silico techniques have been slowly addressing this issue, creating whole body 

simulations (e.g., Viceconti, Clapworthy and Jan, 2008; Viceconti, Henney and Morley-

Fletcher, 2016). However, the availability of human data limits these models. For example, if a 

new disease arises, models may fail to predict accurately the response of the human body to the 

new pathogen due to lack of data. It should be noted that animal models also suffer from failure 

to predict human responses accurately. Despite the accepted potential of in silico techniques, 

unvalidated animal models are still commonly believed to be the best available, so far, for 

studying the entire, functioning human body. 

Throughout the years, various authors have asserted that animal research has made only 

poor contributions to medical progress (e.g., Bailey, 2008; Fadali, 1996; Greek and Greek, 

2003; Shapiro, 1998), while others have asserted the opposite (e.g., Illman, 2008; Shively and 

Clarkson, 2009; Perretta, 2009). Such assertions are based upon historical analyses, 

investigations into the development of various treatments, and critical reviews of animal model 

use. Historical accounts are disputed. A classic example is the discovery of the role of the 

pancreas in diabetes. Many claim that we owe this discovery to experiments conducted by 

Minkowski and von Mering with dogs, in the second half of the nineteenth century (cited in 

Bliss, 1982); whereas, others argue that this medical breakthrough was achieved by Thomas 

Cawley, 100 years earlier, while performing autopsies on patients who died from diabetes (cited 

in Fadali, 1996). 

Investigations into the development of treatments are also controversial. A good example 

is the development of the poliomyelitis vaccine. Poliomyelitis is a viral disease that reached 

epidemic proportions in 1916. Some (e.g., Illman, 2008) state that it was the experiments 

performed on mice and monkeys that allowed scientists to understand its pathogenesis and 

develop a vaccine. Furthermore, both poliomyelitis vaccines (Salk vaccine and Sabin vaccine) 

were initially grown in monkey kidney tissue (Dowdle et al., 2003), reinforcing the perception 

of the central role of animal experiments in the development of poliomyelitis treatment (Illman, 

2008). However, others (e.g., Fadali, 1996) claim that animal experiments delayed the vaccine’s 

development. Rhesus monkeys, which provided a widely-used animal model for poliomyelitis, 

misled scientists to believe that the virus was transmitted via the respiratory, rather than the 

digestive route (Dowling, cited in Bailey, 2008), as earlier research on humans had suggested 

(see Fadali, 1996, for a review). This mistake led to an erroneous clinical trial in 1937, in which 

exposed children suffered olfactory damage (Parish, 1968). Also, the first poliomyelitis 
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vaccines, grown on monkey kidney cells, were responsible for the exposure of millions of 

American citizens to simian virus 40, found in rare human cancers (Pennisi, 1997). When it 

comes to non-human primates (NHPS), these disputes are even more contentious, because 

public opinion is less supportive of the use of NHPS in research (European Commission, 2010). 

Furthermore, as technology evolves, better methods become available, and the apparent 

historical necessity of animal experiments becomes of less relevance. For example, vaccines 

that used to be developed using animal tissues—at times suboptimally due to poor efficiency 

(e.g., rubella vaccine developed through duck embryo cells and dog kidney cells) or zoonosis 

(e.g., the simian virus that reached humans through the first polio vaccines)—are now being 

developed using human strains (Plotkin, 2017). 

Recently more objective tools to assess the contribution of animal models to biomedical 

progress have emerged. Such is the case of systematic reviews, meta-analyses, and citation 

analyses. Systematic reviews are literature reviews focused on a research question that aim to 

identify, appraise, and synthesize all high-quality research evidence relevant to that question. 

They are generally considered the best tool to produce evidence about the value of animal 

studies (Pound et al., 2004), not only because they are designed to include all relevant 

information, drastically reducing the potential for bias; but also because systematic reviews 

evaluate experimental designs through rigorous and objective peer-reviewed protocols, such as 

the Animal Research: Reporting In Vivo Experiments (ARRIVE) guidelines that apply scientific 

method to the task of reviewing research evidence (Kilkenny et al., 2010). A meta-analysis can 

go even further by incorporating a statistical representation of all the reviewed studies as well. 

In the past decades, the number of systematic reviews shedding light on the scientific 

value of animal studies has increased (e.g., Banwell, Sena and Macleod, 2009; Corpet and 

Pierre, 2005; Lucas et al., 2002; Macleod et al., 2005; Martić-Kehl et al., 2015; Perel et al., 

2007). The systematic reviews have revealed: a) poor transferability of animal outcomes to 

human clinical trials (e.g., Perel et al., 2007); b) simultaneous occurrence of animal and clinical 

trials, rather than sequentially, as expected given that the animal experiments should be 

conducted first, to allow detection of possible toxicity (e.g., Lucas et al., 2002); and, c) 

significant methodological and design flaws in a clear majority of animal experiments (e.g., 

Martić-Kehl et al., 2015). Consequently, the use of ARRIVE or similar guidelines has become 

more common, which will hopefully lead to better protocols and reduce redundant studies. As 

for the poor transferability of animal outcomes to human trials, it can be argued that this is 

either a consequence of poor experimental design, and/or the fact that animal models are not 

suitable models for human beings (Bailey and Taylor, 2016). 
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Another way to determine the value of animal studies is citation analysis, which consists 

of determining the frequency with which a study is cited in subsequent papers. Several authors 

have conducted citation analyses on published papers, reporting data from animals used as 

models for human disorders (e.g., Carvalho et al., 2016; Knight, 2007; Long, Huang and Ho, 

2014); results show that these papers have received very few citations in human medical papers. 

Again, it can be debated whether this occurs due to a false assumption that animal models are 

suitable models for human disorders or because of methodological errors, or both. 

To try to address this issue, we performed a citation analysis on a small sample of papers 

reporting data from animals used to model two complex psychiatric disorders: attention deficit 

hyperactivity disorder (ADHD) and major depressive disorder (MDD). 

ADHD is a chronic neurodevelopmental condition of multifactorial origin, marked by 

persistent inattention; hyperactivity; and, occasionally, impulsivity (American Psychiatric 

Association, APA, 2013). It affects 2.2% of children worldwide (Erskine et al., 2013); and it 

can be extremely disabling (APA, 2013). MDD is a complex psychiatric mood disorder 

characterized by a persistent feeling of sadness that seriously impairs normal day-to-day 

functioning and may even lead to suicide (APA, 2013). Mental disorders are the leading cause 

of years lived with disability worldwide, and 40.5% of this burden is caused by MDD alone 

(World Health Organization, 2008). 

In this study we categorized the citations obtained into animal versus human studies and 

determined whether human-based and animal-based papers focused on the same disorder 

investigated by the animal study they were citing. This form of analysis is valuable for shedding 

light on whether animal-based research is being used to advance human healthcare, or whether 

it simply fuels further animal-based research. If animal studies are contributing to human 

healthcare advancements, then we would expect that: 

1. The citations made in human-based papers should be a substantial proportion of total 

citations. 

2. The citations should be made mainly by studies focused on the same disorder. Any 

substantial deviations would signal the possibility that animal-based research is not 

achieving its primary purpose. 

2. Methods 

We conducted a citation analysis as defined by Garfield and Merton (1979). Briefly, in a 

citation analysis, one defines a number of target papers and conducts a search of all papers that 
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cite these target papers. The information obtained can include the total number of citations and 

patterns of citation. We used a total of 50 target papers: 25 non-human animal studies on 

ADHD, and 25 non-human animal studies on MDD. 

The ADHD papers were selected from the citation analysis database created in the study 

by Carvalho et al. (2016). We included all papers reporting data collected with primate models 

(7 papers) and randomly selected 18 papers from the remaining papers, using the free online 

tool, Research Randomizer (www.randomizer.org). The 25 studies were examined to determine 

the proportion of citations each paper received in human-based papers focused on ADHD, in 

human-based papers focused on other subjects, in animal-based papers focused on ADHD, and 

in animal-based papers focused on other subjects. 

The MDD papers were obtained using PubMed to locate original articles using animal 

models to investigate major depressive disorder (similar to the protocol used in Carvalho et al., 

2016). We searched PubMed using the following Medical Subject Heading (MeSH) search 

terms: 

“Major Depressive Disorder” AND (title/abstract): “animal” OR “rat” OR “mice” OR 

“mouse” OR “Rattus” OR “Mus” OR “pig” OR “Cavia” OR “Sus” OR “rabbit” OR 

“Leporidae” OR “Drosophila” OR “primate” OR “monkey” OR “Macaca” OR 

“macaque” OR “ape” OR “rhesus” OR “chimpanzee” OR “bonobo” OR “gorilla” OR 

“Pan” OR “Orang Utan” OR “Pongo” OR “gibbon” OR “Hylobates” OR “Colobus” OR 

“Baboon” OR “Papio” OR “Mandrillus” OR “Mandrill” OR “Cebus” OR “Cebuella” OR 

“Brachyteles” OR “Loris” OR “Nycticebus” OR “Lemur” OR “dog” OR “Canis” OR 

“cat” OR “Felis.” 

We found 33 published papers using NHPS as models and randomly selected seven, using 

the same randomizing tool. We found over 1,000 published papers using other animals as 

models and proceeded, as above, to randomly select 18 papers for the citation analysis. We 

recorded the number of citations each paper received from subsequent animal research papers 

and subsequent human research papers. We similarly analyzed the aim of the citing paper 

(whether it was focused on the same disorder or another), in both animal and human papers. 

Using Fisher’s exact test (http://www.kisnet.or.jp/nappa/software/star-e/freq/1x2.htm), 

we investigated whether there was a significant difference between the number of citations of 

the target animal articles in human research papers and in animal research papers. We also 

verified whether there was a significant difference between the number of citations in 
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subsequent articles addressing the same disorder and subsequent articles addressing different 

topics. Differences were considered statistically significant if p<0.05. 

3. Results  

Regarding our ADHD sample, the 25 original animal studies were cited 660 times. As 

shown in Figure 16.1, animal studies were mainly cited in other animal research papers (315), 

of which 82 focused on ADHD and 233 focused on different subjects. The sample resulted in 

69 citations in human research papers, of which 30 focused on ADHA and 39 focused on 

different subjects. The remaining 345 citations were in review articles (198) or papers 

describing different methods, such as in silico or in vitro (147). 

 

The columns represent the number of citations of the 25 target papers in animal research 

papers (blue) and human research papers (orange). The total number (left), as well as the 

number of citations in papers studying ADHD (middle) and other subjects (right) are presented. 

Fisher’s exact test p-values are also presented for each comparison made (n.s.= non-significant). 

The number of citations in animal research papers was far greater than the number of 

citations in human research papers (p<0.0001). The number of citations in animal research 

papers focused on ADHD was lower than the number of citations in animal research papers 

focused on other subjects (p<0.0001). The difference between the number of citations in human 

research papers on ADHD and human research papers focused on other subjects was not 

statistically significant (p=0.3355). 

Seven of the target papers reported NHP studies. These papers received 274 citations, 94 

of which were in subsequent animal research papers and 48 were in human research papers. 
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The remaining 138 citations were in review papers (96) or papers describing different methods, 

such as in silico or in vitro (42). The difference between citations in animal research papers and 

human research papers was statistically significant (p=0.0001). Of the 94 citations in 

subsequent animal papers, 21 were in papers focused on ADHD, and 73 were in papers focused 

on other issues. This difference was also statistically significant (p<0.0001). 

Of the 48 citations in human research papers, 15 were in papers focused on ADHD, and 

33 were in papers describing other disorders. Fisher’s exact test showed that in the case of NHP 

there was a statistically significant difference between the number of citations in papers on 

ADHD and papers focused on other subjects (p=0.0132). 

 

Regarding the MDD sample, the 25 target animal studies were cited 631 times. As shown 

in Figure 16.2, animal studies were mainly cited in other animal research papers (353), of which 

127 focused on MDD, and 226 focused on different subjects. The sample received 51 citations 

in human research papers, of which 19 focused on MDD, and 32 focused on different subjects. 

The remaining 227 citations were in review articles (163) or papers describing different 

methods, such as in silico or in vitro (64). 

The columns represent the number of citations in animal research papers (blue) and in 

human research papers (orange) of the 25 cited papers. The total number (left), as well as the 

number of citations in papers studying MDD (middle) and other subjects (right) are presented. 

Fisher’s exact test p-values are also presented for each comparison made. 

The number of citations in animal research papers was substantially greater than the 

number of citations in human research papers (Fisher’s exact test, p<0.0001). The number of 

citations in animal research papers focused on MDD was lower than the number of citations in 
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papers focused other subjects (p<0.0001). The difference between the number of citations in 

human research papers focused on MDD and papers focused on other subjects was not 

statistically significant (p=0.0919). 

The seven papers reporting on NHP studies received 227 citations, 97 of which were in 

subsequent animal research papers, and 19 were in human research papers. This difference was 

statically significant (p=0.001). Of the 97 citations in subsequent animal papers, 13 were in 

papers on MDD, and 84 were in papers focused on other issues. This difference was statistically 

significant (p<0.0001). Of the 19 citations in human medical papers, six were in papers on 

MDD, and 13 were in papers focused on other subjects. This difference was not statistically 

significant (p=0.1670). 

4. Discussion 

Our results suggest that animal data is mainly used by subsequent animal papers. Another 

trend that emerged is that papers citing animal research (whether they focus on human medical 

research or not) focus on disorders that differ from the one targeted in the animal study cited. 

This trend is stronger in papers focused on animal research. 

The tendency for animal research to be cited more in subsequent animal research has been 

previously described (e.g., Carvalho et al., 2016). This finding contradicts the previously stated 

assumption that citations in human-focused papers should constitute a substantial proportion of 

the total number of citations. Clearly, biomedical research focused on animal models does not 

seem to be considered important by, or particularly visible to, the human medical research 

community. 

Our results also indicate that papers citing data collected from animal models do not 

necessarily target the disorder described in the animal paper. This difference appears to be more 

significant in animal research papers citing other animal research papers, than in human 

research papers that cite animal research. This contradicts the second assumption we tested: 

that citations should be made mainly by studies focused on the same disorder. This finding 

reinforces the concern that animal-based research is failing to shape meaningful healthcare 

advances for humans. 

It can be argued that if the same animal model is used for different disorders, it may 

contribute more to medical research than predicted by the second assumption. For example, dat 

knock-out mice comprise a common model for ADHD but are also used to model Parkinson or 

schizophrenia (Gainetdinov, 2008). Nevertheless, the total citation frequency in human research 
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papers is still very low, regardless of the paper’s area of focus (Carvalho et al., 2016; Knight, 

2007; Long, Huang and Ho, 2014). 

The fact that animal strains are used to model several disorders may help explain the 

intriguing tendency for animal research papers to be cited more often in papers addressing non-

related subjects than in papers focused on the same disorder. This tendency was also apparent 

in human-based papers that cited animal-based papers focused on MDD. This may have 

occurred because there are 6–7 times more papers focused on MDD than on ADHD which may 

mean that the 25 papers on MDD were not a representative sample of MDD research. If this 

phenomenon was to recur with a larger sample, one could argue that this is due to the same 

animal strain being used for different purposes, as previously mentioned. If the strains used in 

MDD research are commonly used to model a greater number of disorders than strains used in 

ADHD research, it would be more probable that human studies focused on unrelated disorders 

cite studies in these strains. We did not verify this, and it should be explored in future studies. 

Our data shows that even though the difference between the total frequency of citations 

by human papers focused on ADHD and paper focused on other subjects was not statistically 

significant, there was a bias regarding papers describing NHP models of ADHD. A close 

examination of the data allowed us to conclude that this bias was due to one paper, cited 18 

times in human research papers, 17 of which focused on disorders other than ADHD. This 

particular paper described the behavioral changes caused by bicuculline microinjections in 

external globus pallidus, a brain structure involved in pathogenesis of ADHD but also in 

Tourette’s syndrome. Most of the 18 citations this paper received in human papers were actually 

from papers related to Tourette’s syndrome. If we discard this outlier, the data on NHP follows 

the same pattern as other ADHD papers. 

Since our two assumptions have been challenged, we must discuss their causes and 

implications. One possible explanation for these results is that animal models only attempt to 

model specific symptoms or traits of complex human disorders. This oversimplification may 

lead to results that are non-applicable or of minimal use for human medicine. Another possible 

explanation is that funding is more easily attached to studies that claim to have the potential to 

advance human health. This may lead animal researchers to overestimate the applicability of 

their projects. A further possible explanation is that communication and sharing of ideas 

between clinical and preclinical research is insufficient. Moreover, previous studies have shown 

that clinical and preclinical trials can occur simultaneously (Pound et al., 2004), which 

emphasizes this lack of communication. Although it is difficult to define an optimum 

communication level, this issue must be raised in both communities in order to maximize 
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efficiency in scientific research as well as the promotion of animal welfare. An additional 

possibility is that a substantial amount of animal research is needed in order to achieve a critical 

mass that can lead to useful breakthroughs in human health. This is a theoretical possibility that 

is difficult to measure and properly test. However, even if proven correct, the financial and 

ethical implications of this assumption should be considered. Other methods may prove to be 

more efficient or ethically acceptable, and this comparison could lead to a re-evaluation of 

funding priorities. Finally, a conceivable possibility is that animal models are not suitable for 

biomedical research into complex human disorders. It may be possible that the uniqueness of 

some human disorders is just not feasibly simulated in non-human animals. 

If our last suggested explanation is indeed correct, the implications must be considered. 

The funding currently allocated to these animal-based studies should still be available for 

science. While most of it would likely be redirected to other models of these disorders, some of 

it could be assigned either to other basic research fields or to the care of surplus animals. 

Regardless of the possible explanations, our results indicate that animal-based research is 

failing to reach the human medical community, at least in the case of mental disorders, such as 

the ones we evaluated. This means that considerable financial investment and considerable 

suffering inflicted on the animals used for this purpose did not translate into direct medical 

advances. It would be interesting to survey the practitioners working with mental disorders to 

assess if this is due to lack of awareness of animal-based findings, or if they consider animal-

based data to be inadequate or lacking in relevance. 

In conclusion, our analysis suggests that most animal-based research, at least in the case 

of these mental disorders, is not currently being utilized by human-based researchers. 

Regardless of the reasons for this, the profound financial and ethical implications should lead 

to a re-evaluation of the current research paradigm, which is heavily reliant on invasive animal 

use. 
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Abstract  

Context: The current biomedical research paradigm postulates that in vitro and in silico 

data inform animal studies that will subsequently inform human studies. The contribution of 

animal studies to human medical studies is disputed whereas the contribution of in vitro and in 

silico studies to animal studies is yet to be properly quantified. 

Objective: To quantify the contribution of in vitro and in silico biomedical data on animal 

studies. If their contribution reflects the biomedical research paradigm, they should receive 

more citations from animal studies than from human medical studies. 

Method: We examined a citation analysis database containing the number of citations 

received by 67 original in vitro and in silico papers on Major Depressive Disorder (MDD) 

organized in four research categories: other in vitro and in silico papers, animal papers and 

human medical papers. We determined the proportion of citations these papers received for 

each research category. 

Results: The 38 in vitro papers received 2,574 citations. Of those, 18% were by animal 

papers and 40% were by human medical papers. The 29 in silico papers received 806 citations. 

Of those, 5% were by animal papers and 39% were by human medical papers. 

Conclusion: The smaller proportion of citations by animal studies suggests that, at least 

within MDD, in vitro and in silico research is not substantially influencing animal studies, nor 

informing animal studies prior to human studies, contradicting the biomedical research 

paradigm. If a similar pattern occurs with other human disorders or drug testing, then the current 

animal-based biomedical research field is inconsistent with realities underpinning the 

development of human studies. 

Keywords: Animal use alternatives; in vitro, in silico, biomedical research 

Introduction 

Biomedical research heavily relies on animal studies, despite its ethical and clinical 

limitations (Herrmann, 2019). 

The current standard paradigm for biomedical research and drug discovery and 

development requires scientists to test from the simplest to increasingly complex models before 

human studies and trials, as shown in Figure 6.1, kindly provided by Taylor (2019). 
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Figure 6.1 Current paradigm of biomedical research and drug discovery and development 

Supporters of animal studies within biomedical research claim that 1) it is not possible to 

drop animal studies since that would jeopardize human health, and that 2) human-based 

methods (in silico and in vitro) are used in early steps of biomedical research to inform the 

animal research community, hence avoiding unnecessary or excessive use of animals. For 

example, purportedly, if a substance shows high levels of toxicity in vitro it will not go through 

animal testing (Choudhuri et al., 2017). In the same way, a drug that shows high toxicity levels 

in animal testing should not proceed to human trials. However, it has been demonstrated that 

human trials may sometimes run simultaneously with animal trials, rather than sequentially, as 

one would expect if animal trials were an essential step prior to human trials (Pound et al., 

2004). It has also been demonstrated that in vitro and in silico data are more frequently directly 

cited in human medical papers than animal data, strengthening the idea that these research 

approaches are not necessarily being used as a step prior to animal studies (Carvalho et al., 

2019a).    

Still, the contribution of in vitro and in silico original research studies to animal studies 

targeting human disorders is yet to be determined. Hence, the aim of the current study is to 

assess if in vitro and in silico papers describing original data on a human disorder (MDD) are 

being appropriately cited in subsequent animal papers.  

If in vitro and in silico studies are indeed seen as a prior step to animal studies in 

biomedical research, then we would expect that papers describing in vitro or in silico data on a 

human disorder should be cited more frequently by animal papers, than by human medical 

papers. If, on the contrary, this is not the case, other studies on other human disorders, drug 

testing or a broad review study should be conducted to confirm if the current theoretical 

paradigm for biomedical research is not being followed in practice, and if should be revised. 

Methods  

We conducted a citation analysis as defined by Garfield and Merton (1979). Concisely, 

in a citation analysis, target papers are located first and then a search for all other papers citing 

the former is performed.  

The information compiled comprises the total number of citations, and the patterns of 

citation. We used a total of 67 target papers of in vitro or in silico studies on MDD – utilising 

only human data, selected from the citation analysis database created in our previous study 

(Carvalho et al., 2019a). Using the citation tracking facility within Web of Science, we counted 
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the number of times each target paper was cited by subsequent papers in the following 

categories: `animal research papers`, `human medical papers`, `in vitro papers`, and `in silico 

papers`. Citing papers may have been assigned to more than one category if they described 

different research approaches (e.g. human and in vitro). 

Results 

In total, 464 (18%) of the 2,574 citations received by the 38 in vitro papers were by 

invasive animal research papers and 978 (40%) by human medical papers. For the 29 in silico 

papers, 44 (5%) of the 806 citations were by invasive animal research papers and 317 (395) by 

human medical papers. 

As shown in Figure 6.2, the majority of citations received by both in vitro or in silico 

target papers were by papers employing the same research method, and by human medical 

papers. The proportion of citations by animal papers and the other research method were 

considerably lower. More importantly, the proportion of citations by animal papers was lower 

than by human medical papers. 
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Figure 6.2. Citations of in vitro and in silico papers on MDD received by research category. A) shows the “in vitro” results and 

B) the “in silico” results. 

Discussion 

The results of our citation analysis suggest that the standard approach to testing medical 

hypotheses – which postulates in vitro and in silico research are a step prior to animal testing – 

is not actually being followed, at least for MDD research. Clearly, MDD biomedical research 

utilising in vitro and in silico data does not seem to be considered important by, or at least more 

important to, the animal research community than to the human medical community. 

One can argue that if the animal research community is not citing in vitro and in silico 

papers on MDD, these might be of limited use. However, that is inconsistent with their 

substantial use by the human medical community, which cites more this kind of research than 

the research based on animal studies (Carvalho et al.,2019a). Additionally, this lack of 

transferability of knowledge between the animal research and the human medical research 

communities is further enhanced by the fact that, in general, most citations received by animal 
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research papers are from studies within the same category, not from human medical papers (e.g. 

Carvalho et al., 2019b).  

MDD is a complex human mental disorder with multifactorial aetiopathogenesis (Chiriţă 

et al., 2015), so one cannot extrapolate that the citation patterns found here – that in vitro and 

in silico studies are not being used as a step prior to animal studies in MDD – will necessarily 

be replicated in other disorders that have just one cause (e.g. Down’s syndrome). Hence, the 

next step should be the use of a similar approach targeting monofactorial disorders and drug 

trials. If, as whole, these studies produce similar results, then it would be compelling evidence 

that the standard protocols of biomedical research and drug discovery and development are not 

being followed, which supports the claims made by several authors (e.g. Herrmann, 2019) that 

the 3Rs (replacement, reduction, refinement) are not being addressed as well as required by law 

and by good research practices. 

Sixty years ago Russell and Burch (1959) established the foundations of much current 

legislation regarding animal experimentation, with the formulation of the 3Rs principles. Even 

though the research community unanimously welcomes them, the focus of their application has 

predominantly been refinement, and not always in an effective way (Herrmann, 2019). In 

theory, the reduction principle depends upon the standard use of in silico and in vitro techniques 

prior to animal studies. If original data on human disorders from in vitro and in silico 

approaches are not being used by the animal research community, then the reduction principle 

is not being properly fulfilled. The reasons behind this must surely be multiple, but with our 

study there is one that became salient and deserves attention. In vitro and in silico approaches 

are, by definition, human-based methods, not animal-based methods, making it similarly 

difficult for animal studies to cite in vitro and in silico studies, as for human studies to cite 

animal studies. This highlights that the current paradigm of biomedical research and drug 

discovery and development includes two steps of knowledge transferability between the animal 

and the human models, neither of which appear to work well, which probably compounds the 

poor use of the 3Rs principles.  
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Simple Summary 

Legislation and guidelines governing biomedical research with humans and non-human 

primates (NHPs) rely on different ethical frameworks. In this paper we argue that the main 

ethical framework used to assess and justify NHP experimentation is inadequate for its purpose. 

We propose a change of framework that we believe would benefit NHPs and improve research 

quality. 

https://doi.org/10.3390/ani9010012
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Abstract 

Basic and applied laboratory research, whenever intrusive or invasive, presents 

substantial ethical challenges for ethical committees, be it with human beings or with non-

human animals. In this paper we discuss the use of non-human primates (NHPs), mostly as 

animal models, in laboratory based research. We examine the two ethical frameworks that 

support current legislation and guidelines: deontology and utilitarianism. While human based 

research is regulated under deontological principles, guidelines for laboratory animal research 

rely on utilitarianism. We argue that the utilitarian framework is inadequate for this purpose: 

on the one hand, it is almost impossible to accurately predict the benefits of a study for all 

potential stakeholders; and on the other hand, harm inflicted on NHPs (and other animals) used 

in laboratory research is extensive despite the increasing efforts of ethics committees and the 

research community to address this. Although deontology and utilitarianism are both valid 

ethical frameworks, we advocate that a deontological approach is more suitable, since we 

arguably have moral duties to NHPs. We provide suggestions on how to ensure that research 

currently conducted in laboratory settings shifts towards approaches that abide by deontological 

principles. We assert that this would not impede reasonable scientific research. 

Keywords: non-human primate research; biomedical research; deontology; utilitarianism; 

animal use alternatives 

1. Non-Human Primates in Laboratory Research 

Since the mid twentieth century, non-human primates (NHPs) have been widely used in 

laboratory research, mostly in biomedical research [1], and mostly in the cognitive sciences [2]. 

In recent years, due to public pressure and legislation, the number of NHPs used in 

biomedical research has been significantly reduced in the European Union and the United States 

[3,4], but has increased dramatically in some other countries, particularly China [5]. 

Some researchers claim that the use of NHPs in biomedical research is crucial, due to 

their similarities with humans [6,7], and state that a total ban on such research would 

compromise medical advances in several fields, such as those focused on infectious diseases, 

cardiovascular diseases, endocrine diseases, reproductive diseases, neurological disorders, 

ophthalmic diseases [5,6] asthma, certain types of cancer [1], transplants [8] and psychiatric 

disorders [4]. However, for many years the presumed benefits of NHP research for medical 

advances were not subjected to rigorous critical evaluation. In recent years however, evidence-
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based assessments have been conducted, frequently demonstrating that NHP models have 

provided disappointing contributions toward human medical advancements [9–12]. 

In the cognition and behaviour domains, studies with captive primates have made relevant 

contributions to psychology and neuroscience, as exemplified by Harlow’s experiments on “the 

nature of love” [13] or Selemon and Goldman Rakic’s [14] early brain topography studies. In 

both cases, as in many others, discoveries were made which incurred high costs to NHP 

subjects, including suffering and death. The ecological validity of behavioural and cognitive 

studies conducted on captive NHPs has also been questioned [15]. 

2. Similarities between Humans and Non-Human Primates 

Moral concerns raised by the use of NHPs in intrusive or invasive research result from 

their sentience, consciousness and affective states. In those aspects, NHPs are very similar to 

humans, which makes it reasonable to give them similar protection to that afforded to human 

subjects. However, they are very different in other aspects, so they are not necessarily good 

models for human biology. 

From the mid-twentieth century onwards, it became clear that NHPs and humans shared 

so many traits that trying to categorise any trait as wholly human became something of a futile 

exercise. Below, we present a few examples of studies that brought a greater awareness of the 

high similarity (and evolutionary continuity) between humans and NHPs. 

Some of the very first “humanlike” capabilities that attracted considerable scientific 

interest were the discoveries that NHPs build and use tools [16,17], solve new problems, and 

develop and pass on cultural behaviour [18,19]. NHPs of several species have also 

demonstrated the ability to recognise themselves in a mirror—an ability that has been largely 

interpreted as evidence of self-awareness [20,21]. This was once thought to be a uniquely 

human ability. All NHPs that have been studied to date, from rhesus monkeys to chimpanzees 

and gorillas, have also been shown to have distinct personalities with complex behavioural 

patterns, as occurs with humans [22]. Furthermore, all NHPs establish strong social bonds 

[23,24], and most live in complex societies [25]. Like humans, NHPs experience and display 

emotions [26], strong mother–infant and other familial bonds [27] and are capable of 

experiencing empathy and behaving sympathetically (e.g., [28,29]). In addition, an increasing 

amount of evidence has accumulated that they have notions of justice and unfairness [30]. NHPs 

communicate effectively through vocalisations, gestures, and facial expressions [31–35]. They 

possess a linguistic and lateralised brain which allows them to learn and use sign language, 
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among other skills [36,37]. NHP cognitive abilities have been astounding us for many years. 

NHPs can create lasting memories [38,39], possess mathematical skills [40], and can even 

outperform university students in numerical memory [41]. They can solve complex problems 

that require intelligence [42–44]. 

These skills are not exclusive to NHPs and can be found across a number of other non-

human animal species. However, NHP behaviour and skills are among the most well 

documented. The fact that they are our closest living relatives has probably facilitated the 

recognition and social acceptance of their cognitive abilities and emotional lives and has 

probably made them a preferred target for cognitive research. 

Collectively, these and many other studies addressing primate cognition, emotion, and 

social behaviour have become the scientific basis for arguing that NHPs should be afforded a 

significant moral status, for some authors [45,46]. It has also been pointed out that the 

similarities between humans and NHPs are the main ethical obstacle regarding the laboratory 

confinement and use of NHPs [47]. This is indeed a controversial issue within the scientific 

community, and for the wider public [48,49], but the recognition that there are significant 

ethical concerns to be addressed is nearly universal. 

Because of their anatomical and physiological similarity to humans [50], as well as such 

cognitive, behavioural, and social similarities, NHPs have been portrayed as ideal animal 

models for some biomedical and cognitive research problems. 

However, such similarities do not automatically make NHPs ideal models for humans 

within biomedical research [15]. For example, major evolutionary jumps have occurred since 

the last common ancestor humans shared with chimpanzees, with homologous brain areas being 

recruited in humans for new functions, and new structures emerging altogether [51]. 

3. The Ethical Frameworks of Deontology and Utilitarianism 

Biomedical research, with both humans and non-human animals, presents considerable 

ethical challenges, since it is not uncommonly invasive or intrusive, causing pain, stress or 

discomfort. For example, xenotransplantation experiments are classified under the current 

legislation as “severe” procedures, since they are likely to compromise the general health of the 

animal in the case of organ rejection. However, NHPs are still presently used in this sort of 

research [52,53]. 

In modern human societies, laws should express and enforce society’s moral codes [54]. 

Legislation and ethical guidelines have arisen to guide scientists through ethical dilemmas and 



125 

 

prevent forms of abuse that were more common in the past. Classical examples include the use 

of orphans to carry smallpox live vaccine through arm-to-arm transportation across the Atlantic 

Ocean during the 19th century—this involves vaccinating a child and then transferring the 

vaccine to another as soon as the infectious pustule forms [55]; medical research conducted 

with prisoners by German doctors; and the infamous Tuskegee research, in which African-

Americans that had syphilis unknowingly were not given treatment so the doctors could study 

the natural progress of the disease in rural American areas between 1932 and 1972 [56]. After 

World War II and the subsequent Nuremberg trials, rules and principles to guide research with 

human beings emerged. The general rules that guide modern research with human subjects were 

written by the Council for International Organizations of Medical Sciences (CIOMS) in 

collaboration with the World Health Organization (WHO) in 1982 and revised in 1993 and 

2002 [57]. The International Ethical Guidelines for Biomedical Research Involving Human 

Subjects—which has been transposed into legislation or guidelines in most countries, 

established four basic ethical principles: respect for persons, beneficence, non-maleficence and 

justice. 

Respect for persons includes the principle of autonomy (as described by Beauchamp and 

Childress [58]), and the protection of individuals with impaired autonomy [57]. The 

beneficence principle refers to the obligation to maximise benefit, whilst the non-maleficence 

principle refers to minimising harm [57,58], in keeping with the utilitarianism view (see section 

below), except that in this case the permissible harm must be mild, regardless of expected 

benefits [58,59]. The principle of justice requires the equitable distribution of resources, which 

in the case of biomedical research translates to an equal distribution of burdens and benefits 

amongst research participants [58,60]. 

The same principles are stated in The Belmont Report, a document created in the USA in 

1978 by the National Commission for the Protection of Human Subjects of Biomedical and 

Behavioral Research. This is a critical document for those involved in basic and clinical 

research with human beings [61]. 

Regarding clinical research, the regulations and mechanisms mentioned above seem to 

be effective in solving most of the ethical challenges [62], but that is not the case with invasive 

animal experiments, particularly those using NHPs [63,64]. The main reason for these 

inconsistencies seems to be the use of different frameworks to evaluate and guide research with 

humans and NHPs [65]. Guidelines and legislation that regulate human research rely on mostly 

deontological principles, while those that regulate animal research rely on utilitarianism. 
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The use of different ethical frameworks for humans and NHPs may even result in 

opposing ethical recommendations: genetic experiments, which are often restricted from an 

ethical point of view when it comes to human beings [59,66], may be encouraged from an 

ethical point of view when it comes to NHPs [6,67]. 

In the next sections, we briefly describe both ethical frameworks and analyse how each 

applies to current NHP research. 

3.1. Deontology 

Deontological ethics is the normative ethical position often associated with the 

philosopher Immanuel Kant, which judges the morality of an action based on the action's 

adherence to a rule or rules [68,69]. The underlying assumption is that something is good 

because it is the right thing to do [70]. Deontology stands for principles that must be fulfilled 

regardless of their consequences [71] and, according to Kant, there are hypothetical 

imperatives, which apply to someone who wishes to achieve a certain goal, and categorical 

imperatives, which are universal, absolute, and unconditional requirements that must be obeyed 

in all circumstances. Subsequent deontological philosophers, such as Ross [72], included the 

concept of moral relativism in deontology, which states that the morally right act is relative to 

the circumstances. 

Ross [72] also postulated seven prima facie duties: (1) duty of beneficence (help other 

people to increase their pleasure, improve their character, and so on); (2) duty of non-

maleficence (avoid harming other people); (3) duty of justice (to ensure people get what they 

deserve); (4) duty of self-improvement (to improve oneself); (5) duty of reparation (to repay 

someone for acting wrongly towards them); (6) duty of gratitude (to benefit people who have 

benefited oneself); (7) duty of promise-keeping (to act according to explicit and implicit 

promises, including the implicit promise to tell the truth). It is noteworthy that current 

legislation and guidelines on research with human subjects encompass the first three. 

Deontology was established as an anthropocentric and rationalist framework due to the 

firm belief of rationalist philosophers that humankind is separated from the rest of animal 

kingdom by an exclusive capacity of reasoning. Since we now know that reasoning is not an 

exclusively human capacity, there is no reason why deontology should not be applied to non-

human animals, as proposed by the American philosopher Tom Regan [73]. His theory of 

animal rights [73] asserts that every individual who is the subject of a life has inherent value. 

Such an animal is worthy of moral consideration, regardless of his/her species. According to 

Regan [73], individuals that fulfil the following criteria are “subjects of a life”: those who have 
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beliefs and desires, perception, memory, and a sense of future, including their own future, an 

emotional life together with feelings of pleasure and pain, preference and welfare interests, the 

ability to initiate an action in pursuit of a goal, a psychophysical identity over time; and an 

individual welfare in the sense that their experiential life fares well or ill for them. According 

to Regan [73], “subjects of a life” ought to be respected and must not be treated as means to an 

end. 

3.1.1 Deontology in Contemporary NHP Research 

Within biomedical research, NHPs are usually seen as merely means to an end. For 

example, xenotransplantation research aims for engineered animals lacking certain antigens so 

that their organs can be used for transplantation into human patients, with a reduced chance of 

immune rejection [8]. In such cases, the animal is being used as a means to an end. Although 

the same institutions (e.g., CIOMS) that wrote regulations and legislations to conduct clinical 

research also did so for animal research [74], the deontological principles that guided the former 

are totally absent in the latter. Nevertheless, European Directive 2010/63/EU on the protection 

of animals used for scientific purposes states that “the performance of procedures that result in 

severe pain, suffering or distress, which is likely to be long-lasting and cannot be ameliorated, 

should be prohibited” [75]. This incorporates, to some extent, the non-maleficence principle. 

Even though the beneficence and non-maleficence principles can be found—to a certain 

extent—in some NHP laboratory research, the principle of justice is totally absent. As for the 

principle of autonomy, this can be found occasionally in cognitive research projects, when the 

test apparatus is built or presented in a way that animals enrol in the experiment of their own 

volition [41]. 

Several authors have recommended that NHPs (amongst other animals) involved in 

biomedical research should receive ethical consideration similar to that granted to humans, as 

well as analogous protection [46,60,76,77]. Most deontological guidelines require that the 

participant give informed consent prior to participation in research [59], but there are humans 

who cannot give valid informed consent (e.g., children or mentally incompetent adult patients). 

In such cases, the same deontological principles apply to research conducted on them, resorting 

to legal guardians, and specific legislation with greater restrictions. In most countries, humans 

who cannot consent may only be engaged in research that benefits them directly [78,79]. 

According to the legislation in most countries, research protocols for human studies—

especially for humans who cannot provide consent—must be approved by independent experts 

(e.g., paediatricians in the case of children). Similar criteria could be used for NHPs who cannot 
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consent, but who can effectively communicate their wishes through behavioural traits 

interpretable by an experienced primatologist. Additionally, if NHPs who are enrolled in a 

research experience had legal guardians, whose consent was mandatory prior to commencing 

research—as occurs with humans unable to understand or communicate informed consent 

[60,77], and as occurs in studies involving owners together with their companion animals 

[80]—then we believe that research involving NHPs would likely become more transparent and 

less exploitative than has sometimes reportedly been the case [81]. 

In sum, within research involving human subjects unable to consent, it is usually 

mandatory to have consent from (a) a legal guardian and (b) an expert on the condition that 

makes the human unable to consent. In NHP research, both conditions are usually absent: Not 

only there are no legal guardians whose task is to safeguard each NHP’s individual interests, 

but independent experts in primate behaviour do not normally verify protocol suitability for 

each animal. 

It is interesting to note that it is largely amongst primatologists interested in studying 

NHPs by themselves, and not as models for humans, that we find the use of deontological 

principles and guidelines—mostly the beneficence and non-maleficence principles. For 

example, guidelines on darting arboreal primates state that darting cannot occur if the animal is 

facing the shooter, since the chest, face, neck, shoulder, thorax and lumber region, head or 

abdomen are unsuitable target sites that might harm the animals [82,83]. Similarly, semi-

arboreal NHPs can only be darted on the ground [84]. These might exclude some animals from 

the sample in the same way some human participants are excluded from biomedical research, 

if they are at significantly increased risk of being harmed from an intervention or procedure 

[57]. 

3.2. Utilitarianism 

Utilitarianism is a consequentialist ethical position which asserts that the value of an 

action is determined by the utility of its consequences, i.e., the morally right act is the one whose 

consequences maximise some form of utility (e.g., pleasure, wealth, wellbeing), for the majority 

[85]. However, the magnitude of pleasure and pain for all affected should receive equal 

consideration [86,87]. For example, it is morally justified to donate blood, because even though 

the number of individuals harmed is greater than the number of individuals who benefit from 

this action, it is a small harm, offset by a major gain. 

The most popular utilitarian views maintain that all sentient beings are moral subjects and 

their interests should receive equal consideration when deciding what is the morally right act 
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[87]. NHPs are, beyond doubt, sentient beings. Hence, when using a utilitarian framework to 

evaluate the ethics of a biomedical procedure, the interests of NHPs that will be used as research 

subjects must receive the same consideration as the interests of those human beings who will 

benefit from the procedure. As a consequence, if the procedure is likely to cause serious harm 

(e.g., the death of NHP subjects) without bringing a substantial good (e.g., saving a greater 

number of human lives), it should not be conducted. 

Importantly, the ethical rules and laws that guide animal experimentation rely heavily on 

utilitarianism [59,81,88]. Most legislation on the protection of animals used for scientific 

purposes—including the current European Directive 2010/63/EU [75] states that the potential 

benefit of each research project should be balanced against the likely harm inflicted on the 

animals. 

In many cases, the funding agencies evaluate potential benefits, while animal care 

committees review proposals in terms of animal harms. These committees do not directly 

interact, arguably impeding efforts to compare potential harms and benefits. 

Even when this is not the case, the weighting scale is often misused either in predicting 

the benefits of the experiments, or in calculating expected harms. Below, we provide evidence 

of this, as it is virtually impossible to accurately predict the benefits, and in the calculation of 

harms, many variables are commonly left aside. 

3.2.1. Predicting Benefits from a Utilitarian Standpoint 

NHPs are frequently used in drug trials which are often considered very promising [6]. 

However, retrospective examinations have demonstrated that the majority of those promising 

trials failed to translate to humans, or to produce the expected benefits [11], usually because of 

failures of safety or efficacy [89]. In fact, data from the Food and Drug Administration showed 

that 92% of drugs that succeed in preclinical tests fail to achieve their purpose within human 

clinical trials, and never reach the market [90]. These data were previously published in 2004, 

but more recent papers on the subject have demonstrated that there has not been a significant 

improvement: the success rate reportedly varies from 0.4% (in Alzheimer’s trials [91]) to 20% 

[92]. 

One of us (Andrew Knight) has systematically evaluated the contribution of chimpanzee 

research to biomedical progress, showing that approximately half of all publications describing 

chimpanzee research identified in a large-scale study were never cited by any subsequent paper, 

in any field, thereby making little obvious contribution to the ongoing advancement of 

knowledge. Even those chimpanzee studies that were cited by subsequent medical literature 
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rarely made significant contributions to the development of therapeutic methods with 

significant potential for aiding human patients [9]. Bailey [10] also evaluated the role of 

chimpanzees in AIDS vaccine research, concluding that claims that chimpanzees have played 

a critical role in basic understanding of HIV-1 [93] were overstated. 

More recently, Bailey and Taylor evaluated the contribution of NHPs to neuroscience 

research, demonstrating that there is a lack of robust evidence to support claims that NHPs are 

relevant and beneficial to human medical progress. These authors also concluded that human 

research methods, like functional magnetic resonance imaging with electrocorticography, are 

being simultaneously used in humans and NHPs for the same purpose, which, in their opinion, 

makes these NHP studies redundant [12]. Garner [89], on the other hand, maintains that the 

reason animal studies produce such poor results is the way they are performed, instead of the 

limitations of animal models. 

The fact that one can frequently only evaluate the benefits achieved retrospectively 

markedly limits the suitability of utilitarianism in assisting an ethics committee to make an 

informed decision about whether a procedure should be permitted. 

It is also important to mention the use of NHPs in experiments that will never reach human 

trials, due to ethical and legal limitations. Such is the case for experiments using NHP embryos 

or cloning experiments, which use NHPs due to their similarities with humans, although the use 

of humans in such experiments would be strictly forbidden [94]. Hence, potential benefits for 

human patients are absent or severely limited. 

When predicting the potential benefits of a biomedical research project, all of humanity 

is usually considered to be potential beneficiaries. However, that is rarely if ever the case. 

According to the World Health Organization, approximately one-third of the people living in 

developing countries are unable to receive or purchase essential medicines on a regular basis 

[95]. 

Finally, all basic research produces knowledge, which is in itself a benefit to humankind, 

since scientific knowledge has cultural value in itself. Nonetheless, this benefit is hard to 

quantify, or to balance against concrete and substantial costs. 

3.2.2. Assessing and Predicting Harms from a Utilitarian Standpoint 

While addressing the harms inflicted on non-human animals, including NHPs, researchers 

tend to focus on the severity of the procedures described in the experimental protocols and 

overlook other harms. In fact, European Directive 2010/63/UE, with the aim of regulating the 

level of severity inflicted on laboratory animals, includes an annex on the severity classification 
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of procedures [75]. This may reinforce the propensity to disregard other sources of pain and 

distress. 

Unlike humans, NHPs cannot be informed about their procedures—hence, even a painless 

procedure like an MRI can be terrifying for a naïve NHP [46,76]. To always classify this 

procedure as “mild”, in accordance with current European legislation, ignores subjective 

experiences, such as fear, that might vary individually. 

Wild-caught NHPs also experience anxiety and pain during capture, in holding facilities, 

and often lengthy transportation and confinement, whereas laboratory-bred NHPs may undergo 

suffering during breeding, and from maternal separation, potentially much earlier than would 

occur in the wild [96,97]. It is noteworthy to mention that due to the intense stress caused by 

wild capture, the UK banned the wild capture of primates for their use in research in 1996. 

Similarly, European Directive 2010/63/EU states that only the offspring of wild-caught NHPs 

can be used in research experiments. 

NHPs who live under laboratory confinement conditions may experience pain and 

distress not only during procedures, but also during many other situations that are not normally 

considered when evaluating the harms and benefits of the research. Self-injurious behaviour is 

an obvious sign of stress that has been extensively described in NHPs living in laboratories (for 

a review, see Reference [98]). Similarly, floating limb syndrome, which can be defined as 

raising the arms or legs without an obvious function, is a readily identifiable stress-related 

behaviour [99]. Another easily recognisable sign of stress in NHPs is the freezing response. In 

both humans and NHPs, this response is a common and immediate response to threat situations 

that allows the individual to evaluate the danger and decide how to deal with it [100]. When 

there is a dysregulation in fear response (e.g., post-traumatic stress disorder—PTSD), this 

behaviour may emerge in non-threatening or mildly threatening situations and may last for 

prolonged periods [100]. Hence, inappropriate freezing behaviour is a signal of fear and anxiety 

that researchers should not ignore, regardless of the stimulus. Some types of behaviour, such as 

a high frequency of self-grooming, are stereotypic abnormal behaviours in some species but not 

in others [100]. However, checking species-specific ethograms and normal activity time 

budgets could help to identify such abnormal behaviours. 

Species ethograms can also be helpful in identifying the naturally occurring behavioural 

repertoire. In laboratory housing, most NHPs face restrictions on performing certain natural 

behaviour patterns. This is not usually considered when assessing harms. The same may occur 

when an NHP witnesses the harming or killing of peers [96]. Additionally, experiencing stress, 

especially at an early age, impacts the NHP immune system and brain structures [101,102]. 
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These long-term stress-related harms are not normally considered when assessing animal 

welfare impacts and might even reduce the suitability of some NHPs as models for humans 

[101]. 

Facial expressions could be an important tool to understand NHP emotional states, since 

they often convey emotion or pain in many different NHP species (for reviews, see References 

[32,103,104]). In the case of chimpanzees, for example, the expression of a full closed grin as 

described by Goodall [27] is reliably associated with fear, distress, and painful contexts 

[32,103]. Similarly, in rhesus monkeys, a grin signals fear or submission [26]. In recent years, 

the facial action coding system (FACS) developed by Ekman and Friesen [105] has been 

adapted to several NHP species, like chimpanzees [106], rhesus monkeys [107], gibbons [108], 

and orangutans [109]. This tool could help researchers to more objectively assess NHP 

emotions. 

With the help of such tools, it would become easier to evaluate which procedures should 

be prohibited or modified in order to spare NHPs from severe pain or stress. Their use has been 

suggested for NHPs [46,61], but has not yet been widely implemented [81]. 

4. Ethical limitations of 3Rs Principles 

Current policies underpinning animal experimentation follow the 3Rs principles, first 

described by Russell and Burch [110]. These principles assert that whenever possible, animal 

models should be replaced with alternative methods; the number of animals used in experiments 

should be reduced to a minimum; and their suffering should, whenever possible, be ameliorated, 

e.g., through humane endpoints, less invasive procedures, and the use of anaesthesia 

(refinement). 

Replacement is the first and, in our view, the most important of the 3Rs. Its achievement 

in a particular case makes implementation of additional Rs unnecessary. However, replacement 

is often grounded in the unverified assumption that animals are good models for human 

diseases—an assumption that is increasingly challenged by empirical evidence (for a review, 

see [111]). To gain regulatory acceptance and/or be funded, alternative methods often need to 

demonstrate that they can provide equivalent or superior data to those obtained through animal 

testing, even when the current animal model results are variable rather than consistent, and even 

when these models have often failed to reliably predict human responses to drugs [112]. This 

status quo approach delays the development of promising non-animal methods in toxicity and 

drug testing and diverts biomedical research away from non-animal methods. 
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These 3Rs principles underpin virtually all legislation and guidelines concerning the use 

of animals in scientific procedures. However, they do not offer a philosophically consistent 

ethical framework and are insufficient to address ethical concerns regarding NHP use within 

biomedical research. 

The 3R policies comply—to some extent—with utilitarianism, since reduction and 

refinement are tools used to try to minimise the total amount of harm inflicted. However, they 

do not provide tools to predict benefits, or the extent of long-term harm, which makes them 

insufficient to fulfil the requirements of utilitarian analysis. 

Whilst public health advancement might be a justifiable goal, from a utilitarian 

standpoint, the pursuit of biomedical NHP research (that might provide only modest benefit) 

might not be justifiable. From a deontological point of view, the 3Rs are largely irrelevant, since 

they do not prevent the research subjects from being used as means to an end. Additionally, the 

3Rs do not comply with principles of autonomy or justice, which are crucial within the 

deontological approach prescribed by Beauchamp and Childress [58]. 

5. Societal Determination of Ethical Frameworks 

Whenever animal-based research is the topic of discussion, the balance between 

competing perspectives is often decided at the societal level, and the prevailing culture enables 

or proscribes a certain type of scientific activity [113]. 

When it comes to science, people tend to support animal experiments according to 

utilitarian principles, i.e., people consider the potential benefits for humanity when assessing 

their level of support for certain research [15,48,113–115]. However, when it comes to animals 

that people consider companions, such as domesticated dogs, the number of people who support 

their use in scientific research decreases dramatically, regardless of the perceived potential 

benefits for humankind [48]. With these animals, people shift their ethical paradigm, applying 

the beneficence and non-maleficence principles. 

The emergence of ethical decisions is influenced by the feeling of discomfort that most 

people experience when confronted with the suffering of others, and their own sense of 

wellbeing and fulfilment when contributing to the alleviation of pain or the promotion of 

happiness [116,117]. However, these decisions rely on available information about the 

phenomenological experiences of others. Closeness, familiarity, and knowledge of animals, 

including NHPs, have all been variables linked to increased empathy for animals [118] and less 

tolerance for animal use in invasive or harmful scientific research [113]. 
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People are more willing to accept research on nonhuman animals, including NHPs, if they 

believe animals are comfortable and well cared for, and in the mid-20th century, according to 

the National Opinion Research Centre, 75% of the public believed that medical schools treated 

laboratory animals as well as individual owners would [114]. Most owners consider their pets 

as individuals with intrinsic value, and veterinary clinical research conducted on pet dogs 

follows deontological principles similar to the ones used in human clinical research [119]. 

The way animal husbandry is portrayed, as well as the level of familiarity people have 

with different species, are thus critical features of engaging society with either utilitarian or 

deontological ethical frameworks. Accurate portrayal of the actual state of both variables, as 

well as a realistic portrayal of human healthcare benefits that arise from animal research, would, 

in our opinion, lead to stronger support for application of the deontological framework. 

6. Ethical Research with NHPs 

There is no robust evidence that we need NHPs to model specific human diseases [9–11]; 

therefore, there is no overwhelming moral or scientific reason to confine NHPs within 

laboratories, to be invasively used as defective models for human disorders. In fact, Garner and 

colleagues recently [89,120] suggested that in order for biomedical research using non-human 

animals to be more effective, they should be treated as patients. We agree with this view but 

emphasise that this is not possible for animals confined in a laboratory. 

6.1. Ethical Research with Possible Healthcare Applications 

Disorders that affect humans and NHPs should ideally be studied using NHPs who suffer 

naturally from the disorder concerned, either in wild populations, or in captive NHPs who need 

treatment. 

In 1966, Jane Goodall witnessed a polio outbreak in wild chimpanzees living at Gombe 

Stream National Park (Tanzania). In some individuals, the subsequent disability was so severe 

that some animals were euthanized [121]. Instead of infecting healthy laboratory animals with 

polio, these wild chimpanzees who succumbed to polio from natural causes could theoretically 

have been studied to understand polio. The knowledge acquired from these studies would have 

been useful for science in general, and for infected chimpanzees specifically—hence upholding 

the justice principle. It might or might not have been useful for humans but, given the more 

natural induction and progression of the disease, it could have been more useful than similar 

research performed on laboratory chimpanzees. Although the laboratory environment allows 
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for the control of possibly confounding variables, and manipulation of the exact time of 

infection, this level of control and information is rarely possible with human patients. Wild 

animals that naturally acquire a disease occurring in humans and other species can be a better 

model than laboratory animals, since—just like human patients—they are living in a complex 

environment where social and natural variables can modulate disease progression. In human 

patients, it is very hard or even impossible to determine the exact time of infection and what 

other variables (e.g., inadvertent exposure to external viruses) could interfere with disease 

progression and/or clinical trial results. Even researchers that support the use of animals as 

models for human disorders acknowledge that standardisation of too many variables in the 

laboratory can be a limitation, rather than a strength [89]. 

There are NHPs previously used by industries (e.g., entertainment, biomedical research) 

and subsequently suffering from psychological and behavioural disorders, for whom 

psychiatric/psychological treatment is not only appropriate, but also a moral imperative [122–

124]. Using these animals as research patients for PTSD, for example, could benefit both 

science and these particular animals. Again, the data obtained might or might not be useful for 

human healthcare, but the results obtained from laboratory animals would not necessarily be 

more useful. 

Epidemiological studies with wild populations can also be conducted with minimal 

disturbance of the animals [125,126], hence respecting the autonomy principle. 

6.2. Basic Ethical Research 

Some may argue that NHP research facilities are useful for purposes other than medical 

research. This is the case for basic research, which, according to the Frascati Manual [127], is 

“experimental or theoretical work undertaken primarily to acquire new knowledge of the 

underlying foundation of phenomena and observable facts, without any particular application 

or use in view” [127]. The majority of such basic research is laboratory-based. 

However, a large amount of such research can be conducted in non-invasive field studies, 

using wild populations—hence respecting the individuals as subjects with inherent value. For 

example, Kano and colleagues used a laboratory apparatus to study differences in gaze 

behaviour in chimpanzees and bonobos, concluding that bonobos pay more attention to the eyes 

and face of other individuals [128]. On the other hand, Fröhlich and colleagues reached the 

exact same conclusion by observing communicative interactions in mother-infant dyads of wild 

populations [129]. Similarly, Fujita and colleagues created an experimental laboratory 

procedure to study capuchin monkeys’ deceptive behaviours [130], while others [31] were able 
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to study tactical deception of the same species in the wild, gathering more robust and reliable 

data on the subject. Another good example which has been widely studied is chimpanzee 

communication: while in captivity, only 31 gestures were described [131], observations in the 

wild raised this number to 66 distinct gesture types to communicate at least 19 different 

messages [33]. In fact, most of what we know about behaviour and the ecology of NHPs has 

come from long-term field studies [17,27,132–134], and recent field studies continue to amaze 

us by revealing new species [135], as well as unexpected behaviour from well-known species, 

such as bonobo hunting [136], and some behaviours that might be ritual practices amongst wild 

chimpanzees [137,138]. 

These studies have been conducted respecting the beneficence and non-maleficence 

principles, and even the principle of justice, since the knowledge obtained from those data, 

some of it also presented as documentaries and in other forms for widespread media 

dissemination, raises awareness of animal emotion and cognition [139], potentially increasing 

empathy towards these NHPs, and ultimately increasing the impetus for their conservation. 

However, there are research questions, either in safety and efficacy testing or fundamental 

research, where it is not possible to obtain knowledge using only observational techniques (e.g., 

genetics, neuroscience). However, there are ways of continuing this research without 

overlooking ethical constraints. 

In questionable situations, it is always pertinent to ask whether the knowledge acquired 

through the suffering of other animals complies with the bioethical principles described by 

Beauchamp and Childress [58]. In the literature, we can find examples of basic research with 

non-human animals that fulfil these principles. Berns and colleagues [140] used positive 

reinforcement to train dogs to stay still within a functional MRI device. The dogs were 

unrestrained and free to leave the device at all times, including during training sessions 

(autonomy principle). Without harm or distress, much fundamental knowledge on the canine 

brain was obtained (non-maleficence principle), which may ultimately benefit the wider canine 

population (principle of justice). The researchers would gradually play louder sounds in the 

surrounding environment so that animals would not get startled by MRI sounds (principle of 

non-maleficence). This innovative method has been providing exciting insights into the canine 

brain [141–143], and a similar technique could be used to study NHPs living under semi-natural 

conditions, replacing neuroscience NHP laboratories where even the least invasive techniques 

[144] require temporarily restraining fearful animals. Some NHPs share habitat with human 

beings (e.g., rhesus monkeys in India or Nepal) and sometimes even enter and explore human 

homes, which should make it possible to conduct experiments with these animals similar to 
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those described above with dogs. Some NHPs species are particularly harmless and cooperative 

(e.g., marmosets or capuchin monkeys). Individuals from those species who are held captive 

for other reasons (e.g., rescued animals living in sanctuaries) could also be enrolled in 

experiments similar to the ones conducted by Bern and colleagues on dogs [140–143]. Even 

potentially dangerous NHPs, such as chimpanzees, can participate in experiments consensually, 

in the same way human participants do [41]. 

7. Conclusions 

In light of the current knowledge, the use of NHPs in basic research warrants something 

of a paradigm shift. We propose that basic research with NHPs should continue only if carried 

out under the same ethical deontological criteria that guide basic research with human beings. 

Whenever non-invasive basic research protocols require the use of NHPs, the participants 

should be recruited from sanctuaries or similar facilities. Local legal guardians of NHPs should 

evaluate the procedures to verify whether the principles of autonomy, beneficence, non-

maleficence and justice, as defined by Beauchamp and Childress [58], have been fully 

incorporated. That being the case, the legal guardian would provide the necessary informed 

consent. 

By complying with such standards, we would not only grant other primates a level of 

respect and protection consistent with that we provide to members of our own species, but we 

would also be encouraging researchers to develop better research protocols and higher standards 

for captive management, which could, in turn, result in improvements in data quality, and in 

the reliability of some research results. 
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Chapter 8. Discussion 

Animal models are widely used in biomedical research, namely in mental disorders 

research. Their benefits for healthcare improvement are disputed and seldom empirically 

evaluated. Nevertheless, this assessment is important, because if we do not empirically assess 

the contribution of animal models to current knowledge of human disorders, we are merely 

assuming the benefits of these models, which might lead to misuse of limited funding, 

approvement of ethically questionable protocols, and more importantly, negative impacts on 

patient care. 

Major Depressive Disorder (MDD) is the most severe depression type, affecting more 

than 300 million people worldwide (Global Burden of Didease 2015 Disease and Injury 

Incidence and Prevalence Collaborators, 2016). Even though thousands of animals are used in 

an attempt to gain knowledge of MDD aetiology, pathogenesis and treatment, to my knowledge, 

this thesis provides the first empirical data evaluating the contribution of animal models to 

current knowledge of MDD. 

The citation analysis conducted on this subject (Chapters 3, 4, and 5) reveals that data 

obtained using animal models is largely invisible to, or ignored by, the human medical research 

community. This trend is consistent with that observed for other mental disorders such as 

Attention Deficit Hyperactivity Disorder – ADHD (Chapter 2) and eating disorders (Shapiro, 

1998). 

In this thesis (Chapter 4), I also compared the effectiveness of animal models with other 

indirect research approaches (human based in vitro and in silico) in reaching the human 

biomedical research community. In vitro and in silico studies are more cited in human medical 

papers focused on MDD, than papers using primates as models for MDD. Interestingly, animal 

research papers do not cite substantially in vitro or in silico papers (Chapter 6) challenging the 

view that in vitro and in silico are simple models useful as a step prior to animal experiments 

aiming to reduce or refine the number of animals required for biomedical advancements. 

The last chapter of this thesis (Chapter 7) explores the ethical and scientific pitfalls of 

biomedical research using non-human primates (NHP) as models for human disorders, and 

proposes a paradigm change similar to the one that currently regulates research with human 

beings. Even though the chapter is limited to primates, I believe that the paradigm change we 

propose should apply, at least to a certain extent, to other species currently used as models for 

biomedical research. 
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In the following discussion, I address the strengths and limitations of the chosen methods, 

discuss the key findings and point future directions. 

Strength and limitations of chosen methods 

Citation analysis (Chapters 2 to 6) 

As explained in the introduction of this thesis, conducting a citation analysis means 

investigating how many citations a paper receives and by what sort of papers (Garfield & 

Merton, 1979).   

Citation analysis is a robust method for bibliographic impact assessment (Huang et al., 

2019); however, it is not flawless (Huang et al., 2019; Ioannidis, 2015). Its main limitations are 

the likelihood of missing relevant papers within search engines due to labelling errors or 

language barriers and the exclusion of unpublished materials such as negative outcomes, 

unpublished data from pharmaceutical trials or manuscripts not indexed in big search engines 

(e.g., PhD or Masters theses). Other common sources of bias in citation analysis are self-

citations (Ioannidis, 2015), which we did not exclude, and overestimation of the importance of 

some papers (Ioannidis, 2015), which we controlled via systematic qualitative analysis of 

citations in two of the published papers of this thesis (Chapters 2 and 4). 

The limitations mentioned above can be a serious problem in other types of bibliographic 

analysis (e.g., assessing the impact of a research author), but here the majority of these 

limitations are either trivial (as in the case of self-citations, which did not change the trends 

found), or strengthen our results, as in the case of the omission of grey literature. Had we 

included grey literature (i.e., hard to locate papers), the average number of citations received 

by animal papers would probably decrease even more since the papers only found in grey 

literature were probably cited very few times. This happens because unpublished or not-indexed 

data is only available for few researchers, usually colleagues working in the same research field. 

It is also reasonable to assume that unpublished animal data would be more easily available to 

other animal researchers, than to researchers working with humans. 

In this thesis, there was an additional limitation: access to SCOPUS – the largest citation 

database, covering nearly 36,377 titles from approximately 11,678 publishers – was only 

possible during the final part of data collection presented in Chapter 3.  Therefore, it is realistic 

to assume that some relevant citations may have not been accecced in the studies presented in 

Chapters 2, 4, 5 and 6. 
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Systematic qualitative analysis of citations (Chapters 2 and 4) 

Our systematic qualitative analysis of citations involved having two independent raters 

reading every human paper on the target disorder (ADHD or MDD) that cited the animal 

research papers identified in the citation analysis. Each rater assigned each citation to a discrete 

category of relevance (redundant, minor relevance, relevant for the hypothesis, relevant for 

methods). The categories were defined prospectively and all disagreements between raters were 

solved via discussion and consensus. The systematic qualitative analysis of citations was a 

method refined by myself and a co-author of Chapter 2 (Luísa Bastos) from the qualitative 

analysis found in previous citation analysis papers (e.g., Knight, 2007, Lindl & Voelkel, 2011) 

in an attempt to create an objective tool (hence, the use of two different raters) that could be 

used to evaluate the relevance of papers to subsequent papers that cited them. 

The majority of citation analysis aiming to evaluate the contribution of animal models to 

biomedical progress devote a substantial part of the discussion to a qualitative analysis of 

relevant papers, but this assessment is usually made only by the author of the study (e.g., 

Knight, 2007). This may lead to subject bias. We were hoping that the systematic qualitative 

analysis of citation could help increase the objectivity. Unfortunately, the initial assessment 

made by the raters was often divergent, meaning that this tool can be useful to understand 

interrater reliability, but may not be enough to attain perfect consistency. Two different people 

assessing qualitative criteria inevitably leads to differences in the initial assessment, but it is 

interesting to note that it was possible to reach a consensus in all cases, which means that the 

initial divergences force the raters to consider other perspectives, which in the end reduces bias. 

In the future, it would be interesting to apply this methodology with more than two raters. This 

tool was developed for the study described in Chapter 2, and was used again for the study 

described in Chapter 4.  

Comparison between research methods (Chapters 4 and 6) 

A direct comparison of results consists in using the same method to compare outcomes. 

It is routinely used within biomedical research, for example, to evaluate treatment outcomes 

retrospectively (e.g., within randomized controlled trials, where the results of test and control 

groups are compared). 

Here, we performed citation analysis in papers using different research approaches (in 

silico, in vitro and NHP in Chapter 4, as well as in silico and in vitro in Chapter 6), and 

compared the citations received by each research approach in terms of frequency (total number 

of citations received) and patterns (which papers cited the analysed papers).  
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Within the context of this thesis, the biggest strength of comparing the frequency and 

patterns of citations different research methods receive is that it allows one to compare the 

effectiveness of different alternative research approaches in informing medical research 

community dedicated to MDD research and treatment. This evaluation can be very useful in 

informing the funding bodies about the most promising methods. It is desirable that similar 

analyses be conducted for other disorders.  

The major limitation found within the comparison between different methods in this 

thesis was the small number of papers located, hence submitted to citation analysis. This led to 

lack of statistically significant results even when there were observable practical differences 

between results (Chapter 4). In time, this limitation will disappear for, as in silico and in vitro 

techniques evolve, the number of published papers reliant on those techniques increases.  

Discussion of findings 

The poor contribution of animal models to MDD research 

The first conclusion that can be drawn from this thesis is that the contribution of animal 

models to MDD research has been poor, questioning the need of this so-called “necessary evil”. 

Chapters 3 to 5 demonstrate this poor contribution through robust empirical evidence.  

MDD is a complex disorder and its aetiology is still not fully understood. Nonetheless, 

there is a large consensus that both biological and environmental factors contribute to its 

aetiology (Mandelli & Serretti, 2013). The extent of biological and environmental variables that 

seem to play a role in MDD aetiology and pathogenesis probably contribute to the low success 

rates of animal models in informing clinical research. Animal models are mainly used in an 

attempt to understand the physiology and biological mechanisms of the disorders. However, 

that is of very limited utility since the biological factors involved in MDD are diverse, ranging 

from genes, neurotransmitters and hormones to inflammation, and may be caused by 

environmental factors, impossible to account for in animal models (for a review on the 

biological and environmental causes of MDD and their relation, see Chapter 3).  In humans, the 

environmental factors related to MDD are stressful life events (that may be very diverse), sexual 

abuse, low educational attainment and personality traits. Even when animals are submitted to 

chronic or acute stress protocols in an attempt to model the aetiology of MDD, it is excessive 

to assume that these protocols will mimic the environmental factors of MDD, namely because 

in humans they may be very individualized. 
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Humans are, without a shadow of doubt, the best “models” to gain understanding of 

MDD.  Technological advances such as functional magnetic resonance imaging (fMRI), single-

photon emission computed tomography (SPECT) or positron emission tomography (PET) scans 

allows us to compare in a controllable but non-invasive setting the changes between MDD 

patients and healthy controls’ brains in terms of physiological and metabolic characterization 

of brain tissue. These techniques also allow us to see the human brain functioning and recording 

its activity (Tsougos et al., 2019). Similarly, blood or urine samples can help understand the 

genetics and biochemistry behind MDD (e.g., Shadrina et al., 2018). 

The systems biology approach – a strategy that integrates human data at several levels 

(molecular, cellular, tissue, organ, patient, population) (Langley et al., 2014) – is also an 

available and valuable tool to understand aetiology and pathogenesis of MDD. 

Longitudinal studies (i.e., studies that observe the same people over extensive periods of 

time, such as the one conducted by Tao and colleagues (2019) to investigate what causes some 

MDD patients the development of Alzheimer Disease), are very useful but very scarce, mainly 

due to several constraints. Research focused on human beings is usually expensive and time-

consuming (especially in longitudinal studies). It can also be ethically contentious (e.g., 

randomized control drug trials). As a result, early stages of research rely on indirect methods, 

mainly animal models. There are several animal models for MDD, but they all have severe 

limitations (for a review, see Akil et al., 2018). Within MDD research, animal models are used 

in an attempt to gain knowledge on MDD biological pathways (e.g., Gong et al., 2019), to test 

environmental impact on depression (e.g., Mehta-Raghavan et al., 2016), and to test treatments, 

mainly antidepressants (e.g., Nguyen et al., 2018). 

There are different antidepressant drugs as well as non-pharmacological treatments for 

MDD (for a review of the available treatments see Pandarakalam, 2018), still almost half of the 

patients do not reach full remission (Novick et al., 2017) even after trying different courses of 

treatment (Kraus et al., 2019). In recent years, several non-pharmacological human-specific 

treatments have proven at least as effective as psychopharmacological drugs within MDD (e.g., 

Amick et al., 2015; Knapen et al., 2015). Obviously, some of them may also be demonstrated 

in animals (e.g., the link between exercise and positive mood), but this demonstration is not a 

necessity for human research. A similar example are the famous experiments aiming to explore 

the effect of maternal deprivation in rhesus monkeys performed by Harlow and Harlow (1965). 

These experiments gave us knowledge about rhesus monkeys behaviour but did not add 

significant knowledge to that obtained in previous studies on human beings by John Bowlby 

and Mary Ainsworth starting in the 1950s. These studies were the basis of Attachment Theory, 
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one of the most important theoretical concepts of clinical psychology (for a review on these 

authors work see Ainsworth et al., 1978, and Bowlby, 1969). 

The poor contribution of animal models to mental disorder research 

MDD is one amongst 200 mental disorders (American Psychiatric Association – APA, 

2013). However, it is reasonable to infer that the poor contribution of animal models to our 

current knowledge of MDD might also apply to at least some other mental disorders, since they 

all have human-specific symptoms, multifactorial origin and vary greatly, not only in terms of 

available treatments, but also treatment response from one patient to another. 

The data on ADHD (Chapter 2 and 5) also demonstrates that the contribution of animal 

models for current knowledge on this disorder has been poor. MDD’s and ADHD’s findings 

are in agreement with previous research within the mental disorders’ research field (Shapiro, 

1998). This further supports the assertion that animal models might be unsuitable for biomedical 

research on mental disorders. 

Even though the claim that animal models are unsuitable for biomedical research on 

mental disorders may be disputed, the lack of effectiveness of animal models to investigate 

mental disorder research is unanimously recognized.  Different authors offer different possible 

solutions to overcome this limitation, such as: a) switching to different animal models (Eaton 

& Wishart, 2017); b) using different animal models of depression, as well as human patient 

data, to identify which genes and brain circuits are dysfunctional (Akil et al., 2018); c) 

overcoming the biological differences between species (Hodge et al., 2019); d) improving the 

methodological quality of the animal studies to make them more “human-like” (e.g. Richter-

Levin et al., 2019); e) changing the way we categorize and study mental disorders (Söderlund 

& Lindskog, 2018); f) establishing protocols for systematic reviews (Bannach-Brown et al., 

2016); g) treating animals as patients instead of models (Bradshaw et al., 2008); h) using 

humans or human-based approaches (Papassotiropoulos & de Quervain, 2015). 

Interestingly, the majority of psychologists (who work with patients who suffer from the 

disorders investigated using animal models) are either unaware of animal experiments for 

mental disorder research, or opposed to them (Compton et al., 2019; Shapiro, 1998). In 1996, 

Plous conducted a survey to understand psychologists’ attitudes toward the use of animals in 

psychological research and education and found that 92.2% of psychologists who were mental 

health workers rarely, never, or only occasionally used findings from psychological research 

on animals (Shapiro, 1997). A recent study by Crompton et al. (2019) showed that psychology 

students were more likely to approve invasive research protocols with animals outside their 
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fields of expertise than within direct psychology research. The latest protocols were considered 

not important by the majority of the students.  

Human-based research: the way forward 

Results presented in Chapter 4 suggest that human-based in vitro and in silico studies are 

more effectively informing human medical research community than primate models, at least 

when evaluating studies on MDD. This is also in agreement with similar studies from other 

research fields. For example, a recent citation analysis conducted by Adnan & Ullah (2018) 

revealed that, within endodontic research field, papers describing in vitro studies received the 

highest number of citations, more than review papers or animal research papers.  Also, Passini 

and colleagues (2017) reported that in silico models demonstrate higher accuracy than animal 

models to predict the cardiotoxicity of drugs. Similarly, an increasing number of in vitro tests 

have shown better results than animal models (for a review see Passier et al., 2017, or 

Ronaldson-Bouchard & Vunjak-Novakovic, 2018). Such is the case of the 3T3 NRU-PT in 

vitro test, which is the only test with 100% sensitivity to phototoxicity (Ceridono et al., 2012). 

Also, induced pluripotent stem cells (iPSCs) are already being used to directly inform clinical 

trials (Mullard, 2015).  

Despite the examples given above, amongst others, the current paradigm for biomedical 

research and testing postulates that human-based approaches (like in vitro and in silico) should 

be used as a first step in research before conducting tests in animal models (Taylor, 2019) as 

animals are considered “gate keepers” (Langley, 2014). However, at least regarding MDD 

research, this formula is not actually being followed: not only clinical papers tend to cite directly 

in silico and in vitro papers (as presented in Chapter 4 and 6), but also the amount of citations 

that in silico and in vitro papers receive by subsequent animal papers is lower than would be 

expected if in silico and in vitro experiments are conducted as a first step in biomedical research 

with the aim of informing animal studies (Chapter 6). 

Human-based approaches such as in vitro, in silico or a combination of both are a growing 

and promising field, leading several authors to advocate that a combination of both should 

totally replace animal experiments within biomedical research (e.g., Archibald et al., 2018; 

Papassotiropoulos & de Quervain, 2015; Taylor, 2019).  Some go even further and suggest the 

current 3Rs –  replacement, reduction, refinement – should be replaced by new 3Rs – 

replacement, research (human-based for safety purposes) and relevance (for human healthcare) 

(Herrmann et al., 2019). 
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The controversy around animal experiments 

The results found in this thesis are in agreement with previous results on the contribution 

of animal models to other biomedical fields (e.g., Bailey & Taylor, 2016; Dagg & Seidle, 2004; 

Lindl & Voelkel, 2011; Perel et al., 2007). 

As evidence accumulates, it becomes obvious that the assumption of animals as the gold 

standard models for biomedical research has been challenged. More and more studies using 

evidence-based methodologies have demonstrated that animal models have made a poor 

contribution to medical advances. This justifies a paradigm shift within biomedical research, 

not only due to consideration for the animals used, but also because the current paradigm may 

compromise human patients’ healthcare. 

It is interesting to verify the resistance of researchers who use animals as models for 

human disorders, to changing current practices. According to Frank (2005), this phenomenon 

happens because animal experimentation suffers from technological lock-in, i.e., it is 

perpetuated because of resistance to change. Pappalardo and colleagues (2018) also note that 

compared to others, the pharmaceutical industry is historically slow in adopting technological 

innovation, which enforces Frank’s (2005) view.  

Surveys demonstrate that people tend to support animal experiments when they perceive 

the experiments will benefit human healthcare (Ormandy & Schuppli, 2014).  This view is also 

visible in the distribution of scientific funds, as well as in the likelihood of publishing papers, 

which may pressure researchers to overestimate the applicability of their data, hence reinforcing 

the technological lock-in effect. 

Basic research (i.e., research conducted with the sole or primary purpose of acquiring 

scientific knowledge, Organisation for Economic Co-operation and Development – OECD, 

2015) is the type of research that consumes more animals. Just within European Union (EU) it 

is responsible for 45% of total animal use (European Comission – EC, 2020). It is also one of 

the few research areas where the utility of animal research is undeniable because ultimately 

every single well-conducted experiment may produce new knowledge, and scientific 

knowledge should be valuable in itself for society as part of its development and culture, 

regardless of its applicability in whatever field (Bunge, 1997). However, for most of us, 

scientific knowledge should not be acquired at any cost. 

There are many ways to conduct basic research in animals without compromising their 

wellbeing. Taking as an example the previously mentioned Harlow’s experiments (1965), the 

fact that attachment is a trait that humans share with other primates and the traits and ontogeny 
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of primate’s attachment could have been easily discerned without traumatic experiments, as did 

Kim Bard and her colleagues using captive chimpanzees (Bard, 1996; Bard, 2002; van 

IJzendoorn et al., 2009). Many other examples can be found in Chapter 7, where it is proposed 

that the deontological framework that guides research with human beings should be applied to 

NHPs. When doing so, both science and animals benefit. If this were the case, a big proportion 

of invasive animal research would be replaced by other approaches. Certainly, there are layers 

of knowledge that one cannot access without harming animals, and those should be the cases 

for ethical committees to evaluate. 

Hence, the ethical discussion regarding the use of animals in invasive procedures should 

move from biomedical research to basic research where it comes down to one ethical dilemma: 

what do we, as a society, value the most – scientific knowledge, or animals’ lives and 

wellbeing? 

Future directions 

In the future, it would be interesting to conduct similar studies on other disorders. In fact, 

encouraging citation analysis within biomedical research using animal models, in the same 

areas in which systematic reviews are currently focused (e.g., Pound & Nicol, 2018) could help 

prevent unnecessary animal studies, instead of just refining them. 

It would also be exciting to use citation analysis in combination with systematic reviews, 

for example, to verify if better designed studies receive more citations than those with 

methodological flaws. Similarly, it is worth verifying if papers resorting to contentious 

procedures, such as the forced swim test (Can et al., 2012), receive a high number of citations 

that might justify their use. 

It would also be valuable to compare the effectiveness of different research approaches 

as made in Chapter 5. In vitro and in silico approaches are evidencing an exponential growth, 

which makes them good candidates to elucidate more clinical research, and this comparison 

may inform stakeholders (e.g., funding agencies, editors) about where to invest. 

There is a pressing need to verify if the contribution of in vitro and in silico for animal 

studies are as low in other areas (e.g., animal drug trials) as they are within MDD research. If 

that is the case, then current legislation is not being properly implemented and should be 

enforced. Within the EU, the legislation that regulates the use of animals in research is Directive 

2010/63/EU. It clearly states, not only that the use of live animals should be avoided whenever 

there is a valid alternative, but also that the number of animals used should be reduced to a 
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minimum. If animal researchers are not aware of the information gathered through in vitro and 

in silico, they are failing, even though inadvertently, this required legal obligation. 

Overall, with this thesis, I hope to inform all key stakeholders, including editors, funding 

agencies, ethics committees, researchers and citizens, about the actual contribution of animal 

models to biomedical research within mental disorders, contributing toward a paradigm change 

within biomedical science – in favour of more human-based research. I am also hoping to 

contribute to the urgent discussion on whether it is legitimate or not to use animals in scientific 

procedures, in the way they are currenly used. As demonstrated in Chapter 7, current guidelines 

and legislation governing animal experimentation rely on a utilitarianism ethical framework, 

while the guidelines and legislation governing research with human beings rely on a 

deontological ethical framework. I propose a paradigm change to the current processes, i.e., to 

use similar rules regardless of whether the research subject is a human or non-human animal. I 

believe by making this switch, both science and animals would benefit (see more details in 

Chapter 7), but perhaps more importantly, human health and humankind would benefit too. 
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