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Abstract. A reactive model, as studied by D. Gabbay and his collab-
orators, can be regarded as a graph whose set of edges may be altered
whenever one of them is crossed. In this paper we show how reactive
models can describe biological regulatory networks and compare them
to Boolean networks and piecewise-linear models, which are some of the
most common kinds of models used nowadays. In particular, we show
that, with respect to the identification of steady states, reactive Boolean
networks lie between piecewise linear models and the usual, plain Boolean
networks. We also show this ability is preserved by a suitable notion of
bisimulation, and, therefore, by network minimisation.
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1 Introduction

Biochemical processes occurring within cells are abstracted into the concept
of biological regulatory networks. In general, such networks capture the cell
dynamics, expressed as the concentration of each component (typically proteins,
and other nucleotides), which are directed by the biochemical reactions occurring
between them. This process is generally regulated by the DNA through the
transcription of mRNA.

Example 1. An example of a “cascade” [6] is depicted in Fig. 1. This illustrates
a simple and partial biological regulatory network organised as a sequence where
each node induces the production of the following one.

One of the main goals of studying biological regulatory networks is the iden-
tification of steady states which somehow represent the “way of working” of a
cell. Different steady states can be associated, for example, to the differentiated
cells of a living organism sharing the same DNA.

Models for biological regulatory networks fall in one of two major classes [7]:
quantitative – where the exact concentration of each component in a cell is given;
or qualitative – focussed on the overall dynamics of a system, and classifying the
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Fig. 1. A example of a “cascade”.

concentration of a component in qualitative terms, such as “high” or “low”.
Quantitative models are, of course, more precise, but also harder to manipulate.
A “hybrid” approach to this problem, in which a qualitative model is used to
explain the “big picture” and quantitative models are applied in a second stage to
study the detailed dynamics of a behavioural region [5] is a typical compromise.

This paper introduces a new qualitative model into the picture—reactive
Boolean networks which seems particularly interesting to help in the quest for
steady states, a major issue in the area. The model builds on the notion of
reactivity [11] which proved successful in both fundamental research in modal
logic [10,12,14] and software engineering applications [1,3,9].

Outline. Section 2 provides the background for this piece of research by briefly
revisiting the most common models for biological regulatory networks. The
notion of reactivity and the associated formal structures, namely, switch graphs
and reactive frames are discussed in Sect. 3. Section 4 contains the paper main
contribution, introducing reactive Boolean networks and stating some of the
relevant properties. Finally, Sect. 5 concludes and identifies some directions for
future work.

2 Biological Regulatory Networks

Several modelling approaches have been proposed to formally characterise bio-
logical regulatory networks [7]. This background section revisits some of them
to set the scene for our own proposal discussed in Sect. 4. In general, models
for biological regulatory networks consider components i = 1, . . . , n, represent-
ing e.g. protein, genes, mRNA, and variables x1, . . . , xn corresponding to the
concentration or level of expression of the respective component.

Ordinary Differential Equations and Piecewise Linear Models. The
classical quantitative models resort to ordinary differential equations. The inter-
action between components is captured by sigmoid expressions embedded in
differential equations. Either positive or negative regulations of a component
i over a component j (meaning that component i respectively induces or
inhibits the production/activation of component j) may be considered. This
is achieved through a quantitative representation of the system. One can con-
sider variables xi which are related to each component i. A variable xi rep-
resent the concentration of the component i in the system and we can use
them to represent the (either positive or negative) regulations occurring between
these components. This is accomplished via the introduction of a sigmoid
function depending on each xj in function f , in the context of the differen-
tial equation xi = f(x1, . . . , xn) describing the concentration of component i.
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Several classes of sigmoid functions can be chosen. A common alternative

takes the form of a fraction s+(x; θ, n) =
xn

θn + xn
for positive regulations and

s−(x; θ, n) = 1 − s+(x; θ, n) =
θn

θn + xn
for negative ones.

In this context, a model is obtained by considering a system with ODEs
with the form xi = Fi(x1, . . . , xn) − γixi, where each Fi(x1, . . . , xn) is obtained
as sums and products of the referred sigmoid functions and reflects how the
interaction between components affect the production/expression of i. Above θ
is a threshold determining the concentration of x needed to effectively regulate
the target component and n determines how abrupt this regulation changes from
almost inexistent to effective. Also, γi is a constant representing the degradation
rate of the component i. All thresholds θ, n in the sigmoid functions and γ are
usually estimated using suitable methods.

As one would expect, this sort of models containing non linear differential
equations are hard to study analytically, but used in a number of contexts to
simulate and predict the answer of a biological system. To overcome the challenge
of solving a system of non linear ODEs, a more manageable alternative divides
the entire state space into a finite number of domains and studies each one
in its own. On a second stage the different domains are integrated and the
general dynamics of the system recovered. Such models are called piecewise linear
(PWL).

In practice, to obtain a piecewise linear model from a system of differential
equations specifying a biological regulatory network, one ignores the estimated
value for n and assumes that n → +∞, i.e.

xn

θn + xn

n→+∞−−−−−→

⎧
⎪⎨

⎪⎩

1, if x > θ
1
2 , if x = θ

0, if x < θ

Thus, the state space is divided into two different domains (x < θ and x > θ) and
a boundary x = θ. Given a specific model, this technique is applied to each one
of these sigmoid functions in order to split the state space into several regions
with a linear differential equation expressing the state trajectory within each
one.

Example 2. Consider the following system of differential equations:
⎧
⎪⎨

⎪⎩

x′ = 5
x2

x2 + 22
.

22

y2 + 22
− x

y′ = 3
x2

x2 + 42
− y
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Making n → +∞ leads to
{

x′ = −x

y′ = −y

{
x′ = −x

y′ = −y

{
x′ = −x

y′ = 3 − y

x < 2 2 < x < 4 4 < x
2 < y 2 < y 2 < y{

x′ = −x

y′ = −y

{
x′ = 5 − x

y′ = −y

{
x′ = 5 − x

y′ = 3 − y

x < 2 2 < x < 4 4 < x
y < 2 y < 2 y < 2

Analytically, a steady state can be identified at point (0, 0), and an orbit which
asymptotically converges to (4, 2).

Fig. 2. Steady states identified in Example 2.

Formally, it is important to mention that, in general, a more careful study
at the domains should be performed. However, we do not focus much on this
issue for now because we will only consider PWL models where no such care is
required.

In the context of a differential equation, we say that a flow is a trajectory
obtained from a initial state which is ruled by the differential equations. In the
context of a PWL model, we give a similar meaning to this term but we admit
a flow to be the concatenation of several usual flows, obtained within different
domains, regarding that this concatenated flow still is continuous. For instance,
in Fig. 2, a flow in a PWL model is illustrated by a solid line. The orientation
represented by the arrows describes the evolution of the flow along time.

Boolean Networks. A Boolean network (BN) is another kind of model to
describe the dynamics of biological regulatory networks. This kind of model
considers the concentrations xi as Boolean variables assuming, in practice, xi = 0
if the concentration of i is “low” (bellow some threshold) and xi = 1 if the
concentration of i is “high” (above some threshold).

In a BN model, each variable xi is regulated by a Boolean function
fi(x1, . . . , xn) built from Boolean operators, combined in a general function
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f = (f1, . . . , fn). From this function, a graph (Boolean network) (V,E) can
be obtained. At this point, two paradigms can be considered: synchronous and
asynchronous. For the synchronous approach, the BN is obtained as follows:
given the set of components A with |A| = n, V = {0, 1}n and a directed edge
(a, b) ∈ E if b = f(a). In this way, each vertex in V admits exactly one out-
put. For the asynchronous approach V is obtained as before but a directed edge
(a, b) ∈ E if there is some index i such that bi = f(a)i �= ai and bj = aj for
every other indexes j �= i. In this way, only the value of a single variable is
updated at each step. Thus, we admit networks where several edges can have
the same vertex as tail and where vertices with no outgoing edges are allowed.
The asynchronous approach was proposed and is often used since it reflects the
dynamics of the system in a more realistic way.

For our approach we do not need to consider these theoretical concepts
regarding BNs in detail, since our network will be built using a different pro-
cedure. Thus, it is enough to consider the underlying graphs as BN models,
although a wider connection with the remaining theory of BNs could be estab-
lished. For more information about this, we recommend the reader to consult
[13] for more details.

A qualitative perspective, as captured by a Boolean network, can be obtained
from a piecewise linear model. For this, a graph (V,E) is built taking the domains
of the piecewise linear model as the states V , and identifying the edges with the
flows, i.e. an edge from i to j is added to E if there is a flow from the domain i
to the domain j in the piecewise model. In this paper we consider asynchronous
dynamics, meaning, in practice, that we only admit “adjacent” domains to be
connected.

As referred, in BNs, variables can take values 1 or 0 depending on the concen-
tration/level of expression of the corresponding protein/gene being, respectively,
high or low (above or bellow a threshold θ). Since in PWL models we consider
thresholds to split the state space, these Boolean variables are then used to
identify each domain. However, in order to be able to fully accomplish this,
sometimes more than two values must be considered. For instance, a third value
may be added to cater for intermediate states. This will be the case in the next
example which illustrate how we need to consider three possible values for x—0,
1 and 2—for low, medium and high concentration, respectively.

Example 3. Figure 3 shows a BN corresponding to the biological regulatory net-
work described in Example 2. We can think of it as a graph where the vertices
have the form ab where a and b represent the level of the corresponding com-
ponent. We note that we must consider three values for the variable related to
a since in the PWL model two thresholds are considered for the variable x. For
instance state 00 represents the state where both components have low concen-
tration and 10 is the one whose first component has a medium concentration
and the second component has a low concentration. Recalling its piecewise lin-
ear model, we note that each vertex corresponds to a domain and the edges are
introduced according to the flows within each domain. For instance, there is an
edge from 11 to 01 because, in the corresponding PWL model it is possible to
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attain the boundary between the domain represented by 01 and 11 with a flow
whose initial state is (x, y) = (52 , 7

2 ), which is within the domain denoted by 11.

Fig. 3. Example of a Boolean network.

Steady states in a BN are identified by strongly connected components with
no outgoing edges [7], which is called an attractor in the literature. Given a
graph (V,E), a strongly connected component is a set of vertices X such that,
for every x, y ∈ X, there exists a directed path between x and y which only
contains vertices in X.

The BN depicted in Example 3 admits two strongly connected components
– {00} and {11, 21, 20, 10} – but only one of them is an attractor and, thus,
represents a steady state, since {11, 21, 20, 10} admits an outgoing edge from 11
to 01. Actually, it is usual to lose information when going from a piecewise linear
model to a Boolean network. In general, it is well known that, for a system S,

SteadySt([[S]]BN ) ⊆ SteadySt([[S]]PWL) ⊆ SteadySt([[S]]ODE)

where [[S]]M refers to the representation of system S in model M and SteadySt
retrieves the set of steady states in a model.

As expected, simpler models tend to lose information about the steady states
of the system. Our proposal, discussed in the sequel tries to partially correct this
problem.

3 Switch Graphs and Reactive Frames

As mentioned in Sect. 1, the model proposed in this paper borrows from modal
logic research the notion of reactive frame. Modal logics [4] are logics in which for-
mulæ are interpreted over a graph of semantic universes interconnected through
an accessibility relation. The former may represent e.g. temporal instants, deon-
tic contexts or epistemic states. In all cases truth is relative rather than univer-
sal as in classical logics which assume just one universe of interpretation. Modal
operators—� and ♦—provide a universal, respectively, existential, quantification
over the accessible universes from the current point of evaluation.

Typically this accessibility relation (i.e. the underlying graph) is fixed. A
reactive frame, however, is a graph whose structure can vary over time. Such
graphs have been used as semantic models for some classes of modal logics in
which the way semantic universes are interconnected can be modified on the fly.
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The idea can be traced back to Johan van Benthem seminal paper on the so-
called sabotage logic [3] in which an edge is deleted after being taken (therefore
preventing its subsequent use). In another variant described by Areces et al. [1],
edges are not deleted but their direction swapped. This sort of logics [2] and the
underlying dynamic graphs are called reactive as they capture structural changes
under reaction to previous behaviour.

Reactive behaviour is often found in games. For instance, castling, a chess
special move involving the King and a Rook, can only be performed if none
of the pieces which take part has been moved before. Therefore, in identical
configurations of the table, different moves can be possible. A similar situation
involves another chess move called en passant, which allows a player to capture a
pawn from the opponent with one of his pawns whenever the opponent moves his
pawn two squares in front and it becomes laterally adjacent to an enemy pawn.
However, if the opponent only moves his pawn a square in front, en passant
becomes illegal.

3.1 Switch Graphs

Syntactically, such moving structures are represented by switch graphs [10,12],
which add higher-level edges to the usual graph structure. These higher-level
edges connect basic edges, also called “0-level” edges, which are the ones which
are eventually crossed, to other higher-level edges according to the following
definition.

Definition 1. Given a set of nodes W , a switch graph is a pair (W,S) where
S =

⋃

n≥0

Sn such that:

– S0 ⊆ W × W , i.e. the usual relation between nodes,
– and, for n ≥ 1, Sn ⊆ S0 × Sn−1 × {◦, •}.
A higher-level edge (d, e, ∗) will either inhibit or activate its target edge e when-
ever the source edge d is crossed, depending on the value of annotation ∗. Target
edge e will be inhibited if ∗ = ◦ or activated if ∗ = •. In the graphical repre-
sentation of a switch graph, as shown in Fig. 4, inhibitor edges are depicted as
white headed arrows, while black headed arrows represent activator edges.

A switch graph is configured through an instantiation function I : S →
{0, 1} which marks each edge as inhibited or active depending on I(s) = 0 or
I(s) = 1, respectively. The former (respectively, latter) edges are depicted as
dashed (respectively, full) arrows. Note that inhibited edges cannot be crossed,
and they can neither activate nor inhibit other edges. Moreover, only 0-level
edges can be crossed: if one such edge x is crossed, all active higher-level edges
with source in x, i.e. (x, e, ∗) will fire and activate/inhibit the respective target
edge e.

Example 4. Figure 4 depicts a switch graph (W,S) with W = {w} and

S = {(w,w),
(
(w,w), (w,w), ◦), ((w,w),

(
(w,w), (w,w), ◦)), •)}
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For simplicity, we define e1 =
(
(w,w),

(
(w,w), ◦)), •)

and e2 =
(
(w,w),

(w,w), ◦). The initial instantiation I0 is such that I0(w,w) = 1 (the edge (w,w)
can be crossed), I0(e2) = 0 (meaning that it is inhibited) and I0(e1) = 1 (there-
fore, activated and ready to activate e2, the pointed edge whenever (w,w) is
crossed).

Therefore, starting from w, the edge (w,w) can be crossed (since it is active)
and this causes the higher-level edge e1 to fire and activate e2. e2 has no effect
since it was initially inhibited when (w,w) was crossed. One can then cross (w,w)
again. Now, e1 acts but has no effect, since e2 is already active, while e2 acts
and inhibits (w,w). Hence, (w,w) can no longer be crossed. This switch graph
shows an example of counter which can “count” only twice.

Fig. 4. Example of a switch graph.

3.2 From Switch Graphs to Reactive Frames

A switch graph can be encoded by the set of paths it generates, as shown in the
following example.

Example 5. The set of paths Δ corresponding to the switch graph shown in Fig. 5
is generated as follows. Starting at w1 we can move to w3 but not from there
since the edge (w3, w4) was deleted on crossing (w1, w3). Thus, (w1), (w1, w3) ∈
Δ. Starting at w2 we can move to w3 and afterwards to w4 (since the edge
(w3, w4) was preserved). Thus, (w2), (w2, w3), (w2, w3, w4) ∈ Δ. Starting at w3

there is a move to w4, from where no other move is possible. Therefore, Δ =
{(w1), (w1, w3), (w2), (w2, w3), (w2, w3, w4), (w3), (w3, w4), (w4)}.

Paths are used to define reactive frames—a semantic model for switch graphs
upon which suitable (reactive) modal logics are defined. We will not develop such
logics in this paper, the interested reader is referred to [10,12] for an extensive
account.

Definition 2. Consider W �= ∅ and let Δ ⊆ W ∗ be a nonempty set of finite
paths. (W,Δ) is a reactive frame if:

– (w) ∈ Δ for any w ∈ W
– ∀n ≥ 1, (w1, . . . , wn, wn+1) ∈ Δ implies (w1, . . . , wn) ∈ Δ.
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Fig. 5. Another switch graph.

Let us end this section, fixing some notation. As usual, we denote by W ∗

the set of all non-empty finite sequences (paths) over set W , and define function
t : W ∗ → W by t(λ) = t(w1, . . . , wn) = wn. Let λ = (w1, . . . , wn) be a path.
Notation λw abbreviates the path (w1, . . . , wn, w). Similarly, if no ambiguity
arises, w1 stands for the path (w1). Finally, a path γ extends or is an extension
of a path λ is there exist w0, . . . , wn ∈ W such that γ = λw0 . . . wn. Of course,
every path is an extension of itself.

4 Reactive Boolean Networks

Switch graphs provide an interesting alternative to represent biological regu-
latory networks, building on the corresponding Boolean networks. As discussed
below, this new model which we propose to call reactive Boolean networks (RBN)
has a number of interesting properties namely in what concerns the identification
of steady states and their preservation under model minimisation.

In the next definition, we consider a PWL model and the corresponding
Boolean network obtained from it. There, when we mention a vertex x of the
Boolean network we also mention the corresponding domain of the PWL model
and vice-versa.

Definition 3. Given a PWL model M whose corresponding Boolean network is
N , a reactive boolean network is a two-level switch graph (W,S) where (W,S0) =
N and S1 is obtained according to the following rules:

1. For any domain k of M such that u = (j, k) ∈ S0, we have (v, u, ◦) ∈ S1 with
v = (i, j) if a flow which enters in region j via the boundary between regions
i and j never leaves it via the boundary between regions j and k.

2. For each (v, u, ◦) ∈ S1 with u = (j, k) and v = (i, j), then (w, u, •) ∈ S1 if
there exists w = (l, j) ∈ S0 for some region l of M such that there is a flow
entering in region j via the boundary between regions l and j and leaving it
via the boundary between j and k.

Moreover, since (W,S) is a two-level switch graph, then Sn = ∅, for n > 1.

We only define Reactive Boolean networks for two-level switch graphs. In
fact, this definitions could be generalized to embed higher-level edges but we
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believe that the benefits would not be worth the additional computational cost.
Then, we leave the this generalization for future work.

In practice, this new kind of models can temporarily deleted from the state
transition graph edges that would represent non-realistic behaviours. In practice,
and since we can compute the flow given by a linear differential equation and
an initial state, the inclusion of an edge of the type ((i, j), (j, k), ◦) ∈ S1 means
that is not possible to obtain, in the PWL model, a flow with initial state in the
region i that enters in the region j and leads us to region k.

4.1 Recovering Attractors

As mentioned before, it is well known that, in general:

SteadySt([[S]]BN ) ⊆ SteadySt([[S]]PWL)

with equality failing for multiple examples. Reactive Boolean networks, on the
other hand, in general can increase the number of steady states that can be
identified when comparing to Boolean networks, introducing a further level in
this inequality:

SteadySt([[S]]BN ) ⊆ SteadySt([[S]]RBN ) ⊆ SteadySt([[S]]PWL)

In the context of reactive Boolean networks, steady states are also identified
by atractors, whose definition is revised as follows.

Definition 4. Given a reactive Boolean network (W,S) whose set of paths is Δ,
a set V ⊆ W forms a strongly connected component relatively to a path λ ∈ Δ
(SCCλ) if for any v ∈ V and any path ρ ∈ Δ which extends λ, there exists γ ∈ Δ
such that t(γ) = v and γ extends ρ.

Proposition 1. If V is a SCCλ, it is always possible to find a path between two
states u, v ∈ V after a reconfiguration on the edges, induced by the path λ.

Proof. From the definition, for all extensions ρ of λ, one can find λ an extension
of ρ such that t(γu) = u. Again, by definition, and since γu is itself extends λ, it
is possible to find γv which extends γu and such that t(γv) = v. �

Definition 5. Given a reactive Boolean network (W,S) whose set of paths is
Δ, a set V ⊆ W is an attractor if it is a SCCλ, for some path λ, and every path
γ extending λ verifies t(γ) ∈ V .

This definition extends the notions of SCC and attractor, which are defined
for regular graphs (and BNs) to switch graphs (and RBNs). Informally, this
means that a set V is an attractor if there is a path γ such that, after walking
along it, we can always find a path between any two states of V and there is not
any path guiding us to a final state outside the set V (i.e., the usual definition
for attractor in a usual graph).
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Fig. 6. A reactive Boolean network.

Example 6. Recall Examples 2 and 3, and take the Boolean network introduced
then as the first stage (W,S0) of a reactive Boolean network. The piecewise linear
model in Example 2 generates S1 which turns out to be a singleton relation
{(

(21, 11), (11, 01), ◦)}. The whole net is depicted in Fig. 6.
For this reactive network, given 21 as the initial state, we obtain the following

set of paths: {(21), (21, 11), (21, 11, 10), (21, 11, 10, 20), (21, 11, 10, 20, 21), . . .}.
Therefore, according to Definition 5, {11, 10, 20, 21} is an attractor for this reac-
tive Boolean network. Similarly, taking 00 as the initial state, {00} emerges as
an attractor as well.

Definition 6. Consider a BN or RBN model (V,E) and a RBN model (V ′, E′).
Given an attractor A ⊆ V of the model (V,E), we say that it is signaled by the
model (V ′, E′) if there is an algorithm that allows us to obtain a set B ⊆ V ′

from A in an unambiguous way and such that B is an attractor of (V ′, E′).

Using other words, if a model “A” signals the attractors of another model
“B”, we can recover all attractors of the model “B” from the attractors of the
model “A”.

Proposition 2. Given a piecewise linear model, the corresponding reactive
Boolean network identifies, in general, a larger set of attractors than the simpler
Boolean network. Moreover, all attractors of a BN are signalled in the corre-
sponding RBN.

Proof. The fact that, in general, a RBN a larger set of attractors from than a
BN was already shown in Example 6. Note that we were able to recover the
attractor 00 as well as the converging cyclic behaviour of the piecewise linear
model that the BN was not able to signal.

Now, consider a BN with an attractor V . If |V | = 1, then V is also attractor
of the corresponding RBN . Otherwise, let λ = (v) be a path with v ∈ V . Since V
is an attractor in a BN, all extensions of λ terminate at elements of V . Consider
the following algorithmic procedure: Choose v ∈ V for which it is possible to
consider an extension γ of λ such that it is no more possible to extend it to
path ρ where t(ρ) = v. If such a path exists, update λ to γ and V to V \{v}.
Repeat this process while it is possible to choose such a v. Note that, since V
and S are finite (i.e. there is a finite number of configurations for the S0 edges),
this algorithm terminates. Note that, after this process, for any v ∈ V such that
there is an extension γv of λ such that t(γv) = v, and for every w ∈ V , there
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is an extension ρw of γv such that t(ρw) = w. This proves that V is a SCCλ

and, since each extension γ of λ is such that t(γ) ∈ V , the RBN signals an
attractor. �

Proposition 3. All attractors in a RBN are steady states of the corresponding
piecewise linear model.

Proof. A steady state of a PWL can be found as either an invariant region or
cyclic behaviour which assymptoticaly converges to a point or orbit. Let V be
an attractor in a RBN, and consider a region T resulting from the union of every
domain represented by i ∈ V . Since V is a SCCλ for some path λ, this means
that there is a flow in the piecewise linear model which makes impossible to
leave region T . This means that there exists an invariant subregion T ′ of T and,
therefore, it contains a steady state. �

4.2 Bisimulation and Minimisation

In a previous publication [9], the authors defined a notion of bisimulation for
reactive frames and proved a Hennessy-Milner like theorem stating the equiv-
alence between bisimilarity (i.e. the existence of a bisimulation relating two
nodes in a frame), and logical validity (i.e. the fact that both nodes satisfy
exactly the same set of formulæ expressed in a suitable modal logic). From the
modelling point of view adopted in this paper, bisimulation is a crucial tool to
reduce the size of a reactive frame while keeping the behaviour it may induce,
thus increasing the performance of any automatic analysis tool operating over
reactive frames. Some examples of application of bisimulation to non reactive
models can be found in [8,15]. Bisimulations can be also used for other purposes
in a biological context: for example, in [8], attractors of a Boolean models are
highlighted using bisimulations.

Definition 7. Let (W,Δ) and (W ′,Δ′) be two reactive frames. A relation S ⊆
Δ × Δ′ is a bisimulation if and only if ∀λ ∈ Δ,∀λ′ ∈ Δ′ such that (λ, λ′) ∈ S:

R-zig: ∀w ∈ W (λw ∈ Δ ⇒ ∃w′ ∈ W ′, λ′w′ ∈ Δ′ such that (λw, λ′w′) ∈ S)
R-zag: ∀w′ ∈ W ′(λ′w′ ∈ Δ′ ⇒ ∃w ∈ W,λw ∈ Δ such that (λw, λ′w′) ∈ S)
P -zig: ∀γ ∈ Δ(t(λ) = t(γ) ⇒ ∃γ′ ∈ Δ′(t(λ′) = t(γ′) and (γ, γ′) ∈ S)

)

P -zag: ∀γ′ ∈ Δ′(t(λ′) = t(γ′) ⇒ ∃γ ∈ Δ
(
t(λ) = t(γ) and (γ, γ′) ∈ S)

)

Example 7. Figure 7 depicts two switch graphs which induce bisimilar reactive
models. In fact, we can verify that the following relation is a bisimulation:

{(
(w1), (v1)

)
,
(
(w1, w2), (v1, v2)

)
,
(
(w2), (v2)

)
,
(
(w2, w3), (v2, v2)

)
,
(
(w4), (v1)

)
,

(
(w4, w3), (v1, v2)

)
,
(
(w3), (v2)

)
,
(
(w3, w2), (v2, v2)

)}

Bisimulation can also easily be formulated for switch graphs, and therefore
for reactive Boolean networks, as follows.
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Fig. 7. Two switch graphs whose corresponding reactive frames are bisimilar.

Definition 8. Given two switch graphs (W,S), (W ′, S′) whose reactive frames
are (W,Δ) and (W ′,Δ′), and an equivalence relation R ⊆ W × W ′, we say that
a relation B ⊆ Δ × Δ′ is induced by R when B is such that:

– (w,w′) ∈ R ⇔ ((w), (w′)) ∈ B for every w ∈ W , w′ ∈ W ′.
– Let λ ∈ Δ and λ′ ∈ Δ′ be such that (λ, λ′) ∈ B. For every w ∈ W and

w′ ∈ W ′ such that λw ∈ Δ and λ′w′ ∈ Δ′, we have λwBλ′w′ iff (w,w′) ∈ R.

Moreover, we say that R is a bisimulation iff the induced relation B is a bisim-
ulation for reactive models.

From a model (W,S), we can soundly obtain a reduced model (W ′, S′) if
there exists a bisimulation R verifying ∀w ∈ W∃w′, wRw′. In this case, we say
R is total. Our final result states that bisimulation preserve attractors.

Lemma 1. Let (W,S) and (W ′, S′) be two switch graphs, (W,Δ) and (W ′,Δ′)
be corresponding reactive frames. Let R be a total bisimulation between (W,S)
and (W ′, S′) and B be the induced relation from R. Then B is total whenever R
is total.

Proof. We prove this lemma by induction over paths.
Let λ ∈ Δ be a path. If λ = (w), for some w ∈ W , then, since R is total,

there is w′ ∈ W ′ such that (w,w′) ∈ R and, therefore (w)B(w′).
Let us now consider a path γ = λw for some w ∈ W and λ ∈ Δ. Then,

by induction hypothesis, there are λ′ ∈ Δ′ such that λBλ′. Then, since B is a
bisimulation and by definition, ∃w′ ∈ W ′ such that λwBλ′w′. �

Proposition 4. Let (W,S) and (W ′, S′) be two bisimilar switch graphs. Each
attractor of (W,S) is signaled by some attractor of (W ′, S′).

Proof. Let (W,S) and (W ′, S′) be two switch graphs whose corresponding reac-
tive frames are (W,Δ) and (W ′,Δ′), respectively. Let also R ⊆ W × W ′ be a
total bisimulation and T the corresponding bisimulation for reactive frames.

Consider A, an attractor of (W,S). Thus, there is some path λ ∈ Δ such
that A is a SCCλ. According to the previous lemma and since R is total, then
B is also total. Then, by definition, there is λ′ ∈ Δ such that (λ, λ′) ∈ T .
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Let B̄ = {t(γ′) : γ′ ∈ Δ′ be an extension of λ′}. By the definition of B̄, and
using a process analogous to the one presented in the proof of Proposition 2, we
obtain an attractor B ⊆ B̄. We will show that the states of B are related with
the states of A.

If b ∈ B, then it means that there is an extension γ′ of λ′ such that (γ′) =
b, i.e. ∃w′

0, . . . , w
′
n such that γ′ = λ′w0 . . . wn. Since R is a bisimulation, we

know that t(λ)Rt(λ′), t(λw0)Rt(λ′w′
0), . . . , t(λw0 . . . wn)Rt(λ′w0 . . . w′

n), where
w0, . . . , wn ∈ W are such that w0Rw′

0, . . . , wnRw′
n. Since A is an attractor w0,

. . . , wn ∈ A. �

We end this paper with some considerations about the expressibility of switch
graphs when compared with regular graphs. In fact, they present similar express-
ibility as when can think, in some sense, in a translation of switch graphs to usual
graphs: a switch graph can be seen as a regular graph where each state is a pair
(x, I) where x is a state of the switch graph and I is an admissible instantiation.
The accessibility relation is defined such that there is an edge between two states
(x, I) and (y, J) if I(x, y) is defined and it is equal to I, and I is updated to
J when the edge (x, y) is crossed. Although this “translated” model is not so
intuitive as the switch graph itself, it allows us to obtain a finite and usual graph
from a switch graph (W,S) whenever S is finite. Therefore, it allows us to apply
the already existing tools in Computer Science to study switch graphs.

5 Conclusions and Future Work

This paper proposed a new model for biological regulatory networks based on the
notion of reactivity as introduced by Gabbay and his collaborators in the con-
text of transition systems and their modal logics. The proposed model—reactive
Boolean networks—is discrete and finite (therefore amenable to transformation
to a plain graph representation). Similarly to the usual Boolean networks, the
reactive ones provide a straightforward way to simplify piecewise linear mod-
els. However, as shown here, its ability to identify steady states overcomes usual
Boolean networks. We also show that such an ability is preserved under a suitable
notion of bisimulation and, therefore, under network minimisation.

There are several avenues for future work we are currently exploring. The
first one consists of introducing weighted edges in the reactive network to capture
either some form of uncertainty in the cell evolution or describe the consumption
of contextual resources. We also intend to resort to the reactive modal logic [10]
interpreted over reactive frames to formulate and verify properties of biological
regulatory networks.
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