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Abstract 

The primary goal of this work was the preparation of new elongated titanate nanoparticles, like 

nanotubes (TNT) and nanowires (TNW), with improved ability for pollutants adsorption and 

photo(electro)catalytic degradation. TNT and TNW were prepared using a hydrothermal 

approach in alkaline medium, starting from TiO2 nanoparticles and amorphous precursors, 

respectively. The TNT/TNW were modified by ion-exchange and doping with metals (Co, Ru, 

and Fe/Mn), and by sensitization with Ag nanoparticles and ethylenediamine. The catalytic 

ability of these new materials for the pollutants photodegradation, including phenol, caffeine, 

theophylline, and dyes, was also investigated. The results showed that all modified TNT/TNW 

demonstrated excellent photocatalytic activity for the degradation processes studied. 

The sensitization process can improve the light absorption on the visible range and the ability 

for pollutants adsorption and photocatalytic degradation, due to the change imposed on the 

TNT/TNW surface. The metal modification can impose a light absorption shift to the visible 

range and/or the introduction of intermediary levels in the forbidden band, reducing the 

electron-hole (e-/h+) recombination. 

For the ethylenediamine sensitized samples, it was demonstrated that the N-species improves 

the photocatalytic activity. The results revealed h+ was mainly responsible for the hydroxyl 

radical formation, and the production of nitrogen oxidant species was proposed.  

The results for sensitized samples with Ag nanoparticles, Ag-HTNW, revealed the presence of 

Ag+ in the interlayers and Ag nanoparticles in the HTNW surface, and the h+ action with highly 

oxidant species enhances the photocatalytic performance. 

For the cobalt modified powders, depending on the synthesis methodology and Co/Ti ratio, the 

dopant can replace Na+ in the interlayers and/or substitute Ti4+ in lattice positions or sit in 

interstitial sites. The structure and optical behavior are dependent on the metal ions either 

substituting Ti4+ or replacing Na+. 

For RuTNW sample, Run+ was detected in the crystalline structure replacing Ti4+ and in the 

interlayers replacing Na+, and for RuTNT it was only replacing Ti4+. The photocatalytic 

improvement of these materials was principally to recombination rate reduction, by metal 

incorporation. The utmost difference between these samples was related to the pollutants’ 

photodegradation mechanism and intermediates formation/degradation. 

In this work, the influence of slight metal contaminations on the TNW structural, optical and 

photocatalytic behavior was also studied. FeMnTNW were obtained due to a reactants’ vestigial 
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contamination. The modification occurred by Ti4+/Fe3+-Mn3+ substitution and by Na+ 

replacement in the interlayers. 

The TNW/TNT immobilization in conductive films to be used in pollutants 

photo(electro)degradation, was also studied. Ru- and Co-modified TNW/TNT were 

immobilized on a conductive substrate by drop-casting method followed by 1,8-

diaminocarbazole electropolymerization and were remarkably effective catalysts in pollutants 

photo(electro)degradation. The films’ reutilization showed that these are stable and can be used 

in successive degradation without performance loss. 

 

Keywords 

Elongated titanate nanoparticles, metal modification, metal and organic molecules 

sensitization, emergent pollutants, photo(electro)catalytic degradation. 
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Resumo 

O objetivo do presente trabalho foi a preparação de novas nanopartículas de titanatos alongadas 

(TNP), tais como nanotubos (TNT) e nanofibras (TNW), para serem utilizadas como 

adsorventes e foto(electro)catalisadores para a remoção/degradação de poluentes emergentes.  

Os poluentes emergentes são substâncias químicas, geralmente não reguladas, sendo os seus 

efeitos no meio ambiente e na saúde humana a longo prazo ainda desconhecidos. Estes podem 

ser produtos farmacêuticos, de higiene e cuidado pessoal (PPCPs), tais como antibióticos, 

analgésicos, antidepressivos, estimulantes, cosméticos, excipientes e parabenos. Como estes 

poluentes são resistentes a tratamentos convencionais, mesmo em concentrações muito baixas, 

podem causar sérios riscos para a saúde, devido à elevada toxicidade que apresentam, sendo 

atualmente a sua eliminação muito problemática. Vários tratamentos têm sido propostos, mas 

novas soluções, com maior eficiência, são necessárias para uma resolução definitiva deste 

problema. Neste sentido, nos últimos anos várias investigações têm sido feitas para procurar 

tratamentos eficazes para degradar estes efluentes e diminuir o seu impacto ambiental. Vários 

estudos revelam que os processos avançados de oxidação (AOPs) são promissores no 

tratamento de efluentes, uma vez que são eficazes na degradação de poluentes orgânicos em 

meio aquoso. Nos AOPs há formação de espécies muito reativas, os radicais hidroxilo (•OH), 

que têm elevado poder oxidante e podem promover a degradação de vários poluentes de forma 

rápida e não-seletiva. Existem vários tipos de processos de produção do •OH, sendo os mais 

promissores os de oxidação fotocatalítica e fotoeletrocatalítica, usando semicondutores 

nanocristalinos como catalisadores.  

Os semicondutores são caracterizados, do ponto de vista eletrónico, por apresentarem uma 

banda de valência (VB) e uma banda de condução (CB), sendo a região entre as duas bandas o 

hiato ótico. O processo fotocatalítico dá-se pela irradiação do semicondutor, ocorrendo 

absorção de fotões com energia igual ou superior à energia do hiato ótico. Formam-se 

transportadores de carga do tipo eletrão-lacuna (e-/h+) devido à absorção de energia pelos 

eletrões da VB que são transferidos para a CB, sendo criada uma lacuna na VB. Os 

transportadores de carga podem participar diretamente em reações redox à superfície do 

semicondutor e ainda formar radicais (por exemplo •OH e O2
•-) que participam ativamente na 

degradação dos poluentes orgânicos, quebrando as ligações químicas, até à sua total 

mineralização. No processo fotoelectrocatalítico, há um aumento da eficiência catalítica devido 

à diminuição da recombinação de cargas no semicondutor irradiado, quando utilizado como 

fotoânodo onde se aplica um potencial ou uma corrente constante. Desta forma, cria-se um 
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gradiente de potencial que facilita o processo de separação de cargas, aumentando assim o 

tempo de vida do par e-/h+. 

Neste contexto, este trabalho propõe a síntese de novos TNT e TNW modificados, para serem 

utilizados como foto(electro)catalisadores, para a degradação de poluentes. Os TNT e as TNW, 

foram preparadas através de um processo hidrotérmico em meio alcalino (NaOH 10 M) a 160ºC 

durante 24 horas, partindo de nanopartículas de TiO2 e de um precursor amorfo, respetivamente. 

Prepararam-se também amostras HTNW, por troca iónica através de um tratamento ácido da 

amostra TNW (que contem iões Na+ nas intercamadas), substituindo os iões Na+ por H+.  

Modificaram-se TNW e TNT por sensibilização com etilenodiamina (EDAmine), obtendo-se 

as amostras NTNW e NTNT e por sensibilização com nanopartículas de prata, Ag-HTNW. 

Foram modificadas amostras de TNW com cobalto por dopagem, com diferentes percentagens 

de substituição, (Co(1%)TNW e Co(5%)TNW) e por troca iónica (TNWCo(5%)). Também 

foram modificadas amostras com ruténio (1%, nominal), obtendo as amostras RuTNT e 

RuTNW, e com manganês e ferro, FeMnTNW. 

O processo de sensibilização das TNP pode melhorar a absorção de luz no visível, e a 

capacidade de adsorção e de degradação destes fotocatalisadores, uma vez que provoca uma 

alteração na superfície das nanopartículas. Por outro lado, a modificação das TNP com metais 

pode desviar a absorção de luz para a gama do visível e/ou introduzir níveis intermédios na 

banda proibida, reduzindo assim a recombinação do par e-/h+. 

A caracterização estrutural por difração de raios-X de pós revelou que todas as amostras 

preparadas apresentam uma estrutura cristalina do tipo Na2-xHxTi3O7 (0 ≤ 𝑥 ≤ 2), não se 

verificando alterações estruturais após modificação.  

A análise por microscopia eletrónica de transmissão revelou uma morfologia homogénea e 

uniforme, com nanofibras ou nanotubos bem definidos, não se observando alterações 

significativas nas TNP modificadas. Apenas nas amostras modificadas com nanopartículas de 

prata (Ag-HTNW) se verificou a presença de nanopartículas na superfície das nanofibras. 

Após caracterização e para avaliar a capacidade fotocatalítica das novas amostras de TNP 

modificadas, foram realizados ensaios de fotoreacção do ácido tereftálico, para analisar a 

produção de •OH. Os resultados revelaram que estes nanomateriais apresentam elevada 

atividade fotocatalítica para a produção desta espécie oxidante. Estes novos materiais 

modificados foram estudados com catalisadores em processos de fotodegradação de poluentes. 

Os resultados revelaram que todos os TNW e TNT modificados apresentam excelente atividade 

fotocatalítica para os processos de degradação estudados.  
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Nas amostras modificadas por sensibilização com EDAmine, NTNW e NTNT, a presença da 

amina foi confirmada por espetroscopia fotoeletrónica de raios-X (XPS). Verificou-se ainda um 

desvio para a zona do vermelho da banda de absorção das partículas sensibilizadas, indicando 

que estas apresentam uma energia do hiato ótico menor. Pelos ensaios de fotodegradação da 

cafeína, teofilina e do fenol, verificou-se que as amostras após sensibilização apresentam uma 

maior eficiência em relação às amostras TNT/TNW. A amostra NTNT foi a que apresentou 

maior atividade catalítica, para todos os poluentes nas condições experimentais utilizadas. Nos 

ensaios de reutilização a amostra NTNT foi sujeita a quatro ensaios de fotodegradação 

sucessivos, tendo-se verificado que esta amostra apresenta elevada estabilidade associada a uma 

alta eficiência catalítica na degradação de soluções de cafeína, teofilina e de fenol.  

Na sensibilização com nanopartículas de prata, a presença do metal na amostra Ag-HTNW foi 

confirmada por XPS e fluorescência de raios-X (µXRF). A caraterização por espectroscopia de 

reflectância difusa revelou uma modificação no comportamento ótico da amostra, apresentando 

uma banda de absorção aos 480 nm devido ao efeito de absorção plasmónica das nanopartículas 

de Ag, indicando uma melhoria significativa na absorção de luz visível e sugerindo uma 

possível melhoria no desempenho fotocatalítico da amostra. A atividade fotocatalítica das 

partículas de Ag-HTNW foi avaliada e os resultados obtidos mostraram que esta foi bastante 

eficiente na degradação fotocatalítica do fenol usando radiação UV-vis. Os resultados relativos 

à estabilidade deste fotocatalisador, mostram que é muito estável após 4 degradações 

sucessivas, revelando-se promissor para ensaios de fotodegradação com radiação UV-visível. 

Verificou-se, contudo, um aumento na quantidade e no tamanho das nanopartículas de Ag 

durante estes ensaios. Estes resultados sugerem a possibilidade de simultaneamente se 

formarem nanopartículas de Ag e de se degradar um poluente, sem diminuição do desempenho 

fotocatalítico.  

Para as TNW modificadas com cobalto, dependendo do método de síntese e da razão entre Co 

e Ti (Co/Ti), o metal dopante pode substituir os iões Na+ nas intercamadas, e/ou substituir os 

iões Ti4+ na estrutura cristalina ou ficar nos interstícios. Embora não tenham sido observadas 

alterações significativas na morfologia das nanofibras devido à introdução do metal, uma 

alteração no espectro ótico das amostras foi observada, verificando-se uma grande diferença 

quando os iões cobalto estão a substituir os iões Ti4+ ou Na+. Nas amostras dopadas foi 

verificada a presença de iões Co2+/Co3+ e nas amostras preparadas por troca iónica (amostras 

intercaladas) a presença de Co2+. Todas as amostras de TNW modificadas com cobalto 

apresentam uma absorção na gama do visível, e o desvio para o vermelho observado pode ser 

atribuído à introdução de orbitais 3d do cobalto na banda proibida. 
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Os ensaios da atividade fotocatalítica permitiram concluir que as amostras dopadas são mais 

eficientes na degradação do fenol e dos corantes amarelo naftol S e verde brilhante do que as 

amostras intercaladas. Nos ensaios de degradação da mistura destes três poluentes, verificou-

se que a amostra Co(1%)TNW apresenta uma elevada e muito promissora eficiência 

fotocatalítica.  

Para a amostra RuTNW, verificou-se por espetroscopia de Raman, XPS e µXRF a presença de 

iões Run+ na estrutura cristalina substituindo o Ti4+ e nas intercamadas a substituir os iões Na+, 

no entanto na amostra RuTNT, a substituição foi apenas nos iões Ti4+. A atividade fotocatalítica 

destes materiais foi estudada na degradação de sulfametazina e de cafeína. Neste estudo, 

verificou-se uma melhoria do desempenho catalítico dos TNT e TNW após a introdução de 

ruténio, sendo esta atribuída a uma diminuição da taxa de recombinação do par e-/h+. Concluiu-

se também que para as amostras RuTNT e RuTNW, a maior diferença no desempenho 

fotocatalítico em relação à morfologia, isto é, ter nanotubos ou nanofibras, está principalmente 

relacionada com o mecanismo de degradação dos poluentes e à formação/degradação dos 

subprodutos/intermediários da reação. 

Neste trabalho foi também possível estudar a influência de contaminações vestigiais por metais, 

nas características estruturais, óticas e fotocatalíticas das TNW. Devido a uma contaminação 

vestigial de um reagente com ferro e manganês, foi obtida uma amostra de FeMnTNW. A 

modificação dos TNW com Fe e Mn, ocorreu por substituição dos iões Ti4+ por Fe3+-Mn3+ e 

por incorporação nas intercamadas substituindo os iões Na+. A eficiência fotocatalítica desta 

amostra foi analisada na degradação da cafeína, verificando-se que a presença de Fe/Mn é 

promissora para a degradação deste poluente. Foi realizado um estudo usando captadores de 

espécies oxidantes, para analisar quais as espécies intervenientes no processo de degradação da 

cafeína com a amostra FeMnTNW como catalisador. Pelos resultados obtidos, e tendo em conta 

a possibilidade de ter Fe3+/2+/H2O2 no sistema, a combinação dos processos de fotodegradação 

catalítica e foto-Fenton, com H2O2 gerado via radical superóxido foi devidamente equacionada. 

Verificou-se que a degradação da cafeína ocorre via radicais •OH e O2
•-. 

Estudou-se também a imobilização das TNP, pois uma grande limitação nesta área é a utilização 

de fotocatalisadores em suspensão nos reatores para tratamento de águas residuais. Se por um 

lado apresentam melhor atividade devido à maior transferência de massa entre os poluentes e o 

fotocatalisador, por outro lado apresentam como desvantagem a dificuldade em separar o 

catalisador no final da fotodegradação, sendo necessárias a filtração ou centrifugação da água 

tratada para recuperar o catalisador. A utilização do semicondutor imobilizado na forma de 

filme tem como vantagens a facilidade de manuseamento e de recuperação do catalisador. Neste 
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sentido, neste trabalho preparam-se filmes para imobilizar as TNP em substratos condutores 

para serem utilizados como foto(electro)catalisadores. Foram preparados filmes condutores 

híbridos de TNP com poli(1,8-diaminocarbazole). As amostras de TNP modificadas com Ru e 

com Co foram imobilizadas em substratos condutores pelo método de drop-casting. 

Prepararam-se também filmes híbridos por electropolimerização do monómero 1,8-

diaminocarbazole. Estes filmes mostraram-se muito promissores para a degradação 

foto(electro)catalítica do azul de metileno e da teofilina. A reutilização dos filmes revelou que 

estes são estáveis e que podem ser utilizados em sucessivos ensaios de degradação sem 

diminuição do seu desempenho catalítico. 
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Chapter 1 – Introduction 

In the past years, the pollution of water systems with pharmaceuticals and personal care 

products (PPCPs) among other pollutants has become a huge environmental problem. These 

emergent pollutants are resistant to conventional treatments and even at low concentrations, 

they may impose toxicity to all biological hierarchy levels. The search for effective and 

practical treatments to degrade them, and reduce their environmental impact, has attracted the 

interest of researchers, and innovative solutions are being proposed [1].  

 

1.1 - Emerging pollutants 

Emerging pollutants are chemical substances, commonly not regulated, that can be detected in 

low concentrations, raising particular concern due to their long-term adverse effects on the 

environment and on human health remaining unknown. These pollutants be defined as 

compounds of different origin and chemical nature whose presence in the environment, or by 

consequences of their presence, they have gone mostly unnoticed and due to this remain 

unregulated [2]. 

International organizations have proposed some definitions of emerging pollutants, which can 

illustrate different aspects related to this problem and which can help to understand their 

dimension and consequences [2]. According to the organization for monitoring emerging 

environmental substances in Europe (EU NORMAN network), such chemicals can be defined 

as substances that have been detected in the environment. They are currently not included in 

routine monitoring programs at the European level and whose fate, behavior, and 

(eco)toxicological effects are not well understood [2,3]. The emerging pollutants are not 

included in routine environmental monitoring. However, they may be candidates for future 

regulation/legislation due to their adverse effects and/or persistency. This regulation will be 

depending on research works on their (eco)toxicity, potential health effects and public 

perception and monitoring data regarding their occurrence in the various environmental 

compartments [3]. 

 

1.1.1 – PPCPs 

Many thousands of PPCPs, which include pharmaceutical drugs, cosmetics, food supplements 

and other personal care products, are used worldwide. These products are emerging 

environmental pollutants due to their inherent ability to induce physiological effects in humans 

and animals, even at low doses [4]. PPCPs can be, for example, antibiotics, anti-inflammatories, 
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antiseptics, analgesics, antidepressants, stimulants, cosmetics, excipients, essences, parabens, 

fragrances, disinfectants, and sunscreens [4]. Unfortunately, after use, these products are 

disposed in the environment, usually in low doses, without any kind of treatment. Also, a 

cumulative effect is often observed because standard treatments do not easily degrade them. 

This widespread and continuous release to the environment has been attracting an increasing 

concern among the scientific community, media and the public in general [5]. Since most of the 

PPCPs have polar chemical characteristics, they are not easily adsorbed in the subsoil. These 

pollutants will reach groundwater aquifers through contaminated surface water, and 

consequently they will be able to reach potable water systems [6,7]. These non-degraded PPCPs 

have become one of the biggest problems of contamination of water resources. 

The existence of PPCPs in the environment was confirmed for the first time in the 80s [8] and 

since then, several reports have demonstrated their presence in the effluents of wastewater 

treatment plants (WWTP), rivers, lakes, groundwater and even in bottled waters [6,9]. Once 

these pollutants are not easily removed, their potential long-term effects on wildlife and humans 

it is of great concern. For instance, certain antibiotics can cause irreversible changes in the 

genomes of microorganisms, creating new resistance to their action. For example, Varela et al. 

[10] reported a vancomycin resistant Enterococci (VRE) study, from hospital effluents and 

urban wastewaters. Vancomycin is an antibiotic used to treat a number of bacterial infections. 

They demonstrated that hospital effluents could provide VRE to an urban wastewater treatment 

plant. Once the effluent is received, the multidrug resistance phenotypes, observed in clinical 

isolate and hospital effluents, can survive to the wastewater treatment, and they will be detected 

in the final effluent. These multidrug resistance phenotypes contribute to increasing the risk of 

spread vancomycin multidrug resistance to the environment [10]. 

For pollutants removal, different methodologies can be used, such as physical, biological and 

chemical methods. These methods include coagulation, flocculation, sedimentation, filtration 

or nano-filtration, flotation, activated carbon adsorption, nitrification, biological filters, 

membrane bioreactors, biological nutrients removal, microbiological degradation, chemical 

oxidation (e.g., ozonation, ultraviolet and/or hydrogen peroxide advanced oxidation process 

(AOPs)), membrane filtration, reverse osmosis, chlorination and UV disinfection [11,12]. 

Biodegradation, photodegradation and other abiotic transformation processes such as 

hydrolysis, may reduce concentrations of PPCPs in the environment and result in partial loss 

and mineralization of these compounds [4]. However, for an efficient wastewaters’ treatment a 

combination of different methods, it is frequently required, since the use of a single method, it 

is rarely satisfactory. For example, the industrial wastewater treatment plan is done using a 
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combination of biological and chemical treatment methods, in order to comply with the 

standards for discharge of treated effluents [13].  

The biological treatment of municipal wastewater involves the coagulation and removal of non-

settleable colloidal solids to reduce the organic content and nutrients such as nitrogen and 

phosphorus. These are performed using a variety of microorganisms, mainly bacteria (may have 

300 species present). The predominant group of bacteria used in this context are heterotrophic. 

They feed primarily on organic carbon molecules. Inorganic matter is absorbed by autotrophs, 

such as ammonia-oxidizing bacteria, which oxidize ammonia into nitrite. Heterotrophs often 

compete with autotrophs, which have lower growth rates and are often more sensitive to process 

conditions and variations [14]. These processes are usually influenced by pH, temperature, and 

redox potential [15]. However, on a relative scale, biodegradation can be important, for 

instance, to naproxen and ibuprofen removal, but only moderately for caffeine. In contrast, for 

other PPCPs, for instance, diclofenac, ketoprofen, amoxicillin, clarithromycin, triclosan, 

sotalol, clofibric acid, and carbamazepine, it plays only a relatively minor role [15]. For 

example, emergent pollutants’ removal has been evaluated by reverse osmosis, ozonation and 

membrane bioreactors. However, these processes are not attractive because none of them show 

satisfactory results [16]. For example, diclofenac (DCF) was shown to be significantly 

biodegraded only when the sludge retention times are higher than 8 days, and carbamazepine, 

which is hardly biodegradable, is only poorly eliminated, independent on hydraulic retention 

times in WWTP [16]. DCF (illustrated in Figure 1.1) is a well known anti-inflammatory 

pharmaceutic product frequently detected in wastewaters, effluents and surface waters [14]. 

This pharmaceutical has been recently included in the list of substances in the EU that requires 

environmental monitoring in the member states. DCF harmfully affects several environmental 

species, even if in concentrations lower than 1μg L-1 [14].  

 

 

Figure 1.1 - Schematic representation of diclofenac molecule. 

 

Physical-chemical processes, such as coagulation, flocculation and flotation, can be used to 

agglomerate fine particles and colloids into larger particles for reducing turbidity, natural 

organic matter and other soluble organic and inorganic pollutants present in the wastewater. 
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These physical-chemical methods have been reported for the elimination of several pollutants, 

including DCF, carbamazepine, ibuprofen and naproxen. However, sometimes their total 

removal from wastewater usually requires posterior treatments [17,18]. 

For example, using a nitrifying-denitrifying process in a wastewater treatment plant, only 82% 

and 68% of ibuprofen and naproxen (of an initial concentration of 10 ppb in the effluent) were 

removed, respectively. Carbamazepine (20 ppb) and diazepam (20 ppb) were removed less than 

10%. However more than 300 days were required for the total removal of a 9 compounds 

mixture from the effluent [19].  

The pollutants’ photolysis degradation by sunlight action can be an attractive alternative and 

low-cost methodology; however, it strongly depends on sunlight availability, light intensity and 

penetration/attenuation by the water depth, PPCPs’ absorbance spectra and quantum yield. 

Consequently, it is urgent to develop new methodologies that provide high pollutants removal 

efficiency at a rational cost. Adsorption processes have this potential since PPCPs removal, if 

ionic, may occur due to electrostatic interactions. Neutral molecules adsorption can occur via 

weak Van der Waals and electron donor-acceptor interactions. For instance, activated carbon 

[20], and clay complexes [21], have been recently used to remove PPCPs, such as bisphenol A, 

carbamazepine, naproxen and clofibric acid, from aqueous streams. Nevertheless, adsorption 

only influences the distribution of substances between aqueous and solid phases and does not 

eliminate them. Besides, adsorption is dependent on both hydrophobic and electrostatic 

interactions of pollutants and adsorbent particles [16]. 

Recently, the use of nanocrystalline semiconductors on the photocatalytic treatment of 

wastewaters has generated great interest [22]. There are some interesting reports concerning the 

effective photocatalytic degradation of pharmaceutic products, for instance ibuprofen [23], 

ketoprofen [24], methyl-paraben [25], carbamazepine, naproxen, and theophylline [26]. Liang 

et al. [26] reported the degradation of carbamazepine, naproxen, and theophylline (15 ppm) 

using titanate nanobelts,  as photocatalysts, achieving the total theophylline and naproxen drugs 

removal in 90 min under UV-vis irradiation. However, for carbamazepine the photo-assisted 

removal was not successfully achieved [26]. Nevertheless, in this study, they did not evaluate 

the formation and degradation of the by-products, a very important parameter in photocatalytic 

processes, due to the possibility of products formation even more toxic than the initial ones. 

Caffeine, theophylline, and phenol are some examples of the PPCPs that have been often found 

in wastewaters (Figure 1.2). 

Caffeine (1,3,7-trimethylxanthine) is a central nervous system stimulant of the methylxanthine 

class. This is one of the most popular drugs in the world, and it can be found in coffee, tea, 
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chocolate, soft drinks and pharmaceuticals. Caffeine is a mild stimulant that helps reduce 

fatigue. It is also thought to enhance the painkilling effect of acetaminophen. This drug can 

enter the wastewater through human urine or household plumbing as it is present at an average 

amount of approximately 360 mg L-1 in coffee, tea, and soft drinks. Early reports proved the 

existence of caffeine in sewage effluent, septic tanks, landfill leachates, and the contamination 

of surface water by wastewater [27]. So, it is reasonable that groundwater can be contaminated 

by those potential caffeine sources during natural recycling. 

 

a) b) c) 
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Figure 1.2 – Schematic representation of (a) caffeine, (b) theophylline and (c) phenol molecules. 

 

Theophylline, known as 1,3-dimethylxanthine, it is also a methylxanthine used in therapy for 

respiratory diseases such as chronic obstructive pulmonary disease and asthma. It was originally 

used as a bronchodilator and it has been used nowadays to treat airway diseases. More recently 

it has been shown to have, when at lower concentrations, anti-inflammatory effects in asthma 

and chronic obstructive pulmonary disease [28]. Theophylline is present in tea and cocoa. It has 

also been described as a by-product of caffeine photodegradation [29,30]. 

Phenol is an important aromatic compound often used as a model pollutant in photodegradation 

catalytic studies due to its relevance as a pollutant itself and also because it is a frequent 

intermediary product of several other pollutants’ degradation processes. It is generally used as 

a disinfectant, a reactant in chemical analysis, and a raw material of several products, such as 

herbicides, drugs, paints, cosmetics, artificial resins, pharmaceuticals, organic compounds, 

fertilizers, pesticides, explosives, industrial dyes and lubricant. It is also the largest used, as an 

intermediate, in the production of phenolic resins like phenol-formaldehyde ones [31-33]. 

 

1.1.2 – Industrial dyes 

Dyes become an environmental problem due to the growing use of a wide variety of such 

compounds in several industries, namely textile, paper, leather, plastics, and cosmetics 

[1,34,35]. These industries discharge a large number of colored effluents, which are very toxic, 

and consequently, they can lead to serious ecological problems. Recently it was reported that 
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more than 700.000 tons of dyes are produced annually, and the chemical class azo represents 

~70% of the production due to their high stability, low cost and easy obtainment. Consequently, 

the final disposal of azo dyes-containing wastewaters has become a serious concern to the 

environment, considering that only the textile industries release up to 50% of dyes to the aquatic 

environment through effluents, reaching 10-50 mg L-1 in the aquatic environment [35]. Dyes 

normally have a synthetic origin and complex aromatic molecular structures, which often make 

them very stable and difficult to be biodegradable. Most synthetic industrial dyes have an azo 

bond connected to several aromatic structures. Some, however, are polymeric structures 

containing metals, for example, chromium, cobalt, nickel, and copper [36,37]. It is also known 

that wastewaters containing dyes are very difficult to treat since they are molecules resistant to 

aerobic digestion. This extremely harmful waste not only depreciates the water quality but also 

elevates their toxicity [38,39]. Dyes generally also exhibit resistance to microbiological attack 

and temperature, and most of them are not degraded in wastewater treatment plants. These dyes 

become an integral part of industrial effluents, not only because of the large volume of 

production but also as a result of their slow biodegradation and discoloration [40,41]. The 

presence of these colored pollutants in the environment can change the water clarity and 

appearance and causes considerable non-aesthetic pollution and serious health risk factors, due 

to their toxicity [1,39]. The impact and toxicity of these pollutants in the environment have been 

extensively studied. However, the knowledge concerning their carcinogenic, mutagenic, and 

bactericide properties is still incomplete, owing to the large variety of dyes produced [1,39,42]. 

Consequently, this is becoming a growing concern for environmentalists and civilians. A 

sustainable and efficient long-term dye effluent treatment method should be established to 

reduce or eliminate this problem. Coagulation, flocculation, electrocoagulation, adsorption, 

ultrasound, membrane filtration, chemical treatment, ozonation, electrochemical destruction, 

and biological treatment were applied to remove the dyes from wastewater. However, these 

methods are complicated processes with a high cost and not very efficient. Therefore, 

researchers have been interested in advanced oxidation processes (AOPs) to dyes removal from 

the wastewater due to the simplicity and efficiency of this method [43-45]. Since the wastewater 

composition of the textile industry, it is extremely complex, its treatment is very complicated. 

Recently, the textile industry conducts on-site wastewater treatment and process water 

recycling. This wastewater treatment combines biological processes with AOPs [45]. For 

example, Ray et al. recently reported an efficient Indigo carmine dye removal from polluted 

water using a Ni-modified barium trimolybdate photocatalyst under visible light irradiation 

[43]. 
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1.2 - Advanced oxidation processes (AOPs) 

During the last decade, there has been an increasing interest in the advanced oxidation processes 

(AOPs) field for the degradation and removal of organic compounds in wastewater. These 

processes have been proposed as alternative methods for the degradation of pollutants in water, 

air, and soil [46-50], since they are very effective in the degradation of organic pollutants (in 

aqueous medium) [41]. Concerning a wastewater treatment plan, the AOPs (Figure 1.3) are 

extremely effective for the destruction/removal of halogenated hydrocarbons, aromatic 

compounds, volatile organic compounds, detergents, dyes or pesticides [51,52].  

 

 

Figure 1.3 – Schematic representation of advanced oxidation processes (AOPs). (Adapted and based on [40,41,54-58]) 

 

AOPs (Figure 1.3) are a group of oxidation methods based on the formation of highly reactive 

species such as hydroxyl radical (•OH) and superoxide radical (O2
•-), which have high oxidizing 

power, leading to the destruction of organic pollutants [52,53]. These non-selective radicals can 

readily attack organic molecules by hydroxylation and/or dehydrogenation reactions leading to 

the pollutants’ decomposition. The production of carbon dioxide and water is aimed, or, at least, 

the conversion to preferably less harmful products [53]. There are several types of •OH radical 
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production processes, such as chemical oxidation (ozone, hydrogen peroxide and Fenton 

reagent), electrochemical, photolysis, photocatalytic, and photoelectrocatalytic oxidation 

[40,41,54-58]. 

AOPs have been used in several environmental applications, such as domestic and industrial 

wastewater treatment, atmospheric pollution reduction, odor control, and soil remediation 

[59,60]. 

The AOPs can be classified either as homogeneous or heterogeneous processes, being further 

divided into photochemical and non-photochemical processes (Figure 1.3). In general, these 

methods include Fenton reactions, ozonation, photocatalysis, sonolysis, combinations of UV 

irradiation, and oxidizing chemical agents [60]. Photocatalysis and photoelectrocatalysis have 

been described as the best and most attractive and promising AOPs for organic pollutants 

removal. 

 

1.2.1 - Photocatalytic and photoelectrocatalytic methods 

Photocatalysis is defined as a change in the rate of a photochemical reaction, by the activation 

of a photocatalyst (semiconductor) with sunlight or artificial light (ultraviolet or visible 

radiation). This process allows the degradation of many organic pollutants, with the cleavage 

of the chemical bonds, until their total mineralization in carbon dioxide and water. Regarding 

the photocatalytic and photo(electro)catalytic oxidation processes, these methods are very 

efficient, presenting excellent results in organic compounds degradation, aiming their total 

mineralization [40,61-66]. They are also very attractive from the economical and eco-friendly 

point of view, due to, e.g., the possibility of the catalyst reutilization. These methods are based 

on the use of a catalyst, usually a semiconductor, irradiated with energy equal to or higher than 

its bandgap energy. 

It is known that it is possible to promote the photoelectrolysis of water with an anodic potential 

[50]. Since this discovery using irradiated titanium dioxide (TiO2) to produce hydrogen, 

reported in 1972 by Fujishima and Honda, the photocatalysis has become one of the major 

topics of interest for scientific researchers [67]. These authors constructed an electrochemical 

cell (Figure 1.4) in which a TiO2 electrode was connected with a black platinum electrode 

through an external load. When the surface of the TiO2 electrode was irradiated, the current 

flowed from the platinum electrode to the TiO2 surface through the external circuit. The 

direction of the current reveals that the oxidation reaction (oxygen evolution) occurs at the TiO2 

electrode and reduction (hydrogen evolution) at the black platinum electrode [67].  
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Figure 1.4 – Schematic representation of the electrochemical cell used by Fujishima and Honda, (adapted from [67]). 

 

In this system, the authors suggested that water can be decomposed by visible light into oxygen 

and hydrogen, without the application of any external voltage, according to the following 

equations [67]: 

TiO2 + 2 hv  → 2 e- + 2 h+ (excitation of TiO2 by light)                      (1.1) 

2 h+ + H2O → ½ O2 + 2 H+ (at the TiO2 electrode)                          (1.2) 

2 e- + 2 H+ → H2 (at the platinum electrode)                                (1.3) 

The overall reaction is: 

H2O + 2 hv → ½ O2 + H2                                               (1.4) 

It was also found by Frank and Bard in 1977 [68], that using semiconductor powders (such as 

TiO2, ZnO and CdS) in heterogeneous photocatalytic oxidation processes, it is possible to 

remove cyanide and sulphite from aqueous solutions. They represented the process of CN- 

removal as follows:  

TiO2 + 2 hv → 2 e- + 2 h+                                             (1.5) 

CN- + 2OH- + 2 h+ → OCN- + H2O                                            (1.6) 

O2 + 2 e- + 2 H2O → H2O2 + 2OH-   or    ½ O2 + 2 e- + H2O → 2 OH-                   (1.7) 

and the process of SO3
2- removal as follows: 

ZnO + 2 hv → 2 e- + 2 h+                                             (1.8) 

SO3
2- + 2 h+ + H2O → SO4

2- + 2H+                                            (1.9) 

O2 + 2 e- + 2 H+ → H2O2                                                (1.10) 

H2O2 + SO3
2- → SO4

2- + H2O                                           (1.11) 

2 h+ + 2 SO3
2- + O2 → 2 SO4

2-                                            (1.12) 

V

Pt black TiO2

hv
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These works, have promoted the heterogeneous photocatalysis interest in the scientific 

community, being nowadays one of the most studied technique, in this context. Since then, 

photocatalysis has been explored to promote organics oxidation, inorganics reduction, 

disinfection of water containing biological materials and production of electricity and hydrogen 

[50]. Afterwards, Fujishima reported some photocatalytic applications using TiO2, whereby 

self-cleaning, air cleaning, water purification, antitumor activity and self-sterilizing [69], being 

nowadays used in water treatment, air purification, destruction of microorganisms, self-

cleaning of surfaces and deodorizing effect [63,70,71]. 

Heterogeneous photocatalysis takes place at the interfacial boundary between two phases 

(solid/liquid, solid/gas, liquid/gas). Compared to photolysis, the presence of a catalyst typically 

accelerates the rate of the reaction, increasing the efficiency of the overall process [72]. 

Photoelectrocatalysis combines, in general, photochemical and electrochemical methods, 

promoting the interaction of light with electrochemical systems. In the photoelectrocatalytic 

oxidation, the catalytic process can be improved using the photocatalyst as a photoanode, with 

a constant potential or current application under UV-vis or visible light irradiation, creating a 

potential gradient that enhances the e-/h+ separation. With these e-/h+ separation, there is an 

increase in the efficiency of the photocatalytic process, since it reduces the charges 

recombination in the semiconductor, thus increasing the lifetime of the e-/h+ pair. 

 

• Photocatalytic process 

The photocatalytic process occurs by the irradiation of the semiconductor, as illustrated in 

Figure 1.5.  

 

Figure 1.5 – Schematic representation of a semiconductor when irradiated with hν energy. 
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In this process, under irradiation, the semiconductor activation occurs due to the absorption of 

photons with energy equal to or higher than the bandgap energy (hν ≥ Eg). The bandgap, Eg, is 

the energy between the semiconductor valence band (VB) and conduction band (CB), (see 

section 1.5 for further details).   

Electron-hole charge carriers (e-/h+) are formed due to the energy absorption (as shown in 

equation 1.13), with the electrons from the top of VB being transferred to the CB (eCB
− ), creating 

holes (h+) in the VB (hVB
+

) [41,72,73]. The e-/h+ pairs can participate directly in redox reactions 

at the semiconductor surface and they can also produce radicals that contribute actively to the 

organic pollutants’ degradation [53]. 

 

semiconductor + hν → eCB
− + hVB

+
                                           (1.13) 

 

The photo-generated electrons are involved in reduction processes while the holes are 

consumed in the oxidation process of chemical species at the semiconductor surface.  

Considering the pollutants photo-assisted degradation, the organic species can be directly 

oxidized by the photogenerated h+ up to their complete mineralization. These holes can also 

react with adsorbed water molecules (or hydroxyl ions) on the semiconductor surface to form 

the strong oxidant •OH radical, as shown in equations (1.14) to (1.16) at the redox potential in 

V in reference to normal hydrogen electrode (NHE). This radical can be, afterward, involved 

in the mineralization of the organic pollutants [74-77]. 

 

hVB
+ +  H2O → ·OH +  H+      Eº (H2O/•OH) = 2.72 V (1.14) 

H2O +  hVB
+ → ·OH +  OH−       Eº (H2O/OH-) = 1.59 V (1.15) 

OH− +  hVB
+ → ·OH            Eº (OH-/•OH) = 2.38 V (1.16) 

 

Depending on the CB energy, the photo-transferred electron can react with O2 producing the 

superoxide radical O2
•- as shown in equation (1.17) [1,75,77]: 

 

eCB
− + O2 → O2

∙ -
               Eº (O2/O2

•-) = - 0.33 V (1.17) 

 

Other reactive species, such as H2O2 and hydroperoxyl radical HO2
•, can be produced via 

equations (1.10) and (1.11). Furthermore, additional •OH radicals’ formation may also occur 
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according to equations (1.10) to (1.12) [74,75]. The production of H2O2 from molecular O2 (Eº 

(O2/H2O2) = 0.695 V vs. NHE) [76,79], can be observed following the equations 1.17 to 1.19, 

and subsequentially the H2O2 ⇒ •OH reduction reaction (Eº (H2O2/
•OH) = 0.38 V vs. NHE) 

[76,78,79], as represented in equation 1.20. 

O2
∙ − + H+ → HO2

∙
            Eº (O2

•-/HO2
•) = 0.20 V (1.18) 

2 HO2
∙
→ H2O2 + O2          Eº (HO2

•/H2O2) = 1.44 V (1.19) 

H2O2 + O2
∙ −→ ·OH + OH− + O2        Eº (H2O2/

•OH) = 0.38 V (1.20) 

 

In the presence of an organic compound, like an emergent pollutant, the •OH and O2
•- radicals, 

H2O2, and e−/h+ active species can contribute to their total mineralization [74,80]. 

Nevertheless, the promoted e− is an unstable specie of an excited state and tends to return to the 

ground state either with adsorbed •OH (equation (1.21)) or preeminently by recombination with 

the unreacted h+ (equation 1.22) [75,81-85]: 

 

eCB
− + ·OH → OH−            Eº (•OH/OH-) = 1.90 V  (1.21) 

 eCB
−  + hVB

+
 → semiconductor + heat                                       (1.22) 

 

The reaction in equation (1.22), represents the main drawback for the efficient use of absorbed 

photons in the classical photocatalysis, i.e., e-/h+ recombination. To overcome this, several 

strategies have been studied, such as a combination of more than one semiconductor material, 

sensitization, doping, and ion-exchange [79,86,87]. A more detailed discussion of these 

strategies is included in section 1.5. These approaches create alternative paths for the electron 

decay to the VB, decreasing the recombination rate by prolonging the e-/h+ lifetime. 

 

• Photoelectrocatalytic process 

To improve the reduction of organic pollutants by photocatalysis, the separation of the charge 

carriers formed in equation (1.13) has been performed using photocatalysts with a high specific 

area in suspension in the effluent. Unfortunately, the recovery of these materials after treatment 

can be complex, being necessary sometimes a post-filtration or centrifugation [75,88,89]. 

Research efforts to solve this problem have been devoted to the immobilization of 

photocatalysts onto different substrates [75,88,90,91]. For example, TiO2 or perovskites on 

glass substrates [88,92], nanoparticles on polymers [93] and BiOCl and TiO2 nanoparticles on 
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cotton fibres [94]. The immobilization of photocatalysts on supports can produce a significant 

reduction of their active specific surface area with the consequent decrease in pollutant removal 

efficiency. This efficiency can be strongly improved if the photocatalyst can be deposited onto 

a conductive substrate that will act as the photo-anode in a photoelectrolytic system leading to 

a photoelectrocatalytic process configuration [46,75,81,82]. 

Here, a constant potential or current is applied under the anode irradiated, creating a potential 

gradient that enhances the e-/h+ separation. Therefore, there is an increase in the photocatalytic 

process efficiency, since this reduces the charge recombination in the semiconductor, by 

increasing the e-/h+ pair lifetime [95-100]. In this case, photoinduced electrons are continuously 

removed from the anode by the external electric circuit. These inhibit the reactions (1.17) to 

(1.22), and consequently, there is a higher production of holes, as indicated in equation (1.13) 

and consequently, a higher formation of hydroxyl radicals as shown in equation (1.14). 

In this way, the combination of photocatalysis and electrocatalysis can promote the organic 

pollutants’ oxidation, increasing its degradation efficiency [41,99,100]. 

 

1.3 - Scavengers  

Radical scavengers are molecules that can quench specific active species during the degradation 

processes. Several probes for •OH, O2
•-, H2O2, electrons (e-) and holes (h+) have been described 

in the literature [101-103]. 

In photo(electro)catalysis it is very important to analyze the active oxidant species involved in 

the catalytic process. Radical scavengers can be added to the reaction mixture to analyze 

whether the degradation of the pollutants takes place via O2
•-, •OH radicals or direct electron 

transfer between the substrate and the positive holes (h+). Since scavengers are molecules that 

react readily with the radicals or other oxidizing agents, they are sometimes referred to as 

antioxidants. 

Terephthalic acid (TA), ethanol, isopropanol, methanol, or tertbutanol can be used as hydroxyl 

radical (•OH) scavengers [79,101,103]. For example, when ethanol is used as •OH scavenger, it 

reacts following the equation (1.23): 

 

C2H5OH + •OH  →  C2H4(OH)2                                        (1.23) 

 

TA, a well-known hydroxyl radical scavenger, reacts with •OH, forming 2-hydroxyterephthalic 

acid (HTA), as illustrated in Figure 1.6 [104]. Furthermore, TA is preferably oxidized by 

hydroxyl radicals and does not react with other radicals, such as O2
•-, HO2

• and H2O2. In this 
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case, HTA can be detected by fluorescence spectroscopy, since it possesses fluorescent 

properties. 

 

         
Figure 1.6 - Terephthalic acid conversion in fluorescent 2-hydroxyterephthalic acid (HTA). 

 

Benzoquinone and superoxide dismutase are often used as superoxide radical (O2
•-) scavengers 

[101,103]. O2
•- is important in photocatalytic processes, since this radical can react to form 

singlet oxygen and hydrogen peroxide and the latter producing •OH [101], as shown above in 

equations (1.18) to (1.20). 

As H2O2 scavenger, catalase (e.g., from the bovine liver) can be used. Catalase converts H2O2 

to water and oxygen, preventing the formation of •OH [101]. 

Ethylenediaminetetraacetic acid (EDTA), formic acid, or potassium oxalate can be used as hole 

scavengers [101,103,105]. In this case, after the semiconductor activation by irradiation, these 

scavengers trap the h+, and the oxidation reactions are no longer possible at the VB (as explained 

in section 1.5). Therefore, only the e- already in CB is allowed to react further (equation (1.24)). 

 

EDTA + hVB
+

  +  eCB
−  → EDTAox +  eCB

−                                    (1.24) 

 

Hao et al. reported some scavengers’ tests for the β-Bi2O3-NiO/Ni photocatalysts during methyl 

orange (MO) degradation. It was possible to show that hydroxyl radical and holes species play 

a major role in the MO oxidation [102]. Kim et al. described the photodegradation of rhodamine 

B (RhB) using BiOCl as a catalyst. Under UV irradiation, O2
•-, h+ and •OH species were all of 

them active for the dye photodegradation. Also interesting is the fact they were able to propose 

a dye-sensitized photodegradation mechanism, where under visible light irradiation, the active 

species play roles in the order of •OH < O2
•- ≈ h+ [103]. This result showed that •OH and O2

•- 

are the most important radicals in the photocatalytic process, being the O2
•- relevant for 

increases the •OH production (equations (1.18) to (1.20)). 

Terephthalic acid 

(TA) 

2-hydroxyterephthalic acid 
(HTA)   

O OH

OOH

O OH

OOH

OH

+   •OH 
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Finčur et al. showed an alprazolam removal study using ZnO as photocatalyst. They reported 

that the photocatalysis takes place only via hydroxyl radicals [106]. 

 

1.4 - Hydroxyl radical production 

Since hydroxyl radicals (•OH) are the main responsible for several photo-assisted degradation 

phenomena, their quantification is very important. Hydroxyl radical demonstrates a very high 

oxidizing capability (Eº = 2.33 eV), and it has been responsible for several pollutants’ 

photodegradation processes [79].  

Ishibashi et al. reported the use of fluorescence techniques for •OH detection on a photo-

illuminated TiO2 surface using either coumarin or terephthalic acid which readily reacts with 

•OH to produce highly fluorescent products [107]. They used TA (in sodium salt) to trap •OH 

radicals to produce fluorescent intermediates, namely HTA. The authors also use coumarin (in 

aqueous media) to trap •OH radicals. This forms only one monohydroxylated isomer (7-

hydroxycoumarin). However, this product has a lower fluorescence than the HTA, being harder 

to detect. In this study, they reported the TA degradation process at different concentrations and 

concluded that, for concentrations below 10-3 mol dm-3, the preferential degradation mechanism 

is the one shown in Figure 1.6. For higher TA concentrations, competition between the hydroxyl 

radicals produced and the photogenerated holes at the catalyst surface was observed, so it was 

concluded that the ideal TA concentration is 10-3 mol dm-3 [107]. Since 2008, more researchers 

adopted the TA fluorescence probe method to determine the •OH radical formation and the 

semiconductor photocatalytic activity [108-112]. Nowadays, TA is widely used as a probe 

molecule for quantification of the important •OH radicals generated from photocatalysts 

[107,112,113]. 

This method has been used in radiation chemistry, sonochemistry, and biochemistry for the 

detection of •OH generated in water [107]. Ishibashi et al. adapted the use of coumarin or 

terephthalic acid solution to measure •OH production in TiO2 photocatalysis. As mentioned, 

this method relies on the fluorescent signal generated by the hydroxylation of terephthalic acid.  

Using this technique, the detection of •OH generated at the water/TiO2 interface, it was 

suggested. In this context, the fluorescence method is rapid, sensitive, specific, and needs only 

standard instrumentation. Once formed, the fluorescent product is stable and does not affect the 

normally occurring •OH reactions [107].  

Although TA is an efficient probe for the detection of •OH radicals, it is also a pollutant by 

itself. TA is widely used as a raw material to produce polyester fiber, polyethylene terephthalate 

(PET) bottles, PET films, engineering plastics, and medicines [111]. In 2013, polyester fiber 
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and PET bottle resin accounted for 93% of global TA demand. TA is toxic and known as an 

endocrine disruptor. Besides, it may also interfere with the reproductive system and normal 

embryonic development of animals and humans [111]. Traditional aerobic biological treatment 

methods are slow and inefficient for TA degradation [111]. Therefore, some authors proposed 

a photocatalytic degradation mechanism for this compound. The reported intermediate products 

are aromatic and aliphatic compounds, such as HTA, 4-hydroxybenzoic acid, benzoquinone, 

benzene and formic, acetic, oxalic, maleic, and fumaric acids [107,111-115]. Although the fact 

that TA is a toxic pollutant and other probes can be used as •OH scavengers, TA degradation 

still one of the best methods for •OH quantification, during the irradiation of a semiconductor, 

due to the experimental process facility and their high efficiency and selectivity. 

 

1.5 - Semiconductor materials in photocatalysis 

Semiconductor materials are crystalline solids with electrical conductivity between conductors 

(metals) and insulators, in which the electric charge carrier density can be changed by external 

means. In a semiconductor, the electrical resistance decreases as temperature increases, which 

is the opposite behavior in metal. In Figure 1.7 it is shown the energetic band structure for the 

conductive, semiconductor, and insulator materials. 

Semiconductors materials can display a range of useful properties such as current can pass 

easily, variable resistance, and sensitivity to light or heat [116]. Since their electric properties 

can be modified by doping or by application of an external electrical field or light, devices 

containing semiconductors can be used for amplification, switching, and energy conversion 

[116]. Practical applications of the semiconductors include laser diodes, electronic devices, 

solar cells, microwave-frequency integrated circuits, and photocatalysis. 

 
 

Figure 1.7 - Band structure energy for conductive, semiconductor and insulator materials. 
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In a solid semiconductor, the band of higher energy filled with electrons is the VB, and the band 

with the lowest unfilled energy is the CB. The range energies between VB and CB are defined 

as a forbidden band and delimits in which electrons are not allowed to transit [117]. The range 

of Eg allows distinguishing conductive materials from semiconductor and insulator materials 

(Figure 1.7). In conductive materials, the VB overlaps with the CB (Eg = 0 eV). Therefore, there 

is a high density of electrons that contribute to the high electrical conductivity that characterizes 

these materials. For semiconductor and insulator materials, the Eg > 0 eV, with the bandgap 

energy being substantially higher for isolating materials, typically Eg > 4 eV. The 

semiconductors can be activated either by thermal excitation or by absorption of radiation 

energy equal or higher than Eg (E ≥ Eg), giving rise to excited states, as illustrated in Figure 1.7.  

The band structure of a crystalline semiconductor material can be described by the relationship 

between energy E and the k-vector (Figure 1.8). Thus, the minimum energy states of the 

conduction band and the maximum energy of the valence band are characterized by an energy 

value and a k-vector.  

In a direct bandgap semiconductor, the maximum VB and the minimum CB occur for the same 

k-vector (Δk = 0). In this case, the transition between two levels is allowed and corresponds to 

bandgap energy, so the electron of VB is transferred to CB with the same momentum. 

Therefore, no momentum transfer is required to launch the electron from the VB into the CB 

[118]. 

 

 
Figure 1.8 – Schematic representation of the excitation process in semiconductor materials, from the top of the valence band 

to the bottom of the conduction band, by photonic absorption, following a direct and an indirect transition process. 

 

In an indirect bandgap semiconductor, the maximum VB and the minimum CB occur for 

different k-vector, and thus it is given without conservation of linear momentum since k is 

changed (Δk ≠ 0). Therefore, a fast electron has to transfer momentum to an electron in VB in 
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order to excite it into the conduction band. This also implies that the cross-section for interband 

transitions is lower than in the case of direct semiconductors [118,119]. 

If semiconductors materials are aimed for photocatalysis, they can be modified by different 

approaches, including doping, synergetic combination with other semiconductors (formation of 

composites), or surface sensitization [86,120,121]. This can open the possibility to control the 

properties of the semiconductors, for instance, by introduction levels in the forbidden zone, 

which can decrease the e-/h+ recombination. This intermediate energy level can also act as either 

an electron acceptor or a donor, which allows the semiconductor to absorb visible light [120]. 

For example, wide bandgap semiconductors (such as ZnO and TiO2) can be photoactivated by 

visible illumination, after defect engineering or doping. Defect engineering involves the 

controlled introduction of native defects, such as vacancies or interstitials, while doping implies 

the controlled incorporation of impurities into the crystal lattice [121]. Doping can be achieved, 

during semiconductor synthesis using a trace element (e.g., metal) or a chemical doping agent 

(e.g., non-metal). The dopant will be incorporated into the crystalline structure, to give the 

material different electrical properties than the pure semiconductor. Doping with metals can 

introduce extra levels in the forbidden band (as mention above), and doping with non-metal, 

such as N, F, C, or P, can extend the light absorption of the semiconductor into the visible 

region [120]. For instance, anion doping could affect the TiO2 conduction band, which has the 

contribution of Ti 3d, 4s, and 4p orbitals. In this case, the anion doping usually changes the 

valence band position and shifts it upward to narrow the bandgap of TiO2. For example, N is 

the most suitable doping element as its p orbitals could contribute to shifting the VB due to the 

synergic action with the O 2p orbitals, which can narrow the bandgap of TiO2 by shifting the 

VB upward [120].   

There are two types of intrinsic semiconductors materials, n-type and p-type. The 

semiconductor type depends on the position of the Fermi level (FL). If the FL is near to the 

conduction band, it is an n-type semiconductor. On the other hand, p-type is a semiconductor 

with the Fermi level close to the valence band. For example, TiO2 displays n-type 

semiconducting properties due to a tendency for oxygen deficiency which manifests itself in 

the formation of either oxygen vacancies or titanium interstitials; both are donor-type defects 

[122]. ZnO is also an n-type semiconductor, due to the majority of carriers on this material are 

electrons. However, NiO is a p-type semiconductor once have holes as the majority carriers. 

For instance, Cu2O for example is an intrinsic p-type semiconductor [123]. However, the type 

of intrinsic semiconductors materials can be changed by doping, forming extrinsic 

semiconductors. Semiconductors can be n- or p-doped (Figure 1.9). n-Type semiconductors are 
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created by doping an intrinsic semiconductor with an electron donor element (n- comes from 

the negative charge of the electron). Here, the electrons are the majority carriers, and holes are 

the minority ones. In this case, the Fermi level (FL) is higher than that of the intrinsic 

semiconductor and lies closer to the conduction band than the valence band, as depicted in 

Figure 1.9. 

p-Type semiconductors can be formed by doping with an electron acceptor element (p- refers 

to the positive charge of a hole). In opposition to n-type semiconductors, the p-type has a larger 

hole concentration, which is the majority charge carriers. For p-type semiconductors, the FL is 

below the intrinsic FL and lies closer to the valence band than the conduction band, as shown 

in Figure 1.9. 

 

 
Figure 1.9 – Representation of n- and p-type doping in a semiconductor. 

 

Several semiconductors including TiO2, ZnO, CdS, WO3, ZrTiO4, SnO2, CeO2 and CuO, have 

been used, for photo(electro)catalysis [124-129]. 

Recently other semiconductor materials with improved photocatalytic response have been 

reported, such as carbon nanotubes (CNT) [130], titanate elongated nanoparticles (TNP) 

[79,87], transition metal sulphides (i.e. Bi2S3, ZnS and Ag2S) [79,131], spinels, perovskites, 

zeolites or activated carbon [92,132-134]. In addition, the synergetic combination of two or 

more components, for example in TiO2/Ag2CrO4, [135] ZnO/Ag/Ag2WO4 or 

Fe3O4/ZnO/CoWO4 [136,137], it allows the enhancement of photocatalytic properties due to 

the absorption improvement in the visible range and also the decrease on the charge carriers 

recombination. For instance, in order to have active photocatalytic materials under visible light, 

a proficient way to extend the absorbance of TiO2 to visible light can be the development of 

heterojunctions of different semiconductors. These semiconductor combinations, such as 

Fe2O3/TiO2, TiO2/SnO2, ZnO/TiO2, and WO3/TiO2, have been shown synergetic photocatalytic 

effects when used for pollutants degradation [138-141]. 
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1.5.1 – Titanium dioxide (TiO2) 

Titanium dioxide (TiO2) or titania, has become a reference as a photocatalyst, due to its 

properties: high photocatalytic activity, abundance, low cost, chemical stability, low toxicity, 

strong oxidizing activity and high reactivity [62,120,142]. This semiconductor may have minor 

applications other than photocatalysis, such as in photovoltaic cells, sensors, or in cosmetics as 

white pigment [62,143,144].  

TiO2 can have three different crystalline phases, brookite, rutile, and anatase. Anatase structure 

is considered the most efficient for photocatalytic applications due to its high electron mobility, 

low dielectric density, and low dielectric constant, high hydroxylation capacity. Also, the VB 

and CB positions, 2.14 and -1.06 eV, respectively, can promote the formation of reactive 

oxygen radicals [77,145].  

As an n-type semiconductor, with a Fermi level closer to the conduction band, the anatase phase 

of TiO2 has an Eg ~ 3.2 eV. Therefore, it is more efficient in the UV than in the visible range. 

Nevertheless, TiO2 presents two important drawbacks for a wide practical application in photo-

assisted processes. The high rate of recombination of photogenerated electron-hole pairs within 

the semiconductor, it is a disadvantage of this material. Its high reported value of Eg is another 

drawback of TiO2, due to the low absorption of radiation at wavelength values below 388 nm 

(E = 3.2 eV). This is the main disadvantage of TiO2 application in solar photocatalysis since 

the radiation below 400 nm (UV light) represents only ~ 4% of the sunlight that reaches the 

Earth’s surface. Due to this, one of the main challenges to developing economically attractive 

photocatalytic materials broadens the photocatalyst response into the visible-light region. 

Consequently, it is desirable to develop photocatalytic materials that are active under visible 

light, since this corresponds approximately to all solar spectrum. Therefore, the synthesis of 

TiO2-based materials, such as titanate elongated nanoparticles (TNP), with a broader range of 

light absorption and a lower charge recombination rate, is an important achievement towards 

the development of successful photoactive materials [146].  

 

1.5.2 – Elongated titanate nanoparticles (TNP) 

Stimulated by the discovery of carbon nanotubes, one-dimensional nanostructured materials 

have become an intense research topic in nanotechnology owing to their unusual properties and 

a wide variety of potential applications. In contrast with carbon nanotubes, titanate, and titanium 

oxide nanotubes are readily synthesized using simple chemical methods and low-cost materials 

[147]. 
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The interest in elongated titanate nanoparticles (TNP) appeared in 1998 after Kasuga et al. 

described an alkaline hydrothermal synthesis methodology to produce these nanoparticles. 

Kasuga et al. reported the synthesis of a new class of materials with a TiO2-like crystalline 

structure, mesoporous morphology, and a higher surface area (~ 400 m2 g-1) compared to TiO2 

nanoparticles (usually between 20 and 50 m2 g-1) [148,149]. These new materials, TNP, 

combine the properties and applications of conventional TiO2 nanoparticles, such as 

photocatalytic activity, stability, low toxicity, and bandgap energy, with the properties of 

lamellar titanates such as ion-exchange ability [88,150-152].  

 

• Synthesis methodologies 

Several methods have been described for elongated tubular nanostructures synthesis, such as 

sol-gel [153,154], template-assisted [87,151,155], anodic electrochemical oxidation 

[150,156,157] and hydrothermal treatment [158-162]. However, from those, the popular 

approaches to titanate elongated nanoparticles production, are the chemical (templating) and 

electrochemical (e.g., anodization of Ti) synthesis and the alkaline hydrothermal method. 

The template-assisted methods make use of the morphological properties of a known and 

characterized material (template) in order to build materials with a pre-defined morphology by 

reactive deposition or dissolution. Within this method, a regular and controlled morphology, at 

both nano- and/or micro-scale, associated with numerous shapes it is possible via adjusting the 

morphology of the template [147]. However, extensive applications of this method may be 

limited due to the high cost, insufficient characterization of template, and concern over long-

term (in)stability of nanotubular products [163-165].  

The anodizing approach consists of an electrochemical method for the formation of a layer of 

oxide on the substrate surface. This method can build highly ordered and crystallized array 

films of TiO2-nanotubes immobilized on a titanium foil surface with controllable pore size, 

good uniformity, and conformability over large areas [166]. So far, many attempts have been 

successfully devoted to the formation of self-organized and freestanding TiO2 nanotube arrays 

[167,168]. The advantage of TiO2 nanotubes produced by anodization is that they are 

effectively immobilized on a titanium surface during preparation. As a result, these nanotubes 

have several possible applications, such as photocatalytic, self-cleaning surfaces or as 

photoanodes for water splitting, where the efficiency of the photoanodic response depends on 

the nanotube wall thickness [87].  

Several reviews have been published dealing with the details of fabrication, characterization, 

and applications of nanotubes produced by templating and anodization methods [169-172]. 
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However, the anodizing preparation process suffers from an environmental concern, as the 

anodization of Ti foil must be processed using highly toxic hydrofluoric acid aqueous solutions 

[172]. For example, Gong et al. reported the preparation of self-organized TiO2 nanotube arrays 

by direct anodization of titanium foil in an H2O–HF electrolyte at room temperature [166]. 

These nanotubes were oriented in the perpendicular direction to the surface of the electrode, 

forming a continuous film. The nanotubes were open-end, and while the other end, which was 

in contact with the electrode, was always closed. For example, TiO2 nanotubes immobilized on 

a titanium surface have proven to be promising as photocatalytic and self-cleaning surfaces or 

as photoanodes for water separation, where the efficiency of the photoanodic response depends 

on the nanotube wall thickness [87]. In contrast to the templating method using alumina as a 

template, the TiO2 nanotubes prepared by anodization are not usually regularly separated from 

each other. Consequently, there are no well-developed hollows between the nanotubes, having 

an agglomerate of them in the same direction. 

Hydrothermal synthesis is a common method widely used in industry to prepare catalysts. This 

method has been adapted to produce high yields of elongated titanate nanoparticles with pore 

and unique nanotubular structures [87,148,172]. 

 

• Hydrothermal synthesis  

The alkaline hydrothermal synthesis is one of the most widely used for TNP production (such 

as TNT, TNW, TNF). In 1998 the pioneers Kasuga et al., reported the work of synthesis of 

TNT using TiO2 (anatase phase) as precursor at 110ºC for 20 h in aqueous NaOH solution (10 

mol dm-3). They proposed that titanate nanotubes were grown by the connection between the 

two ends of Ti–OH forming sheets. This implied that the ultimate nanotubes were seamless, 

and the acidic washing procedure played an important role in the formation of nanotubes [173], 

concluding that the nanotubes were formed during the process of washing the treated with HCl 

aqueous solution [148]. However, Du et al. observed, as later reported, the existence of titanate 

nanotubes even before the acidic washing treatment [173,174]. 

The nanotubes prepared by Kasuga et al. method, had a surface area of ~ 400 m2 g-1 and an 

average diameter of 8 nm [148]. The authors suggested that the formation of TNT was achieved 

by the slow dissolution of TiO2 nanoparticles in a concentrated solution of NaOH, according to 

equation 1.25. 

 

3 TiO2 + 2 NaOH  →  Na2Ti3O7  +  H2O                                   (1.25) 
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With the introduction of the alkaline hydrothermal synthesis of titanate nanotubes by Kasuga 

et al. [148], many efforts have been made to adapt this approach to technological processes, 

allowing an easy and cheap scale-up of industrial production.  

Experimentally, the hydrothermal method requires the use of an autoclave with chemically 

resistant vessels, in order to withstand such a concentrated alkaline solution at temperatures 

range of 100 – 200ºC. This method has the advantage of a single-stage process. In addition, low 

hydrothermal temperatures are required to achieve the complete conversion of the precursor 

into elongated titanate nanoparticles (TNP). 

TiO2 anatase or rutile phases, amorphous TiOx, and even Ti metal can be used as a titanium 

source [87]. However, it has been reported that the morphology of the resultant elongated 

tubular nanoparticles (TNP) is strongly affected by the Ti precursor used. This is not the only 

parameter that can control the morphology; the TNP formation can also be influenced by the 

concentration of the alkaline solution, the hydrothermal time and the post-treatment processes 

(acid treatment) [175]. For example, the ultrasonic treatment of the TiO2 precursor or an 

improvement in the fluid flow and mass transport during alkaline hydrothermal treatment, it 

can modify the length of the TNP. The improvement of the dynamics of nanotube growth, in 

the axial direction it is a direct consequence of the dissolved titanium (IV) species higher 

availability. On the other hand, it has been reported that the mean diameter of the nanotubes 

can be controlled by the synthesis temperature [147]. 

The influence of the reaction time in the TNT morphology was recently studied by Hfayedh et 

al. [175]. The TNT were prepared using as precursor TiO2 rutile nanoparticles in NaOH (10 

mol dm-3) at 150ºC, and the reaction time was 12, 24, 48, 72, 96, and 120 h. The authors 

conclude that the obtained nanotubes exhibited a major number of layers and major external 

diameter, which vary from 3 to 5 and from 7 to 11 nm, respectively, when reaction time increase 

from 12 to 120 h. Deformations appeared at long reaction times (96 h and 120 h). For 120 h of 

reaction, a deformation of some nanotubes occurred, and nanoribbons were formed, obtaining 

a mixture of nanotubes and nanoribbons [175]. 

Identically, Ylhäinen et al. [195] reported, for the first time, the TNP preparation using an 

amorphous precursor instead of crystalline TiO2 as starting material, using temperatures 

ranging from 130 to 220ºC, varying the reaction time between 12 and 72 h. This new and swift 

hydrothermal chemical route to prepare TNP, uses a commercial solution of TiCl3 as titanium 

source to prepare an amorphous precursor, circumventing the use of hazardous chemical 

compounds. The authors reported that for the samples prepared using t < 12 h no crystalline 
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material was obtained. On the other hand, no changes on the XRD patterns of samples prepared 

for 36, 48, and 72 h were obtained, as shown in Figure 1.10. 

However, these samples have a distinct structural feature compared to those prepared for 12 

and 24 h: by increasing the reaction time from 24 to 36 h and above, the diffraction peaks are 

well defined and new peaks (at 2θ ~ 35 – 24º) are detected (Figure 1.10).  

 

 
Figure 1.10 – XRD patterns of the titanate nanostructures prepared at 160ºC and different reaction times: 12 h (TNP16012), 24 

h (TNP16024), 36 h (TNP16036), 48 h (TNP16048) and 72 h (TNP16072). * Na2Ti3O7, JCPDS-ICDD file No. 31-1329; • 

H2Ti3O7, JCPDS-ICDD file No. 41-192, reported by Ylhäinen et al. [195]. 

 

The authors concluded that the reaction time has a strong influence on the TNP morphology, as 

can be seen in Figure 1.11.  

 

 
Figure 1.11 – TEM images of titanate nanostructures prepared at 160ºC during (a) 24 h, (b) 36 h, (c) 48 h, and (d) 72 h, reported 

by Ylhäinen et al. [195]. 



Chapter 1 – Introduction 

27 

For a reaction temperature of 160ºC, the sample synthesized with t = 24 h is very homogeneous 

and consists of thin tubular nanoparticles, while the sample prepared at t = 36 h shows a mixture 

of nano- and micro-scale particles. Broomstick-like large bundles characterize the sample 

prepared at t = 48 h. Increasing further the reaction time up to 72 h, the broomstick-like large 

bundles lead to TNP, yet with a larger diameter than the samples prepared at t = 24 h. For 

reaction temperatures varying from 130 to 160ºC, no significant differences were observed in 

the length/diameter aspect ratio of the samples, all of them with very similar morphology. 

However, samples prepared at 200 and 220ºC for 24 h, larger diameters, in the range 75-100 

nm were obtained. They conclude that the best experimental conditions to prepare very 

homogeneous titanate nanotubular structures with a high length/diameter aspect ratio were at 

160ºC and 24 h [195]. 

The TNP preparation process presented in this work, resulted from a procedure developed and 

previously optimized [176]. Unlike the alkaline hydrothermal synthesis reported by Kasuga et 

al. [148], whose TNP are synthesized from TiO2 nanoparticles, the synthesis used during this 

work innovates by the elimination of the TiO2 requirement to obtain titanate nanowires (TNW).  

It is well known that the use of distinct commercial sources of TiO2 powders, or of those 

synthesized in distinct research laboratories often leads to nanostructures with different 

microstructural characteristics, making the reproducibility of the TNP synthesis process highly 

dependent on the TiO2 starting material and far from being well established [195]. 

During this work, two different ways were proposed starting with an amorphous precursor to 

obtain TNW and starting to TiO2 nanoparticles to obtain titanate nanotubes (TNT). All 

procedure details are described in Chapter 9. This synthesis methodology is an efficient, low 

cost and easily scalable technique for TNP production therefore it can be very attractive for 

industrial applications.  

 

• TNP crystalline structure 

It has been observed that the chemical composition of TNP strongly depends on the 

experimental conditions used during synthesis. In order to explain the atomic organization of 

TNP, some crystalline structures for these materials have been presented and discussed in the 

literature such as lepidocrocite NaxTi2-x/4□x/4O4 or HxTi2-x/4□x/4O4, with □ : vacancy in the 

crystalline lattice, Na2Ti3O7, H2Ti3O7, Na2-xHxTi3O7, H2Ti4O9(H2O) or 

H2Ti2O4(OH)2/Na2Ti2O4(OH)2/Na2-xHxTi2O5(H2O) [151,152,177].  

The most accepted by the scientific community, for alkaline hydrothermal synthesis processes, 

is Na2-xHxTi3O7 (0 ≤ 𝑥 ≤ 2) chemical structure of TNP [146,151,152,178,179]. Figure 1.12 
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shows a schematic representation of the crystallographic structure of TNP (Na2Ti3O7 and 

H2Ti3O7). The Na+/H+ concentration can be adjusted after synthesis by Na+/H+ ion-exchange 

processes by treatment of the nanoparticles with a dilute acidic solution. In this way, it is 

possible to explain the general formula: Na2-xHxTi3O7 with 0 ≤ x ≤ 2, where x depending 

strongly on the TNP washing conditions (or acid treatment). 

 

 
Figure 1.12 - Crystallographic structures of (a) Na2Ti3O7 and (b) H2Ti3O7 (adapted from [180]). 

 

The Na2Ti3O7 conversion to H2Ti3O7, which is a related structure, requires an ion exchange 

process. When Na2Ti3O7 is immersed, for example, in diluted hydrochloric acid or nitric acid 

solution, the Na+ ions in the titanate matrix are replaced by H3O
+ or H+ ions to form H2Ti3O7, 

as shown in equation (1.26) [181]. 

 

Na2Ti3O7 + 2 HCl → H2Ti3O7 + 2 NaCl                                 (1.26) 

 

Through the hydrothermal treatment, shown in reaction (1.25), some of the Ti–O–Ti bonds of 

the TiO2 precursor break and a six-coordinated monomer [Ti(OH)6]2 is formed and saturated. 

This monomer is unstable, and it combines oxolation or olation to form nuclei when they grow. 

They become thermodynamically stable, and their size exceeds the critical nuclei size [182]. 

During the growing process, thin nanosheets can be formed and integrated into layer unit cells. 

The growth of these nanosheets is isotropic, being the growth along the b-axis the fastest, which 

leads to the formation of 1D Na2Ti3O7 nanoparticles. The crystal structure of Na2Ti3O7 is 

monoclinic with layers of (Ti3O7)
2- (or [TiO6]) octahedral sites with shared edges and vertices, 

and with Na+ cations located between the [TiO6] layers (Figure 1.12). The high mobility of 
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these Na+ ions intercalated is one factor responsible for the high efficiency in ion exchange 

processes of these materials since they can easily be replaced by other cationic species, 

including proton (H+) [180,183]. For example, Bem et al. [146] reported the sodium/proton 

replacement on the titanate nanoparticles prepared using an amorphous precursor (the same 

used by Ylhäinen et al. [196]). They reported that the pH influence in interlayers distance. After 

an ion-exchange acidic treatment, the interlayer distance in the crystalline structure due to the 

Na+ → H+ replacement changed. They analyzed the TNT preparation at pH 5, 7, and 9. A 

decrease in the dimensions was observed with the pH decrease, as shown in Figure 1.13. 

Furthermore, the TNT-pH5 sample (Figure 1.13.(c)) has the lowest interlayers distance due to 

a complete sodium replacement [146]. 

 

 
Figure 1.13 – HRTEM images of the (a) TNT-pH9, (b) TNT-pH7, and (c) TNT-pH5, reported by Bem et al. [146]. 

 

A different optical behavior was observed depending on the Na+/H+ samples’ content. Marques 

et al. [184] reported the intercalation of Ce4+ and Ce3+ within the titanate nanotubes layers by 

the ion-exchange method. Santos et al. [185] showed several metals intercalation (Ce4+, La3+, 

Co2+ and Cu2+) in the titanate nanotubes, by Na+ replacement. The authors used these new 

materials as catalysts in Knoevenaguel condensation. The results showed that the Ce-containing 

TNT had a catalytic performance for αβ,-unsaturated esters production 5–7 times higher than 

pure TNT, even after five times of repeated uses, due to the accessibility of both Ce4+ species 

in the interlayers region and CeO2 nanoparticles distributed on the external walls of this sample 

[185]. 

The intercalation of larger species, for instance, organic entities, is possible but is dependent on 

the ion-exchange ability of the TNP and on the organic molecules size and protonation 

equilibrium constants. Ferreira et al. [186] reported the cationic dyes sensitization of elongated 

titanate nanoparticles. In this work the intercalation of thionine, methylene blue, crystal violet, 
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and rhodamine 6G in the TNP materials was studied. The sample with the highest sodium 

content (NaTNP) was the best dyes up taking material. However, for the protonated titanates 

(HTNP), only the thionine molecules were incorporated, due to the reduced dimension of the 

HTNP interlayers [186]. 

 

• TNP morphology 

TNP have been reported in the literature as cylindrically shaped nanotubes with a hollow cavity 

along its length, and also as nanofibers (TNF), nanowires (TNW), nanorods and nanosheets as 

illustrated in Figure 1.14 [147]. 

 

 

Figure 1.14 – Schematic representation of elongated titanate nanoparticles: (a) multi-wall nanotubes, (b) multiple-wall 

nanowires, (c) nanorods, (d) rectangular nanofibers and (e) nanosheets. 

 

Titanate nanotubes (TNT) are long cylinders with a central hollow cavity (Figure 1.14(a)). They 

are always multi-layered walls (the number of layers can change between 2 to 10) and usually 

straight with a relatively constant diameter. Structurally, nanotubes can be scrolled, ‘‘onion’’ 

or concentric in type. Occasionally, in a single nanotube, different numbers of layers can be 

observed in the two walls [147]. This is usually produced by folding nanosheets (Figure 

1.14(e)), and there are two types of nanosheets: single-layer nanosheets, which are isolated 

(100) planes of titanates, or multilayer nanosheets, which are several conjugated (100) planes 

of titanates. Both types are very thin and could be found in planar or curved shapes, with < 10 

nm of thickness and > 100 nm of height and width. Nanosheets are frequently observed in the 

initial stage of the nanotubes’ preparation or as small impurities in the final product, when 

obtained through an alkaline hydrothermal process [147]. 

Nanowires and nanorods are long solid cylinders with a circular base (Figure 1.14(b) and (c)). 

Usually, nanowires are longer than nanorods. TNW have layered structure (multi-layered 
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morphology) without a center cavity. Nanorods morphology does not have an internal layered 

structure.  

Nanofibers (Figure 1.14(d)) are long parallel-piped titanates, have length typically in the range 

of 10 - 100 nm, and tend to have good crystallinity. These are usually produced during alkaline 

hydrothermal reactions at high temperatures and can be found in straight, as well as curved 

forms [147]. 

 

• Mechanism of formation 

The mechanism of TNP formation has already been studied by many researchers including Peng 

et al. [187]. A possible formation mechanism in which TiO2 reacts with NaOH to form   

(Ti3O7)
2-, as an intermediate product, it has been reported. 

In general, the process of transformation of TiO2 precursor to elongated titanate nanoparticles 

can be considered to take place in several phases. Firstly, partial dissolution of TiO2 precursor 

accompanied by epoxial growth of layered nanosheets of sodium tritinatates occurs, and after 

exfoliation of the nanosheets is observed. The crystallization of dissolved titanates to obtain 

nanosheets result from mechanical tensions, which will induce the curving and wrapping 

nanosheets to nanotubes, and after that, a growth of nanotubes along the length occurs [87,147]. 

The single intermediate layer and multi-layered titanates nanosheets have a key role during the 

precursor transformation under alkaline conditions. These nanosheets can scroll or fold into a 

nanotubular morphology [147]. There is a strong consensus that this intermediate product has 

a two-dimensional plate morphology, resulting from the stacking of a reduced number of 

lamellae, nanosheets. The continued nanosheets’ growth tends to curl up on themselves, leading 

to the formation of nanotubes (Figure 1.15) [188,189]. It has been suggested that the hydrogen 

deficiency on the surface of (Ti3O7)
2- nanosheets cause asymmetry of charges resulting in 

oxidation state variations or cation deficiency. This provides the driving force (surface tension) 

for the separation of the (Ti3O7)
2- nanosheets and therefore resulting in folded layers for the 

elongated morphology of the TNP. 

The number of layers on TNP depends on the Coulomb energy, which it is induced by the 

negatively charged (Ti3O7)
2- layers. Charges equilibrium is achieved due to Na+ ions are 

between the TNP layers due to the strongly alkaline medium used. Coupling energy results 

from the contribution of an uneven distribution between the two sides of the (Ti3O7)
2- sheet and 

the usual elastic deformation energy of the folded crystalline sheet [190].  
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   a)  b)   c) 

 

 
 

 

Figure 1.15 – Schematic representation of the curl up process of TNT. (a) Exfoliation of the Na2Ti3O7 nanosheets; (b) winding 

a nanosheet in the direction of the TNT main axis [010]; (c) top view of the coiled winding forming a multi-layered TNT. 

(Adapted from [189]) 

 

Zhang et al. reported that single surface layers in an asymmetrical chemical environment, due 

to the imbalance of H+ or Na+ ion concentration on two different sides of a nanosheet, gives 

rise to excess surface energy, results in bending, as illustrated in  Figure 1.16(a) [147,191]. 

When both sides have a symmetrical chemical environment, both spring constants have similar 

values (Figure 1.16(a)), and as a result, all tensions are compensated, and the plane is straight 

[87]. When the trititanate nanosheets have a proton-distribution asymmetry, both sides have 

different free surface energy values (spring constants), and, in order to compensate imbalance 

in surface tensions, the plane bends towards the surface with a higher spring constant value. 

During the folding process, strain energy arises and prevents work against bending [87,147]. 

 

 

Figure 1.16 – Schematic representation of the driving forces for bending titanates nanosheets under alkaline hydrothermal 

conditions. (a) Asymmetrical chemical environment resulting in different surface tensions; k1 and k2 are spring constants on 

each side of the nanosheet. (b) Imbalance in layer widths resulting in shifting of the layer and bending of nanosheets. (Adapted 

from [87]) 

 

The bending multi-layered nanosheets can also occur by the mechanical tensions that arise 

during the process of dissolution/crystallization of nanosheets (Figure 1.16(b)). During 

spontaneous crystallization and rapid growth of the layers, a variation in the width of the 

different layers can occur. The unbalance in the width of the layer may create a tendency for 
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the layers to move within the multi-walled nanosheet to decrease excess surface energy. This 

can result in the bending of multi-layered nanosheets (Figure 1.16(b)). During the simultaneous 

shift of the layer and fold of the nanosheet, the surface energy gain is enough to compensate for 

the mechanical tensions that arise in the material during the curving and wrapping into 

nanotubes. The kinetic rate of curving the nanotubes might control the diameter of the 

nanotubes produced, which can be adjusted by changing the synthesis conditions [87,147].  

It is interesting to note that the axis of nanotubes (vector [010]) does not always coincide with 

the axis of nanowires (vector [001]). This provides an insight into the growth mechanism of 

titanate nanotubes. The fact that nanowires crystallize, preferably along the crystallographic       

c-axis, suggests that the rate of dissolution/crystallization along this axis is maximized. Under 

certain conditions, an imbalance in nanosheet width it is expected along the c-axis (Figure 1.16 

(b)). Thus, the bending of nanosheets will occur around the b-axis. When the curved nanosheet 

closes the loop, the direction of the fastest growth will disappear, and there will be only two 

directions for nanotube growth, namely, the radial direction (a-axis) and the axial direction      

(b-axis). Kukovecz et al. reported that the nanoloops provide seeds for further growth of 

nanotubes with the preferable direction of growth being the b-axis. If the nanosheet rollup to 

tubes of conical shape occurs, then further growth will result in the formation of closed-end 

elongated nanoparticles, being formed the nanowires [87,147,192]. 

 

• TNP modification and functionalization 

Despite their relatively high charge recombination rate (however, smaller than the TiO2) and 

wide bandgap (~ 3.3 eV), the TNP’s ion-exchange ability makes them potential materials for 

photocatalytic and solar energy cells’ applications [82,193-196]. However, the limited radiation 

absorption capacity in the visible region represents one of their limitations; if solar-based 

applications are intended. In order to shift the TNP band absorption to the visible, many studies 

have been performed with the purpose of photosensitizing these materials. Under this context, 

several methods have been reported, namely metal and non-metal doping [197,198], co-doping, 

ion-exchange, and surface sensitization with organic molecules or other semiconductor 

nanoparticles [199]. These methodologies have been used to improve the photochemical 

performances of TNP, mainly by shift the absorption into the visible range and/or promote the 

reduction of the charge recombination rate. 

Surface sensitization with metal/non-metal is an outstanding technique to renew TNP electronic 

properties and improve the photocatalytic efficiency. Metal dopants play an important role in 

the separation of electron-hole pairs during light irradiation by decreasing the e-/h+ 
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recombination rate, due to the introduction of new intermediate levels in the forbidden zone. 

These dopants can also shift the optical absorption to the visible range, due to the electron trap 

mechanism, surface plasmon resonance effect, incorporation of new energy levels and 

generation of gap states by interaction with VB states [200]. 

The synergetic combination of two or more semiconductors, with improved and/or innovated 

photocatalytic properties, it has been one of the most popular methods for accomplishing the 

modification of the TNP. For example, zinc sulfide (ZnS) is a direct semiconductor that shows 

interesting properties, especially in the nanometer range, and it has been used in applications 

on several technological fields, including photocatalysis [201]. Studies have revealed that ZnS 

nanoparticles are good photocatalysts due to the rapid generation of electron-hole pairs by 

photoexcitation and highly negative reduction potentials of excited electrons [202,203]. Naudin 

et al. reported a new ZnS/TNP composite materials with high photocatalytic activity for organic 

pollutants removal. In this case, the authors concluded that this improvement is due to a 

decrease in the recombination rate of the photogenerated charge carriers due to the ZnS 

presence in the TNP surface [86]. 

The combination of TNP with active photosensitizers in the visible range should increase the 

optical absorption of the nanocomposite material. For example, the synergetic combination of 

Ag2S, ZnS and TNP was recently reported [79]. The Ag2S(ZnS/TNP) nanocomposite has a high 

photocatalytic activity for phenol and their by-products photodegradation (Figure 1.17). 

 

 
Figure 1.17 – Band structure of Ag2S(ZnS/TNP) particles and the mechanism of phenol photocatalytic degradation (adapted 

from [79]). 

 

Due to the relative energetic positions of TNP, ZnS, and Ag2S valence bands (Figure 1.17), the 

holes generated in TNP and ZnS particles react with OH− or H2O oxidizing them to •OH 

radicals. On the other hand, the h+ transferred to the VB of Ag2S, acts as holes scavenger, 
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promoting carrier separation. In this system, the Ag2S surface act as catalytic sites for phenol 

oxidation too. Simultaneously, some of the e- from Ag2S and TNP conduction bands were 

transferred to ZnS, enhancing the separation of electrons and holes and reducing the 

recombination rate [79], as illustrated in Figure 1.17. 

 

• TNP applications 

Nowadays, elongated titanate nanoparticles applications has stimulated the interest of many 

researchers. Many research studies for the TNP applications have been reported in several areas, 

such as chemistry, physics, biology and medicine. 

In recent years, few studies have been published focus on nanostructured elongated titanate and 

TiO2-based materials [87,124,150,159,204]. These materials, depending on the synthesis 

conditions and/or post-treatment modifications, can have various types of applications. For 

example, the TNP synthesized by the hydrothermal method has a high surface area and ion-

exchange ability, which make these materials very suitable to act as substrate/carrier for 

different compounds, including pollutants [146]. Their high stability, high surface area, and low 

cost make them very attractive for photocatalysis [205]. 

As mentioned above, the TNP ion-exchange ability offers an opportunity for further 

modification of TNP with other ions to improve their characteristics, such as the adsorption and 

catalytic activity. The TNP are attractive in several fields, including organic molecules 

immobilization and adsorption [147,186] and photocatalysis [195], once the hollow TNP 

tubular structure improves the organic molecules contact and also the photo-produced carriers’ 

motion which prevents charge recombination during photocatalysis. Previous works have 

demonstrated that pristine, metal doped and sensitized TNP possess adsorbent/photocatalytic 

affinities for several organic pollutants [152]. Related to the layered structure of the TNP, 

significant attention has been given in the field of photon-mediated water decomposition, fuel 

cell electrolytes, adsorbent, lithium ion batteries (LIBs) and wettability control [189]. These 

titanate elongated nanoparticles can also be used in electrochemistry, solar cells, hydrogen 

storage, biomedicine [87,150,159,204], sensors [206], photo(electro)catalysis [142,207,208], 

photovoltaic generation, dye-sensitized solar cells (DSSC) and direct alcohol fuel cells 

(DAFCs) [151,209-211]. For these applications, the control of TNP dimensions and properties 

is essential for the achievement of enhanced performance.  

Very recently, Abbas et al. [212] reported a review of advances in the use of TiO2-based 

nanotubes powder in different applications. The authors reported that these materials have 

several applications in different areas, biological (e.g., antibacterial, sensing and drug delivery), 
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environmental (sensing and pollutants degradation), energy storage (supercapacitor), and 

energy conversion (solar-cells and water splitting). 

Mor et al., reported the preparation of transparent titanium oxide nanotube-array thin films, by 

adonization method, for application as sensors [206]. These optically transparent nanotube-

array films can serve as excellent hydrogen sensors, exhibiting a four-order magnitude drop in 

resistance with exposure to 1000 ppm hydrogen at room temperature, and negligible sensitivity 

to other reducing gases like methane, carbon monoxide, and ammonia. The sensors are 

mechanically and electrically stable with operation air or oil, over a tested temperature range 

of 25ºC to 250ºC. The authors showed that these transparent films could also be actively used 

in photovoltaic and anti-reflection coating applications [206]. 

Mydin et al. [213], reported TiO2-nanotubes arrays for biomedical implants and nanomedicine 

applications. These materials provide a promising approach for advanced biomedical and 

nanomedicine implant applications. The TiO2-nanotubes arrays have gained considerable 

interest as biomedical implant materials and nanomedicine applications (such as 

nanotherapeutics, nano diagnostics, and nano biosensors). In bio-implants studies, the 

properties of these nanostructures could modulate diverse cellular processes, such as cell 

adhesion, migration, proliferation, and differentiation. Furthermore, this material structure 

provides larger surface areas and energy to regulate positive cellular interactions toward 

mechanosensitivity activities. 

Recently, M. Nair et al. [214] reported the application of titania nanotubes for orthopedic bone 

implants. These materials were prepared by electrochemical anodization, and their influence on 

osteoblast cells and staphylococcus aureus and the he corrosion resistance of TNT were 

analyzed. They showed that the TNT has a good interaction of osteoblasts or their lineage cells 

with the implant surface, and the bacterial interaction study and biofilm formation on the 

implant was successfully obtained. The authors reported that TNT has drastically improved the 

properties of orthopedic implants. Another work with titanium dioxide nanotubes for 

biomedical applications was recently reported by Mansoorianfar et al. [215].  The authors 

showed modification of TiO2-nanotubes with vancomycin (an antibiotic) immersing and 

electrophoretic to adsorb the antibiotic on the surface and inside the nanotubes. The 

vancomycin-modified nanotubes, anodized at 60-75 V, have signified strong antibacterial 

behaviors against S. aureus bacteria. The authors concluded that this anodization potential 

might be considered as an optimum voltage in point of drug loading/releasing, antibacterial 

activity, and cell/protein attachment studies [215]. This work can be seen from two points of 

view, one is the removal of an antibiotic by adsorption on nanotubes (producing drug-modified 
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nanotubes), and the second is the utilization of these drug-modified nanotubes with antibacterial 

properties in bone implants. 

Dong et al. [216], reported novel Pt nanoclusters/titanium dioxide nanotubes composites (nano-

Pt/TiO2-nanotubes) for hydrazine oxidation. The nano-Pt/TiO2-nanotubes showed excellent 

electrocatalytic activity for hydrazine oxidation, and this may be attributed to the good 

dispersion of Pt nanoclusters as well as the unique properties of TiO2-nanotubes supports. They 

reported that the mechanism of hydrazine electrochemical oxidation on nano-Pt/TiO2-

nanotubes implies that TiO2-nanotubes are the promising supporting materials for noble metals 

catalysts with high activity.  

Recently, the preparation of modified TiO2 nanostructures modified with Rh3O2 and Rh0 

nanoparticles to be used as a photocatalyst in H2 production it has been reported by Camposeco 

et al. [217]. In this reported work, Rh on TiO2 nanostructured photocatalysts were obtained by 

the sol-gel (nanoparticles) and hydrothermal (nanotubes) methods and tested in the water-

splitting reaction for hydrogen production using a sacrificial agent (ethanol) in aqueous 

solution. The authors showed that the Rh/TiO2 nanotubes have higher photocatalytic activity 

for hydrogen production than the Rh/TiO2 nanoparticles. The photocatalytic improvement 

obtained with the Rh modified TiO2 nanotubes was supported by the combination of charge 

separators represented by Rh+3 species that can act as electron/hole traps. The synergistic effect 

between the Rh+3 species and electrons transferred from ethanol to different nanostructured 

TiO2 species improved the H2 production remarkably. 

Mejía-Centeno et al. reported the NO selective catalytic reduction (SCR) with NH3 using 

trititanic nanotubes (H2Ti3O7) modified with V2O5, V2O5–WO3 and Al2O3 as catalysts [218].  

The authors showed that the V2O5/H2Ti3O7, V2O5–WO3/H2Ti3O7, and Al2O3/H2Ti3O7 catalysts 

have high activity and selectivity for the NO reduction with NH3, and a catalytic enhancement 

was observed by adding WO3 and Al2O3 to the H2Ti3O7. The V2O5–WO3/H2Ti3O7 catalyst 

reached 96% of NO conversion at 400ºC, whereas, at 480ºC, 98% of NO conversion is reported 

for Al2O3/H2Ti3O7 catalyst. Furthermore, the high NO conversion (97%) was obtained at low 

temperatures (240ºC) with the V2O5/H2Ti3O7.  

He et al. [219] reported the preparation of Pt modified Na2Ti3O7 nanowires, for methanol and 

ethanol electrooxidation. The authors compare the Pt/Na2Ti3O7 catalyst with other common Pt 

based catalyst; Pt supported on carbon black (Pt/C). The Na2Ti3O7 nanowires were used as 

support for Pt nanoparticles distribution. Due to the good ion-exchange properties of Na2Ti3O7 

nanowires, the Pt nanoparticles of about 8 to 10 nm in diameter are evenly distributed on the 

surface of Na2Ti3O7 nanowires. The Pt/Na2Ti3O7 electrocatalyst displays better catalytic 
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activity and higher catalytic steady current for the methanol and ethanol electrooxidation in 

both acidic and alkaline media than Pt/C electrocatalyst at the same loading of Pt as a result of 

more effective Pt catalyst sites. The current density enhancement for the Pt/Na2Ti3O7 

electrocatalyst is more obvious under alkaline conditions than acidic conditions. These findings 

suggest promising applications of the Pt/Na2Ti3O7 electrocatalyst in direct alcohol fuel cells 

(DAFCs) [219]. 

Grandcolas et al. [220] reported the antibacterial activity of silver oxide nanoparticles loaded 

on titanate nanotubes (AgO-TNT) and also the combination with photocatalysis. 

Decontamination under either dark conditions or visible light irradiation showed excellent 

antibacterial activity. The enhanced antibacterial activity was observed in visible irradiation. 

They showed that TNT are good support for silver nanoparticles and their related effects on 

disinfection. Silver oxide nanoparticles enhance the photocatalytic activity of TNT in the visible 

range by absorbing visible radiation and minimizing electron-hole recombination during 

photoexcitation.  

Li et al. reported the application of hydrogen titanate nanowires modified by lithium ion 

intercalation in high-performance rechargeable lithium-ion batteries and high-power 

electrochemical supercapacitors. The authors conclude that this electrode can works smoothly 

at various charge/discharge current densities and even at very high discharge current density; 

hence, they have an excellent high rate cycling stability [221].  

Recently, Monteiro et al. reported a CO2 conversion to propylene carbonate catalyzed by ionic 

liquid (IL) containing organosilane groups supported on titanate nanotubes/nanowires [222]. 

They showed that TNT and TNW materials have good catalytic activity after CO2 cycloaddition 

to propylene oxide. IL-TNT and IL-TNW exhibited high catalytic performance (turnover 

frequency of 46 and 49 h−1, respectively) and 100% selectivity in propylene carbonate 

(propylene/catalyst molar ratio = 580, 4.0 MPa of CO2, 383.15 K, 6 h) [222]. 

Previous works have demonstrated that undoped, metal-doped and semiconductor sensitized 

elongated titanate nanoparticles have high photocatalytic activity and adsorption capacity for 

various organic pollutants [86,152,195]. For example, TNF modified with Bi2S3 and ZnS have 

shown to be promising as adsorbents and photocatalysts of organic pollutants [131], and 

Vitamin-B12 sensitized TNW efficient in dyes degradation [223]. Another recent work has 

shown that TNF co-modified with Ag2S and ZnS was very efficient in the degradation of phenol 

and its by-products [79].  

In conclusion, several emergent pollutants’ removal methodologies have already been 

proposed, but the definitive answer to solve this pollution issue is far from being found.  
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The main goal of this PhD work was the preparation of new elongated titanate nanoparticles, 

using a hydrothermal approach, to be used as catalysts in the degradation of emergent 

pollutants. This research project proposed the synthesis of TNT and TNW modified by surface 

sensitization and metal doping and/or ion-exchange processes, in order to change the intrinsic 

properties of TNP, mainly physical/chemical adsorption and photo(electro)catalytic. Therefore, 

new modified materials with improved affinity/ability and enhanced adsorption and 

photo(electro)catalytic properties for pollutants’ removal/degradation were expected to be 

obtained. Experimentally, pollutants’ removal was achieved by a synergetic combination of 

selective adsorption and photo(electro)catalytic degradation processes, using the synthesized 

modified TNP as adsorbents and also as photocatalysts. Caffeine, theophylline, sulfamethazine, 

phenol and organic dyes are examples of the model pollutants used. These new elongated 

titanate nanoparticles were modified by sensitization with organic molecules/groups, such as 

ethylenediamine (Chapter 2) and silver nanoparticles (Chapter 3), and also modified by metal 

ion-exchange or doped and co-doped with metals (such as Co, Ru and Fe/Mn), Chapters 4-7. 

Furthermore, another goal of this research was the TNP immobilization in films to be used in 

photo(electro)degradation, and for the fast recovery and reuse of the catalyst (Chapter 8). This 

part of the work was performed at the University of Warsaw in Poland under Professor Doctor 

Magdalena Skompska supervision during a three-month internship. 
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Chapter 2 – Amine modified titanate nanowires and nanotubes 

2.1 - Introduction 

The properties of the elongated titanate nanoparticles can be changed by sensitization with other 

semiconductors, metallic nanoparticles or organic molecules. The combination of organic-

inorganic host lattices, e.g. elongated titanates, with organic entities, not only through 

intercalation/ion exchange but also by grafting and sol-gel procedures, it has been seen as a 

promising synthesis methodology to produce new organic-inorganic hybrid materials with 

multifunctional performances [1]. Several works have been published related to this issue, 

including co-sensitization with zinc porphyrin and CdS [2], or vitamin B12 hybridization [3]. 

Also, the incorporation of nitrogen species, by doping or adsorption, it has been seen as a 

promising approach to modify the optical and catalytic properties of TiO2-based materials, 

including titanate layered nanoparticles [4]. The use of small molecules containing nitrogen, 

like amines, it is described as a route to modifying the surface adsorption properties and also 

for doping TiO2-based materials [5-7]. There are many discussions about the mechanism of 

interaction of ionic surfactants with metal oxide nanoparticles, with some models suggesting 

the presence of electrostatic interactions, covalent bonding, and the formation of bilayers and 

micelles. However, it is well-known that amines can be adsorbed on the titania surface at Lewis 

acid sites, via hydrogen bonds or electrostatic interactions [8,9]. 

Anion doping (e.g. I, N, C, F) is commonly employed to increase the photocatalytic activity of 

a semiconductor under visible light. In most of the recently reported studies, N was used as a 

non-metal dopant to improve the water-splitting efficiency of TiO2. The bandgap energy of 

TiO2 is narrowed, after N modification, through the generation of gap states by the interaction 

of N 2p and O 2p states. The mixing up of orbitals uplifts the valence band (VB) level of TiO2 

while the conduction band (CB) remains unaffected. Consequently, the photo-reduction ability 

of TiO2 is unchanged; however, its oxidation capability is decreased [10]. N-doping is an ideal 

candidate to tailor the properties of the semiconductors, because nitrogen can be easily 

introduced in the TiO2 structure, due to its comparable atomic size with oxygen, its low 

ionization energy, and high stability [11-13]. Di Valentin et al. [14] employed density 

functional theory (DFT) to demonstrate interstitial nitrogen as π character NO within anatase 

TiO2. It was also found that there is no significant shift in the TiO2 CB or VB. The anti-bonding 

π* NO orbitals between the TiO2 VB and CB can improve the visible light absorption by acting 

as a stepping stone for excited e- between conduction and valence bands [13]. The N–TiO2 can 

be synthesized using various nitrogen-containing chemicals (e.g. urea, ethylamine, NH3 or 
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gaseous nitrogen) at high temperatures or inductively coupled plasma containing a wide range 

of nitrogen precursors, and the nitrogen atoms are predominantly on the TiO2 surface [13]. 

Many results describe nitrogen doping as a substitutional element on the oxygen lattice sites or 

at interstitial sites [13]. There is some conflict in the literature concerning the preferred N sites, 

substitutional or interstitial, which induce the highest photocatalytic action [13]. Independently 

of the origin of visible light absorption in substitutional or interstitial nitrogen discrete energy 

states, the low photocatalytic efficiency is mainly attributed to the limited photo-excitation of 

electrons in such narrow states, the very low mobility of the corresponding photo-generated 

holes and the concomitant increase of the recombination rate due to the creation of oxygen 

vacancies by doping [13]. 

For the modification of semiconductors with amine groups, several organic molecules can be 

used, such as ethylenediamine (EDAmine), diethylenetriamine and (3-aminopropyl) 

trimethoxysilane [15-18]. These molecules containing nitrogen, carbon, hydrogen, and oxygen, 

can change the surface adsorption properties and/or doping the TiO2-based materials [19-22]. 

Li et al., reported a N-doped TiO2 photocatalyst prepared by a sol-gel method using 

ethylenediamine (Figure 2.1) as a nitrogen source. The obtained results demonstrated an 

improvement in the hydrogen production rate and for methyl orange photodegradation 

performance when compared with TiO2 [23]. Several other investigations have also shown that 

the N doping can efficiently improve the photocatalytic activity of TiO2 [24,25]. 

 

 

Figure 2.1 - Representation of ethylenediamine (EDAmine) molecule. 

 

Based on the mentioned above, in this research, the modification of elongated titanate 

nanoparticles (TNT and TNW) by sensitization of the surface with organic species, such as 

amine groups, using ethylenediamine (EDAmine) [9] was proposed. These new hybrid 

materials with adsorption and photocatalytic improved properties were prepared to be used as 

catalysts in emergent pollutants photodegradation.  

In this study, caffeine, theophylline, and phenol were used as model pollutants, for 

photodegradation under UV-vis and visible irradiation.  
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2.2 - Synthesis 

Titanate nanotubes (TNT) and titanate nanowires (TNW) were prepared using a hydrothermal 

approach in alkaline medium, starting from TiO2 nanoparticles and amorphous precursors, 

respectively. These nanostructures were then modified with ethylenediamine (EDAmine), in 

acetone at reflux temperature, to produce NTNT and NTNW modified samples. A detailed 

description of the experimental procedure is presented in Chapter 10 (Methods and 

experimental). 

 

2.3 – Structural, morphological and optical characterization 

The identification and structural characterization of the prepared samples were performed using 

X-ray powder diffraction (XRD). The obtained diffractograms for the pristine, TNW and TNT, 

and EDAmine modified samples, NTNT and NTNW, are presented in Figure 2.2.  

 

 
Figure 2.2 - XRD patterns of the TNW and TNT before and after sensitization with EDAmine. 

 

The hydrothermal treatment of the amorphous precursor and TiO2 nanoparticles in alkaline 

aqueous media at 160°C for 24 hours results in the production of two crystalline solids, TNW 

and TNT, respectively. For both samples, the XRD patterns are in agreement with the existence 

of a crystalline layered structure, type Na2-xHxTi3O7 (0 ≤ x ≤ 2) [26,27], with the diffraction 

peak at 2 ~10º being characteristic of the interlayer distance between the TiO6 sheets 

and the 24º, 28º and 48º peaks typical of tri-titanate 1D nanomaterials [28]. Comparing 

the TNT and TNW samples, it is perceptible a slight shift, for higher 2θ values, of the peak at 

2θ ~10º for the TNW sample. Identical behavior has been described for titanate elongated 

powders with different Na+ contents [27]. These Na+ ions are localized between the TiO6 
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layers and can be easily replaced by H+, or other cationic species, due to the high ion 

exchange ability of the layered titanate materials [29]. In this case, the difference observed 

on the 2θ values, for the TNT and TNW materials, 9.38º and 9.92º, respectively, can be 

attributed to Na+-H+ partial replacement due to the difficulty of controlling this parameter 

during the H2O washing process. This fact was confirmed by X-ray photoelectron 

spectroscopy (XPS) analysis, after which values of 14.16 and 9.48% were found for 

sodium contents in TNT and TNW samples, respectively. However, it must be said that 

this parameter didn't influence the results once the samples used for amine sensitization 

(TNT and TNW) were the same as those used for the characterization process. 

After the EDAmine modification process, no shifts on the 10º or other peaks were observed 

(Figure 2.2) suggesting that no amine molecules were incorporated in the interlayers, replacing 

the Na+ ions. 

Due to the small dimensions expected for these powders, their morphology was analyzed by 

transmission electronic microscopy (TEM). The TEM images for the TNW and TNT samples 

are depicted in Figure 2.3. 

 

  
Figure 2.3 - TEM images of the (a) TNW and (b) TNT samples. 

 

Images of both samples show very thin and elongated particles (Figure 2.3). However, a well-

defined nanotubular morphology was observed for TNT sample in contrast with the not well-

defined nanowires observed for the TNW sample. These samples (TNT and TNW) were 

prepared using the same experimental conditions (time, temperature and solvent) but distinct 

precursors; TNT was produced using nanocrystalline TiO2 as the starting material while an 

amorphous precursor was used for the TNW synthesis. These results are in accordance with a 

previously reported work [30], but in disagreement with other reports, indicating that precise 

a) b) 
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control over the experimental conditions, mainly temperature and time, are essential to tailor 

the morphology of titanate nanotubes, nanowires or nanobelts [31,32].  

The dimensions of the TNW and TNT particles were estimated by direct images measurements 

and diameter values of 4.51.4 nm and 6.52.6 nm were found, respectively. No morphological 

differences between the samples before and after EDAmine sensitization were observed (results 

not shown). Energy dispersive X-ray spectroscopy (EDS) analyses were performed in all the 

samples confirming Ti and Na existence. The presence of N, from the amine, was not 

observed due to equipment limitations. However, the existence of this element was, 

confirmed later by XPS, as discussed below.  

Since the surface area is an important parameter to evaluate the catalytic performance of 

materials, the samples were characterized by N2 adsorption-desorption measurements and the 

B.E.T. surface area of the samples was also calculated. TNT sample presents a surface area of 

164.94 m2 g-1 and a slight decrease in this value, for 158.29 m2 g-1 was observed for the NTNT 

sample. A 20% decrease was observed in the surface area of the TNW sample due to the 

EDAmine incorporation, from 233.66 m2 g-1 to 185.91 m2 g-1 respectively. These results are 

following previous reports describing different amino-functionalization of metal oxide particles 

[33] and can be seen as an possible effect of the increasing weight of the sample after 

modification. 

The electronic structure of pristine (TNW and TNT) and modified samples (NTNW and NTNT) 

was analyzed by XPS. As an example, the survey spectrum of NTNW is shown in Figure 2.4. 

The Ti 2p3/2 and Ti 2p1/2 peaks, for TNW sample, appears at 458.641 and 464.441 eV, 

respectively. After EDAmine sensitization, and for sample NTNW, a very small shifts to 

458.717 and 464.517 eV were observed for those peaks, respectively. This increase of Ti 2p 

binding energy indicates an increase in the electro-positivity of the titanium ions on the catalyst 

surface [34]. No signals in the 456.2 − 457.4 eV range are visible, indicating no Ti3+ in 

the structure [35,36]. The Ti 2p peaks doublet splitting energies for these two samples is 5.8 

eV, which also indicates the existence of titanium only as Ti4+ [37,38]. 

The main peak in the O 1s core-spectrum corresponds to lattice oxygen and the peak at 

~530.241 eV it has a contribution of the sodium Auger peak (Na KLL). In both O 1s spectra, 

but more perceptible for NTNW sample, a smaller peak at higher binding energy (around 532 

eV) is observed. This peak can be attributed to surface hydroxyl groups, indicating the 

possible presence of chemisorbed water molecules.  

From reported works, [39-41] typical binding energies of less than 397.5 eV are assigned to 

TiN species mostly with substitutional N, whilst N 1s peaks at binding energies above 400 eV 
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indicate that N is in the chemical adsorption state, like NO or NO2, which can be formed due 

to surface oxidation. These latter species are reported as to be responsible for visible-light 

sensitization [42]. The N 1s binding energy, for NTNW and NTNT samples, it is visible at 

400.225 eV and 400.117 eV, respectively (Figure 2.4(d)), confirming the existence of N-

containing species on the TNT and TNW surface. In the C 1s spectrum, a strong peak at 

285.217 eV can be assigned to the C−C bonds. However, the presence of carbon from 

most likely sample contamination doesn’t allow any definitive conclusion to be made 

about the existence of amine on the surface. The XPS results obtained for TNT and NTNT 

samples are in agreement with the ones above discussed for TNW/NTNW.  

 

 

 
Figure 2.4 - XPS survey spectrum of the (a) NTNW sample; XPS high resolution spectra of the (b) Ti 2p, (c) O 1s for the 

NTNW and TNW powders and (d) N 1s for NTNT and NTNW samples. 

 

Once the thickness of the particles is inferior to the XPS radiation penetration, and the 

sensitizing molecules are expected to be predominantly at the surface, the quantification of the 
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nitrogen in the prepared samples was performed. The ethylenediamine molecule (Figure 2.1) 

contains atoms, carbon, and hydrogen, which are not likely to be quantified by XPS. However, 

considering only Ti, Na, O and N for quantification, (underestimated) values of 2.8 and 3.1 at% 

were found for N contents in the NTNT and NTNW samples, respectively. These values are 

very similar, indicating that similar amounts of amine were immobilized in the surface of TNT 

and TNW particles. It was also interesting that the Na/Ti ratios obtained for NTNT and NTNW 

samples are similar, which are 0.533 and 0.540, respectively. 

The prepared samples were optically characterized by diffuse reflectance spectroscopy (DRS) 

and the reflectance data were subsequently converted through the Kubelka–Munk function, as 

shown in Figure 2.5 (Chapter 10, for details). 

 

 
Figure 2.5 - Absorption spectra of the TNW, TNT, NTNW and NTNT samples. 

 

The strong optical absorption edge near 400 nm observed for all the samples is characteristic 

of elongated titanate nanoparticles and it is due to the charge transfer mechanism of the O 2p 

orbital of the valence band to the Ti 3d t2g orbital of the conduction band [26]. The optical 

absorption spectra of the TNT and TNW samples are similar but the band edge of the TNT 

slightly shifted to the visible range. After EDAmine modification, both spectra are red shifted 

and an increase in the absorption intensity was observed. No other features were visualized 

resulting from the amine treatment. The bandgap energy (Eg) of the samples was calculated 

from the Kubelka−Munk (KM) spectra shown in Figure 2.5, by plotting the function fKM = 

(FKM·hν)0.5 versus hν. The values obtained were 3.35 and 2.88 eV for TNW and NTNW and 

3.21, 3.09 eV for the TNT and NTNT samples, respectively. 

The point of zero charge (p.z.c.) of the prepared samples was evaluated due to its relevance in 

heterogeneous processes, like photocatalysis. The p.z.c. is the value at which a solid submerged 
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in an electrolyte exhibits zero net electrical charge on the surface. Furthermore, p.z.c. 

determination is important to predict the charge on the surface of the nanoparticles during the 

photodegradation process. Since the photocatalysis occurs on the surface of the nanoparticles, 

the photocatalyst performance is highly influenced by the solution pH, the pollutant type and 

the surface ability to adsorb the pollutant. For pH values lower than p.z.c. the nanoparticles are 

carried with a positive charge (attracting anions), whereas, higher pH values promote the 

formation of negative charge on the surface of the nanoparticles (attracting cations/repelling 

anions). 

The pH at which the surface carries no net charge was 2.4 and 2.8 for the TNT and TNW 

samples, respectively. The lower p.z.c. value obtained for the TNT agrees with the existence of 

enhanced ion-exchange ability due to the existence of more Na+ ions in this sample’s structure. 

This result also agrees with the one obtained during quantification by XPS. After EDAmine 

(pKa1 = 7.6) sensitization, positive shifts in the p.z.c. were observed for the NTNT and NTNW 

samples to around 2.8 and 2.9, respectively. These upward shifts indicate that the surfaces have 

been modified with the positively charged amino groups [43]. 

 

2.4 - Photocatalytic performance 

2.4.1 - Photo-induced hydroxyl radical production 

The hydroxyl radical (•OH) photocatalytic formation was monitored during terephthalic acid 

(TA) degradation. Figure 2.6 shows the HTA amount produced from TA suspensions, during 

30 min of irradiation.  

 

 

Figure 2.6 - HTA concentration variation during 30 min of irradiation of a TA solution (3 mM, 150 mL) using 10 mg of each 

photocatalyst. 
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As can be seen in Figure 2.6, all the samples showed catalytic activity, with the NTNT as the 

best catalyst for the photo-induction production of •OH. Considering the TA photolysis as a 

reference, an increase of 350% in the •OH production was achieved using the NTNT 

photocatalyst and increases of 290 and 220% were attained for the use of TNT and NTNW 

samples, respectively. Using the pristine TNW sample, an increase of 80% in this radical 

production was observed. These results cannot be attributed only to surface area differences 

since NTNT sample presents the lowest surface area, but they allow the conclusion that the 

amine sensitization leads to an enhancement of the catalytic performance of the samples for this 

reaction. This suggests an active role of the surface amine groups in this process and permits 

anticipation of the best results for the amine modified samples especially in photocatalytic 

applications where •OH plays a crucial role.  

However, to better clarify this point, TA photodegradation experiments without O2 were 

performed (Figure 2.7). Generally, in this process, O2 can have two main functions: as an 

electron scavenger and as an oxidant of fluorescent to non-fluorescent intermediates or final 

products [44].  

 

 
Figure 2.7 - Hydroxyl radical production after 15 min of irradiation, with and without O2, using 10 mg of each photocatalyst. 

 

As expected for pristine samples, and after 15 min of irradiation, it is perceptible that the •OH 

production decreases in the absence of O2 (Figure 2.7). O2 is a natural e- scavenger and without 

its presence, the production of the superoxide doesn’t take place. Therefore, the photogenerated 

charge carrier recombination will increases. Consequently, the production of hydroxyl radical 

via superoxide route (O2 → O2
•- → •OH) and via H2O and OH- oxidation will decrease. This is 

also valid for the noncatalyzed process: when no catalyst was used, the decrease in HTA 

production due to the absence of O2 in the system was 53% for the evaluation period. 
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For the amine modified samples, the O2 presence/absence had almost no influence on their 

catalytic performances, with deviations of 4 and 7% in the •OH production, for NTNT and 

NTNW, respectively. These results strongly support the hypothesis that •OH production, in the 

amine modified samples, is mainly based on the hole trapping by adsorbed water molecules and 

hydroxyl groups (H2O and OH-) and not via superoxide route. This also agrees with the results 

previously reported for nitrogen doped layered titanates [45]. On the other hand, these results 

also suggest no significant variation in the charge recombination rate in the absence of O2, 

indicating that a new scavenger for the electrons should be present. This new scavenger must 

be correlated to the amine entities present on the catalyst surface.  

Based on the above discussion and supported in literature [46-48], a mechanism for the charge-

transfer processes in the TNT/TNW and NTNT/NTNW nanoparticles, after being activated by 

UV-vis radiation is proposed in Figure 2.8.  

 

 
Figure 2.8 – Schematic representation of the energetic structure proposed for the TNT and hybrid NTNT particles under 

irradiation. 

 

After irradiation of a TNT (or TNW) particle with energy higher than its bandgap, electrons 

(e−) and holes (h+) are generated in the conduction (CB) and valence band (VB) of the 

semiconductor, respectively. The photogenerated holes will react with OH− and/or H2O 

oxidizing them to •OH radicals. Simultaneously, the formation of O2
•- species arises from the 

reduction of adsorbed oxygen. The extension of this process will determine the decrease in the 

recombination rate. The synergistic action of photogenerated h+ and other highly oxidizing 

species, including O2
•- and •OH radicals, will be responsible for the pollutants’ 

photodegradation. If no O2 is present during this process, no O2
•- species will be formed and the 

photogenerated charge carrier recombination will be enhanced. Therefore, much fewer holes 

will be available to oxidize OH−/H2O for •OH production. Consequently, no photocatalytic 

effect will be noticed, and the pollutant degradation will only be due to the photolysis effect.  
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For the NTNT and NTNW hybrid nanoparticles, some differences in this mechanism can be 

pointed out: slightly less energetic requirements to activate the catalyst since these particles 

possess lower bandgap energy when compared to the pristine samples. Nevertheless, the 

obtained results using visible light radiation (results presented below) indicate that this should 

not be the main reason justifying the better photocatalytic performance of these samples. For 

the N-modified samples, the obtained results in the presence and absence of O2 are similar, 

suggesting that species other than O2 will act as e- scavengers. The amine entities on the surface 

should have an active role in this process by acting as scavengers themselves for the electrons 

injected in the CB. Thus, it will delay the electron-hole recombination and therefore the 

photocatalytic process efficiency will be enhanced. Under these circumstances, the formation 

of nitrogen oxidizing species, which will also promote the pollutant degradation, it cannot be 

completely ruled out. 

 

2.4.2 - Caffeine, theophylline, and phenol photocatalytic degradation  

As mentioned in Chapter 1, caffeine, theophylline and phenol (Figure 2.9) are some examples 

of emergent pollutants that have been often found in wastewaters. Caffeine and theophylline 

are present in energy drinks, tea, coffee, and pharmaceuticals, and phenol is widely used in the 

chemical industry and is also a by-product of many other pollutants. For these reasons, these 

three compounds were chosen as model contaminants to further evaluate the photocatalytic 

performance of the prepared samples, under UV-vis and visible radiation. The adsorption 

characteristics of the pollutant/catalyst system are expected to be important since photo-

oxidation reactions usually occur at the catalyst surface. Therefore, the ability of the samples 

to adsorb these three pollutants was previously investigated for 60 min, under dark conditions.  

 
a) b) c) 

  

 

 
Figure 2.9 – Schematic representation of the (a) theophylline, (b) caffeine and (c) phenol molecules. 

 

• Theophylline photodegradation 

The photocatalytic efficiency of the pristine and modified TNT and TNW samples on a 

theophylline solution (20 ppm) degradation was evaluated during 90 min of UV-vis irradiation 

(Figure 2.10). Figure 2.10(a) depicts the theophylline spectra during irradiation, in the presence 
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of the NTNT sample as a catalyst. Theophylline concentration decreases during irradiation 

time, using all the prepared samples as catalysts, which were analyzed by LC-HR-ESI/MS. The 

obtained results are shown in Figure 2.10(b). 

As can be seen in Figure 2.10(a), the theophylline removal is easily confirmed by the decrease 

gradually of the 272 nm peak during irradiation time. 

 

  

Figure 2.10 – (a) UV-vis spectra of theophylline solution degradation, using NTNT sample as photocatalyst. (b) Theophylline 

photocatalytic degradation during 90 min of irradiation using the pristine and hybrid powders as photocatalysts (20 ppm; 0.13 

g L-1). 

 

After 60 min in the dark (Figure 2.10(b)), no substantial adsorption of theophylline was 

observed, independent of the sample used. Under irradiation, all the powders demonstrated 

photocatalytic activity for theophylline degradation. After 60 min of irradiation, the best sample 

for this pollutant removal was NTNT with a 98.0% decrease in its concentration. The second 

best photocatalyst, for the same period, was the unmodified TNT with 77.5% of theophylline 

removal. For this sample, 45 min more was needed to achieve 98.0% of degradation. During 

this irradiated process, and considering the two TNW based samples, the modified NTNW was 

the one presenting the highest photocatalytic activity. This result corroborates the positive 

influence of the amine sensitization on the production of better photocatalysts for processes 

based on the •OH radical oxidizing action. 

The identification of the by-products produced during theophylline photodegradation using 

NTNT as catalyst was carried out by LC-HR-ESI/MS. The results are presented in Table 2.1 

and agree with a degradation mechanism reported in the literature [49] and shown in Annex B 

– Figure B.1. 
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Table 2.1 - Main products identified by LC-HR-ESI/MS for the photocatalytic degradation of theophylline using NTNT as  

catalyst 

Compound Product Mol. wt. 
Elemental 

composition 
m/z structure 

--- Theophylline 180.16 C7H8N4O2 181.0727 
N

N

O

O

CH3

N
H

N

CH3

 

Theo-1 1,3-Dimethyluric acid 196.16 C7H8N4O3 197.0675 
N

N

O

O

N
H

N
H

O

CH3

CH3

 

Theo-2 1/3-Methylxanthine 166.14 C6H6N4O2 167.0565 
N
H

N

O

O

N
H

N

CH3

N

NH

O

O

CH3

N
H

N

 

Theo-3 Xanthine 152.11 C5H4N4O2 153.0410 
N

N

O

O

H

N

N

H

H

 

Theo-4 
1/3-Methyltetrahydro-

1H-purine-2,6-dione 
168.15 C6H8N4O2 169.0720 

N

N

O

O

CH3

N

N
H

H

H

 

N

N

O

O

H

N

N
H

H

CH3

 

Theo-5 

8-Hydroxy-1/3-methyl-

3,7,8,9-tetrahydro-1H-

purine-2,6-dione 

184.15 C6H8N4O3 185.0669 
N
H

N

O

O

N
H

N
H

OH

CH3

 
N

NH

O

O

N
H

N
H

OH

CH3  

Theo-6 

5/6-Amino derivative of 

1/3-methylpyrimidine-

2,4(1H,3H)-dione 

141.13 C5H7N3O2 142.0611 
N

NH

O

O NH2

CH3  
 

N

NH

O

O

NH2

CH3  

Theo-7 
5/6-Aminopyrimidine-

2,4(1H,3H)-dione 
127.10 C4H5N3O2 128.0454 

N
H

NH

O

O

NH2

 
 

N
H

NH

O

O NH2

 

Theo-8 
1/3-Methylpyrimidine-

2,4(1H,3H)-dione 
126.11 C5H6N2O2 127.0502 

    
N

NH

O

O

CH3  
 

N
H

N

O

O

CH3

 

Theo-9 
5,6-Diaminopyrimidine-

2,4(1H,3H)-dione 
142.12 C4H6N4O2 143.0563 

N
H

NH

O

O

NH2

NH2

 
 

 

The profile of such intermediates with the irradiation time was also studied and the results are 

in Figure 2.11 where a sequential degradation process can be visualized.  

In the first minutes after turning on the irradiation, high production of compounds Theo-1 and 

Theo-8 was detected and after 10 min other products start to be formed, namely Theo-7 and 

Theo-6. Although after 75 min no theophylline was detected in solution, the presence of 

products Theo-1 and Theo-8 is still high, indicating that more time is required to complete the 

degradation of these by-products. 
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Figure 2.11 – Variation of the compounds identified during 75 min of theophylline photocatalytic degradation, using NTNT as 

catalyst. 

 

• Caffeine photodegradation 

The catalytic efficiency of the samples on caffeine (20 ppm solution) photo-assisted removal 

was evaluated during 90 min of UV-vis irradiation. The obtained degradation results are 

presented in Figure 2.12. The UV-vis spectra obtained during irradiation time using NTNT 

sample as catalyst were also depicted in Figure 2.12(a), and it is possible to confirm the caffeine 

degradation due to the decrease of the characteristic peak, at 272 nm, with the irradiation time. 

As can be seen in Figure 2.12(b), for this pollutant and as observed for theophylline, no 

substantial caffeine was adsorbed independent on the sample used. However, all the samples 

showed photocatalytic activity for this degradation process, but the samples modified with 

EDAmine (NTNT and NTNW) demonstrated better catalytic performances than the pristine 

ones. 

The best photocatalytic performance was obtained using the NTNT sample with 80% caffeine 

degradation over 90 min of irradiation. For the two pristine samples (TNT and TNW), the best 

photocatalytic activity was achieved using the nanotubes (TNT). After 90 min without catalyst 

(photolysis), only 20% of the initial caffeine was removed from the solution.  
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Figure 2.12 - (a) UV-vis spectra of caffeine solution degradation, using NTNT sample as photocatalyst. (b) Caffeine 

photocatalytic degradation during 90 min of irradiation using the pristine and hybrid powders as photocatalysts (20 ppm; 0.13 

g L-1). 

 

It is interesting to compare the results obtained for the two methylxanthine compounds, 

theophylline, and caffeine (Figure 2.9): the chemical structures of these compounds are very 

similar, but caffeine possesses more methyl groups instead of protons and this seems to be the 

reason why, under identical experimental conditions, the theophylline degrades faster than 

caffeine.  

As for theophylline, the evaluation of the by-products formed during caffeine photodegradation 

was performed by LC-HR-ESI/MS and the identified compounds are shown in Table 2.2. These 

results are in agreement with a degradation mechanism proposed by others in literature [50,51] 

and shown in Annex B – Figure B.2.  

The profile of the by-products with irradiation time was also studied and the results are in Figure 

2.13. It is visible that the caffeine degradation starts with its conversion to compound CAF-1 

and after 5 min of irradiation the formation of compound CAF-4 begins. The amount of this 

product increases during the 90 min of irradiation, contrasting with the fast decrease observed 

for compound CAF-1. Together with product CAF-4, the profiles of the by-products detected 

in lower quantities (Figure 2.13(b)) also suggest that caffeine degrades first to product CAF-4 

and afterward this it degrades to the other compounds detected. Also, as in theophylline study, 

a longer irradiation period will be necessary to complete the degradation of all the secondary 

products. 
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Table 2.2 - Main fragments and correspondent by-products identified by LC-HR-ESI/MS for the photodegradation of caffeine 

using NTNT as catalyst 

Compound Formula 
Experimental mass 

(m/z) 
Mol.wt. 

 

Structure 

Caffeine C8H11N4O2 195.0876 194 

N

N

O

O

CH3

N

N

CH3

CH3

 

CAF-1 

C8H12N4O4Na 251.0751 

228 

N

N

O

O

CH3

N

NH2

CH3

CH3

COOH

 

C7H10N3O3 184.0713 

C5H7N2O2 127.0499 

CAF-2 

C7H11N4O3 199.0824 

198 

N

N

O

O

CH3

N

NH2

H

CH3

CHO

 

C5H8N3O2 142.0609 

CAF-3 C5H8N2O3Na 167.0426 144 
CHO

NH

N

O

O

CH3

CH3

 

CAF-4 

C6H9N3O4Na 210.0485 

187 CHO

C
N

N

O

O

CH3

CH3

O

NH2

 
C6H8N3O3 170.0560 

CAF-5 C8H11N4O4 227.0774 226 

N

N

O

O

CH3

CH3 N

N

O

OH

CH3

 

CAF-6 

C8H10N4O5Na 265.0547 

242 

N

N

O

O

CH3

N

N

CH3

CH3

COOH

O

 

C8H9N4O4 225.0620 
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Figure 2.13 – (a) Variation of the compounds identified during 90 min of caffeine photocatalytic degradation, using NTNT as 

catalyst, (b) detail for the lower amount compounds. 

 

• Phenol photodegradation 

The photocatalytic activity of the prepared samples for phenol degradation was also analyzed. 

The phenol absorption spectrum is characterized by one main band at λ = 270 nm. During the 

phenol photodegradation, the intensity of this band sometimes increases and/or broaden due to 

the simultaneous absorption of phenol and/or several degradation by-products [52,53]. To avoid 

incorrect conclusions about this process, GC-MS was chosen to quantify the phenol 

photodegradation process. Figure 2.14 shows the phenol concentration profiles during 90 min 
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of irradiation for all the prepared samples tested as photocatalysts. As can be seen in Figure 

2.14, after a dark period, ~10% of the initial phenol was adsorbed by both pristine samples 

(TNT and TNW), and ~20% was adsorbed by the EDAmine modified ones. This agrees with 

the p.z.c of the samples and the pKa of phenol (pKa = 10.0).  

 

 
Figure 2.14 - Phenol photocatalytic degradation during 90 min of irradiation using the pristine and hybrid powders as 

photocatalysts (20 ppm; 0.13 g L-1). 

 

It is possible to see that all the samples are catalytic for phenol degradation. Using the NTNT 

sample as a photocatalyst, a decrease of 97.8% on the phenol in solution was achieved within 

60 min of irradiation. To complete the phenol removal, 30 min more was required. Without any 

catalyst (photolysis), it decreases by 48.6% and 60.3% in phenol concentration, after 60 and 90 

min, respectively. The TNT and NTNW photocatalytic performances were very similar with 

nearly 90% pollutant removal attained after 90 min of irradiation. These results confirm that 

the •OH radical is one of the most active oxidizing species in charge of phenol photodegradation 

[54]. 

During phenol photodegradation, the identification of the formed by-products was monitored 

by GC-MS. The existence of hydroquinone, catechol, and resorcinol, in very low percentages, 

was confirmed (Table 2.3), being these results in agreement with a degradation mechanism 

reported work [55] and shown in Annex B – Figure B.3. 
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Table 2.3 - Main products identified by GC-MS for the phenol photocatalytic degradation process using NTNT as catalyst 

Product Mol. wt. 
Elemental 

composition 
Structure 

Phenol 94 C6H6O 

OH

 

Catechol 110 C6H6O2 

       

OH

OH

 

Hydroquinone 110 C6H6O2 

OH

OH  

Resorcinol 110 C6H6O2 

      

OH

OH 

 

The photocatalytic degradation of theophylline, caffeine, and phenol, using the TNT and NTNT 

catalysts was also tested under visible radiation; over 90 min for theophylline and phenol and 

120 min for caffeine. As expected, the photocatalytic degradation rate of all the pollutants was 

significantly lower compared to the performances obtained using UV-vis radiation. However, 

as for the UV-vis radiation experiments, the best photocatalytic results were obtained using the 

NTNT sample. These results seem in agreement with the slight shift observed in the NTNT 

bandgap energy, in the visible range. However, this increase in energy absorption, due to the 

presence of the amine entities on the TNT surface, cannot justify, by itself, the enhanced 

photocatalytic performance of these materials, which should be validated by the essential role 

of the amine groups in the decrease of the electron-hole recombination rate, as discussed in 

Section 2.4.1. 

 

2.4.3 – Kinetic studies 

The kinetics of the caffeine, theophylline, and phenol photodegradation were evaluated through 

the application of a first-order kinetics model, characterized by an exponential decrease in 

pollutant concentration with time. In this case, the plot of ln(C) versus t, where C is the 

concentration at time t, is a straight line, whose slope is – k, which is the reaction rate constant.  

The profiles of the TNT and NTNT catalyzed processes are presented in Figure 2.15, and the 

results obtained for all the samples are presented in Table 2.4. 
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Figure 2.15 - Kinetics of the photocatalytic degradation reactions of (a) theophylline, (b) caffeine and (c) phenol solutions. 
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Considering the caffeine degradation, the k obtained for the photolysis and the TNT and NTNT 

catalyzed processes were 0.0026, 0.0104 and 0.0202 min-1, respectively. These results confirm 

a faster caffeine photodegradation for the catalyzed runs when compared with the photolysis 

(0.0026 min-1) or the ones obtained using the TNW and NTNW particles (0.0041 and 0.0133 

min-1, respectively). Interestingly, the process with the best photocatalytic results (using NTNT) 

is almost 10 times faster than photolysis. After amine sensitization, increases of 1.7 and 3.2 

times in the constant value were observed for TNT and TNW samples, respectively, 

demonstrating its relevance for the caffeine photodegradation process success.  

The analysis of theophylline photodegradation kinetics indicates that the faster process is the 

one catalyzed by NTNT with a k value of 0.0276 min-1. Once again, the values obtained for k 

indicate that the photocatalytic degradation of theophylline is faster than that of caffeine, 

independent on the catalyst used. In the presence of the best photocatalyst, NTNT, phenol was 

the pollutant easier to be degraded, presenting in these circumstances a k of 0.0570 min-1. 

 

Table 2.4 - Rate constants for the studied photocatalytic degradations 

Sample 
Surface area 

(m2 g-1) 

Rate constant a (min-1) 

Caffeine Theophylline Phenol 

TNT 164.94 0.0104 0.0227 0.0206 

NTNT 158.29 0.0202 0.0276 0.0570 

TNW 233.66 0.0041 0.0103 0.0204 

NTNW 185.91 0.0133 0.0127 0.0222 

Photolysis - 0.0026 0.0051 0.0117 

a With correlation coefficients higher than 0.9770.  

 

2.4.4 – Reusability and stability studies 

The reusability of the best photocatalyst (NTNT sample) was tested for the three pollutants 

removal during 4 runs of 75 min each. Due to the inferior photocatalytic results obtained for 

caffeine, a period of 120 min was chosen in this case. Figure 2.16 shows the photodegradation 

results obtained for these 4 runs, indicating that NTNT sample is stable without significant loss 

of catalytic activity. These results indicate that during these 4 cycles, no signals of surface 

poisoning and no release from the surface to the solution of the amine groups were observed, 

attesting the high stability of this sample when used as photocatalysts under UV-vis radiation. 

Only for caffeine, a slight decrease in catalytic performance was observed for the 4th cycle.  
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Figure 2.16 - Percentage of theophylline, caffeine and phenol removal, during four cycles of photocatalytic degradation using 

the same NTNT sample as catalyst. 

 

Raman spectroscopy was used to confirm the stability of the TNT/NTNT samples before and 

after being submitted to UV-vis radiation (Figure 2.17).  

 
Figure 2.17 – Raman spectra of the TNT and NTNT samples before and after being submitted to UV-vis radiation (90 min). 

 

The obtained results for the as-prepared sample are in agreement with the literature [46,56] and 

the ones obtained after irradiation indicate that no perceptible changes or rearrangements in the 

microstructure occurred for all the analyzed samples. 

 

2.5 - Conclusions 

The obtained results indicate that TNT/TNW and NTNT/NTNW are promising materials, with 

high stability, to be further investigated as photocatalysts for the organic pollutants removal. 
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For both sensitized materials, experiments performed in the absence of O2 indicate no changes 

in hydroxyl radical production, thus confirming that holes are the main responsible for the 

formation of this radical. The photocatalytic performance of the sensitized materials for the 

degradation of the psychoactive substances, caffeine and theophylline, and for phenol removal 

was evaluated. The best results were obtained using NTNT, achieving 60% photodegradation 

efficiency for caffeine and 98% for phenol and theophylline (20 ppm solutions), respectively, 

within 60 min under UV-vis radiation. However, an issue that must be carefully examined 

before proceeding with a scale-up methodology is the toxicity of the by-products produced 

during the photocatalytic degradation of the pollutants. The production of more toxic products 

than the initial pollutants must be avoided.  
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Chapter 3 – Titanate nanowires sensitization by silver nanoparticles 

3.1  - Introduction 

The properties of the elongated titanate nanoparticles (TNP) can also be modified by 

sensibilization with metallic nanoparticles. The production of hybrid plasmonic photocatalysts 

using titanate nanostructures can be seen as an interesting alternative to bring the semiconductor 

absorption edge into the visible region and to reduce the photogenerated charges recombination 

rate [1]. In this context, the incorporation of metallic nanoparticles has been used to modified 

metal oxides materials since they can act as electron traps delaying electron-hole recombination 

and therefore increasing the photocatalytic activity. Additionally, the use of nanoparticles 

exhibiting surface plasmon resonance on the surface also generates an additional, and positive, 

increase in light absorption efficiency by the local electric field amplification and scattering 

processes [2]. 

Studies on noble metal nanoparticles (NPs) have increased extensively due to their unique 

properties, which make them attractive in a wide range of applications such as optical, bio-

labeling, antibacterial and (photo)catalytic applications. For instance, the modification with Ag 

nanoparticles leads to an increase in the photocatalytic performance and stability of ZnO films, 

avoiding the semiconductor photo corrosion under UV radiation [3]. Various methods have 

been reported to synthesize silver nanoparticles on TiO2 supports by reducing Ag+ to the 

metallic form, including heat-induced reduction, reducing agents, photo-reduction, ionic 

liquids, citrate reduction, silver mirror reaction, polyol process seed-mediated growth and light 

(UV or gamma-ray) mediated synthesis [4-8]. However, these methods are not straightforward 

as they use reducing agents or templates and require either high temperature or long reaction 

time. Thus, new loading strategies of noble nanoparticles on TiO2-based materials are required. 

The biosynthesis of extracellular AgNPs with the cell filtrate of Penicillium sp. under light 

radiation has been reported [9]. Nevertheless, it was found that the reaction time, particle size, 

dispersity, and stability of the synthesized AgNPs were dependent on the cell filtrate’s pH [9]. 

Metallic Ag nanoparticles were successfully prepared using a direct in situ electrochemical 

method before being supported on TiO2 for photocatalytic applications [10]. Bacterial growth 

inhibition was accomplished using TiO2-Ag nanocomposites, making titania an appropriate 

matrix for silver as antibacterial agent [11]. Several works about the synthesis and 

photocatalytic performance of nanocrystalline Ag-TiO2 and related materials have been 

reported, but a complete knowledge about the effective role of the metallic nanoparticles in 

these photoactivated processes are still missing. 
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TNP can be modified with noble metals by doping, on the crystalline structure, or can be 

sensitized with metallic nanoparticles, on their surface. Through these modifications positive 

effects are expected, on its photocatalytic activity, once they can: 

(i) enhance the electron-hole separation by acting as electron traps; 

(ii) extend the light absorption into the visible range and enhance surface electron excitation 

by plasmon resonances excited by visible radiation; 

(iii) modify the surface properties of the photocatalyst. 

This work is in line with this concern and intends to contribute to better understand the influence 

of the presence of metallic Ag nanoparticles in the photocatalytic activity of titanate 

nanotubular materials. To achieve this goal, the synthesis and photocatalytic performance of 

elongated titanate nanowires (TNW) modified with crystalline Ag nanoparticles is described. 

For this study, the sodium and protonated titanate nanowires, NaTNW and HTNW, 

respectively, were used. Nevertheless, protonated titanate nanowires presented better results, 

thereby only these samples were considered in this study. This process is based on an ion-

exchanged and photo-reduction step-by-step process: after hydrothermal synthesis, the HTNW 

particles were first treated with an Ag+ aqueous solution to promote the metal ion 

immobilization; the formation of the metallic nanoparticles, over the HTNW surface, was 

afterward attained by UV-vis light irradiation. Considering the photocatalytic properties of the 

pristine HTNW, the evaluation of the Ag nanoparticles’ incorporation effect on the 

photocatalytic performance of this sample was evaluated through phenol degradation. Phenol 

was chosen as a model molecule for this study due to its relevance as a pollutant by itself and 

also as a by-product in several pollutants photodegradation processes. 

 

3.2 – Synthesis 

A detailed description of the experimental procedure followed is shown in Chapter 10.  

The HTNW amorphous precursor was prepared based on a published procedure [12]. The 

obtained solid was first hydrothermally treated in alkaline solution (NaOH, 10 M) at 160C for 

24 hours, producing sodium titanate nanostructures, type Na2Ti3O7 (NaTNW sample) [13]. 

Afterward, an acidic treatment was preformed, to exchange the Na+ ions for H+, to obtain the 

protonated titanate nanowires, HTNW (H2Ti3O7). After that, the HTNW was modified using an 

Ag+ ion exchange process, and the Ag+HTNW sample was obtained. The formation of metallic 

silver nanoparticles was attained by UV-vis irradiation of the white solid aqueous suspension 

with a mercury lamp, to produce Ag-HTNW samples. Previously to the conversion of the 
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immobilized Ag+ into Ag0, the Ag+HTNW sample was washed several times with water to 

eliminate the Ag+ excess. The photo-reduction of the immobilized Ag+ ions was attained for 60 

min. To better control the process, a sample was taken, and analyzed, after 30 min of irradiation.  

 

3.3 – Structural, morphological and optical characterization 

The identification and structural characterization of the prepared samples were performed by 

X-ray powder diffraction (XRD). Analyzes of the Ag-HTNW samples were performed for 

different irradiation periods (0, 30 and 60 min), and the XRD patterns are shown in Figure 3.1. 

 

 
Figure 3.1 - XRD patterns of the HTNW before and after sensitization with a 0.5 M AgNO3 solution. 

 

The XRD patterns of the prepared samples are in agreement with the existence of a Na2-

xHxTi3O7 (0 ≤ x ≤ 2) titanate layered structure [14], being the diffraction peak identified at 2θ 

~10º related to the interlayer distance between TiO6 sheets and the peaks at 24º, 28º and 48º, 

characteristics of tri-titanate 1D nanomaterials [14].  

After the silver ion exchange process, the Ag+HTNW sample, a clear decrease in the 10º peak 

intensity was observed (Figure 3.1) suggesting that some Ag+ ions could be preferentially 

incorporated between the TiO6 layers, by replacing the H+ entities. No crystalline impurities 

containing Ag, such as Ag2O, were observed in the XRD pattern of this sample. 

After being submitted to 60 min of irradiation, no drastic changes in the typical crystalline 

structure of the HTNW were observed. However, the Ag-HTNW diffraction pattern shows 

additional peaks at 2θ values of 38º and 44º, which were attributed to the (111) and (200) crystal 

planes of metallic silver (JCPDS file no. 004-0783), respectively [15]. 
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A gradual increase in the intensity and definition of Ag0 peaks is perceptible with the UV 

irradiation time increase, for the samples prepared using 30 and 60 min. Simultaneously, the 

10º peak intensity, related to the HTNW structure, also increases with the irradiated time. These 

results seem to suggest that the Ag+ ions immobilized in the interlayers during the ion-exchange 

process, migrate in the opposite direction during irradiation: from the interior of the interlayers 

for the exterior surface of the nanostructures, to originate, by reduction, the Ag0 nanoparticles. 

These results are in agreement with published works related to long-term silver release and 

effective antibacterial action of Ag-HTNW [16]. No other Ag crystalline phases were identified. 

The amount of silver incorporated was quantified by micro X-ray fluorescence (µXRF) and a 

value of 8.97% was obtained for the Ag/Ti ratio. 

The morphology of the powders was analyzed by transmission electron microscopy (TEM), 

and the obtained images are shown in  Figure 3.2. 

 

 

 

 

 

Figure 3.2 - TEM images of the (a) HTNW, (b) Ag+HTNW and Ag-HTNW sample prepared during (c) 30 min and (d) 60 min 

of irradiation. 
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An image of the HTNW sample before Ag+ sensitization shows the existence of a uniform 

sample composed of very long and thin elongated nanoparticles (Figure 3.2(a)). As expected, 

no morphological differences were observed between the Ag+HTNW and HTNW samples,  

Figure 3.2(a) and Figure 3.2(b), respectively. Extremely small particles spread over the HTNW 

surface can be highlighted in the TEM images of the Ag-HTNW after 30 and 60 min of 

irradiation (Figure 3.2(c) and (d)). For this last sample, irradiated during 60 min (Ag-HTNW), 

Ag spheroidal nanoparticles, with an average diameter of 15 nm can be seen in contrast to the 

titanate elongated nanowires (Figure 3.2(d)). 

For the modified samples, the presence of Ag in addition to Ti and O elements was analyzed 

by energy-dispersive X-ray spectroscopy (EDS). As an example, the EDS spectrum for the Ag-

HTNW sample is shown in Figure 3.3, confirming the presence of Ag, Ti and O elements. EDS 

analyzes were also performed for the HTNW and Ag+HTNW samples, being in accordance 

with the obtained for the Ag-HTNW sample. 

 

  
Figure 3.3 – EDS spectrum of the Ag-HTNW sample. (*From cupper grids used to support the elongated titanate nanoparticles.) 

 

Due to the importance of the surface area on catalytic studies, the samples were characterized 

by N2 adsorption-desorption at −196ºC. B.E.T. surface areas were calculated and values of 

346.22 and 257.31 m2 g-1 were obtained for the HTNW and Ag-HTNW samples respectively. 

This decrease in the surface area is following previous works related with Ag/TiO2-nanotubes 

produced by a microwave-assisted approach [17]. The 25% decrease observed in the surface 

area of the sample containing Ag (Ag-HTNW) can be due to the penetration of Ag ions in the 

interlayers and consequent blocking this surface area access. This is in agreement with the XRD 

results observed, namely the substantial decrease of the 2 ~10º peak intensity. 
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The electronic structure of the Ag-HTNW sample was analyzed by X-ray photoelectron 

spectroscopy (XPS) and the survey spectra of the HTNW and Ag-HTNW are shown in Figure 

3.4. In addition to the Ti 2p and O 1s photoelectron peaks, typical of the HTNW, the Ag-

HTNW’ spectrum shows an Ag 3d doublet peak. No Na 1s peak was detected, confirming the 

complete Na+ to H+ replacement during the acidic treatment. 

For the HTNW sample, the Ti 2p3/2 and 2p1/2 peaks appear at 459.535 and 465.425 eV, 

respectively. A slight shift due to the Ag incorporation (Ag-HTNW sample) was observed for 

these peaks, 459.125 and 464.825 eV, respectively. As expected, no signals in the 456.2 − 457.4 

eV range are perceptible, indicating no Ti3+ in these samples [18,19]. 

 

  

Figure 3.4 - XPS survey spectra of the (a) HTNW and (b) Ag-HTNW samples. 

 

Figure 3.5 (a and b) shows the higher resolution spectra of Ti 2p and O 1s for HTNW and Ag-

HTNW samples.  

The doublet splitting energies of the Ti 2p peaks, for the HTNW and Ag-HTNW samples, are 

5.9 and 5.8 eV, respectively, which also agrees with the presence of titanium only as Ti4+ in 

both samples [20,21]. The main peak in the O 1s core-spectrum (Figure 3.5(b)) at ~534 eV 

corresponds to lattice oxygen and has a contribution of the sodium Auger peak (Na KLL). 

For the Ag-HTNW sample, negative shifts of 0.4 and 0.3 eV were observed for the Ti 2p and 

O 1s peaks, respectively (Figure 3.5(a and b)). These shifts can be due to the presence of Ag 

that could contribute to the titanium ion radius expansion, resulting in electron movement far 

from the titanium nuclei; therefore, the peaks of Ti 2p will shift into lower binding energies 

[22]. 
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A high-resolution spectrum of the Ag 3d region is shown in Figure 3.5(c). The binding energies 

for Ag 3d5/2 and Ag 3d3/2 are 368.4 and 374.5 eV, respectively. These energies should be 

attributed to Ag0 nanoparticles. However, the undoubted assignment of the spectral features can 

be difficult once published values for metallic silver’s binding energies are not in total 

agreement, revealing some dispersion [23-25]. 

 

 

  

Figure 3.5 - XPS high resolution spectra of the (a) Ti 2p, (b) O 1s and (c) Ag 3d regions, for the HTNW and Ag-HTNW 

samples. 

 

To elucidate this point and considering that small binding energy shifts, concerning the metal 

peaks, can happen in silver compounds, e.g. oxides, the Auger parameter was evaluated. The 

Auger parameter usually allows to distinguish between Ag0 and other oxidized Ag species; 

being 2 eV higher for Ag0 than for the corresponding oxides [26]. 

 

Auger parameter (AP) = Ag EB(3d5) + Ag EK(M4N45N45)                     (3.1) 

 

In this particular material, Ag-HTNW, the AP determination, for the identification of the Ag 

oxidation state, it had some imprecision due to the Ag M4N45N45 and Ti LMM peaks 

overlapping. Although AP values between 725.8 and 724.7 eV were obtained, allowing to 

conclude that the Ag oxidation state is in the frontier between the metallic and oxidized state. 

This unexpected result can be justified by the Ag nanoparticles reduced dimensions once it is 

known, from literature, that XPS core levels can be influenced by metallic nanoparticles size, 

shifting to higher binding energies for small Ag nanoparticles [27,28]. 

The optical characterization of the prepared samples was performed by measuring their diffuse 

reflectance spectra and subsequent conversion of the reflectance data through the Kubelka–

Munk function [29]. The bandgap energy (Eg) of the HTNW and Ag-HTNW samples, was 
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evaluated from the Kubelka−Munk (KM) data (Chapter 10). The optical spectra obtained for 

HTNW and Ag-HTNW samples are shown in Figure 3.6. 

 
Figure 3.6 - Absorption spectra of the HTNW and Ag-HTNW samples. 

 

Figure 3.6 indicates that the sample optical behavior was modified by the Ag nanoparticles’ 

presence. The optical absorption below 400 nm is due to the charge transfer mechanism of O 

2p orbital of the valence band to the Ti 3d t2g orbital of the conduction band [30]. The new 

absorption band centered at 480 nm is due to the plasmonic absorption effect of the Ag 

nanoparticles indicating a significant improvement in the visible light absorption and 

suggesting a possible photocatalytic performance enhancement for Ag-HTNW. No shift in the 

absorption band edge of the pristine HTNW was observed, indicating no changes in the HTNW 

intrinsic energetic structure. 

 

3.4 – Photocatalytic performance 

3.4.1 - Photo-induced hydroxyl radical production 

The hydroxyl radical (•OH) demonstrates a very high oxidizing capability and has been 

responsible for several pollutants’ degradation processes [31]. Due to this, and to evaluate the 

catalytic ability of the Ag-HTNW sample, the photocatalytic production of this oxidant specie, 

was monitored. Experimentally, the generation and quantification of •OH radicals can be 

evaluated by the detection of the hydroxylated reaction intermediates formed. A detailed 

description of the experimental procedure followed is shown in Chapter 10.  

As described in Chapter 1 (Section 1.3), the •OH radical can convert terephthalic acid (TA) into 

2-hydroxyterephthalic acid (HTA) which has fluorescent properties. Figure 3.7 shows the 
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amount of the HTA molecule produced during 30 min of TA/HTNW and TA/Ag-HTNW 

suspensions irradiation analyzed by fluorescence spectroscopy.  

 
Figure 3.7 - HTA concentration variation during 30 min of irradiation of a TA solution (3 mM, 150 mL) using 10 mg of each 

photocatalyst. 

 

As can be observed in Figure 3.7, both samples have demonstrated catalytic activity for this 

reaction, being the Ag-HTNW the best sample for the catalytic photo-induced hydroxyl radical 

production. This suggests an active and direct role of the metallic Ag nanocrystallites in the 

hydroxyl radical production and allows to anticipate good results for Ag-HTNW photocatalytic 

applications, where this radical plays an active role. 

 

3.4.2 - Phenol photodegradation 

Phenol was chosen as a model contaminant to further evaluate the photocatalytic performance 

of the Ag-HTNW under UV-vis light irradiation. A detailed description of the experimental 

procedure is described in Chapter 10. Briefly, a 20 ppm phenol solution was irradiated for 75 

min in the presence of the catalyst. During this period samples were withdrawals and analyzed 

by GC-MS, and the results are shown in Figure 3.8. 

Generally, the photo-oxidation reaction occurs at the catalyst surface, therefore the adsorption 

characteristics of the catalyst/pollutant system are expected to be a key factor in the 

photocatalytic process evaluation. The ability of the Ag-HTNW to adsorb phenol was 

investigated in dark conditions for 60 min. After this period, 16.3% and 23.6% of the initial 

phenol have been removed from the solution, being adsorbed in the Ag-HTNW and HTNW 

surfaces, respectively. The difference between the surface areas of both samples (25%) cannot 
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justify by itself the lower adsorption ability observed for the Ag-HTNW sample (less 33% then 

the pristine HTNW). Distinct phenol’s abilities to be adsorbed by the HTNW and Ag surface 

must be in charge of this behavior. 

Figure 3.8 shows the decrease of the 20 ppm phenol solution concentration over 75 min of 

irradiation, in the presence of HTNW and Ag-HTNW samples as catalysts. Both samples 

demonstrated photocatalytic activity for this degradation process. The sample with the best 

photocatalytic performance was the Ag-HTNW: after 30 min of irradiation, 99.0% of phenol 

degradation was attained. Using the pristine HTNW sample, a period of 75 min was required 

to achieve identical degradation results. At this time (75 min) and with no catalyst (photolysis), 

19.1% of the initial phenol remains in solution. 

 
Figure 3.8 - Phenol photocatalytic degradation of a 20 ppm aqueous solution during 75 min of irradiation using Ag-HTNW 

and HTNW samples as photocatalysts (0.13 g L-1). 
 

The kinetic of the phenol photodegradation reaction was studied, under the experimental 

conditions used. A first-order kinetic model, characterized by an exponential decrease in the 

pollutant concentration with time, was applied. The plot of ln(C) versus t, where C is the 

concentration at time t, was a straight line, whose slope is -k, the reaction rate constant. The 

values of k obtained for the phenol photolysis and the degradation catalyzed by HTNW and Ag-

HTNW samples, were 0.0175, 0.0549 and 0.1857 min-1, respectively. These results confirm a 

faster photodegradation process for the Ag-HTNW catalyzed process when compared with the 

phenol photolysis or with the one catalyzed by the HTNW pristine sample. These results 

indicate that the presence of crystalline Ag nanoparticles over the HTNW surface contributes 

to the HTNW photocatalytic performance enhancement. 
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3.4.3 - Ag-HTNW photocatalytic reusability and stability 

The (photo)chemical stability of a material is an important parameter that must be analyzed to 

better evaluate its catalytic ability. In this work, to test the photocatalyst recycling possibility, 

the Ag-HTNW sample was used for 4 successive phenol degradation runs, 60 min each. The 

obtained results are depicted in Figure 3.9. Ag-HTNW sample presents an excellent catalytic 

performance associated with excellent stability since only 1.0% of the initial phenol remains in 

solution after the fourth reuse cycle. In the first degradation trial, 99.5% of the initial phenol 

was degraded, 98.4% and 98.6% after the second and third cycles, respectively.  

 

 
Figure 3.9 - Percentage of a 20 ppm phenol solution removal during four photodegradation cycles, of 60 min each, using the 

same Ag-HTNW sample as catalyst. 
 

To better evaluate the catalyst stability, after the successive photodegradation experiments, the 

Ag-HTNW sample was analyzed by XRD and TEM. Figure 3.10 shows the XRD patterns of 

the Ag-HTNW before and after the fourth irradiation cycle.  

 
Figure 3.10 - XRD patterns of the Ag-HTNW sample before and after four cycles of phenol photodegradation. 
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No significant changes were observed between the two powders indicating that this catalyst is 

photo-stable. After four cycles of photocatalysis, a slight increase on the metallic silver peaks 

intensity, mainly the peak at 38.18º was observed. No changes in the HTNW characteristic 

peaks were detected. This phenomenon suggests an increase in the sample crystallinity with the 

irradiation time and has been described for several materials, being attributed to a photo-

irradiation activation process [32]. 

To go further at this point, after each cycle, the catalyst was analyzed by TEM (Figure 3.11).  

 

 

 

 

 

Figure 3.11 - Representative TEM images of the Ag-HTNW sample after the (a) 1st, (b) 2nd, (c) 3rd and (d) 4th photocatalytic 

degradation cycle. 

 

As can be observed, the Ag nanoparticles size and amount increase with the number of photo-

radiation cycles, which can be due to a combination of two distinct situations. The UV radiation 

promotes the constant Ag0 formation, indicating that the Ag-HTNW possesses Ag+ enough for 

this continuous reduction reaction. The required silver ions must arise from the Ag+ located in 

the TiO6 interlayers. The slow and gradual release of Ag+ from HTNW channels has been 

previously reported [23]. In addition to the radiation, the hydroquinone or catechol, that are two 

well-known phenol photodegradation by-products [31], can act as reducing agents for the Ag 

a) b) 

d) c) 
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nanoparticles formation [33]. No modification on the HTNW morphology was detected from 

the TEM analyzes after each cycle. 

These results are interesting, since, during these four cycles a gradual increase in the Ag 

nanoparticles content was observed without any loss of photocatalytic performance. This is not 

surprising once it is known that silver nanoparticles when on the surface of a semiconductor it 

can cause charge separation of photogenerated electron-hole pairs, thus enhancing the overall 

photocatalytic activity [34]. However, as a direct consequence of this increase in the amount 

and size of the Ag nanoparticles, the accessibility to the catalytic active HTNW surface should 

decrease. However, with no changes in the photocatalytic activity of the sample. Considering 

that silver nanoparticles also exhibit considerable UV light absorption due to the inter-band 

transition (from the 4d electrons to the 5sp band), they can act, by themselves, as potential 

photocatalysts [35]. 

Based on the experimental results obtained, a mechanism for the main charge-transfer processes 

between HTNW and Ag nanoparticles, after being activated by the light, is proposed in Figure 

3.12. When an aqueous Ag-HTNW suspension is irradiated with energy higher than its bandgap 

energy, electrons (e−) and holes (h+) are generated in the semiconductor’s conduction (CB) and 

valence band (VB), respectively. The photogenerated holes will react with OH− or H2O 

oxidizing them to •OH. The combined action of h+ and other highly oxidant species, including 

•OH, will be responsible for phenol degradation. Simultaneously, the continuous reduction of 

Ag+ ions to metallic silver consumes electrons, enhancing the separation of electrons and holes, 

and consequently reducing the photogenerated charge recombination [10]. Since the Fermi 

level on Ag nanoparticles is lower than the conduction band of HTNW, some photo-excited 

electrons can be transferred from HTNW CB towards the Ag nanoparticles, forming a Schottky 

barrier between HTNW and Ag nanoparticles. This promotes the electron-hole separation and 

consequently reduces the electron-hole recombination probability [36,37].  

It has also been reported that photogenerated electrons accumulated on Ag nanoparticles surface 

could easily transfer to the adsorbed oxygen on the Ag surface and a rapid formation of O2
•- 

species may occur [38]. The O2
•- active species formed, which can participate in the 

photocatalytic process, are also able to take part in the Ag+ reduction, leading to the increase of 

the amount of Ag0 particles at the surface. This mechanism is in accordance with the XRD and 

TEM results showing a gradual increase in the number and crystallinity of Ag0 particles during 

the four irradiation processes.  

 

http://www.sciencedirect.com/science/article/pii/S0925838812004690#bib0005
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Figure 3.12 - Schematic representation of the energetic structure proposed for the Ag-HTNW nanocomposite particles under 

irradiation. 

 

3.5 – Conclusions  

Crystalline titanate nanostructures were first sensitized with Ag nanoparticles (Ag-HTNW) by 

photo-irradiation of an Ag+HTNW sample, previously obtained by an ion-exchange process. 

The XRD pattern of this sample indicates that the Ag+ immobilization, in the HTNW, occurs 

mainly in the TiO6 interlayers. The formation of metallic Ag nanoparticles in the titanate 

nanowires surface, through the photo-irradiation, was confirmed by XRD, TEM, and XPS. The 

photocatalytic properties of the new sensitized materials were evaluated on the terephthalic acid 

and phenol degradation processes. Compared with pristine HTNW, the sensitized sample 

demonstrated better photocatalytic performance for both reactions. The results showed that this 

sensitized catalyst achieved 98.0% photodegradation efficiency of a 20 ppm phenol solution 

within 20 min under UV–vis radiation (13 mg catalyst / L solution). The Ag-HTNW reusability, 

as a photocatalyst, was examined in four successive phenol degradation runs and an increase 

on the Ag content is noticed during these experiments indicating a continuous growth, in size 

and quantity, of the metallic nanoparticles. This shows that is possible to prepare 

simultaneously Ag nanoparticles and degrade a phenol aqueous solution, without loss of 

photocatalytic performance. 

The presence of Ag+ ions in the interlayers and Ag nanoparticles in the HTNW surface, decrease 

the electron-hole recombination rate. Furthermore, the photogenerated electrons accumulated 

on the Ag nanoparticles surface can easily be transferred to the adsorbed oxygen on the Ag 

surface and a rapid formation of O2
•- species occur. These O2

•- species which participate directly 

in the pollutants photodegradation and the Ag+ reduction reaction, leading to the increase of the 

Ag0 particles number in the titanate nanowires surface. 
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Chapter 4 – Tailoring titanate nanoparticles photocatalytic properties by 

cobalt incorporation 

4.1  - Introduction 

In semiconductors, it is well known that doping with transition metal ions can introduce new 

energetic levels in the forbidden zone, which will act as electron traps, resulting in the 

production of some defects and, thus, in a decrease of the charge carrier recombination. 

Therefore, transition metal doping is generally accepted as a swift method to improve TNP’ 

photo-activity under UV-vis radiation [1,2]. Cobalt, a 3d transition metal, has been described 

as a dopant element that can significantly narrow the bandgap energy and enhance the optical 

absorption, extending the semiconductor material light absorption to the visible range [3]. 

Previous works, reported by Nunes et al., shown that increasing Co doping concentration in 

TiO2 nanoparticles, the Co was uniformly incorporated in TiO2 anatase without changing its 

structure, resulting in a decrease in the bandgap energy (red shift) [4]. This reduction as 

compared to undoped TiO2 it was attributed to new electronic states introduced by the 3d 

electrons of the Co2+ cations. Choudhury et al., reported that the doping of TiO2 with cobalt 

shifts the absorption onset to the visible region and reduces the bandgap energy, and this is 

associated with d states of cobalt [5].  

The bandgap energy reduction is attributed to either the presence of some mid-band gap states 

or to the sp-d exchange interactions of sp electrons of TiO2 nanomaterials with the d-electrons 

of Co2+ dopants [6]. Jiang et al., reported the synthesis of cobalt doped TiO2 powder using the 

hydrothermal method. First principle calculation results reveal considerable 3d impurity states 

in the forbidden band after substantial cobalt introduction and this contribute to the 

photocatalytic activity under visible light irradiation [7]. In another recent work, Ali et al. 

showed that cobalt doped TiO2 was successively used for the photodegradation of amido black 

dye in water, being its removal mechanism firstly by dye adsorption on the Co/TiO2 surface 

and then by degradation under UV radiation [8]. Given the above findings, cobalt is an 

interesting dopant which can either expand or modify the TiO2 lattice with an increase or 

decrease in its lattice volume and change its electronic and optical properties [4,9-11].  

Even though many of these photocatalysts are effective for the degradation of organic 

pollutants, the design of materials that exhibit higher activity under visible light is still a 

challenge nowadays. Moreover, the stability and efficiency of these materials are still low and 

need to be improved. Searching for new TNP-based photocatalysts with enhanced 

photocatalytic activity under visible light irradiation, it was recently reported by our group a 
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novel chemical route to synthesize homogenous cobalt-doped titanate nanoparticles (Co-TNP) 

with high adsorption ability for methylene blue [12]. Marques et al. [13] reported a modification 

of titanate nanotubes (TNT) with cerium by the ion-exchange method. The authors showed the 

intercalation of Ce4+ and Ce3+ within the TNT layers. The co-modification of titania nanotubes 

with Cr and N was recently reported by Fan et al. [14]. The authors showed the Ti4+ substitution 

by Cr3+ ions and conclude that the incorporation of N and Cr dopant into the titania nanotubes 

resulted in samples with larger specific surface area and lower bandgap energy, which improves 

the photocatalysis activity when compared with the pristine ones. In this case, nitrogen doping 

could form a new level located slightly above the valence band, and the overlap of the 

conduction band could be formed due to Ti4+ and Cr3+ orbitals. Under light irradiation, electrons 

can be excited from low to high levels, such as from the N impurity level to the Cr3+ impurity 

level, or from the N impurity level to the CB, or from the VB to the Cr3+ impurity level. 

Meanwhile, the Cr3+ dopant was also used as a charge traps, transferring the interfacial electrons 

to degrade the reactant molecule and therefore lower the e-/h+ recombination rate. 

Consequently, co-doping with nitrogen and Cr3+ ion can result in the enhancement of the 

photoactivity efficiency under solar energy [14]. 

In this chapter, the synthesis of novel cobalt modified titanate nanowires (TNW), with enhanced 

optical and photocatalytic properties for emergent pollutants removal, is reported. The synthesis 

of TNW modified by cobalt doping (CoTNW) and by Na+/Co ion-exchange (TNW/Co) is 

described. The influence of the Co content and/or the Co position in the TNW structure on the 

optical and photocatalytic properties of the materials was studied. The photocatalytic activity 

of the prepared powders was firstly investigated using the terephthalic acid (TA) as a probe 

molecule to study the catalytic production of hydroxyl radical (•OH). Afterward, the 

degradation of phenol and naphthol yellow S (NYS) and brilliant green (BG) dyes, used as 

model pollutants, was evaluated under UV-vis radiation. Anticipating real-world situations, 

photocatalytic experiments were performed using solutions containing all of these pollutants.  

 

4.2 - Synthesis 

A detailed description of the experimental procedure used for titanate nanowires (TNW) 

synthesis is shown in Chapter 10. 

The TNW amorphous precursor was prepared based on a published procedure [4]. A similar 

procedure was followed to produce the Co-containing precursor, but adding the required molar 

amount (1% and 5%, nominal molar amount) of metallic cobalt to the titanium trichloride 
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solution using the published procedure [12,15]. The pristine and Co-modified TNW particles 

were produced at 160°C for 24 hours using a hydrothermal approach reported procedure [16]. 

The obtained undoped and Co-doped samples were identified as TNW, Co(1%)TNW and 

Co(5%)TNW.  

The Co ion-exchanged titanate nanowires (TNW/Co) were prepared by adding aqueous cobalt 

nitrate, with the required Co molar amount of 5%, to the TNW powder previously prepared. 

The resulting suspension was kept under stirring for 7 hours at room temperature. The obtained 

Co ion-exchanged sample was identified as TNW/Co(5%).  

 

4.3  – Structural, morphological and optical characterization 

The structural characterization of the TNW, Co(1%)TNW, Co(5%)TNW and TNW/Co(5%) 

prepared samples was analyzed by X-ray powder diffraction (XRD). The obtained XRD 

patterns are presented in Figure 4.1.  

As can be seen, the XRD patterns for TNW, Co(1%)TNW, Co(5%)TNW  and TNW/Co(5%) 

powders, agree with the presence of a crystalline titanate layered structure, type Na2-xHxTi3O7 

(0 ≤ x ≤ 2) [17-19]. No signal of undesirable crystalline phases, e.g. cobalt clusters, cobalt 

oxides or Co-Ti oxide phases, which are known to exist in the bulk Co-Ti-O phase diagram 

[12,20], were observed in the XRD patterns of all Co-modified TNW samples. 

 

Figure 4.1 – (a) XRD patterns of the TNW, Co(1%)TNW, Co(5%)TNW  and TNW/Co(5%) prepared samples; (b) detail of the 

XRD patterns. 

 

The XRD pattern of the undoped TNW sample shows 2  peaks centered at 10.22º, 24.34º, 

28.40º, and 48.43º corresponding to (100), (102), (111) and (303) crystal planes respectively, 
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in agreement with a Na2Ti3O7 layered titanate structure [21-26], and in good match with 

Na2Ti3O7 JCPDS file no. 72-0148. In particular, the diffraction peak at 2  = 10.22º is related 

to the distance between the TiO6 octahedra sheets that form the layered TNW structure and host 

the Na+ ions between them. Shifts in this peak are usually indicative of the Na+ replacement by 

other ionic species, e.g. H+ and Ce4+ [21,26]. This can be seen in the diffractogram of the Co 

ion-exchanged TNW/Co(5%) sample, for which the above mentioned peak shifts from 2  = 

10.22º to 8.74º, as a result of the incorporation of cobalt via Na/Co ion exchange between the 

TiO6 sheets. 

It should be noted that the observed decrease of the 2  position implies an increase of the 

interlayers distance, which is expected since the ionic radius of Na+ is smaller than that of 

hydrated Co2+ [27]. In what concerns the XRD pattern of the Co(1%)TNW sample, it is similar 

to that obtained for the undoped TNW sample, with no shift of the peak related to the TiO6 

interlayers distance. This indicates that no Na/Co replacement took place for this sample, the 

doping most probably occurring by substitution of Ti4+ by Co2+ in the TiO6 octahedra of the 

TNW crystal structure [12]. Since the effective ionic radius of Co2+ is slightly bigger (79.0 pm) 

than one of the Ti4+ (74.5 pm), the replacement of Ti4+ by Co2+ is likely [28,29].  

Regarding the XRD pattern of the doped Co(5%)TNW sample, it shows a clear shift of the 

aforementioned peak related to the TiO6 interlayers, although to a less extent of that observed 

for the ion-exchange TNW/Co(5%) sample. This strongly suggests that some cobalt ions were 

incorporated between the TiO6 layers during the Co(5%)TNW sample synthesis process, 

beyond the expected cobalt doping via the Ti4+/Co2+ replacement in the TiO6 octahedra.  

The effect of ionic Co presence on the structure of TNW was studied by analyzing the lattice 

parameters and the unit cell volume of the synthesized samples. The lattice parameters of the 

undoped TNW sample are in good match with that of Na2Ti3O7 JCPDS file no. 72-0148 (Annex 

A – Table A.1), with a unit cell volume deviation of only 3.3% in comparison to the standard 

value. Concerning the Co(1%)TNW sample, it presents only a slight increase of the unit cell 

volume concerning the value determined for the undoped TNW sample. However, the Vcell 

values increase significantly for the Co(5%)TNW and TNW/Co(5%) samples, which supports 

the above-mentioned hypothesis that some cobalt ions were incorporated between the TiO6 

layers during the Co(5%)TNW sample synthesis process, beyond the intended cobalt doping 

via replacing the Ti4+/Co2+. 
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The morphology of the pristine and Co-modified TNW samples was evaluated by transmission 

electron microscopy (TEM). The TEM images for TNW, Co(5%)TNW,  Co(1%)TNW and 

TNW/Co(5%) samples are presented in Figure 4.2.  

 

  

  

Figure 4.2 - TEM image of the (a) TNW, (b) Co(5%)TNW, (c) Co(1%)TNW and (d) TNW/Co(5%) samples. 

 

As can be seen, all samples present similar morphology, consisting of homogeneous elongated 

nanowires with a diameter of 7 nm and a high length/diameter aspect ratio. No influence of 

either the Co doping or the Co ion-exchange step was noticed on the morphology of the samples 

[12]. For the 5%, cobalt modified samples, i.e. Co(5%)TNW and TNW/Co(5%) samples, the 

presence of the Co in addition to Ti, O and Na elements was confirmed by EDS (not shown). 

This analysis was not possible for the Co(1%)TNW sample due to equipment limitations. 

The specific surface area of the samples was evaluated by the B.E.T. method. The pristine TNW 

sample shows a value of 288.60 m2 g-1. In comparison, the Co-doped samples present a slight 

decrease of the specific surface area: 241.59 m2 g-1 and 267.22 m2 g-1 values were obtained for 

the Co(5%)TNW and Co(1%)TNW samples, respectively. In contrast, the Co ion-exchange 

TNW/Co(5%) sample presents a specific surface area of 298.88 m2 g-1, higher than that 

obtained for the pristine powder, this result being also consistent with the substitution of sodium 

by cobalt in the TNW lamellar structure, as previously shown by Morgado et al. [30]. 

Raman spectroscopy was used to further investigate the structure of the prepared samples. 

Figure 4.3 shows the Raman spectra of all the prepared samples (TNW, Co(1%)TNW, 

Co(5%)TNW  and TNW/Co(5%)). 

a) b) 

d) c) 
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Figure 4.3 - Raman spectra of the TNW, Co(1%)TNW, Co(5%)TNW  and TNW/Co(5%) samples. 

 

Raman spectra of TNW show bands near 120, 155, 192, 276, 377, 449, 670, 825, and 914 cm-

1. A comparison of the Raman spectra of the synthesized samples with those reported in the 

literature shows that the set of observed bands agrees with that of Na2Ti3O7 [17,26,31,32].  

It should also be noted that a direct comparison of the TNW’ Raman spectra with that of TiO2 

has strong limitations. It is known that titania exists in three common crystalline structures; 

rutile (tetragonal), anatase (tetragonal), and brookite (orthorhombic), and belong to space 

groups D4h (P42/mnm), D4h (I41/amd), and D2h (Pbca) respectively. However, at room 

temperature, bulk Na2Ti3O7 exhibits a lamellar monoclinic structure within the space group C2h
2 

(P21/m) [31]. Moreover, rutile TiO2 has four Raman active modes (A1g + B1g + B2g + Eg) located 

at 144, 448, 612, and 828 cm-1 and anatase TiO2 has six Raman active modes (A1g + 2B1g + 

3Eg) at 144, 192, 395, 515/519 and 638 cm-1. Therefore, the Na2Ti3O7 Raman spectra and the 

respective structures are different from those of anatase and rutile phases, although some peaks 

appeared in the vicinity of the active modes owing to the TiO2 derived origin. Furthermore, 69 

vibrational modes are predicted for Na2Ti3O7 bulk structures distributed among the irreducible 

representations as follows: 24Ag + 11Au + 12Bg + 22 Bu [31]. Additionally, as the nanotubes 

have a scroll-like structure there is no radial symmetry, therefore it is not appropriate to apply 

standard factor group analysis.  

According to previous studies, Raman peaks at 155 and 192 cm-1 correspond to the Na–O–Ti 

lattice modes, while those located at ca. 276, 449, 670 and 693 cm-1 can be ascribed to the Ti–

O–Ti stretching in edge-shared TiO6 [17,19,26]. The band at 914 cm-1 is attributed to the 
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stretching vibration of the shorter Ti–O bonds whose oxygen is not shared among the distorted 

TiO6 units.  

The Raman spectrum of the Co(1%)TNW sample is similar to that obtained for the undoped 

TNW sample, without any detectable peak shifts within the spectral resolution used. This seems 

to support the hypothesis that, at this low doping level, only the substitution of Ti4+ by Co2+ in 

the TiO6 octahedra occurs. However, the Raman spectra of doped Co(5%)TNW and ion-

exchanged TNW/Co(5%) samples display quite different features. The analysis of the obtained 

spectra indicates a clear influence of the Co doping level and the ion position in the structure 

of the TNW. The samples’ spectra show that both the highest frequency mode (914 cm-1) and 

the lowest frequency modes (155 and 192 cm-1) have their wavenumbers and intensities affected 

either by the higher doping level or by the Co ionic position, similarly to that reported by 

Marques et al. for Ce4+ doping/intercalation within the titanate nanotubes [26]. Besides, the 

Co(5%)TNW sample shows an increase in the intensity ratio between the modes at 825 cm-1 

and 670 cm-1. 

The Raman modes at 825 cm-1 and 914 cm-1 are not observed for the ion-exchanged 

TNW/Co(5%) sample, instead, a new mode appeared at about 860 cm-1. Furthermore, the 

spectrum of the Co(5%)TNW sample presents a clear broadening and shifting of the 

wavenumber modes at 449 cm-1 and 670 cm-1 to 435 cm-1 and 693 cm-1, respectively. The fact 

that these modes correspond to the Ti–O–Ti stretching in edge-shared TiO6 strengthens the 

aforementioned hypothesis that some ionic cobalt was incorporated between TiO6 layers during 

the Co(5%)TNW sample synthesis process, beyond the expected Co doping via the Ti4+/Co2+ 

substitution into the TiO6 octahedra. The ion-exchange TNW/Co(5%) sample shows a similar 

behavior although less pronounced, the peak at 670 cm-1 shifting to 683 cm-1. Additionally, the 

disappearance of the 914 cm-1 mode and the appearance of a new mode at 860 cm-1, observed 

for the ion-exchanged TNW/Co(5%) sample, may be seen as a signature of substitution of Na+ 

by ionic hydrated Co into TNW interlayers [31,33,34]. The TNW’ interlayer modification can 

also be pursued in the low wavenumber range, where the lattice Raman mode at 192 cm-1 shifts 

to 190 cm-1 and the intensity of the mode at 155 cm-1 decreases (or vanishes) with the 

substitution of Na+ by ionic hydrated Co [26]. Thus, the different degrees of structural 

rearrangement of the prepared samples induced either by Co doping or by Co ion exchange can 

be attributed to the Raman modes of the samples and are in accordance with the XRD data 

previously discussed. 

The optical characterization of the samples was carried out by measuring their diffuse 

reflectance, R, in the UV-Vis region. R is related to the absorption Kubelka–Munk function, 
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FKM, by the relation FKM (R) = (1−R)2/2R, which is proportional to the absorption coefficient 

[35]. The samples’ absorption spectra are shown in Figure 4.4. 

 

 
Figure 4.4 – Optical spectra of the TNW, Co(1%)TNW, Co(5%)TNW and TNW/Co(5%) samples. 

 

As can be seen in Figure 4.4, the light absorption edge of the TNW samples is red-shifted after 

Co modification. The Co-containing samples absorb radiation in the visible region, the 

Co(5%)TNW sample being the one with higher light absorption capability. The observed 

optical red shift for the Co-modified samples can be attributed to the insertion of the Co 3d 

orbitals within the forbidden band and subsequent charge-transfer transition between the d-

electrons of the dopant and the conduction band of the TNW, besides the defects associated 

with oxygen vacancies generated for charge balancing when Co2+ replaces the Ti4+ in the TiO6 

octahedra TNW building blocks [12].  

The UV–Vis spectra of Co-doped TNW samples also exhibit an absorption band at around 480–

650 nm, a typical feature associated with transition metal doped semiconductors which may 

arise from charge transfer and d–d transitions of the metal [36]. According to Morgado et al. 

the introduction of Co2+ 3d states into the trititanate crystal structure results in their splitting, 

leading to the formation of lower and higher 3d energy states [30]. This hypothesis should be 

experimentally supported by an increase of the d–d transitions with increasing Co content. The 

analysis of the results obtained for the doped Co(1%)TNW and Co(5%)TNW samples does not 

allow reaching this conclusion; indeed the Co(5%)TNW absorption band centered at 580 nm is 

weaker than that of Co(1%)TNW. This result strongly suggests the co-existence of cobalt in the 
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crystalline lattice and in the interlayers in accordance with the XRD and Raman data. Moreover, 

this is also supported by some similarities between the optical behavior of the Co(5%)TNW 

and TNW/Co(5%) samples, especially for wavelengths below 480 nm. Concerning the optical 

red shift of the ion-exchanged TNW/Co(5%) sample, the intercalated Co ions in the interlayer 

region may form a one-dimensional Co chain, the overlapped Co-3d orbitals along the channel 

resulting in a delocalized 1D band below the Fermi level which extends the absorption edge 

into the visible region, similarly to what happens when Fe is intercalated in TNW based 

structures [37]. 

The optical bandgap energy of the samples was calculated using the procedure previously 

described [38], by plotting the function fKM = (FKM.hυ)1/2 vs. hυ (Tauc plot). The values of 3.27 

± 0.03 eV, 2.43 ± 0.05 eV and 2.27 ± 0.02 eV were obtained for TNW, Co(1%)TNW and 

TNW/Co(5%) samples respectively. No accurate bandgap energy was possible to infer for the 

Co(5%)TNW sample since no well-defined band absorption edge was observed due to its near-

continuous absorption in the UV-vis region. 

To gain a deeper insight into the electronic structure of the synthesized materials, all samples 

were analyzed by XPS. Figure 4.5(a and b) shows the survey spectra of the pristine TNW and 

Co(5%)TNW samples. The spectra of Co(1%)TNW and TNW/Co(5%) samples are similar to 

those obtained for Co(5%)TNW (results not shown). In addition to the Na 1s, Ti 2p, and O 1s 

photoelectron peaks typical of the TNW (Figure 4.5(a)), the Co(5%)TNW, Co(1%)TNW, and 

TNW/Co(5%) XPS survey spectra show a Co 2p doublet peak (Figure 4.5(b)). 

The high-resolution spectra of Ti 2p and O 1s regions for TNW and Co(5%)TNW samples, and 

Co 2p regions for all the samples with cobalt (Co(1%)TNW, Co(5%)TNW and TNW/Co(5%)) 

are presented in Figure 4.5. 

The XPS spectrum of the TNW sample shows the Ti 2p3/2 and 2p1/2 peaks at 458.641 and 

464.441 eV, respectively (Figure 4.5(c)). An identical profile was observed for the 

Co(1%)TNW and TNW/Co(5%) samples (not shown). However, for Co(5%)TNW sample a 

slight shift of these peaks, to 458.241 and 464.157 eV, respectively, due to the higher Co doping 

level was observed (Figure 4.5(c)). 

For the TNW and Co-modified TNW samples, the doublet splitting energies of the Ti 2p peaks 

are between 5.7 to 5.9 eV, which also agrees with the presence of titanium only as Ti4+ in all 

samples [39,40]. Indeed, no signals are perceptible in the 456.2−457.4 eV range which can be 

ascribed to Ti3+ [41,42]. 
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Figure 4.5  – XPS survey spectra of the (a) TNW and (b) Co(5%)TNW samples. XPS high-resolution spectra of the (c) Ti 2p, 

(d) O 1s and (e and f) Co 2p regions. 
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The main peak in the O 1s core-spectra at ca. 530 eV (Figure 4.5(d)) corresponds to lattice 

oxygen and it has some contribution of the sodium Auger peak (Na KLL). The high-resolution 

spectra of the Co 2p region for the TNW/Co(5%) and Co(5%)TNW samples are presented in 

Figure 4.5(e). Concerning the ion-exchange TNW/Co(5%) sample, the binding energies related 

to the Co 2p1/2 and Co 2p3/2 peaks are ~ 780 and ~ 796 eV, respectively. Also, the satellite lines 

of these two peaks, which are characteristic of the Co(II) oxidation state, are clearly visible for 

higher energies. A comparative analysis of this spectrum with that of the doped Co(5%)TNW 

sample shows a shift of the Co 2p1/2 and Co 2p3/2 peaks towards to higher energies and a 

decrease of the respective satellite features, which indicate the existence of Co(II) and Co(III) 

oxidation states [43]. These results are in accordance with those previously reported by Wu et 

al. [44] and seems to support the assumption that during the hydrothermal process the precursor 

powders were firstly dissolved in NaOH solution before the formation of the TNW sheets 

[44,45]. Accordingly, some ionic cobalt is dissolved, probably in both Co2+ and Co3+ oxidation 

states, remaining afterward in solution and thus leading to Co-doped TNW samples with cobalt 

in two distinct positions: replacing some Ti4+ in the TiO6 octahedra (crystalline network) and 

between the interlayers.  

Once the nanowires thickness is inferior to the XPS radiation penetration, the quantification of 

the cobalt content in the prepared TNW based samples was also performed. A cobalt content 

value of 1.7 at%, corresponding to a Co/Ti ratio of 6.38%, was estimated for the ion-exchange 

TNW/Co(5%) sample. On the other hand, cobalt content values of 0.21 at% (Co/Ti = 0.83%) 

and 1.41 at% (Co/Ti = 6.26%) were obtained for the Co(1%)TNW and Co(5%)TNW samples, 

respectively. It is worth noting that the samples’ Co content as determined by XPS is close to 

the samples’ nominal Co content. Additionally, the Na+ content of the ion-exchange 

TNW/Co(5%) sample is lower than the content values obtained for the doped samples, in 

accordance with the expected higher level of Na+/Co2+ substitution in the TNW interlayer 

structure of that sample. 

 

4.4 - Photo-induced hydroxyl radical production 

Anticipating the use of the prepared materials as photocatalysts, the evaluation of their 

photocatalytic performances for the hydroxyl radical (•OH) production, one of the most 

oxidative species in advanced oxidative treatments, was studied. Terephthalic acid (TA), was 

used as a probe molecule and, the generation and quantification of •OH were analyzed by 

fluorescence spectroscopy, as previously discussed in Chapter 1 - Section 1.3. Figure 4.6 shows 
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the amount of 2-hydroxyterephthalic acid, HTA, produced by TA/catalyst suspensions 

irradiated for 20 min with UV-vis radiation. 

 

 
Figure 4.6 – HTA concentration during 20 min of UV-vis irradiation of a TA solution (3 mM, 150 mL) using 10 mg of 

each photocatalyst. 

 

As can be seen in Figure 4.6, all the prepared samples demonstrated catalytic activity for this 

reaction, the Co(1%)TNW sample being the best catalyst for the photo-induced hydroxyl 

radical production after 20 min of irradiation. Taking the TA photolysis performance as a 

reference, an increase of 75% in the radical production was attained using the Co(1%)TNW 

sample as a catalyst, while increases of 64% and 61% were attained for Co(5%)TNW and TNW 

samples, respectively. The slight decrease in the •OH production observed for these samples 

after 20 min of irradiation can be explained by the partial photodegradation of HTA [46]. Using 

the cobalt ion-exchanged TNW/Co(5%) sample, a relative increase of 46% in the reaction yield 

was observed.  

These results allow concluding that the cobalt doping leads to an enhancement of the TNW 

photocatalytic performance for this reaction. Those results also agree with published works, for 

which a catalytic activity enhancement is usually attributed to doped samples and is dependent 

on the metal substitution degree; lower metal substitution levels usually leading to better 

catalytic performances [47-49].  
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4.5 - Adsorption and photocatalytic studies 

4.5.1 – Phenol, naphthol yellow S and brilliant green adsorption 

The photocatalytic ability of the pristine and Co-modified TNW samples for pollutants 

photodegradation processes was examined by monitoring the degradation of several organic 

model compounds. To evaluate their photocatalytic flexibility, phenol, a more anionic 

compound – naphthol yellow S (NYS) – and a more cationic compound – brilliant green (BG) 

– were chosen as model pollutants. The schematic representation of these three model pollutants 

is presented in Figure 4.7. 

 

   a) b) c) 

  

 
Figure 4.7 – Schematic representation of (a) phenol, (b) naphthol yellow S and (c) brilliant green molecules. 

 

Due to their importance in heterogeneous photocatalytic processes, the adsorption 

characteristics of each catalyst/pollutant system were evaluated prior to the photocatalytic 

experiments and the results are summarized in Figure 4.8.  

 

 
Figure 4.8 - Phenol, BG and NYS adsorption ability using pristine TNW, Co(1%)TNW, Co(5%)TNW and TNW/Co(5%) 

samples as adsorbents. 

 

Contrarily to phenol and BG, the NYS did not show any affinity for adsorption either on the 

pristine TNW or on the TNW modified samples. The immobilization of BG seems to be almost 
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independent of the surface nature. Indeed, values between 374 and 354 mg g-1 were obtained 

for the TNW and Co(5%)TNW samples, respectively. Concerning the phenol adsorption, a 

value of 111.4 mg g-1 was obtained for the pristine TNW sample. Regarding the doped samples, 

the amount of adsorbed phenol increases from 223.6 to 347.2 mg g-1 when the nominal cobalt 

increases from 1% (Co(1%)TNW sample) to 5% (Co(5%)TNW sample). For the ion-exchanged 

TNW/Co(5%) value of 265.2 mg g-1 was determined. 

To decide the most appropriate duration of each pollutant photodegradation experiment, some 

preliminary photolysis runs were carried out. A period of 90 min was considered adequate for 

the 20 ppm phenol solution, a period of 45 min for the 20 ppm NYS solution, and also for the 

10 ppm BG solution degradation. 

 

4.5.2 – Phenol photocatalytic degradation 

The photocatalytic efficiency of the pristine and Co-modified TNW samples, on the degradation 

of a 20 ppm phenol solution, was studied for 90 min. The results were analyzed by GC-MS and 

the phenol concentration profiles during irradiation time are depicted in Figure 4.9.  

 

 
Figure 4.9 – Concentration of phenol during 90 min of irradiation using TNW, Co(1%)TNW, Co(5%)TNW and TNW/Co(5%) 

samples as photocatalysts. 

 

As can be seen, after a dark period of 60 min, 11.8% of the initial phenol was adsorbed by the 

TNW surface sample. However, using the Co(1%)TNW and TNW/Co(5%) samples 23.5% and 

28.3% of phenol was adsorbed by these samples, respectively. Furthermore, the highest amount 
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of phenol adsorbed was 37.5% on the Co(5%)TNW surface (the sample with the lower surface 

area: 241.59 m2 g-1).  

Regarding the irradiation period, all the tested samples demonstrated the ability to photodegrade 

this pollutant. After 30 min of irradiation, the phenol degradation was practically completed 

(98.3%) using the Co(1%)TNW sample as a photocatalyst, which contrasts with the 83.8% of 

degradation achieved by the less catalytic sample, the pristine TNW powder. For the same 

irradiation period, photodegradation of 93.9% and 87.6% were attained using the Co(5%)TNW 

and TNW/Co(5%) samples, respectively. These results are in agreement with published studies 

corroborating that metal doping usually enhances the catalytic properties of the pristine material 

[47-49]. It is interesting to highlight that the best results were accomplished by the sample with 

the lowest cobalt doping level. Although the Co(5%)TNW and TNW/Co(5%) samples are both 

catalytic for this degradation process, an additional time of 30 min was required to complete 

the phenol degradation using Co(5%)TNW sample, and more 30 min were necessary to attain 

identical degradation level using the TNW/Co(5%) sample. 

 

4.5.3 - Brilliant green (BG) photocatalytic degradation 

The photocatalytic efficiency of the TNW and Co-modified TNW samples on 10 ppm BG 

solution degradation was evaluated during 45 min of irradiation (Figure 4.10). For comparative 

purposes, the dye photolysis was also evaluated.  

Figure 4.10(a) depicts the dye UV-vis spectra during irradiation, in the presence of the 

Co(1%)TNW sample as a catalyst. As previously discussed, the extensive dye adsorption is 

easily confirmed by the intensity decrease of the 624 nm peak at t = 0 spectrum. As can be seen, 

during irradiation all the characteristic dye absorption bands decrease gradually with time, 

which indicates a progressive removal of the dye. Moreover, the disappearance of the lower 

wavelength absorption bands (typical for aromatic rings), for longer irradiation times, indicates 

the degradation of the by-products meanwhile formed. 

Figure 4.10(b) depicts the BG degradation over the irradiation time, for all the samples tested.  

As visible in Figure 4.10(b), after 60 min in darkness, 75%, 71%, 74% and 74% of the initial 

dye were removed from solution by adsorption, using TNW, Co(5%)TNW, Co(1%)TNW and 

TNW/Co(5%) respectively, as adsorbents. 

After turning on the lamp all the samples demonstrated catalytic activity for the dye 

photodegradation reaction. After 20 min of irradiation, the best sample for the BG removal was 

the TNW/Co(5%) powder with a 99% decrease in the dye concentration. The second best 

photocatalyst seems to be the Co(1%)TNW with 97% removal. However, considering that 
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Co(1%)TNW sample adsorbs more dye then the Co(5%)-TNT sample, the dye degradation at 

20 min is better for the latter catalyst (97%). Nevertheless, it should be pointed out that after 45 

min, the removal performances of all Co-modified samples were identical and better than that 

of the pristine TNW sample. 

 

 
Figure 4.10 – (a) Electronic spectra of a 10 ppm BG solution during 45 min of irradiation using Co(1%)TNW as a photocatalyst 

and (b) concentration of BG versus irradiation time using the prepared samples as catalysts. 
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Co(5%)TNW and TNW/Co(5%) as catalysts, is shown in Figure 4.11(b). Since no NYS 

adsorption occurs prior to irradiation, the adsorption period was not considered in the graphs. 

As can be seen in Figure 4.11(a), the intensity of all the characteristic absorption bands of the 

dye decreases with increasing irradiation time, which indicates a gradual removal of this 

pollutant. However, the unexpected gap between the 10 and 20 min spectral profiles suggests 

the existence of two distinct stages during this process. This phenomenon was not observed for 

the photolysis and/or other catalyzed experiments.  

 

 

 
Figure 4.11 – (a) Electronic spectra of a 20 ppm NYS solution during 45 min of irradiation using Co(1%)TNW as photocatalyst 

and (b) concentration of NYS versus irradiation time using the prepared samples as catalysts. 
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min of irradiation, the use of the Co(5%)TNW sample enabled achieving a reduction of 91% of 

the NYS concentration, but only a reduction of 67% and 60% of the dye concentration was 

observed when using the TNW/Co(5%) and TNW samples, respectively. Therefore, among the 

prepared samples, the best catalyst for the NYS photodegradation is the Co(1%)TNW sample. 

Longer irradiation times are required for the other three samples to accomplish the complete 

dye photodegradation.  

The overall analysis of the photodegradation results obtained strongly supports that the 

existence of Co as a doping element in the TNW crystal structure (replacing the Ti4+) is more 

advantageous for these oxidative processes when compared with the cobalt located between the 

TiO6 interlayers, replacing only the Na+. 

Taking into account the present results and the reported band structure calculations for Co-

doped TiO2, [50,51] a mechanism for the light-activated charge-transfer processes in the Co-

modified TNW is proposed in Figure 4.12. Accordingly, the valence band (VB) of the Co-

modified TNW is derived primarily from O 2p-levels, the conduction band (CB) from the Ti 

3d-levels, and the crystal field split Co 3d-levels forming localized bands within the original 

bandgap energy. For Co-doped TiO2, Ha et al. [50] estimated that the partially filled Co 3d 

band is located 2.2 eV below the conduction band. Therefore, when an aqueous Co modified 

TNW suspension is irradiated with higher energy than TNW’ bandgap energy, electrons (e-) 

and holes (h+) are generated in the semiconductor’ conduction and valence bands, respectively, 

and the Co 3d band increasing the availability of the photogenerated charge carriers. The 

photogenerated electrons could easily transfer to the adsorbed oxygen and a rapid formation of 

O2
•− species can occur. The formed O2

•- active species will participate in the photocatalytic 

oxidation processes, while the photogenerated holes will react with OH- or H2O oxidizing them 

to •OH radicals. The combined action of h+ and the other highly oxidant species, including •OH, 

will be responsible for the pollutant degradation. 

 

 
Figure 4.12 – Band structure scheme of Co-modified TNW and the mechanism of photo-induced oxidant radical formation. 
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4.5.5 - Pollutants mixture photodegradation 

Supported by the above-described results and considering that in the real world the 

simultaneous degradation of several pollutants is required in numerous situations, the 

degradation of a mixture composed of phenol, naphthol yellow S and brilliant green was carried 

out. The Co(1%)TNW sample was selected as a catalyst for this study since it demonstrated to 

have the best catalytic performance. The concentration of each pollutant in the mixture solution 

was identical to that used in each individual photodegradation study. The period of irradiation 

was extended to 150 min once the amount of catalyst used was also the same (0.13 g L-1). The 

obtained results are depicted in Figure 4.13.  

 
Figure 4.13 – Decrease of the phenol (a), BG (b) and NYS (c) concentration in a pollutant mixture solution, during 150 min of 

irradiation, using Co(1%)TNW as a catalyst and during photolysis. 



Chapter 4 – Tailoring titanate nanoparticles photocatalytic properties by cobalt incorporation 

132 

Considering first the photolysis experiments, it should be noted that the use of a pollutant 

mixture solution leads to a slower overall degradation process in comparison to that occurring 

in single solutions (Figure 4.13). The phenol photodegradation rate was the process most 

negatively affected by the ‘mixture effect’. Actually, for a period of 90 min, 83.1% of phenol 

present in the single solution was degraded via photolysis while a value of only 68.6% has been 

achieved for the pollutant mixture solution. Similarly, for 45 min of irradiation, 83% of the BG 

dye was degraded when in a single solution, whereas only 73% was degraded when taken in 

the mixture solution. Also, upon 45 min of irradiation, the NYS photolysis leads to a 

degradation of 28% and 17% of this dye in the single solution and in the pollutant mixture 

solution, respectively. 

Considering now the photocatalytic experiments on the pollutants mixture solution, the 

Co(1%)TNW sample demonstrated the best catalytic activity as expected. After 150 min of 

irradiation, less than 1% of phenol, 1% of BG, and 26% of NYS remained in the mixture 

solution (Figure 4.13(a–c)). During the photodegradation period, the pollutant that was faster 

removed from the solution was the BG dye (45 min, 98% degraded). To achieve an identical 

phenol degradation level, an irradiation time of 135 min was required.  

It is interesting to notice that, during the adsorption period, the NYS present in the pollutant 

mixture demonstrated some ability to be adsorbed by the Co(1%)TNW. Indeed, 17% of the dye 

was adsorbed, contrasting with the absence of NYS adsorption when used individually with the 

same photocatalyst, as previously described in section 4.5 and shown in Figure 4.8. This fact is 

more interesting if it is taken into consideration that a relatively smaller amount of solid was 

available for the simultaneous adsorption of the three pollutants. Preliminary studies, involving 

the stepwise adsorption of these three pollutants, were performed and the results seem to 

indicate the occurrence of a multi-layer adsorption process, the NYS adsorption being 

dependent on the previous adsorption of BG. A systematic investigation of this phenomenon 

was not the goal of this work. However, the importance of these studies for the correct 

evaluation of the catalytic performances of materials should be carefully considered. 

 

4.5.6 – Kinetic studies 

The pollutant photodegradation data previously discussed allow going further into the kinetics 

of the several degradation processes studied (Figure 4.14). The photocatalytic degradation rate 

of most organic pollutants follows the pseudo-first-order kinetics: 
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C
k t

C

 
= 

 
 (4.1) 

where C is the pollutant concentration at time t, C0 is the pollutant concentration at time zero 

and kap is the apparent reaction rate constant. Therefore, plotting ln C0/C versus t, the 

experimental data can be fitted by a straight line, whose slope is the apparent first-order rate 

constant kap.  

Figure 4.14 shows the characteristic plots of the phenol and BG kinetic degradation processes, 

using either single solutions or a pollutant mixture solution, and for an irradiation period of 30 

min. The plots corresponding to the photolysis are shown for comparative purposes. 

 

  

  

Figure 4.14 – Kinetics of the photodegradation reaction of phenol and of BG, in single solutions and in a pollutant mixture 

solution (a and b) via photolysis and (c and d) using Co(1%)TNW as a photocatalyst. 
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It should be noted that no satisfactory fittings were obtained for the NYS dye photodegradation. 

The apparent first-order rate constants obtained for the photodegradation processes of phenol 

and BG in single solutions catalyzed by the Co(1%)TNW powders are kap = 0.130 ± 0.005 s-1 

and kap = 0.109 ± 0.0043 s-1, respectively, the phenol in a single solution being the faster 

pollutant to be degraded. The opposite occurs when one considers the pollutant mixture 

solution, the phenol degradation rate being kap = 0.035 ± 0.001 s-1, lower than that obtained for 

the degradation of BG, kap = 0.060 ± 0.005 s-1. It is also interesting to note that, when using 

Co(1%)TNW as a photocatalyst, the differences between the kap values obtained for the single 

solutions and that deduced for the pollutant mixture solution are larger than the difference 

between that values considering photolysis. These results reinforce the importance of the 

studies with pollutant mixture solutions for the accurate assessment of the photocatalytic 

performance of materials. 

 

4.6 - Conclusions 

Titanate nanowires (TNW) modified by cobalt doping (CoTNW) and by Co ion-exchange 

(TNW/Co) were successfully prepared by the hydrothermal method. 

The influence of the nominal cobalt doping level and the cobalt position in the TNW crystalline 

structure were studied. XRD, Raman and XPS characterization strongly support that Co doping 

was accomplished for the doped samples by Ti4+/Co2+ substitution in the TiO6 octahedra of the 

TNW crystalline structure, whereas the incorporation of cobalt between the TiO6 layers via the 

replacement of Na+ ions by hydrated Co ions occurred for the ion-exchanged samples.  

Beyond the expected doping by Ti4+/Co2+ substitution, structural analyses of the doped sample 

with a higher cobalt content (Co(5%)TNW) suggest the co-existence of some cobalt ions 

between the TiO6 layers. This particular result seems to agree with the assumption that during 

the hydrothermal process the precursor powders were firstly dissolved in NaOH solution before 

the formation of the TNW sheets. Consequently, some ionic cobalt is dissolved, remaining 

afterward in solution and thus leading to Co-doped TNW samples with cobalt in two distinct 

positions. Although no perceptible influence of the Co ion position was observed on the 

morphology of the prepared samples, the optical behavior of the Co-modified TNW samples is 

clearly dependent on either the cobalt ions substituting the Ti4+ ions into the TiO6 octahedra or 

replacing the Na+ ions between the TiO6 layers. The absorption spectra of the samples showed 

that all the Co-modified TNW samples absorb radiation in the visible region, Co(5%)TNW 

being the one with a higher light absorption capability. The optical red shifts shown by the Co-
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modified samples may be attributed to the insertion of the Co 3d orbitals within the forbidden 

band and the subsequent charge-transfer transition between the d-electrons of the dopant and 

the conduction band of the TNW. For the Co-doped TNW samples, the UV-vis spectra also 

exhibit a typical absorption band associated with transition metal doped semiconductors which 

arise from charge transfer and d–d transitions of the metal. A comparative analysis of the optical 

behavior of the doped and ion-exchanged samples also suggests the co-existence of cobalt in 

the TiO6 octahedra and between the TiO6 sheets in the Co(5%)TNW sample. 

The catalytic ability of these materials for pollutants photodegradation was also investigated. 

First, the catalytic production of the hydroxyl radical was evaluated. Subsequently, phenol, 

NYS, and BG were used as model pollutants. Anticipating real-world situations, photocatalytic 

experiments using a mixture solution of these three pollutants were performed. It was shown 

that the Co modified TNW materials (CoTNW and TNW/Co) are good catalysts, the 

photocatalytic performance being dependent on the Co/Ti ratio and on the structural Co 

position. The Co(1%)TNW doped sample showed the best photocatalytic activity for all the 

degradation processes studied. 
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Chapter 5 – Ruthenium modified titanate nanowires for emergent pollutants 

photocatalytic degradation 

5.1  - Introduction 

The modification of the properties of elongated titanate nanoparticles can also occur by metal 

doping or/and ion-exchange modification. Improvements on the photocatalytic performance of 

titanate nanostructures were obtained previously, using Co modified titanate nanoparticles, with 

the dopant localized in two distinct positions: partial substitution of Ti4+ and replacement of 

Na+ in the interlayers (Chapter 4) [1].  

Ruthenium, a 4d transition metal, has been described as a dopant element that can significantly 

promote photogenerated electron-hole pairs separation and it can extend the material light 

absorption to the visible range, by inducing the creation of intermediate bands (IB) within the 

forbidden zone. This promotes a redshift in the absorption band edge, with the IB acting not 

only as intermediate energetic levels, during photo-activation but also as recombination center, 

extending the lifetime of the charge carriers [2,3]. For a Ru-doped TiO2 material, with partial 

substitution of Ti with Ru, the probability of success for both excitation and recombination is 

conditioned by the bandgap energy and on the IB energetic position [3]. If a forbidden zone is 

split into 2 sub-gaps regions owing to an IB creation, it is desired that the lower gap will be the 

narrower one. With this, the probability for driving an electron from the valence band (VB) up 

to the IB would be higher than the possibility to have an electron, from the conduction band 

(CB), combining with a hole located at the same IB. Thus, the IB can behave as an efficient 

step to promote the relay of the electrons into the CB [3].  

The Ru oxidation state is critical in the photocatalyst performance. For example, if Ti4+ is 

substituted by Ru3+ and/or Ru2+, a new electron donor level is formed, whereas if Ti4+ is 

substituted by Ru4+ and/or Ru5+ species, an acceptor level in the bandgap is formed, to preserve 

the total charge balance. Either way, the charge transport, and transfer pathway will be altered. 

As an outcome, the substitution of Ti4+ in TiO2 based systems by both Ru4+ and Ru3+ has been 

proposed [4]. 

Several methodologies have been described to produce Ru modified TiO2 based materials, with 

some of them producing RuO2-TiO2, or TiO2 combined with Ru metallic nanoparticles. Ru-

doped TiO2 nanofibers have been produced using electrospun Ru-TiO2/poly(vinyl acetate) 

fibers, [5] and monodispersed sea urchin-like Ru-doped rutile TiO2 architectures have been 

successfully synthesized using an acid-hydrothermal method and low temperatures [2]. TiO2-

RuO2 nanocomposites have been described as photoactive for acetone decomposition under 
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visible light. In this configuration, RuO2 is essential for composite material bandgap energy 

decreases [6]. The synthesis of TiO2 nanotubes combined with metallic Ru nanoparticles, via 

impregnation methods, has also been reported. These nanocomposite particles are catalytic for 

vinyl acetate and cyclohexene hydroformylation, [7] and they can also be used for the Fischer-

Tropsch synthesis [8]. The absorption edge of nanocrystalline TiO2 can be extended via Ru 

doping, through the formation of new energetic levels in the bandgap, [6] leading to 

modifications on the electron-hole recombination process. This can be further improved using 

iron (III) ions as electron acceptors [9]. 

This research work describes the incorporation of Ru in titanate nanowires (TNW) and the 

evaluation of their photocatalytic performance on pollutants removal. Due to its environmental 

impact and resistance to degradation, caffeine was chosen as a model emergent pollutant, for 

photodegradation under UV-vis and visible irradiation. Caffeine is the most used central 

nervous system stimulant and it is present, for example, in coffee, tea, soft drinks, chocolate, 

and pharmaceuticals. 

 

5.2 – Synthesis 

Titanate nanowires (TNW) were prepared as previously reported (Chapter 10 for experimental 

details) [10]. A similar procedure was followed to produce the Ru-containing precursor, by 

adding the required molar amount (1%, nominal molar amount) of ruthenium (RuCl3) to the 

titanium trichloride solution [1]. The pristine and Ru-modified TNW particles were produced 

using a hydrothermal approach at 160°C for 24 hours [11]. 

 

5.3 – Structural, morphological and optical characterization 

The prepared samples were analyzed by XRD and the obtained patterns can be visualized in 

Figure 5.1. The results, for TNW and RuTNW powders, agree with the presence of a crystalline 

titanate layered structure, type Na2-xHxTi3O7 (0 ≤ x ≤ 2) [12-14]. 

The XRD pattern of the RuTNW sample does not show any sign of undesirable crystalline 

phases, mainly those containing ruthenium. Therefore, the segregation of ruthenium, as 

ruthenium oxide or crystalline metallic (nano)particles, is unlikely during synthesis. 

Simultaneously, a slight shift to lower values is perceptible, in the 2θ = 10 peak, for the Ru 

containing a sample. As a result of the excellent ion-exchange ability of these layered materials, 

the Na+ ions, which are localized in the TiO6 interlayers, are able to be exchanged by H+ or 

other cationic entities, for instance, ionic Ru [15,16]. Therefore, this shift, observed in the 
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RuTNW sample, suggests that some Run+ was incorporated during synthesis, between the TiO6 

layers. 

 
Figure 5.1 – (a) XRD patterns of the TNW and RuTNW prepared samples; (b) detail of the XRD patterns. 

 

Since the effective ionic radius of Ru4+ is slightly bigger (76.0 pm) than one of the Ti4+ (74.5 

pm), the replacement of Ti4+ by Ru4+ is also likely [2]. Conversely, the Ti4+ replacement, by 

Ru3+ ions, is not expected, since its ionic radius is 82.0 pm. Nevertheless, if this specie is present 

in the crystalline structure, it should be located in interstitial sites [2,17,18].  

The Scherrer equation was used to access the crystallite size and, with it, the assessment of the 

influence of the Ru incorporation on the crystalline structure was possible. The values obtained 

for RuTNW and TNW crystallites were 24.9 Å and 26.8 Å respectively. This indicates a slight 

decrease (6.9%) of the crystallite size, due to Ru incorporation. 

To study the morphology of the samples, transmission electron microscopy (TEM) was used, 

and no modifications on the particles’ morphology were observed after Ru incorporation. 

Figure 5.2 shows a TEM image of the RuTNW sample. The samples are homogeneous and are 

constituted by very thin and elongated nanowires. No signals of other types of particles were 

observed. The diameter size of the particles was assessed by direct image measurements and 

values of 6.5  2.5 nm and 7.3  3.1 nm were obtained for TNW and RuTNW samples, 

respectively. For the RuTNW sample, the Ru presence was not able to be confirmed by energy-

dispersive X-ray spectroscopy (EDS), due to equipment limitations. However, the confirmation 

was possible by X-ray photoelectron spectroscopy (XPS), as discussed later on. The amount of 

ruthenium incorporated was measured by micro X-ray fluorescence (μXRF), and a Ru/Ti = 

3.4% was obtained. 
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Figure 5.2 - TEM image of the RuTNW sample. 

 

To determine the active surface area, the samples were submitted to N2 adsorption/desorption 

at −196°C, using the B.E.T. method. TNW presents a surface area of 238.10 m2g-1, and a slight 

decrease (2.5%) to 232.20 m2g-1 was observed for the RuTNW sample.  

The structural characterization of the samples was further investigated by Raman spectroscopy. 

The Raman spectra of TNW and RuTNW powders (Figure 5.3) are in good agreement with 

previous works on Na2Ti3O7 materials [1,19-21]. The bands at 160 and 196 cm-1 are assigned 

to Na–O–Ti lattice modes. The Ti–O–Ti stretching modes in edge-shared TiO6 are attributed to 

the bands at 280, 455 and 676 cm-1. The band at 709 cm-1 can be assigned to either Ti―OH or 

Ti―O―Ti stretching vibrations [28]. The band at ca. 915 cm-1 is ascribed to the stretching 

vibration of non-shared Ti–O bonds in distorted TiO6 units [19,21]. 

 
Figure 5.3 - Raman spectra of the TNW and RuTNW samples. 

 

Considering that the Ru-O bond, in monocrystalline RuO2, has three Raman active modes: Eg, 

A1g, and B2g at 523, 640, and 708 cm-1 respectively, [22,23] the band intensity increase 
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visualized at 709 cm-1 can be due to the Ru existence (B2g mode of Ru-O bond). This attribution 

agrees with other works, reporting that the wavenumber position and the intensity of the highest 

frequency mode are both influenced either by the level of doping or the ionic position within 

the titanate nanostructure [1,14,19]. 

Raman spectra of both samples are identical; despite this, there is a slight shift in the bands 

assigned to the Ti-O-Ti stretches. These bands shift from 280 and 676 cm-1 to 285 and 678 cm-

1 for TNW and RuTNW, respectively. This suggests that some Ru4+/Ru3+ substitution may have 

occurred, not only in the crystalline structure, replacing the Ti4+ and/or in interstitial positions, 

but also between the TiO6 layers, replacing the Na+, as XRD results suggest. 

To better support, this hypothesis, a new sample, labeled TNW/Ru, was prepared by ion-

exchange. In this case, only the substitution of Na+ in the interlayers is possible, with no Ti4+ 

replacement being allowed. The Raman spectrum of this TNW/Ru sample is shown in Figure 

5.4. For comparative purposes, the Raman spectrum of the TNW sample used to prepare 

TNW/Ru is also presented.  

 

 
Figure 5.4 - Raman spectra of the TNW and TNW/Ru samples. 

 

The Raman spectrum of the TNW/Ru sample shows broader bands and slight differences in the 

relative intensities when compared with that of TNW. This is more evident for the Ti-O-Ti 

stretching bands, at 450 and 712 cm-1. The same effect is visible when the spectra of the 

RuTNW and TNW samples are compared. These results agree with the hypothesis that, for the 

RuTNW sample, there might be a Ru4+−Ti4+ replacement, together with the Na+ interlayer 

substitution. 
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The electronic structure, of the TNW and RuTNW samples, was also analyzed by XPS, and the 

survey spectra of both samples are very similar. Figure 5.5(a) shows the survey spectra of the 

RuTNW, where the Na 1s, Ti 2p, and O 1s photoelectron peaks, characteristic of the titanate 

elongated powders, are visible [1,12] and also the Ru 3d and Ru 3p peaks, confirming the 

presence of ruthenium in the RuTNW sample.  

The high-resolution spectra of Ti 2p, O 1s, and Ru 3p regions for TNW and RuTNW are 

presented in Figure 5.5(b-d). Typical Ti 2p3/2 and Ti 2p1/2 binding energies, corresponding to 

octahedral coordinated Ti4+ state, were obtained for both samples. The existence of Ti4+ in both 

samples was confirmed by the doublet splitting energies of the Ti 2p peaks (5.8 eV) that is 

typical of the Ti4+ existence; [17,24-27]. 

 

 

   
Figure 5.5 – (a) XPS survey spectra of the RuTNW sample and high-resolution spectra of the (b) Ti 2p, (c) O 1s and (d) Ru 3p 

regions of the TNW and RuTNW samples. 

 

For RuTNW, a shift for lower values, on the Ti 2p3/2 and Ti 2p1/2 binding energies, was 

observed, being in accordance with a more negative charge density for the atoms of titanium 
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and with a non-stoichiometric titanium − oxygen bonding [2]. This agrees with the Ru4+ 

incorporation into the TiO6 crystalline lattice [2]. In the O 1s core spectrum, the peak at ca. 530 

eV, (Figure 5.5(c)) is attributed, with some small contribution of the Na Auger peak (Na KLL), 

to the lattice oxygen [12]. No changes in this peak were observed due to Ru incorporation.  

The identification and quantification of ruthenium in the RuTNW sample was not possible 

using the characteristic Ru 3d5/2 and 3d3/2 peaks (at 280-281 eV and 284-286 eV, respectively) 

due to the partial overlap with the C 1s peak (at ~286 eV). The Ru 3p1/2 (484 eV) was used as 

an alternative [28], to confirm the metal existence in the RuTNW powder (Figure 5.5(d)). No 

evidence of Ru-Ru bonding existence (peak at 280 eV) was observed. 

Diffuse reflectance spectroscopy (DRS) was used to determine the optical absorption profile of 

the prepared samples (Figure 5.6).  

 
Figure 5.6 – (a) Absorption spectra and (b) representation of the function (FKM.hv)2 versus hv, for the bandgap energy 

determination of the TNW and RuTNW prepared samples. 

 

The optical spectrum of pristine TNW powder presents an absorption band edge near 400 nm, 

which is characteristic of titanate elongated nanoparticles (Figure 5.6(a)). 

For the Ru-modified sample, a blueshift on this absorption band was observed. The existence 

of this effect, in semiconductor nanoparticles, is usually attributed to the existence of quantum 
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size effects. The crystallite size, calculated for the samples, shows a reduction for the Ru-

modified sample, as described above.  

The existence of internal d–d transitions on the Ru4+ ions in the visible range (410 to 620 nm) 

has been ruled out in this type of materials. Instead, in these cases, the absorption beyond 400 

nm, up to the visible and near infrared range, has been ascribed to low-energetic photons and/or 

thermal excitations of trapped electrons, due to oxygen vacancies [1,2].  

The bandgap energy (Eg) of TNW and RuTNW was calculated from their diffuse reflectance 

spectra [12], as shown in Figure 5.6(b). The obtained values were 3.30 and 3.64 eV for TNW 

and RuTNW samples respectively.  

For elongated titanate materials, the bandgap energy corresponds to the O 2p → Ti 3d transition. 

To allow the energetic quantification of this transition, the valence band spectrum (VB-XPS) 

of each sample was recorded (Figure 5.7(a)). A linear method (extrapolation of the leading edge 

to the extended baseline of the VB spectra) was used to calculate the position of the valence 

band [2], as shown in Figure 5.7(a). The corresponding conduction band (CB) energy was 

calculated using the expression: Eg = VB − CB.  

Figure 5.7(b) shows the scheme of the VB and CB energies for TNW and RuTNW. The energy 

of VB and CB are distinct for both samples, with RuTNW requiring less energy for photo-

activation.  

  

 

 

Figure 5.7 - (a) XPS high-resolution spectra of the O 2p to Ti 3d transition, used for valence band determination; (b) Energy-

level diagram with Eg, VB and CB positions, for the prepared samples. 

 

5.4 - Photocatalytic performance 

5.4.1 - Photo-induced hydroxyl radical production 

To estimate the oxidation capability of the TNW and RuTNW samples, the photo-assisted 

production of the hydroxyl radical was examined. The •OH radical production was attained 
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through the quantification of the 2-hydroxyterephthalic acid (HTA) obtained from the 

terephthalic acid (TA) photocatalytic degradation [29]. The analysis of the amount of 

fluorescent HTA obtained after 30 min of light irradiation, shows that both samples are catalytic 

for this reaction (Figure 5.8), being RuTNW the best photocatalyst. 

 

 

Figure 5.8 - HTA concentration after 30 min of irradiation of a TA solution (3 mM, 150 mL) using 10 mg of each photocatalyst. 

 

Fixing the TA photolysis as a reference, an 18% increase on this radical production was 

observed, when the pristine TNW sample was used as a catalyst. This result contrasts with an 

increase of 55% obtained when using the RuTNW sample. These results demonstrate that Ru 

incorporation leads to an improvement of these materials photocatalytic performance for 

hydroxyl radical production. This result also agrees with previous reports describing metal 

doping/incorporation as modification methodologies that conduct enhancement on the materials 

photocatalytic performances [17,29-31]. 

 

5.4.2 - Caffeine photocatalytic degradation  

In this work, the catalytic efficiency of the samples in the degradation of caffeine, under UV-

vis and visible light was studied. Since in a photocatalytic process, the adsorption characteristics 

of the pollutant/catalyst system are expected to be important due to photo-oxidation reactions 

usually occur at the catalyst surface, the ability of the samples to adsorb caffeine was 

investigated during 60 min, under darkness conditions (Figure 5.9). Adsorption phenomena, 

and consequent interaction between catalyst surface and pollutant, are usually very relevant in 

photocatalytic heterogeneous processes and should be carefully evaluated [15,32,33].  

Since photocatalysis occurs on the surface of nanoparticles, the performance of the catalyst is 

highly influenced by the solution pH, as mentioned in Chapter 2. Therefore, the determination 

of the point of zero charge (p.z.c.) is important to predict the surface charge of nanoparticles. 

The p.z.c. of the TNW based samples is expected to be about 3.4, a value that has been reported 

for similar titanate elongated materials [15,16] and the caffeine has a pKa = 0.6. The pH of the 
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caffeine solution used was measured and a value of 5 was obtained; therefore, no interactions 

between the catalyst surface and the caffeine molecule were expected. This was experimentally 

confirmed since no significant caffeine was adsorbed in the RuTNW and TNW surfaces. 

Figure 5.9 shows the concentration decrease profile of the 20 ppm caffeine solution, over an 

irradiation period of 120 min, in the presence of the prepared samples as catalysts. This 

demonstrates that both powders are catalytic for this degradation process. 

 

 
Figure 5.9 - Profiles of the photocatalytic degradation of a 20 ppm caffeine aqueous solution during 120 min of irradiation, 

with the TNW and RuTNW samples acting as catalysts (0.13 g L-1). 

 

After 60 min of irradiation, the best photocatalyst for this reaction was RuTNW, with the 

degradation of all the caffeine present in solution. For the same period, only 21.4% of the 

caffeine was degraded using the pristine nanowires as a catalyst, and 14.7% of the caffeine was 

degraded using photolysis conditions. Even considering that a RuTNW assisted process 

removes all caffeine in solution after 60 min, it does not mean that all produced by-products are 

fully degraded into CO2 and H2O.  

To further investigate this issue, the identification and quantification of the intermediate 

products formed during 120 min of caffeine photocatalytic degradation (label as CAF-1 to 

CAF-5) were performed by LC-HR-ESI/MS. The obtained results (Table 5.1) are in accordance 

with a mechanism reported in literature (Annex B – Figure B.2) for this pollutant degradation 

process [34,35].  
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Table 5.1 - Main fragments and correspondent by-products identified by LC-HR-ESI/MS during the caffeine photodegradation 

using RuTNW as a catalyst 

Compound Formula 
Experimental mass 

(m/z) 
Mol.wt. Structure 

Caffeine C8H11N4O2 195.0876 194 
N

N

O

O

CH3

N

N

CH3

CH3

 

CAF-1 

C8H12N4O4Na 251.0751 

228 
N

N

O

O

CH3

N

NH2

CH3

CH3

COOH

 

C7H10N3O3 184.0713 

C5H7N2O2 127.0499 

CAF-2 

C6H9N3O4Na 210.0485 

187 
CHO

C
N

N

O

O

CH3

CH3

O

NH2

 
C6H8N3O3 170.0560 

CAF-3 C8H11N4O4 227.0774 226 
N

N

O

O

CH3

CH3 N

N

O

OH

CH3

 

CAF-4 C8H10N4O5Na 265.0547 242 
N

N

O

O

CH3

N

N

CH3

CH3

COOH

O

 

CAF-5 

C7H11N4O3 199.0824 

198 
N

N

O

O

CH3

N

NH2

H

CH3

CHO

 
C5H8N3O2 142.0609 

 

To further analyze this process, the time profile of the by-products was monitored during 

degradation. Figure 5.10 shows the amount (%) of each intermediate in solution over the 

irradiation time. 

In the first minutes, after starting the irradiation, high amounts of products CAF-1 (63.8%) and 

CAF-2 (36.2%), were detected. The simultaneous high production of CAF-1 and CAF-2 

intermediates is justified since they are originated from distinct caffeine degradation pathways 

[35]. When irradiation time increases, the relative concentration of product CAF-1 also 

increases, however, the CAF-2 gradually decreases. After 60−75 min no caffeine was detected, 

and the relative composition of the solution was drastically altered, e.g., it is notorious a high 



Chapter 5 – Ruthenium modified titanate nanowires for emergent pollutants photocatalytic degradation 

154 

decrease of the compound CAF-1 amount. After 120 min of irradiation, four compounds (CAF-

1 to CAF-4) remain in solution, implying that more time is necessary to attain the total 

degradation of these intermediates. 

 

 
Figure 5.10 – Variation of the intermediate products identified during 120 min of caffeine photodegradation, using RuTNW as 

a catalyst. 

 

5.5 – Photoactivation mechanism study 

Considering that the best photocatalytic results were obtained using the Ru-containing sample. 

Two distinct experiments were performed to infer if such behavior can be attributed to 

enhancement on the visible radiation absorption or/and to an electron-hole recombination 

decrease. 

First, the caffeine degradation was performed under visible radiation (Figure 5.11), and 

afterward, to evaluate the possibility of a charge carrier recombination rate reduction, 

photoluminescence spectra (PL) of the samples were recorded (Figure 5.12).  

As expected, the photodegradation performance of the catalysts under visible radiation was 

inferior to the one obtained using UV-vis irradiation (Figure 5.11). Under these conditions and 

after 60 min irradiation, very slight differences were observed for this pollutant degradation, 

for photolysis and TNW photo-assisted experiments. This indicates that TNW is not catalytic 

under visible radiation. On the other hand, under visible irradiation, a significant enhancement 

of the RuTNW catalytic performance was observed, indicating that this material is activated by 

this type of radiation. These data are in agreement with other reports attesting that Ru doping 

improves photocatalytic activity under visible light irradiation, with the dopant either reducing 

the energy gap and/or inducing the creation of an effective intermediate levels within the 
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forbidden zone. This will promote visible irradiation absorption to support the photo-generated 

charge carriers’ generation [3]. 

 

 
Figure 5.11 - Caffeine concentration, after 60 min of visible light irradiation, using the prepared samples as photocatalysts. 

 

The PL spectra of the TNW and RuTNW samples in Figure 5.12 shows a peak centered at 420 

nm, attributed to the bandgap transition (band-to-band transition) [36]. A reduction in this peak 

intensity, for the RuTNW powder, when compared to TNW response, was observed and 

suggests a higher and more effective electron-hole separation. This agrees with the possibility 

of Ru acting as electron trapping.  

 

 
Figure 5.12 - Photoluminescence spectra of the TNW and RuTNW samples. 

 

Supported on the above results and literature [2,4,37,38], a mechanism for the light-activated 

charge-transfer process in the Ru-modified titanate nanowires sample is proposed in Figure 

5.13. 
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Figure 5.13 - Charge-transfer mechanism proposal for TNW and RuTNW particles, under irradiation. 

 

In TNW, the valence band (VB) is derived from O 2p levels and the conduction band (CB) from 

the Ti 3d levels [12]. When an aqueous TNW suspension is submitted to irradiation possessing 

higher energy than its bandgap energy, electrons (e−) and holes (h+) are formed in the CB and 

VB respectively. These photogenerated electrons could easily be transferred to adsorbed 

oxygen and, through its reduction, the production of O2
•- can happen. These species can be 

active in photocatalytic redox processes, while the photogenerated holes will react with 

adsorbed H2O or OH− to produce •OH radicals. Due to the simultaneous action of all the oxidant 

species present in the system, including h+, pollutant degradation is possible. For the Ru-

modified titanate nanowires and considering the above results and the redox potential of 

Ru4+/Ru3+ (+ 0.77 V vs. NHE) and Ru5+/Ru4+ (+ 1.22 V vs. NHE) [38], the existence of mid-

band levels in the forbidden zone, closer to CB, is expected for the RuTNW sample. This will 

open the possibility of charge transitions of donor type: 

Ru4+→Ru5+ + e−                                                       (5.1) 

Ru3+→Ru4+ + e−                                                       (5.2) 

or acceptor type: 

Ru4+→Ru3+ + h+                                                       (5.3) 

being the Ru4+ to Ru3+ acceptor mechanism more likely [38]. The main consequence of the 

reduction in the recombination rate will be the photocatalytic performance improvement of the 

Ru-modified materials. 

 

5.6 - Conclusions 

In this work, crystalline titanate nanowires modified with Ru (RuTNW) were for the first time 

prepared by hydrothermal treatment of an amorphous Ru-containing precursor. The amount of 

incorporated ruthenium (Ru/Ti) was quantified, and a value of 3.4% was obtained. 
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Characterization results support the conclusion that in the RuTNW sample, Run+ is in the 

crystalline structure replacing Ti4+, localized in interstitial sites, and in the interlayers replacing 

Na+. The photocatalytic activity of the obtained powders was tested for the hydroxyl radical 

production, and RuTNW has presented the best performance. For caffeine degradation, an 

identical conclusion was possible, when considering the RuTNW photocatalytic performance, 

under UV−vis and visible irradiation. This photocatalytic behavior was mainly linked with a 

recombination rate reduction of the photogenerated electron−hole pairs. Considering all the 

results, a mechanism for the charge-transfer processes on the photoactivated Ru-modified 

sample was proposed, based on the creation of mid-band levels in the forbidden zone. 
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Chapter 6 – Photocatalytic performance of ruthenium modified titanate 

nanotubes and nanowires: a comparative study 

6.1 - Introduction 

Recently, enhancements on the photocatalytic activity of titanate nanowires were reported 

through the doping with Co and Ru, as shown in Chapters 4 and 5 [1,2]. Both doped particles 

were produced by hydrothermal treatment of an amorphous metal-containing precursor. It was 

confirmed the existence of the metal localized in two structural locations: substituting Ti4+ and 

exchanging Na+ in the interlayers’ region. 

The elements from the d-block of the periodic table are often used as a dopant in photocatalytic 

semiconductor nanomaterials development. Some of those, like ruthenium, are responsible for 

the increase of the light absorption in the visible. During photo-irradiation, the redshift usually 

observed for the doped semiconductor is mainly due to the formation of intermediary bands 

(IB) in-between the conduction band (CB) and valence band (VB). In the doped semiconductor, 

these new energetic levels will have a dual function: they will promote photo-activation during 

excitation, but they also act as recombination platforms for charge carriers [3,4]. In this way, 

for a Ru doped TiO2-based material, the success for either electronic activation or photo-

generated charge recombination will be dependent on the IB energy, in comparison to the CB 

and VB relative energetic positions [4]. 

Numerous synthesis routes to obtain and manipulate Ru-containing semiconductor 

photocatalytic nanoparticles have been reported. The effect of Ru incorporation on the optical, 

electronic and catalytic properties of MoSe2 nanoflowers has been recently reported [5]. A 

considerable improvement in the Ru-MoSe2 catalytic performance towards the hydrogen 

evolution reaction (HER) was attributed to Ru presence. 

Throughout impregnation methods, TiO2 nanoparticles modified with small Ru crystallites 

demonstrated enhanced photocatalytic activity for organic compounds degradation [6]. Distinct 

TiO2-RuO2 nanocomposites, with distinct layouts [7] and Ru-TiO2 nanoparticles [8] have been 

described to be catalytic for CO2 methanation. As shown in the previous chapter, the synthesis 

and photocatalytic performance of new Ru-doped titanate nanowires (RuTNW) for caffeine 

removal have been described [2]. 

Supported on this, in this work a comparative study on the photocatalytic performance of 

titanate nanowires and titanate nanotubes modified by Ru doping was aimed. Ru-modified 

titanate nanotubes (RuTNT) and nanowires (RuTNW) materials were produced by 

hydrothermal treatment of the same amorphous Ru-containing precursor but using distinct 



Chapter 6 – Photocatalytic performance of Ru modified titanate nanotubes and nanowires: a comparative study 

164 

approaches. The two powders were comparatively characterized and evaluated as 

photocatalysts for sulfamethazine and caffeine removal. Sulfamethazine and caffeine were 

chosen as model pollutants due to their relevance, as emergent pollutants, in nowadays society. 

Several differences were observed for the structural, optical and morphological characterization 

of both Ru-modified samples. RuTNT demonstrated to be better photocatalyst than RuTNW, 

for caffeine degradation but identical performances were observed for sulfamethazine photo-

assisted removal. However, the time profiles of the intermediates formed during irradiation 

were different, indicating distinct degradation mechanisms for both caffeine and sulfamethazine 

removal. 

 

6.2 – Synthesis 

Titanate nanowires (TNW) and nanotubes (TNT) were prepared using a hydrothermal treatment 

(160°C, 24 hours) of an amorphous precursor and TiO2 nanoparticles, respectively, as described 

in Chapter 10. 

An identical synthesis procedure was followed to produce the Ru-containing precursor, by 

adding the required molar amount (1%, nominal molar amount) of ruthenium to the titanium 

trichloride solution. In this experiment, a dark grey precursor was obtained. The Ru-containing 

amorphous precursor was used to obtain the Ru-TiO2 and RuTNW nanoparticles. The RuTNT 

nanoparticles were produced using the same hydrothermal approach but using the Ru-TiO2 

crystalline nanoparticles.  

 

6.3 – Structural, morphological and optical characterization 

The crystalline structure of the TNT and RuTNT samples was analyzed by XRD (Figure 

6.1). Peaks at 10º, 24º, 28º and 48º, corresponding to (100), (201), (003) and (002) lattice 

planes respectively, were observed in both XRD diffraction patterns. These features are 

characteristic of crystalline titanate lamellar materials [9,15]. 

As described in Chapter 5 for RuTNW sample [2], the segregation of ruthenium, as metal oxide 

or metallic nanoparticles is highly unlikely, since the XRD pattern of RuTNT doesn’t show any 

evidence of other crystalline phase existence. 

For this type of lamellar semiconductor, the peak at 2 = 10º is due to the interlayer 

distance between the TiO6 sheets [9,15]. In opposition to what was observed for 

TNW/RuTNW powders, no shift in the position of this peak was observed for the 

RuTNT sample [2]. This seems to indicate that for RuTNT, the Ru incorporation occurs 



Chapter 6 – Photocatalytic performance of Ru modified titanate nanotubes and nanowires: a comparative study 

165 

only by substitution of Ti4+ by Run+ in the TiO6 octahedra and/or in interstitial positions [1,10], 

and not by Na+ replacement [11,12]. 

As discussed in Chapter 5, the substitution of Ti4+ by Ru4+ in the doped TNT sample is possible 

since the effective ionic radius of Ru4+ and Ti4+ are comparable, 76.0 pm and 74.5 pm 

respectively. The Ti4+ replacement by Ru3+ ions (ionic radius is 82.0 pm) is not so probable. 

However, it has been described that this ion can be incorporated in some interstitial locations 

[3,13].  

 
Figure 6.1 - XRD patterns of the TNT and RuTNT prepared samples. 

 

The Ru doping effect in the TNT morphology was evaluated by transmission electronic 

microscopy (TEM) and no changes were observed for the pristine and Ru-doped titanate 

powders (Figure 6.2).  

 

  

Figure 6.2 - TEM images of the (a) TNT and (b) RuTNT samples. 
 

Both samples are morphologically homogeneous and are constituted by elongated and 

very thin particles. The cylindrical shape observed for TNT and RuTNT is in accordance with 
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previous works shown in Chapter 3 [14], and contrasts with the wire type morphology that 

it was shown for TNW/RuTNW in Chapter 5 [2]. 

It has been described that during titanate nanomaterials production under alkaline 

hydrothermal conditions, the precursor, usually TiO2 (anatase, rutile or amorphous) is 

dissolved and intermediate titanate nanosheets are formed. After, and depending on the 

experimental conditions, mainly temperature and time, they can be converted directly 

into nanofibres instead of being rolled up to produce nanotubes. This usually occurs at 

temperatures above 170ºC or when KOH is used as a solvent. For lower temperatures, 

in the 110–150ºC range, and using NaOH solutions, the formation of nanotubes has been 

reported [15]. Nevertheless, and as discussed in Chapter 2, the production of pristine 

titanate nanotubes and nanowires using the hydrothermal approach (160ºC, 24 h) of the 

same precursor was obtained [14]. Identical results were obtained in this work, using the 

same procedure but a Ru-containing precursor. With this, it was possible to demonstrate 

that doping does not influence the particles’ morphology. 

The dimension of the nanotubular particles was estimated, by direct measurements, and 

diameters of 9.6  1.3 nm and 10.8  1.7 nm were found for TNT and RuTNT 

respectively. The powders were analyzed by EDS but no Ru was detected in the doped 

RuTNT sample, probably due to the very low amount of the metal in the sample. Despite 

this limitation, the Ru existence was confirmed by XPS, as discussed below. The absence 

of any type of impurities was confirmed by EDS analysis (not shown). The metal 

incorporated in the RuTNT (Ru/Ti) was quantified by XRF and a value of 2.0% was 

obtained. It is interesting to verify that this value is considerably inferior if compared to 

the one reported for a RuTNW sample (3.4%) produced by the direct hydrothermal 

treatment of the same Ru-amorphous precursor (Chapter 5) [2]. This higher Ru/Ti ratio 

obtained for a material that was prepared directly from the Ru-containing precursor 

suggests that some dopant is lost during the Ru-precursor → RuTiO2 → RuTNT process. 

This additional loss of Ru, during the nanotubular sample synthesis, is in agreement with 

the dissolution of TiO2 materials during titanate elongated nanomaterials production that 

it has been reported [15]. The specific surface areas of 165.10 m2 g-1 and 220.78 m2 g-1 were 

obtained by the B.E.T. method, for TNT and RuTNT samples, respectively. These values are 

substantially different from those reported in the previous Chapter, for TNW and RuTNW 

samples, 238.10 m2 g-1 and 232.20 m2 g-1 respectively [2].  
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Raman spectroscopy was used to further characterize the structure of the samples. The Raman 

spectra of TNT and RuTNT powders (Figure 6.3) are in agreement with previous works on 

Na2Ti3O7 nanostructured materials [10,16-18].  

 

 
Figure 6.3 - Raman spectra of the TNT and RuTNT prepared samples. 

 

The comparison of the band positions for RuTNT/TNT and RuTNW/TNW sets of samples are 

shown in Table 6.1. Comparing the characteristic vibration bands on titanate materials, 

including the Ti-O-Ti and Na-O-Ti, it is notorious some dependence on the particle’s 

morphology. Higher Raman shifts were, in general, obtained for the titanate nanowires samples, 

TNW and RuTNW. 

 

Table 6.1 − Raman shifts (cm-1) and tentative assignments of the Raman bands for the prepared samples 

Type of vibration TNT RuTNT TNW* RuTNW* 

Na-O-Ti lattice mode 161 161 160 160 

Na-O-Ti lattice mode 196 196 196 196 

Ti-O-Ti stretch 280 280 280 285 

Ti-O-Ti stretch 449 449 455 455 

Ti-O-Ti stretch 679 679 676 678 

Ti-O-Ti and Ru-O stretches 709 709 706 706 

Ti-O stretch 916 916 915 915 

* from [2] (Chapter 5) 

 

The Raman spectra obtained for TNT and RuTNT samples are similar, without significant shifts 

in the bands assigned to Ti–O–Ti stretches (at 280, 449 and 679 cm-1) or Na–O–Ti lattice modes 

(at 161 and 196 cm-1).  
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The band at 709 cm-1 can be assigned to Ti―O―Ti or Ti―OH stretching vibrations [19,20]. 

A slight increase in the intensity of this band for the RuTNT sample was observed. This 

intensity increase can be owing to the Ru doping (B2g mode of Ru-O bond), as described in the 

previous chapter (Chapter 5, Section 5.3). 

It has been reported that the highest frequency mode, have its wavenumber position and 

intensity affected either by the doping level or by the ionic position within the titanate 

nanostructure [9,16]. The Raman band at 916 cm-1 in the RuTNT and TNT spectra, does not 

show clear changes induced by the Ru addition, but this result is not very meaningful 

considering that it is a very weak and broadband.  

The electronic structure of the prepared samples was investigated by XPS. The survey spectra 

of TNT and RuTNT powders are similar. Figure 6.4 shows the survey spectra of the RuTNT, 

where are visible the characteristic photoelectron peaks of titanate elongated materials [14]. 

The high-resolution spectra of Ti 2p and Ru 3p regions for TNT and RuTNT samples are also 

presented in Figure 6.4. Characteristic Ti 2p3/2 and Ti 2p1/2 binding energies, at 458.508 and 

464.308 eV that corresponds to octahedral coordinated Ti4+ were observed for both samples. 

The doublet splitting energies of the Ti 2p peaks (5.8 eV), corroborates the existence of Ti4+ 

[10,21,22]. 

For the Ru-doped sample a shift on the Ti 2p3/2 and Ti 2p1/2 binding energies, for lower values, 

was observed, by the information previously reported for RuTNW powder (Chapter 5) [2]. This 

agrees with a higher electron charge density for the Ti atoms and with a non-stoichiometric 

bonding of titanium atoms to oxygen via the incorporation of Ru into the TiO6 crystalline lattice 

[3]. No changes in the O 1s peak were observed due to Ru doping (not shown).  

The presence of ruthenium in the modified sample (Figure 6.4) was confirmed using the Ru 

3p1/2 peak (484 eV) [23], instead, the characteristic Ru 3d5/2 and 3d3/2 peaks due to the partial 

overlap with the C 1s peak, as discussed in the previous chapter (Chapter 5, Section 5.3). 

As mentioned in the previous chapter, no evidence of Ru-Ru bonding was also found for the 

RuTNT samples. 
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Figure 6.4 - (a) XPS survey spectra of the RuTNT sample and high resolution spectra of the (b) Ti 2p and (c) Ru 3p regions 

for the prepared powders. 

 

Diffuse reflectance spectroscopy was used to evaluate the optical absorption profile of the 

prepared samples (Figure 6.5). The optical spectra of TNT and RuTNT powders are similar, 

presenting an absorption edge near 400 nm, which is characteristic of titanate elongated 

nanoparticles [15]. 

As discussed in previous chapters, this absorption feature is due to the charge transfer from the 

O 2p (valence band) to the Ti 3d orbital (conduction band). 

An increase in the visible range absorption was observed for the RuTNT powder compared to 

the pristine TNT. This should be attributed to the Ru presence in the TNT structure and is 

according to data previously obtained for TNW/RuTNW materials, as analyzed in Chapter 5 

[2]. The bandgap energy (Eg) of the samples was evaluated through Kubelka−Munk (KM) data 

treatment. For TNT and RuTNT samples, the values obtained were 3.38 eV and 3.54 eV 

respectively. These values are identical to the ones previously obtained (in Chapter 5) for 

similar titanate nanowires powders, TNW and RuTNW (Figure 6.5 inset) [2]. 
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As mentioned in the previous chapter, the absorption in the visible and near infrared range, it 

should be endorsed to low-energy photons and/or thermal excitations of trapped electrons due 

to oxygen vacancies [3]. 

 

 
Figure 6.5 – Absorption spectra of the TNT and RuTNT samples. (Inset: energy-level diagram with Eg, VB, and CB positions, 

for TNT, RuTNT, and TNW, RuTNW [2]). 

 

To better analyze and quantify the photo-induced electronic transitions in these semiconductor 

materials, the valence band spectrum (VB-XPS) of both samples was recorded (Figure 6.6). 

Using a reported linear method, [3] the energetic position of the valence band (VB) was 

determinate directly form the XPS spectra. The conduction band (CB) energetic position was 

calculated by the expression: Eg = VB – CB. Figure 6.5 shows the energetic scheme for the 

samples analyzed. For comparative purposes, the VB, CB and Eg values from the corresponding 

nanowires samples (TNW and RuTNW) were also introduced in Figure 6.5. 

It is interesting that, despite the identical bandgap energy obtained for TNT and TNW samples, 

the energetic positions of VB and CB are different for these two powders, with TNT requiring 

less energy for photo-activation. For the Ru modified samples, the Eg values are similar (3.54 

and 3.64 eV for RuTNT and RuTNW, respectively), but the CB and VB energetic positions are 

distinct, with lower energy requests for the RuTNT sample photo-activation. 
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Figure 6.6 – XPS high resolution spectra of the O 2p to Ti 3d transition, used for valence band determination. 

 

To evaluate some alterations in the charge carrier recombination process, due to the Ru 

incorporation, the photoluminescence spectra were registered. The RuTNT and TNT powders 

were analyzed by photoluminescence spectroscopy (PL), and the obtained spectra are depicted 

in Figure 6.7. The obtained results were compared with the ones reported in the previous chapter 

for RuTNW/TNW [2]. 

In Figure 6.7, the emission peak around 420 nm is due to the recombination of the charge 

carriers after semiconductor photo-activation [24]. For the RuTNT powder, a decrease in this 

peak intensity, in comparison to TNT was observed, being in accordance with the observed for 

the RuTNW and TNW powders in Chapter 5. This can be justified by a more efficient photo-

generated charge carriers’ separation, a result of the intermediate bands’ creation, within the 

forbidden zone. 

 
Figure 6.7 – Photoluminescence spectra of RuTNT and TNT prepared powders. 

-202468101214

In
te

n
s
it
y 

(c
o
u
n
ts

)

binding energy (eV)

TNT

RuTNT

EF

EVB

O 2p → Ti 3d

325 375 425 475 525

In
te

n
s
it
y 

 (
c
o
u
n
ts

)

wavelength (nm)

TNT

RuTNT



Chapter 6 – Photocatalytic performance of Ru modified titanate nanotubes and nanowires: a comparative study 

172 

6.4 - Photocatalytic performance evaluation 

6.4.1 - Photo-induced hydroxyl radical production  

The high ability of a material to photo-catalyze the hydroxyl radical production could be seen 

as an indicator of its good photocatalytic performance in other photocatalytic processes. 

Hydroxyl radical (•OH) is a very powerful oxidant agent and has been in charge of numerous 

oxidation reactions, for instance for emergent pollutants photo-assisted degradation. To 

evaluate the influence of the Ru doping in the TNT catalytic oxidant ability, the production of 

this specie was monitored during the terephthalic acid (TA) photodegradation. Figure 6.8 shows 

the amount of fluorescent 2-hydroxyterephthalic acid (HTA) produced during 30 min of 

irradiation of a TA/catalyst suspension. For comparative purposes, the results obtained for 

TNW and RuTNW powders were included in Figure 6.8. 

 

 
Figure 6.8 – HTA concentration during 30 min of irradiation of a TA solution (3 mM, 150 mL) using 10 mg of each 

photocatalyst. 

 

As can be observed, all the samples have shown to be catalytic for this process, with RuTNT 

presenting the best photocatalytic activity. It is interesting that for both sets of samples, 

TNT/RuTNT and TNW/RuTNW, the best performances were attained by the doped materials. 

It is also noteworthy that the best results were obtained for the nanotubular samples, TNT and 

RuTNT, which are the ones possessing the lowest surface areas (165.10 and 220.78 m2 g-1 

respectively). 

Considering the photolysis as a reference, an improvement of 78% on the •OH amount was 

attained using RuTNT as a catalyst. Using RuTNW and TNT as catalysts, this improvement 

drops to 55% and 40% respectively. The TNW catalyst was responsible for an increase of only 
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18% on radical production. These results show that the enhancement of these materials for the 

photocatalytic production of hydroxyl radicals is a direct effect of the Ru doping process. 

The highest photocatalytic improvement, in comparison to pristine materials, was observed for 

RuTNW with an enhancement of 95% contrasting with the 33% observed for the RuTNT. These 

results are in agreement with others previously reported and show the influence of having 

nanotubes instead of nanowires for this catalytic purpose [14]. 

 

6.4.2 – Caffeine and sulfamethazine photocatalytic degradation  

After the promising photocatalytic results obtained with RuTNW/TNW for caffeine 

degradation (Chapter 5), this molecule was chosen as a model pollutant to compare the 

efficiency of these materials with the new ones, RuTNT/TNT. Furthermore, sulfamethazine 

(SMZ) was also chosen as a model pollutant, due to this is an antibiotic of the sulphonamides 

family and is a drug widely used in medicine and veterinary medicine, being nowadays a 

relevant emergent pollutant.  

 

• Caffeine photocatalytic degradation 

Before irradiation, the ability of the RuTNT/TNT and RuTNW/TNW samples to adsorb 

caffeine and sulfamethazine was studied in dark conditions for 60 min. As shown in the 

previous chapter (Chapter 5, Section 5.4.2), no significant caffeine adsorption (less than 5%) 

was observed in the RuTNW/TNW surfaces [2]. Identical results were obtained for 

RuTNT/TNT powders. 

Figure 6.9 shows the concentration profile of a 20 ppm caffeine solution over 45 min of 

irradiation, using TNT, RuTNT, TNW and RuTNW powders as photocatalysts. All the powders 

were catalytic for caffeine degradation. The Ru-doped samples were the best catalytic materials, 

and RuTNT was the one presenting the best performance. Using this catalyst, only 3.7% of the 

initial caffeine remains in solution, after 45 min of irradiation. This value increases to 16.2% in 

the presence of RuTNW. For the same period of irradiation, caffeine degradation values of 

43.7% and 18.1% were attained using the pristine nanotubes (TNT) and nanowires (TNW) 

catalysts respectively. Under the same conditions, but with no catalyst (photolysis) only 10.3% 

of the initial caffeine was removed from the solution. After an irradiation time of 60 min, the 

removal of all caffeine was attained using both RuTNW and RuTNT. As discussed for TA, for 

caffeine degradation, the highest photocatalytic improvement due to Ru doping was observed 

for TNW with an enhancement of 66% contrasting with the 53% observed for TNT. These 

results can be explained due to the differences in the VB energy (inset Figure 6.5), for TNW 
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and RuTNW (EVB = 2.960 and 3.176 eV, respectively) the difference between the energy 

necessary for the activation of the samples is 0.216 eV being higher than the difference for TNT 

(EVB = 3.173 eV) and RuTNT (EVB =  3.186 eV) samples, only a 0.013 eV were obtained.  

 

 
Figure 6.9 – Photocatalytic degradation of a 20 ppm caffeine aqueous solution during 45 min of irradiation using the pristine 

and modified powders as photocatalysts (0.13 g L-1). 

 

To go further in this study of this photocatalytic degradation process, the production and 

degradation of intermediates during an irradiation time of 120 min were evaluated. The products 

formed during RuTNT and RuTNW photo-assisted caffeine degradation were identified and 

quantified by LC-HR-ESI/MS and the results are shown in Table 6.2. The results obtained are 

in accordance with a reported degradation mechanism, shown in Annex B – Figure B.2 [25,26].  

The time profile of the by-products during degradation was monitored and the results are in 

Figure 6.10. It is noteworthy that the profiles found for the RuTNT catalyst are distinct from 

the ones reported in Chapter 5 for the RuTNW photocatalyst [25], especially for compounds 

CAF-1 and CAF-2. In the first minutes after irradiation, as detected for the RuTNW sample, 

using RuTNT sample (Figure 6.10(a)), high production of the compounds CAF-1 and CAF-2, 

was observed. Compounds CAF-1 and CAF-2 are the main products in solution during the first 

60 min of irradiation. It is notorious for an increase of compound CAF-2 amount after 75 min 

of irradiation, contrasting with the decrease observed for compound CAF-1. This behavior is 

completely different from the one observed for RuTNW (Figure 6.10(b)) where a constant and 

almost linear increase of CAF-1 and a decrease of CAF-2 was observed during the first 75 min 

of irradiation [25]. 
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Table 6.2 − Main fragments and correspondent by-products identified by LC-HR-ESI/MS during caffeine photodegradation 

using RuTNT and RuTNW samples as catalysts 

Compound Formula 
Experimental mass 

(m/z) 
Mol.wt. Structure 

Caffeine C8H11N4O2 195.0876 194 
N

N

O

O

CH3

N

N

CH3

CH3

 

CAF-1 

C8H12N4O4Na 251.0751 

228 
N

N

O

O

CH3

N

NH2

CH3

CH3

COOH

 

C7H10N3O3 184.0713 

C5H7N2O2 127.0499 

CAF-2 

C6H9N3O4Na 210.0485 

187 
CHO

C
N

N

O

O

CH3

CH3

O

NH2

 
C6H8N3O3 170.0560 

CAF-3 C8H11N4O4 227.0774 226 
N

N

O

O

CH3

CH3 N

N

O

OH

CH3

 

CAF-4 C8H10N4O5Na 265.0547 242 
N

N

O

O

CH3

N

N

CH3

CH3

COOH

O

 

CAF-5 

C7H11N4O3 199.0824 

198 
N

N

O

O

CH3

N

NH2

H

CH3

CHO

 
C5H8N3O2 142.0609 

CAF-6 

C5H8N2O3Na 167.0426 

144 
CHO

NH

N

O

O

CH3

CH3

 
C3H9N2O 89.0713 

 

 



Chapter 6 – Photocatalytic performance of Ru modified titanate nanotubes and nanowires: a comparative study 

176 

 

 
Figure 6.10 − Variation of the intermediate products identified during 120 min of caffeine photocatalytic degradation, using 

(a) RuTNT and (b) RuTNW as photocatalysts. 

 

After 60 min, using RuTNT (Figure 6.10(a)), no caffeine was detected in solution, but the 

presence of the compounds CAF-1 and CAF-2 were still too high. At 75 min, the compound 

CAF-6 amount increases, and after 120 min of irradiation only three compounds (compounds 

CAF-1, CAF-3, and CAF-6) are still in solution, indicating that more time is required to attain 

the complete degradation of these products using RuTNT sample as a catalyst.  

 

• Sulfamethazine photocatalytic degradation 

Sulfamethazine (SMZ) was chosen as a model contaminant to further evaluate the 

photocatalytic performance of the prepared catalysts. This is an antibiotic of the sulphonamides 

family and is a drug widely used in medicine and veterinary medicine. 
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The pristine TNT/TNW and doped RuTNT/RuTNW samples were evaluated as photocatalysts, 

for the first time, for sulfamethazine removal (Figure 6.11).  

 

 
Figure 6.11 - Photocatalytic degradation profile of a 10 ppm sulfamethazine aqueous solution during 45 min of irradiation 

using the prepared powders as photocatalysts (0.13 g L-1). 

 

As can be seen in Figure 6.11, during the adsorption period, no substantial sulfamethazine 

adsorption was observed for the pristine TNW/TNT samples. However, 29.1% and 15.8% of 

the initial sulfamethazine were adsorbed for RuTNW and RuTNT respectively. After 60 min in 

dark conditions, the photocatalytic efficiency of the pristine and Ru doped samples on the 

degradation of 10 ppm of sulfamethazine solution was evaluated. 

This molecule degrades faster than caffeine and as can be seen in Figure 6.11, all the samples 

were catalytic for this process. The best photocatalysts were the RuTNT and RuTNW powders 

with the total pollutant removal after 30 min of irradiation. For sulfamethazine degradation, 

TNW is a slightly better catalyst than TNT. 

The intermediates formed during 90 min of sulfamethazine photodegradation, in the presence 

of RuTNT and RuTNW, were carried out (Table 6.3). The obtained results are in agreement 

with a degradation mechanism reported in literature [27-29] and presented in Annex B – Figure 

B.4. 

The profile of such intermediate products degradation/formation with the irradiation time was 

also studied and the results are in  Figure 6.12 where a sequential degradation process can be 

visualized. It is interesting to verify that distinct time profiles were observed for each 

intermediate, depending on the morphology of the catalyst, nanotubes or nanowires. As 
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observed for caffeine, these results indicate that titanate morphology has a strong influence on 

the sulfamethazine degradation mechanism.  

 

Table 6.3 − Main products identified by LC-HR-ESI/MS during the sulfamethazine photodegradation using RuTNT and 

RuTNW samples as catalysts 

Compound Formula 
Experimental 

mass (m/z) 
Mol. wt. structure 

Sulfamethazine C12H14N4O2S 279.0910 278.3 
S

O

O

NH N

N

CH3

CH3

NH2

 

SMZ-1 C12H14N4O3S 295.0859 294.4 
S

O

O
NH N

N

CH3

CH3

NH2
OH  

SMZ-2 C12H13N3O 216.1131 215 
OH

NH

N

N

CH3

CH3

 

SMZ-3 C12H14N4 215.1291 214 

NH N

N

CH3

CH3

NH2

 

SMZ-4 C6H7NO4S 190.0168 189 NH S

O

O

OH

OH  

SMZ-5 C6H7NO3S 174.0219 173 NH2 S

O

O

OH

 

SMZ-6 C6H7N3O2 154.0611 153 
N

N

NH2

CH3

OH

O

 

SMZ-7 C6H8N2O 125.0709 124 
N

N

OH

CH3

CH3 

SMZ-8 C6H9N3 124.0869 123 

N

N

NH2

CH3

CH3 
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Figure 6.12 – Variation of the by-products identified during 90 min of sulfamethazine photocatalytic degradation, using (a) 

RuTNT and (b) RuTNW as catalyst. 

 

For RuTNT photocatalyzed process, the sulfamethazine degradation starts with the formation 

of compounds SMZ-1, SMZ-3, SMZ-4, and SMZ-8, and after 5 min the production of 

compounds SMZ-1 - SMZ-4 starts. For this time the compound SMZ-8 starts to be degraded, 

and after 20 min of irradiation, this compound was completely removed.  

Although the fact that after 30 min no sulfamethazine was detected in solution, the presence of 

small amounts of SMZ-1, SMZ-3, SMZ-4 products and a higher amount of SMZ-7 was 

observed. After 75 min starts the formation of compound SMZ-5, and there is also a large 
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amount of compound SMZ-7 in solution. After 90 min of irradiation, no compounds were 

detected in the solution. 

Distinct results were obtained when RuTNW was used as catalyst. First, the formation of 

compound SMZ-7 starts immediately with the irradiation. This is the intermediate with the 

highest expressivity during the 90 min of irradiation. In opposition to what was observed for 

RuTNT, in this case, the formation and degradation of compounds SMZ-4 and SMZ-5 are 

relevant. After 90 min, the compound SMZ-7 is still present in solution (57.5%) even if it has 

been starting to decrease. In opposition, the amount of SMZ-4 is increasing and represents 

42.5% of the composition of the final solution. 

The Ru-containing samples were the best catalysts for caffeine and sulfamethazine degradation, 

and the possibility of such behavior is due to an enlargement on the semiconductor absorption 

range was carefully evaluated. 

For that purpose, caffeine and sulfamethazine degradations were carried out under visible light. 

Under visible radiation, the catalytic activity of the samples was lower when compared to the 

experiments performed under UV-vis radiation. The results obtained for sulfamethazine 

degradation are shown in Figure 6.13.  

 

 

Figure 6.13 – Sulfamethazine concentration after 45 min of irradiation with visible light, using 20 mg of each photocatalyst. 

 

For TNW and TNT assisted experiments, almost no differences in degradation rates were 

observed if compared to photolysis (less than 1%). This confirms that these materials are not 

catalytic under visible light. However, a clear improvement in the catalytic activity was 

observed for the Ru-containing catalysts, RuTNT and RuTNW, in comparison to TNT/TNW, 

when visible radiation is used. 

As for the UV-vis radiation experiments, RuTNT was the best catalyst under visible irradiation. 

The improvement in the photocatalytic performance under visible light irradiation, due to Ru 
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doping should be attributed to either a bandgap energy narrowing effect and a decrease on the 

recombination rate, by the creation of intermediate bands within the prohibited zone.  

 

6.5 - Conclusions 

In this work, crystalline Ru modified titanate nanotubes and nanowires were prepared using the 

same Ru-containing amorphous precursor and identical time and temperature conditions but 

two distinct procedures. The precursor was used to prepare directly the RuTNW sample and to 

prepare Ru-TiO2 nanoparticles, which were afterward used for RuTNT synthesis. 

The amount of ruthenium integrated (Ru/Ti) was evaluated for RuTNW and RuTNT samples 

and values of 3.4% and 2.0% were obtained, respectively. This result agrees with a higher 

amount of Ru incorporated in the material directly from the Ru-precursor, RuTNW, contrasting 

with some Ru lost that occurs during the two steps process required for the RuTNT production.  

Supported on the characterization results it is possible to conclude that in both modified 

samples, the Run+ is replacing Ti4+ and/or in interstitial positions. In opposition to what has 

been described for RuTNW, for RuTNT no evidence of the metal presence, in the interlayers, 

was found.  

The photocatalytic ability of the prepared samples was studied for the hydroxyl radical 

production and the results allow to conclude that Ru incorporation leads to an enhancement of 

both TNT and TNW photocatalytic performances. An identical conclusion can be taken for 

caffeine and sulfamethazine degradation under UV-vis and visible radiation. The best 

photocatalytic material, for all the studied processes, was RuTNT. 

It was also possible to conclude that for both RuTNT and RuTNW samples, this improvement 

on the photocatalytic behavior is mainly due to a decrease in the charge carriers’ recombination 

rate rather than to visible light activation. The utmost difference on the photocatalytic 

performance of having nanotubes or nanowires is mainly related to the pollutants’ degradation 

mechanism and intermediates formation/degradation. 
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Chapter 7 – Influence of iron and manganese vestigial contamination on the 

properties of titanate nanowires 

7.1  - Introduction 

It has been shown, in the previous chapters, that through the modification of TNW with 

transition metals, for instance, Co or Ru, the catalytic performance of these elongated materials 

for pollutants removal can be enhanced (Chapters 4 – 6) [1,2]. Usually, this effect can be due 

to an enlargement to the visible range of the semiconductor optical absorption. However, the 

major reason for this behavior is often the reduction of the charge recombination rate, due to 

the creation of intermediate bands in the forbidden zone. It has been reported that the bandgap 

energy, valence and conduction band positions, Fermi level, and d‐electron configuration of the 

electronic structure in TiO2 and related materials, can be successfully adjusted when transition 

metal ions, especially the ones possessing 3d or 4d electrons, are introduced into semiconductor 

crystalline structure.  

Manganese and iron are transition metal ions, with a 3d transitions and they widely used as 

dopant elements to try to extend the material light absorption to the visible range, inducing the 

creation of intermediate bands (IB) within the forbidden zone. This will promote a redshift in 

the absorption band edge, with the IB acting not only as intermediate energetic levels, during 

photo-activation, but also as recombination center under low energy photons illumination, due 

to the IB can act as stepping stones to relay valence electrons into the conduction band (CB), 

extending the lifetime of the charge carriers [3,4]. 

The Fe3+ ion attracted a lot of attention due to the remarkable synergistic improvement of the 

photocatalytic activity of TiO2 in the visible light range. Recently, it was found that TiO2 doped 

with Fe3+ ions have higher photoactivation under visible light irradiation [5]. It has been proven 

that Fe3+ ions are an effective doping element in TiO2 due to their half-filled electronic 

configuration, and Fe3+ modified TiO2 not only favors the separation of photo-generated 

electrons and holes but also reduces the TiO2 bandgap energy [6,7]. 

Ding et al. [8] reported the modification of titanate nanotubes with iron (Fe-TNT), obtained by 

intercalation of Fe ions in the interlayers. This new Fe-TNT showed an improvement in the 

optical properties when compared with the pristine TNT, shifting the absorption into the visible 

range. The authors also modified the TNT with other metals, concluding that the Bi- and Cd-

incorporated materials have slightly improved absorption properties, but the transition metals 

Fe and Ni have a much more significant influence on the optical properties of the titanate 

nanotubes [8]. 
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Another particularity of the iron, is that Fe3+ ions can act as electron and hole trap, resulting in 

the formation of Fe2+ and Fe4+ ions, (Eº (Fe3+/Fe2+) = 0.771 V vs. NHE and Eº (Fe4+/Fe3+) = 

2.07 V vs. NHE), which are less stable as compared to Fe3+ ions (due to half filled stable d5 

configuration). So, the trapped charges can be easily released back to form stable Fe3+ ions [9]. 

The redox potential of Fe3+/Fe2+ is 0.771 V vs. NHE, which is between the VB and CB of the 

semiconductor materials and can act as a charge carrier trap, as described in the follow 

equations [10]: 

 

Fe3+ +  eCB
−  → Fe2+ (electron trap)                                         (7.1) 

Fe2+ + O2 → Fe3+ + O2
•- (electron release)                                   (7.2) 

Fe3+ + hVB
+

 → Fe4+ (hole trap)                                            (7.3) 

Fe4+ + OH- → Fe3+ + •OH (hole release)                                     (7.4) 

 

The beneficial effect of Fe3+ ions is attributed to electron trapping at the semiconductor surface. 

The trapping of photoelectrons leaves photogenerated holes available for reaction with 

hydroxyl ions to form hydroxyl radicals [11]: 

 

Fe3+ +  eCB
−  → Fe2+                                                      (7.5) 

Fe2+ + hVB
+

 → Fe3+                                                     (7.6) 

 

The iron ions (or ferrous ions) are also attractive for the Fenton-based processes. The Fenton 

oxidation was discovered by H.J.H. Fenton in 1894. The classical Fenton reagents consist of 

H2O2 and iron ions homogeneous solution, both are unstable in chemical properties and easy to 

lose activity, resulting in a waste of reagents. Also, concentrated H2O2, which is explosive and 

toxic, is harmful to humans. Therefore, the storage and transportation of concentrated H2O2 and 

homogeneous solutions of iron ions not only increase the costs of organic wastewater treatment 

but also endanger the health of operators [12-14]. However, nowadays the Fenton-based 

oxidation process is one of the most effective and suitable methods for organic pollutants’ 

removal. The highly oxidative hydroxyl radical (•OH) formed from the reaction of H2O2 with 

Fe2+ under strong acid can quickly and non-selectively degrade most organic pollutants to 

carbon dioxide and water. The oxidation mechanism for the Fenton process is shown in 

equation (7.7). Based on this principle, the Fenton process has been widely used in various 

kinds of organic wastewater treatment.  
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The Fenton catalytic reactions consist of the oxidation of Fe2+ to Fe3+ together with the •OH 

generation, Eq. (7.7), and the reduction of Fe3+ to Fe2+ (Eq. (7.8)) [11,13,15]. 

 

Fe2+ + H2O2 + H+ → Fe3+ + H2O + •OH                                   (7.7) 

Fe3+ + H2O2 → Fe2+ + HO2
• + H+                                   (7.8) 

 

The photo-Fenton processes are based on the Fenton’s reaction in which the hydrogen peroxide 

is catalyzed, by the ferrous ions, to photo-generate hydroxyl radicals, according the equations: 

 

Fe2+ + H2O2 → Fe3+ + OH- + •OH                                   (7.9) 

H2O2 +  eCB
−   → 2 •OH                                        (7.10) 

Fe3+ + H2O2 +  eCB
−  → 2 •OH + Fe2+ + H+                              (7.11) 

Fe3+ + H2O + hVB
+

 → Fe2+ + H+ + •OH                              (7.12) 

Fe2+ + O2 +  eCB
−  → Fe3+ + O2

•-                                 (7.13) 

 

The generated hydroxyl radicals are strongly oxidizing agents, Eº (•OH/H2O) = 2.73 V vs. NHE, 

that can rapidly and non-selectively oxidize organic compounds into carbon dioxide and water 

and hence can degrade pollutants effectively. 

Manganese is an excellent candidate for doping due to it can contribute for a reduction on the 

bandgap energy, due to Mn doping induces a considerable energetic shift of the valence band 

maximum, which can contribute to narrow the overall energy gap in the doped materials 

[16,17]. It can also induce the introduction of intermediate bands (IB) in the forbidden zone, 

allowing multi-band optical absorption [17]. 

Recently, TNW modified with Mn, by doping or ion-exchange methodologies were reported 

[18]. The incorporation of Mn can lead to changes in the crystalline structure of the TNW and 

on its physical and optical properties [18]. It was concluded that by doping the Mn was 

incorporated between the TiO6 interlayers and replacing Ti4+. On the other hand, by an ion-

exchange process, the metallic ions were only incorporated in the interlayers’ space.  It is also 

interesting to note that the Mn in these samples is present as Mn3+ in the doped sample and as 

Mn2+/Mn4+ in the intercalated sample. The presence of Mn in both modified samples, promote 

the absorption in the visible range and a reduction of the charge carriers’ recombination rate. 

The best photocatalytic results reported for the methylparaben removal were obtained using the 

doped sample [18].  
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Manganese is also a superoxide ions scavenger, once Mn2+ quickly convert the O2
•- into H2O2 

[19]. Failli et al. reported that Mn(II) complexes with polyamine-polycarboxylate scaffolds 

were effective O2
•- scavengers in biological systems and, therefore, may prevent oxidative 

cell/tissue damage and exert anti-inflammatory therapeutic effects [20].  

Recently, was reported that the optical redshift (of 300 mn) in Mn-doped rutile is expected to 

open wide application possibilities for using TiO2 in a new class of photovoltaic cells, wherein 

the doped materials will be used as an effective optical absorber for a wide range of solar 

irradiance from the UV to the near-infrared spectral light [3,16]. 

This research work describes the Mn and Fe incorporation in titanate nanowires (TNW), due to 

vestigial contamination, on the initial reagents, and the evaluation of their photocatalytic 

performance on pollutants removal. The photocatalytic activity of the prepared powders was 

firstly investigated using the terephthalic acid (TA) to study the catalytic production of hydroxyl 

radical (•OH). Due to its environmental impact and resistance to degradation, caffeine was 

chosen as a model emergent pollutant. 

Although •OH radicals have been reported to be the major species responsible for photocatalytic 

degradation of organic pollutants, many other radicals can participate actively in this process 

[21]. Therefore, a radical scavengers’ detailed study was carried out to define the active oxidant 

species, involved in the caffeine photocatalytic degradation process. For this, the caffeine 

photodegradation was carried out with an addition of different scavengers, such as ethanol 

(EtOH), benzoquinone (BQ) and potassium oxalate (Ox), to trap the •OH, O2
•- and holes (h+), 

respectively. Based on these results, a possible degradation mechanism was proposed. 

 

7.2 – Synthesis 

Titanate nanowires were prepared using a hydrothermal treatment of an amorphous precursor 

in alkaline aqueous media (NaOH, 10 M) at 160C for 24 hours. The TNW precursor was 

prepared using a procedure published elsewhere [22]. A detailed description of the experimental 

procedure is shown in Chapter 10.  

During this work two distinct TiCl3 sources were used, a titanium trichloride (12 wt.% in 20-

30 wt.% HCl) from Aldrich and (20 wt.% in 20-30 wt.% HCl) from Acros. 

Contrary to what it has been described, a pale pink solid, using the TiCl3 (12 wt.% in 20-30 

wt.% HCl, Aldrich), was obtained. This sample was labeled as ‘contaminated precursor’. 

Anticipating the existence of any kind of contamination in the TiCl3 commercial solution, the 
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same procedure was repeated using an identical amount of TiCl3 but from a distinct source, (20 

wt.% in 20–30 wt.% HCl, Acros). In this case, a white solid was obtained.  

In fact, through atomic absorption spectroscopy (AAS) analyses of the commercial TiCl3 

solutions, it indicates 8.1 mg L-1 of manganese and 4.3 mg L-1 of iron in the solution used to 

prepare the ‘contaminated precursor’, confirming the vestigial contamination with Mn and Fe. 

With these two distinct TiCl3 sources, and after hydrothermal treatment of the precursors, two 

crystalline solids, Fe/Mn-TNW (pink) and TNW (white) were produced. 

 

7.3 – Structural, morphological and optical characterization 

The crystalline structure of the samples prepared using the two sources of titanium was analyzed 

by XRD and the obtained patterns are presented in Figure 7.1. 

 

 
Figure 7.1 – (a) XRD patterns of the TNW and FeMnTNW samples; (b) detail of the XRD patterns. 

 

Figure 7.1 shows that both XRD patterns show peaks typical of a Na2Ti3O7 (JCPDS file no. 72-

0148) crystalline titanate layered structure [23-28]. No signs of other crystalline phases, e.g. 

metallic clusters, iron or manganese-containing oxides were identified in the diffraction pattern 

of all the samples, indicating that only crystalline TNW particles were produced. 

As previously reported, the diffraction peak at 2 10º is correlated to the distance between the 

TiO6 octahedra sheets that form the layered structure, usually hosting Na+ ions. 

For the contaminated sample, FeMnTNW, the above-mentioned peak shifts from 2 = 9.94º for 

TNW to 9.15º, suggesting the incorporation of some cationic species between the TiO6 sheets, 

via a Na+ ion-exchange process. This result is in agreement with other reported works 

describing the high ability of these titanate layered materials to exchange Na+ by other cationic 
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species, e.g. H+, Run+ or Co2+ [1,2,27,29]. It should be noted that this shift, for the contaminated 

sample, should be due to an increase of the interlayers’ distance since the ionic radius of Na+ is 

smaller than that of hydrated ionic Fe and/or Mn [18,30]. The existence of Fe or Mn 

intercalation presupposes those ions’ availability to migrate to the interlayers during TNW 

synthesis. This result also agrees with the precursor dissolution before titanate sheets formation 

[1,23,31]. After the loss of some of the Fe/Mn ions from the precursor to the solution, these 

ions will be available to replace Na+ in the interlayers, during TNW synthesis. 

The modification of a titanate lamellar structure by the incorporation of metal in the interlayers 

and simultaneously with the metal replacing Ti4+ has been described in the literature for several 

metals [1,2,18]. For a coordination number of 6 and considering that Fe3+ and Ti4+ have similar 

ionic radii, 78.5 pm, and 74.5 pm respectively, the substitution of Ti4+ by Fe3+ in the TiO6 

octahedra is also a possibility. Considering the same structural arrangement, the partial 

replacement of Ti4+ by Mn3+ (72.0 pm) or Mn2+ (81.0 pm) have also no apparent structural 

hindrance. The electron configurations of Mn²⁺ and Fe³⁺ are [Ar] 3d⁵ and d → d transitions of 

those five electrons to a higher level it is possible and would explain the pale pink coloration 

of the FeMnTNW sample. 

To evaluate the possible influence of the Fe/Mn contamination in the TNW morphology, the 

prepared samples were analyzed by TEM. As can be seen in Figure 7.2, the samples are 

homogenous and present identical morphology: very thin and elongated particles. However, for 

the FeMnTNW sample, together with the nanowires, some sheet-type larger particles are also 

visible. 

 

  

Figure 7.2 - TEM images of the (a) pristine TNW and (b) FeMnTNW prepared samples. 

 

The elemental composition of the prepared samples was tried by energy-dispersive X-ray 

spectroscopy (EDS) but was not successful due to equipment limitations and the small amount 

a) b) 
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foreseeing for other elements than Na, Ti and O. Despite this, the quantification of Fe and Mn, 

in the FeMnTNW sample was possible by XRF and posteriorly confirmed by XPS. The Mn 

amount in the FeMnTNW sample is vestigial (Mn/Ti = 0.08%), but a higher value 0.14% (Fe/Ti 

ratio) was obtained for iron. It is noteworthy that the Fe/Mn ratio is 1.75 in the nanowires, 

contrasting with the value of 0.53 found on the TiCl3 solution. This seems to be evidence of the 

superior ability of Fe, when compared to Mn, to be incorporated in the TNW structure. 

One of the most attractive properties of elongated nanomaterials, for heterogeneous catalytic 

applications, is their high specific surface area. Therefore, the specific surface area of the 

samples was evaluated by the B.E.T. method. Pristine TNW possesses a higher surface area, 

238.10 m2 g-1 if compared to the FeMnTNW powder, 124.7 m2 g-1. This fact can be related to 

the differences observed in the samples’ morphology. 

The influence of the Fe and Mn incorporation in the TNW structure was further investigated by 

XPS analysis. Figure 7.3 shows the survey spectra of the pristine TNW and modified 

FeMnTNW powders, where the titanate typical photoelectron peaks of Na 1s, Ti 2p, and O 1s 

are visible. The XPS spectrum of the TNW sample shows the Ti 2p3/2 and 2p1/2 peaks at 458.6 

and 464.4 eV, respectively (Figure 7.3(a)). Slightly shifts on those peaks, to 458.7 and 464.4 

eV were observed for the Fe/Mn containing sample. This agrees with some alterations in the 

electron density of the Ti4+ surrounding structural environment, imposed by the metal/dopant 

presence [2,32]. 

No peaks appear ate 456.2 − 457.4 eV range indicating that only Ti4+ is present in the structure 

[1,33,34]. This hypothesis is corroborated by the fact the Ti 2p peak doublet splitting energy is 

5.8 eV, indicating the existence of Ti4+ only. The high symmetry of the Ti 2p peaks also 

confirms that no Ti4+ reduction had occurred in the samples [1,35,36].  

The high-resolution spectra of Ti 2p, O 1s, and Fe 2p regions are also presented in Figure 7.3. 

For the FeMnTNW sample, two peaks in the Fe 2p region, at 710.2 and 723.4 eV are observed 

in Figure 7.3(c). These peaks correspond to the 2p3/2 and 2p1/2 spin-orbital components, 

indicating the presence of Fe2+ and Fe3+ in the sample [37-39]. Due to the extremely small 

amount of Mn present in the structure and the acquisition conditions, no peaks associated with 

the presence of this metal were observed. 

The Na+ content in the samples was assessed by XPS and the amount found in the FeMnTNW 

sample is lower than the one obtained for TNW. This is in accordance with a higher level of 

Na+ substitution, by Fe/Mn, in the interlayer space, for the contaminated sample. 
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Figure 7.3 - XPS survey spectra of the (a) TNW and (b) FeMnTNW samples. High resolution spectra of the (c) Ti 2p, (d) O 1s 

and (e) Fe 2p. 
 

The optical characterization of the powders was carried out by recording their diffuse 

reflectance spectra in the UV-vis-NIR range. Diffuse reflectance, R can be related to the 

absorption Kubelka–Munk function, FKM [40]. The absorption spectra obtained for the prepared 

samples are present in Figure 7.4. As can be observed there are some alterations in the optical 
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behavior of the pristine TNW after Fe/Mn incorporation: a redshift on the absorption edge and 

a new absorption band centered at 550 nm appear.  

From literature, a reduction in the semiconductor bandgap energy and a more efficient photo-

generated charge carriers’ separation, have been reported for Mn-doped TiO2 nanotubes [41], 

and for TiO2 nanoparticles doped with both Fe and Mn [42]. This has been attributed to the 

introduction, through metal incorporation, of intermediate energetic levels into the forbidden 

zone.  

 

 
Figure 7.4 - Absorption spectra of the TNW and FeMnTNW samples. (Inset: energetic diagram with Eg, VB, and CB positions, 

for the prepared samples). 

 

The narrowing effect observed on the absorption edge of the FeMnTNW sample can be 

attributed to the substitution of Na+ by Fe and/or Mn ions in the interlayers of the titanate 

structure. The absorption band located in the visible region between 440–540 nm, and reported 

by others [43,44], can be ascribed to d–d transitions of transition metals, like Fe and Mn. As a 

result, there is an overlapping of the metals 3d orbitals within the forbidden band, thus 

extending the absorption edge into the visible region [44].  

The optical bandgap energy (Eg) of the two samples was calculated using a procedure described 

[40]. The extrapolation of the linear part of the curve fKM = (FKM.hν)1/2 vs. hν (Tauc plot) where 

h stands for Planck’s constant and ν for the radiation frequency, to zero allows this calculation. 

Eg values of 3.50 and 3.42 eV were obtained for TNW and FeMnTNW samples respectively.  

As a consequence of Fe/Mn metals incorporation, a shift on the absorption edge, of about 0.80 

eV, towards lower energies was observed. The energetic position of the VB (EVB), for both 

samples, was determinate using the valence band XPS spectra (Figure 7.5). The energy of the 

 

 

TNW FeMnTNW 
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corresponding conduction bands (ECB) was calculated by the expression ECB = EVB − Eg [32]. 

For more convenient analysis of these data, these values were schematically represented in the 

diagram shown in Figure 7.4. Although TNW and FeMnTNW have the same EVB (2.95 eV) the 

two samples possess distinct bandgap energies (3.50 and 3.42 eV respectively) and 

consequently distinct ECB. FeMnTNW is the sample possessing the relatively less energetic 

conduction band, − 0.47 eV. Nevertheless, for both powders, the CB energy does not limit the 

O2 reduction reaction, via photogenerated e−. 

 

 
Figure 7.5 – XPS high resolution spectra of the O 2p to Ti 3d transition, used for valence band determination. 

 

7.4 – Photocatalytic performance of the prepared samples 

Considering the above promising results, the photocatalytic ability of the pristine and 

FeMnTNW modified sample for pollutants photocatalytic degradation was studied. A 20 ppm 

aqueous solution of caffeine was used here as a model pollutant. Previous to the photocatalytic 

experiments, the adsorption ability of each sample for caffeine was investigated. No significant 

adsorption was observed (less than 2.5%) for both solid/pollutant combinations. 

 

7.4.1 - Hydroxyl radical production 

The hydroxyl radical (•OH) possesses one of the highest oxidizing power and it has been the 

main responsible for several pollutants photodegradation processes. Due to this, and to evaluate 

the photocatalytic ability of the prepared samples for photo-assisted oxidation processes, the 

catalytic production of hydroxyl radical (•OH) was monitored. 
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The terephthalic acid (TA) was used as a probe molecule and the production of •OH was 

analyzed by fluorescence spectroscopy, via the detection of the hydroxylated reaction 

intermediates formed [31]. Figure 7.6 shows the amount of HTA produced after 20 minutes of 

TA/catalyst suspensions irradiation. Both TNW samples are catalytic for this process, with the 

FeMnTNW sample being the best one. Comparing the two catalysts performance, an increase 

of 39% on the photo-induced hydroxyl radical production was reached using FeMnTNW as a 

catalyst. Supported by these results, it can be concluded that the Fe/Mn doping leads to 

enhancement on the TNW photocatalytic performance for the hydroxyl photocatalytic 

production. These results are in agreement with published works, for which a catalytic activity 

enhancement is usually attributed to doped samples. However, this improvement is usually 

dependent on the dopant level; low metal incorporation levels usually leads to better catalytic 

performances [1,45-49]. 

 

 
Figure 7.6 - HTA concentration after 20 min of irradiation of a TA solution (3 mM, 150 mL) using 20 mg of each sample as 

photocatalyst. 

 

7.4.2 - Photoluminescence characterization 

The photocatalytic activity of a material is not only related to its ability to absorb photons with 

energy higher than the bandgap energy but also with the ability to reduce the charge 

recombination rate. To evaluate the recombination rate of the electron-hole pairs in pristine and 

FeMn modified samples, the photoluminescence emission spectra were registered after 

excitation with 315 nm radiation. Figure 7.7 shows the PL spectra of TNW and FeMnTNW 

samples, within the wavelength range expected for the Ti 3d – O 2p transition. The decrease in 

the 425 nm peak intensity for the FeMnTNW sample, when compared to TNW, can be 

attributed to more efficient separation of the electron-hole pairs and consequently to a lower 

recombination rate [2,31]. 
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Figure 7.7 - Photoluminescence spectra of the TNW and FeMnTNW prepared samples. 

 

7.4.3 - Caffeine photodegradation 

The photocatalytic activity of the TNW and FeMnTNW samples was evaluated for a 20 ppm 

caffeine solution degradation during 75 min of irradiation (Figure 7.8). For comparative 

purposes, the pollutant photolysis was also performed. 

As can be seen, no significant caffeine was adsorbed during 60 min in the dark and no 

differences were found using the TNW and FeMnTNW samples. Only ~2.5% of the initial 

caffeine was removed by adsorption using the two samples. 

 

 
Figure 7.8 - Degradation profile of a 20 ppm caffeine solution during 75 min of irradiation using the prepared samples as 

photocatalyst. 
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As can also be seen, during irradiation, all the samples are catalytic for the photodegradation of 

this pollutant. After 75 min of irradiation, the caffeine degradation is practically complete using 

FeMnTNW as photocatalyst (99.3%) whereas only a reduction of 48.2% was attained using the 

pristine TNW. 

The success of a catalyst in a pollutant degradation process should be evaluated by the amount 

and toxicity of the by-products produced and degraded during irradiation time. Often, the period 

required for the degradation of all the by-products formed is longer than the one required for 

the removal of the main pollutant. Therefore, the identification and quantification of the 

intermediates produced during 120 min of irradiation were carried out by LC-HR-ESI/MS and 

the results are presented in Table 7.1. The intermediates identified during irradiation, in the 

presence of the FeMnTNW catalyst and by photolysis, are in agreement with a degradation 

mechanism proposed in literature [50,51], presented in Annex B – Figure B.2. It has been 

proposed that the caffeine degradation, and independently on the oxidation conditions, starts 

with the initial attack of (photo) generated hydroxyl radicals on the C4=C5 double bond. This 

will result in the formation of N,N-dimethylparabanic acid (CAF-1) that is further oxidized to 

other intermediate products [52,53].  

The time profile of the by-products detected is presented in Figure 7.9 where a sequential 

degradation process can be inferred for photolysis and using the FeMnTNW as a catalyst. 

During photolysis (Figure 7.9(a)), and for the first minutes of irradiation, a high formation of 

compounds CAF-1 and a reduced amount of CAF-4, together with a low amount of CAF-2. 

After 10 min a compound CAF-3 appears and after 45 min, the compound CAF-5 was found. 

After 120 min of irradiation, CAF-1 compound has the highest concentration and there is a 

trace of all the other compounds in solution. During the 120 min of irradiation, CAF-1 is always 

the by-product of higher concentration in solution. This was also observed when FeMnTNW 

was used as photocatalyst. 

Distinct results were obtained when FeMnTNW as used as a catalyst (Figure 7.9(b)). It is 

important to emphasize that using this catalyst there was no significant formation of the 

intermediate compounds CAF-3 to CAF-5. Furthermore, during the 120 min of irradiation, a 

considerably higher amount of CAF-2 product was observed. The caffeine degradation starts 

with the production of the CAF-1 and CAF-2 compounds, and then by CAF-4 compound in 

small amount, but only after 10 min of irradiation. After 60 min starts the formation of the 

CAF-3 compound in a small amount and there is also a large amount of CAF-1 in solution. 

After 75 min no more caffeine was detected in solution, but the presence of CAF-1 and CAF-

2 was detected and the amount of CAF-1 (74.4%) is still considerable. However, after 120 min 
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of irradiation, only two compounds are still in solution, CAF-1, and CAF-2, indicating that 

more time is required for the complete degradation of these caffeine by-products. It is 

interesting to note that, during photolysis was found five compounds (CAF-1 - CAF-5) in 

solution and using the FeMnTNW as a catalyst only two compounds (CAF-1 and CAF-2) still 

in solution, after 120 min of irradiation, indicating that more time is required for the complete 

degradation of these caffeine by-products. Supported by these results, it can be concluded that 

caffeine by-products degradation is more effective using FeMnTNW as catalyst. 

 

Table 7.1 - Main fragments identified by LC-HR-ESI/MS and correspondent by-products formed during the photodegradation 

of caffeine using FeMnTNW as catalyst 

Compound Formula 
Experimental mass 

(m/z) 
Mol.wt. Structure 

Caffeine C8H11N4O2 195.0876 194 
N

N

O

O

CH3

N

N

CH3

CH3

 

CAF-1 

C8H12N4O4Na 251.0751 

228 
N

N

O

O

CH3

N

NH2

CH3

CH3

COOH

 

C7H10N3O3 184.0713 

C5H7N2O2 127.0499 

CAF-2 

C6H9N3O4Na 210.0485 

187 
CHO

C
N

N

O

O

CH3

CH3

O

NH2

 
C6H8N3O3 170.0560 

CAF-3 C8H11N4O4 227.0774 226 
N

N

O

O

CH3

CH3 N

N

O

OH

CH3

 

CAF-4 

C8H10N4O5Na 265.0547 

242 
N

N

O

O

CH3

N

N

CH3

CH3

COOH

O

 
C8H9N4O4 225.0620 

CAF-5 

C7H11N4O3 199.0824 

198 
N

N

O

O

CH3

N

NH2

H
CH3

CHO

 

C5H8N3O2 142.0609 
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Figure 7.9 – Variation of intermediate products identified during 120 min of caffeine photodegradation, by (a) photolysis and 

(b) FeMnTNW as catalyst. 
 

7.4.4 - Scavengers study  

Aiming to elucidate the combined action of several oxidant radicals during the caffeine 

degradation process, several photo-assisted experiments were performed in the presence of 

specific scavengers (Figure 7.10). In distinct photodegradation runs, benzoquinone (BQ), 

ethanol (EtOH) and potassium oxalate (Ox) were added, as scavengers, to the caffeine solution. 

During 75 min of irradiation and using the best catalyst, FeMnTNW, the degradation of a 20 

ppm caffeine solution containing 0.5 mM of each scavenger (0.1 mM for benzoquinone) was 
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processes. Under these conditions, H2O2 should be in situ generated via superoxide radical 

reduction. 

 

 
Figure 7.10 - Amount of caffeine degraded after 75 min under UV-vis radiation, in the presence of scavengers, BQ, Ox, and 

EtOH as radicals’ scavengers, and using FeMnTNW as photocatalyst. 

 

As can be observed in Figure 7.10, the presence of potassium oxalate, a well-known h+ 

scavenger, during caffeine photocatalytic degradation it has no relevant effect in the pollutant 

removal process. This indicates that h+ does not participate directly in the caffeine photo-

oxidation.  

On the other hand, the presence of ethanol, a recognized •OH scavenger, and of benzoquinone, 

used here as O2
•- scavenger, demonstrated to influence caffeine photocatalytic degradation. 

From those, the most pronounced photodegradation suppression was observed when 

benzoquinone was added to caffeine solution. Supported by these results it is possible to 

conclude that the degradation of caffeine takes place via O2
•- (or H2O2 by photo-Fenton 

reaction) and •OH radicals. 

 

7.5 – Photo-activation mechanism proposal 

For titanate elongated materials, the valence band (VB) is derived primarily from O 2p levels 

and the conduction band (CB) from the Ti 3d levels. From the electronic characterization, it 

was possible to state that after Mn and Fe incorporation only a slight shift in the ECB was 

observed. However, due to the energetic position of this band (− 0.55 and − 0.47 eV, for TNW 

and FeMnTNW respectively), no significant differences, in the oxidant radicals’ photo-assisted 

production, were expected for both samples. Nevertheless, the existence of Mn and Fe within 

the TNW structure it should be relevant since they can contribute to the formation of 
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electron or hole traps and thus they contribute to increasing the lifetime of the charge carriers. 

Besides, the formation of H2O2 during O2 photo-reduction, combined with the Fe3+/Fe2+ redox 

reaction will create the ideal conditions to have a parallel photo-Fenton process, which will 

contribute for the formation of more •OH that will be responsible for the pollutant degradation 

enhancement [48]. In this particular situation, the photo-Fenton can be described as: 

 

O2 + e− → O2
•-

 + e− → H2O2                                                (7.14) 

Fe2+ + H2O2 + H+ → Fe3+ + H2O + •OH                                       (7.15) 

Fe3+ + e− → Fe2+                                                          (7.16) 

 

Together with the active role in the Fenton reaction, Fe3+ can act as both hole and electron traps 

[49] with a consequent reduction on the electron-hole recombination. In fact, Fe3+ can be 

reduced to Fe2+ by direct transfer of photogenerated electrons from CB. However, Fe2+ is fairly 

unstable due to the loss of d5 electronic configuration and tends to return to the Fe3+ more stable 

configuration. As a consequence, Fe2+ could be further oxidized to Fe3+, with the trapped e- 

being transferred to the absorbed O2 on the catalyst surface; and with Fe3+ acting as an effective 

electron trap. In addition, Fe3+ can also act as a hole trap due to the Fe3+/Fe4+ redox potential 

above the valence band edge (EVB) of the FeMnTNW.  

The presence of Mn2+ in the structure can also contribute to the improvement of the photo-

assisted removal process. It has been reported that in Mn doped oxides, the intermediate levels 

formed by Mn-3d orbital in the forbidden zone, appears below the CB contributing not only to 

decrease electron transfer energy but also to suppress the carrier recombination [54]. Mn2+ has 

been described as an efficient superoxide anion scavenger [55]. In addition, and together with 

Fe2+, Mn2+ can also possess a catalytic active role in the photo-Fenton process [56]. The main 

mechanism of the Mn2+ actuation can be described as follows [48]: 

 

Mn2+ + H2O2 + H+ → Mn3+ + H2O + •OH                                  (7.17) 

Mn3+ + e− → Mn2+                                                      (7.18) 

 

Considering the above-discussed results and the literature [57,58], a mechanism proposed for 

the light-activated charge-transfer process for TNW and FeMnTNW is presented in Figure 7.11.  
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Figure 7.11 - Mechanism proposal for charge-transfer processes for TNW and FeMnTNW samples, when irradiated with UV-

vis light. 

 

Through a series of redox reactions described above, several charged species and radicals with 

high redox potentials are generated. These high oxidant species will further oxidize the organic 

molecule of caffeine, leading to the formation of intermediates, and finally to their complete 

mineralization. 

 

7.5.1 - FeMnTNW photocatalytic reusability and stability 

To better evaluate the catalytic ability of the FeMnTNW to be used as a photocatalyst, his 

(photo)chemical stability and recycling possibility were analyzed for four consecutive caffeine 

degradation runs. The results indicate no loss of photocatalytic performance for caffeine 

degradation. The final solutions were all of them analyzed by atomic absorption spectroscopy 

(AAS) and neither Fe nor Mn were detected. To better evaluate the catalyst stability, after the 

successive photodegradation assays, the solid was collected and analyzed by XRD and no 

differences were observed (Figure 7.12). These data indicate that the photocatalyst is stable 

under UV-vis irradiation and it can be used for consecutive runs. 

 
Figure 7.12 - XRD patterns of the FeMnTNW before and after submitted to four consecutive photocatalytic experiments. 
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7.6 – Conclusions 

In this work, distinct titanate nanowires (TNW) materials were obtained when two different 

commercial titanium sources were used. These two sources of Ti are distinguished due to the 

existence of vestigial amounts of Mn (8.1 ppm) and Fe (4.3 ppm) in one of them. The 

incorporation of these metals traces in the TNW structure during synthesis resulted in the 

production of new co-doped material, FeMnTNW. The pristine and modified samples were 

structural, morphological and optical characterized. The results indicate that both Mn and Fe 

were incorporated in the TNW structure by replacement of Na+ in the interlayers, together with 

some Ti4+ substitution. This result seems to agree with the hypothesis that during the 

hydrothermal process the precursor is dissolved before the formation of the TNW sheets. 

Consequently, some ionic manganese and/or iron remain afterward in solution and thus leading 

to the formation of FeMnTNW sample with Mn and/or Fe in two distinct positions. The 

potential of these materials to be used as photocatalysts for pollutants photocatalytic 

degradation was investigated for the photo-assisted hydroxyl radical formation (via terephthalic 

acid degradation) and caffeine degradation. The photocatalytic behavior of the FeMnTNW 

sample was mainly linked with a recombination rate reduction of the photogenerated 

electron−hole pairs, due to the introduction of intermediate energetic levels in the forbidden 

zone, as a result of the presence of ionic Mn and Fe species. Besides, the formation of H2O2 

during O2 photo-reduction, combined with the Fe3+/Fe2+ redox reaction will create the ideal 

conditions to have a parallel photo-Fenton process, contributing to the pollutant degradation 

enhancement. The Mn2+ together with Fe2+ can also possess a catalytic active role in the photo-

Fenton process, due to the formation of •OH radicals. Through a series of redox reactions, 

several charged species and radicals with high redox potentials are generated. These highly 

oxidant species will further oxidize the organic molecules of caffeine and leading to the 

formation of intermediates, and finally to their complete mineralization. Considering all the 

results, a mechanism for the charge-transfer processes on the photoactivated FeMnTNW 

sample was proposed, based on the creation of mid-band levels in the forbidden zone. 
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Chapter 8 – Immobilization of cobalt and ruthenium modified titanate 

nanoparticles for photo(electro)catalytic applications 

8.1 - Introduction 

Over the past several years, heterogeneous semiconductor photocatalysis has been extensively 

studied for water and wastewater treatment.  

In general, the water treatment photoreactors employ powder-type photocatalysts that have high 

activity due to low mass transfer limitations between the pollutants and the photocatalyst. 

However, powder dispersion requires a post-filtration or centrifugation procedures for 

recovering the photocatalyst from treated water, which complicates the treatment setup [1]. 

Researchers have tried to develop alternatives to anchor particles onto support materials to 

avoid the need of a further separation step and to commercialize the process as a full-scale 

technology [2].  

The most common methods used to prepare films of semiconductors include sol-gel process, 

pulsed laser deposition, anodization using a liquid phase to evaporation, ion beam techniques, 

chemical vapor deposition and direct current (DC) or a radio frequency (RF) magnetron 

sputtering [3-9]. The sputtering techniques have the disadvantage that the film deposited onto 

a substrate is amorphous and it needs a crystallization anneal to become crystalline, increasing 

the film preparation time. In the sputtering process, the surface of the substrate is critical to the 

quality of the deposited film. Surface features as small as a fraction of a micron can produce 

flawed material. In particular, sharp edges such as steps may result in discontinuities or fissures 

in the film surface [10]. Other disadvantages, for example, it is the poor adherence to the 

substrates, due to the material detachment from the substrate. Several other techniques can be 

used to obtain semiconductors thin films, such as spin-coating, drop-casting, chemical 

deposition, chemical solution deposition (CSD) and chemical vapor deposition (CVD), spray 

pyrolysis, electrodeposition, and anodization [11-16].  

Some strategies involving the semiconductors’ immobilization in porous supports such as 

silica, nanofibers, glass fibers, filters, and polymers, seem like interesting alternatives to be 

explored to attain a more efficient semiconductors recovery after use [17,18]. 

Recent research works reported a high efficiency for dyes photodegradation on TiO2, TiO2/WO3 

and WO3/TiO2 thin films prepared by DC sputtering, being possible the reuse without loss of 

catalytic performance [1,19]. Yao et al. reported the preparation of titanate nanotubes (TNT) 

by RF sputtering of Ti on fluorine-doped tin oxide (FTO) substrates, followed by anodization 

[20]. After posterior modification with MoO3 by electrodeposition, they have shown that the 
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coating of TNT with thin layers of MoO3 offers a viable method for the fabrication of efficient 

electrochromic devices [20]. Ferreira et al. recently reported the successful attachment of 

semiconducting BiOCl and TiO2 nanoparticles to cotton fibers by in situ approaches [18]. These 

modified cotton fibers showed catalytic activity in naphthol blue-black photodegradation and 

were reliable for at least six utilizations [18]. The synthesis of polythionine (PTN)/cobalt-doped 

titanate nanotubes (CoTNT) hybrid conducting films, using electropolymerization was also 

reported [21]. The authors show that the electroactivity of the thionine molecules after 

immobilization in the CoTNT surface is maintained and after electropolymerization, stable and 

electroactive CoTNT–PTN modified electrodes were obtained. This study allowed to conclude 

that it is possible to immobilize titanate nanostructures in polymer matrices [21]. Fedorczyk et 

al. reported the immobilization of Au nanoparticles in the poly(1,8-diaminocarbazole) (PDAC) 

film electrochemically deposited, with improved catalytic activity for 4-nitrophenol reduction 

[22]. Ferreira et al. proposed the attachment of noble metal nanoparticles (NPs) to conducting 

polymers (such as poly(3,4-ethylenedioxythiophene) (PEDOT)) and showed that PEDOT/Pt-

NPs and PEDOT/Au-NPs have catalytic activity in hydrazine reduction reaction [23]. 

Aiming to expand the practical applicability of the modified titanate nanoparticles (TNP), 

prepared in the scope of this work, their immobilization/incorporation in electroactive films 

was studied. To do so, pristine and modified titanate nanostructures were supported on 

conducting polymers to build new hybrid electrocatalytic-based films. This was carried out by 

drop-casting method followed by electropolymerization of the monomer 1,8-diaminocarbazole, 

DAC, (Figure 8.1(a)) [24,25]. The structure of the polymer poly(1,8-diaminocarbazole) 

(PDAC), proposed by Fedorczyk et al. [26], is also depicted in Figure 8.1(b). 

 

a) b) 

 
 

Figure 8.1 - Structural representation of (a) 1,8-diaminocarbazole monomer and (b) poly(1,8-diaminocarbazole). 

 

The photo(electro)catalytic ability of the hybrid system to remove organic pollutants from 

aqueous media was studied using two model pollutants, methylene blue (MB) and theophylline 

(Figure 8.2), under UV-vis and visible radiation. 
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a)       b) 

 
       

Figure 8.2 - Structural representation of (a) methylene blue and (b) theophylline molecules. 

 

Methylene blue (MB) was chosen since this dye is widely used in different applications. MB is 

a bright-colored cationic thiazine dye that is extensively used in textile industries, beyond its 

use in biology and medicine, where it is commonly used in in vivo diagnosis, molecular imaging 

in oncology, and in image-guided surgery [27-29]. Theophylline (1,3-dimethylxanthine) was 

chosen because it is a pharmaceutical used to prevent and treat wheezing, shortness of breath, 

and chest tightness caused by asthma, chronic bronchitis, emphysema, and other lung diseases. 

It has also been described as a more toxic by-product of caffeine photodegradation (one of the 

most used drugs worldwide) present in coffee, tea, chocolate, soft drinks and pharmaceuticals 

[30,31]. 

In this chapter, studies on hybrid films preparation using different immobilization approaches 

are shown. The best conditions for TNP films preparation were first optimized and then, the 

most effective films were used for photo(electro)catalytic degradation tests. Here, the cobalt 

and ruthenium modified TNW and TNT powders were selected for the immobilization of 

conducting substrates. Then the catalytic performance of the obtained films was analyzed on 

the MB and theophylline photo(electro)degradation. The degradation experiments were 

performed under UV-vis and visible irradiation using a 450 W arc Xenon lamp, with and 

without a 400 nm cut-off filter. For convenience, this radiation was identified as visible(Xe) and 

UV-vis(Xe), respectively. 

 

8.2 – Synthesis 

Titanate elongated nanoparticles modified with cobalt and ruthenium were immobilized on 

conducting substrates (indium tin oxide (ITO)) using different methodologies, such as the drop-

casting method and drop-casting followed by electropolymerization of 1,8-diaminocarbazole 

monomer (DAC). The obtained samples, by drop-casting method, were identified as pristine 

ITO/TNW and metal modified ITO/MTNW (M = Co and Ru). The conductive polymer, 

poly(1,8-diaminocarbazole) (PDAC), was deposited by electropolymerization, above the 

ITO/TNW films. These samples were identified as ITO/TNW/PDAC and ITO/MTNW/PDAC 
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(M = Co and Ru). The experimental procedure details are shown in Chapter 10 (Methods and 

experimental). 

 

8.3 – Immobilization of cobalt and ruthenium modified TNW by drop-

casting and electropolymerization - hybrid films preparation 

Systematic studies were performed, to evaluate the best conditions for TNP immobilization and 

the highest photo(electro)activity of the ITO/TNP and ITO/TNP/PDAC films for pollutants 

removal. In this section, the TNW films were prepared by drop-casting (ITO/TNW), drop-

casting followed by DAC electropolymerization (ITO/TNW/PDAC) and drop-casting followed 

by DAC electropolymerization layer-by-layer (ITO/(TNW/PDAC)n, 1 ≤  n ≤ 4).  

 

8.3.1 – Hybrid films preparation and optimization of the preparation conditions 

As mentioned above different strategies were used for TNW immobilization. The drop-casting 

methodology allowed the immobilization of pristine and Co and Ru modified TNW on the ITO 

surface. After, the monomer 1,8-diaminocarbazole was electropolymerized into the ITO/TNW 

surface films. In Figure 8.3 are illustrated the typical voltammograms obtained for the PDAC 

deposition on the ITO/TNW modified electrodes, with 2 and 20 cycles at 60 mV s-1, between -

0.1 and 0.9 V vs. Ag/AgCl/Cl. 

As can be seen in Figure 8.3(a) and similarly to that obtained for the growth of PDAC on ITO, 

the cyclic voltammograms exhibit an oxidation peak (A) at 0.70 V vs. Ag/AgCl/Cl-, in the first 

scan, corresponding to the monomer oxidation, and in the reverse scan, a peak observed at 0.25 

V (B’) corresponds to the polymer reduction. In the second scan and following cycles, an 

oxidation peak is observed at 0.76 V (A) which can be assigned to the polymer oxidation and a 

redox couple (B/B’) occurs at 0.37 and 0.24 V, respectively, which increases in intensity over 

the subsequent polymerization cycles (Figure 8.3(b)). This is characteristic of the doping–

undoping of a growing polymeric film [24]. The current density of the PDAC oxidation and 

reduction peaks increases with the number of cycles, at least 20, indicating the formation of an 

electroactive and conducting film [24,32]. This result is similar to that observed for PDAC on 

Pt electrode reported by Skompska et al. [24], where it was shown that the presence of two 

electro-donating amino groups in DAC, it prevents irreversible overoxidation of the polymer 

film.  
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Figure 8.3 - Cyclic voltammograms of DAC electropolymerization on ITO/TNW modified electrode 2 mM DAC in 0.1 M 

LiClO4/ACN; (a) cycles 1 and 2, (b) cycles 1 - 20 at 60 mV s-1.  

 

The data obtained during PDAC growth in ITO and ITO/TNW, ITO/CoTNW and ITO/RuTNW 

modified electrodes, including the current potentials of DAC oxidation peak (A) and redox 

couple (B/B’) for all electrodes, are summarized in Table 8.1. 

A positive 40 mV shift was observed for the DAC oxidation peak (A) in the first cycle for the 

ITO/TNW sample in comparison with the ITO electrode. The separation potential between the 

oxidation and reduction peaks of the polymer deposited on the TNW is very similar to that for 

PDAC formed directly on ITO, which means that the layer of TNW does not influence on the 
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polymer growth. However, for the ITO/CoTNW and ITO/RuTNW modified electrodes a higher 

separation potential was observed (Table 8.1). This can suggest that the layer of CoTNW and 

RuTNW influence more the polymer electroactivity, and due to that the shape of the CV 

obtained is more resistive (i.e. the peaks are more separated). 

 

Table 8.1 – Current peak potentials (vs. Ag/AgCl/Cl-) and respective current densities for the DAC oxidation peak (A) and 

redox couple (B/B’) on ITO, ITO/TNW, ITO/CoTNW, and ITO/RuTNW electrodes, evaluated from the voltammograms 

  ITO ITO/TNW ITO/CoTNW ITO/RuTNW 

 Peak (V) 

1st cycle 
A 0.66 0.70 0.75 0.81 

 B’ 0.27 0.25 0.15 0.10 

2nd cycle 

A 0.72 0.76 0.77 0.80 

 B’ 0.25 0.24 0.11 0.07 

B 0.43 0.37 0.50 0.38 

 

After electropolymerization, stable and electroactive ITO/PDAC and nanostructured pristine 

(ITO/TNW/PDAC) and Co and Ru modified (ITO/CoTNW/PDAC and ITO/RuTNW/PDAC) 

electrodes were obtained. To illustrate this, in Figure 8.4 are presented the four successive CV 

obtained for the ITO/TNW/PDAC (selected sample).  

 

 
Figure 8.4 - Four successive cyclic voltammograms obtained in the solution of 0.1 M LiClO4/acetonitrile at 60 mV s-1, for the 

ITO (grey lines) and ITO/TNW/PDAC (black lines) films. 
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These results are in accordance with Skompska et al. [24] reported work. The symmetrical 

redox behavior of PDAC and relatively low potential of the oxidation peak, concerning to the 

monomer oxidation, suggests that the films consist of rather short polymer/oligomer chains. 

Furthermore, a higher density current intensity was observed for the titanate containing 

electrodes when compared with ITO/PDAC sample. This reflects the larger active surface area 

of the electrode when covered with TNW, CoTNW and RuTNW particles.   

To study the influence of the number of polymerization scans on the catalytic activity of the 

films, photodegradation tests using UV-vis(Xe) light and a 10 ppm MB solution were performed.  

For this study, samples prepared with 2 and 20 electropolymerization scans were tested. The 

obtained results are shown in Figure 8.5.  

 

 

Figure 8.5 - MB degradation percentage evolution using ITO/PDAC, ITO/TNW/PDAC (2 scans) and ITO/TNW/PDAC (20 

scans) films as photocatalysts, under UV-vis(Xe) irradiation. 

 

Both samples demonstrated photocatalytic activity for this process and after 240 min of 

irradiation, 96% and 47% of the initial MB were degraded, using ITO/TNW/PDAC (2 scans) 

and ITO/TNW/PDAC (20 scans) respectively. This difference in the degradation performance 

of both films can be due to the fact that the ITO/TNW/PDAC (20 scans) have a thicker polymer 

layer that completely covers the TNW particles, once the ITO/PDAC and ITO/TNW/PDAC (20 

scans) catalytic performance is very similar. The thicker polymer layer contributes to the 

reduction of the TNW contact with the pollutant, decreasing the photocatalytic activity of the 

film. This result is in accordance with previous works with PDAC reported by Aragon et al. 

[33], where the authors showed that the sample with higher amount of polymer is notably less 
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effective in 4-chlorophenol photodegradation than the obtained after a single polymerization 

scan. 

Therefore, after this analysis, it was concluded that the preparation of the samples only with 2 

scans of electropolymerization is more recommended to obtain modified electrodes with higher 

photocatalytic activity. Therefore, films grown with 2 cycles were used for further studies.  

The effect of the number of TNW/PDAC layers on the photocatalytic activity of the modified 

electrodes was also evaluated. The prepared samples were designated by ITO/(TNW/PDAC)n 

(1 ≤  n ≤ 4), were n denotes the number of layers. For this study, PDAC layers were prepared 

by DAC electropolymerization with 2 scans.  

The results obtained for the degradation of MB solution (10 ppm) using UV-vis(Xe) radiation, 

showed that all ITO/(TNW/PDAC)n films demonstrated photocatalytic activity for this 

degradation process. No significant differences were obtained using the ITO/TNW/PDAC 

samples prepared with a different number of layers. Identical results were obtained with the 

ITO/(CoTNW/PDAC)n samples. This suggests that the upper TNW/PDAC layer is probably 

the only one that is active during the degradation process. Once no significant differences were 

observed in the photocatalytic activity with the increased number of layers, it was decided to 

prepare films with only one layer of TNW/PDAC or MTNW/PDAC (M = Co, Ru) prepared 

with 2 DAC electropolymerization scans. 

 

8.3.2 – Cobalt and ruthenium modified ITO/TNW/PDAC films characterization 

In this section is shown the optical, morphological and photo(electro)catalytic characterization 

of the pristine and metal modified ITO/MTNW and ITO/MTNW/PDAC (M = Co and Ru) films. 

The optical characterization of the films was performed by DRS. The optical spectra of 

ITO/PDAC, ITO/TNW, ITO/CoTNW, and ITO/RuTNW samples are shown in Figure 8.6.  

In the absorption spectra presented in Figure 8.6(a), a slight blue shift of the absorption edge 

was observed for the ITO/RuTNW sample when compared with the pristine ITO/TNW sample. 

In contrast, for the ITO/CoTNW sample, a redshift was observed. These results are following 

the previous results for these materials presented in Chapters 4 and 5. The presence of Ru in 

TNW materials shifts the absorption to the blue should be due to the quantum size effects.  For 

this sample, ITO/RuTNW, it is possible to see an absorption increase in the visible range, due 

to the d-d transitions on the Ru4+ ions, as discussed in Chapter 5.  
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Figure 8.6 - Absorption spectra of the (a) ITO/TNW, ITO/CoTNW and ITO/RuTNW and (b) ITO, ITO/PDAC samples. 

 

Comparing the absorption spectra presented in Figure 8.6(b), for ITO and ITO/PDAC films, a 

higher absorption after PDAC deposition was observed. ITO is also a semiconductor with 

absorption in the UV region at wavelength below 350 nm. Upon modification with PDAC its 

absorption in the visible range increases due to the contribution of the conductive polymer 

which displays a greyish color. This is in accordance with the reported work by Aragon et al. 

for PDAC films, indicating that this absorption increase in the UV-vis range in the wavelength 

around 500 nm to 450 nm is due to the electron transition from polaronic level in the oxidized 

polymer [33]. 

For the pristine ITO/TNW/PDAC and metal modified ITO/MTNW/PDAC (M = Co and Ru) 

samples, an identical behavior was obtained, and no differences in the band edge of the titanates 

were observed after PDAC deposition. It is important to note that the deposition of the PDAC 

film on the ITO/TNW, ITO/CoTNW, and ITO/RuTNW surface did not change the absorption 

band edge of titanate nanowires, this may suggest that the semiconductor photoactivation of 

these films should not be influenced by the presence of the polymer film. 

The morphological characterization of the modified films was performed by scanning electron 

microscopy (SEM). The obtained images for the selected films with and without PDAC (ITO, 

ITO/PDAC, ITO/TNW, ITO/TNW/PDAC, ITO/CoTNW, and ITO/CoTNW/PDAC samples) 

are depicted in Figure 8.7. As can be seen, no significant differences were observed in ITO 

surface morphology after PDAC deposition, suggesting that the polymer is very thin and 

smooth. Since pristine and modified TNW have identical morphology, no significant 

differences were expected in the SEM analysis of ITO/TNW, ITO/CoTNW, and ITO/RuTNW 
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samples. As observed in Figure 8.7 the morphology of these samples is similar, and no 

significant differences were found. Only a slight increase in the films’ roughness was observed 

after the polymer growth.  

 

  

  

  
 

Figure 8.7 - SEM images of the (a) ITO, (b) ITO/PDAC, (c) ITO/TNW, (d) ITO/TNW/PDAC, (e) ITO/CoTNW and (f) 

ITO/CoTNW/PDAC films. 

 

8.3.3 – Photocatalytic performance evaluation 

The photocatalytic activity of the pristine ITO/TNW/PDAC and modified ITO/MTNW/PDAC 

(M = Co, Ru) films was evaluated on the degradation of a methylene blue aqueous solution (10 

ppm) under UV-vis(Xe) radiation (Figure 8.8). As can be seen, the samples have a high dye 

adsorption ability. After the dark period of 60 min, 19%, 26% and 30% of the initial dye was 

removed from solution by adsorption, using ITO/TNW/PDAC, ITO/RuTNW/PDAC, and 

ITO/CoTNW/PDAC films, respectively. After turned on the light, all the films demonstrated to 

possess photocatalytic ability for MB degradation, once the adsorption equilibrium was 

achieved during the dark. ITO/RuTNW/PDAC film was the best catalyst for this degradation 
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process, with a total MB degradation within 60 min of UV-vis(Xe) irradiation. More 15 min of 

irradiation were required to achieve the total MB degradation using the ITO/CoTNW/PDAC 

film as photocatalyst. It is important to note that after 75 min under UV-vis(Xe) irradiation only 

69% of MB were removed using the ITO/TNW/PDAC film as catalyst.  Using the films without 

TNW particles (ITO/PDAC and ITO) and for the same period, only 43%, 31% of the MB were 

removed.  

 

 
Figure 8.8 - MB photodegradation during 75 min of UV-vis(Xe) irradiation using ITO/PDAC, ITO/TNW/PDAC, 

ITO/CoTNW/PDAC and ITO/RuTNW/PDAC films. 
 

The possibility of catalyst recovery and reutilization in photodegradation processes is important 

since it can contribute significantly to the reduction of operational costs, making photocatalysis 

an attractive method for wastewater treatment. Furthermore, the catalyst photochemical 

stability is an important parameter that must be analyzed to better evaluate its catalytic 

performance with time. In this context, three successive MB photodegradation experiments 

were performed for the most promising samples, ITO/RuTNW/PDAC and 

ITO/CoTNW/PDAC, during 75 min of UV-vis(Xe) irradiation. The obtained results showed that 

these samples have excellent catalytic performance associated with excellent photochemical 

stability since only 3% of the initial MB remains in solution after the third cycle. Moreover, 

this suggests that no catalyst was lost from the film surface. After the reutilization experiments, 

the films were analyzed by SEM, and no changes in the surface morphology were observed 

(results not shown).  
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To go further in this study, to analyze the photocatalytic activity of these hybrid films, the MB 

photodegradation was also performed under visible(Xe) light irradiation. The photocatalytic 

activity of the pristine (ITO/TNW and ITO/TNW/PDAC) and metal modified ITO/MTNW and 

ITO/MTNW/PDAC (M = Ru, Co) films was tested on the degradation of MB aqueous solutions 

(10 ppm) during 120 min under visible(Xe) irradiation (Figure 8.9). 

 

 
Figure 8.9 - MB photodegradation during 120 min of visible(Xe) irradiation using ITO/PDAC, ITO/TNW, ITO/CoTNW, 

ITO/RuTNW, ITO/TNW/PDAC, ITO/CoTNW/PDAC and ITO/RuTNW/PDAC samples. 
 

As can be seen in Figure 8.9, the samples with PDAC have higher adsorption ability for MB, 

than the films without the polymer layer. This can suggest that the amine groups in the thin 

layer of PDAC can improve the adsorption effect of the cationic dye. After the dark period (60 

min), 17% and 21% of the initial dye were removed from solution by adsorption, using 

ITO/TNW and ITO/TNW/PDAC, respectively. Using ITO/CoTNW and ITO/CoTNW/PDAC 

instead, 31% and 34% of MB were adsorbed in the same period. With the ITO/RuTNW and 

ITO/RuTNW/PDAC films, no significant differences in the absorption were observed, 26% and 

27%, respectively.  

Concerning the irradiation period, the results showed that all the samples demonstrated catalytic 

activity for the MB photodegradation process. The samples containing Ru showed the highest 

catalytic activity, with 97% and 98% of MB removal, within 120 min of irradiation, using 

ITO/RuTNW/PDAC and ITO/RuTNW films, respectively. Using the ITO/CoTNW/PDAC and 

ITO/TNW/PDAC samples the dye degradation decreases to 91% and 82%, respectively.  
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These results are in accordance with previous work, showing that for RuTNW particles the 

recombination rate is reduced due to the Ru incorporation, by the creation of intermediate levels 

in the forbidden band. These particles are also active under visible light as described in Chapter 

5 [34].  

Comparing the samples with and without PDAC, it was possible to conclude by performing 

recycling experiments with the ITO/RuTNW and ITO/RuTNW/PDAC, that the presence of the 

polymer allows its reutilization without performance loss for MB photodegradation. 

 

8.4 – Cobalt and ruthenium modified TNT hybrid films - Influence of the 

metal position 

Considering the promising results presented above, in this section, a comparative study about 

the type and structural metal position is discussed. For this study and considering the results 

presented in Chapters 4 - 6 the cobalt and ruthenium modified TNT (1% of metal, nominal) 

samples were selected.  These studies were undertaken for the TNT samples, due to their higher 

photocatalytic activity in comparison with that of TNW materials.  

In the doped CoTNT and RuTNT samples, the metal is only replacing the Ti4+ in the structure. 

For comparison, new samples, labeled TNT-Co and TNT-Ru, were prepared by ion-exchange 

(with the same nominal percentage of Co or Ru, 1%), using the experimental procedure reported 

elsewhere [34,35]. In this last case, only the substitution of Na+ in the interlayers is possible, 

with no Ti4+ replacement being allowed. Therefore, it is possible to discuss which metal position 

is more advantageous for performance improvement in photo(electro)catalytic applications. 

 

8.4.1 – Hybrid films synthesis 

The selected cyclic voltammograms during the electropolymerization of DAC directly on ITO 

and ITO/TNT-Co samples used here as an example are represented in Figure 8.10. The cyclic 

voltammograms (CV) obtained for ITO/TNW during DAC electropolymerization (see Figure 

8.3), and those obtained for ITO/TNT/PDAC, ITO/MTNT/PDAC and ITO/TNT-M/PDAC (M 

= Co and Ru) samples exhibit similar features. The CV presents an anodic peak (A), in the first 

scan, corresponding to the monomer oxidation and in the second scan have a redox couple 

(B/B’), which increases in intensity over the subsequent polymerization cycles [24].  
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Figure 8.10 - Cyclic voltammograms of DAC (2 mM) electropolymerization on ITO and ITO/TNT-Co films in 0.1 M 

LiClO4/ACN; 2 cycles at 60 mV s-1.  

 

The current potentials of DAC oxidation peak (A) in the first cycle and redox couple peaks of 

the polymer (B/B’) for all the modified electrodes are summarized in Table 8.2.  

 

Table 8.2 – Current peak potentials (vs. Ag/AgCl/Cl-) and respective current densities for the DAC oxidation peak (A) and 

redox couple (B/B’) on ITO and all prepared electrodes, obtained from the respective cyclic voltammograms 

  ITO ITO/TNT ITO/CoTNT ITO/TNT-Co ITO/RuTNT ITO/TNT-Ru 

 Peak (V) 

1st cycle 
A 0.66 0.73 0.71 0.70 0.89 0.88 

 B’ 0.27 0.07 0.05 0.06 -0.04 -0.04 

2nd cycle 

A 0.72 0.77 1.00 0.75 1.00 0.98 

 B’ 0.25 0.03 0.02 0.01 -0.08 -0.08 

B 0.43 0.39 0.35 0.39 0.40 0.34 

 

As can be seen, a positive shift was observed for the DAC oxidation peak (A) in the first cycle 

for all the prepared samples, in comparison with the ITO sample. This shift was considerably 

higher for the Ru-containing films. The separation potential between the oxidation and 

reduction peaks of the polymer deposited over the TNT, CoTNT, TNT-Co, RuTNT and TNT-

Ru layers is higher than for PDAC formed directly o ITO, which means that the titanate 

nanotubes influence the polymer electroactivity (Table 8.2), since the shape of the CV obtained 

is more resistive. This difference is more perceptible for the films containing Ru, ITO/RuTNT 

and ITO/TNT-Ru, 0.48 V and 0.42 V, respectively. This suggests that the presence of ruthenium 
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in the TNT materials makes the electrodes more resistive. For the ITO/TNT, ITO/CoTNT and 

ITO/TNT-Co, differences of 0.36 V, 0.33 V, and 0.38 V, respectively, were observed.  

 

8.4.2 – Optical and morphological characterization 

The optical characterization of the films was carried out by diffuse reflectance spectroscopy 

(DRS) and no significant differences were obtained if compared to the characterization 

discussed in Chapters 4-6. Contrary to the polymer/oligomers spectrum from literature reported 

by Aragon et al. for PDAC films [33], no shoulder was observed in the wavelength range (700 

to 450 nm) related to the electron transition from the polaronic level in the oxidized polymer 

[33]. 

The morphology of the modified films was analyzed by SEM. As an example, in Figure 8.11 

are depicted the images obtained for ITO/CoTNT and ITO/CoTNT/PDAC films.  

 

  
Figure 8.11 - SEM images of the (a) ITO/CoTNT and (b) ITO/CoTNT/PDAC films. 

 

All the Ru- and Co-containing TNT films have an agglomerated morphology, and no 

differences were observed after PDAC deposition. From the SEM images is not possible to see 

the presence of the polymer in the samples, probably due to the fact that the polymeric layer is 

expected to be very thin and smooth. These films have a thin layer of polymer since, for 

photocatalytic applications, the formation of a thicker polymer film decreases the activity of 

the samples, as mentioned above in Section 8.3.2.  

 

8.4.3 – Electrochemical characterization 

After electropolymerization, pristine ITO/TNT/PDAC and metal modified ITO/MTNT/PDAC 

and ITO/TNT-M/PDAC (M = Co and Ru) samples were electrochemically characterized by 

cyclic voltammetry in the monomer-free solution. In Figure 8.12, it is possible to observe that 

all modified electrodes revealed stable electrochemical behavior, which means that after 

a) 

100 nm 
100 nm 

b) 
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electropolymerization, stable and electroactive ITO/TNT/PDAC, ITO/MTNT/PDAC, and 

ITO/TNT-M/PDAC (M = Co and Ru) electrodes were obtained.  No changes or appearance of 

additional anodic and cathodic peaks, after four successive CVs were observed, for all samples. 

 

 
Figure 8.12 - Four successive cyclic voltammograms obtained in the solution of 0.1 M LiClO4/acetonitrile, for the (a) 

ITO/TNT/PDAC, (b) ITO/TNT-Co/PDAC and ITO/CoTNT/PDAC, (c) ITO/TNT-Ru/PDAC and ITO/RuTNT/PDAC samples; 

4 cycles at 60 mV s-1. 
 

As can be seen in Figure 8.12(b), the current density for the ITO/TNT-Co/PDAC electrode is 

higher than the obtained for ITO/CoTNT/PDAC electrode. However, the redox peaks are more 

separated, for the ITO/TNT-Co/PDAC film which means that this film is more resistive. This 

result can indicate that the presence of Co2+ replacing the Ti4+, into the TiO6 octahedra, 

improves the electrochemical behavior of the ITO/CoTNT/PDAC electrode. For the samples 

containing ruthenium, Figure 8.12(c), the ITO/RuTNT/PDAC electrode has a higher current 

density than the ITO/TNT-Ru/PDAC electrode. This result showed that Ru position and 

oxidation state, Ti4+/Ru4+and Na+/Run+ (n = 3 and 4) in TNT-Ru and only Ti4+/Ru4+ replacement 
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in RuTNT, influences the electrochemical behavior of the modified electrodes. As for Co2+, the 

presence of the Ru4+ only replacing Ti4+ improves the electrochemical behavior of the electrode. 

Comparing the results obtained with both metals modified films, it is possible to see that the 

ITO/RuTNT/PDAC electrode has a higher current density than the ITO/CoTNT/PDAC 

electrode. This suggests that the presence of ruthenium in the TNT structure, replacing the Ti4+, 

rather improves the electrochemical behavior when compared to the Co presence, since the 

same amount of the photocatalyst was deposited on ITO surface in both cases. 

To go further in this study, and in order to analyze the photoelectrochemical behavior of these 

films, the electrochemical characterization of the cobalt and ruthenium hybrid films was 

performed first by cyclic voltammetry in the dark and under illumination (using a Xenon lamp 

(UV-vis(Xe))). Afterward, the photocurrent transients were recorded under constant potential. 

For the ITO/CoTNT/PDAC sample, the CVs obtained in dark and under illumination, are 

depicted in Figure 8.13. 

 

 

Figure 8.13 - Cyclic voltammograms of the ITO/CoTNT/PDAC sample in 0.1 M Na2SO4 aqueous solution in (a) dark during 

6 cycles and (b) in dark and under illumination with a xenon lamp (UV-vis(Xe) radiation). 

 

As observed in Figure 8.13(a), the ITO/CoTNT/PDAC sample stabilization was a very slow 

process and 6 cycles in the dark were required to obtain it. This should be due to the traces 

presence of monomer who underwent polymerization during cycling that are visible in the range 

of positive potentials, but after several cycles in the dark, the current was stabilized. Under 

illumination, it can be observed an increase of the current density in the range of polymer redox 

peaks (0.3 V and - 0.1 V) suggesting some photoactivity of the PDAC film (see Figure 8.13(b)). 

In the case of the sample without polymer, ITO/CoTNT (Figure 8.14(a)), a smaller photocurrent 

is detected in the range of positive potentials (above 0.6 V) when compared with the film with 
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PDAC. As also can be seen in Figure 8.14(a), the ITO/CoTNT sample stabilization in the dark 

was faster (only 3 cycles were needed) than the ITO/CoTNT/PDAC sample (Figure 8.13(a)). 

After the light was switched on, an increase in the current density was observed for the potential 

range of ~ 0.5 V to 1.0 V.  

The CVs obtained for the ITO/CoTNT, ITO/TNT-Co, ITO/RuTNT, and ITO/TNT-Ru 

electrodes, in dark and under illumination (during 3 cycles each) are depicted in Figure 8.14.  

 

 

   
 

Figure 8.14 - Cyclic voltammograms of the (a) ITO/CoTNT, (b) ITO/TNT-Co, (c) ITO/RuTNT and (d) ITO/TNT-Ru samples 

in 0.1 M Na2SO4 aqueous solution in dark and under illumination with a xenon lamp (UV-vis(Xe) radiation). 

 

All the samples presented different electrochemical behavior under illumination and in the dark 

(Figure 8.14), suggesting that these films are photoelectrochemically active, although all of 

them with low current density (range of -1 to 7 µA cm
-2

). The cobalt samples (ITO/CoTNT and 

ITO/TNT-Co) had higher current density when compared to the ruthenium samples 

(ITO/RuTNT and ITO/TNT-Ru), being the ITO/TNT-Co electrode the one with higher current 

density under irradiation, in the range of ~ 0.5 V to 1.0 V. It is also possible to conclude that 
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ITO/TNT-Ru and ITO/TNT-Co modified electrodes demonstrated higher current density under 

irradiation than the ITO/RuTNT and ITO/CoTNT, counterparts.  

The photocurrent experiments at constant potential were carried out after cyclic voltammetry 

characterization. Preliminary experiments indicate that ITO/PDAC films were not stable, due 

to the polymer oxidation. So, it was decided to study only the samples without PDAC. The 

polarization potential (0.7 V) was selected from the range of photocurrent plateau formed in the 

cyclic voltammograms (Figure 8.14) recorded in identical conditions. The photocurrent results 

obtained for ITO/TNT, ITO/CoTNT, ITO/TNT-Co, ITO/RuTNT, and ITO/TNT-Ru samples 

are presented in Figure 8.15.  

 

 

 
Figure 8.15 - Current transients at constant polarization potential of 0.7 V vs. Ag/AgCl in dark and under illumination with a 

xenon lamp (UV-vis(Xe) radiation) in 0.1 M Na2SO4 aqueous solution, for the (a) ITO/TNT-Co and ITO/CoTNT and (b) 

ITO/TNT-Ru and ITO/RuTNT samples. 

0

1

2

3

4

5

0 100 200 300 400 500 600

j 
(µ

A
 c

m
-2

)

time (s)

ITO
ITO/TNT
ITO/CoTNT
ITO/TNT-Co

a)

ITO
ITO/TNT
ITO/TNT-Co
ITO/CoTNT

0

1

2

3

4

5

0 100 200 300 400 500 600

j 
(µ

A
 c

m
-2

)

time (s)

ITO
ITO/TNT
ITO/RuTNT
ITO/TNT-Ru

ITO
ITO/TNT
ITO/TNT-Ru
ITO/RuTNT

b)



Chapter 8 – Immobilization of Co and Ru modified titanate nanoparticles for photo(electro)catalytic applications 

234 

The photocurrent response for all the samples is similar, with the current spikes after switching 

illumination on, followed by an exponential decrease to constant values. It is worth noting that 

the values of the steady-state photocurrent for both ITO/MTNT and ITO/TNT-M (M = Co, Ru) 

are higher than those obtained for ITO/TNT electrode. This result can be due to a more efficient 

electron-hole separation for the M-modified samples. For the ITO/TNT-Co sample, this 

positive effect (higher photocurrent) is more pronounced. This is in accordance with the results 

discussed in Chapter 4, showing that the presence of intermediate levels (Co 3d-levels) in the 

forbidden band reduces the e-/h+ recombination. Furthermore, for ITO/RuTNT and ITO/TNT-

Ru samples the value of the steady-state photocurrent is higher than that of ITO/CoTNT and 

ITO/TNT-Co samples. This indicates an even more efficient e-/h+ separation for the Ru-

modified samples, being in accordance with the results obtained in Chapter 6. For the Ru 

modified samples, the ITO/TNT-Ru electrode showed the highest photocurrent.  

The current spikes formed just after switching the light on are evidence of electron-hole surface 

recombination, competing with the light-driven electrode reactions at the 

semiconductor/solution interface [36]. The ratio of the rate constants for the charge transfer 

across the semiconductor/solution interface (ktr) and electron-hole recombination (krec), can be 

determined by the current transients analysis according to the protocol proposed by Peter [36], 

using the equation: 

𝑗(∞)

𝑗(0)
=

𝑘𝑡𝑟

𝑘𝑡𝑟+𝑘𝑟𝑒𝑐
                                                        (8.1) 

 

where j∞ is the steady-state current density and jo is photocurrent at t = 0. 

The ktr/krec ratio obtained for ITO/CoTNT and ITO/TNT-Co samples are 0.364 and 0.490, 

respectively, and for the ITO/RuTNT and ITO/TNT-Ru samples, the ktr/krec ratio is 0.442 and 

0.818, respectively, being all of them higher than that obtained for ITO/TNT (0.236) and ITO 

(0.124). This difference in the values of steady-state photocurrent for the pristine and metal 

modified TNT electrodes is probably a consequence of a higher electron-hole recombination 

rate in the ITO/TNT sample. These results also allow concluding that ITO/CoTNT, ITO/TNT-

Co, ITO/RuTNT, and ITO/TNT-Ru electrodes have lower e-/h+ recombination rate than the 

ITO/TNT and ITO films.  Under these conditions, the ITO/TNT-Ru sample was the one 

presenting the highest photocurrent. This may be ascribed to the generation of a larger amount 

of charge carriers, once the absorbance for this ruthenium containing samples is higher as it 

was presented in Figure 8.8 and discussed in Chapters 4-6. 
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Comparing the obtained results for the ITO/MTNT and ITO/TNT-M (M = Co, Ru) samples, it 

can be concluded that the presence of Ru in the TNT materials promotes a higher improvement 

on the photocurrent response than the Co. This can be due to the difference in the energetic 

position of the valance and conduction bands, once the Ru containing materials requires less 

energy for photoactivation (as previously discussed in Chapter 6). 

To better analyze the influence of Co and Ru modification on the photoelectroactivity of the 

samples, the photocurrent measurements were also performed at a lower potential, 0.5 V, 

corresponding to the onset of the current transients for ITO/TNT sample.  

The experiments were carried out using a 365 nm diode since these materials are photoactive 

in this range and a difference between the bang edge of TNT, CoTNT, and RuTNT can be 

observed. The obtained current transients are presented in Figure 8.16. 

 

 

 
Figure 8.16 - Current transients at constant polarization potential of 0.5 V vs. Ag/AgCl in dark and under illumination with a 

high-power LED (365 nm), in 0.1 M Na2SO4 aqueous solution, for (a) ITO/CoTNT and ITO/TNT-Co and (b) ITO/RuTNT and 

ITO/TNT-Ru samples. 
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As can be seen in Figure 8.16, the current transients for ITO and ITO/TNT overlap. 

Furthermore, the photocurrent for ITO/MTNT and ITO/TNT-M (M = Co, Ru) is higher than 

for ITO/TNT and ITO electrodes. This agrees with the presence of intermediate levels in the 

M-containing samples in the forbidden band (as discussed in Chapter 4 for Co and 6 for Ru) 

[35].  

 

8.4.4 – Photocatalytic and photoelectrocatalytic pollutants degradation experiments 

The photo(electro)catalytic ability of the pristine (ITO/TNT/PDAC and ITO/TNT) and metal 

modified hybrid films, ITO/MTNT/PDAC, ITO/TNT-M/PDAC, ITO/MTNT and ITO/TNT-M 

(M = Co and Ru) for pollutants degradation was examined. Methylene blue (MB) and 

theophylline were chosen as model pollutants. MB is a cationic compound (pKa = 3.14) with a 

strong affinity for adsorption on nanocomposite samples’ anionic surfaces. Theophylline (pKa 

= 7.82) has been described as a toxic intermediate of caffeine degradation and does not reveal 

strong adsorption ability on the surface of TNT, as shown in Chapter 2. 

 

• Methylene blue (MB) photodegradation 

The photocatalytic activity of the films was tested on the degradation of a 10 ppm MB aqueous 

solutions under visible(Xe) light during 90 min of irradiation. The obtained results are depicted 

in Figure 8.17.  

After a dark period of 60 min, the ITO film does not adsorb MB, while ITO/PDAC removes ~ 

8% of the initial MB. In general, it is possible to observe that the films with PDAC showed 

higher adsorption ability than films without polymer.  

For the cobalt-containing films (Figure 8.17(a)) the higher amount of the initial MB (35%) was 

removed in dark using the ITO/CoTNT/PDAC sample as adsorbent. For the samples containing 

ruthenium (Figure 8.17(b)), the ITO/RuTNT/PDAC was the best one for the dye removal by 

adsorption, with a 30% decrease in the MB concentration. 

After turning on the light, all the samples demonstrated catalytic activity for the dye 

photodegradation. Concerning the Co containing films (Figure 8.17(a)), the 

ITO/CoTNT/PDAC sample was the one with the best catalytic performance, with the total MB 

removal after 90 min of irradiation. Using the ITO/CoTNT film as catalyst 95% of MB was 

removed, for the same period. However, for the same irradiation period, the ITO/TNT-Co and 

ITO/TNT-Co/PDAC films were able to remove only 83% and 87% of the MB, respectively. 

Under identical conditions, only 11% of MB was removed by photolysis.  
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Figure 8.17 - MB photodegradation during 90 min of visible(Xe) irradiation using (a) the samples containing cobalt and (b) the 

samples modified with ruthenium. 

 

For the pristine samples, ITO/TNT and ITO/TNT/PDAC, only 44% and 52% of the initial MB 

was removed for the same period, respectively. These results are in accordance with previous 

work (Chapter 4), suggesting that the presence of cobalt (1%, nominal) in the structure replacing 
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the Ti4+ (CoTNT sample) induces a higher photocatalytic performance than the TNT-Co 

sample, with Na+/Co2+ replacement. These results also agree with the fact that the presence of 

cobalt in the titanate nanoparticles reduces the e-/h+ recombination rate [35]. 

Comparing the samples with and without polymer, the presence of PDAC on the TNT and 

cobalt-containing samples increases the adsorption and the photocatalytic activity of the films. 

This can be justified by the presence of amino groups (they promote improvement in adsorption 

and photocatalytic performance) on the surface, as well as the formation of photoinduced charge 

carriers in the polymer under visible light. Under irradiation, the electrons can be excited from 

the highest occupied molecular orbital (HOMO) to the lowest unoccupied molecular orbital 

(LUMO) (π-π* transition) of PDAC. Then, the photoinduced electrons can be transferred from 

LUMO of PDAC to the conduction band of TNP and then involved in the generation of 

additional superoxide radicals. These latter ones can lead to the formation of hydroxyl radicals, 

which are active in the pollutant degradation process (Figure 8.18(a)). 

About the Ru-containing samples, Figure 8.17(b), the ITO/TNT-Ru and ITO/TNT-Ru/PDAC 

films were the ones that presented a better performance, with the MB total degradation after 90 

min of irradiation. Furthermore, no significant differences were found on the photocatalytic 

performance of these films. After 75 min of irradiation, there was no more MB still in solution 

using the ITO/TNT-Ru/PDAC film, and 97% of MB was removed using the ITO/TNT-Ru film 

as catalyst. These results are following previous work (Chapters 5 and 6) indicating that Ru 

modified nanostructures are photoactive in visible light and the Ru incorporation on the TNT 

reduces the e-/h+ recombination rate. 

Contrary to what was observed for the films with TNT, CoTNT, and TNT-Co, the samples 

containing ruthenium showed higher photocatalytic activity in the absence of PDAC. This can 

be explained due to the difference between the conduction band energy of these modified 

materials (Figure 8.18(b)), as mentioned previously in Chapters 4-6. It is known that the 

photocatalytic oxidation and reduction abilities of semiconductors are determined by the 

potentials of their valence and conduction bands, respectively. The conduction band (CB) 

energy of the Ru-containing samples can reduce the O2 to O2
•-, due to their CB edge potential 

is more negative than the superoxide radicals (O2
•-) redox potential (- 0.33 V vs. NHE).  

Therefore, the probability of the formation of such O2
•- radicals via e- is high. However, in the 

case of TNT and Co-containing samples the CB position is more positive than the Eº (O2/O2
•-), 

so the formation of O2
•- radicals in these materials is less likely. For this reason, the presence 

of PDAC in TNT, TNT-Co and CoTNT films transfer electrons from the LUMO of the polymer 
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to the CB of these semiconductor materials, promoting the production of O2
•- radicals, and with 

this improving the photocatalytic degradation results. 

 

a) 

 
b) 

 

Figure 8.18 - Schematic representation of the charge-transfer mechanism proposal for (a) ITO/TNP/PDAC hybrid films 

and (b) for the pristine and Co- and Ru-containing TNP samples, under irradiation. 
 

To test the photocatalyst recycling possibility, ITO/CoTNT/PDAC and ITO/TNT-Ru/PDAC 

samples (the best photocatalysts in this study) were used for 4 successive MB degradation runs 

(60 min of irradiation each), and the results are presented in Figure 8.19. 

In the first degradation trial, 84% and 86% of the initial MB was degraded, using 

ITO/CoTNT/PDAC and ITO/TNT-Ru/PDAC samples, respectively. After the second and 

subsequent cycles, no significant differences were observed. These results can indicate that 

these photocatalysts are stable without significant loss of catalytic activity. No signals of surface 

poisoning of the ITO/CoTNT/PDAC and the ITO/TNT-Ru/PDAC films during these four 

successive degradations were observed. 

It is important to note that the presence of the polymer over the metal modified TNT layer 

allowed the film reutilization without loss of performance, once the films without PDAC drop-

down (detached from the substrate) after the first MB photodegradation experiment. With these 

results, it is possible to conclude that the presence of PDAC improves the films stability and it 

makes possible their use for successive photodegradation experiments. Furthermore, the PDAC 
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presence also reduces the e-/h+ recombination rate as explained above, due to the e- from the 

LUMO of PDAC that can be transferred for the TNT conduction band.  

 
Figure 8.19 - Percentage of a 10 ppm MB solution removal during four consecutive runs, of 60 min each, of photocatalytic 

degradation, using ITO/CoTNT/PDAC and ITO/TNT-Ru/PDAC samples as catalyst, under visible(Xe) irradiation. 

 

• Theophylline photodegradation 

To extend the applicability of these films, the degradation of a theophylline solution was also 

evaluated. Once the theophylline degradation under visible(Xe) irradiation was very slow, it was 

decided for this study to use UV-vis(Xe) radiation. Furthermore, only the films containing 

polymer were used for this study, due to the samples with polymer showed higher stability on 

the MB degradation experiments. Therefore, the photocatalytic activity of the films was tested 

on theophylline aqueous solutions (5 ppm) degradation, under UV-vis(Xe) radiation during 90 

min of irradiation. The obtained results are depicted in Figure 8.20, and as can be seen after the 

dark period (60 min), no significative theophylline was adsorbed on the films’ surface. This can 

be explained due to the fact this pollutant has a pKa = 7.82 and the TNT materials have a p.z.c. 

around 3.4 [37,38]. The prepared theophylline solution had a pH = 6, therefore, no interactions 

between the film surface and the theophylline molecule were expected. 

After irradiation, it is possible to see that all the samples demonstrated catalytic activity for the 

theophylline photodegradation reaction. The ITO/TNT-Ru/PDAC and ITO/TNT-Ru samples 

were the ones with the best performance, with 94% and 95% of theophylline degradation, 

respectively, after 90 min of irradiation. For this pollutant degradation, no significant 

differences were observed on the photocatalytic performance for the TNT-Ru samples with and 
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without polymer (ITO/TNT-Ru and ITO/TNT-Ru/PDAC). These results are in accordance with 

the ones for the MB removal (Figure 8.17 (b)). 

 

 
Figure 8.20 - Theophylline photodegradation during 90 min of UV-vis(Xe) irradiation using ITO/PDAC, ITO/TNT/PDAC, 

ITO/CoTNT/PDAC, ITO/TNT-Co/PDAC, ITO/TNT/PDAC, ITO/RuTNT/PDAC, and ITO/TNT-Ru samples. 

 

Since the ITO/TNT-Ru sample showed similar performance of the ITO/TNT-Ru/PDAC 

sample, and after the theophylline degradation this sample was stable (verified with the naked 

eye), it was decided to study its reuse in successive degradation runs. In addition and to analyze 

the photochemical stability of the ITO/CoTNT/PDAC, ITO/TNT-Co/PDAC ITO/TNT-Ru and 

ITO/TNT-Ru/PDAC samples, four successive theophylline degradation during 90 min each, 

were performed (Figure 8.21). 

As can be seen in Figure 8.21, all the samples presented high catalytic performance and 

photochemical stability, since no significate differences on the theophylline degradation after 

four successive degradation runs were observed. These results can suggest no signals of surface 

poisoning of the films during these four successive degradations. As can also be seen, the film 

without polymer, sample ITO/TNT-Ru, also presents excellent photochemical stability and 

catalytic performance. No differences were observed in the four degradation runs. For this 

process, and in contrary to what was found on the MB degradation, the films with and without 

polymer allowed the reutilization without loss of catalytic performance. This may suggest that 

this difference can be due to the type of pollutant used and/or the by-products formed, once the 
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theophylline molecule is smaller than the MB molecule (Figure 8.2) and also have different 

functional groups. Furthermore, it can be concluded that for this emergent pollutant degradation 

the samples without polymer were also stable. 

 
Figure 8.21 - Percentage of a 5 ppm theophylline solution removal during four cycles, of 90 min each, by photocatalytic 

degradation, using ITO/ CoTNT/PDAC, ITO/TNT-Co/PDAC, ITO/TNT-Ru/PDAC, and ITO/TNT-Ru samples as catalyst. 

 

• Theophylline photo(electro)degradation 

From the photoelectrochemical characterization (CV and j-t transients), it was verified that for 

ITO/MTNT and ITO/TNT-M (M = Co, Ru) samples, the steady-state photocurrent is higher 

than for ITO/TNT sample. Therefore, it was decided to perform preliminary studies on the 

theophylline photo(electro)degradation using the ITO/CoTNT, ITO/TNT-Co, ITO/RuTNT, and 

ITO/TNT-Ru samples, to analyze the influence of the metal position on the 

photo(electro)catalysis. Since the films without polymer (ITO/TNT, ITO/M-TNT and 

ITO/TNT-M (M = Co, Ru)) were stable in theophylline degradation, for the theophylline 

photo(electro)degradation experiments only the samples without PDAC were analyzed. 

The conditions used for these experiments were shown in Chapter 10 and the obtained results 

are depicted in Figure 8.22. 

The application of an external potential of 0.5 V to ITO/CoTNT, ITO/TNT-Co, ITO/RuTNT, 

and ITO/TNT-Ru samples improves the theophylline degradation under UV irradiation (LED 

365 nm) once the theophylline degradation was faster in comparison to the experiment without 

polarization (photocatalysis). These results indicate that the application of a potential enhances 

the separation of charge and consequently reduces the e-/h+ recombination rate. 
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Figure 8.22 - Theophylline concentration after 120 min of UV irradiation (LED 365 nm) during photo and 

photoelectrodegradation using ITO/CoTNT, ITO/TNT-Co, ITO/RuTNT, and ITO/TNT-Ru samples as catalysts. 

 

8.5 - Conclusions 

Nanocrystalline titanate nanoparticles (TNT and TNW) modified with cobalt and ruthenium 

were successfully immobilized on the ITO substrate by the drop-casting method and by drop-

casting followed by the electropolymerization of DAC directly over the TNP thin layer, forming 

a conductive polymer layer (PDAC) on the surface. These modified materials (ITO/TNP, 

ITO/MTNP, ITO/TNP-M, ITO/TNP/PDAC, ITO/MTNP/PDAC and ITO/TNP-M/PDAC (M = 

Co, Ru)) were characterized by SEM, DRS and photoelectrochemical techniques (cyclic 

voltammetry and chronoamperometric measurements in dark and under illumination). The 

adsorption and photocatalytic ability of the prepared materials to remove organic pollutants 

from aqueous media were studied, using methylene blue (MB) and theophylline as models. All 

the films demonstrated catalytic activity for MB (10 ppm) and theophylline (5 ppm) 

photodegradation.  

For the titanate nanowires, the best MB photocatalytic degradation results were achieved with 

the ITO/CoTNW/PDAC and ITO/RuTNW/PDAC films, under UV-vis(Xe) and visible(Xe) light 

irradiation. The presence of PDAC on the films allowed their reutilization without performance 

loss. 

Concerning the cobalt and ruthenium modified titanate nanotubes, the highest photocatalytic 

activity was found for ITO/TNT-Ru/PDAC sample achieving the total degradation of MB and 

theophylline after 90 min of irradiation. Regarding the ITO/TNT-Ru and ITO/TNT-Ru/PDAC 

films, similar catalytic activity was obtained for both samples. Moreover, they revealed the 
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same degradation ability with respect to theophylline even without PDAC deposited on the top 

of the semiconductor particles.  

The reusability of the hybrid films was also evaluated, using fresh MB and theophylline 

solutions, and a promising photocatalytic performance with a very low variation of the 

degradation rate after four consecutive degradation tests was observed. The reuse studies 

showed that for MB degradation, only the samples with PDAC are stable, however, for the 

theophylline degradation all the samples (with and without polymer) are stable.  

Theophylline photo(electro)degradation preliminary results using the Ru- and Co-containing 

TNT films suggest an improvement in the catalytic performance when a potential was applied. 

This can be due to a decrease in the e-/h+ recombination rate since the application of an external 

constant potential to the catalysts promotes an enhancement of the charge separation.  
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Chapter 9 – Final conclusions 

Novel functionalized titanate nanowires and nanotubes were synthesized using a hydrothermal 

method and further used as catalysts in photo(electro)degradation processes for emergent 

pollutants removal. The photodegradation of different pollutants, including phenol, caffeine, 

theophylline, sulfamethazine, and dyes, demonstrated that all the modified TNT/TNW samples 

had a higher photocatalytic ability when compared with the pristine ones. 

The work developed in the framework of this dissertation included: 

Titanate nanoparticles modified by organic sensitization (Chapter 2): 

• For the TNT/TNW sensitized with ethylenediamine, the amine species were on the surface 

of the samples. The improvement in the photocatalytic activity of the NTNT and NTNW 

samples occurred due to the increase in the visible light absorption and the lower energetic 

requirements to activate these catalysts as a result of the lower bandgap energy when 

compared to the pristine samples. The h+, •OH and the presence of nitrogen oxidant species 

were the main species involved in the pollutants’ degradation processes. 

Titanate nanoparticles modified by metallic silver nanoparticles combination (Chapter 3): 

• The protonated titanate nanowires, HTNW, were modified by sensitization with Ag 

nanoparticles. In this case, the Ag+ immobilization occurred manly in interlayers, replacing 

Na+ and Ag metallic nanoparticles in the HTNW surface. The Ag-HTNW photocatalyst 

reusability was examined in successive phenol degradation runs, and an increase of the Ag 

metallic nanoparticles was observed during these experiments, due to the continuous Ag+ 

reduction, leading to the formation of Ag0 nanoparticles on the surface. This result showed 

that it is possible to simultaneously prepare Ag nanoparticles and degrade a pollutant, 

without loss of photocatalytic performance. The photodegradation process when the Ag-

HTNW was used as catalyst, occurred by h+, •OH radicals and by O2
•- species formed at the 

Ag nanoparticles surface. 

TNW/TNT modified by transition metals, by ion-exchange and/or doping (Chapters 4-7): 

• The modification of TNW by the Co ion-exchange method was, as expected, only by Na+ 

replacement on the interlayers. For the samples modified by Co doping (1% and 5%, 

nominal), a replacement by Ti4+/Co2+ was obtained. The doped sample with higher cobalt 

content (5%) showed also a replacement of the Na+ ions. This happens for high metal 

content precursors due to the dissolution in NaOH solution during the hydrothermal process. 

All the Co-modified TNW samples absorbed radiation in the visible region, and the optical 

redshifts can be assigned to the insertion of the Co 3d orbitals within the forbidden band. 
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The photocatalytic activity of these Co modified materials was mainly due to the 

introduction of intermediate levels in the forbidden band, which contribute to the e-/h+ 

recombination rate decrease. Furthermore, a lower doping level (1%) showed to be more 

efficient for the pollutants’ photocatalytic removal. Concluding that the cobalt replacement 

only in Ti4+ improved the catalytic activity of the samples for the photodegradation 

processes studied. 

• The TNT and TNW particles modification by doping with ruthenium (1% of Ru, nominal) 

showed that a higher amount of Ru was incorporated in the RuTNW sample, contrasting 

with some Ru loss that occurred during the two steps required for the RuTNT production. 

In the RuTNW sample, the Run+ is replacing Ti4+, and Na+ in the interlayers. However, in 

the RuTNT sample, the Ru is only replacing the Ti4+. For both Ru-containing samples, the 

improvement of the photocatalytic behavior was due to a decrease in the e-/h+ recombination 

rate. However, the best photocatalytic activity was obtained with the RuTNT sample, which 

could be due to the lower Ru content and the substitution only in the Ti4+.  

• The co-doping sample, FeMnTNW, was obtained from vestigial metal contamination of an 

initial reagent during precursor synthesis. The Mn and Fe were incorporated in the TNW 

structure by replacement of Na+ in the interlayers, together with some Ti4+ substitution. The 

most active species in caffeine degradation with the FeMnTNW sample were the •OH and 

O2
•- radicals. The FeMnTNW photocatalytic behavior was mainly associated with the e-/h+ 

recombination rate reduction, due to the introduction of intermediate energetic levels in the 

forbidden zone, as a result of the presence of ionic Mn and Fe species. Furthermore, the Fe 

and Mn redox reactions created the ideal conditions for a parallel photo-Fenton process, 

which contributed to the pollutants’ degradation improvement. 

Also included in this research was the TNT and TNW immobilization in films to be used as 

catalysts in pollutants photo(electro)degradation (Chapter 8). 

• The TNT/TNW modified with cobalt and ruthenium were successfully immobilized on an 

ITO substrate by drop-casting method directly and by drop-casting followed by the 

electropolymerization of 1,8-diaminocarbazole (DAC). All the films had a catalytic activity 

for the methylene blue and theophylline photodegradation. The best photocatalytic 

performance was obtained with the ITO/TNT-Ru/PDAC film.  

For the Ru-containing films, no differences were found on the photocatalytic activity for 

the films with and without polymer, making possible the reutilization of both samples. 

However, for Co-containing films, the presence of the polymer (PDAC) improved the 

photocatalytic ability for the degradation of the pollutants studied. 
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Chapter 10 – Methods and experimental 

This chapter presents the details related to the development of the experimental work and a 

brief description of the nanoparticles synthesis conditions and all the characterization 

techniques used. Examples of the calculations carried out, for the determination of bandgap 

energy, valence band, crystallite sizes, pollutant degradation rates and kinetic of the 

degradations are also presented. 

 

10.1 - Reagents  

All reagents used during this research were of analytical or chemical-grade (Aldrich, Fluka, 

Acros or similar) and were used as received. The solutions were prepared with distilled water. 

However, for the electrochemical and photo(electro)degradation experiments deionized water 

(Millipore) was used, for the results shown in Chapter 8. 

All chemical compounds not used or resulting from the reactions were placed in appropriate 

containers and/or discarded according to safety procedures. 

 

10.2 – Synthesis 

During this research work, all the syntheses start with the preparation of an amorphous 

precursor. This precursor can be used for the preparation of a titanium dioxide (TiO2) 

nanoparticles in an aqueous media (using distillate water), or for the preparation of titanate 

nanowires (TNW) in alkaline media (using a 10 M sodium hydroxide solution, NaOH). For the 

preparation of titanate nanotubes (TNT) was used the TiO2 nanoparticles, previously prepared, 

in alkaline media. 

 

10.2.1 - TiOx amorphous precursor synthesis 

The amorphous precursor (with a titanium-to-oxygen ration of 0.25:1 [1]) was prepared using 

a procedure previously reported [1,2]. A titanium trichloride solution (TiCl3, 10 or 20 wt.% in 

20-30 wt.% HCl) diluted in a ratio of 1:2 in 2 M hydrochloric acid (HCl) solution was used as 

the titanium source. To this solution, a 4 M ammonia aqueous solution was added dropwise 

under vigorous stirring, until complete precipitation of a white solid. The resulting suspension 

was kept overnight at room temperature and then filtered and vigorously rinsed with deionized 

water in order to remove the remaining ammonia and chloride ions. The white solid obtained 

(precursor) was afterward stored and used to prepare the titanate nanostructures samples (such 

as nanotubes, nanowires, nanoparticles) and/or TiO2 nanoparticles. 
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10.2.2 - Ru-doped precursor 

The ruthenium doped precursor was obtained using a similar procedure using for the undoped 

precursor (section 10.2.1) by adding the required molar amount (1%, nominal) of ruthenium 

(III) chloride, RuCl3, to the titanium-containing solution. In this case, after ammonia solution 

precipitation, a dark precursor was obtained. 

 

10.2.3 - Co-doped precursor synthesis 

The cobalt doped precursor was obtained using an identical synthesis procedure using for the 

undoped precursor (section 10.2.1) by adding the required molar amount (nominal percentage 

of 5% or 1%) of metallic cobalt (Johnson Matthey) to the titanium trichloride solution. The 

amount 0.1178 g (for Co 5%) and 0.0236 g (for Co 1%) of metallic cobalt powder was carefully 

dissolved in ca. 1 mL of concentrated nitric acid (HNO3, 65%). The deep purple solution was 

heated, to evaporate the solvent, and 2 mL of HCl solution (37%) was added to evaporate the 

residual nitrates, with the formation of yellow steam. After no yellowish steam was observed, 

the solution was diluted with 2 M HCl to the 100 mL final volume. This solution was added to 

50 mL of TiCl3 solution. After precipitation with 4 M ammonia solution, the Co-doped 

precursors were obtained as a bluish-grey solid (1% of Co) and a greenish dark grey solid (5% 

of Co). 

 

10.2.4 - Titanate nanowires (TNW) synthesis 

Sodium titanate nanowires (NaTNW) were synthesized using a hydrothermal approach. This 

synthesis was performed in an autoclave system using 10 g of precursor in ca. 70 mL of a 

sodium hydroxide (NaOH) 10 M aqueous solution, at 160ºC for 24 hours. These conditions 

were used supported in a previous work [1], described as the ideals to obtain titanate nanowires. 

After natural cooling until room temperature, the powder was washed several times with water 

until pH 7 on the filtrate solution to obtain the TNW sample.  

 

10.2.5 – Protonated titanate nanowires (HTNW) synthesis 

Protonated titanate nanowires (HTNW) were obtained using the hydrothermal approach 

described above and a swift and highly controllable post-washing process. This synthesis was 

performed in an autoclave system (160ºC for 24 hours) using 10 g of precursor in ca. 70 mL of 

a NaOH 10 M aqueous solution. After natural cooling until room temperature, the powder was 

washed several times with water until pH 7 on the filtrate solution to obtain the TNW (or 

NaTNW) sample. Afterward, this powder was stirred in an HNO3 0.1 M aqueous solution for 4 
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hours, to produce the protonated sample (HTNW). The solid was then washed with water until 

pH 5 in the filtrate. 

The elongated titanate nanoparticles (Na2-xHxTi3O7 (0 ≤ 𝑥 ≤ 2)) structure have layers of two-

dimensional TiO6 octahedral sheets intercalated by Na+ ions, which can be exchanged with 

other ions, including H+. After acid treatment, all the Na+
 present in the interlayers can be 

replaced by H+ and the structure changes to H2Ti3O7. 

 

10.2.6 – Titanium dioxide (TiO2) nanoparticles synthesis 

The TiO2 samples were synthesized in an autoclave using ~ 10 g of the precursor in ca. 60 mL 

of distillate water. Based on previous works [2], the crystallization of the precursor to obtaining 

TiO2 nanoparticles was performed at 200°C for 6 hours. After cooling and being washed several 

times with deionized water, the TiO2 nanoparticles were dried and stored.  

 

10.2.7 – Titanate nanotubes (TNT) synthesis 

TNT particles were synthesized using the hydrothermal approach described in section 10.2.4, 

but using TiO2 nanoparticles instead of the precursor. The synthesis was performed in an 

autoclave system (160°C, 24 hours) using 10 g of the previously prepared TiO2 sample in ca. 

70 mL of a 10 M NaOH aqueous solution. After cooling until room temperature, the powder 

was washed several times with water until the pH of the filtrate solution was 7, and afterward 

dried at 60ºC. 

 

10.2.8 – Ag-HTNW synthesis 

HTNW modified with Ag nanoparticles were produced by a photo-reduction method. First, the 

HTNW particles (prepared as described in section 10.2.5) were treated with a 0.5 M silver 

nitrate (AgNO3) aqueous solution during 24 hours, under vigorous stirring. After, the white 

solid was washed several times with distillate water to remove un-adsorbed Ag+ ions. The 

formation of metallic silver was attained by irradiating the white solid aqueous suspension with 

a mercury lamp for 60 min. 

Experimentally, the Ag+ photo-reduction to metallic Ag was conducted using a 250 mL 

refrigerated photo-reactor [3]. A 450 W Hanovia medium-pressure mercury-vapor lamp was 

used as a radiation source; the total irradiated energy is 40-48% in the ultraviolet range and 40-

43% in the visible region. The suspensions were prepared by adding 2 g of the powder to 150 

mL of distilled water. After irradiation, the dark grey-brown suspensions were centrifuged, 

washed and dried at room temperature.  
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10.2.9 – TNT and TNW modification with amines - ethylenediamine (EDAmine) 

The TNW and TNT samples were sensitized with EDAmine adding 2.5 mL of the amine to 50 

mL of an acetone suspension containing 0.250 g of TNW or TNT. The suspensions were stirred 

at reflux temperature for 4 hours. After cooling to room temperature, NTNW and NTNT (crème 

solids) were isolated by centrifugation, washed with acetone and dried at room temperature 

over silica gel. 

 

10.2.10 – Synthesis of ruthenium modified nanoparticles  

• Ru-TiO2 synthesis 

The Ru-TiO2 nanoparticles were produced using the Ru-doped precursor (section 10.2.2) in the 

same conditions used for TiO2 nanoparticles synthesis, 200ºC and 6 hours, (section 10.2.6). 

After being washed, the Ru-TiO2 nanoparticles (dark solid) were dried and stored.  

 

• RuTNW and RuTNT synthesis 

The Ru-modified TNW and TNT particles were produced using 160ºC and 24 hours of reaction. 

The two powders obtained through the hydrothermal treatment of the Ru-containing precursor 

and Ru-TiO2 nanoparticles were labeled as RuTNW and RuTNT (dark brown solids), 

respectively. 

 

10.2.11 – Synthesis of cobalt modified nanoparticles 

• Co-TiO2 synthesis 

The Co-TiO2 nanoparticles were produced using the Co-doped precursor (section 10.2.3) in the 

same conditions used for TiO2 nanoparticles synthesis, 200ºC and 6 hours, (section 10.2.6). 

After being washed, the Co-TiO2 nanoparticles (bluish solid) were dried and stored.  

 

• CoTNT and CoTNW synthesis 

The CoTNW and CoTNT samples were synthesized in an autoclave using 10 g of Co-doped 

precursor and Co-TiO2 nanoparticles, respectively, in ca. 70 mL of NaOH 10 M aqueous 

solution. The samples were prepared at 160ºC for 24 hours. After cooling to room temperature, 

the suspensions were filtered, and the powders were washed several times with deionized water 

until a filtrate with pH = 7 was attained. The obtained Co-doped samples were identified as 

Co(1%)-TNW and Co(5%)TNW, and Co(1%)TNT and Co(5%)TNT.  
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These Co-doped TNT or TNW were obtained as a bluish solid (1% of Co) and a greenish dark 

grey solid (5% of Co). 

 

• TNW/Co and TNT/Co synthesis 

The Co ion-exchanged titanate nanostructures were synthesized using 10 g of TNT or TNW 

previously prepared in 60 mL of cobalt nitrate (Co(NO3)2.6H2O) aqueous solution, by adding 

the required Co molar amount of 1% and 5% related with Ti. The resulting suspensions were 

kept for 7 hours under stirring at room temperature. Afterward, the suspensions were vigorously 

rinsed with deionized water in order to remove the remaining cobalt ions. The obtained Co ion-

exchanged samples were identified as TNT/Co(x%) and TNW/Co(x%) with x = 1 and 5. 

Afterward, these bluish solids were dried and stored. 

 

10.3 – Nanoparticles characterization 

10.3.1 – X-ray powder diffraction (XRD) 

The samples identification and structural characterization were performed by XRD using a 

Philips Analytical X-ray diffractometer (PW 3050/60) with automatic data acquisition (X’ Pert 

Data Collector (v2.0b) software), employing Cu Kα radiation (λ = 0.15406 nm) working at 40 

kV/30 mA. The diffraction patterns were collected in the 2θ range 5º – 60º with a 0.02º step 

size and an acquisition time of 200 s/step. For crystallite size calculations, the acquisitions were 

done in the 5º - 15º 2θ range, using an acquisition time of 600 s/step. 

To be possible the XRD characterization, samples were prepared by placing the TNP powder 

on a silicon support. 

The Kα2 contribution was removed before the XRD pattern analyses. The 2θ angular position 

of the diffraction peaks and their full-width at half maximum, β, were calculated by fitting the 

experimental diffraction lines with a Pseudo-Voigt function. The β values were corrected 

taking into account the instrumental broadening. 

 

• Crystallite size determination: 

The crystallite size determination is possible using the Scherrer equation [4,5]: 

 D = 
Kλ

βcosθ
                                                                  (10.1) 

D is the average crystallite size, K a constant that depends on the crystallite shape (K = 0.89 for 

spherical crystallites), λ the incident radiation wavelength,   the Bragg diffraction angle of the 
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peak of highest intensity, β is the width at half-height of the highest intensity peak defined by 

β2 = β2
m-β2

s where βm and βs are the half-height widths of the sample and pattern diffraction 

peaks, respectively. The standard is a highly crystalline compound, such as polycrystalline 

silicon, which allows correcting peak widening due to instrumental factors [4]. 

 

10.3.2 - Transmission electron microscopy (TEM) 

The TEM images and high-resolution transmission electron microscopy (HRTEM) images 

were obtained using a JEOL 200CX microscope operating at 300 kV. Perforated copper grids 

with a formvar film were used to support the samples containing elongated particles.  

 

10.3.3 - Energy-dispersive X-ray spectroscopy (EDS) 

The samples elemental composition was evaluated by energy-dispersive X-ray spectroscopy 

(EDS) using a ThermoNoran model SystemSix spectroscope coupled to the TEM equipment. 

 

10.3.4 – Specific surface area determination (B.E.T. method) 

Specific surface areas were obtained by the B.E.T. method, from nitrogen (AirLiquide, 

99.999%) adsorption data at −196ºC, using a volumetric apparatus from Quantachrome mod 

NOVA 2200e. The samples, weighing approximately 55 mg, were previously degassed for 2.5 

hours at 300 °C at a pressure lower than 0.133 Pa. 

 

10.3.5 – Micro X-ray fluorescence (µXRF) 

The quantification of the metal immobilized in the titanate nanostructures (silver and 

ruthenium) was attained by micro X-ray fluorescence (µXRF). The XRF equipment was an M4 

Tornado from Bruker comprising an Oxford Instruments Eclipse IV X-ray source with an anode 

of Rh and a 250 μm thick Be window (50 kV, 300 µA, 150 s) with a poly-capillary lens, offering 

a spot size down to a 25 µm at a working distance of 10 mm, coupled to an XFlash®silicon drift 

detector (SDD) technology, with a 30 mm2 sensitive area and an energy resolution < 145 eV. 

Several spot analyses were carried out and the elemental quantification was performed using 

ESPRIT software. 

 

10.3.6 - Diffuse reflectance spectroscopy (DRS) 

The optical characterization of the prepared samples was obtained on a UV−vis spectrometer 

Shimadzu UV-2600PC equipped with an ISR 2600 plus integrating sphere, in the wavelength 

range of 200-1400 nm, and using barium sulfate (BaSO4) as reference.  
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The bandgap energy (Eg) of the samples was calculated from their diffuse reflectance (R) 

spectra, using the Kubelka−Munk (KM) spectra (after conversion of diffuse-reflectance to KM). 

Through the relation FKM (R) = (1− R)2/2R, and by plotting the function fKM = (FKM.hν)2 versus 

hν, where h stands for Planck’s constant and ν for the radiation frequency, Eg is obtained by 

extrapolating the linear portion of the curve to zero absorption [6], as explained in the following 

example: 

 

• Bandgap energy determination: 

In semiconductors, the function that relates energy to the absorption coefficient α(hν) can be 

expressed as follows: 

 

𝛼 =
𝛼0(ℎ𝜈−𝐸𝑔)𝑛

ℎ𝜈
                                                        (10.2) 

 

for direct and indirect transitions. For direct transitions n = 1/2 and for indirect transitions n = 

2. For titanate nanoparticles and high values of α, nearby to the bandgap, a direct transition (n 

= 1/2) is expected to occur: 

 

(𝛼ℎ𝜈)2 = 𝛼0(ℎ𝜈) − 𝛼0𝐸𝑔                                            (10.3) 

 

Plotting the graph (α.hν)2 versus (hν) it is possible to determine the bandgap energy, as shown 

in the example: 

1) Considering the following optical spectrum, from a TNW sample: 

 

Figure 10.1 – Absorption spectra of a TNW sample. 

 

2) considering that 1 nm corresponds to 1239.84 eV it is possible to convert λ in (hν); 
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3) as the absorbance of a sample is directly proportional to the absorption coefficient 

(assuming that the optical path does not change) then (α.hν)2 corresponds to k.(KM.hν)2 

where k is a constant; 

4) the representation of (KM.hν)2 as a function of (hν), where h stands for Planck’s constant 

and ν for the radiation frequency, as illustrated in Figure 10.2: 

5)  

 
Figure 10.2 – Representation of the function (FKM.hv)2 versus hv, for the bandgap energy (of a TNW sample) determination. 

 

6) in the region nearby to the absorption band, the graph corresponds to a line whose 

intercept with the xx axis corresponds to the value of the bandgap energy (3.28 eV, in 

this case). Eg is obtained by extrapolating the linear portion of the curve to zero 

absorption. 

 

10.3.7 – Photoluminescence spectroscopy (PL) 

The photoluminescence spectra were measured on a SpexFlourolog 3-22/Tau 3, using 20 mg 

of samples. The excitation was performed at 280 nm, and the emission acquisition on the 

wavelength range of 350 to 610 nm. 

 

10.3.8 – X-ray photoelectron spectroscopy (XPS) 

The XPS analyses were performed at CEMUP - Centro de Materiais da Universidade do Porto, 

using a Kratos AXIS Ultra HSA, with VISION software for data acquisition and CASAXPS 

software for data analysis. The analyses were performed with a monochromatic Al K X-ray 

source (1486.7 eV), operating at 15kV (90 W), in FAT mode (Fixed Analyser Transmission), 

with a pass energy of 40 eV for regions ROI and 80 eV for the survey.  
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Data acquisition was performed with a pressure lower than 1.E-6 Pa, and it was used a charge 

neutralization system.  The effect of the electric charge was corrected by the reference of the 

carbon peak (285 eV). The deconvolution of spectra may be carried out using the XPSPEAK41 

or CasaXPS programs, in which a peak fitting is performed using Gaussian-Lorentzian peak 

shape and Shirley (or Linear) type background subtraction. 

The valence band energy (VB) of the samples was determinate from the XPS high-resolution 

spectra of the O 2p → Ti 3d transition, as explained in the example: 

 

• Valence band (VB) determination: 

The bandgap energy of a semiconductor corresponds to the difference between the energy of 

the higher level of the valence band and the lower level of the conduction band. For elongated 

titanate materials, this energy corresponds to the O 2p → Ti 3d transition. To allow the energetic 

quantification of this transition, the valence band spectrum (VB-XPS) of each sample was 

recorded (Figure 10.3 shown an example for a TNW sample). A linear method (extrapolation 

of the leading edge to the extended baseline of the VB spectra) was used to calculate the position 

of the valence band [7], as shown in Figure 10.3. The corresponding conduction band (CB) 

energy was posteriorly calculated using the expression: Eg = VB − CB.  

 

 

Figure 10.3 – XPS high-resolution spectra of the O 2p to Ti 3d transition, used for valence band determination (of a TNW 

sample). 

 

10.3.9 – Raman spectroscopy 

For the titanate nanoparticles modified with ethylenediamine (Chapter 3) the analysis by Raman 

spectroscopy was carried out at CICECO - Centro de Investigação em Materiais Cerâmicos e 
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Compósitos da Universidade de Aveiro, using an FT Raman Bruker RFS 100/S spectrometer 

and spectra acquisition were obtained after 300 scans and a resolution of 4 cm-1. 

In Chapter 5, for the characterization of cobalt modified nanoparticles, a room temperature 

micro-Raman spectra were measured using a Jobin–Yvon T64000 spectrometer equipped with 

liquid nitrogen cooled CCD detector using the 514.5 nm excitation line of an Ar+ laser, with an 

incident power of 0.4 mW or 4 mW on the sample surface in approximately 1 mm spot, a 20× 

objective lens with a spectral resolution of 1 cm-1 and backscattering geometry. Several spectra 

were recorded in different places of each sample using two incident powers of 0.4 mW and 4 

mW, with no significant differences being detected. These analyses were carried out at Centro 

de Física da Universidade do Minho. 

Raman spectra of all the ruthenium modified and pristine TNT/TNW materials (Chapters 5 and 

6) were obtained, at CICECO - Centro de Investigação em Materiais Cerâmicos e Compósitos 

da Universidade de Aveiro, using a combined Raman-AFM-SNOM confocal microscope 

WITec alpha300 RAS+ (WITec, Ulm, Germany). An Nd: YAG laser operating at 532 nm was 

used as the excitation source with the power set at 1 mW. Raman spectra were collected with a 

100× objective lens with an acquisition time of 2 s and 10 acquisitions. Raman imaging 

experiments were performed by raster-scanning the laser beam over the samples and 

accumulating a full Raman spectrum at each pixel. Raman images were constructed by 

integrating over specific Raman bands using WITec software for data evaluation and 

processing. 

 

10.3.10 – Point of zero charge (p.z.c.) 

The zeta potential analyses were performed in CICECO - Centro de Investigação em Materiais 

Cerâmicos e Compósitos da Universidade de Aveiro, using a Malvern NanoZS Zetasizer 

working at 148 V. The samples were suspended in aqueous media and NaOH or HCl aqueous 

solutions were used to adjust the suspension pH between 2 and 6. 

 

10.4 – Photocatalytic experiments 

The photodegradation experiments were conducted using a 250 mL refrigerated photo-reactor 

(Figure 10.4). A 450 W Hanovia medium-pressure mercury-vapor lamp was used as a radiation 

source; the total irradiated light is 40-48% in the ultraviolet range and 40-43% in the visible 

region of the electromagnetic spectrum. For the visible light experiments, a Pyrex filter was 

used. 
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The catalytic photodegradation experiments were performed by adding 20 mg of catalyst to 150 

mL of pollutant aqueous solutions. Prior to irradiation, suspensions were stirred in darkness for 

60 min to ensure adsorption equilibrium. For convenience, during this work, the adsorption 

time (1 hour) is marked in the graphics before t = 0. During irradiation, suspensions were 

sampled at regular intervals, centrifuged and analyzed by gas chromatography-mass 

spectrometry (GC-MS), UV-vis spectrophotometry or liquid chromatography high-resolution 

with electrospray ionization coupled to mass spectrometry (LC-HR-ESI/MS) depending on the 

organic compound (see below). 

To study the reusability of the catalysts, all the experimental parameters were kept constant and 

the photodegradation measurements were repeated for four trials using the same catalyst and 

fresh pollutant solutions. After each photodegradation experiment, the catalyst was 

centrifugated and washed/cleaned with distilled water to remove any organic contamination 

from the previous run. During this process, the stability of the photocatalysts was studied by 

XRD, TEM, Raman, and DRS. 

 

 
a)              b) 

 
Figure 10.4 – (a) Representation and (b) photography of the photo-reactor used in the photocatalytic experiments. 

 

10.4.1 - Fluorescence spectroscopy 

Fluorescence spectra of 2-hydroxyterephthalic acid (HTA) were measured on a SpexFlourolog 

3-22/Tau 3, with excitation and emission wavelengths 315 and 425 nm, respectively. The 

emission acquisition was performed in the wavelength range 320 – 575 nm, using a quartz cell 

with four sides cleaned (i.e. all transparent walls). 
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• Production of hydroxyl radical (•OH)  

The photocatalytic degradation of terephthalic acid (TA) was performed to evaluate the 

production of the hydroxyl radical. This probe molecule is a natural •OH scavenger and the 

production of the oxidant can be followed through the formation/detection, during catalyst 

irradiation, of the fluorescent 2-hydroxyterephthalic acid (HTA). The TA photocatalytic 

experiments were carried out using a fresh 3 mM TA solution (prepared in 0.01 M NaOH 

aqueous solution) and 10 mg of each sample and the conditions described in section 10.4. 

During irradiation, the suspensions were sampled at regular intervals, centrifuged and analyzed 

by fluorescence spectroscopy. For some samples, the TA degradation experiment was also 

performed in the absence of O2 (during the reaction the suspension was purged with high-purity 

(99.999%) N2 by Air Liquide) to be able to analyze a possible mechanism of charge-transfer 

during samples irradiation. 

 

10.4.2 – UV-vis spectrophotometry 

A UV-vis spectrophotometer Shimadzu UV-2600PC was used for monitoring the absorption of 

dyes, such as brilliant green (BG) and naphthol yellow S (NYS) solutions. 

 

• Photocatalytic degradation efficiency determination: 

The photocatalytic degradation efficiency could be calculated as follows:  

 

η =
C0−C

C0
 x 100                                                            (10.4) 

 

where C0 is the initial concentration of pollutant before photocatalytic reaction (mg L-1) and C 

is the real-time concentration of pollutant after light irradiation (mg L-1). 

 

10.4.3 – Gas chromatography-mass spectrometry (GC-MS) 

A GC-MS was used to evaluate the phenol degradation and their by-products identification. 

The conversion of products was monitored by taking samples, at different times of irradiation, 

and analyzing them using a Shimadzu QP2100-Plus GC/MS system with a capillary column 

Tecknokroma TRB-5MS. 
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10.4.4 – Liquid chromatography high-resolution with electrospray ionization coupled to 

mass spectrometry (LC-HR-ESI/MS) 

The identification and quantification of caffeine, theophylline, sulfamethazine, diclofenac and 

carbamazepine, and their by-products were performed by LC-HR-ESI/MS, on a QqTOF Impact 

IITM mass spectrometer equipped with an ESI source (Bruker Daltonics, Germany) and 

interfaced with a Dionex UltiMate® 3000 RSLCnano (Thermo Fisher Scientific Inc., USA). 

The LCnano system was composed of an RSLCnano HPG pump, an NCS-3500RS column 

compartment, and a thermostatted WPS-3000TPL autosampler. The separation was carried out 

with a Hypersil Gold C18 column 150 x 2.1 mm, 1.9 µm (Thermo Fisher Scientific Inc., USA) 

at 35ºC constant temperature. The mass spectrometer was operated in the ESI positive ion mode 

operating in the high-resolution mode. The optimized parameters were: ion spray voltage, 4.5 

kV; endplate offset, -500 V, nebulizer gas (N2), 2.8 bars; dry gas (N2), 8 L min-1; dry heater, 

200ºC. The mass spectra were acquired on the bbCID mode over a mass range of 50-1000 m/z, 

and a spectra rate of 1 Hz. The calibration of the TOF analyzer was performed with a 10 mM 

sodium formate calibrant solution. Data was processing using Data Analysis 4.1 software 

(Bruker Daltonics, Germany) 

 

10.5 – Nanocomposite films preparation, characterization and application in 

pollutants photo(electro)degradation 

10.5.1 – Films preparation 

Different methods were used to immobilize the titanate nanostructures, such as drop-casting 

method, drop-casting followed by electropolymerization of 1,8-diaminocarbazole monomer 

(DAC) (Figure 10.5). 

 

 
Figure 10.5 – Schematic representation of TNP deposition methods used. 
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• Drop-casting films preparation 

The immobilization of the nanostructures and metal-modified TNW or TNT (e.g. cobalt and 

ruthenium) was carried out on indium tin oxide (ITO) coated quartz glass substrates (1 cm x 2 

cm) by a drop-cast methodology, using 15 µL of a 1 mg mL−1 suspension in Millipore distillate 

water. In order to obtain a better contact with the ITO and the nanostructures, before the 

preparation of the samples, the ITO surface was activated in a NaOH 0.1 M solution followed 

by an H2SO4 0.1 M solution, and then washed with Millipore water.  

The obtained samples were identified as pristine and metal modified ITO/MTNW, ITO/TNW-

M, ITO/MTNT and ITO/TNT-M (M = Co or Ru). 

 

• DAC Electropolymerization 

The electropolymerization of 1,8-diaminocarbazole (DAC) [8] was carried out, obtaining the 

poly(1,8-diaminocarbazole) (PDAC). This conductive polymer, PDAC, was deposited by 

electropolymerization, above the pristine and modified ITO/TNT and ITO/TNW samples. 

Electrochemical synthesis of PDAC was carried out in a single-compartment cell (as illustrated 

in Figure 10.6) with a platinum wire counter electrode and a silver wire reference electrode (in 

0.1 M LiClO4).  

 

 
Figure 10.6 - Representation of the cell used for electropolymerization and electrochemical characterization. 

 

The working electrode was an ITO substrate (surface area of 1.2 cm2). PDAC was obtained by 

cyclic voltammetry using a PGSTAT 30N (Metrohm, Autolab, The Netherlands) in the − 0.1 

to 1.0 V potential range and a scan rate of 60 mV s−1. A 2 mM 1,8-diaminocarbazole solution 
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in acetonitrile containing 0.1 M LiClO4 as supporting electrolyte was used. Films with different 

polymer thickness were obtained using 2 or 20 cycles.  

These obtained films were labeled as pristine and metal modified ITO/MTNW/PDAC, 

ITO/MTNT/PDAC and ITO/TNT-M/PDAC (M = Co or Ru).  

 

10.5.2 – Modified electrodes characterization 

• Cyclic voltammetry 

After electrodes modification, a four successive cyclic voltammograms (CV) characterization 

was performed using the same apparatus (Figure 10.6, in monomer free solution) used for 

electropolymerization (section 10.5.1), in the potential range from -0.25 to 0.75 V using as 

electrolyte a 0.1 M LiClO4 in acetonitrile solution. 

 

• Optical characterization 

The optical absorption properties of the modified electrodes, within the range of 200–800 nm, 

were analyzed using a Shimadzu UV-3600 spectrometer equipped with an integrating sphere 

and BaSO4 as reference. 

 

• Morphology characterization  

The morphology of the films was analyzed by scanning electron microscopy (SEM) in a field 

emission gun − scanning electron microscope JEOL-7001F (FEG-SEM), operating at 5 kV. 

During the development of the work during the stay in Warsaw, Poland, a field-emission 

scanning electron microscope FE-SEM (Merlin, Carl Zeiss) operating at 3 kV was also used to 

examine the morphology of some of the films. 

 

• Photoelectrochemical characterization 

Photoelectrochemical measurements were performed with the potentiostat AUTOLAB 

PGSTAT 302N Metrohm Autolab (The Netherlands). In a cell with three electrode 

compartments, ITO/TNT/PDAC or ITO/TNT were used as working electrodes (approx. 1 cm2 

geometrical working surface area), Ag/AgCl/Cl- (3 M KCl) as a reference electrode, and Pt wire 

as a counter electrode. The experiments were carried out in an aqueous solution of 0.1 M 

Na2SO4. The working electrode was illuminated with arc 450 W Xenon lamp (OPTEL, Poland) 

at a power density of 100 mW cm-2, and also with a device based on high-power LED (365 nm) 

described elsewhere [9] at the continuous magnetic stirring of the solution. The power density 
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of illumination in the place of the sample, measured with IL1700 International Light (USA) 

radiometer was 100 mW cm-2.  

For the photocurrent measurements, the electrodes were polarized at a constant potential of 0.7 

V in 0.1 M Na2SO4 aqueous solution in dark and under illumination with a xenon lamp. 

Photocurrent measurements were also performed using identical conditions with the electrodes 

polarized at 0.5 V constant potential and using a high-power LED (365 nm). This potential was 

chosen since it is located at the beginning of the photocurrent plateau formed in the CV recorded 

in the same conditions. Figure 10.7 shown the cell used for the photoelectrochemical 

characterization under illumination with a Xe lamp and a LED (365 nm) device. 

 

 
Figure 10.7 - Representation of the cell used in the photoelectrochemical characterization using a Xe lamp and a LED (365 

nm). 

 

The current spikes formed just after switching the light on are evidence of electron-hole surface 

recombination, competing with the light-driven electrode reactions at the semiconductor/solution 

interface [10]. The ratio of the rate constants for the charge transfer across the 

semiconductor/solution interface (ktr) and electron-hole recombination (krec), by analysis of the 

current transients according to the protocol proposed by Peter [10], using the equation: 

 

𝑗(∞)

𝑗(0)
=

𝑘𝑡𝑟

𝑘𝑡𝑟+𝑘𝑟𝑒𝑐
                                                             (10.5) 

 

where j∞ is the steady-state current density and jo is photocurrent in t = 0.  

For example, the ktr/krec ratio obtained for the ITO/PDAC is 0.176, being higher than that for ITO 

(0.124). This difference can be associated with the lower rate of the electron-hole recombination in 

the ITO sample. 
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10.5.3 – Photodegradation experiments 

Photocatalytic experiments were performed in a standard quartz cuvette with a width of 2 cm 

and an optical path length of 1 cm (4 transparent walls), as illustrated in Figure 10.8.  

 

a) b) 

 
Figure 10.8 - (a) Schematic representation and (b) photography of the reactor used in the photocatalytic experiments. 

 

The ITO/TNT/PDAC composites, deposited only on one side of the ITO substrate, was placed 

on the sidewall of the cuvette (Figure 10.8(a)). 

A 450 W arc xenon lamp (OPTEL) with a power density of 100 mW cm-2, was used as the 

irradiation source. For the experiments with visible light, a UV filter cutting off the radiation 

below 400 nm was used. 

The catalytic photodegradation experiments were performed using the ITO/TNT/PDAC films 

with an identical geometric area (1.2 cm2) and 5 mL of 10 ppm methylene blue or 5 ppm of 

theophylline aqueous solutions. The films were immersed in the pollutant solution and prior to 

irradiation, the solutions were kept in darkness for 1 hour to ensure the adsorption equilibrium. 

During irradiation, the solutions were directly analyzed by UV–vis spectroscopy (in a 

spectrophotometer Shimadzu UV-3600 in the wavelength range from 800 to 500 nm) at regular 

intervals. In such an experimental arrangement there was no need to remove the catalyst from 

the pollutant solution, and the measurements were recorded using the cuvette with this 

film/solution. 

The spectra of the solution were recorded in 5-, 15- or 30- min time intervals. For comparison 

reasons, the photodegradation experiments were also performed using the samples in powder 

(not supported). For these experiments, the same amount of TNP used in the preparation of 

films was used to be able to the comparison. 
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10.5.4 – Photo(electro)degradation experiments 

The photo(electro)degradation experiments were performed using an AUTOLAB PGSTAT 

302N Metrohm Autolab (The Netherlands) potentiostat. Figure 10.9 shown the representation 

and the photography of the cell used for the photo(electro)degradation experiments.  

 

a)  b) 

 
 

Figure 10.9 - (a) Schematic representation and (b) photography of the cell used in the photo(electro)catalytic experiments. 

 

A cell with three compartments was used. ITO/TNT samples were used as working electrodes 

(approx. 1 cm2 geometrical working surface area), Ag/AgCl/Cl- (3 M KCl) as a reference 

electrode, and Pt wire as a counter electrode. The experiments were carried out with a 5 ppm 

theophylline solution prepared in 0.1 M Na2SO4 aqueous solution. The UV-vis spectra were 

collected at each 30 min periods, until a total time of 2 hours.  During irradiation, with a high-

power LED (365 nm), the solution was continuous stirring, using the same conditions used on 

the photoelectrochemical characterization of the samples (section 10.5.2).  
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Annexes 

Annex A - ICDD-JCPDS files 

Table A.1 – ICDD-JCPDS file no. 72-0148 (Na2Ti3O7). 

2θ (º) I h k  l 

9.875 29  0 0 1 

10.527 999  1 0 0 

12.919 47 -1 0 1 

15.842 280  1 0 1 

19.825 52  0 0 2 

20.517 1 -1 0 2 

21.144 8  2 0 0 

21.483 47 -2 0 1 

24.324 6  1 0 2 

25.151 2  2 0 1 

25.689 323  1 1 0 

26.006 23 -2 0 2 

26.789 4 -1 1 1 

28.357 117  1 1 1 

29.678 45 -1 0 3 

29.929 130  0 0 3 

30.827 64  0 1 2 

31.289 70 -1 1 2 

31.716 69  2 1 0 

31.943 99  2 0 2 

31.943 99 -2 1 1 

33.141 36 -2 0 3 

33.818 53  1 0 3 

33.981 76  1 1 2 

34.182 132 -3 0 2 

34.596 74 2 1 1 

35.241 46 -2 1 2 

35.443 67  3 0 1 

38.112 21 -1 1 3 

38.313 51  0 1 3 

39.450 9 -3 0 3 

39.584 7 -3 1 1 

39.999 4  3 1 0 

39.999 4  2 1 2 

40.277 6  0 0 4 

40.420 3  2 0 3 

40.947 1 -2 1 3 
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Table A.1 – (Continued) 

2θ (º) I h k  l 

41.302 2  3 0 2 

41.513 5  1 1 3 

41.820 16 -3 1 2 

42.888 14  3 1 1 

43.055 20  4 0 0 

43.771 208 -4 0 2 

43.883 312  1 0 4 

46.327 41  4 0 1 

46.327 41 -3 0 4 

47.085 9 -3 0 4 

47.085 11  0 1 4 

47.211 11  2 1 3 

47.782 204  0 2 0 

48.841 6  3 0 3 

49.071 19  1 2 0 

49.557 4  4 1 0 

49.711 4 -1 2 1 

49.840 13 -1 0 5 

49.840 13  2 0 4 

50.201 61 -4 1 2 

50.302 44  1 1 4 

50.656 14  1 2 1 

50.981 1  0 0 5 

51.274 5 -2 0 5 

51.629 14  4 0 2 

52.216 4  0 2 2 

52.517 3  4 1 1 

52.517 3 -1 2 2 

52.739 8 -3 1 4 

52.739 8  2 2 0 

52.952 6 -2 2 1 

53.411 5 -5 0 1 

53.747 1 -4 1 3 

54.325 2 -5 0 2 

54.325 2  1 2 2 

54.474 7  1 0 5 

54.604 4  5 0 0 

54.821 4  3 1 3 

55.033 10 -3 0 5 

55.201 8 -2 2 2 
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Table A.1 – (Continued) 

2θ (º) I h k  l 

55.742 35 -1 1 5 

55.742 35  2 1 4 

56.800 3  0 1 5 

57.072 12 -2 1 5 

57.263 15 -1 2 3 

57.263 15 -5 0 3 

57.411 31  0 2 3 

57.411 31  4 1 2 

57.627 16  3 0 4 

57.810 5  5 0 1 

58.355 1 -3 2 1 

58.666 4  3 2 0 

58.666 4  2 2 2 

59.065 27 -5 1 1 

59.384 12 -2 2 3 

59.817 15  1 2 3 

59.915 19 -5 1 2 

60.052 39 -3 2 2 

60.052 39  2 0 5 

60.185 20  5 1 0 

60.587 3 -3 1 5 

60.879 26 -4 0 5 

60.879 26  3 2 1 

61.623 13 -2 0 6 

62.041 4 -5 0 4 

62.187 7  0 0 6 

62.686 6 -5 1 3 

62.832 24  5 0 2 

63.037 31  3 1 4 

63.210 17  5 1 1 

63.632 3 -1 2 4 

63.632 3 -3 2 3 

63.940 2  4 1 3 

64.222 2  0 2 4 

64.588 37 -3 0 6 

65.338 6  2 1 5 

65.338 6 -6 0 1 

Na2Ti3O7 (72-0148) 

Monoclinic 

Lattice parameters: a = 8.571 Å, b = 3.804 Å, c = 9.135 Å 

Radiation: CuKα1 (λ = 1.54056 Å) 
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Table A.2 - ICDD-JCPDS file no. 41-0192 (H2Ti3O7). 

2θ (º) I h k  l 

9.919 6 0 0  1 

11.306 100 2 0  0 

13.487 3 2 0 -1 

16.494 40 2 0  1 

19.801 6 0 0  2 

24.503 28 1 1  0 

26.579 3 4 0  1 

27.048 2 4 0 -2 

29.356 10 3 1  0 

29.777 32 0 0  3 

32.137 7 3 1  1 

33.758 3 6 0 -1 

34.116 5 2 0  3 

36.161 16 6 0 -2 

37.637 2 3 1  2 

38.000 4 1 1 -3 

40.097 4 0 0  4 

41.089 3 6 0 -3 

44.029 20 2 0  4 

46.662 6 7 1 -1 

48.679 11 0 2  0 

49.498 2 8 0  1 
H2Ti3O7 (41-0192) 

Radiation: CuKα1 (λ = 1.54056 Å) 

First ref.: V. Nalbandyan, I. Trubnikov, Russ. J. 

Inorg. Chem. (Engl. Transl.) 32 (1987) 639. 
 

 

 

 

Table A.3 - ICDD-JCPDS file no. 04-0783. 

2θ (º) I h k l 

38.3182 100 1 1 1 

44.4975 52 2 0 0 

64.6119 32 2 2 0 

77.5385 36 3 1 1 

81.6839 12 2 2 2 

Silver (04-0783) 

Lattice parameter: a = 4.0862 Å 

Symmetry: cubic 

Radiation: CuKα1 (λ = 1.54056 Å) 
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Annex B – Pollutants degradation mechanisms 

 

 

 

Figure B.1 – Degradation mechanism used for the intermediate products identification during theophylline removal. (Adapted 

from [1]) 
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Figure B.2 – Degradation mechanism used for the intermediate products identification during caffeine removal. (Adapted from 

[2]) 

 

 

 

Figure B.3 – Degradation mechanism used for the intermediate products identification during phenol removal. (Adapted from 

[3]) 
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Figure B.4 – Degradation mechanism used for the intermediate products identification during sulfamethazine removal. 

(Adapted from [4-6]) 
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