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RESUMO 
 

O declínio populacional das tartarugas marinhas em todo o mundo, impulsionado pela caça 

excessiva, a perda de habitat e outros factores antropogénicos tornaram estes animais uma 

prioridade global de conservação. As tartarugas marinhas são particularmente susceptíveis a 

perturbações antropogénicas e naturais devido ao seu ciclo de vida longo, definido por 

comportamentos complexos tais como a migração entre zonas de alimentação e reprodução e 

filopatria de adultos, migrações de juvenis e uma forte influência de factores abióticos na 

disponibilidade de recursos, sucesso reprodutivo, e proporção entre os sexos ao nascimento. 

 

O estado das populações de tartarugas marinhas é avaliado de acordo com o índice de 

abundância populacional, que no caso destes animais, se traduz tipicamente no número de 

ninhos em cada temporada, pelo que a monitorização nas praias de nidificação continua a ser 

fundamental. No entanto, nas últimas décadas houve um aumento significativo da variedade de 

técnicas para o estudo da dispersão e ecologia trófica das tartarugas marinhas, que facilitam a 

compreensão dos mecanismos e factores que afectam a quantidade de fêmeas reprodutoras e a 

sua dispersão, permitindo delinear estratégias de conservação fundamentais, como a definição 

de unidades de gestão, corredores migratórios, e áreas de alimentação. Estas e outras questões 

fundamentais, tal como a composição, distribuição e dinâmica das populações, a sua 

conectividade, as estratégias reprodutoras, assim como as relações filogenéticas e 

filogeográficas entre populações e espécies beneficiaram ainda do uso crescente de marcadores 

genéticos e da sua optimização para as diferentes espécies. A abordagem genética permite 

descrever estruturas populacionais, permitindo definir unidades de gestão, o que tem particular 

importância para a conservação de determinadas populações. Especificamente, a utilização do 

DNA mitocondrial, um marcador de matrilinhagem, é útil para o estudo da estrutura genética 

entre populações reprodutivas e, por conseguinte, da fidelidade das fêmeas aos sítios de desova 

(filopatria). Através de comparações das relações entre linhagens de DNA mitocondrial e as 

suas respectivas áreas geográficas é possível inferir sobre a história populacional, colonização 

e dispersão a longa distância. Por outro lado, permite também, através da análise da composição 

genética de stocks mistos (Mixed Stock Analysis), inferir a origem materna de machos e fêmeas 

em vários estágios de vida, provenientes de habitats de alimentação, corredores migratórios 

e/ou oriundos de arrojamentos ou capturas incidentais. Os marcadores nucleares, de herança bi-

parental, tais como os microssatélites, permitem quantificar o fluxo genético mediado pelos 

machos e fornecer, a partir da avaliação das variações nas suas taxas de mutação, informação 
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sobre processos populacionais a diferentes escalas temporais. Questões relacionadas com a 

ecologia das diferentes espécies, nomeadamente o uso de recursos disponíveis em áreas de 

alimentação, e a identificação destas áreas podem ser esclarecidas com a análise de isótopos 

estáveis, uma ferramenta que tem sido cada vez mais utilizada no estudo das interações tróficas 

e do uso de habitats por diferentes fases do ciclo de vida das tartarugas. 

 

O arquipélago de São Tomé e Príncipe, localizado no Golfo da Guiné, na África Ocidental 

(Atlântico Oriental), abriga cinco espécies de tartarugas marinhas, sendo elas, ordenadas por 

abundância, a tartaruga verde (Chelonia mydas), oliva (Lepidochelys olivacea), de pente 

(Eretmochelys imbricata), de couro (Dermochelys coriacea), e comum (Caretta caretta). 

Acredita-se que estas ilhas possam ser também importantes para agregações de juvenis e sub-

adultos de tartaruga verde e de pente que se alimentam nos seus recifes rochosos e pradarias 

marinhas. É neste arquipélago que se julga encontrar uma das populações de tartarugas de pente 

(E. imbricata) mais ameaçadas do mundo, a última população desta espécie no Atlântico 

Oriental, que se acredita ter sido severamente reduzida em resultado da exploração intensiva 

para o comércio de escamas. Os estudos anteriores sobre a diversidade genética de adultos desta 

espécie, assim como da tartaruga verde destacaram a sua alta distinção genética, alertando para 

a um grau elevado de vulnerabilidade destas populações na região. A tartaruga oliva (L. 

olivacea) tem sido sujeita a uma forte exploração para consumo da sua carne e ovos na ilha de 

São Tomé, mas pouco se sabe sobre esta população. O entendimento da dinâmica populacional 

dessas três espécies é essencial para o desenvolvimento de ações de conservação direcionadas 

e efetivas em diferentes escalas espaciais e temporais. 

 

O objetivo geral desta tese foi investigar processos e mecanismos que afetam o atual estado de 

conservação das três principais espécies que ocorrem nas ilhas de São Tomé e Príncipe e 

levantar hipóteses sobre as perspectivas futuras dessas populações. Os objetivos específicos 

foram: (1) investigar a conectividade migratória das espécies na região e avaliar suas 

implicações para a resiliência da população no Atlântico Oriental; (2) contribuir para a 

compreensão da dinâmica populacional actual e passada, avaliando mudanças recentes no 

efectivo populacional e a capacidade potencial de recuperação; (3) compreender o 

comportamento de nidificação e alimentação e avaliar os padrões de distribuição temporal e 

espacial destes comportamentos. 
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A tese está organizada em cinco capítulos, sendo que os capítulos 1 e 5 são respectivamente 

uma introdução à biologia e ecologia das tartarugas marinhas e ao seu estudo, para 

enquadramento do trabalho realizado, e a discussão dos principais resultados obtidos. Os 

restantes capítulos são dedicados a cada uma das três espécies estudadas e incluem um ou mais 

artigos que correspondem a trabalhos já publicados ou submetidos para publicação em revistas com 

circulação internacional e sujeitas a revisão por pares: capítulo 2 – Chelonia mydas (3 artigos), 

capítulo 3 – Lepidochelys olivacea (um artigo) e capítulo 4 – Eretmochelys imbricata (um 

artigo).  

 

No capítulo 2 explorei vários aspectos relativos à ecologia, dispersão e reprodução das 

tartarugas verdes do arquipélago. O artigo 1 comprova que as tartarugas verdes juvenis e adultas 

de São Tomé e Príncipe exibem altos níveis de diversidade genética e são geneticamente 

diferenciadas de outras populações de juvenis e adultos do Atlântico. Esta diversidade foi 

avaliada através da análise do mtDNA, complementando um estudo anterior com a utilização de 

mais indivíduos, assim como de sequências mais longas (melhorando a sua resolução) e usando 

microssatélites pela primeira vez nestas populações. A análise de stocks mistos revelou a 

maioria dos juvenis estudados são recrutados ao nível da população reprodutora de São Tomé 

e Príncipe, o que sugere que as tartarugas verdes no arquipélago apresentam dispersão limitada 

e devem ser consideradas uma unidade de gestão única para a qual ações de conservação devem 

ser implementadas não apenas ao nível das fêmeas reprodutoras, mas também dos juvenis. No 

artigo 2 aprofundei a informação sobre os juvenis, ao identificar as principais áreas de 

alimentação na ilha de São Tomé e ao usar isótopos estáveis para compreender a sua ecologia 

alimentar.  Os resultados mostraram que esta espécie demonstra uma plasticidade em termos 

de exploração de recursos existentes e que esta varia de acordo com a classe etária dos juvenis; 

indivíduos de tamanhos distintos segregam em diferentes habitats e ocupam nichos tróficos 

distintos que se mantêm durante longos períodos de pelo menos vários meses. Estes resultados 

mostraram que a ilha de São Tomé fornece uma variedade de importantes habitats de 

recrutamento / desenvolvimento para os seus juvenis. No artigo 3 explorei as limitações 

impostas pela monitorização incompleta dos locais de nidificação, ou por baixas taxas de 

recaptura devido à imprecisão da fidelidade das fêmeas ao local de nidificação, que 

comprometem a obtenção de dados robustos sobre a abundância e distribuição das populações 

nidificadoras em São Tomé e Príncipe.  Para superar essas restrições, usei dados de marcação 

e recaptura para desenvolver um modelo focado no indivíduo que permitiu caracterizar 

estatisticamente o comportamento de nidificação das populações de tartarugas verdes e olivas, 
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usando uma abordagem inovadora para estimar o intervalo de tempo entre desovas, tendo em 

consideração diferentes fatores que levam à heterogeneidade observada na duração dos 

períodos entre desovas, incluindo a probabilidade de uma fêmea abortar um processo de 

nidificação.  

 

No capítulo 3, dedicado à tartaruga oliva (L. olivacea), incluí o artigo 4, para o qual usei 

marcadores nucleares para caracterizar o comportamento reprodutor da população adulta 

(machos e fêmeas) desta espécie na ilha de São Tomé e o papel que este tem para a manutenção 

da diversidade genética desta espécie na região. Neste sentido, verifiquei que esta população 

reprodutora exibe poliandria, e que a proporção dos machos é superior à das fêmeas. Este 

comportamento tem vantagens, uma vez que identifiquei que a dispersão desta população é 

mediada pelos machos, o que potencia o fluxo genético entre São Tomé e Príncipe e outras 

zonas do Atlântico Oriental. No entanto, estas estratégias de história de vida parecem ser 

insuficientes para evitar a perda de diversidade genética como resultado de um efeito de 

gargalo, provavelmente relacionado com a exploração intensiva de fêmeas reprodutoras nas 

praias de nidificação de São Tomé nas últimas décadas.  

 

No capítulo 4 (que inclui o artigo 5), apresento os resultados de um levantamento exaustivo das 

praias de nidificação da tartaruga de pente (E. imbricata) que possibilitou, através de 

modelação, obter a primeira estimativa do número total de actividades de reprodução por ilha 

e por praia, assim como uma estimativa do número de fêmeas que compõem esta população. A 

identificação das principais praias usadas por esta espécie foi complementada por um estudo 

sobre o nível de impacto humano e susceptibilidade das fêmeas a perturbações em cada praia, 

usando uma ferramenta de classificação de adequabilidade e de nível de ameaça para praias de 

desova. Com este estudo foi possível identificar o ilhéu das Rolas como o principal local de 

nidificação desta espécie em São Tomé e Príncipe; apesar desta espécie nidificar principalmente 

em praias relativamente isoladas, a maioria destas praias encontra-se sob pressão humana, que 

deverá ser mitigada dado o reduzido tamanho desta população, estimado em menos de 75 

fêmeas reprodutoras.  

  

Palavras-Chave: Recrutamento, dispersão, diversidade genética, ecologia alimentar, 

estratégias reprodutoras  
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ABSTRACT 

Population declines of sea turtles worldwide, driven by overhunting, habitat loss, and 

other anthropogenic factors have made these animals a global conservation priority. Sea turtle 

species are particularly susceptible to anthropogenic and natural disturbances due to their 

complex life traits: female homing and migration, migrations of juveniles and males that remain 

poorly known, and a strong climatic influence on resources, breeding success and clucth sex-

ratio. São Tomé and Príncipe archipelago in the Gulf of Guinea, West Africa, hosts at least four 

species of sea turtles, for three of which life-history traits, reproductive behavior and dispersal 

were assessed for this study: the green turtle (Chelonia mydas), the most abundant species, the 

hawksbill (Eretmochelys imbricata), which is considered the most threatened population in the 

Atlantic (both species common to both islands), and the olive ridley (Lepidochelys olivacea), 

which only occurs in São Tomé island. In this study I integrated various tools and techniques, 

including site-based monitoring (e.g. on nesting beaches or foraging areas), genetic analyses 

for both adult and juvenile populations, mark-recapture studies, dispersal simulations as well 

as stable isotopes analysis, which complemented  each other in the assessment of the 

conservation of each species in the archipelago, including little understood groups such as 

juveniles and males. Specifically, I showed that São Tomé island hosts important foraging areas 

that offer a variety of food sources for green turtle juveniles, which are recruited directly from 

this rookery. For the olive ridley turtle, I characterized the reproductive behavior of the adult 

population using paternal assessments and showed that males are important mediators of gene 

flow in this genetically depressed population. Finally, I conducted the first full characterization 

of spatial and temporal characterization of hawksbill nesting in the archipelago, identifying the 

key nesting habitats and assessing the levels of human impact that they are exposed to. Overall, 

the results of this study highlight the high vulnerability of the three species studied in light of 

limited dispersal, high genetic distinctiveness and exposure to threats.  

 

Keywords: Recruitment, dispersal, genetic diversity, foraging ecology, reproductive behaviour 
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CHAPTER 1 
 
 

GENERAL INTRODUCTION 

 
 
 
 

 
 

“Sa ôdji di omali é cá depende d’inê, mage vida d’inê cá dêpendê di bô” 
We depend on the oceans but the life in our oceans depends on us 

 
 

- People of São Tomé and Príncipe 
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GENERAL INTRODUCTION 

Several marine species undergo periodic long-distance migrations in search of optimal foraging 
conditions, safety, and reproductive opportunities (e.g., Limpus et al. 1992; Block et al. 2011; 
Hays & Scott, 2013; Cherry et al. 2013; Jaine et al. 2014). By taking advantage of resource 
peaks or avoiding periods of heightened mortality risk over time and space, these species may 
sustain considerably larger populations than otherwise similar resident species (Alestram et al. 
2003; Bauer & Hoye, 2014). However, in light of the observed declines of several migratory 
species, conservation biologists have argued that long distance animal migrations are now an 
endangered pattern of the natural world (Harris et al. 2009; Wilcove & Wikelsky, 2008), a 
phenomenon that can potentially affect the structure and functioning of entire ecosystems 
(Lundberg & Moberg, 2003; Bauer & Hoye, 2014). Conserving migrant species poses major 
scientific and political challenges, and efforts are often hindered by the difficulty of studying 
animals that are constantly on the move. Historically, research on animal migration has focused 
on the migrants themselves: how, when, where, and why animals migrate (Alerstam et 
al. 2003), in an attempt to answer some of the challenges of migration biology (Bowelin et al. 
2010). Even nowadays, for many iconic migratory large species, fundamental data on such 
basic topics as migratory routes, population structure, diet, size at establishment at foraging or 
reproductive grounds, among others, are still lacking. 

Marine turtle migrations 

Marine turtles are considered one of the most fascinating migratory group of animals, as they 
inhabit a variety of neritic and pelagic habitats, from the tropics to subarctic waters and venture 
onto terrestrial habitats to nest or bask in tropical and temperate latitudes, where they are easily 
accessible. There is a total of 7 species of marine turtle in the world, only two of which are 
endemic to a specific region: the Australian flatback (Natator depressus) and the small Kemp’s 
ridley (Lepidochelys kempii), which inhabits the Gulf of Mexico. Of the remaining species, the 
green (Chelonia mydas) and hawksbill turtles (Eretmochelys imbricata) typically inhabit sub-
tropical and tropical coastal regions, the olive ridley turtles (Lepidochelys olivacea) have a 
circumtropical distribution, the loggerhead (Caretta caretta) is found in sub-tropical and 
temperate waters, and the leatherback (Dermochelys coriacea) is widely distributed throughout 
the world’s oceans from boreal to tropical waters (Fig. 1). 
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Chelonia mydas Eretmochelys imbricata Lepidochelys olivacea 

Caretta caretta Dermochelys coriacea 

 

 
Figure 1. The five main species occurring in the Atlantic Ocean, including those on which this thesis is 

focused (top three) 

 
Most species of marine turtles migrate intermittently throughout their lives. As hatchlings, a 
mixed strategy of directional swimming and passive drift leads them through more or less 
complex migratory pathways that sometimes cross entire ocean basins and back (Shillinger et 
al. 2008; Bowen et al. 1995; Bolten et al. 1998; Boyle et al. 2009), depending on the species. 
The biology of post-hatchling and early juvenile stages (usually referred to as the “lost years”) 
is the least understood, and for most sea turtle species the location or duration of the early 
juvenile stage is still unknown. However it is generally accepted that there are three basic 
developmental life history patterns observed for marine turtles (Fig. 2): (1) complete 
development in the neritic zone (N. depressus); (2) early juvenile development in the oceanic 
zone and later juvenile development in the neritic zone (C. mydas, E. imbricata, C. caretta and 
some populations of L. olivacea) and, (3) complete development in the oceanic zone (D. 
coriacea, L. kempii and most populations of L. olivacea).  
 
Species exhibiting either the Type 1 or Type 3 pattern commit to either the neritic or oceanic 
zone, respectively, for their entire developmental stages as well as for the adult foraging stage. 
Species with the Type 2 pattern have major habitat changes during their development, as they 
take up residence on successive neritic feeding grounds (Limpus & Musick, 2017), often 
showing fidelity to specific foraging areas, returning to them reliably after long, seasonal 
migrations or experimental displacements (Papi et al. 2000; Avens et al. 2003; Lohman et al. 
2008; Schofield et al. 2010). Once adults, they may leave neritic habitats during the 
reproductive migrations, which may involve oceanic migration corridors between the adult 
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foraging areas (neritic) and internesting habitats (also neritic) (Bolten, 2003). These 
reproductive migrations may take place every 1, 2 or 3 years, depending on food availability at 
the foraging grounds, with male turtles thought to return to the foraging grounds soon after 
mating, and females remaining near the reproduction area for several weeks, during which they 
will lay several clutches at regular intervals (Fig. 3). 
 

 
 
Figure 2. Three distinct sea turtle life history patterns illustrating the sequence of ecosystems inhabited (from 

Bolten, 2003). 
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Figure 3. Schematic diagram of the generalized sea turtle life cycle, with each species exhibiting variations 

on this central theme (Adapted from Southwood & Avens, 2010) 

 

Natal homing and colonization of new sites 

Adult turtles are thought to nest near the same geographic area where they themselves emerged 
as hatchlings, after spending years in distant oceanic regions, in neritic foraging grounds, or 
both (Bowen et al. 1994; Fitzsimmons et al. 1997; Bowen & Karl, 2007; Lohman et al. 2013), 
a behavior pattern known as “natal homing”. The natal homing hypothesis, now widely 
accepted, was first speculated by mark-recapture observations and early analysis of 
mitochondrial DNA (mtDNA) structure in Atlantic green turtle populations that showed that 
geographically distant rookeries were found to have heterogeneous mtDNA haplotype 
frequencies (Encalada et al. 1996), with similar observations done in the Australasian region 
(FitzSimmons et al. 1997). The mechanisms by which marine turtles navigate back and forth 
between these sites has been one of the great research issues in sea turtle biology (Lohman et 
al. 2008, 2013), and a recent study strongly supports the geomagnetic imprinting hypothesis, 
by which turtles imprint on the unique geomagnetic signature of their natal area and use this 
information to return (Brothers & Lohmann, 2015).  
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Upon arrival at their breeding grounds, the mechanisms by which nesting females choose a 
specific beach or site on a beach are poorly understood (Mortimer, 1995). Turtle species share 
broad nesting requirements, which include deep, relatively loose sand above high-tide level. In 
fact, there is inter- and intraspecific variation in preference in terms of more specific physical 
features of a beach, such as length, width, height, slope, orientation, and vegetation (Hays et al. 
1995; Wood & Bjorndal., 2000; Kamel & Mrosovsky, 2004, 2006). While many of the world’s 
marine turtle nesting sites are located along the coasts of tropical American, African and 
Australasian continents, there are a notable number of sites located in islands. Volcanic islands 
provide access to resources and landscapes that are not always readily available on the larger 
continental beaches, including seclusion, little disturbance, a variety of nesting habitats and 
lower predation. Moreover, islands often have superior marine resources in adjacent coastal 
shelves. It is not clear however, how marine turtles colonized these islands, which are often 
very remote and distant to major nesting sites located in continental coasts. Some light has been 
shed about how remote islands, such as Ascension Island, located in the south Atlantic, became 
one of the most important nesting colonies for the green turtle in the Atlantic. Tag returns and 
genetic studies indicate a remarkable migratory circuit between Ascension Island and Brazil, a 
link for which at least two hypotheses have been proposed and tested (Bowen et al. 1989). One, 
which suggests a gradualist scenario in which nesting turtles tracked a series of progressively 
distant volcanic islands, based on the fossil record that indicates that turtles of the family 
Cheloniidae inhabited the proto-Atlantic prior to the separation of Africa and South America, 
about 70 million years ago. As these island chains became gradually more distant from South 
America by the action of sea-floor spreading, nesting turtles may have developed a 
progressively longer migratory route, culminating in the contemporary migration to Ascension 
Island. The second hypothesis more generally accepted suggested a rare and possibly recent 
colonization event to explain the presence of the Ascension Island rookery. In fact, imperfect 
natal homing, resulting in occasional colonization of newly emerged nesting habitat, such as 
geologically recent volcanic islands, may have provided a flexibility in migratory behaviour 
that so far has prevented the extinction of marine turtle species. 

Marine turtle occurrence in São Tomé and Príncipe archipelago 

The islands of the Gulf of Guinea form part of a volcanic chain that originated from the middle 
to late Tertiary, situated on the oceanic sector of a straight axis, the Cameroon volcanic line, 
about 1500 to 1600 km long (Déruelle et al. 1991; Burke, 2001; Caldeira & Munhá, 2002). Of 
these islands, the continental-shelf island Bioko, situated approximately 32 km from Cameroon, 
is the largest and closest to the African mainland, to which it was formerly connected. The other 
three islands, São Tomé, Príncipe and Annobón, are truly oceanic; they are smaller than Bioko 
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and were never connected with the mainland or with each other. Príncipe is situated about 220 
km southwest from Bioko and 146 km northeast from São Tomé and is the oldest; it has an area 
of approximately 128 km2 and an estimated age of 31 million years. The island of São Tomé, 
located about 275 km westwards from Gabon, is larger (836 km2) and significantly younger, 
being around 13 million years old. Annobón (17 km2) is the youngest island with an age of 
about 4.9 million years (Lee et al. 1994). São Tomé island is quite unique since it is surrounded 
by shallow reef habitat, unusual along the west African coastline, and a gentle bathymetric 
gradient offshore, uncommon for a volcanic island, offering optimal conditions for the 
colonization of marine turtles, both on its beaches, but also on foraging sites. 
 
Four species nest regularly on São Tomé and Príncipe, most notably the green (C. mydas) and 
the olive ridley (L. olivacea), with some lower density nesting of hawksbill (E. imbricata) and 
leatherback (D. coriacea), and the rocky reefs surrounding the islands hold foraging 
aggregations of green and hawksbill juveniles. Despite modern surveys of the Atlantic coast of 
Africa for marine turtles began as early as 1957 by Carr (1957), it was not until 1994 that the 
first attempts to identify nesting species and nesting beaches in São Tomé and Príncipe were 
conducted (Graff, 1996). As confirmed by recent surveys, nesting occurs on the northern, 
eastern and southern coasts of São Tomé. The northern and eastern coastal areas host the largest 
human settlements, while the southern (especially southwestern) beaches are relatively pristine. 
The apparent lack of nesting on the western coast is likely due to the rocky substrate of the 
beaches stretching the length of the coastline.  
 
Little is known about the biology and ecology of marine turtles in São Tomé and Príncipe, but 
in general terms, nesting season in these islands is initiated after the first rains (September–
November), peaks in November – January, and continues at low density until March, with 
hatching peaking after two months of the nesting peak. Recent population estimates presume 
that these islands harbour one of the last remaining hawksbill nesting aggregations in the 
Eastern Atlantic region, leading to some authors to consider this region one of the most 
threatened Regional Management Units for Marine Turtles (RMU's; Wallace et al. 2010). 
Genetic studies of green (Formia et al. 2006) and hawksbill (Monzón-Arguello et al. 2010) 
marine turtles nesting on this archipelago indicate clearly that these populations represent single 
management units due to their high distinctiveness and significant divergence in allele 
frequencies when compared to the other rookeries in the Atlantic, urging for aggressive 
conservation measures. This genetic distinctiveness has been hypothesized to result from the 
sea level drop during the Pleistocene glaciation events which may have increased the amount 
of suitable nesting habitat available in São Tomé island, thus supporting a large ancestral 
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population that persisted in this ice age refugium as far back as the mid-Tertiary (Formia et al. 
2006). Those large sea turtle populations may have only recently declined to present levels as 
a result of overexploitation which started with the arrival of the first humans in the 1470s. This 
scenario, although having only been postulated for green turtles, is likely to be similar for the 
other species occurring on these islands.  

Challenges in marine turtle conservation in São Tomé and Príncipe 

The threats that marine turtles face in West Africa were reviewed by Formia et al. (2003), an 
assessment that remains accurate to this date. In São Tomé and Príncipe, a relatively 
undeveloped nation, the biggest threat is perhaps that, in this archipelago, as in many coastal 
nations, marine turtles are considered significant sources of food and income. Particularly in 
São Tomé island, over-harvesting of fish by the abusive use of illegal nets by small-scale 
fishermen resulted in a decrease in catch, which lead to a greater dependence on other resources, 
such as sea turtles. Until 2014, when national legislation decreed that marine turtle trade and 
consumption was illegal and subjected to heavy fines (Decreto-Lei 8/2014), marine turtle meat, 
eggs and other products were openly sold in the main markets. Moreover, São Tomé and 
Príncipe were historically the major tortoiseshell exporters in West Africa, a product that is 
used to make ornaments and souvenirs for sale to tourists and has led to the near extirpation of 
the local hawksbill population.  

Indirect threats include incidental captures by commercial fisheries operating in the Gulf of 
Guinea, affecting mainly olive ridleys and leatherbacks (Riskas et al. 2013), oil exploitation, a 
major economic activity in the Gulf of Guinea region (Weszkalnys, 2009) and sand extraction 
for construction work, both on-site and off-shore, that has presumably led to the collapse of 
several beaches on São Tomé island, especially on the northern shore. 

   
Figure 4. Some of the main threats identified on São Tomé island: (a) Sand mining in October 2018 in the 

city of São Tomé, (b) marine turtle meat and eggs for sale in São Tomé market, January 2016; (c) beach 

erosion on Jalé and Praia Grande beaches 
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Advances in marine turtle conservation biology  

Studying migratory animals demands for an integrative research strategy; increasing research 
on different migratory species has led to a better understanding of the underlying patterns of 
migration and has provided general hypotheses about the ecology and physiology of migrating 
animals (Dingle & Drake, 2007). When coupled with research on individual reproductive 
success and survival, these tools can be used to understand how populations are regulated 
(Runge & Marra, 2005; Wilcove & Wikelski, 2008), and how migration itself evolves 
(Robinson et al. 2010). 

However, studies about the movements of migratory animals are often limited by logistical and 
financial constraints, so the advent of the use of indirect methods, tools and indicators such as 
genetic markers or stable isotopes, coupled with behavioural or morphological measurements 
has proven to be useful in the study of marine turtle movements and in stock resolution.  

Genetic markers We now know that marine turtle rookeries, being shaped by natal 
homing, are functionally independent management units (MU). As so, they exhibit distinct 
demographic processes leading to inter-population variation in life history traits and population 
dynamics that warrant population-specific management schemes (Wallace et al. 2010). 
Improving our ability to define and improve the resolution of management units has been 
possible due to, in part, the variety of molecular genetic analyses available, including the 
analysis of mitochondrial and nuclear DNA (microsatellites), often in combination. The variety 
in the use of molecular markers of sea turtles is reviewed in Jensen et al. (2013), highlighting 
the contribution of genetic tools towards evidencing regional natal homing by breeding adults, 
establishing connectivity between rookeries (i.e., nesting colonies) and foraging habitats, and 
defining phylogeography and broad scale stock structure for most species.  

 
Mitochondrial DNA (mtDNA) for instance is widely used since it is fast and easy to sequence, 
the principal non-coding region is highly polymorphic and, most important, it is maternally 
inherited. For these reasons it has been used for resolving nest site fidelity (Bowen et al. 1989), 
homing behaviour (e.g. Allard et al. 1994; Fitzsimmons et al. 1994; Encalada et al. 1996), 
phylogenetic relationships (Bowen et al. 1991, 1992), phylogeographic patters (e.g. Bowen et 
al. 1997a,b; Bowen & Kark, 2007), and to identify the maternal origin of both males and 
females of various life stages and at different foraging grounds (e.g. Lahanas et al. 1995; Bolten 
et al. 1998; Bowen et al. 2007; Proietti et al. 2009). Because this marker can have limited 
resolution, microsatellites (biparentally-inherited nuclear DNA, nDNA), which have many 
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alleles per locus, can be used in individual and familial genotyping, thus contributing towards 
the elucidation of small-scale population structure, and in parentage studies. Additionally, 
nDNA provides information about the reproductive biology of males and male-mediated gene 
flow. When supplemented with information on threats and the influence of environmental 
conditions on phenology and behaviour, these molecular tools facilitate robust definitions of 
MUs for marine turtles at multiple scales, helping to address different management and research 
challenges. Because the analysis of microsatellites is time and labour intensive, scaling up in 
projects requiring analyses across thousands of samples can be challenging. Advances in the 
application of genetics in marine turtle biology and conservation, including the use of other 
genetic markers such as single nucleotide polymorphisms (SNPs) and the advent of genomics 
have been explored and discussed recently by Komoroske et al. (2017). 
 

Stable isotopes Obtaining meaningful dietary information from live, free-living turtles 
requires their capture and stomach lavages, a method that is quite invasive. Although useful, 
the analysis of gut contents can only provide limited information, as ingested food items need 
to be present and identifiable at the time of examination, while such data only yield a relatively 
proximate indication of dietary choice (Godley et al. 1998, Votier et al. 2003). The analysis of 
stable isotopes assimilated by a consumer and its comparison with the isotope ratios of different 
diet items helps to overcome these limitations, as in particular the ratios of the stable isotopes 
of nitrogen (15N/14N, expressed as  δ15N) and carbon (13C/12C expressed as δ13C ) in the 
consumer tissues tend to reflect those of the diets in a predictable way (DeNiro & Epstein, 1981; 
Peterson & Fry 1987). The δ15N signatures show a stepwise enrichment at each successive 
trophic level within a food chain (Hobson et al. 1994; Adams & Sterner, 2000), while  δ13C 
values can provide information about the source of carbon at the base of a food chain, since the 
rate at which they are fixed in plants differ among photosynthetic pathways (Vogel, 1993). This 
is particularly important in the marine ecosystems, since phytoplankton have lighter δ13C than 
many inshore plants, and thus Carbon isotopes can be useful to distinguish inshore vs. offshore 
feeding sources (Fry & Sherr, 1984; Hobson et al. 1994). This information can also be enriched 
by analyzing the ratio of sulphur isotopes (δ34S), which also varies substantially among primary 
producers, and are often distinct in benthic and pelagic marine waters (Connoly et al. 2004). 
Stable isotope analysis has yielded important and novel insights into intra and inter-species 
trophic relationships and into trophic interactions on both spatial and temporal scales (Hobson 
et al. 1994; Chouvelon et al. 2012). Moreover, within an organism, different tissues incorporate 
stable isotopes at different rates; a fine example are the sea turtles, as epidermis and keratin 
have longer assimilation periods, thus reflect long-term foraging history, while red blood cells 
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reflect a recent diet (Seminoff et al. 2006, 2009; Reich et al. 2008). Therefore, such tissues 
collected from turtles at breeding areas reflect their dietary history at foraging grounds prior to 
migration to the breeding area (e.g. Hatase et al. 2010, Zbinden et al. 2011, Pajuelo et al. 2012), 
and may be used to study ontogenetic diet or habitat shifts (Reich et al. 2007; Arthur et al. 2008; 
Snover et al. 2010; Velez-Rubio et al. 2016). Dual-isotope multiple-source mixing models have 
been developed to quantify the proportions of various prey in the diet of several marine 
organisms and have been applied successfully to sea turtles (Dodge et al. 2011; Lemons et al. 
2011; Shimada et al. 2014). 

 
Population modelling  Assessments of sea turtle populations are based primarily on the 
census of nesting females at specific beaches. The number of turtles reproducing on a given 
season is highly dependent on the acquisition of energy reserves not only to undertake often 
extensive migrations from the foraging areas to the nesting sites, but to invest in vitellogenesis 
(egg production). If these energy requirements are not met, nesting will be delayed until feeding 
conditions improve (Solow et al. 2002; Rivalan et al. 2005) or can be reflected in reproductive 
investment (Saba et al. 2007). For this reason, several reproductive parameters, such as clutch 
size, clutch frequency and remigration intervals show intra and inter population variation 
(Solow et al. 2002; Wallace et al. 2006). Furthermore, phenotypic heterogeneity can mask or 
exacerbate individual allocation patterns when trends are averaged across a population, which 
is problematic in the case of sea turtles (Hays, 2000). Finally, differential detectability of 
nesting females or poor sampling regimes may affect population estimates (Beissinger & 
Westphal, 1998; Holmes, 2001). Modelling of key reproductive parameters for a given 
population sheds some light on similarities and differences in life-history characteristics across 
body sizes, populations, species, and phylogenetic groups, and are important in exploring 
correlations between characters such as fecundity and age at maturity, age at maturity and adult 
lifespan, and so on, parameters which are key to estimation of population size and for 
population viability analyses (Stearns, 1992; Heppel, 1998). Population modelling has been 
used in sea turtle research to assess population viability and the risk of harvesting for long-term 
stock viability (e.g. Chaloupka, 2002; Mazaris et al. 2005), effects of age dependent mortality 
(Mazaris et al. 2006), growth rates (Chaloupka & Limpus, 1997), population trends (e.g. 
Richardson et al. 2006) and demographic parameters (e.g. Prince & Chaloupka, 2012). 
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THESIS AIMS AND OUTLINE 

The work done in this thesis aimed to shed some light into unknown aspects of the life of these 
species in the region, particularly concerning less studied life stages such as males and at-sea 
juveniles, to explore their connectivity with other populations in the Atlantic, and to evaluate 
how their reproductive and foraging behaviour may affect their resilience to threats. I also 
aimed to obtain for the first time baseline information that can in the future be used to establish 
trends and assess population changes over time. To achieve this, I combined several 
methodologies, including genetic and stable isotope analyses, and modelling of individual 
reproductive behaviour.   

This thesis is structured in three main chapters, each one dedicated to one of the three species 
studied. In a final chapter I present a general discussion of the main results of the thesis which 
highlight the importance of the populations of these species in São Tomé given low dispersal, 
genetic distinctiveness and levels of threat specific to this archipelago. 
 

Chapter 2 – Chelonia mydas 

This chapter is dedicated to the green turtle (Chelonia mydas) and includes three papers 
corresponding each to a specific line of research developed to answer the following specific 
questions: 

Paper 1 What are the current levels of genetic diversity of C. mydas and how can they 
be related to the dispersal and recruitment of this species in São Tomé and Príncipe archipelago;  

Hancock, J. M., Vieira, S., Taraveira, L., Santos, A., Schmitt, V., Semedo, A., Ferrand, N., 
Gonçalves, H. & Sequeira, F. (2019). Genetic characterization of green turtles (Chelonia 
mydas) from São Tomé and Príncipe: Insights on species recruitment and dispersal in the Gulf 
of Guinea. Journal of Experimental Marine Biology and Ecology, 518, 151181. 
 
 
Paper 2 How are juvenile sea turtles of different life-stage groups distributed in São 
Tomé island, which trophic niches do they occupy, and which is the relevance of the S. Tomé 
island coast as a foraging and settling ground for juveniles: 

Hancock, J. M., Vieira, S., Jimenez, V., Rio, J. C., & Rebelo, R. (2018). Stable isotopes reveal 
dietary differences and site fidelity in juvenile green turtles foraging around São Tomé Island, 
West Central Africa. Marine Ecology Progress Series, 600, 165-177. 
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Paper 3 How to overcome field monitoring restraints in estimating the internesting 
period and the rank of an observed nesting event, two of the parameters that are necessary for 
the correct estimation of the number of nesting females on a given site: 

Hancock, J.M., Vieira, S., Lima, H., Schmitt, V., Pereira, J., Rebelo, R., Girondot, M. (2019). 
Overcoming field monitoring restraints in estimating marine turtle internesting period by 
modelling individual nesting behaviour using capture-mark-recapture data. Ecological 
Modelling, 402, 76-84. 
 
 

Chapter 3 - Lepidochelys olivacea 

Paper 4 How are the reproductive behaviour and dispersal patterns of the olive ridley 
turtle (Lepidochelys olivacea) characterized in São Tomé and Príncipe and what are the 
implications for the maintenance of genetic diversity of this species in the region: 

Hancock, J.M., Vieira, S., Lima, H., Rebelo, R., Ferrand, N., Sequeira, F., Gonçalves, H. 
Genetic diversity, multiple paternity and dispersal in an olive ridley (Lepidochelys olivacea) 
rookery from São Tomé island, West Africa (in preparation) 
 

Chapter 4 – Eretmochelys imbricata 

Paper 5 What are the key temporal and spatial patterns of the nesting of this species, and 
what are the implications of specific nesting site selection in terms of exposure to human 
impacts and beach suitability.  

Hancock, J.M., Vieira, S., Lima, H., Besugo, A., Schmitt, V., Carvalho, H., Girondot, M., 
Rebelo, R. Reproductive biology and conservation status of the critically endangered Hawksbill 
sea turtle on São Tomé and Príncipe (in preparation) 
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Genetic characterization of green turtles (Chelonia mydas) from São Tomé 
and Príncipe: insights on species recruitment and dispersal in the Gulf of 

Guinea 
 

ABSTRACT 

Genetic studies on green sea turtles (Chelonia mydas) in the Eastern Atlantic have mostly 
focused on reproductive females, with limited information available regarding juveniles and 
foraging grounds. Improved understanding of genetic diversity and patterns of connectivity 
between nesting and foraging grounds is critical to identify management units and delineate 
suitable conservation strategies. Here we analyzed data from 11 microsatellite markers and 
sequences of the mitochondrial control region from both juveniles and females sampled in 
foraging and nesting aggregations around São Tomé and Príncipe islands, in the Gulf of Guinea, 
West Africa. The analysis of mitochondrial markers show that São Tomé and Príncipe’s 
juvenile and adult green turtles are genetically differentiated from other foraging and nesting 
Atlantic populations. Moreover, both nuclear and mtDNA data were congruent in showing 
exhibit high levels of genetic diversity. The similar levels of genetic diversity found in both 
juveniles and females are consistent with the results from mixed stock analyses, which 
suggested that São Tomé and Príncipe’s rookery is the primary source of juveniles to the local 
foraging areas. Taken these aspects in consideration, we argue that São Tomé and Príncipe 
green turtles show limited dispersal and should be considered an important management unit, 
and conservation actions in this archipelago must be implemented not only at the level of the 
rookery but should also include the foraging aggregations.  
 

Keywords: Chelonia mydas; dispersal; connectivity; genetic diversity; Eastern Atlantic; Mixed 
Stock Analysis 
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INTRODUCTION 

For highly migratory species, their ability to disperse affects the connectivity among 
populations, recruitment patterns, links between foraging and breeding areas and genetic 
diversity (Bowler et al. 2005; Blumenthal et al. 2009; Runge et al. 2015). In marine 
environments the patterns of dispersal and recruitment result from complex processes, often 
influenced by species-specific responses to features of both nearshore and pelagic 
environments. Marine turtles represent well this complexity, and are well suited to study these 
processes, since they have a complex life cycle that includes multiple phases within neritic and 
pelagic habitats (Van Buskirk & Crowder, 1994; McClellan & Read, 2007; Arthur et al. 2008) 
between which both juveniles and adults disperse widely over vast expanses of ocean. Post-
hatchling dispersal from natal beaches is an interplay between oriented swimming and passive 
drift (Scott et al. 2012) and is followed by an epipelagic phase that ranges from five to ten years, 
after which they recruit to coastal foraging grounds as juveniles (Bolten, 2003). Recruits to a 
foraging ground can be an uneven mix of juveniles originating from rookeries located either in 
the vicinity or thousands of kilometers away (Bolten et al. 1998; Monzón-Argüello et al. 2010), 
originating aggregations of mixed genetic origins (Bowen et al. 2007). Factors influencing 
dispersal and settlement of juvenile sea turtles include passive drift in oceanic currents (Carreras 
et al. 2006; Okuyama et al. 2011), distance to the contributing nesting colonies (Lahanas et al. 
1998), as well as water temperature and food availability (Mansfield et al. 2014). Upon reaching 
sexual maturity, adults periodically migrate between foraging and reproductive grounds 
showing a remarkable fidelity to specific areas for reproduction (Limpus et al. 1992; Lohmann 
et al. 2008), typically located in the vicinity of their natal beach (Bowen & Karl, 2007). This so 
called “natal homing” behaviour” leads to distinct breeding populations that, over time, may 
accumulate genetic differences that can be used as “genetic signatures” to identify groups of 
individuals back to their population of origin (Allard et al. 1994; Bowen et al. 1992; Encalada 
et al. 1996). Molecular markers have been an increasingly useful tool to understand patterns of 
connectivity and dispersal among populations of marine turtles, particularly through estimates 
of potential contribution of donor (rookeries) to recipient populations (mixed foraging grounds) 
using mixed-stock analyses (Pella & Masuda, 2001). Based on some of these studies, the high 
level of genetic substructure found among marine turtle nesting populations and foraging 
aggregations, even at a relatively small spatial scale, has led to the emergence of the 
management unit concept as a novel framework for prioritizing protection at a local/regional 
level (Wallace et al. 2010). Indeed, the increase in genetic studies have been crucial in 
improving indirectly our knowledge about behaviour, ecology and evolution of these species, 



 
 

24 

providing thus an important support for conservation and management (Bowen & Karl, 2007; 
Komoroske et al. 2017).   
 
The green turtle (Chelonia mydas) is a highly migratory marine organism with a circumglobal 
distribution, occurring throughout tropical and subtropical regions and, to a lesser extent, 
temperate waters (Seminoff et al. 2015). This species is considered globally endangered (IUCN, 
20018), as like other marine turtle species, it has been facing several threats related to the 
degradation and loss of nesting and feeding habitats, and especially with their over-exploitation 
both for food (meat and eggs) and for ornaments (shell) (e.g. Parsons, 1962;  Early-Capistrán 
et al. 2018). This situation together with accumulated evidences for extensive population 
declines in different areas of the globe, have emphasized the importance of adopting 
conservation actions to protect marine turtle rookeries and feeding habitats (Wallace et al. 
2011). Within the Eastern and South Atlantic basins, some comprehensive studies on green 
turtle populations using mitochondrial DNA (mtDNA) sequencing have identified several 
genetically distinct rookeries, including those found in Poilão (Guinea Bissau), São Tomé and 
Bioko (Gulf of Guinea) and Ascension islands, which may potentially represent independent 
management units (Formia et al. 2006, 2007; Patrício et al. 2017a). These studies have also 
expanded the knowledge on migration patterns and connectivity among green turtle 
populations. For example, a recent genetic study on juvenile dispersal from Guinea Bissau 
(Patrício et al. 2017a), suggested a high connectivity between rookeries and juvenile 
aggregations within West African populations. Despite accumulated information on green turtle 
biology, most genetic studies have been so far based on the analysis of a single type of marker 
(mtDNA sequences), and focused on rookeries, with limited information regarding juvenile 
aggregations and males.  
 
The São Tomé and Príncipe archipelago is part of a chain of extinct volcanoes called Cameroon 
Line. Its two main islands, São Tomé and Príncipe, are true oceanic islands separated from the 
African continent by an ocean approximately 1800 m deep and located about 160 Km apart. 
These islands’ shallow coastal shelf (less than 200 m wide) has been recently depicted as 
holding relatively important aggregations of foraging juvenile green turtles in the Gulf of 
Guinea (Hancock et al. 2018). The aim of our study is to characterize the genetic diversity of 
green turtles from São Tomé and Príncipe archipelago using a combination of genetic markers 
(a mitochondrial fragment and a set of microsatellites). More specifically, we will use mtDNA 
information for i) estimating the contribution of different rookeries in the Atlantic to São Tomé 
and Príncipe mixed stocks to ascertain their origin (foraging ground-centric approach), and ii) 
determine the possible dispersal patterns between São Tomé and Príncipe rookeries to foraging 
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areas in the Atlantic (rookery-centric approach). Additionally, we will explore potential cryptic 
inter and intra-population structure by assessing the genetic diversity at both mtDNA and 
microsatellite levels in the archipelago, providing thus the first assessment of this type of 
complementary molecular information for any green turtle population in West Africa. We will 
contrast levels of genetic diversity found in São Tomé and Príncipe islands with others 
previously documented Atlantic populations in order to evaluate the potential importance of 
these two islands for global green turtle conservation, especially at a regional level through 
delineation of functional units of management for conservation.  
 

MATERIALS AND METHODS 

Sample collection 

Skin samples from 112 adult females were collected at the primary nesting beaches in the 
islands of São Tomé (n = 93) and Príncipe (n = 19), between October and February of 2015 and 
2016 during night patrols conducted by the staff of Programa Tatô and Príncipe Trust, 
respectively. Foraging juveniles were hand-captured in both island of São Tomé (n = 34) and 
Príncipe (n = 7). Samples were taken from the trailing edge of the left hind flippers and stored 
in 96% ethanol. Sampling locations are detailed in Fig. 1.  
 

Markers and laboratory procedures 

Whole-genomic DNA was extracted from all samples collected using QIA Quick DNEasy 
columns (Qiagen, Inc., Valencia, CA, USA) following standard DNA extraction protocols. 
Sequences of a fragment (860 bp) of the mitochondrial Control Region (CR) and eleven 
microsatellite loci were chosen for analysis. 
 
Microsatellites We used seven microsatellite loci previously developed for Caretta 
caretta (Cc5H07, CcP2F11, CCP7C06, Ccp7D04, Cc1F01, Cc5C08, Cc1G02, Shamblin et al. 
2009), and seven for Eretmochelys imbricata (EIM09, EIM40, ERIM25, ERIM03, ERIM19, 
ERIM21, ERIM22; Miro-Herrans et al. 2008, Shamblin et al. 2013). Microsatellite 
amplifications were conducted in a Biorad T100 thermocycler using a Multiplex PCR Kit 
(QIAGEN) following manufacturer’s instructions. The eleven microsatellite loci were tested 
and amplified separately and then combined in two multiplex reactions for the final 
amplification using the MULTIPLEX MANAGER v.1.2 software (Table S1, Supporting 
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Information). General thermal conditions comprised an initial denaturation for 15 min at 95°C, 
followed by an additional step at 95°C for 30 sec., followed by 21 cycles of 1 min 30 sec. 
duration, each at 60°C with -0.5ºC decrease per cycle (to ensure an optimal annealing 
temperature for each primer). A second round of equal number of cycles was programmed at a 
lower, constant temperature (50ºC), set for 1 min each, to exponentially increase the number of 
amplified fragments. A final extension at 60°C was programmed for 35 min to promote 
adenylation and to avoid -A peaks during genotyping. Polymerase chain reaction (PCR) 
products were separated by capillary electrophoresis on an automatic sequencer ABI3130xl 
Genetic Analyzer (AB Applied Biosystems). Fragments were scored against the GeneScan-500 
LIZ Size Standard using the GENEMAPPER v.4.1 (Applied Biosystems) and manually 
checked twice.  
 
mtDNA For PCR amplification and sequencing of the CR fragment, we used the primers 
LCM15382/H950 developed by Abreu-Grobois et al.  (2006). Thermal conditions for 
amplifications consisted of 15 min at 95°C, followed by 40 cycles of 30 sec duration each at 
56°C, 45 sec at 72ºC with a final extension at 60°C for 20 min. Successful amplifications were 
enzymatically purified, and sequenced following the BigDye Terminator v.3.1 Cycle 
sequencing protocol (Applied Biosystems). Sequencing products were separated in the same 
automatic sequencer ABI3130xl Genetic Analyzer, and were aligned and compared in the 
software SEQSCAPE 3.0 (Applied Biosystems) 
 

Genetic diversity and population structure 

Microsatellites The presence/absence of large allele dropouts and null alleles was 
determined using the software MICROCHECKER 2.2.3 (Van Oosterhout et al. 2004). 
Departures from Hardy–Weinberg expectations (HWE) and linkage disequilibrium (LD) 
among the 14 loci were tested in GenALEx 6.503 (Peakall & Smouse, 2012), using the Markov 
Chain method (Rousset, 2008), and the respective significance was adjusted with sequential 
Bonferroni correction (Rice, 1989). Mean number of alleles (Na), allelic richness (AR) and 
average observed (Ho) and expected (He) heterozygosities over loci were estimated using 
GenALEx. We estimated the level of genetic differentiation (Fst, Weir & Cockerham, 1984) 
between São Tomé and Príncipe’s populations using GenALEx. Statistical significance of Fst 
values was tested using 1000 iterations, and 95% bootstrapped confidence intervals (CI) were 
used.  
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mtDNA Standard summary statistics, including the number of haplotypes (H), haplotype 
diversity (h), and nucleotide diversity (π) were calculated in the software DNASP v.5.0 
(Librado & Rozas, 2009).  All detected haplotypes were aligned and assigned to published 
haplotypes in the Mitochondrial Sequence Database for the Atlantic Ocean green turtle, hosted 
by the Archie Carr Center for Sea Turtle Research (University of Florida, Gainsville, Florida, 
USA). This database together with available data compiled recently by Patrício et al.  (2017a), 
were used to compare levels of genetic diversity and differentiation of São Tomé and Príncipe’s 
population (STP) with other known Atlantic rookeries and foraging aggregations. For this 
analysis, we used a truncated fragment of 490 bp length, which has been historically used to 
gather genetic information of other Atlantic populations. We generated a dataset that included 
haplotype frequency data for São Tomé and Príncipe and existing data for 13 rookeries (n = 
1927) and 18 foraging aggregations (n = 1789) in the Atlantic. The genealogical relationships 
among São Tomé and Príncipe haplotypes and haplotypes from other rookeries were inferred 
using a median-joining network analysis (Bandelt et al. 1999) implemented in the program 
POPART (Leigh and Bryant, 2015). Genetic differentiation between rookeries and foraging 
aggregations in the Atlantic was estimated in ARLEQUIN 3.5 (Excoffier & Lischer, 2010) 
through pairwise fixation indices (Fst) using haplotype frequencies.  The interpopulation 
migration rates were estimated using the formula Fst = 1/(4 Nm + 1) (Nm as virtual number of 
migrants, Wright, 1978). 
 
Historical demography of the adult (females) population was examined by the neutrality tests 
of Tajima’s D (Tajima, 1989), Fu’s Fs (Fu, 1997), and R2 (Ramos-Onsins & Rozas, 2002), 
which evaluate whether the polymorphism conforms to a neutral model of evolution. Statistical 
significance was determined by comparing estimated values against a distribution generated 
from 10,000 random samples under the hypothesis of selective neutrality and population 
equilibrium, with no recombination (Hudson, 1990), using the coalescent simulator in DnaSP. 
Historical demographic changes were also examined by estimating fluctuations in the effective 
population size over time using the Bayesian Skyline Plot (BSP) method (Drummond et al. 
2005), as implemented in BEAST 2.5.0 (Bouckaert et al. 2014). For this analysis, we used a 
strict clock model and a substitution rate of 0.0015 × 10-9 mutations/site/year (Lahanas et al. 
1994). A MCMC sampling algorithm was used in the HKY model estimated by JMODELTEST 
0.1.1 (Posada, 2008). The MCMC chains were run 200 million generations, sampled every 
10,000 generations with a 10% burn-in. All results were examined using TRACER 1.6 
(Rambaut et al. 2014). Convergence was assessed with ESS (effective sample size) >200. 
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Mixed-Stock Analysis 

A many-to-many Mixed-Stock Analysis (MSA) was performed to estimate the contributions of 
14 green turtle stocks of the Atlantic to the São Tomé foraging grounds (foraging ground-
centric MSA), as well as the dispersal of hatchlings originating from the São Tomé and Príncipe 
rookery (rookery-centric MSA). We used the ‘‘mixstock’’ package (Bolker et al. 2007) in R (R 
Development Core Team, 2011), a Bayesian algorithm that uses the MCMC method and a 
hierarchical model (Bolker et al. 2007), and WinBugs (Lunn et al. 2000) using rookery size as 
prior (Prosdocimi et al. 2012). São Tomé and Príncipe rookeries were grouped due to the lack 
of genetic differentiation (see results section) and geographic proximity (160 Km). Haplotypes 
observed by Formia et al.  (2006) for the São Tomé rookery and their frequencies were added 
to our sample for this island (n = 26 females added), for a total sample size of 138 adult females 
used for this study. Because many of the previous studies used shorter sequence fragments 
(~490 bp), for comparative purposes, we used an initial mixed stock analysis (MSA) using 

 
 

Figure 1. Location of green turtle (Chelonia mydas) rookeries ( � ), foraging aggregations ( � ) and locations 

where rookeries and foraging aggregations co-occur ( � ) included in this study and prevailing ocean currents 

(modified from Patrício et al. 2017a). Detailed location of São Tomé and Príncipe nesting sites and the three 

foraging areas sampled for this study are depicted in the figure inlet (Nesting areas: 1 – Porto Alegre; 2 – 

Praia Grande; 3 – Praia Grande do Infante. Foraging sites: A – Porto Alegre; B –Cabras islet; C – Mosteiros).  

Acronym list and references are included in Tables 1 and 2. 
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cropped sequences. Seven chains were run using 20,000 MCMC steps with a burn-in of 10,000 
to calculate the posterior distribution. Convergence of MCMC estimates to a desired posterior 
probability was assessed using the Gelman–Rubin shrink factor (Gelman and Rubin, 1992), 
increasing the MCMC steps until all values obtained were less than 1.2. This diagnostic 
compares the variation of a single chain to the total variation among chains, and convergence 
is achieved if the shrink factor is less than 1.2 for each chain (Pella and Masuda, 2001). The 
final MSA was run twice, once with uniform priors (each rookery was equally likely to 
contribute with individuals to the São Tomé and Príncipe's foraging aggregations), and then 
using weighed priors (rookery size entered as a prior under the assumption that larger rookeries 
provide larger contributions to foraging grounds). The estimated sizes of each rookery were 
taken from Seminoff et al.  (2015). Individuals with orphan haplotypes (i.e., not observed in 
any of the nesting rookeries) were removed from the analysis (Pella & Masuda, 2001). After 
we obtained our results from the MSA, we added these individuals back into the analysis and 
calculated the contribution of the ‘unknown' rookeries to the stock mixture.  
 

RESULTS 

Genetic Diversity  

Microsatellites All females and 30 of the 43 juveniles sampled were successfully 
genotyped at 14 microsatellite loci. Evidence of potential allele dropouts neither null alleles was 

found for the loci CCP7C06, ERIM19 and ERIM22, and for this reason these were eliminated from 

further analysis. Allele frequencies at all remaining 11 loci were within expectations of Hardy-
Weinberg equilibrium, and no pairs of loci showed significant linkage disequilibrium after 
sequential Bonferroni correction. In the adult population, the number of alleles per locus ranged 
from 5 to 21, with an average of 11.5. The mean number of alleles ranged from 6.3 (São Tomé) 
to 6.8 (Príncipe). Levels of allelic diversity adjusted for sample size (allelic richness) ranged 
from 12.9 (São Tomé) to 10.0 (Príncipe), whereas observed and expected heterozygosity ranged 
from 0.804 ± 0.035 (São Tomé) to 0.799 ± 0.042 (Príncipe) and from 0.799 ± 0.037 (São Tomé) 
to 0.797 ± 0.037 (Príncipe), respectively. Regarding foraging grounds (juveniles), the mean 
number of alleles ranged from 6.5 (São Tomé) to 5.2 (Príncipe). Observed and expected 
heterozygosity ranged from 0.778 ± 0.040 (São Tomé) to 0.783 ± 0.029 (Príncipe) and from 
0.811 ± 0.028 (São Tomé) to 0.790 ± 0.019 (Príncipe), respectively. Genetic diversity at the 
microsatellite level for females and juveniles sampled in São Tomé and Príncipe are presented 
in Table 1; comparisons with published data from other populations in the Atlantic are 
summarized in Table S2.  



 
 

30 

Mitochondrial DNA Sequencing alignment revealed 8 haplotypes in the sampled adult 
population, totalizing in combination with data from Formia et al.  (2006), 9 distinct haplotypes 
(Table 2), and 7 haplotypes in the juveniles sampled at the foraging aggregations; summary 
statistics for resulting genetic diversity for each population are included in Table 2.  The 
genealogical relationships among São Tomé and Príncipe female haplotypes together with 
available published data from other rookeries are depicted in Fig. 2. The haplotypes CM-A10, 
CM-A40 and CM-A75 are reported in these islands for the first time, while all other haplotypes 
observed in females (CM-A6, CM-A8, CM-A36, CM-A37, CM-A38) and in juveniles (CM-
A5, CM-A8, CM-A10, CM-A36, CM-A40 and CM-A75) were already reported in Formia et 
al.  (2006).  The haplotype CM-A35, previously observed by Formia et al.  (2006) in the nesting 
population, was not reported in this study, but was found in our sample of juveniles. The 
haplotype CM-A10 was found exclusively in the foraging aggregation, although it had been 
previously described for Ascension Island (Encalada et al. 1996; Formia et al. 2007) and 
Brazilian rookeries (Encalada et al. 1996; Bjorndal et al. 2006). There was one predominant 
haplotype, CM-A8, found in 57.6% and 65.1% of the samples (rookery and foraging 
aggregations, respectively). Overall, the haplotype diversity found in females was high (0.610 
±0.046) when compared to the mtDNA diversity found in green turtle rookeries from the Eastern 
Atlantic and Ascension Island (Table S3). 
  



 
 

31 

 
Table 1. Levels of genetic diversity found in Chelonia mydas in São Tomé and Príncipe archipelago and 

individual islands, in both rookeries and foraging grounds, based on 11 microsatellite loci. 

 

Population N Na (± se) AR (± se) Ho (± se) He (± se) 

ROOKERY 

São Tomé 72 12.9 (±1.36) 10.97 (±4.01) 0.803 (±0.035) 0.799 (±0.037) 
Príncipe 19 10.0 (±1.07) 10.26 (±4.01) 0.799 (±0.042) 0.797 (±0.037) 

Archipelago 91 11.4 (±0.90) 13.40 (±5.49) 0.801 (±0.027) 0.798 (±0.025) 

 

FORAGING AGGREGATION 

São Tomé 23 11.43 (±1.07) 5.63 (±1.30) 0.778 (±0.040) 0.811 (±0.028) 
Príncipe 7 7.00 (±0.59) 5.20 (±1.26) 0.788 (±0.044) 0.770 (±0.026) 

Archipelago 30 9.21 (±0.74) 11.58 (±3.96) 0.783 (±0.029) 0.790 (±0.019) 

 
Key: N number of samples; Na number of alleles; AR allelic richness; H0 observed heterozygosity; He expected heterozygosity 

 
 
 

Table 2. Summary statistics for mtDNA Control Region of São Tomé and Príncipe Chelonia mydas rookeries 

and foraging aggregations (individual islands and archipelago as a whole). 

 

 Population N H Hd (± sd) Π (± sd) 

ROOKERY 

 São Tomé 119 9 0.607 (±0.047) 0.0020 (±0.002) 
 Príncipe 19 3 0.433 (±0.117) 0.0001 (±0.009) 

                             Archipelago 138 9 0.590 (±0.044) 0.0019 (±0.001) 
      

FORAGING AGGREGATION 

 São Tomé 36 6 0.602 (±0.052) 0.0020 (±0.002) 
Príncipe 7 3 0.524 (±0.209) 0.0011 (±0.001) 

                              Archipelago 43 7 0.547 (±0.080) 0.0019 (±0.003) 
 
Key: N number of samples; H number of haplotypes; Hd haplotype diversity; Π  nucleotide diversity; sd standard deviation 
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Population structure and demography 

There was no significant genetic differentiation between the rookery of São Tomé and that of 
Príncipe using either mitochondrial (Fst = 0.0017, p > 0.05) or nuclear markers (Fst = 0.003, p 
> 0.05). Based on this overall lack of genetic differentiation between the two islands at both 
rookery and foraging aggregation levels, we treated each as representing either as a single 
population, or a single foraging aggregation, respectively (São Tomé and Príncipe, STP) for 
downstream analyses.    
  
Considering the combined data set, we found that mtDNA frequencies at the STP rookery were 
significantly different from the African rookeries of Ascension and Bioko islands, and Poilão 
(Guinea-Bissau), as well as all other rookeries included in this study (Table S4, Supporting 
Information). Estimates of interpopulation migration (number of virtual migrants, Wright, 
1978) between STP and other rookeries were low in most cases (Nm < 0.1), being only relevant 
between STP and the Brazilian rookeries of Atol das Rocas/Noronha (Nm = 4.5), Trindade 
Island (Nm = 3.54),  and the Eastern Atlantic rookeries of Bioko and Ascension (Nm = 2.18 and 
Nm = 2.30 respectively). In addition, the STP foraging aggregation showed no significant 
difference in haplotype frequencies with the STP rookery (Fst = -0.00895, p = 0.69369), and 
was found to be significantly differentiated from all foraging aggregations sampled in the 
Atlantic, with FST values ranging from 0.032 – 0.841, p < 0.001 (Table S4). Neutrality tests 
applied to the mtDNA dataset revealed non-significant small negative values of Tajima's D (D 
= -2.60206) and Fu's Fs (Fs = 0.34723) and small positive value of Ramos-Onsins and Rozas' 
R2 statistic (R2 = 0.047), which were in agreement with the relatively stability of C. mydas 
populations of São Tomé and Príncipe inferred by the coalescent BSP analysis (Fig. 3). 
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Figure 2. The genealogical relationships between São Tomé and Príncipe’s female haplotypes (740 bp) and 

other C. mydas rookeries, as indicated by the median-joining network of mitochondrial control region haplotypes 

found in the Atlantic. Acronym list and references are included in Tables 1 and 2. 

 
 
 
 

 
Figure 3. Bayesian skyline plot showing the effective population size fluctuation throughout time of Chelonia 

mydas from São Tomé and Príncipe, West Africa. Solid line represents median estimations; purple area indicates 

confidence interval. 
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Mixed Stock Analysis 

A strong link between São Tomé and Príncipe’s (STP) foraging aggregations and rookery is 
shown by the MSA results (Fig. 4 and Table S5 – Supporting Information), indicating that São 
Tomé and Príncipe rookery was the most likely contributor to the local foraging grounds, with 
an estimated mean contribution of 57%, and maximum contribution up to 72%. However, when 
we consider the size of the source population as a weighing prior, Guinea Bissau stands out as 
the highest contributor to STP foraging aggregation, with São Tomé and Príncipe and 
Ascension islands with similar contributions. In neither case the nearby island of Bioko has any 
relevant contribution. 
 
 

 

 

Figure 4. A. Estimated source contributions of Atlantic rookeries to the foraging aggregations of São Tomé and 

Príncipe. B. Estimated contribution of São Tomé and Príncipe rookery to Atlantic foraging grounds. Both figures 

include estimates with and without rookery size as a prior. Bars represent 95% confidence intervals. Acronym 

list and references are included in Tables S1 and S2. 
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DISCUSSION 

Our results provide the most comprehensive analysis to date of genetic diversity of São Tomé 
and Príncipe’s green turtle population. We have expanded previous analyses on green turtle 
genetic diversity in the region by increasing the number of mtDNA sequences for the adult 
population and adding for the first time nuclear data for both rookery, and foraging 
aggregations, resulting from the analysis of 11 microsatellite loci. Our results showed that São 
Tomé and Príncipe islands were not genetically differentiated at either mtDNA or nuclear level, 
suggesting that females nesting on these two islands should be considered as belonging to a 
single population or rookery. This rookery (when pooling both islands) was significantly 
differentiated from the others in the Atlantic, including the nearby island of Bioko 
(approximately 270 Km distant to Príncipe Island), which contradicts the lack of differentiation 
between these two rookeries reported by Patrício et al.  (2017a). The reporting of new 
haplotypes for São Tomé and Príncipe rookery and the higher sample size used on this study 
are likely to have contributed to a higher resolution of the levels of diversity for this rookery. 
Both our nuclear and mtDNA data confirm previous findings of Formia et al.  (2006), who based 
solely on mtDNA data showed that São Tomé and Príncipe’s rookery exhibits high genetic 
diversity when compared with values reported for other Atlantic rookeries and being especially 
high when compared to other Eastern Atlantic populations (Tables S2 and S3).  
 
The highest frequency (≈ 60%) of the CM-A8 haplotype in both rookery and foraging 
aggregations was similar to previous results obtained by Formia et al.  (2006) for São Tomé’s 
rookery and also for other Atlantic rookeries and foraging aggregations (Bjorndal et al. 2006; 
Formia et al. 2007; Naro-Maciel et al. 2006; Proietti et al. 2012).  Thus, the proportion of CM-
A8 previously detected for this rookery did not vary much with the new sampled individuals, 
but having a larger sample helps reduce uncertainty around the frequency of the haplotype CM-
A36, which was previously only recorded for three individuals by Formia et al.  (2006), but at 
the detected higher frequency in this study (20%) contributes to a more robust rookery 
contribution estimate to the São Tomé foraging aggregation, and foraging areas in Brazil 
(Proietti et al. 2009). Additionally, we detected for the first time in a rookery the haplotypes 
CM-A40 and CM-A75, that were only previously found in other West Africa foraging grounds 
(CM-A40, A. Formia, unpublished data), and in Brazil (CM-A75, Naro-Maciel et al. 2012). 

 
Analysis of historical population demographic changes using neutrality tests and the Bayesian 
Skyline Plot (BSP) suggested that São Tomé and Príncipe’s rookery has been historically stable, 
with only subtle fluctuations in effective population size. This result is somewhat intriguing in 
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light of what was previously found by Formia et al.  (2006) for the neighbouring island of 
Bioko, where they found much lower levels of genetic diversity and signals compatible with a 
unimodal distribution model of a rapidly expanding population. According to these authors, the 
higher diversity found in São Tomé and Príncipe may have resulted from the impact of a 
relatively high influx of immigrants and subsequent admixture but also hypothesized that this 
archipelago corresponds to a remnant of a larger ancestral population in the region. While our 
results do not allow us to make assumptions about the impact of migratory influx on levels of 
genetic diversity, the relatively stable demographic history of São Tomé and Príncipe rookery 
as deduced from mtDNA information, suggests a long-term persistence of the environmental 
conditions of the hydroclimatic zone where these islands are located, that likely functioned as 
a Pleistocene marine refuge area (Le Loeuff & Von Cosel, 1998).  
 
It is well documented that during the Pleistocene, the cyclical climate changes (glacial and 
interglacial periods) caused contractions and expansions of the tropical zone in the eastern 
Atlantic with profound modifications on sea-level and concomitantly on ecological conditions 
of the region (Le Loeuff & Von Cosel, 1998). These modifications were especially noticeable 
in Bioko Island, which during the last glaciation period was repeatedly connected to the 
continent (Rohling et al. 1998).   By contrast, the oceanic islands of São Tomé and Príncipe 
have never been connected to the continent and probably have only suffered very slight 
alterations on ecological conditions compared to Bioko Island.  While based on these available 
evidences it is possible to deduct that processes of population extinction-recolonization versus 
persistence have shaped the current patterns of genetic variability at Bioko and São Tomé and 
Príncipe’s rookeries, respectively, further studies combining paleoecological and genetic data 
with species distribution models (SDMs) will be crucial to illuminate this hypothesis.  
 
The juvenile green turtles at the São Tomé and Príncipe’s foraging aggregations exhibit high 
levels of genetic diversity, which are similar to those reported for other aggregates (Bass et al. 
2000; Prosdocimi et al. 2012). This result was somewhat expected as these aggregations are 
typically composed of individuals from mixed stocks. In this study, we found significant 
differentiation (as revealed by FST) between São Tomé’s foraging aggregation and others 
sampled in the Atlantic, but similarity between both the rookery and the foraging aggregation. 
This relative genetic homogeneity found in this foraging aggregation could be explained by the 
high contribution from the São Tomé and Príncipe’s rookeries compared with the negligible 
contribution from outside rookeries, as evidenced in the foraging-centric Mixed Stock Analysis 
(MSA) estimates (without rookery size as a prior). The exception to this pattern is the relatively 
high contribution of the Eastern Atlantic´s largest rookery, Guinea Bissau, when rookery size 
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was included in the estimates. A previous study performed by Godley et al.  (2010), which used 
sequences from 75 juveniles from São Tomé island found that including only rookeries in the 
Eastern Atlantic as potential sources, Poilão, in Guinea Bissau, would contribute a maximum 
of 10% to São Tomé foraging aggregation. This contrasts with our maximum contribution of 
40%. However, this last result could be an artifact as the highly frequent and widespread 
haplotype CM-A8 in eastern Atlantic populations, including São Tomé and Príncipe’s foraging 
aggregation, is (nearly) fixed in the Guinea Bissau rookery (Patrício et al. 2017a), and the 
inclusion of rookery size as a prior, which to our knowledge, was not used by Godley et al.  
(2010).  
 
The rookery-centric analysis of our data further reinforces the position of the São Tomé and 
Príncipe's rookery as the primary source of juveniles foraging in São Tomé, which is consistent 
with the lack of genetic differentiation between the rookery and the foraging aggregation and 
the similar levels of genetic diversity found in both juveniles and females. Overall, these results 
are in agreement with the natal homing behavior and the “closest to home” hypothesis, 
according to which the immature turtles tend to settle in foraging aggregations closest to their 
natal home (Bowen and Karl 2007). Despite this general pattern, evidence from our mtDNA 
analysis suggests that connectivity between São Tomé and Príncipe and South Western Atlantic 
foraging grounds is occurring.  For example, the rare haplotype CM-A75 is shared between the 
foraging ground of Fernando de Noronha (Brazil) and both foraging aggregation and rookery 
of São Tomé and Príncipe. Moreover, the MSA also suggests that São Tomé and Príncipe 
rookery contributes, albeit only moderately, as a source population for Cassino Beach (Brazil).  
These evidences for trans-oceanic connectivity, namely between the Eastern and the South 
Western Atlantic, are consistent with results from previous studies based on mark-recapture 
and telemetry analysis (Pritchard, 1973; Luschi et al. 1998; Marcovaldi et al. 2000; Grossman 
et al. 2007), as well as other MSA studies (Naro-Maciel et al. 2006; Proietti et al. 2009; 
Monzón-Argüello et al. 2010; Patrício et al. 2017a). Moreover, according to a study by Scott et 
al.  (2017), dynamic oceanic conditions in the Gulf of Guinea result in seasonal dispersion 
variability driven by wind changes arising from the yearly north/southward migration of the 
intertropical convergence zone. This results in varying degrees of hatchling retention, with 
increasing westerly dispersion of hatchlings throughout the hatching season, with the majority 
of simulated hatchlings dispersing west into the South Atlantic Ocean with the South Equatorial 
Current.  This pattern of dispersal in the Gulf of Guinea is evident by the higher migration rates 
between São Tomé and Príncipe rookery and Brazil than with the Eastern Atlantic rookeries, 
assuming that the estimated number of migrants (Nm) greater than 1–4 indicate that gene flow 
is sufficient to maintain a relatively homogeneous gene pool (Slatkin, 1987). 
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CONCLUSIONS AND CONSERVATION IMPLICATIONS 

Understanding patterns of connectivity and dispersal among species with complex life cycles 
and exposure to multiple threats such as marine turtles, is crucial for prioritizing conservation 
and management measures. Assessing the genetic diversity of green turtles from the São Tomé 
and Príncipe archipelago through a combination of genetic markers, we showed that nesting 
and foraging turtles found on these islands exhibit relatively high levels of genetic diversity, 
representing an important genetic pool in the region. Moreover, the high genetic differentiation 
found between this archipelago’s turtle population (both foraging and nesting) and others from 
the Atlantic suggests that this archipelago should be defined in the future an important 
conservation management unit. Although the use of a different type of genetic marker provided 
additional insight into our knowledge about the genetic structure of green turtle rookery and 
foraging aggregations in São Tomé and Príncipe, assessing small-scale patterns of connectivity, 
at the regional level (e.g. Gulf of Guinea), and between ocean basis would benefit greatly by an 
increased effort in sampling other East African rookeries, and the use of nuclear markers, such 
as microsatellites. Although important gaps persist in our knowledge about sea turtle ecology, 
it is well documented that ocean currents strongly affect the migratory behavior and dispersal 
pathways of this organisms (Luschi et al. 2003; Mansfield et al. 2017). While it is likely that 
the strong relationship found here between the rookery and foraging aggregation is linked to 
the effects of major oceanic currents, namely the Gulf and the South Equatorial currents (Luschi 
et al. 1998; Scott et al. 2017), further analyses based on satellite technologies and novel 
numerical simulation models (e.g. Briscoe et al. 2018) could be crucial to test whether the 
“closest to home” hypothesis (Bolker et al. 2007) fits the population dynamics of São Tomé 
and Príncipe. Improving our knowledge on patterns of connectivity and demography of the 
species in this region, will ultimately lead to an integrative and effective conservation and 
management plan. 
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SUPPORTING INFORMATION 

Table S1.  Identification of 14 microsatellite loci, with indication of allele size range, fluorescent labelling, 

and amplification multiplex panel. More details in Methods. 

 

Locus Reference Size range (bp) Flurophorea Multiplex panel 

CcP7D04 Shamblin et al. 2009 >500 6-FAM 1 

ERIM25 Shamblin et al. 2013 215-255 VIC 1 

CCP7C06* Shamblin et al. 2009 339-375 VIC 1 

Cc5H07 Shamblin et al. 2009 220-276 NED 1 

Cc1F01 Shamblin et al. 2009 304-340 NED 1 

CcP2F11 Shamblin et al. 2009 266-310 PET 1 

Cc1G02 Shamblin et al. 2009 258-334 6-FAM 1 

Eim09 Miro-Herrans et al. 2008 277-294 6-FAM 2 

Eim40 Miro-Herrans et al. 2008 240-248 NED 2 

ERIM03 Shamblin et al. 2013 210-220 6-FAM 2 

ERIM22* Shamblin et al. 2013 374-422 6-FAM 2 

ERIM21 Shamblin et al. 2013 208-220 VIC 2 

ERIM19* Shamblin et al. 2013 266-274 PET 2 

Cc5C08 Shamblin et al. 2009 289-379 VIC 2 
 

a Forward primers were modified at the 5´end with a fluorescent label: 6-FAM (blue, NED (yellow), VIC (green) or PET (red);  
*Microsatellite loci not used in analysis due to the potential existence of null alleles, or large allele dropout. 
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Table S2. Levels of genetic diversity found in Chelonia mydas in São Tomé and Príncipe islands (rookery and foraging grounds) based on 11microsatellite loci 

(this study), and in other Atlantic populations. 
 

Population Acronym N Na (± se) AR (± se) Ho (± se) He (± se) Reference 

ROOKERIES        

São Tomé & Príncipe STP 91 11.4 (±0.90) 13.40 (±5.49) 0.801 (±0.027) 0.798 (±0.025) This study 

Florida FL 49 13.7 (±8.25) 11.93 (±6.40) 0.792 (±0.015) 0.808 (±0.029) Seminoff (2004) 

Tortuguero CR 58 13.9 (±7.42) 12.01 (±5.84) 0.818 (±0.013) 0.815 (±0.027) Seminoff (2004) 

Surinam SUR 49 13.3 (±6.07) 11.91 (±4.89) 0.835 (±0.014) 0.822 (±0.024) Seminoff (2004) 

Aves AV 33 10.5 (±4.69) 10.17 (±4.50) 0.788 (±0.018) 0.767 (±0.036) Penaloza (2000) 

Rocas Atoll RC 30 11.1 (±4.50) 10.98 (±4.46) 0.804 (±0.019) 0.783 (±0.031) Bellini et al.  (1995) 

Trindade Island TRI 82 13.5 (±6.64) 10.82 (±4.85) 0.787 (±0.012) 0.780 (±0.036) Almeida et al.  (2011) 

Ascension Island ASC 46 17.8 (±nd) nd 0.668 nd Roberts et al.  (2004) 

Atol das Rocas RC 41 14.8 (±nd) nd 0.702 nd Roberts et al.  (2004) 

Aves Island AV 44 17.5 (±nd) nd 0.592 nd Roberts et al.  (2004) 

Cyprus CYP 25 11 (±nd) nd 0.660 nd Roberts et al.  (2004) 

Mexico MX 7 7.5 (±nd) nd 0.857 nd Roberts et al.  (2004) 

 

FORAGING AGGREGATION 

São Tomé and Príncipe STP 30 9.21 (±0.74) 11.58 (±3.96) 0.783 (±0.029) 0.790 (±0.019) This study 

 

Key: N number of samples; Na mean Number of Alleles; AR allelic richness; Ho observed heterozygosity; He expected heterozygosity; se standard error; nd no data 
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  Table S3. Summary statistics for mtDNA Control Region of Chelonia mydas Atlantic rookeries and foraging grounds used in this study. São Tomé and 

Príncipe islands are depicted individually (ST and PCP) and as a single rookery or foraging aggregation (STP). 
 

Location ACR RMU* nS H Hd (± sd) Π (± sd) References 

ROOKERIES        

East Central Florida EcFL NW 311 9 0.512 (±0.020) 0.0016 (±0.001) Shamblin et al. 2015 

South Florida SFL NW 174 10 0.444 (±0.043) 0.0022 (±0.002) Shamblin et al. 2015 

Mexico MEX NW 20 7 0.816 (±0.058) 0.0051 (±0.003) Encalada et al. 1996 

Cuba CUB NW 28 7 0.648 (±0.089) 0.0053 (±0.003) Ruiz-Urquiola et al. 2010 

Costa Rica CR NW 433 5 0.163 (±0.023) 0.0033 (±0.002) Encalada et al. 1996, Bjorndal et al. 2006 

Suriname SUR C 73 4 0.132 (±0.053) 0.0013 (±0.001) Encalada et al. 1996, Shamblin et al. 2012 

Buck Island BUC C 49 2 0.153 (±0.065) 0.0030 (±0.002) Shamblin et al. 2012 

Aves Island AV C 67 2 0.140 (±0.055) 0.0029 (±0.002) Lahanas et al. 1994, 1998, Shamblin et al. 2012 

Atol das Rocas/ 

Fernando de Noronha 

RC/N SW/SC 69 7 0.463 (±0.071) 0.0026 (±0.002) Encalada et al. 1996, Bjorndal et al. 2006 

Trindade TRI SW/SC 99 7 0.505 (±0.051) 0.0012 (±0.001) Bjorndal et al. 2006 

Ascension Is. ASC SC 245 13 0.303 (±0.038) 0.0008 (±0.001) Encalada et al. 1996, Formia et al. 2007 

Guinea Bissau POI E/SC 171 2 0.012 (±0.011) 0.0001 (±0.001) Patricio et al. 2017a 

Bioko Island BIO E/SC 50 2 0.184 (±0.068) 0.0004 (±0.001) Formia et al. 2006 

São Tomé ST E/SC 119 9 0.607 (±0.047) 0.0020 (±0.002) Formia et al. 2006; this study 

Príncipe PCP E/SC 19 3 0.433 (±0.117) 0.0001 (±0.009) This study 

São Tomé and Príncipe STP E/SC 138 9 0.590 (±0.044) 0.0019 (±0.001) Formia et al. 2006; this study 
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Table S3. (Cont.) 

      

FORAGING AGGREGATIONS 

North Carolina NC NW 106 12 0.729 (±0.030) 0.0050 (±0.003) Bass et al. 2006 

East C. Florida EcFL NW 62 6 0.486 (±0.067) 0.0031 (±0.002) Bass et al. 2006 

Bahamas BHM NW 80 7 0.612 (±0.018) 0.0060 (±0.003) Lahanas et al. 1998 

Puerto Rico PR NW 103 10 0.680 (±0.040) 0.0080 (±0.005) Patrício et al. 2017b 

Barbados BRB SW 60 8 0.773 (±0.028) 0.0105 (±0.006) Luke et al. 2003 

Almofala ALF SW 117 13 0.717 (±0.031) 0.0067 (±0.004) Naro-Maciel et al. 2007 

Atol Rocas RC SW 101 8 - - Bjorndal et al. 2006 

F. Noronha FN SW 117 12 0.650 (±0.028) 0.0040 (±0.003) Naro-Manciel et al. 2012 

Cassino Beach RC SW 101 12 0.586 (±0.050) 0.0020 (±0.002) Proietti et al. 2012 

Arvoredo Is AI SW 115 12 0.583 (±0.045) 0.0024 (±0.001) Proietti et al. 2009 

Ubatuba UB SW 113 10 0.446 (±0.056) 0.0021 (±0.002) Naro-Maciel et al. 2007 

Bahia BA SW 45 6 0.648 (±0.053) 0.0020 (±0.002) Naro-Manciel et al. 2012 

Espírito S.  ES SW 157 9 0.595 (±0.031) 0.0030 (±0.002) Naro-Manciel et al. 2012 

S. F. Itabapoana SFI SW 190 13 0.493 (± 0.038) 0.0014 (±0.001) Costa Jordão et al. 2017 

Buenos Aires BuA SW 93 9 0.553 (±0.051) 0.0020 (±0.002) Prosdocimi et al. 2012 

Uruguay UGY SW 144 10 0.387 (±0.051) 0.0014 (±0.001) Caraccio, 2008 

Cape Verde CV E 44 5 0.558 (±0.045) 0.0040 (±0.003) Monzón-Arguello et al. 2010 

São Tomé ST E/SC 36 6 0.602 (±0.052) 0.0020 (±0.002) This study 

Príncipe PCP E/SC 7 3 0.524 (±0.209) 0.0011 (±0.001) This study 

São Tomé and Príncipe STP E/SC 43 7 0.547 (±0.080) 0.0019 (±0.003) This study 
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Table S4. Pairwise comparisons of Chelonia mydas populations in the Atlantic: A - Rookeries; B - Foraging Grounds. 

FST values are shown below the diagonal, and p-values for exact tests of differentiation above the diagonal. Non-
significant values (p > 0.05) in bold. Negative values in italic. Acronym list are included in Table 1. 

 
 
 
A. ROOKERIES 
 

                   
 STP RC/N BIO ASC GB TRI SUR AV BUC MX EcFL SFL CR CUB     

STP - 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000     
RC/N 0.054 - 0.000 0.018 0.000 0.135 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000     
BIO 0.103 0.064 - 0.171 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000     
ASC 0.098 0.028 0.006 - 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000     
GB 0.255 0.239 0.149 0.073 - 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000     
TRI 0.066 0.011 0.102 0.066 0.267 - 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000     
SUR 0.573 0.706 0.846 0.747 0.951 0.663 - 0.225 0.144 0.000 0.000 0.000 0.000 0.000     
AV 0.566 0.697 0.841 0.743 0.951 0.654 0.006 - 0.063 0.000 0.000 0.000 0.000 0.000     

BUC 0.546 0.674 0.832 0.735 0.956 0.632 0.014 0.024 - 0.000 0.000 0.000 0.000 0.000     
MX 0.312 0.405 0.586 0.571 0.867 0.384 0.640 0.617 0.582 - 0.000 0.000 0.000 0.000     

EcFL 0.445 0.504 0.581 0.584 0.687 0.490 0.602 0.591 0.587 0.081 - 0.000 0.000 0.000     
SFL 0.475 0.549 0.639 0.634 0.771 0.530 0.659 0.637 0.640 0.223 0.298 - 0.000 0.000     
CR 0.689 0.772 0.834 0.782 0.884 0.747 0.830 0.817 0.827 0.608 0.560 0.109 - 0.000     

CUB 0.374 0.464 0.628 0.611 0.871 0.443 0.690 0.664 0.646 0.110 0.262 0.046 0.299 -     
                    
  
B. FORAGING GROUNDS 
 

                   
 STP RC FN ALF BA ES UB AI CB SFI UGY BUA CV NC ECFL BHM BRB PR 

STP - 0.000 0.000 0.009 0.009 0.000 0.000 0.009 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
RC 0.078 - 0.018 0.216 0.072 0.027 0.000 0.000 0.000 0.000 0.000 0.009 0.000 0.000 0.000 0.000 0.000 0.000 
FN 0.151 0.030 - 0.000 0.117 0.018 0.000 0.009 0.000 0.000 0.000 0.000 0.703 0.000 0.000 0.000 0.000 0.000 

ALF 0.093 0.005 0.054 - 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.018 0.000 0.000 0.000 0.000 0.000 
BA 0.121 0.022 0.015 0.060 - 0.901 0.000 0.261 0.099 0.054 0.000 0.171 0.000 0.000 0.000 0.000 0.000 0.000 
ES 0.106 0.026 0.024 0.073 0.011 - 0.000 0.135 0.018 0.027 0.000 0.108 0.018 0.000 0.000 0.000 0.000 0.000 
UB 0.032 0.044 0.119 0.075 0.065 0.054 - 0.090 0.153 0.126 0.640 0.036 0.000 0.000 0.000 0.000 0.000 0.000 
AI 0.056 0.028 0.060 0.069 0.005 0.007 0.011 - 0.946 0.901 0.009 0.982 0.000 0.000 0.000 0.000 0.000 0.000 
CB 0.040 0.037 0.073 0.075 0.015 0.017 0.007 0.006 - 0.937 0.0180 0.838 0.000 0.000 0.000 0.000 0.000 0.000 
SFI 0.051 0.039 0.081 0.084 0.019 0.018 0.006 0.005 0.005 - 0.009 0.892 0.000 0.000 0.000 0.000 0.000 0.000 

UGY 0.038 0.079 0.167 0.110 0.114 0.088 0.003 0.031 0.021 0.021 - 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
BUA 0.061 0.031 0.062 0.071 0.006 0.008 0.013 0.008 0.007 0.006 0.034 - 0.000 0.000 0.000 0.000 0.000 0.000 
CV 0.231 0.048 0.009 0.060 0.047 0.060 0.200 0.116 0.131 0.147 0.281 0.120 - 0.000 0.000 0.000 0.000 0.000 
NC 0.724 0.643 0.689 0.552 0.721 0.754 0.749 0.744 0.741 0.769 0.784 0.744 0.682 - 0.018 0.000 0.000 0.000 

ECFL 0.841 0.731 0.768 0.632 0.833 0.834 0.846 0.834 0.833 0.846 0.877 0.841 0.785 0.035 - 0.027 0.000 0.000 
BHM 0.692 0.605 0.654 0.508 0.684 0.731 0.728 0.720 0.716 0.751 0.770 0.719 0.632 0.051 0.050 - 0.000 0.181 
BRB 0.360 0.258 0.333 0.165 0.346 0.431 0.413 0.409 0.404 0.462 0.479 0.403 0.290 0.227 0.324 0.179 - 0.091 
PR 0.563 0.484 0.541 0.393 0.555 0.622 0.607 0.603 0.598 0.646 0.654 0.598 0.505 0.046 0.101 0.022 0.773 - 
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Table S5. Rookery contribution estimates to juvenile green turtles foraging aggregations in São 

Tomé and Príncipe waters, based on mixed stock analysis weighted by rookery size (A) and no 

weighing prior (B). Values of 0.00 represent no contribution. Rookery source acronyms are 

explained in Table 2. 

  

 A. With rookery size as prior  B. No prior 

 Mean 97.5% 2.5%  Mean 97.5% 2.5% 

EcFL 0.02 0.08 0.00  0.02 0.07 0.00 

SFL 0.02 0.08 0.00  0.02 0.07 0.00 

MX 0.03 0.10 0.00  0.02 0.08 0.00 

CR 0.02 0.09 0.00  0.02 0.07 0.00 

CUB 0.02 0.07 0.00  0.02 0.07 0.00 

BUC 0.00 0.01 0.00  0.04 0.11 0.00 

AV 0.04 0.13 0.00  0.04 0.12 0.00 

SUR 0.06 0.15 0.00  0.03 0.11 0.00 

RC/N 0.02 0.06 0.00  0.06 0.17 0.00 

TRI 0.04 0.14 0.00  0.03 0.11 0.00 

ASC 0.11 0.36 0.00  0.03 0.12 0.00 

GB 0.44 0.69 0.09  0.05 0.16 0.00 

Bio 0.05 0.19 0.00  0.05 0.16 0.00 

STP 0.13 0.28 0.04  0.57 0.72 0.39 
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Stable isotopes reveal dietary differences and site fidelity 

in juvenile green turtles foraging around São Tomé island, 

West Central Africa 
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“And the turtles, of course all the turtles are free, as turtles and, maybe, all creatures 
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Stable isotopes reveal dietary differences and site fidelity in juvenile green 
turtles foraging around São Tomé island, West Central Africa 

 

ABSTRACT 

Green sea turtles are common in West Central Africa, but little is known about the occurrence 

of immatures in foraging grounds in the Gulf of Guinea islands, known for their volcanic origin 

and narrow coastal fringes. This study presents results of in-water surveys foraging grounds off 

São Tomé island, in São Tomé and Príncipe archipelago, providing the first available data on 

the size distribution of immature green sea turtles of different life-stage groups on these islands.  

Two sites offering distinct types of food sources were studied, and isotopic signatures of 

immature turtles hand-captured at each foraging site were used to infer establishment duration 

at the foraging sites and diet preferences. Size at recruitment in the region was estimated to 

occur at a minimum size of 34 cm CCL, and resident immature turtles ranged from 53 to 87 cm 

CCL. Immatures sampled at each site showed clear differences in isotopic signatures, 

suggesting that they establish specific home ranges related to the available diet items and use 

them for extended periods of at least several months. Macroalgae were as or more important 

than seagrasses for the turtle’s diets, and there was evidence that these individuals are not 

strictly herbivorous. Our study provides the first data set to which to compare demographic data 

from other locations in West Africa, where current knowledge on green turtle foraging behavior 

is limited or non-existent and indicates that even oceanic islands that are geologically recent 

like São Tomé may provide important recruitment/development habitats for juvenile green 

turtles. 

 
Keywords: Chelonia mydas, Settlement, Stable Isotopes, Foraging Ecology  
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INTRODUCTION 

Studies on sea turtle biology have typically focused on the reproduction and post-nesting 

movements of females, logistically more accessible. Only more recently multi-disciplinary 

approaches have tackled the lives of cryptic life stages such as males and immatures and their 

use of neritic foraging habitats (Rees et al. 2016). Population assessments at the foraging 

grounds providing local size-class distributions may contribute information essential for 

establishing population abundance trends (Seminoff et al. 2003; Bjorndal et al. 2005; Bjorndal 

et al. 2010). Furthermore, knowledge of resource use can help determine the importance of 

different marine habitats for the different turtle life stages and improve our understanding of 

migratory connectivity among breeding, foraging, and developmental habitats (e.g. Bradshaw 

et al. 2017).  

 

The analysis of stable isotopes of both sea turtles and their diets has been increasingly combined 

with in-water population assessments to study foraging behaviour and resource use due to their 

high versatility. Stable isotope ratios in the tissues of consumers reflect those of their diet in a 

predictable manner (Hobson, 1999; 2007; Post, 2002); the ratio of nitrogen isotopes (δ 15N) 

increases along each trophic transfer and can be used to estimate trophic position of organisms 

(Minagawa & Wada, 1984; Peterson & Fry, 1987; Post, 2002b), while the ratio of carbon 

isotopes (δ 13C) varies substantially among primary producers with different photosynthetic 

pathways, and thus can be used to determine the sources of dietary carbon (deNiro & Epstein, 

1978). Additionally, as both Carbon and Nitrogen stable isotope ratios at the base of food webs 

vary spatially, this is reflected in spatial variability in isotopic composition among food webs 

(Jennings et al. 1997; Finlay 2001; Bearhop et al. 2004; Graham et al. 2010). The quantification 

of stable isotopes is thus particularly useful in studying ontogenic shifts in sea turtle foraging 

strategies (Arthur et al. 2008; Shimada et al. 2014; Ramirez et al. 2015; Velez-Rubio et al. 

2016; Tomaszewicz et al. 2017), identifying the geographic location of foraging habitats 

(Dodge et al. 2011; Ceriani et al. 2014; López-Castro et al. 2013, 2014), as well as clarifying 

sea turtle trophic position and resource use (Lemons et al. 2011; Hall et al. 2015; Pajuelo et al. 

2016; Sampson et al. 2017). 

 

In West Central Africa, two green turtle regional management units overlap (South Central and 

Eastern Atlantic, Wallace et al. 2010) where turtles are exposed to multiple threats both on 

nesting and foraging grounds (Formia et al. 2003; Carranza et al. 2006; Fitzgerald et al. 2011; 

Riskas & Tiwari, 2013). Foraging grounds, mostly used by immature green sea turtles, have 

been identified in the continental countries, specifically in Cameroon, Republic of Congo and 
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Gabon (Formia, 2002; Formia et al. 2003, 2006; Hyacinthe et al. 2012; A. Girard, pers. comm.), 
but not on the islands of the Gulf of Guinea. These islands, including Bioko and Annobón 

(Equatorial Guinea) and São Tomé and Príncipe, are of volcanic origin dating 15,7 million 

years ago (Deruelle et al. 1991), and display high relief, resulting in very narrow littoral fringes 

(Juste & Fa, 1994). We conducted this study aiming to provide the first accounts on spatial and 

temporal aspects of local aggregations of immature green sea turtles foraging on the Gulf of 

Guinea islands using in-water surveys, and to assess possible patterns of resource use using 

stable isotope analysis. We sampled individuals at two distinct habitats (seagrass vs. 

macroalgae) on São Tomé island and investigated how the use of these habitats by different 

size classes could be reflected on their isotopic niches. We sought validation of our results by 

(1) comparing the isotopic signatures of the immature, presumably local, individuals with those 

of breeding females, as female signatures should represent distant foraging grounds visited in 

the months preceding their migration (Stearns, 2002) and (2) sampling a selection of putative 

diet items to obtain clues about preferred diets and resource use by potentially resident 

immatures. This dataset offers an insight into green turtle recruitment and settlement dynamics 

in the Gulf of Guinea islands and will be the first data set to which to compare demographic 

data from other locations in West Africa, where current knowledge on green turtle foraging 

behaviour is limited or non-existent.   

 

 

METHODS 

Study Sites 

São Tomé Island is one of the two islands comprising the small, insular country of São Tomé 

and Príncipe that is located in the Gulf of Guinea, West Africa, approximately 250 km off the 

continental mainland. The littoral fringe surrounding the island covers approximately 450 km2 

above the 200 m isobar (Afonso et al. 1999). 

Informal interviews were conducted with spear fishermen, turtle hunters and fish sellers in the 

main coastal communities of the island throughout 2014 and 2015, with the aim of identifying 

known sea turtle aggregation areas or historical hunting grounds, as well as  potential diet items 

that may be primarily consumed by the turtles using those areas. An island-wide survey of sites 

presumed to offer either suitable foraging habitat (including the existence of extensive, shallow 

macroalgae or seagrass banks), availability of shelter and/or resting areas and evidence of the 

all-year-round presence of sea turtles was conducted by boat over two days in September 2015.  
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The survey covered the entire coastline and was carried out with the participation of local spear 

fishermen and turtle hunters. All sites that were visited and visually inspected by snorkeling are 

depicted on Fig.1; we considered as “potential foraging/aggregation sites” those where we 

could not confirm the presence of turtles. Two areas where sea turtles were observed feeding 

or resting were selected for this study, and included Ilhéu das Cabras site (Northern Foraging 

Ground, FGN, 0°21.802'N, 6°45.402'E); and Porto Alegre (Southern Foraging Ground, FGS), 

with two sub-sites: Praia Cabana, (FGSCAB, 0°1.310'N, 6°31.407'E) and Ponta Santo António 

(FGSPSA, 0°0.408'N, 6°31.622'E) (Fig.1).  

 

 
 
 

Figure 1. Location of the two foraging grounds (FG) and the nesting beach (Jalé) sampled during this study, as 
well as potential foraging grounds (sites identified by local fishermen for which no data is available) during two-

large scale surveys conducted in 2015 (Area and location of FGN obtained from Alexandre et al. 2017). 

 

 

 

For each site the predominant habitat type and associated algae or seagrass species was assessed 

visually. Average depth was calculated taking several readings using a depth gauge and 

approximate area was estimated using QGis; a short description of the sites is provided on Table 

1.  
  



 
 

56 

Table 1. Location and habitat characterization of the study sites 
 

Site Sub-Site Location 
Habitat 

type 
Distance to shore / 

Area Surveyed 
Range of 
Depths 

Dominant plant/ 
algal species 

FGN 
(North) 

Ilhéu das 
Cabras 

 

0°21.802'N 
6°45.402'E 

Seagrass 
patches 

2000 m 

1500 ha* 

4 – 7 m Seagrass 
(Halodule wrightii) 

Macroalgae 
(Dyctiota spp; 
Caulerpa spp) 

FGS 
(South) 

 

Praia 
Cabana 

(FGSCAB) 

0°1.310'N, 
6°31.407'E 

Rocky reef 200 m 
55 ha 

 

6 – 10 m Macroalgae 
(Dyctiota spp) 

Ponta S. 
António 
(FGSPSA) 

0°0.408'N, 
6°31.622'E 

Rocky 
platform 

500 m 
40 ha 

8 – 15 m Macroalgae 
(Polysiphonia spp, 

Dyctiota spp) 
 

 

* Alexandre et al.  (2017) 

 

 

In-Water Visual Surveys 

Efforts to document sea turtle presence were carried out between November and February 2016 

and 2017 and included (a) in-water visual daytime surveys either by snorkeling (underwater) 

or at the surface (from a boat) and (b) hand capture of live turtles during daytime (opportunistic) 

and night (targeted) surveys. The survey methods were adapted to the characteristics of each 

site, such as habitat type, depth, area and water visibility (e.g. Roos et al. 2005; Mancini et al. 

2015). The southern foraging or aggregation areas (FGSCAB and FGSPSA) were associated with 

rocky areas of spurs and groves at 8-12 m depth that offered resting and hiding areas for turtles, 

and dense macroalgae mats. Here we conducted underwater visual surveys (10 and 5 transects 

performed at FGSCAB and FGSPSA respectively), consisting of belt transects following Roos et 

al.  (2005). On these transects, two surface swimmers moved parallel to each other at the same 

speed, along one contiguous strip approximately 30 m wide (determined by the underwater 

visibility) and approximately 500 m long, parallel to the shore, resulting in approximately 3 ha 

covered in each survey. Each transect was usually covered within thirty minutes, depending on 

surface currents. In the shallow seagrass dominated site at FGN (< 7 m depth) where turtles can 

be easily seen from the boat, two surveys were conducted from the boat only under conditions 



 
 

57 

of excellent water visibility, following an expanding square search pattern to maximize the area 

covered (e.g. Bell et al. 1990; Christman et al. 2013; Acebes et al. 2016), covering an area of 

approximately 200 ha during each survey, and lasting approximately 60 minutes each.  

 

At all sites, every time a turtle was sighted, the turtle's behaviour (swimming, resting or feeding) 

and approximate size class was observed and noted, and the location was recorded using a hand-

held GPS. When possible, males were identified by their external sexual characteristics 

(Wyneken & Witherington, 2001).  Sighting data was used to calculate capture per unit effort 

(CPUE) and to assess habitat use; size-classes present at each site were only evaluated after 

hand-capture of individual turtles (see “Sea Turtle Capture and Handling”). 

Sea Turtle Capture and Handling 

Immature and adult female turtles were sampled for this study at two foraging sites and one 

nesting beach respectively. Each turtle sampled had the minimum curved carapace length 

(CCLmin; notch to notch, ± 0.1 cm) measured using a flexible measuring tape, and was double 

tagged with Inconel tags (Style 681; National Band and Tag Company, Newport, Kentucky); 

one tag in the second large proximal scale of each front flipper. Tissue samples were collected 

from the trailing edge of the rear flipper of each turtle using a sterile razor scalpel and stored in 

96% ethanol until processing in the lab. All seized turtles were released on-site within 30 

minutes of capture. Turtle sampling methods are as described below: 

 

Immatures All immatures were hand-captured; due to the distinct characteristics of each 

site, we employed different approaches to capture turtles: at FGN we used the rodeo technique 

(Ehrhart & Ogren, 1999), in which one person jumped into the water and attempted to capture 

the turtles as they were sighted at or near the surface or resting at the bottom of the sea; at  FGS 

we selected Cabana (FGSCAB) for targeted hand captures by free-diving after dusk, as turtles 

were easily found resting under rocky ledges, or well camouflaged amongst the macroalgae 

beds at this time of the day (JM Hancock, pers. obs.). Hand captures at both sites were always 

performed by holding the anterior and posterior medial section of the turtle’s carapace, pulling 

it out of the water by a slow, vertical ascension, lifting its head to keep the front flippers out of 

the water until it could be safely hoisted onto the boat, a method that has been shown to be safe 

for juvenile turtles in several previous studies (e.g., van Dam & Diez, 1998; Ehrhart & Ogren, 

1999).  
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Adult Females Adult female turtles were sampled at Jalé beach (0°2.496'N, 6°30.734'E), 

the main nesting site for this species in the island of São Tomé, during night patrols conducted 

by the technical staff of the project “Programa Tatô” of São Tomé during the same period. 

Sampling of putative diet items 

To obtain the reference isotope ratios for different trophic levels of the foraging grounds’ 

communities and investigate the variation of isotopic ratios at a local scale, we collected 

samples of the main algae and plant species that were referred by turtle fishermen as being 

either commonly consumed by green sea turtles or that were most abundant in each sampling 

location (see Table 1). Because incorporating too many sources would reduce the resolution of 

mixing models, and we were interested in assessing the differential contribution of plant/algal 

and animal diets for different sea turtle size groups, we selected the most common plants/algae 

at each site, as well as the most common primary consumer/ omnivore invertebrate. These 

included four species of macroalgae of different groups (Caulerpa sp. among Chlorophyta, 
Dictyota sp. and Sargassum sp. among Phaeophyceae, and Polysiphonia sp. among 

Rhodophyta), one species of seagrass (Halodule wrightii) and the common intertidal crab 

Grapsus adscensionis (Osbeck, 1765). The macroalgae Dictyota sp. and the crab were the only 

putative diet items common at both foraging grounds, and so were collected near FGSCAB 

(Inhame beach, 0°1.464'N, 6°31.147'E) and FGN (Gamboa beach, 0°22.789'N,  6°43.173'E) to 

identify a possible North-South isotopic distinctiveness in δ13C values. Crab samples were 

stored in 96% ethanol until processing. Macroalgae and seagrass samples were stored in a 

hypersaline solution (2:1 saltwater/salt, as suggested by Tsuda et al. 1985) instead of ethanol 

since algal material will lose pigments and become very brittle quickly if stored in ethanol, no 

other fixative was available, and freezing was not possible. Preserved algae samples were kept 

in the dark and refrigerated (± 4 ºC) until processing.   

Stable isotope analysis 

From each sea turtle sample, 0.10 – 0.25 g of the epidermis (i.e., stratum corneum) was 

carefully separated from any connective tissue, rinsed with deionized water, finely diced with 

a scalpel blade, weighed and oven dried for at least 12 h at 60 ºC. Samples of putative diet items 

were carefully rinsed with de-ionized water until all salt was removed, scraped gently to remove 

any debris or epiphytes and finely shredded with a scalpel blade, and oven dried as described 

above. The isotopic signature of the putative diet items was determined using 3 - 5 replicate 

samples from each item. Lipid extraction was performed on all samples, using a solvent mixture 

of chloroform/methanol (2 : 1) to a final volume 3 - 5 times the volume of the tissue sample 
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(approximately 1 g of tissue in 5 ml of solvent mixture). Samples were first centrifuged in an 

Eppendorf Centrifuge model 5403 for 1 minute at 3400 rpm and left to rest for 30 minutes. 

After a second centrifugation for 10 minutes at 4 ºC and at the same speed, the supernatant was 

entirely removed. The previous step was repeated at least three times until the supernatant was 

clear, then the remaining sample was oven dried for at least 12 h at 60 ºC to remove any residual 

solvent. Sub-samples of prepared tissue (0.75 – 1.0 mg of animal material, 4 – 5 mg of plant 

material) were weighed with a microbalance and packed in tin capsules for mass spectrometric 

analysis.  

 

The 13C/12C and 15N/14N ratios (δ13C and δ15N respectively) in the samples were determined by 

continuous flow isotope mass spectrometry (CF-IRMS) (Preston & Owens, 1983), on a Sercon 

Hydra 20 - 22 (Sercon, UK) stable isotope ratio mass spectrometer, coupled to a EuroEA 

(EuroVector, Italy) elemental analyzer for online sample preparation by Dumas-combustion. 

The standards used were Protein Standard OAS, Sorghum Flour Standard OAS (Elemental 

Microanalysis, UK) and IAEA-N1 (IAEA, Vienna, Austria) for nitrogen and carbon isotope 

ratio; δ15N results were referred to Air and δ13C to PeeDee Belemnite (PDB). The precision of 

the isotope ratio analysis, calculated using values from 6 to 9 replicates of standard laboratory 

material interspersed among samples in every batch analysis, was ≤ 0.2 ‰. 

Analytical methodology  

We calculated catch per unit effort (CPUE) at both sites as the sum of the number of resting or 

feeding turtles observed per hour of underwater survey time. For data analysis purposes, we 

used the estimated size at which green turtles undergo ontogenic dietary changes on the 

southwestern Atlantic (45 cm CCL; Vélez-Rubio et al. 2016) to separate immature turtles in 

two distinct size-classes: i) "Small Immatures” (CCL < 45 cm) and ii) “Large Immatures” (CCL 

> 45 cm). The minimum sizes for mature turtles were defined as CCL > 80 cm for females 

(minimum size observed for nesting females at São Tomé island (S. Vieira, pers. comm)), and 

CCL > 90 cm for males. The cut-off size for males coincides with the minimum reproductive 

size estimated in the Atlantic (Goshe et al. 2010); furthermore, males captured in this study 

with a CCL < 90 cm did not show signs of reproductive activity, such as plastron softness or 

mating wounds (Wibbels et al. 1991; Blanvillain et al. 2008).  

 

Isotopic niche parameters were computed using SIBER package V.2.0 (Stable Isotope Bayesian 

Ellipses in R; Jackson et al. 2011) in R V.3.2.2 (R Development Core Team, 2013). This 

program fits bi-variate ellipses of isotopic space using Bayesian inference to describe and 

compare the isotopic niche of different life-stages and or/sites. Standard Ellipse Areas (SEA) 
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were corrected (SEAc) for low sample size using SEAc  =  SEA (n-1)(n-2)−1. Niche overlap was 

measured using the overlapping areas of the corrected standard ellipses of each life-stages group 

instead of the convex hulls, due to the small sample size (Jackson et al. 2011, Syväranta et al. 

2013). 

 

We used SIAR v.4.2 (Stable Isotope Analysis in R; Parnell & Jackson, 2013), a bayesian-

mixing model that accounts for variation in isotopic discrimination and source values (Moore 

& Semmens, 2008), to explore the potential contributions of the most abundant groups of 

primary producers versus that of consumers (occupying a different trophic level) to the diets of 

green turtles captured at each foraging ground. Because trophic discrimination factors are not 

known for neritic green turtles, we used 3 different estimates of discrimination factors that 

together should provide robust insights into trophic interactions of turtles (Burkholder et al. 

2011), estimated for (1) juvenile green turtles fed on a carnivorous diet (Seminoff et al. 2006; 

skin tissue: δ15N = 2.80 ± 0.11 ‰, δ13C = 0.17 ± 0.03 ‰), (2) herbivorous Florida manatees 

Trichechus manatus latirostris (Alves-Stanley & Worthy, 2009; skin tissue: δ 15N [estimated] 

= 5.0 ± 0.00 ‰, δ13C = 2.80 ± 0.09 ‰), and (3) average δ13C  and δ15N  discrimination factors 

based on meta-analysis of isotopic studies by Caut et al.  (2009) (δ15N = 2.75 ± 0.1 ‰; δ13C = 

0.75 ± 0.11 ‰). We ran the analysis per size-class (small vs. large immatures) as well as per 

location. Adults were not considered in this analysis as they are assumed to have foraged 

somewhere else. 
 

RESULTS 

In-Water Surveys 

We recorded 95 observations of Chelonia mydas, in a total of 17h of combined survey time at 

all locations. Despite the higher number of turtles observed in FGS sites (58 and 31 turtles 

observed in Cabana and Ponta Santo António sites respectively, six in FGN (Ilhéu das Cabras), 

CPUE was similar at all sites (range 5 - 7 individuals per hour of survey time). Rough estimates 

of densities (as surveys were not intensive) ranged from 0.03 ind.ha-1 at FGN and 40 - 55 ind.ha-

1 at FGSCAB and FGSPSA respectively. Due to the proximity of both FGS sub-sites we consider 

the estimated density values representative of the FGS site as a whole. Targeted efforts resulted 

in the hand capture of 34 individuals, including 3 males, none showed signs of being actively 

reproducing, and all were observed feeding before capture. One adult female captured at the 

northern foraging site was observed feeding on seagrass and did not show fresh mating wounds 
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or scars and was therefore considered as a non-breeding individual. Details and biometric 

parameters of turtles sampled are summarized in Table 2. 

 

Stable Isotopes 
The wide range of the values of δ13C (−28.3 to −10.2 ‰) and δ15N (5.8 to 13.2 ‰) observed in 

the animals sampled is a result of the large heterogeneity of signatures observed at the different 

locations, although the range of δ15N values are better explained by the differences observed 

among different size-class groups (Table 2).   

 

The isotopic signatures of all putative diet items are presented in Fig. 2 and on Supplementary 

Table 1. Macroalgae and crab items sampled at more than one location did not vary significantly 

in their isotopic signatures (t-test, p >0.05, n = 5 in both cases; Supplementary Table 2), 

therefore, the samples were pooled. As expected, all plants/ algae had a very low (and similar) 

δ15N, but their δ13C varied widely, mainly because of the very low values of Rhodophytes (Fig. 

2), very abundant only at the southern foraging ground. 

 

 
 

Figure 2. Standard ellipses (SEAc) produced by SIBER indicating the trophic niches occupied by the distinct 
size-classes. Open circles represent individual isotopic signatures. Shaped symbols indicate mean isotopic 

signature of potential diet items and standard error values (bars). 
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Figure 3. Potential contribution of common diet items to the diet of immature green turtles (A - large 

immatures at FGN; B – large immatures at FGS; C – small immatures at FGS), as determined by the SIAR 
mixing model. 
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Table 2. Summary of data obtained during in-water surveys at the two main foraging sites in São Tomé (N = 
number of individuals sampled). 

 

Site Size-Class N 
Mean CCLmin (cm) 

(min - max) 
Mean δ15N (‰) 

(min – max) 
Mean δ13C (‰) 

(min - max) 

North 

(FGN) 

Large Immatures 5 73.8 ± 7.1 

(64.0 - 83.0) 

6.9 ± 1.3 

(5.8 - 8.9) 

-11.9 ± 2.3 

(-10.2, -15.7) 
 Adult 

(non- breeding) 
1 109.0 6.7 -10.0 

South 

(FGS) 

Small Immatures 10 38.0 ± 3.7 
(34.0 - 45.0) 

10.8 ± 1.8 
(8.6 - 14.0) 

-17.9 ± 1.2 
(-19.1 - -15.4) 

Large Immatures 8 73.0 ± 14.1 
(53.0 - 87.0) 

9.0 ± 1.7 
(7.5 - 12.9) 

-24.0 ± 3.1 
(-28.3 - -19.3) 

Jalé Beach Adult Females 12 96.5 ± 5.3 

(88.0 - 105.0) 

12.9 ± 1.6 

(10.6 - 15.8) 

-18.2 ± 1.3 

(-20.3 - -16.2) 

 

 

 

The SIBER results indicate distinctive isotopic niches for each immature size-class, as well as 

for immatures living at each foraging ground, as the overlap among all pairs of ellipses was 

null (Fig. 2). Small immatures occupied an entirely different niche from the larger immatures, 

with their ellipse overlapping by 33 % with that of the adult females sampled at the nesting 

beach, and that are not supposed to forage off S. Tomé island. The distinctiveness of the larger 

immature’s isotopic niches, and the size of their ellipses was clearly related to the two different 

foraging sites (Fig. 2). For this group a smaller isotopic niche was calculated for those feeding 

at FGN than for those at FGS (Table 3). This distinction appears to be related to the relatively 

high contribution of Rhodophytes (Polysiphonia sp.) to the diet of specimens sampled in the 

southern foraging ground (Fig. 3B), while none of the algae or plants at the northern site has a 

particular relevance to the turtle’s diet (Fig. 3A). The SIAR results also suggest that animal 

diets may be important for immatures, especially for the small size-class (Fig. 3c, but see 

discussion).  
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Table 3. Standard Ellipse area metrics for different life-stage groups sampled in São Tomé Island 

 

 Life-stage Group SEA SEAc 

Adults 6.52 7.03 

Small Immatures FGS 6.90 7.66 

Large Immatures FGS 5.93 7.12 

Large Immatures FGN 2.97 3.71 
 
Key: SEA standard ellipse area; SEAc standard ellipse area corrected 

 
 

DISCUSSION 

Foraging habitat use 

Sea turtle fishermen indicated several foraging or aggregation sites (Fig. 1); however, we could 

not confirm this information in several sites, as no turtles were sighted during the snapshot 

surveys. Furthermore, even the number of locations provided is likely to be limited to the 

fishermen’s experience and sites commonly used for fishing practices, and thus, biased. 

Nevertheless, the CPUEs and estimated densities recorded at the two selected study sites 

suggest that the macroalgae/ seagrass patches around S. Tomé Island, despite their small area, 

may maintain a few dozen sea turtles, at least during the months when the study was conducted 

(November - February).  Considering that only two out of the several potential sites were 

surveyed more thoroughly and that the density of turtles in these sites was high, it is possible 

that future prospections will reveal more foraging grounds off São Tomé coast.   

 

Our results show that São Tomé hosts two discreet immature groups of foraging turtles: very 

small immatures, likely to have recruited recently to the neritic zone from their oceanic, 

omnivorous life-stage, and larger immatures that explore the local resources for more extended 

periods, eventually as residents. The smallest turtle captured in this study was 34 cm CCL, 

within the expected size at recruitment range for post-pelagic turtles of this species (Musick & 

Limpus, 1997), and with a slightly smaller size than at other locations in the Atlantic (Reisser 

et al. 2013) or Pacific (Arthur et al. 2008). Small immatures were only found in the southern 

foraging areas; it is possible that the rocky substrate of the south of São Tomé is well suited for 

omnivores, being rich in macroalgae and benthic invertebrates, while providing more resting 

or hiding sites for the smallest individuals than the exposed seagrass beds. It can also be used 
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as a stopover area where green turtles recruit to after the pelagic phase and store resources 

before traveling to other developmental habitats (Bolten 2003, Reich et al. 2007). Nevertheless, 

it is possible that this size-class was not observed at the northern foraging ground due to the 

survey method used (e.g. lower detection of small individuals from the surface). 

 

With the exception of one non-breeding adult female (109 cm CCL) captured in FGN, no adults 

were observed foraging at any of the sites during the breeding season, clearly indicating that 

São Tomé is an important recruitment/development habitat for juvenile green turtles in the 

region, and that after reaching maturity adults move to other foraging sites. 

Recruitment and settlement 

After recruiting to neritic habitats from pelagic waters, immatures of C. mydas occupy 
developmental habitats, which are geographically separate from both the lost-year habitat and 

the adult resident habitat (Carr, 1978; Meylan et al. 2011). In the developmental habitats they 
are expected to undergo an ontogenetic shift in foraging habits, from omnivory to feeding 

primarily on macroalgae or seagrass (or both) (Bjorndal, 1997; Reich et al. 2007, Arthur et al. 

2008) and occupy limited home ranges associated with specific grazing areas, while feeding 

and growing to maturity (Makowski et al. 2006, Shimada et al. 2016). As turtles settle in a 

foraging area it is expected that their isotopic signatures begin to reflect those of the available 

diet items only after some time, since the median residence time of carbon and nitrogen stable 

isotopes in the epidermis of immature green turtles ranges from 27 to 35 days and from 11 to 

31 days, respectively (Reich et al. 2008). There are no estimates for isotope turnover rates of 

large immatures, but alligator turn-over rates have been shown to be up to two years (Rosenblatt 

et al. 2012). As the slower growing tissues of larger immatures have longer turnover times 

(Martinez del Rio et al. 2009), the clear separation of the isotopic niches of turtles living at each 

foraging ground and the low variation in stable isotope  values within each group is a strong 

indication of local settlement over time frames of at least many months (as in Bolnick et al. 

2002, Bearhop et al. 2004, Cardona et al. 2009, Martinez del Rio et al. 2009). Residence  periods 

of immature green turtles at several foraging sites have been estimated to be as low as 744 days 

in Japan (Shimada et al. 2014), 11.2 years (with a median of 2.4 years) in Brazil (Colman, 2015) 

(interquartile range 1.2 – 4.2 year) and up to 32 years in Bermuda (Meylan et al. 2011). 

Moreover, as slow-maturing animals that may take from 14 to 44 years to mature (Bjorndal et 

al. 2000, Bell et al. 2005, Goshe et al. 2010, Patrício et al. 2014), it is possible that these 

immatures remain in São Tomé waters for extended periods. Exclusive settlement to either site 

must however be interpreted with caution, as the small sample size at FGN may lead to an 

underestimation of the niche width (Syväranta et al. 2013).  
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Trophic status and diet preferences 

Ontogenic diet shifts in green turtles from omnivory to herbivory has been thought to be abrupt 

and irreversible, despite growing evidence that high levels of omnivory remain amongst 

different life stages (e.g. Cardona et al. 2009, Burkholder et al. 2011, Lemons et al. 2011, 

Gonzaléz-Carman et al. 2012, Burgett et al. 2018). Should immature green turtles be primarily 

herbivorous, their isotopic signature should be one trophic level above the primary producers, 

and reflected by tissue δ15N enrichment of ~2.8 ‰ (Seminoff et al. 2006). The high nitrogen 

stable isotopic values of all the small immatures sampled suggest high levels of omnivory prior 

and/or soon after recruitment to neritic habitat in São Tomé, as observed elsewhere (e.g., 

Cardona et al. 2009, Burkholder et al. 2011, Lemons et al. 2011, Gonzaléz-Carman et al. 2012). 

Even for larger immatures, the observed δ15N values at both foraging grounds are higher than 

the expected values for strict herbivores, considering the signatures of the most common algae 

(Fig. 2). These animals may be supplementing their diet with animal protein (Fig.3C), or may 

still be far from the isotopic equilibrium with their diets. Further evidence is obtained by the 

inclusion of a primary consumer in the isotope mixing models. Although it is not possible to 

ascertain direct consumption of these specific crustaceans or any animal matter due to the 

limitations of our sampling approach and of the mixing models, our results suggest that the 

contribution of animals for the diets of immature green turtles is not negligible. Despite the 

omnivory suggested for all immature stages in São Tomé waters, a clear diet ontogenic shift is 

suggested by the contrasting signatures of small and large immatures, reflecting adjustments to 

a new diet.  

 

The differences in isotopic signatures between the two groups of large immatures are mainly 

explained by the contrasting distributions of the red algae Polysiphonia sp., that is the dominant 

species at the southern foraging ground, and of a seagrass, Halodule sp., and a green algae, 

Caulerpa sp., found mainly at the northern foraging ground. Red algae such as Polysiphonia 

have more negative δ13C values than other algae, which is attributed to their photosynthetic 

pathways (Raven et al. 2002). The importance of the red algae mats for our results is further 

reinforced by the lack of spatial variation found in carbon signature of the brown algae Dictyota 

sampled at both sites. This observation is in line with other studies that show that at foraging 

grounds where green turtles are algal feeders, algae within the division Rhodophyta are the 

most commonly found in the diet (e.g. Mortimer 1981, Brand-Gardner et al. 1999, López-

Mendilaharsu et al. 2008). Previous studies show that this class of algae has higher nutrient 

content (Montgomery & Gerking, 1980; Brand-Gardner et al. 1999), higher protein (Fleurence, 

1999; McDermid & Stuercke, 2003) and digestibility (Wong & Cheung, 2001), which may be 

a strong factor affecting the foraging preferences of green turtles. In the North, the foraging 
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ground is mostly limited to the existing seagrass mats, which offers a variety of prey items, yet 

represents a much smaller area (estimated area of 1500 ha; Alexandre et al. 2017), when 

compared with the southern feeding ground, and turtles appear to be less selective in their diet.  

 

CONCLUSION 

Taking into consideration that only two of the available foraging areas were surveyed, and  that 

the number of turtles on those two sites was high, São Tomé, as well as the similar islands on 

the Gulf of Guinea, may provide an important array of suitable foraging habitats for immatures 

of C. mydas in the region. There are clear evidences of settlement and local exploitation of 

available resources, as well as of variation in foraging behaviour between various size-classes 

and life-stages. These results suggest that conservation efforts should account for the possibility 

that subsets of the larger regional population may play different ecological roles and may be 

differentially vulnerable to anthropogenic impacts. Our study reveals the need for further 

research in neighbouring islands in the Gulf of Guinea to assess the importance of these 

aggregations of immature turtles to each of the regional management units identified for this 

populations in the Atlantic. 
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SUPPORTING INFORMATION 

Table S.1. Stable Isotope values for the putative diet items sampled 
 

Diet Item Mean δ13C SD δ13C Mean δ15N SD δ15N 

Chlorophyta -12.74 0.62 4.52 0.62 
Phaeophyceae -17.41 0.70 3.01 2.16 
Rhodophyta -30.10 0.84 3.16 4.76 
Cymodoceaceae -9.84 0.21 2.68 0.21 
Crustacea -17.88 2.60 10.51 3.18 

 

 

Table S2. Results of statistical significance tests (t-test) for different isotopic signatures observed for two diet 
items (crustacean Grapsus sp and brown algae Dictyota sp) collected at distinct sites on São Tomé island. 

 

Species Isotope Site N Mean SD t value p value 

Grapsus sp. δ15N FGS 5 11.0 4.15 0.534 0.622 
 FGN 5 10.02 2.22   

δ13C FGN 5 -17.42 3.63 0.553 0.609 
 FGS 5 -18.34 1.18   

        
Dictyota sp. δ15N FGS 5 3.22 0.43 1.231 0.286 

 FGN 5 2.96 0.23   
δ13C FGN 5 -16.62 0.48 0.775 0.481 

 FGS 5 -16.76 0.58   
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Overcoming field monitoring restraints in estimating marine turtle 
internesting period by modelling individual nesting behaviour using 

capture-mark-recapture data 
 
 
 
ABSTRACT 
 

Marine turtles are intra-seasonal iteroparous animals; they nest from one to up to 14 times 

during the nesting season, laying up to 180 eggs each time. Their annual reproductive effort 

can therefore be estimated from clutch size, nesting frequency, and length of the nesting season. 

Moreover, the estimation of nesting frequency, usually obtained from the interesting period 

(i.e., the time in days between two nesting events) is essential for assessing the number of 

females in a population. However, the internesting period is strongly influenced by variation in 

individual behaviour of the nesting female, including abortion of nesting attempts. It is also 

affected by imprecise detection of females during beach monitoring, often related with a lack 

of fidelity to the nesting beach. Using an individual-focused model based on capture-mark-

recapture data we were able to statistically characterize the nesting behaviour of the populations 

of green turtles (Chelonia mydas) and olive ridley turtles (Lepidochelys olivacea) in São Tomé 

and Príncipe (Eastern Atlantic). The developed model proposes a novel approach in estimating 

the internesting period, by including the different factors that lead to the heterogeneity observed 

in the duration of internesting periods across a single season, corrected for the probability of a 

female aborting a nesting process. The calculated lengths of the internesting periods for the two 

species are congruent with previous estimates, validating the model. A limitation of the model 

is its inability to estimate the true clutch frequency at the scale of the population, but it was not 

its purpose. 

 

Keywords: Chelonia mydas; Lepidochelys olivacea; internesting period; iteroparity; nesting abortion 
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INTRODUCTION 

Female marine turtles come ashore and nest several times during the nesting season at regular 

intervals (Miller, 1997). The number of days between consecutive clutches, named hereafter 

the internesting period, is typical for each species (Alvarado & Murphy, 1999). For instance, 

leatherback turtles (Dermochelys coriacea) have the shortest internesting period, typically 

lasting only 10 days (Fretey & Girondot, 1988), while for cheloniids this average interval spans 

from 12 (in green turtles, Chelonia mydas) up to 20 days (in olive ridley turtles, Lepidochelys 
olivacea). Several factors are thought to influence this intra-seasonal iteroparity pattern. Marine 

turtles, as most ectotherms, are mainly capital breeders, storing most of their energy at the 

foraging sites prior to their reproductive migration (Bonnet et al. 1998; Myers & Hays, 2006); 

the shorter the nesting season is, the less time females spend away from their foraging sites. On 

the other hand, when the nesting season encompasses several months, different clutches of a 

single female will incubate under various temporal conditions. Marine turtles are species with 

temperature-dependent sex determination in which sex is determined by temperature during the 

middle-third of the development period of the embryo, and so the distribution of clutches along 

several months could be also a strategy to ensure that both sexes are produced (Fuentes et al. 

2017). Thus, both shorter and longer nesting seasons can be advantageous. Within each nesting 

season the internesting period (basically the number of days that elapses between 2 clutches 

(Frazer & Richardson, 1985)) is related to the time that each clutch of eggs takes to develop 

inside the turtle's body cavity (Miller, 1997; Rostal et al.  1996), and to the size of the cavity 

itself (Hays, 2001). It would be expected that the longer the internesting periods are, the more 

time the female has to develop more eggs and increase clutch size, reducing the number of 

incursions on the beach, where it is particularly vulnerable. 

 

On every monitoring program following individually-marked females, the observed clutch 

frequency (OCF) is simply the number of clutches observed for a single female during the 

nesting season (Frazer & Richardson, 1985), and it is a key parameter in the estimation of 

population size (e.g. Broderick et al. 2002). However, the actual number of clutches laid by a 

female within a season is difficult to estimate due to imperfect capture probability, either 

because of fieldwork constraints or of the ability of females to choose different nesting beaches 

in different nesting events (Tucker, 2009, 2010).The regularity of the internesting period (IP) 

has been used to calculate the estimated clutch frequency (ECF): ECF = 1 + (d2 – d1)/IP with 

d1 representing the ordinal date of first observation of the nesting female in the season, and d2 

the ordinal date of last observation of the nesting female in that same season. ECF is thus equal 

to or higher than OCF. 
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Sound estimates of the interesting period are not easy to obtain for several reasons: (i) some 

females abort the nesting process upon emergence on the beach, not returning to nest until 

several days later, (ii) some females may not be detected by patrols while being on the beach, 

(iii) in most situations, it is not known if the female has indeed laid eggs or if it has aborted the 

nesting process, and (iv) fidelity to the nesting beach is not perfect. All these different events 

can co-occur making the estimation of the number of days between two observations difficult. 

For example, when a female leatherback turtle, which typically nests every 10 days (Girondot 

& Fretey, 1996), is seen for the second time on the beach 30 days after the first visit, it may be 

interpreted as its third nest after the first observation, or the second nest after the first 

observation if the turtle has aborted 1 or 2 nesting processes or even the first nest if the nesting 

process was aborted several times. It could also be the fourth nest if the internesting period of 

that particular female is unusually short, for example, seven days.  

 

Until now this difficulty has been overlooked and the internesting period has been determined 

empirically: when a turtle is seen returning before the minimum expected IP (internesting 

period - for example, seven days), it is considered that the female did not lay a clutch during 

the first observation. Indeed, six days or less could be not sufficient for ovulation and formation 

of eggshells (Miller, 1997; Rostal et al. 1996), and thus two separate nesting events cannot take 

place within that time. If the return interval is longer than maximum expected IP (for example, 

18 days), it is considered that the female has deposited one intermediate clutch that has not been 

observed (Frazer and Richardson, 1985). 

 

The local NGOs Associação Programa Tatô and Fundação Príncipe Trust ensure complete 

monitoring coverage of all beaches in São Tomé and Príncipe islands, which is complemented 

by the implementation of a capture-mark-recapture program through the tagging of nesting 

females, providing the most complete dataset of sea turtle nest distribution in the Gulf of 

Guinea.  These two islands host an important green turtle rookery which is genetically distinct 

from all others in the Atlantic (Formia et al. 2006; Hancock et al., in press). The second most 

common species is the olive ridley turtle, believed to represent a fraction of the major rookery 

for olive ridley in Central Africa (Girard et al. 2016). Using data obtained during the monitoring 

programs of these two species, we propose a novel modelling approach of the internesting 

period. We combine nesting counts and tagging data obtained at a rookery level to estimate this 

parameter, while taking into account the potential heterogeneity in the length of internesting 

periods resulting from female individual behavior, including abortion of the nesting process. 
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MATERIALS AND METHODS 

Data Collection 

On São Tomé island, green turtles nest mostly in the southern coast, with most of the nesting 

activity being concentrated between the beaches of Jalé and Cabana and also Planta; on Príncipe 

island, this species nests primarily in two beaches, Praia Grande and Infante, with minor nesting 

occurring in Boi and Ribeira Izé/Mocotó beaches. The olive ridley turtle nests only on the island 

of São Tomé, mostly in the north of the island, with most nesting activity concentrated along 

the 9 km stretch of coastline between the beaches of Juventude and Tamarindos. The 

importance of these beaches for each species were confirmed by early surveys conducted by 

Graff (1996), and they have been subjected to full monitoring every night from October through 

February since 2012 (olive ridley) and 2015 (green turtles). Locations are shown in Fig. 1. 

 

Monitoring effort during night patrols was standardized at all above mentioned beaches and set 

to take place each night between 6 p.m. and 5 a.m. by groups of 2 trained assistants, each group 

covering 1.5 km stretch of contiguous coastline. During each patrol, data on female or track 

encounters was collected, and each female encountered was checked for metal tags, or tagged 

when no tags were found, to allow individual identification. Tagging was done placing a pair 

of Inconel flipper tags (National Band and Tag Co., Style 681) on the trailing edge of each of 

the fore-flippers after egg laying.  

 

 
 

Figure 1. Map of São Tomé and Príncipe. Beaches used by marine turtles are shown with ticks (65 at São 
Tomé and 29 at Príncipe Island). 
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Data preparation and use 

The data collection implemented during the monitoring program allowed the compilation of the 

dates of the first and all subsequent observations (re-captures) of individual females within each 

season on each beach. Our dataset comprised of 757 individual green turtle females (n = 1738 

captures) over two seasons (2015-2016 and 2016-2017) and 635 individual olive ridley turtles 

(n = 700 captures) over four seasons (2012-2017). A summary of the data used is found on 

Table 1. 

 

Table 1. Number of individual green (Chelonia mydas) and olive ridley (Lepidochelys olivacea) marine turtle 
females identified and frequency of observations between 2012-2017 in São Tomé and Príncipe islands. 

 
 
 

Island Season N females N obs. 
Observation Frequencies of individual females 

1 2 3 4 5 6 7 8 9  

GREEN TURTLES (Chelonia mydas) 
São Tomé 2015-2016 172 336 88 36 25 16 6 1     
São Tomé 2016-2017 109 149 82 17 7 3       
Príncipe 2015-2016 355 911 133 75 48 50 27 12 6 1 3  
Príncipe 2016-2017 121 342 36 24 22 14 16 7 2    

OLIVE RIDLEY TURTLES (Lepidochelys olivacea) 
São Tomé 2012-2013 56 57 55 1         
São Tomé 2013-2014 32 32 32          
São Tomé 2014-2015 154 173 135 19         
São Tomé 2015-2016 138 153 124 13 1        
São Tomé 2016-2017 255 285 226 28 1        

 

Model development 

A stochastic model was formulated to describe the nesting process after the first observation of 

a female on a beach (Fig. 2). If the female was unable to nest and aborted, with a probability 

pAbort, then it was expected to return for another nesting attempt after 

!"#$(&'()*+",-, /0*+",-) days. When it returned to the beach, this female would be seen 

with a probability pCapture. After a successful nest, the female could not return to nest before 

the minimum interesting period, minIP (when used, minIP is an integer). Its return occurred after 

!"#$(&'()23, /023) + ($5!6-5ℎ − 1) 	× 	<'!-(&'()23 with Nclutch being the rank of the 

nest (i.e., 1st, 2nd, etc.). This female would produce x clutches (see below about parametrization 
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of x). If it was its last recorded nesting event for the season and it was successful, we considered 

this observation as the final one. The model is schematized in Fig. 2. 

 

The distribution of the number of clutches per female after its first observation on the beach, 

DF (CF is the common acronym for Clutch Frequency, D rather than C is used in this case to 

indicate that it is not the true CF), can be obtained from a parametric model 

!"#$(&'()<=, /0<=). An alternative parametrization uses DF.1, DF.2, to DF.max (DF.0 is 

fixed to 1) and the probability that a female laid x clutches after its first observation on the 

beach is px = abs (DF.x)/∑abs (DF.i). This parametrization has the advantage of not forcing any 

shape on the distribution of the clutch frequency. It is important to note that DF is the 

distribution of the number of clutches after the first observation of an individual female on the 

beach and therefore it is not equal to CF, which is the distribution of the number of clutches 

that a female is laying during a complete nesting season, taking into account that some females 

are not observed during their first nesting attempt. 

 

This model generated a theoretical distribution of the number of observations for 0 to maxDays 

with maxDays being the maximum number of days before a recapture after the first observation. 

Then a set of expected number of captures Cday for days 0 to m after the initial capture was 

obtained (0 indicates that a female was seen twice in the same night, after aborting its first 

nesting attempt). These values were transformed into probabilities using pday = Cday/∑Cday 

(Fig. 2). The larger the N, the closer the distribution of pm is to the true distribution. 

 

The development and testing of the model was performed with the green turtle data because 

nesting is concentrated on few individual beaches, which facilitates the full coverage of each 

beach by the night patrols and thus increasing the chances of observing a turtle. Olive ridley 

turtles nest sparsely over several kilometers of coast, reducing the chances of encounters by the 

night patrols; for this reason, observations are much sparser than for green turtles. We used the 

data collected for this species for testing and validating the model in cases when recapture rates 

may be lower, resulting in lower quality data. This situation is indeed frequent in marine turtle 

monitoring programs that suffer constraints in field data collection. 
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Figure 2. Algorithm of the nesting process of a marine turtle female on a monitored beach (fitted parameters 
are in grey boxes). 

 

 
Fitting the parameters of the nesting process The data obtained from the beach 

monitoring (Fig. 3) was organized in k observations (i.e., k individuals) in series of ni.days (i is 

the individual and days the number of days after first observation) with 0 (no capture) and 1 

(capture). The likelihood of the observation i given the outputs pday of the model is based on a 

multinomial distribution: 

>!($" = )!.", ⋯ , $$ = )!.$	) =
)!!

)!."!⋯)!.$!
	B"%!.#⋯B$%!.$ 

 

The log likelihood of all the observations given the model is: 

!"#(>) =C
&

!'(
!"#(>!) 

 

with Li being the likelihood to capture the individual i after ni.0 to ni.m days. L is the likelihood 

of the observations for all the k individuals; in this formula, the organization level is the 

individual. An alternative option is to use the daily sum (top of Fig. 3) as the values for ndays. 

First observation of the year for a female

Aborting?

YesNo

Return after logN(meanIP, sdIP)+DeltaIP.(x-1) days!
                                  ≥ minIP

Aborting?
No

Yes

Return after logN(meanAbort, sdAbort) days

Clutch frequency 
after 1st obs. from

pAbort

pAbort

pCapture

pCapture

pCapture

Return after logN(meanAbort, sdAbort) days

x ~ DF.i / ∑DF.i (i = 0 to xmax)!
or       logN(meanDF, sdDF )
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In this case, the organization level is the nesting event, but the females with a larger estimated 

clutch frequency will have a larger impact on global likelihood than the ones with lower 

estimated clutch frequency. This solution has not been retained here. 

 

The parameters pCapture and pAbort were fitted as -logit of the corresponding probabilities to 

ensure that they remained estimable at all times without defining constraints during the fit. The 

parameter values maximizing the likelihood were fitted using the Nelder-Mead followed by 

Broyden-Fletcher-Goldfarb-Shanno method with R package optimx (Nash & Varadhan, 2011). 

To test the suitability of different models fitted with the same datasets, we used the AIC 

estimator (Burnham & Anderson, 2002. AIC is a measure of the quality of the fit penalized by 

the number of parameters used, calculated as -2 log(L) + 2 p with p being the number of 

parameters of the model (Akaike, 1974); models with lower AIC have more chance to better 

represent the process that generated the data. The model has been scripted in R language and is 

available in the R package phenology (version 7.1 and above) (Girondot, 2018b). 

 

Stability of likelihood  A stochastic model was used to generate the distribution of pday 

(see previous section). Thus, from run to run, the values change. We needed to minimize the 

inter-run variability of the likelihood of data given the model to ensure that a maximum 

likelihood fit could operate under a realistic computing time. To determine the best combination 

of the number of replicates and computing time, we ran the model with 104 to 105 steps (by 104 

steps), and 2x105 to 2x106 (by 105 steps) replicates to study the dispersion of the log likelihood. 

For this test we used the parameters at maximum likelihood fitted using 106 replicates. 

 

Identifiability of the parameters The Metropolis-Hastings algorithm is a Markov Chain 

Monte Carlo (MCMC) method for obtaining a sequence of random samples from a probability 

distribution for which direct sampling is not available or difficult (Chib & Greenberg, 1995). It 

was used to estimate the posterior distribution for each parameter over 10,000 iterations. This 

value has been chosen based on the Raftery & Lewis (1992) diagnostic. Maximum likelihood 

estimates were used as initial parameter values during the MCMC search, using no adaptation 

iteration. Proposed distributions were adapted after every 500 iterations using the method of 

Rosenthal (2011) as implemented in the R package HelpersMG (Girondot, 2018a). Priors were 

all obtained from a uniform distribution with limits being always very wide to ensure that a 

large range of parameter values could be checked (see supplementary material). Convergence 

was first visually examined to ensure that the time series of the parameters were stationary, and 

then tested using the Heidelberger & Welch (1983) diagnostic. The standard error of the 
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parameters was estimated after correction for autocorrelation (Roberts, 1996). Results from the 

MCMC were analyzed using the R package Coda, version 0.19-1 (Plummer et al. 2011).  

 
 
 

Figure 3. Distribution of individual daily observations in São Tomé and Príncipe. Rows represent the 
different captures of a single individual. The sums of all daily observations are depicted at the top of the 

figure. (A) green turtles (Chelonia mydas) and (B) olive ridley turtles (Lepidochelys olivacea). 
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Covariations of all parameter pairs were checked visually using bivariate plots and Pearson 

correlation coefficients. 

 

The comparison between the distribution of priors and posteriors after the Metropolis-Hastings 

MCMC run show that some parameters cannot be estimated using this model because the 

posterior distribution is very similar to the prior distribution. The DF distribution (meanDF, sdDF 

or DF.x) as well as the capture and abort probabilities (pCapture and pAbort) are not identifiable. 

High values ( > 9) of the parameter minIP can be excluded, but the lowest cannot. Finally, the 

parameters meanIP, sdIP, DeltameanIP, meanAbort and sdAbort are identifiable (see supplementary 

material). The only very strong covariation of parameters is between meanIP and DeltameanIP: their 

negative correlation indicates that when DeltameanIP tends towards 0, meanIP is lower (see 

supplementary materials).  

 

From estimating the number of days between observations to clutch frequency By 

knowing the distribution of the number of days between two clutches or nesting abortions, as 

well as the probabilities of a turtle aborting a nesting process or being observed (captured), it 

was possible to relate the number of days between two observations on the beach and the true 

number of clutches between these two observations. A total of 106 simulations were performed 

using the green turtle fitted parameters. In each simulation, for each turtle captured we recorded 

the number of days after its first observation (capture) on the beach and the number of clutches 

observed being laid by that female up to that day. Consolidating this information on a data 

frame, we used it to calculate the probability that an observation of a female X days after its 

first observation was the nth clutch. 

 
Stability of the likelihood Likelihood calculated with 104 iterations was quickly estimated 

but the inter-run likelihood variability was too high to be used during the fitting process. On 

the other hand, the calculation of the likelihood with 106 iterations took too long to be used 

routinely. A number of 105 iterations was considered an adequate compromise as it provided a 

correct fit to our data (Fig. 4) and was used thereafter.  



 
 

86 

 
 

Figure 4. Comparison between observed and modelled distribution of the internesting periods for green 
turtles in São Tomé and Príncipe. 

 

 

RESULTS 

The distributions of the internesting periods for the two turtle species, considering both nesting 

seasons (2015-2016 and 2016-2017) and islands (São Tomé and/or Príncipe) are shown in 

Fig. 5. The mean shortening of the IP along the successive clutches was similar between 

different datasets, therefore we chose to combine these to have a global estimate for the region 

with the lowest confidence interval. 

 

Green turtles Patterns of the internesting periods observed for either São Tomé or Príncipe 

green turtles were very similar (Fig. 3). Several peaks were observed, for 12, 24, 36 days after 

the first observation, and successive peaks were entangled (i.e., the lowest part of one peak 

distribution overlapped the highest part of the previous one). Other peaks were observed after 

40 days, but they were more difficult to discriminate because the dispersion of the peaks for the 

higher number of days is higher, making the peaks flatter. The number of days between the first 

and the last observation was highly related to the ordinal date of first observation (linear model, 

t-test, p = 0.002); the earlier the turtle was first seen, the longer it was observed on the beach. 
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The green turtle mean internesting period between the first and the second clutch was estimated 

at 12.32 days (95 % confidence interval from 12.26 to 12.37). The 95 % range of all internesting 

periods was between 10.10 and 15.05 days (Table 2; showing also the values estimated for 

other populations). The internesting period became shorter as the number of clutches increased 

(DeltameanIP parameters are all negative, data not shown). This effect is noticed for each of the 4 

datasets, as well as when combined, and the inclusion of the DeltameanIP parameter greatly 

improved the fitting of the model (∆AIC = 19.76, Akaike weight p = 0.999). The fitted 

estimation of the minimal number of days between two clutches was 8.12 days (95 % 

confidence interval from 8.11 to 8.13 days). When a nesting attempt was aborted in our model 

simulation, the time before the next attempt was on average 1.59 days (95% confidence interval 

from 1.57 to 1.60) and 95% of the values were between 0.23 to 10.88 days. It should be noted 

that the upper 95% limit of the confidence interval (10.88 days) was higher than minIP (8.12 

days), therefore the return to the nesting beach after an abortion event could be confused with 

a new clutch. The probability that a female laid a nth clutch when it was recorded X days after 

its first observation during the season is shown in Fig. 6; Table 3 depicts the probabilities of the 

various clutch ranks according to the different number of days after the first observation, shown 

as dotted vertical lines in Fig. 6. 

 

Olive ridley turtles Mean internesting period between two successive clutches was 

estimated at 22.92 days (95% confidence interval ranged from 22.85 to 23.00 days). The 95% 

range of internesting periods varied between 16.58 and 31.70 days (Table 2, showing also the 

values estimated for other populations). The change of the internesting period dependent on the 

progression of clutch rank (DeltameanIP parameter) could not be calculated due to the paucity of 

recapture data, and DeltameanIP was fixed to 0. The fitted minimum of the minimal number of 

days between two clutches was 9.16 (95% confidence interval from 8.37 to 9.95 days). When 

we simulated the abortion of a nesting attempt, the time until the next attempt averaged 3.47 

days (95% confidence interval ranged from 3.23 to 3.71 days) and 95 % of the values are 

between 0.54 to 22.21 days. Similarly, to what was observed for green turtles, the upper 95% 

limit of the confidence interval (23.24 days) is higher than minIP (9.16 days), meaning that the 

return on the beach after an abortion event could be confused with a new clutch. 
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Figure 5. (A) Distribution of the number of days between two nesting attempts after a nesting abortion, and 
(B) interesting periods, for green (Chelonia mydas) and olive ridley (Lepidochelys olivacea) turtles. 
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Table 2. Internesting periods in a) Chelonia mydas and b) Lepidochelys olivacea. Min and Max represent the 
range of IP used to estimate mean and SD. The values in N column has a non-consistent definition across the 
publications: It can be the number of females, the total number of observations, or the number of observations 

used to estimate mean and SD. Some values were estimated from published raw data (see notes). 

 

Location RMU Mean SD Min Max N Reference 

GREEN TURTLES (Chelonia mydas) 
São Tomé and 
Príncipe E Atlantic 12.32 1.365 10 15 1842 This study 
Ascension Island E Atlantic 13.9 2.4 7 20 840 Mortimer &Carr (1987) 
Cyprus Mediterranean 12.5 1.65 9 19 205 Broderick et al. (2002) 
Costa Rica SW Atlantic 12.1 1.64 a 7 18 d 4654 Carr et al. (1978) 
Florida, USA NW Atlantic 12.9 1.59 10 19 165 Johnson & Ehrhart (1996) 
Surinam S Atlantic, S. Carib 13.27 c 1.24 a 11 16 601 Schulz (1975) 
Tromelin Island  SW Indian 12.62 a 1.92 a 8 19 3036 Le Gall et al. (1987) 
Hawaii (1974) NC Pacific 13.2 1.38 a 11 18 74 Balazs (1980) 
Australia SC Pacific 14.1 1.65 9 21 264 Limpus et al. (1984) 
Malaysia SC Pacific 10.5 1.33 a 8 17 5417 Hendrickson (1958) 

 

OLIVE RIDLEY TURTLES (Lepidochelys olivacea) 
São Tomé Island Atlantic, East 22.92 4.39 16 31 415 This study 
India Indian Ocean 22.09 0.58 20 25 4411 Tripathy and Pandav (2007) 
Gabon Atlantic, East 17.5 4.3 9 25 18 Maxwell et al. (2011) 
Brazil Atlantic, West 22.35 7.01 21.2 23.5 143 Matos et al. (2012) 
Costa Rica Pacific, East 24.5 7.1 14 50 33 Dornfeld et al. (2014) 
Colombia Pacific, East 18.8 4.2 16 25 4 Barrientos-Muñoz et al. (2014) 

 

a Value was not calculated in the original publication, b Published value was 13.2 days, c Published value was 13.4 days, d The min and/or max 
values have been calculated to reflect the published mean value 
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Figure 6. Probability distribution of the rank of a clutch according to the observed 90nteresting period for 

green turtles (Chelonia mydas) in São Tomé and Príncipe nesting beaches (2015-2017). The values for 
90nteresting periods shown as dotted lines are summarized in Table 3. 

 

 

Table 3. Clutch rank probability according to an observed internesting period (IP) for green turtles (Chelonia 

mydas). The periods considered on the first column are depicted in Figure 6 as dotted lines. 

 

Internesting 
Period 

(days) 

Clutch Rank 

0 1 2 3 4 5 6 7 8 9 10 

6 1.000           
10 0.017 0.983          
12 0.003 0.997          
19 0.025 0.578 0.397         
24  0.007 0.992         
30 0.002 0.026 0.658 0.314        
36  0.001 0.015 0.984        
50  0.001 0.003 0.025 0.959 0.013      
100    0.001 0.001 0.019 0.023 0.049 0.193 0.710 0.004 
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DISCUSSION 

For decades, the number of nests counted during a nesting season was converted to the number 

of nesting females using the formula (number of nests) / (clutch frequency) (Gerrodette & 

Taylor, 1999). The estimation of total number of nests during a nesting season has received 

general solutions (Girondot, 2010; Girondot, 2017; Girondot & Rizzo, 2015) and it can be 

considered as being a solved problem for most of the situations. On the other hand, a general 

procedure for the estimation of the number of nests per female (clutch frequency) is still needed 

(Briane et al. 2007). The most common procedure used the formula ECF = 1 + (d2 – d1)/IP with 

d1 representing the ordinal date of first observation of the nesting female in the season, and d2 

the ordinal date of last observation of the nesting female in that same season and IP being the  

internesting period (Frazer & Richardson, 1985). Estimation of mean IP is then done by 

averaging the number of days between all consecutive nesting attempts. However, the actual 

number of clutches laid by a female within a season is not known due to imperfect capture 

probability, either because of fieldwork constraints or of the ability of females to choose 

different nesting beaches in different nesting events (Tucker, 2009, 2010). Therefore, we can 

never be sure that two observations of the same nesting female on the beach refer to consecutive 

nesting events, or if some were missed. In consequence, the quality of the IP estimate is 

dependent on our ability to count the true number of nests deposited by a female, which may 

vary from female to female, and is nearly impossible to know. In a general move in ecology 

from pattern to process (Swihart et al. 2002), the estimate of such an important parameter cannot 

be based simply on very strong untestable assumptions. This move is particularly relevant for 

species with a complex life cycle such as marine turtles, for which the interpretation of changes 

in numbers in terms of population mechanisms is quite challenging. 

 

The identification of a high number of individual females allowed us to observe the typical 

pattern of succession of peaks at multiples of 12 days which is typical of green turtles (Fig. 3). 

The broadening of the peaks observed in longer returns is likely due to two phenomena: the 

variability of the internesting periods and the fuzziness resulting from the high rate of nesting 

abortion classically observed for this species (Mortimer & Portier, 1989). This pattern was less 

clear for olive ridley turtles and it was impossible to clearly identify peaks within our data 

(Figure 3); however this result is particularly important because it showed that the internesting 

period can be evaluated even when data are sparse, as for olive ridleys.   
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The estimation of the internesting interval for both studied species was very reliable according 

to the diagnostic tools used, showing that the design and implementation of an individual-

focused statistical model was successful at producing a robust estimate of the internesting 

period of female marine turtles. These internesting periods are likely to be dependent on the 

turtle's physiological reproductive capacity as well as on local external, primarily 

anthropogenic, factors that may disturb turtles attempting to nest (Tiwari & Bjorndal, 2000). 

The observation that the nesting season is longer for early nesters has also been noted for 

leatherback turtles in French Guiana (Fretey & Girondot, 1989). Two non-exclusive 

explanations were proposed: either the turtles arriving first in the nesting site laid a higher 

number of clutches or, most likely, the turtles that are seen first later in the season have already 

nested but were not observed.  

 

Moreover, our model shows an important advance in estimating the rank of a clutch in relation 

to the date of the first observation of a turtle on the beach (Fig. 6), with a particularly high 

probability of success when the interval of days is small and close to a multiple of the mean 

internesting period. For example, for green turtles, when a female is observed on the beach after 

12 and 24 days, the probability that these nests correspond to its second and third clutches are 

respectively 0.997 and 0.992 (Table 3). If the number of days is not a multiple of the internesting 

period, then the rank of the clutch is uncertain: for an observation 19 days after the previous 

observation, the probability that it is the second or third clutches are 0.578 and 0.397 

respectively (Table 3). When the number of days increase, surprisingly, the determination of 

the rank of the clutch did not degrade too much. For example, if a female is observed after 100 

days, the probability that it is her 10th clutch is 0.71 (Table 3). 

 

Another interesting result from our model, is that we demonstrate that for green turtles, the 

internesting period declines as clutch rank increases. The inverse relation between internesting 

period and clutch rank was also demonstrated in loggerhead turtles using data from intensive 

field work (Limpus, 1985). It is tempting to link this decrease of the internesting period with 

the lower number of eggs present in the clutches of higher rank as shown in loggerheads 

(Limpus, 1985), but testing this hypothesis with our dataset was not possible.  
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CONCLUSION 

The use of capture mark recapture (CMR) studies on nesting beaches can be used to estimate 

the minimum number of reproductive turtles in each season but interpreting the nesting history 

of a female is a prerequisite to be able to convert an observed total number of clutches into an 

estimate of the number of females in a population.  We consider that up to now, no model is 

yet able to correctly convert a dataset of observed or estimated clutch frequency (OCF and 

ECF) into a number of females in a population, as the impracticality of assessing this parameter 

is directly due to field constraints and to the variability in female behaviour. The common 

restraints posed by incomplete datasets that include extended time intervals between individual 

re-observations is solved by our model, which can be used to determine with high probability 

the rank of an observed clutch since the first observation. Moreover, our model demonstrates 

the usefulness of CMR datasets in understanding patterns in the individual behaviour of a 

female on the beach and how these affect the variation in internesting periods for a given 

population. 
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Genetic diversity, multiple paternity and dispersal in an olive ridley 
(Lepidochelys olivacea) rookery in São Tomé island, West Africa 

 

ABSTRACT 

The olive ridley (Lepidochelys olivacea) is the most abundant sea turtle (Pritchard, 1997) and 

has a widespread distribution. In West Africa, its main rookery is located in Gabon, followed 

by the islands of the Gulf of Guinea, which include the island of São Tomé, where this species 

has been heavily exploited in the last decades. In this study we assessed the levels of multiple 

paternity within the São Tomé rookery using microsatellite data obtained from females and 

their offspring to reconstruct male genotypes and estimate the operational sex-ratio and 

understand the role of adult males in promoting gene flow in the Gulf of Guinea. We further 

investigated if this population could be considered at equilibrium or whether it has undergone 

a perturbation (e.g., bottleneck or demographic expansion), and estimated genetic effective 

population size (Ne). Results suggest some levels of polyandry, with a male-skewed operational 

sex ratio of 1F : 3M and male-mediated gene flow at this rookery. Despite the potential benefits 

of polyandry and male-mediate gene flow to genetic diversity, the low effective population size 

and the evidences of a genetic bottleneck suggest that geneflow is limited and possibly confined 

within the Gulf of Guinea islands. We discuss these findings in light of population dynamics of 

this species in the Atlantic. 
 

Keywords: operational sex ratio; paternal assessment; Lepidochelys olivacea; Gulf of Guinea; 

Eastern Atlantic  
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INTRODUCTION 

The olive ridley (Lepidochelys olivacea) is the most abundant sea turtle (Pritchard, 1997) and 

has a widespread distribution. It is thought that the Atlantic population proceeded from the 

Indian Ocean and colonization started along the West coast of Africa, followed by dispersal 

across the Atlantic Ocean to South America (Bowen et al. 1997), where nesting has been 

recorded on the coast of South America and in the Caribbean. The largest rookery in the Atlantic 

is found in Gabon (Metcalf et al. 2015), on the West coast of Africa, with other minor nesting 

sites spreading from Senegal to South Africa (Biles et al. 2006; Weir et al. 2007; Tomás et al. 

2010; Fretey et al. 2012). Low mtDNA haplotype diversity was recorded in Atlantic nesting sites 

(with one haplotype observed in 94% of samples) (Bowen & Karl, 2007), which coupled with 

an overall low nucleotide diversity, and a shallow mtDNA phylogeny relative to other Cheloniid 

sea turtles suggests that the colonization of the Atlantic was recent. (Bowen et al. 1997). This 

scenario of low genetic diversity, as it is often observed in natural populations, is generally 

associated with negative effects such as inbreeding depression, loss of evolutionary potential, 

and the accumulation of deleterious mutations (Frankham & Ralls, 1998; Frankham, 2010). 

These effects theoretically increase extinction risk and are expected to be stronger in 

populations under anthropogenic or natural stresses (Spielman et al. 2004). Because this species 

is almost exclusively a mainland nester, the nesting aggregations in the Gulf of Guinea islands 

(Bioko and São Tomé) are particularly interesting to study; these island populations may have 

benefited from less predation until human colonization, but since then have been subject to 

intensive exploitation for human consumption (Castroviejo et al. 1994) and are thus more 

susceptible to the threats described above.  

 

The study of mating systems has become an increasingly useful tool to assist in understanding 

the processes that may affect the genetic make-up of a population and assess its level of 

susceptibility to change. The reproductive strategy of a species, particularly when polyandry 

occurs, can affect the intensity of sexual selection (Fleming & Gross 1994; Evans & Magurran, 

1999), the genetic variability and introgression within a population, and finally the genetic 

effective population size (Ne) and the evolutionary potential  of that species (Wright, 1931; 

Frankham, 1995; Vucetich et al. 1997; Charlesworth, 2009; Sugg & Chesser, 1994). Molecular 

parentage-based approaches to study mating systems are particularly appropriate in highly 

mobile species such as marine turtles, as mating is rarely observed, and their high vagility limits 

access to the animals. Sibship reconstruction from neutral genetic markers makes it possible to 

determine family structure even when it is not possible to sample candidate parents (e.g. Wang 

2004; Wang & Santure 2009), and this approach has been used to infer the mating system (e.g. 
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Kanno et al. 2011; Clark et al. 2014; DiBattista et al. 2008) and estimate effective population 

size (Liu & Ely 2009; Li et al. 2013). Moreover, this approach allows the indirect sampling of 

the male component of a population of breeding turtles (Wright et al. 2012; Lasala et al. 2013; 

Stewart & Dutton, 2011, 2014), a great advantage since males rarely come ashore and are 

difficult to capture at sea. The demographic viability of a population is typically based 

exclusively on female fecundity, survival, and abundance, assuming that these parameters are 

similar for males, or that in males they simply do not matter. This leads to a conservative 

perspective that the number of males present in a population is of little interest provided all 

females are mated. However, the degree of polyandry (i.e. females mating with multiple males) 

can influence population-level processes, such as population growth rate and extinction risk, 

by altering genetic variability, the level of inbreeding, and adaptive potential (Frankham, 2005). 

Population structure in sea turtles is fundamentally promoted by females’ natal homing 

behaviour or philopatry  (return of adults to their natal beaches) and site fidelity (precision with 

which they return to the same beach in subsequent years) to nesting beaches, while genetic 

variability is promoted by a presumed lower level of fidelity of breeding males to courtship 

areas, which promotes gene flow among groups of individuals that breed in geographically 

distant locations. Polyandry can also have individual-level effects by altering average offspring 

viability and reproductive success (Treguenza & Weddel, 2002; Byrne & Whiting, 2011). 

Mating system dynamics may also influence a population’s vulnerability to harvest as there 

may be upper and lower thresholds in a population’s sex ratio which, when exceeded, result in 

reproductive collapse (e.g. Hard et al. 2006). 

 

Genetic analyses of nesting females and their offspring can both identify the number of sires 

per clutch and provide data on the number of breeding males and females, from which 

operational sex ratios (OSRs) can then be calculated (Stewart & Dutton, 2011; Wright et al. 

2012a, 2012b).  Microsatellites are ideal for these studies because of their abundance, high 

polymorphism content, codominance, easy detection, and transferability among studies (e.g. 

Dawson et al. 2013). Moreover, given the low evolutionary rate of the mitochondrial genome 

of turtles (Avise et al.1992) and the general low haplotype diversity for mtDNA Control region 

within the Atlantic Ocean for L. olivacea (Bowen et al. 1997), genetic diversity and 

demographic aspects for Atlantic populations are better assessed using microsatellite data. We 

compiled a microsatellite dataset for the olive ridley marine turtle population nesting in São 

Tomé island, (Gulf of Guinea, West Africa), a small nesting assemblage within the Eastern 

Atlantic Ocean regional management unit (Wallace et al. 2010) where this species was legally 

and heavily exploited for human consumption until 2014. We aim to assess the levels of 

multiple paternity within the rookery using microsatellite data obtained from females and their 
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offspring and to use the levels of multiple paternity to estimate the operational sex-ratio and 

role of adult males in promoting gene flow in the Gulf of Guinea. Finally, we use microsatellite 

loci to investigate if this population could be considered at equilibrium or whether it has 

undergone a perturbation (e.g., bottleneck or demographic expansion) and discuss implication 

of the results in light of population dynamics of this species in the Atlantic. 

 

MATERIAL AND METHODS  

Sample collection and DNA extraction  

Lepidochelys olivacea samples were collected on a 7 Km stretch of coast on the north of the 

island of São Tomé, extending from Tamarindos (0°24'31.6"N, 6°38'37.6"E) to Juventude 

(0°23'25.8"N, 6°41'42.4"E) beaches, during the nesting seasons (October through March) of 

2015-2016 and 2016-2017 (Fig. 1).  

 

 
Figure 1. Location of the study site in the island of São Tomé, a 7 Km stretch of coastline comprised 

between the communities of Morro Peixe and Micoló, surveyed and sampled between 2015-2017. 

  

 

We sampled adult females at night during beach patrols conducted by Programa Tatô’s staff. 

Tissue samples were collected from the rear flipper of females using disposable sterile surgical 

scalpels. Nests of each female were relocated to an in-situ, fully enclosed hatchery, and 

SÃO	TOMÉ	AND	
PRÍNCIPE

São	Tomé	Island
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monitored daily after 45 days of incubation. Up to 20 hatchlings were randomly selected per 

nest and tissue samples were taken from the trailing edge of the rear flipper (approximately 2 

mm2 of tissue), using disposable sterile surgical scalpels. Ethanol was then applied to the flipper 

to prevent bleeding, and hatchlings were held for observation before release. This procedure 

was always performed by night, to ensure that that hatchlings oriented normally and crawled 

actively down the beach and into the sea. All tissue samples were preserved in 96% ethanol and 

stored at room temperature until DNA extraction. DNA was extracted using the Easy Spin kit 

(Qiagen Inc., Valencia, CA) following standard DNA extraction protocols.  

 

Sequencing and microsatellite genotyping 

For PCR amplification and sequencing of the CR fragment, we used the primers 

LCM15382/H950 developed by Abreu-Grobois et al. (2006). Thermal conditions for 

amplifications consisted of 15 min at 95° C, followed by 40 cycles of 30 sec duration each at 

56°C, 45 sec at 72ºC with a final extension at 60° C for 20 min. Successful amplifications were 

enzymatically purified, and sequenced following the BigDye Terminator v3.1 cycle sequencing 

protocol (Applied Biosystems). Sequencing products were separated in the same automatic 

sequencer ABI3130xl Genetic Analyzer and were aligned and compared in the software 

SEQSCAPE v.3.0 (Applied Biosystems). 

 

Nuclear genetic variability was investigated using 14 microsatellite loci previously developed 

for Caretta caretta (Cc5H07, CcP1F09, CcP2F11, Ccp7C06, Ccp7D04, CcP7F06, Cc1F01, 

Cc2H12, Cc5C08, Cc8B07, Cc7C04, Cc1G02, Cc1G03, Cc7G11, Shamblin et al. 2007, 2009). 

Microsatellite amplifications were conducted in a Biorad T100 thermocycler using a Multiplex 

PCR Kit (QIAGEN) following manufacturer’s instructions. The fourteen microsatellite loci 

were tested and amplified separately and then combined in three multiplex reactions for the 

final amplification using the Multiplex Manager v.1.2 software. General thermal conditions 

comprised an initial denaturation for 15 min at 95°C, followed by an additional step at 95°C 

for 30 sec., followed by 21 cycles of 1 min 30 sec. duration, each at 60°C with -0.5ºC decrease 

per cycle (to ensure an optimal annealing temperature for each primer). A second round of equal 

number of cycles was programmed at a lower, constant temperature (54ºC), set for 1 min each, 

to exponentially increase the number of amplified fragments. A final extension at 72°C was 

programmed for 35 min to promote adenylation and to avoid -A peaks during genotyping. PCR 

products were separated by capillary electrophoresis on an automatic sequencer ABI3130xl 
Genetic Analyzer (AB Applied Biosystems). Fragments were scored against the GeneScan-500 

LIZ Size Standard using the GENEMAPPER v.4.1 (Applied Biosystems) and manually 
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checked twice. An individual's genotype for a given multiplex was not used in downstream 

analyses if more than six loci (out of the 13) from that multiplex failed to amplify, and 

individuals were removed entirely if more than ten loci failed in total. The presence/absence of 

large allele dropouts and null alleles was determined using the software MICROCHECKER 

v.2.3 (Van Oosterhout et al. 2004).  

 

Paternal assessment and male genotype reconstruction 

We used the program COLONY v.2.0 (Wang & Santure, 2009) to assess the levels of multiple 

paternity. This software assigns sibships and parentage based on a maximum-likelihood model. 

Offspring are clustered by full-sib and half-sib (maternal and paternal), and parent–offspring 

relationships are determined, with parents assigned to full-sib groups.  COLONY was set to the 

default parameters, a single medium-length run, with full-likelihood analysis, assuming 

polygamy for both males and females, and performed with and without maternal genotypes. 

Per-locus estimates of genotyping error was set at 0.01 (Phillips et al. 2013) and the program was 

allowed to update allele frequencies during the analysis. Hatchlings that could not be assigned 

to a sampled female or a single nest were not considered in further analysis. COLONY also 

performs the reconstruction of the genotypes of unsampled parents on a locus-by-locus basis 

and provides a confidence value for each reconstruction (Wang, 2004; Wang & Santure, 2009). 

When reconstructing multi-locus male genotypes, we only incorporated single-locus genotypes 

with confidence of ≥0.90 and only used them in downstream analyses if they contained ≥ 4 of 

all used loci and were reconstructed from ≥10 offspring (see Phillips et al. 2013). This reduces 

the risk of biasing estimates of heterozygosity, since heterozygous male genotypes require 

fewer offspring for confident reconstruction than homozygous genotypes.  

 

Population data analyses 

Standard summary statistics for mitochondrial diversity, including the number of haplotypes 

(H), haplotype diversity (Hd), and nucleotide diversity (π) were calculated in the software 

DnaSP 5.0 (Librado & Rozas, 2009).  Similar sequences were searched for using a blast search 

on the GenBank database (National Center for Biotechnology Information, USA: NCBI Home 

page http://www.ncbi.nlm. nih.gov). Departures from Hardy–Weinberg expectations (HWE) 

and linkage disequilibrium (LD) among the 13 loci were assessed using GENEALEX 6.503 

(Peakall & Smouse, 2012) with levels of significance for HWE being adjusted using the 

Bonferroni correction. The same software was used to estimate the mean number of alleles per 
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site, the average observed (Ho) and expected (He) heterozygosity over loci, as well as Ho and 

He per loci per site. The same parameters were tested posteriorly using inferred male genotypes 

(see “Paternal assessment and male genotype reconstruction” below), as well as the estimated 

proportion of genetic diversity distributed within the adult population (females and inferred 

males), performing an analysis of molecular variance (AMOVA) in GENEALEX.  

 

We estimated Ne from our full dataset (females and hatchlings) using the software Ne 

ESTIMATOR v.2.1 (Do et al. 2014), which estimates contemporary effective population size 

(Ne) using multilocus diploid genotypes from population samples applying  two methods that 

require only a single sample: (a) the linkage disequilibrium (LD) method (Hill, 1981) and (2) 

the heterozygote excess method (Pudovkin et al. 1996). Mating system was set to random. The 

heterozygote-excess method estimates the effective number of breeding parents (Neb) with no 

bias and fair precision when the sample size of progeny is of infinite N and when gametes 

combine completely at random, i.e., when all male gametes have an equal probability of 

combining with all female gametes, as in some polygamous, random-mating species.  

 
We used the programme BOTTLENECK v.1.2.02 (Cornuet & Luikart, 1996) to test for genetic 

evidence of past changes in effective population size compared to theoretical expectations 

based on a population at equilibrium. This program compares a sample's heterozygosity (He) at 

each locus with that expected under mutation-drift equilibrium (Heq). Heterozygosity excess 

(He > Heq) suggests a population contraction (i.e. a bottleneck), whereas a heterozygosity deficit 

suggests a population expansion (Cornuet & Luikart, 1996). We used a two-phase mutation 

model (TPM), considered an adequate model for sea turtle studies (Hoekert et al. 2002), setting 

the parameters recommended by the programme's authors (non-stepwise = 5%, variance = 12). 

The significance of heterozygosity excess was calculated by running a Wilcoxon sign-rank test.  

 

Sex-biased dispersal 

As the direct observation of sea turtle dispersal in our study site is logistically impossible, we 

conducted two methods to test hypotheses regarding differential dispersal between the sexes: 

(a) relatedness between individuals and (b) mean assignment index and its variance, both using 

GENALEX v.6 (Peakall & Smouse, 2006). First, a relatedness-based test was performed to 

compare mean relatedness r (Queller & Goodnight, 1989) of female–female and male–male 

dyads. A significant result would suggest that the sex with the lower average relatedness is the 

major disperser (as dispersal increases, one expects to find fewer relatives within a given area, 

e.g. Prugnolle & De Meeus, 2002). To aid interpretation of the relatedness test, we ranked all 
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dyads by r, including male–female dyads, and calculated the proportions of each dyad class 

above increasing thresholds of r. If one sex is less dispersive than the other, one would predict 

that that sex should account for a disproportionately large share of ‘higher relatedness’ dyads 

(e.g. half-sibs (r ≈ 0.25), full sibs (r ≈ 0.5), and equivalents) (Phillips et al. 2013). If sex-biased 

dispersal is present, we expect that the average relatedness of the dispersing sex would be lower 

than the mean relatedness of the non-dispersing sex.   

 
Sex-biased dispersal was also examined using assignment indices (Mossman & Waser, 1999).  

The assignment index calculates the probability that a particular genotype should be present in 

the population from which it was sampled, after correction for population differences (Goudet 

et al. 2002; Prugnolle & De Meeus, 2002). The corrected assignment indices (AIc) are 

distributed around a mean of zero, and since recent immigrants tend to have lower AIc values 

compared to residents, the dispersing sex is predicted to exhibit a lower mean AIc compared to 

the more philopatric sex. Likewise, the dispersing sex should display greater variance in AIc 

because it should comprise of both resident (positive values) and immigrant (negative values) 

individuals. We used GENALEX to calculate individual AIc values, with the permises that the 

sex with the lower index value is the more dispersive. A t-test was used to assess the 

significance of sex-specific differences in the mean and variance of AIc value. Because of 

method restriction, we only used genotypes with no missing data. 

 

RESULTS 

Paternal assessment and male genotype reconstruction 

A total of 42 clutches (approximately 20 per season) with an average of 15.7 ± 5.3 hatchlings 

sampled per clutch were analyzed. Only 31 nests and 487 hatchlings could be correctly assigned 

to the sampled female and used with confidence for the paternal assessment, resulting in the 

reconstruction of 62 male genotypes. A total of 39 individual males were allocated to the 

assigned nests, resulting in an observed operational sex ratio of 1F : 1.3M. Only 34 males had 

multi-locus genotypes that met our confidence criteria (genotype with  p ≥ 0.9, at > 6 loci, 

reconstructed from ≥10 offspring), a result from either mating to unsampled females with 

single-paternity nests (n = 4) or because they did not father sufficient offspring (n = 7). Multiple 

paternity was observed in 32.3% of the nests (n = 10), with nests being sired by either two (n = 

8), three (n = 1) or four males (n = 1) (Fig. 2).  
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Genetic diversity and population analyses 

A total of 118 adult females were sequenced for this study resulting in the detection of one 

single haplotype (F).  Approximately half of those females (58) and 741 hatchlings were 

successfully genotyped at 14 loci. No evidence of allele dropouts was observed; the locus 

Cc5H07 showed excess of homozygotes for most allele size classes, suggesting the presence of 

null alleles, and was removed from all analyses. Allele frequencies at each locus were within 

expectations of Hardy-Weinberg equilibrium (p > 0.05) and showed no significant linkage 

disequilibrium after applying the Bonferroni correction. All loci showed polymorphism, 

ranging from 6 to 16 alleles per locus across all samples, with overall levels of H0 = 0.732 and 

He = 0.728 (Table 1).  

 

 

 

Using the Full Likelihood method implemented in Ne estimator, effective population size (Ne) 

was estimated at 53 to 57 individuals, and at 139 breeding pairs (Neb). A population whose 

effective size has remained constant in the recent past is expected to show an approximately 

Table 1. Summary statistics of genetic variation at 13 microsatellite loci in Lepidochelys olivacea 
population (females and offspring). 

          

Locus N Na Ne I Ho He F  

CcP1F09 799 6.000 2.034 1.034 0.503 0.508 0.010 
CcP2F11 796 10.000 6.257 1.967 0.796 0.840 0.052 
Ccp7C06 799 16.000 7.227 2.305 0.757 0.862 0.121 
Ccp7D04 799 13.000 6.272 2.074 0.807 0.841 0.040 
CcP7F06 799 14.000 4.794 1.840 0.796 0.791 -0.006 
Cc1F01 797 13.000 6.495 2.103 0.836 0.846 0.012 
Cc2H12 798 13.000 6.271 2.006 0.871 0.841 -0.036 
Cc5C08 798 15.000 8.425 2.334 0.919 0.881 -0.042 
Cc8B07 799 3.000 1.188 0.321 0.166 0.158 -0.053 
Cc7C04 798 13.000 7.843 2.224 0.909 0.872 -0.041 
Cc1G02 796 15.000 8.595 2.349 0.862 0.884 0.025 
Cc1G03 796 3.000 1.998 0.700 0.543 0.500 -0.086 
Cc7G11 797 10.000 3.185 1.516 0.655 0.686 0.045 

        
Adult 

Population 
103 9.538 

(± 0.783) 
5.354  

(± 0.512) 
 0.732  

(± 0.041) 
0.728  

(± 0.040) 
-0.008  

(± 0.015) 
 
Key: Sample Size (N), number of alleles (Na), number of effective alleles (Ne), Information Index (I), 

Observed Heterozygosity (Ho), Expected Heterozygosity (He), and Fixation Index (F). 
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equal probability of excess or deficit in the gene diversity of a locus. The TPM mutation model 

that we used to assess putative demographic perturbations indicated that nine of the 13 

microsatellite loci had a significant excess in expected heterozygosity. These results are 

indicative of a significant departure from demographic equilibrium and indicate that this 

population has undergone a bottleneck (Wilcoxon significance rank test; p = 0.0026).   

 

Figure 2. Percentage of male genotype contribution to nests of individual olive ridley turtles 
(Lepidochelys olivacea) in São Tomé island. Analogous colours differentiate the different males 
fathering offsprings in each nest. There are no shared males between nests of different females. 

 

Sex-biased dispersal 

Mean relatedness was significantly higher for females than amongst males (1596 and 561 

female and male dyads analysed, respectively; females, r  = -0.010, male r = 0.005; z = 1.959, 

p = 0.025), suggesting that there is male-biased dispersal. Results obtained from the Assignment 

Index (AIc) tests indicate negative and lower AIc values for males (mean = -0.448 ± 0.385, n = 

18) than for females (mean = 0.139 ± 0.220, n = 58), but differences were not statistically 

significant (p = 0.749). 
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DISCUSSION 

Olive ridleys use highly productive pelagic and oceanic areas to feed, a nomadic behavior that 

contrasts with most species of sea turtles, which establish foraging territories in coastal waters, 

and exhibit high levels of philopatry. The general absence of population structure within ocean 

basins is particularly obvious for the Atlantic, where all olive ridley populations, including the 

one here studied, are fixed to one haplotype (F), with the only known exception being the 

Surinam population (two haplotypes, E and F) (Bowen et al. 1997). In such populations, mating 

behaviour and male-biased dispersal play an important role promoting genetic and demographic 

connectivity, which ultimately defines the spatial scale of their management in nature (Avise, 

2004; Waples & Gaggiotti, 2006).  Our study shows evidence of polyandry in the São Tomé 

population, with the incidence of multiple paternity falling within the range of frequencies 

observed for other populations around the globe, from 75% and above (Jensen et al. 2006; 

Duran et al. 2014) to levels similar to that observed in this study (20-30%, Hoeckert et al. 2002; 

Jensen et al. 2006).  

 

The frequency of polyandry in sea turtles, as inferred by the multiple paternity rates, is now 

known to be considerably variable both intra- and interspecifically, as well as geographically, 

likely in response to factors such as mate availability or inbreeding risk (recently reviewed by 

Lee et al. 2018; see also Bowen & Karl, 2007; Tedeschi et al. 2015). Our ability to determine 

how many males actually contribute to the nesting population in São Tomé is limited by the 

temporal scope of our sampling and the accurate assessment of skew in long-lived species like 

marine turtles requires assessing paternity across years. A stronger sampling regime would also 

allow, for instance, information of male remigration intervals and sperm storage within and 

between years, as well as it would extend the ability to apply capture-mark-recapture-type 

analyses for estimation of the number of males. However, the paternal assessment allowed us 

to calculate the observed operational sex-ratio (OSR) for the studied interval which should be 

proportional to the number of males at the breeding area before the nesting season (Hays et al. 

2010; Stewart & Dutton, 2011). We observed a relatively balanced OSR, with a slight skew 

towards the males, a result which corroborates the observed frequency of multiple paternity for 

this population, as the spatial and temporal availability of males have been linked to polyandric 

behaviour (Birkhead & Pizzari, 2002; Jensen et al. 2006).  The OSR is the key determinant of 

population viability, as it indicates the proportion of males to females that are ready to mate at 

any one time (Berglund, 1994; Kyarnemo & Ahnesio, 1996; Weir et al. 2011), and it ultimately 

reflects the underlying genetic variation of the population. Polyandry is a known strategy to 

avoid inbreeding and promote sperm competition (Treguenza & Weddel, 2002; Bretman et al. 
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2009), and indeed inbreeding was not detected in the São Tomé population, as overall Fis values 

for this rookery do not deviate significantly from zero.  Male reproductive skew is a key 

parameter influencing effective population size (Ne), with Ne being larger the more evenly 

reproduction is distributed amongst males within the population (Hartl, 1988). However, the 

estimated effective population size (Ne = 55.2) is much lower than the Ne = 500 proposed by 

Lynch & Lande (1998) as the minimum needed to maintain equilibrium between loss of 

adaptative genetic variation due to genetic drift and its replacement by mutation.   

 

It appears that moderate levels of male-mediated gene flow in this population, as evidenced by 

the relatively high genetic diversity at the nuclear level compared to the lack of genetic diversity 

at mtDNA and the lower relatedness observed within this group as compared with the females, 

may be at insufficient levels to prevent the loss of genetic diversity that will probably result 

from the severe population bottleneck detected for this population. The results obtained in this 

study must be therefore interpreted with caution. It is plausible to suggest that the slight male 

skew observed in the operational sex ratio of olive ridley turtles in São Tomé could simply be 

a reflection of the directed harvest of females or of unintentional mortality that is focused near 

the nesting beach. Another concern is the dispersal ability of this species in the Gulf of Guinea 

region; studies assessing dispersal of other sea turtles nesting in São Tomé and Principe using 

genetic markers all point towards genetic differentiation of the local rookeries (Formia el al., 

2006; Monzon-Argüello et al. 2010; Hancock et al. in press) and to very limited dispersal, 

highlighting the vulnerability of the local rookeries to exploitation. Although none of the studies 

assessed the environmental and ecological mechanisms that lead to the isolation of these 

rookeries, and olive ridley turtles typically follow distinct life patterns from other species which 

are likely to result in distinct patterns, interpretations of the extent of gene flow between São 

Tomé and several larger nearby rookeries (e.g. Bioko island and Gabon) remains limited due 

to incomplete assessment of microsatellite diversity of this species in the region. The São Tomé 

rookery, representing a relatively small population, could potentially be an important source of 

genetic diversity in the region; its relative role as either a sink or source of genetic diversity 

must be assessed by studying the current boundaries and level of geneflow between the different 

rookeries. 
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CONCLUSION 

The prevalence of polyandry in this population, and evidence of male-mediated gene flow, 

likely to promote genetic exchange between São Tomé and the nearby rookeries of Gabon and 

Bioko contradict our findings of a bottleneck for this population and of a low effective 

population size, thus suggesting that this population may be more isolated than expected. 

Further sampling of the larger rookeries of other Gulf of Guinea islands and of the mainland, 

and complete assessment of geneflow at a regional level could resolve potential sub-structuring 

of this species in the region and are highly recommended. These observations strongly suggest 

high vulnerability to exploitation of the adults, particularly females, for human consumption on 

São Tomé island, and taking these into account, we alert to the need of careful management 

and enhance protection of adult females of this rookery to avoid local collapse.  
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Reproductive biology and conservation status of the critically endangered 
Hawksbill sea turtle on its main rookery in the Eastern Atlantic 

 
 
 

ABSTRACT 

 

The hawksbill sea turtle (Eretmochelys imbricata) is a critically endangered species, and the 

nesting population in the Eastern Atlantic is considered one of the most threatened sea turtle 

populations in the world due to its low numbers and genetic isolation from other rookeries. We 

conducted the first detailed study of the nesting biology and ecology of E. imbricata, on its 

main rookery in the Eastern Atlantic, the São Tomé and Príncipe islands. Reproduction was 

monitored for the first time in all known and potential beaches of the archipelago during two 

consecutive nesting seasons (2015-16 and 2016-17). Analysis of nesting distribution patterns 

and nesting abundances indicated that the nesting peak occurs in December and January, with 

nesting densities varying between beaches and islands. We identified a total of 39 unique sites 

in São Tomé and 19 in Príncipe that host hawksbill reproductive activity. The major nesting 

area for the hawksbill in São Tomé in Príncipe is located in Rolas islet (off São Tomé), which 

represents 71% of all activity in São Tomé island, and 52.8% of all activity in the archipelago. 

Curved Carapace length and clutch size were smaller than other rookeries in the Atlantic. This 

information facilitates the designation of index nesting beaches for long-term monitoring in the 

archipelago and allows targeted monitoring and protection efforts, both at a spatial and temporal 

level, thus reducing field effort. We found that a significant proportion of hawksbill nesting 

occurs in well protected beaches, but with high human impact. 

 

Keywords: Eretmochelys imbricata; Eastern Atlantic; Gulf of Guinea; spatial analysis 
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INTRODUCTION 

The hawksbill turtle, Eretmochelys imbricata (Linnaeus, 1766) is a moderate-sized sea turtle 

reaching a maximum carapace length (CL) of 90 cm (Van Dam & Diez, 1998; Musick & 

Chaloupka, 2017) and a body mass up to 112 kg (Santos et al. 2010), circumtropically 

distributed in coastal waters, where it inhabits rocky coastlines, coral reefs, estuaries, and 

lagoons with mud substrates (Bjorndal and Bolten, 2010; Gaos et al. 2011) of at least 108 

countries of tropical and sub-tropical Atlantic, Indian and Pacific Oceans (Groombridge & 

Luxmoore, 1989; Mortimer & Donnelly, 2010 and references therein). The species is known to 

nest in at least 70 countries, with most nesting occurring at low density (Groombridge & 

Luxmoore, 1989). In the Eastern Atlantic Ocean Hawksbills are known to nest along the West 

coast of Africa, although its status and distribution are poorly known, but the most significant 

nesting is thought to occur in Guinea Bissau, where 200 females may nest annually (Catry et 

al. 2009), Bioko (Tomás et al. 2010) and São Tomé, and Príncipe (Graff, 1996; Monzón-

Arguello, 2011), with sporadic nesting also occurring in the Cape Verde Islands, Mauritania, 

and Senegal (Fretey, 1998). Although the spatial distribution of hawksbill genetic stocks within 

West Africa is still unclear due to incomplete sampling, mixed-stock analysis of juvenile and 

adult hawksbill turtle populations, coupled with a recent study of the genetic composition of 

the São Tomé and Príncipe rookery suggest migratory connectivity between foraging and 

nesting aggregations of East and West Atlantic regions (Monzón-Arguello et al. 2010; Proietti 

et al. 2014) and high genetic isolation of the Eastern Atlantic stock, which diverged from the 

Indo-Pacific phylogenetic clade and shows low genetic variability (Monzón-Argüello et al. 

2011).  

 

A review of the global status of hawksbills authored by Groombridge & Luxmoore (1989) 

concluded that hawksbill populations were depleted or declining in 56 of the 65 geopolitical 

units for which some information on nesting density was available, with declines well 

substantiated in 18 of these areas. The species was included in the Appendices of CITES in 

1975 (Atlantic population in Appendix I) and listed in Appendix I and Appendix II of the 

Convention on Migratory Species (CMS). Recent population estimates indicate that in Central 

Africa less than 100 hawksbills nest per year (Mortimer & Donnelly, 2010), and presume that 

the islands of São Tomé and Príncipe harbour one of the last remaining hawksbill nesting 

aggregations in the region. These findings have led to some authors to propose this as one of 

the most threatened Regional Management Units for Marine Turtles (RMU's; Wallace et al. 

2010). In a survey conducted in São Tomé and Príncipe by Castroviejo et al. (1994), the 

hawksbill population was described as being severely depleted due to overexploitation for the 
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tortoiseshell trade, an activity that was recorded in these islands as early as the late 1800s, and 

has targeted hawksbill of all sizes due to their high value for craftwork (Keinath & Musick, 

1991; Ferreira, 2015) until new legislation come into force in July 2014 (Law Decree n. 

8/2014). This law implements a complete ban on the harvesting of sea turtles and trade of their 

by-products, including tortoiseshell, meat and eggs.  

 

Because estimates of an average age at maturity are at least 20 years for hawksbill sea turtles 

(Diez & Van Dam, 2002; Snover et al. 2013), long-term monitoring is essential to document 

true population change, but even more important is to obtain baseline estimates of population 

size and reproductive output, which have not been established for the East Africa population. 

Population size estimates are hindered by limited access to reproductive males and to all non-

reproductive segments of the population, as the most commonly used method of monitoring 

population trends is to count the number of females arriving annually at nesting beaches (Board, 

2010). Data on the number and characteristics of the nests themselves – including clutch sizes 

and biotic and abiotic factors affecting hatching success - can be collected without observing 

the female, as tracks and nests alone can be monitored to provide accurate estimates of nesting 

patterns, particularly at sites that cannot be monitored regularly. Because estimates of 

population changes over time will eventually be determined by the numbers of nesting females 

or numbers of nests deposited (Bjorndal et al. 1999; Balazs & Chaloupka, 2004; de Pádua 

Almeida et al. 2011), the collection of these baseline data is critical to detect trends over time 

or conduct population viability analyses, key requirements of any conservation program 

(Beissinger & Westphal, 1998; Hays, 2000; Heppel et al. 2002). 

 

Sea turtle nesting monitoring started in 2002 in São Tomé by the NGO Marapa, and in 2012 in 

Príncipe by the NGO Associação Tartarugas Marinhas, later replaced by Programa Têtuaga. 

Seasonal nesting estimates have been based in monitoring of areas from where higher levels of 

nesting of the two main sea turtle species occurring in the country (olive ridley and green sea 

turtles) were known, and that additionally were easily accessed (i.e. proximity to a community, 

road access). Because financial, political and logistical difficulties frequently limit the extent 

of the area surveyed, in the seasons of 2015-2016 and 2016-2017 a comprehensive survey of 

all known and potential hawksbill sea turtle nesting sites was conducted in both islands to 

identify cryptic nesting sites, since this species is known to be exhibit high levels of philopatry 

and often nests in small, secluded beaches. Ultimately, the goal was to ensure that no important 

nesting areas were overseen or unmonitored in future efforts, and that the selection of sites for 

protection and monitoring included beaches of high conservation interest. A final goal was to 

evaluate to what extent existing protection efforts included important hawksbill nesting habitat. 
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This is the first comprehensive survey to cover all potential nesting sites in São Tomé and 

Príncipe islands, including beaches outside the regularly monitored areas. Data on temporal and 

spatial distribution of this species are complemented with biometric and reproductive output 

data. Additionally, we incorporate information on major threats and on the relative vulnerability 

of each beach where this species is known to nest. Ultimately, our goals are to provide baseline 

estimates for future trend analysis and to provide recommendations on priority intervention 

areas for the largest remaining hawksbill sea turtle rookery in the Eastern Atlantic.  

 

METHODS 

Study Location 

São Tomé and Príncipe islands lie in the Gulf of Guinea, approximately 250 km west of Gabon; 

climate is equatorial with an average daily temperature of 27 ºC, and high rainfall which 

increases considerably along the north-south gradient, with one major rainy season that runs 

from October to May. With areas of 854 km2 and 142 km2 respectively, São Tomé and Príncipe 

islands comprise together over 269 km of coastline (Burke et al, 2001), and contain 102 (São 

Tomé) and 35 (Príncipe) beaches respectively with lengths ranging between 0.035 to 1.5 km in 

length.  

Nesting activity monitoring protocol 

A total of 29.1 km of coastline is potential or known sea turtle nesting sites in São Tomé, and 

12 km in Príncipe. In São Tomé 24.5 km are monitored on a daily basis while in Príncipe all 

beaches are monitored from early October through late March each year, the period coinciding 

with the nesting season of the four species that nest regularly on this archipelago: green 

(Chelonia mydas), olive ridley (Lepidochelys olivacea), leatherback (Dermochelys corieacea), 

and the hawksbill (Eretmochelys imbricata). Hatching typically begins in December and lasts 

until May. Because these islands have numerous non-contiguous nesting beaches, it is 

impossible to distribute monitoring resources to all sites to ensure maximum coverage. 

Although regular sea turtle monitoring was initiated in São Tomé in 2003, comprehensive 

island surveys in both islands have only been conducted since 2015. The data analyzed in this 

study corresponds uniquely to the 2015-16 and 2016-17 reproductive seasons, and were used 

to characterize spatial and temporal distribution of the nesting activity and to estimate the 

number of nesting females. 
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The comprehensive surveys followed two distinct monitoring schemes: 1) full monitoring of 

known index beaches in each island (Scheme 1), and 2) diffuse coverage across all sites where 

nesting was not known (Scheme 2), following recommendations by Board (2011) for situations 

where numerous sites are used by the same population. Scheme 1 assumes that annual 

abundance patterns observed via comprehensive monitoring of index beaches (selected because 

they host a significant proportion of the overall nesting population within a region or other 

defined unit) reflect a broader pattern that occurs at all other beaches used by the same nesting 

population. In cases where several, dispersed sites host nesting, but none at significantly high 

levels to be proposed as index beaches, this approach might not be appropriate (Girondot et al. 

2007). In such cases, a more favorable protocol (Scheme 2) would consist of monitoring many 

sites at low levels of survey effort, and then analyzing abundance estimates across sites (diffuse 

coverage) (see Delcroix et al. 2014).  

 

On beaches monitored under Scheme 1, effort was standardized to take place each night 

between 6 p.m. and 1 a.m., by teams of 2 trained field technicians, each covering 1.5 km stretch 

of contiguous coastline; morning surveys were scheduled at a daily basis to record any activity 

that was missed by the teams leading the night patrol, and to ensure a complete record of all 

nesting activity for each beach each night. Scheme 2 included early morning surveys 1-3 times 

per week during the two month period corresponding to the peak nesting season (estimated to 

occur between December and January each year) and was applied to all suitable beaches with 

unknown, uncertain or historical nesting activity (Fig. 1a,b). All detected tracks, in either 

monitoring scheme, were crossed over using a clear zigzag pattern to avoid repeating 

observations in subsequent surveys.  

Data collection on reproductive parameters and nesting females 

During night patrols, the teams of local field technicians collected biological data on nesting 

females encountered, including biometric data, and proceeded to tag or collect tagging data for 

individual identification. Tagging was done placing a pair of Inconel flipper tags (National 

Band and Tag Co., Style 681) on the trailing edge of each of the fore-flippers after egg laying. 

Biometric data collected includes the minimum curved carapace length (CCL) and width 

(CCW) recorded to ± 0.1 cm, and was obtained using a flexible measuring tape, as described in 

Bolten (1999). Due to low observation rates on Príncipe (< 5 females), we only analyzed data 

from São Tomé for this study. 
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In São Tomé island, clutches laid on index beaches were primarily relocated to the enclosed 

hatchery located on Inhame beach immediately after laying or soon after (if the turtle was 

intercepted or the nest was found during the night patrol), or in the early hours of the morning 

during morning survey; to date relocations are not conducted on Príncipe island. Eggs are 

counted and placed in plastic buckets (5 l) and then reburied in hatchery sand using the same 

dimensions of the original nest. Clutch frequency (i.e. number of observed clutches for an 

individual female throughout the season) was not calculated as this parameter is dependent 

upon survey intensity and may be inaccurate due to variation among females. Internesting 

interval was estimated as the number of days between a successful nesting of a tagged female 

and the subsequent nesting attempt by the same turtle (Alvarado & Murphy, 1999). Because 

calculating the internesting interval requires a representative sample of turtles nesting at least 

twice during the reproductive season (N of 100 or more is recommended, Murphy, 1999), we 

provide only indicative values.   

Modelling of temporal and spatial distribution of nesting activity 

The nesting season model assumed an 8 months long season (September 1st – April 30th), 

following the pattern observed elsewhere: a low number of nests at the start and end of the 

season, a nesting peak in the middle of the season, and sporadic nesting events outside the 

nesting season. Inter and intra-seasonal modelling of nesting spatial and temporal activity was 

performed with the R package “phenology” available in the Comprehensive R Archive Network 

(Girondot, 2018), a parametric, asymmetric sinusoidal model that essentially fits a curve to sea 

turtle nesting data to generate estimated values from missing monitoring days (i.e. when no 

count is obtained due to no monitoring), thereby generating an estimate of the total number of 

nests for the duration of a season. This model also produces confidence intervals to allow for 

evaluation of the uncertainty associated with the total abundance estimates. The information 

about the shape of this curve was obtained from the sum of all nesting activities recorded on 

the beaches monitored under Scheme 1, and from modelled values for beaches monitored under 

Scheme 2, resulting in a complete estimate of seasonal abundance (Delcroix et al. 2014). The 

model of nesting seasonality is based on Girondot (2010; 2018). This model was preferred 

among the several available because: (i) it performed among the best based on an extensive test 

(Whiting et al. 2014), (ii) its parametric definition allows the standard error to be minimized 

and (iii) the parameters have direct biological interpretations.  
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Figure 1a. Map of São Tomé island, and location of the beaches where monitoring was conducted 
during 2015-2016 and 2016-2017 seasons by Programa Tatô. 
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Figure 1b. Map of Príncipe island, and location of the beaches where monitoring was conducted 
during 2015-2016 and 2016-2017 seasons by Programa Têtuaga. 

 

Threat exposure 

A rapid assessment of potential human impact was conducted for each nesting beach for which 

hawksbill nesting was observed in São Tomé and Príncipe islands (39 and 21 beaches, 

respectively), using the “Nesting Beach Indicator” version 1.1 (developed by Cousins et al. 

2017). This screening tool, meant to be indicative, rather than conclusive, includes a predictor 

of human impact on the beach, indicating impact factors scores that range between 1 and 5 (1 

= lowest, 5 = highest score), taking into consideration the existence of fixed or semi-fixed 

structures behind the beach, potential obstructions to nesting females, levels of disturbance and 

evidence of light pollution exposure.  We further categorized the level of human impact as 

“High” (human impact is likely to deter nesting), “Medium” (human impact may affect nesting) 

or “Low” (human impact unlikely to affect nesting. Protection regimes were categorized as 
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“High” for beaches where active protection of nesting females was enforced during night-time 

patrols, “Moderate” for those beaches where there was no active protection of nesting females, 

but regular presence of project staff on the beach could potentially deter human impact (e.g. 

female and nest harvesting) throughout the season and “None” for the remaining beaches.  

 

RESULTS  

Reproductive parameters 

During the study period a total of 76 individual hawksbills were identified through flipper 

tagging in the island of São Tomé. The mean CCL was 79.7 ± 6.1 cm (range 68 - 93), and the 

CCW was 71.2 ± 5.38 cm (range 60 - 84). The reproductive output was 125 ± 28.9 eggs per 

clutch (n = 145). Recapture rates of females in renesting events were very low (12 %, n = 10), 

but allowed the calculus of the internesting period of 18 days (modal value; range 12 – 20 days, 

n = 10). Two females were recorded nesting in two consecutive seasons. A total of 42 clutches 

were relocated to the hatchery at Inhame beach. The mean hatching success from these nests 

was 71.1 ± 18.8 % (mean ± SD; range 41.1 - 100) and mean emergence success was 63.7 ± 

22.67 % (range 28.4 - 100). The incubation period to emergence in the hatchery was 61.8 ± 6.3 

days (range 50 - 82).  

Temporal and spatial distribution of nesting activity 

The estimated number of Hawksbill tracks in São Tomé and Príncipe was 314 and 445 in 2015-

16 and 2016-17 season respectively (Fig. 2). The proportion of tracks with a nest was estimated 

as 0.17 with 95% confidence interval being from 0.12 to 0.23, resulting on an estimated range 

of 37.7 – 72.3 nests in 2015-16 and 75.6 – 102.3 in 2016-17. Based on range of estimates of the 

number of nests for each season, and considering an average clutch frequency of 3 nests for this 

species, we estimate a minimum of 13 – 25 and a maximum of 25 – 34 individual females 

nesting in 2015-2016 and 2016-2017 seasons respectively in the whole archipelago. 

 

We identified a total of 39 unique sites in São Tomé and 19 in Príncipe that host hawksbill 

reproductive activity. Table S1 presents the estimated total number of nesting activities on the 

major groupings of beaches on each of the two islands in each season; the distribution map is 

represented in Fig. 3. The major nesting area for the hawksbill in the country is located in Rolas 

islet, which represent 71 % of all activity in São Tomé island, and 52.8 % of all activity in the 

archipelago, particularly in Joana and Marinho, where we estimated a combined nesting activity 
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of 225 ± 38.2 tracks during the 2016-2017 season. Minor nesting sites in the archipelago include 

the beaches of Inhame, Cabana and Jalé (7% combined), Celeste (4.3%), Grija (2.3%) and Io 

Grande (1.4%), in São Tomé and the stretch of coast between Bom Bom and Ponta Margarida 

(8.1%), Praia Grande (2.6%), Cemitério (2.5%), Praia Seca (1.7%) and Infante (1.2%) in 

Príncipe.  

 

 

 

 
 

Figure 2. Estimated total hawksbill sea turtle (Eretmochelys imbricata) tracks in São Tomé and 
Príncipe during the two seasons studied and associated 95% confidence intervals. Small confidence 
intervals in 2016-2017 likely reflect increased monitoring effort in Rolas islet during that season, 

reducing error in estimates. 

 

 

 



 
 

128 

 
 
 

Figure 3. Spatial distribution of the nesting activity in São Tomé and Príncipe islands. Rolas islet 
monitoring changed from Scheme 2 to Scheme 1 between the two seasons studied, explaining the 

higher abundance of nesting activity in 2016 – 2017. Key: observations (red), modelled frequencies 
(blue) for sites where no nesting was observed, but was likely to occur. 
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Nesting activity of hawksbill turtles is highly concentrated on the southern shore of São Tomé 

island, with only 1.9% occurring between the northermost beaches of Lembá and Micoló. In 

Príncipe, nesting is more diffused, with most activity recorded in both north and southern 

beaches (Fig. 4). 

 

 
 

Figure 4. Distribution patterns of hawkbsill turtle (Eretmochelys imbricata) nesting activity in São 
Tomé and Príncipe islands, as modelled by the R package phenology, showing clear preferences for the 

southern shores in São Tomé and northern and southern shores in Príncipe. 

 

 

Analysis of temporal distribution of the nesting season shows that it starts at the end of October, 

and extends to late March, with nesting activity peaking between late December and early 

January (Fig. 5).  

 

 

 
Figure 5. Hawksbill temporal nesting distribution during the 2016-2017 season in Joana beach, Rolas 
islet. The central curve is the best fitted model and the upper and lower curves are the error envelopes 

(± 2 s.d.). 
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Threat analysis 

In terms of human impact factor, hawksbill nesting is thought to already be or likely to 

be affected in the future by human impact in a total of 30 beaches in São Tomé island 

where nesting has been confirmed. Highest impact factor (human impact likely to have 

deterred significant nesting activity) was assigned to 16 of the monitored beaches, all 

of which are located near coastal communities, resorts, or used for livestock rearing 

(cows or pigs) or sand-mining. Therefore, 75% of the beaches used by hawksbills in 

São Tomé island are currently under human pressure (Figs. 6; 7; see Table S2 for full 

assessment). Of the 18 sites with > 5 activities recorded per season, 16 are currently 

fully protected and monitored under Scheme 1 (n = 6 in São Tomé, n = 10 in Príncipe). 

 

  

 
 

Figure 6. Threat analysis of the key nesting sites for the hawksbill sea turtle (Eretmochelys imbricata 
on São Tomé island. See methods for description of categories used. 
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Figure 7. Threat analysis of the key nesting sites for the hawksbill sea turtle (Eretmochelys imbricata 
on Príncipe island. See methods for description of categories used. 
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DISCUSSION 

Reproductive parameters and population status 

As genetic studies point to a single hawksbill management unit in the Eastern Atlantic region 

(Monzón-Arguello, 2011), it is clear that data on the São Tomé and Príncipe populations is 

critical for developing a robust demographic picture of this management unit. The average 

curved carapace length (CCL) reported (79.8 cm) is much lower in São Tomé and Príncipe 

when compared to other populations in the Atlantic, where reported values ranges from 87.6 – 

97.4 cm CCL (Barbados: 89.6 cm, Krueger et al. 2011.; Costa Rica: 88.8 cm, Bjorndal et al. 

1985 with highest values reported for the Brazilian and Mexican rookeries at  97.4 and 99.4 cm 

(Marcovaldi et al. 1999, Garduno-Andrade, 1999). This finding could reflect selective 

harvesting of females on the main nesting beaches for tortoiseshell.  São Tomé and Príncipe 

were one of the major sources of tortoiseshell in Africa, an anthropogenic pressure that could 

have produced a reduction in mean female size by preferentially removing the older, larger 

females. However, female size is similar to rookeries in the western Indian ocean, such as 

Seychelles (85.0 cm, Hitchins et al. 2004); Persian Gulf (Oman (71.6 cm, Hesni et al. 2016) 

and Saudi Arabia (71.2 cm, Pilcher, 1999). This could be explained by the strong genetic link 

found by Monzón-Arguello et al. (2011) between the Eastern Atlantic haplotypes and those 

identified in the Indo-Pacific. These authors suggest a possible colonization of the Eastern 

Atlantic from the Indian ocean, which could explain similarities.  

Mark-recapture efforts conducted during the study period resulted only in the observation of 

renesting of four females out of 52 identified; although the data is sparse, it suggests an inter-

nesting interval of 18 days for the hawksbills nesting in São Tomé and Príncipe, a value which 

is consistent with the range of 10 to 19 days documented for other rookeries (Bjorndal et al. 

1985; Pilcher, 1999; Kamel and Delcroix, 2009). The low recapture rate could be a monitoring 

artifact, as hawksbills often nest during daytime, or nest in small isolated beaches, therefore 

may re-nest undetected. Improved monitoring of the main nesting sites, some identified during 

the study, will allow the determination of important parameters such as renesting and 

internesting interval and clutch frequency in the future.  However, this low recapture rate could 

be indicative of a higher proportion of older females at this rookery, which lack the reproductive 

ability to renest. This possible demographic imbalance could be the result of a low rate of 

juvenile recruitment (Hirth, 1971; Rueda, 1992) due to the anthropogenic pressures experienced 

over the years (e.g., harvest of reproductive females and eggs), and could be shown by a lower 

reproductive output as well. When compared to other rookeries, the mean clutch size for the 

São Tomé females (mean clutch size of 125.59 ± 28.43 eggs) is average, but lower than the 
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values recorded for the Atlantic, which range from 136.4 in Brazil (Marcovaldi & Laurent, 

1996) to 163.8 in Guinea Bissau (Catry et al. 2009). However, the smaller size recorded for the 

nesting females does not corroborate the hypothesis of an unbalance towards old individuals.  

Spatial and temporal distribution 

Analysis of spatial and temporal patterns of nesting is of critical importance to conservation 

and management. Nest site selection and nesting success are influenced by a variety of marine 

and terrestrial factors (e.g. Weishampel et al. 2003). In this study we conducted a 

comprehensive 2-year survey to identify critical sites for monitoring and conservation of a 

reduced, yet spatially dispersed, colony by which we assessed the level of nesting of this species 

in most available nesting sites. Our results show that although many beaches offer suitable 

conditions for nesting, hawksbills clearly prefer those sites located on the south of São Tomé, 

which coincidently or not, receive the highest rainfall and are mainly characterized by steeper 

slopes, coarser sand (generally yellow or white) and high vegetation cover (Hancock, pers. 
obs). In Príncipe most beaches are similar to those just described and receive similar amounts 

of rainfall, with the notable exception of the Infante beach, located on the south of the island, 

which is the only black sand beach in Príncipe and is characterized by a very gentle slope.  

 

Our model indicates that the hawksbill turtle nesting season in São Tomé and Príncipe is similar 

to other species occurring in West Africa, and typically extends from October to March 

(absolute range: August - May). It is likely that seasonality of nesting and site selection is tied 

to climatic factors leading to suitable nest construction and incubation environments. There is 

a marked, although limited, seasonal pattern in air temperatures and little air temperature 

fluctuation during the reproductive season, with marine turtle nesting and incubation occurring 

in the warmest months.  

 

Nesting activity is generally low throughout each island, with only few beaches with estimated 

annual count >15 activities; in most beaches estimates range between 1-4 tracks a year, with 

the exception of Rolas islet, which is clearly the main nesting site for this species in the 

archipelago. Modelled detection profiles show that regardless of the study species, and 

particularly in reduced populations where nesting is widely dispersed, such as the hawksbill, a 

large proportion of sandy coastline must be surveyed every year in order to detect all nests, 

raising monitoring challenges. However, our data show that in cases where resources are 

critically low, it may be possible after an initial multi-year assessment such as ours to focus 

efforts on known areas of relatively high intensity, which in the case of São Tomé and Príncipe 

include the southern beaches of Inhame and Rolas islet (all) in São Tomé, and the northern 
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beaches of Príncipe, particularly Boi, Macaco Uba, Micotó, Ribeira Izé and Margarida, and 

Praia Seca in the south.  

 

This will facilitate the designation of index nesting beaches for long-term monitoring of 

population status and allow targeted monitoring and protection efforts, thus reducing field 

effort. This is equally applicable to the analysis of this population’s phenology and estimation 

of peak nesting activity.  In our study the combination of monitoring schemes provided a good 

overview of temporal and spatial distribution of hawksbill nesting in the archipelago, but it is 

important to note that curtailing the temporal coverage of beaches to peak nesting months adds 

additional variance into the monitoring data that further reduce the power to detect trends within 

the context of profound levels of interannual variation in nesting numbers (Broderick et al. 

2001; Bell et al. (2006)) and very low numbers. Moreover, intensive beach monitoring also 

provides opportunities to carry out surveillance regarding anthropogenic threats such as illegal 

take.  

 

Analysis of threats and considerations on future outlook 

As the nesting densities are so low, our small sample sizes must be given consideration before 

inferences can be made regarding the spatial distribution of nesting with reference to levels of 

threat in São Tomé and Príncipe. We found that a significant proportion of hawksbill nesting 

occurs in well protected beaches, but even there some level of human impact can be scaled 

down. This is very important, as it is likely that this genetically isolated population may be 

composed of a very low number of females; for this reason, the loss or addition of one female 

nesting in one area in each year can significantly impact the population outcome. Harvesting of 

female turtles was being conducted at an alarming rate, especially in São Tomé island until the 

implementation of the national decree in 2014, with high rates of annual female mortality for 

reproductive females, including hawksbill turtles. The local NGOs have been reporting since a 

steady reduction in female harvesting by humans, largely as a result of continuous education 

efforts directed at members of the local communities that have produced greater environmental 

awareness. Efforts to create alternative activities, particularly for turtle sellers and tortoiseshell 

craftsman have been conducted by Programa Tatô in São Tomé (Vieira et al. 2017), which have 

been partially successful in reducing the offer of sea turtle products in the capital’s market and 

souvenir stalls. The confirmation of Ilhéu das Rolas as the main nesting site for this species in 

the archipelago spells positive news as this islet is actively managed by a local resort fully 

engaged with sustainability practices, and in response to the high nest predation rate by pigs, 

implemented the use of a turtle hatchery. On the other hand, Príncipe island as a whole was 
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declared as a Biosphere Reserve in 2012, which resulted in the reinforcement of sea turtle 

monitoring and protection through the implementation of Programa Têtuaga and its successful 

“Zero Capture” campaign, which initiated in 2016. Several conservation and research activities 

are currently taking place in both islands, and a new project aiming at establishing a network 

of Marine Protected Areas across the archipelago. 

 

CONCLUSION 

It is clear that status assessment and ongoing monitoring of the levels of harvest and nesting are 

essential to inform adequate conservation in São Tomé and Príncipe. Although São Tomé and 

Príncipe is considered to hold the most important nesting sites in the Eastern Atlantic for E. 
imbricata, because of limited monitoring of nesting females, data are insufficient to establish 

population trends. Rapid assessments such as those conducted in this study are relatively quick 

and inexpensive while allowing to gather targeted information, but its scope and sample size 

are usually limited, like the reliability of the conclusions obtained. However, given the 

importance of this rookery, the data obtained in this study is a valuable contribution to the 

knowledge of the reproductive ecology of the hawksbill turtle regionally and globally, and 

hopefully will help refine ongoing conservation actions.  
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SUPPORTING INFORMATION 
 

Table S1. Location of all beaches monitored in each island and estimated total number of tracks 
(according to our model) 

Beach Location Latitude Longitude 
2015-2016 2015-2016 
N s.e. N s.e. 

São Tomé Island 
Joana South / Rolas -0.012246 6.518414 139.2 31.1 196.9 38.2 

Marinho South / Rolas -0.001122 6.517565 20.1 6.1 28.5 8.0 
Bateria South / Rolas -0.007043 6.513076 2.5 1.6 3.6 2.0 
Pomba South / Rolas 0.000006 6.51893 2.3 1.6 3.2 2.2 
Cafe South / Rolas 0.000399 6.522200 1.9 1.1 2.7 1.5 

S. António South / Rolas 0.003031 6.527673 0.1 0.0 0.1 0.0 
Escada South / Rolas -0.011932 6.522192 0.0 0.0 0.0 0.0 
Cabana South 0.026444 6.525488 6.7 2.8 9.4 3.8 
Inhame South 0.024954 6.52057 5.5 3.5 7.8 4.8 
Piscina South 0.027969 6.512151 0.1 0.1 0.1 0.1 

Jale South 0.043861 6.511182 9.7 4.0 13.7 5.6 
Vainha South 0.05296 6.514351 0.0 0.0 0.0 0.0 
Cova South 0.029174 6.533215 0.9 0.5 1.2 0.7 

Marcacao South 0.026699 6.530529 0.1 0.1 0.1 0.2 
NGuembu South 0.028341 6.532056 0.1 0.1 0.1 0.1 
Cocheira South 0.032771 6.533425 0.1 0.1 0.1 0.2 

Porto Alegre South 0.035075 6.535234 0.0 0.0 0.0 0.0 
Malanza South 0.047303 6.536625 0.6 0.8 0.9 1.1 

StAntonio South 0.104492 6.513558 1.5 1.3 2.2 1.6 
Grija South 0.126684 6.494663 7.2 3.4 10.2 4.6 
Xixi South 0.072502 6.515956 0.7 0.6 1.0 0.9 

SMiguel South 0.138113 6.488498 0.0 0.0 0.0 0.0 
MonteForte North 0.333438 6.523495 1.4 1.1 2.0 1.5 

Lemba North 0.250392 6.46454 0.8 0.6 1.1 0.8 
BocaBela North 0.244825 6.462562 1.4 1.1 1.9 1.5 
Brigada North 0.411436 6.664800 0.9 0.5 1.3 0.6 

Tartaruga North 0.40534 6.682816 0.0 0.0 0.0 0.0 
Guegue North 0.406619 6.635072 0.0 0.0 0.0 0.0 
Micolo North 0.403853 6.689583 0.0 0.0 0.0 0.1 

Juventude North 0.393249 6.694135 0.0 0.0 0.0 0.0 
FernaoDias North 0.408719 6.669317 0.0 0.0 0.0 0.0 
Governador North 0.412171 6.659735 0.0 0.0 0.0 0.0 
Tamarindos North 0.409101 6.645684 0.0 0.0 0.0 0.0 
Caroceiro North 0.410816 6.647930 0.0 0.1 0.0 0.1 
AguaLuge North 0.401668 6.692099 0.0 0.5 0.0 0.7 
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Table S.1. (Cont) 
 

AtrasMorro North 0.408229 6.642245 0.0 0.2 0.0 0.3 
Ponte North 0.340901 6.728060 0.0 0.4 0.0 0.5 

SCarlos North 0.411584 6.654812 0.0 0.4 0.0 0.7 
FozRio North 0.406729 6.678552 0.0 0.0 0.0 0.0 

PontaCruzeiro North 0.41243 6.661926 0.0 0.0 0.0 0.0 
Celeste1 East 0.081692 6.598047 13.5 4.9 19.1 6.4 
Celeste2 East 0.084568 6.601425 1.0 0.7 1.4 0.9 

RibeiraPeixe East 0.086268 6.611135 0.8 0.5 1.1 0.7 
Io Grande East 0.107141 6.637604 4.4 2.3 6.2 3.3 

ColóniaAçoreana East 0.178303 6.687464 0.9 0.6 1.3 0.9 
Planta East 0.085616 6.571594 2.7 1.5 3.8 2.2 
Muteca East 0.100011 6.626185 2.3 1.0 3.3 1.3 

Angra Toldo N East 0.160145 6.673733 0.7 0.4 1.0 0.7 
Angra ToldoS East 0.156856 6.672396 0.7 0.9 0.9 1.2 

Sete Ondas East 0.201529 6.706574 0.6 0.5 0.8 0.7 
Pomba East 0.287295 6.750049 0.7 0.5 1.0 0.6 

Rei East 0.215332 6.725771 0.1 0.1 0.1 0.2 
Micondó East 0.169257 6.679283 0.1 0.1 0.1 0.2 
Abade East 0.224824 6.733458 0.1 0.1 0.1 0.1 

Comprida East 0.230662 6.737584 0.0 0.0 0.0 0.1 
Forma East 0.228159 6.735074 0.0 0.0 0.0 0.0 
Giga East 0.233337 6.742287 0.0 0.0 0.0 0.0 
Milha East 0.363134 6.713814 0.0 0.0 0.0 0.0 

Conchas East 0.406508 6.621472 0.0 0.0 0.0 0.0 
Perigosa East 0.340767 6.740600 0.0 0.0 0.0 0.1 

Messias Alves East 0.245519 6.745508 0.0 0.0 0.0 0.1 
S. João Angolares East 0.128082 6.645522 0.0 0.0 0.0 0.0 

Angobo East 0.151542 6.667459 0.8 0.7 1.2 1.0 
Manuel Jorge East 0.30058 6.751954 0.0 0.0 0.0 0.0 

        
Príncipe Island        

Uba North 1.674352 7.458768 18.9 6.3 26.7 8.5 
Praia Grande North 1.670823 7.446521 8.2 4.0 11.6 5.2 

Micoto North 1.681154 7.389707 6.5 3.7 9.2 5.1 
Ponta Marmita North 1.68293 7.371763 5.3 2.7 7.5 3.7 

Sundy North 1.679103 7.381196 5.3 2.5 7.5 3.2 
Margarida North 1.680839 7.373861 2.1 1.0 3.0 1.3 
Montanha North 1.684137 7.393887 2.0 1.0 2.9 1.3 

Banana North 1.690216 7.441794 1.7 0.9 2.4 1.2 
Bombom  North 1.690865 7.400796 2.8 1.4 4.0 1.8 

Franguinha North 1.684029 7.450018 1.6 0.7 2.3 1.0 



 
 

141 

Table S.1. (Cont) 
 

Macaco North 1.681541 7.454099 1.4 1.0 2.0 1.3 
Boi North 1.680463 7.459617 0.0 0.0 0.0 0.0 

Ribeira Izé North 1.68502 7.395001 1.3 0.7 1.8 0.9 
Campanha North 1.683507 7.426232 0.0 0.0 0.1 0.1 

Burra North 1.684089 7.435764 0.0 0.0 0.0 0.0 
Ponta Ramiro North 1.680326 7.378021 0.0 0.3 0.0 0.5 

Cemitério East 1.567270 7.424220 8.0 3.1 11.3 4.1 
Bumbo East 1.602214 7.424071 4.3 2.4 6.1 3.0 
Popa East 1.68598 7.429540 1.0 0.4 1.4 0.6 

Pedrona East 1.687173 7.439450 0.0 0.0 0.0 0.1 
Portinho East 1.637744 7.446630 0.0 0.0 0.0 0.0 
Cabinda East 1.562787 7.421909 0.0 0.0 0.0 0.0 

Praia Seca South 1.545786 7.399314 5.3 3.3 7.5 4.3 
Infante South 1.557488 7.413629 3.7 2.6 5.2 3.5 

Rio S. Tomé South 1.559279 7.354879 0.9 1.1 1.3 1.4 
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Table S2. Beach suitability and impact assessment on nesting beaches in São Tomé and Príncipe (based on 
Cousins et al. 2017), where hawksbill (Eretmochelys imbricata) was observed or can occur according to 

our model (see methods for more details). 
 

Island / 
Beach 

Location 
Length 
(km) 

Suitability NA IS HI LAT LONG 

São Tomé island        
A. Morro  North 0,15 Typical <1 3 Medium 0,408229 6,642245 
Brigada North 0,40 Typical 1-4 4 Low 0,411436 6,664800 

Caroceiro North 0,35 Typical <1 4 Low 0,410816 6,647930 
Conchas North 0,30 Typical <1 2 Medium 0,406508 6,621472 
Scarlos North 0,20 Typical <1 4 Low 0,411584 6,654812 

Agua Luge North 0,67 Typical <1 2 Medium 0.401668 6,692099 
Lemba North 0,38 Potential 1-4 2 Medium 0,250392 6,464540 

Boca Bela North 0,40 Typical 1-4 3 Medium 0,244825 6,462562 
Monte Forte North 0,15 Potential 1-4 2 Medium 0,333438 6,523495 
Comprida East 0,30 Typical <1 4 Medium 0,230662 6,737584 

Sete Ondas East 0,40 Potential <1 3 Medium 0.201529 6,706574 
Angobo East 0,50 Typical 1-4 3 Medium 0,151542 6,667459 

Angra Toldo East 0,65 Typical 1-4 1 Medium 0,158986 6,673244 
Colonia East 0,70 Potential 1-4 3 Medium 0,178303 6,687464 

Io Grande East 0,55 Typical 5-14 2 Medium 0,107141 6,637604 
Micondo East 0,35 Typical <1 3 Medium 0,169257 6,679283 
Muteca I East 0,20 Potential 1-4 4 Low 0,100011 6,626185 

Planta East 0,85 Typical 1-4 4 Low 0,085616 6,571594 
Celeste East 0,45 Typical 15-25 3 Medium 0,081692 6,598047 
Pomba East 0,60 Typical 1-4 3 Medium 0,287295 6,750049 

Rei East 0,28 Potential <1 2 Medium 0,215332 6,725771 
Ribeira 
Peixe 

East 0,35 Potential 1-4 1 High 0,086268 6,611135 

Cabana South 0,80 Typical 5-14 3 Medium 0,026444 6,525488° 
Cocheira 

Baixo 
South 0,26 Typical <1 3 Medium 0,032771 6,533425 

Cova South 0,17 Typical 1-4 4 Low 0,029174 6,533215 
Quija South 0,65 Potential 5-14 4 Low 0,126684 6,494663 

Guembu South 0,27 Typical <1 3 Medium 0,028341 6,532056 
Inhame South 0,50 Typical 5-14 1 High 0,024954 6,520570 

Jale South 1,50 Typical 5-14 3 Medium 0,043861 6,511182 
Marcação South 0,25 Typical <1 3 Medium 0,026699 6,530529 

Piscina South <0.05 Potential <1 4 Low 0,027969 6,512151 
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Table S2. (cont.) 

       

         
Santo António South 1,60 Potential 1-4 4 Low 0,104492 6,513558 

Xixi South 0,33 Typical 1-4 5 Low 0,072502 6,515956 
Bateria Rolas <0,05 Typical 1-4 5 Low -0,007043 6,513076 
Café Rolas 0,24 Typical 1-4 1 High 0,000399 6,522200 

Escada Rolas <0,05 Typical 1-4 5 Low -0,011932 6,522192 
Joana Rolas 0,18 Typical >15 3 Medium -0,012246 6,518414 

Marinho Rolas 0,15 Typical >15 3 Medium -0,001122 6,517565 
S. Antonio Rolas 0,90 Typical <1 2 Medium 0,003031 6,527673 

         
Príncipe Island         

Bumbo East 0,42 Typical 5-14 2 Medium 1,602214 7,424071 
Popa East 0,10 Typical 1-4 1 Low 1,685980 7,429540 

Cemitério East <0,05 Typical 5-14 4 Medium 1,567270 7,424220 
Praia Grande North 1,48 Typical 5-14 1 Low 1,670823 7,446521 

Boi North 0,34 Typical 5-14 1 Low 1,680463 7,459617 
Ribeira Izé North 0,51 Typical 1-4 4 High 1,685020 7,395001 

Micotó North 0,35 Typical 5-14 1 Low 1,681154 7,389707 
Montanha North 0,23 Typical 1-4 1 High 1,684137 7,393887 

Sundy North 0,42 Typical 5-14 5 High 1,679103 7,381196 
Ponta Ramiro North 0,11 Potential <1 1 Medium 1,680326 7,378021 

Margarida North 0,07 Typical 1-4 2 Medium 1,680839 7,373861 
Ponta Marmita North 0,25 Typical 5-14 1 Low 1,682930 7,371763 

Uba North <0,05 Typical >15 2 Low 1,674352 7,458768 
Macaco North 0,60 Typical 1-4 4 High 1,681541 7,454099 

Franguinha North 0,14 Typical 1-4 0 Low 1,684029 7,450018 
Banana North 0,20 Typical 1-4 4 High 1,690216 7,441794 

Campanha North 0,26 Typical <1 4 High 1,683507 7,426232 
Bombom North 1,32 Typical 1-4 4 High 1,690865 7,400796 
Infante South 1,40 Typical 5-14 1 Low 1,557488 7,413629 

Praia Seca South 0,56 Typical 5-14 4 High 1,545786 7,399314 
Rio S. Tomé South 0,46 Typical 1-4 2 Low 1,559279 7,354879 

         
 

Key: NA number of activities; IS Impact Score; HI Human Impact; LAT Latitude; LONG Longitude 
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“In the end, we will conserve only what we love; we will love only what we understand and 

we will understand only what we are taught.” 

 

― Baba Dioum 
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GENERAL DISCUSSION 

The general goals of this thesis were to contribute significantly for the assessment of the current 

conservation status of three species of marine turtles occurring in the islands of São Tomé and 

Príncipe. To achieve this, I addressed fundamental research questions about their reproductive 

biology, genetic structure and ecology, improving the current understanding of their population 

dynamics, connectivity with other populations, trophic niche in the region and reproductive 

behaviour. I used indirect methods that included the use of genetic markers such as 

microsatellites and mitochondrial DNA to inform on connectivity and dispersal in both green 

and olive ridley turtles; the use of stable isotopes to understand the trophic niches occupied by 

green turtles in São Tomé island, and modelling of reproductive behaviour data to understand 

the spatial and temporal distribution of the most important nesting aggregation of the critically 

endangered hawksbill turtle in the Eastern Atlantic. Here I highlight the key findings and 

discuss the broader conservation implications of this research for each of the three species. 

 

Green turtle (Chelonia mydas) 

Understanding a species distribution and the connectivity among geographically discrete 

populations is fundamental for its conservation and management. Genetic analysis has been 

vital for elucidating the historical processes that shaped the geographic distributions of several 

species and revealing their population structure (e.g. Bowen et al. 1994, 1997; Encalada et al. 
1996; Dutton et al. 1999; Bowen & Karl 2007; Leroux et al. 2012; Naro-Maciel et al. 2014).  

 

In  Chapter 2 of the thesis I used a combination of nuclear DNA markers (microsatellites) and 

mitochondrial DNA to evaluate the current levels of genetic diversity of Chelonia mydas and 

assess dispersal and recruitment of this species in São Tomé and Príncipe archipelago. We 

performed a mixed-stock analysis using sequences of both adult and juvenile turtles sampled 

during the study, as well as a compiled data set of several populations in the Atlantic. Both 

nuclear and mtDNA data were congruent in showing that São Tomé and Príncipe’s juvenile and 

adult green turtles exhibit high levels of genetic diversity and are both genetically differentiated 

from other foraging and nesting Atlantic populations. The mixed-stock analysis suggested that 

São Tomé and Príncipe’s rookery is the primary source of juveniles to the local foraging areas, 

which suggests that green turtles in the archipelago show limited dispersal and should be 

considered a separate management unit for which conservation actions must be implemented, 

not only at the rookery level but also including the foraging aggregations. 
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The juvenile foraging aggregations were studied in further detail, as I explored the distribution 

of juvenile sea turtles of different life-stage groups in different habitats, as well as their trophic 

niche through in-water surveys and hand-capture of foraging individuals. I used the isotopic 

signatures of juveniles hand-captured at each foraging site to infer establishment duration at the 

foraging sites and trophic niches, and showed that juveniles establish local home ranges related 

to the available diet items, and use them for extended periods of at least several months. The 

variety of trophic roles fulfilled by juvenile green turtles must be taken into account; the 

contrasting consumption of items (seagrass vs. red algae) in relatively close foraging sites is an 

indication of plasticity in green turtle foraging behaviour in relation the available resources. 

Moreover, this study provided the first data set to which to compare demographic data from 

other locations in West Africa, where current knowledge on green turtle foraging behaviour is 

limited or non-existent and indicates that even oceanic islands that are geologically recent like 

São Tomé may provide important recruitment/development habitats for juvenile green turtles. 

For the green turtle, recruitment to the adult population occurs locally, thus the protection of its 

foraging habitats will provide additional conservation benefits.  

 

Tagging data extracted from sea turtle databases maintained by the two on-site NGOs, and data 

obtained by daily and weekly surveys was combined and used to develop a stochastic model 

that can be used to estimate a critical parameter in life-history models and population estimates 

of sea turtles, the internesting period. I used the data obtained for Chelonia mydas to develop 

and test the model, and obtained an estimation of 12 days interval for this important parameter 

for the São Tomé and Príncipe population. The model described is an important step to 

understand patterns in the individual behaviour of females and how they affect the variation in 

internesting periods for a given population, and has applications for any marine turtle species. 

 

Olive ridley turtle (Lepidochelys olivacea) 

I genotyped a large number of females and hatchlings of Olive Ridley turtles (Lepidochelys 
olivacea) sampled during the study on São Tomé Island to study the reproductive behaviour 

and dispersal of this species in the region. The results, provided in Chapter 3, indicate male-

biased dispersal, and a male-skewed operational sex-ratio. Knowing that low genetic diversity 

increases the risk of population extinction and may reduce adaptability to future environmental 

change, the current effective population size (Ne) and levels of nuclear genetic diversity were 

estimated to hypothesize about this population’s ability to maintain adaptive potential in light 

of current high levels of exploitation, and potential future impacts of climate change. In São 

Tomé rookery, the results shows a male reproductive skew, and evidence of male biased 
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dispersal, as suggested by relatedness and mean assignment tests, which are adaptively 

advantageous traits. However, these life-history strategies appear to be insufficient to prevent 

the loss of genetic diversity as a result of a severe population bottleneck, and the estimated 

effective population size was much lower than the minimum needed to maintain equilibrium 

between loss of adaptative genetic variation due to genetic drift and its replacement through 

mutation. Because this species is considered a single large panmitic population sharing one 

common haplotype across the Atlantic Ocean, and genetic sampling of this species in the 

Atlantic is very limited, I could not assess population sub-structuring or cryptic population sub-

divisions, and therefore with this study I could not hypothesize about future prospects of this 

species in São Tomé and Príncipe.  

 

Hawksbill turtle (Eretmochelys imbricata) 

I compiled all existing data available for Eretmochelys imbricata on both São Tomé and 

Príncipe in order to provide the first complete status assessment of this little known, yet 

critically and highly vulnerable population on the Eastern Atlantic. Data obtained from field 

observations were used to describe reproductive behaviour (nesting distribution, nest 

abundance and phenology) in Chapter 4. I showed that this species nests primarily in the 

southern beaches of São Tomé, while in Príncipe prefers the beaches in the north, and 

highlighted the importance of Rolas islet as the single most important nesting site for this 

species in the archipelago. This islet holds 71 % of all activity in São Tomé island, and 52.8 % 

of all activity in the archipelago, particularly in Joana and Marinho beaches, where I estimated 

a combined nesting activity of 225 ± 38.2 tracks during the 2016-2017 season. Based on range 

of estimates of the number of nests for each season and considering an average clutch frequency 

of 3 nests for this species, we estimate a minimum of 13 – 25 and a maximum of 25 – 34 

individual females nesting in 2015-2016 and 2016-2017 seasons respectively in the whole 

archipelago. I found that a significant proportion of hawksbill nesting occurs either in well 

protected beaches, but even there some level of human impact can be scaled down. This is very 

important, as it is likely that this genetically isolated population may be composed of a very 

low number of females; for this reason, the loss or addition of one female nesting in one area 

in each year can significantly impact the population outcome. 
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FUTURE RESEARCH DIRECTIONS  

Although this work focuses on the aggregations found in São Tomé and Príncipe archipelago, 

this study represents one of the most comprehensive genetic studies of green and olive ridley 

turtles in the Eastern Atlantic to date and provides the first data for several important life-history 

parameters for each species in the region. Nonetheless, to address some of the questions raised 

in this thesis more fully would require additional sampling, during more years and from other 

rookeries in the Atlantic. In particular this work should be extended to incorporate a significant 

proportion of the Eastern Atlantic rookeries to help inform a cohesive regional conservation 

strategy.  

 

Traditionally mitochondrial DNA has been used to assess broad population structure among 

marine turtle rookeries (Bowen & Karl 2007; Jensen et al. 2013), but it is critical that the 

population structure of marine turtles is reassessed using genetic markers with a suitable 

variability, considering the demographic history and the geographic context of the studied 

populations (Bradshaw et al, 2018). This reassessment would be crucial to resolve the apparent 

isolation of the green and hawksbill sea turtles of São Tomé and Príncipe, and potential isolation 

of the olive ridley sea turtle as well, for which population dynamics in the Atlantic is still poorly 

understood. Genetic data should be complemented when possible with the attachment of 

electronic tracking devices, particularly to post-reproductive adults (including males), to define 

migratory routes between adult breeding and foraging areas, and to prioritise areas which can 

achieve the greatest conservation benefits for marine turtles. There has been very little satellite 

tracking of marine turtles in East Africa, and globally very little of males (but see van Dam et 
al. 2008).  

 

Most marine turtle studies focus on adult females, which are more accessible; however, 

determining the number and movements of the breeding males should become a research 

priority as this has important implications for Ne, and for the adaptive potential and viability of 

marine turtle populations. In this thesis I used indirect methods for studying this population 

segment, in this case, of the olive ridley turtle; however future research efforts should attempt 

at collecting tissue samples and attaching platform terminal transmitters to males as well. 
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CONCLUSIONS 

In summary, this thesis has significantly advanced our current knowledge on the ecology and 

connectivity of the São Tomé and Príncipe’s marine turtle populations, shedding some light 

about the different species biology and ecology in East Africa. This study is in line with 

previous studies assessing marine turtle dispersal in the region, which show high genetic 

differentiation of the local rookeries of São Tomé and Principe due to very limited dispersal, 

highlighting the vulnerability of these populations to exploitation. This information is useful 

for informing a regional conservation strategy in order to adequately protect these species, 

particularly the green and hawksbill, as they should be considered two critically endangered 

subpopulations. 
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