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Nicolás Madrid1 and Elóısa Ramı́rez-Poussa2(B)

1 Department of Applied Mathematics, Universidad de Málaga, Málaga, Spain
nicolas.madrid@uma.es

2 Department of Mathematics, Universidad de Cádiz, Cádiz, Spain
eloisa.ramirez@uca.es

Abstract. This paper introduces a novel definition, called representa-
tive set of objects of a decision class, in the framework of decision systems
based on rough sets. The idea behind such a notion is to consider sub-
sets of objects that characterize the different classes given by a decision
system. Besides the formal definition of representative set of objects of a
decision class, we present different mathematical properties of such sets
and a relationship with classification tasks based on rough sets.
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1 Introduction

Rough Set Theory (RST) is a mathematical theory that have shown its suit-
ability for practical tasks [11,24]. The search to increase its range of application
has given rise to different generalizations of this theory [6,7,10,28] as well as the
relationships with other theories [4,18,25].

There exist different procedures to define the basic operators of rough sets,
i.e., the lower and upper approximation, as those based on element operators,
granular classes or subsystems [26]. In this work, we consider the approximation
operators given by interior and closure operators obtained from the composition
of operators in an isotone Galois connection [3,8], which has been built from a
slight modification of the operators in [27]. This idea has been already considered
in other works, as [14,17,20,21], and has two important advantages:
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– the use of the operators introduced in [27] could lead us to the following
situation: the lower approximation of a set may not be contained in the set
and its upper approximation may not contain the set. The consideration of
interior and closure operators avoids such a situation.

– the approximation operators obtained from the interior and closure operator
are more accurate that those in [27] (see [17]).

In this paper we focus on the reduction of objects for a classification task.
This kind of reduction has been seldom considered by the research community,
which has mainly focused on attribute reduction [2,5,12,18]. Some examples of
the study of object reductions are [15], which analyses the reduction of objects
oriented to keep the original attribute reducts and [1,13,16,22,23] that reducts
objects and attributes in parallel. The present paper is oriented in a different
way than the existing approaches dealing with object reduction. We show that
when the indiscernibility relation is not an equivalence relation, the objects in
the different classes of a classification task can be characterized by only few
objects in the class; we call that objects representative of the decision class. In
such a way, the representative objects of the decision classes can be used as
clusters in classification tasks. In this paper, we provide the formal definition of
the set of representative objects of a decision class and analyze its mathematical
properties.

The paper is organized as follows: Sect. 2 introduces the definitions of the
approximation operators based on isotone Galois connections considered in this
work, together with some results needed to understand this work. In Sect. 3,
we present the formal definition of the set of representative objects of a decision
class and analyze its mathematical properties. Section 4 provides the conclusions
and presents some prospect for future work.

2 Preliminaries

In this section we recall some basic notions in order to make the contribution as
self-contained as possible.

The first notion we have to recall is the notion of approximation space.

Definition 1. An approximation space is a pair (U,R), where U is a set (called
universe) and R is a binary relation over U .

In this work, we consider approximation spaces whose relation R can be
an arbitrary relation. This fact leads us to distinguish between left and right
relationships, and to generalize the standard definition of R-foreset.

Definition 2. Let (U,R) be an approximation space, the sets defined as:

xR = {y ∈ U |(x, y)∈R} and Ry = {x ∈ U |(x, y)∈R}

are the R-right-foreset of x ∈ U and the R-left-foreset of y ∈ U , respectively.
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From the previous generalization, four different approximation operators
arises.

Definition 3. Let (U,R) be an approximation space and A ⊆ U . We define the
following operators:

– R↓r A = {x ∈ U | xR ⊆ A}
– R↑r A = {x ∈ U | xR ∩ A �= ∅}
– R↓� A = {y ∈ U | Ry ⊆ A}
– R↑� A = {y ∈ U | Ry ∩ A �= ∅}.

It is important to highlight that the approximation operators R↓� and R↑�

coincide with those presented in [27]. Additionally, the equalities R↓r = R↓� =
R ↓ and R ↑r = R ↑� = R ↑ are satisfied, when the relation is symmetric. For
such a reason, hereafter, if R is symmetric, we will write R↓ and R↑ instead of
R↓r, R↓� and R↑r, R↑�, respectively.

On the other hand, the pairs (R↑r, R↓�) and (R↑�, R↓r) are isotone Galois
connections [8,9], whose definition is recalled below.

Definition 4. Let (P,≤P ) and (Q,≤Q) be posets. A pair (ϕ,ψ) of mappings
ϕ : P → Q, ψ : Q → P is called isotone Galois connection between P and Q if
the following equivalence is satisfied, for all p ∈ P and q ∈ Q:

ϕ(p) ≤Q q if and only if p ≤P ψ(q).

This notion is also called adjunction. The mapping ϕ is called lower (or left)
adjoint of ψ and the mapping ψ upper (or right) adjoint of ϕ.

At this point, it is important to point out that in the case of considering
arbitrary relations, the operators R↓r and R↓� may be unsuitable to represent
lower approximations, since the inequalities R↓r (A) ⊆ A or R↓� (A) ⊆ A may
not hold for some set A ⊆ U . Similarly, R ↑r and R ↑� may be unsuitable to
represent upper approximations, since A ⊆ R↑r (A) or A ⊆ R↑� (A) could not
be satisfied for some set A ⊆ U . However, the compositions R↑r (R↓� (A)) and
R↑� (R↓r (A)) are always contained in A, whereas A is always contained in the
composition R↓� (R↑r (A)) and R↓r (R↑� (A)).

Certainly, the inequalities R ↓r (A) ⊆ A, R ↓� (A) ⊆ A, A ⊆ R ↑r (A) and
A ⊆ R ↑� (A) are satisfied for reflexive relations. But even in that case, the
composition of these operators provide better approximations than considering
simply R↓r, R↓�, R↑r and R↑�. That is, if R is reflexive, we have

R↓� (A) ⊆ R↑r (R↓� (A)) ⊆ A ⊆ R↓� (R↑r (A)) ⊆ R↑r (A).

and
R↓r (A) ⊆ R↑� (R↓r (A)) ⊆ A ⊆ R↓r (R↑� (A)) ⊆ R↑� (A).

for all A ⊆ U .
In such a way, the notion of rough set is defined for arbitrary relations by

using the following definition.
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Definition 5. Let (U,R) be an approximation space and A ⊆ U . The lower
approximations of A are defined as:

R↑r (R↓� (A)) and R↑� (R↓r (A))

and the upper approximations of A are defined as:

R↓� (R↑r (A)) and R↓r (R↑� (A)).

A set A ⊆ U is called a generalized rough set if it is different from the two lower
approximations and from the two upper approximations.

The following theorem summarizes some basic properties of such compositions.

Theorem 1. Let (U,R) be an approximation space and A,B ⊆ U , then:

– If A ⊆ B then R↑r (R↓� (A)) ⊆ R↑r (R↓� (B))
– If A ⊆ B then R↑� (R↓r (A)) ⊆ R↑� (R↓r (B))
– If A ⊆ B then R↓� (R↑r (A)) ⊆ R↓� (R↑r (B))
– If A ⊆ B then R↓r (R↑� (A)) ⊆ R↓r (R↑� (B))
– R↑r (R↓� (A)) ⊆ A ⊆ R↓r (R↑� (A))
– R↑r (R↓� (A)) ⊆ A ⊆ R↓� (R↑r (A))
– R↑� (R↓r (A)) ⊆ A ⊆ R↓� (R↑r (A))
– R↑� (R↓r (A)) ⊆ A ⊆ R↓r (R↑� (A))
– R↑r (R↓� (R↑r (R↓� (A)))) = R↑r (R↓� (A))
– R↑� (R↓r (R↑� (R↓r (A)))) = R↑� (R↓r (A))
– R↓� (R↑r (R↓� (R↑r (A)))) = R↓� (R↑r (A))
– R↓r (R↑� (R↓r (R↑� (A)))) = R↓r (R↑� (A)).

In [19] is stated that the approximation operators in Definition 5 coincide
with those of [27] when the relation is a preorder.

Theorem 2 [19, Theorem 1]. Let (U,R) be an approximation space. The fol-
lowing items are equivalent:

– R↑� (R↓r (A)) = R↓r (A), for all A ⊆ U .
– R↑r (R↓� (A)) = R↓� (A), for all A ⊆ U .
– R is a preorder (i.e. R is reflexive and transitive).

In our approach, we intend to use more general relations than equivalence
relations and different from preorder relations. Below, we recall a non-transitive
indiscernibility relation that will be considered in this work. But first, we need
to recall the notion of information system.

Definition 6. An information system (U,A) is a tuple, such that U = {x1, x2,
. . . , xn} and A = {a1, a2, . . . , am} are finite, non-empty sets of objects and
attributes, respectively. Each a ∈ A is associated with a mapping ā : U → Va,
where Va is the value set of a over U .

If Va = {0, 1} for each a ∈ A, we say that (U,A) is a Boolean information
system.
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Now, we introduce the notion of s-indiscernibility relation.

Definition 7. Given an information system (U,A), s ∈ N and B ⊆ A, the
s-indiscernibility relation with respect to B, Rs

B, is defined as follows.

Two objects x, y ∈ U belongs to Rs
B if and only if there are at most s attributes

{a1, . . . , as} ⊆ B such that ak(x) �= ak(y) for all k ∈ {1, . . . , s}.
If (x, y) ∈ Rs

B, we say that x and y are s-indiscernible in B. When B = A,
we simply say that x and y are s-indiscernible and the relation is denoted as Rs.

In this paper, we focus on the study of a special kind of information system
called decision system.

Definition 8. A decision system (U,A ∪ {d}) is a kind of information system
in which d �∈ A is called the decision attribute.

In this framework, the notions of positive region and the degree of dependency
are generalized as follows.

Definition 9. Let (U,A ∪ {d}) be a decision system, B ⊆ A and (U,RB) a
derived approximation space. The RB-left positive and RB-right positive regions
with respect to RB, denoted as POS�

RB
and POSr

RB
respectively, are defined as:

POS�
RB

=
⋃

x∈U

RB ↑r

(
RB ↓� [x]d

)

POSr
RB

=
⋃

x∈U

RB ↑� (RB ↓r [x]d)

and the degree of dependency of d over RB, γ∗
RB

, as:

γ∗
RB

=
max

{
Card(POS�

RB
),Card(POSr

RB
)
}

Card(U)

where [x]d represents the equivalence class of the object x ∈ U with respect to the
indiscernibility relation Indd given by

Indd = {(x, y) ∈ U× U | d̄(x) = d̄(y)}

Remark 1. The degree of dependency γ∗
RB

= 1 plays a remarkable role in deci-
sion systems since in such a case, a perfect classification can be performed tak-
ing into account the information provided by the approximation space (U,RB).
Additionally, note that if γ∗

RB
= 1, we have

max
{
Card(POS�

RB
),Card(POSr

RB
)
}

= Card(U).

In other words, POS�
RB

= U or POSr
RB

= U . Moreover, by Theorem 1 we have
that RB ↑r

(
RB ↓� [x]d

) ⊆ [x]d and RB ↑� (RB ↓r [x]d) ⊆ [x]d, as a result, if
POS�

RB
= U we have that RB ↑r

(
RB ↓� [x]d

)
= [x]d, for all x ∈ U , and when

POSr
RB

= U then RB ↑� (RB ↓r [x]d) = [x]d, for all x ∈ U .
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3 Representative Set of Objects of a Decision Class

In this section, we introduce a novel class of objects, called representative. The
underlying idea in such a definition is to determine a subset of objects that
characterizes a certain decision class.

Definition 10. Given a decision system (U,A ∪ {d}) and x ∈ U , we say that a
subset of objects X ⊆ U is:

– a left-representative set of the decision class [x]d if R↑� (X) = [x]d.
– a right-representative set of the decision class [x]d if R↑r (X) = [x]d.

We will denote as ROS�([x]d) and ROSr([x]d) to the set of left-representative
sets and right-representative sets of the decision class [x]d, respectively.

Notice that when the relation R is symmetric, the left-representative sets
coincide with the right-representative sets. In such a case, we call that sets
representative sets of a decision class [x]d, and denote the set formed by them
as ROS([x]d).

Note also that if X is a representative set of a decision class [x]d for certain
x ∈ U , then every element in the class of [x]d is related at least with one element
in X and moreover, all the elements in X are related only to elements of [x]d.
In other words, we can characterize the elements in the class [x]d by checking
which objects in U are related (or not) to elements in X.

The following example illustrates the previous definition.

Example 1. Consider a decision system (U,A ∪ {d}) composed of the set of
objects U = {x1, x2, x3, x4, x5, x6}, the set of attributes A = {a1, a2, a3, a4, a5}
related between them as the following table shows:

a1 a2 a3 a4 a5 d

x1 x x x x
x2 x x x
x3 x x x x x
x4 x x x x
x5 x x x x
x6 x x x x
x7 x x x

Note that, in this case, the obtained decision classes are:

[x1]d = {x1, x3, x6}
[x2]d = {x2, x4, x5}

We consider B = A and the s-indiscernibility relation with s = 1, that is,
R1

A. The results obtained from the considered s-indiscernibility relation is shown
in the table below.
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R1
A x1 x2 x3 x4 x5 x6 x7

x1 x x
x2 x x x x
x3 x x x
x4 x x x x
x5 x x x
x6 x x x
x7 x x x x

According to the previous table, we obtain that:

R ↑ ({x3}) = {x1, x3, x6} = [x1]d
R ↑ ({x2}) = {x2, x4, x5} = [x2]d

Therefore, we can assert that the set {x3} is a representative set of the
decision class [x1]d and the set {x2} is a representative set of the decision class
[x2]d. But {x3} is not the only representative set of the decision class [x1]d,
we can also find a set, composed of more than one object, that represents the
same decision class as, for example, the set {x1, x3}; it is easy to check that
R ↑ ({x1, x3}) = [x1]d. However, it is important to note that the set {x1} is
not a representative set of it decision class [x1]d because x6 /∈ R ↑ ({x1}). In
addition, the set {x3, x6} is not a representative set of the decision class [x1]d
either, since x4 ∈ R ↑ ({x3, x6}) and x4 /∈ [x1]d. ��

In the previous example, we have shown that adding or removing objects
from a given representative set of a decision class may change such a feature.
Therefore, it looks interesting to study the structure of the set composed of all
representative sets of a certain decision class.

In order to present the first result related to the structure of the representa-
tive sets, we need to introduce the following definition.

Definition 11. Given an approximation space (U,R), we say that

– x ∈ U is a left-isolated object of the relation R if there is no element y ∈ U
satisfying that (x, y) ∈ R. The set composed of all the left-isolated objects is
denoted as Is�(R)

– y ∈ U is a right-isolated object of the relation R if there is no element x ∈ U
satisfying that (x, y) ∈ R. The set composed of all the right-isolated objects is
denoted as Isr(R).

– x ∈ U is a isolated object of the relation R if it is left-isolated and right-
isolated. The set composed of all the isolated objects is denoted as Is(R).

The first result shows that the set of left-representative (right-representative)
sets of two different decision classes are disjoint except for isolated objects.



356 N. Madrid and E. Ramı́rez-Poussa

Proposition 1. Let (U,A ∪ {d}) be a decision system, R a discernibility relation
and X,Y ⊆ U two left-representative (right-representative) sets of two different
decision classes, then the set X

⋂
Y is contained in the set of left-isolated (right-

isolated) objects of the relation R.

Proof. Let x, y ∈ U such that [x]d �= [y]d. Then, necessarily [x]d
⋂

[y]d = ∅. Let
X and Y be left-representative sets of the classes [x]d and [y]d, respectively, and
let us prove that X

⋂
Y ⊆ Is�(R). We consider x ∈ X

⋂
Y , then we have that

R ↑� (x) ⊆ R ↑� (X
⋂

Y ). In addition, since (R ↑�, R ↓r) is a Galois connection,
we have that

R↑� (x) ⊆ R↑�

(
X

⋂
Y

)
⊆ R↑� (X)

⋂
R↑� (Y ) = [x]d

⋂
[y]d = ∅.

Therefore, we have that R↑� (x) = ∅. Then, according to Definition 3, there is
not y ∈ U such that (x, y) ∈ R, that is, x is a left-isolated object of the relation
R. Hence, we have that X

⋂
Y ⊆ Is�(R).

The proof with right-representative sets is developed in an analogous way. ��
The following result shows that the set of representative sets of a certain

decision class has the structure of a join-semilattice with respect to the standard
ordering between subsets.

Proposition 2. Let (U,A ∪ {d}) be a decision system and let X,Y ⊆ U such
that X is a left-representative (right-representative) set of a decision class [x]d,
with x ∈ U , and R ↑� (Y ) ⊆ [x]d (respectively R ↑r (Y ) ⊆ [x]d). Then X

⋃
Y is

also a left-representative (right-representative) set of [x]d.

Proof. Let X,Y ⊆ U such that X is a left-representative set of a decision class
[x]d, with x ∈ U , and R↑� (Y ) ⊆ [x]d. Since (R↑�, R↓r) is a Galois connection,
we have that

R↑�

(
X

⋃
Y

)
= R↑� (X)

⋃
R↑� (Y ) = [x]d

⋃
R↑� (Y ) = [x]d.

In other words, X
⋃

Y is a left-representative set of [x]d.
The proof follows similarly for the right-representative sets. ��
The following consequence of the previous proposition shows that the con-

struction of left-representative sets and right-representative sets can be done by
singletons.

Corollary 1. Let (U,A ∪ {d}) be a decision system and let X,Y ⊆ U such that
X and X

⋃
Y are left-representative (right-representative) sets of a decision class

[x]d, with x ∈ U . Then X
⋃{y} is also a left-representative (right-representative)

set of [x]d, for all y ∈ Y .

The following result shows that the set of representative sets of a certain
decision class has the structure of join-semilattice with respect to the standard
ordering between subsets.
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Corollary 2. Let (U,A ∪ {d}) be a decision system and let X,Y ⊆ U be two
left-representative (right-representative) sets of the same decision class [x]d, with
x ∈ U . Then X

⋃
Y is also a left-representative (right-representative) set of [x]d.

Example 2. In Example 1, we have two representative sets for the class [x1]d:

ROS([x1]d) =
{{x3}, {x1, x3}

}
.

On the other hand, we have six representative sets for the class [x2]d, namely:

ROS([x2]d) =
{{x2}, {x7}, {x2, x7}, {x2, x5}, {x7, x5}, {x2, x5, x7}

}
.

Note that ROS([x1]d) and ROS([x2]d) are disjoint, because there is not iso-
lated elements in the considered discernibility relation, as Proposition 1 asserts.

On the other hand, according to Proposition 2, it is easy to check the join
of arbitrary representative sets is also a representative for the respective class.
Specifically, we can observe that the representative sets for the class [x1]d has
a lattice structure, but the set of representative sets for the class [x2]d only has
the structure of a join-semilattice. That fact can be seen, for example, in the
intersection of the sets {x2, x5} and {x7, x5} which is the singleton {x5} that is
not a representative set of the class [x2]d. ��

Let us analyze now the minimal and maximal representative sets of decision
classes.

Definition 12. Let (U,A ∪ {d}) be a decision system and X ⊆ U a representa-
tive set of a decision class [x]d, with x ∈ U . We say that:

– X is a minimal left-representative (right-representative) set of the decision
class [x]d if X \ {x′} is not a left-representative (right-representative) set of
[x]d, for all x′ ∈ X.

– X is a maximal left-representative (right-representative) set of the decision
class [x]d if there is no object x′ ∈ U \ X such that X

⋃{x′} is a left-
representative (right-representative) set of [x]d.

Thanks to the join-semilattice structure of the set of representative sets of
a decision class (Proposition 2), we can directly infer that the maximal repre-
sentative set of a decision class is unique; i.e., it is a maximum, as the following
corollary states.

Corollary 3. Let (U,A ∪ {d}) be a decision system and x ∈ U . If there exists
a left-representative (right-representative) set of a decision class [x]d then, there
is a unique maximal left-representative (right-representative) set of that decision
class.

The unicity stated by the previous result does not hold for minimal repre-
sentative sets; i.e., it may exists several minimal representative sets of a decision
class. The following example shows that fact.
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Example 3. Coming back to Example 2, according to Definition 12, we have that
the sets {x3} is the only minimal representative set of the decision class [x1]d.
However, there are two minimal representative sets of the decision class [x2]d,
namely {x2} and {x7}.

On the other hand, it can be proved easily that {x1, x3} and {x2, x5, x7} are
the two maximal representative sets of [x1]d and [x2]d, respectively. ��

The following result determines the maximal left-representative set of a deci-
sion class, if it exists.

Theorem 3. Let (U,A∪{d}) be a decision system, B ⊆ A, (U,RB) an approx-
imation space and x ∈ U . Then:

– If there exists a right-representative set of the decision class [x]d, then the set
R ↓� ([x]d) is the maximum right-representative set of the decision class [x]d.

– If there exists a left-representative set of the decision class [x]d, then the set
R ↓r ([x]d) is the maximum left-representative set of the decision class [x]d.

Proof. Let x ∈ U such that there exists a right-representative set of its decision
class. By Corollary 3, we have that there exists the maximum right-representative
set of the decision class [x]d, denoted by X ⊆ U . By Theorem 1, we have that
RB ↑r

(
RB ↓� [x]d

) ⊆ [x]d. Then, since X is a right-representative set of the deci-
sion class [x]d, by Proposition 2, we have that X ∪ RB ↓� [x]d is a representative
set of the decision class [x]d as well. As a result, by the maximality of the set
X, we have that RB ↓� [x]d ⊆ X.

Let us prove now that X ⊆ RB ↓� [x]d. Consider y ∈ X, since X is a
right-representative set of [x]d and by the monotonicity of R ↑r, we have that
R↑r ({y}) ⊆ [x]d. Therefore, by definition of R↑r, if we consider z ∈ U satisfying
that zR ∩ {y} �= ∅, then z ∈ [x]d. As a consequence, for all z ∈ U such that
(z, y) ∈ R we have that z ∈ [x]d, which is equivalent to say that Ry ⊆ [x]d and
then, y ∈ RB ↓� [x]d. In other words X ⊆ RB ↓� [x]d.

Finally, we can assert that RB ↓� [x]d is the maximal right-representative set
of [x]d.

The proof for the maximal left-representative set of [x]d follows analogously. ��
In the last result we relate the representative sets of a decision class to the

degree of dependency γ∗
RB

. Specifically, we show that γ∗
RB

= 1 is equivalent to
assert the existence of left-representative sets for each decision class or right-
representative sets for each decision class.

Theorem 4. Let (U,A ∪ {d}) be a decision system, B ⊆ A and (U,RB) an
approximation space. RB satisfies that γ∗

RB
= 1 if and only if

– there exists at least one left-representative set for each decision class,
– or there exists at least one right-representative set for each decision class.
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Proof. Let us assume that RB satisfies that γ∗
RB

= 1. Then, RB ↑r

(
RB ↓� [x]d

)
=

[x]d, for all x ∈ U or RB ↑� (RB ↓r [x]d) = [x]d for all x ∈ U (see Remark 1).
Therefore, we have that RB ↓� [x]d is a right-representative set of [x]d, for all
x ∈ U , or RB ↓r [x]d is a left-representative set of [x]d, for all x ∈ U .

Now, let us prove the converse. Without loss of generality, let us assume that
there exists at least one left-representative set for each decision class. Then, by
Theorem 3, we have that R ↓r ([x]d) is the maximal left-representative set of the
class [x]d, that is, RB ↑� (RB ↓r [x]d) = [x]d for all x ∈ U . As a consequence:

POSr
RB

=
⋃

x∈U

RB ↑� (RB ↓r [x]d) =
⋃

x∈U

[x]d = U

and therefore, γ∗
RB

= 1. ��

4 Conclusions and Future Work

In this paper we have provided the formal definition of the notion of repre-
sentative set of objects of a decision class. Moreover, we have presented some
mathematical properties of such kind of sets and shown its connection with a
classification task based on rough sets.

There are different future lines based on the notion of representative set of
objects. Firstly, the obtention of more mathematical properties about the objects
forming representative sets is interesting for several purposes; for example, for its
construction or for determining minimal representative sets. Secondly, analyzing
the relationship between reducts of attributes and the set of representative sets
of objects has our attention as well. Last but not least, the construction of
a classification procedure based on representative sets of objects seems to be
appropriated when the dataset is involved with uncertainty; for example when
we need to classify an object that is discernible with all the objects in the training
dataset.
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1. Beńıtez-Caballero, M.J., Medina, J., Ramı́rez-Poussa, E., Ślȩzak, D.: Bireducts
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M., Schaefer, G., Wang, J. (eds.) Soft Computing in Industrial Applications.
Advances in Intelligent and Soft Computing, vol. 75, pp. 303–311. Springer, Hei-
delberg (2010). https://doi.org/10.1007/978-3-642-11282-9 32
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