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Abstract 

The concern about the consequences of carbon-intensive activities across all 

socio-economic sectors is accelerating the path towards renewables-based power systems. 

However, larger renewable energy penetration allied with unknown future demand adds 

vulnerability and uncertainty to the design of power systems. 

This work assesses the impact of climate variability and energy demand in 

renewables-based power systems. An hourly-based modelling tool is used to simulate the 

power system for Portugal in 2050. A multiyear model calibration is proposed, enabling 

a more reliable simulation. Regarding climate, two representative concentration pathways 

(RCP4.5 and RCP8.5), totaling 473 climate realizations, are tested. Five electricity 

demand-flexibility scenarios are tested for each activity sector, assuming diverging levels 

for electricity demand, storage and demand-side management. The impacts of climate 

variability on supply and demand are simultaneously analyzed and quantified. 

Energy demand plays a crucial role in the power system. Results show that residential 

demand may increase between 4 and 60%, which are used to define scenarios. The 

cross-border interconnection needs quadruplicate from low to high demand, while the 

renewable generation share decreases 16 p.p. 

Climate variability, depending on the scenario, leads to changes in residential demand 

between -8 to +5% around its median, while renewables generation share might oscillate 

between -15 and +15 p.p. Cross-border interconnection energy trading needs may vary 

by a factor of two due to climate variability, from -62 to +226% around its median.  

Fully renewables-based power systems are especially vulnerable to climate. The system 

power capacity required under a climatic median year varies 3-fold according to 

demand-flexibility scenarios. For that same system to be resilient under unfavorable 

years, it is required an increase of up to 200-fold in storage or doubling of cross-border 

interconnection. A power system designed for unfavorable years requires 54% more 

installed capacity. Hence, future climate variability will be critical in the power systems’ 

operation, thus pivotal to evaluate and consider in its planning. 

 

Keywords: climate variability, power system, renewables, resilience, future electricity 

demand
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Resumo 

Para combater as alterações climáticas, muitos países têm feito esforços para promover 

uma transição energética. Um dos principais objetos dessa transição são os sistemas 

elétricos e as suas emissões, os quais têm registado rápidas e elevadas penetrações de 

energia renovável. Estes futuros sistemas elétricos enfrentarão novos desafios: o aumento 

da sua exposição ao clima (já que a maioria das energias renováveis depende deste) e a 

incerteza na evolução do consumo. Devido à crescente vulnerabilidade dos sistemas 

elétricos a estes fatores, o seu estudo carece de uma análise mais detalhada que inclua 

simultaneamente diferentes cenários para a produção e consumo elétricos. 

O trabalho proposto pretende avaliar o impacto da variabilidade climática e de diferentes 

cenários de evolução do consumo elétrico em sistemas elétricos renováveis. O caso de 

estudo é o sistema elétrico Português em 2050. O sistema elétrico é simulado com o 

auxílio de uma ferramenta de modelação com resolução horária, tendo sido aplicada uma 

calibração multianual do modelo que é proposta e validada neste trabalho. Para analisar 

a variabilidade climática, consideram-se dois patamares de concentração representativos 

(RCP4.5 e RCP8.5, definidos pelo IPCC) para o período 2045-2055, perfazendo 473 

realizações de clima possíveis. Para testar o consumo elétrico no futuro, cinco cenários 

de procura e flexibilidade são traçados para cada setor económico (mobilidade, 

residencial, serviços, indústria e agricultura) assumindo trajetórias divergentes para o 

consumo elétrico, armazenamento de energia e gestão da procura. O impacto da 

variabilidade climática na produção de energia e no consumo elétrico é analisado e 

quantificado, simultaneamente. Três configurações do sistema elétrico são sugeridas: 

duas considerando uma elevada penetração de renováveis (diferindo na disponibilidade 

de biomassa: atual e ilimitada) e outra 100% renovável. 

A variabilidade climática afeta severamente o sistema elétrico. Neste trabalho, entre os 

diversos setores económicos apenas o consumo residencial foi determinado considerando 

a variabilidade climática. No consumo elétrico residencial anual, o impacto da 

variabilidade climática é mais acentuado com o aumento da eletrificação dos 

equipamentos de climatização, devido à resposta dos mesmos à temperatura ambiente. 

Este resulta numa oscilação entre -8 e +5% em torno do consumo médio.  

Para além da procura de energia, a variabilidade climática afeta também outros 

indicadores do desempenho do sistema elétrico. O potencial desperdício (curtailment) de 
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energia varia muito acentuadamente para cenários de baixa procura, sendo que o seu valor 

mediano e a sua variabilidade decrescem com o aumento da eletrificação. A mediana de 

desperdício é de 44% para os cenários de baixo consumo e nula para os cenários de 

elevado consumo. A sua variabilidade (ou seja, a diferença entre o valor mínimo e 

máximo) oscila entre 8 e 36 p.p. para cenários de elevado e de baixo consumo, 

respetivamente. A interligação transfronteiriça necessária varia entre -62 e +226% em 

torno do valor mediano. Para cenários com elevado consumo, a fração de produção 

renovável oscila entre -15 a +15 p.p. em torno da mediana, enquanto as emissões de 

dióxido de carbono apresentam uma flutuação entre -50 e +50% em torno da mediana. 

Alterando a capacidade de potência eólica e fotovoltaica do sistema, é possível observar 

que capacidades mais elevadas destas fontes renováveis levam a uma maior variabilidade 

nos indicadores de desempenho do sistema. Tomando o balanço líquido de importações 

num cenário de elevado consumo como exemplo, a capacidade requerida para obter um 

sistema com balanço nulo (ou seja, com importações e exportações anuais semelhantes) 

pode aumentar 25% ao mudar de um ano mediano para um ano desfavorável. 

Para além da variabilidade climática, os cenários de consumo e flexibilidade são também 

críticos. Entre estes cenários, o consumo elétrico residencial aumenta entre 4 e 60%, 

sendo maioritariamente potenciado pelo aumento das necessidades de arrefecimento até 

21 vezes superiores aos valores atuais. As necessidades residenciais de aquecimento 

apresentam uma redução de 1 a 35%. O consumo elétrico nacional total (incluindo os 

setores da mobilidade, residencial, serviços, indústria e agricultura) é esperado que 

diminua até 15% para os cenários futuros de baixo consumo e que duplique nos cenários 

de elevado consumo, comparando com o consumo atual.  

Evoluções divergentes do consumo e flexibilidade podem implicar sérias alterações no 

desempenho do sistema elétrico. O desperdício de energia varia entre 10 e 61%, enquanto 

a interligação transfronteiriça quadruplica dos cenários de baixo consumo para os 

cenários de alto consumo. Entre os cenários de baixo e de elevado consumo, decréscimos 

até 16 p.p. e 36% são esperados para a fração de produção renovável e para as emissões 

de dióxido de carbono, respetivamente. Ao alterar as potências eólica e fotovoltaica, os 

diferentes cenários de consumo e flexibilidade divergem na sua capacidade de conseguir 

atingir as metas propostas. Dentro do espetro de potência testado, os cenários de baixo 

consumo conseguem atingir ou ficar perto das metas estabelecidas para a fração de 

produção renovável (perto dos 100% renovável) e da interligação necessária para 
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importações (abaixo dos 5 GW). Os cenários com elevado consumo tendem a apresentar 

um melhor desempenho em relação às emissões totais de dióxido de carbono.  

Em relação à flexibilidade presente nos cenários de evolução do consumo e flexibilidade, 

o seu impacto no sistema elétrico varia significativamente, dependendo do indicador de 

desempenho do mesmo. O nível de flexibilidade não altera substancialmente a importação 

ou a interligação necessárias, mas pode representar uma melhoria até 2 p.p. na fração 

renovável. 

Conclui-se que a evolução do consumo elétrico e flexibilidade resulta em grandes 

alterações no desempenho do sistema elétrico. Estes impactos são geralmente mais fortes 

do que os resultantes da variabilidade climática, o que revela o importante papel que a 

implementação de políticas pode ter para influenciar esta evolução do consumo. Tais 

medidas podem passar pela promoção da eficiência energética, novas tecnologias, 

melhorias no parque habitacional, etc.   

Nesta tese, o desempenho de um sistema 100% renovável foi também explorado sobre 

diferentes condições climáticas e de consumo e flexibilidade. Para tal, considerou-se uma 

remoção considerável de produção despachável do sistema elétrico (centrais térmicas a 

gás natural), agravando a vulnerabilidade do sistema ao clima.  

Os resultados mostram que num sistema projetado para um ano mediano, a capacidade 

de potência eólica e fotovoltaica necessária pode triplicar, considerando um cenário de 

baixo consumo para um de elevado consumo. Para que esse mesmo sistema elétrico seja 

resiliente em condições climáticas desfavoráveis, poderá ser necessário o dobro da 

interligação transfronteiriça. Para evitar o reforço da interligação, poderá ser necessário 

duplicar o armazenamento de energia presente no sistema elétrico (incluindo o 

armazenamento hídrico). Caso a meta de 15% de capacidade de interligação definida para 

a Europa para 2030 se cumpra em Portugal, não será necessário um acréscimo 

significativo da capacidade de armazenamento de energia. No entanto, é importante frisar 

que esta meta é ambiciosa e o seu cumprimento implica um grande investimento nas 

interligações transfronteiriças de Portugal-Espanha e Espanha-França. 

Ao projetar um sistema para anos desfavoráveis (em vez do ano mediano), a capacidade 

de eólico e fotovoltaico necessária aumenta entre 36 e 77%, dependendo da evolução do 

consumo. Apresentando uma maior resiliência ao clima, este sistema assegura um 

balanço nulo das suas importações líquidas para climas desfavoráveis e requer uma 
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capacidade de interligação inferior em 2 GW à requerida num sistema planeado para o 

ano mediano. Um sistema mais resiliente necessita de um sobredimensionamento da 

capacidade instalada para que possa assegurar a viabilidade do sistema sob condições 

climáticas desfavoráveis. Isto leva a que o desperdício de energia seja mais expressivo, 

aumentando de 35% num sistema planeado para o ano mediano para 48% num sistema 

planeado para anos desfavoráveis. 

Assim, esta tese evidencia a importância da variabilidade climática e da evolução do 

consumo elétrico no planeamento e desempenho de sistemas elétricos com elevada 

penetração de energias renováveis. Apesar de se ter focado no sistema elétrico português, 

os resultados qualitativos poderão ser transpostos para outras regiões com características 

semelhantes. Existem ainda várias oportunidades para continuar a explorar com mais 

detalhe esta análise, destacando-se a determinação do consumo elétrico dos serviços, 

indústria e agricultura considerando a variabilidade climática e a simulação do sistema 

elétrico com maior resolução espacial e temporal. 

 

Palavras-chave: variabilidade climática, sistema elétrico, renováveis, resiliência, 

consumo elétrico futuro 
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1. Introduction 

In the last decades, an aggravation of climate change has been observed, promoted by the 

increasing anthropogenic greenhouse gases (GHG) emissions. The first effects of climate 

change are noticed on the basic parameters of climate (precipitation, temperatures, etc.), 

leading to changes in ecosystems and also resulting in negative impacts on human life 

[1], [2]. Even though the impacts of climate change in the future can be significantly more 

serious than they are now, some of them have already been experienced, such as in water 

resources (e.g. sea-level rise, ocean acidification, and reduction of ice sheets) and 

temperature increases (both of air and ocean temperatures) [2].  

To decelerate climate change, nations worldwide have been showing a strong 

determination to create joint policies and actions to foment a more sustainable society. A 

core focus of several of those strategies is related to the decarbonization of power systems, 

such as the shut-down of coal-fired power plants. Critical challenges arise for those future 

power systems on both their supply and demand dimensions. On the supply side, 

renewable power systems with high penetration levels of variable renewables are more 

vulnerable to climate due to the inconstant generation of those sources. On the demand 

side, the main challenge is the uncertainty in the development of electricity demand [3]. 

In both dimensions, technology innovation allied with socio-economic development 

contributes to the higher complexity of the power system, making it harder to predict. 

Some of the causes are the introduction of new concepts such as distributed generation, 

electrification of heat loads and transportation, energy management mechanisms, energy 

efficiency, and the smart grid [4]. As the level of complexity of the system increases, the 

planning and management of the power system become even more crucial. 

Since climate change may impact the whole power system chain, from the supply to the 

demand, and also the infrastructures [5], the performance of future power systems should 

include the impact of climate on both supply and demand dimensions. Besides the impacts 

of long-term climate change, the power system has to also be prepared for extreme 
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weather events (such as floods, heatwaves, storms, etc.), which are becoming “more 

intense, frequent and longer-lasting” and trigger even stronger effects on the system [6].  

For those reasons, climate change impacts on the electricity demand and supply must be 

understood in detail. This is the main motivation for this work. 

Bellow, the impacts of climate change on the demand, supply, and on the performance of 

the power system are addressed. Then, the future evolution of society is discussed, 

highlighting the uncertainty on the many possible paths society may take. Next, the 

research questions proposed in this manuscript are introduced (section 1.3). Finally, the 

outline of the manuscript is presented (section 1.4).  

1.1.  Impacts of climate change and variability on the power system 

Power system operation relies on the instantaneous balance between demand and supply, 

which makes the system vulnerable to their modifications and variability. Planning is a 

crucial phase in the system operation to guarantee its reliability, thus it should carefully 

consider the variability of supply sources and demand. Uncertainty also plays an 

important role in power systems’ planning, and it should be addressed by including a vast 

range of possibilities for: 1) supply generation, e.g. changing the renewables’ capacity 

factor; and 2) demand, e.g. choosing distinct levels of future demand development [3]. It 

should be dynamic to allow the adjustment of power systems to changes in the projection 

of demand and supply, enabling it to keep up with those changes.  

Changes in electricity demand may lead to adjustments in the power systems to ensure 

they are properly prepared to fulfill it. For example, the projection of higher electricity 

demand in the future should promote a reinforcement of the whole power system’s 

infrastructure from the transmission lines to the supply installed capacity.  

As for supply, the large-scale renewables’ integration into the power system can be a 

major challenge due to variability and uncertainty in the resource [3], [7]. However, 

improved self-sufficiency and reliability of power systems are attainable with a proper 

adaptation of power system’s infrastructures (e.g. cross-border interconnection and 

transmission lines) to the increasing penetration of variable renewables [8]. Still, the 

projection of future power systems with a high share of renewables and the assessment 
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of its resilience should account for variations in the energy resource, which may be 

intensified by climate change [9]. 

Below, the main impacts of climate change and climate variability on electricity demand 

and supply are explored. 

The electricity demand is not static and its typical pattern depends on different features 

such as geography, seasonality, building stock, culture and socio-economic parameters 

(activity sector, population, Gross Domestic Product (GDP), income, behavior habits, 

etc.) [6], [10]–[14]. Concerning climate change, the energy used for control of indoor 

temperature is presumably the most affected, with heating and cooling requirements 

either for thermal comfort purposes or for industrial processes [12], [15].  

In very general terms, warming weather causes a general shift towards electricity usage 

increase: the heating, ventilation, and air-conditioning (HVAC) demand shifts from 

heating to cooling which is mostly supplied by electricity [16]. The overall impact on the 

actual demand depends on the extent of the changes that are strongly dependent on region 

and season. In warmer regions, the overall demand tends to increase because the increase 

of cooling needs offsets the decrease in heating needs. In contrast, in colder regions, the 

heating decrease has a stronger expression than the increase of cooling, which results in 

lowering the overall demand [15]. The same happens within seasons. As for demand 

peaks, those are expected to increase due to the increasing use of electricity, mostly during 

extreme weather events [17].  

The energy mix of each region is responsible for changes in GHG emissions. For instance, 

a shift from fossil-based energy use towards electricity could mean more emissions within 

a fossil-based electricity mix, mainly due to losses on electricity transmission and 

generation, resulting in increased fossil fuel consumption. On the other hand, in a 

renewables-based electricity mix, a decrease in emissions could be possible, considering 

the replacement of fossil-based space heating by efficient electric devices based on clean 

electricity (depending on the change on heating/cooling needs of the location). 

Across all sectors, the buildings’ infrastructure has a significant weight on the energy 

demand of a region. Buildings have a long lifespan (usually, 50 to 100 years [18]), thus 

their largest fraction of energy consumption occurs during its operational time. The 

energy consumption of a building depends on location, weather, its own characteristics 

(construction materials), its purpose, occupation, type, etc. For instance, higher buildings 
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tend to have higher energy demand per inhabitant since high consumption systems like 

lifts and water pumps must be in place. Another example concerns office buildings, which 

have a large fraction of their consumption related to air-conditioning. On the other hand, 

an insulated building (e.g. double-glazed windows [19]) alters its cooling and heating 

demand compared to a less insulated building, generally, increasing the former and 

decreasing the latter. Besides changes in consumption, some of the impacts of climate 

change in buildings can be the weakening/degradation of the structure, and the degrading 

air quality and thermal comfort. These are due to wind speed, precipitation, humidity and 

temperature variability and also due to prolonged exposure to ultraviolet radiation [1]. As 

buildings are long-lasting infrastructures, they should be built considering climate change 

to avoid or mitigate some of these impacts [20]. 

Broadly speaking, a reduction of the overall power demand, still largely fossil-based in 

most parts of the world, contributes to the decreasing of GHG emissions, which 

decelerates climate change. To achieve that, both mitigation and adaptation measures 

should be applied to reduce energy needs without compromising basic comfort needs. 

The reduction of energy consumption in buildings can be achieved by improving 

buildings' characteristics (e.g. materials, insulation, shading mechanisms, etc.) and 

technology efficiency [16], [17]. Increasing the indoor temperature set-point during the 

cooling season allied with the reduction of lighting (which can often be achieved while 

maintaining sufficient thermal and visual comfort) and electric equipment use are two 

adaptation measures that reduce the cooling needs of a building without requiring 

investment or large alterations [21], [22]. The introduction of renewable energy 

generation can also reduce the ecological footprint of a building [23].  

The power system supply is also affected by climate change in a variety of aspects. The 

vulnerability of the power system depends on its planning, whose quality improves when 

it considers the variability of the different supply sources. To ensure energy security and 

reliability and to avoid shortages or large curtailment of electricity, it is crucial to 

understand the variability of each source, both due to their own characteristics and climate 

change impacts.  

Climate change can affect supply at two levels: the energy resources and the operation of 

the power plants [24]. The former regards changes on availability/variability and 

accessibility of resources while the latter is mainly associated with efficiency losses, 
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especially for thermal power plants and photovoltaics (for which ambient temperature 

increase is detrimental). 

Renewable electricity generation depends on weather-related factors, including 

temperature, wind speed, and precipitation. In the context of increasing renewable energy 

share, forecasting of renewable generation is crucial to schedule supply [25]. 

Dispatchable power plants can also contribute to enabling higher renewable penetration 

on the energy mix by acting as a backup of its production [26], [27].  

Below, the impacts of climate change and variability on most affected generation sources 

are addressed.  

Solar generation potential depends on several factors such as irradiation, temperature and 

cloudiness [24]. Typically, positive changes in irradiation lead to better performance of 

solar electricity technologies, as opposed to increases in temperature and cloudiness. 

Different solar electricity technologies are differently affected by climate change. While 

for solar photovoltaics (PV) a decrease in efficiency is expected due to higher 

temperatures, the concentrated solar power (CSP) technologies are expected to decrease 

their generation potential with increasing cloudiness (i.e., reduction in direct irradiation) 

[28].  

Projections for solar electricity potential are strongly dependent on the location. 

Generally, in regions where cloudiness increases photovoltaic generation decreases, and 

vice-versa. Depending on the magnitude of the changes, regions with higher irradiation 

might see their photovoltaics’ potential unchanged because of potential increases in air 

temperature that affect its efficiency (aggravated with higher occurrence of heat waves) 

[29]. Air pollution might negatively impact solar electricity due to the higher fraction of 

diffuse irradiation as well as soiling of PV modules [28], [30].  

Wind generation potential is highly dependent on the region, season, terrain, wind speed 

variability and inter-decadal variability [31]–[33]. One of the major drivers for wind 

speed changes and variability are the large-scale atmospheric circulation patterns [34]. It 

alters the typical patterns of wind power generation in several time scales from hourly to 

monthly [35]. Extremely low and high wind speeds lead to decreasing generation since 

wind turbines’ operation is constrained to bottom and upper wind speed limits (cut-off 

limits) [36]. Wind power infrastructure may be damaged by future climate [35]. 

Extremely low temperatures contribute to the degradation of turbines’ blades if they are 



 

6 

covered with ice [28]. Sea level rise and drifting sea ice (related to ice melting) might 

jeopardize the base foundations of both offshore and onshore coastal wind turbines [35]. 

Moreover, drastic changes in wind behavior (e.g. wind speed, wind direction or 

turbulence) might require an adjustment in the design of turbines to avoid their faster 

degradation and to make them better prepared for the changing weather conditions [35]. 

Hydropower potential is closely related to the hydrological cycle, i.e., with water 

availability and variability [37], [38]. The two main hydropower electricity generation 

infrastructures (i.e., run-of-the-rivers and dams) are differently affected by climate 

change. Dams (i.e., hydropower plants with storage capacity) occasionally are able to 

compensate dry periods with stored water in the reservoir during wet periods, whereas 

run-of-the-rivers show a more rigid and less dispatchable generation [38].  

Hydropower plants with storage capacity are dispatchable, providing a quick response. 

Furthermore, hydropower plant operation is fossil-fuel free, hence its major role in power 

systems wherever the resource is available. Its variability and output changes are 

extremely important, especially if the system relies on them to ensure the supply-demand 

balance [26]. A decrease in hydropower reliability may jeopardize the operation of the 

whole system, leading it towards a stronger reliance on fossil fuel power plants, not only 

increasing GHG emissions but also its operational cost [37], [38].  

Currently, hydropower plants are seen as one of the most important supply sources due 

to their reliability (higher predictability) and their dispatchable characteristics. However, 

its increasing variability, and other priority uses of water reservoirs such as water for local 

consumption or other uses (such as irrigation [24]), may lead to a change in the role it 

plays on the power grid balance. The improvement of water management and higher 

storage capacity can attenuate the effect of the hydropower variability and help to ensure 

energy security [26].  

As for fossil fuel power plants, two main effects ought to be highlighted. First, access to 

some fossil fuels (such as oil and natural gas) can be promoted by climate change through 

ice cover melting on the Artic [5], [31]. On the other hand, coal can suffer negatively with 

climate change, due to the increase of floods that may difficult its quality and 

transportation, leading to higher prices of the raw material [5], [31]. Secondly, thermal 

power plants suffer efficiency losses and increase its cooling water needs as a result of 

temperature increase. Low water availability and higher water temperature can also 
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represent a serious impact on the power system since it can lead not only to efficiency 

losses but also to production shut-downs for safety reasons. 

Still in the supply chain, extreme weather events can damage infrastructures, reduce the 

current-carrying capacity of transmission lines (due to hot weather) or even lead to forced 

generation shut-downs [5], [31], [39]. Moreover, water scarcity may also be boosted by 

extreme weather events like droughts.  

Even though renewables are seen as pivotal to fight climate change and reduce GHGs 

emissions, climate change can contribute to a decrease in their reliability. However, 

renewable penetration is promoted through the reduced competitiveness of fossil-fueled 

thermal power plants, mainly caused by: 1) their lower efficiency; 2) their increasing 

needs for cooling water, which may contribute to their increasing cost [15]; 3) their need 

for fuel purchasing (as opposed to the majority of renewables, which operate at zero 

marginal cost); and 4) the introduction of carbon taxes. Therefore, efficient distribution 

of the roles and uses of each available resource of a power system should be in place to 

maintain an environmentally and economically sustainable power system [40].  

1.2.  Societal change 

The assessment of the impacts of climate change on the power system should consider 

not only the innovation on supply technology but should also account for the evolution 

of energy demand. The latter will, of course, depend immensely on human habits and 

behavior, which might change dramatically with the development of society. Thus, the 

uncertainty on future trends makes the long-term future of power systems unpredictable.  

Recent electrification tendencies, such as in space conditioning and transportation, can 

represent a significant increase in electricity demand and should be included in future 

demand since these technologies are expected to be part of future living standards. The 

replacement of internal combustion engine (ICE) vehicles by electric vehicles (EVs) is 

growing as global commitments for GHG emission reductions are rising. Besides creating 

some stabilization issues on the power system, the GHG emissions avoided compared to 

ICE vehicles depend on the energy mix of the system [41]. However, the shift towards 

renewable energy sources might enhance EVs penetration due to environmental 

co-benefits. Although the system reliability can be threatened by the EVs penetration, the 



 

8 

impacts of climate change on dispatchable power plants (e.g. hydropower) to balance the 

supply and demand exposes a new opportunity for EVs. The EVs’ batteries can act as 

energy buffers (vehicle-to-grid, V2G), charging and discharging as best for the system. 

As the power system increases its complexity and vulnerability to climate change and 

new electric loads, V2G can play a key role in helping with its management. 

These discussions, from the electrification of heat loads to the introduction of EVs and 

V2G concepts, are mainly based on technology evolution and the addition of new loads. 

However, the future may entail more than the replacement of already existing elements 

for new ones with similar functions. It will also be highly dependent on people’s behavior 

in different aspects of their lives and their consumption trends. One important driver for 

societal development is the cultural factor, which may suggest different reactions to new 

concepts or technologies, such as the introduction of autonomous vehicles or energy 

efficiency in cooking [14]. As society develops, new living standards arise, and new 

consumption patterns appear.  

One of the most recent developments in the transportation sector has been the arising of 

the autonomous vehicle concept. This concept may change mobility, as autonomous 

vehicles may present a promising mobility option by improving comfort, security and 

driving efficiency [42]. The implementation of autonomous vehicles decreases the need 

for vehicle ownership, contributing to the decrease in the total number of vehicles. It 

changes the current driving patterns since these vehicles would be traveling for longer 

hours and would be parked for fewer hours. From a societal point-of-view, they would 

enable a higher autonomy for people, particularly for people with reduced mobility (e.g. 

elderly or impaired people). The first steps introducing this concept were in Singapore, 

where the NuTonomy was the first taxi company to test the use of autonomous vehicles 

in a real context [43]. Other large companies, such as Uber, Google, and Tesla, have also 

been mentioned to be testing autonomous cars [43]–[46].  

The sharing economy is another concept that has the potential for social and economic 

change, and it is already a reality with online platforms such as Uber or Airbnb [47], [48]. 

Exchanging services or goods in a peer-to-peer framework can provide more convenience 

for both sides of the market [48]. High demand impacts should be expected from the 

dissemination of such business models. For instance, it could lead to lower transport 

demand in the case of deliveries of goods – several deliveries would be done at once in 

the same area, avoiding the commute of each customer to and from the store. On the other 



 

9 

hand, a peer-to-peer energy market – where each household generates its electricity (e.g. 

photovoltaics) and can sell/buy to/from neighbors – may change the overall electricity 

demand profile. Households with different demand profiles would complement each 

other with bi-directional energy exchange, avoiding the energy purchase from the utility 

and, consequently, decreasing its supply requirements. 

The urban society is also envisioned as a changing concept with the population 

redistribution and socio-economic development. The reorganization of future cities may 

result in extremely different evolution paths for society, for instance leading to a 

horizontal or vertical spread of housing. The former increases the need for more efficient 

transportation (larger road distances), thus demanding higher energy for mobility. The 

latter may incentivize more densely populated cities; it would reduce road vehicles’ use 

by promoting local services and commerce, but it would also entail higher energy demand 

due to the need to transport both people and objects to higher floors. Those two 

perspectives lead to changing and considerably different demand patterns, but new 

materials and technology innovation in buildings and transportation could mean 

decreasing demand needs compared to today’s requirements. In addition, the growing 

internet usage may promote a stronger weight of teleworking, possibly resulting in lower 

transportation consumption by strongly decreasing commuting. 

Currently, the exodus of a large fraction of the population towards the main cities and 

their reorganization to increase capacity may seem a probable scenario (mostly in 

developing regions), but this may change soon. Society may take a step back and 

reorganize unused land to create new urbanistic plans by building one-floor households 

spread across currently unused areas instead of high-rise buildings. Society evolution is 

also affected by policies often implemented after tragic events driven by social pressure 

to make drastic changes in some societal dimensions. One example is the recent interest 

in policies in Portugal to incentivize the exodus towards the interior to avoid its 

abandonment [49], [50]; these policies were accelerated following the 2017 fires.  

All of these options are open and the uncertainty on the direction that social evolution 

might take is vast, and it will certainly be different across the globe. However, when 

trying to understand the future demand evolution it is crucial to consider that the living 

society will evolve. It may not have the same needs that it has now and those needs may 

be influenced by other aspects than economic factors, population numbers or climate 
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change. The uncertainty of societal evolution leads to the need for including a wide range 

of scenarios when assessing the evolution of power systems. 

 

1.3.  Research questions and general framework 

The goal of this study is to address the role of climate variability on the future power 

system with a high share of renewable energy sources. As we shall see in Chapter 2, upon 

the literature revision on the impacts of climate change and climate variability on the 

power system, several gaps have been identified, prompting the following research 

questions. The driving research question is: 

1. How resilient will a renewables-based power system be? 

High penetration of variable renewables (mostly wind and photovoltaics) significantly 

increases the vulnerability of the power system to climate variability (i.e., heterogeneity 

of possible climate realizations) challenging its performance under highly different 

weather conditions. In this work, the resilience of a power system is defined as its ability 

to cope with different climate thresholds. In order to address this issue, it is important to 

assess the role of climate variability on the power system, including electricity demand, 

supply, and balance. Raising a second research question:  

2. What is the impact of climate variability on the power system? 

A realistic discussion of the impacts of climate variability on the power system requires 

scenarization of social evolution, including changes in power system configuration (e.g. 

introduction of stationary energy storage) and behaviors (e.g. increased electric mobility 

or adaptation to warmer environments). An emerging research question is thus,  

3. How will the power system respond to different society evolution scenarios? 

Accurately forecasting the evolution of society is not possible. Instead, five scenarios are 

developed to cover possible circumstances of the future that not only includes technology 

evolution but also societal changes, technology and non-technology related. To design 

the contrasting scenarios regarding demand evolution and availability of flexible 

mechanisms, for each sector, a Central scenario is built considering simple assumptions 

for two dimensions: electricity demand magnitude and system flexibility (e.g. 
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demand-side management, energy storage, etc.). Four additional scenarios are created 

using opposing assumptions for the evolution of those two dimensions.  

These research questions are explored for the case study of the Portuguese power system 

in 2050. This choice is justified by several factors: 

• Small case study – Portugal is a relatively small country. 

• Access to data – The data available was also a major factor to choose Portugal as 

a case study. Data describing the current Portuguese power system (such as load 

diagrams, installed capacities, fossil primary consumption, etc.) is free of charge 

and easy to obtain.  

• High share of renewable energy sources (RES) – Portugal already has a high share 

of RES in its electricity mix, including a wide range of RES from dispatchable 

sources (e.g. hydropower dams) to non-dispatchable (e.g. wind, photovoltaics and 

run-of-the-river) generation sources. 

• Vulnerability to climate change – Portugal is located in an area that will likely be 

severely impacted by climate change (see section 3.2).  

• Prior work – The Portuguese power system has been thoroughly addressed in the 

literature. Several published studies have shown that high RES share can be 

achieved for Portugal (see section 3.2). 

For this particular case study, it is interesting to explore if, considering climate variability,   

4. Can Portugal be a resilient 100% renewables-based power system by the 

middle of the century? 

In this work, the power system is not required to operate in an island-mode. Instead, the 

power system may trade energy with the outside through cross-border interconnections. 

The full decarbonization of the power system depends on its net imports, i.e., a power 

system with null net imports (the difference between annual imports and annual exports) 

is assumed to be decarbonized. Different power system configurations are proposed 

according to the level of resilience to climate variability intended. 

 

To answer these questions, the research focused on modelling the 2050 Portuguese power 

system under climate variability and different demand development scenarios. The power 

system is simulated using an energy planning tool (EnergyPLAN [51]), which performs 

hourly energy balances that prioritize the use of non-dispatchable renewable sources. 
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Highly renewables-based electricity mixes are proposed, considering two literature-based 

configurations and a fully decarbonized power system.  

In this thesis, the concerns of planning future power systems are addressed by considering 

two major factors: 1) uncertainty; and 2) variability.  

First, the uncertainty in future climate triggers strong concerns for policymakers to plan 

future power systems, since it entails higher risks for decision-taking. For instance, 

long-term investments in power systems (e.g. new power plants or reinforcement of 

transmission lines) may be risky due to the inherent climate uncertainty that might 

disprove their feasibility, such as building a dam in a region that might be affected by 

prolonged drought. Electricity demand uncertainty also adds to these concerns. Increasing 

demand might be expected and used to plan the power system but it may not be 

materialized. To mitigate the risk of decision-taking and consider several possible paths 

for climate, an ensemble of several climate models is used based on two representative 

concentration pathways: RCP4.5 and RCP8.5. As for electricity demand, five scenarios 

are built, aiming at representing different realities regarding the level of electricity 

demand and availability of mechanisms that provide demand and supply flexibility (e.g. 

demand-side management and energy storage).  

Secondly, with increasing renewable penetration, the performance of power systems is 

more dependent on climate variability, since renewables-based systems are more 

vulnerable to weather (e.g. occurrence of wet, dry or windy weather conditions). Thus, 

instead of using a single year realization for each climate model, a period of eleven years 

(2045-2055) was used to extend the spectrum of climate realizations tested.  

1.4.  Outline of the manuscript 

This manuscript is structured as follows. In Chapter 2, a summary of the literature review 

on the impacts of climate change and variability on the power system is provided, along 

with the research opportunities rising from literature gaps. Chapter 3 describes the case 

study today and provides a contextualization of existing literature on it. Chapter 4 presents 

all the methods applied and the assumptions used to model the power system and to create 

the demand-flexibility scenarios. Chapter 5 provides the results of the different layers of 

this work, showing the impacts of climate variability on the residential electricity demand, 
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the performance of the highly renewable power systems and the 100% renewable power 

system. Finally, Chapter 6 summarizes the conclusions and provides opportunities for 

further research. 

This thesis has resulted in some original scientific publications in international 

peer-reviewed journals and oral presentations in international conferences, as follows in 

chronological order: 

International peer-reviewed journals 

• R. Figueiredo, P. Nunes, and M. C. Brito, “Multiyear calibration of simulations 

of energy systems,” Energy, vol. 157, pp. 932–939, Aug. 2018. 

doi: 10.1016/j.energy.2018.05.188 

• R. Figueiredo, P. Nunes, M. J. N. O. Panão, and M. C. Brito, “Country residential 

building stock electricity demand in future climate – Portuguese case study,” 

Energy Build., vol. 209, 2020. doi: 10.1016/j.enbuild.2019.109694 

• Figueiredo, R., P. Nunes, M. C. Brito, “Resilience of a decarbonized power 

system to climate variability,” 2020. [under review in Applied Energy Journal] 

Conferences 

• R. Figueiredo, P. Nunes, and M. C. Brito, “The role of climate variability on the 

assessment of roadmaps for power systems with high renewable penetration,” 

Oral presentation/paper at 8th Solar Integration Workshop, Stockholm, Sweden, 

2018. 

• R. Figueiredo, P. Nunes, M. J. N. O. Panão, and M. C. Brito, “Residential energy 

demand in a changing climate: Portuguese case study 2050,” Oral presentation at 

European Climate Change and Adaptation conference, Lisbon, Portugal, 2019. 

 

During the course of this research work, other authored or co-authored scientific papers 

and proceedings were also published: 

International peer-reviewed journals 

• P. Nunes, R. Figueiredo, and M. C. Brito, “The use of parking lots to solar-charge 

electric vehicles,” Renewable Sustainable Energy Reviews, vol. 66, pp. 679–693, 

2016. doi: 10.1016/j.rser.2016.08.015 
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• R. Figueiredo, P. Nunes, and M. C. Brito, “The feasibility of solar parking lots 

for electric vehicles,” Energy, vol. 140, pp. 1182–1197, 2017. 

doi: 10.1016/j.energy.2017.09.024 

• Â. Casaleiro, R. Figueiredo, D. Neves, M. C. Brito, and C. A. Silva, 

“Optimization of photovoltaic self-consumption using domestic hot water 

systems,” Journal Sustainable Development of Energy, Water and Environmental 

Systems, vol. 6, pp. 291–304, 2018. doi: 10.13044/j.sdewes.d5.0178 

• R. Figueiredo, P. Nunes, M. Meireles, M. Madaleno, and M. C. Brito, “Replacing 

coal-fired power plants by photovoltaics in the Portuguese electricity system,” 

Journal of Cleaner Production, vol. 222, pp. 129–142, Jun. 2019. doi: 

10.1016/j.jclepro.2019.02.217 

Other publications 

• R. Figueiredo, P. Nunes, and M. C. Brito, “The feasibility of solar parking lots 

for electric vehicles,” Oral presentation/Poster at 2nd Annual Conference 

RedeMOV, Lisbon, Portugal, 2017. 

• R. Figueiredo, P. Nunes, and M. C. Brito, “The feasibility of solar parking lots 

for electric vehicles,” Poster at Encontro com a Ciência e Tecnologia 2017, 

Lisbon, Portugal, 2017. 

• R. Figueiredo, P. Nunes, and M. C. Brito, “Simulation of power systems: 

proposal of an enhanced validation procedure,” Poster at Encontro com a Ciência 

e Tecnologia 2018, Lisbon, Portugal, 2018. 

• R. Figueiredo, P. Nunes, and M. C. Brito, “Simulation of power systems: 

proposal of an enhanced validation procedure,” Poster at MIT Portugal 2018 

Annual Conference, Lisbon, Portugal, 2018. 

• R. Figueiredo, P. Nunes, and M. C. Brito, “On the Impacts of Removing Coal 

from the Portuguese Power System,” Proceedings of the 3rd APEEN & 5th ME3, 

Braga, Portugal, 2019. doi: 10.21814/uminho.ed.3 

• R. Figueiredo, P. Nunes, and M. C. Brito, “Residential market of heat pumps: 

present and future (in Portuguese),” O Instalador, Lisbon, Portugal, 2019. 

• R. Figueiredo, P. Nunes, P. Soares, M.C. Brito, “The performance of a highly 

renewable-based power system in a changing climate - Portuguese case study,” 

Oral presentation at IDL Annual Conference, Lisbon, Portugal, 2019.  



 

15 

• R. Figueiredo, P. Nunes, and M. C. Brito, “Future renewable-based power system 

under climate variability,” Poster at MIT Portugal 2019 Annual Conference, Ponta 

Delgada (Azores), Portugal, 2019. 
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2. Literature review 

In this chapter, a review of the existing literature on the impacts of climate change and 

variability on the power system is provided. The focus is given to the impacts of 

electricity demand (section 2.1) and supply (section 2.2) to highlight the challenges to be 

faced by future power systems (section 2.3). A brief revision of the main energy 

modelling tools is presented (section 2.4). A summary of some of the opportunities for 

future research that were found to be limitations of the current studies is presented at the 

end of this chapter (section 2.5). 

2.1.  Electricity demand 

Even though the scientific community has done an effort to uniformize the assumptions 

made in climate impact studies (for example, by creating the RCPs), there are still several 

issues that make the studies hard to compare. In the specific case of the impacts of climate 

change on energy demand, those are strongly dependent on the region and 

socio-economic context. Also, the type of parameter that is used to measure such impacts 

varies significantly among the current literature. For these reasons, the comparison of 

results among climate impact studies might be challenging. Nevertheless, those impacts 

have been exhaustively explored in the literature.  

Some literature can be found addressing the impact of climate change in all activity 

sectors. Usually, those studies explore the dependency of future electricity demand from 

socio-economic variables and climate separately. For example, Ahmed at al. [13] do it 

for the period 2040-2100 in Australia, while van Ruijven et al. [12] and Cian and Wing 

[52] cover all the globe for the year 2050. Other studies address more than one activity 

sector, such as Burillo et al. [17] that use two climate paths for 2040-2060 to understand 

the increase in peak electricity demand in Los Angeles, USA; and Dowling [15] who use 

Europe in 2050 as a case study to conclude about the changes on the energy system 
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performance. However, most studies addressing the impact of climate change on demand 

focus on a specific activity sector: Berger et al. [53] evaluate the changes in heating and 

cooling demand of service buildings in Austria in 2050, while Tettey et al. [16] explore 

climate impacts given different residential building design in Sweden in the decade of 

2050 and 2090.   

According to Apadula et al. [6], the methods used should be chosen according to 

time-horizon and data availability, to accurately assess the impacts of climate change on 

electricity demand. Among the gathered literature, the most common methods applied to 

determine electricity demand in the future use parametric, energy balance and degree-day 

models (HDD and CDD for heating and cooling degree days, respectively)1. Also, the 

majority of the studies consider the representative concentration pathways (RCPs) 

defined by the Intergovernmental Panel on Climate Change (IPCC).  

The impacts of climate change throughout the globe are different between regions. The 

changes in electricity consumption, for example, are dependent on how climate changes 

in a given region but also on its socio-economic conditions, presently and in the future. 

For the sake of comprehensiveness, Table 2.1 shows some studies addressing the impact 

of climate change on the demand for several regions and with different focuses. The 

general trends are an increase in cooling demand and a decrease in heating demand.  

 

 
1 In this work, the residential electricity demand is explored in greater detail using a Monte Carlo-based 

approach from Panão and Brito [203], which is presented in subsection 4.4.  
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Table 2.1. Literature on the impacts of climate change and variability on demand 

Summary of characteristics of reviewed literature on the impact of climate change and variability on the demand side of the power system (ordered by sectors and alphabetic order). 

Literature 
Geographic 

scope 
Sector 

Model type 

(demand) 

Climate 

(IPCC scenarios) 

Parameter 

analyzed 

Results 

2030-2040 2050-2060 2070-2080 2090-2100 

Ahmed et al. [13] Australia 

Residential, 

commercial, 

industrial and 

agriculture 

HDD and CDD; 

regression 

model 

- 

(linear trend 

from historical 

data) 

Electricity -1% to +2% -2% to +5%  -4% to +11% 

Cian and Wing [52] Global 

Residential, 

commercial, industry, 

agriculture and 

transportation 

econometric 

model 

RCP4.5 

RCP8.5 

Heating  -4 to -3%   

Cooling  +10 to +19%   

Total demand  +7 to +17%   

van Ruijven et al. 

[12] 
Global 

Residential, 

commercial, industry 

and agriculture 

econometric 

model 

RCP4.5 

RCP8.5 
Total demand  +11 to +58%   

Burillo et al. [17] USA 
Commercial and 

residential 

building 

simulation 

RCP4.5 

RCP8.5 
Peak electricity -4 to +31% +2 to +51%   

Dowling [15] Europe 
Commercial and 

residential 

HDD and CDD; 

partial 

equilibrium 

simulation 

A1B 

E1B 

Heating -14% to -9% -19% to -9%   

Cooling +14 to +53% +41 to +85%   

Berger et al. [53] Austria Commercial 
building 

simulation 
A1B Heating  -56% to -11%   

Sabunas and 

Kanapickas [54] 
Lithuania Residential 

building 

simulation 

RCP2.6 

RCP8.5 
Total demand  -19 to -9% -30 to -15%  

Tettey et al. [16] Sweden Residential 
building 

simulation 

RCP2.6 

RCP4.5 

RCP8.5 

Heating (RCP4.5)  -25 to -20%  -26 to -20% 

Cooling (RCP4.5)  +14 to +39%  +30 to +102% 

Total demand  

(all RCPs) 
 -4 to -0.3%  -3 to -0.1% 

Wang et al. [55] Switzerland Residential 
building 

simulation 

RCP4.5 

RCP8.5 

Heating -22 to -1% -46 to -4%   

Total demand -33 to -17% -51 to -25%   

Yi and Peng [56] Seoul Residential 
parametric 

model 

RCP4.5 

RCP8.5 
Peak electricity  +6 to +96%   
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2.2.  Electricity supply 

The power system supply is affected by climate change and variability, moreover when 

future renewables-based power systems are considered. This issue has been thoroughly 

studied in the literature.  

Literature reviews on the impacts of climate change on power systems supply, such as 

those of Solaun and Cerdá [28] and Cronin et al. [57], highlight the discrepancies on 

regional coverage (with Europe as the most studied region) and the predominance of 

studies on wind and hydro resources. 

The impact of future climate on solar electricity potential has been studied for several 

locations. According to Jerez et al. [29], Ravestein et al. [34] and Müller et al. [58], 

climate change is not expected to significantly affect the solar electricity potential in 

Europe, especially in the Iberian Peninsula, as efficiency losses are outweighed by the 

increase on the solar resource. For Africa, Soares et al. [59] studied the potential of both 

photovoltaics and concentrated solar power (CSP) and found that PV potential would be 

unequally affected by climate showing pronounced increases in southern Africa, 

including Angola and Mozambique, but decreasing potential in parts of northern Africa. 

Wild et al. [30] expects a general increase in CSP potential across the globe in 2050. To 

address such impacts on the solar potential, the studies usually apply mathematical 

models that use irradiance and air temperature or use directly specific tools to calculate 

PV generation [9]. 

Extensive literature on the future wind power potential can be found for Europe. 

Ravestein et al. [34] explore the effect of climate change and climate variability on wind 

and photovoltaics in 2050 in Europe. They found that the impact of climate change in 

wind power is weaker than that of climate variability (triggered by changes in large-scale 

atmospheric circulation), which is responsible for a variation of up to 20-30% in 

renewable generation (enhanced by the changes in wind power). Karnauskas et al. [60] 

explore the potential changes in wind power across the globe up to 2100, showing a great 

spatial discrepancy of results. While at the north of the Equator, the study projects 

decreasing wind generation potential in the middle latitudes, at the Southern tropics it is 

expected to increase. As for offshore wind, Soares et al. [61] expect a small decrease in 

offshore wind generation for Iberia, except in summer. The methods applied to assess 
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wind power potential are mainly based on global climate models for future projections, 

often converting wind speed to wind generation using wind turbine models on the chosen 

turbine height [9], [60], [61]. 

The main impact of climate change on hydropower is precisely its increased variability 

[37], [38], [62]. Climate change impacts on hydropower resources are extremely 

site-dependent. Due to its critical role in power systems, future hydropower generation 

has also been the focus of several pieces of research. Studies focusing on the 

consequences of hydropower alterations for the power system performance found that 

increased dispatchable capacity is required to cope with the higher variability and 

uncertainty on hydropower generation. Such is concluded by Carvajal et al. [38], who 

explore the impact of different hydropower policies for the 2050 power system in 

Ecuador, and by Tarroja et al. [37] that studies the impact of hydropower changes on the 

power system from California, USA, in 2050. According to Teotónio et al. [63], exploring 

the consequences of future water availability in the Portuguese power system, 

hydropower generation will be impaired due to a more pronounced variability of 

precipitation caused by higher extremes of weather conditions (more accentuated 

droughts and stronger precipitation periods). Focusing on revenues from hydropower 

plants, Mendes et al. [64] study the impact of climate change in the Amazon, concluding 

that changes in river flows will result in fewer revenues in 2050, continuing to decline 

until 2100. Hydropower potential is commonly addressed through simulation models of 

hydropower plant operation or hydrological models [9], [37], [38]. 

As highlighted in Chapter 1, thermal power generation may suffer decreases in efficiency 

and shut-downs (for safety), due to water scarcity and increased water temperatures. This 

is supported by two studies for the mid-century in the USA addressing the thermal power 

plants' response to climate changes: the work of Miara et al. [65] and Liu et al. [66]. It is 

noteworthy to mention that this applies to all thermal power plants; those based on the 

combustion of fossil-based but also those based on other resources, such as nuclear or 

biomass. The operation of thermal power plants under climate change is assessed using 

specific thermal generation models and often considering water use models and 

hydrological models [9]. 

To assess the impacts of climate change on the supply side of the power system, several 

works are presented in Table 2.2, which differ on multiple dimensions. Time-horizon and 

regions are some of the most important factors that differ among the studies. Different 
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levels of complexity can be found across the literature, namely on the use of climate data 

[9]: whereas some authors base their work directly on the climate data, others feed these 

data to other models (e.g. economic, emission or energy planning simulation models) to 

explore the impacts on different background areas. Resource projects are generally 

addressed using Global Climate Models (GCMs) or Regional Climate Models (RCMs). 

Most of the studies use the representative concentration pathways defined by the IPCC. 
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Table 2.2. Literature on the impacts of climate change and variability on the supply  

Summary of characteristics of reviewed literature on the impact of climate change and variability on the supply side of the power system (ordered by resource and alphabetic order). 

Literature Resource 
Geographic 

scope 

Model type  

(generation) 

Climate 

(IPCC scenarios) 

Parameter 

analyzed 

Results 

2050-2060 2070-2100 

Carvajal et al. [38] Hydro Ecuador 

hydrological model 

energy system simulation 

model 

RCP4.5 
Energy 

generation 
-44 to +21%  

Tarroja et al. [37] Hydro USA 
hydrological model 

grid dispatch model 
RCP8.5 

Energy 

generation 
-20 to +15%  

Teotónio et al. [63] Hydro Portugal 

hydrological model 

energy system simulation 

model 

SRES A2c 

SRES B2a 

RCP4.5 

RCP8.5 

Energy 

generation 
-17 to -41%  

Liu et al. [66] Thermal USA 
hydrological-thermoelectric 

generation model 

RCP4.5 

RCP8.5 

Available 

capacity 
-12 to -2%  

Miara et al. [65] Thermal USA 
hydrological-thermoelectric 

generation model 

RCP2.6 

RCP8.5 

Available 

capacity 

(RCP8.5) 

-31 to +6%  

Jerez et al. [29] Solar (PV) Europe mathematical model 
RCP4.5 

RCP8.5 

Energy 

generation 
 -12% to -3% 

Energy potential  -14% to +2% 

Müller et al. [58] Solar (PV) Europe mathematical model 
RCP4.5 

RCP8.5 

Energy 

generation 
-6 to +3%  

Soares et al. [59] 
Solar (CSP and 

PV) 
Africa empirical model 

RCP4.5 

RCP8.5 

CSP generation -5 to +5%  

PV generation -3 to -2%  

Wild et al. [30] Solar (CSP) Global empirical model RCP8.5 CSP generation -24 to +14%  

Karnauskas et al. [60] Wind Global turbine power curve 
RCP4.5 

RCP8.5 

Energy 

generation 
-25 to +40% -40 to +40% 

Soares et al. [61] Wind offshore Iberia turbine power curve 
RCP4.5 

RCP8.5 
Power density  -10 to +5% 
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2.3.  Performance of the power system 

The performance of the power system may experience different consequences from a 

changing climate and climate variability. According to Ravestein et al. [34], climate 

variability represents a serious challenge for the performance of power systems, often 

affecting it more critically than climate change general trends. Nevertheless, they claim 

that both climate change trends and climate variability should be studied simultaneously, 

arguing that a power system prepared to face climate variability will be able to cope with 

general climate change.  

Most of the reviewed studies focus on either the supply or demand side of the power 

system. The individual impacts of climate change and variability on these two sides are 

decisive to understand possible adaptation or mitigation measures. However, the 

performance of the power system under such impacts should be also addressed.  

Commonly, works on the impact of climate change and variability on the performance of 

power systems focus also on the supply side. Within those, there are studies considering 

the climate impacts in only one supply source.  

Considering solely wind variability, Weber et al. [67] focus on wind-based power systems 

to explore the requirements for backup and storage in the middle and end of the 21st 

century. Their results show that both backup and storage needs tend to increase in most 

of Europe by up to 24% (except in the South-Eastern and Baltic), due to potential longer 

periods of low wind generation and increased seasonal variability. Also focusing on wind 

generation changes, Rosende et al. [68] compare the optimization of the power system in 

Chile in the end-century considering a future with and without the influence of climate 

change. Under climate change, a higher decarbonized power system is achieved, with 

wind and solar additional capacities increasing up to 9% and natural gas decreasing up to 

79%. Hydropower potential and uncertainty are the core focus of Guerra et al. [69], whose 

work aims at optimizing a power system in Colombia up to 2030. A decrease of up to 

17% in hydro potential was found. It was also concluded that hydropower uncertainty 

was responsible for 79% of the variance in total system cost. 

There are also studies focusing on the impact of climate change and variability in power 

systems that consider the impacts on two supply sources.  
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Zeyringer et al. [70] optimize the 2050 Great Britain power system with high renewable 

share and address climate variability by using different time-horizons of climate 

variability. It is found that planning using a shorter period would likely lead to an 

unfeasible power system under different weather conditions, while planning considering 

a longer period would lead to a more robust system but with overall higher emissions and 

costs. For Texas, Craig et al. [71] study the power system in the mid-21st century, finding 

that emissions could decrease up to 2% due to climate change. Such a result is achieved 

by the increase in wind and solar generation up to 3% combined with a decrease up to 7% 

in fossil and nuclear generation. Climate variability in the 2030 European power system 

is the focus of Collins et al. [72], whose work uses 30 years of historical data. The 

increasing introduction of variable renewables in the power system is found to 

significantly affect the performance of the European power system, with the inter-annual 

variability increasing 5-fold for the CO2 emissions and total costs. Addressing the impact 

of climate change and variability in hydropower and thermal power plants, van Vliet et 

al. [73] explore the vulnerability of such supply sources in the middle and end of the 21st 

century worldwide. It is found that a higher fraction of the world's thermal power plants 

will be severely affected compared to hydropower. Moreover, thermal generation will be 

more affected by climate change than hydropower, potentially decreasing 7-12% of its 

capacity, compared to 1.2-3.6% for hydro.  

Since the most important feature of the power system is the supply-demand balance, the 

overall consequences due to the simultaneous impacts of climate change on supply and 

demand should be further addressed [9]. Below, works focusing on the performance of 

the power system under the combined impact of climate change and variability on the 

demand and supply-side are summarized. 

The impact of climate change and variability in Europe at the end of the 21st century is 

commonly addressed in the literature. Kozarcanin et al. [27] optimize wind-photovoltaic 

capacity to minimize dispatchable generation. Higher wind penetration does it but further 

exposes the system increasing 20% of the dispatchable generation requirements. Peter 

[74] compare the consequences of planning a power system neglecting climate change 

and considering climate change impacts on demand and all supply sources. While 

neglecting climate change shows 12% higher system costs (fuel costs and carbon 

permits), using it enables less expensive power systems with higher wind offshore 
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capacity to compensate for the reduction energy potential of wind onshore, solar and 

nuclear power plants (due to decreasing cooling water availability).  

System costs are usually used in works to understand the economic feasibility of future 

power systems. Perera et al. [75] test different scenarios of demand and supply to optimize 

an energy-hub in Sweden for the end of the 21st century. The system cost is severely 

affected by limit conditions: overly high demand leads to an investment increase of up to 

33%, while considering exceptionally high renewable energy generation potential may 

decrease the investment by up to 7%. Combining demand and weather extremes may 

require an investment increase by up to 25%. Emodi et al. [76] focus on the development 

of the 2050 Australian energy system under several policy strategies. Almost all scenarios 

lead to the decrease of fossil generation (mostly coal), while a strong increase in wind 

and solar penetration is observed. To plan an adequate power system, the authors stress 

the importance of considering climate change. Climate variability is also addressed in the 

work of Bloomfield et al. [77], who test the 2050 Great Britain power system in the 

mid-21st century. Even at current wind levels, climate variability significantly affects the 

power system: baseload generation decreases with the introduction of wind power, but its 

variability increases 11-fold; as for peak generation, it increases 46% and its variability 

range increases 30%.  

Besides considering the climate impact on different supply sources (and on the demand), 

there are several other characteristics that differ between studies working on the 

performance of future power systems.  

Time-horizon is one of them. The majority of the works point to the mid-21st century [70], 

[71], [76] and to the end of the 21st century [27], [74], [75], while others extend the work 

to several periods along the century [67], [68], [73]. Temporal resolution is also at most 

importance to address supply-demand balance in planning highly renewable power 

systems. The disregarding of renewable generation variability may underrate its 

curtailment, providing misleading results for decision-makers that may jeopardize 

renewable and emission targets achievement [78], [79]. Thus, a minimum of one-hour 

resolution should be considered. Several studies still use lower temporal resolutions: 3 to 

4 hours are used in Refs. [27], [67], [68]; one day is used in Ref. [73]; and annual 

resolutions are considered in Refs. [69], [76].   

Regarding climate data, some studies make use of historical data to simulate climate 

variability [70], [72], [77]. Others use data from global/regional climate models under 
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different IPCC scenarios. Usually, at least two RCPs are used (e.g. Refs. [67], [73], [75], 

[76] for two RCP and Refs. [27], [68], [69] for three or four RCPs), with some studies 

using solely one RCP [71], [74]. While some studies average an ensemble of climate 

models (discarding their divergent characteristics), Cronin et al. [57] propose the use of 

all the heterogeneity of an ensemble of climate models to address climate uncertainty. 

To address the performance of power systems, several strategies may be applied using 

different indicators (e.g. installed power capacity, electricity generation, cross-border 

interconnection, energy curtailment, system costs, emissions, etc.). Most of the studies 

focus on the power and generation capacity and system costs (including investment and 

operation costs). Some also include the requirement for energy storage technologies and 

for cross-border interconnection [27], [67], [70] or potential energy curtailment needs 

[71], [72], [77].  

Fully decarbonized power systems are often missing in the literature considering the 

impacts of climate change and variability on the power system. From the gathered 

literature, only Weber et al. [67] considers it. Finally, according to McCollum et al. [80], 

works focusing the future of energy systems tend to trace safe scenarios (including 

scenarios on demand, climate, demographics, etc.) based in well-known or widely 

accepted assumptions, disregarding extreme cases that may provide a whole new 

perspective over the object of study. 

Table 2.3 summarizes the main characteristics of power systems addressing the 

performance of power systems under climate change and variability.  
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Table 2.3. Literature on the performance of power system under the impact of climate change and variability  

Summary of characteristics of reviewed literature on the impact of climate change and variability on the power system (ordered by number and type of supply sources/demand impacted by climate and 

alphabetic order). 

Literature 
Geographic 

scope 
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Rosende et al. [68] Chile 4 hours x x x   x x x  x    x  x x  x  x  - 

Weber et al. [67] Europe 3 hours x x x   x  x  x      x x x     x 

Guerra et al. [69] Colombia annual x    x x x x    x  x x x x    x  - 

Collins et al. [72] European 1 hour x   x      x x    x x x  x x x x - 

Craig et al. [71] Texas, USA 1 hour  x      x  x x    x x x   x x x - 

Zeyringer et al. [70] Great Britain 1 hour  x  x      x x   x  x x x x  x x - 

van Vliet et al. [73] Global daily x x x  x   x    x x x  x       - 

Bloomfield et al. [77] Great Britain 1 hour x   x     x x    x x x x   x   - 

Kozarcanin et al. [27] Europe 3 hours   x  x x  x x x x   x  x  x x    - 

Perera et al. [75] Lund, Sweden 1 hour   x   x  x x x x        x  x  - 

Emodi et al. [76] Australia annual  x    x  x x x x  x x x x x  x  x x - 

Peter [74] Europe 1 hour   x     x x x x x x x x x x    x  - 
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2.4.  Energy modelling tools2 

Planning and testing possible changes in the system can be addressed by modelling power 

system scenarios. A variety of methods and simulation tools are available, which recently 

have been reviewed. Debnath and Mourshed [81] summarized the methods used in energy 

planning tools. Collins et al. [82] reviewed different methodologies, using energy models, 

and analyzed their capability of considering short-term variations on the power system. 

Connolly et al. [83] reviewed modelling tools, presenting a thorough description of the 

characteristics of each one. A more recent review of energy models was made by Liu et 

al. [84], focusing on the challenges of modelling isolated regions.  

Examples of tools that can be used to model energy systems are the MARKAL/TIMES 

[85], HOMER [86], LEAP [87], and EnergyPLAN [51]. Those present differ in the 

approach, e.g. bottom-up or top-down, and features and scope, e.g. timestep resolution 

and horizon and geographic scope. Table 2.4 presents the most representative energy 

modelling tools and some of their most relevant features. 

 

Table 2.4. Examples of energy planning models 

Summary of examples and features of energy models, including geographic scope, temporal resolution, and 

time-horizon. 

 Geographic scope Timestep Time-horizon 

BALMOREL [88] International Hourly Max. of 50 years 

EnergyPLAN [51] National/ regional Hourly 1 year 

energyPRO [89] 
Regional/Several 

locations 
Minute Max. of 40 years 

HOMER [86] Local Minute 1 year 

LEAP [87] 
Global/National/ 

Regional/Local 
Yearly No limit 

MARKAL/TIMES [85] National/ regional User defined Max. 50 years 

PLEXOS [90] International Hourly to minute Max. of 10 years 

RETScreen [91] User defined Monthly Max. 50 years 

WILMAR [92] International Hourly 1 year 

  

 
2 Adapted from Figueiredo et al., 2018 [224]. 



 

31 

2.5.  Research opportunities 

The assessment of climate change impacts on the power system is not trivial. There are 

plenty of factors that contribute to the complexity of concluding these impacts. 

Comparable work is difficult to find because the impacts of climate change and variability 

on demand, supply or the performance of the power system (examples can be found in 

Table 2.1, Table 2.2 and Table 2.3) depend not only on the characteristics of each case 

study (e.g. region, activity sector, resource, energy mix, etc.) but also on the methods used 

(e.g. period, scenarios, models, assumptions, etc.).  

Despite the difficulty in comparing studies, below, some of the main identified 

weaknesses in the literature are highlighted with the intent of summarizing research 

opportunities (see section 2.3, Table 2.3).  

• Climate variability and uncertainty: One of the main drivers for the uncertainty in 

future power systems is the shift of power systems’ operation from being based 

on dispatchable generation (e.g. fossil generation) to being based on 

weather-dependent generation (mainly variable renewables such as wind and 

solar). This makes future power systems highly dependent on climate variability. 

An increasing number of studies have been stressing the need for the introduction 

of climate variability on the planning of power systems to ensure their feasibility 

under a wide range of climate conditions [70], [72], [75], [76]. Recently, the 

literature on climate variability has been increasing. However, studies should 

draw more attention to it to better assess changes in generation, especially for 

variable renewables [24]. Climate variability should also be addressed within 

different scale periods, considering not only seasonality but also inter-annual and 

inter-decadal variations [9], [32], [93]. 

• Geographic scope: Many works simulate large regions (such as Europe or the 

world) leading to a broad conclusion for the region but lacking detailed 

information about the impacts on specific locations. Therefore, more detailed and 

specific studies are missing in the literature, so more work could focus on small 

scale case studies [9] to provide insightful information for policymakers to foment 

actions or policy implementation at a national/regional level. 
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• Temporal resolution of power system modelling: The modelling of power systems 

should consider at least an hourly resolution to better simulate the supply-demand 

balance, as in [70]–[72], [74], [77]. 

• Climate data: Some studies still use historical data to address climate variability. 

Instead, the consensually accepted IPCC scenarios under global/regional climate 

models to simulate future climate should be preferred. To emphasize the impact 

of variability and conclude about possible solutions to ensure a feasible power 

system (e.g. energy storage), a finer time-resolution (at least, hourly) should be 

applied both to the energy generation and power system modelling [24].  

• Impact on supply sources: Most studies focus on a single supply source. Instead, 

further work should focus on the impacts of climate change and variability on 

more than one generation source.  

• Future electricity demand: Future works should focus on the creation and 

simulation of scenarios that may help to envision how societal changes would 

affect the power systems’ operation. In this regard, the studies on the impacts of 

climate change should be more quantitative and should consider different 

scenarios, not only concerning emissions but also socio-economic trends [1], [94]. 

• Combined impacts on electricity supply and demand: Rather than considering the 

impact of climate change and variability only partially, studies must include the 

combined consequences in all the supply sources as well as in the electricity 

demand [57].  

• Fully decarbonized power systems: With the urgency to fight climate change, 

more studies on the modelling of future power systems must consider its full 

decarbonization, where higher importance should be given to variability in 

variable renewables’ generation [24]. 

• Extreme conditions: There is still a lack of literature that aims at exploring 

extreme conditions for all the dimensions of their energy system’s scientific work 

[80]. Those could be materialized in extreme scenarios for both demand 

projections or climate extremes. 
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3. Portuguese power system 

This chapter aims to contextualize the case study used in this research – the Portuguese 

power system. A brief description of the current power system is provided (section 3.1), 

followed by a summary of the existing literature focusing on the future of the Portuguese 

power system (section 3.2).  

3.1.  Case study – The Portuguese power system3 

During the last decade, the share of renewable energy has increased in the Portuguese 

power system. Focusing on the period 2011-2015 (the latest available data at the time of 

the analysis), the electricity demand was on average 49 TWh/year, 51% renewable – 

hydro (23.2%), wind (21.3%), biomass (5.5%) and photovoltaics (1%). Thermal power 

plants are mostly of condensing type (from coal, natural gas, biomass, and other 

non-renewables) but CHP (coming from natural gas, biomass, and other non-renewable 

fuels) are also part of the supply sources – mostly from industry, in which the heat 

produced is locally used. 

The installed capacities of the Portuguese electricity mix are presented in Table 3.1. 

  

 
3 Part of this section was adapted from Figueiredo et al., 2018 [224]. 
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Table 3.1. Portuguese power system in 2011-2015 

Electricity demand and power plants installed capacity in the Portuguese power system between 2011 and 2015 [95], 

[96]. 

Portuguese power system 

Electricity demand [TWh] 49.1-50.6 

 Installed capacity [MW] 

Renewable 

power 

plants 

(excl. 

biomass) 

Wind 4,081-4,826 

Photovoltaic 155-429 

Run-of-the-river 2,993-3,010 

Dam hydro 2,397-3,136 

Hydro pump 1,038-1,618 

Large hydro storage 

cap. [GWh] 
3,060-3,100 

  Installed capacity [MW] Combined efficiency [%] 

  
Condensing 

power plants 

Industrial 

CHP 

Condensing 

power plants 

Industrial 

CHP 

Thermal 

power 

plants 

Coal 1,756 - 

32.5-38.7 20.4-21.6 

Natural gas 3,829 858-929 

Biomass 255-276 342-353 

Other non-

renewables 
1,821-13a 407-52 

a 
Mainly fuel-oil based power plants that have been withdrawn from the power plants’ fleet recently. 

 

The only electricity interconnections are across the border with Spain, whose energy 

trades are market-driven through a ruled Iberian market (called MIBEL).  

The Portuguese power system is highly sensitive to meteorological conditions due to the 

high share of renewables, in particular hydropower. A critical parameter for the 

performance of the system is the precipitation level: for years with high precipitation, the 

Portuguese system tends to be much less dependent on fossil fuels, while low 

precipitation levels lead to higher dependence on those supply sources, Figure 3.1.  
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Figure 3.1. Historical annual precipitation 

Annual precipitation and renewable electricity sources (RES) share from 2000 to 2017 in Portugal [97]. 

 

Hereafter, the most recent past five years with available data (2011-2015), at the time, are 

characterized in terms of weather, system performance and power capacity. Table 3.2 

shows some weather characteristics for that period. It includes extremely wet years (2014) 

and dry years (2015). 

Table 3.2. Historical weather characteristics  

Summary of weather characteristics in Portugal for the standard calibration period from 2011 to 2015, compared to the 

historical mean for the period 1971-2000 [98]. 

Standard calibration period – Weather characteristics 

 
1971-2000 

mean 
2011 2012 2013 2014 2015 

Tmax [°C] 20.5 21.7 20.9 20.9 21.0 21.9 

Tavg [°C] 15.3 16.0 15.1 15.39 15.80 16.0 

Tmin [°C] 10.0 10.3 9.4 9.9 10.6 10.1 

Precipitation [mm] 882 750 636 939 1,098 600 

3.2.  Future projections 

The future of the Portuguese power system has been the focus of several scientific works. 

Several factors contribute to the interest in this case study. As highlighted in the previous 

section, Portugal has a wide range of endogenous resources that are available for 
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renewable generation. Adding to that, currently, the country has been consistently 

presenting high shares of renewable penetration in the power system. It paves the way for 

a future power system extremely based on renewables, which incentives its study under 

such conditions. 

Hereafter, some of the works already developed about the Portuguese power system are 

addressed. From a governmental point-of-view, the power system is considered to be an 

important focus for future policies. Recently, the Portuguese ‘Roadmap for Carbon 

Neutrality 2050’ was presented, later referred to as ‘RNC2050’ [99]. It provides three 

visions for the future of the Portuguese energy system. From a scientific point-of-view, 

an extensive literature has also been focusing on Portugal, as follows. Nunes et al. [100], 

[101] explore a photovoltaics-based power system in Portugal in 2050 considering that 

electric vehicles would play a significant role in buffering the variable generation and 

supporting the grid. Fernandes and Ferreira [102] address renewables-based electricity 

mixes and the feasibility of a 100% renewable power system, without discarding the cost 

analysis of each solution presented. Krajačić et al. [103] aim at achieving a fully 

renewable Portuguese power system by testing a wide range of storage solutions. Pina et 

al. [104] explore the optimal electricity mix in Portugal in the 21st mid-century, focusing 

both in the future investment and assuming an hourly resolution for the power system 

operation. Santos et al. [105] study the 2030 Portuguese power system by testing several 

scenarios to achieve different targets regarding renewable share and emissions. 

The location of Portugal exposes the country to a high level of vulnerability to changes 

in climate and weather conditions. Many works have explored the vulnerability of 

renewable generation to the future climate in the surrounding regions of Portugal. 

Jerez et al. [29] study the future potential of photovoltaics’ in Europe, and they found that 

Iberia is not expected to be suffering significant changes in its photovoltaics’ potential, 

because lower efficiency, due to higher temperature, tends to be counterbalanced by the 

increase in solar radiation [29]. Carvalho et al. [25] draw its attention to wind potential 

alone for the short-, medium- and long-term future for the Mediterranean region. It 

expects a decrease in wind potential for Iberia. Similar projections are made by Soares et 

al. [61] for wind offshore up to the year 2100, except in the summer season. Teotónio et 

al. [63] simulate the Portuguese power system in 2050, assuming that hydropower 

generation is the most affected renewable supply source, and find a decline of up to 41% 

due to precipitation decrease. Also, they found that drier periods (especially in summer) 
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are expected, with increased rainfall in winter [63]. The higher temperatures in summer 

will lead to faster evaporation and therefore resource loss, aggravating potential droughts. 

Besides electricity supply vulnerability, the Portuguese power system is likely to be 

challenged by a strong increase in electricity demand, which is confirmed by the 

literature. Table 3.3 summarizes the changes expected for the future electricity demand 

in Portugal in the year 2050 per activity sector. 

Anjo et al. [106], without considering climate change, address the importance of demand 

response in the Portuguese power system in 2050, it projects an increase of about 30% in 

the mid-21st century. A study conducted by CENSE-UNL and APREN [107] uses also 

TIMES-PT to model the 2050 Portuguese power system, and it projects an increase in 

electricity demand from 25 to 58%. Fortes et al. [108] address the impact of different 

emission caps on the socio-economic sectors in Portugal in 2050 using TIMES-PT model. 

A potential increase of 27-94% on electricity demand is found. Using a similar model, 

the Portuguese roadmap for carbon neutrality, the RNC2050 [109], expects an increase 

in electricity demand between 23 and 92%. Following a broad work on worldwide 

roadmaps in 2050 for future energy systems, Jacobson et al. [110] estimate an increase of 

18-58% for electricity demand. Finally, Pina et al. [104] consider an increase of about 

59% of the Portuguese electricity demand for their target period 2005-2050. 

A great discrepancy in the results can be observed among the different activity sectors. 

The residential and the transport sector are the ones whose the future development is the 

most consensual though with different magnitudes: the demand from the first is expected 

to range +6 to +71%, while the demand from the latter is expected to increase between 

+100% and 6-fold, compared to the present. For the remaining sectors, the studies are not 

in agreement in the signal of its future development, with some studies showing 

possibilities of decreasing or increasing trends and others focusing solely on the 

increasing tendencies. 
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Table 3.3. Literature on the future electricity demand in Portugal 

Summary of the expected electricity demand in Portugal in the year 2050 (alphabetic order). 

Summary of literature on future electricity demand for Portugal 

 Results (compared to present) 

 Total Residential Services Industry Agriculture Transports 

Anjo et al.  

[106] 
+32% +32% +32% +32% - - 

CENSE & APREN, 

2017 [107] 
+25 to +58% +4 to +7% Up to +7% +9 to +79% -6 to +29% 

+3,300 to 

+4,100% 

Fortes et al. [108] +27 to +94% +6 to +18% -4 to +4% 
+24 to 

+119% 
- 

+3,187 to 

+4,428% 

Jacobson et al. [110] +16 to +56% +25 to +63% +50 to +93% -21 to +20% +182% 
+87 to 

+100% 

Pina et al. [104] +59% - - - - - 

RNC2050 [109] +23 to +92% +15 to +71% -7 to +1% 
+10 to 

+112% 
-7 to +4% 

+2,865 to 

+5,949% 

 

Besides the previous studies, it is worth mentioning the expected changes between 

heating and cooling demand in the residential sector in Portugal in the mid-century. 

Jakubcionis and Carlsson [111] use the cooling degree-days method to study the potential 

of space cooling residential demand in Europe; for Portugal, it expects total electricity 

demand to increase 35% while cooling demand is expected to 13- to 36-fold. Andrić et 

al. [112] address the impact of climate change on the heating needs of a neighborhood in 

Lisbon, using a Resistance-Capacitance model that considers the buildings’ 

characteristics. It projects a decrease in heating needs of 7 to 52%.  

Table 3.4 presents those results for the future residential demand for Portugal. 

Table 3.4. Literature on the future residential demand in Portugal  

Summary of the expected demand in Portugal in the year 2050 for the residential sector, including heating, cooling and 

total demand (alphabetic order). 

Additional literature on future residential electricity demand for Portugal 

 Results (compared to the present) 

 Heating Cooling Total demand 

Andrić et al. [112] -7 to -52% - - 

Jakubcionis and Carlsson [111] - +1,256 to +3,617% +35% 
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4. Power system modelling 

In this chapter, the methods applied to proceed to the modelling of the Portuguese power 

system in 2050 are described. It begins with a summary of the overall approach of 

modelling the power system by combining its essential elements (section 4.1). Then, the 

chapter proceeds presenting in detail the methods to assess each main part of the power 

system modelling. The climate data selected for this work is described, including the 

concentration paths and the climate models chosen (section 4.2). The modelling of the 

power system follows by describing the energy planning simulation tool used, along with 

the calibration performed and the methods to model the supply sources (section 4.3). A 

description of how the society development scenarios were built for each activity sector 

is presented, followed by the methods applied for projecting demand in each sector 

(section 4.4). After describing the methods to determine the CO2 emissions (section 4.5), 

this chapter closes with a list of the main limitations of this work (section 4.6).  

4.1.  General approach  

This section describes the approach taken to model the power system by combining the 

climate data, the supply sources and the electricity demand-flexibility scenarios. 

Figure 4.1 summarizes the overall approach and corresponding sections where each item 

is detailed. First, the climate data is treated and is used to determine most of the renewable 

resource (except for biomass), while biomass and natural gas (when applicable) are used 

according to the requirements of the system and the resource constraints imposed. To 

ascertain some calibration parameters, the proposed multiyear approach is applied. On 

the demand-flexibility side, five scenarios are built for each activity sector and the energy 

storage availability. The electricity demand from the residential sector is determined 

using a Monte Carlo approach that takes into consideration the climate data. After 

ascertaining the supply, demand and the power system configuration (e.g. installed 
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capacities), the simulations in EnergyPLAN are performed. Each simulation regards one 

of almost 500 climate realizations (each corresponding to a single year with different 

weather conditions, commonly referred to as ‘years’ from now on) for each 

demand-flexibility scenario. Please refer to Annex I. for an illustration of the annual 

renewable generation for different ensemble years. 

To analyze the performance of the power system under all climate realizations, boxplots 

are built for each demand-flexibility scenario and each chosen indicator of performance. 

To highlight the need for including climate variability, the performance of the power 

system is analyzed according to different climate thresholds. Usually, the focus is given 

to the median climate realization (the year corresponding to the 50th percentile of the 

calculated indicator) and the 95th percentile (which, on average, is expected to occur once 

every 20 years) of the indicator of performance chosen. The climate thresholds above the 

50th percentile are considered to be unfavorable to the power system, since, for the same 

power system, they demand more from the system (e.g. higher imports, cross-border 

interconnection, etc.). For this reason, unfavorable years are also defined according to 

their determined indicator’s percentile, e.g. 95% unfavorable corresponds to the 95th 

percentile of the calculated indicator of performance. The renewable electricity share is 

the exception, where the reverse is applied.  
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Figure 4.1. Scheme of modelling the power system 

Summary of the overall approach to model and analyze the performance of the power system, including the combination 

of climate data, supply sources and demand-flexibility scenarios. The dashed boxes represent the supply sources and 

activity sectors considered to be affected by climate. 
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The main indicators to analyze the performance of each proposed power systems are: 

• Annual imports and exports – annual imports and annual exports [TWh]; 

• Net imports – net imports [TWh] is determined as follows. 

 𝑛𝑒𝑡 𝑖𝑚𝑝𝑜𝑟𝑡𝑠 =  𝑎𝑛𝑛𝑢𝑎𝑙 𝑖𝑚𝑝𝑜𝑟𝑡𝑠 − 𝑎𝑛𝑛𝑢𝑎𝑙 𝑒𝑥𝑝𝑜𝑟𝑡𝑠 (4.1) 

• Cross-border interconnection requirements – It is given by the 99th percentile 

of the hourly interconnection requirement observed for both import and export 

needs during each simulation. As it is common practice, the 99th percentile was 

chosen against the maximum value to avoid a misrepresentation of the system 

performance by the rare consumption peaks. 

• Potential energy curtailment – It illustrates the fraction of excess generation that 

may be required to be curtailed, fcurtailment [fraction]. It is obtained by the ratio 

between the annual exports and total electricity generation AGentotal [TWh], 

according to Equation (4.2).  

 
𝑓𝑐𝑢𝑟𝑡𝑎𝑖𝑙𝑚𝑒𝑛𝑡 =  

𝑎𝑛𝑛𝑢𝑎𝑙 𝑒𝑥𝑝𝑜𝑟𝑡𝑠

𝐴𝐺𝑒𝑛𝑡𝑜𝑡𝑎𝑙
 

(4.2) 

• CO2 emissions – These include equivalent CO2 emissions originated by the power 

system and by other energy uses (e.g. use of natural gas boilers in the residential 

sector). Section 4.5 aims at describing in detail this parameter. 

• Renewable electricity generation share (only for HiRES and HiRES+UB power 

systems, see subsection 4.3.4) – It considers the annual generation of renewable 

supply sources and the total electricity generation AGentotal [TWh], Equation 

(4.3).  

 
𝑅𝐸𝑆𝑠ℎ𝑎𝑟𝑒 =  

∑ 𝐴𝐺𝑒𝑛𝑟𝑒𝑛𝑟𝑒𝑛

𝐴𝐺𝑒𝑛𝑡𝑜𝑡𝑎𝑙
 

(4.3) 

where ren represents each type of renewable: photovoltaics, wind onshore, wind 

offshore, run-of-the-river, hydro dams, and biomass power plants. 

• Dedicated stationary energy storage (only in 100%RES configuration, see 

subsection 4.3.4) – To decrease the cross-border interconnection required, the 

sizing of a seasonal dedicated stationary energy storage is performed. Please refer 

to subsection 4.4.2.4 for more details. 
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4.2.  Climate models 

Climate change has been studied profusely in the literature. Its study is based on global 

climate models that simulate all the physical processes occurring in the atmosphere across 

the globe. The interactions between different components of climate are influenced by 

several factors including anthropogenic GHG emissions. To standardize studies on 

climate change impacts, the IPCC has compiled four scenarios regarding GHGs’ 

concentration paths. Their aim was to provide a limited number of concentration 

pathways that could be used for the scientific community, facilitating the process of 

understanding scenarios used in different studies while making their results more easily 

comparable [113].  

Bellow, a brief presentation of the representative concentration pathways defined by 

IPCC is presented (subsection 4.2.1). After describing concisely the ensemble of climate 

models used in this work (subsection 4.2.2), the approach taken regarding the treatment 

of climate data is explained (subsection 4.2.3). Lastly, an overview of the future 

variability of the climate variables considered is showed (subsection 4.2.4). 

4.2.1. Representative Concentration Pathways (RCPs) scenarios 

Energy studies about the future of power systems usually use models addressing the 

concentration scenarios defined by the IPCC for the future (the Representative 

Concentration Pathways – RCPs), so that their results can be comparable and consistent. 

A detailed description of the process of building these scenarios can be found in Ref. 

[114].  

The RCPs define four pathways based on “the change in the balance between incoming 

and outgoing radiation to the atmosphere caused by changes in atmospheric constituents, 

such as carbon dioxide” relative to the pre-industrial period until the year 2100, where 

positive changes are directly related to the increase of temperature on Earth [115]. These 

changes are called radiative forcing and their values are used to name each scenario.  

Each RCP is “one of many possible scenarios that would lead to the specific radiative 

forcing characteristics” [115] based on one documented scenario of the existing literature 

(considered as representative of the published scenarios for the future, regarding their 
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concentration and radiative forcing results), but it is not restricted to the socio-economic 

factors assumed on the document. The four RCPs do not derive from a unique scenario, 

they do not consider the same assumptions neither they use the same models to obtain 

their results. Thus, no RCP should be used as a reference to be compared against other 

RCPs [114].  

Essentially, each RCP scenario defines the radiative forcing in 2100, which can be 

achieved by a wide range of frameworks combining different socio-economic conditions, 

technologies, and others [114]. The main characteristics of the four scenarios chosen are 

summarized in Table 4.1. 

Table 4.1. Representative Concentration Pathways 

Description of the main characteristics of each RCP scenario – adapted from [114].  

IPCC 

scenarios 

Radiative forcing 

in 2100 [W/m2] 

Concentration 

[ppm CO2eq] 
Pathways 

Model 

providing RCP 

RCP2.6 2.6 490 

Peaks before 2100 

at 3 W/m2 and 

then declines 

IMAGE [116], 

[117] 

RCP4.5 4.5 650 
Stabilizes after 

2100 
GCAM [118] 

RCP6 6 850 
Stabilizes after 

2100 

AIM [119], 

[120] 

RCP8.5 8.5 >1370 Rising 
MESSAGE 

[121] 

 

Two RCPs were chosen to be analyzed in the present work: RCP4.5 and RCP8.5. The 

underlying reason for the RCP selection was to achieve good coverage of the possible 

pathways for concentration and radiative forcing; thus, one RCP with an intermediate 

radiative forcing (RCP4.5) and the worst-case scenario for the Earth warming (RCP8.5) 

were chosen. In the literature, RCP8.5 has often been used as a business-as-usual scenario, 

more likely to occur than other RCPs. Recently, this has been contested, since RCP8.5 

was built to represent a very high emission scenario with no preference of occurrence 

over other RCPs [122], [123]. Even though a path towards RCP8.5 is not completely 

discarded, it has been seen as unlikely because it would require a strong global increase 

in coal consumption [123]. Lately, it has been suggested that RCP8.5 should not be the 

center of analyses [122], [123].  



 

45 

4.2.2. CORDEX climate models 

Many climate models try to characterize the climate of the future, but as they depart from 

different assumptions and modelling approaches of atmospheric processes, each model 

has its own trace for the future. Thus, when studying the impact of climate change on the 

most diverse areas, several climate paths should be used to produce results that include a 

wider range of possible climate conditions. In this subsection, the description of the 

climate models used is provided. 

Several climate data sets are freely available, and identifying its shortcomings is the first 

step to start using it. The spatial and temporal resolution are some of the key features of 

a data set, and they can easily be the limiting factor for the use of the data. A narrow 

temporal resolution is of major importance when studying energy systems, due to 

technical characteristics that deal with the system flexibility and variability. In this work, 

the aim was to use the models with the finest resolution since hourly data would be 

required for at least some of the variables.  

Global climate models may provide highly informative data on a global scale, but they 

are characterized by a low spatial resolution that limits its use in smaller regions. To study 

smaller areas, a downscaling of the data is required, as is the case in this study. 

The Coordinated Regional Climate Downscaling Experiment (CORDEX) project 

performs downscaling of climate data by using global climate models’ results as forcing 

data to run regional climate models using a dynamical downscaling approach [124]. It 

includes a domain for Europe at a spatial resolution of 0.11⁰ (approximately 12 km); its 

finest time resolution is three-hourly. The models of the database of CORDEX are run 

considering the IPCC scenarios, and they provide freely an acceptable range of climate 

variables. For those reasons, CORDEX data was the database chosen for all climate data 

used here. Besides the driving models, different climate outputs are generated by different 

ensemble members [125]. The climate models selected are all the available ones at the 

time of the data gathering (the year 2017), that presented the required following 

characteristics. 

The data gathered corresponds to 11 years (from the year 2045 to 2055). To have a wider 

range of possible climate pathways, regarding the temporal resolution, three-hourly and 

daily resolution models were included. The models consider different time calendars: 

1) the standard or Gregorian calendar, which considers normal and leap years; 2) the 
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365-days calendar, which assumes that all years have 365 days; and 3) 360-days calendar, 

which assumes 360 days in all years with all months having 30 days.  

For this work, the relevant climate parameters are: 1) air temperature and solar radiation, 

which are crucial to determine the needs for space cooling and heating and to determine 

the photovoltaics’ generation; 2) wind speed, essential to determine the wind power 

generation; and 3) precipitation, to ascertain hydropower and run-of-the-river generation.  

The climate models with three-hourly data are shown in Table 4.2. The variables gathered 

included in these models are: precipitation [kg.m-2.s-1], surface downwelling shortwave 

radiation [W/m2], near-surface wind speed [m/s] and near-surface air temperature [K]. 

Table 4.2. Three-hourly climate models 

List of climate models from the CORDEX project with three-hourly timesteps under RCP4.5 and RCP8.5. 

Three-hourly resolution climate models from the CORDEX project 

Institute Model (RCM) 
Driving model 

(GCM) 

Ensemble 

members 
Calendar 

IPCC 

scenarios 

SMHI RCA4 

CNRM-

CERFACS-

CNRM-CM5 

r1i1p1 Standard 
RCP4.5 and 

RCP8.5 

SMHI RCA4 
ICHEC-EC-

EARTH 
r12i1p1 Standard 

RCP4.5 and 

RCP8.5 

SMHI RCA4 
IPSL-IPSL-

CM5A-MR 
r1i1p1 365-days 

RCP4.5 and 

RCP8.5 

SMHI RCA4 
MOHC-

HadGEM2-ES 
r1i1p1 360-days 

RCP4.5 and 

RCP8.5 

SMHI RCA4 
MPI-M-MPI-

ESM-LR 
r1i1p1 Standard 

RCP4.5 and 

RCP8.5 

 

In the case of daily data, more climate variables and climate models from the CORDEX 

project were available. The climate variables gathered from the daily resolution models 

were: precipitation [kg.m-2.s-1], surface downwelling shortwave radiation [W/m2], 

near-surface wind speed [m/s], daily maximum near-surface wind speed [m/s], 

near-surface air temperature [K], daily maximum and daily minimum near-surface air 

temperature [K]. Table 4.3 presents the climate ensemble with daily resolution data for 

RCP4.5 and RCP8.5. 
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Table 4.3. Daily climate models 

List of climate models with daily timesteps from the CORDEX project under RCP4.5 and RCP8.5. 

Daily-hourly resolution climate models from the CORDEX project 

Institute Model (RCM) 
Driving model 

(GCM) 

Ensemble 

members 
Calendar 

IPCC 

scenarios 

CLMcom CCLM4-8-17 

CNRM-

CERFACS-

CNRM-CM5 

r1i1p1 Standard 
RCP4.5 and 

RCP8.5 

CLMcom CCLM4-8-17 
ICHEC-EC-

EARTH 
r12i1p1 Standard 

RCP4.5 and 

RCP8.5 

CLMcom CCLM4-8-17 
MOHC-

HadGEM2-ES 
r1i1p1 360-days 

RCP4.5 and 

RCP8.5 

CLMcom CCLM4-8-17 
MPI-M-MPI-

ESM-LR 
r1i1p1 Standard 

RCP4.5 and 

RCP8.5 

DMI HIRHAM5 
ICHEC-EC-

EARTH 
r3i1p1 Standard 

RCP4.5 and 

RCP8.5 

DMI HIRHAM5 
NCC-

NorESM1-M 
r1i1p1 Standard 

RCP4.5 and 

RCP8.5 

IPSL-INERIS WRF331F 
IPSL-IPSL-

CM5A-MR 
r1i1p1 Standard 

RCP4.5 and 

RCP8.5 

KNMI RACMO22E 
ICHEC-EC-

EARTH 
r1i1p1 Standard 

RCP4.5 and 

RCP8.5 

KNMI RACMO22E 
ICHEC-EC-

EARTH 
r12i1p1 Standard RCP8.5 

KNMI RACMO22E 
MOHC-

HadGEM2-ES 
r1i1p1 360-days 

RCP4.5 and 

RCP8.5 

MPI-CSC REMO2009 
MPI-M-MPI-

ESM-LR 
r1i1p1 Standard 

RCP4.5 and 

RCP8.5 

MPI-CSC REMO2009 
MPI-M-MPI-

ESM-LR 
r2i1p1 Standard 

RCP4.5 and 

RCP8.5 

SMHI RCA4 

CNRM-

CERFACS-

CNRM-CM5 

r1i1p1 Standard 
RCP4.5 and 

RCP8.5 

SMHI RCA4 
ICHEC-EC-

EARTH 
r12i1p1 Standard 

RCP4.5 and 

RCP8.5 

SMHI RCA4 
IPSL-IPSL-

CM5A-MR 
r1i1p1 365-days 

RCP4.5 and 

RCP8.5 

SMHI RCA4 
MOHC-

HadGEM2-ES 
r1i1p1 360-days 

RCP4.5 and 

RCP8.5 

SMHI RCA4 
MPI-M-MPI-

ESM-LR 
r1i1p1 Standard 

RCP4.5 and 

RCP8.5 

 

Figure 4.2. represents the summarized climate data gathered from the CORDEX project. 

This ensemble totalizes 473 climate realizations, each with a length of one year (below 

also referred to as ‘ensemble years’). 
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Figure 4.2. Scheme of climate ensemble 

Summarized scheme of the gathering of the climate data from the CORDEX project, including the temporal resolution 

and number of climate models included in each RCP. 

4.2.3. Data processing 

Data processing is an essential initial step before starting using the data effectively. 

Climate data was gathered for Portugal mainland. After organizing the data, it was 

analyzed and errors such as repeated data were removed. As presented in Table 4.2 and 

Table 4.3, the calendar assumptions differ according to each climate model. Considering 

the energy planning tool chosen, EnergyPLAN [51] – which considers leap years only, 

see subsection 4.3.1 – the calendar models were uniformized to have 366 days per year, 

depending on the calendar different strategies were implemented. For months with 

missing days in the original dataset, those were introduced by replicating the last day of 

the month: 1) in the non-leap years of standard calendar models or the 365-days models, 

the missing February 29th was introduced by replicating February 28th; 2) in the 360-days 

models, where every month is considered to have 30 days, the 31-days months were 

completed by replicating its 30th day. Since the 360-days models consider 30 days for 

February, the last day was removed. 

Regarding the temporal downscaling resolution, it was treated differently according to 

the required resolution for each climate parameter. Even though a minute-by-minute or 

even higher resolution could be of use in this type of study, here the finest resolution 

looked-for is hourly – in the case of air temperature, global horizontal irradiation and 

wind speed. Thus, a straightforward methodology to convert daily and three-hourly data 
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into hourly data for those variables is presented in the next subsections 4.2.3.1, 4.2.3.2 

and 4.2.3.3. On the other hand, in the case of precipitation, an hourly resolution is not 

crucial for the final purpose. Thus, precipitation data were upscaled to monthly data, as 

detailed in subsection 4.2.3.4.  

The validation of the different downscaling methods considered the following simple 

statistic parameters: the root mean square error (RMSE) and the mean absolute error 

(MAE) and their normalized values (NRMSE and NMAE, respectively); the maximum 

absolute difference (MAXAD) and the maximum relative difference (MAXRD). These 

parameters are described by Equations (4.4)-(4.8) [126].  

 

 

RMSE = √
1

𝑁
∑(𝑦𝑡 − 𝑦̂𝑡)2

𝑁

𝑡=1

 

(4.4) 

 

NRMSE =
√1

𝑁
∑ (𝑦𝑡 − 𝑦̂𝑡)2𝑁

𝑡=1

max (𝑦̂𝑡)
× 100 

(4.5) 

 
MAE =

1

𝑁
∑|𝑦𝑡 − 𝑦̂𝑡|

𝑁

𝑡=1

 
(4.6) 

 
NMAE =

1

𝑁

∑ |𝑦𝑡 − 𝑦̂𝑡|𝑁
𝑡=1

max (𝑦̂𝑡)
× 100 

(4.7) 

 MAXRD = max|(𝑦𝑡 − 𝑦̂𝑡)/𝑦̂𝑡| × 100 (4.8) 

 

where, yt are the synthetized values of each downscaling method and 𝑦̂𝑡 are the 

observations, both for each timestep t of an hour; N is the total number of observations. 

In addition to the statistical parameters mentioned earlier, the percentage of timesteps in 

which the error is superior to a certain value defined for each case (e.g. for air temperature 

the limit value was 2⁰C) was also considered, below it is defined by PTE (percentage of 

timesteps’ error). 
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4.2.3.1. Air temperature 

Temporal downscaling of air temperature has been studied for many authors. The focus 

has been on the downscale of daily data, using mainly the maximum and minimum 

temperature of the day, the most common data available. There are several methods to 

downscale hourly air temperature Tair [⁰C] from daily data. However, the criteria here was 

to choose a straightforward approach that could be easily applied to any location and 

period, and that could be adapted also to a downscaling of three-hourly resolution.  

To downscale temperature from daily data, the Erbs’ method [127] was selected (see 

subsection Validation, below). “The Erbs’ method” is based on Equation (4.9) and 

Equation (4.10) that were obtained from average daily temperature per month from nine 

cities across the USA.  

 𝑇𝑎𝑖𝑟(𝑡) =  𝑇𝑎𝑣𝑔 + (𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛)[0.4632 cos (𝑎 − 3.805)+0.0984 cos(2𝑎-0.360)+ 

+0.0168 cos(3𝑎-0.822)+0.0139 cos(4𝑎-3.513)] 

(4.9) 

with 

 𝑎 = 2𝜋 × (𝑡𝑑𝑎𝑦 − 1)/24 (4.10) 

where Tavg is the average daily temperature [⁰C], Tmax is the maximum daily temperature 

[⁰C], Tmin is the minimum daily temperature [⁰C] and tday is the hour of the day. 

Erbs’ method was adapted to the present work context. First, instead of using the 

monthly-average day, here the data of each day of the year is used. Second, this method 

had to be adapted to the downscaling from three-hourly data. The same approach was 

applied, but the values of the mean/maximum/minimum temperature were selected using 

only the values available per day, i.e., from the eight values per day (three-hourly 

timesteps) the minimum/maximum temperature were chosen and the mean was 

determined. 

Validation 

The proposed methods were validated against hourly measured data from Lisbon in 2014, 

from the meteorological station of Instituto Dom Luiz (IDL).  

Two downscaling methods were considered – Half-sin [128] and Erbs’ [127]. They were 

already validated by their correspondent authors. However, the validation was not 

performed for Portugal, as it is here presented for the city of Lisbon. To perform such 
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validation, daily data was calculated (Tavg, Tmin, and Tmax) from the hourly measured data, 

since daily data was the original input data used in the two methods tested. Table 4.4 

shows the results obtained.  

Table 4.4. Comparison of the temporal downscaling methods – Air temperature 

Errors resulting from the temporal downscaling to hourly resolution and the observations using two different methods: 

Half-sin and Erbs’ method. 

Comparison of downscaling methods 

Downscaling 

methods 

RMSE 

[°C] 

NRMSE 

[%] 

MAE 

[°C] 

NMAE 

[%] 

MAXAD 

[°C] 

MAXRD 

[%] 

PTE 

[%]>2°C 

Half-Sin 

[128] 
1.19 3.40 0.86 2.45 7.22 90.00 9.18 

Erbs’ [127] 1.10 3.15 0.83 2.37 5.83 117.24 6.93 

 

As previously mentioned, the Erbs’ method was chosen. Afterwards, the measured data 

was treated to be upscaled from hourly resolution to three-hourly resolution4, since the 

final goal was to apply the described downscale methodology to the climate models which 

have daily and three-hourly resolution.  

Figure 4.3 shows the original data and the synthetized data for both resolutions and a 

winter and spring week. 

 

Figure 4.3 Validation of the temporal downscaling – Air temperature  

The air temperature of a Winter week (left) and of a Summer week (right) - measured data and proposed methods. 

 
4 Starting at hour 0, a three-hourly timestep was considered and only the hourly values correspondent to the 

beginning of those steps were kept – i.e., the value of hour 0 was kept, the following two hourly values 

(from hour 1 and 2) were removed and the value after those was kept (hour 3), and so on. The resulting 

time-series has a three-hourly resolution. 
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The use of three-hourly data tends to overestimate/underestimate the daily limits of 

temperature (e.g. 1st day of Summer week, Figure 4.3), even though it does not differ 

significantly from the data obtained from the daily data. The statistic parameters 

comparing observations with the synthetized data are presented in Table 4.5. 

Table 4.5. Temporal downscaling for daily and three-hourly data – Air temperature 

Errors resulting from the temporal downscaling of air temperature to hourly resolution and the synthetized data obtained 

through daily and three-hourly resolution data. 

 

The estimation method of air temperature that uses three-hourly data appears to better 

follow the observations’ profile in terms of mean average error (0.79⁰C against 0.83⁰C) 

and of maximum absolute/relative errors. About 6-7% of the estimations showed an error 

above 2⁰C for both approaches (daily and three-hourly). 

Figure 4.4 shows when the differences between the synthetized data and the observations 

are higher. The air temperature estimation does not show a clear pattern of performance, 

but it seems to be underestimated at times when the temperature is naturally expected to 

be higher (in the middle of the day during the summer period) and it is overestimated at 

daytime along the rest of the year and in the late afternoon/night during the summer. For 

both under and overestimation, the maximum magnitude rounds 5.5⁰C. 

  

Air temperature 

 
RMSE 

[°C] 

NRMSE 

[%] 

MAE 

[°C] 

NMAE 

[%] 

MAXAD 

[°C] 

MAXRD 

[%] 

PTE (%) 

>2⁰C 

Daily data 1.10 3.15 0.83 2.37 5.82 117.24 6.93 

Three-hourly 

data 
1.06 3.02 0.79 2.27 5.55 114.39 6.27 
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Figure 4.4. Absolute and relative errors for the temporal downscaling – Air temperature 

Absolute error and relative error obtained when using the daily (left) and three-hourly data (right) of air temperature 

(Tair), compared to observations (Tobs). 

4.2.3.2. Global horizontal irradiance 

The global horizontal irradiance Gh [W/m2] was downscaled using an approach based on 

solar geometry and atmosphere clearness, starting with two time-series with different time 

resolutions: 1) daily and 2) three-hourly. A summarized scheme of the methods is 

presented at the end of this subsection, Figure 4.5. 

Firstly, for both temporal resolutions, the extraterrestrial global irradiance I [W/m2] had 

to be calculated, which required the determination of several other parameters.  

The equation of time EoT [hours] is used to correct the local time, Equation (4.11) and 

Equation (4.12) [129]. 

 𝐸𝑜𝑇(𝑡) = [9.87 sin(4𝜋 × 𝑑′(𝑡)) − 7.53 cos(2𝜋 × 𝑑′(𝑡)) − 1.5 sin(2𝜋 × 𝑑′(𝑡))]/60 (4.11) 

 𝑑′(𝑡) = (𝑑(𝑡) − 81)/365 (4.12) 

where d is the Julian day and t is the hour of the year. 

The correction of the time zone is applied to the hour angle ω [radians], according to 

Equation (4.13) [130]. 

 ω(𝑡) =
𝜋

12
× (𝑡𝑠𝑜𝑙𝑎𝑟(𝑡) − 12 + 𝐸𝑜𝑇(𝑡)) + (𝜆 − 𝜆𝑧𝑜𝑛𝑒) (4.13) 
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where tsolar is the solar hour [hour], 𝜆 is the geographic longitude [radians] and 𝜆𝑧𝑜𝑛𝑒 is 

the time zone of the location [radians]. 

Equation (4.14) shows the calculation of the declination angle δ [radians] [130].  

 
δ(𝑡) = 0.4093 × sin (2𝜋 ×

(284 + 𝑑(𝑡))

365
) 

(4.14) 

Equation (4.15) is used to calculate the cosine of the zenith angle θz [radians], whenever 

the solar altitude α [radians] is above zero [131]. 

 cos(θz) = sin(δ(𝑡)) × sin(φ) + cos(δ(𝑡)) × cos(φ) × cos(ω(𝑡)) = sin (α) (4.15) 

where φ is the geographic latitude [radians]. 

Finally, the eccentricity correction factor of the Earth’s orbit E0 is calculated, Equation 

(4.16) [131]. 

 
𝐸0(𝑡) = 1 + 0.0334cos (2𝜋

𝑑(𝑡)

365
)  

(4.16) 

The extraterrestrial irradiance I [W/m2] could finally be calculated through Equation 

(4.17) [131].  

 𝐼(𝑡) = 𝐼𝑆𝐶(𝑡) × 𝐸0(𝑡) × cos (θz(𝑡)) (4.17) 

where, ISC is the solar constant [W/m2] [131]. 

Secondly, the clearness index (Kt) was determined with the same temporal resolution of 

the original data (Equation (4.18)): 1) daily average index or 2) three-hourly resolution. 

For the first, the hourly kt was determined using the hourly extraterrestrial irradiance 

profile and its corresponding daily average irradiance. For the latter, having a time-series 

of Kt with a three-hour timestep, a linear interpolation of the Kt was performed to obtain 

an hourly time-series kt. Finally, for both temporal resolutions, using the hourly 

time-series of the extraterrestrial irradiance and the Kt (with daily resolution for the daily 

data and hourly resolution for the three-hourly data), the hourly global irradiation on the 

horizontal was determined.  

where tstep resolution corresponds to the temporal resolution, i.e., is the day or the three-hour 

timestep; Gh original is the original data of global irradiance on the horizontal [W/m2]. 

 𝐺ℎ𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙
(𝑡𝑠𝑡𝑒𝑝 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛) = 𝐾𝑡(𝑡𝑠𝑡𝑒𝑝 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛) × 𝐼(𝑡𝑠𝑡𝑒𝑝 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛) (4.18) 
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Figure 4.5. summarizes and describes the methods applied to the daily and three-hourly 

global irradiance data to obtain hourly time-series. 

 

 
Figure 4.5. Scheme of temporal downscaling of global horizontal irradiance 

Schematic of the methodology to downscale daily and three-hourly resolution data on global horizontal irradiance to 

hourly data. 
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Validation 

For the global horizontal irradiance, hourly data from Lisbon airport was gathered, for 

2014. As previously, the hourly data was converted to daily and three-hourly resolutions.  

Figure 4.6. shows the measured global horizontal irradiance on two different weeks along 

with the synthetized data (daily and three-hourly).  

 

Figure 4.6. Validation of temporal downscaling – Global horizontal irradiance 

Global horizontal irradiance of a Winter week (left) and of a Summer week (right) - measured data and proposed 

methods. 

 

The most important factor responsible for the variability in global irradiance is 

cloud-related, i.e., the clearness of the sky. During the winter week (Figure 4.6.), the 

observed data shows significant variability due to the appearance of clouds in the sky. 

Since the methods here presented do not include any component for the stochastic 

appearance of clouds, the use of daily averages of irradiance tends to underestimate the 

actual irradiance in the middle of the day. Three-hourly resolution data provides more 

information about the sky clearness during the day. Thus, in this case, the method can get 

closer to reality mainly when a cloud appears at a time closer to one of the observations. 

The comparison between observations and synthetized data are presented in Table 4.6. 
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Table 4.6. Temporal downscaling for daily and three-hourly data – Global horizontal irradiance 

Errors resulting from the temporal downscaling of global horizontal irradiance to hourly resolution and the synthetized 

data obtained through daily and three-hourly resolution data. 

 

The global horizontal irradiance estimation shows low accuracy, in part due to the 

absence of a cloudiness factor applied hourly. The maximum absolute error (MAXAD) 

is the only parameter that counters the best performance of the use of three-hourly input 

data, showing a higher value than for the case of daily data. However, that value could be 

an isolated case and may not be a representative observation, especially when observing 

the remaining parameters.  

Figure 4.7 shows a clearer pattern of performance with overestimation of irradiance in 

the early morning and late afternoon periods.  

 

Figure 4.7. Absolute and relative errors for the temporal downscaling – Global horizontal irradiance 

Absolute error and relative error obtained when using the daily (left) and three-hourly data (right) of global horizontal 

irradiance (Gh), compared to observations (Gobs). 

Global horizontal irradiance 

 
RMSE 

[W/m2] 

NRMSE 

[%] 

MAE 

[W/m2] 

NMAE 

[%] 

MAXAD 

[W/m2] 

MAXRD 

[%] 

PTE (%) 

>100 W/m2 

Daily data 65.12 5.74 33.38 2.94 451.21 3322.10 10.23 

Three-hourly data 50.31 4.43 19.62 1.73 574.29 730.20 5.82 
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4.2.3.3. Wind speed 

Two different approaches to downscale wind speed from daily and three-hourly data were 

taken, after performing a comparison that resulted in selecting the most accurate method 

for each of the resolutions (see subsection Validation, below). The two approaches tested 

were: 1) a genetic-algorithm (GA) [132], and 2) a linear interpolation. Hereafter, a brief 

explanation of each approach is presented.  

The genetic-algorithm approach is described in Ref. [132]. It implies the input of daily 

data, thus its validation for the three-hourly resolution data required the conversion of the 

three-hourly data into daily data (e.g. the mean/maximum daily temperature calculated 

from the eight three-hourly values available for each day). The range of some input 

parameters are defined, such as the shape factor of the Weibull distribution (k), the hour 

where the peak of wind speed normally occurs (hp), the diurnal pattern strength (id) that 

indicates the behavior of wind during the day and an autoregressive coefficient (ac) used 

to generate random wind speed components. The ranges used match those described in 

Ref. [132]. Two objective functions are considered using the Euclidean distance method, 

one for the daily mean wind speed (OFmean) and the other for the daily maximum wind 

speed (OFmax) – Equation (4.19).   

 

𝑂𝐹𝑚𝑒𝑎𝑛/𝑚𝑎𝑥 = √∑(𝑦𝑑 − 𝑦𝑑̂)2

𝑁

𝑑=1

 (4.19) 

where d is the timestep of each day. 

The second approach was based on a simple linear interpolation method applied to the 

original data to build the hourly time-series. 

Validation 

Hourly wind speed measurements from the meteorological station from IDL in 2014 were 

used for the validation of the proposed methods. Wind speed is a climate parameter 

characterized by strong variability. Thus, the validation of its downscaling is difficult to 

achieve.  

To select the method to use for each resolution (daily data and three-hourly data) a 

comparison of the results was performed by applying both methods to both data 

resolutions. The results presented in Table 4.7 show that: 1) for daily data – the 
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genetic-algorithm performs slightly better, showing lower errors for some parameters 

(RMSE, NRMSE, MAXRD and mean hourly error) and it results in a mean wind speed 

closer to the measured data; and 2) for three-hourly data – the linear interpolation shows 

better performance for the comparison indicators selected. Consequently, to downscale 

the available data to an hourly resolution the methods used were: genetic-algorithm for 

the daily data and the linear interpolation for the three-hourly data. 

Table 4.7. Comparison of the temporal downscaling methods – Wind speed 

Errors resulting from the temporal downscaling to hourly resolution, compared to observations, for daily and 

three-hourly resolution data, using two different methods: genetic-algorithm and linear interpolation. 

 

The synthetized wind speed time-series shows an average value during the year very close 

to the observed one (which was of 12.08 m/s), for both resolution data. The maximum 

wind speed on the generated time-series was also similar to the one from the measured 

data (40 m/s). Comparing the performance of the synthetized time-series coming from 

the different resolutions datasets, it is possible to affirm that, as expected, the three-hourly 

data results on more accurate hourly data, having a mean hourly error of 23.71% against 

40.62% from the daily data.  

Figure 4.8 shows the measured data against the synthetized data for two weeks, one in 

winter and another in summer.  

Wind speed 

 Method 
RMSE 

[m/s] 

NRMSE 

[%] 

MAE 

[m/s] 

NMAE 

[%] 

MAXAD 

[m/s] 

MAXRD 

[%] 

PTE 

[%] 

>7m/s 

Mean 

hourly 

error [%] 

vmean 

[m/s] 

vmax 

[m/s] 

Measured data - - - - - - - - 12.08 40.00 

Daily 

data 

GA 1.61 4.01 6.14 15.35 31.78 2280.7 35.38 40.62 12.07 42.97 

Linear 

interp. 
5.47 13.66 5.58 13.95 31.58 2441.7 30.59 42.55 12.03 40.00 

Three-

hourly 

data 

GA 1.57 3.93 5.87 14.69 31.95 2333.9 33.63 42.40 12.07 35.87 

Linear 

interp. 
1.38 3.45 3.29 8.23 32.00 1766.7 15.89 23.71 12.07 40.00 
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Figure 4.8. Validation of temporal downscaling – Wind speed 

Wind speed of a Winter week (left) and of a Summer week (right) – measured data and proposed methods. 

 

Observing the previous figure in a strict hourly comparison, one can easily perceive the 

strong differences between all the series. However, to better understand the results, Figure 

4.9 shows the Weibull probability density function obtained from the results of this 

validation. 

 

Figure 4.9. Distributions resulting from the temporal downscaling – Wind speed 

Probability distribution functions for the hourly measured data and the hourly time-series generated from daily-

resolution data and three-hourly data. 

 

Figure 4.10 shows the occasions during the year when the generated wind speed differs 

the highest and the lowest from the measured data. For the daily data, the wind speed has 

higher errors during the daytime, and it seems to be more accurate in the middle of the 
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night. As for the three-hourly data, the errors appear lower and more uniformly distributed 

during the day and the year.  

 

Figure 4.10. Absolute and relative errors for the temporal downscaling – Wind speed 

Absolute error and relative error obtained when using the daily (left) and three-hourly data (right) of wind speed (vw, 

in m/s), compared to observations (vwobs, in m/s). White spaces correspond to periods when the measured wind speed 

was null. 

 

From the previous results, it seems that the downscaling of wind speed results on 

acceptable and close general parameters – e.g. average and maximum values – that 

broadly characterizes the wind speed time-series (see Table 4.7), but it results in less 

accurate results when analyzing the results at a finer resolution.   

4.2.3.4. Precipitation 

The required time resolution for precipitation in this work is monthly data. For this reason, 

the daily/three-hourly data was aggregated into monthly data. Before aggregating to 

monthly data, the original precipitation proriginal in [kg.m-2.s-1] was converted to 

millimeters of water per day or three-hour period [mm/time period] – prmm, depending on 

the resolution. As the time upscaling of precipitation is obtained by simply summing the 

daily values/three-hourly values to determine the monthly precipitation, no validation of 

the methodology was considered necessary. 
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4.2.4. Overview of future climate parameters 

Climate variability is driven by the heterogeneous range of conditions that may occur 

over a certain period. The inter-annual variability of the main climate parameters is 

presented using all the climate models with daily resolution (before temporal downscaling 

to hourly data) and considering a spatial average of the whole country. Moreover, to 

contextualize such variability, the results from historical data are also presented. The 

historical climate data here presented results from the historical experiments from 

CORDEX project for the period 1990-2006 [133], including the same ensemble as the 

RCPs.  

Figure 4.11 presents the probability density function for the average daily temperature 

per year. The distribution of future average temperatures is shifted to the right, showing 

a tendency for higher temperatures in the future, which is slightly more pronounced in 

the RCP8.5. Similar behavior is observed for future irradiance with a small decrease in 

the occurrence of lower irradiance and an increase of the higher values. As for average 

daily wind speed, the differences between the three cases studied (historical, RCP4.5 and 

RCP8.5) are negligible. Finally, lower rates of precipitation are expected for the future. 

For all of the climate parameters, the RCP8.5 shows more accentuated changes from the 

historical data, than the RCP4.5.  
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a. b. 

  

c. d. 

  

Figure 4.11. Probability density functions of climate parameters under historical and RCPs data 

Probability density function for all the ensemble years with daily resolution for historical data (period 1990-2006) and 

RCP4.5 (blue) and RCP8.5 (red) for the period 2045-2055 for: a. average temperature; b. surface downwelling 

shortwave radiation; c. average daily wind speed; and d. daily precipitation (previous to temporal downscaling). 

Climate data gathered from CORDEX project [133].  

 

After downscaling both the daily and three-hourly climate models to hourly resolution, 

the annual climate parameters may be presented as in Figure 4.12. for RCP4.5 and Figure 

4.13 for RCP8.5. In those figures, it is presented the spatial average for the whole country. 

For temperature and wind speed, the average hourly value was chosen to be presented, 

while for precipitation and solar irradiation the chosen was the total annual values. 

Some differences in future climate paths can be seen by comparing RCP4.5 with RCP8.5. 

Irradiation and temperature are expected to be higher for RCP8.5, while precipitation and 

wind speeds are likely to be slightly lower in RCP8.5, compared to RCP4.5. 
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Figure 4.12. Histograms of annual climate parameters – RCP4.5 

Histograms of annual precipitation, average air temperature, average wind speed and total annual global irradiation on 

the horizontal in Portugal for the period 2045-2055 of all the ensemble years under RCP4.5 (after temporal 

downscaling). Climate data gathered through CORDEX project [133].  

 

Figure 4.13. Histograms of annual climate parameters – RCP8.5 

Histograms of annual precipitation, average air temperature, average wind speed and total annual global irradiation on 

the horizontal in Portugal for the period 2045-2055 of all the ensemble years under RCP8.5 (after temporal 

downscaling). Climate data gathered through CORDEX project [133].  
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4.3.  Supply and power system modelling5 

This section aims at describing the modelling of the power system and focusing the 

methods used to determine the supply sources. It starts with the description of the energy 

modelling tool applied in this work – EnergyPLAN (subsection 4.3.1). Then, the 

calibration method is described in detail (subsection 4.3.2). Finally, the methods used to 

model the generation of each supply source are explained (subsection 4.3.3). 

4.3.1. Energy Modelling tool - EnergyPLAN 

Upon the literature review of energy modelling tools presented in section 2.4, to perform 

the required simulations of the power system in this work, the EnergyPLAN tool (version 

14.0) [51] was chosen. The main underlying reason for that was its fine time resolution 

of one hour, its time-horizon of one year, the light computation needs and quick time to 

perform one simulation, and the transparency and simplicity of the methodology used. A 

summary of the main framework used by EnergyPLAN to simulate the power system is 

hereafter explained.  

The system operation is simulated using hourly energy balances of one complete leap 

year (8,784 hours). Priority is given to non-dispatchable renewable supply sources, then 

dispatchable renewable and fossil generation is adjusted accordingly (by this order) so 

that the generation matches the demand. The dispatchable generation includes thermal 

power plants (PPs) and the dam hydropower plants. Thermal power plants can be either 

condensing or combined heat and power (CHP). 

When there is an excessive generation, the merit order to use the excess energy is (if the 

mechanism is available): 1) to pump water to the reservoirs; 2) to charge the electric 

vehicles’ batteries; and 3) to charge the energy storage device. In case of a lack of supply, 

the system may use the stored energy by the same order. Only then, and if needed, 

imports/exports take place. If demand-side management is available, the scheduling of 

the flexible demand is performed to maximize the use of non-dispatchable renewables 

and to decrease the use of fossil-fueled generation and imports.  

 
5 Part of this section was adapted from Figueiredo et al., 2018 [224]. 
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To avoid jeopardizing the balance of the grid, it is critical to guarantee a robust base and 

backup generation. 

The minimum available power of condensing powerplants is implemented to preserve 

their technical constraints. Part of the condensing power plants, like coal- and 

biomass-fueled power plants, provide base generation, and they are not able to shut-down 

and turn-on suddenly. Thus, by establishing a bottom limit, these constraints ensure a 

more stable base generation. In this work, historical data (from the Portuguese power 

system in 2015 [134], which was of 580 MW) is used to limit the minimum of the 

simulated hourly distribution of thermal generation minPPs [MW], Equation (4.20).  

 𝑚𝑖𝑛𝑃𝑃𝑠 = 𝑚𝑖𝑛(𝐺𝑒𝑛𝑃𝑃𝑠 𝑐𝑜𝑎𝑙(𝑡) + 𝐺𝑒𝑛𝑃𝑃𝑠 𝑁𝐺(𝑡) + 𝐺𝑒𝑛𝑃𝑃𝑠 𝑛𝑜𝑛−𝑟𝑒𝑛(𝑡)

+ 𝐺𝑒𝑛𝑃𝑃𝑠 𝑏𝑖𝑜𝑚𝑎𝑠𝑠(𝑡)) 

(4.20) 

where GenPPs coal, GenPPs NG, GenPPs non-ren and GenPPs biomass are the generation power of 

thermal power plants supplied by coal, natural gas, other non-renewable fuels (mainly 

waste) and biomass [MW], respectively, at each hour t. 

Moreover, a minimum stabilization share of dispatchable generation should be also 

considered. It ensures that there is a minimum of dispatchable generation operating at 

each hour that is able to follow the load by counteracting changes in other generation 

supply sources (e.g. variable renewables). This parameter is usually ensured by thermal 

power plants and dam hydropower plants. In this work, the minimum share of 

dispatchable generation minstab [%] was considered to be the same as observed in 

historical data (from the Portuguese power system in 2015 [134], which was of 18.1%), 

Equation (4.21).  

 
𝑚𝑖𝑛𝑠𝑡𝑎𝑏 = 𝑚𝑖𝑛 (

𝐺𝑒𝑛𝑃𝑃𝑠 𝑡𝑜𝑡𝑎𝑙(𝑡) + 𝐺𝑒𝑛𝑑𝑎𝑚 ℎ𝑦𝑑𝑟𝑜(𝑡)

 𝐺𝑒𝑛𝑡𝑜𝑡𝑎𝑙(𝑡)
) × 100 

(4.21) 

where GenPPs total and Gendam hydro the generation of thermal power plants and dam hydro 

[MW], respectively, in each hour t; Gentotal is the total electricity generation in each hour 

t [MW]. 

EnergyPLAN offers two optimization strategies for the power system: technical and 

economical. During all this work, the technical optimization was chosen over a market 

optimization because the latter is highly sensitive to the economic conditions of the 
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country and its neighbors at a particular time, making the model less flexible to explore 

future energy scenarios. 

The main inputs to the model are the installed power capacities of each supply source, the 

hourly distribution of dispatchable renewable generation and electricity demand, the 

annual values for electricity demand, fuel consumption and CHP electricity generation. 

Figure 4.14. summarizes the inputs and the outputs required for EnergyPLAN to model a 

power system with similar characteristics to this work’s case study.  

 

 

Figure 4.14. Outline of EnergyPLAN inputs and outputs 

Summarized scheme of the inputs (e.g. installed capacities) required by EnergyPLAN, and its outputs (e.g. hourly 

generations).   

 

An important feature from this tool is that it models thermal power plants as one large 

power plant, independently on the primary fuel distribution inputted. Thus, even though 

the model considers different fuel types and their primary fuel consumption to calculate 

emissions, it does not disaggregate thermal powerplants by its fuel type in the simulation. 

To differentiate between baseload and peak powerplants, in this work, two types of 
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thermal power plants are considered separately: 1) coal and biomass power plants; and 2) 

natural gas power plants. As for CHP, those power plants are mainly industrial in 

Portugal, thus they are also simulated separately.   
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4.3.2. Multiyear model calibration 

In this subsection, the importance of calibrating a model is discussed and an innovative 

calibration methodology is proposed. It is based on a multiyear calibration, which is later 

used in this thesis to determine parameters for the future power system.  

A scenario simulation should be preceded by a calibration of the model, to make sure it 

works accurately. “Calibration is the estimation and adjustment of model parameters and 

constants to improve the agreement between model output and a data set” [135]. It is 

performed by adjusting a set of not perfectly defined parameters to fit the simulation 

outputs to historical data [135]. The standard calibration of power systems’ simulation 

considers a single year of historical data, regardless of the focus of the study or tool used 

[136]–[138].  

Usually, the calibration parameters are kept constant in the simulation of new scenarios. 

In systems highly based on renewables, the choice of a meteorological year (usually the 

most recent or the typical one) to make the calibration can result in inaccuracies when 

simulating a dissimilar year, e.g. simulating a scenario where precipitation is above 

average, leading to underestimation of the hydro resource. Thus, single year calibrations 

will depend on the specific meteorological characteristics of that year. A well-calibrated 

model should be accurate within all the spectrum of conditions. This issue is particularly 

important in renewables-based systems with high inter-annual variabilities such as hydro 

[139] and wind power [140], [141]. In addition to inter-annual changes, climate change 

also has a significant impact on energy systems’ modelling (see Chapter 2) [63], [64].  

In this subsection, a proposal of a new calibration method using a multiyear approach, 

based on linear regressions of weather indicators to determine the calibration parameters 

is presented. It allows building a flexible simulation model, adjustable to different 

environmental conditions since the calibration period covers a wide spectrum of system 

operating conditions.  

Before presenting the methods for the standard and multiyear calibration approaches 

(subsection 4.3.2.2), the specific characteristics of the Portuguese power system used for 

the calibrations are described (subsection 4.3.2.1). Using as the reference case the 

Portuguese power system during the period 2011-2015, the results obtained for both 

calibrations are provided (subsection 4.3.2.3). The subsection ends with the validation of 

the proposed multiyear calibration (subsection 4.3.2.4) – it addresses the accuracy of 
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single and multiyear calibrations by modelling two very different years as far as the 

weather was concerned, 2000 and 2005, and comparing the results. 

4.3.2.1. Case study specifics 

Portugal has a high share, with significant inter-annual variation, of renewable energy 

sources in its energy mix, and therefore it is particularly suitable to test the application of 

the multiyear calibration method.  

However, some parameters of calibration are case study-specific, and they will be referred 

hereafter. For both calibration methods: 

• The calibration period was 2011-2015 (in the case of single year calibration, each 

year of this period represents one different calibration); 

• For each year of the calibration period, the correspondent demand and installed 

capacity were considered; 

• The transmission line capacity was limited to its historical value for the year 

simulated  (between 2,370 MW and 3,047 MW [142]); 

• Biomass and coal powerplants were modelled together but separately from natural 

gas powerplants for two main reasons: 

o EnergyPLAN only allows two thermal powerplants to be modelled 

separately, thus it was not possible to model each type of powerplant 

individually; and 

o coal and biomass generation are the base generation for the power system, 

while a significant part of the natural gas powerplants is for backup or peak 

consumption periods. These powerplants’ modelling division allowed a 

better simulation of the power system by scheduling the base generation 

first (coal and biomass) and the backup generation as the last resource 

(natural gas). 

• The calibration parameters relevant for the case study are:  

o combined coal and biomass powerplant efficiency (𝜂𝑃𝑃,𝑐𝑜𝑎𝑙 𝑎𝑛𝑑 𝑏𝑖𝑜𝑚𝑎𝑠𝑠) – 

to calibrate the primary fuel consumption;  

o natural gas powerplant efficiency (𝜂𝑃𝑃,𝑛𝑎𝑡𝑢𝑟𝑎𝑙 𝑔𝑎𝑠) – also to calibrate the 

primary fuel consumption; 
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o a dimensionless coefficient for run-of-the-river generation (CRoR) – used 

to fit the water supply distribution to the run-of-the-river actual generation; 

and  

o the annual water supply normalized to the installed capacity (WSnorm, in 

MWh/MW).  

4.3.2.2. Methods 

A period of n years of historical data is used to calibrate the model, by determining 

different calibration parameters 𝑌𝑖
𝑗
 , where i = 1…m refers to the parameter (m 

parameters, such as power plants efficiency or run-of-the-river hydro generation, etc.) 

and j = 1…n refers to the year. Linear regressions are applied to each calibration 

parameter using a wide range of weather and energy variables. The regression that best 

fits each calibration parameter is selected, defining 𝑌𝑖̂, the calibrated parameter to be used 

in simulations. 

The method is assessed by running energy system simulations for two past years, with 

very different weather conditions. For each, two approaches are used for the simulations:  

(1) 𝑛 single year calibrations using parameters 𝑌𝑖
𝑗
, denoted model year j; and  

(2) one linear regression, multiyear (MY) model, using 𝑌𝑖̂.  

Figure 4.15 shows a summarized scheme of the proposed methods. 
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Figure 4.15. Scheme for the multiyear model calibration 

Summarized schematic of the methods used to perform the multiyear calibration, using as a basis a standard 

calibration. 
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Standard calibrations 

A calibration using a historical period should be performed before applying the model to 

other scenarios. A single year calibration – henceforth denoted standard calibration – 

begins with the input of all the historical data required by the energy system model. Then, 

it is performed a comparison between selected indicators, such as renewable energy share 

or annual CO2 emissions, from historical data and simulation outputs. The calibration is 

done iteratively, changing model inputs not properly described in the historical data, the 

calibration parameters. It should be noticed that the number m of parameters will vary 

with the case study and/or simulation tool. In power system simulations, the calibration 

parameters are normally related to the performance of power plants and the available 

energy resources; these parameters may not be accurately described by the available data 

and/or may depend on the power plant fleet operating conditions and weather conditions. 

When an acceptable pre-established maximum difference between the historical and the 

simulation outputs is achieved, the calibration parameters are finally defined.  

Multiyear calibration 

The linear regression of standard calibrations results, 𝑌𝑖
𝑗
, to meteorological and energy 

indicators for the n years are used to determine the multiyear calibration parameters. In 

general, a multivariable linear regression enables the prediction of a dependent variable 

Y, i.e., the calibration parameters 𝑌𝑖
𝑗
, from independent variables 𝑋𝑘, their estimated 

coefficients 𝛽̂𝑘, and error 𝜀, as shown in Equation (4.22). 

 𝑌 =  β̂0 + β̂1𝑋1 + ⋯ + β̂𝑘𝑋𝑘 + 𝜀 (4.22) 

When there is only one independent variable, the linear regression is called simple linear 

regression. The prediction of the dependent variable lies in testing its relation with 

different independent variables. Since calibration parameters can depend on the system 

operation and weather conditions, weather and energy variables were chosen to be tested 

for each regression, as listed in Table 4.8. 
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Table 4.8. Independent weather and energy variables  

Independent variables tested in the linear regression models to perform a multiyear calibration. 

Independent variables 

Weather 

Average temperature, Tavg [°C] 

Maximum temperature, Tmax [°C] 

Minimum temperature, Tmin [°C] 

Precipitation [mm] 

Wind index [MWh/MWinst] 

Energy 

Electricity consumption [TWh] 

Energy generation [TWh] 

Renewable energy sources’ (RES) generation [TWh] 

 

The number n of reference years is limited to five because structural changes in energy 

systems are occurring so fast that using longer periods for calibration would certainly lead 

to incoherent results. A restrictive set of reference years allows only simple and two 

independent variable regression models to be tested. 

A preliminary analysis using the determination coefficient (R2) to understand the 

relationship of the different independent variables with each dependent variable is 

performed. Independent variables showing an R2 lower than 30% or without an 

explainable causal relationship with the dependent variable were discarded. 

Then, simple and multivariable linear regressions are applied to the dependent variables. 

The causality of individual and combined independent variables on the dependent 

variables is assessed using the RMSE, the determination coefficient R2 (Equation (4.23)), 

the p-value of F-statistics and the p-value of Wald-statistics. 

 

 
𝑅2 =  

√

𝑛 ×  ∑(𝑌𝑗 × 𝑌𝑗̂) − (∑ 𝑌𝑗) × (∑ 𝑌𝑗̂)

√[𝑛 × (∑ 𝑌𝑗2
) − (∑ 𝑌𝑗)2] ×  [𝑛 × (∑ 𝑌𝑗̂2

) − (∑ 𝑌𝑗̂)
2

]

 

(4.23) 

In the equations, 𝑌𝑗  and 𝑌𝑗̂ are the observed and estimated value of the dependent variable 

in year j, respectively. 

The p-value serves as a criterion to evaluate which combinations of independent variables 

should enter in the regression model, using the significance level of 0.05. P-value is the 
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probability of obtaining a sample more extreme than the ones observed in the data, by 

assuming the null-hypothesis (Equation (4.24)). The F-statistics p-value of the model 

gives the significance of the combination of independent variables used, by testing the 

null hypothesis (H0) of not using this combination. In the same fashion, the Wald-statistics 

p-value determines the significance of each individual independent variable. If p-value is 

higher than 0.05, the null-hypothesis is credible, thus that independent variable should be 

discarded. If the p-value is lower than 0.05, it is considered that the independent variable 

is significant and the alternative hypothesis (Ha – Equation (4.25)) should be considered.  

 𝐻0: 𝛽𝑘 = 0 (4.24) 

 𝐻𝑎: 𝛽𝑘 ≠ 0 (4.25) 

 

It should be noted that the applicability of the multiyear calibration method does not 

depend on the geographic location or the specificities of the energy system in the study. 

Also, the choice of EnergyPLAN does not limit the suitability of the method, which could 

be adapted to any other simulation tool with distinctive characteristics regarding 

geographic scope, timestep resolution or others. 

4.3.2.3. Calibration results 

This subsection presents results for the standard calibrations followed by the results of 

the multiyear approach.  

Standard calibration 

The results for the five standard calibrations (2011-2015) are shown in Table II.1, Annex 

II. The simulated indicators differ little from historical data (on average they differ 

0.61%). The highest discrepancies regard the import/export balances (9.1% on average), 

which are due to the fact that import/export trades are market-driven, as opposed to energy 

balance driven export, as the model considers. The monthly average power demand 

deviation from historical data is -0.02% on average.  

The calibration parameters coal and biomass powerplant efficiency 𝜂𝑃𝑃,𝑐𝑜𝑎𝑙 𝑎𝑛𝑑 𝑏𝑖𝑜𝑚𝑎𝑠𝑠, 

natural gas powerplant efficiency 𝜂𝑃𝑃,𝑛𝑎𝑡𝑢𝑟𝑎𝑙 𝑔𝑎𝑠, normalized water supply WSnorm and 

run-of-the-river coefficient CRoR are shown in Table 4.9.  
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Table 4.9. Standard calibrations for the period 2011-2015 

Values of calibration parameters obtained for each of the five standard calibrations from the period 2011-2015. 

Standard calibrations – Calibration parameters 

Year 𝜂𝑃𝑃,𝑐𝑜𝑎𝑙 𝑎𝑛𝑑 𝑏𝑖𝑜𝑚𝑎𝑠𝑠 𝜂𝑃𝑃,𝑛𝑎𝑡𝑢𝑟𝑎𝑙 𝑔𝑎𝑠 
WSnorm 

[MWh/MWinst] 
CRoR 

2011 0.3049 0.5308 1,685.4 0.5375 

2012 0.3175 0.5180 735.6 0.2555 

2013 0.3153 0.4620 2,186.3 0.8400 

2014 0.3167 0.4315 2,317.8 0.9555 

2015 0.3269 0.5005 823.0 0.5615 

 

Multiyear calibration 

The effect of each independent variable (e.g. weather and energy variables) on the four 

calibration parameters is assessed using R2 coefficient, presented in Figure 4.16. The data 

regarding the independent variables (in Table 4.8) was gathered from the Portuguese 

meteorological office and the transmission system operator [96], [98], [142]. 

 

Figure 4.16. Correlation of calibration parameters and independent variables 

Correlation results between calibration parameters (coal and biomass power plant efficiency, natural gas power plant 

efficiency, water supply normalized and run-of-the-river coefficient) and independent variables (wind index, 

precipitation, Tmin, Tmax, Tavg, electricity consumption, electricity generation, and RES generation, as Table 4.8 shows). 

 

An assumed R2 > 0.3 threshold associates electricity consumption to the coal and biomass 

power plant efficiency; wind index, precipitation, electricity consumption and RES 
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generation to natural gas power plant efficiency; wind index, precipitation, and Tmin to 

water supply and run-of-the-river coefficient. 

The results of the linear regressions tested to predict each of the calibration parameters 

are shown in Table III.1-4, in Annex III. The best regression models are presented in 

Figure 4.17, except for the biomass and coal power plant efficiency. For the latter, the 

electricity consumption is the only independent variable that leads to R2 > 0.3, but it does 

not result in a model with statistical significance (p-value>0.05, Table III.1, in Annex III). 

For that reason, the standard and multiyear calibration consider the average of the 

efficiency of coal and biomass power plants in the period 2011-2015 (about 31.6%)6. 

a. 

 

b. c. 

  

 

Figure 4.17. Linear regression models chosen for the multiyear calibration 

Linear regression models, estimates and observations for each calibration parameter: a. – natural gas power plant 

efficiency (Model 5 in Table III.2, Annex III); b. – water supply normalized (Model 10 in Table III.3, Annex III); and 

c. – run-of-the-river coefficient (Model 15 in Table III.4, Annex III).  

 
6 Since in the future coal power plants are not considered, when simulating the future power system later 

in this document, this efficiency is solely from biomass power plants and it is assumed to be of 40% [144]. 
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Within the single and multivariable models, the renewable energy generation is the only 

one that shows significance (F- and Wald p-values < 0.05) for all the considered 

independent variables when testing the models to predict 𝜂𝑃𝑃,𝑛𝑎𝑡𝑢𝑟𝑎𝑙 𝑔𝑎𝑠 (see Table III.2, 

Annex III). Hence, RES generation is the chosen independent variable to determine the 

natural gas power plant efficiency, as shown in Figure 4.17a. Since thermal power plants 

are more efficient operating close to the nominal capacity, when renewable generation 

increases, forcing them to operate at lower levels, their efficiency decreases. To avoid 

unreasonable efficiencies, those were bounded by a minimum of 40% and a maximum 

limit of 60%. 

Regarding the water supply and the run-of-the-river coefficient (Table III.3 and Table 

III.4, in Annex III), the regression models showing significance are the simple regressions 

with rain as an independent variable, as Figure 4.17b and Figure 4.17c show. Thus, those 

are the chosen models to derive the normalized water supply and the run-of-the-river 

coefficient.  

4.3.2.4. Validation 

Using both the single year and the multiyear calibrations, energy system simulations were 

run for 2000 and 2005. The choice of validation years is determined by convenience, i.e., 

availability of input data for the simulations, and extreme climate conditions. Using these 

criteria, the years 2000 and 2005 were chosen: as shown in Table 4.10, 2000 had the 

second-highest annual precipitation in the past twenty years, while 2005 was the driest 

year since 1931 [98]. 

Table 4.10. Historical weather characteristics – Validation 

Summary of weather characteristics in Portugal for the validation year 2000 and 2005, compared to the historical mean 

for the period 1971-2000 [98], [143]. 

Validation period – Weather characteristics 

 1971-2000 mean 2000 2005 

Tmax [°C] 20.5 21.3 21.6 

Tavg [°C] 15.3 15.8 15.6 

Tmin [°C] 10.0 10.2 9.7 

Precipitation [mm] 882 1082 524 
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The results for the relevant indicators are shown in Figure 4.18. The percentages indicate 

the variations of outputs to the historical data of each validation year.  

 

Figure 4.18. Comparison of standard and multiyear calibrations for the validation period 

Validation and comparison of the two proposed calibration approaches: 1) dots/diamonds (for validation years 2000 

and 2005, respectively) are results from using the inputs of standard calibrations in the validation period; and 2) columns 

are results from applying the linear regressions to each calibration parameter according to specific conditions of the 

validation years 2000 and 2005 (solid and dashed filling, respectively).  

 

One can observe that regardless of the calibration used or the year considered, the thermal 

generation from biomass and coal power plants, the fuel consumption and the CO2 

emissions always present low errors, while the electricity demand shows no differences 

at all since it does not depend on the calibration parameters. On the other hand, the 

import/export balance is inaccurate in all the simulations because, as discussed above, 

international trade is usually market-driven, hence not well described by the technical 

scope of the simulations.  

The importance of the calibration emerges in the large discrepancies in the hydropower 

generation and, therefore, the renewable and electricity generation. The standard single 
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year calibrations lead to higher inaccuracies because of the dependency on the weather 

observed in the respective reference years – the system under study strongly depends on 

inter-annual changes of available water supply, due to the high potential for hydropower. 

This resource dependency of hydropower makes its calibration more prone to errors than 

the abovementioned indicators, such as thermal generation. Model results considering the 

multiyear calibration for the year 2000 (wet) are slightly better reproduced than 2005 

(dry), which may be because the calibration period does not include any year so dry. The 

wet year 2000 was better reproduced by model 2013 (2013 was also wet – see section 

3.1) than when using the multiyear calibration. Model 2012 was the worst reproducing 

2000, due to the large differences in precipitation between 2000 and 2012. The dry year, 

2005, is better reproduced by the MY model, followed by model 2012 – which was 

expected, given the similarity between 2005 and 2012. 

The average of the modules of the deviations presented in Table 4.11 shows that the 

multiyear calibration leads to between 2 and 5.8 times minor errors than using single year 

calibrations regarding hydropower generation, total renewable energy source generation, 

and share. In addition, the fuel-related indicators (i.e., thermal generation, fuel 

consumption, and CO2 emissions) are also slightly better simulated using the MY 

calibration with about 2 times minor errors than the models 2011-2015. 

The dispersion of the deviations obtained with the single year calibrations is well 

described by the standard deviations, also presented in Table 4.11. It shows that the 

multiyear calibration leads to between 1.1 and 1.5 times lower standard deviations for all 

the indicators analyzed.  
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Table 4.11. Deviations of standard and multiyear calibration for the validation period 

Deviations of the simulation results from the observations of 2000 and 2005 using MY model and models 2011: the 

average of deviation modules, standard deviation and range. The average deviation modules correspond to the average 

of the module of the deviations. The range is from the minimum to maximum values of the deviation using each 

approach. 

Deviation from historical data - Validation years 2000 and 2005 

  

  

  

MY model models 2011-2015 

Avg. of 

deviation 

modules 

Stand. 

Dev. 

Range Avg. of 

deviation 

modules 

Stand. 

Dev. 

Range 

Min. Max. Min. Max. 

Elect. demand 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

Coal and biomass gen. 1.8% 3.7% -1.9% 1.7% 3.8% 4.7% -5.0% 11.2% 

Natural gas gen. 6.9% 17.3% -8.8% 5.0% 18.2% 22.8% -21.8% 51.8% 

Hydro gen. 23.1% 50.1% -35.7% 10.6% 57.4% 70.7% -65.5% 161.0% 

RES share 15.3% 28.0% -20.1% 10.5% 30.0% 35.3% -50.5% 68.2% 

RES gen. 6.1% 25.7% 3.1% 9.1% 35.1% 39.5% -51.1% 78.8% 

Fuel cons. 2.2% 3.8% -4.1% 0.3% 3.9% 4.8% -3.1% 13.0% 

CO2 emiss. 2.2% 3.4% -3.8% 0.6% 3.4% 4.1% -3.7% 10.5% 

 

Model calibration is vital to trust the accuracy of the results of a simulation project when 

the operation of a power system is strongly affected by inter-annual changes (e.g. weather 

conditions), the single year calibration may not accurately reproduce dissimilar scenarios 

(e.g. different systems’ and weather conditions). The multiyear calibration has proven to 

be much more robust than single year calibration, leading to acceptable results regardless 

of the characteristics of the simulated year. For this reason, the multiyear calibration is a 

useful approach to build a more flexible and broad energy model, enabling the study of 

different scenarios to be less dependent on weather conditions, providing more 

dependable results.  

In this work, the multiyear calibration approach was used, and its results were applied for 

the inputs required in the future scenarios for the water supply and run-of-the-river 

coefficient regressions.  

Since coal power plants are absent from future scenarios, the efficiency of biomass power 

plants was set to 40% [144]. 
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For the case of natural gas power plant efficiency, the regression model obtained 

correlates negatively the renewable generation with efficiency. As mentioned above, a 

minimum limit of 40% was implemented to avoid the use of unrealistic values. Because 

the future scenarios considered in this work are highly renewable, the regression model 

obtained was not applied, and 40% was considered as the efficiency of natural gas power 

plants. 
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4.3.3. Modelling the supply sources 

In this subsection, the focus will be given to the calculation of the energy generation of 

the different supply sources included in the system. The methods applied here are the 

result of the requirements asked by the simulation tool used, EnergyPLAN.  

4.3.3.1. Thermal power plants 

To simulate the current Portuguese power system, thermal power plants were simulated 

separately as two big condensing powerplants and one big CHP power plant. For the two 

condensing power plants (one fueled by coal and biomass, and another by natural gas), 

the installed capacity, the distribution of its primary fuel consumption, its efficiency and 

the minimum power capacity were the required inputs, which were based on the historical 

data provided by the Portuguese Department of Energy and Geology (DGEG) and by the 

Portuguese Energy Networks (REN) [145], [146].  

Using the same sources, for CHP power plants, the electricity generated and the 

distribution of the primary consumption were introduced; and it was considered that 

industrial CHP has a constant generation distribution during the year. To ensure a solid 

base generation for reliability and operational reasons, the minimum dispatchable 

stabilization share and the thermal generation capacity (see subsection 4.3.1) are defined 

according to the historical data available [134]. 

While the simulation of the current system includes all existing powerplants at the 

moment, the future system only includes natural gas7 and biomass8 as supply. In that case, 

it is given priority to the use of biomass before the consumption of natural gas.  

Higher biomass generation is limited by the energy and economic cost of the fuel 

collection, which can decrease in the future with technology evolution such as process 

automation. However, more biomass generation would lead to more powerful plants 

requiring much higher fuel consumption, which would lead to an increasing need for 

biomass that may no longer be supported by local sources. It would result in the need to 

import biomass from more and farther locations, which may result in unprofitable and, 

consequently, unviable businesses. Moreover, the desertification of the territory 

 
7 When considering a fully renewable power system, natural gas-fueled power plants are not considered. 
8 It also includes residues and waste. 
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(aggravated by climate change) could also contribute to a lower biomass availability 

[147]. On the other hand, the strong fires of 2017 (and possibly future fires that may occur 

due to the migration towards urban areas and climate change) triggered a forest 

valorization strategy, which can promote biomass use for electricity generation [148].  

But carbon-neutrality of biomass is being contested: 1) biomass is, in fact, renewable 

since the organic material consumed can be generated again (e.g. harvested trees can grow 

again), but the growth time of, for example, trees should be weighted; 2) biomass burning 

process is carbon-neutral since the captured CO2 during the trees’ lifetime compensates 

the emitted emissions, but the time required for the capture of the emitted CO2 can be of 

decades, and it is relevant to add that the biomass might burn in fires or be cut down 

before it sequesters the CO2 that would compensate its burning; 3) the additional 

emissions from the biomass generation/collection or even transportation, the land-use 

changes, and others are not being contemplated in some carbon-neutrality calculations, 

turning the carbon-neutrality of biomass a debated issue [147], [149]. 

Biomass use in the future is an issue with a high level of uncertainty as demonstrated by 

the previous reasons. Therefore, when considering also non-renewable resources, this 

work considers two frameworks for biomass availability (see subsection 4.3.4): 1) a 

conservative approach that assumes the same amount of available biomass for the future, 

as it was in the year 2015; and 2) considering unlimited biomass resources, where natural 

gas is solely used when the biomass power plants are already using its maximum power 

capacity. 

Besides biomass to some extent, generation from the other renewable sources is much 

more closely related to weather and climate conditions. The supply generation of those 

sources is determined by EnergyPLAN with their installed capacity and the normalized 

hourly distribution of the generation. Hereafter, the methods used to calculate the 

generation of each type of renewable is explained.  
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4.3.3.2. Photovoltaic generation 

The photovoltaic generation was determined for each NUTS III9 region of the country. 

The total country generation assumed a weight for each region considering their current 

photovoltaics’ installed capacities.  

Photovoltaic energy generation PVgen [W/m2] is determined by multiplying the irradiance 

incident on the photovoltaic panels Gi [W/m2] by the overall efficiency of the system 

(𝜂𝑠𝑦𝑠𝑡, in fraction) in each hour 𝑡, Equation (4.26). 

 𝑃𝑉𝑔𝑒𝑛(𝑡) =  𝐺𝑖(𝑡) × 𝜂𝑠𝑦𝑠𝑡(𝑡) (4.26) 

The incident irradiance on the photovoltaic panels depends on several factors, including 

their orientation ψmodule and tilt βmodule. For simplicity, the orientation was always assumed 

to be South (180º) and the tilt was assumed to be equal to the mean latitude of the region. 

The incident irradiance is the sum of the beam irradiance on the tilted surface Bi [W/m2] 

and the diffuse irradiance on that same surface Di [W/m2], Equation (4.27). 

 𝐺𝑖(𝑡) = 𝐵𝑖(𝑡) + 𝐷𝑖(𝑡) (4.27) 

The beam irradiance on the tilted surface is obtained as follows. 

 
𝐵𝑖(𝑡) = 𝐵ℎ(𝑡) ×

cos (𝐴𝑂𝐼(𝑡))

𝑠𝑒𝑛(𝛼(𝑡))
 

(4.28) 

where Bh is the beam irradiance on the horizontal surface [W/m2] and AOI is the 

angle-of-incidence [radians]. The sun altitude 𝛼 is determined according to the Equation  

(4.15) (subsection 4.2.3.2).  

The angle-of-incidence is the angle comprised between the normal to the tilted surface 

and the beam irradiance on the surface, its cosine is determined by Equation (4.29). 

 cos(𝐴𝑂𝐼(𝑡)) = cos(𝛼(𝑡)) × 𝑠𝑒𝑛(𝛽𝑚𝑜𝑑𝑢𝑙𝑒) × cos(𝜓(𝑡) − 𝜓𝑚𝑜𝑑𝑢𝑙𝑒)

+ 𝑠𝑒𝑛(𝛼(𝑡)) × 𝑐𝑜𝑠(𝛽𝑚𝑜𝑑𝑢𝑙𝑒) 

(4.29) 

The sun position along the day can be calculated through the following expression. 

 
𝜓𝑎(𝑡) = 𝑎𝑐𝑜𝑠 (

𝑠𝑒𝑛(δ(𝑡)) × cos(𝜑) − cos (δ(𝑡)) × 𝑠𝑒𝑛(𝜑) × cos (ω(𝑡))

cos (𝛼(𝑡))
) 

(4.30) 

 
9 Nomenclature of Territorial Units for Statistical Purposes (NUTS) is a system developed by Eurostat that 

divides the territory hierarchically for the purpose of statistical studies. NUTS III defines “small regions 

for specific diagnosis” and include, in the case of Portugal, 30 regions [225], [226]. 
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However, this real azimuth 𝜓𝑎 must be converted to the corrected azimuth, 𝜓, according 

to the time of the day (morning and afternoon). In the morning (when ω < 0), 𝜓𝑎is equal 

to 𝜓, while in the afternoon (ω ≥ 0) 𝜓 is equal to 2𝜋 − 𝜓𝑎. 

In order to ensure that when the beam irradiance does not intersect the panels the beam 

irradiance on the tilted surface (i.e., on the panels) is null, cos(AOI(t)) is considered null 

when the sun altitude is too low (less than 5° from the horizon) and when the beam 

irradiance coming from the sun intersects the back of the panel. These two conditions are 

described by the following: 

  𝛼(𝑡) < 5 ×
𝜋

180
 (4.31) 

 cos (𝜓𝑚𝑜𝑑𝑢𝑙𝑒 − 𝜓) < 0 (4.32) 

Regarding the diffuse irradiance on the tilted surface, it is determined according to 

Equation (4.33). 

 
𝐷𝑖(𝑡) = 𝐷ℎ(𝑡) ×

1 + cos (𝛽𝑚𝑜𝑑𝑢𝑙𝑒)

2
 

(4.33) 

where Dh is the diffuse irradiance on the horizontal [W/m2], which is calculated following 

the method CLIMED2 described in [150], Equation (4.34). 

 𝐷ℎ(𝑡) = 𝐺ℎ(𝑡) × 𝑓ℎ(𝑡) (4.34) 

Gh is the global irradiance on the horizontal surface calculated through the climate data 

available (see subsection 4.2.3.2). The factor fh varies with the global clearness index, Kt, 

previously described in subsection 4.2.3.2. Still following [150], fh is calculated according 

to the following Equation (4.35). 

𝑓ℎ(𝑡) = {

0.995 − 0.081 ×  𝐾𝑡(𝑡) 𝐾𝑡(𝑡) ≤ 0.21

0.724 + 2.738 ×  𝐾𝑡(𝑡) − 8.32 ×  𝐾𝑡(𝑡)2 + 4.967 ×  𝐾𝑡(𝑡)3 0.21 < 𝐾𝑡(𝑡) ≤ 0.76

0.180 𝐾𝑡(𝑡) > 0.76

 (4.35) 

Having the components of irradiance on the tilted surface calculated, the Gi is easily 

obtained by their sum, Equation (4.27). To determine the PV generation, the efficiency 

of the overall system has to be ascertained – it should include the total efficiency of the 

modules (𝜂module), the efficiency of the inverters (𝜂inverters) and the cables (𝜂cables).  

 𝜂𝑠𝑦𝑠𝑡(𝑡) = 𝜂𝑚𝑜𝑑𝑢𝑙𝑒(𝑡) × 𝜂𝑖𝑛𝑣𝑒𝑟𝑡𝑒𝑟𝑠 × 𝜂𝑐𝑎𝑏𝑙𝑒𝑠 (4.36) 
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The modules’ efficiency is obtained by multiplying two different efficiencies: the 

nominal efficiency of the modules (𝜂nominal) and their thermal efficiency (𝜂thermal, Equation 

(4.37)). 

 𝜂𝑡ℎ𝑒𝑟𝑚𝑎𝑙(𝑡) = 1 − 𝑇𝐶𝑀𝑃𝑃 × |𝑁𝑂𝐶𝑇 − 𝑇𝑚𝑜𝑑𝑢𝑙𝑒(𝑡)| (4.37) 

The thermal efficiency includes the loss of efficiency according to the increase of the 

modules’ temperature Tmodule [⁰C], given the temperature coefficient at the maximum 

point TCMPP [%/°C] and the Normal Operating Cell Temperature NOCT [⁰C] of a given 

photovoltaic module. The temperature of the modules is calculated through Equation 

(4.38). 

 
𝑇𝑚𝑜𝑑𝑢𝑙𝑒𝑠(𝑡) =  

𝑁𝑂𝐶𝑇 − 20

800
× 𝐺𝑖(𝑡) + 𝑇𝑎𝑚𝑏(𝑡) 

(4.38) 

The features of all the system components are presented in Table 4.12. 

Table 4.12. Photovoltaic system  

Main characteristics assumed for the components of a common photovoltaic system [151]–[153]. 

Features of photovoltaic system components 

NOCT 46°C 

TCMPP 0.41%/K 

𝜂nominal 17% 

𝜂inverters 98.8% 

𝜂cables 95% 

 

Finally, using the first equation presented in this subsection, Equation (4.26), the 

photovoltaic generation can be determined.  

4.3.3.3. Wind generation 

The wind resource is very heterogeneous due to its high sensitivity to rugosity and 

altimetry of the territory. For this reason, wind farms are normally located in places where 

the terrain is more favorable to higher wind speeds. In Portugal, wind farms are mostly 

located in the North and Central regions. Moreover, according to the study performed by 

Couto et al. [154], the region where the wind speed is better correlated with the 

Portuguese wind generation is also around the Centre of Portugal. Thus, here, wind data 
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from the Centre region of Portugal was considered to determine the national wind 

generation. 

In Portugal, one of the most common wind turbines is the Enercon E-82 2MW [155]. For 

this reason, the power curve of the mentioned turbine was used to characterize the wind 

generation profile in Portugal, Figure 4.19. This turbine has a rotor diameter of 82 m, 

maximum power of 2,050 kW and a wind-rated speed of 13 m/s (i.e., its maximum power 

is achieved at 13 m/s, and for higher wind speeds this maximum power is kept constant) 

[156]. 

 

Figure 4.19. Power curve of wind turbine 

The Enercon E-82 2MW turbine was considered as a reference – Adapted from [156]. 

 

Before applying the power curve to the hourly wind speed data, the wind speed data at 

the hub height was extrapolated. The original wind speed data is modelled at 10 m above 

the surface hnear-surface [m], while the average hub height was considered 80 m hhub [m], 

which is considered a typical value. The following equation was applied to the 

near-surface wind speed vnear-surface [m/s] to extrapolate the wind speed at the hub height 

vhub [m/s], Equation (4.39) [157]. 

 

𝑣ℎ𝑢𝑏(𝑡) = 𝑣𝑛𝑒𝑎𝑟−𝑠𝑢𝑟𝑓𝑎𝑐𝑒(𝑡)  ×
ln (

ℎℎ𝑢𝑏
𝑧0

)

ln (
ℎ𝑛𝑒𝑎𝑟−𝑠𝑢𝑟𝑓𝑎𝑐𝑒

𝑧0
)

 (4.39) 

where z0 is the mean roughness parameter [m], considered to be of 0.45 m for the Centre 

of Portugal [158]. 
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Having the wind speed at the hub height, the hourly distribution of wind power generation 

Genwind on [MW] is determined by applying the power curve at each hour and normalizing 

the values according to the rated power of the turbine. 

The hourly wind offshore generation Genwind off [MW] is obtained by adjusting onshore 

wind power with a 30% higher capacity factor [101], [159]. The resulting generation can 

be described by [51]: 

 
𝐺𝑒𝑛𝑤𝑖𝑛𝑑 𝑜𝑓𝑓(𝑡) = 𝐺𝑒𝑛𝑤𝑖𝑛𝑑 𝑜𝑛(𝑡)  ×

1

1 − fcorr × (1 − 𝐺𝑒𝑛𝑤𝑖𝑛𝑑 𝑜𝑛(𝑡))
 (4.40) 
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4.3.3.4. Hydropower and run-of-the-river generation 

Regarding hydropower generation, EnergyPLAN requires the installed capacity, the 

annual water supply, its hourly distribution during the year and its efficiency. As stated 

before, the focus of this work is to establish a methodology that can be applied for the 

future, where a limited number of variables are available. Since, water supply will not be 

available for the future, here a simple approach to build an hourly time-series for water 

supply is presented. 

For the annual water supply, an efficiency of 90% [160] was applied to the dam hydro 

generation. Even though the dam hydro generation will not be available in the future, the 

annual water supply is one of the calibration parameters which will be characterized 

through a linear regression with the use of precipitation, an available climate variable for 

the future (see subsection 4.2.2).  

As for the hourly distribution, the approach taken is described hereafter. On the one hand, 

the water supply is mainly driven by precipitation, since part of the precipitated water 

runoffs directly into the reservoirs and the other part takes longer to get into the reservoir 

due to the infiltration on the ground, but it eventually reaches them. On the other hand, 

the relationship between precipitation and water supply varies with seasons. For example, 

in a dry season, the amount of precipitation is lower and, usually, the temperatures are 

higher, which can lead to higher evaporation of water, resulting in lower water 

availability. Hence, to better describe the relationship between precipitation and water 

supply, a wet and a dry season have been defined (October to March and April to 

September, respectively). Using monthly values from 2011 to 2015, two linear 

regressions (accounting for wet and dry seasons) were created to determine the water 

supply in function of precipitation, Figure 4.20. 
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Figure 4.20. Monthly water supply and precipitation in Portugal 

Water supply in function of the monthly average precipitation in wet and dry seasons (left and right, respectively) in 

Portugal, considering data from the period 2011-2015. The wet season was considered from October to March and dry 

season was from April to September. 

 

The resulting determination coefficients shown in Figure 4.20 are low, indicating the need 

for a deeper study, which is beyond the scope of this work.  

Using the resulting trendlines and the precipitation, the water supply of each month and 

year was calculated and was then normalized with the highest monthly water supply for 

each year. Considering the same water supply availability within each month, the monthly 

values were converted to hourly values, resulting in an hourly vector of 8,784 values. To 

avoid abrupt discontinuities, a three-days wide moving average filter was applied. The 

hourly distribution of water supply (WS) is represented in Figure 4.21. The close-up figure 

below clearly shows the effect of the filter.  

It is worth noting that the water supply is used to determine the water availability existing 

during the year for dam hydro generation. Dam hydro operates as a giant buffer of energy, 

i.e., it can store a large amount of energy (in this case, in the form of gravitational potential 

energy) and use it whenever it is necessary, as it is a dispatchable generation source. 

Hence, a fine and highly accurate resolution is not of major importance.  
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Figure 4.21. Yearly distribution of water supply 

Hourly distribution of normalized water supply from 2011 to 2015 and for March (above and below, respectively).  

 

For modelling run-of-the-river generation, precipitation is expected to be the ideal proxy, 

in a first approach. However, the direct linking from precipitation to run-of-the-river 

generation raises some critical issues. First, some run-of-the-rivers powerplants have 

small reservoirs that provide some generation. Secondly, the Spanish operation of their 

own hydropower plants also influences the Portuguese river flow, which will therefore 

also depend on the precipitation in Spain. Hence, run-of-the-river is assumed to be solely 

driven by the water supply distribution. Even though the water supply is not the only 

variable to the run-of-the-river generation, it generally represents the energy that should 

be available to generation. Thus, the run-of-the-river generation distribution GenRoR 

[MW] took into account the water supply hourly distribution described above, multiplied 
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by a dimensionless coefficient (which is called run-of-the-river coefficient, CRoR, see 

subsection 4.3.2) and by the installed capacity PRoR [MW], to fit the annual 

run-of-the-river generation, Equation (4.41). 

 𝐺𝑒𝑛𝑅𝑜𝑅(𝑡) =  𝑊𝑆(𝑡) × 𝑃𝑅𝑜𝑅 × 𝐶𝑅𝑜𝑅 (4.41) 

 

 

Figure 4.22. Yearly distribution of run-of-the-river generation 

Run-of-the-river generation obtained through the water supply distribution, installed capacity and calibration parameter 

CRoR. 
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4.3.4. Future power system  

In this subsection, a detailed description of the Portuguese power system configuration in 

2050 is suggested. Two major configurations are proposed:  

1) Highly renewable power system (HiRES) 

The power system with high penetration of renewable energy sources (HiRES) includes 

20 GW of photovoltaics and 10 GW of onshore wind, reflecting a projection for Portugal 

in 2050, which is in line with the literature found and summarized in Table 4.13. Although 

those capacities may seem hard to achieve considering the current Portuguese power fleet, 

the fast deployment of photovoltaics and wind power has already been proven to be 

attainable [161].  

Table 4.13. Photovoltaic and wind onshore power in literature 

Summary of literature on photovoltaics and onshore wind capacities in Portugal in 2050.  

Summary of literature on photovoltaic and wind onshore capacities in Portugal in 2050 

 Photovoltaic [GW] Wind onshore [GW] 

Anjo et al. [106] 9.3 7.8 

Jacobson et al. [110] 34.9 8.1 

Nunes et al. [101] 10.3-16.7 7.6 

RNC2050 [162] 19-26 7.1-13 

 

Other installed capacities are adapted from the work of Nunes et al. [100]. About 88% of 

the installed capacity uses renewable energy sources. It still has a considerable amount of 

natural gas power plants; those are mainly used to face peak consumption periods when 

biomass power is not enough or when biomass resource has run out. Table 4.14 shows 

the configuration of the highly renewable power system. 
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Table 4.14. Proposed high renewable penetration power system 

Configuration of the Portuguese power system considered in the high renewable penetration power system (HiRES) in 

2050 [100], [163]. 

Configuration of future power system – HiRES 

 Installed capacity [GW] 

Photovoltaics 20.0 

Onshore Wind 10.0 

Offshore Wind 1.4 

Run-of-the-River 2.9 

Dams 5.7 

Thermal power plants  

Biomass and othersa 1.0 

Natural gas 4.9 

Industrial CHP  

Biomass 0.4 

Natural gasb 0.8 

Hydropump 4.0 

a It is considered thermal power plants fueled by biomass, residues, and waste. 
b For HiRES+UB, natural gas-fueled industrial CHP power plants are 

replaced by biomass-fueled CHP. 

 

The biomass resource available to electricity generation in thermal power plants is the 

same as in the year 2015, about 5.4 TWh [145]. As mentioned in subsection 4.3.3.1, when 

this limited biomass runs out, the power plants may continue to operate (within its power 

capacity) but fueled by non-renewable residues or waste. While in the calibration exercise 

the minimum thermal power plant capacity was the one observed in historical years (still 

considering coal-fueled power plants), here a minimum power of 50% of the biomass 

power capacity is considered due to its flexibility constraints [164], [165]. 

The primary energy consumption and electricity generation from industrial CHP is also 

considered to be similar to the year 2015; the consumption was 13.1 TWh of biomass and 

14.3 TWh of natural gas and its corresponding electricity generation was about 6.1 TWh 

[145], [146].  

To address the impact of renewable resource limitation, a variation of the HiRES scenario 

was tested: a high renewable penetration power system with unlimited biomass resources 
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(HiRES+UB). The main difference between HiRES and HiRES+UB is the unlimited 

biomass resource available for thermal power plants and CHP (for the latter, the primary 

energy consumption of biomass is the sum of the biomass and natural gas resource 

considered previously). 

Even though the spatial distribution of supply and demand is not considered in the 

simulation tool used, here, the transmission and distribution power losses are 

contemplated in a simplified manner. Such losses were applied to the electricity demand 

included in the simulation tool. The suggested power system has 6.5% of power losses. 

In 2050, about 4.9% of transmission and distribution power losses are expected on 

average for Europe [166]. Although Portugal has been constantly showing higher losses 

[167], a similar development should be expected for the country. It was assumed that the 

difference between the European and Portuguese average losses (in the period 2010-2014 

[167]) would be reduced by half, resulting in losses of about 6.5% in 2050.  

A cross-border interconnection capacity of 5 GW is proposed for 2050, as per the 

literature (Table 4.15). 

Table 4.15. Future cross-border interconnection in Portugal 

Summary of literature on the future interconnection capacity for the Portuguese power system.  

Summary of literature on future cross-border interconnection capacity for Portugal 

 Time-horizon Interconnection [GW] 

PDIRT 2018-2027 [168] 2027 3.2-3.6 GW 

PNEC [169] 2030 | 2040 3.2-4.2 GW | 3.5-4.7 GW 

APREN & POYRY [170] 2040 5-8 GW 

 

2) 100% renewable power system (100%RES):  

Here, all the non-renewable energy sources are discarded. The industrial CHP is also 

discarded to avoid a prohibitive requirement for biomass; thus it is assumed that the 

industries using CHP: 1) will absorb a higher fraction of their electricity generation due 

to the electrification of other processes that are not heat-intensive; and 2) new 

technologies may arise allowing electrification of such industries. 

This proposed 100% renewable power system entails a significantly smaller fraction of 

dispatchable generation comparing to the present one, which may lead to grid stabilization 

issues. To avoid this, considering expectable technology developments, it is assumed that 

energy storage technologies and about 15% of the capacity of non-dispatchable 
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renewables are able to provide grid stabilization, complementing the one provided by 

dispatchable generation. 
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4.4.  Power system model – Demand-flexibility 10 

In this section, the description of electricity demand of each sector (mobility, residential, 

services, industry and agriculture) is presented. First, a detailed description of the 

methods for creating the social evolution scenarios is provided for each sector (subsection 

4.4.1). Then, the methods used to calculate the electricity demand and flexibility for the 

different sectors are presented (subsection 4.4.2). 

4.4.1. Scenarios for the evolution of society  

It is incredibly hard to speculate how the future of society will be, but different paths can 

be explored to have an unbiased wide range of options. Ideally, distinct qualitative visions 

provided by stakeholders should aid the quantitative description of more robust scenarios 

for the development of economic sectors [171]. In this work, that was not feasible, thus a 

quantitative approach for scenario building was implemented. However, to make the 

analysis wider, five scenarios were built for each sector of society, focusing mainly on 

two indicators: impact on the overall electricity demand and power system flexibility – 

e.g. the grid-support provided by EVs, using smart charging, V2G, battery capacity, and 

others.  

First, a Central scenario was designed considering conservative assumptions – the 

reference scenario. Then, four other scenarios were designed around the reference 

according to the previously mentioned indicators – i.e., two scenarios where both 

indicators increase/decrease and two others where one indicator increases and the other 

decreases, always keeping the comparison to the Central scenario.  

In order to facilitate the process, two paths were created for the electricity demand (Low 

demand – LoDe, and High demand – HiDe) and the other two for the system flexibility 

(Low flexibility – LoFlex, and High flexibility – HiFlex). Then, the four scenarios were 

built by a combination of the paths – e.g. scenario LoDeLoFlex considers the path LoDe 

for electricity demand and path LoFlex for the system flexibility. The relation between 

the five scenarios is qualitatively represented in the scheme of Figure 4.23.  

 
10 Part of this section is adapted from Figueiredo et al., 2019 [227] and Figueiredo et al., 2020 [under review 

in Applied Energy Journal]. 



 

100 

 

Figure 4.23. Demand-flexibility scenarios 

Qualitative scheme of the relative position of four scenarios in comparison to the Central scenario, in terms of the 

electricity demand and the power system flexibility. 

 

It should be underlined that many parameters determine each pathway for a particular 

sector. For instance, for the mobility sector, higher electricity demand (relative to the 

Central scenario) might be due to higher penetration of electric vehicles or more and/or 

longer trips. The pathway that represents higher electricity demand in mobility is built 

considering strong (but reasonable) assumptions on all these parameters. A similar 

approach is performed for the remaining economic sectors. 

In the following subsections, the paths considered for each sector are described. 

4.4.1.1. Mobility 

Nowadays, strongly supplied by fossil fuels, mobility is a sector with relevant CO2 

emissions. Transportation is witnessing a transition in supply sources from fossil fuels to 

electricity. With renewables as the main source of electricity supply, transport 

electrification has a high potential for decreasing significantly CO2 emissions. 

A consensual projection for the future of transportation is that it will suffer significant 

electrification. However, several questions with neither simple nor consensual answers 

arise. Will people shift to shared transports? Will vehicle batteries have bigger energy 

capacities? Will people travel more or less? Will people adhere to the smart charging of 

their vehicles and help grid stabilization? In this work, the focus is given to light 
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passenger transportation and to the road transportation of goods11. In addition, biofuels’ 

vehicles were considered in detriment of hydrogen-propelled vehicles (see section 4.5). 

Central scenario  

The electricity demand for electrified transportation depends on parameters such as EV 

penetration, the number of light passenger privately-owned vehicles (referred below as 

private vehicles), electricity consumption per kilometer, daily travelled distance per 

vehicle, etc. The assumptions taken for the reference – Central scenario – are presented 

in Table 4.16.  

For this scenario, two types of privately-owned light passenger electric vehicles are 

assumed: PEV (Pure Electric Vehicles) and PHEV (Plug-in Hybrid Electric Vehicles). 

The daily distance travelled by a PEV was assumed as 35 km/vehicle/day [172]. For the 

PHEV, the daily distance travelled on electric mode was assumed to be 95% of the 

distance travelled by a PEV (i.e., about 33 km/vehicle/day), since most of the car trips in 

Europe are shorter than the 85 km electric-mode autonomy of a PHEV [173] (only 20% 

of the trips are longer than 25 km) [101], [172]. To prevent significant damage to the 

vehicle’s battery, it was assumed that only a fraction of the battery capacity (about 85% 

[174]) would be available for smart charging.  

The electricity consumption from freight transportation is bounded by the results of 

RNC2050 [175], assuming only battery electric vehicles. In the Central scenario, the 

electricity consumption of freight transports is considered half of the highest value 

assumed in the Portuguese roadmap RNC2050 12. Thus, electrification of 50% and about 

30% is considered for light- and heavy-duty vehicles, respectively. The charging 

characteristics of this type of transport are similar to the ones from the private vehicle’s 

fleet, e.g. the fraction of vehicles available to smart charge and V2G are equal to the 

values assumed for the private fleet.  

  

 
11 The electrification of heavy-duty passenger vehicles was not considered, since they represent a small 

fraction of the total national electricity consumption with about 0.16-0.38 TWh [109]. 
12 The highest EV penetration shown in RNC2050 assumes 100% and 63% of electrification of light- and 

heavy-duty freight vehicles, respectively [175]. 
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Table 4.16. Central scenario – Mobility  

Characteristics considered for the vehicles’ fleet in the Central scenario, including electric vehicle penetration, number 

of private light passenger vehicles, vehicle characteristics, etc. 

Central scenario – Mobility  

Light passenger vehicle 

EV penetration 61.4% [100] 

PEV 33.7%  [100] 

PHEV 27.6%  [100] 

Nº of private vehicles  4.175 million [172]  

Nº of shared AeVs - 

Electricity consumption  0.17 kWh/km [176] 

Daily distance of private vehicles  

PEV 35 km/vehicle/day [172]  

PHEV 33 km/vehicle/day [101], [172] 

Vehicle characteristics  

Efficiency grid-to-battery and battery-to-grid 90% [177] 

Battery capacity  

PEV 41 kWh/vehicle [178] 

PHEV 18 kWh/vehicle [173] 

Capacity of grid-connection   

PEV 22 kW/vehicle [178] 

PHEV 3.6 kW/vehicle [173] 

Freight transportation 

EV penetration  

Light-duty vehicles 50%  

Heavy-duty vehicles 31.5% 

Charging characteristics (similar to both fleets) 

Driver patterns  

max. share of cars driving during rush hours 20% [177] 

% of parked vehicles grid-connected 70% [177] 

Charging behavior  

% of vehicles available to smart charge 80% 

% of vehicles available to V2G 40% 

% of battery capacity available 85% [174] 
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Paths for electricity demand  

Paths Low and High electricity demand represent two alternative and opposite paths that 

shift away from the Central scenario: 

Path Low Demand (LoDe) – a significant decrease in electricity demand is considered 

due to an 80% decrease in privately-owned vehicles, replaced by shared autonomous 

electric vehicles (AeVs). An autonomous vehicle is assumed to be able to substitute 5.25 

private vehicles [179]. The electricity consumption [kWh/km] of the private vehicles 

decreases 20% due to technical efficiency gains whilst for shared AeVs it decreases 45% 

[180], due to usage efficiency gains (optimized velocity and vehicles’ distance). On the 

other side, since a significant part of non-drivers (elderly, disabled, teenagers, etc.) is 

expected to do more trips due to the easy use of shared vehicles, the daily distance per 

vehicle increases 14% for the AeVs [181]. Besides those additional car users, the 

increasing travelled distance of AeVs can also be representative of the shifting from 

public transport users to car-sharing users and of the last-mile travelled through 

car-sharing (without such option, the last-mile would be probably completed by walking 

or riding a bicycle). It is assumed that there is no electrification of freight transportation13. 

Path High Demand (HiDe) – assumes that light-duty passenger vehicles are all 

privately-owned with 100% EV penetration. EV consumption and distance travelled are 

assumed constant. The freight transport is assumed to be partially electrified with an 

electricity consumption equal to the highest electrification consumption of road freight 

transports assumed in the Portuguese roadmap [175]. It results in total electrification of 

the light-duty freight vehicles and a 63% electrification of the heavy-duty freight vehicles. 

The relative differences between paths Low and High electricity demand to the Central 

scenario are presented in Table 4.17. 

  

 
13 As is in the least electrified scenario of RNC2050 [175]. 
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Table 4.17. Relative differences between Low and High electricity demand paths – Mobility  

Characteristics considered for the vehicle’s fleet for the Central scenario and the relative differences assumed for the 

Low and High electricity demand paths. 

Relative differences between Low and High demand paths – Mobility 

 Central LoDe HiDe 

Light-duty passenger vehicles 

EV penetration 61.4%a -50% +63% 

PEV 33.7%a -50% +63% 

PHEV 27.6%a -50% +63% 

Nº of private vehicles  4.175 million -81% - 

Electricity consumption     

Private vehicles 
0.17 kWh/km 

-20% - 

Shared AeVs -45% - 

Daily distance of private vehicles    

PEV 35 km/vehicle/day - - 

PHEV 33 km/vehicle/day - - 

Daily distance of shared AeVs 35 km/vehicle/day +14% - 

Freight transportation 

EV penetration    

Light-duty vehicles 50% -100% +100% 

Heavy-duty vehicles 31.5% -100% +100% 

a Penetration on the overall light passenger vehicle fleet. 

 

The number of private/shared EVs, the travelled distances, the distinguished 

consumptions and travelled distances for the demand evolution paths (LoDe and HiDe) 

are shown in Table 4.18.  
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Table 4.18 Electricity demand paths – Mobility  

Characteristics considered for the vehicles’ fleet in the Central, Low and High demand paths, including electric vehicle 

penetration, number of private light-duty vehicles, vehicle characteristics, etc. 

 

Electricity demand paths – Mobility 

 Central LoDe HiDe 

Light-duty passenger vehicles 

EV penetration 61.4% 30.7% 100.0% 

PEVa 33.7% 16.9% 55.0% 

PHEVa 27.6% 13.8% 45.0% 

Shared AeV penetration - 76.2% - 

Number of light-duty passenger vehicles [million]    

Private vehicles 4.175 0.835 4.175 

Shared AeVs - 0.636 - 

Total number of light passenger EVs 2.563 0.893 4.175 

Electricity consumption [kWh/km]    

Private vehicles 
0.17 

0.13 
0.17 

Shared AeVs 0.09 

Daily distance [km/vehicle/day]    

Private vehicles    

PEV 35.0 35.0 35.0 

PHEV 33.0 33.0 33.0 

Shared AeVs 35.0 39.9 35.0 

Freight transportation    

EV penetration    

Light-duty vehicles 50% - 100% 

Heavy-duty vehicles 31.5% - 63% 

a PEV and PHEV penetration on the overall light passenger vehicle fleet. 

 

The availability of EV batteries to support the power system, via storage and/or demand 

response, depends on the driving patterns, which determine the parking patterns. Pathway 

HiDe assumes that driving patterns of all vehicles will be as those from today’s light 
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passenger vehicles, as in Ref. [182]. Pathway LoDe, on the other hand, considers changes 

in urban mobility which are expected to have an impact on driving patterns, and thus the 

patterns of EVs connected to the power grid. It was assumed that the shared mobility 

pattern corresponds to today’s pattern of public transportation added to 10% of the ones 

of bike and walking trips. The LoDe driving pattern is obtained weighting the patterns of 

light passenger and shared mobility vehicles (see Table 4.18). Figure 4.24 presents the 

assumed impact for workdays and weekends for both pathways.  

 

Figure 4.24. Driving patterns 

Driving profiles for the electric vehicle’s fleet for a weekend day (left) and working day (right) [182]. 

Paths for power system flexibility  

The impact of mobility sector on the power grid flexibility is determined by the parking 

characteristics, the charging behavior, and vehicle characteristics. 

Private vehicles are parked most of the time (c.a. 90%) and only a maximum of 20% is 

driving during rush hours. Shared AeVs spend more time on the road, being parked only 

60% of the time [183]. Assuming a direct proportion between driving time and the cars 

driving in rush hours, the maximum share of AeVs driving during rush hours is 80%. It 

is assumed that 80% of private vehicles are smart charged, while the remaining are 

charged whenever plugged in (i.e., dumb or rigid charging). About 40% of the vehicles 

are available to V2G. Similar assumptions are considered for the freight fleet. 

Central assumes as a typical PEV a 41 kWh battery capacity and a 22 kW power 

connection capacity, which are both characteristics of the current Renault Zoe [178]. For 

the PHEV, the Chevy Volt is used with a typical battery capacity of 18 kWh and a power 

capacity of 3.6 kW [173]. The AeVs are assumed with the same characteristics as PEVs 
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(i.e., same battery and power capacity). The summary of the assumptions of Central path 

for the power system flexibility is shown in Table 4.19. 

Again, the alternative paths to explore contrary evolutions on the system flexibility are 

hereafter described.  

Path Low Flexibility (LoFlex) – this path considers a limited contribution to the power 

system flexibility, including a 20% decrease in parking availability and smart charging 

adoption. It also considers a 50% decrease in the availability of vehicles to V2G. The 

power and battery capacity are assumed to remain the same as in Central, i.e., of 22 kW 

and 41 kWh for PEV and 3.6 kW and 18 kWh for PHEV, respectively. The charging 

features are similar for light-duty passengers and freight fleet. 

Path High Flexibility (HiFlex) – electric vehicles provide some system flexibility in this 

path. The parking and smart charging adoption increase 20%, V2G availability and the 

battery capacity increased 50% in comparison to Central. Power capacity is assumed as 

43 kW for PEV and 7 kW for PHEV, resulting in a capacity improvement of 95% 

compared to the Central scenario. The flexibility characteristics are considered to be 

similar for private passenger and freight vehicles. 

The relative differences described previously are summarized in Table 4.19. 
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Table 4.19. Relative differences between Low and High flexibility paths – Mobility  

Characteristics considered for the vehicle’s fleet for the Central scenario and the relative differences assumed for the 

Low and High flexibility paths. 

Relative differences between Low and High flexibility paths – Mobility 

 Central LoFlex HiFlex 

Light-duty passenger vehicles 

Vehicle characteristics    

Battery capacity    

PEV 41 kWh/vehicle - +50% 

PHEV 18 kWh/vehicle - +50% 

Capacity of grid-connection    

PEV 22 kW/vehicle - +95% 

PHEV 3.6 kW/vehicle - +95% 

Charging characteristics (similar to both fleets) 

Parking characteristics    

max. share of cars driving during rush hours    

Private vehicles 20% +20% -20% 

Shared AeVs 80% +20% -20% 

% parked vehicles grid-connected 70% -20% +20% 

Charging behavior    

% of vehicles available to smart charge 80% -20% +20% 

% of vehicles available to V2G 40% -50% +50% 

 

The assumptions taken for each flexibility path are described in the following Table 4.20. 
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Table 4.20. Flexibility paths – Mobility  

Characteristics considered for the vehicles’ fleet in the Central, Low and High flexibility paths, including electric 

vehicle penetration, number of private light-duty vehicles, vehicle characteristics, etc. 

Flexibility paths – Mobility 

 Central LoFlex HiFlex 

Light-duty passenger vehicles 

Vehicle characteristics    

Battery capacity [kWh/vehicle]    

PEV 41 41 62 

PHEV 18 18 27 

Capacity of grid-connection [kW]    

PEV 22 22 43 

PHEV 3.6 3.6 7 

Charging characteristics (similar to both fleets) 

Parking characteristics    

max. share of cars parked during rush hours    

Private vehicles 20% 24% 16% 

Shared AeVs 80% 96% 64% 

% parked vehicles grid-connected 70% 56% 84% 

Charging behavior    

% of vehicles available to smart charge 80% 64% 96% 

% of vehicles available to V2G 40% 20% 60% 

4.4.1.2. Residential sector 

The residential electricity demand represents a significant fraction of the total final 

electricity demand, about 30% in the European Union [184]. As climate changes and the 

electrification of heating and cooling devices increases, the electricity consumption of a 

residential building may also change. Such changes may also be enhanced by the 

electrification of other domestic equipment. As for any other economic sector, the 

residential electricity demand depends on the assumptions made for the evolution of 

social behavior and choices.  
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Central scenario  

The residential electricity demand depends mainly on the electricity consumption of 

residential buildings, which in turn depends on location, weather, its own characteristics 

(construction materials), its purpose, occupation, type, etc.  The energy performance of a 

building is generally determined through its heat balances. Heat gains and losses both 

change significantly with the density of people, building insulation, solar exposure, 

appliances, outside air infiltration, etc.  

The Central scenario considers 2.5 people per dwelling14, assuming 9.2 million 

inhabitants in Portugal in 2050 [185]. The behavior of occupants is crucial to understand 

the profile of consumption on weekdays and weekend days, which is considered to remain 

the same as today’s [186]. 

According to the Buildings Performance Institute Europe (BPIE), European countries 

should increase their renovation rate of old constructions up to 3% per year to meet 

international commitments [187]. However, Europe is still far from this goal, with a 

current yearly average rate of 1.2% [187], whilst in Portugal, it is lower, 0.06% [188], 

[189]. Regarding new residential buildings per year, Europe presents a rate of 0.5% 

according to the EU Buildings Database (2014) [190], while in Portugal is 0.13% (2016) 

[188], [189]. To keep reasonable retrofitting/new buildings’ rates for all scenarios, the 

Central scenario assumes a retrofitting rate of 2% per year and one of 0.75% for new 

buildings. It is also assumed that older buildings are replaced/retrofitted first. The 

retrofitting and new buildings’ rates were assumed to have a linear development until 

2050, assuming the previously mentioned values for Portugal in 2016 as their starting 

point. 

The characteristics of the new or retrofitted buildings follow the evolutions below, 

depending on the nature of the parameter: 

• Distributions without significant changes in the future housing stock: overall 

thermal transmittance of the internal envelope (i.e., envelope in contact with 

non-usable areas), linear thermal bridges, normalized overall opaque area, 

ceiling-to-floor height, etc. Their distributions were kept constant and equal to the 

values assumed in Ref. [191], Table 4.21;  

 
14 According to the Portuguese Census 2011, the average number of people per dwelling was of 2.6 [213]. 
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Table 4.21. Housing stock characteristics remaining constant 

Probability distribution functions considered and their parameters for the housing stock, which are assumed to be the 

same in the future housing stock [191].  

Probability distribution functions considered and their parameters 

 Type Parameters 

Overall thermal transmittance of 

the internal envelope, Ui 
Weibull λ = 1. 11 Wm-2K-1; κ = 2.91  

Length of linear thermal bridges, 

lѱ/Aop 
Weibull λ = 1.1 9 m-1; κ =1.75  

Internal-to-opaque envelope 

area, Ai/Aop 

Weibull λ = 0.3 3; κ =1.835 

Ceiling-to-floor height, h Burr 
λ =2.5 7 m; κ =3 .8  ; ν = 

0.560 

 

• No further changes from today’s standards: external envelope thermal 

transmittance, linear thermal transmittance, normalized window area, shading 

g-value for windows, air infiltration rate and glazed surface g-value for normal 

incidence. It considers that future buildings keep the average values of modern 

buildings, i.e., buildings built in the present (taken from the updated database of 

ADENE – Portuguese Energy Agency [192], Table 4.22); 

Table 4.22. Average characteristics of new dwelling as of 2017 

Average values of characteristics of new dwellings in 2017, including thermal transmittance, shading g-value, etc. 

[192]. 

Characteristics of modern buildings in 2017 

 Average value 

External envelope thermal transmittance, Ue 0.45 Wm-2K-1 

Linear thermal transmittance, ѱ 0.4 Wm-1K-1 

Window-to-floor area, Awindow/Afloor 0.25 

Shading g-value for windows, gshaded 0.1 

Glazed surface g-value for normal incidence, ggl⊥ 0.56 

Air infiltration rate, ACH 0.65 ACH 

 

• Linear development towards the projected values in 2050: windows thermal 

transmittance (from an average of 2.2 Wm-2K-1 in 2017 to 1.2 Wm-2K-1 in 2050)15.  

 
15 Even though windows with lower thermal transmittance may be available (e.g. triple glazing windows 

with 0.75 Wm-2K-1 [228]), it is believe that, given the expected future climate in Portugal, such windows 

would not be required or economically feasible to install.  
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The floor area of a dwelling also impacts its consumption, influencing lighting and space 

heating/cooling needs. In general, bigger dwellings would demand higher energy 

consumption. GDP is commonly used to project future socio-economic factors, such as 

dwellings’ floor area. In the past, the Portuguese size of dwellings per capita has increased 

with GDP per capita [192], [193]. However, diverging tendencies may be put in place for 

the future.  

In this regard, the creation of scenarios aims at covering different trends for the future of 

dwellings’ size. For the evolution trend of dwellings’ size, literature diverges: for 2050, 

Gouveia et al. [194] considered a 20% increase in floor area of dwellings, while the 

Portuguese ‘Roadmap for Carbon Neutrality’ [162] considers it constant or smaller. In 

the Central scenario, dwellings to be built in 2050 keep the average area observed in 

current new dwellings, about 136 m2. The floor area of other dwellings, undergone or not 

major renovations, was considered to stay the same. 

Besides the housing stock characteristics, the electrification of domestic devices also 

impacts strongly the consumption trends of the residential sector. According to the 

studies, in Portugal, electric domestic hot water was present in 6% of households in 2008 

(EcoFamílias project [195]), in 14% in 2010 (EcoFamílias II project [196]), and in about 

26% in 2015 (FROnT project [197], [198]). As for electric ovens and cooking hobs, in 

2008 about 69 and 18% of households had them, respectively (EcoFamílias project 

[195]), which is about 6% more than in 2006 (EcoFamílias 30 project [199]). Thus, for 

the domestic hot water (DHW) and cooking needs, it was assumed a level of 

electrification of 75%. 

The electrification of heating and cooling technologies is also increasing in the residential 

sector. Based on past records of sales of heat pumps for the residential sector (from Ref. 

[184], using data provided by APIRAC – Portuguese Association of the Refrigeration and 

Air Conditioning Industry), the current penetration of heat pumps was estimated to be 

about 7 to 9% in the dwellings existing in 2017, following a linear trend since 1999 [200]. 

Maintaining the tendency, it is to expect heat pumps in 27% of all the existing houses16 

by 2050.  

 
16 It is worth highlighting that the heat pump penetration of 27% is applied to all existing houses, which 

means that the value increases when considering solely occupied houses, as can be seen below in subsection 

4.4.2.2. 
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Regarding demand-side management, it is considered that a fraction of the residential 

electricity demand may be flexible and may contribute to grid stabilization, e.g. the use 

of a washing machine can be delayed if the grid requires it. In the Central scenario, about 

8% of the residential electricity demand is available to be shifted within a 24h-period 

[106]. 

Table 4.23 shows the main assumptions taken for the Central scenario for the case of the 

residential sector. 

Table 4.23. Central scenario – Residential sector 

Characteristics considered for residential sector characteristics in the Central scenario, including space heating/cooling 

and demand-side management. 

Central scenario – Residential sector 

Household market 

Housing stock development Middle 

Retrofitting rate 2%/year 

New buildings rate 0.75%/year 

Replacement strategy Replace older buildings 

People/household 2.5 

Floor area of new dwellings Dwellings built in 2050 current avg. (136 m2) 

Electrification of DHW and 

cooking 
% electrification 75% 

Space heating/cooling % heat pumps 27% 

Demand-side management  
% annual demand  

(24h-period) 
8% 

Paths for electricity demand  

Two significantly different paths are considered for the evolution of electricity 

consumption in the residential sector: 

Path Low Demand (LoDe) – an improved housing stock is considered with higher 

retrofitting/new building rates: since Portuguese retrofitting rates are still behind the 

European average (see Central scenario, above), and even more from the European goal, 

it is assumed that the country will meet this goal in 2050 – 3% per year. As for new 

buildings, based on several European countries with a rate of about 1% of new residential 

buildings per year (Austria, Belgium, France, Finland, etc. [190]), it is assumed that 

Portugal will achieve this value in 2050. Similar to Central scenario, it is considered that 
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new buildings are replacing the older ones first and it is also assumed an average density 

of 2.5 people per dwelling. 

In this scenario, future dwellings are 20% smaller than the current new ones [162]. 

Regarding electrification rates, it considers 50% and 17% penetration for domestic hot 

water/cooking and heating/cooling electric devices, respectively.  

Path High Demand (HiDe) – an older housing stock is considered for this path, assuming 

a retrofitting rate of 1% and a new building rate of 0.5%. Here, it is considered 2 people 

per dwelling and that new buildings replace equally existing buildings of all ages. These 

assumptions lead to a higher number of houses and a more aged housing stock. 

Electrification of 100% and 37% are considered for domestic hot water/cooking and 

heating/cooling devices, respectively. In this path, the new dwellings are assumed to be 

20% bigger than the current average today, contributing to higher electricity 

consumption.  

Table 4.24 presents the relative differences from the Low and High demand paths to the 

Central scenario for the residential sector. 
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Table 4.24. Relative differences between Low and High electricity demand paths – Residential sector 

Characteristics considered for residential sector characteristics for the Central scenario and the relative differences 

assumed for the Low and High electricity demand paths. 

 

Relative differences between Low and High demand paths – Residential sector 

  Central LoDe HiDe 

Household 

market 

Housing stock 

development 
Middle New Old 

Retrofitting rate 2%/year +1 p.p./year -1 p.p./year 

New buildings 

rate 
0.75%/year +0.25 p.p./year -0.25 p.p./year 

Replacement 

strategy 

Replace older 

buildings 

Replace older 

buildings 

Replace all 

buildings 

People/household 2.5 - -20% 

Floor area of 

new dwellings 

Dwellings built in 

2050 

current 

average (136 m2) 
-20%  +20%  

Electrification of 

DHW and 

cooking 

% electrification 75% -33% +33% 

Space 

heating/cooling 
% heat pumps 27% -37% +37% 

 

Table 4.25 summarizes second-order assumptions about the scenarios resulting from the 

previous assumptions. 
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Table 4.25. Electricity demand paths – Residential sector 

Characteristics considered for the residential sector characteristics in the Central, Low and High demand scenario, 

including space heating/cooling and demand-side management. 

Electricity demand paths – Residential sector 

  LoDe Central HiDe 

Housing stock 

Houses in 2050 [#] 7,230,004 6,952,410 6,627,432 

Occupied houses in 

2050 [#] 
3,687,200 3,687,200 4,609,000 

% old houses 34% 52% 72% 

% retrofitted houses 49% 33% 18% 

% new houses 18% 14% 10% 

Occupation factor 51% 53% 70% 

Floor area per 

dwelling 

New buildings in 

2050 [m2] 
109 136 163 

Avg. of housing 

stock in 2050 [m2] 
88 96 118 

Electrification of DHW and cooking 50% 75% 100% 

Space heating 

system 

(occupied 

houses) 

Heat pump 26% 40% 41% 

Electric resistance 34% 27% 27% 

Others 32% 26% 25% 

No system 8% 7% 7% 

Space cooling 

system 

(occupied 

houses) 

Heat pump 37% 51% 52% 

No system 63% 49% 48% 

 

Figure 4.25 compares the distribution of old, retrofitted and new dwellings of the housing 

stock for each demand scenario, and presents the correspondent average area of 

dwellings. The average area of dwellings shows a strong increase of 26% in the High 

demand scenario, while it does not change significantly for the remaining scenarios. The 

number of occupied dwellings decreases slightly for Low and Central scenario compared 

to the present, because of the lower number of inhabitants. Improved building stock is 

expected for the Low scenario with more than two-thirds of the dwellings being new or 

renovated, whilst for the Central scenario, the value is slightly below half. It is the result 

of higher rates of retrofitting and new buildings. The High demand scenario reflects the 
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most critical housing stock, i.e., the biggest and oldest. This is due to less people living 

in each dwelling and less retrofitting and new buildings. 

 

Figure 4.25. Area and age distribution of occupied housing stock 

Distribution of the occupied housing stock for each electricity demand scenario according to the construction type (old, 

retrofitted or new) (left axis) and the average area of each dwelling (right axis). 

 

Figure 4.26 presents the distribution of space heating and cooling systems according to 

their type. For every scenario, higher electrification of both space cooling and heating is 

expected. A significant increase in dwellings equipped with cooling devices is observed, 

from 11% in the present to 52% in the High demand scenario. For space heating, the 

major differences are seen in the distribution of the type of systems. Heat pumps for 

heating play a critical role in the future, increasing from 3% of presence in dwellings 

today to 41% in the High demand scenario. As expected, for every indicator, the fraction 

of electrified equipment increases with the increasing level of the electricity demand of 

the scenarios. 
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Figure 4.26. Space heating and cooling 

Distribution of space heating and cooling devices currently and for each electricity demand scenario, including the 

absence of systems. 

Paths for power system flexibility  

The contribution for demand-side management from the residential sector differs for each 

path, Table 4.27: 

Path Low Flexibility (LoFlex) – It is considered half the value considered for the Central 

scenario, i.e., about 4% of the annual residential electricity demand is flexible. 

Path High Flexibility (HiFlex) – About 12% of the residential electricity demand is 

flexible. 

 Table 4.26. Relative differences between Low and High flexibility paths – Residential  

Characteristics considered for the residential sector characteristics for the Central scenario and the relative differences 

assumed for the Low and High flexibility paths. 

Relative differences between Low and High flexibility paths – Residential sector 

  Central LoFlex HiFlex 

Demand-side 

management 

% annual demand  

(24h-period) 
8% -50% +50% 
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Table 4.27. Flexibility paths – Residential sector 

Characteristics considered for the residential sector characteristics in the Central, Low and High flexibility paths. 

Flexibility paths – Residential sector 

  Central LoFlex HiFlex 

Demand-side 

management 

% annual demand 

(24h-period) 
8% 4% 12% 

4.4.1.3. Services, Industry and Agriculture sector 

The services, industry and agriculture sectors represent almost 70% of the final electricity 

demand in the European Union. For this reason, the evolution of the consumption in those 

sectors will dominate the evolution of the overall consumption.  

Results from the literature are not consensual when projecting the future electricity 

demand in the different demand sectors, Figure 4.27. Among other factors, the future 

electricity demand depends mainly on socio-economic scenarios. The gathered 

information presented is uniformized by the population assumed in each study.  

 

Figure 4.27. Literature on energy consumption of services, industry, and agriculture 

Summary of different projections found in the literature for the future electricity demand for the services, industry and 

agriculture sectors in Portugal in 2050 – some values were obtained from graphs and maybe not perfectly accurate 

[106]–[110]. 

Central scenario 

In the Central scenario, the consumption of each sector considers the middle values found 

in the literature (Figure 4.27). For the service sector, consumption was set at 

2.36 MWh/capita, just below the 2.63 MWh/capita for the industry sector. Finally, with 

a much lower weight on the overall electricity consumption, electricity demand in 

agriculture represents about 0.10 MWh/capita.  
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Demand-side management was also considered for services and industry. In the services, 

about 6.5% of annual demand is available for flexible usage within one day, while in the 

industry it is 5%, also for a time-horizon of one day [106]. 

As for the electricity consumption profile of these three sectors, it was considered to be 

the same as in 2015. The assumptions are summarized in Table 4.28. 

Table 4.28. Central scenario – Services, Industry and Agriculture  

Characteristics considered for the electricity consumption in the Central scenario for Services, Industry and Agriculture, 

including demand-side management. 

Central scenario – Services, Industry and Agriculture 

Electricity consumption [MWh/capita] 

Services 2.36 

Industry 2.63 

Agriculture 0.10 

Demand-side 

management 

% annual demand 

(24h-period) 

Services 6.5% 

Industry 5% 

Agriculture - 

Paths for electricity demand  

The evolution of electricity demand assumes two diverging trajectories (Table 4.29): 

Path Low Demand (LoDe) – this path considers a lower electricity demand, thus, the 

lower limits of the values summarized in Figure 4.27 were considered. The values 

assumed were 1.61 MWh/capita for the services sector, 1.57 MWh/capita for the industry 

sector and 0.08 MWh/capita for agriculture.  

Path High Demand (HiDe) – assuming a higher demand, this path considers 

3.11 MWh/capita for the services, 3.80 MWh/capita for the industry and 

0.12 MWh/capita for agriculture.  
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Table 4.29. Electricity demand paths – Services, Industry and Agriculture  

Electricity consumption considered for electricity consumption in the Central, Low and High demand paths for 

Services, Industry and Agriculture. 

Electricity demand paths – Services, Industry and Agriculture 

  Central LoDe HiDe 

Electricity consumption 

[MWh/capita] 

Services 2.36 1.61 3.11 

Industry 2.63 1.46 3.80 

Agriculture 0.10 0.08 0.12 

Paths for power system flexibility  

Different levels of contribution for demand-side management are used: 

Path Low Flexibility (LoFlex) – a less flexible system is considered where the service 

and industry sectors allow a demand shift of half the value of the Central scenario, i.e., 

2.5% of the services annual demand and 3.25% of the annual industry demand is available 

for grid services. 

Path High Flexibility (HiFlex) – on the contrary, this path provides higher flexibility on 

demand-side management. It considers 7.5% and 9.75% of the annual electricity demand 

available for demand-side management for a time-horizon of one day for services and 

industry, respectively. 

Table 4.30. Relative differences between Low and High flexibility paths – Services, Industry and Agriculture  

Demand-side management considered in the Central scenario and the relative differences assumed for the Low and 

High flexibility paths for Services, Industry and Agriculture. 

Relative differences between Low and High flexibility paths – Services, Industry and 

Agriculture 

   Central LoFlex HiFlex 

Demand-side 

management 

% annual demand  

(24h-period) 

Services 5% -50% +50% 

Industry 6.5% -50% +50% 

Agriculture - - 0% 
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Table 4.31. Flexibility paths – Services, Industry and Agriculture  

Demand-side management considered in the Central, Low and High flexibility paths for Services, Industry and 

Agriculture. 

Flexibility paths – Services, Industry and Agriculture 

   Central LoFlex HiFlex 

Demand-side 

management  

% annual demand 

(24h-period) 

Services 5% 2.5% 7.5% 

Industry 6.5% 3.25% 9.75% 

Agriculture - - - 

4.4.1.4. Energy storage – Second-life batteries 

Energy storage plays an important role in power systems with high penetration of variable 

renewables. It may enable higher renewable energy use by storing excess generation to 

later use in times of need. Energy storage is assumed to be provided by large hydro with 

pump-back capacity and batteries of electric vehicles supplemented by stationary energy 

storage in batteries. Other technologies such as compressed air energy storage or 

hydrogen [201] were not considered, but they could be an option (both cases would entail 

higher electricity demand due to lower energy efficiency). 

The stationary energy storage includes 1) electric vehicles’ second-life batteries; and 2) 

dedicated stationary storage.  

The dedicated stationary energy storage will only be considered for the 100% 

renewable power system (see subsection 4.4.2.4) to accommodate imports that surpass a 

given cross-border interconnection limit. Therefore, the dedicated stationary storage is 

only presented in the results from section 5.3.  

The second-life batteries are available in every demand-flexibility scenario and they are 

modelled as a large buffer of energy, similar to on-board batteries. Since second-life 

batteries are present in all demand-flexibility scenarios and power system configurations 

(unlike the dedicated stationary energy storage), during this work, ‘energy storage’ refers 

to ‘second-life batteries’ unless otherwise stated. 

Different levels of energy storage are available depending on the system flexibility of 

each scenario (discarding changes in electricity demand). 
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Following the work of Almeida and Nunes [202], the Central scenario considers an 

energy capacity of 38 GWh, with an efficiency of charging and discharging of 90%. Then, 

the paths for power system flexibility were considered the following: 

Path Low Flexibility (LoFlex) – it shows a significant decrease in the second-life battery 

capacity, i.e., half of the capacity of the Central scenario.  

Path High Flexibility (HiFlex) – here, the power system has a higher level of flexibility, 

showing a 50% increase in the energy storage capacity of the Central scenario. 

Table 4.32 and Table 4.33 summarize the energy storage characteristics considered for 

each path.  

Table 4.32. Relative differences between Low and High flexibility paths – Second-life batteries  

Characteristics considered for the second-life batteries for the Central scenario and the relative differences assumed for 

the Low and High flexibility paths. 

Relative differences between Low and High flexibility paths – Second-life batteries 

 Central LoFlex HiFlex 

Energy capacity [GWh] 38.32 -50% +50% 

crate 0.1C - - 

 

Table 4.33. Flexibility paths – Second-life batteries  

Characteristics considered for the second-life batteries in the Central, Low and High flexibility scenario, including 

energy and power capacity. 

Flexibility paths – Second-life batteries 

 Central LoFlex HiFlex 

Energy capacity [GWh] 38.32 19.16 57.48 

Power capacity [MW] 3,832 1,916 5,748 

crate 0.1C 0.1C 0.1C 
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4.4.2. Modelling the demand sectors 

In this subsection, the methods used to calculate the electricity demand in each of the 

considered sectors will be described. 

4.4.2.1. Mobility 

The paths defined for electricity demand and power system flexibility were combined to 

define five different scenarios. Hereafter, the main parameters to be considered for the 

EnergyPLAN model are briefly described. 

Dumb and smart charging require as input the parking and driving patterns, respectively 

– as presented in subsection 4.4.1.1 and Figure 4.24.   

The energy consumption of light passenger vehicles is determined in Equation (4.42) 

separately for dumb and smart charging Cdumb/smart, light pass. [TWh].  

 𝐶𝑑𝑢𝑚𝑏/𝑠𝑚𝑎𝑟𝑡,𝑙𝑖𝑔ℎ𝑡 𝑝𝑎𝑠𝑠 =  𝑛𝑑𝑎𝑦𝑠 × 𝑆𝑑𝑢𝑚𝑏/𝑠𝑚𝑎𝑟𝑡  × 

(𝑁𝑝𝑟.𝑣𝑒ℎ. × 𝑐𝑝𝑟.𝑣𝑒ℎ.,𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐(𝑆𝑃𝐸𝑉 × 𝐷𝑃𝐸𝑉 + 𝑆𝑃𝐻𝐸𝑉 × 𝐷𝑃𝐻𝐸𝑉) + 𝑁𝐴𝑒𝑉 × 𝑐𝐴𝑒𝑉 × 𝐷𝐴𝑒𝑉) 

× 10−9 

(4.42) 

where Npr.veh, NAeV and NEV are the numbers of private light passenger vehicles, shared 

autonomous vehicles and the total number of light passenger electric vehicles, 

respectively; DPEV, DPHEV, electric and DAeV are the daily distance travelled by the PEV 

private vehicles, PHEV private vehicles in electric mode and the autonomous vehicles, 

respectively [km]; cpr.veh.,electric and cAeV are the electricity consumption of private and 

autonomous vehicles, respectively [kWh/km]; ndays is the number of days in the year; SPEV 

and SPHEV is the share of private PEV and PHEV, respectively [fraction] and Sdumb/smart is 

the share of dumb or smart charged vehicles [fraction]; the multiplying factor ‘10-9’ is 

used to adjust units. 

For freight transportation, the electricity consumption of battery electric vehicles is based 

in RNC2050 Cfreight,electric,RNC2050 [TWh], Equation (4.43). 

 𝐶𝑑𝑢𝑚𝑏/𝑠𝑚𝑎𝑟𝑡,𝑓𝑟𝑒𝑖𝑔ℎ𝑡 =  𝑆𝑑𝑢𝑚𝑏/𝑠𝑚𝑎𝑟𝑡  × 𝐶𝑓𝑟𝑒𝑖𝑔ℎ𝑡,𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐,𝑅𝑁𝐶2050 (4.43) 

 

In the case of smart charging, several other parameters have to be described. The share of 

parked cars that are grid-connected is assumed as 70% for Central with a variation of 50% 
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for the other paths, as mentioned above. The maximum share of vehicles driving during 

rush hours Smax EV rush [fraction] is a weighted average of the fleet parked accordingly to 

the fleet type (considering that for AeVs the number is 80% and for private vehicles, it is 

of 20% – Smax AeV rush and Smax pr.veh. rush, respectively), Equation (4.44). Freight transports 

are assumed to behave similarly to the obtained Smax EV rush. 

 
𝑆𝑚𝑎𝑥 𝐸𝑉𝑟𝑢𝑠ℎ

=
𝑁𝑝𝑟.𝑣𝑒ℎ. × 𝑆𝑚𝑎𝑥 𝑝𝑟.𝑣𝑒ℎ.𝑟𝑢𝑠ℎ

+ 𝑁𝐴𝑒𝑉 × 𝑆max 𝐴𝑒𝑉𝑟𝑢𝑠ℎ

𝑁𝐸𝑉
 

(4.44) 

 

The total capacity of the light passenger battery storage Storagesmart,light pass. [GWh] 

accounts for all the EVs available for smart charging and for the maximum available 

fraction of energy capacity for smart charging purposes SSOCavail. [fraction], Equation 

(4.45). 

 𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝑠𝑚𝑎𝑟𝑡,𝑙𝑖𝑔ℎ𝑡 𝑝𝑎𝑠𝑠. = 𝑆𝑠𝑚𝑎𝑟𝑡 × 𝑆𝑆𝑂𝐶𝑎𝑣𝑎𝑖𝑙.  × 

(𝑁𝑃𝐸𝑉 × 𝐵𝑃𝐸𝑉 + 𝑁𝑃𝐻𝐸𝑉 × 𝐵𝑃𝐻𝐸𝑉 + 𝑁𝐴𝑒𝑉 × 𝐵𝑃𝐸𝑉) × 10−6 

(4.45) 

where BPEV is the battery capacity of one PEV [kWh] and BPHEV is the battery capacity of 

one PHEV [kWh]; the multiplying factor ‘10-6’ is used to adjust units. 

The battery capacity of freight vehicles is determined considering a similar ratio between 

energy capacity/consumption as in light passenger vehicles. 

 
𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝑠𝑚𝑎𝑟𝑡,𝑓𝑟𝑒𝑖𝑔ℎ𝑡 =

𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝑠𝑚𝑎𝑟𝑡,𝑙𝑖𝑔ℎ𝑡 𝑝𝑎𝑠𝑠.

𝐶𝑠𝑚𝑎𝑟𝑡,𝑙𝑖𝑔ℎ𝑡 𝑝𝑎𝑠𝑠.
× 𝐶𝑠𝑚𝑎𝑟𝑡,𝑓𝑟𝑒𝑖𝑔ℎ𝑡 

(4.46) 

Ideally, the power capacity for grid-connection would be determined according to the 

number of vehicles of each type on the fleet and their corresponding power capacity. Such 

an approach was not followed, due to the modelling features of the simulation tool used.  

EnergyPLAN schedules the charging and discharging of the storage energy options, such 

as EV batteries, according to the electricity generation and consumption in each hour. 

After using all the hydro pump capacity, EnergyPLAN will store the excess of generation 

in EVs at the maximum possible power, if there is enough energy capacity available in 

their batteries. At times of high generation excess, it results in a rapid full charge of the 

batteries. On the other hand, when consumption is higher than electricity generation, the 

scheduling is done using all the electricity stored in the EV batteries at the maximum 

available power, which results in huge ramps to completely discharge the batteries.  
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Besides the increased degradation of batteries due to this charging and discharging with 

accentuated ramps, the simulation tool performs limited scheduling for the battery usage 

that does not account for later periods with critical needs for a stored energy device, e.g. 

during peaks of electricity consumption. To overcome this limitation and prevent a 

significantly higher battery degradation, a 10-hour discharging/charging rate (crate of 

0.1h- 1) was considered to force a slower charging and discharging of the batteries. Thus, 

the total capacity for grid-connection PG2V [MW] is calculated using the total energy 

storage capacity of all the electric fleet (light-duty passenger vehicles and freight vehicles 

– Storagesmart [GWh]) and applying Equation (4.47). 

 𝑃𝐺2𝑉 = 𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝑠𝑚𝑎𝑟𝑡 × 𝑐𝑟𝑎𝑡𝑒 × 103 (4.47) 

Following the same approach, the V2G grid-connection capacity PV2G [MW] is 

determined using the available share of EVs for V2G – SV2G [fraction], Equation (4.48). 

 𝑃𝑉2𝐺 = 𝑆𝑉2𝐺 × 𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝑠𝑚𝑎𝑟𝑡 × 𝑐𝑟𝑎𝑡𝑒 × 103 (4.48) 

In the latter two equations, where the multiplying factor ‘103’ is used to adjust units. 

Finally, the assumptions for each combined scenario are shown in Table 4.34. 
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Table 4.34. Electricity consumption and flexibility – Mobility 

Summary of all characteristics of the vehicles’ fleet that are required to be inputted in EnergyPLAN. 

Electricity consumption and flexibility – Mobility 

 Central 
LoDe 

LoFlex 

LoDe 

HiFlex 

HiDe 

LoFlex 

HiDe 

HiFlex 

Light-duty passenger vehicles      

Dumb charge      

Consumption [TWh] 1.1 0.5 0.1 3.1 0.3 

Parking pattern 
w/o shared 

vehicles 
w/ shared vehicles w/o shared vehicles 

Smart charge      

Consumption [TWh] 4.3 0.8 1.2 5.5 8.3 

Electricity consumption [km/kWh] 6.0 10.0 10.0 6.0 6.0 

Driving pattern 
w/o shared 

vehicles 
w/ shared vehicles w/o shared vehicles 

Specifications of smart charge 

max. share of vehicles during rush 

hours [%] 
20% 75% 50% 24% 16% 

Capacity of grid connection [MW] 5,341 1,846 4,154 6,959 15,657 

Share of parked vehicles grid 

connected [%] 
70% 56% 84% 56% 84% 

Battery storage capacity [GWh] 53.4 18.5 41.5 69.6 156.6 

V2G      

Capacity of grid connection [MW] 2,136 369 2,492 1,392 9,394 

Freight transportation      

Dumb charge      

Consumption [TWh] 0.7 - - 2.4 0.3 

Smart charge      

Consumption [TWh] 2.6 - - 4.2 6.3 

Specifications of smart charge      

Capacity of grid connection [MW] 3,294 - - 5,270 11,858 

Battery storage capacity [GWh] 32.9 - - 52.7 118.6 

V2G      

Capacity of grid connection [MW] 1,318 - - 1,054 7,115 
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4.4.2.2. Residential sector  

In this work, the residential sector is the only activity sector whose demand is considered 

to vary with climate projections. The reasons for this are: 1) residential sector is 

considered to be one of the most affected by climate [1]; 2) a higher potential for 

improving electrification of equipment in the residential sector is expected, especially in 

Portugal, where still a low electrification is seen – e.g. a penetration of 26%, 18%, and 

8% was recently observed for electrified domestic hot water, cooking hobs and heat 

pumps’ penetration [197], [199], [200].  

The residential electric demand was determined using the methodology presented and 

validated in Ref. [203]. It uses the Portuguese housing stock firstly characterized using a 

Monte Carlo approach described in Ref. [191], which uses data based on Energy 

Performance Certificates provided by ADENE [192] and creates probability distribution 

functions (PDFs) for several characteristics of the buildings – e.g. building year, building 

thermal characteristics, floor area, glazing, etc. People's behavior regarding the use of 

electric equipment, heating, and cooling devices during the days and week is also taken 

into consideration, based on a survey developed in Portugal [186].  

A brief description of the process to achieve the hourly electric demand of the residential 

sector in Portugal is here presented, already including the values assumed in this study. 

First, the model randomly generates one batch with 100 dwellings, characterized by 

random combinations of the different parameters of the building features (e.g. 

heating/cooling areas, floor area, type of heating system, etc.) according to their statistical 

distributions and user profiles (considering the probability of occupants being at home 

and of using space heating/cooling appliances). Then, it calculates the average hourly 

profile for the total electricity and heating demand for that batch. The model generates 

successive random batches until the total electricity and heating demand of the new batch 

does not change the average of the previous batches, i.e., when it is aligned, within a 

given tolerance (<0.5%) and ensuring a minimum number of iterations (N=20), with the 

average demand of the previous batches. Figure 4.28 exemplifies the application of the 

process. 
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Figure 4.28. Schematic of the Monte Carlo approach  

Summary of the Monte Carlo approach used: first a statistical analysis is made to get the probability distributions 

required to create representative batches and, finally, an evaluation of the batches compared to the previously generated 

batches is performed. Some elements adapted from [191]. 
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Space heating and cooling demand are based on hourly energy balances considering 

losses and heat gains. It uses as inputs hourly air temperature, solar irradiation, electric 

devices, occupancy and building features to determine both the heat gains and losses. The 

efficiency of space heating and cooling was assumed constant over time: 1) electric 

resistance has a 100% efficiency; and 2) the heat pumps’ efficiencies are described by 

Weibull probability distribution functions (describing the present situation [191]: for 

space heating, the parameters are λ = 2.7 ; κ = 2.20, while for space cooling, the Weibull 

parameters are λ = 2.80; κ = 3.83). 

The heating and cooling seasons are dynamic, i.e., their first and last days change 

according to the climate data. The heating season starts on the day that precedes a period 

of more than 10 consecutive days with an average daily temperature below 15⁰C and ends 

on the day preceding a correspondent period warmer than 15⁰C. The cooling season is 

determined analogously, considering a temperature above or below 20⁰C. 

The original Monte Carlo model did not include electric DHW needs, which was added 

in this work. This is of major importance for this study, given the expected increase in 

this type of energy consumption. Equation (4.49) describes the calculation of the DHW 

energy needs per day per household. It considers 40 litres of hot water per person per day 

VH2O [m3], the final temperature of 60⁰C Tfinal [⁰C] and an initial temperature of 15⁰C Tinitial 

[⁰C] [204], [205]. It also depends on the number of occupants Noccup. The assumed water 

density (𝜌𝐻2𝑂) is 1,000 kg/m3 and thermal capacity (cH2O) is 4,186 J.kg-1K-1. 

 𝐷𝐻𝑊𝑑𝑎𝑦 = 𝑐𝐻2𝑂 × 𝜌𝐻2𝑂 × 𝑉𝐻2𝑂 × (𝑇𝑓𝑖𝑛𝑎𝑙 − 𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑙) × 𝑁𝑜𝑐𝑐𝑢𝑝 (4.49) 

A typical hourly profile for domestic hot water consumption was also assumed, which 

considers the larger peak in the morning, small hot water usage at lunch and the second 

peak of hot water usage in the late afternoon and dinner time [206]. Houses with electric 

DHW feature an equal distribution between electric hot water tanks (efficiency of 93% 

[207]) and heat pumps with a coefficient of performance (COP) of 3 [208], since these 

are well-established technologies its efficiency were considered constant over time. 

Regarding cooking electricity demand, the model considers that cooking appliances usage 

follows the same typical profile of hourly lighting use in kitchens in Portugal [209], and 

that cooking electric demand corresponds to 7.6% of total electricity consumption in 

households having electric cooking appliances (excluding electric DHW) [210],[211]. 
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Besides space heating/cooling and DHW/cooking electric loads, the model also assumes 

a baseload profile dependent on the floor area of the dwelling, representing other typical 

electric devices in use, mentioned below as ‘sockets’, e.g. television, fridge, washing 

machine, etc. The ‘sockets’ profile is the same for all dwellings and corresponds to the 

average mid-season electric profile (since the use of heating and cooling devices is 

unlikely at this time of the year); the data was obtained from a smart metering project 

[212] and used in the validation of the original model by Panão and Brito [203]. Since 

lighting needs are dependent on natural light, which changes according to the time of day 

and year, following Ref. [203] it is considered that when the global solar radiation is 

below 100 W/m2, during the early morning and late afternoon, the ‘sockets’ electric 

profile increases 10%. The ‘sockets’ profile is also adapted according to the occupancy 

of the dwelling.  

The space heating/cooling, DHW and cooking loads are summed to this typical profile to 

calculate the aggregate one. All electric loads (including space heating and cooling, DHW 

and cooking) consider the occupancy profile of the houses, i.e., at a given hour the loads 

are adapted according to the occupancy and probability of using the appliances. 

The climate data required by this Monte Carlo-based model includes hourly data for the 

air temperature and global solar irradiance incident on a vertical surface facing each of 

the eight main orientations (North, Northeast, East, Southeast, South, Southwest, West, 

Northwest). These data were obtained by applying the same methodology described in 

subsection 4.3.3.2, with the tilt changed to 90° (vertical surface) and the surface 

orientation was changed to each of the previously mentioned orientations. 

As residential demand changes with several factors such as the climate and 

socio-economic conditions, the computation of the hourly residential demand were done 

separately for each NUTS III region (based on the 2002 version), excluding the 

archipelagos – this is, the previously described Monte-Carlo process was applied for each 

region separately. Thus, not only climate data (derived from the climate ensemble – see 

section 4.2) but also several other indicators required for the calculations were gathered 

for each of the region (such as number of houses, percentage of apartments, average area 

per dwelling, average number of inhabitants per dwelling, percentage of existence of each 

type of heating and cooling system, etc. [213]). While it is considered that some regional 

factors are kept constant such as the percentage of apartments or the windows’ 

orientation, other regional parameters are adapted to correspond to the new assumptions 
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made at a national level, such as regional population, number of houses, average floor 

area, density of people per house, heating/cooling ownership and its distribution by type, 

etc. After calculating the electricity demand in the residential sector for each region, a 

weighted sum according to the number of houses of each region was done to obtain the 

Portuguese residential demand. 

In this work, the validation of the Monte-Carlo approach was performed using the climate 

data provided by DGEG [214] by region and the current housing stock. The average 

annual electricity demand per household was found to be about 3,028 kWh, while the 

official value presented in the Portuguese national survey of 2011 was 3,673 kWh [211].  

Housing stock 

The housing stock plays a critical role in residential electricity demand. Its energy 

performance may enhance the impact of temperature changes, mainly due to its thermal 

characteristics, e.g. higher insulation may lead to lower heating/cooling needs. Thus, to 

address the changes in residential consumption in 2050, an evolution of the housing stock 

was considered. 

The starting point to characterize the Portuguese housing stock considers the distribution 

of dwellings per decade of construction presented in the Portuguese national census in 

2011 [213], the new dwellings built [215] and the retrofitted dwellings [216] – the latter 

two between 2012 and 2017. The expected total number of dwellings existing in the year 

2017 was determined by summing the dwellings being built in each decade up to 2017. 

However, the resulting number of dwellings differ slightly from the Portuguese national 

statistics from the year 2017, since it considers more 0.06% of dwellings [215]. Therefore, 

the distribution of dwellings was adapted to the 2017 statistics by considering that the 

extra dwellings were demolished or suffered renovations in equal weight in the decades 

before 1980 since they were all considered older than 40 years (about the average age of 

buildings in 2011). It resulted in the distribution presented in Figure 4.29. 

The housing stock in 2050 is determined by taking the current housing stock age 

distribution and applying a linear evolution of the annual rates of new buildings’ 

construction and retrofitting. It is assumed that the new or retrofitted dwellings replace 

existing dwellings.  

The level of renovation and construction determines the total number of existing 

dwellings Ndwell. However, the number of occupied houses Noccupied dwell is given by the 
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population and the average number of people living in each dwelling ddwell, Equation 

(4.50). The ratio between these two numbers gives the occupation factor of residential 

dwellings foccupation [fraction], Equation (4.51).  

 𝑁𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑 𝑑𝑤𝑒𝑙𝑙 =
𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛

𝑑𝑑𝑤𝑒𝑙𝑙
 (4.50) 

 𝑓𝑜𝑐𝑐𝑢𝑝𝑎𝑡𝑖𝑜𝑛 =
𝑁𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑 𝑑𝑤𝑒𝑙𝑙

𝑁𝑑𝑤𝑒𝑙𝑙
 (4.51) 

 

In the year 2011, the occupation factor was about 68% according to the Portuguese census 

(the same was considered for 2017) [213], [215]. Following the assumptions described in 

subsection 4.4.1.2, the housing stocks built show an occupation factor of 51%, 53% and 

70% for the new, middle-age and old housing stock, respectively.  

The distribution of occupied dwellings across the decades is presented in Figure 4.29 for 

the year 2017 and the different evolution possibilities presented in subsection 4.4.1.2. 

 

Figure 4.29. Age of housing stock 

Distribution of occupied dwellings per decade for the year 2017 and the different possible developments of the housing 

stock. 

 

The probability distribution functions that characterize the future housing stock consider 

that dwellings built or renovated in the same 5-year period show the same main design 

characteristics (e.g. windows thermal transmittance). As mentioned previously, the 

evolution of the building parameters changes according to their nature. The distribution 

of some parameters does not suffer any changes in the future. For several parameters, it 

is considered that dwellings built today present state-of-the-art characteristics that will be 

0

1 000

2 000

3 000

4 000

5 000

2017 New Middle Old

#
 o

f 
d
w

el
li

n
g
s 

×
1
0

3

2046-2050 2041-2045

2036-2040 2031-2035

2026-2030 2021-2025

2017-2020 2006-2016

2001-2005 1996-2000

1991-1995 1981-1990

1971-1980 1961-1970

1946-1960 1919-1945

Before 1919



 

134 

kept constant until 2050; thus, their distributions change with the introduction of the new 

dwellings with the same performance levels as of today. For the windows’ thermal 

transmittance, a linear improvement is considered until 2050 and its distribution is altered 

accordingly.  

4.4.2.3. Services, Industry and Agriculture sector 

Several socio-economic factors affect the sectors addressed in this subsection: services, 

industry, and agriculture. Even though the hourly profiles may change in the future, for 

lack of insight on what these changes could be, it was considered that the profiles would 

remain similar to the ones observed in 2015 [134]. 

Using the Portuguese hourly load diagram from 2015 demand2015 [MW], the normalized 

hourly profile of services, industry, and agriculture sectors (SIAnorm) was obtained by the 

subtraction of the residential hourly demand obtained in the validation process 

demandresid.,valid. [MW], Equation (4.52). 

 
𝑆𝐼𝐴𝑛𝑜𝑟𝑚(𝑡) =  

𝑑𝑒𝑚𝑎𝑛𝑑2015(𝑡) − 𝑑𝑒𝑚𝑎𝑛𝑑𝑟𝑒𝑠𝑖𝑑.,𝑣𝑎𝑙𝑖𝑑. (𝑡)

max (𝑑𝑒𝑚𝑎𝑛𝑑2015 − 𝑑𝑒𝑚𝑎𝑛𝑑𝑟𝑒𝑠𝑖𝑑.,𝑣𝑎𝑙𝑖𝑑.) 
 

(4.52) 

 

The final hourly electricity demand from the services, industry and agriculture sectors 

demandSIA [MW] was determined through Equation (4.53), considering the total annual 

electricity demand of those three sectors CSIA [TWh]. The multiplying factor ‘10-6’ is used 

to adjust units. 

 
𝑑𝑒𝑚𝑎𝑛𝑑𝑆𝐼𝐴(𝑡) =  

𝑆𝐼𝐴𝑛𝑜𝑟𝑚(𝑡)

𝑠𝑢𝑚(𝑆𝐼𝐴𝑛𝑜𝑟𝑚)
× 𝐶𝑆𝐼𝐴 × 10−6 

(4.53) 
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4.4.2.4. System flexibility strategies: Demand-side management and energy 

storage 

The future of power systems faces a higher supply variability than the current and past 

framework shows, due to the expected high penetration of renewables. To keep the energy 

balance required, the accommodation of variable generation requires different types of 

strategies that make the system more responsive to supply and demand dynamics. Two 

of the most common techniques to accommodate variable renewables without 

compromising the security of supply are demand-side management and the use of energy 

storage devices. 

The role of demand-side management (DSM) may be significant for the power system 

because it enables the shifting of loads from consumption peaks to periods with lower 

consumption needs. The activity sectors, depending on their level of flexibility, may place 

at the grid disposal a fraction of their energy consumption to be used at a given maximum 

power if required, in exchange of, for example, an economic compensation. 

In this work, the demand-side management is modelled with EnergyPLAN. Defining 

annual energy, a power capacity for DSM and a time-horizon for load shifting, the model 

uniformly divides the flexible demand within the time-horizon and manages it to 

minimize fossil generation, imports and exports.  

To define the annual energy consumption available to demand-side management, the 

fraction of demand available for DSM in each sector fDSM, sector [fraction] and their own 

demand Csector [TWh] was considered. The sum of availability of all sectors for DSM 

gives the total annual energy consumption availability CDSM [TWh]. 

 𝐶𝐷𝑆𝑀 = ∑ 𝑓𝐷𝑆𝑀,𝑠𝑒𝑐𝑡𝑜𝑟 × 𝐶𝑠𝑒𝑐𝑡𝑜𝑟

𝑠𝑒𝑐𝑡𝑜𝑟

 (4.54) 

 

A time-horizon of one day was considered for demand-side management, i.e., the load 

could only be shifted within the period of one day. One-day shifting was selected to avoid 

the unrealistic shifting of activities on all the sectors considered. Residential, services and 

industry were the sectors selected to provide this type of service since agriculture does 

not have great flexibility for its activities, and mobility already provides flexibility with 

smart charging and V2G. 
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The power capacity available for DSM PDSM [MW] is determined from the maximum 

power of the total hourly demand demand [MW] (including residential, services, industry 

and agriculture), the relative weight of each sector in the annual consumption wsector 

[fraction] and the corresponding fraction available to DSM, as in Equation (4.55). 

 𝑃𝐷𝑆𝑀 =  ∑ 𝑓𝐷𝑆𝑀,𝑠𝑒𝑐𝑡𝑜𝑟 × 𝑤𝑠𝑒𝑐𝑡𝑜𝑟 × max (𝑑𝑒𝑚𝑎𝑛𝑑

𝑠𝑒𝑐𝑡𝑜𝑟

) (4.55) 

 

The use of energy storage may be used to satisfy consumption with a lag from energy 

generation. It is able to store energy when it is in excess and use it later.  

Besides large hydro with pumping and electric vehicles, this work considers as stationary 

energy storage repurposed automotive batteries (second-life batteries) and dedicated 

stationary storage devices (stationary batteries). While the capacity of second-life 

batteries available are defined according to the demand-flexibility scenario and are 

considered in all scenarios and power systems, the dedicated stationary energy storage is 

only introduced to decrease the need of cross-border interconnection observed in the 

reference 100% renewable power system and its sizing is determined for each climate 

realization and each photovoltaics-wind power configuration. 

The second-life batteries were also modelled as a large buffer of energy, similarly to 

on-board batteries, also limited to a charging/discharging rate of 0.1C for the same 

reasons. Similarly to mobility, EnergyPLAN uses the whole potential of charging and 

discharging of the technology. As mentioned above, it may accelerate the storage 

technology’s degradation and, by using the maximum available power capacity in each 

hour, it does not properly manage the energy stored, e.g. save the energy stored for periods 

with higher consumption peaks. To limit the charging/discharging rates, the power 

capacity was determined by assuming a ten-hour discharging and charging rate (crate of 

0.1h-1). Hence, the power capacity available for the charging and discharging of the 

energy storage P2nd life bat [MW] is determined by its energy capacity Storage2nd life bat 

[GWh] and the crate, Equation (4.56). A multiplying factor ‘103’ is used to adjust units. 

 𝑃2𝑛𝑑 𝑙𝑖𝑓𝑒 𝑏𝑎𝑡 = 𝑆𝑡𝑜𝑟𝑎𝑔𝑒2𝑛𝑑 𝑙𝑖𝑓𝑒 𝑏𝑎𝑡 × 𝑐𝑟𝑎𝑡𝑒 × 103 (4.56) 

 

In the case of dedicated stationary energy storage, the following strategy was used to 

determine the energy storage capacity to decrease the cross-border power transmission 
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capacity needs. To achieve that, firstly, the imports and exports that surpass a given limit 

are calculated (importsresidual and exportsresidual [GW]) by subtracting the cross-border 

interconnection limit. Then, for each hour t the net import balance for the residuals net 

impresidual [GW] is calculated, according to Equation (4.57). 

 𝑛𝑒𝑡 𝑖𝑚𝑝𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙(𝑡) = 𝑖𝑚𝑝𝑜𝑟𝑡𝑠𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙(𝑡) − 𝑒𝑥𝑝𝑜𝑟𝑡𝑠𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙  (𝑡) (4.57) 

 

To ascertain the accumulated import needs, an accumulated balance of the net impresidual 

is created. The highest increase in this accumulated balance shows the most critical period 

of import needs, which is finally used to size the battery capacity. This process is repeated 

for every ensemble year in each of the power systems tested. A schematic example for 

sizing of the dedicated stationary energy storage is shown in Figure 4.30. 

 

 

 

Figure 4.30. Sizing of the dedicated stationary energy storage 

The dedicated stationary energy storage is sized for each ensemble year with the highest increase in the accumulated 

import needs above the cross-border interconnection limit. The dashed black line shows the accumulated net imports 

balance above the interconnection limit defined (residuals) and the solid orange line shows the critical periods with 

accumulated import needs. 
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4.4.3. Summary of electricity demand-flexibility scenarios 

A summary of the electricity demand-flexibility scenarios considered is provided in Table 

4.35. 

Table 4.35. Electricity demand-flexibility scenarios 

Summary of assumptions taken for the electricity demand-flexibility scenarios. 

Assumptions for electricity demand-flexibility scenarios 

Electricity demand      

 
LoDe 

LoFlex 

LoDe 

HiFlex 
Central 

HiDe 

LoFlex 

HiDe 

HiFlex 

avg. total17 [TWh] 42.4 42.4 69.4 98.5 98.5 

System Flexibility      

 
LoDe 

LoFlex 

LoDe 

HiFlex 
Central 

HiDe 

LoFlex 

HiDe 

HiFlex 

Demand-side management  

(% annual demand available) 
     

Services 2.5% 7.5% 5% 2.5% 7.5% 

Industry 3.25% 9.75% 6.5% 3.25% 9.75% 

Residential 4% 12% 8% 4% 12% 

Mobility      

Energy battery cap. [GWh] 18.5 41.5 86.3 122.3 275.2 

Cap. grid connec. [GW]      

Smart charge  1.8 4.1 8.6 12.2 27.5 

V2G 0.4 2.5 3.4 2.4 16.5 

Second-life batteries      

Energy battery cap. [GWh] 19.2 57.5 38.3 19.2 57.5 

Power cap. [GW] 1.9 5.7 3.8 1.9 5.7 

 

 
17 Because residential electricity demand varies with climate conditions, the average total electricity 

demand is presented. 
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4.5.  CO2 emissions   

The CO2 equivalent emissions result from the electricity generation in the power system 

CO2electric [Mton] and from other energy uses CO2 nonelectric [Mton], Equation (4.58). 

 

 𝐶𝑂2𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 =  𝐶𝑂2𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 +  𝐶𝑂2𝑛𝑜𝑛𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 (4.58) 

4.5.1. Power system 

The CO2 electric depends on the electricity mix of the power system. It is determined by 

summing the emissions from burning natural gas and other non-renewable resources to 

supply the power system demand, according to the specified emission factor for each type 

of fuel fefuel [kgCO2/GJ], Table 4.36 and Equation (4.59).  

Table 4.36. CO2 emission factor for each type of fuel  

Emission factor to determine the CO2 emissions relative to the use of fossil fuels like natural gas [217]. 

 Emission factor [kgCO2/GJ] 

Natural Gas 56.6 

Other non-renewablec 78.9 

aThe non-renewable fuel was considered to have the same emissions as fuel-oil. 

 

 𝐶𝑂2𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐
=  ∑ 𝐶𝑜𝑛𝑠𝑓𝑜𝑠𝑠𝑖𝑙 𝑓𝑢𝑒𝑙,𝑔𝑒𝑛 × 𝑓𝑒𝑓𝑜𝑠𝑠𝑖𝑙 𝑓𝑢𝑒𝑙

𝑓𝑜𝑠𝑠𝑖𝑙 𝑓𝑢𝑒𝑙

× 3.6 × 10−3 (4.59) 

 

where Consfossil fuel,gen corresponds to the annual consumption of fossil fuel resource to 

electricity generation [TWh] and fossil fuel represents each fossil fuel resource 

considered; a multiplying factor ‘3.6 × 10−3’ is used to adjust the units. 

For simplicity, CO2 emissions exclude any embodied emissions related to equipment or 

power plants. 
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4.5.2. Non-electric uses of energy 

The combustion of fossil fuels provides the required energy for a variety of end-uses in 

all activity sectors. The emissions related to non-electric uses of energy are here 

determined for each sector. The CO2 emissions from non-electric uses of energy 

(CO2non-electric) will commonly be referred to as ‘non-electric emissions’ since they result 

from uses of energy other than electricity. The determination of non-electric emissions 

depends on the electricity demand-flexibility scenario.  

The residential sector is expected to strongly shift a significant part of its energy usage 

towards electricity. However, the use of natural gas will still be significant in the future 

to supply part of the domestic hot water, cooking, and heating needs. To ascertain the 

residential non-electric emissions, the natural gas consumption was determined for each 

end-use. 

The non-electric emissions were determined similarly for the domestic hot water, 

cooking, and heating needs, considering the Portuguese average consumptions. The final 

natural gas consumption is calculated according to the useful energy required to satisfy 

the households that is not supplied by electricity for each end-use. 

First, the final electricity consumption previously determined (see subsection 4.4.2.2) is 

split by the type of electric system, according to their distribution. The useful energy is 

determined using the efficiency of each type of system considered (𝜂𝑠𝑦𝑠𝑡𝑒𝑚,𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐). 

DHW and heating consider electric resistances and heat pumps as the systems used, while 

for cooking no specific equipment is used and only an overall efficiency is assumed.  

Using the electrification rate, the useful energy required for the natural gas appliances 

(e.g. boilers) is determined. Finally, the natural gas equipment efficiency (𝜂𝑠𝑦𝑠𝑡𝑒𝑚,𝑁𝐺) is 

applied to determine the primary consumption of natural gas. This process is repeated for 

each residential end-use (DHW, cooking, and heating) and each demand-flexibility 

scenario and each ensemble year.  

A summarized scheme of the approach is presented in Figure 4.31 and the efficiency of 

the appliances is presented in Table 4.37. 
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Figure 4.31. Final energy needs for domestic hot water and cooking 

Summary of the approach taken to determine the final energy needs for natural gas for domestic hot water and cooking 

needs. 

 

Table 4.37. Efficiency of electric and natural gas systems 

Efficiency of electric and natural gas equipment for domestic hot water and cooking appliances. 

Efficiency of electric and natural gas systems 

 Domestic hot water Cookinga Space heating 

𝜂𝑠𝑦𝑠𝑡𝑒𝑚,𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 

Heat pumps - COP of 3 

[208] 

Resistance - 93% [207] 

77% [218], [219] 

Heat pumps - COP of 2.5 

[204] 

Resistance - 100% [204] 

𝜂𝑠𝑦𝑠𝑡𝑒𝑚,𝑁𝐺 92% [220] 38% [218], [219] 92% [220] 

a It was considered a 7% improvement in technology efficiency, compared to present. 

 

Having the total energy consumption of natural gas required to satisfy the residential 

sector ConsNG [TWh], the emission factor of natural gas (Table 4.36) is applied to 

ascertain the non-electric CO2 emissions resulting from this sector, Equation (4.60). 

 𝐶𝑂2𝑛𝑜𝑛𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐,𝑟𝑒𝑠𝑖𝑑.
= (𝐶𝑜𝑛𝑠𝑁𝐺,𝐷𝐻𝑊 + 𝐶𝑜𝑛𝑠𝑁𝐺,𝑐𝑜𝑜𝑘𝑖𝑛𝑔 + 𝐶𝑜𝑛𝑠𝑁𝐺,ℎ𝑒𝑎𝑡𝑖𝑛𝑔) × 𝑓𝑒𝑁𝐺 (4.60) 

 

The non-electric emissions from the services, industry and agriculture sectors rely on 

the Portuguese RNC2050.  

For industry and agriculture, a linear regression between electricity consumption and the 

non-electric emissions per capita is traced using the three scenarios considered in the 

E
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RNC2050 [109] (as shown in Figure 4.32). Using those regressions and the electricity 

consumption considered in this work for each electricity demand scenario, the 

non-electric emissions are determined. 

a. b. 

 

Figure 4.32. CO2 emissions and electricity demand for industry and agriculture 

Linear regressions for electricity demand and CO2 emissions from RNC2050 for: a. industry; and b. agriculture. The 

CO2 emissions assumed in this work for the electricity consumption are also shown: light red triangle – Low demand 

scenario; red square – Central demand; and dark red diamond – High demand scenario. The grey circles represent the 

CO2 emissions for the three scenarios considered in RNC2050 [109]. 

 

In the case of services, the RNC2050 assumes that two of their scenarios have undergone 

complete electrification of the sector. For this reason, here, it is assumed that the scenarios 

with higher electricity demand (Central and High demand) are also completely dependent 

on electricity, thus they are free from non-electric emission originated in the services.  

The less electrified scenarios (i.e., Low demand) are considered to still rely on natural gas 

for other energy uses, e.g. for space heating. In RNC2050, the only scenario that is not 

completely electrified considers an electricity demand of 1.83 MWh/capita and 

0.07 tCO2/capita. Since less electrification leads to the displacement of energy to natural 

gas, resulting in higher non-electric emissions, the non-electric emissions were 

considered to be inversely proportional to electricity demand. Thus, the non-electric CO2 

emissions for the services is of 0.08 tCO2/capita for the Low demand scenarios.  

For mobility, different approaches were taken. Non-electric light passenger vehicles were 

assumed to use gasoline (fegasoline of 73.7 kgCO2/GJ [217]) and to travel the same daily 

distance as EVs. PHEV gasoline consumption was also considered since about 5% of its 

distance is travelled using conventional fuels. Equation (4.61) describes the calculation 

required to determine the CO2 emissions originated by light passengers.  
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 𝐶𝑂2𝑛𝑜𝑛𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐,𝑙𝑖𝑔ℎ𝑡 𝑝𝑎𝑠𝑠.

= 𝑛𝑑𝑎𝑦𝑠 × 𝑁𝑝𝑟.𝑣𝑒ℎ. × 𝑐𝑝𝑟.𝑣𝑒ℎ.,   𝑔𝑎𝑠𝑜𝑙𝑖𝑛𝑒[(1 − 𝑆𝐸𝑉) × 𝐷𝑝𝑟.𝑣𝑒ℎ.,𝑔𝑎𝑠𝑜𝑙𝑖𝑛𝑒

+ 𝑆𝑃𝐻𝐸𝑉 × 𝐷𝑃𝐻𝐸𝑉,𝑔𝑎𝑠𝑜𝑙𝑖𝑛𝑒] × 𝑓𝑒𝑔𝑎𝑠𝑜𝑙𝑖𝑛𝑒 × 10−12 

(4.61) 

where ndays is the number of days in the year; Npr.veh. is the number of private light 

passenger vehicles; cpr.veh., gasoline is the energy consumption of private light passenger 

vehicles, assumed as 2.05 MJ/km 18; SEV and SPHEV is the share of electric vehicles and 

light plug-in hybrid electric vehicles (PHEV) in the light passenger fleet, respectively 

[fraction]; Dpr.veh.,gasoline and DPHEV,gasoline are the daily distance travelled by the gasoline 

private vehicles and the daily distance travelled by PHEV private vehicles in non-electric 

mode, respectively [km]; finally, the multiplying factor ‘10-12’ is used to adjust units. 

The Portuguese roadmap RNC2050 was used as a reference for the remaining fuel 

consumption, with some adaptations [175]. For freight vehicles, the vehicles propelled 

by hydrogen in the roadmap were shifted to biofuels, while the consumption from 

diesel-fueled vehicles is taken directly from the roadmap (fediesel of 74.1 kgCO2/GJ [217]). 

To replace hydrogen consumption by biodiesel, a 48% [221] and 22.5% [222] efficiency 

of hydrogen and biodiesel were assumed, respectively. Heavy passenger vehicles were 

assumed to be completely fueled by diesel and biofuels. The roadmap includes a small 

fraction of electricity, that was converted to biofuel consumption (assuming also 22.5% 

efficiency for biofuel consumption). 

  

 
18 A 20% improvement in efficiency was applied to the current energy consumption of 2.56 MJ/km [229], 

as in Ref. [101].  
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Table 4.38. Fuel consumption from freight and heavy-duty passenger vehicles  

Assumptions for the fuel consumption from freight and heavy-duty passenger vehicles, according to adapted results 

from the RNC2050 [175]. 

Freight and Heavy-duty passenger vehicles – Fuel consumption [GJ] 

   Low demand Central demand High demand 

Freight 

Light-duty 
Diesel 6.6 - - 

Biofuels 2.9 - - 

Heavy-duty 
Diesel 25.2 - - 

Biofuels 28.4 17.9 35.8 

Passenger Heavy-duty 
Diesel 2.68 0.02 0.05 

Biofuels 3.78 5.64 11.3 

 

CO2 emissions from railways, navigation and aviation were not considered in this work. 

The resulting non-electric emissions are shown in Table 4.39. 

Table 4.39. Non-electric CO2 emissions 

Summary of non-electric CO2 emissions for residential, services, industry, agriculture and mobility. 

Non-electric CO2 emissions [Mton] 

 Low demand Central demand High demand 

Residential 0.7-0.9 0.4-0.6 0.1-0.3 

Services 0.8 - - 

Industry 12.3 7.3 2.3 

Agriculture 0.9 1.2 1.4 

Mobility 

Passenger 

Light-duty 

(private) 
1.3 3.2 0.2 

Heavy-dutya 0.2 ~0 ~0 

Freight 
Light-duty 1.9 - - 

Heavy-duty 0.5 - - 

Total non-electric CO2 emissions 18.6-18.8 12.1-12.3 4.0-4.2 

a In Central and High demand scenarios, the heavy passenger vehicles are assumed to be mostly from 

biofuels. 
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4.6.  Approach limitations 

For the sake of comprehensiveness, some simplifications have been made during this 

research. This section summarizes the main simplifications of this work. 

In regards to climate parameters, some limitations may be pointed. Daily and three-hourly 

data of temperature, irradiance and wind speed were interpolated to hourly data using 

simple methods. Those interpolations could be significantly improved by implementing 

more complex approaches that may more accurately describe the behavior of the climate 

parameters. Even though the water supply was addressed using a multiyear calibration, it 

is only driven by monthly precipitation. Hydrological models could be applied to better 

simulate the available water supply.  

The spatial resolution of the climate parameters used to ascertain the energy supply was 

considerably large. Photovoltaics’ generation was determined using temperature and 

irradiance averaged per NUTS III, while for wind power the driving factor was wind 

speed averaged for the Centre region. Water supply was averaged at a national level, 

driving the hydropower and run-of-the-river generation. The renewable sources of energy 

generation were then averaged to deliver a single time-series to introduce in the energy 

modelling tool. Ideally, the spatial resolution to determine those generations should be 

finer in order to include differences in the resource availability and behavior.  

Power system modelling also shows significant shortcomings. One of the biggest 

limitations is the use of a single point in space to simulate the power system. It neglects 

the power constraints in the national transmission lines by ignoring the spatial distribution 

of supply and demand. Due to the same constraint, each supply source is modelled as one 

large power plant, discarding the individual characteristics of each power plant. Thermal 

power plants are great examples of this limitation: only two may be modelled, implying 

that the model does not allow to simulate condensing power plants using different fuels 

with different kinds of operation and characteristics. Hydro dam storage capacity is also 

a good example, the model considers a single reservoir that does not include geographical 

distribution of both the water supply and of the dams.  

The modelling of hydro pump also raises two issues: 1) there are no limitations of the 

water availability in the downstream, i.e., while excess electricity is being generated and 
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while the reservoir is not at its full capacity, the downstream water is pumped to the 

reservoir, independently on the level of river flow in that downside of the dam; and 2) the 

water supply is completely used for electricity generation, ignoring other uses of water 

(e.g. irrigation). Another limitation in the power system modelling is the hourly 

resolution: it is not enough to explore grid stabilization issues; for that, a thinner 

resolution is required. 

Focusing on electricity demand, some simplifications were implemented. Even though a 

wide range of possible demand evolutions was provided to cover divergent paths, they 

still might be debatable. The assumptions taken for the services, industry, and agriculture 

sectors were simply gathered according to the literature. The electricity demand for the 

mobility sector was built in a detailed bottom-up manner for the light vehicles, e.g. the 

number of vehicles and respective driving patterns, and the same approach could be 

extended to heavy-duty freight vehicles. Also, some of the mobility players were not 

taken into account, such as it is the case for heavy-duty passenger vehicles, railways, 

navigation, and aviation.  

The main limitation in the modelling of the electricity demand was that solely the 

residential electricity demand was assumed to depend on climate. Below, the limitations 

from the approach taken to model the residential demand are listed. 

Residential electricity demand depends on socio-economic context, signal prices, user’s 

behavior, climate, etc. The projection of its development is strongly dependent on the 

assumptions and on the chosen approach to model it. Thus, as for any complex 

framework, the method proposed to model residential electricity demand in the future has 

some limitations, which are discussed below. 

To determine the residential electricity demand, several sets of dwellings are created and 

characterized by their building characteristics, the existence of space heating and cooling 

systems, etc. Each parameter of a dwelling is selected according to its probability 

distribution function, without considering possible correlations with other characteristics 

besides age (e.g. a dwelling with double glazing windows may be more likely to be well 

insulated). One of the limitations of this method is not considering possible correlations 

among variables. For example, more efficient equipment is expected in houses with 

improved thermal performance. 
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A future energy efficiency improvement of heat pumps was disregarded. The residential 

space heating and cooling needs were determined considering several sources for internal 

gains (e.g. occupants, electric appliances, lighting, etc.), excluding non-electric 

appliances. One significant limitation is the disregard of economic factors such as 

price-driven mechanisms that may change consumer’s behavior, and economic growth 

that may affect ownership of electric appliances. 

Energy storage in batteries was considered under two alternatives. First, due to a model 

limitation, electric vehicles and second-life batteries assume a charging/discharging rate 

of 0.1C (see subsections 4.4.2.1 and subsection 4.4.2.4); also, they are modelled as a 

single large battery, emphasizing the limited spatial resolution of the model. Second, the 

capacity of the dedicated energy storage was determined by applying a simple algorithm 

to calculate the imports energy need above the defined cross-border interconnection 

capacity defined. It does not take into account charging/discharging efficiency rates as it 

aims at illustrating the potential requirement for additional storage capacity. 

In what regards overall emissions, the results aims at illustrating the differences in CO2 

emissions between demand-flexibility scenarios. It considers a basic approach that 

neglects emissions from other activities not focused on this work (e.g. aviation).  

Finally, hydrogen or electricity for its production was not included in this work, for any 

sector. In mobility, biofueled-vehicles were considered as opposed to hydrogen-fueled 

vehicles. For energy storage, second-life electrochemical batteries were assumed as 

opposed to hydrogen (or other storage technologies such as compressed air energy 

storage). Also, other uses could consider hydrogen, such as in industrial processes. Its 

implementation would require an adjustment of electricity demand due to different 

efficiencies of the technologies, for example, compared to electrochemical batteries. The 

introduction of hydrogen would add more complexity to the built system, but it is one of 

the most interesting follow-ups for this work.  
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5. Results 

This research work led to results that address three main topics, as can be seen in the 

following sections. It begins by exploring the residential electricity demand in the future 

(section 5.1), followed by the results from the performance of highly renewable power 

systems (section 5.2) and of 100% renewable power system (section 5.3). In this chapter, 

the results from RCP8.5 are provided in the Supplementary Material, see the end of 

subsection 4.2.1. 

5.1.  Residential electricity demand19 

In this section, the residential electricity demand is analyzed in detail. Then, to understand 

the sensitivity of the results to some of the assumptions taken, a sensitivity analysis is 

performed to the housing stock, floor area of new dwellings, electrification of cooking 

and domestic hot water and penetration of heat pumps (subsection 5.1.1). Finally, the 

section ends with a small discussion on the results. 

As described in detail in subsection 4.4.1.2, the residential sector was modelled by 

considering three scenarios according to their level of electricity demand. The Central 

scenario assumes 75% of electrified cooking and domestic hot water, 27% of heat pumps’ 

penetration, retrofitting and new buildings’ rate of 2 and 0.75% per year, respectively. 

The Low and High scenarios exacerbate particular features of the Central scenario such 

as the electrification of equipment, the age of the housing stock and the average area of 

dwellings.  

The average load profiles of the total electricity demand in households are shown by the 

lines in Figure 5.1. Their ranges, due to the different ensemble years, are represented by 

the shaded areas. As expected, the Low demand scenario is the one with the lowest load 

 
19 Part of this section is adapted from Figueiredo et al., 2019 [227]. 
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profile, while High demand scenario shows the highest, resulting from the high 

electrification levels assumed but also from the older housing stock, which, being less 

efficient, contributes to higher needs of space heating and cooling. 

 

Figure 5.1. Residential load profiles 

Average load diagram for a summer day (left) and a winter day (right). The shaded area represents the range of the 

results (between the maximum and minimum observed). 

 

The High demand scenario also shows a higher dispersion of results, due to its higher 

electrification of space heating/cooling, making electricity consumption more sensitive 

to climate. Scenarios with lower electrification of space heating/cooling, or higher energy 

performance buildings (e.g. higher insulation), or both, are much less sensitive to the 

ensemble year used.  

In summer, the pronounced peaks at times of leaving/arriving home are observed for 

future consumption but not for present consumption. This is mainly due to the higher 

usage of electric appliances (for cooking, DHW and space cooling) compared to the 

present.   

In Figure 5.2 the discriminated histograms for the consumption in each scenario are 

presented for the climate path RCP4.5. The present level of demand is also shown by the 

dashed vertical line. It may be noted that climate impacts only heating and cooling 

demands. The remaining loads are mainly dependent on the society development 

considered for each scenario, such as the floor area of dwellings and the electrification of 

cooking and DHW loads.  
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The High scenario shows always higher levels for the different types of demands. As 

previously mentioned, the high electrification rates for space heating/cooling makes this 

scenario highly dependent on climate, increasing significantly its space heating/cooling 

needs. Bigger new dwellings also help to increase the plug loads and space 

heating/cooling. 

 

Figure 5.2. Residential electricity consumption per type of demand – RCP4.5 

Histograms for the electricity consumption of the different types of demand (total, heat, cool, sockets, cooking and 

DHW) in the mid-century under RCP4.5 according to the Low, Central, and High demand scenarios. The black dashed 

line shows the present electricity consumption. 

 

The results for the two climate paths (RCP4.5 and RCP8.5) are qualitatively similar, and 

those for RCP8.5 are only shown in Annex IV.  RCP8.5 shows slightly higher cooling 

needs and slightly lower heating needs, both explained by the higher temperature increase 

considered in this climate path. 

Table 5.1 shows the average electricity consumption per type of consumption and 

scenario, for both RCP paths.  
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Table 5.1. Metrics for residential electricity consumption per type of demand 

Average electricity consumption for every scenario considered, including RCP4.5 and RCP8.5. The minimum and 

maximum values obtained in the simulation are shown below the average value as: ‘(minimum/maximum)’.  

Average, minimum and maximum electricity consumption [TWh/year] 

 Total Heat Cool Sockets Kitchen DHW 

Present 11.56 1.80 0.06 9.42 0.21 0.08 

Low 
12.07 

(11.31/12.51) 

1.17 

(0.57/1.72) 

0.38 

(0.09/0.70) 

9.11 

(9.03/9.17) 

0.32 

(0.31/0.32) 

1.08 

(1.08/1.09) 

Central 
13.92 

(12.83/14.48) 

1.28 

(0.64/1.81) 

0.91 

(0.21/1.65) 

9.47 

(9.40/9.55) 

0.40 

(0.39/0.40) 

1.86 

(1.85/1.87) 

High 
18.46 

(16.92/19.31) 

1.79 

(0.90/2.51) 

1.31 

(0.30/2.42) 

12.06 

(11.96/12.16) 

0.73 

(0.73/0.74) 

2.58 

(2.57/2.59) 

 

In the future, residential electricity demand may increase from 4 to 60% on average for 

the Low and High demand scenarios, respectively. The heating demand tendency differs 

between the High demand scenario and the remaining ones: in the High scenario, the 

average heating demand remains at the present value, while in the Low and Central 

scenarios it may decrease 35 and 30%, respectively. For the cooling needs, it is expected 

an increase from 5 to 20-fold.   

The decrease in heating electricity consumption is the result of three main factors: 

1) increase on average temperature; 2) better insulated houses; and 3) wider adoption of 

more efficient heating devices (heat pumps). The High scenario maintains the magnitude 

of current consumption mainly because it considers not only more occupied houses but 

also an aged housing stock. 

As for the increase in cooling needs, it results from higher temperatures and from wider 

adoption of cooling electric devices. The electrification rate for domestic hot water and 

cooking is also a driver for the increase in demand. Demand attributed to socket loads is 

mainly determined by assumptions on the dwelling floor areas. 

This work assumes that the final electricity consumption is directly dependent on the 

assumptions made for each scenario, ignoring two-way dynamics such as 1) price-driven 

mechanisms conditioning end-user behavior, such as the use of air-conditioning, which 

may affect and be affected by the investment need in the electrification of buildings; and 

2) societal factors, such as economic growth, migration fluxes, and changes in the age 

structure of the population, which may affect investment in buildings. 
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Regarding the impact of different climate conditions on the variability of demand, it is 

clearly observed in the spread of the histograms presented in Figure 5.2. One can observe 

that changes in building stock, electrification rates of cooking and DHW and adoption of 

heat pumps have a stronger effect on residential demand than climate variability, i.e., the 

range of demand for each scenario driven by the different ensemble years is smaller than 

the range of demand across different scenarios. Hence, future residential demand is 

primarily driven by policies and market choices regarding the development of the 

building stock and technologies used.  

Increasing electrification (High demand scenario) leads to a higher sensitivity to climate. 

That is, the variability on the demand (i.e., the range between minimum and maximum 

values) increases with the electrification of space heating/cooling devices, as shown in 

Table 5.1. For heating, the range goes from low electrification with 1.2 TWh to 1.6 TWh 

for high electrification – which corresponds to 2.4% and 3.2% of the overall Portuguese 

consumption in 2017 [163], respectively. It also means that heating demand oscillates 

between -51 to +47% of the average value around it. For cooling, the variation between 

maximum and minimum observations is wider, starting at 0.6 TWh (Low) to 2.1 TWh 

(High), meaning that cooling demand fluctuates between -77 to +85% around its average. 

Variability of the total demand hence ranges between 1.2 and 2.4 TWh (corresponding to 

an oscillation around the average of -8 to +5%), for the Low and High demand scenarios, 

respectively.  

By observing the extreme values of demand, total residential demand may change 

from -2.2% to +67.0%, compared to current levels. The range of change for heating 

electricity demand goes from a slight increase of 0.6% to a decrease down to -68.3%. 

Cooling electricity demand is expected to increase in every case, from a minimum of 

+50.0% to a maximum of +3,933.3%. For the remaining loads, the development of 

demand depends mainly on the future electrification levels (e.g. DHW demand can 

increase 31-fold due to the low level of DHW electrification existing today).  
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5.1.1. Sensitivity analysis 

A sensitivity analysis is performed to understand the impact of the assumptions taken 

regarding the development of the housing stock, floor area of new houses, electrification 

of cooking and domestic hot water and penetration of heat pumps. The Central scenario 

is used as the basis for these sensitivity analyses. Then, each assumption at a time is 

changed from the values assumed in the Central to the values taken in the Low and in the 

High demand scenarios, keeping all the remaining unchanged. By taking such an 

approach, it is possible to understand the individual impact of each assumption. 

Figure 5.3 shows the effect of the household market, floor area of new dwellings, 

electrification of DHW and cooking and space heating and cooling on the total residential 

demand for the RCP 4.5 pathway.  

For the household market, the changes to the Central scenario are associated with energy 

demand for space heating and cooling. A newer housing stock results in less heating but 

more cooling, due to better thermal insulation. Also, with less inhabited houses, 

penetration of heat pumps in occupied buildings is higher (to keep the level of penetration 

on the overall existing houses, see subsection 4.4.1.2). This higher adoption of heat pumps 

can contribute to lower heating needs (due to higher efficiency of heat pumps compared 

to electric resistances), while also contributing to higher cooling energy consumption due 

to the availability of heat pumps (heat pumps are the only cooling devices considered in 

this work).  

An older housing stock with more houses, and thus fewer people per house, lead to more 

heating but less cooling, due to less efficient houses and fewer people per house, 

respectively. Even though the average dwellings’ floor area is smaller in older houses, 

more dwellings lead to demand associated with general electric appliances and cooking, 

which are related to the floor area. The existence of fewer heat pumps, given the higher 

number of occupied houses (fewer heat pumps), also contribute to the heating/cooling 

results obtained. 
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a. b. 

  

c. d. 

  

Figure 5.3. Sensitivity analysis on different housing stock development characteristics RCP4.5 – Histograms 

Histograms for the sensitivity analysis performed under RCP4.5: a. Household market; b. Floor area of new dwellings; 

c. Electrification of cooking and DHW; and d. Space heating and cooling. 

 

As for the floor area of new dwellings, as expected, smaller homes lead to lower 

electricity consumption due to lower heating, cooling, cooking and general electric 

appliances needs (all assumed to be area dependent). In contrast, larger homes lead to 

higher electricity needs mainly for heating, cooling, and general appliances. Since the use 

of general electric appliances represents heat gains, they may also contribute to increasing 

cooling needs in dwellings. 

The cooking and DHW rates of electrification correlate positively with electricity 

consumption. As a second-order effect, lower electrification rates lead to lower internal 

heat gains (less electric DHW and cooking devices), which leads to higher needs of 

heating and lower needs of cooling. The opposite happens in the case of higher 

electrification rates. It is noteworthy mentioning that the use of non-electric appliances 

may also contribute to the increase of internal gains. However, non-electric appliances' 

energy demand or their contribution to internal gains are not taken into account in this 

study. 

Finally, regarding the adoption of heat pumps, one may observe a positive correlation 

with electricity consumption but with a very slight expression of changes compared to 

the Central scenario. Fewer heat pumps available result in an increase of non-electric 

heating, although there is only a small decrease in heating demand because there is also 

an increase in electric resistance usage. The decrease in cooling energy consumption is 
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explained by the fact that cooling is only provided by heat pumps. More heat pumps result 

only on a slightly higher heating electricity demand because of their high efficiency. The 

increase in cooling consumption is directly due to the increase in the availability of heat 

pumps. Even though it is not considered in this study, the operation of heat pumps may 

aggravate the urban heat island effect, contributing potentially to increase cooling needs. 

Figure 5.4 summarizes the averaged numerical effect of the changing parameters on the 

demand per sector. One can observe that total electricity demand is more sensitive to an 

old housing stock (+19%), due to increased heating and cooking demand, followed by 

electrification rate of DHW and cooking (+8%), which has an obvious strong effect on 

cooking and DHW needs but also cooling demand. Floor area and penetration of heat 

pumps are shown to have a lower impact on residential demand.  

Figure 5.4. Sensitivity analysis on different housing stock development characteristics RCP4.5 – Average 

Change in the average electricity consumption relative to the Central scenario for each type of consumption under 

RCP4.5. 

 

In this study, the average residential electricity demand in the future is expected to 

increase more or less, depending on the scenario (4, 20 and 60%, for the Low, Central, 

and High demand scenarios, respectively). The heating needs tend to decrease by 35 and 

30% in the Low and Central scenarios, respectively, remaining at the present level in the 

High scenario. Cooling needs increase in every scenario: 20-fold in the most extreme 

case. Such results are in line with the existing literature (see section 3.2) [106], [108], 

[111].  
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5.2.  Highly renewables-based power system 

In this section, the high renewables-based power systems proposed above are analyzed. 

The results for RCP4.5 are presented in the main text, the results from RCP8.5 do not 

differ significantly and they may be consulted in Annex V and Annex VI. 

5.2.1. Reference Power Systems20 

In the highly renewable power system, the HiRES, about 88% of the power capacity is 

renewable and the biomass resource is limited to the present values, while in the 

HiRES+UB power system an unlimited availability of biomass is considered. Since the 

power capacity fleet is the same and the only difference is biomass availability, which 

influences solely the renewable generation and emissions, most performance indicators 

of the power system are the same.  

Figure 5.5 shows the performance of the power systems under several variants of climate 

conditions and different demand-flexibility scenarios for electricity demand, annual net 

imports, cross-border interconnections, and curtailment rates.  

  

 
20 A fraction of this subsection is adapted from Figueiredo et al., 2020 [under review in Applied Energy 

Journal]. 
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a. b. 

  

c. d. 

  

Figure 5.5. Highly renewable power systems – RCP4.5 

Performance of the proposed highly-renewable power systems for all ensemble years and each demand-flexibility 

scenario under RCP4.5 in terms of: a. electricity demand; b. annual net imports (resulting from the difference between 

annual imports and exports); c. cross-border interconnection requirements; and d. potential energy curtailment (relative 

to generation). Each boxplot represents the results obtained for all the ensemble years tested.  

 

The total electricity demand may decrease up to 15% in the Low demand scenarios, while 

it may double in High demand scenarios, compared to current values (about 50 TWh, see 

section 3.1). It can be seen that climate does not impact significantly total electricity 

demand since it is assumed that only residential demand, accounting for 19-28.5% of total 

demand depending on the demand-flexibility scenario, is affected by it. Due to climate 

variability, residential demand fluctuates between -8.3 and +4.6% of its average demand. 
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However, since renewable energy generation is mostly driven by climate, energy trade 

across the border strongly depends on climate. Low electricity demand scenarios have 

large energy exports (negative values in Figure 5.5b.), while high demand leads to more 

balanced energy trading (values around zero in Figure 5.5b.). For the same reason, the 

required cross-border interconnection capacity and the curtailment rates are higher for the 

Low demand scenarios due to higher power in excess. 

One may also observe that the flexibility of the system does not affect significantly the 

median nor the scattering of import needs or the required cross-border interconnection 

capacity. In the High demand scenarios, the weak role of flexibility may be caused by the 

great dominance of imports, reducing the importance of the system capability to match 

demand with generation. Conversely, the same is true for the Low demand scenarios, 

where exports are dominant. 

In most ensemble years, all demand-flexibility scenarios lead to cross-border 

interconnection needs well above 5 GW, which is what is expected to be put in place in 

2050 (see Table 4.15 in subsection 4.3.4). For the Low demand scenarios, this may lead 

to a high curtailment of up to 61%, hence increasing costs. 

Figure 5.6 shows the biomass consumption for HiRES (dashed line) and HiRES+UB 

(boxplots). Independently on the climate conditions and demand-flexibility scenarios, the 

HiRES+UB power system more than doubles the biomass consumption of HiRES. Even 

though the aim is to reduce fossil usage, a framework considering an unlimited use of 

biomass resources leads to serious concerns about the sustainable use of natural resources. 

Thus, this configuration of the power system should be addressed cautiously. More than 

half of the biomass consumption in the HiRES comes from industrial CHP power plants. 

The reduction of CHP consumption may be supported by higher electrification of 

processes that are not heat-intensive. 
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Figure 5.6. Biomass consumption in highly renewable power systems – RCP4.5 

Comparison between the biomass consumption for all ensemble and each demand-flexibility scenario under RCP4.5 

for HiRES (highly renewable power system) and HiRES+UB (same with unlimited biomass resource) configurations. 

HiRES is represented in a single dashed line since its biomass consumption is limited to current values and it is always 

fully needed. For HiRES+UB, each boxplot represents the results obtained for all the ensemble years tested. 

 

Figure 5.7 shows the renewable generation share and the CO2 electric emissions from 

both HiRES and HiRES+UB power systems.  

 a. b. 

  

  

Figure 5.7. Renewable share and CO2 emissions from the power systems HiRES and HiRES+UB – RCP4.5 

Comparison between the performance of HiRES (highly renewable power system) and HiRES+UB (same with 

unlimited biomass resource) configurations for all ensemble years and each demand-flexibility scenario under RCP4.5 

in terms of: a. generation share of renewable energy; and b. CO2 emissions from the power system. Each boxplot 

represents the results obtained for all the ensemble years tested. 

  

HiRES (all years)

HiRES UB (all years)
HiRES (all years)

HiRES UB (all years)
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As expected, when unlimited biomass is considered, the natural gas power plants are only 

used in periods of peak demand when the full power capacity of biomass is not enough. 

Thus, HiRES+UB shows better indicators of renewable share and emissions: for the 

median year, it shows on average +7 p.p. of renewable share (84-99%, compared to 

76-93% for HiRES) and -70% of CO2 electric emissions (0.5-9.7 Mton, compared to 

5.3-17.1 Mton for HiRES).  

As expected, the higher demand scenarios lead to lower renewable shares since they 

require higher energy generation. For HiRES and HiRES+UB, the maximum renewable 

share achieved is of 92.3 and 96.0%. In the Low demand scenarios, the HiRES+UB power 

system shows considerably high shares of renewable shares with a minimum of 95.2%, 

while the same value for HiRES is 84.1%. 

For the renewable generation share, the impact of flexibility is relatively small for both 

power systems. In the Low and High demand scenarios, flexibility increases the median 

renewable share on less than 1 and 2 p.p., respectively. As for CO2 electric emissions, the 

impact of flexibility is more pronounced for HiRES+UB: Low demand scenarios decrease 

43% their electric emissions and a 14% decrease is expected for high demand. The same 

numbers for HiRES are about 10% decrease in electric emissions. It should be highlighted 

that the more critical relative decreases in HiRES+UB are mainly driven by the very low 

absolute emissions originated. 

In all demand-flexibility scenarios, the impact of climate variability is visible. Higher 

electricity demand combined with the same power capacity increases the chances that 

renewable generation may not be enough to satisfy all electricity demand. It leads to 

higher variability in High demand scenarios, while Low demand scenarios have a 

narrower variation of renewable generation share. Therefore, the most affected are the 

High demand scenarios, where a fluctuation around the median values of the renewable 

share goes from -16 to +14 p.p. and -15 to +10 p.p. for HiRES and HiRES+UB, 

respectively. As for electric CO2 emissions, the oscillation around the median is of -60 to 

+50% and -82 to +75% for HiRES and HiRES+UB, respectively.  

Looking at the CO2 electric emissions, one could be led to conclude that lower electricity 

demand would be the easy option to fight climate change due to their much lower 

emissions. However, CO2 emissions are not only originated in the power system. In fact, 

other uses of energy may emit a larger amount of CO2. Figure 5.8 shows the total CO2 
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emissions (see section 4.5), which include the emissions originated in the power system 

and the remaining activity sectors. 

 

Figure 5.8. Total CO2 emissions – RCP4.5 

Comparison between the performance of HiRES (highly renewable power system) and HiRES+UB (same with 

unlimited biomass resource) configurations for all ensemble years and each demand-flexibility scenario under RCP4.5 

in terms of: a. generation share of renewable energy; and b. CO2 emissions from the power system. Each boxplot 

represents the results obtained for all the ensemble years tested. 

 

When including other emissions besides the electricity-related emissions, the trend 

changes considerably. The most critical changes are seen in the Low electricity demand 

scenarios, where the emissions increase up to 4.5 and 41-fold in the HiRES and 

HiRES+UB, respectively. The High demand scenarios increase up to 27 and 49% for 

HiRES and HiRES+UB, respectively. Accounting for other emissions shows that higher 

electricity demand may provide a less pollutant alternative (when considering highly 

decarbonized power systems).  

Again, the High demand scenarios show the highest oscillations of CO2 emissions with 

climate variability, showing a fluctuation around the median value of -44 to +40% and -53 

to +51% for HiRES and HiRES+UB. Such results highlight the need to consider climate 

variability in the performance of the power system to more realistically establish the 

impact of policies and other measures under different climate conditions. 
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5.2.2. Solar-wind power capacity 

To achieve power system targets, such as renewable energy share and CO2 emissions, for 

all the years present in the ensemble, one needs to increase the renewable energy installed 

capacity. Since hydropower and biomass are already constrained in these future power 

system configurations, the solution seems to be to adjust the installed capacity of 

photovoltaic and onshore wind. Below, the photovoltaic and onshore wind installed 

capacities are varied keeping a 2:1 ratio as in the reference power systems (which consider 

20 GW of solar and 10 GW of onshore wind, see subsection 4.3.4). The impact of installed 

capacities differs among the power systems tested (HiRES and HiRES+UB), the 

demand-flexibility scenarios and the performance indicators. To self-contain this 

analysis, four indicators were chosen: net imports, cross-border interconnection for 

imports, renewable share generation and total CO2 emissions. Also, for 

comprehensiveness reasoning, three demand-flexibility scenarios are chosen to bound the 

results: Low demand + High flexibility (LoDeHiFlex), Central and High demand + Low 

flexibility (HiDeLoFlex). The remaining results may be consulted in Annex VI. To better 

contextualize the results, one goal for each indicator was selected, as follows 

• Annual net imports – To ensure a balanced power system that is not under- or 

over-generating electricity, the cancellation of the annual net imports was considered. 

• Cross-border interconnection for imports – A 5 GW limit for interconnection was 

assumed, supported by literature (see subsection 4.3.4). 

• Renewable generation share – A fully decarbonized power system (i.e., 100% 

renewable generation) was settled as the goal for this indicator. It is also the goal of 

the Portuguese roadmap RNC2050 [99].  

• Total CO2 emissions – The goal was defined as 6.3 Mton of CO2 emissions [109]. It 

is the value for the most optimistic vision of RNC2050, excluding emissions that are 

not taken into account in this work: fluorinated gases, refining, and fugitive 

emissions, aviation, navigation and railways. 

Figure 5.9 shows the annual net imports and cross-border imports’ interconnection for 

the three chosen demand-flexibility scenarios given different photovoltaics and onshore 

wind (PV+Wind) power capacities. Similarly to above, the HiRES and HiRES+UB power 

systems result in the same annual net imports and cross-border interconnection for 

imports, since those power systems differ only in biomass and natural gas availability.   
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a. b. 

  
c. d. 

  
e. f. 

  

Figure 5.9. Annual net imports and cross-border interconnection in varying PV+Wind capacities – RCP4.5 

Annual net imports and cross-border interconnection for imports for different PV+Wind installed capacities (ratio 2:1) 

for different climate conditions and three demand-flexibility scenarios under RCP4.5: a/b. Low demand + High 

flexibility (LoDeHiFlex); c/d. Central; and d/e. High demand + Low flexibility (HiDeLoFlex), respectively. Each 

marker represents different percentiles of net imports/cross-border interconnection: square with a dashed line – 50th 

percentile and hexagram with a solid line – 95th percentile.   

median years 95% unfavorable years



 

165 

Null net imports show that the power system is able to generate the same amount of 

energy that it consumes. In the Low demand scenarios, a strong bias towards exports is 

observed for all PV+Wind capacities tested, leading to high curtailment rates. To achieve 

null net imports in median years, in the Central scenario a 45% decrease below the 

reference power system capacities is required, while for higher levels of demand a 

decrease of 7% of the PV+Wind reference power is needed resulting in about 16.5 and 

28 GW, respectively. For unfavorable years (95th percentile), the High demand scenarios 

require 35 GW of PV+Wind power, corresponding to a 25% increase compared to the 

requirements for the median year (and 16% above the reference PV+Wind power). 

Cross-border interconnections are extremely important to ensure the feasibility of a power 

system that is not prepared to operate in an island-mode. While export interconnection 

requirements may be diminished by curtailing energy generation, the need for imports 

interconnection is more complex to solve. For this reason, the focus here is given to the 

behavior of the power system in terms of import interconnection. The import needs in 

Low demand scenarios are negligible. The Central scenario shows reasonable 

cross-border interconnection requirements, but always below 5 GW, both for median and 

unfavorable years. On the contrary, the High demand scenario with low flexibility 

(HiDeLoFlex) is not able to decrease the import cross-border interconnection. But when 

high flexibility is added (HiDeHiFlex, see Annex VI), an 83% increase in PV+Wind 

power (corresponding to 55 GW) enables the decrease of the interconnection to values 

below 5 GW under the median climate year. 

Figure 5.10 shows the renewable generation share and the total CO2 emissions under 

different PV+Wind power capacities for HiRES and HiRES+UB. 
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a. b. 

  
c. d. 

  
e. f. 

  

Figure 5.10. Annual net imports and cross-border interconnection in varying PV+Wind capacities – RCP4.5 

Annual net imports and cross-border interconnection for imports for different PV+Wind installed capacities (ratio 2:1) 

for different climate conditions and three demand-flexibility scenarios under RCP4.5: a/b. Low demand + High 

flexibility (LoDeHiFlex); c/d. Central; and d/e. High demand + Low flexibility (HiDeLoFlex), respectively. Each 

marker represents different percentiles of net imports/cross-border interconnection: square with dashed line– 50th 

percentile and hexagram with a solid line – 95th percentile.   

median years

95% unfavorable years

HiRES

HiRES UB

median years

95% unfavorable years

HiRES

HiRES UB
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Considerably different behaviors can be seen among the demand-flexibility scenarios. In 

the LoDeHiFlex, the renewable generation share decreases or shows small increases with 

the introduction of variable renewable power capacity. It results from the increasing need 

for stabilization share provided by dispatchable generation, i.e., the increase of variable 

renewable generation leads to the need for increasing dispatchable generation which may 

be provided by natural gas powerplants. The total CO2 emissions increase for the same 

reasons for both power systems. 

In the Central scenario, a strong increase in the renewable share is observed, peaking at 

37.5 GW (i.e., 25 GW of photovoltaic and 12.5 GW of onshore wind, an increase of 25% 

over the reference) with 91.3 and 97.8 % for HiRES and HiRES+UB under the median 

year, respectively. The total CO2 emissions are minimized at 30 GW (precisely, the 

reference power system proposed with 20 GW of photovoltaic and 10 GW of onshore 

wind) with 19.6 and 13.6 Mton of CO2 emissions for HiRES and HiRES+UB under 

median year conditions, respectively. The change in the trend towards a more sustainable 

system is the result of the increase in fossil dispatchable generation to compensate the 

variable generation while keeping the defined stabilization share. 

Finally, under the median year, the HiDeLoFlex scenario requires an increase of 50% in 

the PV+Wind capacities to maximize the renewable generation share (82.6 and 89.4% for 

HiRES and HiRES+UB, respectively) and minimize the total CO2 emissions (19.4 and 

12.0 Mton for HiRES and HiRES+UB, respectively). 
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5.3.  Fully renewable power system 

In this section, the 100% renewable power system (100%RES) is analyzed in detail. It 

shows only the results for RCP4.5. The results for RCP8.5 are analogous and are included 

as Annex VII-VIII. 

5.3.1. Approach 

In the highly renewable power systems (HiRES and HiRES+UB) configuration described 

in the previous section, natural gas power plants were available to meet peak demand. In 

the 100% renewable power system this is not true. Since the risk of not complying with 

the system needs is higher in the 100%RES, the level of resilience of the power system is 

here introduced.  

Required power configurations for wind onshore and photovoltaics are proposed to 

achieve zero net annual imports for each demand-flexibility scenario. These 

configurations of installed capacity are defined according to the chosen climate variability 

threshold, used to define the level of resilience. In this context, the term resilience is used 

to characterize the level of national independence from outside energy trades, assuming 

null net imports.  

Thus, the required installed power for the median year (50% resilient) will be lower than 

the required installed power for a more conservative approach of using the year that 

corresponds to the 95th percentile (95% resilient power system). As before, unfavorable 

conditions are represented by the climate thresholds above the 50th percentile, since, for 

the same power system, they require higher net imports. Hence, the 95th percentile of net 

imports is considered as a 95% unfavorable year’s threshold. 

Figure 5.1 schematizes the level of resilience of a power system and the corresponding 

thresholds. 
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Figure 5.11. Level of resilience of the power system 

Schematic of the level of resilience of the power system and the definition of unfavorable/median years, according to 

the net imports.  

 

The cross-border interconnection and dedicated stationary energy storage requirements 

are then explored for those power systems with the required photovoltaics-wind onshore 

capacities. The dedicated stationary storage aims at decreasing the cross-border 

interconnection to 5 GW (see subsection 4.3.4 and subsection 4.4.2.4). Figure 5.12 

summarizes the approach taken here. 

 

Figure 5.12. General approach for the fully renewable power system 

Summarized scheme describing the approach taken to analyze the performance of the 100% renewable power system. 
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5.3.2. Reference Power System 

Figure 5.13 shows, for the reference power system under all ensemble years, the 

electricity demand, the cross-border interconnection requirements, the net annual imports 

and the curtailment fraction for each demand-flexibility scenario. 

a. 

 

b. c. 

  

Figure 5.13. Fully renewable power system – RCP4.5 

Performance of the proposed 100%RES power system for all ensemble years and each demand-flexibility scenario 

under RCP4.5 in terms of: a. electricity demand; b. annual net imports (resulting from the difference between annual 

imports and exports); c. cross-border interconnection requirements; and d. potential energy curtailment (relative to 

generation). Each boxplot represents the results obtained for all the ensemble years tested.  

 

Higher exports are expected for Low demand scenarios whereas higher imports are 

required for High demand scenarios. The Central scenario seems to be a more balanced 
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alternative since its distribution is centered on zero net imports. This is also supported by 

the cross-border interconnection needs.  

The Central scenario shows a wider range of cross-border interconnection needs but with 

lower median values, mainly because it is a more balanced scenario. It shows that the 

reference power system is better suited for the Central scenario demand, i.e., installed 

capacities are better adjusted to the electricity demand. With a better adjusted power 

system, the cross-border interconnection capacity is less critical because the number of 

hours with high interconnection requirements decreases (for both exports and imports). 

Despite the decrease of the median cross-border interconnection, the Central scenario still 

shows significant export needs that surpass the highest interconnections from the High 

demand scenarios, which may be explained by the exporting needs that are still 

significant. As for curtailment, it is expected to be higher in Low demand scenarios due 

to excess generation. 

Overall, the highly-renewable power systems (HiRES and HiRES+UB), presented in 

section 5.2, show higher annual exports (lower annual net imports), higher cross-border 

interconnection and similar curtailment rates. The higher exports may be explained by: 

1) the industrial CHP generation, which is removed in this 100%RES (see subsection 

4.3.4);  

2) stabilization share – In HiRES and HiRES+UB, it was only provided by 

dispatchable generation. Hence, with high variable renewable the system requires higher 

dispatchable generation, consequently increasing the total generation and the exports. 

With the introduction of variable generation stabilization (15% of variable generation, 

see subsection 4.3.4), the required dispatchable generation decreases so does the total 

generation and exports. The higher cross-border interconnection may be explained with 

the same rationale since the highest values presented in HiRES and HiRES+UB are due 

to exports.  

Figure 5.14 shows the biomass consumption in all ensemble years and demand-flexibility 

scenarios. With the removal of industrial CHP and the increase of available generation 

for stabilization, the use of biomass decreases compared to the HiRES+UB scenario. 

While for the Low and Central demand scenarios the biomass consumption is mostly 

under the present consumption, in the High demand scenarios it may increase 3-5% under 

the median years’ conditions and about 12% at maximum. 
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Figure 5.14. Biomass consumption in the fully renewable power system – RCP4.5 

Comparison between the biomass consumption for all ensemble years and each demand-flexibility scenario under 

RCP4.5 for 100%RES (100% renewable power system) and the present consumption. The dashed line represents the 

present consumption of biomass and each boxplot represents the results obtained for all the ensemble years tested in 

the 100% RES. 

5.3.3. Required solar-wind power capacity 

Different scenarios implying different levels of external energy dependency raise an 

issue, which is how to define the required power fleet assumed as installed in such 

scenarios. In order to do this, a zero annual import/export balance was imposed, i.e., total 

annual demand must be met by the endogenous total renewable annual generation. This 

to identify system portfolios conducive to that result. 

The installed capacity required to achieve zero net imports for each demand-flexibility 

scenario was determined by adjusting the solar and onshore wind power capacity 

preserving a 2:1 power ratio present in the reference 100%RES power system (e.g. 20 

GW of solar for 10 GW of onshore wind, see subsection 4.3.4). The required power 

system was determined for different climate conditions, e.g. a median year will require 

less installed capacity than a 95% unfavorable year (the 95th percentile).  

Figure 5.15 exemplifies the analysis performed for the Central scenario. The details of 

the analysis for the remaining demand-flexibility scenario are presented in Annex VIII. 
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Figure 5.15. Analysis of the required photovoltaics and onshore wind capacity in Central scenario – RCP4.5 

Analysis of the required photovoltaics and onshore wind capacity for different levels of resilience under RCP4.5 Central 

scenario. Each marker represents different percentiles of net imports: square – 50th percentile and hexagram – 95th 

percentile (95% unfavorable year).  

 

Figure 5.16 shows the PV+Wind power capacity required to achieve zero net imports for 

the different demand-flexibility scenarios for a 50 and 95% level of resilience (i.e., for 

the median and the 95% unfavorable year, respectively). For each of the 

demand-flexibility scenarios, different climate conditions imply different PV+Wind 

capacities. It is noteworthy to highlight that these power systems are only guaranteeing 

zero net imports within the climate they were designed for.  

 

Figure 5.16. Required photovoltaic and wind capacity – RCP4.5 

Combined photovoltaics and onshore wind capacities required for having null net imports for the different 

demand-flexibility scenarios with 50 and 95% resilience under RCP4.5. 
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The impact of demand-flexibility is clearly represented in these results: the required 

solar-wind capacity for a fully decarbonized power system may increase 3-fold from a 

Low to a High demand scenario (from 50 to 80% of the total installed capacity for the 

50% resilient system), assuming that marginal demand is fully satisfied by these 

technologies.  

To achieve a very resilient power system with zero net imports, ceteris paribus one should 

increase the installed capacity. Within the Low demand scenarios, a 95% resilient power 

system needs 77% more PV+Wind (about more 8 GW) than a 50% resilient one. For the 

High demand scenarios, the corresponding increase is 36%, from 44 to 60 GW. 

Under the median years’ conditions, the HiRES and HiRES+UB power systems achieved 

null net imports around 16.5 GW and 28 GW for the Central and High demand scenarios 

(see section 5.2). The higher requirements shown by the 100%RES (27 and 44 GW for 

Central and High demand scenarios) are translated into an increasing vulnerability to 

climate, explained by the lower generation (e.g. industrial CHP and natural gas power 

plants). 

Figure 5.17 shows the import cross-border interconnection requirements for the 50 and 

95% resilient power system (defined for each scenario), highlighting the important 

variations depending on demand and climate.  

 

Figure 5.17. Cross-border interconnection requirements – RCP4.5 

Cross-border interconnection required for imports for the power systems designed with a level of resilience of 50 and 

95% under RCP4.5. Each boxplot represents the results obtained for all the ensemble years tested. The dark red square 

highlights the median of the 50% resilient power system.  
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For the 50% resilient power system, the higher flexibility in the system allows for slightly 

lower cross-border interconnection needs, on average -5% for the extreme years, due to 

the mechanisms shifting demand to off-peak periods. For the median year (zero 

import-export balance), this power system requires an interconnection between 2.0 and 

7.8 GW, mostly depending on demand. A power system should be prepared for different 

weather conditions possible of occurring during its lifetime, ensuring always a reliable 

performance. In this sense, to become a resilient power system, the cross-border 

interconnection corresponding to the 50% resilience level should increase by 53-95%. 

The most critical increase is in the Central scenario, where the 3.9 GW interconnection, 

enough for the median year, should increase to 7.6 GW to meet the needs under the most 

extreme years.  

The 95% resilient power system shows an average decrease in the required cross-border 

interconnection needs for imports of 30% compared to the 50% resilient system. This 

significant decrease is observed in every flexibility-demand scenario; it is mainly caused 

by a substantial increase in energy generation, avoiding import needs. Flexibility plays 

an important role within this power system: more potential to export energy allows better 

use of load shifting mechanisms, leading to an average decrease of 11% of the maximum 

cross-border interconnection required.  

These results point to the critical role of high cross-border interconnection capacity, 

particularly for the High demand scenarios, whose requirement is about 10-12 GW, 

significantly above the 5 GW assumed as a sensible interconnection capacity for the 

Portuguese power system.  

An alternative to the (expensive) expansion of the cross-border interconnection required 

would be the introduction of dedicated stationary energy storage. For the Low demand 

scenarios, there is no need for additional energy storage, as Figure 5.18 shows, since the 

need for interconnection is always below 5 GW.  
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Figure 5.18. Dedicated stationary energy storage – RCP4.5 

Dedicated stationary energy storage required for the power system designed with a level of resilience of 50 and 95% 

under RCP4.5, to limit the cross-border interconnection to 5 GW. Each boxplot represents the results obtained for all 

ensemble years tested. The dark red square highlights the median of the 50% resilient power system. 

 

For the remaining, in the case of the 50% resilient system, an increase up to 200-fold is 

required, which is the case of the Central scenario, where a limited additional energy 

capacity of 7.6 GWh is needed for the median year increasing up to 1.5 TWh under 

extreme climate. Correspondingly, a 10-fold increase (0.4 to 4.3 TWh) in storage needs 

is observed for the HiDeLoFlex scenario. Considering that the initial storage included in 

the model ranges from 3.1 to 3.4 TWh (mostly from hydro reservoir storage capacity), 

this additional stationary storage is considerably relevant. Depending on the 

demand-flexibility scenario and climate, it may entail a doubling of the initial storage. 

For the power system with the resilience of 95%, the need for additional storage decreases 

significantly, becoming null for most of the weather conditions tested. The flexibility 

plays an important role in the High demand scenarios as it reduces the maximum 

additional storage required by 13 and 19% for the 50 and 95% resilient power systems, 

respectively. 

A sensitivity analysis on the cross-border interconnection was performed for the 

demand-flexibility scenario with higher storage needs (HiDeLoFlex) for both the 50 and 

95% resilient power systems, Figure 5.19.  

The present cross-border interconnection is about 3 GW; if it remains constant until 2050, 

the power system may require a dedicated storage capacity equivalent of up to 8 and 2.6% 

of total demand for the 50 and 95% resilient power system, respectively. Considering the 
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European Union target for 2030 of 15% interconnection capacity (as per the ENTSO-E 

[223]), which is also the target for Portugal [169], the cross-border interconnection for 

the power system required in the HiDeLoFlex scenario is of 10 and 13 GW for a 50 and 

a 95% level of resilience, respectively. With those interconnection levels, the required 

dedicated energy storage for a 95% unfavorable year decreases significantly: 240 GWh 

(0.2% of total demand) for the 50% resilient power system, and none for the 95% resilient 

system. One should highlight that such high cross-border interconnection needs are very 

ambitious and would require a significant investment in both the Portugal-Spain and the 

Spain-France interconnections. 

 

Figure 5.19. Sensitivity analysis on the cross-border interconnection for High demand + Low flexibility – RCP4.5 

Dedicated stationary energy storage required according to the cross-border interconnection for the power system 

designed with a level of resilience of 50 and 95% under RCP4.5. The required dedicated stationary energy storage 

requirement for different cross-border interconnection capacities is represented in: dashed line– 50th percentile and 

solid line – 95th percentile. 

 

Planning for a power system based on a 95% unfavorable year makes it more resilient, 

but it may also entail higher energy costs. Figure 5.20 shows the fraction of generated 

energy potentially curtailed according to the level of resilience. Power systems with 

higher resilience lead to high export needs for most of the ensemble years, because they 

are prepared for rare climate conditions that otherwise would result in import needs. Thus, 

some curtailment may be required for a higher fraction of the ensemble years tested, 

resulting in up to 48% of curtailment, compared to 35% within the 50% resilient power 

system. Regarding system flexibility, when more is available it is expected a decrease of 

up to 3% on potential curtailment for a 95% resilient system, and up to 7% for a 50% 

resilient system. 
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Figure 5.20. Potential energy curtailment – RCP4.5 

Generation potentially curtailed for the power systems designed with a level of resilience of 50 and 95% under RCP4.5. 

Each boxplot represents the results obtained for all the ensemble years tested. The dark red square highlights the median 

of the 50% resilient power system. 

 

As to a comparison between the 50% resilient power system for a median year, and the 

95% resilient one for all weather conditions (a red dark square is presented in Figure 5.17, 

Figure 5.18 and Figure 5.20 to highlight the performance of a power system planned for 

and subjected to a median year), the cross-border interconnection requirements for the 

median year are always higher for the less resilient configuration, as Figure 5.17 shows, 

because it assumes less capacity installed. For the median year, a 95% resilient system 

requires less 1-2 GW of cross-border capacity. To cover all climate conditions in the 

HiDeLoFlex scenario, the most critical, the 95% resilient power system needs 10 GW of 

interconnection, 13% less than the 12 GW required by the 50% resilient power system.  

Similar trends can be seen in Figure 5.18 for the dedicated energy stationary storage that 

is required: the power system with a lower level of resilience also presents higher storage 

needs than the more resilient one. In this case, for the median year, no stationary storage 

is required when considering the 95% resilient power system. Regarding the maximum 

storage required in the HiDeLoFlex scenario, the 95% resilient power system needs 

1.9 TWh while the 50% resilient one needs twice this value. Following the same rationale, 

the median potentially curtailed energy of the 95% resilient system increases on average 

6-fold compared to the median of the 50% resilient system, due to the lower generation 

rates.  
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6. Conclusions and final remarks 

To fight climate change, nations worldwide are coming together to urge the need for an 

energy transition. Part of their attention is turned to power systems and their 

corresponding emissions. For this reason, power systems will become fully renewable. 

Critical challenges arise for future power systems highly dependent on renewables. From 

one point-of-view, the high penetration of renewables is augmenting the power systems’ 

sensitivity to climate conditions, since most renewable resources are directly dependent 

on climate. From another angle, the development of future electricity demand is subject 

to a high level of uncertainty. The high sensitivity of future power systems to climate and 

future society development builds up the need to further study them under different 

combined outcomes in demand and supply dimensions. 

This thesis aims to fulfill that need by studying the performance of highly renewable 

power systems under climate variability and different demand development scenarios. 

The case study is the Portuguese power system in the mid-21st century. It uses an 

hourly-based modelling tool to simulate the power system. A multiyear calibration is 

proposed, validated and implemented. Climate variability is addressed by applying an 

ensemble containing the equivalent to almost 500 years of climate data, provided by an 

ensemble based on two representative concentration pathways (RCP4.5 and RCP8.5) for 

the period 2045-2055. Five demand-flexibility scenarios are built to address uncertainty 

in the development of electricity demand. Diverging paths for electricity demand and 

system flexibility are applied to create those scenarios. Three power fleet configurations 

are proposed: a highly renewable power system with the current biomass availability, a 

highly renewable power system with unlimited biomass availability and 100% renewable 

power system. This work has focused on the Portuguese power system, but its qualitative 

results may be applied to other regions with similar characteristics. 

The main question that motivates this research work is: How resilient will a 

renewables-based power system be? Its answer may be divided into two main dimensions 
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of the power system: climate variability and future demand. The first emerging question 

is about the impact of climate variability: 

What is the impact of climate variability on the power system? 

First, the focus is given to the impact on residential electricity demand. Climate variability 

is more relevant within scenarios of increased electrification, because of increased needs 

for electric space heating and cooling. The demand varies between -77 and +85% for 

space cooling and between -51 and +47% for space heating, around their average values. 

Due to climate variability, the total residential electricity demand oscillates between -8 

and +5% around its average value. Those results may entail significant consequences for 

the power system.  

The impact of climate variability on the performance of a highly renewables-based power 

system can be noticed in different aspects. Potential curtailment shows high variability in 

Low demand scenarios, decreasing its value and variability with increasing demand. Its 

median goes from 44% to none from the Low to High demand scenarios, and its 

variability ranges from 36 to 8 p.p. Cross-border interconnection needs oscillates between 

-62 and +226% around the median. For High demand scenarios, the renewable generation 

share varies 15 p.p. around its median value, while CO2 emissions fluctuate 40-50% 

around the median value. Regarding the PV+Wind power capacity variation, increasing 

renewable penetration leads to higher variability in the performance indicators. 

Considering, for example, the balance between annual imports and exports, the required 

capacity to achieve null net imports may suffer an increase of 25% for high demand from 

the median to unfavorable year. These results are supported by the results obtained using 

RCP4.5; RCP8.5 shows similar but slightly more pronounced results, which is also true 

for the discussion presented below. 

Besides climate variability, the development of electricity demand comprises significant 

changes to the performance of the power system. This triggers the following research 

question: 

How will the power system respond to different society evolution scenarios? 

The impact of different society evolution scenarios is primarily seen directly in the 

magnitude of demand and system flexibility. However, its inclusion in the power system 

modelling also changes its performance.  
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For the residential demand, the demand-flexibility scenarios are driven by demand 

magnitude only. The total residential demand is expected to increase on average from 4 

to 60%, depending on the scenario considered. Space heating is expected to decrease on 

average between 1 and 35%, whereas space cooling tends to increase from 5 to 21-fold. 

As for the total electricity demand, it may decrease up to 15% in the Low demand and 

double in High demand scenarios, compared to the present.  

The performance of the highly renewable power system is seriously affected by society's 

evolution scenarios. Potential curtailment may go up to 61% for Low demand scenarios, 

while it does not exceed 10% for high demand. Cross-border interconnection needs are 

mainly driven by export needs, thus Low demand scenarios show a median cross-border 

requirement four times higher than High demand scenarios. Under the median years’ 

conditions, a decrease of 16 p.p. may be observed for the renewable share from Low to 

High demand scenarios. A decrease of 20 to 36% of total CO2 emissions is observed from 

the Low to High demand scenarios. When looking at the changes in PV+Wind power 

capacities, the main differences across demand-flexibility scenarios are their ability to 

comply with the established goals. The Low demand scenarios are able to achieve almost 

100% renewable electricity generation while showing almost no need for imports 

capacity.  

Finally, the impact of the system flexibility differs among the performance indicators. 

While it almost does not affect the import needs or cross-border interconnection needs, a 

small impact may be observed for the renewable generation share, where an increase of 

1-2 p.p. is due to system flexibility improvement. The impact of different society 

evolution scenarios (i.e., demand-flexibility scenarios) is noteworthy and often higher 

than that from climate variability.  

The study of the impact of both climate variability and different demand-flexibility 

scenarios under a 100% renewable power system is of utmost importance to determine its 

resilience. This leads to the following and final research question:  

Can Portugal be a resilient 100% renewables-based power system by the middle of the 

century? 

The answer to this question depends on the path taken from now until the year 2050 in 

the power system and demand development. Portugal may choose to be in the far front of 

renewable power systems, but that must entail the careful planning of the power system 
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that should be iteratively adapted with changes in the electricity demand trend along the 

coming years. Below, the impact of climate variability and demand in a 100% renewable 

power system is summarized. 

The 100% renewable power system was defined by removing any fossil-based generation 

present in the previous highly renewable power systems. For this reason, it lost a great 

amount of dispatchable generation, making it rather vulnerable to climate variability.  

Planning a 100% renewable power system for all climate conditions requires doubling 

the cross-border interconnection than when it is planned for the median year. Instead of 

adding cross-border interconnections, additional energy storage may be included. In this 

case, to be resilient under extremely unfavorable years it may be required to double all 

the energy storage present in the reference system. However, the cross-border 

interconnection required (without additional energy storage) does not surpass Europe’s 

2030 15% interconnection capacity target (regarding the total power capacity) defined for 

any of the demand-flexibility scenarios. Thus, if that target is to be met, there would be 

no need for the implementation of energy additional storage. 

A resilient power system should be planned based on unfavorable years. If so, an increase 

of 36 to 77% of PV+Wind power capacity is required to face the unfavorable year, 

compared to a power system planned for the median year. With that high level of 

resilience, such power system ensures null net imports for the unfavorable years while 

requiring less 2 GW of cross-border imports interconnection. As expected, when planning 

a more resilient power system the high installed capacities are being oversized to comply 

with the unfavorable years. For this reason, it increases the curtailment from 35 to 48%.  

This thesis has shown the role of climate variability, electricity demand and system 

flexibility in the performance of highly renewable power systems. The future of the power 

system is highly uncertain, which is even more critical if its planning does not take into 

account climate variability and different societal development paths. By considering these 

factors, the planning of power systems may be dynamically adjusted with updated 

information, considerably reducing the risks related to uncertainty. In addition, the 

dependency of the power system planning from societal development was also shown to 

be important. This reveals the strong role that policies might have to properly drive 

society towards sustainability. It may include policies directed to new technologies, 

energy efficiency, buildings’ refurbishment, new mobility solutions, and the deployment 

of demand-side management and energy storage.  
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6.1.  Opportunities for further research  

There are still plenty of opportunities to further explore the planning of the power system 

under climate variability and considering diverging electricity demand development 

paths. Future work may build upon some of the limitations of methods developed in this 

thesis. Hereafter, some suggestions are presented.  

In this work, one single economic sector (residential sector) was considered to be 

dependent on climate. Thus, more elegant approaches to determine the future hourly and 

annual electricity demand linked with climate should be applied for the remaining sectors, 

essentially in services, industry and agriculture sectors. The role of heavy passenger, 

aviation, navigation, and railways in a decarbonized framework of society could also be 

further explored since here little attention was given to it. Hydrogen could also be 

included as an energy vector in different activity sectors. 

Regarding the supply side, temporal interpolation of temperature, irradiance and wind 

speeds was based in simplified methods, but other more sophisticated methods could be 

adopted. The water supply availability and the determination of the run-of-the-river 

generation also deserve further attention, e.g. by implementing hydrological models. One 

of the biggest limitations of this work is the spatial resolution for the power system 

modelling. While here a single point in space is assumed for the total supply-demand 

balance, a significant improvement would be to consider the decentralization of 

generation and demand. It could include a more precise representation of the power 

system with transmission lines connecting different regions with endogenous generation 

and electricity demand. In this sense, the congestion of transmission lines could be a focal 

point for future research. For example, a finer temporal resolution could be applied to 

further explore the feasibility of highly renewable power systems under a more refined 

simulation that considers in more detail security of supply and grid stabilization issues. 
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 Supplementary Material 

This supplementary material aims to complete the results before presented. It contains 

Annex I to VIII, presented in the same order as referred to in the main body of this thesis. 

 

Annex I. Renewable energy generation 

Figure I.1. Annual generation of renewable energy – RCP4.5 

Annual renewable generation for each of the climate realizations (ordered by net imports, with the first climate 

realizations corresponding to situations with high exports) under RCP4.5. The hydro dam generation corresponds to 

the one observed in Central scenario for the 100% renewable power system (100%RES). 

 

Figure I.2 Annual generation of renewable energy – RCP8.5 

Annual renewable generation for each of the climate realizations (ordered by net imports, with the first climate 

realizations corresponding to situations with high exports) under RCP8.5. The hydro dam generation corresponds to 

the one observed in Central scenario for the 100% renewable power system (100%RES).  
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Annex II. Standard calibration 

Table II.1. Standard model calibration in the period 2011-2015 

Model results using single year calibration for corresponding calibrating year [95], [96], [142]. 

Model results [differences in %] 

  2011 2012 2013 2014 2015 

Electricity demand  0.00 0.00 0.00 0.00 -0.01 

Average monthly demand differences -0.03 -0.02 0.01 -0.01 -0.03 

Electricity generation       

Thermal power plant      

CHP -0.02 -0.02 0.00 +0.03 +0.02 

Condensing power plant -0.02 -0.02 0.00 0.03 0.02 

Coal and biomass 0.01 0.04 0.02 0.02 -0.02 

Natural gas -0.05 -0.02 -0.07 0.36 -0.02 

Dammed hydro -0.11 -0.32 -0.70 -0.58 +0.31 

Run-of-the-river -0.03 +0.11 -0.36 -0.05 -0.07 

Wind +0.03 -0.01 -0.03 -0.06 +0.02 

PV -1.00 +0.73 -0.61 -0.69 +0.25 

RES share  -0.89 -2.19 -0.88 -0.4 -1.54 

Primary fuel consumption      

Coal -0.03 0.02 -0.01 0.01 0.00 

Natural gas -0.01 0.00 0.04 0.04 -0.03 

Biomass -0.01 0.01 0.01 0.01 0.00 

Other non-renewable -0.03 0.00 0.00 -0.01 0.00 

Total consumption -0.02 0.01 -0.06 -0.03 -0.01 

Import/Export balance -4.57 -4.87 -8.53 -16.60 -11.36 

CO2 emissions -0.02 0.01 0.01 0.00 -0.01 
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Annex III. Multiyear calibration 

 

Table III.1. Linear regression analysis – Efficiency of coal and biomass power plants  

Root mean square error (RMSE), coefficient of determination (R2) and p-value (F-statistics) of several models which 

combine the single independent variable selected previously (Electricity consumption) for the prediction of 

𝜂𝑃𝑃,𝑐𝑜𝑎𝑙 𝑎𝑛𝑑 𝑏𝑖𝑜𝑚𝑎𝑠𝑠. The coefficients of each term of the model and its respective p-value (Wald-statistics) are also 

presented. 

Linear regression analysis – efficiency of coal and biomass power plant, 𝜼𝑷𝑷,𝒄𝒐𝒂𝒍 𝒂𝒏𝒅 𝒃𝒊𝒐𝒎𝒂𝒔𝒔 

  

RMSE R2 
p-value 

(F-stats.) 

 

Estimates 

p-value 

(Wald 

stats.) 

Single 

independent 

variable 

X1 

Model 1 – 

Elect. cons. 
0.0090 0.6708 0.0899 

𝛽̂0 0.779 - 

𝛽̂1 -0.009 0.0899 
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Table III.2. Linear regression analysis – Efficiency of natural gas power plants 

Root mean square error (RMSE), coefficient of determination (R2) and p-value (F-statistics) of several models which 

combine the four independent variables selected previously (precipitation, wind index, Electricity consumption and 

RES generation) for the prediction of 𝜂𝑃𝑃,𝑛𝑎𝑡𝑢𝑟𝑎𝑙 𝑔𝑎𝑠. The coefficients of each term of the model and its respective p-

value (Wald-statistics) are also presented. 

Linear regression analysis – efficiency of natural gas power plant, 𝜼𝑷𝑷,𝒏𝒂𝒕𝒖𝒓𝒂𝒍 𝒈𝒂𝒔 

  

RMSE R2 
p-value 

(F-stats.) 

 

Estimates 

p-value 

(Wald 

stats.) 

Single 

independent 

variable 

 

X1 

Model 2 – 

Precipitation 
0.0409 0.7520 0.0569 

𝛽̂0 0.625 - 

𝛽̂1 -1.691×10-4 0.0569 

Model 3 – 

Wind index 
0.0397 0.7671 0.0515 

𝛽̂0 0.933 - 

𝛽̂1 -1.812×10-4 0.0515 

Model 4 – 

Elect. cons. 
0.0669 0.3381 0.3038 

𝛽̂0 -1.210 - 

𝛽̂1 0.034 0.3038 

Model 5 – 

RES 

generation 

0.0348 0.8207 0.0342 
𝛽̂0 0.704 - 

𝛽̂1 -0.008 0.0342 

Two 

independent 

variables 

 

X1 + X2 

Model 6 – 

RES 

generation + 

Precipitation 

0.0332 0.8366 0.1634 

𝛽̂0 0.688 - 

𝛽̂1 -0.006 0.4160 

𝛽̂2 -5.518×10-5 0.7021 

Model 7 – 

RES 

generation + 

Wind index 

0.0253 0.905 0.095 

𝛽̂0 0.850 - 

𝛽̂1 -0.005 0.2306 

𝛽̂2 -9.204×10-5 0.3144 

Model 8 – 

RES 

generation + 

Elect. cons. 

0.0143 0.9698 0.0302 

𝛽̂0 -0.475 - 

𝛽̂1 -0.007 0.0231 

𝛽̂2 0.023 0.0881 
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Table III.3. Linear regression analysis – Water supply normalized 

Root mean square error (RMSE), coefficient of determination (R2) and p-value (F-statistics) of several models which 

combine the five independent variables selected previously (Tmin, precipitation and wind index) for the parameterization 

of WSnorm. The coefficients of each term of the model and its respective p-value (Wald-statistics) are also presented. 

Linear regression analysis – Water supply normalized, WSnorm 

  RMSE R2 
p-value 

(F-stats.) 
 Estimates 

p-value 

(Wald-

stats.) 

Single 

independent 

variable 

 

X1 

Model 9 – 

Tmin 
1,191.2 0.3563 0.2879 

𝛽̂0 -7,894.2 - 

𝛽̂1 940.3 0.2879 

Model 10 – 

Precipitation 
496.5 0.8882 0.0164 

𝛽̂0 -1,121.0 - 

𝛽̂1 3.319 0.0164 

Model 11 – 

Wind index 
1,156.6 0.3932 0.2576 

𝛽̂0 -4,195.5 - 

𝛽̂1 2.344 0.2576 

Two 

independent 

variables 

 

X1 + X2 

Model 12 – 

Precipitation 

+ Tmin 

475.4 0.8975 0.1025 

𝛽̂0 -2,767.2 - 

𝛽̂1 3.097 0.0831 

𝛽̂2 181.7 0.7113 

Model 13 – 

Precipitation 

+ Wind index 

475.1 0.8976 0.1024 

𝛽̂0 -107.9 - 

𝛽̂1 3.690 0.0883 

𝛽̂2 -0.535 0.7099 
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Table III.4.Linear regression analysis – Run-of-the-river coefficient 

Root mean square error (RMSE), coefficient of determination (R2) and p-value (F-statistics) of several models which 

combine the five independent variables selected previously (Tmin, precipitation and wind index) for the parameterization 

of CRoR. The coefficients of each term of the model and its respective p-value (Wald-statistics) are also presented. 

Linear regression analysis – Run-of-the-river coefficient, CRoR 

  RMSE R2 
p-value 

(F-stats.) 
 Estimates 

p-value 

(Wald-

stats.) 

Single 

independent 

variable 

 

X1 

Model 14 – 

Tmin 
0.3941 0.4883 0.1892 

𝛽̂0 -3.472 - 

𝛽̂1 0.408 0.1892 

Model 15 – 

Precipitation 
0.2543 0.7869 0.0448 

𝛽̂0 -0.303 - 

𝛽̂1 0.001 0.0448 

Model 16 – 

Wind index 
0.3875 0.5053 0.1783 

𝛽̂0 -1.787 - 

𝛽̂1 9.859×10-4 0.1783 

Two 

independent 

variables 

 

X1 + X2 

Model 17 – 

Precipitation 

+ Tmin 

0.2122 0.8517 0.1483 

𝛽̂0 -1.913 - 

𝛽̂1 9.417×10-4 0.1573 

𝛽̂2 0.178 0.4487 

Model 18 – 

Precipitation 

+ Wind 

index 

0.2498 0.7944 0.2056 

𝛽̂0 -0.638 - 

𝛽̂1 0.001 0.2355 

𝛽̂2 1.772×10-4 0.8124 
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Annex IV. Sensitivity analysis of the residential electricity demand 

 
Figure IV.1. Residential electricity consumption per type of demand – RCP8.5 

Histograms for the electricity consumption of the different types of demand (total, heat, cool, sockets, cooking and 

DHW) in the mid-century under RCP8.5 according to the Low, Central and High demand scenarios. The black dashed 

line shows the present electricity consumption. 

 

a. b. 

  

c. d. 

  

Figure IV.2. Sensitivity analysis on different housing stock development characteristics RCP8.5 – Histograms 

Histograms for the sensitivity analysis performed under RCP8.5: a. Household market; b. Floor area of new dwellings; 

c. Electrification of cooking and DHW; and d. Space heating and cooling. 
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Figure IV.3. Sensitivity analysis on different housing stock development characteristics RCP8.5 – Average 

Change in the average electricity consumption relative to the Central scenario for each type of consumption under 

RCP8.5. 
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Annex V. Highly renewable power systems (HiRES and HiRES+UB) 

a. b. 

  

c. d. 

  

Figure V.1. High renewable penetration power systems – RCP8.5 

Performance of the proposed highly-renewable power systems for all ensemble years and each demand-flexibility 

scenario under RCP8.5 in terms of: a. electricity demand; b. annual net imports (resulting from the difference between 

annual imports and exports); c. cross-border interconnection requirements; and d. potential energy curtailment (relative 

to generation). Each boxplot represents the results obtained for all the ensemble years tested.  
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Figure V.2. Biomass consumption in highly renewable power systems – RCP8.5 

Comparison between the biomass consumption for all ensemble years and each demand-flexibility scenario under 

RCP4.5 for HiRES (highly renewable power system) and HiRES+UB (same with unlimited biomass resource) 

configurations. HiRES is represented in a single dashed line, since its biomass consumption is limited to current values 

and it is always fully needed. For HiRES+UB, each boxplot represents the results obtained for all the ensemble years 

tested. 

 

a. b. 

  

  

Figure V.3. Renewable share and CO2 emissions from the power systems HiRES and HiRES+UB – RCP8.5 

Comparison between the performance of HiRES (highly renewable power system) and HiRES+UB (same with 

unlimited biomass resource) configurations for all ensemble years and each demand-flexibility scenario under RCP8.5 

in terms of: a. generation share of renewable energy; and b. CO2 emissions from the power system. Each boxplot 

represents the results obtained for all the ensemble years tested. 

  

HiRES (all years)

HiRES UB (all years)
HiRES (all years)

HiRES UB (all years)
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Figure V.4. Total CO2 emissions – RCP8.5 

Comparison between the performance of HiRES (highly renewable power system) and HiRES+UB (same with 

unlimited biomass resource) configurations for all ensemble years and each demand-flexibility scenario under RCP8.5 

in terms of: a. generation share of renewable energy; and b. CO2 emissions from the power system. Each boxplot 

represents the results obtained for all the ensemble years tested. 
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Annex VI. Solar-wind power capacities – HiRES and HiRES+UB 

 
a. b. 

  
c. 

 
d. e. 

  

Figure VI.1. Annual net imports variation with PV+Wind installed capacities – RCP4.5 

Annual net imports for different PV+Wind installed capacities (ratio 2:1) for different climate conditions and each 

demand-flexibility scenario under RCP4.5: a. Low demand + Low flexibility (LoDeLoFlex); b. Low demand + High 

flexibility (LoDeHiFlex); c. Central; d. High demand + Low flexibility (HiDeLoFlex); and e. High demand + High 

flexibility (HiDeHiFlex). Each marker represents different percentiles of net imports (within all the climate tested): 

square with dashed line– 50th percentile and hexagram with solid line – 95th percentile.   

median years 95% unfavorable years
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a. b. 

  

c. 

 
d. e. 

  

Figure VI.2. Annual net imports variation with PV+Wind installed capacities – RCP8.5 

Annual net imports for different PV+Wind installed capacities (ratio 2:1) for different climate conditions and each 

demand-flexibility scenario under RCP8.5: a. Low demand + Low flexibility (LoDeLoFlex); b. Low demand + High 

flexibility (LoDeHiFlex); c. Central; d. High demand + Low flexibility (HiDeLoFlex); and e. High demand + High 

flexibility (HiDeHiFlex). Each marker represents different percentiles of net imports (within all the climate tested): 

square with dashed line– 50th percentile and hexagram with solid line – 95th percentile.  

  

median years 95% unfavorable years
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a. b. 

  
c. 

 
d. e. 

  

Figure VI.3. Cross-border interconnection for imports and PV+Wind installed capacities – RCP4.5 

Cross-border interconnection for imports with different PV+Wind installed capacities (ratio 2:1) for different climate 

conditions and each demand-flexibility scenario under RCP4.5: a. Low demand + Low flexibility (LoDeLoFlex); b. 

Low demand + High flexibility (LoDeHiFlex); c. Central; d. High demand + Low flexibility (HiDeLoFlex); and e. 

High demand + High flexibility (HiDeHiFlex). Each marker represents different percentiles of total CO2 emissions 

(within all the climate tested): square with dashed line – 50th percentile and hexagram with solid line – 95th percentile.  

  

median years 95% unfavorable years
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a. b. 

  
c. 

 
d. e. 

  

Figure VI.4. Cross-border interconnection for imports and PV+Wind installed capacities – RCP8.5 

Cross-border interconnection for imports with different PV+Wind installed capacities (ratio 2:1) for different climate 

conditions and each demand-flexibility scenario under RCP8.5: a. Low demand + Low flexibility (LoDeLoFlex); b. 

Low demand + High flexibility (LoDeHiFlex); c. Central; d. High demand + Low flexibility (HiDeLoFlex); and e. 

High demand + High flexibility (HiDeHiFlex). Each marker represents different percentiles of total CO2 emissions 

(within all the climate tested): square with dashed line – 50th percentile and hexagram with solid line – 95th percentile.  

  

median years 95% unfavorable years



 

218 

 
a. b. 

  
c. 

 
d. e. 

  

Figure VI.5. Renewable generation share and PV+Wind installed capacities – RCP4.5 

Renewable generation share for HiRES and HiRES+UB configurations with different PV+Wind installed capacities 

(ratio 2:1) for different climate conditions and each demand-flexibility scenario under RCP4.5: a. Low demand + Low 

flexibility (LoDeLoFlex); b. Low demand + High flexibility (LoDeHiFlex); c. Central; d. High demand + Low 

flexibility (HiDeLoFlex); and e. High demand + High flexibility (HiDeHiFlex). Each marker represents different 

percentiles of renewable generation share (within all the ensemble years tested): square with dashed line – 50th 

percentile and hexagram with solid line – 95th percentile.   

median years 95% unfavorable years HiRES HiRES UB
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a. b. 

  
c. 

 
d. e. 

  

Figure VI.6. Renewable generation share and PV+Wind installed capacities – RCP8.5 

Renewable generation share for HiRES and HiRES+UB configurations with different PV+Wind installed capacities 

(ratio 2:1) for different climate conditions and each demand-flexibility scenario under RCP8.5: a. Low demand + Low 

flexibility (LoDeLoFlex); b. Low demand + High flexibility (LoDeHiFlex); c. Central; d. High demand + Low 

flexibility (HiDeLoFlex); and e. High demand + High flexibility (HiDeHiFlex). Each marker represents different 

percentiles of renewable generation share (within all the ensemble years tested): square with dashed line – 50th 

percentile and hexagram with solid line – 95th percentile.   

median years 95% unfavorable years HiRES HiRES UB
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a. b. 

  
c. 

 
d. e. 

  

Figure VI.7. Total CO2 emissions and PV+Wind installed capacities – RCP4.5 

Total CO2 emissions for HiRES and HiRES+UB configurations with different PV+Wind installed capacities (ratio 2:1) 

for different climate conditions and each demand-flexibility scenario under RCP4.5: a. Low demand + Low flexibility 

(LoDeLoFlex); b. Low demand + High flexibility (LoDeHiFlex); c. Central; d. High demand + Low flexibility 

(HiDeLoFlex); and e. High demand + High flexibility (HiDeHiFlex). Each marker represents different percentiles of 

total CO2 emissions (within all the ensemble years tested): square with dashed line – 50th percentile and hexagram with 

solid line – 95th percentile. 

   

median years 95% unfavorable years HiRES HiRES UB
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a. b. 

  
c. 

 
d. e. 

  

Figure VI.8. Total CO2 emissions and PV+Wind installed capacities – RCP8.5 

Total CO2 emissions for HiRES and HiRES+UB configurations with different PV+Wind installed capacities (ratio 2:1) 

for different climate conditions and each demand-flexibility scenario under RCP8.5: a. Low demand + Low flexibility 

(LoDeLoFlex); b. Low demand + High flexibility (LoDeHiFlex); c. Central; d. High demand + Low flexibility 

(HiDeLoFlex); and e. High demand + High flexibility (HiDeHiFlex). Each marker represents different percentiles of 

total CO2 emissions (within all the ensemble years tested): square with dashed line – 50th percentile and hexagram with 

solid line – 95th percentile.   

median years 95% unfavorable years HiRES HiRES UB
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Annex VII. Fully renewable power system (100%RES) 

 

a. 

 

c. d. 

  

Figure VII.1. Fully renewable power system – RCP8.5 

Performance of the proposed 100%RES power system for all ensemble years and each demand-flexibility scenario 

under RCP8.5 in terms of: a. annual net imports (resulting from the difference between annual imports and exports); c. 

interconnection requirement; and d. potential energy curtailment (relative to generation). Each boxplot represents the 

results obtained for all the ensemble years tested.  

 

  



 

223 

 

Figure VII.2. Biomass consumption in the fully renewable power system – RCP8.5 

Comparison between the biomass consumption for all ensemble years and each demand-flexibility scenario under 

RCP8.5 for 100%RES (100% renewable power system) and the present consumption. The dashed line represents the 

present consumption of biomass and each boxplot represents the results obtained for all the ensemble years tested in 

the 100%RES. 
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Annex VIII. Required solar-wind capacity – 100%RES 

a. b. 

  

c. 

 
d. e. 

  

Figure VIII.1. Analysis of the required photovoltaics and onshore wind capacity – RCP4.5 

Analysis of the required photovoltaics and onshore wind capacity for different levels of resilience under RCP4.5 for 

the scenarios: a. Low demand + Low flexibility (LoDeLoFlex); b. Low demand + High flexibility (LoDeHiFlex); c. 

Central; d. High demand + Low flexibility (HiDeLoFlex); e. High demand + High flexibility (HiDeHiFlex). Each 

marker represents different percentiles of net imports: square – 50th percentile and hexagram – 95th percentile (95% 

unfavorable year).   
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a. b. 

  
c. 

 
d. e. 

  

Figure VIII.2. Optimization of the photovoltaics and onshore wind capacity – RCP8.5 

Analysis of the required photovoltaics and onshore wind capacity for different levels of resilience under RCP8.5 for 

the scenarios: a. Low demand + Low flexibility (LoDeLoFlex); b. Low demand + High flexibility (LoDeHiFlex); c. 

Central; d. High demand + Low flexibility (HiDeLoFlex); e. High demand + High flexibility (HiDeHiFlex). Each 

marker represents different percentiles of net imports: square – 50th percentile and hexagram – 95th percentile 

(unfavorable year). 
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Annex IX. Optimal Power Systems – 100%RES 

 

Figure IX.1. Required photovoltaic and wind capacity – RCP8.5 

Combined photovoltaics and onshore wind capacities required for having null net imports for the different demand-

flexibility scenarios with 50 and 95% resilience under RCP8.5. 

 

 

Figure IX.2. Cross-border interconnection requirements – RCP8.5 

Cross-border interconnection required for imports for the power systems designed with a level of resilience of 50 and 

95% under RCP8.5. Each boxplot represents the results obtained for all the ensemble years tested. The dark red square 

highlights the median of the 50% resilient power system. 
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Figure IX.3. Dedicated stationary energy storage – RCP8.5 

Dedicated stationary energy storage required for the power system designed with a level of resilience of 50 and 95% 

under RCP8.5, in order to limit the cross-border interconnection to 5 GW. Each boxplot represents the results obtained 

for all the ensemble years tested. The dark red square highlights the median of the 50% resilient power system. 

 

 
Figure IX.4. Sensitivity analysis on the cross-border interconnection for High demand + Low flexibility – RCP8.5 

Dedicated stationary energy storage required according to the cross-border interconnection for the power system 

designed with a level of resilience of 50 and 95% under RCP8.5. The required dedicated stationary energy storage 

requirement for different cross-border interconnection capacities is represented in: dashed line– 50th percentile and 

solid line – 95th percentile. 
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Figure IX.5. Potential energy curtailment – RCP8.5 

Generation potentially curtailed for the power systems designed with a level of resilience of 50 and 95% under RCP8.5. 

Each boxplot represents the results obtained for all the ensemble years tested. The dark red square highlights the median 

of the 50% resilient power system. 


