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Abstract. The sequential structure of some side-channel attacks makes them subject
to error propagation, i.e. when an error occurs during the recovery of some part of a
secret key, all the following guesses might as well be chosen randomly. We propose a
methodology that strengthens sequential attacks by automatically identifying and
correcting errors. The core ingredient of our methodology is a change-detection
test that monitors the distribution of the distinguisher values used to reconstruct
the secret key. Our methodology includes an error-correction procedure that can
cope both with false positives of the change-detection test, and inaccuracies of the
estimated location of the wrong key guess. The proposed methodology is general
and can be included in several attacks. As meaningful examples, we conduct two
different side-channel attacks against RSA-2048: an horizontal power-analysis attack
based on correlation and a vertical timing attack. Our experiments show that, in all
the considered cases, strengthened attacks outperforms their original counterparts
and alternative solutions that are based on thresholds. In particular, strengthened
attacks achieve high success rates even when the side-channel measurements are noisy
or limited in number, without prohibitively increasing the computing time.
Keywords: side-channel attacks · error detection · error correction · change detection
· sequential monitoring.

1 Introduction
Side-Channel Analysis (SCA) is a class of cryptographic attacks that exploit the physical
information leaked by a target device during the execution of a cryptographic algorithm,
and retrieve the secret key by means of specific statistical tools. Examples of data
analyzed by SCA are timing [Koc96], power consumption [KJJ99] and electro-magnetic
radiation [GMO01]. Since its introduction in 1996 [Koc96], SCA has become a major
threat, as any statistical dependence between physical leakages and secret information
might weaken cryptosystems that are considered mathematically secure.

In this work we consider sequential attacks (Section 3), namely side-channel attacks
made of consecutive steps, each targeting a small portion of the secret key, where key
guesses are based on a distinguisher [BJPW13]. The distinguisher is a statistic of the
side-channel data that is used to assess all the possible values of a portion of the secret key,
and identify the most likely. When a portion of the key is wrongly recovered, e.g. due to
noise in the power measurements, the intermediate results predicted in the following steps
do not correspond anymore to those that were actually involved in the computations. As
an illustrative example, we consider the Horizontal Correlation Power Analysis (H-CPA)
attack [CFG+10], where the distinguisher is the correlation between the power consumption
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Figure 1: (a) The distinguisher values (correlation coefficients) of the key bits chosen by an
unsuccessful H-CPA attack. The vertical dashed line indicates an error occurred at step τ = 713,
causing a change of distribution. The horizontal dashed line indicates the optimal threshold
separating the distinguisher values before and after τ , as discussed in Section 6.3. (b) Two
histograms representing the empirical distribution of the distinguisher before (blue) and after
(orange) τ = 713: the two distributions are significantly different.

and the Hamming weights of intermediate results of specific operations. After the first
error, the correlation between the predicted Hamming weights and the power consumption
will not allow to recover the remaining key bits. Indeed, as shown in Fig. 1(a), after the
first error, the Hamming weights of the predicted operands are not correlated to the power
consumption. In general, at the end of an attack, the recovered key can be verified by
checking a digital signature, but when the attack fails this procedure does not show the
positions of the wrong guesses.

In this work, we propose a methodology to strengthen existing sequential attacks. In
particular, we leverage the fact that sequential attacks propagate1 the first error as a
change in the distribution of distinguisher values (as shown in Fig. 1). Our intuition is to
use sound statistical monitoring schemes, namely change-detection tests [BN+93, RTA11],
to design error detection and correction procedures that can substantially increase the
success rate of existing attacks. Previous attempts in the literature (discussed in Section 2)
have either tackled this problem for specific attacks, or by rather heuristic schemes based
on thresholds [DKL+98, CWT13, LFK18]. Our methodology is instead very general, and
based on sound statistical tools. In practice, our strengthened attacks can both detect
and locate wrong key guesses, and automatically fix them through a correction procedure.
Most remarkably, errors are detected and corrected online, i.e. during the key recovery.
As a result, our strengthened attacks achieve higher success rates than their original
counterparts, and outperform threshold-based solutions to improve attacks.

The proposed methodology is viable for attacks that are theoretically possible, but
achieve low success rates due to noisy or scarce side-channel measurements. In particular,
our methodology strengthens existing attacks, but does not make them robust against
additional countermeasures. Remarkably, the computational overhead of our methodology
is rather small, thanks to a greedy error correction procedure that can substantially
speed-up the most computational demanding phase.

Here are our main contributions:

• We propose an automatic error detection and correction method, which analyzes
the sequence of distinguisher values with a change-detection test to identify and
correct the first error (Section 4). Our methodology can be integrated into any
sequential attack, and can handle inaccurate estimates of the error location and also

1This property was also referred to as error-detection property [Koc96], as it can be used to determine
the position of the first error.
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false positive detections of the change-detection test.

• We develop two side-channel attacks against the RSA-2048 exponentiation [RSA78]
(Section 5) to show how our general methodology can be applied in two completely
different attacks. The first is a Horizontal Correlation Power Analysis (H-CPA)
attack [CFG+10, BJPW13], and the second a vertical Timing Attack [DKL+98,
QKS01].

In our experiments (Section 6) we test our strengthened H-CPA attack both on
simulated and measured power traces, to which we artificially add Gaussian noise to test
our solution at different SNR values. Strengthened attacks achieve significantly higher
success rates than the original H-CPA attack, being able to recover entire secret keys
when the SNR is low, and substantially outperforming error-detection techniques based on
thresholds [DKL+98, CWT13, LFK18], which constitute the most popular kind of solutions
to detect and correct errors in sequential attacks. Similarly, we test a strengthened Timing
Attack using real timing measurements. Also in this case, our methodology substantially
improves the success rate, and significantly reduces the amount of measurements required
to make the attack successful. Indeed, the Timing Attack is impossible to carry out without
correction when using such a few timing measurements.

Our results highlight the potential weaknesses of systems that are traditionally consid-
ered secure due to the low success rate of sequential attacks: indeed, existing attacks can
be easily strengthened by our methodology. Strengthened attacks are significantly more
robust to noise in the side-channel data or might require a smaller number of measure-
ments, and can be performed in a reasonable computational time. As a result, devices
using unprotected implementations might be less secure than expected, and might require
additional countermeasures such as key and message blinding.

2 Related Work
Error detection in side-channel attacks was first discussed in [Koc96]. The author presents
a Timing Attack against modular exponentiation that is subject to error propagation: after
any incorrect key guess, the distinguisher does not allow to find the correct key values
anymore. A sketch of an error-correction procedure based on this observation is provided
in [Koc96], though no implementation details nor experimental results are given.

Quisquater et al. [QKS01] present a Timing Attack against RSA-512 that is subject to
error propagation. The authors propose an error-detection strategy based on the fact that,
after the first error, the attack is more likely to predict key-bits valued 0, while in the key
the distribution of the bit values is uniform. Hence, after each guess, a statistical test is
used to determine whether the distribution of the latest recovered key bit values is uniform
or not. When that is not the case, an error is reported and a correction procedure is
activated. The same authors extend their work in [SKQ01, Sch05], introducing strategies to
improve some divide and conquer attacks, i.e. attacks recovering a portion of key at a time.
In particular, [SKQ01] suggests that in the considered attacks it is possible to assess the
correctness of the initial portion of the recovered key, and provides error-detection methods
for those attacks. In [Sch05], Schindler combines the error-detection techniques proposed
in [SKQ01] and other strategies to improve the Timing Attack presented in [QKS01]. The
main drawback of these methods [QKS01, SKQ01, Sch05] is the lack of generality. Indeed,
each attack is presented together with a specific error-detection strategy that applies only
to that attack. In contrast, our methodology is very general and can be easily ported to
any sequential attack.

Dhem et al. [DKL+98], Chen et al. [CWT13] and Luo et al. [LFK18] propose Timing
Attacks targeting, respectively, RSA-512, RSA-CRT and a GPU implementation of RSA,
all subject to error propagation. The error-detection methods provided in [DKL+98,
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Algorithm 1 Target algorithm (decryp-
tion function)
Input: ciphertext c, secret key d
Output: original message m
1: O1 is initialized
2: for k = 1 : K do
3: Ok+1 ← operations(d[k], Ok, c)
4: end for
5: return m← OK+1

Algorithm 2 Sequential attack
Input: target algorithm, ciphertext c, side

channel {Lk}Kk=1, distinguisher D
Output: estimated secret key d̂
1: Ô1 is initialized as in Algorithm 1
2: for k = 1 : K do
3: d̂[k]← arg maxx∈XD(x, Ôk,Lk)
4: Ôk+1 ← operations(d̂[k], Ôk, c)
5: end for
6: return d̂← (d̂[1], . . . , d̂[K])

CWT13, LFK18] leverage the fact that, as long as the partial key guesses are correct,
the distinguishers corresponding to the correct key values and those of the wrong key
values follow different distributions. However, after an error the distinguisher values
follow the same distribution both for correct and wrong key guesses. For this reason, the
authors monitor the distinguishers and/or the difference between the distinguishers of
the two candidate bit values, and detect an error when that quantity is “low” (i.e. below
a threshold) for a certain number of consecutive steps of the attack. Although these
error-detection methods can in principle be applied also to other attacks, they require
the attacker to set a threshold to decide whether the distinguisher or their difference is
“high” or “low”. This threshold might be difficult to set a priori, and typically relies on
heuristics that do not allow to control the false positive rate. Moreover, a single false
positive (or false negative) might affect the correction. In contrast, the change-detection
test we employ can operate on any distribution of the distinguisher values, and allows to
control the probability of finding a false positive by means of the Average Run Length. In
Section 6, we show that these theoretical advantages result in a more effective scheme for
correcting errors, since our strengthened attacks achieve much higher success rates than
alternative threshold-based techniques.

3 Background and Problem Formulation
In this section we define sequential attacks, a class of side-channel attacks that are subject
to error propagation and to which our error-detection methodology can be applied. Here we
also provide a formal definition of the addressed error-detection and correction problems.

3.1 Sequential Attacks
Among side-channel attacks we consider the class of sequential attacks. A sequential attack
recovers a portion of the secret key at a time, by reconstructing the intermediate steps of
the target algorithm. In particular, the attacker computes the possible intermediate results
of each step, which depend on a portion of the secret key. Then, the attacker leverages a
distinguisher based on the side-channel data to select the most likely. As a consequence,
the attacker can find the most likely value of the portion of secret key involved in each
step. Note that, to compute these intermediate results, the attacker needs to know the
implementation of the target cryptosystem, as well as its input.

Let us consider the prototype of a decryption function illustrated by Algorithm 1 as
the target of a sequential attack. The k-th step of the decryption typically combines
a portion d[k] of the key (one or a few bits), the output Ok of the previous step and
sometimes the ciphertext c to compute the next output Ok+1 = operations(d[k], Ok, c),
where operations denotes the set of instructions executed in each step of the algorithm.
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It is assumed that O1 is initialized to some fixed value (which depends on the algorithm),
and that the algorithm has K steps in total.

During the k-th step of a sequential attack (Algorithm 2), the attacker reconstructs
d[k] by evaluating a distinguisher function D(x, Ôk,Lk), which takes as input a possible
key value x, a prediction of the output Ok, denoted by Ôk and the side-channel data Lk.
The distinguisher is expected to take high values when x coincides with the true key value
d[k], and low values otherwise. The distinguisher plays a fundamental role in a sequential
attack, since the attacker selects d̂[k] by simply maximizing D (line 3) over all the possible
key values x ∈ X:

d̂[k] = arg max
x∈X
D(x, Ôk,Lk). (1)

The output of the k-th step is predicted from the guessed key (line 4), and the whole
procedure is repeated in the following steps.

Because of their structure, sequential attacks are subject to error propagation. When
the maximization of the distinguisher function leads to a wrong key guess, also the predicted
output is not correct. Hence, all the key portions reconstructed after the error are like
random, since based on a wrong prediction. As a consequence, the key cannot be recovered.
An error occurs every time the distinguisher is maximized by a wrong key value rather
than the correct one, e.g. due to noise in the side-channel measurements.

3.2 Problem Formulation
To strengthen sequential side-channel attacks we need to solve two major problems:

• Error Detection: estimating the first attacking step where the recovered key
portion obtained from (1) is different from the actual one. We denote by τ the
location of the first error, which is formally defined as

τ = min{k : d̂[k] 6= d[k]}. (2)

Error detection consists in determining that an error has occurred, and providing an
estimate τ̂ of its location. Error detection should be preferably performed online, i.e.
during the execution of the attack.

• Error Correction: correcting the first error using the estimated location τ̂ . Note
that each detection might not correspond to a wrong key guess, being just a false
positive of the error-detection algorithm. Moreover, the estimated error location τ̂
might not be accurate. Hence, errors cannot be simply corrected by changing the
decision made at the step identified by the error-detection procedure.

4 Proposed Solution
Here we present our error detection and correction methodology to strengthen a generic
sequential attack (Algorithm 3). The core ingredient of our error-detection procedure is a
change-detection test (CDT) [BN+93] that we execute at each step of the attack (line 7)
to monitor a sequence of distinguisher values. The CDT analyzes the sequence D = {Dk}k
of distinguisher values defined as:

Dk = max
x∈X
D(x, Ôk,Lk) = D(d̂[k], Ôk,Lk), (3)

which contains all the distinguisher values corresponding to the key guesses made by the
attack. The outputs of the CDT indicate whether the sequence D contains a distribution
change, and in this case the estimated location of the change point τ̂ . This estimate
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Figure 2: Examples of distinguisher values contained in the windows Wτ̂ , W<, W> and the
rationale behind our correction procedure. In (a) the key value tested in Wτ̂ is wrong, thus W<

and W> have different distributions. In (b), the tested key value is correct, thus W< and W>

follow the same distribution. In (c), τ̂ is a false positive detection, thus the distributions of W<

and W> coincide, but this is different around the detection, i.e. in Wτ̂ . This latter illustration
indicates why it is necessary not to include Wτ̂ in the error correction, and also to remove this
window from D when the monitoring restarts.

is typically rather close to the first error τ occurred during the attack, but it does not
necessarily correspond to τ , as we show in Section 4.3. The CDT monitors the sequence D
in an online manner, detecting distribution changes while the attack proceeds (lines 1-4)
and D is being acquired (lines 5-6).

Every time we detect a change during the attack, we activate our error-correction
procedure (lines 8-18). This consists in a brute-force search over all the possible values of
the secret key in a reasonably small window Wτ̂ , which is centered around the estimated
change point τ̂ . Our idea is to use a statistical test to determine whether any of the tested
combinations can correct the potential error. In particular, the statistical test assesses
whether the distinguisher in a window W<, cropped before the brute-force window Wτ̂ ,
and in a window W>, opened after Wτ̂ , follow the same distribution (see Fig. 2). In
fact, assuming that W< have been computed from the correct key guesses, the statistical
test would identify the correct key around τ̂ as the one yielding the same distribution in
W>. It is important to remark that, to deal with false positives of the CDT, the window
Wτ̂ should not to be considered during the correction procedure, nor in the following
steps of the attack (line 17). In fact, the detection at τ̂ suggests that – in case of a false
positive – the distribution of Wτ is non-stationary even when the key is correctly guessed
(see Fig. 2(c)). Note that our methodology is very general, thus it can be applied to any
sequential attack, as defined in Section 3.1.

In what follows we provide a detailed description of the error-detection (Section 4.1)
and correction (Section 4.2) procedures to strengthen sequential attacks. Finally, we
discuss more in detail the assumptions on which our methodology is based (Section 4.3).

4.1 Error Detection Through CDT

The underlying assumption of our monitoring solution is that the distinguisher values
{Dk}k<τ corresponding to correct key values {d̂[k]}k<τ are i.i.d. realizations drawn from an
unknown distribution φ0, namely Dk ∼ φ0. In contrast, distinguisher values corresponding
to wrong key values are drawn from a different distribution φ1, which is also unknown.
Due to error propagation, after the first error at τ , both the distinguisher values of the
correct and wrong key values follow the distribution φ1 6= φ0. In particular, we expect that

Dk ∼

{
φ0 k < τ

φ1 k ≥ τ
. (4)
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Algorithm 3 Strengthened sequential attack
Input: target algorithm, ciphertext c, side channel {Lk}Kk=1, distinguisher D, set of

possible window lengths S
Output: estimated secret key d̂
1: Ô1 is initialized as in Algorithm 1
2: for k = 1, . . . ,K do
3: d̂[k]← arg maxx∈XD(x, Ôk,Lk) // Algorithm 2, line 3
4: Ôk+1 ← operations(d̂[k], Ôk, c) // Algorithm 2, line 4
5: Dk ← maxx∈XD(x, Ôk,Lk) // save the distinguisher value Dk

6: D← (D, Dk) // append Dk to the sequence D
7: change_detected, τ̂ ← CDT(D) // error detection
8: if change_detected // error correction then
9: align τ̂ and k
10: for each w ∈ S do
11: succ_correction,xbest ← correction(τ̂ , w,D) // Algorithm 4
12: if succ_correction then
13: break
14: end if
15: end for
16: (d̂[τ̂ − u], . . . , d̂[τ̂ + u])← xbest, k ← τ̂ + u+ 1
17: D← D \ (Dτ̂−u, . . . , Dτ̂+u)
18: end if
19: end for
20: return d̂← (d̂[1], . . . , d̂[K])

Our assumption seems to be validated by the observed behaviour of the correlation
coefficients in the H-CPA attack [CFG+10], which decrease suddenly after the first error,
as shown in Fig. 1. We further discuss this aspect in Section 4.3.

To automatically determine whether the distribution in D has changed or not and, in
the former case, to estimate the exact location of the first wrong guess in the secret key,
we monitor the sequence D with a change-detection test based on a Change Point Model
(CPM) formulation [RTA11]. CPMs are statistical tests designed to identify a change point
in a sequence, namely a location τ as in (4). In our case a change point corresponds to
the location of the first wrong guess, thus CPMs are the best tools to monitor sequential
attacks. Since a change point might occur anywhere in the monitored sequence, the null
hypothesis (H0) of CPM is that all the elements follow the same distribution, while the
alternative hypothesis (H1) is that the sequence contains a change point τ :

H0 : Dk ∼ φ0 ∀k, H1 : ∃ τ : Dk ∼

{
φ0 k < τ

φ1 k ≥ τ
. (5)

The CPM is based on a test statistic S specifically designed to compare two sets of
observations and assess “how different” they are. In CPM, each tentative change point t < k
is tested by splitting the sequence D = {D1, . . . , Dk} in two sets At = {D1, . . . , Dt−1}
and Bt = {Dt, . . . , Dk}, and computing the test statistic St,k = S(At,Bt). When the
maximum of the test statistic Smax,k = maxt St,k exceeds a specific threshold hk, a change
point is reported at the location τ̂ maximizing S:

τ̂ = arg max
t
St,k. (6)

Several statistics can be used to compare the two sets, depending on the kind of change
that can be expected in the monitored sequence. Examples of statistics used in CPM
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are the Mann-Whitney [MW47], Hotelling [H+51], Mood [M+54] and Lepage [Lep71] test
statistics. The thresholds {hk}k are set to control the Average Run Length (ARL0), that
is the expected value of the time at which the CPM reports a false positive detection, i.e.
ARL0 = Eφ0 [k̂]. Here k̂ indicates the detection time, i.e. k̂ = min{k : Smax,k > hk}. This
parameter can adjust the sensitivity with respect to false positives: increasing the ARL0
reduces the frequency at which false positives occur, at the cost of a higher detection delay.
In all our experiments we set ARL0 = 50,000.

To apply our error-detection method, we first execute the same operations performed
during each step of the sequential attack (Algorithm 3, lines 1-4), then append the
distinguisher values of the guessed key portions to the sequence D (lines 5-6) and finally
monitor D with the CPM (line 7). The CPM is executed online, i.e. adding a new
observation after each step, until a change point is found (or until the end of the attack).

Here, we use the Lepage statistic [Lep71], that is meant to identify both changes in
scale and location [RTA11], as we expect that a wrong guess might affect any of these.
A fundamental advantage of the Lepage statistic is that, like other rank-based statistics,
it does not depend on φ0 and φ1, thus the thresholds {hk}k can be easily pre-computed
through Monte Carlo simulations [RTA11], to achieve the desired ARL0.

Typically, the online CPM requires a few samples after the change point to gather
enough statistical evidence for a detection, thus detections occur at k̂ > τ̂ . Hence, when
a wrong guess introduces a distribution change of the monitored sequence D, all the
computations performed in the steps between the estimated change point τ̂ and the
detection time k̂ are pointless due to error propagation. This makes detection promptness
a very important aspect in attacks that are computationally expensive.

Note that adopting a change-detection test over D is different from using the monitoring
schemes based on thresholds described in Section 2, which estimate τ as the first index
where the sequence D goes below a fixed threshold. Indeed, these methods disregard
whether the detection is due to a persistent change in the distribution of D (induced
by a wrong key guess), or rather by a correct guess yielding an outlier (e.g. a spurious
distinguisher value). Moreover, using a CPM allows us to control the false positives by
means of the ARL0.

4.2 Error Correction
After detecting a change point τ̂ , we activate our error-correction method (Algorithm 3,
line 11), which is detailed in Algorithm 4. The aim of this procedure is to correct the error
that might have occurred at τ̂ or at a nearby index. More formally, we expect the detected
change point τ̂ to be either:

• the location of the first error τ̂ = τ as defined in (2),

• a correct but inaccurate detection, i.e. τ̂ is close to τ ,

• a false positive, i.e. a change point was detected but no error occurred.

Our error-correction procedure implements a brute-force search over a reasonably small
window2 Wτ̂ = {τ̂ − u, . . . , τ̂ + u}, having size w = 2u+ 1 and centered at the detected
change point τ̂ . We denote by Xw the set of all the admissible key values over Wτ̂ .

During the brute-force search over Wτ̂ , we test each possible value x ∈ Xw as follows:
first, we compute the outputs of the operations executed over Wτ̂ , using x (lines 2-3).
Then, the attack continues after step τ̂ + u+ 1 (line 4) for a few steps to fill the window
W>. When x corresponds to the correct key, and there are no wrong guesses for a few
steps, samples in W> are expected to follow the distribution φ0, as shown in Fig. 2(b).

2Here we present a symmetric window to simplify the notation. However, Wτ̂ might also be asymmetric,
e.g. when considering an even window size w.
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Algorithm 4 Correction procedure
Input: target algorithm, ciphertext c, side channel {Lk}Kk=1, distinguisher D, change

point τ̂ , Wτ̂ with size w = 2u+ 1, distinguisher sequence D, predicted output Ôτ̂−u
Output: correction goodness (succ_correction), best estimated key xbest over Wτ̂

1: for x ∈ Xw do
2: set (d̂x[τ̂ − u], . . . , d̂x[τ̂ + u]) = x // initialization
3: compute Ôx

τ̂−u+1, . . . , Ô
x
τ̂+u+1 using operations // as in Algorithm 2, line 4

4: restart the attack from step k = τ̂ + u+ 1
5: select the two windows W< ← {Dk}k<τ̂−u, W> ← {Dx

k}k>τ̂+u
6: run the statistical test S(W<,W>)
7: if the test yields enough statistical evidence then
8: return true, x
9: end if
10: end for
11: return false, the x maximizing the statistic in line 6

A very practical way to assess this hypothesis is to test whether the distribution in W>

is the same as that in W<, which refers to the steps before Wτ̂ (line 6). In fact, when
x is wrong, the distinguisher values in W> should follow a different distribution φ1 due
to error propagation, (see Fig. 2(a)). The choice of the hypothesis test and the sizes of
the windows W<,W> (which we have not defined on purpose) depend on several factors,
such as specific characteristics of the attack and its computational cost. In Section 5 we
provide two detailed examples of correction procedures for two different attacks.

Due to the stochastic nature of the monitored sequence, the CPM might detect a change
point in D even when all the key guesses are correct. This might be due, for instance, to
consecutive distinguisher values that are outliers, as shown in Fig. 2(c). The correction
procedure has to cope with this very important problem: if τ̂ was a false positive of the
CPM, the test might find that the windows W>,W< follow different distributions even
when the correct key value has been identified by the brute-force search. This is the reason
why the correction procedure does not include Wτ̂ in the windows W<,W>. Similarly,
we remove the whole window Wτ̂ from D in the following steps of the attack (Algorithm 3,
line 17). Since we exclude the analyzed brute-force windows from D, the indexes of the
monitored sequence D are not aligned with the attacking steps. For this reason we need
to adjust the detected change points (Algorithm 3, line 9) by a suitable shift.

The size of the brute-force window determines a trade-off between effectiveness and
efficiency: larger brute-force windows allow us to handle detected change points τ̂ that are
far from the first error location, improving the correction performance. On the other hand,
larger brute-force windows mean that an exponentially larger number of admissible values
x ∈ Xw need to be tested, increasing the computational complexity and the runtime. To
reduce the average computation time while keeping the effectiveness of our correction
procedure, we have developed a greedy strategy (Algorithm 3, lines 10-15) that performs
the brute-force search over increasingly larger windows, until the test yields a strong
statistical evidence that the correction was successful (Algorithm 3, line 12). When such
evidence is found (Algorithm 4, lines 7-8), we select the corresponding value x as the
correct one, stop the brute-force search and restart the attack. For instance, the correction
might stop when the p-value of the statistical test exceeds a certain threshold. When none
of the possible values x ∈ Xw is selected, we repeat the search over a larger window. This
strategy reduces on average the time required by our correction procedure, which is very
important when the considered attack is computationally expensive. Indeed, in most cases
the change point τ̂ estimated by CPM is very close to the location of the first error τ ,
thus performing the brute-force search over a small window should be enough to correct
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Figure 3: Histogram representing the empirical distribution of the difference between the detected
change points τ̂ and the corresponding first error locations τ (excluding false positive detections),
computed over 2,000 H-CPA attacks on simulated data (see Section 5.1).

the wrong guess. The window size (and consequently the computational cost) is increased
only in the rare cases where the detected change point is far from the first error.

4.3 Discussion
Here we discuss some of the assumptions on which our methodology is based, and how our
error detection and correction methods can cope with violations of these hypotheses.
Distribution of the distinguisher A key assumption of our error-detection method
(Section 4.1) is that the distinguisher values corresponding to the correct guesses are i.i.d.
realizations of a random variable, which seems reasonable from our observations (Fig. 1).
However, this is not guaranteed in practice, and violations of this assumption might lead
to a higher number of false positive detections than expected, which we experience in our
experiments. However, our correction procedure (Section 4.2) can deal with false positives,
thus our methodology works even when this hypothesis is violated.

It is also possible that some sequential attacks provide remarkably non-stationary
distributions, or even multiple distinguisher sequences, which apparently cannot be handled
by our error-detection procedure. Here we show that the proposed methodology can be
applied also in a variety of these cases:

• when the sequence D exhibits a trend, e.g. an increase over time, D can be pre-
processed to remove the trend by means of specific statistical tools [ABR11, RTA11].
Then, our error detection procedure can be applied.

• It might happen that the distinguisher in D follows different distributions depending
on the value of the correct key value, hence the distribution φ0 becomes multimodal.
Since the CPM can handle data following any distribution [RTA11], our error
detection method should work as is.

• When multiple pieces of hardware or multiple side channel data are analyzed at
the same time, there might be several distinguisher sequences at play. In this case,
our error detection procedure should be modified to monitor all these sequences in
parallel, and to flag a potential error as soon as the CPM finds a change in at least
one of the sequences, as in [FRK19].

Location of the detected change points A fundamental assumption of our error-
correction procedure is that detected change points τ̂ , excluding false positive detections,
are close to the first error locations τ . In case of an inaccurate detection, the estimate
τ̂ provided by the CPM might be either a few samples before or after the actual first
error location τ , as we observe empirically (see Fig. 3). For this reason, in our correction
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Algorithm 5 Square and multiply always
exponentiation (left-to-right)
Input: ciphertext c, key d, modulus n
Output: m = cd mod n
1: R← 1
2: for k = 1 : K do
3: R← R2 mod n
4: if d[k] = 1 then
5: R← R · c mod n
6: else
7: aux← R · c mod n
8: end if
9: end for
10: return m← R

Algorithm 6 Multiply and square expo-
nentiation (right-to-left)
Input: ciphertext c, key d, modulus n
Output: m = cd mod n
1: R← 1, Q← c
2: for k = 1 : K do
3: if d[k] = 1 then
4: R← R ·Q mod n
5: else
6: aux← R ·Q mod n
7: end if
8: Q← Q2 mod n
9: end for
10: return m← R

procedure we consider windows containing samples from both sides of τ̂ . The empirical
distribution of the difference τ̂ −τ represented in Fig. 3 can be used to define the maximum
window size, and confirms the validity of our greedy strategy. Indeed, it is convenient
to perform the brute-force search over increasingly larger windows, since in most cases a
small window is sufficient, and only in rare cases it is necessary to search larger windows.

5 Two Strengthened Sequential Attacks
We applied our error detection and correction methods to strengthen two sequential
SCAs targeting the RSA-2048 exponentiation [RSA78]. The first one is a Horizontal
Correlation Power Analysis (H-CPA) attack [CFG+10], while the second is a vertical Timing
Attack [DKL+98]. We tested the H-CPA attack on a hardware implementation of the square
and multiply always exponentiation (Algorithm 5) based on a schoolbook multiplication
with an underlying 64-bit multiplier, and on a software implementation of the multiply and
square exponentiation (Algorithm 6) based on Montgomery multiplication [Mon85] with
an underlying 32-bit multiplier. As a target for the Timing attack, we chose a software
implementation of the sliding window exponentiation with window size 4 (Algorithm 7)
based on Montgomery multiplication. Since Algorithms 5,7 parse the private key d left-to-
right, i.e starting from the most significant bit, in those algorithms we denote by d[k] the
bit processed at the k-th step of the algorithm rather than the k-th least significant bit of
d, to be consistent with Algorithm 2.

5.1 Horizontal Correlation Power Analysis Attack
This horizontal attack was introduced by Clavier [CFG+10] and formalised by Bauer [BJPW13].
The peculiarity of the horizontal modus operandi, proposed by Walter [Wal01], is the use
of side-channel data referring to a single execution of the target algorithm. Horizontal
attacks are thus very practical, as they require a single execution of the target algorithm
and, most importantly, they are intrinsically robust against key blinding.

The H-CPA attack exploits as distinguisher function D the correlation between an array
Lk containing the power consumption measured when specific operations are performed,
and the array Hk containing the Hamming weights of the input and/or output of those
operations [BCO04]. Note that we refer to arrays to avoid confusion with the sequences
monitored by the CPM: indeed, different arrays Lk,Hk are used in each step k of the
attack. To fill the array Lk, the attacker needs to perform a pre-processing phase to locate
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Table 1: The input to the operations computed in step k + 1 depending on d[k].

step k step k + 1
Rk+1(1)← (Pk)2 mod n

Rk ← (Rk)2 mod n if d[k] = 1
Pk+1(1)← Rk+1(1) · c mod n

Pk ← Rk · c mod n Rk+1(0)← (Rk)2 mod nif d[k] = 0
Pk+1(0)← Rk+1(0) · c mod n

and extract all the relevant power consumption samples from a single power trace, which
requires to know exactly the target algorithm and its implementation. This pre-processing
phase might be extremely difficult also when the target implementation is known, because
the traces might be jittering and/or the operations within the multiplication algorithm
might not produce a visible structure in the power consumption.

In what follows, we describe how to apply the H-CPA attack by [CFG+10] on the
square and multiply always exponentiation (Algorithm 5) and how strengthen it with our
error detection and correction methodology. In particular, the attacked operations are the
products of the square and multiply always exponentiation (Algorithm 5, lines 5,7), whose
factors depend on the secret key. The side-channel data Lk used at the k-th step of the
attack consist of the power consumption samples extracted from the (k + 1)-th product.

At the k-th step, the attacker computes the possible values of the result variable R,
which depend on d[k]: when d[k] = 0, R = Rk, i.e. the output of the square (line 3)
and, when d[k] = 1, R = Pk, i.e. the output of the product (line 5), which define the
pair Ôk = (Rk, Pk). Then, the attacker simulates, for each value of d[k], the square and
the product performed at step k + 1 of Algorithm 5, as shown in Table 1, and computes
the Hamming weights of the 64-bit digits of the first operand for each simulated product.
These are saved in two arrays H0

k,H1
k, associated with the two possible values x ∈ {0, 1}

of d[k]. Then, the attacker evaluates as distinguisher the Pearson correlation coefficient,
denoted by %, between each array Hx

k and the array Lk containing the side-channel data:

D(x, Ôk,Lk) = %(Hx
k ,Lk). (7)

According to (1), d̂[k] is chosen as the bit value associated to the highest correlation
(Algorithm 3, line 3). At step k + 1, the whole procedure is repeated using the outputs
Ôk+1 = (Rk+1(d̂[k]), Pk+1(d̂[k])) predicted at step k (Table 1), as in Algorithm 3, line 4.
When applying our proposed methodology in this attack, the sequence D = {Dk}k from (3)
is analyzed by the CPM (Algorithm 3, line 7). The correction procedure (Algorithm 4) starts
with a symmetric brute-force window Wτ̂ of size w = 3, which is increased symmetrically
by two whenever none of the possible combinations x ∈ Xw is chosen as the correct one,
up to a maximum window size w = 9.

The correction procedure considers windows W<,W> of size 30 (Algorithm 4, line 5)
and compares the two windows by means of the Mann-Whitney test statistic. The Mann-
Whitney statistic is designed to detect changes in the median value of a distribution, which
is the most evident effect we observe on the distribution of the distinguisher when an error
occurs during H-CPA attacks (Fig. 1). When the p-value obtained by the Mann-Whitney
test is larger than a fixed threshold α, we assume that there is not enough statistical
evidence to claim that the elements of W< and W> have different distributions, thus
x can be chosen as the correct key. Hence, we stop the brute-force search (Algorithm 4,
line 7). In case at the end of the brute-force search over the largest window none of the
key values x ∈ Xw yields a sufficiently large p-value, the value with the largest p-value is
selected as the correct one (Algorithm 4, line 11). As an early stopping criterion, in our
experiments we set an extremely low value of α, namely α = 10−7. Even though unusual
in hypothesis tests, we have observed that wrong key values yield p-values that are orders
of magnitude smaller than the correct ones.
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Algorithm 7 Sliding window exponentiation
Input: ciphertext c, key d, modulus n
Output: m = cd mod n
1: for j = 0 : 7 do
2: Q[j]← (j + 8) · c mod n
3: end for
4: R← 1
5: for k = 1 : K do
6: if d[k] = 1 then
7: R← R16 mod n
8: xyz ← (d[k + 1], d[k + 2], d[k + 3])
9: R← R ·Q[xyz] mod n
10: k ← k + 3
11: else
12: R← R2 mod n
13: end if
14: end for
15: return m← R

Algorithm 8 Montgomery multiplication
Input: operands a, b, Montgomery parame-

ter r, modulus n, n′ s.t. r·r−1−n·n′ = 1
Output: p = a · b · r−1

1: t← a · b
2: u← (t+ (t · n′ mod r) · n)/r
3: if u ≥ n then
4: u← u− n
5: end if
6: return p← u

Note that computing the Mann-Whitney test statistic is more efficient than repeating
the online CPM for each combination, but requires to carry out the attack for at least 30
steps for each combination, to gather enough distinguisher values to achieve a statistically
significant outcome of the Mann-Whitney test. Performing 30 steps of the attack for each
combination tested during the brute-force search is possible because the H-CPA attack is
not computationally demanding.

When the power consumption samples in the arrays Lk are subject to measurement noise,
the correlation with the Hamming weights of the operands that were actually involved in
the computations is lower. Hence, considering lower SNR values, the distinguisher becomes
less effective and more errors occur during the attack, as we show in our experiments.

For the sake of simplicity, here we have only described the H-CPA attack targeting the
square and multiply always exponentiation (Algorithm 5), which can be easily adapted to
the multiply and square exponentiation routine (Algorithm 6) by changing the pipeline
illustrated by Table 1 according to the operations performed by Algorithm 6. The error
detection and correction procedure is exactly the same.

Note that our strengthened H-CPA attack requires the same pre-processing and hy-
potheses (in particular, the knowledge of the message and of the multiplication algorithm)
as the original attack [CFG+10]. Hence, it cannot overcome additional countermeasures
such as message blinding. The aim of our error detection and correction methodology is to
improve the success rate of the H-CPA attack when the noise in the power measurements
prevents the key recovery.

5.2 Timing Attack
Timing Attacks were introduced by Kocher in [Koc96], where the execution time was first
used as side-channel information to recover the secret key of a cryptosystem. Here we
describe a Timing Attack against the RSA cryptosystem inspired by [DKL+98], in which
the authors broke a 512-bit modular exponentiation using a set of execution times. Since
this attack analyzes side-channel data gathered from multiple executions of the target
algorithm, it belongs to the class of vertical attacks.

The attack exploits the variable-time Montgomery modular multiplication (Algorithm 8)
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used as multiplication/squaring algorithm inside the sliding window exponentiation (Algo-
rithm 7). The main loop of the Montgomery multiplication creates a temporary result
that might be greater than the modulus, depending on the secret key. A conditional
subtraction is executed when that is the case (Algorithm 8, line 4), which increases the
overall running time. Therefore, a powerful distinguisher in this case is the difference
between the execution times of different exponentiations.

The attacker selects a set of ciphertexts {ci}Ni=1, computes the modular exponentiation
with the secret key on the target device, and measures as side-channel data the set of
execution times {T i}Ni=1 corresponding to the selected ciphertexts. The attacker also needs
an oracle function that, given the ciphertext, an intermediate result and a hypothetical
part of the secret key, simulates the exponentiation algorithm and determines whether,
at a particular step, the subtraction (Algorithm 8, line 4) has been computed or not.
We denote this function by oracle. Since the running time might be influenced also by
other factors, these attacks usually employ a large number of timing measurements to
make the differences due to the conditional subtractions statistically evident. Hence, the
effectiveness of the distinguisher grows with the considered number of measurements N .

The attack repeats the same structure of Algorithm 7, where the bits of the secret key
are processed either singularly (when d[k] = 0) or in chunks of 4 (when d[k] = 1). When
d[k] = 0, a square is computed (Algorithm 7, line 12) and the next 4 operations are certainly
squares because a subsequent 1-valued bit in d would yield 4 squares (line 7). An extra
square is computed for each 0-valued bit in between, so there are at least five consecutive
squares. Therefore, to determine whether d[k] = 0, the attacker computes the five squares
and uses the oracle to decide whether the final subtraction has been executed at the end of
the 5-th square, for each ciphertext in {ci}Ni=1. In contrast, when d[k] = 1, only four squares
(and a multiplication) are computed (lines 7, 9). Therefore, the attacker computes the four
squares and a product for each possible combination of (d[k + 1], d[k + 2], d[k + 3]), and
uses the oracle to decide whether the final subtraction has been executed at the end of the
multiplication3, for each ciphertext in {ci}Ni=1. For each admissible value x ∈ {0, 8, . . . , 15},
of d[k] or of the chunk (d[k], d[k + 1], d[k + 2], d[k + 3]), the output of the oracle is used to
divide the execution times into two sets Ux

k ,Vx
k , depending on whether the subtraction is

computed in the last operation or not:

Ux
k = {T i : oracle(x, Ôik, ci) = true}, Vx

k = {T i : oracle(x, Ôik, ci) = false}. (8)

The distinguisher is the difference between the averages of the two sets, denoted by ∆:

D(x, Ôk,Lk) = ∆(Ux
k ,Vx

k). (9)

Note that the side-channel data Lk is the same for each step k, and coincides with the whole
set {T i}Ni=1. As in (1), the value of d̂[k] (or of (d̂[k], d̂[k + 1], d̂[k + 2], d̂[k + 3])) is chosen
by maximizing ∆, because the averages of the two sets are expected to be significantly
different for the correct guess x. Indeed, the exponentiations corresponding to the times in
Ux
k compute, on average, one more subtraction than the ones corresponding to the times in

Vx
k . In contrast, the information provided by the oracle in case of a wrong guess does not

correspond to what happens in the actual computations, so the difference of the averages
of the two sets is not significant. Before starting a new step, if d̂[k] = 1, k is incremented
by 3 (other than the implicit increment by 1 of the for loop), as in Algorithm 7 (line 10).

When applying our error detection and correction methodology to this Timing Attack,
we analyze the distinguisher sequence D = {∆k} with the online CPM (Algorithm 3,
line 7). When a change point is detected at τ̂ , the correction procedure (Algorithm 4)
starts with the smallest possible brute-force window Wτ̂ = {τ̂}. When the correction

3Actually, the oracle checks for the subtraction at the end of the first square after the multiplication
(which is computed in any case) because it has been observed that multiplications by constant values (i.e.
the elements of Q) produce worse results [DKL+98].
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procedure is not considered successful, the window size is increased by 1 (alternatively,
once to the left and once to the right), up to a maximum window w = 3, which means
that not all the searched brute-force windows are symmetric.

The correction procedure defines W< as the whole sequence D obtained before Wτ̂ ,
while W> is an open window, including a new sample at each step. The two windows
are compared by monitoring their concatenation (W<,W>) with the same CPM used
for error detection. When the CPM finds a new change point that is larger than τ̂ , we
assume that there is enough statistical evidence to claim that the elements of D follow
the same distribution before and after the window, thus we stop the brute-force search
(Algorithm 4, line 7). The correction procedure is then repeated on the new change point.
When no change point is detected, the attack is considered successful.

Note that the same statistical test employed by the correction procedure on the H-CPA
attack cannot be used for the Timing Attack due to its computational cost. In fact, we
have observed that monitoring (W<,W>) online with the CPM is much more convenient
than performing 30 attacking steps and then computing the Mann-Whitney test statistic
for each key value tested during the brute-force search.

6 Experiments
Here we describe the datasets used to test our strengthened attacks, define the figures of
merit, and show that the proposed methodology can substantially improve the success rate
of the considered attacks. In particular, our methodology makes the H-CPA attack more
robust to noise in the power traces, and makes the Timing Attack effective with fewer
timing measurements than its original counterpart. We also show that our methodology
performs substantially better than the error-detection method based on thresholds proposed
in [DKL+98, CWT13, LFK18] when applied to the H-CPA attack.

6.1 Dataset Description
Power consumption (H-CPA attack) The power traces are noisy signals, whose
elements can be modeled as

L = p+ η, (10)

where p is the signal (i.e. the power consumption) and η ∼ N (0, σ) is Gaussian noise
with standard deviation σ. The power of the signal with respect to the noise is usually
measured using the signal-to-noise ratio (SNR), which is defined as 10 log10(E[p2]/σ2),
where E[p2] is the expected value of the squared signal. Since we obtain the power traces
for our experiments in ideal conditions, they are virtually noiseless. For this reason, we
estimate E[p2] as the average of the squared elements of the power trace, and we simulate
the Gaussian noise, adjusting the standard deviation σ to achieve the desired SNR.

In our experiments we consider two different datasets:

• Simulated dataset We simulated the power consumption of two RSA-2048 expo-
nentiations computed with the square and multiply always algorithm (Algorithm 5)
based on a hardware implementation of the schoolbook multiplication (with an
underlying 64-bit multiplier). To simulate the two power traces, we started from
a register-transfer level (RTL) description of the algorithm, and performed a logic
synthesis in 40nm at 100MHz (using Synopsys Design Compiler) to obtain a gate-level
description. We simulated the power consumption by Synopsys PrimeTime using
the maximum allowed resolution (100ps), returning 100 samples per clock cycle. We
simulated measurement noise by artificially adding zero-mean Gaussian noise to the
whole traces, in order to achieve different SNR values. We tested our attack on 250
noisy versions of each power trace at each SNR value.
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• Measured dataset We acquired the power consumption of ten RSA-2048 expo-
nentiations using a ChipWhisperer R©-Pro (CW-1200) mounting, as target microcon-
troller, an ARM R© Cortex R©-M4 CPU. The exponentiation was computed with a
software multiply-and-square-algorithm (Algorithm 6) based on Montgomery mul-
tiplication [Mon85] and leveraging the CPU 32-bit multiplier. We estimated that
measurement noise yields SNR = 24, so we artificially added zero-mean Gaussian
noise to the whole traces in order to achieve lower (and more realistic) values for
the SNR, as on the simulated dataset. We tested our attack 50 times on each power
trace and for each considered SNR value.

Timing measurements (Timing Attack) The dataset consists in different sets of
ciphertexts {ci}Ni=1 (with N = 80,000, 100,000, 120,000, 140,000, 160,000) fed to an
RSA-2048 exponentiation (always using the same private key), along with their respective
timing measurements {T i}Ni=1. Each timing measurement refers to the whole computation
of the software sliding window exponentiation, from its call to its return, on a Cortex R©-M7
microcontroller. The more measurements are analyzed, the more effective the attack is, so
in this attack N plays the same role the SNR plays in the H-CPA attack.

6.2 Figures of Merit
We employ the following figures of merit to evaluate the effectiveness of our error detection
and correction methodology in the two considered sequential attacks:

• The success rate measures the effectiveness of an attack as the proportion of successful
key recoveries over the total number of independent attempts.

• The average number of detected change points measures the number of detections
of the strengthened attack (either errors and false positives), computed only on
successful attacks. This number indicates how often the correction procedure has
been successfully activated.

• The average runtime measures the time required to carry out a successful attack
equipped with our error detection and correction procedure. In our experiments on
the H-CPA Attack we used an AMD RyzenTM ThreadripperTM 1950X CPU @ 3.4
GHz, while for the Timing Attack we used an Intel R© XeonTM E5-2697A v4 CPU @
2.6 GHz, both with a x86_64 architecture.

6.3 Tested Methods
We compare our strengthened attacks against their original counterparts and a variant
that adopts an error-detection method based on thresholds inspired by [DKL+98, CWT13,
LFK18]. This latter comparison was done only for the H-CPA attack. Here are the details
of the three methods we considered.
Original attacks These are the original H-CPA attack [CFG+10] and Timing At-
tack [DKL+98]. These attacks are not equipped with any error detection/correction
techniques.
Threshold-based error detection We compare our methodology with a popular method
based on thresholds presented in several works [DKL+98, CWT13, LFK18], as this approach
represents the most widespread solution to detect and correct errors in sequential attacks.
This change detector is rather heuristic, as it monitors the sequence D by means of a fixed
threshold Γ, and detects an error as soon as Dk < Γ. The correction simply consists in
flipping the guess made at the first step where Dk < Γ. To deal with the large number
of false positives provided by such a simple scheme, error correction is performed only
when the distinguisher remains smaller than the threshold for a fixed number of steps.
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Following [CWT13], we employ a minimum number of 10 steps. Since no method was
described in [DKL+98, CWT13, LFK18] to compute the threshold Γ, we consider the
situation where the attacker can compute an optimal threshold to separate the distinguisher
values before and after the first error. In the the H-CPA attack, this optimal threshold is
computed as the optimal separation between two Gaussian distributions (distinguisher
values before and after a wrong key guess). While this is certainly not guaranteed in
general, in this case preliminary tests show that the Gaussian distribution seems to fit the
distinguisher values.
Strengthened attacks These are the H-CPA attack and Timing Attack strengthened by
our error detection and correction methodology, which are described in Section 5.1 and
Section 5.2 respectively.

6.4 Results
H-CPA (simulated dataset) As shown in Fig. 4(a), our methodology can successfully
improve the H-CPA attack on simulated power traces. In particular, our solution achieves
substantially higher success rates than the original counterpart and the attack equipped
with the threshold-based error-detection method. This is particularly true when the SNR
is low. For instance, when SNR = 1, the original attack succeeds only 7.2% of the times,
the attack equipped with the threshold-based error-detection succeeds 16% of the times,
while our strengthened attack achieves 59.4% success rate. In all the attacks the success
rate decreases with the SNR, but our error detection and correction method guarantees a
slower decay. Fig. 4(c, e) show that a lower SNR causes a larger number of errors, and this
in turns increases the runtime, due to the larger number of times the correction procedure
is activated. These figures also suggest that the computational cost of our strengthened
attack is rather small.
H-CPA (measured dataset) The results on measured power traces are in line with
those obtained over the simulated dataset: Fig. 4(b) shows that our strengthened attack
outperforms the two alternatives, especially when the SNR is low. For instance, when
SNR = 0, the success rate of the original attack is 6.9%, the attack equipped with the
threshold-based error-detection technique succeeds 21% of the times, while our strengthened
attack succeeds 56.9% of the times. Again, the success rates of the three attacks decrease
with the SNR, but decay more slowly for our strengthened attack. Also in this case,
at lower SNRs, the number of errors increases (Fig. 4(d)) and the runtime accordingly
increases since the correction procedure has to be executed more often (Fig. 4(f)). We
remark that the results of the H-CPA attack on the measured and simulated datasets
obtained with the same SNR values cannot be directly compared, since measured and
synthetic traces might provide different correlation levels with the Hamming weights due
to the different implementations (hardware/software) of the RSA. For this reason, the
two experimental settings show different success rates, numbers of change points and,
consequently, runtimes, even though the tested attack is substantially the same.
Timing Attack The success rate of the strengthened Timing Attack confirms the ef-
fectiveness of the proposed solution: Figure 5(a) shows that our strengthened attack is
much more successful than the original counterpart, achieving 96% when N = 160,000. In
contrast, the original attack was not able to recover the entire secret key for any considered
value of N . As expected, the success rate tends to decrease with the number of timing
measurements, as this plays a similar role as the SNR in the H-CPA. Fig. 5(b) shows
that, in line with the H-CPA attack, the number of change points grows when the number
of traces decreases. Fig. 5(c) also shows that the overall runtime rapidly increases when
reducing the value of N . This is due to the large number of activations of the correction
procedure that are required when few measurements are used (see Fig. 5(b)).

We did not consider an experimental setting in which the original Timing Attack against
RSA-2048 can succeed, as that would require an impractically large amount of timing
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Figure 4: (a, b) Success rate of the basic H-CPA attack (without correction), corrected by
the error-detection method based on thresholds [CWT13], and strengthened by the proposed
methodology. (c, d) Average number of change points detected by our methodology. (e, f) Average
runtime of the successful attacks with our error detection and correction methodology. All these
quantities are presented as a function of the SNR of the input power traces, which have been
tuned by adding white Gaussian noise. Fig. 4(a, c, e) show the results obtained by the H-CPA
attack on simulated data, while Fig. 4(b, d, f) show the results of the attack on the dataset
measured by means of ChipWhispererR©.

measurements. As a comparison, we tested the original Timing Attack on RSA-1024, and
we found out that more than N = 370, 000 traces were required to succeed. Since we
observed that the number of traces required to reconstruct a secret key grows with the
length of the key, a 2048-bit key would need an even higher number of timing measurements.
Thanks to our error detection and correction methodology, the strengthened attack achieves
high success rates even with a limited number of measurements.

7 Conclusions
In this work we introduce a general methodology to detect and correct wrong guesses in
sequential side-channel attacks. Our solution employs an online change-detection test to
monitor the distinguisher values and detect distribution changes caused by wrong guesses.
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Figure 5: (a) Success rate of the original timing attack and of the attack strengthened by the
proposed methodology. (b) Average number of change points detected. (c) Average runtime of the
successful strengthened attacks. All these quantities are presented as a function of the number N
of execution time measurements, analyzed by the attack.

Our correction procedure leverages a brute-force search around the estimated location
of the distribution change, and a statistical test to select the correct key value. Our
methodology is very general and can be applied to any sequential side-channel attack. As
meaningful examples, we tested it on a horizontal power-analysis attack and a vertical
timing attack against RSA-2048.

Our experiments indicate that our methodology can significantly strengthen the con-
sidered attacks, increasing the robustness with respect to noise in H-CPA attacks, and
reducing the number of measurements required by the Timing Attack. The only general
alternative to our solution monitors the distinguisher values by simple thresholds, and
provides marginal improvements over the original attack. This finding confirms that com-
bining the right statistical tools is a winning strategy, and that alternative and heuristic
solutions based on thresholds can not successfully cope with false positive detections or
inaccurate estimates of the first error location. We finally remark that our methodology
does not resolve intrinsic limitations of the attack to be strengthened. Moreover, this study
indicates that viable countermeasures (e.g. message blinding for the H-CPA) should be
employed even when the device is deemed as safe due to the noise or the large number of
side-channel data required.
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