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Abstract: This paper studies the resolution of sup-inequalities and sup-equations with bounded variables
such that the sup-composition is defined by using different residuated operators of a given distributive
biresiduated multi-adjoint lattice. Specifically, this study has analytically determined the whole set of
solutions of such sup-inequalities and sup-equations. Since the solvability of these equations depends on
the character of the independent term, the resolution problem has been split into three parts distinguishing
among the bottom element, join-irreducible elements and join-decomposable elements.

Keywords: join-irreducible element; join-decomposable element; adjoint triples; multi-adjoint
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1. Introduction

The problem of solving equations with bounded variables and general/flexible operators is an
interesting topic nowadays [1–10]. For example, these kinds of equations arise when imprecise data need
to be modeled, such as trying to handle fuzzy sets. Lotfi A. Zadeh introduced fuzzy sets and fuzzy logic
in the sixties [11] with the main goal of mathematically interpreting imprecise predicates—i.e., names of
non-precisely determined classes of objects. This imprecision is usually modeled considering a degree
(also called truth-value) between the two classical “falsum” (0) and “verum” (1) values for the properties
describing every object. The possible set of truth-values ranges from the unit interval or some granularity
of it (a finite subset) [12,13] to a general partially ordered set, such as a lattice or a multilattice [14–16].

One of the most studied theories based on fuzzy sets is fuzzy relation equations (FRE), which was
introduced by E. Sanchez in the eighties [17]. The resolution of FRE arises naturally in problems associated
with imprecise, incomplete and/or vague data, as J. A. Goguen explained in his seminal paper [18]:

“The importance of relations is almost self-evident. Science is, in a sense, the discovery of
relations between observables . . . Difficulties arise in the so-called “soft” sciences because the
relations involved do not appear to be “hard” as they are, say, in classical physics . . . We suggest
that further difficulties might be cleared up through a systematic exploitation of fuzziness”.

From its introduction, this theory has been developed from both theoretical and applied points of
view [19,20]. For example, Sanchez used FRE for medical diagnosis [21] and fuzzy control [19]. Besides,
negations have recently been considered in FRE for modelling bipolar information [4,7,22,23], and applied
to optimization problems [5,6], enterprise architecture [10,24], decision support [3], etc.
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On the other hand, the multi-adjoint philosophy arose at the beginning of this century [25,26] as
a general flexible mathematical framework based on adjustable robust operators, called adjoint pairs
and triples. This philosophy has been applied to diverse theories, such as logic programming [27,28],
formal concept analysis [15,29,30], rough set theory [31,32], fuzzy relation equations [33,34], mathematical
morphology [1,9], etc. The resulting multi-adjoint settings are more flexible than the previous ones,
reducing the requirements to be satisfied by the considered operators. In the particular framework of
multi-adjoint FRE, Díaz-Moreno et al. introduced a novel relationship with the property-oriented and
object-oriented concept lattices in [35], which provided, among other achievements, a characterization
of the whole set of solutions of a multi-adjoint relation equation [36]. The computation of the covering
problem has also been related to the resolution of FRE [8,37]. Moreover, the use of “dual” residuated
implications was fundamental for analytically determining the minimal solutions of FRE [2,34,38].

The main goal of the current manuscript is to study the resolution of a primitive form of multi-adjoint
FRE: multi-adjoint sup-equations. Namely, multi-adjoint FRE can be seen as systems of multi-adjoint
sup-equations. Therefore, the investigation of such sup-equations is instrumental to comprehend and
deepen into the nature of multi-adjoint FRE, thus leading to their resolution. To the best of our knowledge,
Refs. [34,38] are the current papers with the most general frameworks in which the analytical expression of
the minimal solutions of FRE are given. The author in [38] deals with equations defined from a triangular
norm in a complete distributive lattice, providing their solution set, whilst [34] considers a general
setting based on a sup-preserving conjunction, but all minimal solutions of the FRE are not characterized,
in general.

Our approach is based on the point of view considered by B. De Baets in [38]. In this aforementioned
paper, the following sup-equations∨

j∈{1,...,m}
aj & xj = b and

∨
j∈{1,...,m}

xj & aj = b

as well as their corresponding sup-inequalities∨
j∈{1,...,m}

aj & xj � b ,
∨

j∈{1,...,m}
xj & aj � b ,

∨
j∈{1,...,m}

aj & xj � b ,
∨

j∈{1,...,m}
xj & aj � b

were considered, where the conjunction & is a t-norm defined on a complete distributive lattice.
Applying the philosophy of the multi-adjoint paradigm, we analyse the resolution of sup-equations and
sup-inequalities allowing the use of different conjunctions of a given distributive biresiduated multi-adjoint
lattice. The current contribution notably reduce the required properties of these conjunctions. In particular,
neither commutativity nor associativity are required. Hence, the results shown here extend the work
carried out in [38] in two ways. On the one hand, providing an extra grade of flexibility to the conjunctions
in the algebraic framework, and on the other hand, allowing different conjunctions appearing in the
same equation.

Focusing on the right-hand side of multi-adjoint sup-equations and sup-inequalities, the resolution
strategy shown here differentiates among the bottom element, join-irreducible elements and
join-decomposable elements, which are all possible kinds of elements in a lattice satisfying the descendent
chain condition [39]. Hence, for all scenarios in these general kind of lattices, the whole solution set
is analytically determined in this paper. Therefore, the solvability and the computation of the whole
set of solutions of multi-adjoint sup-equations and sup-inequalities is characterized. Thus, the current
manuscript significantly broadens the scope of the results presented in [34], fixing a general multi-adjoint
framework where all minimal solutions are characterized. Moreover, from a theoretical perspective,
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this work may have a significant impact on the resolution of multi-adjoint relation equations, as well as on
the study of bipolar fuzzy relation equations.

In what regards the applicative potential of the results, handling a general framework enables
modelling a wide range of real problems. Furthermore, computing all solutions of a multi-adjoint
sup-equation immediately sets an appealing starting point to develop real applications of this manuscript
in fields such as forensics analysis, medical diagnosis and decision support, among others.

2. Preliminary Notions

The following notions and results aim to facilitate the comprehension of this paper. To begin with,
some definitions related to lattice theory are shown below [39–41].

Definition 1. Let (L,�) be a partially ordered set (poset). We say that (L,�) is a lattice if x ∨ y, x ∧ y ∈ L for all
x, y ∈ L. Besides, if the supremum and the infimum of S exist for all S ⊆ L, then (L,�) is called a complete lattice.

A lattice is said to be distributive when its inner operators, that is the join and the meet,
distribute each other. In formal terms:

Definition 2. A lattice (L,�) is a distributive lattice if the following property holds, for all x, y, z ∈ L:

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)

A well-known characterization of distributive lattices is stated by the M3–N5 Theorem.

Theorem 1. [41] A lattice (L,�) is distributive if and only if neither M3 nor N5 is a sublattice of (L,�), being M3

and N5 the lattices whose Hasse diagrams are given in Figure 1.
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Figure 1. Lattices M3 and N5.

Since the current paper deals with the resolution of sup-equations, the lattice join operator plays a
key role in its development. We will distinguish between the elements that can be written as the join of
two other elements and the elements which cannot.

Definition 3. Let (L,�) be a lattice. An element x ∈ L is said to be:

• Join-irreducible if x 6= ⊥ and x = a ∨ b implies x = a or x = b, for all a, b ∈ L.
• Join-reducible or join-decomposable if there exists a subset of join-irreducible elements A ⊆ L, with |A| ≥ 2,

such that
∨

A = x. Besides, we say that A is a join-decomposition of x.

Notice that, all elements in a finite lattice are either join-irreducible or join-decomposable, except for
the bottom element. This partition also arises in lattices satisfying the descendent chain condition
(DCC) [39]. Another notion based on the join operator is given next.
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Definition 4. Let (L,�) be a lattice. An element x ∈ L is said to be join-prime if x � y ∨ z implies x � y
or x � z.

Clearly, all join-prime elements in a lattice are join-irreducible. Indeed, these two kind of elements
coincide in distributive lattices. Furthermore, the following property holds for join-irreducible elements of
a distributive lattice.

Proposition 1 ([40]). Let (L,�) be a distributive lattice and b ∈ L a join-irreducible element. Given a1, . . . , am ∈ L,
then b � a1 ∨ · · · ∨ am if and only if there exists j ∈ {1, . . . , m} such that b � aj.

Lattice homomorphisms, as it name suggests, are mappings which preserve the lattice join and
meet operators.

Definition 5. Let (L,�) be a lattice and f : L → L a mapping. We say that f is a lattice homomorphism,
or simply a homomorphism, if f (sup A) = sup( f (A)) and f (inf A) = inf( f (A)), for each A ∈ P(L) \ {∅}.

The notion of lattice homomorphism can be naturally extended to mappings whose domain is Ln

as follows.

Definition 6. Let (L,�) be a lattice and f : Ln → L a mapping. We say that f is a lattice homomorphism,
or simply a homomorphism, if the partial mappings of f are homomorphisms.

The classical notion of fuzzy implication is stated as a binary mapping← that is order-preserving
in the consequent and order-reversing in the antecedent. Unfortunately, as P. Hájek argued in [12],
this definition is not powerful enough to model the modus ponens inference rule, which is the main
deductive argument form in logic. To this aim, adjoint pairs were introduced in [25] as a couple of binary
mappings (&,←) representing a conjunction and an implication, respectively. It needs to be stressed that
neither commutativity nor associativity are required on &. Indeed, if & is non-commutative, there are
two ways to define ←. This fact gives rise to a more general definition than adjoint pairs, known as
adjoint triple.

Definition 7 ([42]). Let (L,�) be a lattice. Given three mappings &,↙,↖ : L× L→ L, we say that (&,↙,↖)

is an adjoint triple with respect to L if the following double equivalence holds:

x � z↙ y if and only if x & y � z if and only if y � z↖ x

The previous double equivalence is called adjoint property and the mappings ↙,↖ are called the residuated
implications of &.

The proposition below shows some properties of adjoint triples. Among others, the form of the
residuated implications of an adjoint triple is provided.

Proposition 2 ([42,43]). Let (L,�) be a complete lattice and (&,↙,↖) an adjoint triple with respect to L.
The following statements hold:

1. & is order-preserving on both arguments.
2. ↙ and↖ are order-preserving on the first argument and order-reversing on the second argument.
3. (z↙ y)& y � z for each x, y, z ∈ L.
4. x &(z↖ x) � z for each x, y, z ∈ L.
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5. x &⊥ = ⊥& x = ⊥ for each x ∈ L.
6. The residuated implications of & are unique, and they are defined as z↙ y = max{x ∈ L | x & y � z} and

z↖ x = max{y ∈ L | x & y � z}.

A complete lattice endowed with a finite number of adjoint pairs is usually called multi-adjoint lattice.
Similarly, a biresiduated multi-adjoint lattice was defined in [13] as a complete lattice enriched with a finite
number of adjoint triples. In this paper, we will also require the boundary conditions with the top element
of the lattice.

Definition 8. The tuple (L,�, &1,↙1,↖1, . . . , &n,↙κ ,↖κ) is a biresiduated multi-adjoint lattice if the
following properties are verified:

• (L,�) is a complete lattice.
• (&i,↙i,↖i) is an adjoint triple, for each i ∈ {1, . . . , κ}.
• > is the identity element of &i for each i ∈ {1, . . . , κ}, that is, >&i x = x &i > = x, for each x ∈ L.

Given a biresiduated multi-adjoint lattice (L,�, &1,↙1,↖1, . . . , &κ ,↙κ ,↖κ), following the approach
taken in [38], we will associate each &i with two extra operators. Specifically, for each i ∈ {1, . . . , κ},
we define the mappings6i,⤣i : L× L→ L as:

z 6i y = inf{x ∈ L | z � x &i y}
z ⤣i x = inf{y ∈ L | z � x &i y} (1)

Since (L,�) is a complete lattice, the mappings 6i,⤣i are well-defined. Clearly, both mappings
coincide when &i is a commutative operator, as well as ↙i and ↖i coincide. Notice that, unlike the
definition of ↙i and ↖i as a maximum, 6i and ⤣i cannot be defined as the minimum of the sets
{x ∈ L | z � x &i y} and {y ∈ L | z � x &i y}, respectively, because these sets might be empty [34].
For instance, this occurs if y ≺ z or x ≺ z, respectively.

3. Multi-Adjoint Sup-Inequalities and Sup-Equations

Let (L,�, &1,↙1,↖1, . . . , &κ ,↙κ ,↖κ) be a biresiduated multi-adjoint lattice and σ : {1, . . . , m} →
{1, . . . , κ} be a mapping which associates each index j ∈ {1, . . . , m} with some particular conjunction in
the biresiduated multi-adjoint lattice. A multi-adjoint sup-equation is an expression of the form∨

j∈{1,...,m}
aj &σ(j) xj = b or

∨
j∈{1,...,m}

xj &σ(j) aj = b

In similar terms, considering � or � instead of =, multi-adjoint sup-inequalities are defined.
Suppose that there exists h ∈ {1, . . . , m} such that b � ah and b ⤣σ(h) ah � b↖σ(h) ah. According to

the definition of⤣σ(h) and↖σ(h), since &σ(h) is order-preserving, we have that

b � ah &σ(h)(b ⤣σ(h) ah) � ah &σ(h)(b↖σ(h) ah) � b

and so, we can assert that

ah &σ(h)(b ⤣σ(h) ah) = ah &σ(h)(b↖σ(h) ah) = b
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Furthermore, in that case, the elements b ⤣σ(h) ah and b↖σ(h) ah can be redefined as:

b ⤣σ(h) ah = inf{x ∈ L | ah &σ(h) x = b}
b↖σ(h) ah = max{x ∈ L | ah &σ(h) x = b}

In other words, b ⤣σ(h) ah and b ↖σ(h) ah are the least and greatest elements from which b
can be obtained on the h-th component, respectively. As a result, in brief, our proposal consists of
using the mappings 6i, ⤣i to deduce the minimal solutions of a multi-adjoint sup-equation and the
residuated implications↙i,↖i to obtain the greatest solution of a multi-adjoint sup-equation. Specifically,
the mappings↖i and⤣i will be used to solve the sup-equation∨

j∈{1,...,m}
aj &σ(j) xj = b (2)

whilst↙i and6i will be employed to solve the sup-equation∨
j∈{1,...,m}

xj &σ(j) aj = b (3)

The problem of solving a multi-adjoint sup-equation will be split into three subproblems. Namely,
depending on the right-hand side of the equation, we will distinguish between the cases: ⊥, join-irreducible
and join-decomposable.

3.1. The Bottom Element in the Right-Hand Side

According to the definition of the bottom element, it makes no sense considering multi-adjoint
sup-inequalities with right-hand side ⊥. Indeed, the following inequality is straightforwardly satisfied for
any tuple (x1, . . . , xm): ∨

j∈{1,...,m}
aj &σ(j) xj � ⊥

whilst the inequality ∨
j∈{1,...,m}

aj &σ(j) xj � ⊥

is equivalent to the multi-adjoint sup-equation∨
j∈{1,...,m}

aj &σ(j) xj = ⊥

Hence, in what follows, we limit to the resolution of a multi-adjoint sup-equation with right-hand
side ⊥.

Notice that the expression ∨
j∈{1,...,m}

aj &σ(j) xj = ⊥

holds if and only if aj &σ(j) xj = ⊥ for each j ∈ {1, . . . , m}. Taking into account the definition of the
residuated implication↖σ(j), the greatest value such that aj &σ(j) xj = ⊥ is xj = ⊥ ↖σ(j) aj. Hence, as &σ(j)
is order-preserving, the range of possible values for the component xj is [⊥,⊥ ↖σ(j) aj]. This reasoning
leads to the following theorem, which characterizes the solution set of a multi-adjoint sup-equation with
right-hand side ⊥.
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Theorem 2. Let (L,�, &1,↙1,↖1, . . . , &κ ,↙κ ,↖κ) be a biresiduated multi-adjoint lattice and
σ : {1, . . . , m} → {1, . . . , κ}. Given a1, . . . , am, b ∈ L, the solution set of the sup-equation∨

j∈{1,...,m}
aj &σ(j) xj = ⊥ (4)

equals [⊥⊥⊥, g], where⊥⊥⊥ = (⊥, . . . ,⊥) and g = (g1, . . . , gm) with gj = ⊥ ↖σ(j) aj for each j ∈ {1, . . . , m}.

Proof. Applying Proposition 2, aj &σ(j) gj = aj &σ(j)(⊥ ↖σ(j) aj) � ⊥, for each j ∈ {1, . . . , m}.
Equivalently, aj &σ(j) gj = ⊥, for each j ∈ {1, . . . , m}, and thus g is a solution of (4). Moreover, since &σ(j)
is order-preserving, for each j ∈ {1, . . . , m}, we can assert that x is a solution of (4) for each x � g.

Lastly, notice that, if xj 6� gj = ⊥ ↖σ(j) aj, by definition of residuated implication we obtain that

aj &σ(j) xj 6� ⊥

In other words, by definition of the bottom element, ⊥ ≺ aj &σ(j) xj. Hence, we conclude that the
solution set of (4) is [⊥⊥⊥, g].

An analogous result arises to sup-equation (3), with b = ⊥.

Theorem 3. Let (L,�, &1,↙1,↖1, . . . , &κ ,↙κ ,↖κ) be a biresiduated multi-adjoint lattice and
σ : {1, . . . , m} → {1, . . . , κ}. Given a1, . . . , am, b ∈ L, the solution set of the sup-equation∨

j∈{1,...,m}
xj &σ(j) aj = ⊥ (5)

equal [⊥⊥⊥, g], where⊥⊥⊥ = (⊥, . . . ,⊥) and g = (g1, . . . , gm) with gj = ⊥ ↙σ(j) aj for each j ∈ {1, . . . , m}.

Proof. The proof is dual to the proof of Theorem 2.

3.2. A Join-Irreducible Element in the Right-Hand Side

Let b be a join-irreducible element of L. According to the concept of join-irreducible, we can assert that∨
j∈{1,...,m}

aj &σ(j) xj = b

implies that aj &σ(j) xj = b for some j ∈ {1, . . . , m}. On the other hand, following the same reasoning as
at the beginning of Section 3, if there exists h ∈ {1, . . . , m} such that b � ah and b ⤣σ(h) ah � b↖σ(h) ah,
then ah &σ(h) xh = b for each xh ∈ [b ⤣σ(h) ah, b ↖σ(h) ah]. Notice that, fixing xh, a tuple (x1, . . . , xm) is a
solution of the sup-equation whenever aj &σ(j) xj � b for each j 6= h. Equivalently, if xj ∈ [⊥, b↖σ(j) aj]

for each j 6= h. This leads to an interval of solutions for each h ∈ {1, . . . , m} satisfying b � ah and b ⤣σ(h)
ah � b↖σ(h) ah.

The following theorem formalizes the preceding intuition, providing the solution set of a multi-adjoint
sup-equation with join-irreducible right-hand side, as well as the solution set of the multi-adjoint
sup-inequalities: ∨

j∈{1,...,m}
aj &σ(j) xj � b
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and
b �

∨
j∈{1,...,m}

aj &σ(j) xj

To this aim, besides distributivity on the lattice, the conjunctions will be required to preserve the join
and the meet.

Theorem 4. Let (L,�, &1,↙1,↖1, . . . , &κ ,↙κ ,↖κ) be a distributive biresiduated multi-adjoint lattice and
σ : {1, . . . , m} → {1, . . . , κ}. Given a1, . . . , am ∈ L and a join-irreducible element b ∈ L, if &1, . . . , &κ are
homomorphisms then:

(a) The solution set of the sup-inequality ∨
j∈{1,...,m}

aj &σ(j) xj � b (6)

equals [⊥⊥⊥, g], where⊥⊥⊥ = (⊥, . . . ,⊥) and g = (g1, . . . , gm) with gj = b↖σ(j) aj for each j ∈ {1, . . . , m}.
(b) The solution set of the sup-inequality

b �
∨

j∈{1,...,m}
aj &σ(j) xj (7)

equals
⋃

b�ah

[sh,>>>], being>>> = (>, . . . ,>) and sh = (sh
1, . . . , sh

m) with

sh
j =

{
b ⤣σ(h) ah if j = h
⊥ otherwise

(c) The solution set of the sup-equation ∨
j∈{1,...,m}

aj &σ(j) xj = b (8)

equals
⋃

sh∈S

[sh, g], where S = {sh | h ∈ {1, . . . m}, b � ah, b ⤣σ(h) ah � b ↖σ(h) ah} and g and sh are

defined according to (a) and (b), respectively.

Proof.

(a) The tuple ⊥⊥⊥ straigthforwardly satisfies (6), since Proposition 2 implies that aj &σ(j)⊥ = ⊥ for all
j ∈ {1, . . . , m}. Consequently, according to the definition of g, it is sufficient to see that g is a solution
of (6) to conclude that its solution set is given by [⊥⊥⊥, g].

By Proposition 2, for every j ∈ {1, . . . , m}, gj = b ↖σ(j) aj is the greatest solution of aj &σ(j) xj � b.
As a consequence, we obtain that ∨

j∈{1,...,m}
aj &σ(j) gj � b

and no other solution of this sup-inequality can be greater than g.
(b) Clearly, if (7) is not solvable, then

b 6�
∨

j∈{1,...,m}
aj &σ(j)> =

∨
j∈{1,...,m}

aj
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Hence, b 6� aj for all j ∈ {1, . . . , m}, from which the solution set
⋃

b�ah

[sh,>>>] is empty, and thus the

thesis is satisfied.

Suppose now that (7) is solvable, and let (x1, . . . , xm) be a solution. By Proposition 1, as b is
join-irreducible, there exists h ∈ {1, . . . , m} satisfying b � ah &σ(h) xh. On the one hand, since &σ(h)
is order-preserving, this implies that

b � ah &σ(h) xh � ah &σ(h)> = ah (9)

On the other hand, by definition of⤣σ(h), we obtain that b ⤣σ(h) ah � xh and so, sh � (x1, . . . , xm).

Taking into account the previous assertions, in order to prove that the solution set of (7) is
⋃

b�ah

[sh,>>>],

it is sufficient to see that sh is a solution of (7), for each h ∈ {1, . . . , m} such that b � ah. Notice that,
the set {x ∈ L | b � ah &σ(h) x} is non-empty, since > belongs to such set by (9). As &σ(h) is a
homomorphism, we deduce then that

b � inf{ah &σ(h) x | b � ah &σ(h) x, x ∈ L}
= ah &σ(h) inf{x ∈ L | b � ah &σ(h) x}
= ah &σ(h)(b ⤣σ(h) ah)

Hence, we conclude that sh is a solution of (7)—indeed, it accurately is a minimal solution of
sup-inequality (7).

(c) Obviously, a tuple is a solution of (8) if and only if it is a solution of (6) and (7). Applying then (a)
and (b), the solution set of (8) equals

[⊥⊥⊥, g] ∩
⋃

b�ah

[sh,>>>]

that is ⋃
b�ah

(
[⊥⊥⊥, g] ∩ [sh,>>>]

)
Notice that, given h ∈ {1, . . . , m} and sh, it holds sh

j = ⊥ for each j 6= h. As a result, the set

[⊥⊥⊥, g] ∩ [sh,>>>] = [sh, g] is non-empty if and only if sh
h � gh. Equivalently, according to the definition

of sh and g, if and only if
b ⤣σ(h) ah = sh

h � gh = b↖σ(h) ah

Hence, we conclude that the solution set of (8) is given by
⋃

sh∈S[s
h, g], being

S = {sh | h ∈ {1, . . . , m}, b � ah, b ⤣σ(h) ah � b↖σ(h) ah}

A dual result is obtained when the unknown values appear in the left-hand side of the conjunctions.

Theorem 5. Let (L,�, &1,↙1,↖1, . . . , &κ ,↙κ ,↖κ) be a distributive biresiduated multi-adjoint lattice and
σ : {1, . . . , m} → {1, . . . , κ}. Given a1, . . . , am ∈ L and a join-irreducible element b ∈ L, if &1, . . . , &κ are
homomorphisms then:
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(a) The solution set of the sup-inequality ∨
j∈{1,...,m}

xj &σ(j) aj � b (10)

equals [⊥⊥⊥, g], where⊥⊥⊥ = (⊥, . . . ,⊥) and g = (g1, . . . , gm) with gj = b↙σ(j) aj for each j ∈ {1, . . . , m}.
(b) The solution set of the sup-inequality

b �
∨

j∈{1,...,m}
xj &σ(j) aj (11)

equals
⋃

b�ah

[sh,>>>], being>>> = (>, . . . ,>) and sh = (sh
1, . . . , sh

m) with

sh
j =

{
b 6σ(h) ah if j = h
⊥ otherwise

(c) The solution set of the sup-equation ∨
j∈{1,...,m}

xj &σ(j) aj = b (12)

equals
⋃

sh∈S

[sh, g], where S = {sh | h ∈ {1, . . . m}, b � ah, b 6σ(h) ah � b ↙σ(h) ah} and g and sh are

defined according to (a) and (b), respectively.

Proof. The proof is dual to the proof of Theorem 4.

3.3. A Join-Decomposable Element in the Right-Hand Side

The underlying idea in the resolution of a multi-adjoint sup-equation with join-decomposable
right-hand side is essentially the same as in the join-irreducible case. Nevertheless, since a
join-decomposable element b ∈ L can be written as the join of different elements of L, that is b =

∨
k∈K

bk

with bk ∈ L join-irreducible for each k ∈ K, we need to take this fact into account in the resolution of an
equation of the form ∨

j∈{1,...,m}
aj &σ(j) xj = b

More precisely, in this case, we do not need to obtain exactly b in some of the arguments of the
equation, but it is sufficient to reach every bk with k ∈ K in the different arguments. For this reason,
the mapping⤣σ(h) will be applied to bk instead of b, and the interval of solutions corresponding to the
h-th argument is computed by taking the intersection of the intervals related to each bk, or equivalently by
taking the supremum of their left-bound.

The following theorem provides the solution set of a multi-adjoint sup-equation and of a multi-adjoint
sup-inequality with join-decomposable right-hand side. Observe that, the resolution of the inequality∨

j∈{1,...,m}
aj &σ(j) xj � b

is not affected by the fact of b being join-irreducible or join-decomposable.
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Theorem 6. Let (L,�, &1,↙1,↖1, . . . , &κ ,↙κ ,↖κ) be a distributive biresiduated multi-adjoint lattice and
σ : {1, . . . , m} → {1, . . . , κ}. Given a1, . . . , am ∈ L and a join-decomposable element b ∈ L with join-decomposition
b =

∨
k∈K

bk, if &1, . . . , &κ are homomorphisms then:

(a) The solution set of the sup-inequality ∨
j∈{1,...,m}

aj &σ(j) xj � b (13)

equals [⊥⊥⊥, g], where⊥⊥⊥ = (⊥, . . . ,⊥) and g = (g1, . . . , gm) with gj = b↖σ(j) aj for each j ∈ {1, . . . , m}.
(b) The solution set of the sup-inequality

b �
∨

j∈{1,...,m}
aj &σ(j) xj (14)

equals {[ ∨
k∈K

shk,>>>
]
| shk ∈ Sk with k ∈ K

}
where Sk = {shk | h ∈ {1, . . . m}, bk � ah},>>> = (>, . . . ,>) and shk = (shk

1 , . . . , shk
m ) with

shk
j =

{
bk ⤣σ(h) ah if j = h
⊥ otherwise

(c) The solution set of the sup-equation ∨
j∈{1,...,m}

aj &σ(j) xj = b (15)

equals {[ ∨
k∈K

shk, g
]
| shk ∈ Sk with k ∈ K

}
where Sk = {shk | h ∈ {1, . . . m}, bk � ah, bk ⤣σ(h) ah � b↖σ(h) ah}.

Proof.

(a) The proof is analogous to Statement (a) in Theorem 4.
(b) By definition of supremum, sup-inequality (14) holds if and only if, for each k ∈ K:

bk �
∨

j∈{1,...,m}
aj &σ(j) xj (16)

In other words, the solution set of (14) is equivalent to the intersection in K of the solution set of (16).
Hence, applying Theorem 4, we can assert that the solution set of (14) is given by

⋂
k∈K

( ⋃
shk∈Sk

[shk,>>>]
)

where Sk = {shk | h ∈ {1, . . . m}, bk � ah} and shk = (shk
1 , . . . , shk

m ) with

shk
j =

{
bk ⤣σ(h) ah if j = h
⊥ otherwise
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As a result, applying elementary set operations, the solution set of (14) can be rewritten as{[ ∨
k∈K

shk,>>>
]
| shk ∈ Sk with k ∈ K

}
(c) Clearly, sup-equation (15) is solvable if and only if sup-inequalities (13) and (14) are solvable. Hence,

applying Statements (a) and (b), the solution set of (15) is given by{[ ∨
k∈K

shk, g
]
| shk ∈ Sk with k ∈ K

}
where Sk = {shk | h ∈ {1, . . . m}, bk � ah} and g and shk are defined according to (a) and (b),
respectively. Notice that, [

∨
k∈K

shk, g] 6= ∅ if and only if

bk ⤣σ(h) ah � b↖σ(h) ah

for each k ∈ K. Hence, the solution set of (15) can be rewritten as{[ ∨
k∈K

shk, g
]
| shk ∈ Sk with k ∈ K

}
being Sk = {shk | h ∈ {1, . . . m}, bk � ah, bk ⤣σ(h) ah � b↖σ(h) ah}.

When the unknown values appear in the left-hand side of the conjunctions, the following result arises.

Theorem 7. Let (L,�, &1,↙1,↖1, . . . , &κ ,↙κ ,↖κ) be a distributive biresiduated multi-adjoint lattice and
σ : {1, . . . , m} → {1, . . . , κ}. Given a1, . . . , am ∈ L and a join-decomposable element b ∈ L with join-decomposition
b =

∨
k∈K

bk, if &1, . . . , &κ are homomorphisms then:

(a) The solution set of the sup-inequality ∨
j∈{1,...,m}

xj &σ(j) aj � b (17)

equals [⊥⊥⊥, g], where⊥⊥⊥ = (⊥, . . . ,⊥) and g = (g1, . . . , gm) with gj = b↙σ(j) aj for each j ∈ {1, . . . , m}.
(b) The solution set of the sup-inequality

b �
∨

j∈{1,...,m}
xj &σ(j) aj (18)

equals {[ ∨
k∈K

shk,>>>
]
| shk ∈ Sk with k ∈ K

}
where Sk = {shk | h ∈ {1, . . . m}, bk � ah},>>> = (>, . . . ,>) and shk = (shk

1 , . . . , shk
m ) with

shk
j =

{
bk 6

σ(h) ah if j = h
⊥ otherwise
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(c) The solution set of the sup-equation ∨
j∈{1,...,m}

xj &σ(j) aj = b (19)

equals {[ ∨
k∈K

shk, g
]
| shk ∈ Sk with k ∈ K

}
where Sk = {shk | h ∈ {1, . . . m}, bk � ah, bk 6

σ(h) ah � b↙σ(h) ah}.

Proof. The proof is dual to the one given to Theorem 6.

3.4. Practical Examples

This section includes two practical examples to illustrate the main results presented in the current
manuscript as well as to instantiate the potential of the developed technique in real case problems.
Both examples lie in the field of forensics analysis. The first example is based on Belnap’s four-valued
logic [44], which serves as a basic framework to handle a forensics problem. Then, in the second example,
the interpretation of the problem becomes more refined, giving rise to a richer algebraic structure composed
of a finite lattice endowed with two adjoint triples. With the aim of deciding whether a certain suspect is
a potential culprit of a crime, we analyse the resolution of different multi-adjoint sup-equations whose
right-hand side is ⊥, join-irreducible or join-decomposable.

Example 1. We are interested in applying the philosophy of Belnap’s four-valued logic [44] into forensics analysis.
To this aim, any evidence in a forensics procedure will be associated with a truth-value in such logic, depending on
what the evidence implies regarding the culpability of a certain suspect. In Belnap’s four-valued logic, the truth-values
are: True, False, None (neither True nor False) and Both (both True and False). In our approach, these values are,
respectively, interpreted as follows: Incriminating, Absolving, Void and Inconsistent. The resulting four-valued
lattice is illustrated in Figure 2. Note that, Incriminating is a join-decomposable element, Absolving behaves like
the bottom element and Void and Inconsistent are join-irreducible elements of (L,�).

•
Absolving
@

@
�
�

•Void �
�

• Inconsistent@
@
•

Incriminating

Figure 2. Lattice (L,�).

The meaning of Incriminating and Absolving is clear. In what concerns the truth-value Void, it may be
caused for two reasons: either there is no evidence or there is a false evidence, that is, the information has been created
or obtained illegally. Finally, evidence is considered to be Inconsistent if there are indications that the suspect is
guilty and there are also indications that the suspect is innocent. For instance, this may happen if the evidence is
collected twice, resulting in different outcomes. Undoubtedly, the nature of Void and Inconsistent is different,
and therefore we must define them as different truth-values. Nevertheless, both values represent lack of verdict,
and thus they are incomparable from the point of view of incrimination.

Now, assume that there are three kind of evidences in a certain criminal investigation: witness, video and DNA.
The three of them can be related to a pair of values in (L,�), one representing the content of the corresponding
evidence, and the other one concerning the reliability of the evidence. Concretely, the witness is associated with the pair
(a1, x1) and video is related to (a2, x2), where a1/a2 contains the grade of incrimination which the testimony/video
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record suggests, whilst x1/x2 indicates its reliability (the witness/video might be corrupted by noise, location, etc.).
Similarly, DNA is related to the pair (a3, x3), where a3 represents the DNA matching and x3 the level of reliability
of the evidence. For instance, x3 will be greater (more compromising) if there are plenty of DNA traces and they are
found in key locations of the crime scene. Evidence is assumed to incriminate a suspect if both aj and xj incriminate
the suspect. In other words, the level of incrimination of an evidence may be computed as the infimum of aj and
xj. Notice that the infimum operator of the lattice (L,�) represented in Figure 2 coincides with the conjunction in
Belnap’s logic. Besides, one piece of incriminating evidence is enough to blame the suspect. As a result, we may join
the suggested incrimination of the evidences by taking the supremum.

The values a1, a2, a3 can be collected in a first stage of a criminal investigation. However, deepening of the
reliability of the evidences entails more efforts and time. As a consequence, it would be advantageous having a method
to decide, from a1, a2 and a3, if a certain suspect is a potential culprit of the crime, or if the evidence is not strong
enough to question his innocence. Sup-equations can be used for this purpose. For instance, consider the sup-equation

(a1 & x1) ∨ (a2 & x2) ∨ (a3 & x3) = Absolving (20)

where & represents the infimum operator. The solution set of (20) represents the number of possibilities to the suspect
being innocent. Similarly, the solution set of the sup-equation

(a1 & x1) ∨ (a2 & x2) ∨ (a3 & x3) = Incriminating (21)

would inform us about the feasibility of the suspect being the culprit of the crime.
According to the solution set of the preceding Equations (20) and (21), the forensics team could agree to collect

more evidence, evaluate the reliability of the evidences or maybe investigate other suspects.

In the foregoing example, & is the unique conjunction appearing in (20) and (21), and the infimum
operator & is a t-norm in the sense of [38]; that is, it is a commutative and associative operator. Hence,
the theory developed in [38] is strong enough to solve (20) and (21), as well as similar equations with Void or
Inconsistent in the right-hand side. Nevertheless, some situations require to work with a non-commutative
and/or non-associative operator. Furthermore, in certain problems, different variables demand to use
different conjunctions. In that case, the arising equations are not within the scope of the results in [38].
In what follows, as an extension of Example 1, we provide a forensics science context which gives
rise to multi-adjoint sup-equations, and we employ the theory developed in this manuscript to solve
such equations.

Example 2. Consider the forensics context presented in Example 1. From a practical point of view, it would
be desirable to have different grades of incrimination. Consequently, hereinafter we granulate the truth-value
Incriminating according to the fortitude of the evidence, differentiating among Doubting innocence, Indicating
involvement and Inculpating.

In order to model the new set of truth-values, we will make use of the complete lattice (L,�), whose Hasse
diagram is portrayed in Figure 3. Namely, the elements ⊥, α, β, γ, δ,> ∈ L represent the truth-values Absolving,
Void, Inconsistent, Doubting innocence, Indicating involvement and Inculpating, respectively. Notice that,
the lattice (L,�) contains the bottom element ⊥; the join-irreducible elements α, β, δ,>; the join-decomposable
element γ, which can be written as γ = α ∨ β.
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•
⊥
@

@
�
�

•α �
�

• β@
@
•γ

•δ

•
>

Figure 3. Lattice (L,�).

Concerning the evidence—witness, video and DNA—we may have that witness and video deserve a treatment
separate from DNA. For instance, the coincidence and the reliability of DNA are objective features. Nevertheless,
if both the content and the reliability of a testimony or a video record are corrupted, then it is considered extenuating
evidence in favour of the suspect. In other words, if the truth value of a1 and x1 is equal to α, then the conjunction of
a1 and x1 is equal to ⊥, and similarly for a2 and x2. Since this does not hold for DNA, we require, then, two different
conjunctions: A conjunction &1 to work with witness and video evidence and a generalization of Belnap’s conjunction
&2 to work with the DNA evidence, satisfying α &1 α = ⊥ and α &2 α = α. This fact was not taken into account in
Example 1 in order to set a preliminary forensics contextualization.

Other than that, if the testimony or a video record of a trusted source is corrupted—i.e., a1 = α and x1 = δ

or a2 = α and x2 = δ, the evidence is also considered to extenuate the suspect from the crime, that is, α &1 δ = ⊥.
This does not apply if the reliability of incriminating content is corrupted—i.e., a1 = δ and x1 = α or a2 = δ and
x2 = α. Thus, δ &1 α = α, from which &1 is a non-commutative operator.

In what follows, we will make use of multi-adjoint sup-equations to answer the following questions:

(A) How possible it is a video record indicates that an innocent is involved in a crime?
(B) Provided a lightly inculpating testimony, an inconsistent video record and highly coincident DNA traces,

what are the chances to the suspect being innocent? What about the possibilities to doubt about the innocence
of the suspect?

Regarding the first query, we assume lack of witnesses and DNA traces. Hence, a1 = a3 = α and a2 = δ

by hypothesis. Observe that the possibilities of the suspect being innocent are equivalent to the solution set of the
multi-adjoint sup-equation

(α &1 x) ∨ (γ &1 y) ∨ (α &2 z) = ⊥ (22)

Hereinafter, we will apply the results developed throughout this manuscript to solve (22), where the mappings
&1, &2 : L× L→ L are defined by Table 1. Note that, since the table corresponding to &2 is symmetric, the operator
&2 is commutative. In what regards &1, as aforementioned, it is non-commutative since α &1 δ = ⊥ whilst
δ &1 α = α. It is easy to check that the tuples (&1,↙1,↖1) and (&2,↙2,↖2) form adjoint triples, where the
definition of↙1,↖1 is detailed in Table 2 and the mappings↙2,↖2 are given in Table 3. Obviously, as &2 is
commutative, its residuated implications↙2,↖2 coincide. Additionally, making the corresponding computations,
the mappings⤣1,61,⤣2,62 can be obtained, whose definitions are specified in Table 4.
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Table 1. Operators &1 and &2.

&1 ⊥ α β γ δ >

⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
α ⊥ ⊥ ⊥ ⊥ ⊥ α

β ⊥ ⊥ β β β β

γ ⊥ ⊥ β β γ γ

δ ⊥ α β γ γ δ

> ⊥ α β γ δ >

&2 ⊥ α β γ δ >

⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
α ⊥ α ⊥ α α α

β ⊥ ⊥ β β β β

γ ⊥ α β γ γ γ

δ ⊥ α β γ δ δ

> ⊥ α β γ δ >

Table 2. Residuated implications of &1.

↖1 ⊥ α β γ δ >

⊥ > δ α α > >
α > > α α α α

β > δ > γ β β

γ > > > > δ γ

δ > > > > > δ

> > > > > > >

↙1 ⊥ α β γ δ >

⊥ > γ α α α ⊥
α > > α α α α

β > γ > γ γ β

γ > > > > δ γ

δ > > > > > δ

> > > > > > >

Table 3. Residuated implications of &2.

↖2 ⊥ α β γ δ >

⊥ > β α ⊥ ⊥ ⊥
α > > α α α α

β > β > β β β

γ > > > > γ γ

δ > > > > > δ

> > > > > > >

↙2 ⊥ α β γ δ >

⊥ > β α ⊥ ⊥ ⊥
α > > α α α α

β > β > β β β

γ > > > > γ γ

δ > > > > > δ

> > > > > > >

Table 4. Operators⤣1,61,⤣2,62.

⤣1 ⊥ α β γ δ >

⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
α > > > δ α α

β > > β β β β

γ > > > δ γ γ

δ > > > > > δ

> > > > > > >

61 ⊥ α β γ δ >

⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
α > δ > δ γ α

β > > β β β β

γ > > > δ γ γ

δ > > > > > δ

> > > > > > >

⤣2 ⊥ α β γ δ >

⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
α > α > α α α

β > > β β β β

γ > > > γ γ γ

δ > > > > δ δ

> > > > > > >

62 ⊥ α β γ δ >

⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
α > α > α α α

β > > β β β β

γ > > > γ γ γ

δ > > > > δ δ

> > > > > > >

Clearly, the lattices M3 and N5 are not sublattices of (L,�) and thus, applying Theorem 1, (L,�) is
a distributive lattice. This leads us to assert that the tuple (L,�, &1,↙1,↖1, &2,↙2,↖2) is a distributive
biresiduated multi-adjoint lattice. Furthermore, we can check that the operators &1, &2 preserve the join and the
meet, that is, they are homomorphisms. Hence, in short, the considered algebraic structure satisfies the hypothesis of
the results developed in this manuscript.
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According to Theorem 2, we obtain that the solution set of (22) is the interval [⊥⊥⊥, (⊥ ↖1 α,⊥ ↖1 γ,⊥ ↖2

α)], that is, making the corresponding computations, the interval [(⊥,⊥,⊥), (δ, α, β)]. Indeed, paying attention to
Table 1, we can see that α &1 x = ⊥, for each x ∈ {⊥, α, β, γ, δ}; γ &1 y = ⊥, for each y ∈ {⊥, α}, and α &2 z = ⊥,
for each z ∈ {⊥, β}.

Consequently, answering (A), we can assert that there are substantial possibilities for having a video record
indicating that an innocent is involved in a crime. In what regards query (B), we will analyse the resolution of
the sup-equation:

(γ &1 x) ∨ (β &2 y) ∨ (δ &1 z) = α (23)

Notice that, in this case, (23) is a multi-adjoint sup-equation with join-irreducible right-hand side. In order to apply
Theorem 4 to (23), let us check whether s1, s2 or s3 belong to the set S = {sh | α � ah, α ⤣σ(h) ah � α↖σ(h) ah}.
Obviously, as α 6� β, then s2 /∈ S. In what regards s1 and s3, we have that α � γ and α � δ, respectively. On the
one hand:

α ⤣1 γ = δ 6� α = α↖1 γ

Therefore, we deduce that s1 /∈ S. On the other hand, the following chain holds:

α ⤣1 δ = α � α = α↖1 δ

As a consequence, we conclude that S = {s1} = {(⊥,⊥, α ⤣1 δ)} = {(⊥,⊥, α)}. Taking into account the
aforementioned Theorem 4, the solution set of (23) is then the interval

[(⊥,⊥, α), (α↖1 γ, α↖2 β, α↖1 δ)] = [(⊥,⊥, α), (α, α, α)]

In other words, the solutions of (23) are the tuples (⊥,⊥, α), (α,⊥, α), (⊥, α, α) and (α, α, α).
Coming back to query (B), we have found only four possibilities leading to no knowledge about the participation

of the suspect in the crime. Thus, in most occasions, a lightly inculpating testimony, an inconsistent video record and
highly coincident DNA traces will lead to some kind of verdict, either blaming or absolving, or some inconsistency.

From a theoretical point of view, the key role needs to be stressed, which plays the non-commutativity of &1

in the solvability of (23). In fact, if we consider its dual equation, it turns out to be unsolvable. Namely, let the
multi-adjoint sup-equation

(x &1 γ) ∨ (y &2 β) ∨ (z &1 δ) = α (24)

In this case, we have that
α 61 γ = δ 6� α = α↙1 γ

α 61 δ = γ 6� α = α↙1 δ

As a result, the corresponding set S of (24) is empty, and thus by Theorem 5 the solution set of (24) is also
empty. Finally, in order to see the chances to blame the suspect at some grade of culpability, consider the multi-adjoint
sup-equation given next:

(γ &1 x) ∨ (β &2 y) ∨ (δ &1 z) = γ (25)

Note that the coefficients of (25) coincide with the coefficients of (23). Nevertheless, the right-hand side of (25)
has a different nature from the right-hand side of (23), since γ is a join-decomposable element of (L,�). In particular,
the set {α, β} is a join-decomposition of γ—i.e., γ = α ∨ β.

In what follows, we will apply Theorem 6 to compute the solution set of (25). Following the notation of the
mentioned theorem, we will use S1 to denote the corresponding set of α and S2 to denote the corresponding set of β. In other
words, S1 = {sh1 | α � ah, α ⤣σ(h) ah � γ ↖σ(h) ah} and S2 = {sh2 | β � ah, β ⤣σ(h) ah � γ ↖σ(h) ah}.
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Regarding S1, we straightforwardly obtain that s21 /∈ S1, because α 6� β. On the contrary, both s11 and s31 belong
to S1, since α � γ, α � δ and the following expressions hold:

α ⤣1 γ = δ � > = γ↖1 γ

α ⤣1 δ = α � δ = γ↖1 δ

As far as S2 is concerned, we have that β � γ, β � β and β � δ. Furthermore, the next inequalities are verified:

β ⤣1 γ = β � > = γ↖1 γ

β ⤣2 β = β � > = γ↖2 β

β ⤣1 δ = β � δ = γ↖1 δ

Hence, we can assert that

S1 = {s11, s31} = {(α ⤣1 γ,⊥,⊥), (⊥,⊥, α ⤣1 δ)} = {(δ,⊥,⊥), (⊥,⊥, α)}
S2 = {s12, s22, s32} = {(β ⤣1 γ,⊥,⊥), (⊥, β ⤣2 β,⊥), (⊥,⊥, β ⤣1 δ)} = {(β,⊥,⊥), (⊥, β,⊥), (⊥,⊥, β)}

Similarly, the tuple g related to (25) is defined as g = (γ↖1 γ, γ↖2 β, γ↖1 δ) = (>,>, δ). We are now
in a position to apply Theorem 6, from which the solution set of (25) can be written as

⋃
s∈S1

t∈S2

[
s ∨ t, g

]

Making the corresponding computations, we conclude that the solution set of (25) equals

[(δ,⊥,⊥), (>,>, δ)] ∪ [(⊥,⊥, γ), (>,>, δ)] ∪ [(β,⊥, α), (>,>, δ)] ∪ [(⊥, β, α), (>,>, δ)]

We conclude then that there is a great number of options to blame a suspect from a lightly inculpating testimony,
an inconsistent video record and highly coincident DNA traces.

Notice that the minimal solutions (β,⊥, α) and (⊥, β, α) cannot be obtained from the
results presented in [34], since those results only characterize minimal solutions with a single
non-bottom component.

4. Conclusions

This paper has extended the results and properties introduced in [34,38] to the multi-adjoint
framework. To the best of our knowledge, these papers considered the most general frameworks
in which the analytical expression of the minimal solutions of FRE was given. The use of different
conjunctions of a given distributive biresiduated multi-adjoint lattice has been allowed in the resolution
of sup-equations and sup-inequalities. This fact notably extends the contribution presented in [38],
since a more flexible framework can be considered where neither commutativity nor associativity
are required on the conjunctions. In [34] the multi-adjoint character was not considered either.
It is also important to mention that the results obtained for the minimal solutions of multi-adjoint
sup-inequalities and multi-adjoint sup-equations improve the ones given in [34]. For instance, giving a
complete characterization of all minimal solutions of the sup-equations.

Specifically, in this paper, the whole set of solutions of multi-adjoint sup-inequalities and multi-adjoint
sup-equations has been analytically determined using a “dual” notion of residuated implication. Moreover,
the solvability is based on the character of the independent term as the bottom, join-irreducible or
join-decomposable element. Therefore, the whole set of solutions of all sup-equations and sup-inequalities
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on distributive biresiduated multi-adjoint lattices satisfying the descendent chain condition, has been
analytically characterized. Thus, the results in this paper provide a general framework to model real
applications, such as forensic analysis, medical diagnosis, decision support, among others, with a great
level of flexibility and solve the obtained equations, computing all solutions immediately.

In the future, systems of multi-adjoint sup-equations and systems of multi-adjoint sup-inequalities
will be studied, giving rise then to the resolution of multi-adjoint relation equations. Furthermore,
the comparison with the methodologies based on concept lattices and the covering problem will be studied.
Finally, we are interested in the consideration of negations in the sup-equations and sup-inequalities,
with the aim of enhancing the knowledge on bipolar fuzzy relation equations [4,22,23].
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