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Abstract 

 
Three types of data modelling technique are applied 

retrospectively to individual patients’ anticoagulation 
therapy data to predict their future levels of 
anticoagulation.  The results of the different models 
are compared and discussed relative to each other and 
previous similar studies. The conclusions of earlier 
papers, that machine learning could help 
anticoagulation clinicians achieve better results, are 
reinforced here using an extensive data set.  
Continuously-updating neural network models are 
shown to predict future INR measurements best of the 
three types of models presented here. 
 
1. Introduction 
 

Anticoagulation therapy is widely implemented by 
medical practitioners throughout the world in the 
prophylaxis of thrombosis.  The British Committee for 
Standards in Haematology reports that only 50% of 
such patients in Britain actually respond to their 
treatment as their clinician predicts [1].  This figure 
indicates the inherent difficulties faced by 
anticoagulation clinicians.  The most important clinical 
decisions in anticoagulation therapy are: 

• Individual anticoagulant dose calculation 
• Time period until next consultation 
• Duration of treatment 

Clinicians express the coagulability of a patient’s 
blood in International Normalised Ratio (INR) units.  
This value is based on the time taken for the blood to 
clot on the addition of a reagent.  The aim of 
anticoagulation is to keep the patient’s INR readings 
within the appropriate therapeutic range.  To make 
suitable therapeutic decisions the patient’s INR history 
is considered along with their other medication and any 
lifestyle changes.  The role of data modelling and 
machine learning in anticoagulation is to support the 
clinician’s decision-making and to facilitate the 
process.  In this way it is hoped that better clinical 

decisions can be made with less effort.  There are 
several existing software products that support 
anticoagulation clinicians and several studies into their 
efficacy [2, 3, 4, 5, 6].  Other studies have been 
undertaken to investigate the utility of particular 
machine learning technologies using anticoagulation 
data [7, 8, 9, 10, 11]. 

Although the models presented here are relatively 
simple the value of this study comes from the 
extensive amount of data available compared to other 
studies.  Consequently, it is believed that these results 
will be more representative of the wider population of 
anticoagulation patients than those presented in 
previous studies.  Three types of model are studied: 
polynomial, auto-regression/moving average with 
exogenous variable (ARMAX) [12], and neural 
network (NN).  The INR prediction results are 
discussed relative to the other models in this study and 
relative to previous results reported in this application 
area. 
 
2. Data Modelling Methods 
 

This retrospective study uses anonymous historical 
anticoagulation data collected in the DAWN AC 
Decision Support Software as part of a benchmarking 
service which aims to improve anticoagulation care at 
participating clinics.  The data is available for five 
clinics across five half-year periods between April 
2003 and October 2005.  The anticoagulation therapy 
histories of 19585 patients are provided, of which 2189 
have less than eight clinic visits which is considered 
here to be too few to permit reasonable modelling of 
the underlying behaviour and dynamics.  Typically 
these first eight visits occur during the first weeks of 
treatment (induction).  Thus, data for 17396 patients is 
analysed in this study.  This is a total of 844928 clinic 
visits which represents over 1.78 million patient 
treatment days, or 48821 patient treatment years 
(PTY). 
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Thirty-eight attributes are available for each patient 
of which three are considered in this study: the current 
INR reading, the dose instruction in milligrams (based 
on the current reading and target therapeutic INR 
range), and the time to the next clinic visit in days 
(interval).  The recorded INR values are restricted to 
the range of zero to fifteen (several higher values were 
truncated).  This is reasonable since INR values higher 
than five require urgent remedial action and values 
over fifteen represent an almost complete inability to 
coagulate.  The distribution of INR readings is shown 
in figure one below.  Note that the majority of the 
measured INR values fall in the range 1 – 4 units. 

 
Figure 1: The distribution of INR values in 

the input data set 
Dose instructions lie in the range 0 to 1199mg.  

This should be the daily dose instruction in which case 
1199mg is far too high, possibly even a lethal dose.  
Such errors are always present in large sets of 
manually-entered data.  Over 99% of the dose 
instructions occur in the range 0 to 10mg.  The clinic 
interval values fall between zero and 994 days.  Again 
the upper limit here is far too high at almost three 
years.  This is an error and perhaps represents a break 
in treatment followed by a later restart.  More typically 
the clinic visit interval values are between zero and 56 
days, with the majority of values falling on some 
multiple of seven days which suggests a weekly 
scheduling approach. 

Such interval values mean that there is a different 
irregular sampling interval in each patient’s INR time 
series.  This leads to three obvious ways of modelling: 
time-independent, using the test interval as an input, 
and interpolation to achieve regular sampling.  All 
three are studied here.  For the purposes of 
interpolation a daily sampling rate is selected.  The 
INR signal is interpolated in a linear fashion, which is 
standard practice in anticoagulation decision support, 
even if it does not truly reflect the behaviour of the 

INR values.  Because the dose instructions are daily 
they are interpolated using zero-order hold, dropping to 
zero when ‘skip dose’ instructions have been 
recommended (usually when the patient is over-
anticoagulated).  Test intervals are meaningless as 
inputs in such daily models, they must be used 
iteratively to see the effect of a dose instruction over an 
extended time period.  This is quite different to those 
models which use the test interval as an input where 
that input value is varied to see the predicted effect of 
the same dose over a different time period. 

The two polynomial models are both third order, a 
value which is found experimentally to minimise the 
number of unsafe or unusable solutions.  The models 
take the form: 13

2
2

3
1)( ++++= npxpxpxpxp .  

Pi are the parameters of the model and x is the value of 
the current INR reading.  Training of the models is 
achieved by the generation of the Vandermonde matrix 
of the polynomial, jn

iji xv −=, , and then matrix 

division to solve the system of equations, yVp ≅ , for 
P in a least squares sense to derive the coefficients of 
the polynomial.  One of the polynomial models is time-
independent and acts directly on the irregularly-
sampled data (model #1).  The input to the model is the 
most recent INR reading and the output is the predicted 
next INR measurement.  The second polynomial model 
(#2) acts on the interpolated data at a daily sampling 
rate.  Here the current value of the INR signal is used 
to predict the INR reading on the next day.  In this 
model only the final prediction before the next clinic 
visit is interesting since there are no actual INR 
measurements between visits from which a meaningful 
error can be calculated.  Indeed, between visits the 
output of the previous prediction becomes the input of 
the next iteration, until a new measurement is made at 
the next visit.  

An ARMAX model (#3) is used because of the 
presence of an exogenous (external) control variable in 
the system, namely the dose instruction variable.  The 
form of the model is: 

)()()()()()( teqCktuqBtyqA +−= where A(q), 
B(q), and C(q) are polynomial coefficients respectively 
of the current and previous values of the output (y(t)), 
the dose (u(t-k)), and the independent and identically 
distributed random variables e(t) ~ N(0, σ2) which 
represent the random differences between successive 
INR inputs.  This model is third order in terms of the 
two input variables.  The delayed INR and dose inputs 
are internal to the ARMAX model, such that one value 
of each input is presented at each step.  The parameters 
are found by minimising a quadratic error function 
iteratively.  At each step the next search direction is 
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selected from the most successful method of: Gauss-
Newton (new direction = Hessian matrix-1 * gradient 
direction), restricted Gauss-Newton (search space is 
bounded by a predefined tolerance value), or 
Levenberg-Marquardt [13, 14] (new direction = -1 * 
the pseudoinverse of (H + d * I) * gradient direction) 
where H is the Hessian, I is the identity matrix, and d is 
varied to find the minimum.  The ARMAX model can 
only work on a time series that is regularly sampled. 

Four standard feed-forward back-propagation neural 
network (NN) models are developed.  Two of these 
model the irregularly-sampled data using INR, Dose, 
and Interval values as inputs to produce the predicted 
next INR as a single output (ie. three nodes in the input 
layer and one in the output layer).  The other two 
models are used with the interpolated data and the test 
interval is not required as an input (two input nodes 
and one output).  The best performing internal structure 
is found to be two hidden layers with three and five 
nodes.  All the nodes have hyperbolic tangent sigmoid 
transfer functions.  Two models are trained and then 
fixed before testing (one on irregularly-sampled (#4) 
and one (#7) on interpolated data) while the remaining 
two continue to have their internal connection weights 
and biases updated after each step (again one on each 
type of data: irregularly-sampled (#5) and interpolated 
(#6)).  Backpropagation produces the Jacobean, jX, of 
the mean square error (MSE) performance relative to 
the weights and biases of each connection (X).  These 
values are then each adjusted by the Levenberg-
Marquardt [13, 14] update method: 

[ ]
[ ]EjX

IjXx
*

2 µ++−=∂  where I is the identity matrix 

and E is a matrix of the errors.  Mu is altered until the 
MSE performance improves and then the change in X 
is applied. 

In each case where the model is trained and then 
fixed, sixty percent of the available data is used for 
training and the rest for testing.  The data is always 
presented in chronological order so that testing never 
occurs on training data.  Each of the seven models 
described here is applied to every patient (with at least 
eight clinic visits) independently, ie. these are patient-
specific models.  All values are normalised in the range 
zero to one before modelling and the predictions are 
unnormalised subsequently by the inverse operation. 

 
3. Experimental Results 
 

The large volume of results suggests that a 
frequency distribution is probably the best way to 
visually assess the efficacy of each model.  The INR 
prediction errors are snapped into irregularly-sized bins 

with smaller bins near zero and larger bins further 
away.  The mean and standard deviation of each 
model’s errors are presented along with the largest 
positive and negative 
errors.

 
Figure 2: Distributions of INR Prediction 

Errors for Models #1 - #3 
For model #1, subplot 1 in figure 2, around 57% of 

the INR prediction errors lay between -0.1 and 0.1 INR 
units.  The errors from 92% of the total number of 
predictions are found in the five bins between -0.5 and 
0.5 INR units.  The distribution is quite symmetrical 
about the central bin.  The mean and standard deviation 
of the errors produced by model #1 are very large due 
to the presence of relatively few extreme predictions.  
The second subplot in figure 2 shows just over twelve 
percent of predictions by model #2 produce errors in 
the -0.1 to 0.1 range of INR units.  A similar 
proportion of errors fall in the -0.5 to -1 and the 0.5 to 
1 bins.  Only 52% of predictions produce errors 
between -0.5 and 0.5.  Over 3% of errors are found in 
the two largest magnitude bins and 1.9% of the 
predictions give either positive or negative infinite 
errors.  Again the distribution is almost symmetrical.  
Again the mean and standard deviation are rendered 
meaningless, this time due to infinitely large errors.  It 
is immediately clear from the distribution in subplot 3 
(figure 2) that model #3 performed extremely poorly 
with almost 83% of the errors falling in the extreme 
bins.  Here 0.6% of the predictions produced infinitely 
large errors, positive or negative.  Only 2.4% of errors 
lay in the range -0.5 to 0.5 INR units.  The distribution 
is heavily biased towards large negative errors.  Again, 
the presence of infinitely large errors renders statistical 
measures useless. 

The INR prediction errors of the neural network 
models (#4 to #7) are displayed in figure 3.  Subplot 1 
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shows the results from a network which is fixed after 
training and operates directly on the irregularly-
sampled data (model #4).  11.4% of predictions give 
errors of between -0.1 and 0.1 INR units.  66.7% of 
predictions produce errors between -0.5 and 0.5.  Only 
0.8% of errors have a magnitude of greater than five 
units.  The results are quite symmetrical.  The mean 
error for model #4 is 0.095 INR units with a standard 
deviation of 1.17.  The largest positive error is 24.1 and 
the smallest negative error is -12.47.  A constantly-
updating network (model #5) is also used on the 
irregularly-sampled data.  These results are shown in 
subplot 2 of figure 3.  14% of the INR predictions 
produced errors with a magnitude of less than 0.1 
units, while 74.8% of errors fell in the range -0.5 to 0.5 
INR units.  Only 0.25% of errors had a magnitude 
greater than five units.  Again the distribution of errors 
does not appear to be skewed.  For model #5 the mean 
error is 0.0129 with a standard deviation (SD) of 
0.8507.  The maximum error is 13.973 and the 
minimum is -12.81 INR units. 

 
Figure 3: Distributions of INR Prediction Errors 

for Models #4 - #7 
Two neural networks are used to model the linearly-

interpolated data.  The first is constantly updating 
(model #6) and the prediction errors are shown in 
subplot 3 of figure 3.  22.4% of errors fall in the range 
-0.1 to 0.1.  Errors with a magnitude of less than 0.5 
account for 73.3% of all predictions, and 2.5% of 
errors have a magnitude greater than five INR units.  
The distribution is not skewed.  Model #6 has a mean 
INR prediction error of 0.0418 with SD 0.9319.  The 
maximum error is 38.87 and the minimum is -16.57 
units.  The final model (#7) is fixed after training on 
interpolated data.  These results can be found in 
subplot 4 of figure 3.  Here 29% of errors are very 
small (-0.1 < error < 0.1) and only 0.5% are very big ( 
|error| > 5).  82.7% of errors fall between -0.5 and 0.5 
INR units.  Once again, there is no disposition towards 
over- or under-estimation.  Model #7 produces a mean 

error of 0.1627 INR units (SD 1.549).  The largest 
positive error is 28.62 and the largest negative error is  
-26.27 INR units. 
 
4. Discussion 
 

As previously stated, anticoagulation clinicians aim 
to keep a patient’s INR reading within an appropriate 
therapeutic range, which typically spans one INR unit.  
The most frequently-occurring range is 2 – 3 INR units 
and the other common ones are: 2.5 – 3.5, 3 – 4, 3.5 – 
4.5, and 1.5 – 2.5.  In this way errors of magnitude 0.5 
INR units or less would seem to be acceptable, 
although smaller still is preferable. 

Model #1, a third order polynomial, produces by far 
the greatest proportion of errors in the range -0.5 to 0.5 
INR units.  The distribution, plot 1 in figure 2, is 
closest to the ideal shape, ie. has the most prediction 
errors in the central bin (-0.1 to 0.1).  However, the 
maximum and minimum errors are of the order 1052 or 
1053.  These values are clinically unacceptable and 
render the mean and standard deviation meaningless.  
This is caused by an ill-conditioned [15] Vandermonde 
matrix where small changes in the coefficients of the 
system change the output drastically.  Hence, small 
changes in the input can lead to huge changes in the 
output.  Such sensitivity to initial conditions is one of 
the necessary conditions for chaotic behaviour. Not 
every patient’s INR signal can be modelled well by a 
third order polynomial, particularly when signal values 
are repeated in long sequences.  Furthermore, this is 
the simplest type of model due to time- and dose-
independence, and is thus the least useful to the 
intended application in isolation.  The balance between 
dose instruction and interval to next test is critical to 
the clinician.  However, if such models are used 
sensibly, that is rejecting predictions outside the INR 
input limits (zero and fifteen INR units), they could be 
used to reinforce the predictions produced by other 
models. 

The polynomial model #2, see plot 2 in figure2, is 
also third order but operates on interpolated data.  A 
much higher risk of an ill-conditioned model is shown 
by 1.9% of errors having infinite magnitude.  Linear 
interpolation between consecutive points of the same 
INR value can lead to long runs of that value which 
can, in turn, produce sensitivity to initial conditions.  
The mean and standard deviation are infinite due to 
these unstable models.  Some 52% of the INR errors 
are within the acceptable range (-0.5 to 0.5).  This 
model can be used in the target application for different 
test intervals by iteration.  This, however, leads to the 
accumulation of errors between clinic visits since the 
previous prediction (including error) is reused as input 
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for the next day’s predicted INR in the absence of any 
real measurement.  These models are dose-
independent. 

The third order ARMAX model, #3, works on 
interpolated data and uses the dose instruction as a 
second input.  In this sense it could be very easily used 
in the support of anticoagulation decision making.  
Unfortunately, the prediction results are exceptionally 
poor.  Almost 0.6% of the errors have infinite 
magnitude due to unstable (autoregressive coefficients 
outside the unit circle on the z-plane) or ill-conditioned 
models.  This level of performance is unacceptable in 
the application.  Note the strong tendency to 
underprediction evident in plot 3 of figure 2.  Of these 
three models, it is clear that the time-independent 
polynomial model #1 performs best, with the other 
model #2 second, and the ARMAX model #3 a distant 
third. 

The fixed and constantly updating neural network 
models that operate on irregularly-sampled data, #4 
and #5 respectively, produce quite similar results.  
Unsurprisingly, the constantly adjusted network 
performs better, with reference to the error 
distributions, subplots 1 and 2 in figures 3 and the 
means and standard deviations.  The current INR, dose 
instruction, and test interval are inputs.  Both types of 
network always produce stable models and show a 
slight tendency to underestimate the following INR.  
51% and 59% respectively of the errors are within 
acceptable limits and the maximum errors are no larger 
than 24.1.  This compares well to the huge and/or 
infinite errors of the previous models but those extreme 
predictions are still clinically useless. 

Models #6 (constantly updating) and #7 (fixed after 
training) operate on interpolated data.  The mean and 
SD of model #6 lie between those of the networks of 
models #4 and #5 (which modelled irregularly-sampled 
data).  Model #7, however, performs worse than all 
three of the other networks.  Recall that this model is 
fixed after training and reuses predictions as inputs 
between clinic visits, both of which decrease the 
accuracy.  Conversely, the best performing network 
models the irregularly-sampled data and is constantly 
adapting.   

In order to meaningfully compare models #1 - #3 
with the networks in models #4 - #7, the unusable 
means and standard deviations of #1 - #3 are 
recalculated only for predictions that lie in the 
application INR range of zero to fifteen units.  The 
results are shown in table 1.  The error statistics 
presented in table 1 show that, even after limiting the 
results set, models #2 and #3 are considerably worse 
than the others.  Considering stability issues and mean 
errors the network models are preferable.  The simple, 
time-independent polynomial model #1 could be used 

alongside to further inform the decision-making 
process. 

Table 1: INR Prediction Error Means and SDs 
Model Mean Error SD Error 

1 -0.078 1.73 
2 0.756 3.66 
3 8.66 11.8 
4 0.095 1.17 
5 0.013 0.85 
6 0.042 0.93 
7 0.163 1.55 

Three existing studies have applied neural network 
models to the problem of predicting the INR response 
to particular dose instructions.  Mayo [8] found a mean 
INR prediction error of 0.0927 with a standard 
deviation of 0.033 for a backpropagation network, 
representing 91.1% accuracy.  For a network that was 
updated using a genetic algorithm the mean error was 
0.0557 (sd. 0.024).  These results can be compared 
with the neural network models #4 to #7.  Mayo’s 
backpropagation NN produces a very similar mean 
error to model #4 (fixed network on irregular data), see 
table 1, but has a much lower standard deviation. The 
genetic algorithm/NN model performs better than 
model #4 but worse than #5 in terms of mean error.    
Model #6 has a mean that falls between those of 
Mayo’s models and model #7 performs noticeably 
worse.  For each model, the standard deviation of the 
errors is much larger in this study.  This is probably 
due to the different INR input distributions: the INR 
readings in [8] lay between 1.5 and 3.7 INR units 
compared with 0 to 15 units in this study.  This should 
also make the modelling task easier in the earlier work. 

In a second study, Rennie [9] found that neural 
network models for individual patients predicted the 
next INR reading with between 48% and 82% 
accuracy.  The mean accuracy was found to be 67.4%.  
Further to this a NN model was trained on the data 
from multiple patients and achieved between 54% and 
88% (mean 70.1%) accuracy.  Although the input data 
is not described mathematically, only patients under 
anticoagulation for two or more years were considered.  
Such patients should normally have quite a stable 
maintenance dose and a relatively stable INR signal.  
This performance seems a little worse than might be 
expected and certainly does not predict the INR as well 
as models #4 - #7 in this study, or in Mayo’s work. 

The third study, by Byrne et al [7], provided 
twenty-two input attributes to the network.  Their 
model produced an average INR prediction error of 
0.75 units compared to 1.05 units by the clinicians.  
Although not in the acceptable range (-0.5 to 0.5 INR 
units) the model still outperformed the experts.  This 
performance is comparable to Rennie’s but worse than 
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Mayo’s and the network models in this study.  It is 
possible that too many inputs can confound the 
modelling of a signal. 

It is also interesting to compare these results with 
another technique.  Vadher et al [11] produced a 
pharmacokinetic model of the dose/INR response and 
used Bayesian parameter estimation.  Their models 
predicted INR values with mean errors of -0.07, 0.02, 
0.03, and 0.06 INR units.  These values agree very well 
with the results presented here and in [8].  In each of 
these four studies the authors concluded that it is 
possible to accurately predict the INR response to a 
given dose instruction.  In two cases [7] and [9] it is 
concluded that the performance is better than that of 
the clinician.  Such a comparison is not valid since the 
model is only concerned with accurately predicting a 
patient’s response over time, based on the current INR 
and dose and previous prediction errors.  The clinician, 
however, must also consider varying the dose 
instruction to achieve the desired therapeutic INR 
value (or range).  The INR model is ignorant of the 
target INR value.  Thus, when the prescribed dose falls 
outside the desired range, one can not know whether 
this is due to the clinician’s inability to correctly 
predict the response to that dose, or that the wrong 
dose was selected.  It is essential to remember that the 
model will support, and not replace, the clinician. 

The instability of polynomial and ARMAX models, 
based on sensitivity to initial conditions, is a problem.  
Neural network models also have some drawbacks.  
The updating of the connection weights finds a 
solution that minimises the error given the most recent 
inputs and the stored history (in the weights).  In this 
sense each new update ‘smears’ the knowledge 
retained from earlier updates, an effect that increases 
with the degree of non-stationarity of the data.  
Furthermore, NN models are black-box systems: 
deriving useful meaning from the structure or values in 
the model is impossible.  This may affect the 
acceptance of any system by expert clinicians.  The use 
of rule-based or prototype-based modelling may help 
to overcome both of these problems, particularly if 
behaviour patterns repeat over time. 

Interestingly, even the best models produce 
relatively large errors from time to time.  This is 
evidence of the variability of INR signals.  There are 
many sources of noise and many unmeasured variables 
in the data: patient compliance with dosing 
instructions, interactions between the anticoagulant and 
other drugs (particularly Aspirin, Paracetamol, and 
Amiodarone), patient illnesses, measurement and data 
recording error, the nature of the blood flow, and the 
state of blood vessel walls.  Most models seem capable 
of predicting the signal well when the signal remains in 
the range of INR values that dominates the 

distribution.  However, the extreme INR values are the 
most important clinically, and are thus those that need 
to be properly predicted.  INR models must be robust 
in the face of noise.  Finally, the utility and 
performance improvement shown by multi-patient 
models is highlighted in [9].  This must be considered 
in future developments because it is the only way to 
have a useful model at the start of treatment, ie. for 
patients with no INR history. 
 
5. Conclusions 
 

The use of polynomial and ARMAX-type models in 
predicting INR values is dangerous because such 
systems can be unstable or can become unstable for 
certain inputs.  Used carefully they could further 
inform the predictions of other models.  Neural 
networks perform well in comparison and are always 
stable.  Of the all the networks the continuously-
updating model of irregularly-sampled data performed 
best.  Indeed, models fixed after training always 
performed worse.  As concluded in previous similar 
studies, it seems reasonable from the results presented 
in this paper to suggest that machine learning could be 
used to assist anticoagulation clinicians.  These models 
must, however, be constantly adapting and robust to 
the noise in the INR signal.  They should also perform 
equally well for the infrequent extreme INR readings 
and the more frequent stable readings.  Furthermore, a 
useful multi-patient model must be found for the 
induction of new patients to anticoagulation therapy. 

Future work could investigate estimation and 
removal of noise, the use of rule-based modelling, and 
perhaps the use of fuzzy methods.  A multi-patient 
model should be developed. 
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