
UNIVERSITAT POLITÈCNICA DE CATALUNYA (UPC)

DOCTORAL THESIS

Toward human-like pathfinding with
hierarchical approaches and the GPS of

the brain theory

Author:
Vahid RAHMANI

Supervisor:
Dr. Nuria PELECHANO

A thesis submitted in fulfillment of the requirements
for the degree of Doctor of Philosophy

in the

Research Center for Visualization, Virtual Reality and Graphics Interaction
(ViRVIG)

Department of Computer Science

September 9, 2020

http://www.johnsmith.com
http://www.johnsmith.com
http://www.jamessmith.com
http://researchgroup.university.com
http://researchgroup.university.com
http://department.university.com

iii

Declaration of Authorship
I, Vahid RAHMANI, declare that this thesis titled, “Toward human-like pathfinding
with hierarchical approaches and the GPS of the brain theory” and the work pre-
sented in it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a research de-
gree at this University.

• Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed my-
self.

Signed:

Date:

v

UNIVERSITAT POLITÈCNICA DE CATALUNYA (UPC)

Abstract
Department of Computer Science

Doctor of Philosophy

Toward human-like pathfinding with hierarchical approaches and the GPS of the
brain theory

by Vahid RAHMANI

Pathfinding for autonomous agents and robots has been traditionally driven by find-
ing optimal paths. Where typically optimality means finding the shortest path be-
tween two points in a given environment. However, optimality may not always be
strictly necessary. For example, in the case of video games, often computing the
paths for non-player characters (NPC) must be done under strict time constraints
to guarantee real time simulation. In those cases, performance is more important
than finding the shortest path, specially because often a sub-optimal path can be just
as convincing from the point of view of the player. When simulating virtual hu-
manoids, pathfinding has also been used with the same goal: finding the shortest
path. However, humans very rarely follow precise shortest paths, and thus there are
other aspects of human decision making and path planning strategies that should be
incorporated in current simulation models. In this thesis we first focus on improv-
ing performance optimallity to handle as many virtual agents as possible, and then
introduce neuroscience research to propose pathfinding algorithms that attempt to
mimic humans in a more realistic manner.

In the case of simulating NPCs for video games, one of the main challenges is to
compute paths as efficiently as possible for groups of agents. As both the size of the
environments and the number of autonomous agents increase, it becomes harder
to obtain results in real time under the constraints of memory and computing re-
sources. For this purpose we explored hierarchical approaches for two reasons: (1)
they have shown important performance improvements for regular grids and other
abstract problems, and (2) humans tend to plan trajectories also following an top-
bottom abstraction, focusing first on high level location and then refining the path
as they move between those high level locations. Therefore, we believe that hier-
archical approaches combine the best of our two goals: improving performance for
multi-agent pathfinding and achieving more human-like pathfinding.

Hierarchical approaches, such as HNA* (Hierarchical A* for Navigation Meshes)
can compute paths more efficiently, although only for certain configurations of the
hierarchy. For other configurations, the method suffers from a bottleneck in the step
that connects the Start and Goal positions with the hierarchy. This bottleneck can
drop performance drastically.

HTTP://WWW.JOHNSMITH.COM
http://department.university.com

vi

In this thesis we present different approaches to solve the HNA* bottleneck and
thus obtain a performance boost for all hierarchical configurations. The first method
relies on further memory storage, and the second one uses parallelism on the GPU.

Our comparative evaluation shows that both approaches offer speed-ups as high
as 9x faster than A*, and show no limitations based on hierarchical configuration.
Then we further exploit the potential of CUDA parallelism, to extend our imple-
mentation to HNA* for multi-agent path finding. Our method can now compute
paths for over 500K agents simultaneously in real-time, with speed-ups above 15x
faster than a parallel multi-agent implementation using A*.

We then focus on studying neurosience research to learn about the way that hu-
mans build mental maps, in order to propose novel algorithms that take those find-
ing into account when simulating virtual humans. We propose a novel algorithm for
path finding that is inspired by neuroscience research on how the brain learns and
builds cognitive maps. Our method represents the space as a hexagonal grid, based
on the GPS of the brain theory, and fires memory cells as counters. Our path finder
then combines a method for exploring unknown environments while building such
a cognitive map, with an A* search using a modified heuristic that takes into account
the GPS of the brain cognitive map.

vii

Acknowledgements
This PhD. Thesis would not have been possible without the great supervision of my
advisor, Dr. Nuria Pelechano, to whom I ought being where I am now. She has been
the perfect guide to a work she envisioned from the first moment, and she has been
able to push me in those moments when I think my work is stuck. She has almost as
much credit as I have in all the work I have done.

I gratefully acknowledge research center of Visualization, Virtual Reality and Graph-
ics Interaction (VIRViG), for providing me financial support and all professors and
staffs to allow me to carryout my research in this esteemed laboratory.

I would also to express my appreciation to my friends for the mode that me en-
thusiasm and encouragement. Special shout-outs to Nogol panahi, Hani Baloochi,
Mohammad Milani, Leila Mashhori, Mahdieh Farrokhi, Farzaneh Aghbali, Moham-
mad Akram Narouei, Sahel Naraghi, Porochista Dorost, Mojtaba Taherkhani, Behnoosh
Molaie, Chris Bennetts-Cash, Adam Rumbold, Ahmed Sabir, Leonel Toledo, Alfred
Etxabe, Deniz charlo, Jordi Ramirez and Alexandra Nappelo.

I am grateful to my love, Mahdiye, who encouraged, supported and otherwise
put up with me throughout this long endeavour. Her love has been like a light,
shining brightly always and helping me find my way home.

Thank you to my brother, Mohsen, who constantly reminds me there is a more
amusing side to life. Some of my favourite moments from all my life have been
while spending my time with you.

Finally, my special words of thanks should also go to my parents, who uprooted
their lives for the sake of my brother and I. You taught me the importance of ed-
ucation, you taught me drive and ambition, you taught me respect, compassion,
forgiveness and love. You raised me as a boy and then you shaped me into a man.
You showed me the path and I follow it still. Thank you.

Vahid Rahmani

ix

Contents

Declaration of Authorship iii

Abstract v

Acknowledgements vii

1 Introduction 1
1.1 Pathfinding . 1
1.2 Thesis Claim And Document Organization 3
1.3 Motivations . 4
1.4 Problem Statement . 6
1.5 Objectives . 8
1.6 Contributions . 8

2 Literature review 11
2.1 Pathfinding . 11
2.2 Single-Agent Pathfinding Problem . 11
2.3 Multi-Agent Pathfinding Problem . 13
2.4 Search Graphs . 14
2.5 Paths and Instances . 15
2.6 Graph Representations . 15

2.6.1 Grid maps . 16
2.6.2 Waypoint Based Navigation Graphs 18
2.6.3 Mesh Based Navigation Graphs 19

2.7 Search Algorithms . 21
2.7.1 Dijkstra’s Algorithm . 21

The Algorithm . 22
2.7.2 The A* Algorithm . 24

The Algorithm . 25
2.7.3 ARA∗ . 26
2.7.4 D∗ . 28
2.7.5 Theta∗ . 30
2.7.6 D∗ Lite . 32
2.7.7 AD∗ . 33
2.7.8 Field D∗ . 35

2.8 Hierarchical Search Algorithms . 38
2.8.1 Problem Sub-division . 38
2.8.2 The Abstraction Build Stage . 41
2.8.3 The Abstract Search Stage . 42
2.8.4 Path Refinement . 42
2.8.5 Merits Of Using Hierarchical Pathfinding 43
2.8.6 Hierarchical Pathfinding A∗ (HPA∗) 44
2.8.7 Partial Refinement A∗ (PRA∗) 48

x

2.8.8 Minimal Memory Abstraction (MMA) 51
2.8.9 Dynamic Hierarchical path-finding A* (DHPA∗) 54

2.9 Summary . 56

3 Hierarchical Pathfinding for Navigation Meshes. 61
3.1 Introduction . 61
3.2 Related Work on Hierarchical Approaches 63
3.3 Hierarchical problem formulation . 67
3.4 The HNA* algorithm . 69

3.4.1 Theoretical upper bound on the number of inter-edges 74
3.5 New insert S and G approaches . 77

3.5.1 Pre-calculated connecting paths (PCCP) 77
3.5.2 Parallel Search on CPU . 80
3.5.3 Parallel search on GPU (CUDA HNA*) 81

3.6 Experimental Results . 83
3.6.1 Game world geometry . 84
3.6.2 Error and memory usage in PCCP 85
3.6.3 Performance results for PCCP . 87
3.6.4 Achieved Results of parallel search on the CPU 90
3.6.5 Achieved Results of Parallel Search on the GPU 91

3.7 Conclusion . 92

4 Multi-agent parallel hierarchical pathfinding in navigation meshes (MA-
HNA*) 95
4.1 Introduction . 95
4.2 Problem formulation . 96
4.3 Related work on Multi-Agent pathfinding 96
4.4 Multi-Agent Parallel Pathfinding . 98

4.4.1 Parallel pathfinding with PCCP 100
4.4.2 Parallel pathfinding with CUDA HPA* 102

4.5 Experimental Results . 103
4.6 Conclusion . 106

5 Towards Human-like Agent Path Planning 107
5.1 Abstract . 107
5.2 Introduction . 107
5.3 Human brain navigation . 110
5.4 Related work . 112
5.5 Human-like pathfinding model . 116

5.5.1 Hexagonal cognitive maps generation 117
5.5.2 Path Planner . 117

Unknown environment . 118
Known environment . 121

5.5.3 Combining known and unknown areas 122
5.6 Experimental Results . 124
5.7 Conclusion . 130

6 Conclusion and future work 133
6.1 Conclusion . 133
6.2 Future Works . 136

6.2.1 Improvements to HNA* . 136

xi

6.2.2 Multi-agent parallel HNA* (MA-HNA*) 136
6.2.3 Towards human like agent path planning 137

A Mathematical profs 1 139

B Mathematical profs 2 141

xiii

List of Figures

2.1 Examples of the most common grid cell geometries. 17
2.2 Grid Based representation of a game world environment 17
2.3 Waypoint based representation of a navigation graph 18
2.4 An example of a navigation mesh representation based on a triangu-

lation of the walkable space [Kallmann, 2010b]. 20
2.5 The Dijkstra’s algorithm’s cost-so-far calculation and path generation

[Anguelov, 2012]. 23
2.6 Node selection for Dijkstra’s algorithm compared to A∗ for an exam-

ple search [Anguelov, 2012] . 24
2.7 Overall search space exploration of Dijkstra’s algorithm compared to

A∗ [Anguelov, 2012] . 25
2.8 Pseudocode of the A∗ algorithm. 27
2.9 A∗ path vs any-angle path [Daniel et al., 2010] 30
2.10 Paths considered by Basic Theta∗ [Daniel et al., 2010] 31
2.11 Example of Basic Theta∗ [Daniel et al., 2010] 31
2.12 Layout of Nodes [Ferguson and Stentz, 2005] 35
2.13 Shortest path of n through edge n1 n2 [Ferguson and Stentz, 2005] . . . 37
2.14 The subdivision of a large pathfinding problem into smaller sub-problems

[Ferguson and Stentz, 2005] . 40
2.15 A basic overview of a hierarchical search [Ferguson and Stentz, 2005] . 43
2.16 The HPA* graph abstraction cluster creation [Anguelov, 2012] 45
2.17 The HPA* graph inter-cluster and intra-cluster links [Anguelov, 2012] 46
2.18 The effects of the post-processing smoothing phase on path optimality

[Anguelov, 2012] . 47
2.19 The PRA* Abstraction [Anguelov, 2012] 49
2.20 The Minimal Memory Abstraction [Anguelov, 2012] 51
2.21 A comparison between the HPA* and MM* abstractions. (a). (b).

[Anguelov, 2012] . 52
2.22 Improving path sub-optimality through the trimming of sub-problem

solutions [Anguelov, 2012] . 53
2.23 DHPA* cache for a single abstract node in a cluster of size 5. In this

figure, we do not consider diagonal distance, for simplicity [Kring,
Champandard, and Samarin, 2010] . 54

3.1 Example of HNG with two levels and µ = 4. The orange circles and
discontinuous links represent the temporal nodes and edges created
after linking Start and Goal points to the HNG. This temporal graph
is where the HNA* runs [Pelechano and Fuentes, 2016b]. 68

xiv

3.2 From left to right we can see a simple map at L0, L1 and L2. The
HNG has been built with µ = 3. Note that colors are used to identify
nodes in each level, and the overlapping of a node in L1 with colored
nodes in L0 visually identifies which nodes in L0 are merged to form
a node in L1 and similarly between L1 and L2. White dotted lines in-
dicate portals at L0, red dotted lines in L1 indicate inter-edges (connec-
tions between nodes at L1), and the same applies for L2 (on the right
hand side). Finally, black arrows in L1 and L2 indicate intra-edges (pre-
computed A* paths to cross a high level node from one inter-edge to
another). HNG consists of the set of vertices represented by red dots
(one per each inter-edge), and the set of edges represented by black
arrows (one per each intra-edge) . 70

3.3 From left to right we can see the 4 steps of HNA* at L1. Step 1 con-
nects S and G to the HNG by creating temporal connections between
S/G and the inter-edges of the high level node (yellow arrows). Step
2 computes A* at the HNG (highlights the resulting path). Step 3 ex-
tracts the intra-edges which contains the sequence of polygons from
L0. Step 4 removes S/G and the temporal connections to recover the
original HNG at L1. 73

3.4 Pathfinding computation: S and G are inserted and linked to their
partitions at level 2 by calculating shortest paths to each portal in their
respective node(a). Paths are calculated at level 2 (b), and then intra-
edges are extracted from lower level 1 (c) and the final path is obtained
for level 0 (d) [Pelechano and Fuentes 2016]. 74

3.5 Example scenario, where connecting S and G becomes a bottleneck
due to the large number of inter-edges. 75

3.6 Performance results for city island (up) and the serpentine city sce-
nario(down) [Pelechano and Fuentes, 2016b]. 76

3.7 Section of the example map for L1 with µ = 6. On the left, map at L0
with numbers indicating polygon IDs. On the right, L1 of the HNG
with numbers indicating node IDs at L1. 78

3.8 Center of each polygon in level 0 computed for computation and stor-
age of shortest path to each inter-edge. 79

3.9 Inter-edges of each polygon in level 1 of hierarchy 80
3.10 GPU architecture; (a) CUDA hardware interface, (b) CUDA software

interface . 82
3.11 Different scenarios with their corresponding number of triangles in

the mesh. A: City Island (110.3K), B: Serpentine City (135.1K), C: Me-
dieval City (774.7K) and D: Big Tropical scenario (239.1K). 84

3.12 Memory usage in 5 different size scenarios. 85
3.13 (a) Hierarchical representation at level L0, (b) Hierarchical representa-

tion at level L1 with the path pre-computation from the center of the
polygon to all inter-edges, (c) Final paths computed between the Start
and Goal points. 86

3.14 Difference in the total path length between PCCP HNA* and the orig-
inal HNA*. 87

3.15 Performance results for the city Island scenario. 88
3.16 Performance results for the big tropical scenario. 89
3.17 Performance results for the Medieval city scenario. 89
3.18 Average number of inter-edges per high level node for L2 as the value

of µ increases. 91

xv

3.19 Performance cost for inserting S and G step with the parallel imple-
mentation on the CPU. Results shown the Medieval city scenario us-
ing a hierarchy of 3 levels. 91

4.1 Time taken in ms to compute the corresponding number of agent’s
paths in parallel for A*, PCCP and CUDA-HNA. From 1K to 500K
agents computing paths simultaneously under 6.5ms for PCCP and
7.2ms for CUDA. 103

4.2 (a) Paris scenario and (b) Hierarchical representation at L1 104
4.3 Speed-up achieved for each of the scenarios, with PCCP and CUDA-

HNA* over A*. 105

5.1 A schematic example of place cell and grid cell firing. The first col-
umn shows in black the path taken by a rat as it traverses the square.
Electrodes implanted within the hippocampus and entorhinal cortex
record from individual neurons. Place and grid cells show increased
firing (red dots) at discrete locations in the environment. Individual
place cells (top) fire only in one location, whereas grid cells (bottom)
have multiple firing fields forming a hexagonal shape. The hexagonal
symmetry of the spacing between these latter fields gives rise to the
term “grid cells”. The firing frequency of place and grid cells within
environment (mental map) is shown in the second column, with yel-
low and red depicting higher rates of firing on a background of no cell
activity (blue) [O’Keefe and Dostrovsky, 1971] 111

5.2 A schematic drawing of grid cell firing as the rat moves through a
square [Hafting et al., 2005]. The hexagonal pattern gives high spatial
resolution that allows the animal to recognize its locations and orien-
tation. 112

5.3 Hexagon grid cell with corresponding counters. 118
5.4 Affect of C on path length. Green line show A* path and Pink line

shows obtained path base on our algorithm. 119
5.5 Comparison of the path obtained with the naive exploration algo-

rithm (in pink), and the optimal solution obtained with A*. 121
5.6 Percentage of agent’s knowledge and obtained path length (Pink color

for proposed method and Green for A* search). (A) 25% , (B) 50% , (C)
75% and (D) 100% of knowledge. Color intensity indicates level of
knowledge based on how many times it has been visited before (the
darker the color the more times it has been visited) 124

5.7 Illustration of proposed method and A* path planning. Green color
shows A* search path, pink color shows proposed method and blue
shows agent knowledge with color intensity representing level of knowl-
edge. (A) path planing between two points in an unknown area, (B)
Path between two points in a known and (C) path from an unknown
area to a location in a known area. 126

5.8 Comparison of path length . 127
5.9 Ratios of average path length as the level of knowledge about the en-

vironment increases, with respect to the A* path length. 127
5.10 Percentage of agent’s knowledge (P) and obtained path length. (A)

P = 25% , (B) P = 50% , (C) P = 75% and (D) P = 100% of knowledge.128

xvi

5.11 Different values of three P , δ and C parameters and obtained path
length. (A): {P = 0%, δ = −1, C = 10}, (B): {P = 35%, δ = −0.8, C = 8},
(C): {P = 70%, δ = −0.6, C = 6}, (D): {P = 100%, δ = −0.4, C = 4} . . 129

5.12 User interface of perceptual test . 130
5.13 Perceptual Evaluation. The top graph shows the perceived level of

familiarity for maps of increasing P , with δ = 0.5 and C = 5. The
bottom shows also maps of increasing P , but varying δ and C to also
exhibit increasing levels of confidence on the goal direction. 131

xvii

List of Tables

2.1 Recently reported pathfinding algorithms used in robotics and video
games . 58

3.1 Structure of MultiMap for some example nodes in Figure 3.7. 78

4.1 Maximum number of agents that can run in real time (25FPS) in se-
quential multi-agent pathfinding for each algorithm. 105

xix

Dedicated to all the heroic doctors, nurses, paramedics and
medical staff that keep us safe and healthy from COVID-19. . .

1

Chapter 1

Introduction

1.1 Pathfinding

Pathfinding consists of solving the problem of finding a traversable path from a

starting position to a goal position within an environment. Such path typically at-

tempts to minimize certain cost, such as fuel, time, distance, equipment, money, etc.

Path planning for multi-agents in large virtual environments is a central problem

in a variety of fields such as robotics, video games, and crowd simulation for both

static and dynamic environments. There are several aspects that need to be consid-

ered when computing paths. The first one, which attracts most of the interest from

the research community, is how to compute paths efficiently so that we can handle

large environments with many autonomous agents in real time. The second one,

which has been mostly ignored by the literature, is how to compute paths that are

as human-like as possible, and not simply the result of some optimization (such as

time, length, effort, etc).

In the case of video games, the need for highly efficient pathfinding techniques

is crucial as modern games place high demands on CPU and memory usage. So,

in video games and any real-time application that needs to be populated with au-

tonomous agents, the effort is put in finding visually convincing paths with low

computational cost. Typically, it is not necessary to obtain the optimal path for all

agents, but those paths should at least look convincing to the viewer. Typically the

plausibility of a path can be evaluated through user studies, where results are shown

to a group of viewers and they have to answer questions regarding the quality of

those trajectories. In order to compute paths for a video game, it is necessary that

the total time required for all computations (e.g: rendering, physics simulation, AI,

2 Chapter 1. Introduction

etc.) is kept under 40 ms to guarantee 25 frames per second. So often, it is possible

to lessen the optimality requirement as long as the path is believable to the observer.

The problem of pathfinding can be separated from local movement, so that pathfind-

ing provides the sequence of cells to cross in the navigation mesh, and other methods

can be used to set waypoints to steer the agents and to handle collision avoidance.

In previous work by my advisor [Pelechano and Fuentes, 2016a], a hierarchical ap-

proach for general navigation meshes was presented, known as HNA*. The method

provided a hierarchical solution adapted to the peculiarities of navigation meshes

where cells are convex polygons of different shapes and sizes. HNA* offered very

good speeds ups for pathfinding, however only for certain configurations of the hier-

archy. For other configurations, performance could drop drastically when inserting

the start and goal position into the hierarchy. In chapters 3 and 4 of this thesis, we

focus on abstraction hierarchies applied to pathfinding to improve both computing

and memory performance to eliminate the bottleneck that appeared in HNA*.

There have been many efforts to simulate virtual humans in a way that resem-

bles real humans. For instance to perform natural collision avoidance in a virtual

environment. However, to the best of our knowledge, there is currently no relevant

work in the literature when it comes to achieving long term paths that closely re-

semble the way that humans decide their whereabouts and that can be computed

in real time. There are some algorithms that mimic animal behavior, such as ants

leaving pheromones, of flocks of birds following basic rules. But there is no work

in the literature trying to mimic the human brain theory on mental maps and way

finding. There are still many unknowns about the way our brain works, and it is be-

yond this thesis to provide a complete solution for human-like pathfinding. In this

thesis we have tried to get one step closer to real humans’ pathfinding, by proposing

algorithms that follow neuroscience theories that have been tested on other mam-

mals but are believed to also apply to humans. Therefore, in chapter 5, we focus

on studying neuroscience research to learn about the way that mammals build men-

tal maps, in order to propose novel algorithms that take those finding into account

when simulating virtual humans.

In this first chapter, we introduce the motivations and the main problems of

1.2. Thesis Claim And Document Organization 3

pathfinding which are the challenges that we aimed to solve with this thesis. We

also present our goals, and list our contributions to the pathfinding research. Finally

we present the list of publications resulting from this thesis.

1.2 Thesis Claim And Document Organization

Pathfinding (also referred to as path planning) is one of the most important and also

interesting research topic in the artificial Intelligence community. The challenge of

pathfinding in video games is to compute optimal or near optimal paths as efficiently

as possible. As both the size of the environments and the number of autonomous

agents increase, this computation has to be done under hard constraints of memory

and CPU resources. The problem of pathfinding can be separated from local move-

ment, so that pathfinding provides the sequence of cells to cross in the navigation

mesh, and other methods can be used to set attractors (or waypoints) and to handle

collision avoidance. After having laid out the goals and motivation of this thesis

in chapter 1, in chapter 2 we present a literature review and essential concepts in

pathfinding to establish the research grounds for our work.

In this thesis, we focus on abstraction hierarchies applied to pathfinding to im-

prove performance. More specifically we focus on the HNA∗ algorithm (Hierarchi-

cal PathFinding for Navigation Meshes) [Pelechano and Fuentes, 2016b], which is a

bottom up method to create a hierarchical representation based on a multilevel k-

way partitioning algorithm (MLKP) of a navigation mesh.

Hierarchical approaches, such as HNA∗ can compute paths very efficiently, since

they drastically reduce the size of the search space. However, in the case of the orig-

inal HNA∗, experimental results showed that this is only true for certain configu-

rations, while for others performance could drop drastically. This presented a huge

limitation when using HNA∗ because it required that the programmer had to deter-

mine the best values for the configuration parameters through a long trial and error

process, which involved exhaustively testing with the specific environment. Previ-

ous work, observed that a bottleneck could appear when inserting the start and goal

position into the hierarchy. This bottleneck seemed to appear when there were large

4 Chapter 1. Introduction

high level nodes with many inter-edges. Therefore, when starting with this thesis,

the first motivation was to detect and correct the source of such limitation, in order

to guarantee that we could achieve high speed-ups using HNA∗ for any navigation

mesh regardless of the hierarchy configuration.

In chapter 3, we first provide a formulation of the base problem, to then provide

mathematical proofs for the upper-bounds on the number of inter-edges which is the

source of the bottleneck. Then we present improvements to HNA∗ and successfully

eliminate the bottleneck. We propose different methods that rely on either further

memory storage or parallelism on both CPU and GPU, and carry out a comparative

evaluation.

In chapter 4, we propose methods to achieve a parallel version of HNA∗ that

can compute pathfinding for large groups of agents. We focus on abstraction hier-

archies applied to multi-agent pathfinding to improve performance. In this chapter

we studied how to parallelyze our improved HNA* algorithm from chapter 3, and

manage threads and memory correctly to exploit the performance boost of HNA∗

over large crowds of agents.

Finally in chapter 5, we propose a new algorithm for pathfinding that is inspired

by neuroscience research on how the human’s brain learns and builds cognitive

maps. In this method we have used the human’s brain path planning theory and

strategy to implement a human-like pathfinding algorithm. We also propose a novel

heuristic based exploration algorithm as an attempt to mimic human behavior in

unknown or partly known environments.

1.3 Motivations

From the begging of this thesis, the main motivation was not only to improve per-

formance for pathfinding algorithms, but to research algorithms that could better

resemble the way real humans behave. Pathfinding has been used for a long time in

robotics and for simulation of autonomous agents. In robotics the goal is to find a

path between two points without colliding, but it does not matter whether this path

1.3. Motivations 5

is human-like or not. In autonomous agents simulation, often the goal is similar,

just to get agents moving through an environment without colliding with others or

getting stuck in local minima. But neither of those research areas typically worry

about the quality of the paths from a human perception point of view. When at-

tempting to simulate virtual humans to populate large virtual environments, the

previous goals still hold (finding optimal paths, with low computation), but we also

aim to find paths that exhibit some resemblance to human pathfinding. Achiev-

ing human-like behavior is extremely difficult, due partly to the heterogeneity of

human decision making, but also due to the difficulties in evaluating the resulting

paths from a perceptual perspective. Therefore, in this thesis we pursued two main

goals: (1) research hierarchical pathfinding approaches, since they can improve per-

formance, while mimicking better how humans plan their paths, and (2) simulating

the GPS of the brain theory as a new insight into more human-like virtual agents.

More specifically the two main motivations for this thesis are:

1. Hierarchical path planning:

Path planning deals with finding a sequence of state transition actions that

transform a start position to a goal position, where each passing action has

an associated cost, and the sum of costs of all passing actions describes some

measurements for the path. In most of the applications pathfinding algorithms

should provide the traversable shortest path in real-time in a large environ-

ment. So, it is necessary to improve the pathfinding algorithms to find paths as

efficiently as possible in terms of path length and planning time. Hierarchical

approaches can reduce the size of the problem, by creating higher levels nodes

that contain a subset of the navigation mesh cells, and which are connected by

inter-edges that guarantee that if there is a path in the navigation mesh, then

there will also exist a solution in a higher level of the hierarchy. Therefore hier-

archical approaches can still guarantee a solution if a path exists, although they

cannot guarantee finding the shortest path. But the most important element

is that solving a problem with such a hierarchical approach, better resembles

how humans behave. For instance, when humans think about how to get form

a house in one city to another house in another city, they first plan the main

roads and cities they need to go through, then for each of the cities they need

6 Chapter 1. Introduction

to traverse, they think of the exact sequence of streets to get from one end of

the city to the other, and they will only need to do this in a sequential order

as they move through the road. There is no need to plan ahead the exact way

of driving through a city, as it may change later on because we may decide to

go through a different city, due to traffic conditions. Another important mo-

tivation which appear half way through this research, was to extend the path

planing algorithms to cloud computing in order to evaluate the performance

of path planing methods on multi-player games. This goal was brought to us

by the video game company Improbable [Improbable, 2020] which was highly

interested in our results and with which we have been collaborating during

the last year of my thesis.

2. Mental maps inspired by neuroscience research:

While existing techniques for pathfinding give possible solutions for practical

applications, none of them take into account human factors to closely simu-

late how humans behave in the real world. There are many aspects of human

behavior that affect route choice during navigation, such as: memory, men-

tal maps, or visibility. In this thesis we were motivated to study pathfinding

methods inspired by research from neuroscience. For this purpose, we wanted

to develop novel models that could mimic how humans are believed to build

mental maps according to research of the human brain navigation research,

also known as the GPS of the brain [Hafting et al., 2005].

1.4 Problem Statement

As mentioned before in this thesis, the problem of pathfinding refers to planning

a path from a start location to a goal location that meets some criteria such as: the

shortest distance, the lowest cost or the fastest in a spacial network. But for comput-

ers, it can be hard to compute path for an agent in a dynamic or static environment.

It can be even harder when the computer/agent does not have any knowledge about

the world. Moreover, very often this computation needs to be done under hard con-

straints of limited memory and CPU resources. Solving this problem can become an

1.4. Problem Statement 7

important bottleneck specially when there are many agents navigating a large vir-

tual environment.

The problem of pathfinding usually can be classified into two classes based on

the number of agents: when we have just one agent, which is known as Single Agent

Pathfinding (SAPF) [Silver, 2005], or when we have a group of agents where each

agent hast its own start and goal points, which is known as Multi-Agent Pathfind-

ing (MAPF) [Sharon et al., 2015a].

In the case of autonomous agents wandering around virtual worlds, we first need

to generate a representation of the walkable space. This can be done with 2D grids

where squared cells are marked as free to walk of obstacles, or else with some kind

of polygon mesh where each polygon represents a walkable cell (with each cell be-

ing a convex polygons with 3 or more vertices). The problem of pathfinding can be

separated from local movement, so that pathfinding provides the sequence of cells to

cross in the navigation mesh, and other methods can be used to set waypoints and to

handle collision avoidance against other moving agents in the cell. This case makes

pathfinding easier, as each agent can focus exclusively on finding the sequence of

cells that can take him from one point to another in the navigation mesh, without

needing to worry about the whereabouts of other agents. This problem assumes

thus that cells are large enough for several agents to walk through them simultane-

ously and that collision avoidance is solved with local steering algorithms.

In this thesis we refer to both Single agent and Multi-agent pathfinding prob-

lems, focusing exclusively on finding a path as a sequence of cells in a navigation

mesh, and thus leaving collision avoidance with other moving agents to the local

movement algorithm (for more information on local movement techniques and how

they can be combined with high level pathfinding, we refer the reader to the follow-

ing books: [Kapadia et al., 2015, Thalmann and Musse, 2013, Pelechano et al., 2016]).

8 Chapter 1. Introduction

1.5 Objectives

In order to achieve our main objective of exploring human-like approaches for pathfind-

ing in real time, we have aimed at the following specific research goals:

• Improve Single Agent pathfinding (SAPF): After studying the state of the

art, we decided that hierarchical approaches offered the possibility to simu-

late the way humans plan their whereabouts (starting from a high level se-

quence of key locations and then solving lower resolution paths as they get

move through their high level plan). We thus chose to take the HNA∗ (Hierar-

chical Navigation A*) previously developed by my supervisor, and we aimed

at improving the bottleneck of the connecting start and goal positions with the

hierarchy. We focused on studying in depth memory and CPU usage to decide

on the best approaches to further boost performance for all hierarchical con-

figurations. Our proposed solutions dealt with paralyzing parts of the HNA∗

algorithm on CPU and GPU, to decrease the computational time of HNA∗ for

one single agent pathfinding.

• Improve Multi-Agent pathfinding (MAPF): The next goal of our research was

to extend the HNA* algorithm to achieve fast and efficient pathfinding for

large group of agents. To achieve this end, we focused on further paralyzing

the improved version of HNA∗ for multi-agent pathfinding in real-time.

• Mental maps based on the GPS of the brain Finally we propose a new algo-

rithm for pathfinding that is inspired by neuroscience research on how the

brain learns and builds cognitive maps. The main goal of this part of our re-

search was to implement a method for pathfinding based on human pathfind-

ing strategy to set the basis for future work on simulating virtual humanoids

that closely mimic real humans.

1.6 Contributions

There have been three main contributions from this PhD thesis, each of them result-

ing in a publication (the last one is under review at the time of writing this doc-

ument). Each contribution corresponds to one of the research goals stated in the

previous section.

1.6. Contributions 9

• Solving the bottleneck of HNA*:

Vahid Rahmani and Nuria Pelechano. "Improvements to hierarchical pathfinding for

navigation meshes". In Proceedings of the Tenth ACM SIGGRAPH International

Conference on Motion in Games (MIG ’17), Barcelona, 2017.

• Proposing a parallel extension of HNA* to handle Multi-agent Pathfinding:

Vahid Rahmani and Nuria Pelechano. "Multi-agent parallel hierarchical pathfinding

in navigation meshes (MA-HNA*)." Computers & Graphics 86 (2020): 1-14.

• Neoroscience-inspired pathfinding:

Vahid Rahmani and Nuria Pelechano. "Towards Human-like Agent Path Planning".

Submitted for publication to ACM Transactions on Games.

11

Chapter 2

Literature review

2.1 Pathfinding

Pathfinding refers to the problem of an agent navigating from a start position to a

goal position on a map. This research area has been well studied in Computer Sci-

ence and demonstrates an active area of investigation in several sub-fields such as

Artificial Intelligence, Computational Geometry, Computer Graphics, Video Game

Development and Robotics. Many pathfinding methods exist, often targeting solu-

tions for a specific context. In this chapter, we cover a broad number of topics from

across the academic literature and review a range of both classical and more recent

results. We focus especially on two popular variations of the artificial agent path

planning problem: finding the shortest path in a discrete search graph and finding

the shortest path in a continuous map. A wide range of methods has been consid-

ered for building discrete search graphs including grid maps, road maps, and other

popular and successful techniques. We have then compared a variety of techniques

like heuristic methods, abstraction techniques, and search space pruning strategies,

that have been introduced through the years, for finding the shortest paths in dis-

crete graphs.

2.2 Single-Agent Pathfinding Problem

Single-agent pathfinding or path planning is the problem of navigating a single en-

tity like a robot routing (Cohen, Chitta, and Likhachev, 2014), (Bnaya et al., 2013),

network routing(Broch et al., 1998), GPS navigation (Sturtevant and Buro, 2006) or

a virtual agent, from a source position to a destination position in a given operating

environment. In the usual traditional setting, environments can be two-dimensional

Euclidean (i.e. flat) or three-dimensional Geodesic (i.e. curved) spaces [Harabor,

12 Chapter 2. Literature review

2014]. Generally, the environments can have the form of a spatial arrangement (i.e.

a set of connected points) or they can be represented as a combination of walkable

and non-walkable polytopes (the latter often being called obstacles). There are many

varieties of the single-agent pathfinding problem. These occur by modifying certain

parameters of the problem such as:

• The objective function. In the standard case, the purpose is to minimize travel

distance from two given start and end points, although it is possible to have

other functions based on things such as energy expenditure.

• The Agent’s type. In the standard case, agents are represented as oriented

points but they could have arbitrary shapes, sizes, and capabilities that limit

or enhance the agent’s movement.

• The performing environment. Agents can operate in a (i) completely static en-

vironment, which are those that rely on data-knowledge sources of the envi-

ronment not changing across time or dynamic environment with information

being update frequently. (ii) a fully observable, which has access to all needed

data to complete the target task, or else there are parts of the environemnt that

are not known by the agent. (iii) discrete environment, like Chess, that a finite

set of possibilities can drive the final outcome of the task or continuous envi-

ronment like self-driving car. The type of environment has a strong influence

on the most adequate pathfinding algorithm needed.

• The quality of the Solution. In the standard case, agents are challenged to

find an optimal path between two given points. In some real-time or resource-

constrained settings, a near-optimal or bounded suboptimal path may be fa-

vored.

• Path constraints. Typically agents simply need to move from the start point to

the goal point without crossing any obstacles. In different settings additional

limitations may complicate the agent’s task; for instance, the agent may need

2.3. Multi-Agent Pathfinding Problem 13

to visit certain pre-specified places before reaching the goal position [Harabor,

2014].

2.3 Multi-Agent Pathfinding Problem

Multi-Agent Pathfinding (MAPF) is the problem of finding paths for a set of agents

each with its own start and goal positions. The MAPF problem is a generalization

of the single-agent pathfinding problem for k > 1 agents. The main task is to find

the path for every agent while avoiding collisions. MAPF has practical applications

in video games, traffic control [Silver, 2005; Dresner and Stone, 2008], robotics (Ben-

newitz, Burgard, and Thrun, 2002) and aviation [Pallottino et al., 2007]. Techniques

for solving the MAPF problem can be classified into two categories: optimal and

sub-optimal solutions. Obtaining an optimal solver for the MAPF problem is known

to be an NP-hard problem [Yu and LaValle, 2013], since the search space increases

exponentially with the increasing number of agents. Sub-optimal solutions are nor-

mally used when the number of agents is very large. In such cases, the purpose is to

instantly find a path for several agents, and it is often indomitable to guarantee that

a given solution is optimal [Sharon et al., 2015b].

Research in multi-agent path planning has observed a lot of progress in recent

years, in part due to the first Competition of Distributed and Multi-Agent Path Plan-

ners, CoDMAP-15 [Komenda, Stolba, and Kovacs, 2016]. Many recent multi-agent

planners are based on the MA-STRIPS formalism [Brafman and Domshlak, 2008],

and can be loosely classify into one of two categories: centralized, in which agents

have full information and share the goal; and distributed (decentralized), in which

agents have partial information and individual goals [Furelos Blanco and Jonsson,

2018].

In CoDMAP-15, the most successful centralized planners were Agent Decompo-

sition Planner (ADP) [Crosby, Rovatsos, and Petrick, 2013], MAP-LAPKT [Muise,

Lipovetzky, and Ramirez, 2015] and CMAP [Borrajo, 2013], while prominently dis-

tributed planners included PSM [Tožička, Jakbuv, and Komenda, 2014], MAPlan

[Štolba, Fišer, and Komenda, 2016] and MHFMAP [Torreño, Onaindia, and Sapena,

14 Chapter 2. Literature review

2014].

In this thesis we consider the problem of concurrent Decentralized and Non-

communicating multi-agent planning in which agents can act in parallel at each time

step with partial information and individual goals. This problem is challenging for

several reasons:

In the case of video games, often computing the paths for non-player characters

(NPC) needs to be done under strict time constraints to guarantee real time simula-

tion. In those cases, performance is more important than finding the shortest path,

specially because often a sub-optimal path can be just as convincing from the point

of view of the player.

Another very important challenge is to compute paths as efficiently as possible

for groups of agents. As both the size of the environments and the number of au-

tonomous agents increase, it becomes harder to obtain results in real time under the

constraints of memory and computing resources.

2.4 Search Graphs

Regardless of the problem variation at hand, practitioners typically all begin by con-

structing a model of the operating environment G = (V, E) known as a search graph

whereV is a set of admissible positions that an artificial agent can occupy. These are

usually introduced as the nodes or vertices and E is the set of edges that connect

adjacent vertices of the search space graph. Edges can be considered as paths or

corridors that an agent can walk on or actions that can be executed in order to move

the agent from one position to another position. The cost associated with each such

move is called the edge weight. Weights often represent distance travelled but they

could stand for other types of metrics as well; e.g. travel time or fuel consumption.

When the cost of moving between two vertices a and b can differ to the cost of mov-

ing from b to a the graph is said to be directed. Otherwise the graph is said to be

undirected [Harabor, 2014].

2.5. Paths and Instances 15

2.5 Paths and Instances

In pathfinding theory, A path P =< v0, v1, . . . , vk−1, vk > can be defined as a walk in

a search graph G = (V, E). Each vi is a vertex in V and each couple of neighboring

vertices (vi, vi+1) are connected by an associated edge in E. When searching for a

path we define the start position of the agent s and its goal position g. When a

pathfinding algorithm has found a path, its quality is typically evaluated in terms of

path length or path cost. The path length refers to the number of edges that contain

the path and the cost of a path refers to the total weight of all edges that contain the

path. The lowest cost path from node s to node g in graph G will be an optimal path.

2.6 Graph Representations

The pathfinding problem is fundamentally a graph search problem, and thus it is

performed through the use of a graph search technique. Generally, A graph search

algorithm is an algorithm that, given a start and end nodes in a graph, attempts

to obtain a minimum cost path between them. The obtained path is referred to as

the optimal path, and when it comes to pathfinding, it typically corresponds to the

shortest possible path. The pathfinding terms of a graph search method are that the

algorithm will always obtain a path between two points if one exists, and that such

path will be optimal (or near-optimal depending on the algorithm). Moreover, the

processing calculation and memory usage of such graph algorithms should be min-

imized to perform successfully within tight performance and memory limitations.

In this section we present the most common graph search techniques and methods

that are employed in the literature.

Complex 3D environments can be represented in an abstract way using navi-

gation graphs. A navigation graph can be treated as a search graph to perform

pathfinding. There are many techniques to build such a search graph and, in this

section, we review a wide range of popular methods like grid maps, navigation

meshes, visibility graphs, shortest path maps, and road maps. All these graph search

methods are instances of explicit search graphs. Explicit means that all nodes and

all edges of the search graph are specified before any pathfinding query can be-

gin. Such graphs appear in many applications including video games [Davis, 2000;

Champandard, 2009], routing [Sanders and Schultes, 2005; Goldberg, Kaplan, and

16 Chapter 2. Literature review

Werneck, 2006] and robot motion planning [Latombe, 2012; Choset et al., 2005]. But

some of the search graphs are implicit, which means that the nodes and edges of

the graph are identified on-the-fly during the search. Implicit graphs arise in higher

dimensional pathfinding applications [LaValle, 1998; Bohlin and Kavraki, 2000] and

related fields such as AI Planning [Russell and Norvig, 2016].

When comparing different types of search graphs, there are two important prop-

erties that depend on the operating environment: solution existence and solution

optimality [Harabor, 2014]. Solution existence in a search graph will guarantee that

all non-obstacle areas in the search environment can be mapped to a vertex and that

if two non-obstacle positions can be connected by a path in the search environment

then those points can also be connected by a path in the search graph. A search

graph which has solution optimality performs a similar but stronger guarantee: if a

path between two locations exists in the search space graph then there also exists in

the graph a path which is cost-optimal concerning the operating environment. But

not all search graph preserves existence or optimality and each representation has

its unique advantages and disadvantages. Choosing the most suitable one depends

on the distinct requirements of the pathfinding problem at hand.

2.6.1 Grid maps

A grid map is one of the most known graph search types which uses a uniform sub-

division of the operating environment into small regular squares which are usually

called tiles or grid cells [Anguelov, 2012]. Each of these grid cells, can have up to

eight adjacent neighbors and a traversability flag which shows whether each tile or

grid cell is traversable or non-traversable. Traversable cell refers to the walkable

areas and non-traversable refers to the obstacle cells. The overlaid grid is trans-

formed into a graph by constructing an abstract vertex for each tile and then using

the tile/cell connection geometry to define the graph edges. The tile connection ge-

ometry is defined by the type of tiles used to form the grid: a standard grid cell fea-

tures a 4-neighborhood, hex tiles grant a 6-neighborhood, while the most common

cell variety, the octile, features an 8-neighborhood [Yap, 2002]. Figure 2.1 illustrates

these three cell connection geometries.

Constructing a grid cell search graph for a large environment like a video game

will be simple and efficient [Millington and Funge, 2009] because the connection ge-

ometry is constant for each tile in a grid cell and it is not necessary to perform a

2.6. Graph Representations 17

FIGURE 2.1: Examples of the most common grid cell geometries.

complex examination of the environment. The superimposition of a grid cell, the es-

timation of obstructed cells, and the construction of the navigation graph are demon-

strated in Figure 2.2.

Obstructed Traversable

FIGURE 2.2: Grid Based representation of a game world environment

Generally, grid maps are highly popular for several reasons: (i) they are easy to

understand and easy to implement (ii) they can be described as a matrix of bits and

stored efficiently (iii) every single node can be updated in constant time. One of

the important disadvantages of grid maps is their fixed resolution. In many cases,

grids are too coarse to correctly represent the underlying environment. Another

problem with this kind of representation is that it is not easy to increase the number

of tiles without increasing the memory footprint. Therefore, in order to achieve a

finer resolution it is necessary to increase the number of cells, which will result in

higher memory requirements and a larger graph size. Consequently, pathfinding

becomes more challenging as it requires to explore a larger graph. Finally, having

such a regular grid structure has another disadvantage which is that it provides

paths that are constrained to the points of the grid cells. Such paths may not only

be unsuitable path but they can also be longer than essential and may need post-

processing to “smooth” them.

18 Chapter 2. Literature review

2.6.2 Waypoint Based Navigation Graphs

Waypoint-based graph navigation is one of the traditional methods of abstraction

for building a navigational graph from a path planning environment like a video

game. These Waypoints can be distinct for each path or be a portion of the environ-

ment map. Waypoints can be placed manually throughout a level during the design

scenario by level designers or calculated automatically and then linked together by

hand or automatically to build the final navigation graph. Figure 2.3 shows the plac-

ing and connecting of waypoints in an example environment. As these waypoints

do not cover the whole area of possible positions, start and end vertices of a search

are determined by finding the closest waypoint that has a clear line of sight to a

required position (the start or goal positions).

FIGURE 2.3: Waypoint based representation of a navigation graph

Waypoint positions can be assigned manually by designers. However, there are

many techniques to automate the creation of waypoints by exploring the 3D level.

Those automatic methods tend to have a high computational cost which limits their

computation to pre-processing (offline) roles [Rabin, 2000b]. The roadmap is one of

the most popular techniques used to solve high dimensional pathfinding problems

in the area of robotics. This technique includes a set of connected points that are

drawn from a given map. There are many varieties of roadmap techniques. The

Probabilistic Roadmap (PRM)[Kavraki and Latombe, 1994] is one of the most well-

known roadmap techniques. RPM is generated by randomly sampling a configura-

tion area to create a practical connected graph for traveling through a region. Reach-

ability Roadmap (RRM) [Geraerts and Overmars, 2005] is another popular roadmap

method. RRM uses first a grid tessellation and then obtains waypoints from the

2.6. Graph Representations 19

generated grid. Voronoi Diagrams [Abraham et al., 2010] are a variety of roadmap

techniques. In this approach, a mesh of edges is created which are all equidistant

from the two closest obstacles and the vertices of the generated network are located

at the intersections of those edges.

One of the disadvantages of waypoint-based graphs is that they cannot guaran-

tee to provide a full coverage of the entire environment (due to human errors dur-

ing the waypoints placement) and it may also include a large number of redundant

Waypoints, which are unnecessary and increases the overall search space.

2.6.3 Mesh Based Navigation Graphs

The majority of modern video games create navigation graphs using polygonal navi-

gation meshes that can be compute automatically from a given geometry [Mononen,

2009; Johnson, 2006; Demyen and Buro, 2006; Hamm, 2008; Rabin, 2014]. Navigation

mesh (navmesh) methods create a graph that minimizes the number of navigation

vertices required to represent a world environment while ensuring near-perfect cov-

erage of the traversable environment. Generally, A navigation mesh can be consid-

ered as a low-fidelity representation of an operating environment consisting of con-

vex contiguous polygons. Navigation meshes are usually applied in video games

to represent traversable and non-traversable surfaces in two and three dimensions

[Snook, 2000; Tozour, 2002]. Many techniques have been introduced to build navi-

gation meshes. Some methods perform a triangulation of the environment[Demyen

and Buro, 2006; Kallmann, 2010b]. While others perform a convex subdivision us-

ing polygons [Oliva and Pelechano, 2013,Mononen, 2009]. Navigation meshes based

on convex polygons, can significantly decrease the number of vertices and thus the

branching factor, leading to smaller search space graphs [Millington and Funge,

2009; DeLoura, 2001]. Van Toll et. al. presented a comparison of different types of

navigation meshes to highlight the benefits and limitations of each type (e.g. grids,

triangles, convex polygons, or overlapping circles)[Van Toll et al., 2016]. Navmesh

based on convex polygons often provide a more accurate representation of the walk-

able areas because they can assure that polygon sides match the edges of the geom-

etry representing the environment [Demyen and Buro, 2006]. Since carrying out the

initial subdivision of the surface of a typical video game environment has a high

computational cost, navmeshes are usually generated in offline mode [Rabin, 2014].

20 Chapter 2. Literature review

There are some popular and novel navigation mesh toolsets. Recast [Mononen,

2009] is one of the most well known and state of the art navigation mesh generator

used in complex applications such as virtual simulation and video games develop-

ment, and it is also employed in the Unity3D game engine [Van Toll et al., 2016].

Recast is an open-source, fast and also completely automatic toolset, which means

that it is possible to launch a geometry at any level and get a robust generated nav-

igation mesh. The Recast mesh navigation process begins by creating a voxel mold

from a given level geometry and then calculating a navigation mesh over it. This

process consists of three major steps, firstly, it constructs a voxel mold, which guar-

antees that the method can be robust against declines in the input model as well

as simplifies the furniture; secondly, it partitions the mold into simple regions; and

thirdly, it peels off the regions as simple polygons.

NEOGEN [Oliva and Pelechano, 2013] is also another novel automatic approach

for generating near-optimal navigation meshes from 3D multi-layered virtual envi-

ronments. Similarly to Recast, this method consists of three steps: (i) it first performs

a GPU coarse voxelization, which is used to classify and extract the different walka-

ble layers. (ii) Then it carries out a layer refinement phase, performing a high reso-

lution render using the fragment shader to achieve a 2D floor plan of each layer. (iii)

The final part is the Navmesh Generation, where a convex decomposition of each

layer is calculated and layers are linked to generate a navigation mesh of the input

geometry.

Polygonal navmeshes are interesting because they provide a complete represen-

tation of the environment, and they are typically more efficient in memory usage

than other graph representations like grid maps [Van Toll et al., 2016]. The other ad-

vantage of polygonal navmeshes is their flexibility which can provide a hand-editing

facility for game designers and offers them more control over the agent navigation.

FIGURE 2.4: An example of a navigation mesh representation based
on a triangulation of the walkable space [Kallmann, 2010b].

2.7. Search Algorithms 21

However, navigation meshes also have some disadvantages. One of the major

disadvantages is the high computational cost of navmesh generation in dynamic en-

vironments. So that any changes and updates on the environment could affect a

large number of mesh cells and thus the navmeshes could need to be completely

rebuilt in the affected region. So, making dynamic updates on navmeshes is not

a straight forward process and it may require to be fully recomputed. In general,

most navmesh approaches like [Rabin, 2014], [Farnstrom, 2006] and [Hamm, 2008]

are not ready to be used in dynamic environments due to their high processing costs

and outcome delays in navmesh updates. There are some other subdivision meth-

ods such as [McAnlis and Stewart, 2008] and [Demyen and Buro, 2006] which claim

suitability with regards to usage within dynamic game environments. The other

disadvantage of the navmesh method is that the computed paths often need to be

smoothed or post-processed because they use the polygon edges to compute paths.

However, when edges are simply used to set attractors for the local movement al-

gorithms (e.g. steering), it may not be needed as the local moment method can deal

with smoothing the agents’ trajectories when turning.

2.7 Search Algorithms

2.7.1 Dijkstra’s Algorithm

Dijkstra’s algorithm is a graph search algorithm introduced in 1959 [Dijkstra, 1959].

Considering a graph G = (V, E) consisting of a set of vertices V and a set of edges

E ⊂ V × V, and for each edge (u, v) ∈ E an associated positive cost c(u, v), Dijk-

stra’s algorithm can find the shortest path from a single source node U(start) ∈ V

to all nodes in V. This algorithm has many different variants. The main algorithm

was introduced as an algorithm to find the shortest paths from a start point in a

map to all other points in a weighted graph. In such a graph, each edge weight

shows the traversal cost incurred traveling across that edge. The basic steps of Di-

jkstra’s algorithm are as follows: The algorithm searches every node or vertices in

the given graph, and while doing so stores shortest paths information at each ver-

tex. Once the algorithm has finished, a path is then created by starting at the goal

node and working backward towards the start node using the paths information

stored at each node. Dijkstra’s algorithm performs iteratively and each iteration will

22 Chapter 2. Literature review

search (another common term encountered is expand) a single node. The node be-

ing searched is referred to as the parent node for that iteration and its neighboring

nodes are referred to as the node successors (or child nodes).

The Algorithm

Dijkstra’s algorithm uses a single metric, the cost-so-far (CSF) value, in discover-

ing the shortest paths in the graph [Anguelov, 2012]. The CSF value is simply the

traversal cost acquired in traveling to a graph vertex from the start vertex. Dijkstra’s

algorithm calculates a CSF value for each of the successor nodes when a node in

the graph is explored. The CSF value for each successor is the sum of the parent’s

CSF value and the traversal cost of traveling from the parent to the successor. Fig-

ure 2.5-a shows the CSF calculation for a node in the given graph. Multiple paths

can exist to a single graph node, meaning that when Dijkstra’s algorithm explores

the graph it may face successors that already have CSF values (i.e. a previous path

to the node has been found). In this case, Dijkstra’s algorithm checks whether the

current path (from the current parent node) to a successor node is shorter than the

previous path found. A new CSF value is then calculated from the current parent

to the specific successor node. If the new CSF value is smaller than the successor

node’s CSF value, it means that the current parent represents a shorter path to that

successor than the previous path found. The successor node’s CSF is then set to the

new smaller CSF value (i.e. the new shorter route). This guarantees that only the

shortest paths found to each node are stored. In addition to the CSF value stored at

each node, a link to the parent node, from which the CSF value originated from, is

stored as well. This parent node link is required so that paths can be followed back

from each node to the start node. This parent node link is updated whenever the CSF

value of that node is updated. Simply put, whenever a new shorter path to a node

is found, the shorter path value is stored as well as the node from which that path

originated from. During the exploration of the search space, Dijkstra’s algorithm

will face nodes that classify into the three unseen, unexplored and explored nodes

categories. In case that an unseen node is first faced during the exploration of a par-

ent node to that node, a CSF value originating from the parent node is calculated

[Harabor, 2014].

The unseen node will now require to be explored; it is stored on a list which con-

tains all nodes that the algorithm has faced but not explored yet. This list is known

2.7. Search Algorithms 23

FIGURE 2.5: The Dijkstra’s algorithm’s cost-so-far calculation and
path generation [Anguelov, 2012].

as the open list; nodes on the open list are all awaiting exploration. When the al-

gorithm explores a node, it is inserted into a list which includes all other explored

nodes. This list is known as the closed list. The open and closed specification is

based on the fact that when a node is faced, it is opened for exploration and it is only

closed once the node has been explored. Dijkstra’s algorithm is initialized with just

the start node present on the open list and an empty closed list. At each iteration

of the algorithm, the node which has the smallest CFS value is eliminated from the

open list. This routine guarantees that the nearest node to the start node is always

explored. Once node N is explored, each of N’s successor nodes S is considered.

Each S can refer to one of three unseen, open or closed categories. If S is unseen then

a CSF value will calculate directly from N, S’s parent link is set to N and finally, S is

located on the open list. In the case when S has already been checked(i.e. either an

open or closed node), the new path to S from the start node (the CSF value originat-

ing from N) is compared to S‘s existing CSF value, if the new path is shorter than the

existing path then S is updated with the new path‘s CSF value and its parent node

link is set to N. Dijkstra’s algorithm terminates when the open list is empty, i.e. all

the nodes in the search space graph have been explored. When the algorithm has

terminated, a path can be created from the start node to any node (the goal node)

in the graph by starting creating a path at the goal node and following the stored

parent node links back to the start node (see Figure 2.5-b).

24 Chapter 2. Literature review

2.7.2 The A* Algorithm

Despite the speed of Dijkstra’s algorithm, there are some cases in which it is suitable

to optimize the performance of finding the shortest paths (for instance when the

search space is very large). Dijkstra’s algorithm finds the shortest paths to all nodes

in the graph, but often one is only interested in the shortest path to a specific goal

node U(goal). The A∗ algorithm was introduced by Peter E. Hart, Nils Nilsson, and

Bertram Raphael in 1968. A∗ algorithm [Hart, Nilsson, and Raphael, 1968] adjusts

the search in the graph to move quicker towards the goal node, whereas in Dijkstra’s

algorithm the shortest paths distances are propagated breadth-wise. However, the

A∗ algorithm guarantees to find the optimal path from the start node to the goal

node in the search space graph. Figure 2.6 and Figure 2.7 illustrated the search space

exploration pattern of both Dijkstra and A∗ algorithms. In this case, the A∗ algo-

rithm, is clearly favorable because it needs to explore a smaller number of nodes to

find a solution. In autonomous agent simulation, the A∗ is a pathfinding algorithm

that is used to navigate an autonomous agent to find a path between two locations in

a navigation mesh. Due to the high performance and accuracy of this algorithm, it is

widely used in the computer simulation field. As mentioned before, this algorithm

is a generalization of the Dijkstra’s algorithm, but with better search performance by

using meta-heuristic methods.

FIGURE 2.6: Node selection for Dijkstra’s algorithm compared to A∗

for an example search [Anguelov, 2012]

2.7. Search Algorithms 25

FIGURE 2.7: Overall search space exploration of Dijkstra’s algorithm
compared to A∗ [Anguelov, 2012]

The Algorithm

The A∗ algorithm uses the best-first search routine and finds the shortest path be-

tween two given start and end nodes. This method evaluates the cost of reaching a

node n from a start node by combining g(n) (the cost of getting to the node n) and

h(n) the Heuristic or estimated cost of reaching the end node from n as:

f (n) = g(n) + h(n) (2.1)

where n is the next node on the path, g(n) is the cost of the path from the start

node to n, and h(n) is a heuristic function that estimates the cost of the shortest path

from n to the goal. The heuristic cost is an estimation of how close a given node is

to the goal node, or alternatively an estimation of the likelihood of a node leading

to the goal. The heuristic value is calculated by a heuristic function that, given two

nodes, returns a numeric measure of how close the nodes are together. A simplistic

way of describing the heuristic value is to term it the "estimated remaining cost".

A∗ algorithm terminates once the path it selects to extend is a route from the

start node to the goal node or if there are no paths favorable to be extended. The

heuristic function of the A∗ algorithm is problem-specific. If the heuristic function is

admissible, meaning that the A∗ algorithm never overestimates the exact cost to get

to the destination node, the A∗ is guaranteed to obtain the lowest-cost path from the

start node to the goal node in the search space graph. Generally, implementations

of A∗ algorithm use a priority queue which is known as the open list to perform the

26 Chapter 2. Literature review

iterated choice of minimum (approximated) cost nodes to expand. At each level of

the algorithm, the node with the cheapest f (x) value is eliminated from the open

list queue, the f and g values of its neighbors are updated, and these neighbors are

added to the queue. The A∗ algorithm continues to search when a goal node on the

search space graph has a lower f value than any other node in the queue (or until

the queue is empty). Finally, the f value of the goal node will be the measured cost

of the shortest path, since h value at the goal node will be zero in an admissible

heuristic function. The A∗ algorithm explained so far simply provides the length of

the shortest path. To find the exact sequence of steps, the algorithm can be easily

updated so that each node on the path keeps track of its predecessor. After this

algorithm is run, the end node will point to its predecessor, and so on, until some

node’s predecessor is the start node. Figure 2.8 shows the pseudocode of A∗.

2.7.3 ARA∗

ARA∗ (Anytime Repairing A∗) algorithm was first proposed by Maxim Likhachev,

Geof Gordon and Sebastien Thrun [Likhachev, Gordon, and Thrun, 2003] to offer an

alternative to the rather computational expensive generic A∗ algorithm. As describe

by Likhachev et al. [Likhachev, Gordon, and Thrun, 2004] this algorithm performs "

[...] an efficient anytime heuristic1 search that [......] runs A∗ with inflated heuristic
2 in succession [and] reuses search efforts 3 from previous executions in such a way

that the sub-optimal bounds are still satisfied". From the aforementioned definition,

some salient points that characterizes the ARA∗ can be drawn accordingly.

To start, ARA∗ is an anytime algorithm1, in the sense that it is a computational

algorithm that can return valid solutions to problems regardless of interruptions be-

tween start and end. ARA∗ functions by computing sub-optimal solutions to prob-

lems which improves with more run-time, therefore it offers a trade-off between

computational time and quality of algorithmic solutions.

As indicated in the previous section, A∗ returns optimal solutions albeit a consistent

heuristic h(n). ARA∗ therefore seeks to inflate this heuristic2 by an inflation factor

ε, ∀ε ≤ 1, saving search times by expanding fewer nodes. Using inflated heuris-

tics provides sub-optimal solutions but proofs to be fast and most importantly the

sub-optimality is bounded by ε, which enables a tuning of the trade-off between

2.7. Search Algorithms 27

FIGURE 2.8: Pseudocode of the A∗ algorithm.

28 Chapter 2. Literature review

computational time and quality of the solution by manipulating the sub-optimal

bounds.ARA∗ basically works by executing A* multiple times, tuning ε from a set

value ε ≤ 1 till ε = 1. The algorithm can therefore be described as [Likhachev,

Gordon, and Thrun, 2004]:

f (n) = g(n) + ε ∗ h(n) (2.2)

As highlighted in the definition of ARA∗, there is the reuse of search effort3 in ex-

ecution of the algorithm which results in a faster algorithm. In the execution of

multiple A∗ with appropriate tuning of ε, the algorithm avoids repetition of exe-

cution cycles by reusing results from previous searches to improve search time. To

illustrate this procedure, the concept of locally inconsistency of nodes is introduced,

this describes the instance after a node’s g-value is decreased and until the next time

they are expanded. By modifying the A∗ algorithm, ARA∗ introduces a third list,

the incons; besides the open-list and the closed list of the A∗ algorithm, the open list

which is a locally inconsistent node stores a lowered g-value of a node until it is

subsequently expanded and put into a closed list. Therefore the open list only con-

tains nodes that are not expanded yet, the ARA∗ with the use of the augmented list;

incons, stores locally inconsistent nodes that have been expanded in previous execu-

tions, serving as a cache of expanded nodes for use in subsequent search iterations.

The minimum between ε and the ratio between f (nstart) and the lowest non-weighted

f -value of all locally inconsistent nodes .i.e the sub-optimality bound (ε1) is thus

given as:

ε1 = min(ε,
f (goal)

minn∈OUI(g(n) + h(n))
) (2.3)

2.7.4 D∗

In most of the path planning work in real world scenarios, the robot or agent would

initially have an incomplete and inaccurate graph of the environment model to plan

on. The graph takes continuously and frequently changes as time passes and as the

agent moves. In this case, the calculated path may become wrong or sub-optimal. It

can be then costly to plan from scratch using A* to maintain validity and optimality

every time a change occurs on the search graph, particularly in large and complex

2.7. Search Algorithms 29

environments with a big number of nodes. Moreover, the updates on the graph

might not even affect the current path, or simply affect slightly its optimality, and

therefore the path could be easily fixed without a complete re-computation. In these

situations, fixing the path or re-planning is much more logical than starting planning

from scratch [Khattab, 2018]. The D* algorithm (Dynamic version of A*) [Stentz,

1993] can plan optimal traverses in real-time by incrementally repairing paths to the

agent’s state as new knowledge is discovered.

The D∗ algorithm, first proposed by Anthony Stentz, was initially conceived as

an optimal pathfinding algorithm which could enable robots to navigate through

environments in which they have little to no information. The D∗ closely resembles

the A∗ algorithm, but differs by being dynamic, involving a problem solved where

edge path cost parameters change during processing [Stentz, 1993].

D∗ primarily differs from the A∗ by propagating information backwards. Hence

information is propagated towards the goal node and ends at the robot’s position

(start node) or with the open list empty. With a non heuristic function h and n

nodes to the goal, the path cost function is given as h(n). D∗ functions by using

both the closed and open lists as done in the A∗. Nodes are subsequently distin-

guished with tags t(n), such that a node that has never been in the open list, is

labelled, NEW (t(n) = NEW), nodes currently in the open list as t(n) = OPEN and

t(n) = CLOSED, if the node is out of the open list. When t(n) = OPEN, nodes

are sorted by a key function k(n), which defines a minimum of h(n), the path cost

function before modification. Per the state of the node, OPEN, CLOSED, NEW, the

key function value k(n) is described as:

k(n) =

h(new), if t(n) = NEW

min(k(n),h(new)), if t(n) = OPEN

min(h(n),h(new)), if t(n) = CLOSED

(2.4)

With the use of the Key function k(n), each node in the open list is put in classes

of Raised, or Lower states, where the former propagates information about path

cost increases, for example about an increase in edge cost and the latter involves the

propagation of information concerning path cost decreases, therefore the conditions

of classification is such that; LOWER,∀k(n) = h(n) & Raised,∀k(n) < h(n). From

the collection of nodes in the open list, the lowest key function value is used as a

benchmark for optimality, if path costs are lower or equal to the lowest key function

30 Chapter 2. Literature review

kmin, the path cost is deemed optimal, whilst path costs greater than kmin are not

guaranteed to be optimal. Through repeated removal of nodes from the open list,

information is propagated. Once they are removed from the open list, cost informa-

tion is expanded to neighbouring nodes, which are then placed in the open list. the

iterative process continues[Stentz, 1993], with the prior kmin relegated to a kold.

The D∗ algorithm has two main functions; the PROCESS-STATE and MODIFY-COST

functions. The PROCESS-STATE function which is called repetitively, determines

the optimal path to the goal and the function MODIFY-COST, thereafter effects up-

dates on edge cost functions due to a change in edge costs c(n, n
′) and then eventu-

ally it puts the updated nodes into the open list.

2.7.5 Theta∗

Introduced by Kenny Daniel, Alex Nash, Sven Koenig, and Ariel Felner [Nash et

al., 2007], Theta∗ is an any-angle path-planning algorithm, to put it simple, it al-

lows path directions in any angle. There are basically two types, the Basic Theta∗

and Angle-propagation Theta∗ which proofs to have desirable properties as a better

search algorithm to the traditional A∗ (see Figure 2.9).

FIGURE 2.9: A∗ path vs any-angle path [Daniel et al., 2010]

Basic Theta∗ is simple to implement and understand, due to its similarities to the

fundamental A∗. It propagates information along edges of grids, avoiding putting

constraints on paths to be formed by graph edges [Daniel et al., 2010]. Whilst the A∗

only considers paths along the grid edges from nstart to n, and n to n
′

as shown in

figure 2.10 (Path1-A∗ & Path2-Basic Theta∗), the Basic Theta∗ updates the g-value

and parents of unexpanded neighbouring nodes n
′
of n when expanding n such that:

g(n1) = g(n) + c(n, n1) (2.5)

2.7. Search Algorithms 31

Paths from nstart to the parent of n, parent(n) and from parent of n to n1 in a straight

line are also taken into consideration, see path2 of figure 8 .

g(n1) = g(parent(n) + c(parent(n), n1) (2.6)

From figure 2.10 , path 2 provides a minimum path compared to path 1 and thus,

is chosen by Theta∗ when there exists a line-of-sight between n1 and parent(n)(if no

blocking is present). In the event of blocking path 2 is chosen.

FIGURE 2.10: Paths considered by Basic Theta∗ [Daniel et al., 2010]

Figure 2.11 shows an example trace of Basic Theta∗. non-relevant extraction of

nodes are not shown for purposes simplicity. Red circles shows nods which are cur-

rently being extracted.

FIGURE 2.11: Example of Basic Theta∗ [Daniel et al., 2010]

Basic theta∗ can be described as not optimal, stemming from the fact that the

parent of a vertex has to be either a visible neighbor of the vertex or the parent of a

visible neighbor, but is correct1 and complete2, in the sense that the algorithm finds

32 Chapter 2. Literature review

unblocked paths from the start node to the goal node (correct1) and finds paths that

are unblocked (complete2), but shortest path is not guaranteed [Nash, 2010].

Angle-Propagation Theta∗ reduces run time of the Basic Theta∗ node expansion

from linear to constant. The contrast from the Basic Theta∗ and the Angle-propagation

Theta∗ is that the AP Theta∗ propagates angle ranges, determining whether two

nodes have a line-of-sight. AP theta∗ determines angle range of a node when it

expands the node and subsequently propagates it along grid edges which results in

a constant run time per vertex expansion. Due to the propagation of the angle ranges

in constant run time, the line-of-sight checks are also in constant time [Daniel et al.,

2010].

AP Theta∗ exhibits the same properties of being complete and correct with no guar-

antee of finding shortest path. There are also occasional unnecessary heading changes.

2.7.6 D∗ Lite

D∗Lite , a simpler and shorter version of the D∗ is a heuristic search algorithm, first

introduced by Koenig and Likhachev to aid robot navigate in unknown environ-

ments. This approach reuses information from previous searches to find solutions

for successive similar searches [Koenig and Likhachev, 2002a], avoiding beginning

from start at every search, thereby decreasing run time. D∗Lite is built on the life

long planing A∗ [Koenig and Likhachev, 2002b] which is an incremental version

of the A∗, that involves a finite search problem on known edges in which costs in-

creases or decreases over time. D∗Lite are desirable for implementation of optimiza-

tion problems with inadmissible heuristics [Koenig and Likhachev, 2002c].

In D∗lite, performs the computation of two estimates for each node, the g-value

(objective function value) and the rhs estimates, which is a one step lookahead of

the path cost based on g-values of its successors. Based on the value of the g-values

and the rhs, the node can be described as either consistent or inconsistent, where in-

consistent nodes are placed in an open list, prioritized by their key value. Therefore

given a successor (n1) and a predecessor node (n), a directed edge can be established

2.7. Search Algorithms 33

between n and n1 with an associated edge cost c(n,n1) [Choset, 2007]. With the as-

sociated edge cost, the rhs-value of node n, rhs(n) can then be computed with its

g-value, g(n):

rhs(n) = min
n1∈Succ(n)

(g(n1) + c(n, n1) (2.7)

such that consistency is thus determined by

Consistent, if g(n) = rhs(n)

Inconsistent, if g(n) > rhs(n)

Under-consistent, if g(n) < rhs(n)

(2.8)

A key value k(n) of a node, n is determined as the minimum of its g(n), rhs(n), a

heuristic term h, and a factor km which helps in avoidance of reordering anytime

there is a change in the start node as shown below. The equation comprises of a

primary and secondary part, with the secondary used in case of a tie breaker:

k(n) =
(

min(g(n), rhs(n)) + h(nstart) + km)
PRIMARY;

(min(g(n), rhs(n))SECONDARY
)

where h(n1, n) is non-negative and backward consistent [Choset, 2007]. In the event

of a change from one node to another, say (n to n1), there is an evaluation of new

key values k(n) such that movements from node n to n1 may cause primary key el-

ements from the equation to decrease by h(n, n1) or primary keys with h(n, n1) may

be too low compared to key-values previously placed in the open list, therefore the

factor km is added to augment such changes that may occur.

2.7.7 AD∗

Anytime Dynamic AD∗ can be thought of as a hybrid between the ARA∗ and the

D∗Lite algorithms, both of which have been explained earlier. It basically involves a

heuristic-based anytime algorithm presented in by Maxim Likhachev, Dave Fergu-

son, Geoff Gordon and Sebastian Thrun which bridges algorithms in a dynamic en-

vironment (e.g D∗Lite) and handling of complex planning problems(ARA∗) [Likhachev

34 Chapter 2. Literature review

et al., 2005].

AD∗ capitalizes on benefits of sub-optimality in short run time associated with any-

time algorithms from a backward version of of the anytime ARA∗ algorithm and

re-planning characteristics of the D∗Lite which offers the ability of a dynamic envi-

ronment.

As stated before, ARA∗ seeks to compute sub optimal solutions with an inflation

factor ε > 1 to the problem of pathfinding that improves with time, reusing infor-

mation from past searches to decrease run time. The AD∗ algorithm uses a backward

version of the ARA∗, with the goal node (ngoal placed in the open list instead of the

start node (nstart). Instead of computing distance from n to ngoal edges, an estimate

of the distance between a particular node n and the start node nstart is evaluated.

With Partial or little information about dynamic environments, the dynamic D∗Lite

comes in handy in this union of algorithms. It ensures re-planning of found paths

by reusing information from previous searches when variations in edge costs are

detected [Likhachev et al., 2005]. A combination of these properties provides a plat-

form for applications such as games, which predominantly require fast computation

(ARA∗) in partially known environments (D∗Lite) .

The AD∗ utilises the concept of consistency of nodes in the D∗Lite by also calcu-

lating the g(n) and rhs(n) of each node n, but instead of using only the open lists, the

algorithm incorporates the use of the additional lists of the open and icons list from

the ARA∗. The algorithm computes the key value k(n) for each node n which are

put into classes of over-consistent and under-consistent [Likhachev et al., 2005].

k(n) =

(rhs(n)+ε*h(nstart,n); rhs(n)), if n = Over-consistent

(g(n)+h(nstart,n);g(n)), if n = Under-consistent
(2.9)

Nodes that are designated as inconsistent are placed in open lists and are there-

after moved to the closed list once they are expanded. Inconsistent nodes that are

already in the closed list are moved to the incons list. Note that for calculated under-

consistent nodes to propagate changes in cost to affected neighbours, keys are cal-

culated using a non-inflated heuristic [Likhachev et al., 2005].

2.7. Search Algorithms 35

2.7.8 Field D∗

Optimal grid planning, usually for navigation purposes provides sub optimal solu-

tions to pathfinding problems given that most grid based planning utilises discrete

state transitions that restricts an agent’s movement to a small set of possible head-

ings [Ferguson and Stentz, 2005]. Field D∗ introduced by Dave Ferguson and An-

thony Stentz, is an interpolation based process that determines comparatively better

estimates of path costs which are globally smooth paths.

Attempts have been made over the years for finding algorithms well suited for grid-

based path planing, for example the Dijkstra’s algorithm, the A∗ as well as well

known variants of the A∗ such as the incremental A∗ and the D∗Lite have been used,

but these algorithms are constrained by a limited number of discrete set of possible

transitions permitted between grid sets [Ferguson and Stentz, 2005].

As an extension of the D∗ and the D∗Lite, the Field D∗ approximates path costs

through interpolation which is important since classical grid based methods offers

transitions which are only possible in a straight line from one node to the other,

hence the Field D∗ providing a relaxation to this limitations. Field D∗ utilises a dif-

ferent grid layout of nodes such that, grid nodes are assigned to corners of cells

instead of centers as shown in the figure 2.12.

FIGURE 2.12: Layout of Nodes [Ferguson and Stentz, 2005]

The path costs are then subsequently calculated through interpolations. Generi-

cally with a node n and a set of its neighbours nNEn , such that each neighbour n1 ∈

36 Chapter 2. Literature review

nNEn and with the cost of traversing from a node n to a neighbour n1 ∈ nNEn given

as c(n, n1), the path cost is evaluated as:

g(n) = min
n1∈nNEn

(g(n1) + c(n, n1)) (2.10)

Equation (10) leads to a sub optimal solution which results in unnatural results, as

movements are restricted to grid edges form one node to a neighbouring node. Field

D∗ relaxes the condition of being restricted to neighbours by considering optimal

path from node n to all points on the boundaries of a grid cell, n1 ∈ nNbn . Hence

with a knowledge of the value of every point on the boundary, the g − value of a

node n to a boundary point n1 can calculated by:

g(n) = min
n1∈nNbn

(g(n1) + c(n, n1)) (2.11)

But nNbn is an infinite set, it is impossible to calculate an infinite set of costs, hence

an interpolation based method is employed such that there is an interpolation for

values of g(n1), .i.e points on the boundary, of two edge points nx and ny, given as:

g(ny) = y(g(n2) + (1− y)(g(n1)) (2.12)

y is the distance between n1 and ny as shown in the figure below. The interpolated

value is then used in the minimization problem to find the optimal cost between the

nodes

g(n) = min
x,y

(bx + c
√
(1− x)2 + y2 + yg(n2) + (1− y)g(n1) (2.13)

Explained with figure 2.13, x ∈ [0, 1] is the travelling distance on the lower grid

edge from n before traversing through the grid cell to reach ny, travelling a distance

y ∈ [0, 1] from n1. When the optimization solution is {x, y} = {0, 0}, path is along

the bottom edge, but the cost is computed from the path direction through the cen-

ter.

(x∗, y∗) is thus the solution of the minimization problem, with either of the solutions

taking a binary value due to the interpolations. From the illustrations of travels in

grid cells as shown in figure 2.13, if the cost of travelling around boundaries from

n to n2 along edges is more expensive than transverse even partially through the

center of the cell, then it makes complete sense to assume that a complete central

crossing will have the least cost, the proof of this is extensively done in [Ferguson

2.7. Search Algorithms 37

and Stentz, 2005]. Hence a complete movement through the centre as shown in the

figure is possible with y∗ = 1, and x∗ = 0, whilst conversely with a complete move-

ment along the edges from n to n2, {x∗, y∗} = {1, 0}.

FIGURE 2.13: Shortest path of n through edge n1 n2 [Ferguson and
Stentz, 2005]

Taking that the cost from i node to a j node to be f (ni, nj) = g(ni)− g(nj), and

considering that f (ni, nj) < 0 ∀g(ni) < g(nj), then this path results in the cheap-

est path. From here the illustrations from figure 2.13 will be used to describe this

algorithm. Assuming movement from n to n2 with minimum path cost and assign-

ing b and c as the cost of going through the bottom edge of the cell and complete

movement through the center respectively, if f < 0 from f = g(n1)− g(n2) then it is

cheaper to go through the bottom edge first to n1 before going from n1 to n2, so that

g(n) = min(c, b) + g(n1), in this case b is the cheapest option from the figure. But in

the case where f < b, it is cheaper to traverse through the center of the grid cell for

the smallest cost as shown in figure 2.13-(IV).

To formulate the path cost of n, we assume, f = b. In this case the cost of a path

through a part of the bottom edge, figure 2.13-(iii), will be the same as the cost of

using the bottom edge, figure 2.13-(IV). By taking the case that none of the bottom

edge, figure 2.13-(iii), is used, we solve for an optimal y∗ (since y corresponds to the

right edge) that minimizes the cost path such that, with k = f = b the cost is given

as:

c
√

1 + y2 + k(1− y) + g(n2) (2.14)

38 Chapter 2. Literature review

The equation is solved for the minimum value y∗ by differentiating the function and

making it equal to zero, thus the optimal y∗:

y∗ =

√
k2

c2 − k2 (2.15)

Therefore from equation (2.14) and taking into account that b is the cost of the bottom

edge as stated before; If f < b the right edge is used with path cost calculated with

the equation such that k = f . Also if f > b the bottom edges are used with k = b

and y∗ = 1− x∗ substituted into the equation.

2.8 Hierarchical Search Algorithms

Regardless of the search algorithm used from the ones described in the previous sec-

tion, it is possible to further optimize processing time and memory cost by using a

hierarchical approach combined with the search algorithm.

There are many hierarchical approaches in the literature, for example the hierar-

chical pathfinding for grid maps (HPA∗) [Botea, Müller, and Schaeffer, 2004], the

dynamic HPA∗, (DHPA∗) [Kring, Champandard, and Samarin, 2010], the partial re-

finement A∗ [Sturtevant and Buro, 2005] algorithm and the minimal memory (MM)

[Sturtevant, 2007]. They all provide solutions with a reduced processing as a trade

against optimality and increased algorithmic memory cost [Jurney and Hubick, 2007].

They undertake search procedures by organising problems as connected sub-problems

which are then solved individually with an end result similar to the former parent

problem. The process of splitting the primary problem is known as Problem Sub-

division.

2.8.1 Problem Sub-division

In problem subdivision, the primary problem is decomposed into smaller sub-problems

that have some connection which results in a segmented but related sub-problems

which are solved resulting in a solution similar to the primary algorithm [Botea,

Müller, and Schaeffer, 2004]. This provides the advantage of minimizing the pro-

cessing cost of discreet searches. The connection of the segmented problems is such

that the start and goal nodes of each sub-problem; the pair referred to as sub-goals,

2.8. Hierarchical Search Algorithms 39

are connected in series i.e. the goal of one sub-problem is the start node of the succes-

sive sub problem. The resultant less demanding sub-problems offers individually,

easier problems which requires less processing and memory costs compared to the

initial problem even when considering accumulated processing demands from all

the sub-problems combined [Botea, Müller, and Schaeffer, 2004].

From figures 2.14(a-c), the process of splitting an algorithmic problem is presented,

showing the path cost ramifications of the segmentation procedure. Figure 2.14-a

shows the search space for the overall algorithm using a discrete A∗, which results in

50% of the total search space explored. The original search space from (figure 2.14-a)

is segmented into 4 smaller sub problems as shown in figure 2.14-c. The reduced in-

dividual space of the sub problems offers a less computational demanding problem

(reduced processing and memory cost) forming an overall decreased search space

as shown in 2.14-b. Figure 2.14-b shows the total exploration space formed from the

splitting process into sub problems. Figure 2.14-c shows the reduced search area as

compared to 2.14-a.

Problem sub division also enhances savings in memory costs; each sub-problem is

"self-contained". With each problem solved independently with the discrete search

algorithm, memory is freed after each sub-problem is solved. Therefore the peak

memory usage with the problem in sub-division procedure is equivalent to the max-

imum memory usage when solving a segmented problem.

A sub-optimal solution is found with sub-division as a result of selection of sub-

goals. A set of solutions from individual sub-goals results in a sub-optimal solution,

which will thus be optimal if the resultant selection lie on the optimal path as pro-

duced by the main problem, but finding an optimal path is impossible to say the

least as expensive optimal graph search must be performed. This would invariably

defeats the purpose of splitting the problem in the first place.

Hierarchical approaches thus uses the sub-division process by considering a base

navgraph, from which a hierarchy of abstract graphs are produced, such that these

40 Chapter 2. Literature review

FIGURE 2.14: The subdivision of a large pathfinding problem into
smaller sub-problems [Ferguson and Stentz, 2005]

abstract graphs helps in the segmentation of a problem in a cheaper and faster man-

ner.

As explained in the problem sub-division process, the resultant optimal search path

are determined by the selection of sub-goals, hence the hierarchical approaches use

abstract nodes (sub-goals), which are formed from a knowledge of an environment.

These abstract nodes are then interconnected to form abstract graphs from which a

search is performed to obtain an optimal path.

The hierarchical approaches involves three primary stages, The build stage, The

abstract planning stage and the path refinement stage. The approach involves

creating sub-goals from a known environment at the build stage, then the abstract

planning stage creates an abstract path from the abstract graph, resulting in the selec-

tion of specific sub-goals to be solved. Finally at the path refinement stage, the selected

sub-problems from the sub-goals are solved, with a final solution combined into a

single low-level path.

2.8. Hierarchical Search Algorithms 41

2.8.2 The Abstraction Build Stage

Primarily, hierarchical approaches are categorised by the abstraction technique used

in building an abstract graph. A number of techniques exists in literature[Botea,

Müller, and Schaeffer, 2004][Sturtevant and Buro, 2005][Sturtevant, 2007], which

uses different methodologies such as those based on environmental features which

finally results in a single abstract node for an entire region as done in [Botea, Müller,

and Schaeffer, 2004] and [Sturtevant, 2007] or the use of actual node topology in

abstraction build as in the case of the Connection Hierarchies (CH) [Sturtevant and

Geisberger, 2010a] methodology to construct abstract graphs from navgraphs offer-

ing overall reduced search paths containing a significantly lower number of nodes.

But different techniques offer different processing costs which sometimes requires

an offline build. For example in the case of procedures such as HPA∗ and CH.

The choice of the type of abstraction technique usually depends on the operation

environment, for example when working in a dynamic environment, there is a par-

allel dynamic change in the abstract graph which occurs during run time. Therefore

for any necessary alteration to the abstract graph there is a need for a short sim-

plified build stage, therefore higher abstraction cost arises if complex abstraction

techniques are selected.

For searches in very large environments, some techniques suggest a multi-level ab-

straction [Sturtevant and Geisberger, 2010a], that is to say, creating several layers of

abstractions to reduce processing costs. But this may lead to the requirement of ad-

ditional memory costs to store augmented abstraction layers which may sometimes

have costs which may counter the advantages provided by the cost improvements

associated with abstract graphs for splitting [Kring, Champandard, and Samarin,

2010][Botea, Müller, and Schaeffer, 2004].

But in [Sturtevant and Geisberger, 2010a], addition of abstraction layers is proven

to be essential in some cases. In [Sturtevant and Geisberger, 2010a], a video game re-

quired a second abstraction layer to maintain pathfinding actions completion bounded

in some specific time constraint. But in a dynamic environment, the inclusion of lev-

els of abstractions leads to a further increase in cost as the environment changes,

this results from all added abstraction level requiring checking and correcting as the

42 Chapter 2. Literature review

environment changes.

Granularity in abstraction techniques describes the extent at which search spaces

are reduced during abstractions. A coarse granularity e.g. minimal memory abstrac-

tion [Sturtevant, 2007] results in a drastic reduction of search paths. For example,

considering a coarse granularity technique on an entire 16×16 navgraph, results in

a single abstract node, but coarse granularity loses a lot of low-level details due to

the severity of its search area reduction and may results in an inaccurate underlying

graph.

A fine granularity conversely results in a comparatively smaller reduction of search

space, this results in a more detailed abstract graph but building cost and search

spaces are comparatively higher. Examples of fine granularity are the "clique" and

"orphan" techniques.

2.8.3 The Abstract Search Stage

As discussed earlier, a set of sub-problems are produced from the abstract graph of

the main navgraph for determining an optimal search path. With the abstract graph,

a selection process of sub-goals from sub problems is undertaken for an abstract path

from which a sub-optimal overall solution can be found.

For illustration of this process, we assume a single layer of abstraction. Considering

the pair startnavgarph and goalnavgarph as the start and goal nodes of the primary prob-

lem (i.e. navgraph), we find the closest and reachable pair of start and goal nodes of

the abstract startabstract and goalabstract through a series of discrete searches from the

primary start and goal nodes on the navgraph.

An abstract path between the startabstract and the goalabstract found is then used to

build an abstract path. Processing and memory cost are reduced with the abstract

path process due to the comparatively smaller size of the abstract path to the original

problem [Botea, Müller, and Schaeffer, 2004]. The resulting abstract path comprises

of all sub-goals in the primary navgraphs from its start to goal, with startnavgarph and

goalnavgarph inclusive.

2.8.4 Path Refinement

Finally, with the abstract path formulated from selection of sub-goals, the abstract

path is refined into a low-level path. The edges between two abstract node are

2.8. Hierarchical Search Algorithms 43

thereby refined into low level. Nodes making up these edges, are selected mak-

ing up the start and goal node of each sub-problem. For this refinement, a discrete

search is performed on the primary navgraph resulting in a partial path, which will

be a part of the final low level path.

FIGURE 2.15: A basic overview of a hierarchical search [Ferguson and
Stentz, 2005]

Figure 2.15 shows a simple example of the search problem using hierarchical

approaches. Simple abstraction techniques are used, even though the outcome solu-

tion is sub-optimal but this illustration makes for easy understanding. The navgraph

is segmented into a 10×10 region with single sub-goals in each region. With three

neighbouring regions selected in figure 2.15, the start and the goal nodes which is in-

cluded in the abstract path (start and end) are given as the yellow and purple nodes

respectively. The closet reachable nodes are subsequently selected; the green and

blue nodes of the abstract nodes. Abstract searches are performed resulting in an

abstract path, these abstract paths are refined into a final solution as shown by the

beige nodes in figure 2.15. The edge (sub problem), is given as the labels between

the beige nodes.

2.8.5 Merits Of Using Hierarchical Pathfinding

As inferred from the preceding sections, hierarchical approaches lead to a decreased

memory and processing cost. Additionally, response time is reduced since agents do

44 Chapter 2. Literature review

not require a complete path before inception of movement, agents can move as soon

as the first partial path of the set of segmented paths (sub problem) is found and the

next partial path after this needs not be solved until the last partial path is solved.

Hierarchical pathfinding also has an advantage over continuous search processes

by exhibiting the property of not reusing information (planned actions are self-

contained and atomic) in contrast to its continuous search counterparts. This advan-

tageous property enables for pseudo-continuous processes over an extended range

of time without memory implications.

Low cost associated with hierarchical approaches allows for more planning actions

to be undertaken in the same time frame as a non-hierarchical approach will per-

form a single planning action [Botea, Müller, and Schaeffer, 2004]. Multiple agents

thus have the ability to complete actions at the same time with good agent respon-

siveness than would have been required by a single agent requiring no increase in

memory usage. Due to this advantage it is currently very popular in games such as

Relic Entertainment’s Dawn of War and Company of Heroes and the Dragon Age from

Bioware [Sturtevant and Geisberger, 2010a][Lamiraux and Lammond, 2001].

2.8.6 Hierarchical Pathfinding A∗ (HPA∗)

The nascent of video gaming pathfinding with hierarchical approaches started with

the HPA∗ [Botea, Müller, and Schaeffer, 2004], a discrete hierarchical search algo-

rithm. In this technique, the navgraph is segmented into fixed sized clusters as

shown in figure 2.16-a and 2.16-b. A 30 × 30 game environment is divided into a

nine, 10×10 clusters of the same size. Abstract nodes are then made through con-

nections of clusters of the game environment. The maximal obstacle free segment

along a common border of two adjacent clusters termed entrance are created on a

cluster’s border, with corresponding symmetrical counterparts also traversable for

each segment of traversable nodes. From figure 2.17-b, and considering a certain

predefined constant (.i.e 6 in this case for figure 2.17), conditions for transitions be-

tween entrances are as follows:

1. Condition (I)- If entrance segment is less than the threshold, a single transition

is made in the center of the entrance segment as shown in figure 2.17-b, where

2.8. Hierarchical Search Algorithms 45

there is a single transition between clusters 3 and 6.

2. Condition (II)-For entrance segment greater than the predefined constant, two

transitions are made for the entrance segment, with each at the end of the clus-

ter as illustrated in figure 2.17-b, showing the pair of transitions in clusters 6

and 9.

FIGURE 2.16: The HPA* graph abstraction cluster creation
[Anguelov, 2012]

Within clusters, inter edges are used for transitions across clusters and intra

edges within a single cluster respectively to make up abstract graphs as shown in

figure 2.17-c.

The process of constructing (inter edges & cluster entrance) and searching (intra

edges) for these interconnections to form abstract graphs is expensive requiring a

high cost of processing. To solve this problem, abstract graphs are constructed of-

fline, usually when loading up a game. Abstract graphs are also constructed offline

for dynamic environments as static environment. When an environmental change

occurs, the both intra-edges and inter-edges of the affected local clusters need to be

re-computed [Botea, Müller, and Schaeffer, 2004]. In the HPA∗, modifications are

made to recognise clusters that change recalculating all cluster entrances as well as

searches for intra-edges resulting in an updated set of cluster data.

46 Chapter 2. Literature review

FIGURE 2.17: The HPA* graph inter-cluster and intra-cluster links
[Anguelov, 2012]

Intra edge searches proves to be costly in hierarchical algorithms, to solve this

problem, search for intra edges are postponed with the anticipation that intra edges

may not be required in the short run, or the set of cluster data may change before the

need of intra edges, avoiding expensive operation which may lead to a costly search

in the long run [Jansen and Buro, 2007].

Using HPA∗ [Botea, Müller, and Schaeffer, 2004], presents a methodology of initially

creating from the start nodes, an abstract node link. Through a series of A∗ searches,

the nearest abstract node sharing the same cluster as the start node is selected. With

the abstract node found, an edge is subsequently created to link the abstract and

start nodes. The goal node also goes through the same process to ensure that both

the start and goal nodes are included in the abstract graphs. with the pair of start

and goal nodes inserted, a refined abstract path is the created. But the use of several

A∗ searches results in more computational costs [Jansen and Buro, 2007].

2.8. Hierarchical Search Algorithms 47

The computational cost of inserting both start and goal nodes into the abstract graph

cab be deductible by using Dijkstra‘s algorithm rather than A* to compute the short-

est path to all bordering abstract nodes as outlined in [Jansen and Buro, 2007]. There-

fore [Jansen and Buro, 2007] proposes the use of the Dijkstra’s algorithm to find

shortest path to all abstract nodes in the quest of finding the nearest reachable ab-

stract node which offers a comparatively cheaper computational burden. Even though

this method offers a less cost, the search for shortest paths only works within clus-

ters of many abstract nodes which has complex or long paths between them. A∗ still

offers a faster option when dealing with large open environment or clusters with

few entrants.

Dynamic HPA∗ [Kring, Champandard, and Samarin, 2010] use a node cache to elim-

inate the cost of including the start and goal nodes in the formulation of the abstract

graph. It does this by making use of the cache within a cluster to store information of

the subsequent optimal nodes in the process of reaching an abstract node within par-

ticular clusters. With a store information of nearest path to abstract nodes, DHPA∗

eliminates the use of A∗ for path refinement. Applications of DHPA∗ are however

limited, even though they present a faster option (approximately 1.9 times) as com-

pared to the HPA∗, mainly due to the fact that DHPA∗ has more memory cost as

compared to the HPA∗ . Also DHPA∗ provides less optimal solutions as compared

to HPA∗. From [Botea, Müller, and Schaeffer, 2004] HPA∗ provides solutions that are

less than 10% sub-optimal with respect to DHPA∗ . This better path sub-optimality

is due to the placement of abstract nodes in cluster entrances.

FIGURE 2.18: The effects of the post-processing smoothing phase on
path optimality [Anguelov, 2012]

A post processing phase can be included in the HPA∗ algorithm known as the

48 Chapter 2. Literature review

smoothing phase to improve the optimality of the HPA∗ solution. At the end of

a path, the smoothing phase begins by replacing sub-optimal parts in a path with

straight lines. At each nodes in a path, rays are propagated in all directions until an

obstructed node is encountered. In the course of ray tracing, initial sub-optimal path

segments between two nodes are replaced with straight lines when a node on a re-

turned HPA∗ path is encountered as shown in figure 2.18-b. The smoothing step then

proceeds from two nodes before the encountered path node. Path smoothing helps

in improving suboptimality by almost 1% [Botea, Müller, and Schaeffer, 2004]. Path

smoothing unfortunately sacrifices improved suboptimality with cost, this could be

curtailed through an optimization setup, which involves constraining in a box, the

extent at which rays are propagated. This reduces the costs associated with the ray

tracing procedure.

2.8.7 Partial Refinement A∗ (PRA∗)

PRA∗ [Sturtevant and Buro, 2005]algorithms presents partial but more optimal so-

lutions than HPA∗ which returns complete paths by implementing a sort of partial

hierarchical algorithm. Partial paths are however possible in HPA∗ with incremen-

tal hierarchical pathfinding process, in which the HPA∗ algorithm is modified such

that the refinement of abstract paths are distributed over the duration of an agent’s

movements. This however leads to a high degree of suboptimality which cannot be

improved through path smoothing.

The PRA∗ technique defers by using the clique and orphan abstraction technique

with a multi-level abstraction hierarchy to return partial but optimal paths [Sturte-

vant and Buro, 2005]. A clique is a set of nodes where edges exists between each

node in the set whilst an orphan is a node reachable only from a single other node of

the set of nodes. The clique and orphan nodes are represented in red in figure 2.19.

Cliques are represented with a node on the abstract graph which is one level

above them, thus requiring a complete navgraphs abstraction until a single node re-

mains at the highest abstraction level. Attached to the single cliques with a single

edge are orphan nodes, since they can only be attached to one node. Figure 2.19

illustrates the process of navgraph abstraction with cliques and orphans. It involves

2.8. Hierarchical Search Algorithms 49

FIGURE 2.19: The PRA* Abstraction [Anguelov, 2012]

reduction of the search space over the lower level through the process of the already

discussed fine granularity, resulting in a 4× reduction. This granularity enables pro-

cessing and memory cost savings which invariably helps in handling of the creation

of the abstraction layers. This is different from the HPA∗, which uses abstraction

methods that vastly reduces search spaces which as discussed earlier may lead to a

loss of valuable information.

In path refinement, the PRA∗ finds the abstraction level SL where through abstrac-

tion, the pair of start and goal nodes are represented as one abstract node (figure

2.19-d). From the level, SL/2, refinement of the path begins which offers merits of

keeping a high path optimality coupled with low cost of processing. A∗ searches

are subsequently done at the SL/2 to produces refined paths. If a complete solution

is obtained with path-refinement in one step, it is known as the PRA ∗ (∞) (infinite

refinement PRA∗).

Extremely fine granularity is used for navgarph abstraction in PRA∗, this leads to

50 Chapter 2. Literature review

some advantages over HPA∗. Primarily, the use of this fine granularity leads to a

reduction of the search space between abstract levels to a significant extent as well

as providing more optimal solutions in abstract paths than HPA∗ algorithm.

Partial path refinement in PRA∗ takes place through the process of truncating ab-

stract paths to a fixed length, K, for each abstract level, this process is referred to as

the PRA∗ (K) algorithm. The tail node of each k-length truncated path, serves as a

new goal for the lower level abstraction level. In the PRA∗ (K) algorithm results in

a partial path in one atomic planning process, while ensuring that agents follow the

returned partial path and guarantee that the resultant partial path reaches the goal

node[Sturtevant and Buro, 2005]. The truncation procedure leads to further mini-

mization of search cost as PRA∗(K) enables a reduction of the scope of the abstract

search problem at lower abstract levels through the truncation of paths at each level.

High optimality is guaranteed through fine granularity for PRA∗(∞) in a similar

time frame as compared to the HPA∗ (i.e. PRA∗(∞) return paths that are within 1%

of optimal 98% of the time). PRA∗(∞) however, returns partial paths that are least

minimum compared to paths from PRA∗ (K). Return paths from PRA∗(K) has opti-

mality that depends on K, such that for example a K value of 16 is proven to have

complete paths within 5% of optimality 98% of the time.

Also fine granularity required in clique abstraction coupled with the demand of a

full abstraction hierarchy makes PRA∗ use in dynamic environments undesirable

since dynamic changes in an agent’s environment demands a parallel change in all

abstract layers, therefore a large variation may subsequently require large abstract

layer alterations. PRA∗ may also not be suitable for applications with limited mem-

ory as fine granularity increases the demand of memory storage of abstract levels

compared to HPA∗. As such, the PRA* algorithm may not be recommended to em-

ploy within dynamic environments or on limited memory platforms. The purpose

of returning partial paths rather than a complete solution must not be discarded con-

sidering it can potentially reduce the volume of wasted effort spent on re-planning

a complete path every time when an environmental change occurs.

2.8. Hierarchical Search Algorithms 51

2.8.8 Minimal Memory Abstraction (MMA)

The algorithm of minimal memory (MM) abstraction introduced by [Sturtevant,

2007] helps in situations where there is a limited memory space. In this abstrac-

tion, the navgrid is represented in a grid format as done in the HPA∗ , thus dividing

the surface of the navgrid into clusters of equal and constant sizes. A search space

explored by a breath-first search from a traversable node within a sector is termed

as a region. The clusters (sectors) are divided such that each node in one region is

reachable from another, forming a set of fully traversable regions. A repetitive pro-

cess is used through the breath-first search for each traversable node not in a region

to ensure that all regions within a sector are found. From figure 2.20-b a three sector

divided into full traversable regions is presented.

From the region center (centroid node of a region’s node set), abstract nodes are

created to produce regions in the abstract graph. No intra-edges are involved in this

process, hence there do not exist connections between the regions with the sector but

there exists inter-edges which connect regions with adjacent sectors via their region

centers which creates abstract graphs.

FIGURE 2.20: The Minimal Memory Abstraction [Anguelov, 2012]

52 Chapter 2. Literature review

Unlike the HPA∗ which produces multiple abstract nodes per region through

sector transitions, the MM abstraction method seeks to represent entire regions with

a single node reducing the number of abstract nodes for abstract graph creation.

This abstraction technique minimizes the complexity and size of the abstract graphs,

leading to a decrease in memory demand for storing of abstraction and processing

costs associated with searches. Abstractions in HPA∗ and MM are compared in fig-

ure 2.21.

Region centres operates the same as sub-goals in HPA∗. These region centres are

placed in a manner such that the search space exploration of all refinement actions

from these centres is minimized. In [Sturtevant and Geisberger, 2010a], the overall

search space is decreased by a factor of two with this process. But the use of region

centres which are positioned centrally in regions, results in high sub-optimality of

low-level paths when used to plan abstract paths (refer to Figure 2.22-a). In order to

improve sub-optimality, [Sturtevant, 2007] presents a method of trimming the ends

of sub-problem solutions in path refinement which provides slightly more direct low

level paths (refer to Figure 2.22-b).

FIGURE 2.21: A comparison between the HPA* and MM* abstrac-
tions. (a). (b). [Anguelov, 2012]

2.8. Hierarchical Search Algorithms 53

However, as described in [Sturtevant, 2007], trimming may lead to an increased

in processing cost and unnecessary waste in effort. This wastage arises from the

fact that as complete sub-problem solutions are planned, part of the solutions are

deleted. As evidenced in [Sturtevant, 2007], a trimming of 10% of sub-problems re-

sults in 5% sub-optimality, a further tuning of percentage of trimming to 15% and

solving two sub-problem per step, results in improvements of sub-optimality. A post

processing stage of smoothing is applied to further improve optimality as done in

the HPA∗ algorithm.

From [Sturtevant and Geisberger, 2010a], it was realised that problems were encoun-

tered during the search process in the "Dragon Age" game when using the minimal

memory abstractions. This was mainly due to the fact that the game presented a

large environment which needed the creation of large and complex abstract graphs

for efficient searching which could lead to pathfinding searches running out of time.

Also with small environments, the abstract graphs produced did not accurately rep-

resent the environment due to coarse abstractions. Accurate representation can be

improved by increasing granularity but this leads to longer abstract search times.

FIGURE 2.22: Improving path sub-optimality through the trimming
of sub-problem solutions [Anguelov, 2012]

A second level of abstraction is therefore introduced that produces finer granu-

larity at the 1st abstraction level and also improves search times. This second level

of abstraction enables a faster completion of abstract searches on both abstraction

levels which results in a decreased agent response time.

The minimal memory abstraction methodology manifests simplicity in application

54 Chapter 2. Literature review

as well as a low demand for memory, hence it makes it suitable for memory limited

environments. The MM abstraction technique has proven to be applicable to dy-

namic environment albeit the problem of cost arising from the addition of a second

abstract layer.

2.8.9 Dynamic Hierarchical path-finding A* (DHPA∗)

Kring and et al [Kring, Champandard, and Samarin, 2010], introduced the Dynamic

Hierarchical path-finding A* (DHPA*) and Static Hierarchical path-finding A* (SHPA*)

hierarchical path-finding algorithms, along with a metric for comparing the dynamic

performance of path-finding algorithms in games. Both SHPA* and DHPA* consist

of a build and a search algorithm. In DHPA* the run-time cost is reduced by spend-

ing more time and memory usage in the build algorithm and less time in the search

algorithm. In SHPA* the performance is improved and the memory requirements of

HPA* are reduced.

FIGURE 2.23: DHPA* cache for a single abstract node in a cluster of
size 5. In this figure, we do not consider diagonal distance, for sim-

plicity [Kring, Champandard, and Samarin, 2010]

Like HPA*, the DHPA* makes clusters in the build stage but it stores more data

in order to speed up both abstraction search and also low level search. The DHPA*

uses Dijkstra search algorithm to make a separate cache for each abstract node inside

a cluster (see figure 2.23). The cache includes an entry for each low-level node inside

2.8. Hierarchical Search Algorithms 55

the cluster, representing data about the optimal path which is founded by the Dijk-

stra search algorithm from the low-level node to the abstract node. One cache entry

includes the optimal path length from two start and end nodes and also a path index

steering to a neighbor node inside the corresponding cluster. Effectively, the cache

describes the optimal path tree for each abstract node. The abstract search uses the

cached path length, and the low-level search uses the cached path index. When a

dynamic change occurs inside a cluster, the build algorithm will run just inside the

corresponding cluster and recalculate the corresponding part of the cache, the intra-

edges inside the cluster, and the inter-edges connected to the cluster. Additionally, the

build algorithm optimizes the re-computation by just rebuilding a cluster’s intra-

edges and inter-edges when needed. It is just required to rebuild these edges if each of

the border nodes dynamically changes. Otherwise, the abstract graph remains the

same, and just the cache is re-computed. Since the DPHA* stores some additional

information, it requires more memory space than the HPA* algorithm. The DHPA*

search algorithm uses the cache that was produced in the build algorithm to produce

the abstract path, and improve it within a low-level path. This method enhances the

run time of the abstract search by omitting the time consuming “SG effort” that is

present in the HPA* algorithm. It means that the DHPA* does not have any SG effort

unlike the HPA*.

DHPA* identifies the abstract graph nodes that refer to the start cluster at the

starting of the abstract search. These nodes are then pushed over the open list as

the primary search space, in place of the abstract node that HPA* adds to the graph

[Kring, Champandard, and Samarin, 2010]. The costs for any of those nodes are re-

gained from the cache that was generated by the build algorithm, rather than search-

ing for the costs as the HPA* does. Finally, the algorithm searches the abstract graph

just like in HPA*.

The SHPA* search is similar to the DHPA* search, but it does not use a cache. Rather,

it utilizes an Euclidean distance heuristic to calculate edge weights, and it searches

for low-level paths using A* search algorithm.

56 Chapter 2. Literature review

2.9 Summary

In this chapter, different pathfinding algorithms are introduced, describing in detail

their characteristics which best suits applications such as video games. The A∗, is in-

troduced, as it lays the foundation for other algorithms which offer augmented abil-

ities. For example, any time algorithms, such as the ARA∗ algorithm have the added

ability of producing sub-optimal solutions, but faster, thus improving the computa-

tional time. In dynamic environments, algorithms such as the D∗ and D∗Lite have

the advantage of reacting to changes in an agent’s environment. The AD∗ then com-

bines the benefit of the two schemes. The Theta∗ and the Field D∗ are not limited to

movements on grid edges, thus allowing for smooth paths.

In section 2.8 the search process of hierarchical algorithms is explored. It involves

an efficient discrete graph search algorithm which decomposes a problem into mul-

tiple sub-problem which results in a reduction in search times and also a reduction

in peak memory usage. The algorithm involves the segmentation of the main prob-

lem into sub-problems, with the help of an abstract graph which is formed through

abstraction techniques on the navigation graph.

The HPA∗, was explained in this section as a hierarchical method that builds an

abstract graph from connections between fixed size clusters. Usually HPA∗ algo-

rithms offers a relatively high sub-optimality when compared to other hierarchical

methods (usually 6% sub-optimality), but this can be improved by the addition of a

post-processing smoothing stage, where sub-optimal part of paths are replaced with

straight lines to improve sub-optimality. HPA∗ technique is suitable for both static

and dynamic environments and also memory limited cases with large environments.

HPA∗ has many interesting properties that but the limitation of having been devel-

oped for regular 2d grids, whereas more recently game developers are using mostly

navigation meshes based on convex polygons.

2.9. Summary 57

The PRA∗, is a hierarchical technique that introduces fine granularity which re-

sults in reductions of the search environment. There are two types of PRA∗; one

type returns partial abstract paths of length k, thus its name PRA∗(K), and provides

solutions with low sub-optimality, and the PRA∗(∞) which returns complete paths.

The PRA∗ has shown to be unsuitable for dynamic environments since high costs are

encountered while updating the abstraction hierarchy every time there is a change

in an agent’s environment. It is also not appropriate for memory limited platforms

primarily because of the need for a complete abstract hierarchy and abstract levels

having a low level of search space reduction between them.

Due to the PRA∗ algorithm’s shortfall when it comes to memory limited platforms,

the MM hierarchical algorithm is introduced. The coarse abstraction is used which

unfortunately leads to an increase in sub-optimality requiring a trimming method

to improve the suboptimality to about 5%. This technique is suitable for dynamic

and memory limited environments. There are many other methods on pathfinding

which we have summarized in table 2.1.

58 Chapter 2. Literature review

TA
B

L
E

2.
1:

R
ec

en
tl

y
re

po
rt

ed
pa

th
fin

di
ng

al
go

ri
th

m
s

us
ed

in
ro

bo
ti

cs
an

d
vi

de
o

ga
m

es

To
po

lo
gi

es
En

vi
ro

nm
en

t
Pa

th
fin

di
ng

ad
dr

es
se

s
Ex

am
pl

ifi
ca

ti
on

M
em

or
y

co
m

pl
ex

it
y

Ti
m

e
co

m
pl

ex
it

y
te

ch
ni

qu
e

R
ef

er
en

ce
U

nd
ir

ec
te

d
un

if
or

m
-c

os
t

sq
ua

re
gr

id
m

ap
s

w
it

ho
ut

di
ag

on
al

m
ov

em
en

t

st
at

ic
Si

ng
le

-a
ge

nt
G

am
e

de
ve

lo
pm

en
t

-
A

*
O
(n

lo
g n
)

1 7

ID
A

*
A

*
an

d
ID

A
[2

00
6]

U
nd

ir
ec

te
d

un
if

or
m

-c
os

t
sq

ua
re

gr
id

m
ap

s
w

it
ho

ut
di

ag
on

al
m

ov
em

en
t

st
at

ic
Si

ng
le

-a
ge

nt
G

am
e

de
ve

lo
pm

en
t

-
O
(n

lo
g n
)

1 7
Im

pr
ov

ed
A

*
al

go
ri

th
m

[2
01

0]

U
nd

ir
ec

te
d

un
if

or
m

-c
os

t
sq

ua
re

gr
id

m
ap

s
w

it
ho

ut
di

ag
on

al
m

ov
em

en
t

st
at

ic
Si

ng
le

-a
ge

nt
G

am
e

de
ve

lo
pm

en
t

N
o

m
em

or
y

ov
er

he
ad

JP
S

al
go

ri
th

m
O
(n

lo
g n
)

1 10
A

*,
H

PA
*,

an
d

JP
S

[2
01

1]

U
nd

ir
ec

te
d

un
if

or
m

-c
os

t
sq

ua
re

gr
id

m
ap

s
w

it
ho

ut
di

ag
on

al
m

ov
em

en
t

st
at

ic
Si

ng
le

-a
ge

nt
G

am
e

de
ve

lo
pm

en
t

O
(b

k)
b=

m
ax

im
um

br
an

ch
in

g
fa

ct
or

,k
=i

te
ra

ti
on

-
IE

A
*

an
d

ID
A

*
al

go
ri

th
m

s
[2

01
5]

U
nd

ir
ec

te
d

un
if

or
m

-c
os

t
sq

ua
re

gr
id

m
ap

s
w

it
ho

ut
di

ag
on

al
m

ov
em

en
t

st
at

ic
Si

ng
le

-a
ge

nt
G

am
e

de
ve

lo
pm

en
t

SU
B

al
go

ri
th

m
O
(n

lo
g n
)

1 10
0

SU
B,

Bl
oc

kA
*,

C
PD

-f
ul

l,
C

PD
-m

bm
,

JP
S-

of
fli

ne
,

JP
S-

on
lin

e,
PD

H
,

PP
Q

,a
nd

Tr
ee

[2
01

3]

U
nd

ir
ec

te
d

un
if

or
m

-c
os

t
sq

ua
re

gr
id

m
ap

s
w

it
ho

ut
di

ag
on

al
m

ov
em

en
t

R
ea

l-
ti

m
e

M
ul

ti
-a

ge
nt

G
am

e
de

ve
lo

pm
en

t
-

-
IT

F,
EI

TA
,a

nd
M

C
-I

TA
sc

he
m

es
[2

01
3]

U
nd

ir
ec

te
d

un
if

or
m

-c
os

t
sq

ua
re

gr
id

m
ap

s
w

it
ho

ut
di

ag
on

al
m

ov
em

en
t

R
ea

l-
ti

m
e

M
ul

ti
-a

ge
nt

G
am

e
de

ve
lo

pm
en

t
-

O
(n

lo
g n
)

1 10
A

*,
FS

,P
BS

,a
nd

PR
S

al
go

ri
th

m
s

[2
01

2]

2.9. Summary 59

Ta
bl

e
2.

1
co

nt
in

ue
d

fr
om

pr
ev

io
us

pa
ge

To
po

lo
gi

es
En

vi
ro

nm
en

t
Pa

th
fin

di
ng

ad
dr

es
se

s
Ex

am
pl

ifi
ca

ti
on

M
em

or
y

co
m

pl
ex

it
y

Ti
m

e
co

m
pl

ex
it

y
te

ch
ni

qu
e

R
ef

er
en

ce

H
ex

ag
on

al
gr

id
R

ea
l-

ti
m

e
M

ul
ti

-a
ge

nt
R

ob
ot

ic
s

sy
st

em
s

-
-

A
ug

m
en

te
d

A
*

an
d

A
cc

el
er

at
ed

A
*

[2
01

1]

H
ex

ag
on

al
gr

id
R

ea
l-

ti
m

e
Si

ng
le

-a
ge

nt
R

ob
ot

ic
s

de
ve

lo
pm

en
t

-
-

D
*

al
go

ri
th

m
[2

01
3]

Tr
ia

ng
ul

ar
gr

id
R

ea
l-

ti
m

e
M

ul
ti

-a
ge

nt
R

ob
ot

ic
s

an
d

ga
m

es
de

ve
lo

pm
en

t
-

-
A

D
*

al
go

ri
th

m
[2

01
3a

]

C
ub

ic
gr

id
st

at
ic

Si
ng

le
-a

ge
nt

R
ob

ot
ic

s
an

d
ga

m
es

de
ve

lo
pm

en
t

Th
et

a*
,L

az
y

Th
et

a*
,

an
d

A
*

[2
01

3]

M
es

h
na

vi
ga

ti
on

R
ea

l-
ti

m
e

an
d

dy
na

m
ic

M
ul

ti
-a

ge
nt

R
ob

ot
ic

s
an

d
ga

m
es

de
ve

lo
pm

en
t

45
K

B
of

m
em

or
y

pe
r

ag
en

t
Fr

am
ew

or
k

[2
01

0a
]

M
es

h
na

vi
ga

ti
on

st
at

ic
Si

ng
le

-a
ge

nt
G

am
e

de
ve

lo
pm

en
t

-
-

H
N

A
*

[2
01

6b
]

M
es

h
na

vi
ga

ti
on

D
yn

am
ic

Si
ng

le
-a

ge
nt

R
ob

ot
ic

s
an

d
ga

m
es

de
ve

lo
pm

en
t

-
-

A
ny

ti
m

e
D

yn
am

ic
A

*
[2

01
3b

]

M
es

h
na

vi
ga

ti
on

D
yn

am
ic

M
ul

ti
-a

ge
nt

R
ob

ot
ic

s
an

d
G

am
e

de
ve

lo
pm

en
t

1-
5

M
B

-
W

ei
gh

te
d

A
*

(W
A

*)
,

N
ea

r-
O

pt
im

al
Bi

di
re

ct
io

na
l

Se
ar

ch
(N

BS
)

[2
01

9]

M
es

h
na

vi
ga

ti
on

re
al

-t
im

e
M

ul
ti

-a
ge

nt
G

am
e

de
ve

lo
pm

en
t

-
-

Bo
un

de
d

M
ul

ti
-A

ge
nt

A
*

(B
M

A
A

*)
,

[2
01

8]

V
is

ib
le

gr
ap

h
D

yn
am

ic
M

ul
ti

-a
ge

nt
R

ob
ot

ic
s

an
d

ga
m

es
de

ve
lo

pm
en

t
A

A
*

le
ss

th
an

A
*

-
A

A
*

al
go

ri
th

m
[2

00
9]

W
ay

po
in

t
R

ea
l-

ti
m

e
M

ul
ti

-a
ge

nt
R

ob
ot

ic
s

an
d

ga
m

es
de

ve
lo

pm
en

t
-

A
nt

co
lo

ny
op

ti
m

iz
at

io
n

al
go

ri
th

m
[2

01
0]

G
ri

d
M

es
h

st
at

ic
M

ul
ti

-a
ge

nt
R

ob
ot

ic
s

an
d

ga
m

es
de

ve
lo

pm
en

t
-

-
Ev

ol
ut

io
na

ry
H

eu
ri

st
ic

A
*

se
ar

ch
(E

H
A

*)
[2

01
9]

61

Chapter 3

Hierarchical Pathfinding for

Navigation Meshes.

As we have seen in the previous chapters, the challenge of pathfinding in video

games is to compute optimal or near optimal paths as efficiently as possible. As

both the size of the environments and the number of autonomous agents increase,

this computation has to be done under hard constraints of memory and CPU re-

sources. Hierarchical approaches can compute paths more efficiently and have been

widely applied on 2D regular grids. On previous work by my advisor [Pelechano

and Fuentes, 2016b], a hierarchical approach for general navigation meshes was pre-

sented, known as HNA*. The method provided a hierarchical solution adapted to

the peculiarities of navigation meshes where cells are convex polygons of different

shapes and sizes. HNA* offered very good speeds ups for pathfinding, however

only for certain configurations of the hierarchy. For other configurations, perfor-

mance could drop drastically when inserting the start and goal position into the

hierarchy. In the original HNA*, the step of inserting the Start and Goal positions in

the hierarchy was done sequentially and thus it could turn into a bottleneck. In this

chapter we first explain in detail the HNA*, then we discuss the problems and study

alternatives to improve performance. We propose three novel methods that rely on

further memory storage or parallelism on either the CPU or the GPU. Finally, we

carry out a comparative evaluation, with results showing an important speed-up for

all tested configurations and scenarios.

3.1 Introduction

Path planning for multiple agents in large virtual environments is a central problem

in the fields of robotics, video games, and crowd simulations. In the case of video

62 Chapter 3. Hierarchical Pathfinding for Navigation Meshes.

games, the need for highly efficient techniques and methods is crucial as modern

games place high demands on CPU and memory usage.

Pathfinding is a subset of AI which has intersections with group coordination,

animation, goal selection, etc [Vermette, 2011]. Increasing search space in pathfind-

ing while improving its accuracy and speed, is always demanded by game develop-

ers and industry professionals.

Video games applications provide therefore a perfect testbed for researchers work-

ing on this field. Path planning should provide visually convincing paths for one or

many autonomous agents in real time.

Agents should move towards their destination along a realistic path, maintaining

an appropriate amount of clearance with respect to the obstacles while avoiding

collisions with other agents as smoothly as possible. The most popular solutions in

the literature are based on a combination of global and local movement techniques.

Most of the papers which are referenced in this thesis are focused on proposing

new methods for the AI community, developing video games and others combine

empirical experiments using video game as test problems.

Even though optimally is typically the goal in path fining, when it comes to

games, often it is not necessary to obtain the optimal path for all agents but paths

that look convincing to the player.

The problem of pathfinding can be separated from local movement, so that pathfind-

ing provides the sequence of cells to cross in the navigation mesh, and other methods

can be used to set waypoints and to handle collision avoidance. In this chapter, we

focus on abstraction hierarchies applied to pathfinding to improve performance. A

general notation consists of labelling the hierarchy as levels or layers in ascending

order, with the lowest, L0 being the un-abstracted map in the game space and con-

secutive layers numbered L1, L2 and so on being the different levels of abstraction.

The key idea consists on performing a search at a high level, which is then "filled in"

with more refined sections of the path at lower levels, until a complete path is spec-

ified which can be followed by an agent [Bulitko, Björnsson, and Lawrence, 2010].

Typically a high level solution can be rapidly calculated, and the challenge lies on

inserting the specific Start (S) and Goal(G) positions to link them with the high level

graph. Work in the literature shows that this inserting S/G step can become a bot-

tleneck in both 2D grids [Botea, Müller, and Schaeffer, 2004] and Navigation Meshes

[Pelechano and Fuentes, 2016b]. There are many techniques in the literature that

3.2. Related Work on Hierarchical Approaches 63

have shown impressive improvements for the case of 2D regular meshes to increase

speed without a large memory footprint [Sturtevant, 2007]. However general navi-

gation meshes consisting of convex polygons of different complexity, present more

challenges given their irregular nature (i.e. not all the cells have the same size and

edge length) [Van Toll et al., 2016]. In this chapter we propose several approaches to

speed up the existing bottleneck in hierarchical pathfinding for general navigation

meshes, and evaluate their advantages and limitations in terms of both memory us-

age and performance improvements.

3.2 Related Work on Hierarchical Approaches

There has been a large amount of work in the field of hierarchical abstractions to

speed up pathfinding or general graph search.

Hierarchical graph representations have been used for example, for visualiza-

tion purposes of large data sets [Tominski, Abello, and Schumann, 2009]. The goal

in these applications is to offer an overview first, and then be able to zoom and filter

to offer details on demand.

Planning via hierarchical representation has been used to improve performance

in problem solving for a long time [Sacerdoti, 1974]. Holte et. al introduced hierar-

chical A* to search in an abstract space and use the solution to guide search in the

original space [Holte et al., 1996a]. There has also been work on abstraction based

on bottom-up approaches for general graphs [Holte et al., 1994] [Holte et al., 1996b].

Sturtevant and Jansen extended the theoretical work slightly and provided exam-

ples of a number of different abstraction types over graphs. In this work graphs are

created from 2D grid-like structures by setting a node for each walkable cell [Sturte-

vant and Jansen, 2007].

The work by Rabin et al. performs pathfinding using a two-level hierarchy, by

creating clusters with the rooms of a building or the square blocks of a filed [Rabin,

2000a]. An abstract action crosses a room from the center of an entrance to another.

Firstly, it partitions the problem map into clusters such as square blocks. Secondly,

abstract actions are calculated as block crossings. And thirdly, it abstracts a block

entrance into one transition point. This leads to fast computation but gives up the

64 Chapter 3. Hierarchical Pathfinding for Navigation Meshes.

solution optimality.

Bulitko et al. showed that the quality of paths can decrease exponentially with

each level of abstraction [Bulitko, Björnsson, and Lawrence, 2010]. Sturtevant and

Geisberger studied the combination of abstraction and contraction hierarchies to

speed up pathfinding [Sturtevant and Geisberger, 2010b].

Botea et al. introduced the HPA* (Hierarchical Pathfinding A*) algorithm [Botea,

Müller, and Schaeffer, 2004] which we described in detail in section 2.8.6. HPA* is

a hierarchical approach to reduce problem complexity in pathfinding on grid-based

maps. The HPA* technique abstracts a map into linked local clusters. At the local

level, the optimal distances for crossing each cluster are pre-computed and cached.

At the global (high) level of this method, an action consists of crossing a cluster in a

single big step rather than moving to an adjacent atomic location and small clusters

are grouped together to create larger clusters.

Another important hierarchical approach for pathfinding in commercial video

games uses points of visibility [Rabin, 2000a]. In this method the domain local topol-

ogy is used in order to define an abstract graph that covers the map efficiently. The

graph nodes represent the corners of convex obstacles. For each node, edges are

added to all the nodes that can be seen from the current node (i.e., that can be con-

nected with a straight line).

Pelechano et al [Pelechano and Fuentes, 2016b] presented a hierarchical NavMesh

technique to speed up pathfinding in navigation meshes. The method is based on

a bottom-up approach to create a hierarchical representation using the multilevel

k-way partitioning algorithm (MLkP), annotated with sub-paths information. Their

approach is flexible in terms of both the number of levels in the hierarchy and the

number of merged polygon between levels of the hierarchy. The advantage of their

method is that this technique provides a balanced number of both walkable cells

and inter-edges between partitions. Figure 3.1 shows an example of their hierarchical

NavMesh Graph (HNG) for a two-levels-hierarchy and µ = 4 (where µ is the number

of merged polygons).

3.2. Related Work on Hierarchical Approaches 65

Hierarchical Annotated A* (HAA*) [Harabor and Botea, 2008] is en extension of

HPA that takes into account the size of the agents and the terrain traversal capa-

bilities. Therefore it allows for different agents’ sizes to efficiently plan high qual-

ity paths in heterogeneous-terrain environments. Kring and et al [Kring, Cham-

pandard, and Samarin, 2010], introduced the Dynamic Hierarchical pathfinding A*

(DHPA*) and Static Hierarchical pathfinding A* (SHPA*) hierarchical pathfinding al-

gorithms, along with a metric for comparing the dynamic performance of pathfind-

ing algorithms in games. In DHPA* the run-time cost is reduced by spending more

time and memory usage in the build algorithm and less time in the search algorithm.

In SHPA* the performance is improved and the memory requirements of HPA* are

reduced. In the DHPA* algorithm, the clusters are created in the build algorithm

similarly to HPA*, but additional information to improve the speed of both the ab-

stract search and the low level search are cached. In this method they used Dijkstra

algorithm once for each abstract node within a cluster, creating a separate cache for

each abstract node. In DHPA*, improves the search performance by eliminating the

time consuming "SG effort" that is present in HPA*. Our work is inspired by their

method, but extended to the more general problem of navigation meshes where cer-

tain assumption such as cell size cannot be made beforehand.

In the SHPA*, the build algorithm runs just one time to creates the clusters, and

it does not repair the clusters dynamically. In this method the build algorithm is

the same as in [Sterren and Champandard, 2008]. In the SHPA* build algorithm,

the map is decomposed into many variable-sized fully connected clusters based on

a greedy heuristic instead decomposing the map into many same-sized clusters as

HPA* and the SHPA* search algorithm is similar to the DHPA* search with the main

difference being that HPA* search algorithm does not use a cache.

In [Samet, 1988] a method for doing hierarchical map decomposition is proposed.

In this method a map is partitioned into a set of different size square blocks and each

block includes only walkable cells or only blocked cells. The map is partitioned into

four blocks. If one block contained both walkable and obstacle region, then it will be

decomposed into four smaller blocks, and so on. One of the actions that the agents

will have to perform is to move between the centers of two adjacent, which leads to

a sub-optimal solution since the agents will not follow the shortest path.

66 Chapter 3. Hierarchical Pathfinding for Navigation Meshes.

Ammar et al. have presented RA* algorithm which is a new linear time relaxed

version of A* [Ammar et al., 2016]. This method proposed to solve the path plan-

ning problem for large scale grid maps. The main goal of this algorithm is finding

an optimal or near optimal path with small deviance from the optimal solutions by

spending much smaller execution times than traditional A*. This method exploits

the grid map structure to build a highly accurate approximation of the optimal path,

without visiting any block more than once, unlike A* for which the cost g(n) of a

node n may be computed more than one time. The Another variant of A* search

algorithm is the Theta* algorithm [Nash et al., 2007]. The fundamental Theta* calcu-

lation is an existing algorithm that produces near-optimal results for a running time

near A* around 8-directional grids. But the main problem of this algorithm is that it

often finds non-tough paths that make unnecessary turns.

Shunhao Oh et al. shown that by restricting the search scope of Theta* algorithm

to tough paths, the algorithm can provide much shorter paths than the basic algo-

rithm. Before a vertex v is relaxed with parent u, the sub-path (parent(u), u, v) is

first checked for tautness [Oh and Leong, 2016]. In this case if the path is not taut,

an additional penalty value will be added to distance(v) after relaxation. The vertex

v is additionally marked as not taut, so that the increment in the g − value can be

reversed later on when the vertex v is extracted from the priority queue.

The HNA* algorithm [Pelechano and Fuentes, 2016b] is a bottom-up method

to create a hierarchal representation based on a multilevel k-way partitioning algo-

rithm (MLKP) of a navigation mesh. Similarly to HPA*, HNA* also pre-computes

sub-paths and stores them to be accessed by the on-line search algorithm. The HNA*

consist 4 main step: The first step connects S (Start) and G (Goal) points to their par-

titions at the level i by calculating the shortest paths to each portal in their respective

node (inter-edges). The second step calculates paths at the current level. Step 3 ex-

tracts the Intra-edges from level i-1 and step 4 obtains the refined path in the level 0.

In this chapter we focus on the limitations of HNA* and present several methods to

solve the bottleneck that appears in step 1, and perform a thorough comparison of

our results in terms of memory and performance.

3.3. Hierarchical problem formulation 67

3.3 Hierarchical problem formulation

A world map is typically given as a polygon soup. In order to have agents navi-

gating a world map, it is necessary to find a representation of the walkable space.

This can be done with a navigation mesh, which represents the walkable space as

a collection of convex polygons called cells (could be triangles or polygons of more

than three sides), where borders between adjacent cells are called portals [“Recast”

2017]. Agents can move within any two points of a cell or cross portals to move

between adjacent cells, without colliding with the static obstacle borders of a cell.

This representation can be expressed as a graph G = (N, E), where the collection of

cells or convex polygons are the nodes or vertices of the graph N =< p0, p1, ..., pn >,

and the portals are the edges E, with each edge eij, corresponding to the edge be-

tween two adjacent polygons pi and pj. The cost of an edge c(eij)is calculated as the

distance between the center of polygon pi to the center of polygon pj, and thus it is

always a positive value. Pathfinding involves finding a path P = 〈S, ..., u, ..., v, ..., G〉

which is a sequence of nodes connected by edges, from the starting position S to

the goal position G. The cost of a path c(P) is the sum of all the costs assigned to

the edges along the path P, and since all edges costs are positive values, the cost of

a path will always be a positive value. The shortest path between S and G is the

path of minimum cost among all possible paths. A* performs an informed graph

search, by computing for each node being explored the function f (x) = c(x) + h(x),

where c(x) is the current cost from S to node x, and h(x) is the heuristic that esti-

mates the optimal cost of the path from x to G [Hart, Nilsson, and Raphael, 1968].

When dealing with maps, h(x), can be computed as the Euclidean distance between

the position of the center of node x, and the position of the center of node G. With

this heuristic, A* can always find the optimal path, which is the path of minimum

distance.

Each level of the hierarchy Lx, x > 0, is represented by a new graph Gx which is

created by merging µ connected nodes from Gx−1 (the value of µ is decided by the

user). The new graph Gx = (Nx, Ex), consists of a set of nodes Nx = 〈n0
x, n1

x, ..., nm
x 〉,

where each node in Gx is a subgraph of µ connected nodes from Gx−1, so that ni
x =

〈nj
x−1, nk

x−1, ..., nl
x−1〉. Edges Ex in Gx are the subset of edges from Gx−1 that connect

two nodes ns
x and nd

x, where s 6= d.

68 Chapter 3. Hierarchical Pathfinding for Navigation Meshes.

FIGURE 3.1: Example of HNG with two levels and µ = 4. The or-
ange circles and discontinuous links represent the temporal nodes
and edges created after linking Start and Goal points to the HNG.
This temporal graph is where the HNA* runs [Pelechano and Fuentes,

2016b].

Definition 3.3.1. An Inter-edge, ιsd
x , in Gx is an edge eij from Gx−1 that connects two

nodes ni
x−1 and nj

x−1, such that ni
x−1 is inside ns

x, nj
x−1 is inside nd

x, and s 6= d.

For those edges eij from Gx−1 that connect two nodes ni
x−1 and nj

x−1, such that

both ni
x−1 and nj

x−1 are inside ns
x, they become internal edges of node ns

x. Therefore,

there is no loss of connectivity between Gx−1 and Gx, since all the set of edges in

Ex−1 are now either internal edges of nodes ns
x in Gx or inter-edges in Gx.

These concepts are shown in Figure 3.1. In the case of L1, the merged nodes from

L0 are polygons of the navigation mesh. Figure 3.2 shows an example of a simple

navigation mesh from level L0 to L3. Colors are used to represent nodes at each

level, so we can appreciate how each navigation mesh polygon turns into a node at

L0, and then several connected polygons from L0 are merged in one larger node at

L1, and similarly for L2.

The graph Gx contains a partition of Gx−1, with nodes at Lx being groups of

adjacent nodes from L(x − 1), and edges Ex being a subset of the edges of Ex−1.

Each node nx can be traversed by finding an internal path between a pair of inter-

edges. Such internal paths are represented by a sequence of polygons and can be

pre-computed and stored.

Definition 3.3.2. An Intra-edge, π
s(dk)
x = 〈p0, p1, ..., pk〉, is a sequence of polygons

3.4. The HNA* algorithm 69

from G0 that represent the optimal path to traverse a node ns
x between two inter-

edges ιsd
x and ιsk

x . Therefore, π
s(dk)
x = optimalPath(ιsd

x , ιsk
x). Its weight is computed as

the sum of costs of the edges eij along the path, c(πs(dk)
x) = c(e01) + c(e12) + ... +

c(e(k−1)k), where eij is the edge between nodes pi and pj.

A node ns
x will have an intra-edge for each pair of inter-edges. In order to find a

high level path, we need a Hierarchical Navigation Graph, HNGx = (V ′x, E′x), which

captures the connectivity of Gx given by the relationships between inter-edges and

intra-edges. In HNGx, the vertices are all the inter-edges in the partition represented

by Gx, V ′x = 〈ιsd
x , ιdk

x , ..., ιlmx 〉, and the edges, E′x are intra-edges, π
d(sk)
x connecting each

pair of inter-edges, for which a path exists.

Note that HNGx maintains the connectivity of the navigation mesh, but in a more

compact representation, where only some edges are kept as nodes in HNGx (those

inter-edges, which depend on the hierarchical level L and the merging factor µ), and

the shortest paths at L0 between those nodes are precomputed as intra-edges. There-

fore HNGx is built in a way that guarantees that the connectivity between polygons

at L0 is kept regardless of the hierarchical configuration.

If a path, P0 = 〈pS, p1, p2, ..., pG〉, exists at G0 , then there will be a path at

level Lx. Computing pathfinding in HNGx gives as a result the path Px(S, G) =

〈πS
temp, π

s(dk)
x , π

k(sq)
x , ..., π

r((m−1)m)
x πG

temp〉. Px(S, G) is the high level path. The tempo-

ral paths, πS
temp and πG

temp, were created during the connect S and G steps, which

computes a path at level L0 for the subgraph represented by the high level node

S, and similarly for G. Therefore πS
temp = 〈ps, p0, p1, ..., pn〉 where pn is a polygon

with one of the edges being the inter-edge that connects pn with the first polygon in

π
s(dk)
x . Extracting the sequence of polygons from each intra-edge π

i(jk)
x we obtain the

full sequence of polygons to traverse the navigation mesh between S and G (Proof

in Appendix A).

3.4 The HNA* algorithm

The focus of this chapter consists of solving the bottleneck that appears in HNA*

when inserting start (S) and goal (G) positions into the high level abstraction graph.

Before explaining the details of our approach, we would like to remind the reader

70 Chapter 3. Hierarchical Pathfinding for Navigation Meshes.

FIGURE 3.2: From left to right we can see a simple map at L0, L1 and
L2. The HNG has been built with µ = 3. Note that colors are used to
identify nodes in each level, and the overlapping of a node in L1 with
colored nodes in L0 visually identifies which nodes in L0 are merged
to form a node in L1 and similarly between L1 and L2. White dotted
lines indicate portals at L0, red dotted lines in L1 indicate inter-edges
(connections between nodes at L1), and the same applies for L2 (on
the right hand side). Finally, black arrows in L1 and L2 indicate intra-
edges (pre-computed A* paths to cross a high level node from one
inter-edge to another). HNG consists of the set of vertices represented
by red dots (one per each inter-edge), and the set of edges represented

by black arrows (one per each intra-edge)

the origin of this problem. A hierarchical navigation mesh consists of several layers,

where a node of a higher level contains a group of merged nodes from a lower level.

Finding a path in this representations consists of four steps (as illustrated in Figure

3.4):

• (1) Insert S and G.

• (2) Find path at high level.

• (3) Extract sub-paths (stored from an off-line phase).

• (4) Delete S and G from high level graph.

In the first step, two given S and G points (as start and goal positions) are in-

serted in the geometry at the lowest level (L0) of the hierarchy and then higher lev-

els of the hierarchy recursively are created by corresponding nodes at each higher

level L. Both S and G points also are inserted temporally in the higher level of the

hierarchy graph GL as ns
aux and nG

aux.

In order to connect nS
aux and nG

aux to the higher level graph GL, a path needs to

be computed from S to each inter-edge at the higher level node nS
l which contain S.

Each node at the higher level contains a subset of the nodes from the lowest level (L0)

at the corresponding level L. All the paths between a given start point S and each

3.4. The HNA* algorithm 71

inter-edge are computed to build a temporal intra-edge as a link with the higher level

graph Gl . Similarly for a goal point G, all the paths between G and the inter-edges

at level L are computed to build temporal intra-edges that link G to the higher level

graph. The performance of this step depends on the computational cost of comput-

ing all the intra-edges for S and G. The original HNA* used the A* algorithm to find

all the shortest path between S and G to each inter-edges containing S and G points,

and it run those searches sequentially in the CPU.

In the second step, once both S and G have been temporally linked to the higher-

level graph GL, pathfinding is calculated by the A* algorithm in the hierarchical

navigation graph (HNG) to find the path from nS
aux to nG

aux. The calculated path at

the level i of the hierarchy results in the following sequence:

ie(ns
aux − v1

i), v2
i , v3

i , ..., vm
i , ie(vm

i − nG
aux) (3.1)

Where ie(ns
aux − v1

i) contains the sequence of the nodes at the lowest level of the

hierarchy (L0) that appear in one of the temporal intra-edges added when linking S

with the first high level node of the path v1
i . And similartly, ie(vm

i − nG
aux) contains

the sequence of nodes at the lowest level of the hierarchy (L0) that appear in one of

the temporal intra-edges added when linking G with the first high level node of the

path vm
i . Note that the sequences ie(ns

aux − v1
i) and ie(vm

i − nG
aux) where calculated in

step one of HNA*.

In the third step of HNA*, the intra-edges of each node in the sequence of nodes

〈v1
i , v2

i , ..., vm
i 〉 which were part of the optimal path at level i, are extracted. The final

sequence of connected intra-edges is the optimal path from a given S and G points at

level 0.

In the final step of HNA* (step 4), the temporal nodes nS
aux and nG

aux, and their

temporal intra-edges are deleted from the graph to recover the initial HNG.

Algorithm 1 shows the pseudocode of HNA*, and figure 3.3 illustrates the 4 main

steps of HNA*.

Running experimental tests with the original HNA* [Pelechano and Fuentes,

2016b] it was observed that for certain configurations of the hierarchy there was

72 Chapter 3. Hierarchical Pathfinding for Navigation Meshes.

Algorithm 1 Find Path with HNA*

1: procedure FINDPATHHNA*(S, G, L)

2: if L = 0 then

3: path← FindPathA∗(S, G, 0)

4: return path

5: nS
L ← getNode(S, L)

6: nG
L ← getNode(G, L)

. Step 1: Connect S and G at level L:

7: linkNodeToGraph(L, nS
L)

8: linkNodeToGraph(L, nG
L)

. Step 2: Find path between S & G nodes at level L:

9: tempPath← f indPathA∗(S, G, L)

. Step 3: Extract subpaths (intra-edges):

10: for highNode ∈ tempPath do

11: path← path + getIntraEdges(highNode, L− 1)

. Step 4: Remove temporal nodes:

12: deleteTempNodes(nS
L, nG

L)

13: return path

3.4. The HNA* algorithm 73

FIGURE 3.3: From left to right we can see the 4 steps of HNA* at L1.
Step 1 connects S and G to the HNG by creating temporal connec-
tions between S/G and the inter-edges of the high level node (yellow
arrows). Step 2 computes A* at the HNG (highlights the resulting
path). Step 3 extracts the intra-edges which contains the sequence of
polygons from L0. Step 4 removes S/G and the temporal connections

to recover the original HNG at L1.

a large performance boost, However, there were certain configurations for which no

benefits were observed when running the hierarchical search, and instead there was

a performance drop. Experimental studies allowed the previous paper to discover

that the source of the problem was the increment of the number of inter-edges per

node, which had an impact on the performance of inserting S and G.

So, the bottleneck of HNA* appears in step 1, since it is necessary to compute

A* from S and G to each inter-edge in their corresponding high level node. This cost

increases rapidly with the number of inter-edges. And the number of inter-edges in-

creases as we add more levels to the hierarchy or merge a larger number of polygons

between levels of the hierarchy (for more details we refer the reader to the original

paper [Pelechano and Fuentes, 2016b]). This effect has a negative impact on the over-

all performance of HNA* as it puts an upper limit on the performance benefits of the

algorithm. Figure 3.5 and 3.6 show an example where the number of inter-edges for a

high level node is so large that connecting S and G would be more computationally

expensive than simply running A* between S and G at L0.

In this chapter we study in depth the problem to include a mathematical formu-

lation of the source of the problem and include a theoretical upper bound for the

performance in section 3.4.1.

The purpose of our work is to build a model that can handle general navigation

meshes, without limitations on the implementation or cell shape (triangle, quads, or

convex polygons). Our solution works with any NavMesh, and pathfinding over

the hierarchy is currently done with A*. However, it is not limited to a specific A*

74 Chapter 3. Hierarchical Pathfinding for Navigation Meshes.

FIGURE 3.4: Pathfinding computation: S and G are inserted and
linked to their partitions at level 2 by calculating shortest paths to
each portal in their respective node(a). Paths are calculated at level 2
(b), and then intra-edges are extracted from lower level 1 (c) and the

final path is obtained for level 0 (d) [Pelechano and Fuentes 2016].

implementation, and thus an alternative pathfinding algorithm could also be tested.

This chapter extends the original HNA* [Pelechano and Fuentes, 2016b] by pre-

senting three methods to solve the bottleneck of the Start/Goal connection step. The

first one is based on doing further pre-computation and storing additional data that

can be rapidly queried during simulation time, the second and third ones are based

on exploiting parallelism to compute several connecting paths simultaneously (first

on the CPU and then on the GPU).

3.4.1 Theoretical upper bound on the number of inter-edges

Each node ni
L in level L is created by merging µ nodes of level L − 1. For the first

level, L1, of the HNG, ni
1 is created by merging µ nodes of L0, which are the polygons

in the navigation mesh. Each polygon has s sides, so we can work with triangular

meshes when s = 3, but also with convex polygons of 4 or more sides. Each side of a

polygon can either be a portal (edge between two walkable polygons), or an obstacle

edge (edge with an adjacent obstacle or the limits of the map).

3.4. The HNA* algorithm 75

FIGURE 3.5: Example scenario, where connecting S and G becomes a
bottleneck due to the large number of inter-edges.

When µ polygons are merged to form a node ni
1 (node i in Level 1 of the HNG),

then some portals will be internal to ni
1 (portals between two polygons that belong

to the same high level node, ni
1), while others will connect a polygon in ni

1 with a

polygon in nj
1 (with i 6= j). Those portals connecting different nodes in L1 will be-

come inter-edges of ni
1. For the purpose of obtaining an upper bound on the number

of inter-edges per node, we will consider all polygon edges to be portals (this would

only be possible if we had a navigation mesh with all polygons having s adjacent

walkable cells, but in reality some of those edges will be adjacent to obstacles and

thus cannot turn into inter-edges).

To compute the upper bound number of inter-edges for L1, I(1,µ), we need to con-

sider the following facts: (1) Merging µ polygons of s sides each to generate ni
1,

means that we have a total of s · µ edges. (2) Only edges that are not interior to ni
1

can become inter-edges, therefore we need to remove those edges that were used for

the merging. Merging µ polygons removes at least 2(µ− 1) edges (one for each poly-

gon being merged and assuming only one shared side). Note that for µ > 2 there

could be even more, but since we are computing the upper bound of the number

of inter-edges we will be conservative and assume the minimum possible number of

removable edges. Therefore we obtain that the number of inter-edges for a node in

L1 can be computed with equation 3.2.

I(1,µ) = sµ− 2(µ− 1) = µ(s− 2) + 2 (3.2)

76 Chapter 3. Hierarchical Pathfinding for Navigation Meshes.

FIGURE 3.6: Performance results for city island (up) and the serpen-
tine city scenario(down) [Pelechano and Fuentes, 2016b].

This equation shows that the number of inter-edges for L1 increases linearly with

the value of µ, as we had observed empirically in our previous work [Pelechano and

Fuentes, 2016b].

Similarly, we can compute the number of inter-edges for a node ni
x in level x of

the hierarchy Lx, by merging µ nodes ni
x−1. Following the same logic, inter-edges of

level (x − 1) will become inter-edges of level x if they belong to the border between

two different nodes at level x.

I(x,µ) = µI(x−1,µ) − 2(µ− 1) (3.3)

Which can be written as (proof in Appendix B):

I(x,µ) = µx(s− 2) + 2 (3.4)

Equation 3.4 shows the upper bound for the number of inter-edges in a node at

level x. Therefore, as we build higher levels in the hierarchy, the number of inter-

edges increases exponentially. This trend was already observed through experimen-

tal analysis in [Pelechano and Fuentes, 2016b].

It is important to note that the number of portals will be smaller than s since some

of the polygon sides will be obstacles. Moreover, the MLkP method merges nodes

3.5. New insert S and G approaches 77

minimizing the total number of inter-edges. Therefore, in practice this upper bound

is never reached. However, it proves the impact on the number of inter− edges per

node at level x, with respect to µ and x. In the original HNA* algorithm, connecting

S and G with the n + m inter-edges (n for S and m for G) was done as n + m sequen-

tial calls to the A* algorithm. Thus the cost of such step could become prohibitive

for certain configurations. With the two alternative approaches presented in this

chapter, we are drastically dropping that cost, by either using additional storage or

performing the S/G connection step as n + m parallel computations of A*.

3.5 New insert S and G approaches

In this section, we present three alternative solutions to solve this step and we carry

out a quantitative evaluation of their advantages and limitations. The first solution

focuses on storing further data, while the other two propose parallel implementa-

tions in both CPU and GPU.

3.5.1 Pre-calculated connecting paths (PCCP)

The simplest way to solve this problem consists of pre-storing further information

to speed-up the connection step. We can calculate the A* path from a point p in each

polygon at level 0 (L0 which corresponds to the original navigation mesh) to the

inter-edges that appear in the higher level node of the hierarchy (in L# where # rep-

resents the number corresponding to the highest level in the hierarchy). Therefore

during the on-line phase it is only necessary to determine which polygon of L0 con-

tains S, and extract the set of paths that connect p with the high-level graph without

the need to run A* between p and each inter-edge (from now on, since the algorithm

is the same for both S and G, we will only refer to S).

Therefore the method includes an off-line and an on-line phase. In the off-line

phase, the center point pc of each polygon at L0 is calculated and the shortest paths

and cost from pc to the inter-edges in L# are calculated using the A* algorithm and

stored in memory using a MultiMap hash table. Table 3.1 shows an example of such

a table. This table has for each cell, one entry per inter-edge, with the Path and Cost

information returned by A*. The Path stores the sequence of polygon IDs at L0 that

the agents will have to walk through to go from that cell to the corresponding inter-

edge. Cost indicates the length of the path from the center of the cell to the inter-edge.

78 Chapter 3. Hierarchical Pathfinding for Navigation Meshes.

Connects to indicates the high level node reachable with that path. In this particular

example, there are 3 inter-edges for polygon 18, and thus for entry polyID=18 we can

find 3 alternative paths with their corresponding cost. Note that one of the entries

for polygon 17 does not show any path for one of the inter-edges, because one of its

segments is already an inter-edge. These paths would be the temporal connecting

edges with the high-level graph (HNG) in order to compute A* at the higher level of

the hierarchy during the on-line phase of the algorithm.

TABLE 3.1: Structure of MultiMap for some example nodes in Figure
3.7.

Polygon Path Cost connects to
p10 13-16 12.5 n1

1

p10 12-11-14 16.3 n3
1

p17 2.7 n2
1

p17 22-23-21-19 22.8 n5
1

p17 22-23-21-19 21.3 n5
1

p18 20-15 15.3 n2
1

p18 20-29 11.4 n4
1

p18 24 4.9 n1
1

FIGURE 3.7: Section of the example map for L1 with µ = 6. On the
left, map at L0 with numbers indicating polygon IDs. On the right,

L1 of the HNG with numbers indicating node IDs at L1.

Algorithm 7 shows the off-line phase of our method. For navigation meshes, it

is necessary to compute the exact path from the center of each polygon, since we

cannot assume that the shape and size of all cells is the same as it happens with 2D

3.5. New insert S and G approaches 79

regular grids. It is important also to note that center points are computed simply

to obtain estimated distances to inter-edges, since the real S/G points could lie any-

where in the polygon. However this does not imply that the local movement of the

agent has to cross the center point. Agents are simply steered towards the portal

connecting to the next cell in their paths, without necessarily going through the cen-

ter. Since our navigation mesh guarantees that all cells at L0 are convex, then paths

are free of collisions against the static geometry and collisions against other moving

agents can be handled through steering techniques [Pelechano, Allbeck, and Badler,

2007].

During a path search, HNA* needs to find the node containing S and connect it

to the high-level graph. The algorithm checks the ID of the polygon containing S,

obtains its center position and extracts the temporal edges from the MultiMap table

containing PCCP. We thus simplify the connect step with a query for the stored paths

of nodes S and G as opposed to computing A* sequentially for each inter-edge of the

node nS
(node of level # containing S) and nG

.

FIGURE 3.8: Center of each polygon in level 0 computed for compu-
tation and storage of shortest path to each inter-edge.

80 Chapter 3. Hierarchical Pathfinding for Navigation Meshes.

FIGURE 3.9: Inter-edges of each polygon in level 1 of hierarchy

3.5.2 Parallel Search on CPU

From a conceptual point of view, the problem of connecting S and G to the high-

level graph can be run in parallel as there are no inter-dependencies between path

searches. It should be thus possible to compute simultaneously all connecting paths

between S/G and the corresponding inter-edges. Such parallel computation can be

done either on the CPU or the GPU.

To exploit the parallel hardware architecture in depth, the algorithm should be

adapted to run concurrently using multiple threads. The algorithm should be changed

to use multi threading, shared memory access, and achieve concurrency controls.

The connecting S and G step is a highly parallelizable problem, as we can simply run

each A* search in a different thread. For the adoption of A* using multiple threads,

some improvements are required in the basic algorithm. In order to find a path from

S/G in a polygon to their corresponding inter-edges using multiple threads per poly-

gon, we have used N threads concurrently to find an optimal path where N = n+m

with n being the number of inter-edges in nS
and m the number of inter-edges in nG

.

These threads work concurrently so that each thread calculates the optimal path

from S or G to one of the inter-edges in the corresponding node nS
or nG

. For ex-

ample, if we have a node with 4 inter-edges, then we will have 4 threads where each

thread works individually to find an optimal path from S or G to a specific inter-edge.

Algorithm 3 shows a group of threads is created to carry out such computation. This

3.5. New insert S and G approaches 81

Algorithm 2 Calculate Connecting Path

1: procedure CALCULATE_CONNECTING_PATH()

2: N ← NumO f Polygons . in L0

3: C ← NumO f Cluster . in L1

4: for i ∈ [1..N] do

5: SId← GetPolygonID[i]

6: S← GetPolygonCenterPos[i]

7: for k ∈ [1...C] do

8: CId← InterEdgeID[k]

9: if SId = CId then

10: G ← InterEdgePos[k]

11: {PolyId, Path, Cost} ← Astar(S, G)

12: SavePCCP(PolyId, Path, Cost)

13: end If

14: end for

15: end for

algorithm is run for both S and G points. Our implementation uses the Boost library

[BOOST 2017].

Algorithm 3 Thread Definition

1: procedure GET_PATH

2: N ← NumO f PolygonInterEdgs(i)

3: boost::thread_group grp

4: for j:=1 to N do

5: grp.create_thread(boost::bind(LinkToGraph,this,N))

6: end for

7: grp.join_all()

8: End

3.5.3 Parallel search on GPU (CUDA HNA*)

The CPU usually contains several highly optimized cores for sequential instruction

execution, while the GPU typically contains thousands of simpler but more efficient

cores that are good at manipulating different data at the same time. In addition, the

82 Chapter 3. Hierarchical Pathfinding for Navigation Meshes.

FIGURE 3.10: GPU architecture; (a) CUDA hardware interface, (b)
CUDA software interface

GPU has a memory system which is independent of that of its CPU. Such a design

provides a higher bandwidth for accessing the global memory. In other words, cores

of a GPU can retrieve and write data from/to the global memory much faster than a

CPU [Zhou and Zeng, 2015].

When several paths are being calculated in parallel in the multi thread imple-

mentation, the Binary heap used for computing A* can become a bottleneck because

it stores the information in local memory. The A* search algorithm usually requires

many accesses to the global memory (especially in big scenarios) for storing and re-

trieving nodes to/from both the open and the closed lists. The A* algorithm also

needs higher global memory bandwidth which can lead to a faster expansion rate

during A* search.

In order to overcome this weakness and speed up the search process, we decided

to use the GPU shared memory facility. All the required data is stored into shared

memory before any computation takes place. We thus benefit from using the shared

memory which is much faster than local and global memory, because it is on-chip

memory. Shared memory is allocated per thread block, so all threads in the block

have access to the same shared memory. We have used the CUDA platform in or-

der to implement our search algorithm [NVIDIA. CUDA 2017]. CUDA is a parallel

computing platform and application programming interface (API) model created by

Nvidia. Figure 3.10 shows GPU and CUDA architecture.

3.6. Experimental Results 83

A program designed to run on the GPU is called a kernel, and in CUDA the level

of parallelism for a kernel is defined by the grid size and the block size [Nickolls

et al., 2008]. One of the most important factors that can have an effect on parallelism

performance is the degree of parallelism (DOP), which in our case corresponds to the

number of inter-edges N (counting for both nodes of the high level graph containing

S and G). We have defined a kernel with one block for the polygon containing S and

another for G, plus n or m threads per block respectively. Algorithms 4 and 5 show

our CUDA parallel method. The first argument in the kernel execution configuration

specifies the number of blocks in the grid, and the second specifies the number of

threads in a block.

Algorithm 4 Thread Definition

1: procedure PARALLEL_FINDPATH

2: N ← NumO f PolygonInterEdgs(i)

3: CudaMalloc(Device Data)

4: CudaMemcpy(Device Data, cudaMemcpyHostToDevice)

5: Findpath «<1, N »>(node_i_data , Device Data) . Kernel function

6: CudaMemcpy(Host Data, cudaMemcpyDeviceToHost)

7: End

Algorithm 5 Kernel Definition

1: procedure PARALLEL_FINDPATH

2: —global—void FindPath(node_i_data)

3: —shared—Piority_Queue, device data;

4: int t = blockIdx.x*blockDim.x + threadIdx.x;

5: Astar_FindPath(t, node_i_data , Device Data);

6: —syncthreads();

7: End

3.6 Experimental Results

In this section we present the results achieved in terms of performance, but also

discuss the limitations of each approach. All methods described in this chapter have

been implemented using C++ and CUDA, with an Inter Core i7 Cpu @3.5 Gz, 1 MB

L2 cache and 8MB L3 cache, 16 GB RAM. We have used an Nvidia GTX 420 with 2.4

GB off-chip global memory and 2496 CUDA core.

84 Chapter 3. Hierarchical Pathfinding for Navigation Meshes.

FIGURE 3.11: Different scenarios with their corresponding number
of triangles in the mesh. A: City Island (110.3K), B: Serpentine City
(135.1K), C: Medieval City (774.7K) and D: Big Tropical scenario

(239.1K).

3.6.1 Game world geometry

Typically the world geometry in a game is stored in a structure called a map. This

geometry is given as a polygon soup and pathfinding can be computed over the

map which is simply an abstract representation of the walkable space [Graham, Mc-

Cabe, and Sheridan, 2015]. Generally, in order to reduce the search space of the game

world for pathfinding, a game map is broken down and simplified. The pathfinder

then uses this simplified representation of the map to determine the best path from

the starting point to the desired destination in the map [Botea, Müller, and Schaeffer,

2004]. One of the most common forms of simplified representations is the Naviga-

tion Mesh which is used for example in the Recast Navigation tool [“Recast” 2017].

In order to evaluate our methods, we have used several maps with different sizes

(see Figure 3.11) for the purpose of running a fair comparison we have used the

same maps from the original HNA* paper [Pelechano and Fuentes, 2016b]).

3.6. Experimental Results 85

Map Name Geometry NavMesh
Triangles # Poly

Serpentin City 135.1K 3.9K
City Island 110.3K 5.5K
Medieval City 774.7K 16.9K
Tropical Island 239.1K 12.7K

3.6.2 Error and memory usage in PCCP

As we expected, the pre-calculated paths method (PCCP) achieves the best perfor-

mance. However, it requires additional memory and also introduces a small offset

between the real position of S/G and the center position of each polygon. Therefore

we need to measure the impact of both memory and offset in the results obtained.

Figure 3.12 shows the memory usage in 5 different scenarios of a variety of sizes

(shown as number of triangles in the original mesh).

0

10

20

30

40

50

60

Dungeon Serpentine Island City Big Tropical Medieval City

10.1k 135.1k 110.1k 239.1k 774.7K

Si
ze

 (
M

B
)

Scenarios

Memory Usage

FIGURE 3.12: Memory usage in 5 different size scenarios.

Memory usage increases with the size of the scenario, as it requires to pre-compute

and store local connecting paths for each cell in the navigation mesh (Figure 3.12).

The allocated memory for the Dungeon scenario with 119 polygon is 2.9 MB while

the allocated memory for the Medieval City scenario with 16,867 polygons is 49.6

MB. Memory could be further reduced by storing only the next cell as opposed to

the whole path in the hash table. However, this would require further accesses to

the hash table, thus reducing performance during online pathfinding. In any case,

the memory usage in PCCP is insignificant for our tested scenarios, so these results

confirm that PCCP can be a simple yet powerful way of eliminating the bottleneck

of connecting S and G in the original HNA* algorithm. Also note that this informa-

tion depends on the number of inter-edges in each cell, and it is meant to be used

86 Chapter 3. Hierarchical Pathfinding for Navigation Meshes.

for as many path searches as needed. Therefore, memory size is independent of the

number of path searches being computed during the online phase of the algorithm.

In PCCP we have computed paths and costs from the center of each polygon to

the inter-edges of its cell and stored them in a hash table. When inserting the new S

and G points in any location of a polygon, the algorithm queries the hash table for

paths with the IDs that correspond to those polygons containing S and G. Undoubt-

edly this introduces an offset between the center positions of the polygons and the

real S and G positions. However, this offset represents only a marginal error when

compared to the total length of the path (in most cases, it simply adds a small offset

at the beginning and at the end of the total path). The reason is that S and G will

not necessarily be located at the center of the cell, and yet the HNA* search is done

assuming that they are. However, it is also important to emphasize that this offset

simply affects the global path computation, and not the local path, as agents are not

forced to walk through the center points (See figure 3.13).

FIGURE 3.13: (a) Hierarchical representation at level L0, (b) Hierar-
chical representation at level L1 with the path pre-computation from
the center of the polygon to all inter-edges, (c) Final paths computed

between the Start and Goal points.

Figure 3.14 shows the difference in path length between the proposed pre-calculated

path method (PCCP) and the original HNA* method. For this figure, 100 random

S/G position were used to compute paths with PCCP and HNA* in the Medieval

City scenario that appears in Figure 3.11c. The horizontal axis shows the 100 paths

sorted in ascending order based on the distance between S and G. Our experimental

results show a small impact on the total length of the path (3% on average for paths

3.6. Experimental Results 87

over 100m, and 5% on average for shorter paths).

FIGURE 3.14: Difference in the total path length between PCCP
HNA* and the original HNA*.

3.6.3 Performance results for PCCP

For the evaluation of this method we have used several 3D scenarios as shown in

Figure 3.11, with increasing numbers of cells in the original NavMesh and differ-

ent hierarchical configurations. To compare the overall computational time of our

pre-calculated paths method against HNA*, we have computed the average cost of

calculating 100 paths. Paths are computed for up to 3 levels in the hierarchy and

increasing values of µ = {2,4,6,8,10,15,20}, where µ indicates the number of nodes

merged from one level to the next one of the hierarchy. Results show that we can

achieve significant speed-ups for all configurations using PCCP, as opposed to the

original HNA* which suffered from a bottleneck in the connect step (in red).

For the City Island scenario, we can see in Figure 3.15-a1 the average cost of

performing A* in this scenario is 2.2ms (Note that A* is always computed on the

navigation graph at L0, and thus it is not affected by the hierarchy configuration).

Figure 3.15-a1 shows that the performance of the PCCP method at L1 is not signifi-

cantly faster than the original HNA*; this is due to the fact that at L1 the connecting

S and G step does not represent an important bottleneck as can be appreciated in

Figure 3.15-a2, and thus there is not a big difference between the two methods. The

strength of the pre-calculated paths (PCCP) can be observed for higher levels of the

88 Chapter 3. Hierarchical Pathfinding for Navigation Meshes.

0

0.5

1

1.5

2

2.5

2 4 6 8 10 15 20

Ti
m

e
(m

s)

Merged Node(µ)

Level 1 - City Island

Pre-Calc. path HNA* A* CUDA

0

0.5

1

1.5

2

2.5

P
re

-C
al

c.

H
N

A
*

C
U

D
A

P
re

-C
al

c.

H
N

A
*

C
U

D
A

P
re

-C
al

c.

H
N

A
*

C
U

D
A

P
re

-C
al

c.

H
N

A
*

C
U

D
A

P
re

-C
al

c.

H
N

A
*

C
U

D
A

P
re

-C
al

c.

H
N

A
*

C
U

D
A

P
re

-C
al

c.

H
N

A
*

C
U

D
A

2 4 6 8 10 15 20

Ti
m

e
(m

s)

Merged Node(µ)

Level 1 - CIty Island

connect

Extract

Astar

0

1

2

3

4

2 4 6 8 10 15 20

Ti
m

e
(m

s)

Merged Node(µ)

Level 2 - City Island

Pre-Calc. path HNA* A* CUDA

0
0.5

1
1.5

2
2.5

3
3.5

P
re

-C
al

c.

H
N

A
*

C
U

D
A

P
re

-C
al

c.

H
N

A
*

C
U

D
A

P
re

-C
al

c.

H
N

A
*

C
U

D
A

P
re

-C
al

c.

H
N

A
*

C
U

D
A

P
re

-C
al

c.

H
N

A
*

C
U

D
A

P
re

-C
al

c.

H
N

A
*

C
U

D
A

P
re

-C
al

c.

H
N

A
*

C
U

D
A

2 4 6 8 10 15 20

Ti
m

e
(m

s)

Merged Node(µ)

Level 2 - CIty Island

connect

Extract

Astar

0

5

10

15

2 4 6 8 10

Ti
m

e
(m

s)

Merged Node(µ)

Level 3 - City Island

Pre-Calc. path HNA* A* CUDA

0
2
4
6
8

10
12

P
re

-C
al

c.

H
N

A
*

C
U

D
A

P
re

-C
al

c.

H
N

A
*

C
U

D
A

P
re

-C
al

c.

H
N

A
*

C
U

D
A

P
re

-C
al

c.

H
N

A
*

C
U

D
A

P
re

-C
al

c.

H
N

A
*

C
U

D
A

2 4 6 8 10

Ti
m

e
(m

s)

Merged Node(µ)

Level 3 - CIty Island

connect

Extract

Astar

a1 a2

b1 b2

c1 c2

FIGURE 3.15: Performance results for the city Island scenario.

hierarchy. Figure 3.15-b1 and Figure 3.15-c1 show significant performance improve-

ments when compared against HNA*. These improvements can be seen in Figure

3.15-b2 and Figure 3.15-c2 where we have clearly managed to drop the cost of the

connecting S and G step. Compared to A*, PCCP provides its largest speedup (9.3x

faster) for L = 2 and µ = 10.

Results are similar for the Big Tropical Island (Figure 3.16). The average cost of

performing A* in this scenario is 1.7ms. At L1, there is not a large performance gain,

since the bottleneck of inserting S/G in HNA* is negligible. Our results show per-

formance gain for all the values of µ tested (µ ∈ [2,20]) at L1. The advantages of the

new implementation are noticeable for L2 and L3 after a specific value of µ. HNA*

had a performance of 2.06ms for L2 and µ = 20 and 9.9ms for L3 and µ = 10 while

PCCP HNA* obtained paths in 0.39ms for L2 and µ=20 (4.3x faster than A*), and

0.25ms for L3 and µ = 10 (6.8x faster than A*).

Similar results were obtained for the Medieval city scenario (A* performance of

3.6. Experimental Results 89

0

0.5

1

1.5

2

2.5

3

2 4 6 8 10 15 20

Ti
m

e
(m

s)

Merged Node(µ)

Level 1 - Big Tropical

Pre-Calc. HNA* A* CUDA

0
0.5

1
1.5

2
2.5

3

P
re

-C
al

c.

H
N

A
*

C
U

D
A

P
re

-C
al

c.

H
N

A
*

C
U

D
A

P
re

-C
al

c.

H
N

A
*

C
U

D
A

P
re

-C
al

c.

H
N

A
*

C
U

D
A

P
re

-C
al

c.

H
N

A
*

C
U

D
A

P
re

-C
al

c.

H
N

A
*

C
U

D
A

P
re

-C
al

c.

H
N

A
*

C
U

D
A

2 4 6 8 10 15 20

Ti
m

e
(m

s)

Merged Node(µ)

Level 1 - Big Tropical

connect

Extract

Astar

0

0.5

1

1.5

2

2.5

3

2 4 6 8 10 15 20

Ti
m

e
(m

s)

Merged Node(µ)

Level 2 - Big Tropical

Pre-Calc. HNA* A* CUDA

0
0.5

1
1.5

2
2.5

3

P
re

-C
al

c.

H
N

A
*

C
U

D
A

P
re

-C
al

c.

H
N

A
*

C
U

D
A

P
re

-C
al

c.

H
N

A
*

C
U

D
A

P
re

-C
al

c.

H
N

A
*

C
U

D
A

P
re

-C
al

c.

H
N

A
*

C
U

D
A

P
re

-C
al

c.

H
N

A
*

C
U

D
A

P
re

-C
al

c.

H
N

A
*

C
U

D
A

2 4 6 8 10 15 20

Ti
m

e
(m

s)

Merged Node(µ)

Level 2 - Big Tropical

connect

Extract

Astar

0

2

4

6

8

10

2 4 6 8 10

Ti
m

e
(m

s)

Merged Node(µ)

Level 3 - Big Tropical

Pre-Calc. HNA* A* CUDA

0
2
4
6
8

10
12

P
re

-C
al

c.

H
N

A
*

C
U

D
A

P
re

-C
al

c.

H
N

A
*

C
U

D
A

P
re

-C
al

c.

H
N

A
*

C
U

D
A

P
re

-C
al

c.

H
N

A
*

C
U

D
A

P
re

-C
al

c.

H
N

A
*

C
U

D
A

2 4 6 8 10

Ti
m

e
(m

s)

Merged Node(µ)

Level 3 - Big Tropical

connect

Extract

Astar

a1 a2

b1 b2

c1 c2

FIGURE 3.16: Performance results for the big tropical scenario.

0

1

2

3

4

2 4 6 8 10 15 20

Ti
m

e(
m

s)

Merged Node(μ)

Level 1 - MedieVal City

Pre-Calc. HPA* A* CUDA

0
0.5
1

1.5
2

2.5

Pr
e-
Ca
lc.

HN
A*

CU
DA

Pr
e-
Ca
lc.

HN
A*

CU
DA

Pr
e-
Ca
lc.

HN
A*

CU
DA

Pr
e-
Ca
lc.

HN
A*

CU
DA

Pr
e-
Ca
lc.

HN
A*

CU
DA

Pr
e-
Ca
lc.

HN
A*

CU
DA

Pr
e-
Ca
lc.

HN
A*

CU
DA

2 4 6 8 10 15 20

Ti
m

e(
m

s)

Merged Node(μ)

Level 1 - Medieval City

connect

Extract

Astar

0
1
2
3
4
5

2 4 6 8 10 15 20

Ti
m

e(
m

s)

Merged Node(μ)

Level 2 - MedieVal City

Pre-Calc. HPA* A* CUDA

0
1
2
3
4
5

Pr
e-
Ca
lc.

HN
A*

CU
DA

Pr
e-
Ca
lc.

HN
A*

CU
DA

Pr
e-
Ca
lc.

HN
A*

CU
DA

Pr
e-
Ca
lc.

HN
A*

CU
DA

Pr
e-
Ca
lc.

HN
A*

CU
DA

Pr
e-
Ca
lc.

HN
A*

CU
DA

Pr
e-
Ca
lc.

HN
A*

CU
DA

2 4 6 8 10 15 20

Ti
m

e(
m

s)

Merged Node(μ)

Level 2 - Medieval City

connect

Extract

Astar

0
2
4
6
8

10

2 4 6 8 10

Ti
m

e(
m

s)

Merged Node(μ)

Level 3- MedieVal City

Pre-Calc. HPA* A* CUDA

0
2
4
6
8

10

Pr
e-
Ca
lc.

HN
A*

CU
DA

Pr
e-
Ca
lc.

HN
A*

CU
DA

Pr
e-
Ca
lc.

HN
A*

CU
DA

Pr
e-
Ca
lc.

HN
A*

CU
DA

Pr
e-
Ca
lc.

HN
A*

CU
DA

2 4 6 8 10

Ti
m

e(
m

s)

Merged Node(μ)

Level 3 - Medieval City

connect

Extract

Astar

a1 a2

b1 b2

c1 c2

FIGURE 3.17: Performance results for the Medieval city scenario.

90 Chapter 3. Hierarchical Pathfinding for Navigation Meshes.

3ms) (Figure 3.17). The original HNA* method suffered from the insert S/G bottle-

neck after a specific value of µ. With 1.28ms in L2 and 3.29ms in L3 for µ = 15 while

PCCP HNA* had a computational time of 1.83ms (1.6x faster than A*) in L2 for µ =

20 and 1.76ms (1.7x faster than A*) in L3 for µ = 10, thus offering a speed-up for all

configurations.

3.6.4 Achieved Results of parallel search on the CPU

In order to evaluate our parallel CPU method, we have carried out experiments with

the same set of scenarios (Figure 3.11).

As explained earlier in this chapter, in parallel programming the performance of

the method depends on the degree of parallelism of the problem to be solved (DOP),

which in our case corresponds to DOP=N, with N being the number of inter-edges.

The number of inter-edges can rapidly increase with the number of levels in the

hierarchy and the number of merged nodes as shown in Figure 3.18 for the example

of L2.

As we can see in Figure 3.19 with increasing DOP (number of inter-edges in our

work) the total cost of our parallel CPU implementation reduces the cost of con-

necting S and G step, but it converges. This is due to the fact that even though the

increment of µ also increases the value of the DOP, the overhead of multi-threading

outweighs the gains achieved. Moreover, although the memory access is trivial in

the sequential version, with the parallel implementation, the threads have to share

memory which can take more time than for the sequential version.

As it is obvious from the results in Figure 3.19, the pre-calculated path and the

Multi-threads implementation are much faster than the original HNA* implemen-

tation on the CPU. However the pre-calculated path method still shows the most

efficient results. HNA* and parallel CPU method exhibit similar results for small

values of µ (i.e.while the number of inter-edges does not represent a bit bottleneck

in HNA*). However for larger values of µ, the cost of inserting S and G in HNA*

can become increasingly expensive compared to pre-calculated path method or CPU

parallel method. CPU parallel is more costly than pre-calculated because the binary

heap used to implement the priority queue of A* can turn into a bottleneck in Multi

thread implementations. The reason is that even though N (number of inter-edges

per polygon) threads run in parallel, when it comes to inserting values in the binary

3.6. Experimental Results 91

FIGURE 3.18: Average number of inter-edges per high level node for
L2 as the value of µ increases.

heap, only one thread can remain active and all the other threads have to wait.

FIGURE 3.19: Performance cost for inserting S and G step with the
parallel implementation on the CPU. Results shown the Medieval city

scenario using a hierarchy of 3 levels.

3.6.5 Achieved Results of Parallel Search on the GPU

To calculate the overall computational time of our CUDA parallel method and com-

pare it against the Pre-Calculated path (PCCP) and the original HNA* method, we

have once again computed the cost of calculating 100 paths in the same scenarios and

configuration (see Figures 3.15, 3.16 and 3.17. The CPU used in these experiments

is also an Intel core i7-4770 CPU@3.5Gz with 16GB global memory. The graphic

card (GPU) that we used was a single NVIDIA Geforce GTX 420 with 2.4GB off-chip

global memory and 2496 CUDA cores.

92 Chapter 3. Hierarchical Pathfinding for Navigation Meshes.

For the City Island scenario consisting of a NavMesh with 5,515 polygons, we

have tested the same levels and values of µ as in previous results. Figure 3.15-a1

shows that the average cost of performing A* in this scenario is 2.2 ms. Figure 3.15-

a1, for L1 of hierarchy and µ = [2, 20] the performance of Pre-calculated path method

is faster than both CUDA parallel method and HNA*, which CUDA outperforming

HNA*. As in previous experiments, the performance difference is not significant for

L1, but for L2 and L3 it becomes highly significant. The time of computing a path

for L2 and µ = 20 is down to 0.648ms, and for L3 and µ = 10 is down to 0.561ms for

CUDA and 0.411ms for Pre-calculated path method.

As we can see in the right column of Figure 3.15, CUDA has a slightly higher

cost when inserting S and G than the pre-calculated path. However the difference is

negligible while saving memory footprint and avoiding the offset between S/G and

the center point of each polygon.

Figure 3.16 shows the comparative results for the same configuration in the case

of the Big Tropical scenario. Similarly as for the previous scenario, the performance

differences are not relevant to L1, but show drastic improvements from L2 onward.

For instance, the performance of CUDA in L2 and for µ=20 drops to 0.659ms while

the performance of HNA* increases up to 2.058ms. However, the performance of

Pre-Calculated paths is still faster than CUDA in Level 2 with the time being 0.396ms

for µ=20.

Finally, we have obtained similar results for the Medieval city scenario (Figure

3.17) which consists of a NavMesh with 16,867 polygons. As in previous results, the

differences in performance results become noticeable from L2 onwards.

The right column shows that in HNA*, the time of connecting S and G points

increases up to 7.43ms in L3 for µ =10 whilst it drops to 0.14ms for CUDA, and

0.011ms for Pre-calculated path.

3.7 Conclusion

In this chapter we have studied the problems of pathfinding in large Scenarios for

hierarchical representations based on navigation meshes. Our results have provided

improvements over the basic HNA* algorithm. The problem with the original HNA*

3.7. Conclusion 93

method was very limiting, because it could not guarantee speed-ups for any config-

uration, and thus it required the programmer to test many configuration on a given

map to obtain the optimal one. This could be very time consuming and made it

difficult to incorporate any scenario into a game. The main concern of this chapter,

was thus to study the source of the connecting S/G problem, and to propose a theo-

retical formulation for both the hierarchical pathfinding problem and for the upper

bounds of the bottleneck. Once the source of the problem was found, we focused on

proposing and testing alternative solutions.

The first improvement that we have presented consists in the computation of

pre-calculated paths from the center of each polygon in L0 (lowest level of the nav-

igation mesh) to the inter-edges of the corresponding cell in the higher level of the

hierarchy. Those paths are then stored in a MultiMap hash table and can be accessed

efficiently during the on-line search.

Given the highly parallel nature of our problem, the second improvement that

we have implemented, consists in having a multiple threads version of the basic

HNA* algorithm on the CPU. In this implementation we have used threads in order

to calculate paths concurrently for each A* search between S/G and the inter-edges

of the high level node.

Finally our third approach consists in a parallel version of HNA* on the GPU us-

ing CUDA. To evaluate our different methods we have tested several 3D scenarios

with increasing numbers of cells in the their navigation mesh and different hierarchi-

cal configurations by increasing the number of merged polygons. Our results show

that both the Pre-calculated Paths method and the CUDA version are faster than the

original HNA* but Pre-calculated path method requires more memory usage than

others. For all tested scenarios, the performance improvements are not very signif-

icant for L1, but they become very relevant from L2 onward, as they eliminate the

bottleneck of HNA* which was the connect S and G step.

With the algorithms proposed in this chapter, we have eliminated the bottleneck

from HNA* and thus obtained hierarchical pathfinding algorithms that are suitable

for any navigation mesh and for any hierarchical configuration. We have achieved

94 Chapter 3. Hierarchical Pathfinding for Navigation Meshes.

high speed-ups for a much larger number of scenarios regardless of the configura-

tion. It is now up to the programmer to determine whether speed is the most critical

issue even if it requires increasing the memory footprint (PCCP method) or else it

is better to save memory by using parallel computation. In this second case, the

best results can be achieved by using the GPU, however our parallel CPU imple-

mentation could still be used in cases where it is not possible to use the GPU (either

because there is none or because it needs to be fully dedicated to rendering purposes

as it often happens in video games).

95

Chapter 4

Multi-agent parallel hierarchical

pathfinding in navigation meshes

(MA-HNA*)

4.1 Introduction

In the previous chapter we presented three methods to solve the original HNA*

bottleneck, and obtained a new version of HNA* that enhances performance for

any hierarchical configuration. Our first method relies on further memory storage,

and the other two use parallelism on either the CPU or the GPU. In this chapter

we propose a parallel implementation using our novel HNA* methods to handle

multi-agent pathfinding. Since finding path for each agent based on HNA* is com-

pletely independent to other agents, we could compute the path for each agent in

parallel. In this chapter, we consider the problem of concurrent Decentralized and

Non-communicating multi-agent path planning in which agents can act in parallel

at each time step with partial information and individual goals so that the problem

of synchronizing the movement of agents is not addressed.

In order to paralyze this computation, we have used GPU blocks and threads. In

this chapter we studies in depth the GPU architecture to maximize the parallel com-

putation abilities for combining HNA* with the multi-agents pathfinding problem.

Our experimental results show that we can compute over 500K paths simultane-

ously in real-time taking advantage of parallel computing using CUDA and HNA*,

with speed-ups above 15x faster than a parallel multi-agent implementation using

A*.

96
Chapter 4. Multi-agent parallel hierarchical pathfinding in navigation meshes

(MA-HNA*)

4.2 Problem formulation

The Multi-Agent Pathfinding problem (MAPF) is formalized as a graph G(V, E) and

one set of agents A = 〈(a0, s0, g0), (a1, s1, g1), ..., (an, sn, gn)〉, where si ∈ V is the start

node position for the agent ai and gi ∈ V is the goal node position for the agent ai.

A solution to the problem is a list of paths 〈P0...Pn〉 each of which takes the corre-

sponding agent from its start position to its goal position, where Pi includes a set of

nodes (si, n1, n2, ..., gi) where si, gi, nt ∈ V, that agent ai walked through. Each pair

of sequential nodes on the path should be connected by an edge, et ∈ E. In some

cases, there is a further constraint, which is that no agent may have in its path the

same node or edge as another agent at the same time step; therefore Pi(nt) 6= Pj(nt)

and Pi(et) 6= Pj(et), where et ∈ E and et is the edge that connects nt and nt+1. How-

ever, this constraint does not apply for the case of navigation meshes, since a cell is a

convex polygon where several agents could be walking by at any given time, and an

edge is the segment shared by two polygons which can also be crossed at any time

by several agents. Conflicts in those situations are sorted through the local move-

ment algorithm being used to steer agents from one point to another. Not having to

consider other agents’ trajectories during pathfinding, makes it easier to parallelize

the multi-agent pathfinding problem.

Every computed path is given a computational cost, 〈C0...Cn〉, which is computed

to be the sum of the cost of the moves (actions) taken by the agent on its path to reach

the goal location. The moves representing traversing cells, and it is calculated as the

distance from the center of one cell to the center of the next cell. Note that in naviga-

tion meshes where each cell corresponds to a convex polygon of different shape and

size, the cost of traversing portals can vary a lot from one cell to another. The cost

of a solution is the sum of the costs of all of the individual paths that comprise the

solution [Kraft, 2017].

4.3 Related work on Multi-Agent pathfinding

Modern video games require efficient pathfinding to support large numbers of agents

moving through expansive and increasingly environments. There has been many

works focusing on Multi-Agent Path Finding (MAPF). Bounded Multi-Agent A*

4.3. Related work on Multi-Agent pathfinding 97

(BMAA*) [Sigurdson et al., 2018] is a real time heuristic search algorithm for multi-

agent path-finding. In this method, each agent operates its own real-time heuristic

search and treats the other agents as moving obstacles. In this method, agents do

not share their path or their heuristic values with each other. In BMAA*, each agent

executes its individual copy of RTAA* algorithm.

Li et al [Li et al., 2019], proposed a LAMAPF method (MAPF for large agents

pathfinding) which is an adapted version of Conflict-Based Search (CBS), to solve

LA-MAPF, called Multi-Constraint CBS (MCCBS). The MCCBS adds multiple con-

straints instead of one constraint for an agent when it generates a high-level search

node.

To run searches for thousands of agents simultaneously, Caggianese et al. exploit

the fact that given a set of start and goal points, it is likely that the explored paths

share sub paths with other agents [Caggianese and Erra, 2012]. The method tries

to determine these shared sub paths by computing simultaneously all potential sub

path types inside the planning blocks and considering that the sub path should con-

verge toward the goal position. This method is thus limited to all agents sharing the

goal position.

Parallel computing for multi-agent pathfinding has also been used for other types

of navigation meshes, such as 2D regular grids [Garcia, Kapadia, and Badler, 2014],

and triangulations [Farias and Kallmann, 2019], where the approaches are strongly

dependent on the specific implementation of the grid or the triangulation. Therefore

neither solution can be easily applied to a general navigation mesh given as an input.

Some researchers have proposed methods based on parallelizing a single path

search (typically loosing path optimality just like with hierarchical approaches [Caggianese

and Erra, 2012]), whereas others have kept A* and applied parallelism to compute

multiple agents’ paths simultaneously. Most of the effort focuses on finding the

best way to distribute work and syncing tasks, to make the most of the GPU ker-

nels and threads, while managing correctly memory accesses. Caggianese and Erra

proposed a parallel version of A* using a grid map decomposition and CUDA, and

obtained results that run faster than a GPU implementation of Real-Time Adaptive

98
Chapter 4. Multi-agent parallel hierarchical pathfinding in navigation meshes

(MA-HNA*)

A* (P-RTAA*) [Caggianese and Erra, 2012]. Merrill et al. presented a parallelisation

of BFS (Breadth First Search) tailored to the GPU’s requirement for large amounts of

fine-grained, bulk-synchronous parallelism [Merrill, Garland, and Grimshaw, 2012].

Ortega-Arranz et al. presented a parallel implementation of Dijkstra’s algorithm,

which achieved between 13x and 220x speed up compared to the CPU sequential

Dijkstra’s algorithm [Ortega-Arranz et al., 2013]. Caggianese and et al. proposed an

A* implementation for the GPUs, based on planning block (P-BA*) and suited for

grid based maps [Caggianese and Erra, 2012]. First the search space is subdivided

into small regular regions called tiles and then a parallel search is performed.

The purpose of this chapter is to present a parallel implementation for multi-

agent pathfinding based on HNA*, in order to investigate the extent to which HNA*

can offer a performance boost for large crowds. Since we mentioned before, as both

the size of the environments and the number of autonomous agents increase, it be-

comes harder to obtain results in real time under the constraints of memory and

computing resources. The goal of speeding up pathfinding is to be able to run mul-

tiple path searches simultaneously in order to handle large number of crowds simu-

lation. To achieve this, we have proposed a parallel implementation for multi-agent

pathfinding based on the improved versions of HNA* explained in chapter 3). As

we discussed in chapter 3-section 3.6, our previous results showed that the paral-

lelization on GPU was much faster than CPU. So in the next sections we decided to

focus on the GPU version of the HNA* algorithm for multi-agent pathfinding. Fi-

nally we provide a thorough comparison of our results in terms of performance, and

run stress tests to determine the number of paths that can be computed in parallel

with our methods to handle multi-agent simulation.

4.4 Multi-Agent Parallel Pathfinding

As we mentioned before, the goal of speeding up pathfinding is to be able to run

multiple path searches simultaneously in order to handle crowd simulation. In or-

der to extend our system to handle large crowd simulation, it is necessary to run

multiple path searches simultaneously. Having agents compute paths in parallel is

an obvious way to speed-up pathfinding. Therefore one could simply use the basic

A* algorithm, but have as many agents computing paths in parallel as the computer

4.4. Multi-Agent Parallel Pathfinding 99

architecture allows. The interesting problem here is to determine whether the perfor-

mance boost of our hierarchical pathfinding algorithms would also benefit a parallel

multi-agent simulation.

Even with the hierarchical map representations, the problem at hand is highly

parallelizable, since we simply need all agents to have access to the hierarchy infor-

mation. This could be done by either storing it in shared memory or keeping local

copies for each agent. The trade-offs to explore are the access to share memory by

multiple entities, and the options for local memory based on size and access speed.

Note also that the connecting paths for both S and G steps of HNA* are completely

independent from each other, so we can still parallelize this step for all agents.

Considering the architecture of 1D CUDA grids and blocks, we have dedicated

N blocks (where N is the number of agents) and four threads per each block. The

purpose of those four threads is to handle the following steps of the HNA* algo-

rithm:

• Thread 1: Get the connecting edges for the Start position S (step 1 of HNA*).

• Thread 2: Get the connecting edges for the Goal position G (step 1 of HNA*).

• Thread 3: Handle synchronization tasks.

• Thread 4: Computes the high-level path, extracts intra-edges and deletes S and

G from the hierarchical navigation graph (HNG). Steps 2, 3 and 4 of HNA*

respectively.

where each step of HNA* is (see chapter 3 for more information):

• Step 1: Connect S and G with HNG.

• Step 2: Find path at level L.

• Step 3: Extract subpaths (intra-edges from the high level path).

• Step 4: Remove temporal nodes.

The maximum number of agents computing paths in parallel is limited by the

number of blocks that CUDA can run in parallel, which is 65,535. Inside each block,

we have 4 threads running. Note that thread 4 cannot start until threads 1 and 2

100
Chapter 4. Multi-agent parallel hierarchical pathfinding in navigation meshes

(MA-HNA*)

have finished connecting S and G to the inter-edges in the corresponding high level

node.

In order to perform step 3 of HNA*, we need to pre-compute and store the intra-

edges for all high level nodes. This information together with the high level nodes,

forms the hierarchical navigation graph (HNG) which needs to be available to all

agents during simulation time, and thus access to it should be as efficient as possi-

ble. In order to decide the best solution to handle the storage of such information,

we have tested both texture and local memory to evaluate which one allows faster

access. Texture and shared memory are both on-chip, which makes access to them

much faster than local and global memory. Texture memory shows a friendly cache

behavior when we perform several reads that are spatially close to each other [Liu,

Zou, and Luo, 2011]. Unlike traditional CPU caches that store sequential addresses,

the GPU texture memory is optimized for 2D spatial locality. In our experimental re-

sults we observed that access to texture memory was 1.2x faster than local memory,

therefore we decided to use texture memory for our implementation.

The details of our parallel multi-agent pathfinding method are shown in al-

gorithm 6. The next issue to study is the performance benefits of implementing

LinkNodeToGraph(L, polyId) using hash tables (section 4.4.1) or computing the con-

necting paths in parallel (section 4.4.2).

Note that as we have mentioned in chapter 3, section 3.6, the parallel CPU imple-

mentation of HNA* did not offer great benefits when compared to GPU, since the

CUDA implementation was much faster than the CPU paralellization. Therefore, we

decided to only use the PCCP and CUDA versions (GPU) to develop the multi-agent

pathfinding.

4.4.1 Parallel pathfinding with PCCP

As described in chapter 3, PCCP uses a hash table to store connecting paths from

the center of each polygon to the set of inter-edges in the corresponding high level

node. During the online phase, all agents are run in parallel. Each agent computes

its own high-level path, querying for both intra-edges and connecting paths for S and

G from texture memory. Therefore the LinkGodeToGraph method in lines 10 and 15

4.4. Multi-Agent Parallel Pathfinding 101

Algorithm 6 Multi-Agent HNA*

1: procedure MULTIAGENTHNA*(S,G,L)

2: AgentId← blockIdx.x;

3: if L = 0 then

4: path← FindPathA(S, G, 0)

5: return (AgentId, path)

6: end if

. Step1. Connect S and G in parallel at level L:

7: if (threadIdx.x = 1) then

8: SpolyId = AgentsData[AgentId][0]

9: nS
L ← getNode(S, L)

10: LinkNodeToGraph(L, SpolyId, nS
L)

11: end if

12: if (threadIdx.x = 2) then

13: GpolyId = AgentsData[AgentId][1]

14: nG
L ← getNode(G, L)

15: LinkNodeToGraph(L, GpolyId, nG
L)

16: end if

17: if (threadIdx.x = 3) then

18: syncthreadsCUDA()

19: end if

20: if (threadIdx.x = 4) then

. Step2. Find path between S & G notes at level L:

21: tempPath← f indPathA(S, G, L)

. Step3. Extract subpaths:

22: for highNode ∈ tempPath do

23: path← path + getIntraEdges(highNode)

24: end for

. Step4. Remove temporal nodes:

25: deleteTempNode(nS
L, nG

L)

26: end if

27: return (AgentId, path)

102
Chapter 4. Multi-agent parallel hierarchical pathfinding in navigation meshes

(MA-HNA*)

of algorithm 6, is performed with a query to texture memory where all connecting

paths were previously stored.

4.4.2 Parallel pathfinding with CUDA HPA*

The previous algorithm still required that some portion of the allocated memory

for HNA* algorithm was used to store the PCCP information. Since for very large

scenarios, the size of allocated memory could become a bottleneck, and computing

multiple paths simultaneously is highly parallelizable, we also propose a solution

that does not require additional memory other than the hierarchical graph and intra-

edges. This solution not only saves memory, but it also provides a more scalable

solution.

For the parallel implementation of the step connecting S and G, two threads are

dedicated to launch two child kernels (one to connect S and another one to connect

G with the HNG)

.

In order to launch the child kernels to connect S in parallel, we consider m 1D

blocks in the 1D CUDA grid where, m is the number of inter-edges of the polygon

containing S. For each block Bi (i ∈ [0, m]) we compute A* from S to inter-edge iei

(and similarly for G). All connecting paths to S and G are stored in shared memory

as temporal edges of the HNG before computing the high-level path.

So the connect step for S and G will take as long as the longest of the A* searches

to link S or G to an inter-edge. Note that this A* search is computed over a small

section of the navigation graph. For example, for the case of connect S, this section

corresponds to a set of connected polygons 〈pi, pi+1, ...pµ〉, such that ∀pj ∈ ns
x, and

S ∈ ns
x. The number of polygons being limited by the user input value µ, and the

hierarchy level Lx. The total number of connects S/G running in parallel is thus:

ParallelConnectsSG =
N

∑
i=0

(m(i) + n(i)) (4.1)

The maximum value of N that can run in parallel is 65,535, and also the maxi-

mum number for each agent of (n + m) ≤ 65, 535 So, in this new method, the call

LinkNodeToGraph (lines 10 and 15 of algorithm 6), to connect S and G to the inter-

edges of nS
L and nG

L respectively, is performed by a kernel pathfinding search (A*),

running all in parallel inside each block.

4.5. Experimental Results 103

FIGURE 4.1: Time taken in ms to compute the corresponding num-
ber of agent’s paths in parallel for A*, PCCP and CUDA-HNA. From
1K to 500K agents computing paths simultaneously under 6.5ms for

PCCP and 7.2ms for CUDA.

4.5 Experimental Results

In this section we present the results achieved in terms of performance, but also dis-

cuss the limitations of each approach. All methods described in this chapter have

been implemented using C++ and CUDA, with an Inter Core i7 Cpu @3.5 Gz, 1

MB L2 cache and 8MB L3 cache, 16 GB RAM. We have used an Nvidia GTX 420

with 2.4GB off-chip global memory and 2496 CUDA core. In order to implement

and evaluate our methods, we have used several maps with different sizes (see Fig-

ure 3.11) for the purpose of running a fair comparison used the same maps as in

[Pelechano and Fuentes, 2016b]). However, we have also tested with much larger

scenarios, such as the Paris scenario which consists of 46,484 Vertices and 22,366

Polygons (Figure 4.2).

If we performed pathfinding for multi-agent systems in a sequential manner,

we would have strong limitations on how many agents we could run in real time.

However, the exact number of agents depends strongly on the map and the hierar-

chy configuration (especially for the old HNA*). For example, if we consider that

we run sequential pathfinding based on A* and HNA* (for the original, CUDA and

PCCP approaches), we would obtain that the maximum number of agents that could

be run on average are those shown in table 4.1. Therefore, if we want to compute

104
Chapter 4. Multi-agent parallel hierarchical pathfinding in navigation meshes

(MA-HNA*)

FIGURE 4.2: (a) Paris scenario and (b) Hierarchical representation at
L1

pathfinding for a large number of agents, it is necessary to apply parallelism also at

the level of each agent’s computation.

We have evaluated the performance of parallel multi-agent pathfinding, using

the two methods described in this chapter (PCCP and CUDA-HNA*), and A*. All

three methods use the same CUDA implementation to compute all agents’ paths in

parallel for a multi-agent system. This will allow us to study, whether the gain that

we can achieve with a hierarchical path finder for a single agent, also holds when us-

ing multi-agent parallel pathfinding. For this comparison, we have used again the 4

scenarios shown in Figure 3.11 and compared three algorithms:(1) A*, (2) PCCP, and

(3) CUDA-HNA*.

As shown in Figure 4.1, performance times increase in all four methods with

the number of agents. Performance of the multi-agent parallel PCCP method is the

fastest, followed by the CUDA-HNA* version, which also outperforms A*. As we

can see, the parallel implementation in CUDA can handle real time pathfinding for

over 500K agents even when using the basic A* algorithm, but with an important

speed-up achieved by using HNA* with the connection step in parallel.

We have chosen the number of agents for our simulation to show that the jumps

in the computational time are due to the number of blocks available to run 65,535

agents in parallel. With our CUDA version, we had 65,535 number of blocks to

launch our parallel pathfinding, which is consistent with the computational jumps

appearing for each multiple of 65,535 agents. The negative impact of the number of

blocks is much more noticeable for A*, than for our implementations with PCCP or

4.5. Experimental Results 105

FIGURE 4.3: Speed-up achieved for each of the scenarios, with PCCP
and CUDA-HNA* over A*.

TABLE 4.1: Maximum number of agents that can run in real time
(25FPS) in sequential multi-agent pathfinding for each algorithm.

Map Name & hierarchy A* HNA*

configuration Original CUDA PCCP

City Island (L1µ20) 18 11 48 63

Tropical Island (L2µ10) 24 5 62 140

CUDA, making our HNA* more scalable.

Our main interest with this thorough evaluation was to determine whether HNA*

offered important speedups for multi-agent parallel implementation. As we can see

in Figure 4.3, for the 4 scenarios tested, we can observe speedups on average be-

tween 4.3x and 15.7x for PCCP, and between 3.6x and 9.8x for CUDA-HNA*. There-

fore, the benefits of our hierarchical representations still hold even when a parallel

implementation could be carried out for both HNA* and A*.

106
Chapter 4. Multi-agent parallel hierarchical pathfinding in navigation meshes

(MA-HNA*)

4.6 Conclusion

In this chapter we have studied the problems of pathfinding for large number of

agents in large scenarios for hierarchical representations based on navigation meshes.

we have carried out a thorough performance comparison of a parallel multi-agent

implementation of A, PCCP and CUDA-HNA in order to determine the potential of

using hierarchical pathfinding.

For the parallel implementation of the step connecting S and G in CUDA-HNA*,

two threads are dedicated to launch two child kernels (one to connect S and another

one to connect G). As we have shown in our results, the speed-ups achieved by

both our methods outperform the parallel A* solution. As we can see in figure 4.3,

for the 4 scenarios tested, we can observe speedups on average between 4.3x and

15.7x for PCCP, and between 3.6x and 9.8x for CUDA-HNA*. For this comparison

all three methods can compute pathfinding for multiple agents in parallel. As we

have shown in our results, the speed-ups achieved by both our methods outperform

the parallel A solution. Therefore hierarchical implementations can allow us to run

a potentially much larger number of agents simultaneously.

107

Chapter 5

Towards Human-like Agent Path

Planning

5.1 Abstract

Pathfinding for autonomous agents has been traditionally driven by finding opti-

mal paths. Where typically optimality means the shortest path length between two

points in a virtual environment. The most famous algorithm is the A* search, which

efficiently explores a graph by balancing the cost of the current path with a heuristic

that estimates the cost to the destination. There are many variants of A*, which do

not guarantee an optimal solution, because their goal is to either reduce memory re-

quirements or to improve computational performance. However, when it comes to

simulating virtual humanoids, none of these solutions considers aspects of human

memory or orientation. In this chapter, we propose a new algorithm for pathfind-

ing that is inspired by neuroscience research on how the brain learns and builds

cognitive maps. Our method represents the space as a hexagonal grid, based on

the GPS of the brain theory, and fires memory cells as counters. Our path finder

then combines a method for exploring unknown environments while building such

a cognitive map, with an A* search using a modified heuristic that takes into account

the GPS of the brain cognitive map.

5.2 Introduction

Path planning for autonomous agents and robots have been widely applied for many

decades. There is a large range of applications, from robotics to agent and multi-

agent simulation. The problem in robotics is typically to steer a robot through an op-

timal path between two points, avoiding obstacles and satisfying other constraints.

108 Chapter 5. Towards Human-like Agent Path Planning

In autonomous agents and multi-agent simulation, the emphasis is usually to find

an optimal path between two points, or sub-optimal if time performance is critical.

For a good state of the art in path planning we refer the reader to [LaValle, 2006]

[Kallmann and Kapadia, 2016].

Path planning for video games plays a primary role in complex and large envi-

ronments. In general, path planning deals with finding a sequence of state transition

actions that transform a start position to a goal position, where each passing action

has an associated cost, and the sum of costs of all passing actions describes some

measurements for the path. Creating transition actions for path planning generally

involves the following conditions: (1) travel time between the start position and the

goal position (also referred to the time factor); (2) energy used of an agent traveling

a path; (3) Agents do not conflict with other objects and agents; and (4) smooth-

ness of a path is aimed to ease steering of agents. Currently, most path planning

methods aim at planning an optimization model that considers one or more of the

above-mentioned features and then conducting a minimization procedure to achieve

an optimal path. For instance, the shortest path, minimum time-consuming path,

minimum energy cost, and coverage path planning are, individually, studied in the

literature [Mei et al., 2004] [Goldberg and Harrelson, 2005] [Galceran and Carreras,

2013] for a given navigation task. Path planning includes four developing steps: (1)

graph-based methods (e.g. Dijkstra search, Voronoi diagram [Dolgov et al., 2008], A*

and its variants[Hart, Nilsson, and Raphael, 1968] [Dechter and Pearl, 1985] [Fergu-

son and Stentz, 2007], artificial potential field methods (APF) [Khansari-Zadeh and

Khatib, 2017][Koren and Borenstein, 1991] probabilistic methods (e.g. probabilistic

roadmap method (PRM) [Kavraki et al., 1996] rapidly exploring random tree (RRT)

[LaValle, 1998] [Jaillet, Cortés, and Siméon, 2008], and machine learning-based meth-

ods[Willms and Yang, 2006] [Otte, 2008].

While existing techniques give possible solutions for practical applications, nei-

ther of them take into account human factors to closely simulate how humans be-

have in the real world. There are many aspects of human behavior that affect route

choice during navigation, such as: memory, mental maps, or visibility. The method

that we present in this chapter is inspired by research from neuroscience, regarding

5.2. Introduction 109

building mental maps following the human brain navigation research. When hu-

mans perform pathfinding, they appear to be influenced by many factors, but there

are two that are highly valuable, which are the estimated distance, and the familiar-

ity with the path. The first one, is typically incorporated in pathfinding, as a heuristic

which assumes people can guess the shortest distance between several nearby po-

sitions. The second one is mostly ignored, and thus either agents are simulated as

super-humans that know the entire environment, or else the nodes of the graph are

discretized in a binary way as known/unknown (thus the search is performed only

over the set of known nodes which represents a subgraph of the environment).

When a human is looking for a path within a large environment, such as a city,

there can be two opposite scenarios: (i) The person know very well the city, or (ii)

the person has never been in the city before. Of course there can be many situations

in between, such as the person knows very well a part of the city but has no infor-

mation about other parts. We will first focus on providing algorithms for cases (i)

and (ii), and then explaing how both algorithms can be combined to fit any situation

in between those two cases. In the first situation, the person has a mental map in his

memory and he will follow the path based on the previous experience. In our work,

we will build this mental map based on the human GPS of the brain theory [Hafting

et al., 2005]. But in the second state, when the person does not know the environ-

ment, he can either try to find the given goal position randomly or following some

vague knowledge (for example to simulate how humans move around an unknown

city after looking at a map or asking for directions). In this second case we are inter-

ested in the case of searching an unknown environment but with some vague idea of

where the goals could be roughly located, because a map completely unknown with

lack of information would require an exhaustive search such as Breath First Search

which is rarely used by humans (we expect humans to ask for guidance or else have

a quick glance at a map, and thus have some rough knowledge of the environment).

In this chapter we propose a novel pathfinding method for intelligent agents

that better simulate humans by implementing methods based on the human brain

research. We first consider how humans learn about the environment and memorize

spatial information following the GPS of the brain [Hafting et al., 2005]. Then we pro-

pose pathfinding methods which explore unknown graphs in a way that is closer to

110 Chapter 5. Towards Human-like Agent Path Planning

how humans would wander an unknown environment. We finally combine known

and unknown areas to propose a new pathfinding model that better resembles what

we would expect humans to do.

This chapter is structured as follows: in the next two section, we explain the

theory of the GPS of the brain, followed by related work in pathfinding. The next

section explain our approach in detail, and finally we present results and conclu-

sions. We believe that our approach opens future research to have more human like

behavior in video games and virtual reality applications in general that will enhance

the realism of populated scenarios.

5.3 Human brain navigation

In the mid-20th century, Edward Tolman observed rats moving around in labyrinths

and proposed that the brain might contain a cognitive map, which allows animals

to learn to navigate and find their way [Tolman and Honzik, 1930]. In 1971, John

O’Keefe [O’Keefe and Dostrovsky, 1971] discovered the first key to the inner GPS in

the mammal’s brain which is called place cells. He recorded nerve activity in the

hippocampus region of the brain in unobstructedly moving rats. He obtained single

cells that just activated when the rat was in a certain location in the environment.

These places cells were active for different locations, generating an inner map in the

hippocampus region of the animal brain showing the animal where it is in the envi-

ronment. The hippocampus can create various maps, represented by the collective

activity of the place cells that are activated in the various environments. Therefore

the memory of the environment can be stored as a particular combination of place

cell activities in the hippocampus. Figure 5.1 shows the places cells.

Inn 2005 May Britt and Edvard Moser [Hafting et al., 2005], observed cells in the

Entorhinal cortex of rat brain, which is a region close and very well connected to

the hippocampus. Here, they obtained nerve-cells that were not active in just one

location but fired when the rats passed multiple locations.

Each of these cells was fired in a single spatial pattern and collectively these grid

cells create a coordinate system, with an hexagonal grid shape, that allows for spa-

tial navigation. This coordinate system separates the environment into latitudes and

5.3. Human brain navigation 111

FIGURE 5.1: A schematic example of place cell and grid cell firing.
The first column shows in black the path taken by a rat as it traverses
the square. Electrodes implanted within the hippocampus and en-
torhinal cortex record from individual neurons. Place and grid cells
show increased firing (red dots) at discrete locations in the environ-
ment. Individual place cells (top) fire only in one location, whereas
grid cells (bottom) have multiple firing fields forming a hexagonal
shape. The hexagonal symmetry of the spacing between these latter
fields gives rise to the term “grid cells”. The firing frequency of place
and grid cells within environment (mental map) is shown in the sec-
ond column, with yellow and red depicting higher rates of firing on a
background of no cell activity (blue) [O’Keefe and Dostrovsky, 1971]

longitudes that keeps track of how far rat is from a turning and/or starting position.

The brain GPS emerges from the combined work of place and grid cells. Both place

and grid cells operate together to provide the rat’s GPS. Place cells appear to be in-

spired by visual information, the position of boundaries such as corners and walls

in the environment seems very important to their function and on the other hand,

grid cells track the animal’s motion. Even though this studies have been mostly

performed with rats, this nerve cell system has been observed also in rodents, bats,

monkey and humans and neuroscience researchers now think that it is most like

present in all mammals. Therefore, from a human simulation perspective, it is key

to consider such hexagonal formation, with cells being fired based on movement as

112 Chapter 5. Towards Human-like Agent Path Planning

a more plausible model to simulate human spatial memory and pathfinding.

FIGURE 5.2: A schematic drawing of grid cell firing as the rat moves
through a square [Hafting et al., 2005]. The hexagonal pattern gives
high spatial resolution that allows the animal to recognize its loca-

tions and orientation.

5.4 Related work

In this section, we provide an overview or previous work on typical pathfinding

methods focus mostly on real-time search within 2-D scenarios. Pathfinding has

been widely studied in both real and virtual environments like video games and

robotics.

Various methods to resolve the navigation problem exists. Applicability of var-

ious methods depends on the properties of the agent’s environment (known or un-

known environment, availability of global position systems, etc.) and on-board sen-

sors. Modern navigation approaches can be categorized into two categories: Reac-

tive and Deliberative.

The Reactive techniques operate by manipulating "at-the-moment" sensors’ in-

formation and perform the movement based on the current situation of the system

and the surrounding environment. This method is mainly applied for navigation in

a dynamically changing environment, e.g. for obstacle-avoiding problems, path fol-

lowing, etc. This method is also beneficial when the time limit is short and decisions

for acts should be made very rapidly.

The Deliberative approaches imply that the agent has some knowledge about his

environment (e.g. it has a map or memory) and operates the navigation taking into

account this information. This category is described by path planning algorithms,

5.4. Related work 113

simultaneous localization and mapping (SLAM) algorithms etc.

Currently, there are many methods for locating and mapping (SLAM) that allow

a single agent or a group of agents to gather knowledge from their environment and

generate the map by employing different sensors like laser telemetry sensor or LI-

DAR [Jiménez et al., 2018] [López et al., 2017][Alismail, Baker, and Browning, 2014]

[Li et al., 2016].

Our proposed method is classified in Deliberative approaches since the agent

may or may not have knowledge about the environment in its mental map (or mem-

ory) and performs navigation taking into account this partial information while ex-

tending such mental map. In a way, it could also be considered a SLAM technique

Milford, Wyeth, and Prasser, 2004.

Some researchers have focused on graphs being built from visibility information

[Wolfe, Fitzgerald, and Gracer, 1981] [Toth, O’Rourke, and Goodman, 2017]. In these

cases, obstacles are considered as polygons in the configuration space and a graph

is created based on the start and the goal position and vertices within the environ-

ment. Finally, the path from start and goal position will be obtained by graph search

approaches like Dijkstra’s algorithm. A large number of robots has been built that

explicitly simulate biological navigation behaviors for obstacle avoidance, such as

the ones simulating the migration of seabirds [Otte, 2008] [Franz and Mallot, 2000]

and ant colony behavior navigation model [Milford and Schulz, 2014]. Inspired by

the social interplays in human crowds or animal swarms, Savkin and Wang [Savkin

and Wang, 2014] have proposed an efficient obstacle avoidance method in dynamic

environments by combining representation of the information about the environ-

ment. Typically, the development of robotics (real of virtual robots) has been directly

or indirectly affected by human’s experiences and behaviors [Chen and Sun, 2012]

[Zhang and Wang, 2004]. The work by Rodrigues et al. proposed an agent steering

model based on the biologically-motivated space colonization algorithm [Rodrigues

et al., 2009].

Artificial potential field (APF) [Khansari-Zadeh and Khatib, 2017] is a very pop-

ular pathfinding algorithm specially in the field of robotics. In this method, the field

114 Chapter 5. Towards Human-like Agent Path Planning

area is generated by considering repulsive and attractive spaces. The obstacles will

be considered as repulsive areas, and the goal position is considered as an attractive

area in the artificial potential field. The repulsive areas avoid agents from moving

close to the obstacles and the attractive areas move agents towards the goal location.

The APF provides smooth paths, but the main disadvantage of APF is that it suffers

from local minima problems.

Sampling Based Planning (SBP) methods are the most important improvement

in path planning [Karaman and Frazzoli, 2011]. Main benefits of SBP methods are

that they have very low computational cost and also they have applicability to high

dimensional problems with better success rate for complex queries [Elbanhawi and

Simic, 2014]. SBPs are probabilistically complete, and the paths created by these al-

gorithms for the same problem are not unique. Probabilistic pathfinding algorithms

are very effective approaches for path planning. The search strategy of the prob-

abilistic pathfinding algorithm is to choose collision-free points randomly in free

movement space and connected them to arrange a path. Probabilistic roadmaps

(PRM) [Kavraki et al., 1996], Rapidly-exploring random trees (RRT) [LaValle, 1998]

and Rapidly-exploring Random Tree Star (RRT*) [LaValle, 1998] are the most rep-

resentative methods of Probabilistic pathfinding algorithm. PRM based techniques

are mostly applied in a highly structured static environment such as factory floors

[Noreen, Khan, and Habib, 2016]. As long as enough time is provided, RRT* can

converge to an optimal solution. RRT* has achieved a large success rate in finding

the solution for high dimensional complex problems with various successful appli-

cations.

The A* search algorithm [Hart, Nilsson, and Raphael, 1968] is the most popular

algorithm for pathfinding, since it has many beneficial properties. First, the pro-

vided path by A* search algorithm will be an optimal path between the given start

and end positions in a scenario. Secondly, the A* search has the ability to return a re-

sult in a finite time even in the case that there is no solution for the problem. Thirdly,

a suitable admissible function can lead to an acceptable time-consuming even for a

big scenario. Today, there are many variants of A* search algorithm to deal with dif-

ferent problems and tasks, such as D* Lite [Koenig and Likhachev, 2002a] any-angle

5.4. Related work 115

A* [Yap et al., 2011], [Phi*Nash, Koenig, and Likhachev, 2009] and Field D* [Fergu-

son and Stentz, 2007], and hierarchical approaches [Rahmani and Pelechano, 2017],

[Pelechano and Fuentes, 2016b], [Rahmani and Pelechano, 2020].

Kapadia et al. [Kapadia et al., 2013a] proposed a path planning framework that

explores the satisfaction of multiple spatial constraints like walking beside walls,

staying behind a building between obstacles and agents at the global navigation

layer. Their method introduced a hybrid environment representation to balance

computational performance and discretization resolution, where they first applied

a triangular navigation mesh and then obstacle annotations, by adding additional

nodes to the previous triangular mesh to provide static spatial constraints. Anytime

Dynamic A* has used as an underlying path planner that combines the incremen-

tal planning properties of D* Lite and the anytime planning properties of ARA* in

order to efficiently repair solutions after world changes and agent movement. By

modifying the cost of the nodes, Their method allowed to obtain paths that would

not aim for the shortest path, but instead choose one that would try to pass through

save areas while avoiding others.

Multi-agent Navigation Graph (MaNG) [Sud et al., 2008], was based on first and

second-order Voronoi diagrams. The MaNG is used to do path planning and vicinity

computations for each agent in real-time so that it computes a graph that provides

maximal clearance to the obstacles and remaining agents. In this method, the set

of Voronoi sites P is divided into two subsets. The set of obstacles Po and the set of

agents Pa. The MaNG, defined MG(P), is the union of all the vertices and edges from

the first-order Voronoi graph VG1(P) and a subset of the vertices and edges from

the second-order Voronoi graph VG2(P) contained inside the first order Voronoi do-

main of each agent. In this method, graphics hardware (GPU) is used to compute

the MaNG.

Gradient-based methods [Schulman et al., 2014] are two-step algorithms for pro-

viding an optimal path. Usually, these algorithms use a direct line to connect the

start and goal points, even if such line goes through obstacle zones, and then elim-

inate the obstacle points in the gradient directions. Since this method creates non-

smooth paths, a post-smoothing process is required.

116 Chapter 5. Towards Human-like Agent Path Planning

Considering current pathfinding methods, A* search algorithm offers the possi-

bility of being deterministic and highly adaptable, mostly by altering the heuristic

function. A* will find an optimal solution, however, humans are not always likely of

finding an optimal solution, specially when not all the environment is fully known.

Therefore, to carry out pathfinding in partly known environments, we will use A*

with a new heuristic function that considers human-like cognitive maps and ex-

plores the environment based on the reliability of the acquired knowledge.

5.5 Human-like pathfinding model

Our goal is to create a pathfinding model to simulate human behavior more closely

than previous work in the literature. Most previous models focus on finding opti-

mal paths, smooth paths, and/or finding solutions within certain time constraints.

Our model is focused on building the first path finder method able to closely imi-

tate the human brain memory which is iteratively build based on previously visited

places. The proposed method consists two phases: (1) Generating the cognitive map

and (2) Pathfinding based on the current map information combined with typical

human-like pathfinding behavior. Most navigation maps in the literature used for

pathfinding, consists in either a regular grid of squared cells, or a polygonal mesh.

Our work proposes a new navigation mesh consisting of regular hexagons. The rea-

son behind this decision is that, as we have explained in section 5.3, the grid cells that

are fired in our brain when we move through an environment, follow such spatial

structure. This hexagon grid help us recognize location and direction of previous

visited positions in the environment. So if we want to have a better model of the

human brain to build mental maps, it is best to follow the actual spacial structure

contained in our brain.

In our proposed method, we have created a hexagonal mesh of the walkable

region of a given map (obstacles are not included since the agent will never walk

through them and thus brain cells should never get activated for those locations).

This hexagonal mesh will operate as grid cells of our virtual human’s cognitive map.

5.5. Human-like pathfinding model 117

5.5.1 Hexagonal cognitive maps generation

In order to build the agent’s mental map, they need to wander the environment so

that grid cells are fired based on the movement of the agent.

Lets consider persons P trying to reach room G from room S in a building con-

sisting of many offices (rooms). There are two possible situations that will impact

the person’s decision: (i) either the person knows where the room G is located (has

been there before) or else (ii) the person does not know the environment because he

has never been there before. The first situation, implies that the person has moved

through the building in the past, and has thus its own hexagonal mental map. In this

case, he can simply perform an optimal search based on A*. In the second situation,

when the person is unfamiliar with the environment and does not have a mental

map yet, he needs to search with a naive approach while building such map. Hu-

man cognitive maps are created by firing the neurons of hippocampus region of the

brain when the person visits a location in the environment. Similarly our agents will

fire the cells corresponding to the location that the agent walks by. This cell firing is

implemented with a counter that increases as the agent walks repetitively through

a location. Therefore the value of the cell counter is an indicator of how much the

agent knows that corresponding location in the virtual space.

Our pathfinding algorithm inspired by the GPS of the brain, will then use the

value of the counters to introduce a new heuristic function for the A* search. By

doing so, our A* search gives higher priority to choosing paths that move through

cells with higher counter value. Figure 5.3 shows the counter values of each hexagon

when the agent searches the environment.

5.5.2 Path Planner

We will first explain how our agents explore an unknown environment in order to

build their hexagonal mental maps, and then how those mental maps are used to

carry out an A* search with a new heuristic driven by the cell counters.

118 Chapter 5. Towards Human-like Agent Path Planning

FIGURE 5.3: Hexagon grid cell with corresponding counters.

Unknown environment

When a human is located in an unknown environment for the first time, he would

have no mental map of the environment in his brain. In order to search for a path

between S and G, he would have to fully explore the environment. There are well

known algorithms to perform a full exploration of an unknown environment such

as Depth First Search (DFS) or Breadth First Search (BFS). However, humans do

not typically perform such a blind exhaustive search. Whereas we are inside a large

building or outdoors in a city, it would be reasonable to consider that humans would

either have a glance at a map, or else ask for basic directions. So, in order to sim-

ulate human pathfinding behavior in unknown environments, we have developed

an algorithm that performs a naive search with some basic knowledge of directions.

Our method also assumes that humans prefer to walk along the longest sight-line to-

wards the goal direction, which is a behavior that has been reported on real humans.

Therefore, our agents’ naive navigation algorithm is based on two principles:

Firstly, humans are likely to perform exploration in a sequential manner moving to-

wards a goal G, and thus our search is based on DFS with a greedy heuristic based

on rough knowledge of the goal direction, and secondly humans are likely to walk

along the line of sight, and only reconsider direction if they feel that they are not

moving towards the goal.

5.5. Human-like pathfinding model 119

FIGURE 5.4: Affect of C on path length. Green line show A* path and
Pink line shows obtained path base on our algorithm.

When the agent is located in an unknown environment, the counters for all cells

is initially set to zero (no cognitive map). The agent will then move toward the goal

position with our naive approach. The first step is thus to compute the forward di-

rection for the agent. As shown in figure 5.3, each hexagon in the grid cell has at

most 6 neighbors. In order to calculate the movement direction, we calculate the

vectors ~ui, i ∈ [1, 6] which point from the current cell towards each neighbor, and

keep those that are approximately in the desired direction of movement as the setD.

Note that vectors pointing towards an obstacle cell will be discarded since they do

120 Chapter 5. Towards Human-like Agent Path Planning

not represent a valid agent movement. The set of possible direction of movement is:

D =
⋃
~ui, such that cos(6 (~ui,~uG)) > δ

~uG is the unit vector from the current cell pointing towards the goal G. δ is a user

defined value in the range [−1, 0.8]. The next direction ~v chosen for graph explo-

ration is randomly picked from the set of directions D. Note that when δ = −1 we

would have a completely uninformed search similar to DFS. They key in our method

is that δ represents the level of confidence regarding the goal direction. The larger

the δ the more directly the agent will explore the straight line towards the goal direc-

tion. The maximum possible value of δ is 0.8 which corresponds to an angle of 30o

with respect to the goal direction ~vG to guarantee that there will be at least one pos-

sible direction in our hexagonal grid. Having a large value of delta will give fewer

possible directions pointing towards the goal direction. If D = ∅ then the next di-

rection ~v is chosen randomly amount the possible directions of movement (towards

obstacle-free cells).

The agent will follow direction ~v until it either hits an obstacle or its trajectory

appears to be moving away from its desired direction. This second case is done by

triggering a new computation of preferred direction every C cells. Figure 5.4 shows

the affect of C on path length. We have empirically found that C = 5 provides good

perceptual results for our naive search exploration. However, this parameter could

be defined by the user, or could be set to a range of values to provide more hetero-

geneous graph exploration in the case of crowd pathfinding. Figure 5.5 shows an

example path of our naive path exploration algorithm (in pink) in an unknown area

of the environment, against the A* solution in green. Note that our naive exploration

algorithm has the agent walking along the cells as whilst exploring, and thus there

can be some small loops in the trajectory, which can resemble when a human needs

to walk back to a street junction after realizing he may not be in the right path to-

wards the destination. As the agent walks by the environment, the cells counters

will be increased starting to build the mental map of the agent.

5.5. Human-like pathfinding model 121

G

s

FIGURE 5.5: Comparison of the path obtained with the naive explo-
ration algorithm (in pink), and the optimal solution obtained with A*.

Known environment

Pathfinding in a known environment can be done using the agent’s cognitive map

that has been built by performing many searches following our naive exploration

algorithm. Every time an agent visits a hexagonal cell, the counter value of the cor-

responding cell is increased. By increasing the counter values of the cells, the agent’s

knowledge about the environment is also increased. In order to find a path in a fa-

miliar environment, we use the A* search algorithm, but with a modified heuristic

function that takes into account the agent’s knowledge.

Given a goal position G and the starting location of the agent S, we need to

find the path that can get the agent from S to G avoiding the static obstacles in the

environment. Note that obstacle cells will not appear in the mental map, as the

agent will not have walked through them previously. The agent needs to find a path

π = 〈S, p1, p2, ..., G〉 by running the A* search algorithm with a modified heuristic.

The main key for the A* search method is to define an admissible heuristic func-

tion h(pi), so that it avoids overestimating the actual cost to arrive at the goal loca-

tion. In this thesis, we define the heuristic function h(pi) from a point pi to a goal

position G as follows:

122 Chapter 5. Towards Human-like Agent Path Planning

h (pi) = ‖pi − G‖+ λi (5.1)

where ‖pi −G‖ is the 2D Euclidean distance from the current position to the goal G,

and the term λi is defined as:

λi =

2× Cmax i f ci = 0
Cmax

ci
i f ci > 0

(5.2)

Cmax is a user defined value, which sets an upper limit to the level of knowledge

about a cell. Therefore, the larger heuristic would be assigned to those cells with

counter, ci, equal to 0 (unknown cells). For known cells, the heuristic value becomes

smaller as the counter increases, and thus known cells have higher priority in the

A* algorithm to be selected for exploration. When all cells have the highest counter

value, our algorithm is equivalent to a basic A* search.

With our proposed heuristic function, agents will find paths towards a goal po-

sition based on their previous knowledge of visited places (i.e. their cognitive map).

This heuristic makes agents more likely to move within familiar environments, and

only when knowing the entire environment would they be able to find an optimal

path. Unknown cells are thus avoided.

5.5.3 Combining known and unknown areas

Even though we have presented so far two different algorithms for path exploration,

based on whether the environment is known or not, it is of course possible to en-

counter scenarios with partly known areas. In such case, both algorithms can be

combined, so that, if the agents has knowledge about the area covering the space

between the start and goal positions, then algorithm A* with modified heuristic is

applied, but when the agent is in an unknown cell, the the naive search algorithm

is executed to further explore the environment. By alternating between both algo-

rithms, the agent will gradually increase its internal cognitive map based on the GPS

of the brain. The details of our path planning method are shown in Algorithm 7.

5.5. Human-like pathfinding model 123

Algorithm 7 GPS of the Brain

1: procedure GPS_PATHFINDER(x,G)

2: c← get_counter(x)

3: if (c = 0) then // Naive Exploration

4: Step← 0

5: n← S.NumNeighbors()

6: for i← 0 to n do

7: if (cos(~ui,~uG) > δ) then

8: D.push(~ui)

9: endIf

10: endFor

11: if (D.size > 0) then

12: ~v← PickRandDir(D)
13: else

14: ~v← PickAnyDir(x)

15: endIF

16: x ← NextCell InDir(~v)

17: c← get_counter(x)

18: while (c = 0 AND Step < 5) do

19: Add_Cell_to_Path(x)

20: x ← NextCell InDir(~v)

21: if collision(x,~v) then

22: GPS_PathFinder(x, G)

23: else

24: Step = Step + 1

25: x ← NextCell InDir(~v)

26: c← get_counter(x)

27: endIf

28: endWhile

29: if (c = 0 AND Step = 5) then

30: Add_Cell_to_Path(x)

31: GPS_PathFinder(x, G)

32: endIf

33: else //A* with counter based heuristic

34: Add_Cell_to_Path(x)

35: GPS_PathFinder(x, G)

36: endIf

37: end procedure

124 Chapter 5. Towards Human-like Agent Path Planning

(A) (B) (C)

Length (A*) = 153

Length (Proposed) = 234
Length (A*) = 153

Length (Proposed) = 174

 (D) (C)
Length (A*) = 153

Length (Proposed) = 163
Length (A*) = 153

Length (Proposed) = 156

FIGURE 5.6: Percentage of agent’s knowledge and obtained path
length (Pink color for proposed method and Green for A* search). (A)
25% , (B) 50% , (C) 75% and (D) 100% of knowledge. Color intensity
indicates level of knowledge based on how many times it has been
visited before (the darker the color the more times it has been visited)

5.6 Experimental Results

In this section we present the results achieved for both informed and uninformed

pathfinding, and compare against A*. We show the visual aspects of the path, as

well as path length. Thew proposed method has been implemented using C++, with

an Inter Core i7 Cpu @3.5 Gz, 1 MB L2 cache and 8MB L3 cache, Nvidia GTX 420

with 2.4GB off-chip global memory and 16 GB RAM. In order to evaluate the affect

of percentage of agent’s knowledge on calculated path, we have tested the proposed

path planner on X=[0,25,50,75,100] percentage of visited places by agent. Figure 5.6

5.6. Experimental Results 125

shows results for different percentages of agent’s knowledge. By increasing the per-

centage of agent’s knowledge, the length of the informed path will get shorter and

the path will get closer to the result provided by the A* search.

For the case of completely unknown environments, we should expect our agents

to choose a path that appears rather random and is far from optimal. The random

appearance is the result of agents needing to explore and thus checking more loca-

tions. In order to see the agent’s behavior as we gradually move from unknown to

known areas, we have computed paths in different regions of an environment which

is only partly known. Figure 5 shows the resulting paths for both our method (explo-

ration with GPS heuristic) and the A* algorithm. As we can see in Figure 5.7, when

the agent is located in an unknown area, it first explores a path moving roughly to-

wards the goal direction. Our example avoids the agent from moving too far off the

goal direction by using a large δ, while showing the lack of knowledge regarding the

exact location of the goal. We can see in the results, how the path shape and length

gets closer to A* only for those areas of the environment that the agent knows very

well (darker blue indicates higher counter values).

By increasing the percentage of agent’s knowledge, the total path length de-

creases. Figure 5.8 shows the comparison of total path length of our method com-

bining informed and uninformed search, against A*. The image shows how the path

length of our algorithm decreases as the familiarity with the environment increases.

The paths provided by our method are almost as optimal as A* when P > 75%.

Figure 5.9 shows the average path ratios as the level of knowledge increases. We

can observe how for no knowledge (P = 0%) the path length we obtain is up to 3.6x

longer, which demonstrates that our naive exploration provides a solution that is

longer than the optimal solution but not too far off from it. When the knowledge is

up to 75% the ratio is 1.07x which indicates that is very close in length to the optimal

solution (ratio 1).

Even though simulating human behavior is a huge challenge, and there is still a

lot of work to be done, we have presented a method that attempts to imitate more

closely how human find paths in the real world. In order to evaluate whether our

126 Chapter 5. Towards Human-like Agent Path Planning

(B)

(C)

(A)

FIGURE 5.7: Illustration of proposed method and A* path plan-
ning. Green color shows A* search path, pink color shows proposed
method and blue shows agent knowledge with color intensity repre-
senting level of knowledge. (A) path planing between two points in
an unknown area, (B) Path between two points in a known and (C)

path from an unknown area to a location in a known area.

agents’ paths could appear as being more or less knowledgeable to a human ob-

server, we have run two perceptual studies.

5.6. Experimental Results 127

FIGURE 5.8: Comparison of path length

FIGURE 5.9: Ratios of average path length as the level of knowledge
about the environment increases, with respect to the A* path length.

Our algorithm combines two types of searches: (1) naive search and (2) a path

finder with a heuristic based on the counters in the mental map. The former can

exhibit different levels of confidence on the direction of the goal (higher values of δ

and smaller values of C can move the agent quicker towards the goal), and the latest

will get closer to A* as P increases. For the first user study, we set a fixed δ and C,

while increasing P . Figure 5.10 show the sample obtained path with fixed δ and C

and increasing value of P .

For the second study, we use varying values for the three parameters. We had a

128 Chapter 5. Towards Human-like Agent Path Planning

(A) (B)

(C) (D)

FIGURE 5.10: Percentage of agent’s knowledge (P) and obtained path
length. (A) P = 25% , (B) P = 50% , (C) P = 75% and (D) P = 100%

of knowledge.

total of 40 participants, 20 doing each test. Each study consisted of 2 environments,

4 configurations of start and goal positions per map, and 4 configurations of agents’

knowledge. Figure 5.12 shows the user interface of one example page from the 32

pages of our perceptual test framework.

Experiment 1 had 4 configurations: map 0:{P = 0%}, map 1:{P = 35%}, map

2:{P = 75%}, map 3:{P = 100%}, all four maps with δ = −0.5 and C = 5. Fig-

ure 5.11 shows a sample of obtained path with different configurations. Participants

saw a total of 32 paths, and were asked to look at the path and rank the agent’s

knowledge, K, as: 0 meaning "very little", 1 "a bit", 2 "quite well" or 3 "extremely

well". As we show in the top graph in figure 5.13, participants ranked map 0 with

mostly K = {0, 1}, map 1 with K = {1, 2}, map 2 with K = {2, 3}, and map 3 with

mostly K = {3}. We ran a χ2 and obtained a p–value=0 indicating that there is a

statistically significant relationship between the map configuration and the user’s

5.6. Experimental Results 129

(A) (B)

(C) (D)

FIGURE 5.11: Different values of three P , δ and C parameters
and obtained path length. (A): {P = 0%, δ = −1, C = 10}, (B):
{P = 35%, δ = −0.8, C = 8}, (C): {P = 70%, δ = −0.6, C = 6}, (D):

{P = 100%, δ = −0.4, C = 4}

perceived level of knowledge. This means that participants either guessed correctly

the level of knowledge for each map, or else they slightly overestimated it. The rea-

son for this, is that the naive search made the agents move quite well towards the

goal direction.

We then run experiment 2, trying to assign δ and C with values that better matched

level of confidence with levels of knowledge. Therefore, we had the following map

configurations:

• map 0: {P = 0%, δ = −1, C = 10}

• map 1: {P = 35%, δ = −0.8, C = 8}

130 Chapter 5. Towards Human-like Agent Path Planning

FIGURE 5.12: User interface of perceptual test

• map 2: {P = 70%, δ = −0.6, C = 6}

• map 3: {P = 100%, δ = −0.4, C = 4}

The χ2 test gave us a p–value=0 indicating again that there is a statistically sig-

nificant relationship between the map configuration and the user’s perceived level

of knowledge. The bottom graph of Figure 5.13, show that for the second experi-

ment, users perceived the resulting paths as being closer to our intended configu-

ration, therefore each map level got the highest number of answers matching the

corresponding knowledge level intended for each map. The Pearson rank correla-

tion between the map knowledge and the user’s perceived agent knowledge was

rs = 0.86, indicating a strong relationship between them.

5.7 Conclusion

In this chapter we have proposed a pathfinding method that attempts to consider the

human’s brain navigation system to simulate more human-like autonomous agents.

We also propose a more human-like exploration method for unknown environments

5.7. Conclusion 131

0

20

40

60

80

100

120

map 0 map 1 map 2 map 3

Number of responses for each % of knowledge (δ= -0.5, C=5)

0. Very little 1. A bit 2. Quite well 3. Extremely well

0

20

40

60

80

100

120

140

map 0 map 1 map 2 map 3

Number of responses for each % of knowledge (with varying δ, C)

0. Very little 1. A bit 2. Quite well 3. Extremely well

FIGURE 5.13: Perceptual Evaluation. The top graph shows the per-
ceived level of familiarity for maps of increasing P , with δ = 0.5 and
C = 5. The bottom shows also maps of increasing P , but varying δ
and C to also exhibit increasing levels of confidence on the goal direc-

tion.

132 Chapter 5. Towards Human-like Agent Path Planning

with vague knowledge of goal direction. We believe that this is the first attempt to-

wards simulating more human-like pathfinding.

Our method can work with known, unknown and mixed environments. The

hexagonal grid navigation mesh mimics the humans’ brain grid cell. Cell counters

simulate the way our brain keeps track of visited places as agent’s memory. The pro-

posed naive exploration uses a variation of the Depth First Search (DFS) algorithm

to consider vague information of the environment (rough knowledge of goal direc-

tion), and builds a cognitive map for the agent as it wanders the environment.

Pathfinding in known environment, is carried out by applying a modified heuris-

tic to A*. The new heuristic considers the cognitive map counters as the agents’

memory. Our experimental results show that path length for the proposed method

converges towards the traditional A* search as the agent acquires more knowledge

of the environment. We have also shown how the resulting paths are perceived as

being more or less knowledgeable, based on the values assigned to the parameters

of our model. As future work it would be interesting to consider memory decay and

also other aspects of human perception that may affect the way we remember places

(for example based on their saliency or uniqueness).

133

Chapter 6

Conclusion and future work

6.1 Conclusion

The focus of this work was twofold, first to research hierarchical solutions for pathfind-

ing that could be parallelized to support multi-agent pathfinding in real-time, and

second to develop novel methods that could better mimic the way humans navigate.

Hierarchical approaches are by nature closer to human pathfinding, because we hu-

mans typically plan our trajectories from a high level conceptual map and then refine

the path as needed.

Part of this thesis has been built upon the original HNA* algorithm that was pre-

viously developed by my supervisor. During the years leading to its completion, we

have worked on first identifying the source of the bottleneck that had been empiri-

cally found in the first version of the algorithm. And then focus on finding solution

that could guarantee that using our hierarchical approach would always lead to high

speed-ups regardless of the hierarchy configuration.

In chapter 3 we presented two solutions to the S/G connection step. The first

one consists of using pre-calculated paths (PCCP) from the center of each polygon

in L0 (lowest level of the navigation mesh) to its inter-edges in the higher level of the

hierarchy. Those paths are then stored in a MultiMap hash table and can be accessed

efficiently during the on-line search. The second one takes advantage of the highly

parallel nature of the problem, and presents a new approach using the CPU or the

GPU (with CUDA), so that all sub-paths to connect S and G can be computed in par-

allel. As we have discussed in chapter 3-section 3.6, achieved results showed that

the parallelization on GPU can be much faster than the CPU.

134 Chapter 6. Conclusion and future work

To evaluate our different methods we used several 3D scenarios with increasing

numbers of cells in their navigation mesh and increasing numbers of merged poly-

gons. Our results show that both PCCP and CUDA methods can be much faster than

the original HNA*.

PCCP requires more memory usage than CUDA, although this does not present

a limitation. The allocated memory for the Dungeon scenario with 119 polygon is

2.9MB while the allocated memory for the Medieval City scenario with 16,867 poly-

gons is 49.6MB. For all tested scenarios, the performance improvements are not very

important for L1, but they become substantial from L2 onward, as they eliminate the

bottleneck of HNA* which was the connect S and G step.

Our results showed that both PCCP and the CUDA implementation could achieve

significantly better speed-ups than the original HNA*, and most importantly they

could guarantee that we could benefit from the hierarchical approach for any given

configuration, as opposed to the original HNA* which required a careful selection

of parameters. It is though recommended a hierarchy of two or more levels to ob-

tain the best speed-ups, because for just one level and a low value of µ, the original

HNA* did not suffer much from the connect S/G bottleneck.

Therefore, with the improvements presented in this thesis, we have completely

eliminated the bottleneck from HNA* and thus obtained a hierarchical pathfind-

ing algorithm for general navigation meshes that offers great speed-ups for a larger

number of scenarios, regardless of the hierarchy configuration.

In chapter 4 we studied in depth the levels of parallelism available in CUDA and

presented a parallel version for multi-agent system using the HNA*. We then carried

out a thorough performance comparison of a parallel multi-agent implementation of

A*, PCCP and CUDA-HNA* in order to determine the potential of using hierarchi-

cal pathfinding. For this comparison all three methods can compute pathfinding for

multiple agents in parallel. For the parallel implementation of the step connecting

S and G in CUDA-HNA*, two threads were dedicated to launch two child kernels

(one to connect S and another one to connect G). As we have shown in our results,

the speed-ups achieved by both our methods outperform the parallel A* solution.

For the 4 scenarios tested, we can observe speedups on average between 4.3x and

6.1. Conclusion 135

15.7x for PCCP, and between 3.6x and 9.8x for CUDA-HNA*. Therefore, the benefits

of our hierarchical representations still hold even when a parallel implementation

could be carried out for both HNA* and A*. As our results showed, the parallel im-

plementation in CUDA can handle real time pathfinding for over 500K agents even

when using the basic A* algorithm, but with an important speed-up achieved by

using HNA* with the connection step in parallel.

Finally in chapter 5, we have presented a new pathfinding method that attempts

to consider the human’s brain navigation system to simulate more human-like au-

tonomous agents. We also propose a more human-like exploration method for un-

known environments with vague knowledge of goal location. We believe that this is

the first attempt towards simulating more human-like pathfinding. Our algorithm

performs graph exploration differently depending on whether the environment is

known or unknown, and can adjust to partly known environments. The hexagonal

grid navigation mesh mimics the human’s brain grid cell. Per cell counters, simulate

the way our brain keeps track of visited places as agent’s memory.

The proposed method uses a variation of the Depth First Search (DFS) algorithm

to consider vague information of the environment (rough knowledge of goal po-

sition), and creates a cognitive map for the agent as it wanders the environment.

Pathfinding in known environment, is carried out by applying a modified heuristic

to A*. The new heuristic considers the cognitive map counters as the agents’ mem-

ory. Our experimental results showed that path length for the proposed method

converges towards the traditional A* search as the agent acquires more knowledge

of the environment.

We also run a perceptual study to evaluate whether our resulting paths did ex-

hibit the intended level of knowledge. The results of this study showed that users

successfully identified the knowledge of the autonomous agents. We believe that our

model will open a new way of programming autonomous agents to closer simulate

virtual humanoids.

136 Chapter 6. Conclusion and future work

6.2 Future Works

We discuss future work in terms of our three main contributions: Improvements to

HNA* (see chapter 3), Multi-agent parallel HNA* (MA-HNA*) (see chapter 4) and

Towards human like agent path planning (see chapter 5).

6.2.1 Improvements to HNA*

As we have mentioned in chapter 3, the PCCP consists of two online and offline

phases. In the offline phase, PCCP stores paths from center of each polygon in L0

(lowest level of the navigation mesh) to its inter-edges in the higher level of the hi-

erarchy. These paths are used to connect start and goal points to the higher level

graph at the online phase. One of the challenge of the PCCP on the offline phase is

that if any dynamic changes happen on the given scenario, all the paths from offline

phase should recalculate. On the other hand, hierarchical navigation graph (HNG)

doses not consider dynamic changes and dynamic environment. As future work we

would also like to consider dynamic updates of the NavMesh and how they could

affect the hierarchical representation and then recompute the paths which are from

the changed area of scenario instead of recomputing all the paths.

6.2.2 Multi-agent parallel HNA* (MA-HNA*)

As it described at chapter 4, for the parallel implementation of the step connecting

S and G, two threads are dedicated to launch two child kernels (one to connect S

and another one to connect G). In order to launch the child kernels to connect S in

parallel, we consider m 1D blocks in the 1D CUDA grid where, m is the number of

inter-edges of the polygon containing S. For each block Bi (i ∈ [0, m]) we compute

A* from S to inter-edge iei (and similarly for G). All connecting paths to S and G are

stored in shared memory as temporal edges of the HNG before computing the high-

level path. So the connect step for S and G will take as long as the longest of the A*

searches to link S or G to an inter-edge. As future work we would like to paralyze

the A* search algorithm inside each child kernel and using GPU shared memory to

store the open list. Since the shared memory is much faster than global memory, the

GPU based parallel A* could be more faster than CPU based A*. Another possible

way to improve multi-agent path finding could be to handle the case when parts of

the subpath computed by one agent could be used by other agents sharing part of

6.2. Future Works 137

the path.

We would like also to implement our MA-HNA* for cloud computing applica-

tions like SpatialOS frameworks. SpatialOS [Improbable, 2020] is a cloud devel-

opment platform that provides networking, hosting, online services, and tools for

developing and operating online multiplayer games, using any engine.

6.2.3 Towards human like agent path planning

In chapter 5 we have proposed a novel bio-inspired perspective for agent path plan-

ning based on human brain structure. As we have explained, the proposed algo-

rithm works on static environments. As a future work it would be interesting to

consider dynamic environments. The other future work which we think it would be

interesting is considering memory decay and also other aspects of human perception

that may affect the way we remember places (for example based on their saliency or

uniqueness).

As future work we would like to combine our new GPS pathfinding algorithm

with the hierarchical search on navigation meshes. When humans plan trajectories,

they typically think of a high level map where main known locations appear and

then they refine their search (e.g cities and main roads, to then focus on specific

streets). Such way of planning is combined in our brains with the hexagonal distri-

bution of neurons that allow us to remember locations. Therefore, our virtual agents

should also combine both spacial structures, with the hexagonal one being used to

gather information and drive the heuristics, but without consciously planning at that

level. Both the navigation mesh and the hexagonal grid structure could be overlap-

ping the navigation mesh, and then we could transfer knowledge information from

the hexagonal cells to the convex cells that are overlapping with them.

139

Appendix A

Mathematical profs 1

If a path exists over the original navigation mesh, G0, P0(S, G) = 〈pS, p1, p2, ..., pG〉,

then there will also be a path at level Lx. Computing path finding in HNGx gives as

a result the path Px(S, G) = 〈πS
temp, π

s(dp)
x , π

p(sq)
x , ..., π

r((m−1)m)
x , πG

temp〉. Px(S, G) is the

high level path.

Proof. Starting with the sequence of polygons in the path:

P0(S, G) = 〈pS, p1, p2, ..., pG〉 (A.1)

the starting polygon pS will be inside a high level node ns
x in the HNGx. Moving

from left to right in the sequence of polygons while pi ∈ ns
x, we will eventually reach

a polygon pj such that pj ∈ nd
x, where d 6= s. According to the definition of inter-edge

given in Section 3.3, this means that there is an inter-edge ιsd
x connecting the nodes

ns
x and nd

x in HNGx The sequence of polygons from ps to pj−1 correspond to the

temporal path connecting S to the inter-edge ιsd
x :

πS
temp = 〈pS, ..., pi, ..., pj−1〉 (A.2)

From pj, we can continue sequentially while the polygons we encounter are still

inside nd
x, until there is a polygon pk such that pk ∈ np

x , and p 6= d. By the definition

of inter-edge, there is an inter-edge, ι
dp
x , that connects nd

x, with np
x .

Also, the sequence of nodes 〈pj, pj+1, ..., pk−1〉 indicates that there is a path travers-

ing the node nd
x between the inter-edges ιsd

x and ι
dp
x , which guarantees that there is at

least one path between those two inter-edges, and thus there will be an intra-edge,

∃π
s(dp)
x . Note that this does not mean that the stored intra-edge is specifically the

sequence 〈pj, pj+1, ..., pk−1〉, since the subpath P′ was computed with A* between

optimal positions inside the polygons in the navigation mesh, whereas π
s(dp)
x was

140 Appendix A. Mathematical profs 1

computed assuming the position at the center of the polygons. If there was only one

possible path, then this path will be the optimal, and thus we will have P′ = π
s(dp)
x .

So our proof guarantees that if there is a path in P0 crossing a node, there must be

an intra-edge to cross the node.

π
s(dp)
x = 〈pj, pj+1, ..., pk−1〉 (A.3)

Following the same logic, it is thus straight forward to proof that every sequence

of polygons inside the same high level node, guarantees that there will be an intra-

edge traversing such node, and that for every pair of polygons in the sequence, which

appear inside different high level nodes, there will be an inter-edge in the HNGx.

The the last sequence of nodes that are inside the high level node containing pG,

will correspond to the temporal path connecting G πG
temp

πG
temp = 〈pl+1, pl+2, ..., pG〉, ∀pi ∈ nq

x (A.4)

Finally we can see that replacing the subsequence of polygons from temporal

paths and intra-edges guarantees that there will have a path between S and G:

Px(S, G) = 〈πS
temp, π

s(dp)
x , π

p(sq)
x , ..., πG

temp〉

= 〈< pS, ..., pj−1 >, π
s(dp)
x , π

p(sq)
x , ..., πG

temp〉

= 〈< pS, ..., pj−1 >,< pj, pj+1, ..., pk−1 >, π
p(sq)
x , ..., πG

temp〉

= 〈< pS, ..., pj−1 >,< pj, pj+1, ..., pk−1 >,

< pk, pk+1, ..., pm−1 >, ..., πG
temp〉

= 〈< pS, ..., pj−1 >,< pj, pj+1, ..., pk−1 >,

< pk, pk+1, ..., pm−1 >, ...,< pl+1, pl+2, ..., pG >〉

= 〈pS, p1, p2, ..., pG〉

= P0(S, G)

(A.5)

141

Appendix B

Mathematical profs 2

Proof. The number of inter-edges increases exponentially with the number of levels

in the hierarchy:

As indicated in Equation B.1, the number of inter-edges for a node in level x are:

I(x,µ) = µI(x−1,µ) − 2(µ− 1) (B.1)

if we replace I(x−1,µ) by its corresponding equation, then we have:

I(x,µ) = µ
[
µI(x−2,µ) − 2(µ− 1)

]
− 2(µ− 1)

= µ2 I(x−2,µ) − 2µ(µ− 1))− 2µ + 2)

= µ2(I(x−2,µ) − 2) + 2

(B.2)

replacing the next level down in the hierarchy, then we have:

I(x,µ) = µ2
[
µI(x−3,µ) − 2(µ− 1)− 2

]
+ 2

= µ2
[
µI(x−3,µ) − 2µ + 2− 2

]
+ 2

= µ3(I(x−3,µ) − 2) + 2

(B.3)

and if we continue recursively until we reach level 1:

I(x,µ) = µx−1(I(1,µ) − 2) + 2 (B.4)

finally, replacing I(1,µ) by Equation B.1 we obtain:

142 Appendix B. Mathematical profs 2

I(x,µ) = µx−1(µ(s− 2) + 2− 2) + 2

= µx(s− 2) + 2
(B.5)

143

Bibliography

Abd Algfoor, Zeyad, Mohd Shahrizal Sunar, and Hoshang Kolivand (2015). “A com-

prehensive study on pathfinding techniques for robotics and video games”. In:

International Journal of Computer Games Technology 2015.

Abraham, Ittai, Amos Fiat, Andrew V Goldberg, and Renato F Werneck (2010). “High-

way dimension, shortest paths, and provably efficient algorithms”. In: Proceed-

ings of the twenty-first annual ACM-SIAM symposium on Discrete Algorithms. SIAM,

pp. 782–793.

Alismail, Hatem, L Douglas Baker, and Brett Browning (2014). “Continuous trajec-

tory estimation for 3D SLAM from actuated lidar”. In: 2014 IEEE International

Conference on Robotics and Automation (ICRA). IEEE, pp. 6096–6101.

Ammar, Adel, Hachemi Bennaceur, Imen Châari, Anis Koubâa, and Maram Alajlan

(2016). “Relaxed Dijkstra and A* with linear complexity for robot path planning

problems in large-scale grid environments”. In: Soft Computing 20.10, pp. 4149–

4171.

Anguelov, Bobby (2012). “ideo game pathfinding and improvements to discrete search

on grid-based maps”. In: Doctoral dissertation, University of Pretoria.

Bennewitz, Maren, Wolfram Burgard, and Sebastian Thrun (2002). “Finding and op-

timizing solvable priority schemes for decoupled path planning techniques for

teams of mobile robots”. In: Robotics and autonomous systems 41.2-3, pp. 89–99.

Bnaya, Zahy, Roni Stern, Ariel Felner, Roie Zivan, and Steven Okamoto (2013). “Multi-

agent path finding for self interested agents”. In:

Bohlin, Robert and Lydia E Kavraki (2000). “Path planning using lazy PRM”. In:

Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on

Robotics and Automation. Symposia Proceedings (Cat. No. 00CH37065). Vol. 1. IEEE,

pp. 521–528.

BOOST (2017). "http://www.boost.org/".

"http://www.boost.org/"

144 Bibliography

Borrajo, Daniel (2013). “Plan sharing for multi-agent planning”. In: DMAP 2013-

Proceedings of the Distributed and Multi-Agent Planning Workshop at ICAPS. Cite-

seer, pp. 57–65.

Botea, Adi, Martin Müller, and Jonathan Schaeffer (2004). “Near optimal hierarchical

path-finding”. In: Journal of game development 1.1, pp. 7–28.

Brafman, Ronen I and Carmel Domshlak (2008). “From One to Many: Planning for

Loosely Coupled Multi-Agent Systems.” In: ICAPS. Vol. 8, pp. 28–35.

Brand, Sandy and Rafael Bidarra (2012). “Multi-core scalable and efficient pathfind-

ing with Parallel Ripple Search”. In: computer animation and virtual worlds 23.2,

pp. 73–85.

Broch, Josh, David A Maltz, David B Johnson, Yih-Chun Hu, and Jorjeta Jetcheva

(1998). “A performance comparison of multi-hop wireless ad hoc network rout-

ing protocols”. In: Proceedings of the 4th annual ACM/IEEE international conference

on Mobile computing and networking, pp. 85–97.

Bulitko, Vadim, Yngvi Björnsson, and Ramon Lawrence (2010). “Case-Based Sub-

goaling in Real-Time Heuristic Search for Video Game Pathfinding”. In: Journal

of Artificial Intelligence Research (JAIR) 39, pp. 269–300.

Caggianese, Giuseppe and Ugo Erra (2012). “Exploiting gpus for multi-agent path

planning on grid maps”. In: 2012 International Conference on High Performance

Computing & Simulation (HPCS). IEEE, pp. 482–488.

Cazenave, Tristan (2006). “Optimizations of data structures, heuristics and algo-

rithms for path-finding on maps”. In: 2006 IEEE symposium on computational in-

telligence and games. IEEE, pp. 27–33.

Champandard, A (2009). “Modern pathfinding techniques”. In: AIGameDev. com.

Chen, Haoyao and Dong Sun (2012). “Moving groups of microparticles into array

with a robot–tweezers manipulation system”. In: IEEE Transactions on Robotics

28.5, pp. 1069–1080.

Choset, Howie (2007). “Robotic motion planning: A* and D* search”. In: Robotics

Institute, pp. 16–735.

Choset, Howie M, Seth Hutchinson, Kevin M Lynch, George Kantor, Wolfram Bur-

gard, Lydia E Kavraki, and Sebastian Thrun (2005). Principles of robot motion: the-

ory, algorithms, and implementation. MIT press.

Chrpa, Lukáš and Peter Novák (2011). “Dynamic trajectory replanning for unmanned

aircrafts supporting tactical missions in urban environments”. In: International

Bibliography 145

Conference on Industrial Applications of Holonic and Multi-Agent Systems. Springer,

pp. 256–265.

Cohen, Benjamin, Sachin Chitta, and Maxim Likhachev (2014). “Single-and dual-

arm motion planning with heuristic search”. In: The International Journal of Robotics

Research 33.2, pp. 305–320.

Crosby, Matt, Michael Rovatsos, and Ronald PA Petrick (2013). “Automated Agent

Decomposition for Classical Planning.” In: ICAPS, pp. 46–54.

Daniel, Kenny, Alex Nash, Sven Koenig, and Ariel Felner (2010). “Theta*: Any-angle

path planning on grids”. In: Journal of Artificial Intelligence Research 39, pp. 533–

579.

Davis, Ian Lane (2000). “Warp speed: Path planning for star trek: Armada”. In: AAAI

Spring Symposium (AIIDE), pp. 18–21.

Dechter, Rina and Judea Pearl (1985). “Generalized best-first search strategies and

the optimality of A”. In: Journal of the ACM (JACM) 32.3, pp. 505–536.

DeLoura, Mark A (2001). Game programming gems 2. Cengage learning.

Demyen, Douglas and Michael Buro (2006). “Efficient triangulation-based pathfind-

ing”. In: Aaai. Vol. 6, pp. 942–947.

Dijkstra, Edsger W et al. (1959). “A note on two problems in connexion with graphs”.

In: Numerische mathematik 1.1, pp. 269–271.

Dolgov, Dmitri, Sebastian Thrun, Michael Montemerlo, and James Diebel (2008).

“Practical search techniques in path planning for autonomous driving”. In: Ann

Arbor 1001.48105, pp. 18–80.

Dresner, Kurt and Peter Stone (2008). “A multiagent approach to autonomous inter-

section management”. In: Journal of artificial intelligence research 31, pp. 591–656.

Elbanhawi, Mohamed and Milan Simic (2014). “Sampling-based robot motion plan-

ning: A review”. In: Ieee access 2, pp. 56–77.

Farias, Renato and Marcelo Kallmann (2019). “Optimal Path Maps on the GPU”. In:

IEEE transactions on visualization and computer graphics.

Farnstrom, Frederick (2006). “Improving on near-optimality: More techniques for

building navigation meshes”. In: AI Game Programming Wisdom 3, p. 2006.

Ferguson, Dave and Anthony Stentz (2005). “The Field D* algorithm for improved

path planning and replanning in uniform and non-uniform cost environments”.

In: Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, Tech. Rep. CMU-

RI-TR-05-19.

146 Bibliography

Ferguson, Dave and Anthony Stentz (2007). “Field D*: An interpolation-based path

planner and replanner”. In: Robotics research. Springer, pp. 239–253.

Franz, Matthias O and Hanspeter A Mallot (2000). “Biomimetic robot navigation”.

In: Robotics and autonomous Systems 30.1-2, pp. 133–153.

Furelos Blanco, Daniel and Anders Jonsson (2018). “Solving concurrent multiagent

planning using classical planning”. In: Stolba M, Komenda A, editors. DMAP 2018.

Proceedings of the 6th Workshop on Distributed and Multi-Agent Planning; 2018 Jun

24-29; Delft, the Netherlands. Palo Alto (CA): AAAI; 2018. p. 8-16. Association for

the Advancement of Artificial Intelligence (AAAI)-Congrés . . .

Galceran, Enric and Marc Carreras (2013). “A survey on coverage path planning for

robotics”. In: Robotics and Autonomous systems 61.12, pp. 1258–1276.

Garcia, Francisco M, Mubbasir Kapadia, and Norman I Badler (2014). “GPU-based

dynamic search on adaptive resolution grids”. In: 2014 IEEE International Confer-

ence on Robotics and Automation (ICRA). IEEE, pp. 1631–1638.

Geraerts, RJ and Mark H Overmars (2005). “Creating small roadmaps for solving

motion planning problems”. In: Proc. 11th IEEE International Conference on Meth-

ods and Models in Automation and Robotics, pp. 531–536.

Goldberg, Andrew V and Chris Harrelson (2005). “Computing the shortest path:

A search meets graph theory”. In: Proceedings of the sixteenth annual ACM-SIAM

symposium on Discrete algorithms. Society for Industrial and Applied Mathematics,

pp. 156–165.

Goldberg, Andrew V, Haim Kaplan, and Renato F Werneck (2006). “Reach for A*: Ef-

ficient point-to-point shortest path algorithms”. In: 2006 Proceedings of the Eighth

Workshop on Algorithm Engineering and Experiments (ALENEX). SIAM, pp. 129–

143.

Graham, Ross, Hugh McCabe, and Stephen Sheridan (2015). “Pathfinding in com-

puter games”. In: The ITB Journal 4.2, p. 6.

Hafting, Torkel, Marianne Fyhn, Sturla Molden, May-Britt Moser, and Edvard I Moser

(2005). “Microstructure of a spatial map in the entorhinal cortex”. In: Nature

436.7052, p. 801.

Hamm, David (2008). “Navigation mesh generation: An empirical approach”. In: AI

Game Programming Wisdom 4, pp. 113–124.

Bibliography 147

Harabor, Daniel and Adi Botea (2008). “Hierarchical path planning for multi-size

agents in heterogeneous environments”. In: Computational Intelligence and Games,

2008. CIG’08. IEEE Symposium on. IEEE, pp. 258–265.

— (2010). “Breaking path symmetries on 4-connected grid maps”. In: Sixth Artificial

Intelligence and Interactive Digital Entertainment Conference.

Harabor, Daniel et al. (2014). “Fast and Optimal Pathfinding”. In:

Harabor, Daniel Damir and Alban Grastien (2011). “Online graph pruning for pathfind-

ing on grid maps”. In: Twenty-Fifth AAAI Conference on Artificial Intelligence.

Hart, Peter E, Nils J Nilsson, and Bertram Raphael (1968). “A formal basis for the

heuristic determination of minimum cost paths”. In: IEEE transactions on Systems

Science and Cybernetics 4.2, pp. 100–107.

Holte, R.C., R. C. Holte, M.B. Perez, M. B. Perez, R. M. Zimmer, R. M. Zimmer, A.J.

MacDonald, and A. J. Macdonald (1996a). “Hierarchical A*: Searching Abstrac-

tion Hierarchies Efficiently”. In: In Proceedings of the National Conference on Artifi-

cial Intelligence, pp. 530–535.

Holte, Robert C, Chris Drummond, Maria B Perez, Robert M Zimmer, and Alan J

MacDonald (1994). “Searching with abstractions: A unifying framework and new

high-performance algorithm”. In: Proceedings of the biennial conference-Canadian

society for computational studies of intelligence, pp. 263–270.

Holte, Robert C, Taieb Mkadmi, Robert M Zimmer, and Alan J MacDonald (1996b).

“Speeding up problem solving by abstraction: A graph oriented approach”. In:

Artificial Intelligence 85.1, pp. 321–361.

Improbable (2020). In: URL: https://improbable.io/spatialos.

Jaillet, Léonard, Juan Cortés, and Thierry Siméon (2008). “Transition-based RRT for

path planning in continuous cost spaces”. In: 2008 IEEE/RSJ International Confer-

ence on Intelligent Robots and Systems. IEEE, pp. 2145–2150.

Jansen, M Renee and Michael Buro (2007). “HPA* Enhancements.” In: AIIDE 7, pp. 84–

87.

Jiménez, Andrés C, Vicente García-Díaz, Rubén González-Crespo, and Sandro Bo-

laños (2018). “Decentralized Online Simultaneous Localization and Mapping for

Multi-Agent Systems”. In: Sensors 18.8, p. 2612.

Johnson, Geraint (2006). “Smoothing a navigation mesh path”. In: AI Game Program-

ming Wisdom 3, pp. 129–139.

https://improbable.io/spatialos

148 Bibliography

Jurney, Chris and S Hubick (2007). “Dealing with destruction: Ai from the trenches

of company of heroes”. In: Game Developers Conference.

Kallmann, Marcelo (2010a). “Navigation queries from triangular meshes”. In: Inter-

national Conference on Motion in Games. Springer, pp. 230–241.

— (2010b). “Shortest Paths with Arbitrary Clearance from Navigation Meshes.” In:

Symposium on Computer Animation, pp. 159–168.

Kallmann, Marcelo and Mubbasir Kapadia (Jan. 1, 2016). Geometric and Discrete Path

Planning for Interactive Virtual Worlds. Morgan and Claypool, p. 201. published.

Kapadia, Mubbasir, Kai Ninomiya, Alexander Shoulson, Francisco Garcia, and Nor-

man Badler (2013a). “Constraint-aware navigation in dynamic environments”.

In: Proceedings of Motion on Games, pp. 111–120.

Kapadia, Mubbasir, Alejandro Beacco, Francisco Garcia, Vivek Reddy, Nuria Pelechano,

and Norman I Badler (2013b). “Multi-domain real-time planning in dynamic en-

vironments”. In: Proceedings of the 12th ACM SIGGRAPH/Eurographics symposium

on computer animation. ACM, pp. 115–124.

Kapadia, Mubbasir, Nuria Pelechano, Jan Allbeck, and Norm Badler (2015). “Virtual

crowds: Steps toward behavioral realism”. In: Synthesis lectures on visual comput-

ing: computer graphics, animation, computational photography, and imaging 7.4, pp. 1–

270.

Karaman, Sertac and Emilio Frazzoli (2011). “Sampling-based algorithms for opti-

mal motion planning”. In: The international journal of robotics research 30.7, pp. 846–

894.

Kavraki, Lydia and J-C Latombe (1994). “Randomized preprocessing of configura-

tion for fast path planning”. In: Proceedings of the 1994 IEEE International Confer-

ence on Robotics and Automation. IEEE, pp. 2138–2145.

Kavraki, Lydia E, Petr Svestka, J-C Latombe, and Mark H Overmars (1996). “Prob-

abilistic roadmaps for path planning in high-dimensional configuration spaces”.

In: IEEE transactions on Robotics and Automation 12.4, pp. 566–580.

Khansari-Zadeh, Seyed Mohammad and Oussama Khatib (2017). “Learning poten-

tial functions from human demonstrations with encapsulated dynamic and com-

pliant behaviors”. In: Autonomous Robots 41.1, pp. 45–69.

Khattab, Asem (2018). “Static and Dynamic Path Planning Using Incremental Heuris-

tic Search”. In: arXiv preprint arXiv:1804.07276.

Koenig, Sven and Maxim Likhachev (2002a). “Dˆ* lite”. In: Aaai/iaai 15.

Bibliography 149

— (2002b). “Improved fast replanning for robot navigation in unknown terrain”. In:

Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.

02CH37292). Vol. 1. IEEE, pp. 968–975.

— (2002c). “Incremental a”. In: Advances in neural information processing systems, pp. 1539–

1546.

Komenda, Antonín, Michal Stolba, and Daniel L Kovacs (2016). “The international

competition of distributed and multiagent planners (CoDMAP)”. In: AI Magazine

37.3, pp. 109–115.

Koren, Yoram and Johann Borenstein (1991). “Potential field methods and their in-

herent limitations for mobile robot navigation”. In: Proceedings. 1991 IEEE Inter-

national Conference on Robotics and Automation. IEEE, pp. 1398–1404.

Kraft, Aaron R (2017). “Abstraction Hierarchies for Multi-Agent Pathfinding”. In:

Kring, Alexander William, Alex J Champandard, and Nick Samarin (2010). “Dhpa*

and shpa*: Efficient hierarchical pathfinding in dynamic and static game worlds”.

In: Sixth Artificial Intelligence and Interactive Digital Entertainment Conference.

Lamiraux, Florent and J-P Lammond (2001). “Smooth motion planning for car-like

vehicles”. In: IEEE Transactions on Robotics and Automation 17.4, pp. 498–501.

Latombe, Jean-Claude (2012). Robot motion planning. Vol. 124. Springer Science &

Business Media.

LaValle, Steven M (1998). “Rapidly-exploring random trees: A new tool for path

planning”. In:

— (2006). Planning algorithms. Cambridge university press.

Li, Jiaoyang, Pavel Surynek, Ariel Felner, and Hang Ma (2019). “Multi-Agent Path

Finding for Large Agents”. In: AAAI.

Li, Jiayuan, Ruofei Zhong, Qingwu Hu, and Mingyao Ai (2016). “Feature-based laser

scan matching and its application for indoor mapping”. In: Sensors 16.8, p. 1265.

Likhachev, Maxim, Geoffrey J Gordon, and Sebastian Thrun (2003). “Ara: formal

analysis”. In:

— (2004). “ARA*: Anytime A* with provable bounds on sub-optimality”. In: Ad-

vances in neural information processing systems, pp. 767–774.

Likhachev, Maxim, David I Ferguson, Geoffrey J Gordon, Anthony Stentz, and Se-

bastian Thrun (2005). “Anytime Dynamic A*: An Anytime, Replanning Algo-

rithm.” In: ICAPS. Vol. 5, pp. 262–271.

150 Bibliography

Liu, Yunhui, Qi Zou, and Siwei Luo (2011). “GPU Accelerated Fourier Cross Cor-

relation Computation and Its Application in Template Matching”. In: Interna-

tional Conference on High Performance Networking, Computing and Communication

Systems. Springer, pp. 484–491.

López, Elena, Sergio García, Rafael Barea, Luis M Bergasa, Eduardo J Molinos, Roberto

Arroyo, Eduardo Romera, and Samuel Pardo (2017). “A multi-sensorial simulta-

neous localization and mapping (SLAM) system for low-cost micro aerial vehi-

cles in GPS-denied environments”. In: Sensors 17.4, p. 802.

Lucas, François, Christophe Guettier, Patrick Siarry, Anne-Marie Milcent, and Ar-

naud De La Fortelle (2010). “Constrained navigation with mandatory waypoints

in uncertain environment”. In:

McAnlis, Colt and James Stewart (2008). “Intrinsic detail in navigation mesh gener-

ation”. In: AI Game Programming Wisdom 4, pp. 95–112.

Mei, Yongguo, Yung-Hsiang Lu, Y Charlie Hu, and CS George Lee (2004). “Energy-

efficient motion planning for mobile robots”. In: IEEE International Conference on

Robotics and Automation, 2004. Proceedings. ICRA’04. 2004. Vol. 5. IEEE, pp. 4344–

4349.

Merrill, Duane, Michael Garland, and Andrew Grimshaw (2012). “Scalable GPU

graph traversal”. In: Acm Sigplan Notices. Vol. 47. 8. ACM, pp. 117–128.

Milford, Michael and Ruth Schulz (2014). “Principles of goal-directed spatial robot

navigation in biomimetic models”. In: Philosophical Transactions of the Royal Society

B: Biological Sciences 369.1655, p. 20130484.

Milford, Michael J, Gordon F Wyeth, and David Prasser (2004). “RatSLAM: a hip-

pocampal model for simultaneous localization and mapping”. In: IEEE Inter-

national Conference on Robotics and Automation, 2004. Proceedings. ICRA’04. 2004.

Vol. 1. IEEE, pp. 403–408.

Millington, Ian and John Funge (2009). Artificial Intelligence for Games, Second Edition.

Morgan Kaufmann. ISBN: 978-0-12-374731-0.

Mononen, M (2009). Recast navigation toolkit.

Muise, Christian, Nir Lipovetzky, and Miquel Ramirez (2015). “MAP-LAPKT: Om-

nipotent multi-agent planning via compilation to classical planning”. In: Compe-

tition of Distributed and Multi-Agent Planners (CoDMAP-15) 14.

Nash, Alex (2010). “Theta*: Any-angle path planning for smoother trajectories in

continuous environments”. In: AI Game Dev.

Bibliography 151

Nash, Alex and Sven Koenig (2013). “Any-angle path planning”. In: AI Magazine

34.4, pp. 85–107.

Nash, Alex, Sven Koenig, and Maxim Likhachev (2009). “Incremental Phi*: Incre-

mental any-angle path planning on grids”. In: Twenty-First International Joint Con-

ference on Artificial Intelligence.

Nash, Alex, Kenny Daniel, Sven Koenig, and Ariel Felner (2007). “Thetaˆ*: Any-

angle path planning on grids”. In: AAAI. Vol. 7, pp. 1177–1183.

Nickolls, John, Ian Buck, Michael Garland, and Kevin Skadron (2008). “Scalable par-

allel programming with CUDA”. In: Queue 6.2, pp. 40–53.

Noreen, Iram, Amna Khan, and Zulfiqar Habib (2016). “Optimal path planning us-

ing RRT* based approaches: a survey and future directions”. In: Int. J. Adv. Com-

put. Sci. Appl 7.11, pp. 97–107.

NVIDIA. CUDA (2017). http://www.nvidia.com/object/cuda_home_new.html.

Oh, Shunhao and Hon Wai Leong (2016). “Strict Theta*: Shorter Motion Path Plan-

ning Using Taut Paths.” In: ICAPS, pp. 253–257.

O’Keefe, John and Jonathan Dostrovsky (1971). “The hippocampus as a spatial map:

preliminary evidence from unit activity in the freely-moving rat.” In: Brain re-

search.

Oliva, Ramon and Nuria Pelechano (2013). “NEOGEN: Near optimal generator of

navigation meshes for 3D multi-layered environments”. In: Computers & Graphics

37.5, pp. 403–412.

Ortega-Arranz, Hector, Yuri Torres, Diego R Llanos, and Arturo Gonzalez-Escribano

(2013). “A new GPU-based approach to the shortest path problem”. In: 2013 In-

ternational Conference on High Performance Computing & Simulation (HPCS). IEEE,

pp. 505–511.

Othman, Mohd Fauzi, Masoud Samadi, and Mehran Halimi Asl (2013). “Simulation

of dynamic path planning for real-time vision-base robots”. In: FIRA RoboWorld

Congress. Springer, pp. 1–10.

Otte, Michael W (2008). “A survey of machine learning approaches to robotic path-

planning”. In: International Journal of Robotics Research 5.1, pp. 90–98.

Pallottino, Lucia, Vincenzo G Scordio, Antonio Bicchi, and Emilio Frazzoli (2007).

“Decentralized cooperative policy for conflict resolution in multivehicle systems”.

In: IEEE Transactions on Robotics 23.6, pp. 1170–1183.

http://www.nvidia.com/object/cuda_home_new.html

152 Bibliography

Pelechano, Nuria, Jan M Allbeck, and Norman I Badler (2007). “Controlling indi-

vidual agents in high-density crowd simulation”. In: Proceedings of the 2007 ACM

SIGGRAPH/Eurographics symposium on Computer animation. Eurographics Associ-

ation, pp. 99–108.

Pelechano, Nuria and Carlos Fuentes (2016a). “Hierarchical path-finding for Navi-

gation Meshes (HNA*)”. In: Computers & Graphics 59, pp. 68–78.

— (2016b). “Hierarchical path-finding for Navigation Meshes (HNA∗)”. In: Comput-

ers & Graphics 59, pp. 68–78.

Pelechano, Nuria, Jan M Allbeck, Mubbasir Kapadia, and Norman I Badler (2016).

Simulating heterogeneous crowds with interactive behaviors. CRC Press.

Rabin, S. (2000a). “A* Speed Optimizations”. In: Game Programming, 272–278.

Rabin, Steve (2000b). “A* aesthetic optimizations”. In: Game Programming Gems 1,

p. 600.

— (2014). AI Game programming wisdom 4. Vol. 4. Nelson Education.

Rahmani, Vahid and Nuria Pelechano (2017). “Improvements to hierarchical pathfind-

ing for navigation meshes”. In: Proceedings of the Tenth International Conference on

Motion in Games. ACM, p. 8.

— (2020). “Multi-agent parallel hierarchical path finding in navigation meshes (MA-

HNA*)”. In: Computers & Graphics 86, pp. 1–14.

“Recast” (2017). In: https://github.com/recastnavigation/recastnavigation.

Rodrigues, Rafael Araújo, Alessandro de Lima Bicho, Marcelo Paravisi, Cláudio Ros-

ito Jung, Léo Pini Magalhães, and Soraia Raupp Musse (2009). “Tree paths: A

new model for steering behaviors”. In: International Workshop on Intelligent Vir-

tual Agents. Springer, pp. 358–371.

Russell, Stuart J and Peter Norvig (2016). Artificial intelligence: a modern approach.

Malaysia; Pearson Education Limited,

Sacerdoti, Earl D. (1974). “Planning in a hierarchy of abstraction spaces”. In: Artificial

Intelligence 5.2, pp. 115 –135. ISSN: 0004-3702.

Samet, Hanan (1988). “An overview of quadtrees, octrees, and related hierarchi-

cal data structures”. In: Theoretical Foundations of Computer Graphics and CAD.

Springer, pp. 51–68.

Sanders, Peter and Dominik Schultes (2005). “Highway hierarchies hasten exact short-

est path queries”. In: European Symposium on Algorithms. Springer, pp. 568–579.

https://github.com/recastnavigation/recastnavigation

Bibliography 153

Savkin, Andrey V and Chao Wang (2014). “Seeking a path through the crowd: Robot

navigation in unknown dynamic environments with moving obstacles based on

an integrated environment representation”. In: Robotics and Autonomous Systems

62.10, pp. 1568–1580.

Schulman, John et al. (2014). “Motion planning with sequential convex optimization

and convex collision checking”. In: The International Journal of Robotics Research

33.9, pp. 1251–1270.

Sharon, Guni, Roni Stern, Ariel Felner, and Nathan R Sturtevant (2015a). “Conflict-

based search for optimal multi-agent pathfinding”. In: Artificial Intelligence 219,

pp. 40–66.

Sharon, Guni, Roni Stern, Ariel Felner, and Nathan R. Sturtevant (2015b). “Conflict-

based search for optimal multi-agent pathfinding”. In: Artificial Intelligence 219,

pp. 40 –66. ISSN: 0004-3702. DOI: https : / / doi . org / 10 . 1016 / j . artint .

2014.11.006. URL: http://www.sciencedirect.com/science/article/pii/

S0004370214001386.

Sigurdson, Devon, Vadim Bulitko, William Yeoh, Carlos Hernández, and Sven Koenig

(2018). “Multi-Agent Pathfinding with Real-Time Heuristic Search”. In: 2018 IEEE

Conference on Computational Intelligence and Games (CIG). IEEE, pp. 1–8.

Silver, David (2005). “Cooperative Pathfinding.” In: AIIDE 1, pp. 117–122.

Šišlák, David, Premysl Volf, and Michal Pechoucek (2009). “Accelerated A* trajectory

planning: Grid-based path planning comparison”. In: Proceedings of the 19th Inter-

national Conference on Automated Planning & Scheduling (ICAPS). Citeseer, pp. 74–

81.

Snook, Greg (2000). “Simplified 3D movement and pathfinding using navigation

meshes”. In: Game programming gems 1.1, pp. 288–304.

Stentz, Anthony (1993). Optimal and efficient path planning for unknown and dynamic en-

vironments. Tech. rep. CARNEGIE-MELLON UNIV PITTSBURGH PA ROBOTICS

INST.

Sterren, W. van der and Champandard (2008). “Building a near Optimal Naviga-

tion Mesh”. In: Game Programming Games 2. http://aigamedev.com/premium/

masterclass/automatedterrain-analysis/.

Štolba, Michal, Daniel Fišer, and Antonın Komenda (2016). “Potential heuristics for

multi-agent planning”. In: Proceedings of the 26th International Conference on Auto-

mated Planning and Scheduling, ICAPS. Vol. 16, pp. 308–316.

https://doi.org/https://doi.org/10.1016/j.artint.2014.11.006
https://doi.org/https://doi.org/10.1016/j.artint.2014.11.006
http://www.sciencedirect.com/science/article/pii/S0004370214001386
http://www.sciencedirect.com/science/article/pii/S0004370214001386
http://aigamedev.com/premium/masterclass/automatedterrain-analysis/
http://aigamedev.com/premium/masterclass/automatedterrain-analysis/

154 Bibliography

Sturtevant, Nathan and Michael Buro (2005). “Partial pathfinding using map ab-

straction and refinement”. In: AAAI. Vol. 5, pp. 1392–1397.

Sturtevant, Nathan and Renee Jansen (2007). “An Analysis of Map-Based Abstrac-

tion and Refinement”. English. In: Abstraction, Reformulation, and Approximation.

Ed. by Ian Miguel and Wheeler Ruml. Vol. 4612. Lecture Notes in Computer Sci-

ence. Springer Berlin Heidelberg, pp. 344–358. ISBN: 978-3-540-73579-3.

Sturtevant, Nathan R (2007). “Memory-Efficient Abstractions for Pathfinding.” In:

AIIDE 684, pp. 31–36.

Sturtevant, Nathan R and Michael Buro (2006). “Improving Collaborative Pathfind-

ing Using Map Abstraction.” In: AIIDE. Marina del Rey, pp. 80–85.

Sturtevant, Nathan R and Robert Geisberger (2010a). “A comparison of high-level

approaches for speeding up pathfinding”. In: Sixth Artificial Intelligence and Inter-

active Digital Entertainment Conference.

Sturtevant, Nathan R. and Robert Geisberger (2010b). “A Comparison of High-Level

Approaches for Speeding Up Pathfinding.” In: AIIDE. Ed. by G. Michael Young-

blood and Vadim Bulitko. The AAAI Press.

Sturtevant, Nathan R, Devon Sigurdson, Bjorn Taylor, and Tim Gibson (2019). “Pathfind-

ing and Abstraction with Dynamic Terrain Costs”. In: Proceedings of the AAAI

Conference on Artificial Intelligence and Interactive Digital Entertainment. Vol. 15. 1,

pp. 80–86.

Sud, Avneesh, Erik Andersen, Sean Curtis, Ming Lin, and Dinesh Manocha (2008).

“Real-time path planning for virtual agents in dynamic environments”. In: ACM

SIGGRAPH 2008 classes. ACM, p. 55.

Thalmann, Daniel and Soraia Raupp Musse (2013). Crowd Simulation. Springer.

Tolman, Edward Chace and Charles H Honzik (1930). “Degrees of hunger, reward

and non-reward, and maze learning in rats.” In: University of California Publica-

tions in Psychology.

Tominski, Christian, James Abello, and Heidrun Schumann (2009). “CGV—An inter-

active graph visualization system”. In: Computers & Graphics 33.6, pp. 660–678.

Torreño, Alejandro, Eva Onaindia, and Oscar Sapena (2014). “FMAP: Distributed

cooperative multi-agent planning”. In: Applied Intelligence 41.2, pp. 606–626.

Toth, Csaba D, Joseph O’Rourke, and Jacob E Goodman (2017). Handbook of discrete

and computational geometry. Chapman and Hall/CRC.

Bibliography 155

Tožička, Jan, Jan Jakbuv, and Antonín Komenda (2014). “Generating multi-agent

plans by distributed intersection of finite state machines”. In: Proceedings of the

Twenty-first European Conference on Artificial Intelligence, pp. 1111–1112.

Tozour, Paul (2002). “Ai game programming wisdom”. In: Charles River Media, pp. 541–

547.

Uras, Tansel, Sven Koenig, and Carlos Hernández (2013). “Subgoal graphs for op-

timal pathfinding in eight-neighbor grids”. In: Twenty-Third International Confer-

ence on Automated Planning and Scheduling.

Van Toll, Wouter, Roy Triesscheijn, Marcelo Kallmann, Ramon Oliva, Nuria Pelechano,

Julien Pettré, and Roland Geraerts (2016). “A comparative study of navigation

meshes”. In: Proceedings of the 9th International Conference on Motion in Games.

ACM, pp. 91–100.

Vermette, Jonathan (2011). “A Survey of Path-finding Algorithms Employing Auto-

matic Hierarchical Abstraction”. In:

Willms, Allan R and Simon X Yang (2006). “An efficient dynamic system for real-time

robot-path planning”. In: IEEE Transactions on Systems, Man, and Cybernetics, Part

B (Cybernetics) 36.4, pp. 755–766.

Wolfe, R, W Fitzgerald, and Franklin Gracer (1981). “Interactive graphics for volume

modeling”. In: 18th Design Automation Conference. IEEE, pp. 463–470.

Yap, Peter (2002). “Grid-based path-finding”. In: Conference of the Canadian Society for

Computational Studies of Intelligence. Springer, pp. 44–55.

Yap, Peter Kai Yue, Neil Burch, Robert C Holte, and Jonathan Schaeffer (2011). “Any-

angle path planning for computer games”. In: Seventh Artificial Intelligence and

Interactive Digital Entertainment Conference.

Yiu, Ying Fung, Jing Du, and Rabi Mahapatra (2019). “Evolutionary Heuristic A*

Search: Pathfinding Algorithm with Self-Designed and Optimized Heuristic Func-

tion”. In: International Journal of Semantic Computing 13.01, pp. 5–23.

Yu, Jingjin and Steven M LaValle (2013). “Structure and intractability of optimal

multi-robot path planning on graphs”. In: Twenty-Seventh AAAI Conference on Ar-

tificial Intelligence.

Zhang, Yunong and Jun Wang (2004). “Obstacle avoidance for kinematically redun-

dant manipulators using a dual neural network”. In: IEEE Transactions on Sys-

tems, Man, and Cybernetics, Part B (Cybernetics) 34.1, pp. 752–759.

156 Bibliography

Zhou, Yichao and Jianyang Zeng (2015). “Massively Parallel A* Search on a GPU.”

In: Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence.

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Pathfinding
	Thesis Claim And Document Organization
	Motivations
	Problem Statement
	Objectives
	Contributions

	Literature review
	Pathfinding
	Single-Agent Pathfinding Problem
	Multi-Agent Pathfinding Problem
	Search Graphs
	Paths and Instances
	Graph Representations
	Grid maps
	Waypoint Based Navigation Graphs
	Mesh Based Navigation Graphs

	Search Algorithms
	Dijkstra’s Algorithm
	The Algorithm

	The A* Algorithm
	The Algorithm

	ARA*
	D*
	Theta*
	D* Lite
	AD*
	Field D*

	Hierarchical Search Algorithms
	Problem Sub-division
	The Abstraction Build Stage
	The Abstract Search Stage
	Path Refinement
	Merits Of Using Hierarchical Pathfinding
	Hierarchical Pathfinding A* (HPA*)
	Partial Refinement A* (PRA*)
	Minimal Memory Abstraction (MMA)
	Dynamic Hierarchical path-finding A* (DHPA*)

	Summary

	Hierarchical Pathfinding for Navigation Meshes.
	Introduction
	Related Work on Hierarchical Approaches
	Hierarchical problem formulation
	The HNA* algorithm
	Theoretical upper bound on the number of inter-edges

	New insert S and G approaches
	Pre-calculated connecting paths (PCCP)
	Parallel Search on CPU
	Parallel search on GPU (CUDA HNA*)

	Experimental Results
	Game world geometry
	Error and memory usage in PCCP
	Performance results for PCCP
	 Achieved Results of parallel search on the CPU
	Achieved Results of Parallel Search on the GPU

	Conclusion

	Multi-agent parallel hierarchical pathfinding in navigation meshes (MA-HNA*)
	 Introduction
	Problem formulation
	Related work on Multi-Agent pathfinding
	 Multi-Agent Parallel Pathfinding
	Parallel pathfinding with PCCP
	Parallel pathfinding with CUDA HPA*

	Experimental Results
	Conclusion

	Towards Human-like Agent Path Planning
	 Abstract
	Introduction
	Human brain navigation
	Related work
	Human-like pathfinding model
	Hexagonal cognitive maps generation
	Path Planner
	Unknown environment
	Known environment

	Combining known and unknown areas

	Experimental Results
	Conclusion

	Conclusion and future work
	Conclusion
	Future Works
	Improvements to HNA*
	Multi-agent parallel HNA* (MA-HNA*)
	Towards human like agent path planning

	Mathematical profs 1
	Mathematical profs 2

