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Abstract

We introduce HHL, a hierarchical variant of hybrid logic. We study first order correspondence results and
prove a Hennessy-Milner like theorem relating (hierarchical) bisimulation and modal equivalence for HHL.
Combining hierarchical transition structures with the ability to refer to specific states at different levels, this
logic seems suitable to express and verify properties of hierarchical transition systems, a pervasive semantic
structure in Computer Science.
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1 Introduction

From D. Harel’s statecharts [6] to the mobile ambients [4] proposed by A. Gordon

and L. Cardelli, models of hierarchical systems are pervasive in Computer Science.

In practice, hierarchical, multi-level transitions often coexist with local ones. The

ability to represent both and reason uniformly about them is essential to such

models, for example in specific applications such as coordination protocols in the

context of distributed systems [1], or to handle software which operates in different

modes of execution and is able to commute between them. The global transition

structure defines how such systems evolve from a mode (or configuration) to another

[8].

Available online at www.sciencedirect.com

Electronic Notes in Theoretical Computer Science 338 (2018) 167–184

1571-0661/© 2018 The Author(s). Published by Elsevier B.V.

www.elsevier.com/locate/entcs

https://doi.org/10.1016/j.entcs.2018.10.011

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://www.elsevier.com/locate/entcs
https://doi.org/10.1016/j.entcs.2018.10.011
https://doi.org/10.1016/j.entcs.2018.10.011
http://www.sciencedirect.com
http://creativecommons.org/licenses/by-nc-nd/4.0/


This paper introduces a hierarchical variant of hybrid logic [2,3] that adds to the

modal description of hierarchical transition structures the ability to refer to specific

states at any level of description. As discussed by the authors in [8], hybrid logic,

which allows one to refer to specific states in a system, became the specification

lingua franca for reconfigurable systems. The hierarchical variant proposed here

sets the ground for a uniform framework to express and verify properties of any

kind of hierarchical transition system.

The paper is organised as follows: after a section on preliminaries, Section 3

introduces hierarchical hybrid logic, HHL. The relevant first-order correspondences
are discussed in Section 4. Section 5 discusses bisimulation for this sort of systems

and proves a Hennessy-Milner like theorem relating, under the usual conditions of

image-finiteness, bisimulation and modal equivalence for HHL. Finally, Section 6

concludes and briefly discusses future work.

2 Hybrid logic

The qualifier hybrid [2,3] applies to extensions of modal languages with symbols,

called nominals, that explicitly refer to individual states in the underlying Kripke

frames. A hybrid signature is a pair (Prop,Nom), where Prop and Nom are disjoint

sets of symbols of propositional variables and nominals, respectively. The set of

hybrid formulas over (Prop,Nom) extends the corresponding modal language with

formulas i, which only hold at the state named by i, and @iρ, which asserts that

formula ρ holds in the state named by i, for i ∈ Nom. Formally, the set of formulas,

denoted by FmHL(Prop,Nom), is defined by the grammar

ρ ∶∶= p ∣ i ∣ @iρ ∣ ◻ ρ ∣ ¬ρ ∣ρ ∧ ρ,

for i ∈ Nom and p ∈ Prop.
Note that the remaining Boolean connectives and the box modality are intro-

duced as abbreviations. The set BFmHL(Prop,Nom) of basic formulas is defined

by

Prop ∪Nom ∪ { ◻ρ ∶ ρ ∈ FmHL(Prop,Nom)}
∪ {@iρ ∶ ρ ∈ FmHL(Prop,Nom), i ∈ Nom}

Note that considering the restriction of formulas to the basic ones does not

reduce the expressibility power of the logic, since we get again these formulas with

the boolean connectives in the upper level (cf. Definition 3).

Models of HL for a signature (Prop,Nom) are Kripke structures with named

states, i.e., structures M = (W,R,V ) where W is a set of states, R ⊆W ×W is the

accessibility relation, and V ∶ Prop ∪ Nom → P(W ) is a function that interprets

propositions and nominals, such that for any i ∈ Nom, V (i) is a singleton. The set

of all models over a signature (Prop,Nom) is denoted by ModHL(Prop,Nom).
The satisfaction relation between a modelM = (W,R,V ) in ModHL(Prop,Nom)

and a formula ρ ∈ FmHL(Prop,Nom) at state w ∈ W , is recursively defined as
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follows:

● M,w ⊧HL ρ iff w ∈ V (ρ), ρ ∈ Nom ∪Prop;
● M,w ⊧HL @iϕ iff M,V (i) ⊧HL ϕ;

● M,w ⊧HL ◻ϕ iff there is a v ∈W such that (w, v) ∈ R and M,v ⊧HL ϕ;

● M,w ⊧HL ¬ϕ iff it is false that M,w ⊧HL ϕ (in symbols, M,w /⊧HL ϕ);

● M,w ⊧HL ϕ ∧ϕ′ iff M,w ⊧HL ϕ and M,w ⊧HL ϕ′.

As usual, we write M ⊧HL ρ when, for any w ∈W , M,w ⊧HL ρ, and ⊧HL ρ when

M ⊧HL ρ for all M ∈ModHL(Prop,Nom).
Applications often justify the introduction of a distinguished state in the un-

derlying Kripke structure, regarded as the initial point of evaluation. As discussed

in the sequel, such is the case of hierarchical transition systems representing soft-

ware configurations: each configuration ‘starts’ at a specific entry point, or initial

state. Models for such pointed versions of HL are pairs ((W,R,V ), s) where s ∈W .

Accordingly, the satisfaction relation is defined by

((W,R,V ), s) ⊧ ρ iff (W,R,V ), s ⊧HL ρ .

3 Hierarchical hybrid logic

A signature in hierarchical hybrid logic, HHL-signature in short, is a tuple

(Prop,Nom,PROP,NOM) where Prop, Nom, PROP and NOM are four disjoint

sets of propositions and nominals corresponding to the two levels of assertion, called

the ‘lower’ and the ‘upper’ level, respectively.

The set of formulas for a signature (Prop,Nom,PROP,NOM) is organised in a

two-levels hierarchy.

Definition 3.1 (HHL-formulas) Let Δ = (Prop,Nom,PROP,NOM) be a HHL-
signature. The set FmHHL(Δ) of HHL-formulas is the smallest set such that:

● BFmHL(Prop,Nom) ⊆ FmHHL(Δ);
● PROP ⊆ FmHHL(Δ);
● NOM ⊆ FmHHL(Δ);
● @�ρ ∈ FmHHL(Δ), for any � ∈ NOM and ρ ∈ FmHHL(Δ);
● ⧈ρ ∈ FmHHL(Δ), for any ρ ∈ FmHHL(Δ);
● ¬ρ ∈ FmHHL(Δ), for any ρ ∈ FmHHL(Δ);
● ρ ∧ ρ′ ∈ FmHHL(Δ), for any ρ, ρ′ ∈ FmHHL(Δ).

As usual, Boolean connectives and the box modality are defined by abbreviation.

Note also that FmHL(Prop,Nom) ⊆ FmHHL(Δ).

Definition 3.2 (HHL-models) Let Δ = (Prop,Nom,PROP,NOM) be a HHL
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signature. A Kripke Δ-model is a tuple

M = (W,R,V, (Mw)w∈W ),

where

● W is a non empty set of the so called upper, or super, states;

● R ⊆W ×W is a binary relation called the upper accessibility relation;

● V ∶ PROP ∪ NOM → P(W ) is a function where, for any ∈ NOM, V ( ) is a

singleton. When it is implicitly clear, the element w ∈ V ( ) will be identified as

the set V ( ) itself.
● For any w ∈ W , Mw is a HL-pointed model Mw = (Hw, sw), where Hw =
(Ww,Rw, Vw) ∈ModHL(Prop,Nom) and sw ∈Ww.

Fig. 1. An almost trivial HHL model.

Definition 3.3 (HHL-Satisfaction) Let Δ = (Prop,Nom,PROP,NOM) be a

HHL-signature and M = (W,R,V, (Mw)w∈W ) be a Δ-model. The satisfaction rela-

tion between formulas, models and points is recursively defined as follows:

(i) M,w ⊧ ρ iff Hw, sw ⊧HL ρ, for ρ ∈ BFmHL(Prop,Nom);
(ii) M,w ⊧ iff w ∈ V ( ), for ∈ PROP;

(iii) M,w ⊧ iff V ( ) = {w}, for ∈ NOM;

(iv) M,w ⊧ @ ρ iff M,V ( ) ⊧ ρ;
(v) M,w ⊧ ⧈ρ iff there is a w′ ∈W such that (w,w′) ∈ R and M,w′ ⊧ ρ;
(vi) M,w ⊧ ¬ρ iff it is not the case that M,w ⊧ ρ;
(vii) M,w ⊧ ρ ∧ ρ′ iff M,w ⊧ ρ and M,w ⊧ ρ′

As in the standard case we write M ⊧ ρ when, for any w ∈W , M,w ⊧ ρ, and ⊧ ρ
when M ⊧ ρ for all M ∈ModHHL(Δ). These definitions extend to sets of formulas

as expected. Finally, for Γ∪ {ρ} ⊆ FmHHL(Δ), ρ is said to be a global consequence

of Γ, Γ ⊧ ρ, if for any model M ∈ModHHL(Δ), M ⊧ Γ implies M ⊧ ρ.

4 First-order correspondences

As usual in the introduction of a modal language, this section discusses how for-

mulas in hierarchical hybrid logic can be transformed into first-order ones. This is

done through the introduction of two possible correspondences: the first one follows

the well-known recipe used in the standard translation of modal logic; the second

A. Madeira et al. / Electronic Notes in Theoretical Computer Science 338 (2018) 167–184170



entails a different, less common perspective taking explicitly into account definabil-

ity in each possible world, in other words, by defining which substates belong to a

superstate. Beyond the theoretical interest of these correspondences, they pave the

way to the effective use of a number of proof assistants.

4.1 The standard translation

Definition 4.1 Let Δ = (Prop,Nom,PROP,NOM) be a HHL-signature. We de-

fine the two-sorted first-order signature Δ∗ = (S,F,P ) as follows:
● the set of sorts S = {W,U}, where W is the sort of super-states and U the sort

of sub-states.

● the set of operation symbols F = {i ∶ W → U ∣ i ∈ Nom} ∪ {� ∶ → W ∣ � ∈
NOM} ∪ {Init ∶W → U};

● the set of predicate symbols P = {R ∶W ×W, r ∶W × U × U, Sub ∶W × U} ∪ {p ∶
W ×U ∣ p ∈ Prop} ∪ {� ∶W ∣ � ∈ PROP}.

The purpose of operation symbol Sub is to explicitly relate (sub)states to super-

states, defining the inhabitants of each possible super-state. Although this con-

struction is not required for defining the standard translation, it plays a role in the

alternative translation introduced in the next section.

Definition 4.2 Let Δ = (Prop,Nom,PROP,NOM) be a HHL-signature. Given

a model M = (W,R, (Mw)w∈W , V ) ∈ Mod(Δ), we define the model M∗ as follows:

sorts are realized by the carrier sets M∗
W =W and M∗

U = ⋃w∈W Ww. The definition

for functions and predicates, respectively, is given by

M∗
i (w) = Vw(i) for i ∈ Nom

M∗
�
= V (�) for � ∈ NOM

M∗
Init(w) = sw

M∗
R(w,w′) iff (w,w′) ∈ R

M∗
r (w,u, v) iff (u, v) ∈ Rw

M∗
Sub(w,u) iff u ∈Ww

M∗
p (w,u) iff u ∈ Vw(p), p ∈ Prop

M∗
� (w) iff w ∈ V (�),� ∈ PROP

Finally, we obtain the translation of formulas as follows:

Definition 4.3 [Standard translation] The standard translation ST consists of the

map

ST ∶ FmHHL(Δ) �→ FmFOL(Δ∗)
recursively defined as follows:
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STX,u(p) = p(X,u) p ∈ Prop
STX,u(i) = u = i(X) i ∈ Nom

STX,u(@iρ) = STX,i(X)(ρ) i ∈ Nom and

ρ ∈ FmHL(Prop,Nom)
STX,u( ◻ρ) = (∃v ∶ U)(r(X,u, v) ∧ STX,v(ρ)) ρ ∈ FmHL(Prop,Nom)
STX,u(�) = �(X) � ∈ PROP

STX,u(�) = X = � � ∈ NOM

STX,u(@�ρ) = STX,u(ρ)[X ↦ �, u↦ Init(�)] � ∈ NOM

STX,u( ⧈ρ) = (∃Y ∶W )(R(X,Y ) ∧ STY,Init(Y )(ρ))

STX,u(¬ρ) = ¬STX,u(ρ)
STX,u(ρ ∧ ρ′) = STX,u(ρ) ∧ STX,u(ρ′)

Notation ST�,Init(�)(ρ) is used for STX,u(ρ)[X ↦ �, u ↦ Init(�)], when clear from

context.

Lemma 4.4 Let Δ = (Prop,Nom,PROP,NOM) be a HHL-signature and M =
(W,R, (Mw)w∈W , V ) a Δ-model and ρ ∈ FmHL(Prop,Nom). Then, for any w ∈W ,

z ∈Hw,

Hw, z ⊧HL ρ iff M∗ ⊧FOL STX,u(ρ)[X ↦ w,u↦ z]
where Mw = (Hw, sw).

Proof. By induction on the structure of formulas.

for ρ = p, p ∈ Prop
Hw, z ⊧HL p

⇔ {defn. of ⊧HL}
z ∈ Vw(p)

⇔ {defn. of M∗ and z ∈Ww}
M∗

p (w, z)
⇔ {defn of ⊧FOL}

M∗ ⊧FOL p(X,u)[X ↦ w,u↦ z]
⇔ {defn of ST}

M∗ ⊧FOL STX,u(p)[X ↦ w,u↦ z]
for ρ = i, i ∈ Nom

Hw, z ⊧HL i

⇔ {defn. of ⊧HL}
z = Vw(i)
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⇔ {defn. of M∗}
M∗

i (w) = z
⇔ {defn of ⊧FOL}

M∗ ⊧FOL i(X) = u[X ↦ w,u↦ z]
⇔ {defn of ST}

M∗ ⊧FOL STX,u(i)[X ↦ w,u↦ z]
for ρ = @iϕ, i ∈ Nom

Hw, z ⊧HL @iϕ

⇔ {defn. of ⊧HL}
Hw, Vw(i) ⊧HL ϕ

⇔ {I.H.}
M∗ ⊧FOL STX,u(ϕ)[X ↦ w,u↦ Vw(i)]

⇔ {since Vw(i) =M∗

i (w)}
M∗ ⊧FOL STX,i(X)(ϕ)[X ↦ w,u↦ z]

⇔ {defn of ST}
M∗ ⊧FOL STX,u(@iϕ)[X ↦ w,u↦ z]

for ρ = ◻ϕ
Hw, z ⊧HL ◻ϕ

⇔ {defn. of ⊧HL}
Hw, v ⊧HL ϕ, for some v ∈Ww such that (z, v) ∈ Rw

⇔ {I.H + defn of M∗}
M∗ ⊧FOL STX,u(ϕ)[X ↦ w,u↦ v]
for some v such that M∗

r (w, z, v)
⇔ {defn of ⊧FOL}

M∗ ⊧FOL (∃v) r(X,u, v) ∧ STX,v(ϕ)[X ↦ w,u↦ z]
⇔ {defn of ST}

M∗ ⊧FOL STX,u( ◻ϕ)[X ↦ w,u↦ z]
The cases dealing with conjunction and negation follow directly from the induction

hypothesis. ◻

Theorem 4.5 Let Δ = (Prop,Nom,PROP,NOM) be a HHL-signature, M =
(W,R, (Mw)w∈W , V ) a Δ-model and ρ ∈ FmHHL(Δ). Then, for w ∈W ,

M,w ⊧ ρ iff M∗ ⊧FOL STX,u(ρ)[X ↦ w,u↦M∗
Init(w)]

Proof. The proof proceeds by induction on the structure of formulas. Thus,
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for ρ ∈ BFmHL(Prop,Nom)
M,w ⊧ ρ

⇔ {defn. of ⊧}
Hw, sw ⊧HL ρ

⇔ {since M∗

Init(w) = sw and Lemma 4.4}
M∗ ⊧FOL STX,u(ρ)[X ↦ w,u↦M∗

Init(w)]
for ρ = @�ϕ, � ∈ NOM

M,w ⊧ @�ϕ

⇔ {defn. of ⊧}
M,V (�) ⊧ ϕ

⇔ {I.H. }
M∗ ⊧FOL ST�,u(ϕ)[X ↦ w,u↦M∗

Init(V (�))]
⇔ {since V (�) =M∗

�
}

M∗ ⊧FOL ST�,Init(�)(ϕ)
⇔ {defn. of ST}

M∗ ⊧FOL STX,u(@�ϕ)[X ↦ w,u↦M∗
Init(w)]

for ρ = ⧈ϕ
M,w ⊧ ⧈ϕ

⇔ {defn. of ⊧}
M,w′ ⊧ ϕ, for some w′ ∈W such that R(w,w′)

⇔ {I.H. + defn. of M∗}
M∗ ⊧FOL STY,v(ϕ)[X ↦ w′, u↦M∗

Init(w′)], for somew′ ∈W withM∗
R(w,w′)

⇔ {defn. of ⊧FOL}
M∗ ⊧FOL (∃Y ∶W )R(X,Y ) ∧ STY,Init(Y )(ϕ)[X ↦ w]

⇔ {defn. of ST}
M∗ ⊧FOL STX,u( ⧈ϕ)[X ↦ w,u↦M∗

Init(w)]
Again, the cases dealing with conjunction and negation follow directly from the

induction hypothesis. ◻

4.2 A different perspective

As mentioned above, an alternative translation, not standard in modal logic, will

be considered now.

Let Δ = (Prop,Nom,PROP,NOM) be a HHL-signature. Then ModFOL
D (Δ∗)

denotes the class of all models of M ∈Mod(Δ∗) such that for each w ∈W , MInit(w)
and Mi(w), for any nominal i, belong to the universe associated to w, that is

MSub(w,MInit(w)) and MSub(w,Mi(w)) for any nominal i. If Nom is finite, we
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denote the formula

(∀X ∶W )(Sub(X,Init(X)) ∧ ⋀
i∈Nom

Sub(X, i(X)))

by D(Δ). And we have, ModFOL
D (Δ∗) = {M ∈Mod(Δ∗) ∣M ⊧FOL D(Δ)}.

In what follows in this section we will assume that Nom is finite. Note also that

we are allowing that different local models, Ww1 and Ww2 , may have elements in

common.

Definition 4.6 Let Δ = (Prop,Nom,PROP,NOM) be a HHL-signature. The op-

erator
○ ∶ModFOL

D (Δ∗) →ModHHL(Δ)
is defined as follows: given a model M ∈ ModFOL

D (Δ∗), we construct the model

M○ = (W ○,R○, (M○
w)w∈W ○ , V ○) as follows:

● W ○ =MW

● R○ =MR

● for any � ∈ PROP, V ○(�) =M�

● for any � ∈ NOM, V ○(�) = {M�}
and for any w ∈W ○, M○

w = (H○w, s○w) where H○w = (W ○
w,R

○
w, V

○
w) is such that

● W ○
w = {a ∣MSub(w,a)}

● R○w = {(a, b) ∣Mr(w,a, b) and MSub(w,a) and MSub(w, b)}
● for any p ∈ Prop, V ○w(p) = {a ∣Mp(w,a) and MSub(w,a)}
● for any i ∈ Nom, V ○w(i) =Mi(w)
● s○w =MInit(w)

Observe the role of D(Δ) in asserting the definability of the local valuations Vw

with respect to its functionality over Nom, as well as with respect to definability of

the (local) initial states. In order to obtain a translation that is compatible with

the operator ○ the standard translation defined above has to be constrained, leading

to the following definition:

Definition 4.7 [(constrained) standard translation]

ST○X,u(p) = Sub(X,u) ∧ p(X,u), p ∈ Prop
ST○X,u(i) = Sub(X,u) ∧ u = i(X), i ∈ Nom
ST○X,u( ◻ρ) = (∃v ∶ U)(Sub(X,v) ∧ r(X,u, v) ∧ ST○X,v(ρ)), ρ ∈ FmHL(Prop,Nom)
and it is defined as in ST for the remaining cases.

Since we will require that our FOL-models satisfy D(Δ), we may omit the

condition Sub(X,u) in ST○X,u(i).

Lemma 4.8 Let Δ = (Prop,Nom,PROP,NOM) be a HHL-signature, M ∈
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ModFOL
D (Δ∗) and ρ ∈ FmHL(Prop,Nom). Then, for any w ∈W ○ and z ∈H○w,

H○w, z ⊧HL ρ iff M ⊧FOL ST○X,u(ρ)[X ↦ w,u↦ z]

Proof. The proof is by induction on the structure of formulas. Thus,

for ρ = p, p ∈ Prop
M ⊧FOL ST○X,u(p)[X ↦ w,u↦ z]

⇔ {defn. of ST○}
M ⊧FOL (Sub(X,u) ∧ p(X,u))[X ↦ w,u↦ z]

⇔ {defn. of ⊧}
MSub(w, z) and Mp(w, z)

⇔ { defn. of M○}
z ∈ V ○w(p)

⇔ {defn. of ⊧HL}
H○w, z ⊧HL p

for ρ = i, i ∈ Nom

M ⊧FOL ST○X,u(i)[X ↦ w,u↦ z]
⇔ {defn. of ST○}

M ⊧FOL (Sub(X,u) ∧ u = i(x))[X ↦ w,u↦ z]
⇔ {defn. of ⊧}

MSub(w, z) and z =Mi(w))
⇔ {defn. of M○}

z = V ○w(i)
⇔ {defn. of ⊧HL}

H○w, z ⊧HL p

for ρ = @iϕ, i ∈ Nom
M ⊧FOL ST○X,u(@iϕ)[X ↦ w,u↦ z]

⇔ {defn. of ST○}
M ⊧FOL ST○X,i(X)(ϕ)[X ↦ w,u↦ z]

⇔ {substitution}
M ⊧FOL ST○X,u(ϕ)[X ↦ w,u↦Mi(w)]

⇔ { I.H.}
H○w,Mi(w) ⊧HL ϕ

⇔ {defn. of ⊧HL}
H○w, z ⊧HL @iϕ
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for ρ = ◻ϕ
M ⊧FOL ST○X,u( ◻ϕ)[X ↦ w,u↦ z]

⇔ {defn. of ST○}
M ⊧FOL (∃v ∶ U)(Sub(X,v) ∧ r(X,u, v) ∧ ST○X,v(ϕ))[X ↦ w,u↦ z]

⇔ {defn. of ⊧}
there is a ∈MU such that MSub(w,a) and Mr(w, z, a) and
M ⊧FOL ST○X,v(ϕ)[X ↦ w, v ↦ a]

⇔ {I.H.}
H○w, a ⊧HL ϕ, for some a ∈MU such that MSub(w,a) and Mr(w, z, a)

⇔ {by def. of ⊧HL}
H○w, z ⊧HL ◻ϕ ◻

Theorem 4.9 Let Δ = (Prop,Nom,PROP,NOM) be a HHL-signature, M ∈
ModFOL

D (Δ∗) and ρ ∈ FmHHL(Δ). Then, for every w ∈W

M○,w ⊧ ρ iff M ⊧FOL ST○X,u(ρ)[X ↦ w,u↦MInit(w)]

Proof.

for ρ ∈ BFmHL(Prop,Nom)
M ⊧FOL ST○X,u(ρ)[X ↦ w,u↦MInit(w)]

⇔ {Lemma 4.8 }
H○w, s

○
w ⊧HL ρ

⇔ {defn. of ⊧}
M○, w ⊧ ρ

for ρ = @�ϕ, � ∈ NOM

M ⊧FOL ST○X,u(@�ϕ)[X ↦ w,u↦MInit(w)]
⇔ {defn. of ST○}

M ⊧FOL STX,u(ϕ)[X ↦ �, u↦ Init(�)]
⇔ {I.H.}

M○,� ⊧ ϕ
⇔ {defn. of ⊧}

M○, w ⊧ @�ϕ

for ρ = ⧈ϕ
M ⊧FOL ST○X,u( ⧈ϕ)[X ↦ w,u↦MInit(w)]

⇔ {defn. of ST○}
M ⊧FOL (∃Y ∶W )R(X,Y ) ∧ ST○Y,Init(Y )(ϕ))[X ↦ w,u↦MInit(w)]
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⇔ {defn. of ⊧}
there is w′ ∈MW st MR(w,w′) and
M ⊧FOL ST○Y,Init(Y )(ϕ))[Y ↦ w′, u↦MInit(w)]

⇔ {substitution}
there is w′ ∈MW st MR(w,w′) and
M ⊧FOL ST○Y,u(ϕ))[Y ↦ w′, u↦MInit(w′)]

⇔ {I.H.}
there is w′ ∈MW st MR(w,w′) and M○,w′ ⊧ ϕ

⇔ {defn. of ⊧HL}
M○,w ⊧ ⧈ϕ

The cases of conjunction and negation are dealt similarly, easily achieved by direct

application of induction hypothesis. ◻

The operator ○ is not in general injective. However it is surjective. Actually,

the surjectivity of ○ together with previous theorem guarantees that to prove that

a modal formula is valid, it is enough to show that its translation is a valid FOL

formula. This is a very useful property, since it allows us to use FOL theorem provers

(well developed) to check modal validities. Moreover, given an M ∈ModHHL(Δ) it
is not difficult to see that M = (M∗)○, and M∗ ∈ModFOL

D (Δ∗).

Corollary 4.10 Let Δ = (Prop,Nom,PROP,NOM) be a HHL-signature with fi-

nite sets Nom and NOM. Then, for any Γ ∪ {ρ} ⊆ FmHHL(Δ), we have

Γ ⊧ ρ iff Γ∗ ∪D(Δ) ⊧FOL (∀X ∶W )ST○X,Init(X)(ρ)

where Γ∗ = {(∀X ∶W ),ST○X,Init(X)(ρ) ∣ρ ∈ Γ}.

Proof. Suppose that Γ ⊧ ρ. Let M be a Δ∗ first order model of Γ∗ ∪ D(Δ).
Then, by Theorem 4.9, M○ ⊧HL Γ. Hence, M○ ⊧HL ρ. That is, for all w ∈ W
M○,w ⊧HL ρ. Again, by Theorem 4.9 (in the opposite direction), M ⊧FOL (∀X ∶
W )ST○X,Init(X)(ρ).

Conversely, suppose Γ∗ ∪D(Δ) ⊧FOL (∀X ∶ W )ST○X,Init(X)(ρ). Let N be a Δ-

model such that N ⊧ Γ. Since ○ is surjective there is an M ∈ ModFOL
D (Δ∗) such

that N =M○. Since N ⊧ Γ, by Theorem 4.9, M is a model of Γ∗ ∪D(Δ). Therefore
M ⊧FOL (∀X ∶W )ST○X,Init(X)(ρ). Again, by Theorem 4.9, M○ = N ⊧ ρ. ◻

5 Hennessy-Milner Theorem for HHL

Bisimulation is a main tool for the study of transition systems which, on their turn,

are pervasive structures in computational phenomena. It is also a good example

of the fruitful interaction between modal logic and Computer science. This section

characterises a notion of hierarchical bisimulation for models of HHL and proves
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a corresponding Hennessy-Milner result relating hybrid equivalence between two

models with the existence of a bisimulation relating them.

Definition 5.1 Let Δ = (Prop,Nom,PROP,NOM) be a HHL-signature. An

hierarchical bisimulation between two Δ-models M = (W,R, (Mw)w∈W , V ) and

M ′ = (W ′,R′, (M ′
w)w∈W ′ , V ′) consists of a relation ⊆ W ×W ′ such that,

(NOM) for any ∈ NOM, V ( ) V ′( )
- for any w ∈W,w′ ∈W ′, w w′ implies:

(ATOMS) for any ∈ PROP ∪NOM, w ∈ V ( ) iff w′ ∈ V ′( );
(ZIG) for any v ∈W such that (w, v) ∈ R there is a v′ ∈W ′ such that v v′ and

(w′, v′) ∈ R′;
(ZAG) for any v′ ∈ W ′ such that (w′, v′) ∈ R′ there is a v ∈ W such that v v′

and (w, v) ∈ R.

(LOCAL) Mw and M ′
w′ are bisimilar, i.e., there is a relation Bw

w′ ∶ Hw ×Hw′

such that

(init) sw Bw
w′s
′
w′ ;

(nom) for any i ∈ Nom, Vw(i)Bw
w′V

′
w′(i);

- for any u ∈Hw, u
′ ∈H ′w such that uBw

w′u
′,

(atoms) for any p ∈ Prop ∪Nom, u ∈ Vw(p) iff u′ ∈ V ′w′(p);
(zig) for any v ∈Hw such that (u, v) ∈ Rw there is a v′ ∈H ′w′ such that vBw

w′v
′

and (u′, v′) ∈ R′w′ ;
(zag) for any v′ ∈ H ′w′ such that (u′, v′) ∈ R′w′ there is a v ∈ Hw such that

vBw
w′v
′ and (u, v) ∈ Rw.

An example in depicted in Fig. 2. The reader may easily notice the existence of

local bisimulations relating the transition systems inside each of the two states of

the system in the left with the one in the right, plus a global bisimulation relating

precisely those (global) states.

Fig. 2. A HHL-bisimulation.

Lemma 5.2 Let M and M ′ be two HHL-models over the same signature. The set

of hierarchical bisimulations between M and M ′ is closed under unions.

Proof. Let 1, 2 ⊆ ∣W ∣ × ∣W ′∣ be two bisimulations between models M and M ′.

Their union = 1 ∪ 2 is also an hierarchical bisimulation because

● Clearly, all points named by nominals are related by as they are related both

by 1 and 2. Moreover, for any pair (w,w′) such that w w′ either w 1w′
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or w �
2w′. As both �

1 and �
2 are hierarchical bisimulations, clauses of (i.) in

Definition. 5.1 hold for � .

● A similar argument applies to both (ZIG) and (ZAG) conditions. For clause (iv)

let (w, v) ∈ R and w �w′. Then, either w �
1w′ or w �

2w′. Since, �
1 and �

2 are

bisimulations, we have that there is a v′ ∈ W ′ such that v � 1v′ or v � 2v′. Hence

v � v′. The condition (ZAG) condition is proved similarly.

◻
Similarly, one may prove that hierarchical bisimulations are closed for compo-

sition as well. Bisimulation invariance is, on the other hand, a main, expected

result.

Theorem 5.3 (Bisimulation invariance) Let M and M ′ be two HHL-models

over the same signature Δ = (Prop,Nom, PROP,NOM) and � a bisimulation be-

tween them. Then, for any w �w′ and for any ρ ∈ FmHHL(Δ),

M,w ⊧ ρ iff M ′,w′ ⊧ ρ

Proof. The proof is by induction on the structure of the sentences.

ρ ∈ BFmHL(Prop,Nom)
M,w ⊧ ρ

⇔ {defn. of ⊧}
(Hw, sw) ⊧HL ρ

⇔ {⋆}
(H ′w′ , s′w′) ⊧HL ρ

⇔ {defn. of ⊧}
M ′,w′ ⊧ ρ

Step ⋆ comes from the (init) clause in Definition 5.1, sw Bw
w′sw′ , and the stan-

dard bisimulation invariance of (propositional)-hybrid logic (e.g. [14]). However,

this proof can be achieved in a complete analogy with the (top-level) cases proved

above. For instance, in order to proof the invariance of ρ = i, for i ∈ Nom, we take

the bisimilar initial states sw and s′w′ (by (init)) and we reproduce exactly the

same steps of the ρ = � proof, but considering the condition (nom) in the place of

(NOM). The other cases are obtained exactly in the same way.

ρ = � , � ∈ NOM

M,w ⊧ �
⇔ {defn. of ⊧}

V (�) = w
⇔ {ATOMS of Defn. 5.1}

V ′(�) = w′
⇔ {defn. of ⊧}
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M ′,w′ ⊧ �
ρ = � , � ∈ PROP

M,w ⊧ �
⇔ {defn. of ⊧}

w ∈ V (�)
⇔ {ATOMS of Defn. 5.1}

w′ ∈ V ′(�)
⇔ {defn. of ⊧}

M ′,w′ ⊧ �
ρ = @�ϕ

M,w ⊧ @�ϕ

⇔ {defn. of ⊧}
M,V (�) ⊧ ϕ

⇔ {I.H. + NOM of Defn. 5.1}
M ′, V ′(�) ⊧ ϕ

⇔ {defn. of ⊧}
M ′,w′ ⊧ @�ϕ

ρ = ⧈ϕ
M,w ⊧ ⧈ϕ

⇔ {defn. of ⊧}
M,v ⊧ ϕ for some v ∈W such that (w, v) ∈ R

⇔ {I.H. + ZIG for ⇒ + ZAG for ⇐ }
M ′, v′ ⊧ ϕ for some v′ ∈W ′ such that (w′, v′) ∈ R′

⇔ {defn. of ⊧}
M ′,w′ ⊧ ⧈ϕ ◻

A HHL-model M is image-finite if for each state w ∈W , the set {v ∶ (w, v) ∈ R}
and the sets {v ∶ (u, v) ∈ Rw,w ∈W}, u ∈Ww, are finite. Note that no condition is

imposed on the cardinality of W .

Theorem 5.4 Let Δ be a HHL-signature and M and M ′ two image-finite Δ-

models, respectively. Then, for every w ∈W and w′ ∈W ′, the following conditions

are equivalent:

(i) M,w ⊧ ρ iff M ′,w′ ⊧ ρ, for any formula ρ ∈ FmHHL(Δ)
(ii) There is a bisimulation � between M and M ′ such that w �w′.

Proof. We have just to prove that (i) implies (ii). Let us show that

� = {(w,w′) ∈W ×W ′ ∶ for any ρ ∈ FmHHL(Δ),M,w ⊧ ρ iff M ′,w′ ⊧ ρ}
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is a bisimulation. The conditions (ATOM) and (NOM) follow directly from the

invariance of the sentences ρ ∈ NOM ∪ PROP. Since the image-finitness of HHL-
models entails the image-finitness of its local Mw,w ∈W , we have that the condition

(ATOMS) corresponds to the standard Hennessy-Milner result of the propositional

hybrid logic (e.g. [14]).

For the (ZIG) condition, assume that w �w′ and let u ∈W such that (w,u) ∈ R.

To obtain a contradiction, suppose that there is no u′ ∈ W ′ with (w′, u′) ∈ R′ and
u�u′. As in the standard case the image-finite condition makes S′ = {u′ ∶ (w′, u′) ∈
R′} finite. Moreover, S′ cannot be empty since in such a case M,w ⊧ ¬ ⧈ (@��),
which is incompatible with the fact that M,w ⊧ ⧈(@��) (since (w,u) ∈ R). By

assumption, for every z ∈ S′ there is a formula ψz such that M,u ⊧ ψz and it is false

that M ′, z ⊧ ψz. Consider now the conjunction

ψ = ⋀
z∈S′

ψz

of all of these formulas. Hence, we have that M,w ⊧ ⧈ψ and M ′,w′ /⊧ ⧈ψ, which

contradicts w �w′. ◻

6 Discussion and future work

In this paper we introduced HHL – a hierarchical variant of hybrid logic. We pre-

sented first order correspondence results and proved a Hennessy-Milner like theorem

relating (hierarchical) bisimulation and modal equivalence for HHL.
On the more practical side, it is clear that HHL is appropriate to reason about

hierarchical transition systems, as they appear in, e.g. reconfigurable programs. The

logic, however, is unable to express arbitrary multi-level transitions, thus enforcing

a particular specification discipline. Actually, there are some variants (e.g. [9])

whose motivation stems directly from Computer Science applications which may

require more complex features. For example, statecharts, already mentioned in the

Introduction, comprise different forms of inter-level transitions, including multiple-

source and multiple-target ones as well as simultaneous firing of non-conflicting

transitions and their prioritisation, which cannot be captured in HHL.
The process of constructing HHL on top of standard propositional hybrid logic

can be made generic through hybridisation, a procedure introduced in [12] that

consists of taking an arbitrary logic and to systematically develop on top of it

the syntax and semantic features of hybrid logic. To be completely general, this is

framed in the context of the institution theory of Goguen and Burstall [5], each logic

(base and hybridised) being treated abstractly as an institution. Actually, HHL
can be obtained through hybridisation of propositional hybrid logic. The latter,

however, can be replaced by other logics resulting from the same process being

applied to whatever logics are found interesting to specify configurations (states)

at the lower level of the hierarchy — e.g., equational, first-order, fuzzy, etc. The

application of this idea on the rigorous development of reconfigurable systems was

discussed in [7,10,11].
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Concerning strictly logical properties, we would like to discuss decidability and

completeness properties of HHL. For this reason, we intend to explore, among

other things, the finite model property for this logic, as well complete proof calculi,

resorting to our previous work [13].
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[10] Alexandre Madeira, Manuel A. Martins, Lúıs Soares Barbosa, and Rolf Hennicker. Refinement in
hybridised institutions. Formal Asp. Comput., 27(2):375–395, 2015.
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