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ABSTRACT

Context. The high-precision parallax data of the Gaia mission allows for significant improvements in the distance determination to
stellar clusters and their stars. In order to obtain accurate and precise distance determinations, systematics such as parallax spatial
correlations need to be accounted for, especially with regard to stars in small sky regions.
Aims. Our aim is to provide the astrophysical community with a free and open code designed to simultaneously infer cluster param-
eters (i.e., distance and size) and distances to the cluster stars using Gaia parallax measurements. The code includes cluster-oriented
prior families and it is specifically designed to deal with the Gaia parallax spatial correlations.
Methods. A Bayesian hierarchical model is created to allow for the inference of both the cluster parameters and distances to its stars.
Results. Using synthetic data that mimics Gaia parallax uncertainties and spatial correlations, we observe that our cluster-oriented
prior families result in distance estimates with smaller errors than those obtained with an exponentially decreasing space density prior.
In addition, the treatment of the parallax spatial correlations minimizes errors in the estimated cluster size and stellar distances, and
avoids the underestimation of uncertainties. Although neglecting the parallax spatial correlations has no impact on the accuracy of
cluster distance determinations, it underestimates the uncertainties and may result in measurements that are incompatible with the
true value (i.e., falling beyond the 2σ uncertainties).
Conclusions. The combination of prior knowledge with the treatment of Gaia parallax spatial correlations produces accurate (error
<10%) and trustworthy estimates (i.e., true values contained within the 2σ uncertainties) of cluster distances for clusters up to ∼5 kpc,
along with cluster sizes for clusters up to ∼1 kpc.
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1. Introduction

Stellar clusters offer a unique opportunity to test models of
the formation and evolution of stars and stellar systems. Their
distance is useful for the comparison of model predictions to
observations when the observational uncertainties are taken into
account. Traditionally, these comparisons use the cluster dis-
tance, which is typically more precise than the distances of indi-
vidual stars. However, high-precision astrometric surveys, such
as Hipparcos (ESA 1997; Perryman et al. 1997) and Gaia (Gaia
Collaboration 2016, 2018), have pushed these comparisons at
the level of individual stars, at least for the most precise mea-
surements of the nearest systems. Therefore, while determin-
ing cluster distances remains a fundamental problem, retrieving
the distances to the cluster stars allows astronomers to perform
detailed tests of current theories of star formation and evolution;
see, for example, the analyses of internal dynamics and 3D struc-
tures done by Wright & Mamajek (2018), Galli et al. (2019), and
Armstrong et al. (2020).

Since the cluster distance is an important parameter, diverse
methodologies have been developed to estimate it either from
photometry, astrometry, or combinations of both (e.g., Palmer
et al. 2014; Perren et al. 2015; Gaia Collaboration 2017; Galli
et al. 2017; Yen et al. 2018). In the context of distance determi-
nation based on parallax measurements, the traditional approach
consists of averaging the parallaxes of the cluster stars and

then inverting the resulting (more precise) parallax mean. More
sophisticated approaches have also been devised. For example,
Palmer et al. (2014) developed a maximum-likelihood approach
for open cluster distance determination. In their study, the
authors assumed that the spatial distribution of stars in open clus-
ters follows a spherical Gaussian distribution and they inferred
the cluster distance together with its dispersion and other kine-
matic parameters by marginalizing the positions of individual
stars. They validated their methodology on synthetic clusters
with properties similar to those expected for the Gaia data.
Then, Gaia Collaboration (2017) determined astrometric param-
eters of open clusters by modeling their intrinsic kinematics
and projecting them in the observational space. Cantat-Gaudin
et al. (2018) obtained open-cluster distances using a maximum-
likelihood method. Nonetheless, they neglect the cluster intrinsic
depth, which results in underestimated distance uncertainties.

Although they were devised outside the context of open clus-
ters, the following Bayesian frameworks are worthy of mention
due to their use of Gaia parallax measurements and specific
prior information. Bailer-Jones et al. (2018) inferred posterior
distance distributions to 1.3 billion stars in the Gaia data using a
Galactic weak distance prior specifically designed for the entire
Galaxy. Anders et al. (2019) obtained distances to stars brighter
than G = 18 mag using a Galactic multi-component prior (with
halo, bulge, and thin and thick disks), and a combination of Gaia
measurements (including parallax) and photometry from several
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surveys. Wright & Mamajek (2018) developed a forward-model
for the inference of parameters of OB associations. Their model
uses a 3D Elson et al. (1987) profile that includes the distance
to the association as a free parameter. However, they inferred
the individual stellar distances using the Galactic distance prior
proposed by Bailer-Jones et al. (2018). In addition, the online
resources1 recommended by Luri et al. (2018) provide detailed
steps for the inference of cluster distance and size. Recently,
Perren et al. (2020) used the insight provided by these online
resources to infer cluster distances based on a Gaussian prior.
These authors marginalize the individual distances as well as the
cluster intrinsic dispersion.

The previous studies can be classified into those that infer
population parameters of either clusters and associations by mar-
ginalizing individual stellar distances (e.g., Wright & Mamajek
2018; Perren et al. 2020, and the online resources mentioned
above) and those that infer individual stellar distances but do not
infer the population parameters (e.g., Bailer-Jones et al. 2018;
Anders et al. 2019). To the best of our knowledge, the simultane-
ous inference of population parameters and individual distances
has not been addressed in the literature. Furthermore, none of the
aforementioned methodologies is able to deal with the systemat-
ics introduced by the parallax spatial correlations present in the
Gaia data (see Sect. 5.4 of Lindegren et al. 2018).

Following the guidelines provided by Luri et al. (2018), in
this work, we attempt to solve the aforementioned issues in the
specific context of stellar clusters by providing the astrophysi-
cal community with the free open code Kalkayotl2. It samples
the joint posterior distribution of the cluster parameters and stel-
lar distances, based on their Gaia astrometric data and a set of
cluster-oriented prior families.

Our approach is different from that adopted in the afore-
mentioned works. While Bailer-Jones et al. (2018), Wright &
Mamajek (2018), and Anders et al. (2019) analytically or numer-
ically find statistics of the stars posterior distance distributions
using a unique Galactic prior, Kalkayotl obtains samples of the
posterior distribution of the star and cluster parameters for a
set of cluster oriented prior families by means of Hamiltonian
Monte Carlo (Duane et al. 1987), which is a type of Markov
chain Monte Carlo (MCMC) technique. This approach offers the
user the advantage of taking an active criticism over the prior
(i.e., choose its family, infer its parameters, and compare with
results from other prior families), together with an easier prop-
agation of uncertainty into subsequent analyses. On the other
hand, the MCMC approach has the constraint of being compu-
tationally expensive. In a machine with four CPUs at 2.7 GHz,
Kalkayotl takes typically five minutes to run the inference model
of a cluster with one thousand stars, although the running time
can increase depending on the prior complexity and quality of
the data set.

The rest of this work is organized as follows. In Sect. 2, we
introduce the methodology of Kalkayotl. In Sect. 3, we construct
synthetic clusters that mimic the Gaia data and in Sect. 4, we use
these clusters to validate the methodology. Finally, in Sect. 5,
we discuss the advantages and caveats of our methodological
approach and present our conclusions.

1 https://github.com/agabrown/astrometry-inference-
tutorials, and https://github.com/ehalley/parallax-
tutorial-2018
2 Kalkayotl means distance in the mesoamerican Nahuatl language.

2. Methodology

Kalkayotl is a free python code3 designed to simultaneously
sample the joint posterior distribution of cluster parameters and
stellar distances. In addition, the user can decide to only sam-
ple the stellar distances by fixing the cluster parameters and to
perform the sampling on the parallax space (i.e., sampling the
clusters’ and sources’ true parallaxes). The latter can be useful
when the subsequent analyses need to be done on the parallax
space. Although the methodology can be applied to any parallax
measurement, Kalkayotl is specifically designed to work with
Gaia astrometric data. Users will also be able to run the code
through the Spanish Virtual Observatory, however, with certain
limitations.

2.1. Assumptions

Prior to a presentation of the details of the methodology, we state
the assumptions we made at the start.

Assumption 1. The Gaia astrometric measurements are nor-
mally distributed around the true values. As explained in
Sect. 5.2 of Lindegren et al. (2018), the standardized astrometric
measurements are almost4 normal. The Gaia catalog provides
all necessary information (i.e., mean, standard deviations, and
correlations) to reconstruct these distributions.

Assumption 2. The Gaia parallax measurements are shifted
from their true values and this shift can be different for differ-
ent sky positions, colors, and magnitudes (Gaia Collaboration
2018). Extensive studies have been carried out to determine this
parallax zero point and its correlations with other observables
and stellar types (see Fig. 14 of Chan & Bovy 2020, and refer-
ences therein). The user can set the parallax zero point value5

and, if desired, use different values for different sources.

Assumption 3. The Gaia astrometric measurements of dif-
ferent sources are spatially correlated among them. We use the
covariance functions proposed by Vasiliev (2019), which provide
a better description to the observed correlations at small angular
separations than those of Lindegren et al. (2018); compare Fig. 2
of the former author to Fig. 15 of the latter authors. The parallax
covariance function of Vasiliev (2019) is given by:

V(θ) = 0.0003 · exp(−θ/20◦)

+ 0.002 · sinc(0.25◦ + θ/0.5◦) mas2, (1)

where θ is the angular separation between two sources.

Assumption 4. The cluster size is much smaller than its dis-
tance. If the cluster size is comparable to its distance, then using
only the line of sight distances results in biased estimates of the
cluster distance due to projection effects.

Assumption 5. The input list of cluster members is neither
contaminated nor biased (i.e., we assume a perfect selection
function).

As in any Bayesian methodology, we then proceed to specify
the likelihood, prior, and the procedure for obtaining the poste-
rior distribution.
3 The code and documentation is available at: https://github.
com/olivares-j/Kalkayotl
4 The standard deviations of the standardized parallax, and proper
motions in RA and Dec, are 1.081, 1.093 and 1.115, respectively. Thus
the errors are 8–12% larger than the formal uncertainties.
5 The parallax zero point uncertainty can be included by adding it to
the parallax uncertainty of the sources.

A7, page 2 of 13

https://github.com/agabrown/astrometry-inference-tutorials
https://github.com/agabrown/astrometry-inference-tutorials
https://github.com/ehalley/parallax-tutorial-2018
https://github.com/ehalley/parallax-tutorial-2018
https://github.com/olivares-j/Kalkayotl
https://github.com/olivares-j/Kalkayotl


J. Olivares et al.: Kalkayotl: A cluster distance inference code

2.2. Likelihood

The likelihood of the N observed sources with data D =
{$i, σ$,i}

N
i=1 (where $i and σ$,i are the mean and standard devi-

ation that define the parallax measurement of source i), given the
Θ parameters can be represented as

L(D|Θ) ≡ L({$i}
N
i=1|T (Θ), {σ$,i}Ni=1) = N(X − Xzp|T (Θ), Σ), (2)

where N(·|·) represents the multivariate normal distribution (see
Assumption 1), X the N-dimensional vector of the observed par-
allax, Σ the N × N covariance matrix, Xzp the N vector of zero
points, and T the transformation from the parameter space to the
space of observed-quantities.

In the set of parameters Θ = {θi}
N
i=1, the parameter θi of the

ith source represents its true distance. Therefore, T is equal to
1000/θ, with θ in pc and the result in mas. If the user decides to
do so, the sampling can be done in the parallax space, in which
case θi corresponds to the source true parallax, and T is the iden-
tity relation. Nonetheless, hereafter, we set our work in the dis-
tance space.

The vectors X and Xzp are constructed from the concatena-
tion of the N vectors of observations {$i}

N
i=1 and zero-points

$zp respectively (see Assumption 2). The covariance matrix Σ

contains the N-dimensional vector of variances, {σ2
$,i}

N
i=1, in its

diagonal, whereas the off-diagonal terms are the covariances
between the parallax measurements of different sources (see
Assumption 3).

2.3. Prior families

The prior distribution is supposed to encode the previous knowl-
edge of the investigator about the plausibility of the parame-
ter values in a model. In the case of stellar clusters, we know
that their stars share common distributions of their astrophysi-
cal properties, like their distance to the observer, age, metallic-
ity, etc.. This a priori information is what we use to construct
an informed prior. Nonetheless, given the variety of cluster mor-
phologies, we believe that there is no universal prior for clusters.

In Kalkayotl, we propose two types of distance-prior
families, one based on classical statistical probability density
distributions and another based on purely astrophysical consid-
erations. The purely statistical ones are common distributions
used in the literature, while the astrophysical ones are inspired
by previous works devoted to the analysis of the luminosity
(or number) surface density profiles of galactic and globular
clusters. The purely statistical prior families are parametrized
only by their location, loc, and scale, scl, which are defined as
follows. The location, loc, is the expected value of the cluster
distance, while the scale, scl, is the typical scale length of the
cluster along the line of sight. Our statistical prior families are
the following. The uniform prior family is the simplest one, as
it assigns the same probability density to all values in the inter-
val [loc− scl, loc + scl]. The Gaussian prior family assumes that
the distance is normally distributed with mean, loc, and stan-
dard deviation, scl. The Gaussian mixture model’s prior family
(GMM) assumes that the distance distribution is described by a
linear combination of k Gaussian distributions, with k an integer
greater than zero. In the following, we use k = 2. We also ana-
lyzed other types of distributions (such as Cauchy, half-Cauchy,
and half-Gaussian) but they returned poorer results when com-
pared to the previously mentioned prior families and, thus, we
do not include them in our analysis.

The astrophysical prior families are parametrized as well by
the location loc and scale scl parameters, but they contain even

more information, as we describe below. The loc parameter still
describes the most typical cluster distance, while the scl one now
corresponds to what is commonly referred to as the core radius
(i.e., the typical size of the cluster inner region). It is important
to notice that although the astrophysical distance prior families
have similar functional forms to the luminosity (or number) sur-
face density profiles which they were were inspired by, there is
no correspondence between them; while the latter are defined as
surface densities, the former are defined as distance densities.

The Elson, Fall, and Freeman prior family (EFF) distributes
the distances in a similar way as Elson et al. (1987) distributed
the surface luminosity density of clusters from the Large Mag-
ellanic Cloud. In addition to the location and scale parameters,
it utilizes the γ parameter which describes the slope of the dis-
tribution at large radii. In the standardized form (loc = 0 and
scl = 1), the EFF is defined as:

EFF(r|γ) =
Γ(γ)

√
π · Γ(γ − 1

2 )
·
[
1 + r2

]−γ
, (3)

with Γ the gamma function, and r the standardized distance. In
our parametrization, γ = γ′/2, with γ′ the original parameter
proposed by Elson et al. (1987). We notice that by fixing the
γ parameter to 1 or 5/2 the EFF prior family is reduced to the
Cauchy and Plummer distributions, respectively.

The King prior family distributes the distances in a similar
way as King (1962) distributed the surface number density of
globular clusters. In addition to the location and scale parame-
ters, it includes the maximal extension of the cluster through the
tidal radius parameter, rt; the probability distribution is thus nor-
malized within this distance. In its standardized form (loc = 0,
core radius = scl = 1), the King prior is defined as

King(r|rt) =

[
1

√
1+r2
− 1√

1+r2
t

]2
2
[

rt

1+r2
t
−

2arcsinh(rt)√
1+r2

t

+ arctan(rt)
] , (4)

with r as the standardized distance.
For completeness, Kalkayotl also includes the Galactic expo-

nentially decreasing space density (EDSD) prior6 introduced by
Bailer-Jones (2015). We refer to the aforementioned work for
an explicit definition of this prior. It suffices to say that its only
parameter, scl, is the typical length of exponential decay. In this
work, our objective is to estimate distances to stars in clusters,
and not in the field population, thus we include it only for com-
parison purposes. We are perfectly aware that this constitutes
an unfair comparison but we want to emphasize the problems
associated with adopting a Galactic prior for the inference of
distances in a cluster scenario.

2.4. Hyper-priors

If the user decides to infer the cluster parameters, φ = {loc, scl},
together with the source parametersΘ, then a hierarchical model
is created with the cluster parameters at the top of the hierarchy.
In this case, a prior must be set for each parameter of the chosen
cluster prior family. In the Bayesian jargon, this kind of prior is
called hyper-prior, and its parameters are hyper-parameters.

As hyper-prior for the location, loc, and scale, scl, we use
the Normal(loc|α) and Gamma(scl|2,2/β) densities respectively,

6 We do not refer to it as a prior family since its only parameter, the
scale length, will be kept fixed throughout this analysis.
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where α and β are their hyper-parameters. The Gamma distri-
bution and its hyper-parameters are specified following the rec-
ommendations of Chung et al. (2013). The specific choice of the
rate parameter as 2/β in the Gamma distribution results in the
mean of the latter at β.

The weights, {wi}
k
i=1 in the GMM prior family are Dirichlet

({wi}
k
i=1|δ) distributed, with δ the k-th vector of hyper-parameters.

The γ parameter in the EFF prior family is distributed as
γ ∼ 1 + Gamma(2, 2/γhyp) with γhyp provided by the user; this
parametrization avoids γ < 1, which will produce extreme cluster
tails. For the tidal radius in the King prior family, we use a sim-
ilar weakly informative prior: rt ∼ 1 + Gamma(2, 2/γhyp) with
γhyp an hyper-parameter provided by the user. We notice that the
tidal radius is in units of the core radius (i.e., scale parameter)
and, thus, it is restricted to be larger than one.

2.5. Posterior distribution

Bayes’ theorem states that the posterior distribution equals the
prior times the likelihood normalized by the evidence Z. If the
user of Kalkayotl decides to infer only the distances to the indi-
vidual sources, this is only the Θ parameters, then the posterior
distribution is given by

P(Θ |D) =
L(D | Θ) · π(Θ | φ)

Z
, (5)

where the likelihood L is given by Eq. (2). The prior π is one of
the prior families described in Sect. 2.3 for which its parameters,
φ have been fixed to a user decided value. Finally, the evidence
Z is simply the normalization factor.

On the other hand, if the user decides to infer both the source
distances, Θ, and the cluster parameters, φ, then the posterior is
given by

P(Θ, φ |D) =
L(D | Θ) · π(Θ | φ) · ψ(φ)

Z
, (6)

where now ψ is the hyper-prior of the cluster parameters φ. We
notice that this latter case should not be used in combination with
the EDSD prior because it will be meaningless to infer the scale
length of a Galactic prior based on data from the population of a
single Galactic cluster.

In Kalkayotl, the posterior distribution is sampled using
the Hamiltonian Monte Carlo method implemented in PyMC3
(Salvatier et al. 2016), which is a Python probabilistic program-
ming framework. For details of the capabilities and caveats of
Hamiltonian Monte Carlo samplers on hierarchical models we
refer the reader to the work of Betancourt & Girolami (2013).
In particular, our model faces the typical problems of sampling
efficiency associated with hierarchical models. Thus, following
the recommendations of the aforementioned authors, Kalkayotl
allows the user to choose between the central and non-central
parametrizations (except for the GMM prior family, which con-
tains more than one scale parameter). While the non-central
parametrization enables more efficient sampling in the presence
of data sets with limited information (i.e., few members and large
uncertainties), the central one works better for more constraining
ones (i.e., nearby and well-populated clusters).

The PyMC3 framework provides different initialization
schemes for the MCMC chains, and a set of tools to automati-
cally diagnose convergence after sampling. Here, we choose the
advi+adapt_diag initialization scheme7, because it proved to
7 The interested reader can find more details about initialization
schemes and convergence diagnostics at the PyMC3 documentation:
https://docs.pymc.io/

be the most efficient one for reducing both the number of tun-
ing steps (thus the total computing time) and initialization errors
(like those of “bad initial energy” or “zero derivative” for a cer-
tain parameter). This method starts the chain at the test value
(which depends on the prior but is usually its mean or mode)
and runs the automatic differentiation variational inference algo-
rithm, which delivers an approximation to the target posterior
distribution.

Once the initialization is complete, the code performs the
inference in two stages. First, the sampler is tuned, and then
the posterior samples are computed. The number of tuning and
sampling steps are chosen by the user. While sampling steps
are established based on the desired parameters precision8, the
number of tuning steps depends on the complexity of the poste-
rior. Typical values of the tuning steps are 1000 and 10000 for
the simple (i.e., uniform and Gaussian) and complex (i.e., EFF,
King, and GMM) prior families, respectively.

Once the inference is done, the convergence of the chains
is assessed based on the Gelman-Rubin statistic, effective sam-
ple size, and the number of divergences (see Note 7). Kalkay-
otl then discards the tuning samples (to avoid biased estimates)
and reports cluster and source summary statistics (the desired
percentiles and the mode, median, or mean). In addition, it also
makes trace plots of the cluster and source parameters. Although
the automatic analysis made by PyMC3 usually suffices to ensure
convergence, we strongly recommend users to visually inspect
the chains to ensure that no anomalies are present.

As in most Bayesian inference problems, the investigator
must face the decision of choosing the most suitable prior. The
rule of thumb is that there is no universal prior, and the most
suitable prior depends on the specific problem at hand. Thus, to
help users decide which prior family might be the most suitable
for their data sets, Kalkayotl offers a module to make compar-
ison of models by means of Bayes factors, which are the ratio
of the Bayesian evidence (Z in Eqs. (5) and (6)) of each pair of
models. Estimating the Bayesian evidence is a hard and compu-
tationally expensive problem, thus, in order to reduce the com-
putation time, additional assumptions are needed. The reader can
find these additional assumptions together with details of the evi-
dence computation in Appendix A. Once the Bayesian evidence
of each model is computed, the decision can be taken based on
Jeffreys (1961) scale9.

In summary, Kalkayotl returns samples of the joint poste-
rior distribution of the cluster parameter and stellar distances,
together with summary statistics thereof. In addition, the user
can do model selection based on the Bayes factors. However, we
notice that the evidence computation is expensive, taking at least
three and ten times more time than the posterior sampling of the
purely statistical and astrophysical prior families, respectively.

3. Synthetic clusters

Our aim in this section is to create synthetic clusters with
parallax uncertainties and spatial correlations similar to those

8 The parameter precision is given by the standard error of the
mean: σ/

√
n, where σ is the posterior standard deviation, and n

its effective sample size (i.e. number of independent samples from
the posterior distribution). This last value is reported by the sam-
pler and is proportional to the input value of sampling steps given
by the user and the sampler efficiency. For details of its computa-
tion see https://mc-stan.org/docs/2_18/reference-manual/
effective-sample-size-section.html
9 In this scale, the evidence is: inconclusive if the Bayes Factor is <3:1,
weak if it is ∼3:1, moderate if it is ∼12:1, and strong if it is >15:1.
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present in the Gaia data. These synthetic clusters will then be
used to validate our methodology, in particular, its accuracy and
precision as a function of cluster distance and the number of
sources.

The Gaia parallax uncertainty depends on the source mag-
nitude, colour and number of transits (see Gaia Collaboration
2018; Lindegren et al. 2018). Thus, to generate realistic parallax
uncertainties we simulate the photometry of our sources with the
isochrones python package (Morton 2015). The mass of each
source was randomly drawn from a Chabrier mass distribution
(Chabrier et al. 2005) and its photometry computed by means of
the MIST models (Dotter 2016; Choi et al. 2016). For the latter,
we use solar metallicity, zero extinction, and the typical open-
cluster age of 158 Myr, which corresponds to the mean age of the
269 open clusters analyzed by Bossini et al. (2019). We explore
a grid of distances from 100 pc to 1 kpc at steps of 100 pc, and
from 1 kpc to 5 kpc at steps of 1 kpc. We use 100, 500, and 1000
sources, these cover the typical numbers of clusters members.

The radial distance of each source to the cluster center was
drawn from each of our distance prior families and its 3D Carte-
sian coordinates were then computed. We notice that these result
in spherically symmetric distributions, which suffices for the
purposes of the present analysis.

To account for random fluctuations, we repeat ten times each
simulation of our grid (main distance, number of sources, and
distance distribution). We use ten parsecs as the typical cluster
scale, and for the EFF and King prior we set their γ and stan-
dardized tidal radius parameters to 3 and 5, respectively. In the
GMM synthetic clusters, we use for the second component a dis-
tance 10% larger than the main distance, and a scale of 20 pc.
The fraction of sources in each component was set to 0.5.

Then, we use PyGaia10 to obtain parallax uncertainties (from
the G, and V-I photometry together with nominal GDR2 time
baseline) and to transform the true source coordinates into true
sky positions and parallaxes.

Afterwards, we use sky positions, parallax uncertainties, and
Vasiliev (2019) parallax spatial correlation function to com-
pute the covariance matrix Σ, which is constructed by adding
the covariance matrix of the parallax uncertainties (i.e., a
diagonal matrix with parallax variances in the diagonal) plus
the covariance matrix of the parallax spatial correlations (see
Assumption 3). Then, the observed parallaxes were drawn from
a multivariate normal distribution centered on the true parallaxes
and with Σ as the covariance matrix. We did not include any par-
allax zero-point shift in our synthetic data sets. We end up with a
total of 2100 synthetic clusters containing 1.12 million sources.

4. Validation

In this section, we measure the accuracy, precision, and credi-
bility of our methodology at estimating the true values of both
the population and source parameters (further details and addi-
tional figures can be found in Appendix B). We measure accu-
racy and precision as the fractional error (i.e. the posterior mean
minus the true value divided by the true value) and the fractional
uncertainty (i.e., the 95% posterior credible interval divided by
the true value), respectively. We define credibility as the per-
centage of synthetic clusters realizations in which the inferred
95% posterior credible interval contains the true value (i.e.,
the true value is covered by the 2σ uncertainties). This defini-
tion of credibility measures the trustworthiness of the inferred
value and its reported uncertainty. In this section, we also com-

10 https://github.com/agabrown/PyGaia

pare the distance estimates delivered by different prior fami-
lies when applied to the same synthetic cluster. Furthermore,
we analyze the sensitivity of our methodology to the choice
of hyper-parameter values, the detail of this analysis can be
found in Appendix C. In brief, we find that the results of our
methodology are insensitive to changes of up to 10% and 50%
in the hyper-parameters of the location and scale parameters,
respectively.

Additionally, we use our set of synthetic clusters to explore
the accuracy, precision, and credibility of the commonly used
approach of inverting the mean parallax of the cluster stars. The
results of this analysis are shown in Appendix D. In brief, we
observe that this approach returns cluster distance estimates with
low fractional errors (<5%) when the cluster is located closer
than 1 kpc. However, beyond that limit, the approach is suscepti-
ble to large random errors (>10%), as already reported by Palmer
et al. (2014). Moreover, the low uncertainties obtained by invert-
ing the mean parallax, result in smaller credibilities than those
obtained by our methodology over the same data sets (compare
Fig. D.1 with the left column of Fig. B.2). The only exception
being the closest clusters, at 100 pc, where the validity of our
Assumption 4 is the weakest.

4.1. Accuracy and precision

Concerning the population parameters, we find that the clus-
ter distance is accurately determined by all our prior families,
with a fractional error smaller than 10%. The cluster scale accu-
racy depends on the chosen prior family, the number of cluster
sources, and the cluster distance. This parameter is accurately
determined, with a fractional error smaller than 10%, by the uni-
form, Gaussian, and King prior families in clusters located up
to 0.7–1 kpc. However, the EFF and GMM prior families show
fractional errors that are systematically larger than 20%. Further-
more, the GMM prior family showed convergence problems in
cluster beyond 1 kpc.

The performance of the prior family at recovering the true
parameter values is directly related to its complexity (the number
of parameters is a good proxy for it). The uniform and Gaussian
prior families produce the lowest fractional errors, the smallest
uncertainties, and the largest credibility. The King family also
attains large credibility in its parameters despite its low iden-
tifiability11. The latter is caused by the tidal radius, in which
different and large values of it produce similar distance distri-
butions in the central region particularly. The EFF prior fam-
ily has a degeneracy between its scale and γ parameters result-
ing in low credibility and large fractional errors. Finally, the
GMM produces the lowest credibility among all prior families
and the largest fractional errors in the location parameter. For all
these reasons, we encourage users of Kalkayotl to perform infer-
ences in order of prior complexity: starting with the uniform and
Gaussian families and then moving to the King, EFF, and GMM
ones only if needed.

Our results show that neglecting the parallax spatial corre-
lations has negative consequences. Although neglecting these
correlations has no major impact on the accuracy of the loca-
tion parameter (at least for clusters located closer than 4 kpc),
it results in underestimated uncertainties – an effect already
reported by Vasiliev (2019). As a consequence, out of the ten
realizations of each synthetic cluster, neglecting the parallax

11 A model is said to be identifiable when different parameter val-
ues generate different observed distributions (i.e the model is non-
degenerate).
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spatial correlations reduces the parameter credibility from more
than 80% to less than 60% on average. Furthermore, neglect-
ing these correlations results in systematically large fractional
errors in the scale parameter of cluster located beyond 300 pc. In
summary, neglecting the parallax spatial correlations lowers the
credibility of both location and scale parameters.

The results about the accuracy, precision, and credibility of
our methodology at recovering the individual source distances
are summarized as follows. The accuracy is better than 3% for
all cluster distances and number of sources. The precision is bet-
ter than 5% in clusters closer than 1 kpc, and rises up to 15%
for the farthest ones, up to 5 kpc. The high precision and low
uncertainty result in the high credibility, >90%, of our distance
estimates. Neglecting the parallax spatial correlations increases
the fractional errors and, thus, diminishes the credibility of the
estimates.

4.2. Prior comparison

We finish our analysis by comparing the results obtained with
different prior families on the same synthetic cluster. For sim-
plicity, we show only the results of the synthetic cluster con-
taining 500 stars, generated using the Gaussian distribution, and
located at 500 pc. In addition, and for the sake of complete-
ness, we also obtain distances with the EDSD prior. For the
latter we use: (i) a scale parameter of 1.35 kpc (Astraatmadja &
Bailer-Jones 2016), and (ii) following Luri et al. (2018) recom-
mendations, we summarize the distance estimates of this prior
using the mode of the posterior distribution. We run our method-
ology both including and neglecting the parallax spatial corre-
lations. In both cases, the parallax zero point was set to 0 mas
since our generated synthetic clusters do not include this offset.

We find that all our cluster-oriented prior families return
trustworthy (i.e., true value contained within the 2σ uncertain-
ties) measurements of the cluster distance with fractional errors
smaller than 1%. The only exception is the GMM prior family,
in which the fractional error of the cluster distance is 4%. The
main difference in the performance of the cluster prior families
is at the source distance level, which is discussed below.

Figure 1 shows the rolling mean (with a window of 20
sources) of the fractional error in the inferred source distances
as a function of their parallax fractional uncertainty. Distances
were obtained using all our prior families plus the EDSD one,
in each case the parallax spatial correlations were included and
neglected (shown in the figure as solid and dashed lines, respec-
tively). It is clear from this figure that neglecting the paral-
lax spatial correlations when using the EDSD prior results in
smaller fractional errors than those obtained when the parallax
spatial correlations are taken into account, even for high-quality
sources. The smaller fractional error results from neglecting the
parallax spatial correlations, which is equivalent to assume that
the data set is more informative than it is. In general, the more
informative the data set is, the less influence the prior has on the
posterior. Thus, when parallax spatial correlations are taken into
account the mode of the posterior is attracted to the mode of the
prior, which is located at 2.7 kpc (corresponding to 2L, with L
its length-scale, Bailer-Jones et al. 2018), hence the larger frac-
tional error. Since the mode of the cluster oriented prior families
is inferred from the data, it results in smaller fractional errors.

Table 1 shows the rms fractional error of the inferred
distances for three different ranges of parallax fractional uncer-
tainties. In the most precise parallax bin, that of f$ < 0.05,
the Gaussian prior returns the smallest fractional error, followed
closely by the King, GMM, EFF, and uniform prior families. This
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Fig. 1. Distance fractional error as a function of parallax fractional
uncertainty. The inference was done using all our prior families (color
coded) on a synthetic cluster with 500 stars located at 500 pc. The lines
show the rolling mean (computed with a window of 20 sources) of
results obtained including (solid line) and neglecting (dashed lines) the
parallax spatial correlations.

Table 1. Fractional errors in the source distances.

Prior f$ < 0.05 0.05< f$ < 0.1 f$ > 0.1 log Z

Uniform 6.98(12.36) 8.58(10.67) 10.82(11.16) 103.15 ± 0.16
Gaussian 6.88(11.29) 8.49(8.76) 10.87(10.88) 103.57 ± 0.17

GMM 6.90(11.29) 8.53(8.66) 10.89(10.90) 103.07 ± 0.18
EFF 6.98(11.26) 8.46(8.87) 10.77(10.81) 103.92 ± 0.17
King 6.89(11.28) 8.47(8.72) 10.85(10.90) 104.52 ± 0.15

EDSD 90.29(14.08) 94.73(34.40) 425.59(384.89)

Notes. The columns show the prior family and the rms of the fractional
error for three bins of the parallax fractional uncertainty. The number
in parenthesis correspond to values obtained when the parallax spatial
correlations are neglected. The last column shows the logarithm of the
Bayesian evidence computed for each model.

result was expected since the true underlying distribution was
Gaussian. In the less precise parallax bins ( f$ > 0.05), the low-
est fractional errors are those obtained with the EFF and King
prior families. This interesting result shows that our astrophysical
prior families produce excellent estimates of the source distances
even when they do not match the true underlying distribution.
In Table 1, the numbers in parentheses correspond to the rms of
the fractional errors obtained when the parallax spatial correla-
tions are neglected. These values are consistently larger than those
obtained when the parallax spatial correlations are included. The
only exception being the EDSD prior, for which the decrease in
information produces a shift in its mode, as explained above. The
lower fractional errors obtained by the cluster oriented prior fam-
ilies when the parallax spatial correlations are taken into account
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Fig. 2. Error of the estimated source distances as a function of the off-
set from the cluster center (i.e., true distance minus cluster location).
The panels show the results of different prior families. The color scale
indicates the parallax fractional uncertainty and the gray dashed lines
show the perfect anti-correlation. The Pearson correlation coefficient is
shown on the top-right corner of each panel.

are the result of the proper modeling of the data characteristics.
Finally, the last column of Table 1 shows the logarithm of the
Bayesian evidence computed for each of our cluster oriented prior
families (the Bayesian evidence of the EDSD prior cannot be
computed since its only parameter remains fixed). These values
of the Bayesian evidence are all very similar, and according to
the Jeffreys’ scale (see Note 9), their resulting Bayes factors pro-
vide inconclusive evidence to select one model over the others.
Given the previous results, we can safely say that all our cluster-
oriented prior families perform well to a similar extent with regard
to recovering the source distances.

Despite the good performance of the cluster-oriented prior
families, they produce random errors in the source distance esti-
mates that are inherent to the quality of the data. In Fig. 2, we
show for each prior family, the resulting distance error of indi-
vidual sources as a function of its true position within the cluster.
The distances obtained with all the cluster oriented prior fami-
lies include the parallax spatial correlations, however, to make
a fair comparison in the case of the EDSD prior they do not
take these correlations into account. As can be observed, the
distances obtained with the cluster oriented prior families show
a clear anti-correlation between their error and the source off-
set to the cluster center (the Pearson correlation coefficients is
shown in the top-right corner of each panel of the figure). In the
EDSD prior the correlation is negligible. The anti-correlation in
the cluster prior families is proportional to the source fractional
uncertainty; sources with large fractional uncertainty tend to fall
over the dashed line of slope −1.

The anti-correlation of this error has its origin in the same
effect that produces the shift in the posterior distances obtained
with the EDSD prior (see Fig. 1). In other words, when the par-
allax uncertainty is small, the information on the source location
is more constraining and the prior plays a minor role. On the
other hand, when the parallax uncertainty increases, its infor-
mation reduces and the prior becomes more important. In this
latter case, the posterior is attracted towards the mode of the

prior, which results in the anti-correlation. From the compari-
son of the different prior families we conclude that: (i) the clus-
ter oriented prior families show an error that is proportional to
the source fractional uncertainty, (ii) the value of this error is
smaller than that obtained with the EDSD prior (see Table 1).
Thus we conclude that the cluster oriented prior families outper-
form the EDSD prior when inferring distances to stellar clusters.
This comes as a no surprise since the EDSD prior was designed
for the entire Galaxy and not for individual clusters. As explicitly
mentioned by Bailer-Jones (2015), “the exponentially decreas-
ing volume density prior may be suitable when looking well out
of the disk, where for a sufficiently deep survey the decrease in
stellar density is caused mostly by the Galaxy itself rather than
the survey”.

5. Conclusions and future perspectives.

We have made the free and open code Kalkayotl public. It is
a statistical tool for the simultaneous inference of star cluster
parameters and individual distances of its stars. This tool utilizes
distance prior families specifically designed for stellar clusters
and takes into account the parallax spatial correlations present in
the Gaia data. Upon convergence, Kalkayotl delivers high cred-
ibility (>90%) estimates of distances to stellar clusters located
closer than ∼5 kpc, and cluster sizes up to ∼1 kpc, with these
values depending on the number of cluster stars. The samples
from the posterior distributions of both cluster parameters and
source distances can be used to propagate their uncertainties into
subsequent analyses.

Although the general formalism of our methodology can be
applied to parallax measurements of diverse origins, our method-
ology is tuned to deal with the parallax spatial correlations of the
Gaia data. It is flexible enough to accommodate different values
of parallax zero point and spatial correlation functions.

We validate this tool on realistic synthetic data sets and
obtain the following conclusions:

– Distance estimates to sources with large fractional uncertain-
ties (>0.05) can have large (>20%) systematic errors under
incorrect assumptions. Provided that our assumptions are
valid, these low-information sources can still be useful to
constrain the cluster population parameters.

– Compared to the inverse mean parallax approach, which
results in cluster distance estimates that have low credibil-
ity (<80%) but small fractional errors (<5%) for clusters up
to ∼1 kpc, and high credibility (>80%) but large fractional
errors (>10%) beyond this limit, our methodology returns
distance estimates with small fractional errors (<10%) and
high credibility (>90%) for clusters up to ∼5 kpc. The excep-
tions are the nearest clusters (≤100 pc) and the GMM prior
family.

– The stellar distance estimates provided by Kalkayotl show
errors that are anti-correlated with the true position of the
source relative to the cluster center. The anti-correlation is
proportional to the source fractional uncertainty and reaches
its maximum (−1) at distances larger than 1 kpc. Nonethe-
less, this error is still smaller than that incurred by the EDSD
prior.

– The spatial correlations in the parallax measurements are
a non-trivial characteristic of Gaia data. Neglecting them
has negative consequences at both source and population
level, among which, increased fractional errors, underesti-
mated uncertainties, and low credibility are to be expected.
Our results show that there is no objective reason in terms
of accuracy, precision, or computing time to neglect the

A7, page 7 of 13

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/202037846&pdf_id=2


A&A 644, A7 (2020)

parallax spatial correlations when inferring the distances to
clusters and its stars.

– The amount of information provided by the data set is
not always enough to constraint complex models. Thus we
strongly suggest that the users of Kalkayotl start with the
simplest prior families (i.e., uniform and Gaussian), ver-
ify their convergence, and later on, if needed, move to the
more complex ones. If the latter are needed, their perfor-
mance or convergence can be improved by reparametrizing:
fixing some of the parameters or increasing the informa-
tion content of the hyper-parameters. In this sense, users are
encouraged to encode, by means of prior families and their
hyper-parameters, the information they possess on the spe-
cific cluster that they analyze.

Although our methodology represents what we consider is an
important improvement in the estimation of distances to stellar
clusters from parallax data, it still has several caveats. Among
those that we have detected and plan to address in the near future,
we cite the following.

– It is assumed that the list of cluster candidate members is
not contaminated either biased (Assumption 5). However, in
practice, this rarely happens. Cluster membership method-
ologies have certain true positive and contamination rates
(see, e.g., Olivares et al. 2019). A further improvement of
our methodology will be to simultaneously infer the cluster
parameters and the degree of contamination while incorpo-
rating the selection function.

– The posterior distribution of the cluster distance may be fur-
ther constrained by the inclusion of additional observations
(e.g., photometry, proper motions, radial velocities, and sky
positions). In the future, we plan to include the rest of the
Gaia astrometric observables to further constrain the param-
eters of stellar clusters.
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Appendix A: Bayesian evidence

Here, we provide details of the Kalkayotl subroutine that com-
putes the Bayesian evidence of the different prior families. Since
PyMC3 does not provide evidence computation we use the
python package dynesty (Speagle 2020).

The only purpose of this additional tool is to help the users
of Kalkayotl to decide which prior family is the most suitable to
describe their data. Since here we are not interested in the dis-
tances to the stars, we marginalize them. The following provides
the steps and assumptions undertaken in the marginalization of
parameters Θ from the posterior distribution (see Eq. (6)). Thus,
the marginalization implies that

P(φ |D) ≡
∫
P(Θ, φ |D)dΘ (A.1)

∝

∫
L(D | Θ) · π(Θ | φ) · ψ(φ)dΘ,

where the proportionality constantZ is the evidence that will be
computed. To numerically compute the marginalization integral
we made the following assumptions12.

Assumption: the distances Θ = {θi}
N
i=1 are independent and

identically distributed with a probability π(θ | φ).
Assumption: the observed parallaxes D = {$i, σ$,i}

N
i=1 are

independent (i.e., here, we assume no spatial correlations) and
normally distributed N(· | ·).

Under the previous assumptions, we have

P(φ |D) = ψ(φ) ·
N∏

i=1

∫
N($i | T (θi), σ$,i) ·π(θi | φ) ·dθi. (A.2)

Finally, we approximate each of the N integrals by summing
over a M-element {θ j}

M
j=1 of samples from the prior π(φ). Thus,

we have

P(φ |D) ≈ ψ(φ) ·
N∏

i=1

1
M

M∑
j=1

N($i | T (θ j), σ$,i). (A.3)

We run dynesty with the following configuration. We use the
static Nested sampler with a single bound and a stopping cri-
terion of ∆ logZ < 1.0 (see Speagle 2020, for more details).
To reduce the computing time we take a random sample of only
N = 100 cluster stars, always ensuring that this sample remains
the same when computing evidence of different models. The M
value was set heuristically to 1000 prior samples.

Appendix B: Details of the accuracy and precision

In this section, we present the results obtained after running our
methodology using the same prior family that was used to con-
struct the synthetic data set. In our analysis, we use the following
configuration. We simultaneously infer the cluster parameters
and the source distances using the following hyper-parameters
(see Sect. 2.4): α = [µ, 0.1µ] pc, with µ the distance obtained by
inverting the cluster mean parallax, β = 100 pc, γhyp;EFF = [3, 1],
γhyp;King = 10, and δ = [5, 5]. These hyper-parameters produce
weakly informative priors (i.e., the information they provide is
smaller than that available) that we expect to cover the diverse
cluster information scenarios in which Kalkayotl can be used,

12 We notice that these assumptions are only made for the sole purpose
of evidence computation and they do not apply for the rest of Kalkayotl
methodology.
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Fig. B.1. Fractional error, fractional uncertainty, and credibility of the
population parameters as a function of distance. The parameters were
inferred on the uniform synthetic data sets using its corresponding prior
family (i.e., uniform), the colors indicate the number of sources, and
the line styles show the cases in which the spatial correlations were
included (solid) or were neglected (dashed). The lines show the mean
of the ten simulations and the shaded areas its standard deviation.

especially those with weak prior information. In specific cases
where more information is available, and thus a more informa-
tive prior can be constructed, the performance of our methodol-
ogy is expected to improve.

We apply the Kalkayotl methodology to our synthetic data
sets using the minimum number of tuning iterations that ensured
convergence. It ranged from 1000 for the uniform and Gaussian
prior, to 10 000 for the King prior on the farthest clusters. We use
2000 sampling steps and two parallel chains, which amounted
to 4000 samples of the posterior distribution. For our purposes,
these are enough samples to compute precise estimates (<2%)
of the posterior statistics. Central and non-central parametriza-
tions were used for the nearby (<500 pc) and far away clusters,
respectively. The parallax zero point was set to 0 mas because,
as mentioned in Sect. 3, we did not include systematic paral-
lax shifts in the generation of synthetic data. For each synthetic
cluster, the inference model was run two times, one includes the
parallax spatial correlations and the other neglects them.

B.1. Population parameters

We now discuss the results obtained at the population level.
For each parameter of our cluster prior families, Figs. B.1–B.3
show, as a function of cluster distance, the following indicators:
(i) accuracy in the form of fractional error, which is defined
as the posterior mean minus the true value divided by the true
value, (ii) precision in the form of fractional uncertainty, which
is defined as the 95% credible interval divided by the true
value, and (iii) credibility, defined as the percentage of synthetic
realizations in which the 95% credible interval includes the true
value.
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Fig. B.2. Same as Fig. B.1 for the Gaussian prior.

The uniform prior family recovers the location parameter
with excellent accuracy, the fractional error is smaller than 3%,
and its standard deviation <6%. The precision is good with a
fractional uncertainty smaller than 15%. The credibility is also
good, with more than 80% of the realizations correctly recov-
ering the true value. Clusters located at less than 300 pc show
an increase in the fractional error of the location parameter
with respect to those located at 400–500 pc. This decrease in
accuracy results from minor violations to our Assumption 4.
Concerning the scale parameter, it is accurately recovered, with
fractional errors smaller than 10–20%, only in clusters located
closer than 1 kpc, or closer if it has less than 500 sources. The
scale precision decreases with distance and improves with the
number of sources, as expected. It has large credibility, in the
range of 80–90%, only for clusters located closer than 1 kpc.
Beyond this limit, the credibility diminishes as a consequence
of the large fractional errors. When the parallax spatial correla-
tions are neglected, we observe the following aspects. First, the
accuracy of both parameters decreases. Nonetheless, the accu-
racy in the cluster distances determination is less affected than
that of the scale parameter. Second, the precision of both param-
eters is underestimated. Third, the credibility of both parame-
ters is severely lowered as a consequence of the larger fractional
errors and the underestimated uncertainties.

The Gaussian prior family produces similar results to those
of the uniform one, with the following differences, however.
First, the precision of the scale parameter remains stable for clus-
ters up to 400 pc, and its absolute value improves with respect to
that obtained with the uniform prior family. Second, when the
parallax spatial correlations are neglected the precision of the
scale parameter shows better results than in the case of the uni-
form prior family. In addition, the credibility of both parameters
also increases, in particular for the scale parameter of clusters
located closer than 400 pc.

The location and scale parameters of the King prior fam-
ily behave in a similar way as those of the Gaussian one.
Nonetheless, the scale parameter is determined with lower pre-
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Fig. B.3. Same as Fig. B.1 but for the King prior family.

cision. Regarding the tidal radius, it is determined with frac-
tional errors smaller than 10% only in clusters closer than 500 pc,
and with more than 500 sources. Beyond the 500 pc, the results
are still credible but noisy, with the errors compensated by the
large uncertainties. When the parallax spatial correlations are
neglected the results of the location and scale parameters are
similar to those of the Gaussian prior family. The tidal radius
is underestimated in the region of 300 pc to 2 kpc, and over-
estimated beyond 2 kpc. The large fractional error and small
uncertainty diminish the parameter’s credibility down to 20% at
1 kpc. The increased credibility at 3–4 kpc results from the large
uncertainties.

In the EFF prior family, the location parameter is deter-
mined with larger noise and uncertainty, with respect to those
of the previous prior families. However, it has credibility larger
than 80% for clusters beyond 200 pc. On the contrary, the scale
parameter fractional errors are systematically larger, 40% on
average. This large and systematic fractional error reduces the
scale credibility even in clusters with 500 and 1000 sources.
The Gamma parameter also shows systematic fractional errors
but towards smaller values, thus resulting in credibilities smaller
than 80%. Based on these results we conclude that inferring both
the scale and gamma parameters simultaneously produces and
non-identifiable model. This can be solved by fixing the gamma
parameter to obtain a Cauchy or Plummer distributions, in which
the accuracy and precision of their parameters improve to values
similar to those of the uniform prior.

In our analysis of the GMM prior family, we use two com-
ponents, which already make it the most complex of our prior
families; with three times more parameters than the uniform
and Gaussian prior families. Due to this complexity, we faced
difficulties in ensuring the convergence of the MCMC algo-
rithm in clusters located beyond 1 kpc. Thus, Fig. B.5 shows
only those cases in which convergence was warranted. In addi-
tion, the figure only shows the results of the closest of the two
Gaussian components. As can be observed from this figure, both
the location and scale parameters are overestimated by 5–10%
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Fig. B.4. Same as Fig. B.1 for the EFF prior.
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Fig. B.5. Same as Fig. B.1 for the GMM prior. For the sake of clarity,
only the parameters of the first component in the mixture are shown.
Due to convergence issues, the results of clusters beyond 1 kpc are not
shown.

and 40–80%, respectively. This overestimation results from the
confusion between the components. Due to the symmetry of this
model, its components can be interchanged resulting in loca-
tions that are overestimated for the closest component and under-
estimated for the farthest one. In addition, the scale of both
components is overestimated. Despite the issues related to the
model symmetry and its lack of identifiability the amplitudes
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Fig. B.6. Results of the uniform prior family. Panels show the credi-
bility, fractional error, fractional uncertainty, and correlation coefficient
of source distances as functions of the cluster distance. Captions as in
Fig. B.1.

of both components are recovered with low fractional errors
and high credibility. The identifiability problem can be partially
solved if there is prior information that can be used to break the
symmetry13.

B.2. Source distances

We now discuss the performance of our methodology at recov-
ering the individual source distances (i.e., those to the cluster
stars). Figure B.6 shows, at each cluster distance, the mean of
the following indicators: (i) credibility (as defined above), (ii)

13 Further details can be found in https://mc-stan.org/users/
documentation/case-studies/identifying_mixture_models.
html
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fractional root mean square (rms) error, (iii) fractional uncer-
tainty, and (iv) correlation coefficient between the distance error
and the offset of the source to the cluster center (more details
below). For simplicity, we only show the results obtained with
the uniform prior family. The rest of the prior families produce
similar results, except for the GMM one, in which the credibility
diminishes to 60% for sources in clusters located beyond 700 pc.

The credibility of our source distance estimates is higher than
90%, a value that contrasts with that obtained when the parallax
spatial correlations are neglected. In this latter case, the credi-
bility increases constantly from 30% for the closest clusters to
a maximum of 80% for the 3–4 kpc clusters; beyond this lat-
ter value, it sinks again. The low credibility obtained when the
parallax spatial correlations are neglected is a consequence of
the underestimated uncertainties, of both the cluster parameters
(see the previous section) and source distances, and the compar-
atively large fractional errors.

The fractional rms error remains below the 5% in most of
our prior families and almost all cluster distances. The only
exceptions are the clusters at 4–5 kpc measured with the EFF
and GMM prior families, nonetheless, these have mean frac-
tional rms values lower than 8%. This indicator also shows
the lowest performance when the parallax spatial correlations
are neglected. The difference between the fractional rms error
obtained with and without the parallax spatial correlations is
negligible for the closest clusters (<500 pc) but grows with dis-
tance until it reaches 15% at 5 kpc.

The mean fractional uncertainty shows two distinct regimes.
First, for the clusters closer than 1 kpc it remains low at values
<3%. Then, it increases with distance and reaches 15% at 5 kpc.
The uncertainties of the individual distances are influenced by
the cluster size, in the sense that well defined and compact clus-
ters produce low uncertainties in the stellar distances. Thus, the
two observed regimes in the fractional uncertainty are explained
as follows. When the cluster scale is accurately estimated, the
uncertainties of the individual distances are driven mainly by the
parallax uncertainty, which is the case for clusters up to 1 kpc.
However, as soon as the scale parameter is overestimated, which
occurs beyond 1 kpc, the uncertainties of the individual distances
are driven by both the parallax uncertainty and the cluster scale.
Since the latter grows with increasing cluster distance, then the
uncertainties of the source distances grow as well. Finally, we
observe than neglecting the parallax spatial correlations results
in uncertainties that are underestimated with respect to the true
model for clusters closer than 700 pc, and then overestimated for
the rest of the distances. This behavior of the fractional uncer-
tainty results also from the combined influence of the parallax
uncertainty itself and the fractional error of the cluster scale. In
this case, the fractional error of the latter starts to increase at
smaller distances than that observed when the parallax spatial
correlations are not neglected (see Fig. B.1).

As discussed in Sect. 4.2, the inferred distances to individ-
ual sources within a cluster show an error that is anti-correlated
with the source position with respect to the cluster center. The
value of the anti-correlation coefficient depends on both the par-
allax uncertainty and the cluster size. Sources with a parallax
uncertainty that produces a posterior distance distribution that
is narrower than the cluster size have negligible anti-correlation
value. Thus, if the precision in the source distance is smaller
than the cluster size, then the source position can be accurately
determined within the cluster. On the other hand, sources with
increasing parallax uncertainties result in posterior distances
that are increasingly dominated by the cluster prior, and by
the scale parameter in particular. Thus, the mode of the poste-

rior distribution of these sources is attracted to the mode of the
prior. Finally, the distances of sources in the near (far) end of
the cluster are over(under)-estimated producing thus the anti-
correlated error. In all our prior families, we observe that the
anti-correlation coefficient attains its maximum at 1 kpc, and
then it either remains constant for the populous clusters or dimin-
ishes for the poorest ones. As described in the previous section,
1 kpc is the limit at which we can accurately estimate the cluster
sizes. Therefore, the increase in the anti-correlation coefficient
is explained by the continuous increase in the parallax uncer-
tainty at the constant and accurately determined cluster size.
Beyond 1 kpc, the cluster size is overestimated and the anti-
correlation stops growing. Neglecting the parallax spatial cor-
relations results in a lower anti-correlation coefficient. Although
it may seem a desirable effect, it is simply explained by an over-
estimated cluster size, which for the purposes of this work, is an
undesirable effect.

Our main conclusion from this analysis is that, although
source distances obtained when the parallax spatial correlations
are taken into account have an anti-correlated error, the value of
this error is smaller than that of the distances estimated without
the parallax spatial correlations.

Appendix C: Sensitivity to the hyper-parameter
values

The inference of model parameters is more influenced by the
prior, and therefore sensitive to its hyper-parameter values, under
poorly constraining data sets. Thus, we reassess the accuracy,
precision, and credibility of both the location and scale param-
eters on the less informative of our data sets: those of clus-
ters with 100 sources and located at the farthest distances: 1–
5 kpc. In addition, since the scale parameter is only accurately
determined at distances closer than 1 kpc, we analyze its sensi-
tivity to the hyper-parameter values in clusters at distances of
500–900 pc. For simplicity, we only present the sensitivity anal-
ysis performed for the Gaussian prior family.

In Appendices B.1 and B.2 we use α = [µ, 0.1µ], with
µ the distance obtained by inverting the cluster mean paral-
lax, and β = 100 pc as hyper-parameters of the location and
scale parameters, respectively. To evaluate the sensitivity of our
methodology to these hyper-parameters, we change their values
to α′ = [µ′, 0.1µ′] with µ′ = µ(1 ± 0.1) and β′ = β(1 ± 0.5).
The latter implies evaluating the sensitivity of our methodology
to offsets in the hyper-parameter values of 10% in location and
50% in scale. In general, hyper-parameters are often set using the
information available a priori. Thus, we chose the previous offset
percentages since: (i) we do not expect large variation in the
estimates of the cluster distance obtained by simply inverting
its mean parallax, and (ii) we do expect considerable variations
in the estimates of cluster sizes obtained from the literature (see
for example Table 1 of Olivares et al. 2018).

Figure C.1 shows the fractional error, fractional uncertainty,
and credibility of the location and scale parameters as a func-
tion of distance. As can be observed, the location parameter is
insensitive to the change of its hyper-parameter values up to
4 kpc. Beyond this latter value, the variations due to the hyper-
parameter values start to be larger than those due to random fluc-
tuations (i.e. those introduced by the ten randomly simulated
data sets of each cluster). Similarly, the variations in the frac-
tional uncertainty due to hyper-parameter values are larger than
the random fluctuations only at 4 kpc and beyond. Finally, the
credibility of the location parameter is also negligibly affected
by the hyper-parameter values since it remains larger than 80%.
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Fig. C.1. Same as Fig. B.2, but the line styles indicate the different
hyper-parameter values: + and − for the corresponding µ′ = µ(1 ± 0.1)
and β′ = β(1 ± 0.5), while 0 for the original values (see text).

The scale parameter is even more insensitive to its hyper-
parameter values. In all analyzed distances, the variations in frac-
tional error and uncertainty introduced by changes of 50% in the
hyper-parameter values are all contained within the fluctuations
produced by the random sampling of the cluster members.
Furthermore, the credibility of this parameter is almost unaf-
fected. Our conclusion from this section is that, within the range
of analyzed hyper-parameter values, our methodology remains
insensitive in clusters located up to 4 kpc.

Appendix D: Validity of the inverse mean parallax

In this appendix, we explore the validity of the common
approach, in which the distance to a cluster is estimated as
the inverse of the mean parallax of its stars. We use the two
most common ways of computing the mean of the stellar par-
allaxes: the arithmetic mean and the weighted mean. While the
former does not take into account the observational uncertain-
ties, the latter use them to assigns weights to the individual par-
allaxes. Here, we set these weights as the inverse variance of
the observational uncertainties. The uncertainty of these estima-
tors is given by their standard error (i.e., standard error of the
mean and standard error of the weighted mean). Thus, we obtain
cluster distances as follows. First, we compute the mean (arith-
metic or weighted) parallax and its standard error. Second, the
cluster distance is computed as the inverse of the mean paral-
lax. Third, the uncertainty of the cluster distance is computed as
the 95% percentile (for compatibility with the results obtained
in Appendix B) of the inverse of one thousand samples drawn
from a Gaussian distribution with location and scale as the mean
parallax and its standard error, respectively.

We applied the procedure described above to our set of syn-
thetic clusters (see Sect. 3). Figure D.1 shows the fractional error,
fractional uncertainty, and credibility of the cluster distance (i.e.,
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Fig. D.1. Fractional error, fractional uncertainty, and credibility of the
cluster distance estimated by inverting the mean parallax. The lines
show two types of mean estimates: arithmetic and weighted (see text).
The rest of the captions are as those of Fig. B.2.

location parameter) for the case of Gaussian distributed synthetic
clusters. Results are similar for clusters following other distri-
butions, with the exception of those generated using the GMM
prior family, as expected. As can be seen from the figure, both
mean estimates return fractional errors that are negligible (<5%)
for clusters located closer than 1 kpc in the case of the arithmetic
mean, and 2 kpc in the case of the weighted mean. Beyond these
limits, the random fluctuations of the fractional error rapidly
reach values larger than 10%. The fractional uncertainty follows
a similar pattern, with values >10% for clusters farther away
than 1 kpc, in the case of the arithmetic mean, and 2 kpc, in the
case of the weighted mean. The credibility plot shows the follow-
ing. The weighted mean, due to its smaller uncertainties, results
in low credibility (<50%) distance estimates to the nearest clus-
ters. Nonetheless, it grows and reaches values greater than 90%
for clusters farther away than 1 kpc. The arithmetic mean results
in large credibility (∼80%) distance estimates for nearest clusters
(at 100–200 pc), but then this credibility diminishes and reaches
its minimum at ∼500–700 pc. Then it grows again (>90%) for
clusters farther away than 1 kpc.

From the previous analysis, we observe the following. First,
inverting the mean parallax results in cluster distance estimates
with small fractional errors (<5%) for clusters located closer
than 1 or 2 kpc, the latter depends on the type of mean. Sec-
ond, the uncertainties of the distance estimates obtained with the
inverse mean parallax are larger than 10% for clusters farther
away than 1 kpc. Third, the credibility of these distance esti-
mates is lower for nearby clusters than for those farther than
1 kpc. Therefore, we conclude that this approach results in accu-
rate (fractional error <5%) distances estimates with low credi-
bility (<80%) for nearby clusters (<1 kpc), and high credibility
(>80%) but low accuracy (fractional errors >10%) in faraway
clusters (>1 kpc).
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