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Abstract

Model checking is a powerful technique for the verification of distributed systems but

is limited to verifying systems with a fixed number of processes. The verification of a

system for an arbitrary number of processes is known as the parameterised model checking

problem and is, in general, undecidable. Parameterised model checking has been studied

in depth for non-probabilistic distributed systems. We extend some of this work in order

to tackle the parameterised model checking problem for distributed protocols that exhibit

probabilistic behaviour, a problem that has not been widely addressed to date.

In particular, we consider the application of network invariants and explicit induction to

the parameterised verification of state-based models of randomised distributed systems.

We demonstrate the use of network invariants by constructing invariant models for non-

probabilistic and probabilistic forms of a simple counter token ring protocol. We show

that proving properties of the invariants equates to proving properties of the token ring

protocol for any number of processes.

The use of induction is considered for the verification of a class of randomised distributed

systems. These systems, termed degenerative, have the property that a model of a system

with given communication graph eventually behaves like a model of a system with a

reduced graph, where reduction is by removal of a set of nodes. We distinguish between

deterministically, probabilistically and semi-degenerative systems, according to the manner

in which a system degenerates. For the former two classes we describe induction schemas

for reasoning about models of these systems over arbitrary communication graphs. We

show that certain properties hold for models of such systems with any graph if they hold

for all models of a system with some base graph and demonstrate this via case studies: two

randomised leader election protocols. We illustrate how induction can also be employed

to prove properties of semi-degenerative systems by considering a simple gossip protocol.
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Chapter 1

Introduction

Outline In this chapter we provide some context for the thesis, introducing model check-

ing and probabilistic model checking. We define the parameterised model checking problem

in particular and highlight some of the work that has been carried out on this to date.

We then describe our work on the problem, providing an outline of the thesis whilst high-

lighting our contribution to the body of work before concluding with a thesis statement.

1.1 Verification of Distributed Systems

Software and hardware systems are being used more and more for safety-critical applica-

tions and hence reliability has become a key issue in the systems development process.

This is especially true of distributed (or concurrent) systems, consisting of a set of pro-

cesses executing in parallel that can communicate by some means (for example by a set

of shared variables or over a set of communication channels). The interleaving of process

executions makes analysis of distributed systems complex and therefore such systems are

difficult to guarantee as reliable.

A common means of ensuring reliability of a system is by validation, whereby a set of

test-cases is input to a system and the output generated by the system is checked against

the expected output. However, it is difficult to produce a set of cases that will guarantee

complete coverage of a system, particularly if it is of a complex nature as in the case

of distributed systems. An alternative to validation is verification, whereby a system

1



2

is described formally and the description is verified against some specification. Proving

correctness increases confidence in the reliability of the system.

Theorem proving and model checking are two commonly used techniques for verification of

distributed systems. Theorem provers, such as PVS [51], can be used to automate parts of

a verification proof. Although a useful verification technique, theorem proving requires a

considerable amount of effort in order to establish a theoretical framework for a particular

proof. We do not consider theorem proving further.

Model checking is a verification technique whereby a model (generally defined in terms of

a state-transition system) of a system is defined according to some system specification.

Properties that capture the correct behaviour of the system are formally defined (for

example using a temporal logic) and verified by an automated search of the full state

space of the model. Model checking is usually employed for verification of finite state

systems but it is also possible to verify infinite-state systems using this technique. We

focus on verifying finite state systems.

Formally, the model checking problem is to establish, for a model M and a property φ,

whether M |= φ (M satisfies φ). Several formalisms for specifying M and φ exist. When

reasoning about concurrent software/hardware systems we often employ a temporal logic

to formalise φ, and M is usually described by some form of finite-state automata model

(e.g. a Kripke structure).

A variety of algorithms exist to check that a temporal logic property is true in some

model. These algorithms have been employed in a number of different model checking

tools. These tools allow the user to write the specification of a system using a modelling

language and to define properties in some temporal logic. The model checker will then

build an internal representation of the model using the system specification and search it

to verify a property, giving back a true/false answer and possibly a counter example if the

property does not hold. Two examples of such model checking tools are SMV [47] and

SPIN [32], which use different modelling languages, underlying verification algorithms and

temporal logics, but serve the same purpose.
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1.2 Verification of Randomised Distributed Systems

One of the key features of traditional model checking is non-determinism. This has proven

to be an essential element in traditional model checking tools since it allows details of

a system (or its implementation) to be abstracted away in the model, and it provides

the means to model the interleavings of concurrent processes executions arbitrarily. In

order to verify a model with non-determinism, a model checking tool must explore all

possible non-deterministic choices. However, there are some instances under which it is

not sufficient to simply examine the possible choices but it is also necessary to look at the

likelihood of making a choice. This is the basis of probabilistic model checking.

Probabilistic model checking has become an important area of research due to the increased

use of probabilistic algorithms and the requirement for analysis of not just system cor-

rectness but also system performance. Probabilistic model checkers, such as PRISM [40],

Rapture [36] and LiQuor [7], enable properties such as “the system will fail with probability

less than 0.01” and “with probability 1, a leader will be elected” to be verified.

Probabilistic model checking is similar in many ways to traditional model checking. Indeed,

the model checking problem can be stated in exactly the same way for both. The main

difference, then, lies in the representation of the model of a system, and the logic that

is used to describe a system’s properties. As for traditional model checking, probabilistic

verification involves traversing the state space of a model to determine reachable states,

but in addition to this the probability of reaching these states must be calculated.

To understand the benefits of probabilistic model checking, consider the issues of modelling

failure and analysing system performance. In the case of the former, although it is possible

to capture the concept of erroneous behaviour using traditional models, in some cases it

may not be enough just to consider whether an error will occur. It may also be necessary

to reason about how likely the error is to happen and the impact this has on the overall

system behaviour. For example, for a randomised leader election protocol, the probability

of message transmission failure can be modelled, or for a multimedia protocol the frame

loss rate can be modelled [55]. A model of the system can be defined using a probabilistic

model checking tool, and it is then possible to measure different aspects of performance,

such as throughput, average response time and mean waiting time, while varying some

system parameters. This is not possible using traditional model checking tools.
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1.3 Parameterised Verification of Distributed Systems

Model checking provides the means to explore the full state space of a system model

automatically and is therefore extremely useful in the verification of finite-state distributed

systems. In spite of these benefits, model checking has its limitations. For example, if

a system model (or property) has not been defined correctly it is possible to wrongly

conclude that the behaviour of the system is correct. Note that this is an issue for any

formal verification method. One of the constraints particular to model checking is that

it is only possible to verify distributed systems with a fixed number of processes. So, if

a property is verified for a given system with a set number of processes (identical up to

renaming) and another process of the same type is added, it is necessary to carry out the

verification again to prove that the property still holds. Ideally, it would be possible to

verify a property for a system of a fixed size by model checking, and then prove that the

property holds for that model with any given number of additional identical components.

This is known as the parameterised model checking problem (PMCP).

The parameterised model checking problem is in general undecidable [4], but it is possible

to verify parameterised systems, either by considering methods that are sound but incom-

plete or by restricting the set of systems that are analysed. An example of a common

method for tackling the PMCP of the former type is the network invariant (a term first

used in [62]) approach. In [62], the authors give an inductive proof rule (the network

invariant rule) for a network invariant. If a finite-state invariant, I, can be constructed

(manually) such that I satisfies the conditions of this rule, then any properties that are

verified for the invariant will also hold for any particular size of the system under con-

sideration. The conditions state that, for a single process P , P � I and P ||I � I, for

some containment relation � and a parallel composition operator ||. The work presented

in [62] is based on a variant of CCS and CSP style specifications but can be used with

any process theory given a set of conditions including monotonicity with respect to par-

allel composition. The authors give examples of a simple buffer and a token ring mutual

exclusion protocol to demonstrate their approach. They also provide a general theorem

stating that that there are instances of the PMCP for which finite-state invariants do not

exist.

More recently, in [39] the authors outline a method for tackling the PMCP using network
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invariants. This approach is a partially automatic method for processes arranged in a

ring. The authors provide a proof rule with conditions that allow the checking of the

invariant rule to be discharged automatically, assuming that an abstraction mapping and

an invariant are supplied. The conditions ensure that any fairness constraints are preserved

under the abstraction mapping, thereby allowing liveness properties of the system to be

considered. Examples of the approach are given for two dining philosophers protocols: a

deterministic asymmetric system and a probabilistic symmetric one.

The network invariant approach is adopted in [19]. Here, the parameterised family of

systems is described using a network grammar and the properties to be verified are specified

in a regular language. An invariant is created using an abstraction method which groups

states according to the atomic formula that they satisfy. It is shown that the invariant

is greater under the simulation preorder (see Section 2.5) than any given system in the

family and therefore any property that holds for the invariant will be satisfied for every

member of the family of systems. By way of example, this method is applied to Dijkstra’s

token ring algorithm and to a binary tree algorithm for calculating the parity of the leaves,

where each leaf has a binary value.

Another solution to the parameterised model checking problem is presented in [29] for

arbitrary sized token rings. For certain forms of indexed CTL*\ X (see Section 2.3)

properties it is shown that if the property holds for a ring of size less than some cutoff

value then it will hold for any size of ring. Therefore model checking can be used to verify

the property for a ring of a given size and it can then be deduced that the property holds

for an arbitrary sized ring.

In general the network invariant approach only enables consideration of safety properties

and is not strong enough to allow verification of liveness properties. Intuitively, this is

due to the introduction of infinite behaviours, a result inherent to abstraction. In [53],

a method is described based on counter abstraction. The approach is by counting the

number of processes in a given local state, representing any count above 1 by the value 2.

Each state in the concrete model is then represented in the abstract model by the counts

of the process’ local states. The authors’ emphasis is on deriving fairness constraints

that preserve liveness properties under the counter abstraction. Although the fairness

requirements require some amount of manual derivation, heuristics are given which allow

automation for certain types of property. The technique is applied to a number of examples
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including two algorithms for mutual exclusion. Note that this approach is limited to

systems with a fully connected topology that use shared variables for communication.

In [52] an approach to the verification of safety and liveness properties of parameterised

systems is described. The authors represent sets of reachable global states by regular ex-

pressions over a finite alphabet that represents the local state of a process. A transition

relation between states is defined by a transducer, with properties to be verified also repre-

sented by regular expressions. Verifying that a property is an invariant of a system can be

carried out in two ways: by forward exploration, starting from the initial state and itera-

tively considering the possible successor states; or by backward exploration, starting from

each state that violates the property and iteratively considering the possible predecessor

states. Neither of these are guaranteed to terminate for parameterised systems.

An accelerated transition, in which (an unbounded) number of processes perform a tran-

sition, can be used. This is a sound but incomplete method. Acceleration schemes must

be deemed warranted and then selected manually but a number of “common” schemes

are supplied: local acceleration (several transitions by one process); global acceleration of

unary transitions (several processes make some transition, sequentially); global accelera-

tion of binary transitions (several processes make some binary transition). Acceleration

essentially combines a possibly unbounded number of applications of individual transitions

into one “accelerated transition relation”. Acceleration schemes are successfully applied

to an example mutual exclusion system with synchronous communication. Note that the

approach also deals with liveness properties by examining fairness constraints.

Much of the work on parameterised model checking assumes that the system has a regular

topology. This is not the case in [12]. The authors define a simple concurrent language

and describe how it can be used to describe parameterised programs. They employ an

invariant approach but, rather than specifying an invariant for the system, they consider

an invariant of a property. In particular they provide an invariance rule to prove that a

state formula p is an invariant of some program P (i.e. always p is true over P ) as follows:

1. The initial condition for P implies that some auxiliary assertion on states, z is true.

2. The assertion z implies p.

3. For every transition t of P , t and z implies z holds in the successor state for t.
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The method of invisible invariants is employed such that z is derived automatically. By

employing a colouring technique to deal with reachability predicates included in safety

properties, it is possible to verify systems with irregular topologies.

In [22], a method for verifying parameterised systems is described that is based on data

independence. A system is deemed data independent for a type if the type can be substi-

tuted by any other non-empty type and the operations on the type are restricted to input,

storage, output and equality tests. For example a communication protocol that transmits

data between processes is independent of the data content of the messages. Theorems for

establishing a threshold collection for a data independent type are provided in [45]. If it

can be shown that a property holds for every value in the threshold collection then the

property is true for all values of the data independent type.

Data independence and induction are combined to provide a technique for the verification

of systems parameterised by some data type, T , for simple topologies, in [22]. The method

relies on the construction of an invariant that is also ‘parameterised’ by T . Induction is

used to show that the invariant captures the behaviour of each system instantiated by a

value in T . The data independence of T is then used to show that the property holds

for the invariant for every value in some threshold collection of T . Discharging these two

proofs implies that the property is true for every system instantiated by a value in T . The

CSP process algebra is used to specify systems and the FDR model checker is used to

reason about the systems. Two example protocols are verified using this technique. The

method is extended in [23] to be applicable to more general network topologies, such as

rings.

Finally, in [49] an approach used to verify the Firewire IEEE 1394 leader election protocol

for any number of network nodes is described. The protocol enables the identification of

a leader within a set of network nodes (connected in an acyclic topology). Each node can

send be my parent, be my child requests or acknowledgement messages to neighbouring

nodes. If a node receives be my parent requests from at least all but one of its neighbours

then it responds to each of its neighbouring nodes with a be my child request. Once a

node becomes a ‘child’ it sends an acknowledgement message to its ‘parent’ and then takes

no further part in the protocol. This behaviour, whereby nodes ‘drop-out’ of the system,

is termed degenerative [49].
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The protocol is modelled and verified for fixed configurations using the SPIN model

checker. The degenerative nature of the system is shown to be reflected in the under-

lying model of the system created from the SPIN specification. An inductive argument is

then used and it is shown that the paths in the model of an arbitrarily sized system are

stutter-equivalent (see Section 3.5.2) to the paths in the model of the ‘degenerate’ system.

This implies that certain types of property will be satisfied in the model regardless of the

number of network nodes considered.

1.4 Parameterised Verification of Randomised Distributed

Systems

As for classical model checking, probabilistic model checking is restricted to verifying

systems of a fixed size. Again, certain classes of system have been verified for an arbitrary

number of processes: a survey of some of this work is provided in [50].

In [5] two methods for verifying liveness properties with probability 1 over parameterised

probabilistic systems are presented. The first of these employs a planner to convert the

probabilistic system to a non-deterministic one. Proving that a property holds in the

nondeterministic system then guarantees that the same property will hold with proba-

bility 1 in the probabilistic one. Traditional solutions for non-probabilistic systems can

then be used to verify that the property will hold for the nondeterministic version of the

parameterised system. The second approach introduces a notion of γ-fairness. A (simple)

temporal property will hold with probability 1 for a probabilistic system if and only if

every γ-fair computation of the system satisfies that property. Again, methods for solving

the non-probabilistic parameterised problem can then be employed.

In [27] the convergence of self-stabilising randomised protocols for a ring topology is con-

sidered. It is shown that, given a non-increasing measure on the state space of the model,

if there exists a ‘distance’ measure between states and an ordering relation on the distance

metric that satisfies certain conditions, then it is possible to deduce that the protocol will

converge to some legitimate set of states with probability 1. They also provide a method

to calculate the expected time of convergence by lumping the state space according to the

distance measure.
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The methods described above have only been applied to verification of qualitative prop-

erties i.e. properties that hold with probability 0 or 1. Parameterised model checking of

quantitative properties has not been widely addressed, although some manual proofs of

quantitative properties have been devised. For example, Aspnes and Herlihy [6] describe

a weak shared coin protocol, that uses a shared counter which all processes can read from

or write to. When a process reads the counter and it is above (below) a certain value

the process will then choose to return ‘heads’ (‘tails’). By appealing to results from ran-

dom walk theory, they show that the probability of all processes returning heads (tails)

is bounded below by the value (K − 1)/2K, where K ≥ 1 is an integer constant that is

independent of the number of processes. Another manual correctness proof is given in the

original paper describing the Itai Rodeh protocol [35] and in a further paper [30] describ-

ing simplifications of the Itai Rodeh protocol. Here it is shown that with probability 1 a

unique leader will be elected for an arbitrary size of ring.

1.5 Thesis Outline and Contribution

In this thesis we explore the topic of parameterised model checking for state-based models

of randomised distributed systems, adding to the body of previous work in this area, some

of which is detailed in the previous sections. In Chapter 2 we begin with a review of the field

of model checking, outlining background information relevant to the remainder of the thesis.

In particular, we give a description of the use of state-based models and temporal logics in

model checking. This is followed by a discussion of particular examples of model checking

tools, and techniques that they exploit, before a review of some structural relations. In

Chapter 3, probabilistic model checking is introduced. Probabilistic state-based models

and temporal logics are discussed, before an overview of a probabilistic model checking

tool is given. A survey of some probabilistic structural relations is provided at the end of

this chapter. The work in these two chapters is standard from the literature.

In Chapter 4 we describe an approach to the PMCP using invariants, based on data

abstraction, that can be used to tackle the parameterised model checking problem. The

invariant method is applied to an example of a non-probabilistic system (a simple token

ring protocol) in order to show how it can be used in practice. Thereafter a demonstration

of how the technique can be applied to a probabilistic version of the token ring protocol is
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provided. The work contained in this chapter extends that of [17] through application of

the technique to a new system and demonstrating that it can be applied to a probabilistic as

well as a non-probabilistic form of the system. The probabilistic version of data abstraction

described is similar to the abstraction via simulation of [24].

In Chapter 5 we describe an inductive proof schema for tackling the parameterised model

checking of a particular class of systems, described as deterministically degenerative, using

the Firewire IEEE 1394 Tree Identify Protocol to illustrate the technique. In Chapter 6

we extend this work, outlining a similar proof schema but for a wider class of probabilistic

systems (described as probabilistically degenerative). We then describe the Itai Rodeh

protocol and how it is modelled and verified using PRISM, explaining how the PMCP

is tackled for the Itai Rodeh protocol using the proof schema. The work in these two

chapters extends that of [49].

In particular, in Chapter 5 we generalise and extend the proof given for the IEEE 1394

Firewire protocol such that it is applicable to a class of probabilistic systems. The model

specification for the Firewire IEEE 1394 protocol described in this chapter is based on

the specification described in [49] but we have adapted it for the PRISM model checker

and resolve root contention probabilistically rather than non-deterministically. The proof

of correctness is again based on [49] but is adapted to take into account the probabilistic

element of the models. The work in this chapter is also presented in [31].

The extension described in Section 5.7 has not been previously considered. In Chapter

6 we further extend the work described in Chapter 5. Although also based on the proof

of correctness of the Firewire protocol given in [49], Theorem 6.1.7 is a new result. The

PRISM specifications given for the Itai Rodeh leader election protocol described in this

chapter are closely based on those given in [1] and outlined in [30]. The use of the inductive

proof schema to prove correctness of this protocol is novel.

In Chapter 7 we introduce a class of protocols known as gossip protocols and describe a

particular example and its analysis using probabilistic model checking. The parameterised

model checking problem is then tackled for this protocol using an inductive approach. To

our knowledge, the work described in this chapter is entirely new.

In Chapter 8 we describe some open problems and finally, Chapter 9 presents our conclu-

sions.
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1.6 Thesis Statement

We investigate the parameterised model checking problem, considering two approaches that

have been successfully applied to non-probabilistic distributed systems. The first approach

employs an invariant and is based on a form of abstraction; the second approach employs

induction and is applicable to the class of degenerative systems. Both rely on establish-

ing structural relations between state-based models of distributed protocols. We establish

whether, using probabilistic structural relations between probabilistic state-based models,

these approaches can be extended in order to be applicable to randomised distributed

systems.

Summary In this chapter we have introduced the parameterised model checking prob-

lem and outlined some of the work that has been carried out on this to date for both

probabilistic and non-probabilistic systems. We have outlined our contribution to this

work, describing the contents of the thesis and providing a thesis statement.



Chapter 2

Modelling and Verifying

Distributed Systems

Outline In this chapter we discuss some of the background to model checking that is

relevant to the remainder of the thesis. We introduce Kripke structures and the tempo-

ral logics, Computational Tree Logic (CTL and CTL*) and Linear Time Temporal Logic

(LTL). We also describe the verification techniques possible using the SPIN model checking

tool, and outline the Promela modelling language. Finally, we consider the bisimulation

and simulation structural relations for Kripke structures.

2.1 Introduction

The analysis of distributed systems is complex: unforeseen interactions between communi-

cating processes can lead to errors in the design of such systems. Model checking provides

the means to consider every combination of the executions of interacting processes (at an

appropriate level of abstraction) and therefore is a useful verification technique when con-

sidering distributed systems. Model checking tools accept a (usually finite-state) model

of a system specified by the user. Properties (usually defined using a temporal logic) are

confirmed as being satisfied by the model, or not, in which case a counter-example to the

property may be provided. A variety of model checking tools exist that employ different

modelling and verification techniques. In this chapter we consider Kripke structures, the

12
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temporal logics CTL*, CTL and LTL and focus on the SPIN model checker. We consider

these in particular since they are relevant to this thesis. For a more general introduction

to model checking see, for example, [48].

Much of the work in the remainder of the thesis is concerned with verifying that a given

property of a model of a system holds (by model checking) and then establishing a relation

between the model and some other set of models. Structural relations between models are

therefore integral to the thesis. We give a summary of some relevant relations over Kripke

structures in the final part of this chapter.

2.2 Modelling Distributed Systems

A number of formalisms for modelling distributed systems exist. The majority of these

are a variation of a state transition graph. One of the key features that all these graphs

exhibit is that of non-deterministic choice. When modelling distributed systems we want

to consider all possible interleavings of the executions of the processes: non-determinism

enables this. We focus here on state-labelled transition graphs in the form of labelled

Kripke structures.

Definition 2.2.1. A (labelled) Kripke structure K is a tuple (S, S0, R, L), where

• S is a finite set of states.

• S0 ⊆ S is the set of initial states.

• R ⊆ S × S is a total transition relation.

• L : S → 2AP is a function that labels each state with a set of atomic propositions

from AP, true in that state.

The operation of a Kripke structure can be described in terms of paths. A finite path

in a Kripke structure, K = (S, S0, R, L), starting in state s0 ∈ S, is a sequence of states

π = s0, s1, s2, . . . , sn, for n ≥ 0, such that for all 0 ≤ i ≤ n, si ∈ S and for all 0 < i ≤ n,

(si−1, si) ∈ R. An infinite path, π = s0, s1, s2, . . . is defined similarly but for an infinite

sequence of states. For an infinite path, π = s0, s1, s2, . . ., the path πi is defined as the

suffix of π, starting from state si. If a finite path ω is a prefix of a path π we write ω ≤ π
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(or ω < π if it is a strict prefix). For a path, π = s0, s1, s2, . . . , sn, the length of π, |π| is

n+ 1. For an infinite path, |π| = ∞.

For any pair of states s, t ∈ S such that (s, t) ∈ R we say that (s, t) is a transition in K,

written s→R t or s→ t if R is clear from the context. Note that the transition relation for

a Kripke structure is total, meaning that there must be at least one transition associated

with each state. If, in the modelling of a system, a state s is defined with no outgoing

transition we can ensure the transition relation is total by adding the self-loop transition,

(s, s), to R. We describe any state s with no outgoing transitions, other than self-loops,

as terminal.

The trace for a path π is given by the sequence of sets of atomic propositions that

label each state in the path. If π = s0, s1, . . . , sn is a finite path then trace(π) =

L(s0), L(s1), . . . , L(sn), and similarly if π = s0, s1, . . . is an infinite path then trace(π) =

L(s0), L(s1), . . ..

We generally consider Kripke structures with a single initial state. For a Kripke structure

K = (S, S0, R, L) with S0 = {s0}, we write K = (S, s0, R, L).

We can consider a Kripke structure as a directed graph in which vertices represent states

and edges transitions between states, as dictated by the transition relation. The labelling

function associates each vertex with the set of atomic propositions that are true in that

state. Indeed, we will often present Kripke structures diagrammatically in this form, with

dashed lines indicating a transition between states, shown as circles on the diagram. Any

labelling of a state will be included within the circle representing that state. Furthermore,

we use the terms Kripke structure and model interchangeably throughout this thesis.

Example: Consider a single process participating in a mutual exclusion protocol that

is idle, trying to enter its critical section, in its critical section or has failed to reach its

critical section. We model this in two ways by the two Kripke structures given in Figure

2.1, using the single variable, state, to maintain the state of the process. Each of the

states of K and K′ are labelled by one of the propositions state = idle, state = trying,

state = critical or state = failed. The first Kripke structure assumes that the choice of

whether a process enters its critical section or fails to do so is only made once the process

tries to do so. In the second Kripke structure this outcome is pre-determined when the

process moves from being idle to its trying state.
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state=
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Figure 2.1: Kripke structures representing two versions of mutual exclusion for a single

process

2.3 Temporal Logic

Temporal logics were first used by philosophers as a way of dealing with the progression of

time in natural language arguments. They are an extension of modal logic and normally

include some notion of ‘always’ in the future and ‘eventually’ in the future [18]. In terms

of model checking, the semantics of temporal logic formulae are defined with respect

to a Kripke structure. Therefore, a formula is described in terms of states, paths and

atomic propositions. There are a number of different temporal logics used within different

application domains. Three temporal logics that are commonly associated with model

checking are defined below. These definitions are taken from [18].

2.3.1 Computational Treel Logic* (CTL*)

There are two path quantifiers in CTL*, defined as follows:

A The universal path quantifier. Aφ means for all paths φ holds.

E The existential path quantifier. Eφ means there exists some path along which φ holds.

The main temporal operators in CTL* are as follows:
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G: The ‘always’ operator. G p means “p is always true in the present and at any point

in the future”.

F: The ‘finally’ operator. F p means “p will eventually be true at some point in the

future”.

X: The ‘next’ operator. X p means “p holds in the next state”.

U: The strong ‘until’ operator. pU q means “p holds until q holds and q must eventually

hold”. Note that there is also a weak version of ‘until’, namely W, which is satisfied

even if q does not eventually hold.

Formulae in CTL* are either state formulae or path formulae. CTL* is the set of all state

formulae, where the syntax is defined by the following rules.

• If p ∈ AP then p is a state formula.

• If f and g are state formulae, then ¬f , f ∧ g and f ∨ g are state formulae.

• If f is a path formula then E f and A f are state formulae.

• If f is a state formula, then f is also a path formula.

• If f and g are path formulae, then ¬f , f ∨g, f ∧g, X f , F f , G f and f U g are path

formulae.

CTL* consists of all the state formulae defined by the above rules.

The semantics of CTL* are defined in terms of a Kripke structure, K = (S, S0, R, L). If

f is a state formula then for a state s ∈ S, s |= f (s satisfies f) means that f is true at

state s. If g is a path formula then π |= g (π satisfies g) means that g is true along the

path π of K. Let p ∈ AP and let f1, f2 be state formulae and g1, g2 path formulae, then

the semantics of CTL* are defined inductively as follows.

1. s |= p⇔ p ∈ L(s)

2. s |= ¬f1 ⇔ s 6|= f1

3. s |= f1 ∨ f2 ⇔ s |= f1 or s |= f2
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4. s |= f1 ∧ f2 ⇔ s |= f1 and s |= f2

5. s |= E g1 ⇔ there is a path π from s such that π |= g1

6. s |= A g1 ⇔ for every path π starting from s, π |= g1

7. π |= f1 ⇔ s is the first state of π and s |= f1

8. π |= ¬g1 ⇔ π 6|= g1

9. π |= g1 ∨ g2 ⇔ π |= g1 or π |= g2

10. π |= g1 ∧ g2 ⇔ π |= g1 and π |= g2

11. π |= X g1 ⇔ π1 |= g1

12. π |= F g1 ⇔ there exists k ≥ 0 such that πk |= g1

13. π |= G g1 ⇔ for all i ≥ 0, πi |= g1.

14. π |= g1 U g2 ⇔ there exists k ≥ 0 such that πk |= g2 and for all 0 ≤ j < k, πj |= g1

2.3.2 Computational Tree Logic (CTL)

CTL is a subset of CTL*, in which the operators are restricted to the form QL, where Q

is a CTL* path quantifier (A or E) and L a CTL* temporal operator (F, G, X or U).

More formally, the syntax of CTL can be defined by restricting the rules for path formulae

for CTL* to the following rule.

• If f and g are state formulae, then X f , F f , G f and f U g are path formulae.

2.3.3 Linear Time temporal Logic (LTL)

LTL (Linear Temporal Logic), like CTL, is a subset of CTL*. LTL is restricted to formulae

of the form Af , where f does not contain any path quantifiers. In general the operator

A in state formulae is implicit and does not need to be included. In addition, G can be

written as � and F as ♦. The syntax of LTL path formulae can then be described by the

following rules:
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• If p ∈ AP , then p is a path formula.

• If f and g are path formulae, then ¬f , f ∨ g, f ∧ g, X f , ♦f , �f and f U g are path

formulae.

It is often useful to consider the subset of LTL that does not include the next-time operator

which we denote by LTL\X . Since we generally reason about events that occur at some

point in the future rather than reasoning about the next step of a distributed algorithm,

excluding this operator is not a great hardship. By considering this subset of LTL we have

more flexibility in the analysis we can do.

CTL vs LTL The logics CTL and LTL are most commonly employed in model checking.

Although CTL and LTL are both subsets of CTL*, they are not subsets of each other.

Nonetheless, the majority of properties can be specified in both logics. When they cannot,

sometimes there are ways around the problem. For example, a property of the form Eφ,

for a LTL path formula φ, cannot be expressed in LTL because LTL only allows formulae

to be quantified over all possible execution paths whereas in this case it is necessary to

show the existence of a path. However, observe that Eφ is equivalent to ¬A¬φ. By finding

a counterexample for Aφ in a model, the property Eφ can be established.

Linear Time vs. Branching Time Logic The temporal logics, CTL and CTL*, are

described as branching time logics whilst LTL is described as a linear time logic. Branching

time logic is quantified over paths from a state, whereas linear time logic is quantified over

single computation paths.

Example: A classic illustration of the difference between branching and linear time logics

is given in Figure 2.1. The two Kripke structures, K and K′, show how a single process

might act when trying to enter its critical section. The traces for the computation paths

for both K and K′ are given by,

state = idle, state = trying, state = critical, state = critical, . . . and

state = idle, state = trying, state = failed, state = failed, . . . .

Both structures have the same set of traces, and therefore a linear time logic cannot

distinguish between the two state graphs. However, in a branching time logic, it is possible
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to describe a property such as if a process is trying to enter its critical section then it can.

More formally this would be written in CTL as

AG(state = trying → EXstate = critical).

This property would be satisfied by K′ but not K, so it is possible to differentiate between

the two structures.

Safety vs Liveness Temporal logic properties can be classified by two types: safety

properties and liveness properties. Safety properties must never be violated, while liveness

properties are properties that a system must, at some point, satisfy [32]. So, for example

a LTL property ♦p, where p is an atomic proposition, is a liveness property whereas �p

is a safety property.

2.4 Model Checking Tools & Techniques

One of the biggest problems that any model checking tool must combat is the state space

explosion problem. This occurs because it is necessary to verify properties across all pos-

sible execution traces of a system model. Therefore, all possible interleavings of processes

execution statements must be considered. This means that the state space of a model ex-

pands rapidly with the size of the system being modelled resulting in increased demands

for resources. Eventually the demand for resources cannot be satisfied by the system

running the model checker and complete verification is then no longer possible.

Different model checking tools use different techniques to address this problem. In this

section we consider two model checkers and the methods they employ to tackle state space

explosion. In particular, we describe the SPIN and SMV model checking tools. We make

use of SPIN in Chapter 4 so we give more detail in this case, including only a brief outline

of SMV for the sake of comparison.

2.4.1 SPIN

SPIN is a model checking tool that supports the Process meta language, Promela. Promela

is used to specify a model of a system, and SPIN can be used to verify LTL properties
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Figure 2.2: An example where partial order reduction can be exploited

of a Promela specification. We briefly outline some of the features of SPIN, examining

the techniques it uses to reduce the time and memory requirements of verification before

describing Promela.

The default algorithm that SPIN employs to traverse all the reachable states in the state

graph during verification is essentially a depth-first search. However, the algorithm has

been modified to allow properties to be verified and to permit on-the-fly verification.

Verification on-the-fly means that the correctness of a property is checked at the same

time as the state graph is built. Using this technique, it may not be necessary to construct

the entire state space for two reasons. First, a counter-example for a property may be found

before the entire state space has been constructed. Second, the property being checked

‘guides’ the construction of the state graph, and so any states that are not relevant to the

property can be ignored. On-the-fly verification can therefore be useful in saving time and

memory resources.

To combat the state space explosion problem, SPIN also avoids constructing the entire

state space of a model, by exploiting a technique known as partial order reduction. A

classic example of this is given in Figure 2.2. The Kripke structure shown in the figure

represents an assignment to the variables x and y. The two paths of the model represent
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these assignments made in different orders (x:=1;y:=1; compared with y:=1;x:=1;).

The final state is the same, regardless of the path taken, so the graph can be reduced

by removing one of the paths. Note that a property is not preserved under partial order

reduction if it contains the next time operator (X).

During verification, SPIN also allows the user to employ the weak fairness option. Weak

fairness is used to ensure that no process in a specification is starved of execution time

for an infinite time, i.e. that any process that can execute a statement will eventually

execute it. This is useful because often, when performing a verification, a property will

not hold because a particular process is never allowed to execute. Weak fairness, however,

introduces a significant overhead to verification, particularly for systems with a large

number of processes [32].

Promela

Before describing Promela it is important to note that modelling languages, such as

Promela, are used to specify a system rather than to explicitly implement one. It is

also important to distinguish between the specification of a system and the model of a sys-

tem. A specification is a syntactically convenient way to represent the model. The model

can therefore be derived from the specification. In the case of Promela specifications, the

underlying model is given by a (representation of a) Kripke structure.

Promela has a C-like syntax, with only one type of module, defined by proctype. A

proctype specification is given, and instantiations can then be executed either automati-

cally, by declaring the process to be active, or manually by declaring an init process with

a run statement for each process. Any number of processes can be executed concurrently,

with a unique id being assigned to each process. As with a procedure, a process can take

a set of parameters, although values can only be assigned to these when using run.

Data types are restricted and variables can only be defined as mtype, unsigned, bit, int,

short, byte, bool, chan or pid. It is also possible to declare arrays of any of these types.

Most of the types are similar to the data types defined in C, but mtype, chan and pid

require further explanation. The type, pid, is the simplest and is associated with the

unique id assigned to each process. Note that it is possible to assign a variable to a

process’ id at runtime (e.g. id1=run process1).
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The type mtype is an enumerated type, which can be assigned to include any set of labels.

For example, it is possible to write mtype={idle, trying, critical}. A declaration

mtype state=idle, then sets the variable state to be of mtype, initialised to trying.

An important feature of Promela is message passing along channels. A channel is declared

to be of type chan. The length of the channel must also be declared. Declaring a channel

with length greater than zero results in asynchronous message passing, but if a channel

of length zero is defined then a receive and send on that channel will block until both

are ready (synchronised). A type for each element of the channel must be declared too.

Note that values of any type can be passed along channels, even channels themselves.

Messages can be sent along channels using the ! command or read from channels using

the ? command.

For example, the declaration chan msg=[2] of {mtype, bool} sets msg to be a channel

of length two, with each message on that channel consisting of an enumerated type and

a boolean. To pass a message of the form msg!trying,true along channel msg, the

statement msg!trying,true is used. The statement msg?state,end can then be used to

retrieve a message, where end is of type bool.

Promela also provides a selection and a repetition structure, respectively if and do. The

code segments below give an example of each of these:

if

:: (done) -> out!msg;

:: (!done) -> msg--;

fi;

do

:: (in?1) -> out!3;

:: (in?2) -> out!4;

od;

Two important points about if and do statements in Promela are that selection is non-

deterministic and the statement will block until at least one of the conditions is true.

Non-deterministic choice means that if two conditions are true, then one will be selected

arbitrarily.
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Having blocking conditionals is also important as it provides a means whereby a process

can wait for some condition to hold. Note that this is not unique to if or do statements.

A conditional can in fact be inserted at any point in a process. For example the line

(state==trying); would block, assuming state was not equal to trying, until some

other process set state equal to trying.

One final useful feature that Promela provides is the atomic statement. This allows a

section of code to be marked such that it will be executed as one statement, without

being interrupted by other processes. For example atomic{x=1;y=1;}. Once this piece of

code is executed, x and y will be set to one before any other process can execute. Note,

however, that if any statement within an atomic statement blocks (for example a channel

read where the channel is empty), then atomicity is broken and any other process may

then execute.

2.4.2 SMV

SMV is a model checker with its own language component, that allows one to verify CTL

properties using Symbolic Verification. SMV was designed mainly for verification of syn-

chronous hardware circuits but can also be used to model check asynchronous concurrent

software systems.

Symbolic Model Checking is implemented using Reduced Ordered Binary Decision Dia-

grams (ROBDD). A Binary Decision Diagram (BDD) is a tree-like representation of a

boolean formula. The BDD, in Figure 2.3(a), represents the boolean formula (P ∧Q)∨R.

Each path through this tree is an assignment of truth values to the variables P,Q and R,

with the leaf nodes representing the value of the formula, given this assignment [18].

Binary Decision Diagrams are not a particularly concise representation of boolean formulae

and contain a significant amount of redundancy. A Reduced Ordered Binary Decision

Diagram (ROBDD) is a BDD in which the variables have been given some ordering and

the BDD has been reduced to canonical form (up to ordering of the variables). An example

of the ROBBD obtained from the Binary Decision Tree in Figure 2.3(a) is given in Figure

2.3(b) where the ordering of variables is P < Q < R. Note that the order of the variables

is important in determining the size of the OBDD and that, although finding an optimal

ordering is infeasible, there are heuristics available to find a reasonable one [18].
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Figure 2.3: BDD and corresponding ROBDD for the formula (P ∧Q) ∨R

Let K = (S, S0, R, L) be a Kripke structure, then K can be represented by an ROBBD, if

S,R and L are encoded using boolean vectors. The translation of a Kripke structure into

an ROBDD can be done by first producing an explicit representation of K and then doing

the encoding, but this is not necessarily practical due to the size of the explicit structure.

Therefore, usually the ROBBD is created directly from a high level specification of the

system [18].

The advantage of using the symbolic model checking technique described above is that

ROBDDs can be an efficient and compact representation of a Kripke structure (subject

to the variable ordering, as explained earlier). Therefore, this is a useful method for

combating the state space explosion problem [18].

2.5 Model Relations

Sometimes, when analysing models, it is desirable to establish some form of equivalence

between two models. In terms of model checking, equivalence between models generally

means that they satisfy the same properties. For example, a model of a system may be too

large to verify and one may therefore consider an appropriate abstraction that reduces the

state space of the model. In order to ensure that properties that are true of the abstracted

model will remain true in the original model we must establish some relation between the

models. In this section we consider the bisimulation and simulation relations and discuss

the logical characterisation of these with respect to LTL.
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2.5.1 Bisimulation and Simulation

Bisimulation for Kripke structures is well-established (see for example [18]). Roughly

speaking, two models are bisimilar if the stepwise behaviour of each model is matched in

the other. Bisimulation preserves properties expressed in temporal logics (e.g. LTL). Note

that there are two types of bisimulation, strong and weak. The weak form of the relation

essentially ignores any transitions between related states (e.g. self-loops), whereas strong

bisimulation does not. We only consider the strong form here.

Definition 2.5.1. Given a Kripke structure K = (S, s0, R, L) with atomic propositions,

AP, an equivalence relation H ⊆ S × S is a bisimulation relation if and only if for all

s, s′ ∈ S if H(s, s′) then

1. L(s) = L(s′)

2. For every state s1 ∈ S such that R(s, s1), there is a state s′1 ∈ S with the property

that R(s′, s′1) and H(s1, s
′
1).

3. For every state s′1 ∈ S such that R(s′, s′1), there is a state s1 ∈ S with the property

that R(s, s1) and H(s1, s
′
1).

Given two states p and q in S, p is bisimilar to q, written p ≈ q, if and only if there is a

bisimulation, H, such that H(p, q). The bisimilarity relation, ≈, is an equivalence relation.

Furthermore, it is the largest bisimulation relation over a given Kripke structure.

Lemma 2.5.2. (See for example [18]) Let K be a Kripke structure with atomic propositions

AP. Then for every LTL formula φ with atomic propositions in AP , s ≈ s′ implies

s |= φ ⇐⇒ s′ |= φ.

In some instances bisimulation is too strict a relation. In other words it may be desirable

to establish a relation between models that does not have as stringent conditions as bisim-

ulation. In this instance a simulation relation may be appropriate. Whereas bisimulation

is an equivalence relation, simulation is a preorder, hence it only guarantees preservation

of properties between models in one direction. A simulation relation is defined formally

as follows [18].
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Definition 2.5.3. Given two Kripke structures K = (S, s0, R, L) and K′ = (S′, s′0, R
′, L′)

with atomic propositions, AP and AP ′, respectively, such that AP ′ ⊆ AP , a relation

H ⊆ S × S′ is a simulation relation between K and K′ if and only if H(s0, s
′
0) and, for all

s ∈ S and s′ ∈ S′, if H(s, s′) then

1. L(s) ∩AP ′ = L′(s′)

2. For every state s1 ∈ S such that R(s, s1), there is a state s′1 ∈ S′ with the property

that R′(s′, s′1) and H(s1, s
′
1).

K′ is said to simulate K, denoted K � K′ if and only if there exists a simulation relation

between K and K′.

Intuitively, for a relation between two Kripke structures, K and K′, to be a simulation

the initial states must be in the relation and it must satisfy two conditions. Firstly for

any two states that are related, the labelling of the state in K (restricted to the set of

atomic propositions in K′), must be equivalent to the labelling of the state in K′. If this

is true, secondly it is necessary to show, for any transition s→ t in K, that there exists a

transition, s′ → t′ in K′ such that the states s and s′ are related and t and t′ are related.

If the transitions satisfy these conditions we say that s → t is matched by s′ → t′. If we

can show this is true then the relation is a simulation relation.

Example: A simulation between two structures is illustrated in Figure 2.1, which shows

two possible models for a single process participating in a mutual exclusion protocol. In

this example K′ simulates K. This can be seen by choosing a simulation relation that

associates each state in K′ with each equivalently labelled state in K. Note, however,

that K does not simulate K′. This can be seen by observing that from the state labelled

by state = trying in K, it is possible to move to the states labelled state = failed and

state = critical. However, from one of the state = trying labelled states in K′, it is only

possible to move to one of the states labelled state = failed or state = critical but not

both.

Lemma 2.5.4 is taken from [49], as adapted from [18].

Lemma 2.5.4. Let K and K′ be two Kripke structures with atomic propositions AP and

AP ′ such that AP ′ ⊆ AP. Suppose that K � K′. Then for every LTL formula φ with
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atomic propositions in AP ′, K′ |= φ implies K |= φ.

Summary In this chapter we have considered the model checking problem, describing

Kripke structures as a model for distributed systems and presenting the temporal logics

CTL*, CTL and LTL. We have concentrated on SPIN as an example of a model checking

tool, outlining some of the reduction techniques it employs in order to combat the state

space explosion problem, and describing Promela. We have also defined the bisimulation

and simulation relations for Kripke structures.



Chapter 3

Modelling and Verifying

Randomised Distributed Systems

Outline In this chapter we describe the theory of probabilistic model checking. In par-

ticular, some elements of probability are discussed before an explanation of the theory

of Markov chains. This is followed by a discussion of the logics Probabilistic CTL and

Quantitative LTL. An overview of the probabilistic model checker, PRISM, is then given,

including a description of the modelling language it uses. Finally, we examine some struc-

tural relations over probabilistic models.

3.1 Introduction

In the previous chapter we considered model checking, a verification technique that pro-

vides the means to formally establish properties of distributed systems. However, the

focus of this thesis is on the analysis of randomised distributed systems and therefore we

now consider probabilistic model checking. Similarly to traditional model checking tools,

probabilistic model checkers accept a model specification and a property and verify that

the property is true of the model. However, probabilistic model checking tools also allow

probabilistic behaviour to be modelled and analysed. In this chapter we consider some

aspects of probabilistic model checking, examining in particular those features relevant

to the thesis. As discussed in Section 2.1, structural relations are fundamental to the

28
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results presented in subsequent chapters. In the previous chapter we defined relations on

non-probabilistic models. We extend some of these and introduce some new relations for

probabilistic models.

3.2 Probabilistic Models

Probabilistic model checking differs from traditional model checking in the representation

of the model of a system. There are several types of probabilistic models but the ones

that will be discussed here are all based on a Markov chain. There are two variants of

the Markov chain model that we consider: Discrete Time Markov Chains and Markov

Decision Processes. These are discussed in detail below. Other probabilistic models that

are not considered here include Continuous Time Markov Chains and Probabilistic Timed

Automata.

3.2.1 Discrete Time Markov Chains

A Discrete Time Markov chain (DTMC) can be viewed as a state transition system. A

DTMC satisfies the Markovian property i.e. the choice of a transition to a new state is

only determined by the current state. Transitions between states correspond to discrete

time steps and have an associated probability. Note that the state space of a DTMC model

is assumed to be discrete, and in the definition below to be finite. If we relax the first

condition of Definition 3.2.1 to allow S to be countably infinite then we say that D is an

infinite state DTMC. In order to analyse DTMCs, the states are labelled with a set of

atomic propositions [55].

Definition 3.2.1. (see for example [54]) A (labelled) Discrete Time Markov Chain is a

tuple D = (S, S0,P, L), where

• S is a finite set of states,

• S0 ⊆ S is the set of initial states,

• P : S × S → [0, 1] is a transition probability matrix such that, for all states s ∈ S,
∑

s′∈S P(s, s′) = 1,
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Figure 3.1: An example of a Discrete Time Markov Chain

• L : S → 2AP is a labelling function for a set of atomic propositions, AP.

The matrix, P, describes the probability of making a transition between any two states.

For s, s′ ∈ S, this probability is given by P(s, s′). From the definition of P, above, for

every state the probabilities associated with the outgoing transitions from that state must

sum to one. If some state s does not have an outgoing transition, we can ensure this

condition is maintained by setting P(s, s) = 1. If P(s, s′) = p > 0 we say that there is a

transition from s to s′ which we write as s
p
→ s′ or just s→ s′.

An infinite path, ω, in a DTMC, D, is a non-empty sequence s0,s1,. . . where for i ≥ 0,

si ∈ S. Similarly, a finite path, ωfin , is a non-empty sequence s0,s1,. . .,sn for some n ≥ 0.

The set of all infinite paths starting at state s is given by Path(s) and the set of all finite

paths starting at s by Pathfin(s) [55].

Let ωfin(i) = ω(i) = si denote the ith state of a path and let last(ωfin) = sn. Let |ωfin|

denote the length (the number of states) of a path (with |ω| = ∞). By an abuse of notation,

let P(ωfin) = P(s0, s1) × P(s1, s2) × . . .× P(sn−1, sn) (with P(ωfin ) = 1 if ωfin = s0).

Let traceAP ′

(ω) denote the sequence given by the labelling of the states in ω restricted to

the set of propositions in AP ′ ⊆ AP . For two paths, ωfin and ω′ with ωfin finite, if ω is a

prefix of ω′ we write ω ≤ ω′ (and ω < ω′ if it is a strict prefix). For states s, t ∈ S we say

that t is reachable from s if and only if there exists a path ω = s → s1 → . . . → t such

that ω ∈ Pathfin(s).

Note that we will generally consider DTMCs with a single initial state, s0. In this instance,

instead of writing D = (S, S0,P, L), we write D = (S, s0,P, L).

Example: Consider a simple coin-tossing process. Initially the process can move to a
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state from which it will either wait a time step, with probability 0.2, or it will toss a coin.

In the latter case it will throw either a head or a tail, with equal probability. If it throws

a tail, the process will restart and move back to the initial state, but if the process throws

a head, it will move to a terminal state and cannot toss the coin again.

The DTMC in Figure 3.1 models this simple process (taken from [55]). The DTMC

consists of four states, with S = {s0, s1, s2, s3} and initial state, s0. Each state is labelled

with atomic propositions from the set {init, toss, heads, tails}. The transition probability

matrix is given by:

P =











0 1 0 0

0 0.2 0.4 0.4

1 0 0 0

0 0 0 1











A Probability Measure for DTMCs

For a finite path, α, of a DTMC, starting in state s define the path cylinder C(α) by,

C(α) = {ω ∈ Path(s)|α ≤ ω}.

Then we can define the probability measure, Probs, on the smallest σ-field that contains

all the sets C(α) for all α, such that, Probs(C(α)) = P(α). For more detail see, for

example, [37].

3.2.2 Markov Decision Processes

The systems we seek to verify are randomised distributed protocols: concurrent systems

for which individual processes can make a probabilistic choice. When describing these sys-

tems, we would like to model the scheduling of process statements non-deterministically

(if the probabilities are unknown or irrelevant, we may also wish to model a probabilistic

statement of a process abstractly as a non-deterministic choice). Hence, to model ran-

domised distributed systems we require a model that exhibits both non-deterministic and

probabilistic choice (note that DTMCs only exhibit probabilistic choice). We therefore

consider Markov Decision Processes (MDPs), which can be considered as a generalisa-

tion of DTMCs. In particular, we consider state-labelled MDPs, where the states are

augmented with a set of atomic propositions true in that state.
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In the sequel, for any set Y , we let Dist(Y ) denote the set of all discrete probability

distributions over Y . That is, Dist(Y ) is the set of all functions µ : Y → [0, 1] such

that
∑

y∈Y µ(y) = 1. For a set X ⊆ Y and a distribution µ ∈ Dist(Y ), we let µ(X) =
∑

x∈X µ(x). Furthermore, for a distribution µ over Y , let support (µ) = {y ∈ Y |µ(y) > 0}.

Definition 3.2.2. (See, for example, [54]). A (labelled) Markov Decision Process is a

tuple M = (S, S0,Steps ,Act , L) where,

• S is a finite set of states,

• S0 ⊆ S is the set of initial states,

• Act is a set of actions,

• Steps : S → 2Act×Dist(S) is the probabilistic transition function such that

∀s ∈ S,Steps(s) 6= ∅,

• L : S → 2AP is a labelling function over a set of atomic propositions AP.

The main differences between a MDP and a DTMC is the addition of an action set, Act

and the replacement of the two-dimensional probability transition matrix with Steps . For

MDP, M = (S, S0,Steps ,Act , L), the function, Steps , maps each state in S to a non-empty

subset of Act × Dist(S), where Dist(S) is the set of all probability distributions over S.

Intuitively, for some state s ∈ S, Steps makes a non-deterministic choice over |Steps(s)|

possible (action, distribution) pairs, choosing action a and distribution µ, say. According

to the distribution, µ, a probabilistic choice is made over the states of the model where

the probability of moving to a state s′ is given by µ(s′).

For a state s and an (action, distribution) pair (a, µ) ∈ Steps(s), we say that a is enabled

from s. If µ(s′) > 0 for some state s′ we say that there is a transition from s to s′ which

we write as s
a,µ
→ s′ or just s→ s′ if it is clear which element of Steps(s) we are considering.

A transition s
a,µ
→ s′ is non-probabilistic if µ(s′) = 1 (otherwise we describe a transition as

probabilistic). A transition s
a,µ
→ s′ stutters if and only if L(s) = L(s′).

An action a ∈ Act is non-probabilistic if and only if, for every s ∈ S, ∀(a, µ) ∈ Steps(s),

µ(s′) = 1 for some s′ ∈ S. We describe M as non-deterministic if every action in Act is
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non-probabilistic. Action a ∈ Act is a stutter action if and only if, for all s ∈ S, for every

(a, µ) ∈ Steps(s), µ(s′) > 0 =⇒ L(s) = L(s′).

An infinite path, ω in M is a non-empty sequence s0,a0,µ0,s1,a1,µ1,. . . where for i ≥ 0,

si ∈ S, (ai, µi) ∈ Steps(si), µ(si+1) > 0. We write this as,

s0
a0,µ0
−→ s1

a1,µ1
−→ . . .

Similarly, a finite path, ωfin , is a non-empty sequence, s0,a0,µ0,s1,a1,µ1,. . .,an−1,µn−1,sn

for some n ≥ 0 which we write as,

s0
a0,µ0
−→ s1

a1,µ1
−→ . . .

an−1,µn−1
−→ sn.

The set of all infinite paths starting at state s is given by Path(s) and the set of all finite

paths starting at s by Pathfin(s).

Let ωfin(i) = ω(i) = si denote the ith state of a path and let last(ωfin) = sn. Let

|ωfin| denote the length (the number of actions) of a path (with |ω| = ∞). By an abuse

of notation, let P(ωfin ) = P(s0, s1) × P(s1, s2) × . . . × P(sn−1, sn) (with P(ωfin) = 1 if

ωfin = s0).

Let traceAP ′

(ω) denote the sequence given by the labelling of the states in ω restricted to

the set of propositions in AP ′ ⊆ AP and let actAct ′(ω) denote the action sequence for ω

restricted to the actions in Act ′ ⊆ Act .

For two paths, ωfin and ω′ with ωfin finite, if ω is a prefix of ω′ we write ω ≤ ω′ (and

ω < ω′ if it is a strict prefix). For states s, t ∈ S we say that t is reachable from s if and

only if there exists a path ω = s→ s1 → . . .→ t such that ω ∈ Pathfin(s).

Furthermore, for (a, µ) ∈ Steps(last(ω)), t ∈ S we let ω
a,µ
−→ t denote the finite path,

s0
a0,µ0
−→ s1

a1,µ1
−→ . . .

an−1,µn−1
−→ sn

a,µ
−→ t.

Note that we generally consider MDPs with a single initial state, s0. In this instance, in-

stead of writing M = (S, S0,Steps ,Act , L), we write M = (S, s0,Steps ,Act , L). Similarly,

we will sometimes consider an empty action set Act = ∅. In this instance, instead of writing

M = (S, S0,Steps ,Act , L), we write M = (S, s0,Steps , L) and let Steps : S → Dist(S).
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Adversaries

In order to analyse a MDP we need to resolve the non-determinism. This is done by

considering adversaries, constructs that make a choice over the set Steps(s) for each state

s of a MDP, based on the history of choices.

Definition 3.2.3. [55] A deterministic adversary A of a MDP M = (S, s0,Steps ,Act , L)

is a function mapping every finite path ω onto an element A(ω) of the set Steps(last(ω)).

In the sequel we let AdvM denote the set of all possible adversaries of the MDP M and, for

any adversary A and state s, we let PathA(s) denote the subset of Paths which corresponds

to A, and similarly PathAfin(s) is the subset of Pathfin(s) that corresponds to A [55].

Each adversary of a MDP produces an infinite-state DTMC, with each state in the DTMC

given by the history of states so far visited. The following definition is adapted from [55].

Definition 3.2.4. For a given adversary, A of a MDP M = (S, s0,Steps ,Act , L) and a

state s ∈ S, the behaviour from s under A is given by the infinite state DTMC induced by

A, DA = (SA, sA0 ,P
A, LA) where,

• SA = PathAfin(s)

• sA0 = s

• For ω, ω′ ∈ SA, PA(ω, ω′) =







µ(s′) if ω′ ≡ ω
A(ω)
→ s′ and A(ω) = (a, µ)

0 otherwise

• For all ω ∈ SA, LA(ω) = L(last(ω)).

Since an adversary uniquely determines a DTMC of the form described above, in the sequel

it will be convenient to refer to an adversary of a MDP when referring to the infinite state

DTMC induced by the adversary.

Example: Consider the MDP given in Figure 3.2 (taken from [55]). The figure shows a

four state MDP (note that the labelling of the states is omitted). The dotted lines represent

a nondeterministic transition from a state and the solid lines represent the probabilistic

distribution reached from a non-deterministic transition. Note that the only state from

which it is necessary to make a non-deterministic choice in this MDP is state 1. We denote



35

Figure 3.2: A Markov Decision Process

the two probability distributions reachable from state 1 as µb and µc (where µb(0) = 0.7,

µb(1) = 0.3 and µc(2) = µc(3) = 0.5) and the trivial distributions reachable from states 0,

2 and 3 as µa, µd and µe respectively. We can define two example adversaries as follows [55]:

• Adversary A1 : A1(0) = (a, µa), A1(01) = (c, µc), A1(012) = (d, µd), A1(013) =

(e, µe), . . . etc.

• Adversary A2 : A2(0) = (a, µa), A2(01) = (b, µb), A2(011) = (c, µc), A2(010) =

(a, µa), A2(0101) = (c, µc), A2(0112) = (d, µd), A2(0113) = (e, µe), A2(01012) =

(d, µd), A2(01013) = (e, µe), . . . , etc.

Fragments of the infinite state DTMCs, DA1 and DA2, that are derived from the MDP

given in Figure 3.2 under the adversaries, A1 and A2, described above, are shown in Figure

3.3 [55].

Randomised Adversaries

In the above we considered history-dependent deterministic adversaries that, for a given

finite path, select a single (action, distribution) pair from the set enabled from the last

state of the path. We now consider adversaries that make a choice according to some

distribution (see for example [57]).

Definition 3.2.5. A randomised adversary E of a MDP M = (S, s0,Steps ,Act , L) is a

function mapping every finite path ω onto an element E(ω) of Dist(Steps(last(ω))).
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Figure 3.3: Portions of two infinite state DTMCs resulting from the behaviour of a MDP

under adversaries, A1 (top) and A2 (bottom)

In the sequel we let RAdvM denote the set of all possible randomised adversaries of the

MDP M and, for any adversary E and state s, let PathE(s) denote the subset of Path(s)

which corresponds to E.

A Probability Measure for analysing MDPs

We can extend the definition of the probability measure over DTMCs from Section 3.2.1

to infinite state DTMCs in a straightforward manner. Furthermore, there exists a one-

to-one mapping between the paths in the infinite state DTMC generated by an adversary

of a MDP and the paths in a MDP. For a finite path, α, starting in state s of a MDP,

M = (S, S0, Steps,Act, L), the path cylinder C(α), under an adversary A of M, is defined

by [55],

C(α) = {ω ∈ PathA(s)|α ≤ ω}.

Then we can define the probability measure, ProbAs , on the smallest σ-field that contains

all the sets C(α) for all α, such that, ProbAs (C(α)) = P(α). For more detail see, for

example, [14,37].

Similarly, for a randomised adversary, E, of M, we can define the probability measure,
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ProbEs , on the smallest σ-field that contains all the sets C(α) for all finite paths α, such

that,

ProbEs (s) = 1

and, for α = β
a,µ
−→ t (for a finite path β, (a, µ) ∈ Steps(last(β)) and t ∈ S),

ProbEs (C(α)) = ProbEs (C(β)) × E(β)((a, µ)) × µ(t).

For more detail see, for example, [57].

Cuts

It is often useful to consider a finite portion of the Markov chain induced by an adversary.

Intuitively, a cut, as defined below, is a set of finite paths of an adversary of a MDP. Each

path in the cut starts from the initial state of the MDP, no path in the cut is the prefix of

another path in the cut and every finite path under the adversary is the suffix or prefix of

a path in the cut. Note that a cut is a simplification of a fringe as defined for probabilistic

automata by Segala [56].

Definition 3.2.6. Let M =(S,s0,Steps,Act,L) be a MDP and let A ∈ AdvM. Define

Cut(A) to be a family of sets s.t. for D ∈ Cut(A), D ⊆ PathAfin(s0) where, for all ω ∈ D,

ω � ω′ and ω′ � ω for any ω′ ∈ D, ω′ 6= ω and,

∑

ω∈D

ProbAs0(C(ω)) = 1.

Given an adversary A of a MDP, for n ≥ 0, let cutA(n) ∈ Cut(A) be defined such that for

all ω ∈ cutA(n), |ω| = n. For D ∈ Cut(A) we say that D is a cut of A. Furthermore, we

describe cutA(n) as a cut of A at depth n.

Example: In Figure 3.3 we presented portions of two infinite state DTMCs resulting from

the behaviour of the MDP in Figure 3.2, under adversaries A1 and A2. In Figure 3.4 we

repeat the infinite state DTMC obtained under A2 and include two examples of cuts of

A2, D1 and D2. These are represented by dashed lines in the diagram. The cut D1 is a

cut of A2 at depth three, and is given by the set {010, 011} whilst D2 is given by the set

{01012, 01013, 0112, 0113}. It should be clear that D1 and D2 both satisfy the conditions

of Definition 3.2.6.
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Figure 3.4: Examples of cuts, D1 and D2, of the adversary, A2 (see Figure 3.3)

3.3 Probabilistic Temporal Logics

There are several possible logics that can be employed in probabilistic model checking. The

two that are described here are based on the CTL and LTL temporal logics commonly

used in traditional model checking (see Section 2.3).

3.3.1 Probabilistic Computation Tree Logic

PCTL (Probabilistic CTL) is a probabilistic extension of the temporal logic, CTL. It can

be used to specify properties to be verified for a DTMC or a MDP. It should be noted,

however, that the semantics of PCTL for a DTMC are slightly different from that for a

MDP and hence these are dealt with separately below.

PCTL for DTMCs

PCTL formulae are defined over states within a model. The formal syntax for PCTL state

formula (φ) are given by the following rules [55].

φ ::= true | a | ¬φ | φ ∧ φ | P⊲⊳p[ψ]
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where a is an atomic proposition, ⊲⊳∈ {≤, <,>,≥}, p ∈ [0, 1] and ψ is a path formula given

by,

ψ ::= φ | Xφ | φU≤kφ | φUφ

such that k ∈ N.

The next-time (X ) and until (U) operators are as for the CTL counterparts (X and U

respectively). For the time-bounded until operator (U≤k), a path satisfies φ1U
≤kφ2 if φ1

is true along the path until φ2 is true and φ2 becomes true within k time steps. For a

DTMC, some state, s, satisfies P⊲⊳p[ψ], if the probability over the set of paths starting in

s that satisfy path formula ψ is within the bounds specified by ⊲⊳ p.

The formal semantics of PCTL for any DTMC, D = (S, s0,P, L), are given in terms of

paths and states. For any state s ∈ S and for any infinite path, π, the formal semantics of

PCTL can be defined inductively in terms of the satisfaction relation, |=, as follows [55].

1. s |= true,∀s ∈ S

2. s |= a ⇐⇒ a ∈ L(s)

3. s |= ¬φ ⇐⇒ s 6|= φ

4. s |= φ1 ∧ φ2 ⇐⇒ s |= φ1 ∧ s |= φ2

5. s |= P⊲⊳p[ψ] ⇐⇒ Probs({π ∈ Path(s)|π |= ψ}) ⊲⊳ p

6. π |= φ ⇐⇒ π(1) |= φ

7. π |= φ1U
≤kφ2 ⇐⇒ ∃i ≤ k. (π(i) |= φ2 ∧ π(j) |= φ1, ∀j < i)

8. π |= φ1Uφ2 ⇐⇒ ∃k ≥ 0 . π |= φ1U
≤kφ2

The probability measure over paths in Path(s), Probs, is as defined in Section 3.2.2. Note

that the set of paths defined by a PCTL path formula is measurable [61]. For a PCTL

property, φ, in the remainder of the thesis, we let D |= φ if and only if s0 |= φ where s0 is

the initial state of D.

The eventually (♦) and always (�) operators are not included in the syntax for PCTL but

we can use the following equivalences to define them. The ♦ operator can be defined in
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terms of the until operator, since:

P⊲⊳p[♦φ] ≡ P⊲⊳p[true U φ].

Notice that �φ ≡ ¬♦¬φ. Since PCTL does not allow path formulae to be negated, this

equivalence cannot be used directly, but

Probs({ω ∈ Path(s)|ω |= ¬ψ}) = 1 − Probs({ω ∈ Path(s)|ω |= ψ}),

and so:

P⊲⊳p[�φ] ≡ P⊲⊳(1−p)[♦¬φ],

where ≤ ≡≥, < ≡>,≥ ≡≤, > ≡≤. Note that since the always and eventually operators

are defined in terms of the until (U) operator, there are equivalent time-bounded always

and eventually operators that can be defined by replacing U by U≤k in the above [55].

In CTL, the always and eventually operators cannot be used individually in a formula.

They must always be paired with a CTL* path quantifier, for all paths (A) or there exists

a path (E). The equivalent restriction in PCTL is that path formulae can only be included

as a parameter of the P⊲⊳p operator. Therefore, in a loose sense, the P⊲⊳p operator can be

considered the analogue of the A and E CTL* operators. For example EF ≡ P>0[♦φ] but

note that not all CTL operators have direct equivalences [55].

In the subsequent chapters, in order to establish results for parameterised probabilistic

systems, it is necessary to restrict the set of properties that we verify. We consider two

such restrictions: PCTL-liveness and PCTL-reachability.

Definition 3.3.1. [9] A PCTL-liveness formula, φ is defined to be a PCTL formula

that contains only the operator, P>p, and for which negation (¬) is only applied to atomic

propositions.

Definition 3.3.2. A PCTL-reachability formula, φ, is defined to be a PCTL formula

of the form P⊲⊳p[♦ψ], for ⊲⊳ ∈ {≥,≤} and ψ ::= true | a | ψ ∧ ψ where a is an atomic

proposition.

Consider the set of atomic propositons, {x = 0, x = 1, y = 1, y = 2}. The property,

P>0[x = 0 U (¬y = 1)],
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is a PCTL-liveness property whereas,

P≤0.5[♦(x = 1 ∧ y = 1)],

is a PCTL-reachability property.

PCTL for MDPs

As mentioned earlier, the definition of PCTL for DTMCs and MDPs is slightly different.

The syntax is identical for both types of models and the semantics for the path operators

is the same but the P⊲⊳p operator is defined differently. In order to analyse the probability

of some property holding we must first resolve the non-determinism by means of the

adversaries. Therefore, we must consider the probability over the set of all adversaries.

Specifically, P⊲⊳p[ψ] holds for some state of a MDP if the probability of ψ being satisfied

meets the bound ⊲⊳ p for all resolutions of non-determinism. Formally we can specify the

syntax and semantics of PCTL for a MDP, M, as per the definition in the previous section

but replacing the definition of |= for P⊲⊳p by:

s |= P⊲⊳p[ψ] ⇐⇒ ProbAs ({ω ∈ PathA(s)|ω |= ψ}) ⊲⊳ p, ∀A ∈ AdvM.

As for a DTMC, the set of paths under an adversary of a MDP, defined by a PCTL path

formula, is measurable [61]. For a PCTL property φ, we let M |= φ if and only if s0 |= φ

where s0 is the initial state of M.

3.3.2 Quantitative Linear Time Logic

In Section 2.3 we introduced the logic LTL for reasoning about non-probabilistic models.

Recall that a LTL property is defined over paths of a (non-probabilistic) model and, in

particular, we reason over every path. It is straightforward to adapt the definition of a

LTL path formula to paths in a MDP. We now consider a probabilistic variant of LTL

which we describe as quantitative Linear Time Logic (QLTL).

A QLTL (QLTL\X ) formula φ is defined over states of a MDP with syntax given by

φ ::= P⊲⊳p[ψ], where ⊲⊳∈ {≤, <,>,≥}, p ∈ [0, 1] and ψ is a LTL (LTL\X ) path formula.

For a MDP, M, a state s of M, and a quantitative LTL property, φ = P⊲⊳p[ψ], we say
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that s satisfies φ, denoted s |= φ, if, for every adversary A of M,

ProbAs ({ω ∈ PathAs |ω |= ψ}) ⊲⊳ p.

We say that M satisfies φ, denoted M |= φ if and only if s0 |= φ where s0 is the initial

state of M. The set of paths of a MDP under an adversary that satisfy a LTL path

formula are measurable by ProbAs [61].

3.3.3 Randomised Adversaries and Probabilistic Temporal Logics

Above we considered the definition of the semantics of QLTL and PCTL with respect

to deterministic adversaries. Observe that the randomised adversaries of a MDP are, in

a sense, probabilistic combinations of their deterministic counterparts. When reasoning

about a PCTL or QLTL property it is sufficient to consider the maximum or minimum

probability with which some property is satisfied. These probabilities can be observed by

considering the deterministic adversaries of a MDP. Equivalently, they can be observed

over the randomised adversaries since probabilistic combination cannot increase (decrease)

the maximum (minimum) probability. Specifically, for a MDP M and a PCTL property

φ, it has been shown that φ is satisfied by M under the set of deterministic adversaries

of M if and only if M satisfies φ under the set of randomised adversaries of M [56, 58].

From this we can also conclude that,

Lemma 3.3.3. For a MDP M and a QLTL property φ, φ is satisfied by M under AdvM

if and only if M satisfies φ under RAdvM.

From [56,58], we also have that,

Lemma 3.3.4. Let M = (S, s0,Steps ,Act , L) be a MDP. Given a LTL path formula ψ,

for every randomised adversary E of M, there exist deterministic adversaries Ā and A of

M such that,

ProbEs0({ω ∈ PathEs0 |ω |= φ}) ≥ ProbAs0({ω
′ ∈ PathAs0|ω

′ |= φ}) and,

ProbEs0({ω ∈ PathEs0|ω |= φ}) ≤ ProbĀs0({ω
′ ∈ PathĀs0 |ω

′ |= φ}).
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3.4 The PRISM Probabilistic Model Checking Tool

The Probabilistic Symbolic Model Checker (PRISM) is, as its name implies, a probabilistic

model checking tool that uses symbolic verification techniques. PRISM provides a modular

specification language (based on the reactive modules language of [2]) in which to define

a system. Henceforth, we use the term PRISM to describe both the model checking tool

and the modelling language.

PRISM can generate a representation of a model from the high-level specification. Support

is provided for reasoning over three types of models: DTMCs, MDPs and continuous time

Markov chains (CTMCs). The first two have been discussed previously. We do not

consider the latter.

Properties can also be specified in the PCTL (for DTMCs and MDPs) or CSL (for CTMCs)

probabilistic temporal logics, which it can then automatically verify. Note that the def-

inition of PCTL only allows a formula to be verified against a probability bound, but

PRISM must calculate the probability of a formula being satisfied in order to compare it

to the given bound. It is therefore straightforward to return the probability rather than

a true or false answer. The PRISM model checker allows a property to be specified in

this way. Note that, in the case of a MDP, it is only possible to return the minimum or

maximum probability of a property being satisfied as it must be resolved across all possible

non-deterministic choices.

For verification, PRISM provides explicit-state, symbolic and hybrid engines. The explicit-

state engine employs a sparse matrix to store the transition matrix of a DTMC or transition

function of a MDP. These structures generally contain a large number of zero entries and

sparse matrices can exploit this redundancy.

An alternative to sparse matrices, employed by the symbolic verification engine, is the

Multi-Terminal Binary Decision Diagram (MTBDD) data structure. MTBDDs are a

generalisation of BDDs (described in Section 2.4.2). Whereas a BDD represents a function

that maps boolean variables to a boolean value, an MTBDD represents a function that

maps boolean variables to a value from an arbitrary domain (in this case the domain is

always taken to be R). Note that, as for a BDD, the variables of an MTBDD must be

given an ordering and that this will significantly affect the the size of the MTBDD. An
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MTBDD must also be reduced to its most compact form, using the same techniques as for

a BDD, resulting in a canonical MTBDD.

Once an MTBDD or sparse matrix representation of a model (DTMC or MDP) is created,

it can then be used for probabilistic model checking of PCTL properties. Qualitative

properties (those that hold with probability 0 or 1) can be computed efficiently using

BDDs.

Quantitative properties, on the other hand, require numerical calculation, which can be

carried out using a number of different iterative techniques (e.g. Jacobi, Gauss-Seidel)

[55]. Iterative methods work by maintaining a vector of solutions that initially contains

some approximation to the actual result. A series of iterations takes place with a new

solution vector being computed at each step, based on the old value of the vector and the

matrix representing the model. The iterations normally terminate whenever the difference

between the old and new solution vectors is less than some threshold value. Computation

of the new vector mainly consists of a matrix-vector multiplication operation.

MTBDDs can be used to represent the matrix and the solution vector and efficient algo-

rithms to perform the matrix-vector multiplication exist. However, in practice the numer-

ical computation required to verify quantitative properties is often slow when performed

on an MTBDD, due mainly to the growth of the MTBDD representation of the vector as

the computation proceeds. Sparse matrices on the other hand store the vector in arrays,

which remain constant in size, and so tend to perform much better than MTBDDs but

have the disadvantage of having much greater memory requirements.

PRISM includes a hybrid engine that combines the MTBDD and sparse matrix approaches

to provide a verification engine that is comparable in terms of speed to a sparse matrix

implementation but also gives considerable savings in space. The hybrid technique uses

an MTBDD to represent the model and a sparse matrix to represent the solution vector.

Note that PRISM also provides an option to apply fairness to the verification of MDPs

based on the following definition, which is taken from [10].

Definition 3.4.1. A path ω of an MDP M is fair if, for states s occurring infinitely often

in ω, each choice µ ∈ Steps(s) is taken infinitely often. An adversary A ∈ AdvM is fair

if, for any state s in M, ProbAs ({ω ∈ PathAs |ω is fair}) = 1.
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Note the difference between this definition of fairness and that used by SPIN which only

provides a notion of fairness between processes.

For any MDP M, let Advfair
M ⊆ AdvM denote the set of fair adversaries of M. The

fair satisfaction relation is denoted by |=fair . The semantics for this are defined as for

the satisfaction relation, |=, for all PCTL operators with the exception of P⊲⊳[ψ]. The

semantics for this are defined formally as follows,

s |=fair P⊲⊳[ψ] ⇔ ProbAs ({ω ∈ PathA(s)|ω |= ψ}) ⊲⊳ p for all A ∈ Advfair
M ,

where M is a MDP and s a state in M.

3.4.1 The PRISM Modelling Language

The main features of the PRISM specification language are model type specification,

process specification, synchronisation and probabilistic (and, in the case of MDPs, non-

deterministic) choice. This section provides an outline of each of these, but note that a

more thorough explanation can be found elsewhere in the literature [1].

The underlying model that is created from the code of a PRISM specification can be one

of a DTMC, MDP or CTMC. To distinguish between these models in the specification it

is necessary to include the keyword probabilistic, nondeterministic or stochastic,

respectively. We consider only the two former model types.

Processes are defined using the module keyword followed by the name of the process.

Multiple instantiations of any process can be declared by textual renaming. This is done

by declaring the process using module as before followed by the process name (which must

differ from the name of any other process). Each of the variables from the original process

specification must then be renamed. As an example assume that we have a module, module

Site1 with variable state1. A new ‘Site’ process is created by writing:

module Site2=Site1 [state2=state1] endmodule.

Processes do not take any parameters and do not need to do so because all variables are

visible globally. A process can have associated local variables which can either be declared

as integers or booleans. For example,



46

an int : [0..4] init 0;

declares a variable that can be an integer in the range zero to four, with initial value zero,

whereas,

a bool : bool init false;

declares a boolean variable initialised to false.

Note that it is also possible to declare global variables and constants, outside of a process

specification. Global variables are declared in the same way as local variables but the

declaration must be prefixed by the term global. Constants, like variables, can be integers

or booleans but may also be declared as floating point doubles. As an example, const

int N = 10; declares a global integer constant, N, with value ten.

In order for a process to update a variable, the conditions under which that variable are to

be updated must first be satisfied. For example, given an integer variable x and a boolean

y then,

[] (x=1 & y=true) -> (y’=false & x’=2);

updates y to false and x to two when x is one and y is true. Note the use of the dash (’)

notation to indicate the updated variable. It should also be pointed out that the variables

referenced in the guard may be any program variable (including another processes local

variables) but the variables to be updated must be global or local to that particular process.

In PRISM, probability is introduced in different ways depending on the type of Markov

chain that is being used. Consider the case of DTMCs. Here probabilistic choice is

introduced on the right hand side of the variable updates by using the ’+’ operator to

indicate choice between a set of updates and then by labelling each separate update rule

with a probability. For example, given x and y as above, given the statement,

[] (x=1 & y=true) -> 0.5 :(y’=false & x’=2) + 0.5 :(x’=0);

with equal probability, either an update is made to y and x is set to two or x is set to zero

and y is unchanged (assuming that the guard condition holds). Note that the probabilities

in a single update must sum to one.

In DTMCs if there is more than one update rule with a guard that evaluates to true
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Figure 3.5: Comparison of a DTMC and a MDP

then the choice between these is made probabilistically, so that each update has an equal

probability of being executed. In a MDP, however, such a choice is always made non-

deterministically. To clarify, consider the PRISM specification given below.

module coin

state : [0..3] init 0;

[] state=0 -> 1.0 : state’=1;

[] state=1 -> 0.8 : (state’=state) + 0.2 : (state’=0);

[] state=1 -> 0.5 : (state’=2) + 0.5 : (state’=3);

[] (state=2 | state=3) -> 1.0 : (state’=state);

endmodule

Note that we omit the declaration of the type of model from the specification. Suppose

that we do so, using probabilistic or nondeterministic, defining a DTMC or MDP

model respectively. These models are given in Figure 3.5. Figure 3.5 (a) shows the DTMC

for the specification using the declaration probabilistic and Figure 3.5 (b) shows the

MDP derived from specification using the declaration nondeterministic. Note that for

the MDP model, the dashed lines indicate the nondeterministic transitions and the solid

lines the probabilistic ones.

The important point to note is that, in the DTMC model, the outgoing transitions from

the state in which state=1 are all probabilistic, whereas in the MDP there are two non-

deterministic transitions. This is as a result of the two statements in the specification
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which can both be executed if state=1. In the DTMC model the probabilities are all

divided by two (the number of executable statements) to give transitions probabilities

of 0.4, 0.1, 0.25 and 0.25. On the other hand, in the specification of the MDP the two

statements will be chosen non-deterministically.

One feature of the PRISM language that has not yet been discussed is synchronisation. In

PRISM synchronisation between modules can be used as an alternative to global variables

to enable processes to communicate (synchronously). In order to synchronise on some

action, any update rules that are involved must be labelled with the same action name.

This action can only then occur when each of the update statements are enabled, in which

case the update in each statement is made simultaneously with probability given by the

multiplication of the probabilities of the individual updates.

For example, consider two separate modules, one that includes the statement,

[action1] (x=0) -> 0.5 : x’=1 + 0.5 : x’=2;

and another with the statement,

[action1] (y=0) -> 0.5 : y’=1 + 0.5 : y’=2;.

Whenever x and y equal zero then x and y are updated so that: with probability 0.25 x=y=1;

with probability 0.25 x=1 and y=2; with probability 0.25 x=2 and y=1; with probability

0.25 x=y=2.

In the case studies of randomised distributed protocols that we provide in later chapters we

consider communication to be asynchronous. PRISM does not provide explicit structures

for modelling asynchronous communication between components. However, it is relatively

straightforward to define modules that act as communication buffers. In the case where

we consider buffers of length one then we can in fact represent these with a global variable.

In doing so note that we must be careful about the use of these buffers since ideally we

want to restrict the type of operation that we can perform on them to reading and writing.

This cannot be checked automatically: we must manually ensure that this restriction is

maintained.
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3.5 Probabilistic Relations

In the following sections we consider the bisimulation, simulation and stuttering equiva-

lence relations for MDPs and the isomorphism relation for DTMCs. Note that the different

relations preserve different probabilistic temporal logic properties between related struc-

tures. In particular bisimulation between MDPs preserves PCTL properties whereas stut-

tering equivalence preserves QLTL properties. This is an important point as it influences

the probabilistic logic that we consider in the following chapters.

3.5.1 Strong Bisimulation and Simulation for MDPs

As for non-probabilistic structures, bisimulation and simulation can be defined for proba-

bilistic models, though the definition must be lifted to probability distributions over states

rather than single states. Bisimulation and simulation over MDPs preserves properties

expressed in probabilistic temporal logic (e.g. PCTL). Note that we define the relations

on a single structure rather than between a pair of models. However, it is straightforward

to apply the definitions to two structures if we consider the disjoint union of the sets of

states of the Markov models.

Strong Bisimulation A strong bisimulation is an equivalence relation that preserves

the probability of transitions between equivalence classes. The formal definition of strong

bisimulation for MDPs is given below. This is adapted from the definition given in [58]

which defines strong bisimulation for probabilistic transition systems that are not state-

labelled.

Definition 3.5.1. Let M = (S, s0,Act,Steps, L) be a MDP and R an equivalence relation

on S. R is a strong bisimulation on M if, for s1Rs2:

1. L(s1) = L(s2)

2. For any (a, µ1) ∈ Steps(s1), there exists (a, µ2) ∈ Steps(s2) such that µ1(C) = µ2(C)

for all C in the set of equivalence classes S/R.

For states s1 and s2 in some MDP, M, s1 is said to be strongly bisimilar to s2, denoted

by s1 ≈ s2, if and only if there exists a strong bisimulation, R on M, with s1Rs2.
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Let M = (S, s0,Steps ,Act , L) and M′ = (S′, s′0,Steps ′,Act , L′) be MDPs with sets of

atomic propositions AP and AP ′ respectively, let AP∗ = AP ∩AP ′ and let ⊎ denote dis-

joint union. Define the combination of M and M′ by M∗ = (S⊎S′, {s0, s
′
0},Steps∗,Act , L∗),

where, for s ∈ S ⊎ S′,

L∗(s) =







L(s) ∩AP∗ if s ∈ S

L′(s) ∩ AP∗ if s ∈ S′

and, for a ∈ Act , µ ∈ Dist(S ⊎ S′), (a, µ) ∈ Steps∗(s) if and only if s ∈ S and (a, µ) ∈

Steps(s) or s ∈ S′ and (a, µ) ∈ Steps ′(s).

M is said to be strongly bisimilar to M′, denoted by M ≈ M′ if and only if there exists

a strong bisimulation, R, on M∗ and s0Rs
′
0.

We now give a logical characterisation of bisimulation in terms of PCTL, establishing

which properties are preserved under the bisimulation relation. The following has been

proved in [58].

Lemma 3.5.2. Let M be a MDP with atomic propositions AP. If s1, s2 are states of M

and φ is a PCTL property with propositions from AP, then,

s1 ≈ s2 =⇒ (s1 |= φ ⇐⇒ s2 |= φ).

In other words two strongly bisimilar states satisfy the same PCTL properties. In addition,

if M ≈ M′, M |= φ ⇐⇒ M′ |= φ for any PCTL property φ with propositions in AP .

Strong Simulation Below we define a simulation relation similar to that of [58]. In

order to formalise a notion of strong simulation we first define a weight function.

Definition 3.5.3. Let S, T be sets, R ⊆ S × T and µ ∈ Dist(S) , ν ∈ Dist(T). A weight

function for µ and ν with respect to R is a function w : S × T → [0, 1] such that:

• w(s, t) > 0 ⇒ sRt,

• µ(s) =
∑

t∈T w(s, t) for any s ∈ S,

• ν(t) =
∑

s∈S w(s, t) for any t ∈ T .

We write µ ⊑R ν (or simply µ ⊑ ν if R is clear from the context) if and only if there exists

a weight function for µ and ν with respect to R.
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Definition 3.5.4. Let M = (S, s0,Act ,Steps ,Act , L) and M′ = (S′, s′0,Steps′,Act , L′) be

MDPs with atomic propositions AP ,AP ′ respectively such that AP ⊆ AP ′. Let R ⊆ S×S′.

R is a simulation if and only if,

• s0Rs
′
0,

• ∀s ∈ S, s′ ∈ S′, if sRs′ then L′(s′) ∩AP = L(s),

• ∀s ∈ S, s′ ∈ S′, if sRs′ then for any (a, µ′) ∈ Steps’(s′), there exists (a, µ) ∈ Steps(s)

such that µ ⊑R µ
′.

For states, s ∈ S, s′ ∈ S′, we say that s simulates s′, written s � s′, if and only if there

exists a simulation R, such that sRs′. Moreover, we say that M simulates M′, denoted

M � M′ if and only if s0 � s′0.

We subsequently give a logical characterisation of simulation with respect to PCTL. Strong

simulation does not preserve all PCTL formulae, only PCTL-liveness formulae (see Defi-

nition 3.3.1). This result follows from a similar result [58] for probabilistic automata.

Lemma 3.5.5. Let M = (S, s0,Steps ,Act , L), M′ = (S′, s′0,Steps ′,Act ′, L′) be MDPs

with atomic propositions AP ,AP ′ respectively such that AP ⊆ AP ′. Let φ be a PCTL-

liveness formula that only includes propositions from AP. If s � s′ (s ∈ S, s′ ∈ S′) then

s |= φ⇒ s′ |= φ.

3.5.2 Stuttering Equivalence

For any (finite or infinite) word v in some language L, the stuttering removal operator, #,

applied to v replaces every maximal finite subsequence of identical elements by a single

copy of this element. Two words v and w (that are both either finite or infinite) in L are

said to be stuttering equivalent if and only if #v = #w [49]. More detail in respect of

stuttering equivalence is provided in [44].

We can apply the concept of stuttering equivalence to paths in MDPs if we consider the

trace of each path as a word in the language given by sequences over the sets of atomic

propositions. Formally, let M and M′ be MDPs with atomic propositions AP and AP ′

respectively. An infinite (respectively finite) path ω of M is said to be stuttering equivalent
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to an infinite (respectively finite) path ω′ of M′ with respect to some common set of atomic

propositions AP ′′ ⊆ AP ∩ AP ′ if and only if #traceAP ′′

(γ) = #traceAP ′′

(β). We denote

this by ω ≃ ω′.

We can extend stuttering equivalence of paths of MDPs to adversaries. To do so we need

to define a trace cylinder over sequences of sets of atomic propositions [8].

Definition 3.5.6. Let AP be a set of atomic propositions. The trace cylinder

C(l+0 , l
+
1 , . . . , l

+
n )

(for l0, l1, . . . , ln ∈ 2AP pairwise distinct) is defined by

C(l+0 , l
+
1 , . . . , l

+
n ) = {t ∈ (2AP )ω)|t = lk00 , l

k1
1 , . . . , l

kn
n , . . . for some k0, k1, . . . , kn ≥ 1}.

where lk = l, l, . . . , l
︸ ︷︷ ︸

k

for l ∈ 2AP and k ≥ 1.

For an adversary A of a MDP M over propositions AP with initial state s0, and AP ′, a

subset of the atomic propositions AP , by abuse of notation let,

ProbAs0(C(l+0 , l
+
1 , . . . , l

+
n )) = ProbAs0({ω ∈ PathAs0|trace

AP ′

(ω) ∈ C(l+0 , l
+
1 , . . . , l

+
n )}),

where l0, l1, . . . , ln ∈ 2AP ′

.

Definition 3.5.7. [8] A stutter-invariant language over a set of atomic propositions, AP,

is a set L ⊆ (2AP )ω of infinite words over 2AP such that, for any word θ ∈ L, all words

θ′ that are stutter equivalent to θ are also contained in L. In order for L to be measurable

it must also be an element of the σ-field generated by the trace-cylinders C(l+0 , l
+
1 , . . . , l

+
n )

where l0, l1, . . . , ln are pairwise distinct subsets of AP.

Given an adversary A for a MDP M with atomic propositions AP and a set of atomic

propositions AP ′, a subset of AP and a state s, we abuse notation and henceforth let,

ProbAs (L) = ProbAs ({α ∈ PathAs |trace
AP ′

(α) ∈ L}),

denote the probability measure over the set of paths induced by A that start in state s

and give a trace in a stutter-invariant language L over AP ′.
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Definition 3.5.8. [8] Let M = (S, s0,Steps ,Act , L), M′ = (S′, s′0,Steps ′,Act ′, L′), be

MDPs with atomic propositions AP and AP ′ respectively. Two adversaries A ∈ AdvM,

A′ ∈ AdvM′ are probabilistic stuttering equivalent w.r.t. AP ′′ ⊆ AP ∩ AP ′ if and only if,

ProbAs0(L) = ProbA
′

s0 (L),

for all stutter-invariant measurable languages L over AP ′′.

By standard arguments of measure theory, it is sufficient, when determining probabilistic

stuttering equivalence between adversaries, to consider only the trace cylinders over the

sets of atomic propositions [8].

Proposition 3.5.9. Let M = (S, s0,Steps ,Act , L) and M′ = (S′, s′0,Steps ′,Act ′, L′),

be two MDPs, with atomic propositions AP and AP ′ respectively. Two adversaries A ∈

AdvM, A′ ∈ AdvM′ are probabilistic stuttering equivalent w.r.t. AP ′′ ⊆ AP ∩ AP ′ if and

only if,

ProbAs0(C(l+0 , l
+
1 , . . . , l

+
n )) = ProbA

′

s′0
(C(l+0 , l

+
1 , . . . , l

+
n ))

for all pairwise distinct l0, l1, . . . , ln ∈ 2AP ′′

for n ≥ 0.

Definition 3.5.10. [8] Two MDPs, M and M′, with atomic propositions, AP and AP ′,

respectively, are said to be probabilistic stutter equivalent w.r.t. AP ′′ ⊆ AP ∩ AP ′ if and

only if every adversary of M is probabilistic stuttering equivalent to some adversary of M′

w.r.t AP ′′, and vice versa.

In the remainder of this thesis, when it is clear from the context, we will use the term

stuttering equivalence to refer to probabilistic stuttering equivalence between MDPs and

adversaries and stuttering equivalence between paths. Furthermore, we overload the ≃

operator and denote stuttering equivalence between two adversaries A and A′ with respect

to some set of atomic propositions, AP , by A ≃ A′ with respect to AP . Similarly, stut-

tering equivalent MDPs, M and M′, with respect to AP , are denoted by M ≃ M′ with

respect to AP .

Stuttering equivalent paths satisfy the same set of LTL\X properties [44]. It has also

been shown that the languages induced by LTL properties are measurable [61]. Therefore,

LTL\X properties induce stutter-invariant measurable languages. From Definition 3.5.8,

it therefore follows that stuttering equivalent adversaries preserve the probability measure

over paths satisfying LTL\X properties, a fact we state formally in Proposition 3.5.11.
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Figure 3.6: Two MDPs with stuttering equivalent adversaries

Proposition 3.5.11. [8] If M and M′ are MDPs with atomic propositions AP and AP ′,

respectively, and adversaries A and A′, respectively, then for any LTL\X path formula ψ

with atomic propositions in AP ′′ ⊆ AP ∩ AP ′, if A is stuttering equivalent to A′ w.r.t.

AP ′′ then

ProbAs0({ω ∈ PathAs0 |ω |= ψ}) = ProbA
′

s′0
({ω′ ∈ PathA

′

s′0
|ω′ |= ψ}).

It follows that the supremum and infimum probability measures (with respect to the set of

adversaries) over the set of paths, under an adversary, that satisfy some LTL\X property

must be equal for two stuttering equivalent MDPs. Thus,

Lemma 3.5.12. [8] If M and M′ are MDPs with atomic propositions AP and AP ′,

then for any QLTL\X property φ with atomic propositions in AP ′′ ⊆ AP ∩ AP ′, if M is

stuttering equivalent to M′ w.r.t. AP ′′ then,

M |= φ⇔ M′ |= φ.

Example: To illustrate some of the concepts described thus far, in Figure 3.6 we give

an example of two MDPs, M and M′, with initial states s0 and s′0 respectively. The

MDP M, has action set Act = {a, b, c} and M′ has action set Act ′ = {b, c}. Note that

in both MDPs there is only one action enabled from every state and hence there is only

one adversary associated with each MDP. Let these adversaries be A and A′. We show a

fragment of the DTMCs obtained under these adversaries in Figure 3.7.
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Figure 3.7: The DTMCs obtained under the (unique) adversaries of the MDPs in Figure

3.6

The adversaries A and A′ are stuttering equivalent w.r.t. AP = {x = 0, x = 1} since,

ProbAs0(C({x = 0}+)) = ProbA
′

s′0
(C({x = 0}+)) = 1 and,

ProbAs0(C({x = 0}+, {x = 1}+)) = ProbA
′

s′0
(C({x = 0}+, {x = 1}+)) = 1,

and the probability measure over all other trace-cylinders is zero. Since A and A′ are

unique for M and M′ respectively, M ≃ M′ w.r.t. AP .

Let ψ be the LTL\X path formula true U x = 1. Then,

ProbAs0({ω ∈ PathAs0|ω |= ψ}) = ProbA
′

s′0
({ω′ ∈ PathA

′

s′0
|ω′ |= ψ}) = 1.

Thus, M and M′ both satisfy the QLTL\X property P≥1[ψ].

The proof of the following result is given in [56] for a more general case. For the sake of

completeness we provide the proof for the special case we consider here.

Lemma 3.5.13. Let M = (S, s0,Steps ,Act , L) and M′ = (S′, s′0,Steps ′,Act ′, L′) be

MDPs with sets of atomic propositions AP and AP ′ respectively. Let A and A′ be ad-

versaries of M and M′ respectively, and let AP ′′ ⊆ AP ∩ AP ′. Suppose that there exists

cuts D0,D1, . . . with, for all i ≥ 0, Di ∈ Cut(A′), such that
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1. ∀i ≥ 0, ∀α ∈ Di+1, α ∈ Di or for some β ≤ α, β ∈ Di,

2. For every α ∈ PathAfin(s0), limi→∞
∑

β∈Di,α≤β
P(β) = ProbAs0(C(α)),

3. For each i ≥ 0, define µi : cutAi → [0, 1], µ′i : Di → [0, 1] such that for α ∈ cutA,

α′ ∈ Di, µi(α) = P(α), µ′i(α
′) = P(α′). Then µi ⊑R µ

′
i where for α ∈ cutAi , α′ ∈ Di,

R(α,α′) iff α ≃ α′ w.r.t. AP ′′,

then, A is stuttering equivalent to A′.

Proof. Let l0, l1, . . . , ln ∈ AP ′′ be pairwise distinct. Notice that,

ProbAs0(C(l+0 , l
+
1 , . . . , l

+
n )) =

∑

α∈TA
l0,l1,...,ln

ProbAs0(C(α)),

where

TAl0,l1,...,ln = {α ∈ PathAfin(s0)|trace
AP ′′

(α) ≃ l0, l1, . . . , ln∧∀β < α, traceAP ′′

(β) 6≃ l0, l1, . . . , ln}.

Alternatively,

ProbAs0(C(l+0 , l
+
1 , . . . , l

+
n )) = lim

i→∞

∑

α∈cutA(i),∃β≤α.β∈TA
l0,l1,...,ln

ProbAs0(C(α)).

Similarly,

ProbA
′

s′0
(C(l+0 , l

+
1 , . . . , l

+
n )) = lim

i→∞

∑

α′∈Di,∃β′≤α′.β′∈TA′

l0,l1,...,ln

ProbA
′

s′0
(C(α′)).

Let i ≥ 0 and let w be the weight function such that µi ⊑R µ
′
i. Then,

∑

α∈cutA(i),∃β≤α.β∈TA
l0,l1,...,ln

ProbAs0(C(α))

=
∑

α∈cutA(i),∃β≤α.β∈TA
l0,l1,...,ln

µi(α),

=
∑

α∈cutA(i),∃β≤α.β∈TA
l0,l1,...,ln

∑

α′∈Di

w(α,α′),

=
∑

α′∈Di,∃β′≤α′.β′∈TA′

l0,l1,...,ln

∑

α∈cutA(i)

w(α,α′),

=
∑

α′∈Di,∃β′≤α′.β′∈TA′

l0,l1,...,ln

µ′i(α
′),

=
∑

α′∈Di,∃β′≤α′.β′∈TA′

l0,l1,...,ln

ProbA
′

s′0
(C(α′)).
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Thus we have that,

ProbAs0(C(l+0 , l
+
1 , . . . , l

+
n )) = ProbA

′

s′0
(C(l+0 , l

+
1 , . . . , l

+
n )).

Stuttering Equivalent Sets of Paths

We now extend our definition of stuttering equivalence between adversaries to a subset of

paths under some adversary. It is necessary to consider this for our results in Chapter 6.

Definition 3.5.14. Let M = (S, s0,Steps ,Act , L), M′ = (S′, s′0,Steps ′,Act ′, L′) be MDPs

and let AP and AP ′ be the sets of atomic propositions over M and M′ respectively. Given

(randomised) adversaries A ∈ AdvM(∈ RAdvM), A′ ∈ AdvM′(∈ RAdvM′) and a set of

paths Π ⊆ PathAs0 (measurable under ProbAs0), then, Π is stuttering equivalent to A′ with

respect to AP ′′ ⊆ AP ∩ AP ′ if and only if,

ProbAs0({ω ∈ PathAs0 |trace
AP ′′

(ω) ∈ L} ∩ Π)

ProbAs0(Π)
= ProbA

′

s′0
(L)

for all stutter-invariant measurable languages L.

If Π is stuttering equivalent to A we denote this by Π ≃ A. Arguing in a similar manner

as for Proposition 3.5.11 we can establish Lemma 3.5.15.

Lemma 3.5.15. Let M = (S, s0,Steps ,Act , L), M′ = (S′, s′0,Steps ′,Act ′, L′) be MDPs

and let AP and AP ′ be the sets of atomic propositions over M and M′ respectively.

Given two (randomised) adversaries A ∈ AdvM(∈ RAdvM), A′ ∈ AdvM′(∈ RAdvM′), let

Π ⊆ PathAs0 be a set of paths measurable under ProbAs0 such that Π is stuttering equivalent

to A′ with respect to AP ′′ ⊆ AP ∩ AP ′. Then, for a LTL path formula ψ with atomic

propositions in AP ′′,

ProbAs0({ω ∈ PathAs0|ω |= ψ} ∩ Π)

ProbAs0(Π)
= ProbA

′

s′0
({ω′ ∈ PathA

′

s′0
|ω′ |= ψ}).

3.5.3 Isomorphism

Isomorphic DTMCs must have exactly the same structural behaviour (up to the labelling

of states). Definition 3.5.16 is taken from [26] (adapted from [42]).
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Definition 3.5.16. Let D = (S, s0,P, L) and D′ = (S′, s′0,P
′, L′) be DTMCs and let

ς : S → S′ be a bijection. Suppose that for all s, t ∈ S, P(s, t) = P′(ς(s), ς(t)). Then ς is

an isomorphism from D to D′, and D and D′ are said to be isomorphic.

The following result is adapted from [26].

Lemma 3.5.17. Let D = (S, s0,P, L) and D′ = (S′, s′0,P
′, L′) be DTMCs with atomic

propositions AP and AP ′, respectively, and let Σ : AP → AP ′ be a bijection. For a QLTL

formula φ with atomic propositions taken from AP, Σ(ψ) is the QLTL formula obtained

from φ by replacing every atomic proposition a in AP with Σ(a). Let ς : S → S′ be an

isomorphism from D to D′ such that, for all s ∈ S and a ∈ AP, a ∈ L(s) ⇐⇒ Σ(a) ∈

L′(ς(s)). Then for any QLTL formula φ with atomic propositions from AP and s ∈ S,

D, s |= φ ⇐⇒ D′, ς(s) |= Σ(φ).

3.5.4 Isomorphism between Adversaries

Isomorphic adversaries must have exactly the same structural behaviour (up to labelling

of states). Definition 3.5.18 and Lemma 3.5.19 are adapted from [26].

Definition 3.5.18. Let M = (S, s0,Steps ,Act , L) and M′ = (S′, s′0,Steps ′,Act ′, L′) be

MDPs with adversaries A and A′ respectively. Let ρ : PathAfin(s0) → PathA
′

fin(s
′
0) be

a bijection with ρ(s0) = s′0. Suppose, for all α ∈ PathAfin(s0), if A(α) = (a, µ) and

ρ(α
(a,µ)
−→ t) = α′ (a′,µ′)

−→ t′ then A′(α′) = (a′, µ′) and µ(t) = µ′(t′) for all t such that

µ(t) > 0. Then ς is an isomorphism from A to A′, and A and A′ are isomorphic (denoted

A = A′).

Lemma 3.5.19. Let M = (S, s0,Steps ,Act , L) and M′ = (S′, s′0,Steps ′,Act ′, L′) be

MDPs with propositions AP and AP ′, respectively and let Σ : AP → AP ′ be a bijec-

tion. For LTL property ψ with propositions in AP, Σ(ψ) is the LTL formula obtained

from ψ by replacing every proposition a with Σ(a). Let ς be an isomorphism between

adversaries A (of M) and A′ (of M′) such that, for all α ∈ PathAfin(s0) and a ∈ AP,

a ∈ L(last(α)) ⇐⇒ Σ(a) ∈ L′(last(ς(α))). Then for any LTL formula ψ with proposi-

tions from AP, ProbAs0(ψ) = ProbA
′

s′0
(Σ(ψ)).

Let M = (S, s0,Steps ,Act , L) and M′ = (S′, s′0,Steps ′,Act ′, L′) be MDPs and let A and

A′ be adversaries of M and M′ respectively. For a measurable set of paths Π ⊆ PathA(s0),
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if ς is an isomorphism between A and A′ then we say Π is isomorphic to Π′ ⊆ PathA
′

(s′0)

(denoted Π = Π′) if and only if Π′ = ς(Π) where ς(Π) = {ς(π)|π ∈ Π}. If ς and Σ are as

defined in Lemma 3.5.19 then it should be clear that for a LTL formula ψ,

ProbAs0({π ∈ Π|π |= ψ) = ProbA
′

s′0
({π′ ∈ Π′|π′ |= Σ(ψ)).

Summary We have reviewed some aspects of the field of model checking. In particular

we have defined Discrete Time Markov Chains and Markov Decision Processes, adver-

saries of MDPs, the PCTL and QLTL probabilistic temporal logics and the PRISM model

checking tool. We have also defined the bisimulation, simulation, stuttering equivalence

and isomorphism relations for Markov decision processes.



Chapter 4

Parameterised Verification of

Non-degenerative Distributed

Systems

Outline In this chapter we construct a network invariant for a simple token ring pro-

tocol using a methodology based on data abstraction that has previously been applied to

a number of non-probabilistic distributed systems. We extend the definition of data ab-

straction to probabilistic models so that we can construct an invariant for a probabilistic

variant of the token ring protocol. Using probabilistic and non-probabilistic relations we

show that proving the invariants satisfy a property is equivalent to verifying the property

is satisfied for the token ring protocol, for any size of ring.

4.1 Introduction

As discussed in Chapter 1, the construction of a finite-state network invariant is a com-

monly employed technique when verifying parameterised distributed systems. Although

it has been shown that a finite-state invariant does not always exist [62], this is often

a useful method, particularly when considering distributed systems that have a regular

topology (e.g. a star or a ring). The method of construction can vary depending on the

type of system under consideration and the formalism used to specify the system. One

such method is by abstraction (initially described in [21]). For example, an abstraction

60
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mapping is defined on the states of a concrete model, and on a property. Application

of the map results in an abstract (or reduced) model (and property). Proving that the

abstract model satisfies any ‘abstracted’ property implies that the property holds in the

concrete model [38].

Abstraction in the construction of a network invariant for a variety of systems has been

considered in [17,49]. Finite-state network invariants are constructed for a fully connected

email system, a client-server system and a leader election protocol for star topologies. The

network invariants are specified in Promela by defining an abstract process that captures

the behaviour of an arbitrary number of concrete processes, and composing this process

in parallel with some fixed number of ‘concrete’ processes.

Rather than employing the invariant rule [62], a relationship is established between the

underlying models of the invariant specifications and the underlying models of the fixed size

system specifications. However, instead of showing a direct relationship, an intermediate

step is employed, based on data abstraction (see Section 4.2) of the models of the fixed size

system specifications. This simplifies the proof and provides a guide for the construction

of the invariant. The data abstracted models are shown to satisfy any properties satisfied

by the model of the invariant specification. Properties of the concrete model of a system

of any size can then be inferred from properties of the invariant (which are established by

model checking).

To illustrate the approach, we construct a network invariant for a simple counter token ring

protocol (CTRP) described in Section 4.3. Concrete models for the token ring protocol are

defined in terms of Promela specifications that are generated from a script program. The

invariant model is also described by a Promela specification, as outlined in Section 4.4.

The SPIN model checker is used to model check various LTL properties for the invariant.

In section 4.5 we prove that any property that holds in the model of the invariant of

the token ring system will hold for a concrete model of the CTRP with any number of

processes.

We then proceed in Section 4.6 to introduce probabilistic choice to the model of the CTRP

and specify concrete probabilistic models using PRISM (Section 4.8). In Section 4.10 we

extend the parameterised verification proof employed for the CTRP to these probabilistic

models. To do this we construct an invariant model from a PRISM specification and
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show (through the use of an adaptation of data abstraction to probabilistic models) that

properties of the invariant hold for the concrete models.

4.2 Data Abstraction

As discussed in the previous section, in this chapter we extend the approach, based on

data abstraction [18]. Data abstraction is employed to create an abstract model for models

described by a set of variables, e.g. the models derived from a Promela specification.

Definition 4.2.1. Let X = {x0, x2, . . . , xn−1} be a set of variables where xi has domain

D(xi), ∀i, 0 ≤ i < n. We define the set of atomic propositions over X by AP = {x = d|x ∈

X, d ∈ D(x)}. The domain of X is defined as D(X) = D(x0) ×D(x1) × . . .×D(xn−1).

Definition 4.2.2. Let X be a set of variables with domain D(X) and let init(X) be the

tuple of initial values for the variables in X. A (labelled) Kripke structure K over X is a

tuple (D(X), init(X), R, L), where L labels each state with atomic propositions from the

set AP over X.

To define an abstract model of a system, surjective mappings are defined from the domains

of the variables that describe a model to a set of values in an abstract domain. In doing

so, the set of possible values that the variables can take is restricted to a smaller set. This

can then be used to define a reduced Kripke structure. This has the obvious advantage of

reducing the size of the model, while preserving the behaviour of the system (see Lemma

4.2.5, below).

Definition 4.2.3. Let X = {x0, x1, . . . , xn−1} denote a set of variables such that each

variable xi ranges over a set D(xi). A set of abstract values D′(X) = D′(x0) ×D′(x1) ×

. . .×D′(xn−1) is called an abstract domain of X if there exist surjections h0, h1, . . . , hn−1

such that hi : D(xi) → D′(xi) for all 0 ≤ i < n. If such surjections exist they induce a

surjection h : D → D′ defined by h((x0, x1, . . . , xn−1)) = (h0(x0), h1(x1), . . . , hn−1(xn−1)).

Note that the states of the reduced Kripke structure are represented by sets of propositions

whereas the states of the original structure are represented by a tuple of values. The

labelling of the states are still given as sets of propositions, however.
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Figure 4.1: Example of a Kripke structure and a reduced structure under data abstraction

Definition 4.2.4. [18] Let K = (S,R, s0, L) be a Kripke structure over variable set X

with the set of atomic propositions AP over X. If D′(X) is an abstract domain of X and

h the corresponding surjection from D(X) to D′(X) then h determines a set of abstract

atomic propositions AP ′. Let K′ denote the structure identical to K but with the set of

labels L′ where L′ labels each state with a set of abstract atomic propositions from AP ′.

Suppose that for all s ∈ S, s 6= s0, h(s0) 6= h(s) then the structure K′ can be collapsed into

a reduced structure Kr = (Sr, Rr, s
0
r, L

′) where

1. Sr = {L′(s)|s ∈ S}, the set of abstract labels.

2. APr = AP ′

3. As each sr ∈ Sr is a set of atomic propositions, L′(sr) = sr.

4. For sr, tr ∈ Sr, Rr(sr, tr) if and only if there exists s ∈ S and t ∈ S such that

sr = L′(s), tr = L′(t) and R(s, t).

Intuitively, under data abstraction, groups of states of a model that were differentiated

become equivalent. Equivalent states are then be represented as a single state in the

reduced model. Any transitions to and from states in the original Kripke structure that

have been data abstracted, must be preserved between the corresponding representative

states in the reduced structure.

Example: Figure 4.1 shows how data abstraction is applied to a simple mutual ex-
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clusion protocol. In this case the model in Figure 4.1(a) consists of a single variable

state which represents the state of a single process and can take any of the values in the

domain {working, idle, trying, critical, failed}. Given the surjective mapping such that

working 7→ working, idle 7→ working, trying 7→ trying, failed 7→ trying, critical 7→

critical, the abstract domain of the variable state is given by the set {working, trying ,

critical}. The reduced structure is shown in Figure 4.1(b).

An important point to note from this example is that, in the reduced structure, the state

labelled by the proposition state = trying has a self-looping transition. This is because,

in the original structure, the state with state = trying can make a transition to state =

failed. In the reduced structure state = failed is data abstracted to state = trying and

so this state is ‘merged’ with the original state, state = trying. However, the transition

in the original structure must be preserved and hence the self-loop must be included.

The following lemma is a restriction of a result in [20], which considered CTL* properties

that only contain the A quantifier. The lemma states that any LTL properties that hold in

a reduced (under data abstraction) structure of a system will also hold in the original [49].

Lemma 4.2.5. If K is a Kripke structure with atomic propositions AP and Kr a re-

duced Kripke structure under h (as defined in Definition 4.2.4) with set of abstract atomic

propositions AP ′ then for any LTL property φ with atomic propositions in AP, Kr |= h(φ)

implies that K |= φ (where h(φ) maps the atomic propositions in φ to their abstract coun-

terparts).

Note that, in practice, we choose properties φ such that h(φ) = φ.

4.3 Specifying the Counter Token Ring Protocol (CTRP)

In this section we consider a counter token ring protocol (CTRP), in which processes

pass a single token around a ring in one direction. If a process is ready to perform some

operation (e.g. to transmit a message or to access some shared resource), it waits until it

receives the token, performs its operation and then passes the token on. We include in the

token a counter. Each time a process acquires the token and performs some operation, the

counter is decremented by one. Once the counter reaches zero, the protocol terminates.
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The counter could be used, for example, as a means to limit the number of operations that

can be performed (see for example [59]).

We specify models of the CTRP using Promela; specifications for any fixed number of

processes can be generated from a script program. Note that, in modelling the protocol,

we use an arbiter process to decide when the processes should perform some operation

(and therefore decrement the counter). An example of the Promela code for the concrete

specification of the CTRP with four processes and one arbiter is given in Appendix A. We

informally outline the behaviour of each process, below.

A process definition is given for a process and for the arbiter. The arbiter updates one

global boolean variable, work. Once the arbiter has changed the value of work, it must wait

for a process to set the global boolean variable done to the appropriate value so that work

can be changed again. For example, if work is true then once done is set to true, arbiter

can set work to false. Note that the arbiter process is always at the location labelled

change, and therefore the program counter for arbiter can be considered a constant and

thus ignored.

A process has three parameters: an in channel, an out channel and an index, id. Several

process components are instantiated, with the in channel of each process being the out

channel of its left ‘neighbour’ and the id of each one being unique. Note that channels

are stored in a global array, ch, with each element being indexed by the id of the process

which has that channel as its in channel. If a channel holds value k we denote this by [k];

if a channel is empty we denote this by [].

Initially, each process is at the location labelled idle and it polls its in channel for receipt

of a counter token. If the channel is not empty, its value is read and stored in token, a

local integer variable, process moves to the location labelled rcvd and a check is made to

establish whether work is true or false. If work is false then process sends the value of

token to its neighbour via its out channel and returns to idle. If work is true, token is

decremented and a check is made to see if token equals zero. If token==0, then end is

set to true and the process moves to finish. Otherwise process sets done to true, moves to

location label pass and waits for work to be set to false before sending the new value of

token to its neighbour and moving to label idle.

The specification also includes a number of variables which are only used for verification
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purposes. For example, each process has a local variable possess, which is set to true when

the process receives the token and is reset to false when token is passed on. This can then

be used to verify that no two processes ever have the token at the same time. Another

local process variable, working is set to true whenever token is decremented and is reset

to false when token has been passed on. This can be used, for example, to verify that

an operation can be performed by process. Also, the global integer variable finished is

incremented by one whenever a process sets the token value to zero.

At initialisation, ch[0] is set to some positive non-zero value, all other channels are ini-

tialised empty and work and done are set to false. At this point, the processes must also

be instantiated: a fixed number of processes are run in parallel with one arbiter process.

For N > 1 and c ≥ 1, we let S(N, c) denote the specification:

init{

atomic{

run process(ch[0],ch[1],0);

run process(ch[1],ch[2],1);

...

run process(ch[N],ch[0],N);

run arbiter();

ch[0]!c; // always start with process 0

}

}//init

Note that there are two parameters to our verification problem: the number of processes

and the initial value of the counter. However, in constructing an invariant we only consider

the former. The latter remains a parameter for the invariant.

To distinguish between the local variables of each process, we use vari to denote the local

variable var associated with the instantiation of process with id equal i. Similarly we

refer to processi.

4.3.1 Properties of the CTRP

A description of the properties of the CTRP that capture correct behaviour of the system

are given below. The properties are formalised using LTL and have been verified using
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SPIN for two, three, four and five processes (and one arbiter process) and the initial value

of the counter between one and ten.

Safety

S1. Only one process at a time can hold the token.

�((!possess0&&!possess1&& . . .&&!possessN−1)

||(possess0&&!possess1&&!possess2&& . . .&&!possessN−1)

||(!possess0&&possess1&&!possess2&&!possess3&& . . .&&!possessN−1)
...

||(!possess0&&!possess1&& . . .&&!possessN−2&&possessN−1))

S2. At most one process can finish.

• �(finished == 0||finished == 1)

Liveness

L1. Eventually a process will finish.

• (finished == 0)U(finished == 1)

L2. If process i (for each 0 ≤ i ≤ N − 1) receives the token it will always eventually pass

the token to its neighbour, unless the protocol has terminated.

• �(possessi → (♦(!possessi||end)))

L3. Eventually the arbiter will schedule an operation.

• ♦(work)

L4. An operation can be performed infinitely often.

• �♦(work)

L5. Once finished, every process must have a token with zero value.

• ♦(end&&(token0 == 0)&&(token1 == 0)&& . . .&&(tokenN−1 == 0))

L6. Process i (for each 0 ≤ i ≤ N − 1) can perform an operation.
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• �(workingi) (show to be false)

L7. It is possible for process i (for each 0 ≤ i ≤ N − 1) to never perform an operation.

• ♦(workingi) (show to be false)

L8. Eventually the protocol will end and will not restart.

• ♦�(end)

It should be observed that under normal circumstances properties L1, L3, L4, L5 and

L8 do not hold because there exist paths along which the arbiter process never executes,

so that work is false forever and the counter never decremented. As discussed in Section

2.4.1, SPIN provides an option to apply weak fairness during verification to ensure that

any process that has an enabled transition will eventually execute it. In this case, by

applying weak fairness during verification of properties L1, L3, L4, L5 and L8, the

arbiter process must eventually be executed, so that work is always eventually set to true,

hence these properties hold. Note also that L7 will hold without any fairness constraints,

but weak fairness should still be applied to avoid searching infinite paths for which the

property would (trivially) hold.

4.4 Specification of an Invariant for the CTRP

To describe an invariant model that captures the behaviour of every concrete model we

specify in Promela an abstract process that captures the behaviour of an arbitrary number

of process processes. Intuitively, this process behaves the same as a process: it can receive

the token from its neighbour and then either pass the token on or decrement the token

and then either terminate or pass the token on. However, when passing the token, the

abstract process can non-deterministically choose to either send it to its neighbour or send

the token back to itself. In this way the abstract process behaves like an arbitrary number

of processes.

The Promela code for the invariant specification of the CTRP with two concrete process

components, an arbiter and an abstract process is provided in Appendix B. Note that we

can run any number of process components in parallel with the abstract process. We assume

that there are m such processes. We describe below the operation of abstract process.
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The abstract process has the same local parameters as for a process, with id always being

given the highest possible value (m), out aways being channel ch[0] and in always being

ch[m]. As for process, in location idle, abstract process will accept the token when it has

been sent on its in channel, move to location rcvd and then check whether work is true

or false.

However, once it has determined the status of work, the behaviour of abstract process

deviates from that of process. If work is false, it can still send the token to its neighbour

but it may also non-deterministically choose to send the token to itself via its in channel,

before returning to the idle location. In the latter case, execution will then continue with

abstract process reading the token from channel in and moving to rcvd. Note that if work

is false forever, then it is possible for abstract process to do this an infinite number of

times.

On the other hand, if work is true, abstract process must decrement token. Either token

is zero, end is set to true, finished is incremented by one and execution jumps to finish

or token is non-zero and done is set to true. In the latter case, execution then blocks

at the location labelled pass until work is false, after which done is set to false. The

abstract process can then non-deterministically choose to send token to its neighbour or

to itself before moving to location idle.

It should be apparent from the above description of abstract process that the possess and

working variables are not included in the process specification. This is a result of the data

abstraction step which will be described in Section 4.5.

As described above, abstract process is always given the highest id value (m say). It

receives token from processm−1 and passes it to process0 (or to itself). Hence, the topology

(of the ring) consists of m neighbouring concrete processes with a single abstract process

between process0 and processm−1 (see Figure 4.2). It should be noted, however, that

it is also possible to define alternative topologies where the concrete processes may not

be adjacent e.g. where an abstract process is inserted between all neighbouring concrete

processes.

Note that, as discussed earlier, the initial value of the counter remains a parameter in the

invariant specification, and the number of concrete processes is also a parameter. There-

fore, rather than specifying a single invariant we are in fact describing a parameterised
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process0

process1

processm−1

abstract processm

Figure 4.2: Topology for the abstract token ring specification (excluding the arbiter pro-

cess) with m concrete processes

family of invariants. For m > 1 and c > 1, we let I(m, c) denote the invariant specification:

init{

atomic{

run process(ch[0],ch[1],0);

run process(ch[1],ch[2],1);

...

run process(ch[m− 1],ch[m],m− 1);

run abstract process(ch[m],ch[0],m);

run arbiter();

ch[0]!c; // always start with process 0

}

}//init

where each process and arbiter are as defined previously and abstract process is as de-

scribed above and defined in Appendix B.

4.4.1 Properties of the Invariant

A number of LTL properties were described in Section 4.3.1 for the concrete Promela

specification of the CTRP. Some LTL properties for the invariant specification are given

below, again divided into the classes of safety and liveness. It is important to note that
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some of the properties below are different from those given for the concrete specification.

As we will see in the following sections, the abstraction of the concrete models inhibits

the set of variables that we can refer to when specifying our properties. Specifically we

cannot make reference to any local variable of an abstract process in any property of the

invariant that we wish to verify.

Safety

IS1. Only one concrete process at a time can hold the token.

�((!possess0&&!possess1&& . . .&&!possessm−1)

||(possess0&&!possess1&&!possess2&& . . .&&!possessm−1)

||(!possess0&&possess1&&!possess2&&!possess3&& . . .&&!possessm−1)
...

||(!possess0&&!possess1&& . . .&&!possessm−2&&possessm−1))

IS2. No more than one process can finish.

�(finished == 0||finished == 1)

Liveness

IL1. Eventually one process will finish.

((finished == 0)U(finished == 1))

IL2. If concrete process i (for each 0 ≤ i ≤ m − 1) receives the token it will always

eventually pass the token to its neighbour, unless the process has finished.

�(possessi → (♦(!possessi||end)))

IL3. Eventually the arbiter will schedule an operation.

♦(work)

IL4. An operation can be performed infinitely often.

�♦(work)
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IL5. Once finished every concrete process must have a zero token.

♦(end&&(token0 == 0)&&(token1 == 0)&& . . . (tokenm−1 = 0))

IL6. Each process can perform an operation. For each 0 ≤ i ≤ m− 1,

�!workingi (show to be false)

IL7. It is possible for a process to never perform an operation. For each 0 ≤ i ≤ m− 1,

♦(workingi) (show to be false)

IL8. Eventually the protocol will end and will not restart.

♦�(end)

The properties IS1, IS2, IL2, IL3, IL4, IL6 and IL7 have been verified against the

invariant specification of the CTRP with two process components and one abstract process

process, and with the initial value of the counter between one and ten. Note, though, that

weak fairness had to be applied to verify properties IL3 and IL4.

However, the remaining properties (IL1, IL5) do not hold even under the application

of weak fairness. This is due to the introduction of cycles into the abstract process as

described in Section 4.4: intuitively it is possible for the abstract process to pass the token

to itself forever. We return to this point at the end of the chapter.

It should also be pointed out that properties IS1, IL2, IL6 and IL7 may not refer to the

possess or working variables associated with the abstract process components. This is an

example of the restriction that is given later in Theorem 4.5.1, which states that a property

can only hold under abstraction if it does not index any abstract process components. This

stipulation is necessary, and limits the type of property that can be verified. For example,

it should be apparent that, in the abstract specification, IS1 only shows that the concrete

processes will never possess the token simultaneously, and does not give any information

on whether any abstract process can hold the token at the same time as another process.

4.5 Parameterised Verification Proof for the CTRP

We prove that the model of the invariant specification captures the behaviour of the models

of the concrete specifications i.e. we show that if any property (satisfying a given set of
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restrictions) holds in the invariant model then it will hold in the concrete model for any

number of processes. We do this using a proof similar to those of [17, 49]. We give this

proof in some detail here since it provides a basis for our proof for the probabilistic case

in Section 4.6.

For N > 1 and c > 1, given a CTRP specification, S(N, c), let the concrete (Kripke

structure) model of the CTRP be MN . Given an invariant specification I(m, c), for

m > 1, let Mm
I be defined as the invariant model of the CTRP.

The processes with id between 0 and m−1 in both the invariant and concrete specifications

will be referred to as the concrete processes while those with id between m and N − 1 in

the concrete specification will be described as the abstract processes.

We aim to prove the following:

Theorem 4.5.1. Let m > 1 and let φ be an LTL property that does not contain any index

greater than or equal to m in its atomic propositions. Then, for all N > m, c ≥ 1, if

Mm
I |= φ then MN |= φ.

Proof Overview The proof is in two stages: creation of a reduced model from MN (for

each N) by data abstraction, followed by definition of a simulation relation between each

reduced model and Mm
I .

The construction of a reduced set of models proceeds as follows. For each concrete

model MN of the system with a fixed number of N > m processes, and property φ,

the processes are divided into concrete processes p0, p1, . . . , pm−1 and abstract processes

pm, pm+1, . . . , pN−1. We assume property, φ, only refers to the concrete processes (i.e. the

atomic propositions in φ include only the local and channel variables with index 0 ≤ i < m)

and not to the abstract processes.

An abstract model Mm
N is constructed by data abstraction on the variables of the abstract

processes (and possibly some of the variables of the concrete processes). From Definitions

4.2.3 and 4.2.4, this is done by defining a set of surjections that map the values of the

variables in MN to values in an abstract domain (in this case we assume the abstract

domain is a subset of the concrete domain). From Lemma 4.2.5, any properties that hold

in a reduced structure of a system will also hold in the original, and so, for all N > m, if

Mm
N |= φ for some suitable property φ, then MN |= φ.
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The invariant model Mm
I is specified in such a way that it captures the behaviour of an

arbitrary number of the abstract processes. For each N > m, we establish a simulation

relation between Mm
N and Mm

I , thereby showing that the latter simulates the former.

From Lemma 2.5.4, any property that holds in a structure will also hold in any structure

that it simulates. So if Mm
I simulates Mm

N and Mm
I |= φ for a suitable property φ, then

Mm
N |= φ. It then follows that MN |= φ, for any value of N .

4.5.1 Creating Reduced Models by Data Abstraction

Let m > 1, N > 1. A requirement of the proof is to define a reduced structure based on

the concrete model, by data abstraction. This is done by defining a set of surjections that

map the values from the domain of variables of every concrete model, MN , to values in

an abstract domain.

From the specification S(N), we know that the set of variables in the concrete model MN

is given by X = XG ∪ XV ∪ XC , where XG = {ready ,work , end ,finished} is the set of

global variables, XV = {loc, token , possess ,working} is the set of all local variables and

XC = {ch} is the set of channel variables with,

loc = (loc0, . . . , locN−1)

token = (token0, token1, . . . , tokenN−1)

possess = (possess0, . . . , possessN−1)

working = (working0, . . . ,workingN−1)

ch = (ch[0], ch[1], . . . , ch[N − 1]).

Note the inclusion of the local variables loci. These represent the program counter variables

for each process. The only execution points that a process can visit are those labelled by

idle, rcvd, pass and finish in the specification and so, below, we give the domain for each

of the loci variables as this set of labels.

For every variable in XG, the surjective mapping is the identity map on the respective
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domains. The domains of XV and XC are given by,

D(loc) = D(loc0) ×D(loc1) × . . . ×D(locN−1),

D(token) = D(token0) ×D(token1) × . . .×D(tokenN−1),

D(possess) = D(possess0) ×D(possess1) × . . .×D(possessN−1),

D(working) = D(working0) ×D(working1) × . . .×D(workingN−1),

D(ch) = D(ch[0]) ×D(ch[1]) × . . . ×D(ch[N − 1]),

where ∀i, 0 ≤ i ≤ N − 1,

D(loci) = {idle, rcvd, pass, finish},

D(tokeni) = {0, 1, . . . , c},

D(possess i) = D(working i) = {true, false},

D(ch[i]) = {[], [1], . . . , [c]}.

For m > 1, N > m the abstract domains are given below. Note that we consider the loc

and token variables, associated with the abstract processes, differently from the others.

We consider a tuple of these values. This enables the variables to be data abstracted to

a single value, which is necessary since we need to include a loc and possess variable in

the invariant specification. The local variable, possess, for example, does not need to be

considered in this way since we do not refer to it in the invariant specification.

D′(loc) = D′(loc0) ×D′(loc1) × . . .×D′((locm, locm+1, . . . , locN−1)),

D′(token) = D′(token0) ×D′(token1) × . . .×D′((tokenm, . . . , tokenN−1)),

D′(possess) = D′(possess0) ×D′(possess1) × . . .×D′(possessN−1),

D′(working) = D′(working0) ×D′(working1) × . . . ×D′(workingN−1)),

D′(ch) = D′(ch[0]) ×D′(ch[1]) × . . .×D′((ch[m], . . . , ch[N − 1])),

where, ∀i, 0 ≤ i ≤ m− 1,

D′(loci) = {idle, rcvd, pass, finish},

D′(tokeni) = {0, 1, . . . , c},

D′(possess i) = D′(working i) = {true, false},

D′(ch[i]) = {[], [1], . . . , [c]},
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and ∀i, m ≤ i ≤ N − 1,

D′(possess i) = D′(working i) = {true},

and,

D′((locm, locm+1, . . . , locN−1)) = {idle, rcvd, pass, finish},

D′((tokenm, tokenm+1, . . . , tokenN−1)) = {0, 1, . . . , c},

D′((ch[m], ch[m+ 1], . . . , ch[N − 1])) = {[], [1], . . . , [c]}.

Then for all 0 ≤ i ≤ N − 1, the corresponding surjections can be defined as follows

d : D(loc) → D′(loc)

e : D(token) → D′(token)

f : D(possess) → D′(possess)

g : D(working) → D′(working)

h : D(ch) → D′(ch)

d(loc) = (d0(loc0), . . . , dm−1(locm−1), dm((locm, . . . , locN−1)))

e(token) = (e0(token0), . . . , em−1(tokenm−1), em((tokenm, . . . , tokenN−1))),

f(possess) = (f0(possess0), f1(possess1), . . . , fN−1(possessN−1)),

g(working) = (g0(working0), g1(working1), . . . , gN−1(workingN−1)),

h(ch) = (h0(ch[0]), . . . , hm−1(ch[m− 1]), hm((ch[m], . . . , ch[N − 1]))),

where ∀i, 0 ≤ i ≤ N − 1,

fi : D(possess i) → D′(possess i)

gi : D(working i) → D′(working i)

and ∀i, 0 ≤ i ≤ m− 1,

di : D(loci) → D′(loci)

ei : D(tokeni) → D′(token i)

hi : D(ch[i]) → D′(ch[i])

and,

dm : D((locm, . . . , locN−1)) → D′((locm, . . . , locN−1))

em : D((tokenm, tokenm+1, . . . , tokenN−1)) → D′((tokenm, tokenm+1, . . . , tokenN−1))

hm : D((ch[m], . . . , ch[N − 1])) → D′((ch[m], . . . , ch[N − 1]))
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For all i, 0 ≤ i ≤ m−1, di, ei, fi, gi and hi are just the identity mappings on the appropriate

domains. For all i, m ≤ i ≤ N − 1, fi(possess i) = gi(working i) = false. Also,

dm((locm, locm+1, . . . , locN−1)) =







locj if ∃m ≤ j ≤ N − 1.locj 6= idle

∧∀m ≤ i 6= j ≤ N − 1, loci = idle

idle otherwise

em((tokenm, tokenm+1, . . . , tokenN−1)) =







tokenj if ∃m ≤ j ≤ N − 1.tokenj > 0

∧∀m ≤ i 6= j ≤ N − 1, token i = 0

0 otherwise

hm((ch[m], ch[m+ 1], . . . , ch[N − 1])) =







[t] if ∃m ≤ j ≤ N − 1.ch[j] = [t]

∧∀m ≤ i 6= j ≤ N − 1, ch[i] = []

[] otherwise

The reduced model Mm
N is induced as described in Definition 4.2.4. Therefore, from

Lemma 4.2.5,

Lemma 4.5.2. For any LTL property φ with atomic propositions that only refer to vari-

ables with indices less than m, for m ≥ 1 if N > m+ 1 then Mm
N |= φ implies MN |= φ.

In the following section we establish that the reduced model simulates the invariant

model. However, notice that in the reduced model any local variable with an index

greater than m does not correspond to a variable in the invariant model (and therefore the

atomic propositions are not comparable). We resolve this issue by replacing the variables

with index greater than or equal to m with a single variable (for example, by replacing

(tokenm, . . . , tokenN−1) by tokenm).

Formally, for m > 1, N > m, let M̄m
N denote the model obtained from Mm

N by replacing

every occurrence of

(locm, locm+1, . . . , locN−1),

(tokenm, tokenm+1, . . . , tokenN−1),

and (ch[m], ch[m + 1 ] . . . , ch[N − 1 ])

with the variables locm, tokenm and ch[m] respectively. Then from Lemma 4.5.2 and

variable renaming [49],

Lemma 4.5.3. For any LTL property φ that refers only to the set of global variables,

the local variables associated with the concrete processes and/or the channel variables,

ch[0], ch[1], . . . , ch[m − 1], then for m ≥ 1 and N > m+ 1, if M̄m
N |= φ then MN |= φ.
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4.5.2 Simulation between the Reduced Model and the Invariant Model

We now show that a simulation relation exists between M̄m
N and Mm

I . Let M̄m
N =

(S̄mN , s̄
m
N , R̄

m
N , L̄

m
N ) and Mm

I = (SmI , s
m
I , R

m
I , L

m
I ) with atomic propositions ĀP

m
N and APm

I ,

respectively. Note that ĀP
m
N ⊇ ĀP

m
I . We define a relation H as follows,

For all s ∈ S̄mN , s
′ ∈ SmI ,H(s, s′) ⇐⇒ L̄mN (s) ∩ APm

I = LmI (s′).

We show that M̄m
N � Mm

I by establishing that H satisfies Definition 2.5.3. Immediately,

condition 1 of Definition 2.5.3 holds by definition of the relation H. It remains to establish

condition 2, i.e. to show that every transition in the reduced model is ‘matched’ by a

transition in the invariant model. We establish the transitions that can be made in both

the reduced and invariant models, by analysing the concrete and invariant specifications,

respectively.

Note that it is only necessary to consider transitions in the concrete model that correspond

to atomic sequences in the Promela code. Statements that are embedded in these are

considered to be a single executable statement. Once an atomic sequence has been entered

it will be executed completely unless one of the statements inside it blocks, in which case

control can be passed to another process. In the CTRP example the only statements

that can block are conditionals (i.e. propositions), channel read/writes or poll operations.

Blocking statements are always put at the beginning of an atomic sequence so that it

cannot be entered until the guard becomes true. Any atomic sequences that contain

channel read/writes are also accompanied by an extra guard condition at the start of the

atomic sequence to check that the appropriate channels are full/empty. Therefore, it is

only ever necessary to consider the system state before an atomic sequence and after it.

Hence, by examining the atomic statements in the concrete Promela specification of the

CTRP, the transitions that can be made in the underlying model, MN , can be determined.

By considering the effect of the mapping h on the states of MN we can therefore derive

the transitions that can occur in M̄m
N and we can then check whether these transitions

are matched by transitions in the invariant model. It is also necessary to establish the

transitions that can be made in Mm
I by analysis of the atomic statements given in the

invariant specification. Intuitively, each statement in the concrete specification of the

arbiter process and of processi, for 0 ≤ i ≤ m − 1 corresponds to the same statement

in the invariant specification of the arbiter process and processi respectively. Also, each
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statement in the concrete specification of processi, for m ≤ i ≤ N − 1, corresponds to

a statement in the invariant specification of abstract processm. We describe matching

transitions in more detail below. Note that the atomic statements in the Promela code

in Appendix A have been labelled with a number corresponding to each statement given

below. We assume MN = (SN , s
N
0 , RN , LN ) with atomic propositions APN .

Statement 0. From the declaration of variables in the concrete specification we know that,

in sN0 , the initial state of MN , LN (sN0 ) = {loci==idle,tokeni==0, possessi==false,

workingi==false, end==false, done==false, work==false, ch[i]=[] |0 ≤ i ≤ N − 1}.

Note that for all 0 ≤ i ≤ N − 1, loci is actually initially undefined, but we assume,

for simplicity, that it has initial value idle. The process, init, declared in every

specification, is the first process to be executed, executing atomic statement 0 and

setting ch[0] to c for c ≥ 1 and instantiating N processes, and one arbiter process.

In the model MN this will correspond to the transition sN0 → t where t ∈ SN is

labelled identically to sN0 but with the proposition ch[0]==[] replaced by ch[0]==[c].

Let s̄m0 be the state in M̄m
N induced from the initial state of MN under the surjec-

tive map h. Then we have, L̄mN (sN0 ) = { loci==idle, tokeni==0, possessj==false,

workingj==false, end==false, done==false, work==false, ch[i]=[] |0 ≤ i ≤ m, 0 ≤

j ≤ m− 1}. Similarly, let t̄ = LmN (t) be the state induced from t, so the labelling of

t̄ will be identical to s′ but with the proposition ch[0]==[] replaced by ch[0]==[c].

Note that R̄mN (sm0 , t̄).

From the invariant specification, it is apparent that in the initial state sI0 of the invari-

ant model, LmI (sI0) = {loci==idle, tokeni==0, possessj==false, workingj==false,

end==false, done==false, work==false, ch[i]=[] |0 ≤ i ≤ m, 0 ≤ j ≤ m−1}. Hence,

H(s̄m0 , s
I
0). The init process in the invariant specification runs m process processes,

one abstract process process and one arbiter process and sends c on ch[0]. This cor-

responds to the transition, sI0 → t′ in the model Mm
I where t′ is labelled with the

same propositions as sI0 but with the proposition ch[0]==[] replaced by ch[0]==[c].

Clearly, L̄mN (t̄) = LmI (t′) and therefore H(t̄, t′).

Statement 1. For all 0 ≤ i ≤ N − 1, atomic statement 1 in the concrete specification

corresponds to processi, with loci==idle, reading in a value, k say, for tokeni from

its in channel (ch[i]), moving to rcvd and setting possessi to true. Note that this can

only be executed if ch[i] is full. Thus, for any state s in MN , such that loci==idle,
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ch[i]==k∈ LN (s), there exists a transition s → t such that tokeni==k, ch[i]==[],

loci==rcvd, possessi==true∈ LN (t).

For 0 ≤ i ≤ m−1, the surjective mappings (Section 4.5.1) on the variables mentioned

are just the identity mappings. Thus, there exists a transition s̄→ t̄ in M̄m
N where s̄

and t̄ are induced under h from s and t, respectively, such that loci==idle, ch[i]==k∈

LN (s) and tokeni==k, ch[i]==[], loci==rcvd, possessi==true∈ LN (t).

Let s′ be a state in the invariant model and supposeH(s̄, s′). The labelling of s̄ and s′

is therefore identical and hence loci==idle and ch[i]==k∈ LmI (s′). From statement

4 of the process specification in I(N, c), there must be a transition in Mm
I from s′

to a state t′ such that tokeni==k, ch[i]==[], loci==rcvd, possessi==true∈ LmI (t′)

(and loci==idle and ch[i]==k /∈ LmI (t′)). Otherwise the labelling for t′ is the same

as for s′. Hence LmI (t′) = LmN (t̄) and so H(t̄, t′).

Suppose now that m ≤ i ≤ N − 1. Note that in any state v of MN , if ch[i]==[k],

tokeni==k or loci==rcvd∈ LN (v) then for all j 6= i, m ≤ j ≤ N − 1, ch[j]==[],

tokeni==k, loci==rcvd∈ LN (v) respectively (since there is only one token). Let

s̄ ∈ S̄mN be the state induced by s under h. Then locm==idle∈ LmN (s′). The set of

propositions ch[m]==[], . . . , ch[i − 1]==[], ch[i]==[k], ch[i + 1]==[], . . . , ch[N −

1]==[]) belong to the labelling of s, and so (by the definition of h) the proposition

ch[m]==[k]∈ LmN (s′). If t̄ is the state in M̄m
N induced by t under h we can show

in a similar way that tokenm==k, ch[m]==[], locm==rcvd∈ L̄mN (t̄). Note that a

proposition corresponding to the tuple (possessm, . . . , possessN−1) also belongs to

L̄mN (t̄) but because every value of the tuple is mapped to false, the atomic proposition

will be the same in every state of M̄m
N and thus for the purposes of our analysis can

be ignored. We have that s̄→ t̄.

Let s′ be a state in the invariant model and suppose H(s̄, s′). The labelling of s̄ and

s′ is therefore identical with respect to APm
I and hence locm==idle, ch[m]==k∈

LmI (s′). From statement 4 of the abstract process specification in I(N, c), we have

that abstract processm reads a value from its in channel ch[m] and sets possessm

to true. Thus, there must be a transition in Mm
I from s′ to a state t′ such that

tokenm==k, ch[m]==[], locm==rcvd ∈ LmI (t′) (and locm==idle and ch[i]==k /∈

LmI (t′)). Otherwise the labelling for t′ is the same as for s′. Hence LmI (t′) = LmN (t̄)

and so H(t̄, t′).
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Statements 2 to 6. For each of the atomic statements 2 to 6 of processi (0 ≤ i ≤ N − 1)

we can argue in a similar way as for statement 1 and show that, for a transition

s→ t in MN that corresponds to a statement, the transition s′ → t′ in M̄m
N induced

by h is matched to a transition in Mm
I that corresponds to a statement of processi

if 0 ≤ i ≤ m, or to a statement of abstract processm if m ≤ i ≤ N − 1.

Statement 7. Consider atomic statement 7 in the specification of the arbiter process.

From the conditions of the statement, this can only be executed if done is true and

work is true, in which case work is set to false. This corresponds to a transition s→ t

in MN , for any state s ∈ SN for which work==true∈ LN (s) and done==true∈

LN (s) and for a state t ∈ SN such that work==false∈ LN (t), and otherwise the

labelling is the same as for s.

Every value in the domains of work and done are mapped to the same values under

the associated surjective mappings. Therefore, in the state, s̄ induced by the mapping

h, work==true∈ L̄mN (s̄), and done==true∈ LmN (s̄). Similarly, for t̄, the state induced

by h, work==false∈ LmN (t̄) and otherwise the labelling is as for s̄. By the definition

of the transition relation of M̄m
N , there exists a transition s̄→ t̄.

Let s′ be a state in the invariant model and suppose H(s̄, s′). The labelling of s̄

and s′ is therefore identical and therefore done==true and work==true∈ LmI (s′).

From statement 5 of the arbiter process in the invariant specification, there must

be a transition in Mm
I from s′ to a state t′ such that work==false∈ LmI (t′) and,

otherwise the labelling for t′ is the same as for s′. Hence LmI (t′) = L̄mN (t̄) and so

H(t̄, t′).

Statement 8. We can argue in a similar manner as for statement 7 to show that any

transition in the reduced model induced by statement 8 (given in the specification of

the arbiter process) is matched by a transition in Mm
I corresponding to statement

8 of arbiter in the invariant specification.

In Table 4.5.2 we give a summary of the transitions in MN (in column two) that are

derived from the atomic statements of process in the concrete specification (note that we

do not consider transitions corresponding to the arbiter or init process in the table). The

numbering in the leftmost column identifies each transition in the concrete model with a

statement in process in the concrete specification. Each transition is described in the table
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by the value of the variables of a state for the transition to be enabled, a down arrow, and

the value of some of the variables that belong to the state resulting from the transition.

Note that we only consider the variables relevant to a transition.

In the table we also give the transitions in M̄m
N that correspond to transitions in the

concrete model. We present these in the same manner as the transitions for MN . However,

we split them into three columns depending on the value of i, where the concrete transition

corresponds to the execution of a statement with respect to processi. In the first column

we describe the transition in M̄m
N if processi is a concrete process i.e. 0 ≤ i ≤ m − 1. In

the second column we describe the transition in M̄m
N if m ≤ i < N − 1, and in the third

column we describe the transition for i = N − 1.

For the transitions in the reduced model, M̄m
N , we do not include the values corresponding

to the possess or working variables since these will be the same in every state of the reduced

model. Excluding these values, the set of values are the same in M̄m
N and Mm

I (and

therefore so are the sets of corresponding atomic propositions). Therefore, the transitions

described for the reduced models correspond to the matching transitions in the invariant

model.

Therefore, we have matched every transition in M̄m
N to a transition in Mm

I i.e. we have

established condition 2 of Definition 2.5.3. Therefore for all N > m+ 1, M̄m
N � Mm

I and

thus by Lemma 2.5.4 it follows that,

Lemma 4.5.4. For m > 1, given a LTL property φ with atomic propositions in APm
I ,

Mm
I |= φ =⇒ M̄m

N |= φ, for all N > m+ 1.

Note that we can, in fact, prove a stronger result, showing that the relation H is a bisim-

ulation relation. In general, when constructing an invariant in this manner, this is not the

case.

Proof of Theorem 4.5.1

Proof. Let m > 1, c ≥ 1, and let φ be an LTL property that does not contain any index

greater than or equal to m in its atomic propositions. Suppose Mm
I |= φ. By Lemma

4.5.4, for all N > m+ 1, M̄m
N |= φ. By Lemma 4.5.3, MN |= φ for all N > m+ 1.
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Table 4.1: Transitions in MN , for process i, 0 ≤ i ≤ N − 1, and corresponding transitions
in M̄m

N , and, Mm
I , (c ≥ t ≥ 1).

MN M̄m
N \ Mm

I M̄m
N \ Mm

I M̄m
N \ Mm

I

0 ≤ i ≤ m− 1 m ≤ i < N − 1 i = N − 1

1 (idle, 0, F, F ) (idle, 0, F, F )i (idle, 0, F, F )m (idle, 0, F, F )N−1

[t]i [t]i [t]m [t]N−1

↓ ↓ ↓ ↓

(rcvd, t, T, F )i (rcvd, t, T, F )i (rcvd, t, T, F )m (rcvd, t, T, F )N−1

[]i []i []m []m
2 (rcvd, t, T, F )i (rcvd, t, T, F )i (rcvd, t, T, F )m (rcvd, t, T, F )N−1

!work,[]i+1 !work,[]i+1 !work,[]m !work,[]N−1

↓ ↓ ↓ ↓

(idle, 0, F, F )i (idle, 0, F, F )i (idle, 0, F, F )m (idle, 0, F, F )N−1

[t]i+1 [t]i+1 [t]m [t]m

3 (rcvd, 1, T, F )i (rcvd, 1, T, F )i (rcvd, 1, T, F )m (rcvd, 1, T, F )N−1

work,[]i+1 work,[]i+1 work,[]m work,[]N−1

↓ ↓ ↓ ↓

(finish, 0, T, T )i (finish, 0, T, T )i (finish, 0, T, T )m (finish, 0, T, T )N−1

end,finished+1 end,finished+ 1 end,finished+ 1 end,finished+1

4 (rcvd, t, T, F )i (rcvd, t, T, F )i (rcvd, t, T, F )m (rcvd, t, T, F )N−1

work,[]i+1 work,[]i+1 work,[]m work,[]

↓ ↓ ↓ ↓

(pass, t−1, T, T )i (pass, t−1, T, T )i (pass, t−1, T, T )m (pass, t−1, T, T )N − 1

ready ready ready ready

5 (pass, t−1, T, T )i (pass, t−1, T, T )i (pass, t−1, T, T )m (pass, t−1, T, T )m
!work,ready,[]i+1 !work,ready,[]m !work,ready,[]i+1 !work,ready,[]m

↓ ↓ ↓ ↓

(idle, 0, F, F )i (idle, 0, F, F )m (idle, 0, F, F )i (idle, 0, F, F )m
!ready,[t−1]i+1 !ready,[t−1]m !ready,[t−1]i+1 !ready,[t−1]m

6 (finish, 0, T, T )i (finish, 0, T, T )m (finish, 0, T, T )i (finish, 0, T, T )m
↓ ↓ ↓ ↓

(finish, 0, T, T )i (finish, 0, T, T )m (finish, 0, T, T )i (finish, 0, T, T )m

Table 4.2: Description of variables corresponding to entries in Table 4.5.2

Decription Variables Example table entries

Local state of process i (loci, tokeni, possessi, workingi) (idle, 0, F, F )i
Channel i ch[i] [t]i, []i
Global boolean variables end,work,ready end,!work

Global integer variables finished finished+1
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4.6 A Probabilistic Model of the CTRP

In Section 4.3 we introduced the CTRP, a token ring protocol that limits the number of

operations performed by processes using a counter. We modelled the CTRP using a central

arbiter process that non-deterministically determines whether a process can perform an

operation or not when it receives the token. This could, for example, correspond to

intermittent process failure or to whether the ‘queue’ of operations at a process is empty

or not when it receives the token. We now consider an example where we have some

additional knowledge about the protocol, namely the probability of whether a process can

perform an operation or not. For example, we might know the probability of a processes

queue being empty or the probability of a process having failed, when it receives the

token. Therefore, we model the protocol probabilistically, allowing each process to make

a probabilistic choice whenever it receives the token.

Note that in the non-probabilistic model of the CTRP there exists an execution path such

that the token can be passed around the ring forever without being decremented. However,

if the choice is made probabilistically, the probability that the token is never decremented

is equal to zero, and therefore we do not need to apply fairness conditions.

We assume that the scheduling of the processes is still non-deterministic and therefore we

model the protocol as a MDP, which we specify using PRISM. An example of a PRISM

specification of the probabilistic CTRP is given in Appendix C and described in Section

4.8.

4.7 Data Abstraction for MDPs by Partitioning

We now define data abstraction for MDPs, starting with a definition of a MDP over a

variable set.

Definition 4.7.1. Let X be a set of variables with domain D(X) where the tuple of initial

values for the variables is given by init(X). A (labelled) MDP M over X is a tuple

(D(X), init(X),Steps , L), where L labels each state with atomic propositions from the set

AP over X.

We give a definition of a reduced MDP under ‘data abstraction’, based on the definition
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of a quotient MDP of D’Argenio et al. [24]. A quotient MDP partitions the state space.

Definition 4.7.2. [24] Let M = (S, s0,Steps , L) be a MDP and let Q = (Ak)k∈K be a

partition of S. The quotient MDP according to Q is the MDP M\Q = (Q, Q0,Steps ′, L′)

where

1. Q0 ∈ Q is such that s0 ∈ Q0,

2. For Q ∈ Q, µ′ ∈ Steps ′(Q) ⇔ ∃s ∈ Q : µ ∈ Steps(s) ∧ ∀Q′ ∈ Q, µ′(Q′) =
∑

s′∈Q′ µ(s′),

3. For all Q ∈ Q, L′(Q) = ∪s∈QL(s).

A reduced MDP under data abstraction is a quotient MDP, where the partitioning is given

according to the states for which the variables have the same abstract values. Note that

each state of a MDP over a variable set X is a tuple from D(X) and therefore we can

apply a mapping on D(X) directly to the state.

Definition 4.7.3. Let M = (S, s0,Steps , L) be a MDP over set of variables X. Let AP

be the set of atomic propositions over X. If D′(X) is an abstract domain of X and h

a surjection from D to D′ then let H be the equivalence relation defined by (s, t) ∈ H if

and only if h(s) = h(t). Let Q denote the partition defined by H. Then the reduced MDP

under h is the quotient MDP M\Q.

For any two partitions Q and T of the same set, let Q ≤ T ⇔ ∀Q ∈ Q,∃T ∈ T , Q ⊆ T .

Furthermore, for a MDP M = (S, s0,Steps , L) with atomic propositions AP , a state s ∈ S

and φ ∈ 2AP let,

pinfs (φ) , inf
A∈AdvM

{ProbAs ({ω ∈ PathA(s)|ω |= ♦φ})} and,

psups (φ) , sup
A∈AdvM

{ProbAs ({ω ∈ PathA(s)|ω |= ♦φ})}.

Lemma 4.7.4 is a restriction of a result given in [24]. Specifically, we do not define an

initial condition on states, as is the case in [24], but consider just the initial state.

Lemma 4.7.4. Let M = (S, s0,Steps , L) be a MDP with set of atomic propositions AP.

Let φ ∈ 2AP and let Cφ be the equivalence relation on S defined by:

(s, t) ∈ Cφ ⇔ ((s 6|= φ ∧ s = s0 ⇔ t 6|= φ ∧ t = s0) ∧ (s |= φ⇔ t |= φ)).
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Let C denote the partition defined by Cφ, then for any two partitions of S, Q and T , such

that Q ≤ T ≤ C,

psupQ0
(φ) ≤ psupT0

(φ) and pinfQ0
(φ) ≥ pinfT0

(φ),

where Q0, T0 are the initial states of M\Q and M\ T respectively.

Note that we can partition a set of states into singleton sets, in which case the quotient

MDP is isomorphic to the original MDP [24]. We will use this result in the proof of Lemma

4.7.5.

Lemma 4.7.5. Let M = (S, s0,Steps , L) be a MDP over variable set X with set of

atomic propositions AP over X. Let h be a surjective mapping on D(X) such that for

all s ∈ S, s 6= s0, h(s) 6= h(s0). Let Mr denote the reduced MDP under h. Let φ be

a PCTL-reachability property that only contains propositions of the form (xi = v) where

xi a variable in X, v belongs to the abstract domain of x and h−1
i (v) = {v} (for hi, the

surjection on the domain of xi) then Mr |= φ⇒ M |= φ.

Proof. Let T denote the partition that partitions S into singleton sets and let H denote

the equivalence relation defined by h as H(s, t) ⇔ h(s) = h(t). Let Q be the partition

defined by H. The property φ has the form P⊲⊳=p[♦ψ]. By definition of PCTL-reachability,

ψ ∈ 2AP . Let Cψ denote the equivalence relation defined as for Lemma 4.7.4 and C the

partition defined by Cψ. Clearly T ≤ Q.

We establish that Q ≤ C. It should be apparent that either C = {C0, Cn, Cy} if s0 6|= ψ

or C = {Cn, Cy ∪ C0} if s0 |= ψ where C0 = {s0}, Cn = {s ∈ S|s 6= s0 ∧ s 6|= ψ},

Cy = {s ∈ S|s 6= s0 ∧ s |= ψ}.

Let Q ∈ Q. Suppose Q = Q0, the initial state of Mr. Since for all s ∈ S, s 6= s0,

h(s) 6= h(s0) then Q0 = {s0}. If C0 ∈ C then Q0 ⊆ C0, otherwise Q0 ⊆ Cy ∪ C0.

Suppose Q 6= Q0 and let s ∈ Q. If s |= ψ then for all t ∈ Q, t |= ψ since h(s) = h(t)

and φ only contains propositions of the form (xi = v) where h−1
i (v) = {v}. Thus Q ⊆ Cy.

Similarly if s 6|= ψ then for all t ∈ Q, t 6|= ψ and hence Q ⊆ Cn.

Thus T ≤ Q ≤ C and by Lemma 4.7.4 it follows that if Q0 = {s0} |= φ then T0 = {s0} |= φ.

Since M\ T is isomorphic to M, we have that if Mr |= φ then M |= φ.
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4.8 Specification of a Randomised CTRP

We specify concrete probabilistic models of the CTRP in PRISM that are similar to

the models of the CTRP specified in Promela. Each PRISM specification consists of

N ‘process’ modules, process1, process2, . . . , processN but because we model a process’

behaviour by probabilistic choice we do not require an arbiter process. An example of a

PRISM specification for the protocol for N = 4 and c = 5 is shown in Appendix C. Note

that for a process, processi, we use the notation processi. Similarly for any variable, var i,

we use the notation var i.

Consider first module process0. The local variables declared in the body of this module

are loc0, token0, possess0 and working0, which are similar to the those described in the

Promela specifications. Note that we have to declare loc0 as a variable since PRISM uses

a guarded command style language and thus does not include program counters. We

declare constants idle, rcvd, pass, finish and declare loc0 to have domain in the range of

these constants. The variables possess0 and working0 are booleans.

The global variables are end and finished. Although PRISM does not provide explicit

support for the specification of channels, because we only consider channels of length one,

we can declare a set of global variables to represent the channels. Specifically, we define

the variables ch0, ch1, . . . , chN−1. Each of these has domain {0,1,. . . ,c}. Notice that once

the counter equals zero the game ends and therefore a channel will never take the value 0.

We can therefore use 0 to represent the empty channel.

Although specified differently, the behaviour of process0 is similar to that of process0 from

the Promela specification. For process0, initially loc0=idle. In this state, if ch0!=0, then

process0 can store the value of ch0 in token0, setting ch0 to be 0 (i.e. empty) and setting

the variable possess0 to be true and loc0 to be rcvd.

The main difference between the behaviour of the Promela specification and the PRISM

specification is when loc0=rcvd. From this state the (PRISM) process will make a proba-

bilistic choice, decrementing the counter with probability 1
2 or simply passing the counter

to process1 (setting ch0=token0) with probability 1
2 . If process0 chooses to decrement the

counter it will set loc0=pass if the result of decrementing token0 is 0. Otherwise it will set

loc0=finish, in which state the process will loop. From the state loc0=pass, the process
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will then set ch0=token0 and loc0=idle.

Note that the choice of the probabilities is arbitrary. However, (in order for us to be able to

construct an invariant in the manner described in the subsequent section) the probabilities

must be identical and must not depend on the number of processes.

Modules process1, process2, . . . , processN−1 can be constructed by renaming the variables

of process0. We let S(N, c) denote the PRISM specification with ch0 initialised to c and

N − 2 renamed ‘process’ modules.

4.9 Constructing an Invariant for a Randomised Model of

the CTRP

The PRISM specification of an invariant model for the CTRP with two concrete pro-

cesses process0, process1 and an invariant process abstract process2 is given in Appendix

D. The invariant process is constructed in a similar manner to that of the invariant pro-

cess described for the Promela specification of the CTRP, except that we need to take into

account the probabilistic choices made by the concrete processes. We let I(N, c) denote

the PRISM specification with ch0 initialised to c, m − 1 renamed ‘process’ modules and

one abstract processm module.

4.9.1 Properties of the Randomised CTRP

All of the properties given below are specified in the PCTL temporal logic defined in

Section 3.3 and have been verified for models of the protocol for rings of size two to five,

with a counter with initial value of one to ten. These properties have also been verified for

the invariant specification of the CTRP using PRISM. This has been done for a counter

with initial value between one to ten and with two concrete processes. Note that these

properties are PCTL-reachability properties.

M1. With probability 1 some process will finish.

P≥1[trueU(end)]
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M2. With probability at most 0.7, process 1 will finish.

P≤0.7[trueU(loc1=finish)]

M3. With probability at least 0.5 eventually process 1 will receive the token.

P≥0.5[trueU(possess1)]

4.10 Parameterised Verification of the Randomised Model

of the CTRP

We give a theorem (and proof) similar to Theorem 4.5.1. For N > 1 and c > 1, given a

PRISM specification, S(N, c), of the CTRP, the concrete model of the CTRP, with N > 1

process instantiations, is given by MN = M(S(N, c)) where MN is derived from S(N, c)

according to the semantics of PRISM with respect to MDPs [1]. Given a PRISM invariant

specification I(m, c), for m > 1, let Mm
I = M(I(m, c)) be defined as the invariant model

of the CTRP.

Theorem 4.10.1. Let m > 1 and let φ be a PCTL-reachability property that does not

contain any index greater than or equal to m in its atomic propositions. Then, for all

N > m, c ≥ 1, if Mm
I |= φ then MN |= φ.

4.10.1 Creating Reduced Models by Data Abstraction

Let m > 1 and N > m. As for the proof of Theorem 4.5.1, in order to show Theorem

4.10.1 we define a reduced structure based on the concrete model constructed by data

abstraction. This is done by defining a set of surjections that map the values from the

domain of variables of every concrete model, MN , to values in an abstract domain. From

the specification S(N, c), we know that the set of variables in the concrete model MN is

identical to the set of variables defined for the Promela specification of the CTRP. These

surjections are defined to be identical to those in Section 4.5.1. The reduced model Mm
N

is then induced as described in Definition 4.7.3, and from Lemma 4.7.5,

Lemma 4.10.2. For any PCTL-reachability property φ, for m ≥ 1 and N > m + 1, if

Mm
N |= φ then MN |= φ.
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For m > 1, N > m, let M̄m
N denote the model obtained from Mm

N by substituting variables

in an identical manner as in Section 4.5.1. Then by Lemma 4.10.2,

Lemma 4.10.3. For any PCTL-reachability property φ that refers only to the set of global

variables, the local variables associated with the concrete processes and/or the channel

variables ch[0], ch[1], . . . , ch[m− 1], for m ≥ 1 and N > m+1, if M̄m
N |= φ then MN |= φ.

4.10.2 Bisimulation between the Reduced Models and the Invariant

Model

In Section 4.5.2 we established a simulation relation between the (non-probabilistic) re-

duced models and the (non-probabilistic) invariant model for the CTRP. In this section we

prove a stronger result showing that there exists a bisimulation between the probabilistic

invariant model and the probabilistic reduced models.

Let M̄m
N = (S̄mN , s̄

m
N ,

¯Steps
m
N , L̄

m
N ) and Mm

I = (SmI , s
m
I ,StepsmI , L

m
I ) have atomic proposi-

tions ĀP
m
N and APm

I , respectively. Note that ĀP
m
N ⊇ ĀP

m
I . Let M∗

N = (S∗, S∗
0 , Steps

∗, L∗)

be the combination of Mm
N and Mm

I We can define a relation H as follows,

For all s, s′ ∈ S∗,H(s, s′) ⇐⇒ L∗(s) = L∗(s′)

We show that M̄m
N ≈ Mm

I by establishing that H satisfies Definition 3.5.1 for M∗
N .

Immediately, condition 1 of Definition 3.5.1 holds by definition of the relation H. It

remains to establish condition 2, i.e. to show that every transition in the reduced model is

‘equivalent’ to a transition in the invariant model. We establish the transitions that can be

made in both the reduced and invariant models, by analysing the concrete and invariant

specifications, respectively. We assume MN = (SN , s
N
0 , RN , LN ) has atomic propositions

APN .

Note that the majority of transitions in the concrete, invariant and reduced MDP models

are non-probabilistic i.e. occur with probability 1. To illustrate how we can establish that

H is a bisimulation we consider just one of the probabilistic transitions. Note that the

statements of the PRISM concrete specifications and invariant specifications are numbered

in Appendices C and D respectively.

Statement 3. For all 0 ≤ i ≤ N−1, statement 3. in the concrete specification corresponds

to processi, with loci=rcvd, choosing with equal probability whether to decrement the
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token counter, moving to pass and setting workingi to true or to pass on the counter

directly, moving to a state with loci =idle. Note that this statement can only be

executed if chi+1 is empty and the value of tokeni is greater than one. Thus, for any

state s in MN , such that loci=rcvd, chi=0, tokeni=k ∈ LN (s) (for k > 1), there

exists transitions s
µ
→ t1 and s

µ
→ t2 such that for t1, t2 ∈ S, µ(t1) = µ(t2) = 0.5

with tokeni=k-1, chi=0, loci=pass, workingi=true∈ LN (t1) and chi=k, loci=idle,

possessi=false and tokeni=0∈ LN (t2).

For 0 ≤ i ≤ m− 1, the surjective mappings defined on the variables mentioned are

just the identity mappings. Thus, there exists transitions s̄
µ′
→ t̄1 and s̄

µ′
→ t̄2 in

M̄m
N where s̄, t̄1 and t̄2 are induced under h from s, t1 and t2 respectively such that

µ′(t̄1) = µ′(t̄2) = 0.5. It should be clear that loci=rcvd, chi=0, tokeni=k ∈ LmN (s̄)

and tokeni=k-1, chi=0, loci=pass, workingi=true∈ LmN (t̄1) and chi=k, loci=idle,

possessi=false and tokeni=0∈ LmN (t̄2).

Let s′ be a state in the invariant model and supposeH(s̄, s′). The labelling of s̄ and s′

with respect to APm
I is therefore identical and hence loci=rcvd, tokeni=k and chi=0∈

LmI (s′). From statement 3. of the process specification in I(N, c), there must be a

transition in Mm
I from s′ to states t′1 and t′2 under distribution µ′′ such that µ′′(t′1) =

µ(t′2) = 0.5. We have that tokeni=k-1, chi=0, loci=pass, workingi=true∈ LmI (t′1) and

chi=k, loci=idle, possessi=false and tokeni=0∈ LmI (t′2). Otherwise the labelling for

t′1 and t′2 is the same as for s′. Hence LmI (t′1) = LmN (t̄1) ∩ APm
I and LmI (t′2) =

LmN (t̄2) ∩ APm
I and so H(t̄1, t

′
1) and H(t̄2, t

′
2). Let [s]H denote the equivalence class

of state s under H then µ′([t′1]H) = µ′′([t′1]H = 0.5 and µ′([t′2]H) = µ′′([t′2]H) = 0.5.

Suppose now that m ≤ i ≤ N − 1. Note that in any state v of MN , if loci=rcvd,

chi=0, tokeni=k ∈ LN (v) then for all j 6= i, m ≤ j ≤ N − 1, chj=0, tokenj=0,

locj=idle∈ LN (v) respectively (since there is only one token). Let s̄ ∈ S̄mN be the

state induced by s under h. The set of propositions (locm=idle, . . . , loci−1=idle,

loci=rcvd, loci+1=idle, . . . , locN−1=idle) belong to the labelling of s, and so (by the

definition of h) the proposition locm=rcvd∈ LmN (s′). Similarly tokenm=k∈ LmN (s′).

If t̄1 and t̄2 are the states in M̄m
N induced by t1 and t2 under h respectively we can

show in a similar way that tokenm=k − 1, chm=0, locm=pass∈ L̄mN (t̄1) and chm=k,

locm=idle and tokenm=0∈ LmN (t′2). Note that a proposition corresponding to the

tuple (possessm, . . . , possessN−1) also belongs to L̄mN (t̄1) and L̄mN (t̄1) but because

every value of the tuple is mapped to false, the atomic proposition will be the same
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in every state of M̄m
N and thus for the purposes of our analysis can be ignored. We

have that s̄
µ′
→ t̄1 and s̄

µ′
→ t̄2 where µ′(t̄1) = µ′(t̄2) = 0.5.

Let s′ be a state in the invariant model and supposeH(s̄, s′). The labelling of s̄ and s′

is therefore identical with respect to APm
I and hence locm=rcvd, ch[m]==0∈ LmI (s′).

Suppose that m < N − 1. From statement 3.1 of the abstract process specification

in I(N, c), abstract processm can probabilistically choose to send a value on channel

chm or decrement the counter. Thus, there must be transitions in Mm
I from s′1 to

states t′1 and t′2 such that tokenm=k-1, chm=0, locm=pass ∈ LmI (t′1) and locm=idle

and chm=k∈ LmI (t′2)). Otherwise the labelling for t′1 and t′2 are the same as for

s′. Hence LmI (t′1) = LmN (t̄) and LmI (t′2) = LmN (t̄) and so H(t̄, t′1) and H(t̄, t′2). Thus

µ′([t′1]H) = µ′′([t′1]H = 0.5 and µ′([t′2]H) = µ′′([t′2]H = 0.5.

Similarly, if m = N − 1 we can show that, from statement 3.2 of the definition of

abstract processm, there exists transitions that are equivalent to those in the reduced

model.

By considering each of the transitions in the reduced and invariant models and arguing in

a similar manner to the above we can establish that condition 2 of Definition 3.5.1 holds

for H and therefore that M̄m
N and Mm

I are bisimilar. Notice that s̄0 ≈ sI0 and hence, from

Lemma 3.5.2 it follows that,

Lemma 4.10.4. For m > 1, given a PCTL property φ with atomic propositions in APm
I ,

Mm
I |= φ =⇒ M̄m

N |= φ, for all N > m+ 1.

Proof of Theorem 4.10.1

Proof. Let m > 1, c ≥ 1, and let φ be a PCTL-reachability property that does not contain

any index greater than or equal to m in its atomic propositions. Suppose Mm
I |= φ. By

Lemma 4.10.4, for all N > m+ 1, M̄m
N |= φ. By Lemma 4.10.3, therefore MN |= φ for all

N > m+ 1.
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4.11 Discussion

Proving properties of the CTRP for arbitrary counter values The focus of our

work on parameterised verification is on the analysis of distributed systems parameterised

by the number of processes. However, sometimes it is necessary to consider other data

values that are parameterised. For example, in the CTRP the initial value of the token

is a parameter for the models. In particular, the counter is a parameter in the invariant

specification, thus we have established a parameterised family of invariants over a ‘lattice’

of models. If we fix a value for m (the number of concrete processes), then we can

consider the parameterised family of models M = {M(c) = M(I(m, c))|c > 1}. We

could use one of two approaches to parameterised verification of this family. One, by data

abstraction, we define a surjective mapping for every token variable and every channel

variable such that any value greater than two is mapped to the value two and thus provides

a simulation relation. As we will discuss in further detail, below, this introduces additional

non-determinism to the model. In particular, the counter value can now remain at two

forever, even in the presence of weak fairness, so we would need to introduce some extra

fairness constraints. Two, by induction on the models: we show that M(c) is equivalent

to M(c + 1), ignoring the variables with counter value greater than 1. This approach is

explored in Chapters 5, 6 and 7.

Verification of Liveness Properties One of the limitations of the construction of an

invariant via the data abstraction approach is that it is not guaranteed to preserve liveness

properties. Intuitively, this is due to the additional non-determinism introduced by the

abstraction process. For example, the application of abstraction to the CTRP leads to a

cycle in the underlying model in which the abstract process passes the counter to itself an

infinite number of times. This can lead to certain liveness properties failing to hold. The

introduction of this cycle is necessary to represent the behaviour of an arbitrary number

of processes passing the counter to each other, but it should be apparent that it should

only represent a finite number of processes.

We should therefore only need to consider paths in the invariant model in which the

abstract process will eventually pass the token to process0. That is, we should add fairness

constraints to the model. However, because the non-deterministic choice is made within the

abstract process, the weak fairness option of SPIN is not strong enough to guarantee that
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the token will eventually be passed to process0. (Note, though, that it does guarantee that

the arbiter process will eventually schedule an operation and, therefore, the counter will be

guaranteed to eventually equal zero even if it is always retained by the abstract process).

Hence, we have to derive additional fairness constraints for the models, using LTL. For

example, we can express the requirement that abstract processm eventually passes the

counter to process0 as the LTL path formula, ϕ ≡ �(ch[m] > 0 =⇒ ♦(ch[0 ] > 0 ||end)),

and then, when verifying a property φ, prefix the property with the above requirement as

follows, ϕ =⇒ φ. In this manner we can establish properties of the invariant model of

the CTRP that otherwise would not hold. For example, we can show that the invariant

model M2
I with c < 10 satisfies ϕ =⇒ φ.

However, simulation does not guarantee preservation of properties under the assumption

of fairness. Therefore, we cannot draw conclusions about whether or not properties are

satisfied in the concrete or reduced models under fairness by showing that they are satisfied

in the invariant model under fairness. A solution to this is to show that there exists a

fair simulation between the invariant model under fairness and the reduced model, under

the same fairness constraints. The difficulty in establishing this is that, since fairness

relates to infinite executions, we cannot just consider transitions, we must consider paths.

Specifically, we must show that for every fair path of a model there exists a fair path in

the model that simulates it.

Note that we would also have to prove that data abstraction preserves fairness, i.e. that if

a reduced model satisfies a property under fairness then the original model also satisfies the

property under fairness. Work has already been carried out on this problem. For example,

in [20], an abstraction method based on the µ-calculus temporal logic is described for which

it has been proved that liveness certain liveness properties still hold under abstraction.

In the case of the randomised model of the CTRP note that, for the set of paths along

which the abstract process only passes the counter to itself, we reach a state where the

counter is zero and the protocol finishes with probability one. Therefore, the probability

of the abstract process passing the counter to itself forever equals zero. However, in other

examples we might still need to employ fairness in a similar manner to that described above.

Fairness for MDPs is defined, for example, in [10]. To our knowledge, fair simulation for

MDPs has not been defined.
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Game-based Abstraction In Section 4.7 we considered data abstraction for MDPs

based on the partitioning of a MDP [24]. It may be possible to extend this approach,

using the game-based abstraction approach of Kwiatkowska et al. [41]. They consider a

partition of the state space but represent the quotient MDP by a two-player stochastic

game, where one player resolves the non-determinism of the concrete model and the other

player resolves the non-determinism introduced by the abstraction. By considering the

players in co-operation, a lower bound for the minimum probability of some reachability

property being satisfied and an upper bound for the maximum probability of a reachability

property being satisfied can be determined. Note that these could equally be achieved by

considering the quotient MDP directly. However, they also derive an upper bound for

the minimum probability and a lower bound for the maximum probability by considering

the players in competition. This approach therefore gives a better approximation of the

probability of some property holding in a concrete model. A prototype model checking

tool has been implemented for this type of analysis. By using this tool to distinguish

between the non-determinism in the concrete models and the non-determinism introduced

by the data abstraction step, it would be possible to establish bounds on the minimum

and maximum probabilities of some property holding of an invariant. This would provide

more information on the probability of properties holding in the concrete models.

An SMV Specification of the Parameterised Token Ring Protocol We have

also created a set of SMV specifications of the token ring system. The SMV versions

are as close to the Promela coding as possible, but the differences between the modelling

languages means that they are not identical. For example, it is not possible to define

channels in SMV. Nonetheless, the behaviour of the SMV models are nearly identical to

that of the Promela models. If an invariant specification is constructed that is similar to

the Promela invariant specification, the proof described above can be modified in a simple

manner to prove a similar result for the SMV concrete and invariant specifications. Thus,

the methodology described above is not restricted to a particular modelling language. This

means that we can employ features of different model-checking tools for proving properties

of the invariant specification. For example, SMV allows CTL properties to be checked and

a variety of fairness constraints to be specified.
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Related Work A solution to the parameterised model checking problem for token ring

protocols is presented in [29]. By establishing an equivalence relation between rings of

different size, it is shown that, for certain forms of indexed CTL*\X properties, if a

property holds for a ring of size equal to some cutoff value then it will hold for any size

of ring. Model checking can be used to verify the property for a ring of a given size and

it can then be deduced that the property holds for an arbitrary sized ring. Token ring

protocols are only considered in which the counter consists of a single value. In fact, it

is proven that the parameterised model checking problem for token rings where the token

can have more than one value is undecidable. Therefore, the approach they describe is

not applicable to the CTRP described here.

In a further approach to parameterised verification based on abstraction [53], a counter

abstraction is used: counting the number of processes in each local state and limiting the

counter values to a maximum value of two. The method is used for proving properties of

non-probabilistic systems and for proving qualitative properties of probabilistic systems.

A method is also described for deriving fairness requirements. Proving properties of the

abstracted model under a set of derived ‘abstract’ fairness constraints ensures that the

property holds in the concrete model, thus enabling verification of liveness properties.

The approach has the advantage of being fully automated but is applicable only to fully

symmetric systems and therefore would not be applicable in the case of systems with a

ring topology as for the CTRP.

Summary In this chapter we have constructed network invariants for a parameterised

family of models, through the use of data abstraction. We have applied this method

to a simple counter token ring protocol, specifying a parameterised family of models for

the protocol and an invariant model for the family using Promela. We have established

that any LTL property that is satisfied by the invariant is satisfied by any model in the

parameterised family of models. This result was then extended for a parameterised family

of probabilistic models of the protocol using previous results on abstraction for probabilistic

models. The family of models and the invariant model in this case were specified using

PRISM.



Chapter 5

Probabilistic Parameterised

Verification of Deterministically

Degenerative Systems

Outline We present an inductive proof schema for establishing properties of randomised

distributed systems that are deterministically degenerative. We define a deterministically

degenerative family of MDP models parameterised by a communication topology and show

that, for a certain class of QLTL properties, if a property is satisfied by a ‘base’ subset of

the family of models then it is true for every model in the family. We demonstrate our

approach by considering the IEEE 1394 Firewire Tree Identify Protocol.

5.1 Introduction

In this chapter and Chapter 6 we provide a technique for reasoning about the parameterised

model checking problem that is sound and complete for a class of parameterised proba-

bilistic system. In particular, we tackle the PMCP for randomised distributed systems

by extending an inductive proof that was introduced for a non-probabilistic parameterised

distributed system (the IEEE 1394 Firewire tree identify protocol) [49]. In [49] it is demon-

strated that any configuration of the Firewire system will eventually behave like a smaller

system, describing this behaviour as degenerative. Thereby, it is proved, by induction over

97
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the size of the topology, that any property that holds for a model of a system with a star

topology will hold for a model of any system size and configuration. The proof relies on

showing that any path in a model of the system of a given size is ‘equivalent’ to a path in a

model of a smaller system. Thus, a relationship is established between any system model

and a set of models of smaller systems. Hence, by induction the proof goes through.

We extend this approach to randomised distributed systems and generalise the proof for

any probabilistic system that can be shown to be degenerative. Informally, a distributed

system is degenerative if it is guaranteed that, for some subset of the processes, each

process degenerates. Processes degenerate if they reach a degenerate state such that the

execution of the process from that point onwards does not influence the global execution of

the system. For example, a group of processes might terminate or may become quiescent,

remaining active but only re-transmitting received messages. Thus the observed behaviour

of the system will be equivalent in some sense to that of a smaller system and so we can

analyse the smaller system to determine properties of the larger one. In fact, due to the

scheduling of processes, we cannot be sure which processes will degenerate and therefore

we have to reason about a set of smaller systems in order to determine properties of the

larger one.

We formalise this idea, presenting a definition of a degenerative family of models param-

eterised by a communication topology (represented by a family of graphs) with a base set

of models. The definition is based on establishing equivalence between any behaviour of a

model of the system of a given size and behaviours in a model of a smaller system. We then

show, by induction over the topology of a system, that if a QLTL property of a certain

form holds for all the base models then it will hold for any model in the family. This forms

the basis of an induction proof schema for reasoning about degenerative parameterised

models of a system over a communication topology.

Note that, rather than introduce all the aspects of our technique simultaneously, we present

a series of theorems, each extending the next, using two case studies to demonstrate some

facets of the problem that we are considering. In particular, in this chapter we consider de-

terministically degenerative systems. Intuitively, a system degenerates deterministically if,

under some scheduling of the processes a particular set of processes degenerate with prob-

ability 1. Thus the probabilistic element does not influence the degenerative behaviour of

the system in question. We extend this definition to probabilistically degenerative systems
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in Chapter 6. Whereas for a deterministically degenerative system, under some scheduling,

we know exactly which set of processes will degenerate, for a probabilistically degenerative

system we only know that with probability 1 some set of processes will degenerate. There-

fore, we could have different sets of processes degenerating with different probabilities but

the sum of these probabilities equals 1.

For our case study of deterministically degenerative systems we consider a family of models

of the IEEE 1394 Firewire tree identify protocol [33] and provide an inductive proof over

the system topology (trees) that a certain class of probabilistic temporal logic properties

that are satisfied by a model of a system with a star topology are satisfied by a model of a

system with any acyclic topology. In Chapter 6 we consider a probabilistically degenerative

system, namely the Itai Rodeh leader election protocol for rings and prove a similar result,

this time over the set of rings. The examples we consider are well-understood protocols

that have been analysed and verified using a variety of methods, including model-checking.

We can therefore compare the results of applying our technique to these methods and

demonstrate the advantages and weaknesses of our approach. In achieving the same results

as these other methods, we can also have a greater degree of confidence in the correctness

and applicability of our technique.

5.2 Communication Topologies and Graph Reductions

As for our approach detailed in Chapter 4, much of the work on parameterised verification

of distributed systems assumes a regular topology (e.g. a star or a ring), so that the system

is parameterised by the number of processes (but not always, see Balaban et al. [12]). In

this chapter we do not make this presumption, but instead consider irregular topologies

(although we do assume that the topology satisfies certain properties). In order to describe

our systems we therefore need to formalise the notion of a topology, which we do using

graphs.

For a detailed account of graph theoretic terms and notation see, for example, [15]. We

give a brief outline of those necessary for our definition of a topology. A vertex-labelled

graph, G = (E,V, I), is a tuple where V is a set of vertices, E is a set of edges between

pairs of vertices and I is a labelling of vertices with each vertex v ∈ V uniquely labelled

by a value I(v) ∈ {0, 1, . . . , |G| − 1} (where |G| = |V | is the size of the graph). A directed
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graph is a graph such that the pairs of edges are ordered i.e. we distinguish between the

edge (v,w) and the edge (w, v). A simple directed graph does not have any multiple edges

(two or more edges connecting the same two vertices) or loops (edges from a vertex to

itself). A non-trivial graph is a graph with at least two vertices and one edge. A connected

graph is a graph where every pair of vertices is connected by a path (a sequential set of

set of edges). A graph is finite if the set of vertices is finite.

Definition 5.2.1. A communication graph is a vertex-labelled, non-trivial, directed, finite,

simple, connected graph.

Since we do not consider any other type of graph, in this chapter we will often refer to a

communication graph simply as a graph. Also, for a communication graph G = (E,V, I)

we let i denote the vertex v with I(v) = i and we refer to v as process i. If an edge

(v,w) ∈ E, with I(v) = i and I(w) = j we say that process i and process j communicate.

We can now define a communication topology in a straightforward manner.

Definition 5.2.2. A communication topology (or simply a topology) is a set of communi-

cation graphs.

In the introduction we informally described a system as degenerative if it eventually be-

haves as a ‘smaller’ system. We formalise the notion of ‘smaller’ in terms of the commu-

nication topology of a system. Before doing so we give some standard definitions.

Definition 5.2.3. For a communication graph, G = (E,V, I) and V ′ ⊆ V , G[V ′] =

(E′, V ′, I ′) is the subgraph induced by V ′ where (v,w) ∈ E′ iff (v,w) ∈ E and v,w ∈ V ′

and I ′ is the labelling I restricted to the vertices in V ′.

Definition 5.2.4. Let G = (E,V, I) be a communication graph with, for all v ∈ V , I(v)

unique from {0, 1, . . . , |G|− 1}. Given a permutation σ on {0, 1, . . . , |G|− 1}, the permuted

graph under σ is defined as σ(G) = (E,V, I ′) where I ′(v) = σ(I(v)). Furthermore, σ is a

permutation on G.

Based on these two definitions, we can now define a reduced graph.

Definition 5.2.5. Let Γ be a communication topology and let G = (E,V, I) ∈ Γ. Let σ

be a permutation of the set of vertex labels of G and let W ⊂ V . Then R = (W,σ) is a

complete reduction of G in Γ if and only if the graph R(G) = σ(G)[W ] belongs to Γ. We



101

describe R(G) as the reduced communication graph of G in Γ under R or simply a reduced

communication graph of G.

In the remainder of this chapter, since we only consider reductions that are complete we

often refer to complete reductions simply as reductions.

Complete reductions relate communication graphs within a topology in such a way that

we can consider a communication graph G to be larger than a reduced graph of G. We also

want to establish a set of ‘least’ elements of a communication topology. We can do this by

showing that we can reduce a graph (under some sequence of reductions) in the topology

until we have a graph that belongs to some subset of the communication topology.

Definition 5.2.6. Let Φ and Γ be communication topologies such that Φ ⊂ Γ and let

QΓ = {QG |G ∈ Γ} be a family of sets of complete reductions for communication graphs in

Γ such that for all G ∈ Φ, QG = ∅. Then Γ is reducible to Φ under QΓ if and only if, for

all G ∈ Γ \Φ, there exists a sequence of reductions, R1,R2, . . . ,Rn (for some n ≥ 1) such

that, for all 1 ≤ i ≤ n,

Ri ∈ QRi−1(Ri−2(...(R1(G)))) and,

Rn(Rn−1(. . . (R1(G)) . . .)) ∈ Φ.

5.3 Specifying Parameterised Sets of Models

Our technique is geared towards the use of model checking tools as a means for modelling

and understanding (and verifying, for small instances) the behaviour of parameterised

probabilistic concurrent systems. Therefore we consider (MDP) models of distributed

systems derived from specifications given in high-level modular modelling languages (e.g.

Probmela [7] or PRISM [40]) whereby each process in a system is defined as a module,

and is isomorphic to every other process, up to communication and process index.

We assume that the specifications are described in terms of variable sets that are parti-

tioned according to local, global and channel variables, where the local variables, defined

within a module, are the same (up to indexing) for each process and can only be examined/

updated by commands in that module. The global variables are common to all processes

and the channel variables are used to send messages between a pair of processes. Actions

are local to a process, and are therefore indexed (by processes).
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Since we are considering models parameterised by a communication topology, we need to

consider specifications defined over communication graphs. We assume that a module is

defined for every process of a communication graph and that the channel variables are

defined according to the processes that can communicate. Formally,

Definition 5.3.1. Given a communication graph, G = (E,V, I) (|G| = N), S(G) is a

specification over G if it has variable set, X(S(G)) = ∪N−1
i=0 X

i ∪ G ∪ C and action set

Act(S(G)) = ∪N−1
i=0 such that for 0 ≤ i ≤ N − 1,

• Xi = {xi1, x
i
2, . . . , x

i
m} is a set of local variables associated with process i, with

domains D(xij) (1 ≤ j ≤ m),

• G = {g1, g2, . . . , gn} is a set of global variables with domains D(gj) (1 ≤ j ≤ n),

• C = {cj,k|(j, k) ∈ E} is a set of channel variables with domains D(cj,k) where

∀cj,k, cj′,k′ ∈ C, D(cj,k) = D(cj′,k′),

• Act i = {ai1, a
i
2, . . . , a

i
l} is a (possibly empty) set of local actions associated with

process i.

Definition 5.3.2. Given a communication topology, Γ, a parameterised specification,

S(Γ) = {S(G)|G ∈ Γ}, over Γ is a set of specifications over the communication graphs

of Γ.

Specifications are given in a high-level modelling language. However, in order to define a

degenerative system we need to reason at the level of MDPs, and so we need to consider

the models derived from a specification. Note that this is dependent on the semantics of

the modelling language employed: we give a generic definition below.

Definition 5.3.3. Let G = (E,V, I) (|G| = N) be a communication graph and let S(G)

be a specification over G. Let the initial value of the variables in X(S(G)) be given by

init(X(S(G))) and let the model of S(G) be a MDP,

M(S(G)) = (D(X(S(G))), init (X(S(G))),Steps (S(G)),Act (S(G)), L)

such that L labels states with subsets of the set of atomic propositions AP defined over

X(S(G)) and Steps(S(G)) is defined over the set of updates of the specification according

to the semantics of the specification language.
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Note that in the models we consider the set of states as tuples over the possible values

of the variables of the specification that the model is derived from. For a graph G and

a specification S(G) over G let X(S(G)) = ∪N−1
i=0 X

i ∪ G ∪ C be the corresponding set of

variables. Then if Xi = {xi1, x
i
2, . . . , x

i
m}, we let X̄i denote the tuple (xi1, x

i
2, . . . , x

i
m), and

similarly for Ḡ and C̄. Then the tuple X̄(S(G)) is given by (X̄0, X̄1, . . . , X̄N−1, Ḡ, C̄).

Definition 5.3.4. For a communication topology, Γ, let S(Γ) be a parameterised specifi-

cation over Γ. Then M(S(Γ)) = {M(S(G))|S(G) ∈ S(Γ)} is the parameterised family of

models over S(Γ).

We will often abbreviate a model M(S(G)) to MG and a parameterised family of models,

M(S(Γ)) to MΓ.

5.3.1 Indexed Variables

When establishing properties of a set of models that are degenerative we will need to

consider reductions of graphs and so we will need to define permutations of process indices.

Hence, the properties that we analyse cannot refer to the indices of a process. We therefore

distinguish between indexed and unindexed variables and variable domains. Note that this

is an imposed distinction. In general specifications do not explicitly consider these types

of variables separately.

Let G be a graph and S(G) a specification over G = (E,V, I) (|G| = N) with variable set

X(S(G)) = ∪N−1
i=0 X

i ∪G ∪C. Let I(V ) = {I(v)|v ∈ V } denote the index set of S(G). For

i ∈ I(V ), we say that a variable xij ∈ Xi is indexed and has index i. If there is a set of

global variables g0, g1, . . . , gN−1 with identical domains we also say that gi is indexed and

has index i. Note also that all channel variables are indexed by two process indices. For

example, channel ci,j has indices i and j.

Furthermore, for a local or global variable x of X(S(G)), we say that the domain of x is

indexed if the domain is defined by D(x) = I(V )∪{⊥}, where ⊥ represents an unassigned

value. If x has an indexed domain and x = i then x is indexed and has index value i. Note

that we assume that channels do not have indexed domains. A variable is unindexed if it

is not indexed and does not have an indexed domain.

We can extend the definition of indexed variables to indexed propositions. For the set
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of atomic propositions AP over X(S(G)), we say that a proposition x = v for x ∈ X,

v ∈ D(x) is indexed if x is indexed or x has an indexed domain and v 6= ⊥, otherwise

x = v is an unindexed proposition. Furthermore, for a QLTL or PCTL property φ with

atomic propositions over AP , φ is an unindexed property if it contains only unindexed

propositions.

5.4 Mappings Induced by a Permutation of a Communica-

tion Graph

The reduction of a communication graph requires permutation of the graph as well as

removal of vertices. In order to show that a set of MDPs parameterised by a topology is

degenerative we establish that the model of the specification of a communication graph

behaves in the same manner as the model of the specification of the permuted graph. We

therefore give a series of definitions of mappings induced by a permutation that allows us

to establish isomorphism between adversaries of these models (see Section 3.5.3).

Given a specification over a graph and a specification over a permutation of the graph,

if the specifications are equivalent up to process indices i.e. the variables (excluding the

channel variables), variable domains and action sets are the same, then we can define a

mapping between the state spaces of the models of the specifications that permutes process

indices according to the graph permutation.

Definition 5.4.1. Let G (|G| = N) be a communication graph and S(G) a specification

over G. Let σ : {⊥, 0, . . . , N − 1} → {⊥, 0, . . . , N − 1} be a permutation of G (such that

σ(⊥) = ⊥) and let S(σ(G)) be a specification over σ(G) such that,

X(S(G)) \ CG = X(S(σ(G))) \ Cσ(G),

D(X(S(G))) = D(X(S(σ(G)))),

Act(S(G)) = Act(S(σ(G))).

Let MG = (S, s0,Steps ,Act , L) and Mσ(G) = (S′, s′0,Steps ′,Act ′, L′) be the MDPs over

S(G) and S(σ(G)), respectively.

The index map on S induced by σ, ς : S → S′, is defined as follows. For any state

s = (X̄0, X̄1, . . . , X̄N−1, Ḡ, C̄) ∈ S, define ς(s) = (ς(X̄0), ς(X̄1), . . . , ς(X̄N−1), ς(Ḡ), ς(C̄))
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such that,

∀0 ≤ i ≤ N − 1, ς(X̄i) = (ς(x1
i ), ς(x

2
i ), . . . , ς(x

m
i )), where for xji ∈ Xi,

ς(xji ) =







σ(xj
σ−1(i)

) if xji has an indexed domain

xj
σ−1(i)

otherwise

and ς(Ḡ) = (ς(g1), ς(g2), . . . , ς(gm)), where for gj ∈ G,

ς(gj) =







σ(gj
σ−1(i)

) if gj has an indexed domain and is indexed with gj = gji

gj
σ−1(i)

if gj is indexed with gj = gji

σ(gj) if gj has an indexed domain

gj otherwise

and ς(C̄) = σ−1(C̄) where we let σ−1(C̄) denote the set of channel values obtained such

that the value of ci,j in σ−1(C̄) is the value of channel cσ−1(i),σ−1(j) in C.

Similarly, we can define a mapping over the atomic propositions over the variable set of a

specification.

Definition 5.4.2. Let G (|G| = N) be a communication graph and let S(G) be a specifi-

cation over G. Let σ : {⊥, 0, . . . , N − 1} → {⊥, 0, . . . , N − 1} be a permutation of G (such

that σ(⊥) = ⊥) and let S(σ(G)) be a specification over σ(G) such that

X(S(G)) = X(S(σ(G))),D(X(S(G))) = D(X(S(σ(G)))),Act (S(G)) = Act(S(σ(G))).

Let AP be the set of propositions over X(S(G)) and let AP ′ be the set of propositions

over X(S(σ(G))). The index proposition map induced by σ, Σ : AP → AP ′, is defined as

follows.

For an unindexed proposition x = v, where x ∈ X(S(G)), v ∈ D(x) and x is unindexed,

Σ(x = v) = x = v.

For an indexed proposition xi = v, where x ∈ X(S(G)) is indexed by i, but D(x) is

unindexed,

Σ(xi = v) = xσ(i) = v.

For an indexed proposition xi = v, where x ∈ X(S(G)) is indexed by i, and D(x) is an

indexed domain,

Σ(xi = v) = xσ(i) = σ(v).
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For an indexed proposition x = v, where x ∈ X(S(G)) is unindexed, and D(x) is an

indexed domain,

Σ(x = v) = x = σ(v).

We define degenerative behaviour in terms of the adversaries of a model. Therefore, we

extend the index map induced by a permutation, defined over states, to the path index

map induced by a permutation, which we define over finite paths of a model.

Definition 5.4.3. Let G (|G| = N) be a communication graph and let S(G) be a specifi-

cation over G. Let σ : {⊥, 0, . . . , N − 1} → {⊥, 0, . . . , N − 1} be a permutation of G (such

that σ(⊥) = ⊥) and let S(σ(G)) be a specification over σ(G) such that

X(S(G)) = X(S(σ(G))),D(X(S(G))) = D(X(S(σ(G)))),Act (S(G)) = Act(S(σ(G))).

Let MG = (S, s0,Steps ,Act , L) and Mσ(G) = (S′, s′0,Steps ′,Act ′, L′) be the MDPs over

S(Γ) and S(σ(Γ)) respectively and let AP, AP ′ be the atomic propositions over X(S(G)),

X(S(σ(G))) respectively.

Let ς be the index map on S induced by σ and A and A′ adversaries of M and M′

respectively. The path index map induced by σ is defined by ρ : PathAfin(s0) → PathA
′

fin(s′0)

such that, for n ≥ 0,

ρ(ω) = ς(s0)
(a

σ(i0)
0 ,µ′0)
−→ ς(s1)

(a
σ(i1)
1 ,µ′1)−→ . . .

(a
σ(in−1)

n−1 ,µ′n−1)
−→ ς(sn),

where,

ω = s0
(a

i0
0 ,µ0)
−→ s1

(a
i1
1 ,µ1)
−→ . . .

(a
in−1
n−1 ,µn−1)
−→ sn ∈ PathAfin(s0).

If this mapping induces an isomorphism between models then the probabilities over LTL

path formula are preserved.

Lemma 5.4.4. Let G (|G| = N) be a communication graph and let S(G) be a specification

over G. Let σ : {⊥, 0, . . . , N − 1} → {⊥, 0, . . . , N − 1} be a permutation of G (such that

σ(⊥) = ⊥) and let S(σ(G)) be a specification over σ(G) such that

X(S(G)) = X(S(σ(G))),D(X(S(G))) = D(X(S(σ(G)))),Act (S(G)) = Act(S(σ(G))).

Let MG = (S, s0,Steps ,Act , L) and Mσ(G) = (S′, s′0,Steps ′,Act ′, L′) be the MDPs associ-

ated with S(Γ) and S(σ(Γ)) respectively and let AP and AP ′ be the atomic propositions

over X(S(G)), X(S(σ(G))) respectively.
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Let ς be the index map on S induced by σ, Σ the proposition index map induced by σ and

A and A′ adversaries of M and M′ respectively and let ρ be the path index map on A

induced by σ. Suppose that ρ is an isomorphism between DA and DA′

, the DTMCs induced

by A and A′ respectively such that ρ(s0) = s′0. Then, for s ∈ S, and LTL path formula, ψ,

ProbAs ({ω ∈ PathA(s)|ω |= ψ}) = ProbA
′

ς(s)({ω
′ ∈ PathA

′

(ς(s))|ω′ |= Σ(ψ)})

Proof. Let s ∈ S. For ω ∈ PathA(s) and atomic proposition a ∈ AP , a ∈ L(last(ω)) if and

only if Σ(a) ∈ L′(last(ρ(ω))). Hence, since ρ is an isomorphism it follows from Lemma

3.5.17 that,

ProbAs ({ω ∈ PathA(s)|ω |= ψ}) = ProbA
′

ς(s)({ω
′ ∈ PathA

′

(ς(s))|ω′ |= Σ(ψ)}).

5.5 Deterministically Degenerative Parameterised Sets of

Models

We now turn to our main definition that gives conditions for a parameterised family of

models (over a parameterised specification for some topology) to be degenerative. The

key condition is that the communication graphs of the topology are reduced such that

every adversary of a model of a specification of some graph is stuttering equivalent to an

adversary of a model of a specification over a reduced graph.

Definition 5.5.1. Let Γ be a communication topology that is reducible under a family of

reductions QΓ = {QG |G ∈ Γ}. Furthermore, suppose S(Γ) is a parameterised specification

over Γ, and let

MΓ = {MG = (SG , s
G
0 ,StepsG ,ActG , LG)|G ∈ Γ},

be the parameterised family of models over S(Γ).

For each G ∈ Γ let XG be the set of variables of S(G) (with CG ⊆ XG the set of channel

variables) and let APG be the atomic propositions over XG. For each G ∈ Γ and each

R ∈ QG, define a set of variables X ′
R(G) ⊆ XR(G) (with AP ′

R(G) ⊆ APR(G), the set of

atomic propositions over X ′
R(G)). Then MΓ is deterministically degenerative with base Φ

under QΓ if and only if,
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1. (Reduced Variables and Actions:) For G ∈ Γ and a reduction R = (W,σ) ∈ QG,

Xσ(G) \ CG = XG \ CG ,D(Xσ(G)) = D(XG),Actσ(G) = ActG ,

XR(G) ⊆ Xσ(G),D(XR(G)) ⊆ D(Xσ(G)),ActR(G) ⊆ Actσ(G),

2. (Matching Adversaries:) For G ∈ Γ \ Φ, there exists R = (W,σ) ∈ QG such

that, for every adversary A of MG, there exists an adversary A′ of Mσ(G) that is

isomorphic to A under the path index map induced by σ, with A′ stuttering equivalent

to some adversary A′′ of MR(G) with respect to AP ′
R(G).

The establishment of a set of models, parameterised by a set of topologies, that is de-

generative provides an inductive basis (over the set of topologies) with which to establish

properties of the models. The proof of Theorem 5.5.2 is a generalisation of a proof for a

specific instance of a degenerative non-probabilistic system [49].

Theorem 5.5.2. Let Γ be a set of communication topologies that is reducible to Φ under

the family of sets of reductions, QΓ, and let S(Γ) be a set of specifications over Γ. Suppose

that for each G ∈ Γ, R ∈ QG, there is a set of variables X ′
R(G) ⊆ XR(G) (with AP ′

R(G) ⊆

APR(G), the set of atomic propositions over X ′
R(G)) such that the family of models over

S(Γ), MΓ, is deterministically degenerative with base Φ under QΓ. Then for any unindexed

QLTL\X property φ with atomic propositions in
⋂

G∈Γ

⋂

(W,σ)∈QG
AP ′

R(G), if MF |= φ for

all F ∈ Φ, MG |= φ for all G ∈ Γ.

Proof. Let S(Γ) be a parameterised specification over Γ, a communication topology. Sup-

pose that there exists a parameterised set of models over S(Γ),

MΓ = {MG |G ∈ Γ},

that is deterministically degenerative with base Φ, under QΓ = {QG}, a family of sets

of reductions such that Γ is reducible to Φ under QΓ. For each G ∈ Γ, let the atomic

propositions APG be defined over XG = X(S(G)).

For each G ∈ Γ \ Φ and R = (W,σ) ∈ QG , let X ′
R(G) ⊆ XR(G) be a set of variables such

that Condition 2 of Definition 5.5.1 holds. Let AP ′
R(G) ⊆ APR(G), be the set of atomic

propositions over X′
R(G).
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Let G ∈ Γ and suppose that φ is an unindexed QLTL\X property with atomic propositions

in
⋂

R∈QG
AP ′

R(G). Assume that MR(G) |= φ, for every R ∈ QG. Then we can show that

MG |= φ as follows.

Let A ∈ AdvMG
. Choose R = (W,σ) ∈ QG such that A is isomorphic to some adversary

A′ ∈ AdvMσ(G)
under the path index map induced by σ, ρ, with A′ stuttering equivalent

to some adversary A′′ ∈ AdvMR(G)
w.r.t. AP ′

R(G).

The property φ has the form P⊲⊳p[ψ]. If Σ is the proposition index map induced by σ then

Σ(ψ) = ψ since φ is unindexed. For every adversary B of MR(G),

ProbBs′′0
({ω′′ ∈ PathBs′′0

|ω′′ |= ψ}) ⊲⊳ p. (5.1)

If MG , Mσ(G) and MR(G) have initial states s0, s
′
0 and s′′0 respectively then,

ProbAs0({ω ∈ PathAs0 |ω |= ψ})

= ProbA
′

s′0
({ω′ ∈ PathA

′

s′0
|ω′ |= ψ})by Lemma 5.4.4 since A = A′ under ρ

= ProbA
′′

s′′0
({ω′′ ∈ PathA

′′

s′′0
|ω′′ |= ψ}) since A′ ≃ A′′ w.r.t. AP ′

R(G)

⊲⊳ p by 5.1.

Since the above is true for every adversary of MG , MG |= φ.

Let φ be an unindexed QLTL\X formula with atomic propositions in
⋂

G∈Γ

⋂

R∈QG
AP ′

R(G)

and let G ∈ Γ. If G ∈ Φ then, by the statement of the theorem, MG |= φ.

Assume that G ∈ Γ \ Φ. Since φ has atomic propositions in
⋂

G∈Γ

⋂

(W,σ)∈QG
AP ′

R(G),

φ is defined over ∩R∈QG
AP ′

R(G). Since φ is also unindexed, by the above, MG |= φ if

MR(G) |= φ for all R ∈ QG. For each R ∈ QG , either R(G) is in Φ or it can be reduced

further. Since Γ is reducible to Φ under QΓ, continuing in this way, we can construct a

tree of graphs in which every terminal node is a graph in Φ. Finally, by the statement of

the theorem, each of the models associated with the graphs at these terminal nodes satisfy

φ and, by propagation up the tree of graphs, it follows that MG |= φ.
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Figure 5.1: Acyclic topologies for 2, 3, 4 and 5 processes.

5.6 Case Study: The IEEE 1394 (Firewire) Tree Identify

Protocol

5.6.1 Introduction

We illustrate our technique with a case study. The IEEE 1394 (Firewire) Tree Identify

Protocol (TIP), as described in the IEEE standard [33], is designed to elect a leader from a

set of processes arranged in an acyclic topology (Figure 5.1 shows all acyclic communication

graphs for systems of N processes for 2 ≤ N ≤ 5, up to the labelling of the vertices). A

process may send one of three messages to a neighbouring process: be my parent (bmp),

be my child (bmc) or acknowledge (ack). Any process that has received bmp messages

from at least all but one of its neighbours responds with bmc messages and, if necessary,

sends a bmp to the remaining neighbour. The neighbouring processes will send an ack

upon receiving a bmc, from which point they play no further part in the protocol (and

hence the protocol is degenerative). In this manner the protocol builds a spanning tree

with the root process elected as leader.

Note that it is possible for two neighbouring processes to attempt to become leader by

sending bmp requests to each other simultaneously. In order to resolve this contention,

each process probabilistically chooses to wait for a long or short amount of time, before

attempting to send a request again. If a process then receives a request before it has

sent one, it will be elected leader. Otherwise, another contention situation ensues and the

“back-off” procedure must be repeated.

Much work has been done on proving correctness of root contention in the TIP by the

modelling of two contending processes [60]. Appealing to these results, in [16] the resolu-

tion of contention is modelled by a non-deterministic choice, allowing the full protocol to

be modelled non-probabilistically. Non-probabilistic properties of these models for fixed
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Table 5.1: Transitions in MG made by process j when it receives requests from all of its
neighbours

1. Process j (start, [0, . . . , 0], k, 0, 0)

receives bmp [bmp]i1,j, . . . , [bmp]ik ,j
from all its 1 ↓ aj

neighbours. (child, [i1 , i2, . . . , ik, 0, . . . , 0], k, 0, k)

[]i1,j, . . . , []ik ,j
2. Process j (child, [i1 , i2, . . . , ik, 0, . . . , 0], k, 0, k)

responds to its []i1,j, . . . , []ik ,j
neighbours with 1 ↓ bj

bmc requests. (parent, [i1, i2, . . . , ik, 0, . . . , 0], k, 0, k)

[bmc]i1,j, . . . , [bmc]ik ,j

3. Process j (parent, [i1, i2, . . . , ik, 0, . . . , 0], k, 0, k)

receives ack [ack]i1,j, . . . , [ack]ik ,j
from all its 1 ↓ cj

neighbours and (finish, [0, . . . , 0], k, 0, 0)

becomes leader. []1,0, . . . , []N−1,0, elected = j

configurations are verified using the SPIN model checker.

We consider models for the TIP in which contention is resolved probabilistically. We do

not consider the real-time aspects but instead model contention with a contending process

(the one with the smallest index) making a simple probabilistic choice as follows. With

probability 1
4 , the process loses allowing the other process to send its bmp. With probability

1
4 , the process wins and transmits its request to the other contending process. With

probability 1
2 contention is not resolved and the process must make the probabilistic choice

again. This is an abstract representation of contention with two contending processes

flipping a fair coin and choosing again if they flip the same values, or deciding on a leader

if they flip different values.

5.6.2 Parameterised Specifications of the TIP

We have defined a script for automatically generating PRISM specifications of the TIP for

any communication graph, based on the Promela specifications of [49]. We can view this

script as generating a parameterised set of specifications for the TIP system, S(Γ), over

the communication topology Γ, defined as follows.

Definition 5.6.1. Let Γ be the communication topology such that for G = (E,V, I) ∈ Γ,
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(v,w) ∈ E if and only if (w, v) ∈ E and G does not contain any cycles.

In other words, Γ is the set of acyclic communication graphs such that communication

between processes is bi-directional. In the sequel, we let MΓ = {MG |G ∈ Γ} be the

parameterised family of models over S(Γ). We give a PRISM specification of the TIP

over a star topology with three processes in Appendix E and we give a description of the

specifications and the models below.

Given G ∈ Γ, with |G| = N , for the specification S(G) ∈ S(Γ) then XG = ∪N−1
i=0 X

i
G ∪GG ∪

CG is the set of variables for S(G). For a variable vari of the PRISM specification for

convenience we use the notation vari. So, for i ∈ {0, . . . , N − 1},

GG = {elected, toss0, toss1, . . . , tossN−1},

CG = {cg,h|(g, h) ∈ E},

Xi
G = {state i, child i,0, . . . , child i,N−1, adji , remaining partner i,no of requests i},

For i, j ∈ {0, 1, . . . , N − 1}, cg,h ∈ CG the variable domains are,

D(state i) = {start , child , parent , conten , response ,

complete ,winner , loser , b child ,finish}

D(cg,h) = {empty , bmp, bmc, ack},

D(no of requests i) = D(adj i) = {0, 1, . . . , N−1},

D(remaining partner i) = D(child i,j) = D(elected) = {0, 1, . . . , N},

D(toss i) = {0, 1, 2}.

Note that since the channels have length one, they can be represented in PRISM by

global variables. The set of actions for S(G) is given by ActG = ∪N−1
i=0 Act jG where, for

j = 0, 1, . . . , N − 1, Act jG is the set of actions for a given process, j.

We let MΓ denote the parameterised set of models over S(Γ). From S(Γ) we can derive

the set of possible transitions in a model MG ∈ MΓ. We give a representation of these

transitions (for a process, j) in Tables 5.1, 5.2 and 5.3. The sole probabilistic transition

(that of resolving contention) is represented in Figure 5.2. Note that the entries in the

tables and the figure represent a set of transitions since we only give the values of some of

the global variables, the local variables of process j and the channel variables of process j.

The remaining variables take a variety of values and thus the transition could take place
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0.5

(winner, [i2, . . . , ik, 0, . . . , 0], k, i1, k)
tossj = 1

(loser, [i2, . . . , ik, 0, . . . , 0], k, i1, k)
tossj = 2

tossj = 0
(conten, [i2, . . . , ik, 0, . . . , 0], k, i1, k)

Figure 5.2: The transition in MG corresponding to root contention resolution between

process j and process im (j < im).

between a number of different states. Each entry in the table corresponds to an update

in the specification and is labelled by a number. We have labelled the specification in

Appendix E with corresponding numbers.

The first column in the tables give an informal description of the specification update.

The second column shows values of the local variables of process j along with some of

the channel and global variables’ values. These represent the necessary conditions for an

action to occur and the result of that action. The current values of the local variables are

presented as the tuple, X̄i
G = (s, [ch0, . . . , chN−1], a, r, n), representing the values of statej ,

child j,0, . . . , child j,N−1, adj j , remaining partner j , no of requestsj respectively. The value

of the channel variable ch,i is represented by [msg]h,i (where msg is bmp, bmc or ack)

or []h,i if ch,i = empty. If a variable is not presented then its value is of no importance

for that action. We assume for each table that process j has k neighbours, with indices,

i1, i2, . . . , ik, and, for Tables 5.2 and 5.3 and Figure 5.2, that i1 is the neighbour that does

not initially send a bmp to j.

5.6.3 Model Checking the TIP

We have verified the following suite of properties for models of small, fixed configurations of

the TIP system using PRISM. Note that these properties are expressed as QLTL properties

with the exception of Property 4, which is negated outside of the P operator. We can still

verify this by establishing that the negation of this property does not hold. Note also

that Property 1 is an unindexed QLTL\X property. In order to verify our properties using

PRISM it was necessary to translate them into equivalent PCTL properties. Results for
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Table 5.2: Transitions in MG made by process j when it receives requests from all but
one of its neighbours (process im) – before entering contention.

4. Process j (start, [0, . . . , 0], k, 0, 0)

receives bmp [bmp]i1,j, . . . , [bmp]im−1,j, []im,j, [bmp]im+1,j, . . . , [bmp]ik,j
from all its 1 ↓ ajm
neighbours (child, [i1, . . . , im−1, im+1, . . . , ik, 0, . . . , 0], k, im, k)

except im. []i1,j, []i2,j, . . . , []ik ,j
5. Process j (child, [i1, . . . , im−1, im+1, . . . , ik, 0, . . . , 0], k, im, k)

responds with []j,i1 , []j,i2, . . . , []j,ik
bmc and sends 1 ↓ bjm
bmp to im. (parent, [i1, . . . , im−1, im+1, . . . , ik, 0, . . . , 0], k, im, k)

[bmc]j,i1 , . . . , [bmc]im−1,j, [bmp]im,j, [bmc]im+1,j, . . . , [bmc]j,ik
6. Process j (parent, [i1, . . . , im−1, im+1, . . . , ik, 0, . . . , 0], k, im, k)

receives ack [ack]i1,j, . . . , [ack]im−1 ,j, [ack]im+1,j, . . . , [ack]ik ,j
from all its child 1 ↓ cjm
neighbours (complete, [i1, . . . , im−1, im+1, . . . , ik, 0, . . . , 0], k, im, k)

(not im). []i1,j, . . . , []im−1,j, []im+1,j, . . . , []ik ,j

7. Process j (complete, [i1, . . . , im−1, im+1, . . . , ik, 0, . . . , 0], k, im, k)

moves into the 1 ↓ dj

response state. (response, [i1, . . . , im−1, im+1, . . . , ik, 0, . . . , 0], k, im, k)

8. Process j (response, [i1, . . . , im−1, im+1, . . . , ik, 0, . . . , 0], k, im, k)

receives bmc [bmc]im,j
from its non-child 1 ↓ ejm
neighbour (im). (b child, [i1, . . . , im−1, im+1, . . . , ik, 0, . . . , 0], k, 0, k)

[]im,j

9. Process j (b child, [i1, . . . , im−1, im+1, . . . , ik, 0, . . . , 0], k, 0, k)

sends ack to its []j,im
non-child neighbour (im) 1 ↓ f jm
and terminates without (finish, [0, 0, . . . , 0], k, 0, 0)

becoming leader. [ack]j,im
10. Process j (response, [i1, . . . , im−1, im+1, . . . , ik, 0, . . . , 0], k, im, k)

receives bmp [bmp]im,j
from im, its non-child 1 ↓ gjm
neighbour and (conten, [i1, . . . , im−1, im+1, . . . , ik, 0, . . . , 0], k, im, k)

enters contention. []im,j
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Table 5.3: Transitions in MG made by process j when it receives requests from all but
one of its neighbours (process im) – during and after contention.

11. Root See Figure 5.2.

contention (im > j)

12. im < j and (conten, [i1, . . . , im−1, im+1, . . . , ik, 0, . . . , 0], k, im, k)

process j has toss j = 1

won contention. 1 ↓ ujm
(winner, [i1, . . . , im−1, im+1, . . . , ik, 0, . . . , 0], k, im, k)

toss j = 0

13. im < j and (conten, [i1, . . . , im−1, im+1, . . . , ik, 0, . . . , 0], k, im, k)

process j has toss j = 2

lost contention. 1 ↓ vjm
(loser, [i1, . . . , im−1, im+1, . . . , ik, 0, . . . , 0], k, im, k)

toss j = 0

14. Process j has (winner, [i1, . . . , im−1, im+1, . . . , ik, 0, . . . , 0], k, im, k)

won contention []j,im
and so sends bmp 1 ↓ wjm
to im and returns (response, [i1, . . . , im−1, im+1, . . . , ik, 0, . . . , 0], k, im, k)

to response state. [bmp]j,im
15. Process j has lost (loser, [i1, . . . , im−1, im+1, . . . , ik, 0, . . . , 0], k, im, k)

contention and receives [bmp]im,j
bmp from winning 1 ↓ xjm
process, im and (child, [im, 0, . . . , 0], 1, 0, 1)

returns to child state. []im,j
16. Process j has lost (child, [im, 0, . . . , 0], 1, 0, 1)

contention and sends []j,im
bmc to winning 1 ↓ yj

process, im. (parent, [im, 0, . . . , 0], 1, 0, 1)

[bmc]j,im
17. Process j has (parent, [im, 0, . . . , 0], 1, 0, 1)

lost contention [ack]im,j
and receives ack 1 ↓ zjm
from im and (finish, [0, . . . , 0], 1, 0, 0)

becomes leader. []im,j, elected = j
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Table 5.4: Statistics for PRISM models of the TIP with N processes, arranged in a star
topology

N States Transitions Nodes Build time (s) Property 1 (s)

2 63 108 1639 0.202 0.122

3 258 496 6997 2.118 0.156

4 1181 3040 31242 3.260 0.981

5 6032 20036 204825 14.293 6.600

verification of Property 1 against models of the TIP with a star topology (with 2, 3, 4 and

5 processes) are given in Table 5.4 together with some statistics for these models.

Property 1: A leader will be elected almost surely.

P≥1[true U ¬(elected = 0)]

Property 2: Only one process will be elected leader almost surely.

∀0 ≤ i ≤ N − 1.P≤0[�(elected = i⇒ (true U (elected ! = i)))]

Property 3: For all 0 ≤ i ≤ N−1, process i will not remain in the start state indefinitely.

P≥1[�(state i = start ⇒ (true U (state i! = start)))]

Property 4: For 0 ≤ i ≤ N − 1, it is possible for process i to be elected leader.

¬P≤0[true U (elected = i)]

Property 5: If process i enters contention then it will be elected leader with probability

at least a half (0 ≤ i ≤ N − 1).

P≥0.5[�(state i = conten ⇒ (true U (elected = i)))]

5.6.4 Parameterised Verification of the TIP

In [49] several properties of the IEEE 1394 Firewire leader election protocol are proved

for the non-probabilistic case. The proof involves identifying processes of a system as
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level-1 processes (processes with only one neighbouring node that is not a leaf) and using

a reduction approach to compare properties of the associated model with one for a smaller

system which is identical except that the leaf nodes associated with some of the level 1

nodes have been removed. More precisely, it is established that every path in the model

of a system is stuttering equivalent (i.e. is equivalent up to sequences of repeated states)

to a path in a model for a smaller system of this form. Smaller systems are produced in

an inductive fashion until a star topology is reached.

We extend this proof to the parameterised family of probabilistic models based on our

inductive proof schema. The probabilistic component of our model makes the proof more

complex than in the non-probabilistic case. Instead of showing stuttering equivalence

between paths we must establish (a probabilistic form of) stuttering equivalence (see Def-

inition 3.5.8) between adversaries of MDPs. In this way we show that:

Theorem 5.6.2. Let φ be Property 1. Then MG |= φ for all G ∈ Γ.

In order to prove Theorem 5.6.2 we first show that Property 1, described above, is satisfied

by all models in MΦ, where Φ ⊆ Γ is the set of all star topologies. Note that MΦ is a

parameterised set of models. Therefore, in order to show that all models in MΦ satisfy

Property 1, we have to tackle another instance of the PMCP. However, the topology for

this parameterised family is regular, making the problem easier. We can prove Lemma

5.6.3 using our technique for degenerative sets of models. We outline the proof below.

Lemma 5.6.3. For all G ∈ Φ, MG |= φ, where φ is Property 1.

Proof. (Sketch) Let G = (E,V, I) ∈ Φ and suppose that |G| = N > 2. Assume that

the central process of the star has index i. For j 6= i, 0 ≤ j ≤ N − 1, let σjN be a

permutation on the labelling of vertices such that if i > j then σjN (i) = 1 and σjN (j) = 0,

otherwise σjN (i) = 0 and σjN (j) = 1. Let W j
N = {i, j} ⊂ V . Define a set of reductions

QG = {(W j
N , σ

j
N )|j 6= i, 0 ≤ j ≤ N − 1} on G and let QΦ = {QG |G ∈ Φ, |G| > 2}. We show

that QG(2) = ∅ if G(2) is the star of size two and Φ is reducible to {G(2)} under QΦ.

Given MG ∈ MΦ with variable set XG and a reduction, Rj
N = (W j

N , σ
N
j ), for, j 6= i,

1 ≤ j ≤ N − 1, (with i′ = σNj (i)) define,

Xi′

Rj
N

(G)
= X

Rj
N

(G)
\ Y i′
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Figure 5.3: Acyclic topologies for 2, 3, 4 and 5 processes. Level-1 vertices are shaded.

where Y i′ = {child i′,0, child i′,1, . . ., child i′,N−1, adj i′ , no of requests i′}.

Suppose that process i moves into the child handshake state having received bmp requests

from all leaf processes except some process, j. This is matched by an adversary of MG(2)

in which process σjN (i) moves directly into the child handshake state.

Assume that process i moves into the child handshake state having received bmp requests

from all leaf processes and then sends bmc requests to all its neighbours before receiving

an ack from all the leaves, becoming leader. It should be clear that this is ‘matched’ by

an adversary of MG(2) in which process σjN (i) receives a bmp from σjN (j) and moves into

the child handshake state before sending bmc to σjN (j), receiving an ack in response and

becoming leader (note that we can choose j arbitrarily in this instance).

Therefore, every adversary of MG is matched to an adversary of MG(2) and so MΦ is

deterministically degenerative under QΦ with base {G(2)}. It can be shown that MG(2) |=

φ, where φ is Property 1, using model checking (see Table 5.4) and hence by Theorem

5.5.2, MG |= φ for all G ∈ Φ.

We can now tackle Theorem 5.6.2 by showing that MΓ is degenerative with base Φ under

some family of sets of reductions. We do so by considering each of the conditions given

in Definition 5.5.1 in turn, having defined an appropriate set of complete reductions and

corresponding set of ‘reduced’ variables for each model in MΓ.

Clipping Reductions

The main decision in defining a set of reductions is how vertices are removed from commu-

nication graphs. In the TIP example we define clipping reductions where we remove sets

of leaf vertices that are connected to a particular kind of non-leaf vertex. These non-leaf

vertices, termed level-1 vertices, are guaranteed to exist in acyclic communication graphs
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that are not stars. See Figure 5.3 for examples of level-1 vertices for some acyclic graphs.

The following definition of level-1 vertices is taken from [49].

Definition 5.6.4. For any graph G = (E,V, I), let leaf (v) denote the set of vertices,

w ∈ V , such that w is a leaf and there exists an edge from v to w. A non-leaf vertex j is

a level-1 vertex if all but one of its neighbouring vertices are in leaf (j). If j is a level-1

vertex its non-leaf neighbour is called its inner-vertex, denoted inner(j).

Definition 5.6.6 and the proof of Lemma 5.6.5 are given in [49].

Lemma 5.6.5. If G is an acyclic finite graph that is not a star, then G has at least two

level-1 vertices.

Definition 5.6.6. Given G = (E,V, I) and level-1 vertex j, let clipj(G) = V \ leaf (j) be

the set of vertices of G excluding leaf vertices of j.

In defining a set of complete reductions, coincident to the identification of vertices for

removal, is the identification of a permutation of the vertex labels that ensures the reduced

graph is labelled correctly. We define a permutation for G ∈ Γ and level-1 vertex j, on the

vertex labels of G, which permutes the indices such that the leaves of j have the largest

indices and the order of the indices of the remaining vertices is preserved. The following

definition is taken from [49]

Definition 5.6.7. Let G ∈ Γ be a graph with a level-1 vertex j, with |G| = N . Suppose

that vertex j has w leaves with ids belonging to Hj = {h0, h1, . . . , hw−1} where hu < hu+1

for all 0 ≤ u ≤ w − 2. The remaining N − w nodes have ids in {0, 1, . . . , N − 1} \ Hj

which we denote by m0,m1, . . . ,mN−1−w where mt < mt+1 for all 0 ≤ t ≤ N − 1−w. We

define the bijective mapping σGj on the set {−1, 0, 1, . . . , N − 1} such that σGj (−1) = −1,

σGj (mt) = t for all 0 ≤ t ≤ N − 1 − w and σGj (hu) = u+N − w for all 0 ≤ u ≤ N − w.

We can now define a set of reductions on a graph G ∈ Γ.

Definition 5.6.8. For G ∈ Γ, let JG = {j1, j2, . . . , jm} be the set of all level-1 vertices in

G. Let ClipjG = (clipj(G), σGj ) and define the set of clipping reductions of G as ClipG =

{ClipjG |j ∈ JG}. Furthermore, define the family of sets of clipping reductions, ClipΓ =

{ClipG |G ∈ |Γ}.
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Figure 5.4: An example of graph G (top) and the graphs obtained under a clipping reduc-

tion, with respect to level-1 vertices, vertex 2 and vertex 3.

An example of a graph obtained under clipping reductions for the level-1 vertices, 2 and

3, is shown in Figure 5.4.

We can now show that we can reduce any communication graph in Γ to a star topology

under a sequence of clipping reductions.

Lemma 5.6.9. The set of acyclic topologies, Γ is reducible to the set of stars, Φ under

ClipΓ.

Proof. Let G ∈ Φ, then by definition ClipG(G) = ∅.

We prove that for every G ∈ Γ \Φ there exists a sequence of clipping reductions such that

G is reduced to a graph in Φ, by induction on the number of level-1 vertices of a graph.

By 5.6.5 every graph that is in Γ but not a star has at least two level-1 vertices.

Assume that G has two level-1 vertices i and j. It should be apparent that any such graph

is a line of vertices with (possibly) additional leaf vertices connected to each of the vertices

in the line and with i and j at either end of the line. If the line has length two then the

two vertices in the line must be the level-1 vertices. Clearly, any clipping reduction on

either of these two vertices will result in a star. Suppose that every line with length n ≥ 2

is reducible to a star by a sequence of clipping reductions. Let G be a line of length n+ 1.
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Any clipping reduction on the level-1 vertices of G will result in a line of length n. Hence,

by induction, any graph with two level-1 nodes is reducible to a star under a sequence of

clipping reductions.

Assume that G has n ≥ 2 level-1 vertices and that it is reducible to a star by a sequence

of clipping reductions. Let G be a graph in Γ with n + 1 level-1 vertices. Let the inner

vertices of a graph G be the set of vertices excluding the leaf nodes and excluding the

level-1 vertices. Suppose that G has 1 inner vertex. Then since G has at least three level-

1 vertices, it must be a star with leaf vertices attached to the leaves of the star. Any

clipping reduction on G will remove a level-1 vertex, with the reduced graph having n

level-1 vertices and by the induction hypothesis there exists a sequence of reductions on

the reduced graph resulting in a star. For any graph G with n + 1 level-1 vertices and m

inner vertices, assume that G is reducible to a star by a sequence of clipping reductions.

Let G be a graph in Γ with n + 1 level-1 vertices and m + 1 inner vertices. A clipping

reduction will result in either a graph with n level-1 vertices, in which case by the first

induction hypothesis we are done, or in a graph with n + 1 level-1 vertices and m inner

vertices, in which case by the second induction hypothesis we are done.

Hence, by induction on the number of level-1 vertices we have that every graph in Γ is

reducible to a star by a sequence of clipping reductions and therefore Γ is reducible to Φ

under ClipΓ.

Reduced Variable Sets

We define a subset of the variable set of a model of a clipping reduced graph (adapted

from [49]). Essentially we remove all variables associated with the leaf processes of a level-

1 vertex. This includes not just the variables of the leaf vertices but also a subset of the

variables of the level-1 process that may refer to the indices of the leaf processes.

Definition 5.6.10. Let G ∈ Γ. Given MG ∈ MΓ with variables set XG and a clipping

reduction, ClipjG = (clipj(G), σGj ), for a level-1 vertex, j, (with j′ = σGj (j)) define,

Xj′

Clip
j
G
(G)

= X
Clip

j
G
(G)

\ Y j′

where Y j′ = {child j′,0, child j′,1, . . ., child j′,N−1, adj j′, no of requestsj′}.

For G ∈ Γ we let APj′

Clip
j
G
(G)

be the set of atomic propositions over Xj′

Clip
j
G
(G)

.
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Now we show how MΓ, with clipping reductions, is degenerative, by demonstrating that

each of the conditions of Definition 5.5.1 is fulfilled.

Condition 1 (Reduced Variables and Actions)

Lemma 5.6.11. Given a graph G ∈ Γ that is not a star, a level-1 vertex j, and a clipping

reduction, ClipjG = (clipj(G), σjG) then

XG \ CG = X
σj
G
(G)

\ CG,D(XG) = D(X
σj
G
(G)

),ActG = Act
σj
G
(G)
.

Lemma 5.6.12. Given a graph G ∈ Γ that is not a star, a level-1 vertex j, and a clipping

reduction, ClipjG = (clipj(G), σjG) then

X
Clip

j
G
(G)

⊆ X
σj
G
(G)
,D(X

Clip
j
G
(G)

) ⊆ D(X
σj
G
(G)

),Act
Clip

j
G
(G)

⊆ Act
σj
G
(G)
.

The proofs of Lemmas 5.6.11 and 5.6.12 follow from the definition of the variable sets XG

and ActG (for G ∈ Γ) and the definition of σjG given previously.

Condition 2 (Matching Adversaries)

We partition the adversaries of a TIP model according to their behaviour with respect to

the level-1 vertices. Specifically, we classify them according to which level-1 vertex receives

bmp requests from all its leaf vertices, but not its inner vertex, first. If j is such a vertex

then the value of variable statej will change from start to child . The leaf neighbours of j

are then guaranteed to terminate without being elected leader and their effect under the

adversary can be ignored. This is key to showing that MΓ is degenerative. The following

definitions and lemmas are adapted from those given in [49] for the non-probabilistic case.

Definition 5.6.13. Let G ∈ Γ and let JG be the set of all level-1 vertices of G. An

adversary A ∈ AdvMG
is said to be first-full with respect to a level-1 vertex, j ∈ JG (or

first-full with respect to j) with inner vertex h if and only if,

ProbAs0({ω ∈ PathAs0 |ω |= START U CHILDh
j }) = 1

where START = (∧k∈JGstatek = start) and, CHILDh
j = (∧i∈JG ,i6=jstate i = start) ∧

(statej = child) ∧ (remaining partner j = h).



123

Definition 5.6.14. Given MG, for any level-1 vertex j, let Adv jMG
⊆ AdvMG

denote the

set of adversaries which are first-full with respect to j.

We can now show that the set of adversaries that are first-full with respect to some level-1

vertex are the set of all adversaries for each model in MΓ. Intuitively, at the initialisation

of the protocol only leaf processes can progress beyond their starting state. Thus we must

reach a state where a level-1 process receives be my parent requests from all of its leaf

neighbours but not its inner vertex. The adversary corresponding to this scheduling must

therefore be first-full with respect to a level-1 process. The proof of Lemma 5.6.15 is

similar to the proof given in [49] for the non-probabilistic case.

Lemma 5.6.15. For G ∈ Γ \ Φ, let JG = {j1, j2, . . . , jk} be the set of indices of all the

level-1 vertices. Then,
⋃

j∈J

Adv jMG
= AdvMG

.

Let G ∈ Γ \Φ and for some level-1 vertex j let (clipj(G), σGj ) be a clipping reduction of G.

Let APG be the set of atomic propositions over XG and let APσGj (G) be the set of atomic

propositions over XσGj (G).

Let ςGj denote the index map induced by σGj and let ΣG
j : APG → APσGj (G) denote the

proposition index map induced by σGj . Note that the mapping, ΣG
j , is a bijective function

between the labelling of states in Aj and the labelling of states in Aj′ since σjG is a

permutation. We show the effect of this mapping in Table 5.5.

Lemma 5.6.16. Let G ∈ Γ \ Φ. Let j be a level-1 vertex and let ClipjG = (clipj(G), σjG)

be the clipping reduction for j. For every adversary Aj of MG that is first-full w.r.t. j,

there exists some adversary Aj′ of M
σj
G
(G)

that is first-full with respect to j′ = σGj (j) such

that ρGj , the path index map induced by σjG, is an isomorphism between Aj and Aj′.

Proof. Let G ∈ Γ \ Φ and let j be a level-1 vertex. Let MG = (S, s0,Steps ,Act , L)

and M
σj
G
(G)

= (S′, s′0,Steps ′,Act ′, L′). Let Aj be an adversary of MG that is first-full

with respect to j. Let α be a finite path in Pathfin(s0) and suppose Aj(α) = (a, µ) for

(a, µ) ∈ Steps(last(α)). Let α′ = ρGj (α) be the finite path in Pathfin(s
′
0) obtained under

the path index map induced by σjG .
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Suppose that (a, µ) = (rjm, µ) corresponds to the transition type shown in Figure 5.2 with

µ(t1) = µ(t2) = 0.25 for t1, t2 ∈ S and µ(last(α)) = 0.5. If rjm is enabled from last(α) then

since last(α′) = ςGj (last (α)), r
σj
G
(j)

σj
G
(m)

is enabled from last(α′). Let (a′, µ′) = (r
σj
G
(j)

σj
G
(m)

, µ′)

where µ′(last(α′)) = 0.5 and µ′(t′1) = µ′(t′2) = 0.25 such that t′1, t
′
2 ∈ S′. It should be clear

that t′1 = ςGj (t1), t
′
2 = ςGj (t2) and µ(t1) = µ(t′1) = µ(t2) = µ(t′2) = 0.25 and µ(last(α)) =

µ′(last(α′)) = 0.5. We can choose adversary Aj′ such that Aj′(last(α
′)) = (a′, µ′).

We can consider each of the transitions in Tables 5.1, 5.2 and 5.3 in a similar way. Thus

we can construct Aj′ so that, from Definition 3.5.18, Aj′ is isomorphic to Aj under ρGj .

We now prove that Aj′ is first-full with respect to j′ = σjG(j).

Consider the path,

α = s0
a1,µ1
→ s1

a2,µ2
→ . . .

an,µn
→ sn

such that α ∈ Path
Aj

fin(s0), sn |= CHILDh
j and for all 0 ≤ i ≤ n − 1, si |= START and

si 6|= CHILDh
j where h is the inner vertex of j and CHILDh

j is defined as per Definition

5.6.13. Since Aj is first-full with respect to j, α is guaranteed to exist. Root contention

cannot occur before state sn and therefore every transition along α is a non-probabilistic

action and thus P(α) = 1.

Let α′ = ρGj (α) ∈ PathAj′ (s′0). Thus P(α′) = 1 and for all 0 ≤ i ≤ n− 1,

ςGj (si) |= ΣG
j (START ) = START,

ςGj (si) 6|= ΣG
j (CHILD

h
j ) = CHILDh′

j′ ,

and

ςGj (si) 6|= ΣG
j (CHILD

h
j ) = CHILDh′

j′ ,

where h′ is the inner vertex of j′.

Thus, by Definition 5.6.13, Aj′ is first-full with respect to j′.

In Lemma 5.6.17 we show that, for every adversary in MσGj (G), first full with respect

to j′ = σGj (j), there exists an adversary of M
Clip

j
G
(G)

, that is stuttering equivalent with

respect to the set of atomic propositions defined in Definition 5.6.10.

Lemma 5.6.17. Let G ∈ Γ \ Φ, j a level-1 vertex and ClipjG = (clipj(G), σjG) be the

clipping reduction for j. For every adversary A of MσGj (G), there exists some adversary

A′ of M
Clip

j
G
(G)

such that A and A′ are stuttering equivalent w.r.t. APj′

Clip
j
G
(G)

.
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Proof. Let MσGj (G) = (S, s0,Steps ,Act , L) and M
Clip

j
G
(G)

= (S′, s′0,Steps ′,Act ′, L′). Let

A be an adversary of MσGj (G) and let AP∗ , AP j′

σGj (G)
[clipj(G)]. Let H ⊆ Pathfin(s0) ×

Pathfin(s
′
0) be the relation given by ∀α ∈ Pathfin(s0), α

′ ∈ Pathfin(s
′
0), H(α,α′) iff

traceAP∗(α) ≃ traceAP∗(α′).

We define an adversary, A′ over M
Clip

j
G
(G)

and sets, D0, D1, D2,. . . such that ∀n ≥ 0,

Dn ⊆ Pathfin(s
′
0), by induction over the cuts of A at depth i. We show that for all n ≥ 0,

IH1 For every α ∈ cutAs0, α
′ ∈ Dn, if H(α,α′) then for every m < n there exists prefixes

β ≤ α and β′ ≤ α′ such that β ∈ cutA(m), β′ ∈ Dm and H(β, β′).

IH2 If µn, µ
′
n are the distributions over cutn(A) and Dn, respectively, defined by, for

α ∈ cutA(n), α′ ∈ Dn, µn(α) = P(α) and µ′n(α
′) = P(α′) then µn ⊑H µ′n.

IH3 For every α ∈ cutAs0, α
′ ∈ Dn, if H(α,α′) then for every β ∈ cutAs0, β

′ ∈ Dn such that

β 6= α and β′ 6= α′, (β, α′) /∈ H and (α, β′) /∈ H.

Base case: Clearly cutA(0) = {s0}. Let D0 = {s′0}. Immediately, IH1 and IH3 hold. By

definition P(s0) = P(s′0) = 1. Therefore, µ0 ⊑H µ′0 and so IH2 holds.

Induction step: Assume that IH1, IH2 and IH3 hold for some n ≥ 0. Suppose α ∈

cutA(n + 1). Then for γ ∈ PathAfin(s0), (a, µ) ∈ Steps(last(γ)), α = γ
a,µ
−→ s. Since

|γ| = n, γ ∈ cutA(n) and since µn ⊑H µ′n by IH2, there exists γ′ ∈ Dn such that H(γ, γ′)

and by IH3 no other path is related to γ′ or γ. We now define Dn+1 by considering the

transition last(γ)
a,µ
−→ s. Consider the following cases.

1. Suppose a ∈ ∪i∈leaf (j)Act i.

Notice that for process j to send a be my parent request to one of its leaves (k say)

then it must have received a be my parent request from its inner node and all of its

other leaves. This would imply, however, that A is not first-full with respect to j.

Therefore, process j cannot send a be my parent request to any of its leaves and so

none of the leaves can reach a contention state with j. In other words,

ProbAs0(ω ∈ PathAs0 |ω |= � ∧i∈leaf (j) statei 6= contention) = 1.

Thus, we only need to consider the actions ∪i∈leaf (j){a
i
j , b

i
j, c

i
j , d

i
j , e

i
j , f

i
j} as shown in

Tables 5.2 and 5.3. It is apparent that each of these actions is a non-probabilistic
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stutter action w.r.t. AP∗ i.e. µ(s) = 1 and L(last(γ)) ∩ AP∗ = L(s) ∩ AP∗. Thus,

since we also have that γ is stuttering equivalent to γ′ w.r.t. AP∗, α and γ′ are

stuttering equivalent w.r.t. AP∗.

2. Suppose that a /∈ ∪i∈leaf (j)Act i and that a /∈ {him|i /∈ leaf (j), (m, i) ∈ E}.

Thus a is an action associated with a process other than the leaves of j and a is not

a contention resolution action. We have γ ≃ γ′ w.r.t. AP∗ so L(last(γ)) ∩ AP∗ =

L′(last(γ′)) ∩ AP∗. Suppose that a = aim for some vertex i /∈ leaf (j), i 6= j and for

some vertex m such that (i,m) ∈ E i.e. a is the action such that a process is in

the start state and receives be my parent requests from all its neighbours except m.

Thus statei = start ∈ L(last(γ)) and ∀k ∈ V s.t. (k, i) ∈ E and k 6= m, ck,i = bmp ∈

L(last(γ)) and cm,i = empty ∈ L(last(γ)). Each of these propositions are in AP∗

and therefore also belong to L′(last(γ′)). Thus action aim must also be enabled from

last(γ′) and so last(γ′)
ai

m,µ
′

−→ s′ where µ′(s′) = 1 and L(s) ∩ AP∗ = L′(s′) ∩ AP∗.

By arguing in a similar way for each of the actions given in Tables 5.1, 5.2 and

5.3, it is straightforward to determine that for an action a /∈ ∪i∈leaf (j)Act i and that

a 6= him, if (a, µ) ∈ Steps(last(γ)) then (a, µ′) ∈ Steps(last(γ′) where µ′(s′) = 1 for

some s′ ∈ S′ such that L(s) ∩ AP∗ = L(s′) ∩ AP∗. Let α′ = γ′
a,µ′
−→ s′ then α is

stuttering equivalent to α′ w.r.t. AP∗.

3. Suppose that a /∈ ∪i∈leaf (j)Act i and that a ∈ {him|i /∈ leaf (j), (m, i) ∈ E}.

We have γ ≃ γ′ w.r.t. AP∗ so L(last(γ))∩AP∗ = L′(last(γ′))∩AP∗. Suppose that

a = him for some vertex i /∈ leaf (j), and for some vertex m such that (i,m) ∈ E i.e. a

is the action corresponding to contention resolution between i and m (i < m). Thus

statei = contention, tossm = 0 ∈ L(last(γ)). Each of these propositions are in AP∗

and therefore also belong to L′(last(γ′)). Thus action aim must also be enabled from

last(γ′) and so (aim, µ
′) ∈ Steps(last(γ)) where µ′(s′) = 1

2 , µ′(s′1) = 1
4 and µ′(s′2) = 1

4 .

If s = last(γ) (so that µ(s) = 1
2)) then let α′ = γ′

a,µ′
→ s′. If statej = winner ∈ L(s)

then let α′ = γ′
a,µ′
→ s′1. If statej = loser ∈ L(s) then let α′ = γ′

a,µ′
→ s′2.

We let Dn+1 be the set of finite paths, {α′|α ∈ cutA(n), and α′ is derived from α as

described above}. By the definition of this set, IH1, IH2 and IH3 are satisfied. By

Lemma 3.5.13, it follows that A is stuttering equivalent to A′.
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Table 5.5: Result of applying ΣG
j to an atomic proposition, a, for 0 ≤ h, k ≤ N and

0 ≤ i ≤ N − 1 (where σ is an abbreviation of σGj ).

a ΣG
j (a)

positionh = x positionσ(h) = x

childh,i = x childσ(h),i = σ(x− 1) + 1

adj h = x adj σ(h) = x

remaining partnerh = x remaining partnerσ(h) = σ(x−1)+1

no of requestsh = x no of requestsσ(h) = x

electedh = x electedσ(h) = σ(x− 1) + 1

tossh = x tossσ(h) = x

ch,k = x cσ(h),σ(k) = x

From Lemmas 5.6.15, 5.6.16 and 5.6.17 it follows that,

Lemma 5.6.18. For every adversary A in MG (G ∈ Γ\Φ) there exists a clipping reduction

ClipjG = (clipj(G), σGj ) such that A is isomorphic to an adversary A′ in MσGj (G) with A′

stuttering equivalent to some adversary A′′ in MClipG
j (G) w.r.t. AP j′

ClipG
j (G)

(for j′ = σGj (j)).

5.6.5 Proof of Theorem 5.6.2

Proof. From Lemma 5.6.9 it follows that the set of clipping reductions is reducible to Φ.

By Lemmas 5.6.11, 5.6.12 and 5.6.18, the conditions of Definition 5.5.1 are satisfied by MΓ

(under the clipping reductions). Thus, MΓ is deterministically degenerative with base Φ.

By Lemma 5.6.3 Property 1 holds for all star topologies. Since Property 1 is unindexed

and has appropriately defined propositions, by Theorem 5.5.2, it is satisfied by MG for all

G ∈ Γ.

5.7 Extending the Properties we can prove for determinis-

tically degenerative families of models

In the previous sections we considered QLTL properties that were unindexed. We extend

the class of properties that we can prove using our inductive proof schema to indexed

properties of a certain form. In particular, we define a QLTL\X property φ to be I-indexed
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if it has the form,

P≥p[∨i∈Iψi] or, P≤p[∧i∈Iψi].

The ψi are (isomorphic up to indexing) LTL path formulae indexed only by i ∈ I. For

example, suppose that I = {0, 1, 2}, and that x0, x1, x2 are indexed variables, each with

domain {0,1}. Then

P≥0.75[(♦(x0 = 1)) ∨ (♦(x1 = 1)) ∨ (♦(x2 = 1))]

is an I-indexed QLTL\X property.

Theorem 5.7.1. Let S be a specification over a set of communication topologies, Γ, where

Γ is reducible to Φ under the family of sets of reductions, QΓ. Suppose that the set of

models, MΓ, is deterministically degenerative under QΓ with base Φ. For G = (E,V, I) ∈

Γ, let I(G) denote the set of indices of G. For every F ∈ Φ, let φ(I(F)) be an I(F)-indexed

quantitative QLTL\X property with atomic propositions in
⋂

G∈Γ

⋂

(W,σ)∈QG
AP ′

σ(G)[W ]. If

MF |= φ(I(F)) for all F ∈ Φ, MG |= φ(I(G)) for all G ∈ Γ.

Proof. Let S be a system and Γ a set of communication topologies. Suppose that there

exists a set of models,

MΓ = {MG over XG |G ∈ Γ},

for S over Γ, with sets of atomic propositions APG over XG , that is deterministically

degenerative with base Φ, under QΓ, a family of sets of reductions such that Γ is reducible

to Φ under QΓ. Assume that G ∈ Γ is not in Φ and let QG be the set of reductions of G

in QΓ.

For each G ∈ Γ and R = (W,σ) ∈ QG, let X′
R(G) ⊆ XR(G) be a set of variables such

that Condition 2 of Definition 5.5.1 holds. Let AP ′
R(G) ⊆ APR(G), be the set of atomic

propositions over X′
R(G).

For each R = (W,σ) ∈ QG, let φ(I(R(G))) be an I(R(G))-indexed QLTL\X property with

atomic propositions in
⋂

R∈QG
AP ′

R(G). Suppose that MR(G) |= φ(I(R(G))), for every

R ∈ QG . Then we can show that MG |= φ(I(G)) as follows.

Let A ∈ AdvMG
. Choose R = (W,σ) ∈ QG such that A is isomorphic to some adversary

A′ ∈ AdvMσ(G)
under the path index isomorphism, ρ, induced by σ, with A′ stuttering

equivalent to some adversary A′′ ∈ AdvMR(G)
w.r.t. AP ′

R(G). The property φ(I(R(G)))
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has the form P≥p[∨i∈I(R(G))ψi] or P≤p[
∧

i∈I(σ(G)[W ]) ψi]. We consider only the former here

(the proof of the latter case is similar). Note that,

{ω |= ∨i∈I(R(G))ψσ−1(i)} ⊆ {ω |= ∨i∈I(G)ψσ−1(i)}) (5.2)

For every adversary B of MR(G),

ProbBs′′0
({ω′′ ∈ PathBs′′0

|ω′′ |= ∨i∈I(G)ψi}) ≥ p. (5.3)

If MG , Mσ(G) and MR(G) have initial states s0, s
′
0 and s′′0 respectively then,

ProbAs0({ω ∈ PathAs0|ω |= ∨i∈I(G)ψi})

= ProbAs0({ω ∈ PathAs0|ω |= ∨i∈I(G)ψσ−1(i)}) since σ is bijective

≥ ProbAs0({ω ∈ PathAs0|ω |= ∨i∈I(R(G))ψσ−1(i)}) by 5.2

= ProbA
′

s′0
({ω′ ∈ PathA

′

s′0
|ω′ |= Σ(∨i∈I(R(G))ψσ−1(i))}) since A = A′ under ρ

= ProbA
′

s′0
({ω′ ∈ PathA

′

s′0
|ω′ |= ∨i∈I(R(G))ψi}) since Σ is induced by σ

= ProbA
′′

s′′0
({ω′′ ∈ PathA

′′

s′′0
|ω′′ |= ∨i∈I(R(G))ψi}) since A ≃ A′ w.r.t. AP ′

R(G)

≥ p by 5.3.

Since the above is true for every adversary of MG , MG |= φ(I(G)).

For each F ∈ Φ let φ(I(F)) be an I(F)-indexed quantitative LTL\X formula with atomic

propositions in
⋂

G∈Γ

⋂

R∈QG
AP ′

R(G) and let G ∈ Γ. If G ∈ Φ then, by the statement of

the theorem, MG |= φ(I(G)). Otherwise, G ∈ Γ \ Φ and since φ(I(G)) is I(G)-indexed,

with atomic propositions in
⋂

G∈Γ

⋂

R∈QG
AP ′

R(G), φ(I(G)) is defined over ∩R∈QG
AP ′

R(G).

Hence, by the above, MG |= φ(I(G)) if Mσ(G)[W ] |= φ(I(σ(G))[W ]) for all (W,σ) ∈ QG .

For each R ∈ QG , either R(G) is in Φ or it can be reduced further. Continuing in this

way, since Γ is reducible to Φ under QΓ, we can construct a tree of graphs in which every

terminal node is a graph in Φ. Finally, by statement of the theorem, each model associated

with the graph, F at these terminal nodes satisfy ψ(I(F)) and, by propagation up the

tree of graphs, it follows that MG |= φ(I(G)).
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5.8 Discussion

5.8.1 Analysing the TIP

Much work has been carried out on analysing the TIP (see for example, [46]). We men-

tion [3] since it describes an inductive proof for a spanning tree leader election protocol

that is similar to the TIP. The authors observe that only a leaf can initially transmit an

“up” (bmp) message and it will then move to a “dead” state, after which the protocol be-

haves as if started in the graph with that leaf deleted. They note that, continuing in this

manner, eventually a graph with only one or two vertices will be reached. The protocol is

not specified formally and, unlike our approach, is not verified using state-based methods.

Summary We have described an inductive proof technique for a class of randomised

distributed systems described as degenerative. The systems are modelled as MDPs. The

technique is an induction schema over the underlying communication topologies, repre-

sented by undirected graphs. The key idea is that topologies are reduced such that every

adversary of a model of a system with some topology is stuttering equivalent to an adver-

sary of a model of a system with a reduced topology. Reduction involves the removal of one

or more vertices from the communication topology. The base case(s) are those topologies

that are not reduced. We have applied this technique to the IEEE 1394 (Firewire) tree

identify protocol showing that certain unindexed QLTL\X properties that are true of the

system with a base topology will hold for a system with any acyclic topology. In this case,

reduction is by removal of the leaf vertices of level one vertices. The base cases are star

topologies.



Chapter 6

Probabilistic Parameterised

Verification of Probabilistically

Degenerative Systems

Outline In this chapter we extend the definition of a deterministically degenerative

family of MDP models of a randomised distributed system. We define a probabilistically

degenerative family of models, and show that a family of MDP models of the Itai Rodeh

leader election protocol for rings satisfy this definition. Establishing that a family of

models is probabilistically degenerative enables us to verify certain properties of the family

by considering just a subset of models. We use this result to determine properties of the

Itai Rodeh leader election protocol.

6.1 Introduction

We note that our technique described in the previous chapter is only applicable to families

of models of systems under which processes degenerate deterministically. For example,

in the TIP case study, a level-1 process is determined to be degenerate according to the

scheduling of the leaves of all the level-1 processes. Since the scheduling of processes

is modelled non-deterministically, under any adversary it is known which level-1 process

degenerates. Therefore the protocol degenerates deterministically and so our technique is

applicable in this instance.
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In the TIP, the probabilistic element of the protocol is restricted to the resolution of

contention and is not relevant to the removal of the leaves of a level-1 process. However,

for other randomised distributed protocols that can be deemed degenerative, processes are

removed in a probabilistic fashion. Consider, for example, the Itai-Rodeh leader election

protocol for rings. Initially all processes are active and, in each round of the protocol,

a subset of the processes is chosen to become passive according to a simple probabilistic

choice made by each process. Since the passive processes only transmit received messages

they can be considered to be degenerate processes. Since the passive processes are chosen

randomly, the protocol can be considered probabilistically degenerative.

We therefore extend our definition of a degenerative family of models to include those that

degenerate probabilistically. The main difference from our original definition is that we

consider a set of distributions over graph reductions, such that every adversary of a model

of a system with some communication graph is stuttering equivalent to a set of paths of

an adversary of a model of a system with a reduced communication graph.

Note that in the case of deterministically degenerative families of models we did not

consider infinite cyclic behaviour i.e. where we continuously return to a state that we pre-

viously visited having performed some set of actions. For a model to degenerate determin-

istically, it cannot exhibit cyclic behaviour (unless under some set of fairness constraints).

In the probabilistic case, however, a model can cycle and still be degenerative, assuming

that the cycle is probabilistic i.e. occurs with probability less than one. Therefore, the

point of execution when the system degenerates is probabilistic. In other words the system

degenerates at different times. In terms of a model of a system this represents the case

that for sets of paths under some adversary there are different states when the system

degenerates.

6.1.1 Incomplete Cyclic Reductions

It should be apparent that our earlier definition of reductions did not take into account

families of graphs that are cyclic, such as rings. To remedy this we extend our definition

to allow reductions to include an insertion operation that can add edges to a subgraph.

In the sequel, for a graph G = (E,V, I) and a set of edges E′ ⊆ Ē (where Ē is the set of

edges in the complement of G), let G ⊕ E′ = (E ∪E′, V, I).
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Definition 6.1.1. Let Γ be a set of graphs and let G = (E,V, I) ∈ Γ. Let σ be a per-

mutation of vertex labels, let V ′ ⊂ V and let E′ be a subset of the set of edges in the

complement of G[V ′]. The tuple (E′, V ′, σ) is a cyclic reduction of G in Γ if and only if

σ(G)[V ′]⊕E′ ∈ Γ. We describe σ(G)[V ′]⊕E′ as a (the) cyclically reduced graph of G (with

E′ under V ′ by σ).

When considering cyclic behaviours, as discussed above, in probabilistic degenerative sys-

tems we must consider behaviours such that no set of processes degenerate. In terms of

the communication topology of a system we therefore must further extend our definition

of graph reductions to include an identity reduction under which a graph is ‘reduced’ to

itself.

Definition 6.1.2. Let Γ be a set of graphs and let G = (E,V, I) ∈ Γ. Let σ be a permu-

tation of vertex labels, V ′ ⊆ V and F ⊆ Ē′ (for G[V ′] = (E′, V ′, I ′)). Suppose that either

V ′ = V , σ = ι (the identity permutation) and F = ∅ or V ′ ⊂ V . The tuple, R = (F, V ′, σ)

is then an incomplete cyclic reduction of G in Γ if and only if R(G) = σ(G)[V ′] ⊕ F ∈ Γ.

The reduction (∅, V, ι) is the identity reduction on G.

We give an extension to our definition of a reducible family of graphs (see Definition 5.2.6).

Here we consider a family of distributions over incomplete cyclic reductions. In the sequel

let IRedG denote the set of all incomplete cyclic reductions of G.

Definition 6.1.3. Let Γ be a topology and let QΓ = {µG |G ∈ Γ} be a family of distributions

over incomplete cyclic reductions for graphs in Γ where, for G ∈ Γ, µG : IRedG → [0, 1]

is a discrete distribution over the set of reductions of G. Let Φ ⊂ Γ such that for all

G = (E,V, I) ∈ Φ, µG((∅, V, ι)) = 1.

It is possible to construct an infinite state DTMC GΓ = (Γ,Γ,P, L) over the set of propo-

sitions AP = {g = 0, g = 1} where, for G,G′ ∈ Γ,

P(G,G′) =
∑

R∈support(µG),G′=R(G)

µG(R)

with, for all G ∈ Γ, L(G) = {g = 1} if G ∈ Φ, L(G) = {g = 0}, otherwise. Then Γ is

reducible to Φ with probability 1 under QΓ if and only if, for all G ∈ Γ, G |= P≥1[♦(g = 1)].
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6.1.2 Probabilistically Degenerative Families of Models

Whereas for deterministically degenerative sets of models we know which processes will

degenerate under each adversary, for probabilistically degenerative sets of models under

an adversary different sets of processes will degenerate with associated probabilities. We

therefore need to partition the sets of paths under an adversary.

Definition 6.1.4. Let M be a MDP and A be an adversary of M. A set {P0, P1, . . . , Pn}

is a measurable partition of PathAs0 if and only if ∀0 ≤ i ≤ n, Pi ⊆ PathAs0 such that Pi is

a measurable set of paths with, for 0 ≤ j ≤ n, i 6= j Pi ∩ Pj = ∅ and ∪ni=0Pi = PathA(s0).

Proposition 6.1.5 follows from the definition of a measurable partition and standard results

of probability theory (namely the Law of Total Probability).

Proposition 6.1.5. Let M be a MDP and let A be an adversary of M. For a measurable

partition, {P0, . . . , Pn} of PathAs0 and a LTL path formula, ψ,

ProbAs0({ω ∈ PathAs0|ω |= ψ}) =
n∑

i=0

ProbAs0({ω ∈ Pi|ω |= ψ}).

We now give a definition of a probabilistically degenerative set of models.

Definition 6.1.6. Let Γ be a communication topology that is reducible to some topology Φ

under a family of distributions over sets of incomplete cyclic reductions, QΓ = {µG |G ∈ Γ}.

Furthermore, suppose S(Γ) is set of specifications over Γ, and let MΓ = {MG |G ∈ Γ} be

the set of models over S(Γ).

For G ∈ Γ let XG be the set of variables of S(G) (with CG ⊆ XG the set of channel

variables) and let APG the set of atomic propositions over XG. For each G ∈ Γ and

each R ∈ support (µG) that is not the identity reduction, let X ′
R(G) ⊆ XR(G) be a set of

variables (with AP ′
R(G) ⊆ APR(G), the set of atomic propositions over X ′

R(G)). Then MΓ

is probabilistically degenerative with base Φ under QΓ if and only if,

1. (Reduced Variables and Actions:)For G ∈ Γ and a complete cyclic reduction

R = (F,R, σ) where µG(R) > 0,

Xσ(G) \ CG = XG \ CG ,D(Xσ(G)) = D(XG),Actσ(G) = ActG ,

XR(G) ⊆ Xσ(G),D(XR(G)) ⊆ D(Xσ(G)),ActR(G) ⊆ Actσ(G),
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2. (Matching Adversaries:) For G ∈ Γ \ Φ, for every deterministic adversary A of

MG, if

support (µG) = {R0 = (F0, R0, σ0),R1 = (F1, R1, σ1), . . . ,Rm = (Fm, Rm, σm)},

there exists a measurable partition P = {P0, P1, . . . , Pm} of PathAs0 with (for 0 ≤ j ≤

m), ProbAs0({α ∈ Pj}) = µG(Rj) and Pj isomorphic to P ′
j under the path index map

induced by σ for some P ′
j ⊆ PathA

′

s′0
for some adversary A′ of Mσj(G) such that, P ′

j is

stuttering equivalent, with respect to AP ′
R(G), to E′′, for some randomised adversary

E′′ of MR(G).

We then have that,

Theorem 6.1.7. Let Γ be a communication topology that is reducible to Φ under the

family of distributions over sets of incomplete cyclic reductions, QΓ and let S(Γ) be a

parameterised specification over Γ. Suppose that for each G ∈ Γ, R ∈ support (µG), there

is a set of variables X ′
R(G) ⊆ XR(G) (with AP ′

R(G) ⊆ APR(G), the set of atomic propositions

over X ′
R(G)) such that the set of models over S(Γ), MΓ, is probabilistically degenerative with

base Φ under QΓ. Then for any unindexed QLTL\X property φ with atomic propositions

in
⋂

G∈Γ

⋂

R∈support(µG) AP ′
R(G), if MF |= φ for all F ∈ Φ, MG |= φ for all G ∈ Γ.

Proof. Assume that G ∈ Γ is not in Φ, and let µG be the distribution defined over reductions

for G. Let φ be an unindexed QLTL\X property with atomic propositions in AP =
⋂

R∈support(µG) AP ′
R(G). Suppose that MR(G) |= φ, for every complete reduction, R =

(F,R, σ) ∈ support (µG) (i.e. R 6= (∅, V, ι)). We show that MG |= φ as follows.

Let Σ be the proposition index map induced by σ. Note that φ has the form P⊲⊳p[ψ] and

that Σ(ψ) = ψ since φ is unindexed and that, for every adversary B of MR(G),

ProbBs′′0
({ω ∈ PathBs′′0

|ω |= ψ}) ⊲⊳ p. (6.1)

Suppose that

support (µG) = {R0 = (F0, R0, σ0),R1 = (F1, R1, σ1), . . . ,Rm = (Fm, Rm, σm)}

and that P = {P0, P1, . . . , Pm} is a partition of PathAs0 with (for 0 ≤ j ≤ m),

ProbAs0({α ∈ Pj}) = µG(Rj)
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and Pj isomorphic to P ′
j under the path index isomorphism induced by σ, ρ, say, for some

P ′
j ⊆ PathA

′

s′0
for some adversary A′

j of Mσj(G) such that P ′
j is stuttering equivalent, with

respect to AP ′
Rj(G), to E′′

j , for some randomised adversary E′′
j of MRj(G). Let MG , Mσj(G)

and MRj(G) have initial states s0, s
j′

0 and sj
′′

0 respectively.

We consider two separate cases. One, that every reduction of G is a complete reduction

and, two, that one of the reductions is the identity reduction. Suppose that (∅, V, ι) /∈

support (µG) and let A ∈ AdvMG
, then,

ProbAs0({ω ∈ PathAs0 |ω |= ψ})

=

m∑

i=0

ProbAs0({ω ∈ Pi|ω |= ψ}) since P is a measurable partition

=
m∑

i=0

Prob
A′

i

si′

0

({ω′ ∈ P ′
i |ω

′ |= Σ(ψ)}) since ψ has propositions in AP and P ′
i = Pi

=

m∑

i=0

Prob
A′

i

si′

0

({ω′ ∈ P ′
i |ω

′ |= ψ}) since ψ is unindexed

=

m∑

i=0

Prob
A′

i

si′

0

(P ′
i ).Prob

E′′
i

si′′

0

({ω′′ ∈ Path
E′′

i

si′′

0

|ω′′ |= ψ}) since P ′
i ≃ E′′

i w.r.t. AP ′
R(G)

⊲⊳
m∑

i=1

Prob
A′

i

si′

0

(P ′
i ).p by 6.1

= p.

m∑

i=0

ProbAs0(Pi) since P ′
i = Pi

= p since P is measurable partition and so
∑m

i=0 ProbAs0(Pi) = 1

Since the above is true for every adversary of MG , MG |= φ.

Now, suppose that (∅, V, ι) ∈ support (µG) and, without loss of generality, that R0 =

(∅, V, ι). Let GΓ = (Γ,Γ,P, L) be the infinite state DTMC constructed as per Definition

6.1.3. Also, for ⊲⊳∈ {>,≥<,≤}, define ⊲⊳ ∈ {≥,≤} such that, ≥ ≡≥, > ≡≥, ≤ ≡≤,

< ≡≤.



137

ProbAs0({ω ∈ PathAs0|ω |= ψ})

=
m∑

i=0

ProbAs0({ω ∈ Pi|ω |= ψ}) since P is a measurable partition

=

m∑

i=0

Prob
A′

i

si′

0

({ω′ ∈ P ′
i |ω

′ |= Σ(ψ)}) since P ′
i = Pi

=

m∑

i=0

Prob
A′

i

si′

0

({ω′ ∈ P ′
i |ω

′ |= ψ}) since ψ is unindexed

=
m∑

i=0

Prob
A′

i

si′

0

(P ′
i ).Prob

E′′
i

si′′

0

({ω′′ ∈ Path
E′′

i

si′′

0

|ω′′ |= ψ}) since P ′
i ≃ E′′

i w.r.t. AP ′
Rj(G)

=

m∑

i=0

ProbAs0(Pi).Prob
E′′

i

si′′

0

({ω′′ ∈ Path
E′′

i

si′′

0

|ω′′ |= ψ}) since P ′
i = Pi

⊲⊳ ProbAs0(P0).Prob
E′′

0
s0 ({ω′′ ∈ Path

E′′
0

s0 |ω′′ |= ψ})

+

m∑

i=1

ProbAs0(Pi).p by (6.1)

⊲⊳ ProbAs0(P0).ProbA0
s0 ({ω ∈ PathA0

s0 |ω |= ψ})

+

m∑

i=1

ProbAs0(Pi).p for A0 ∈ AdvMG
by Lemma 3.3.4

= µG((∅, V, ι)).ProbA0
s0 ({ω ∈ PathA0

s0 |ω |= ψ})

+p.

m∑

i=1

µG(Ri) from Definition 6.1.6

Since A is arbitrary in the above, for some A1 ∈ AdvMG
,

ProbA0
s0 ({ω ∈ PathA0

s0 |ω |= ψ}) ⊲⊳ µG((∅, V, ι)).ProbA1
s0 ({ω ∈ PathA1

s0 |ω |= ψ})

+ p.

m∑

i=1

µG((Fi, Ri, σi))

Substituting this into the above,

ProbAs0({ω ∈ PathA0
s0 |ω |= ψ}) ⊲⊳ µG(∅, V, ι))2.ProbA1

s0 ({ω ∈ PathA1
s0 |ω |= ψ})

+ µG(∅, V, ι)).p.
m∑

i=1

µG(Ri)

+ p.
m∑

i=1

µG((Ri))
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Continuing in this manner,

ProbAs0 ⊲⊳

∞∑

j=1

µG(∅, V, ι)j−1.p.

m∑

i=1

µG(Ri)

= p.

m∑

i=1

µG(Ri).

∞∑

j=1

µG(∅, V, ι)j−1

= p.
m∑

i=1

µG(Ri).
1

1 − µG(∅, V, ι)
by standard results on geometric series

= p.(1 − µG(∅, V, ι)).
1

1 − µG(∅, V, ι)

= p

Hence, for every A ∈ AdvMG
, ProbAs0({ω ∈ PathAs0|ω |= ψ}) ⊲⊳ p and therefore, MG |= φ.

Let φ be an unindexed QLTL\X formula with propositions in
⋂

G∈Γ

⋂

R∈support(µG) AP ′
R(G)

and let G ∈ Γ. If G ∈ Φ then, by the statement of the theorem, MG |= φ. Other-

wise, G ∈ Γ \ Φ. Since φ is not indexed by any process index, and φ is defined over
⋂

R∈support(µG) AP ′
R(G), by the above, MG |= φ if MR(G) |= φ for every complete reduc-

tion, R ∈ support (µG)). For each complete reduction, R ∈ support (µG)), either R(G) is

in Φ or it can be reduced further. Continuing in this way, we will reach a graph in Φ

(since Γ is reducible to Φ with probability 1 under QG). Finally, by the statement of the

theorem, each of the models associated with the graphs in Φ satisfy φ and it follows that

MG |= φ.

6.2 Case Study: The Itai Rodeh Leader Election Protocol

6.2.1 Introduction

To illustrate our technique, we consider the PMCP for a particular randomised distributed

protocol designed to elect a leader from a set of processes arranged in a ring, which we

will demonstrate later is probabilistically degenerative. More specifically, we analyse the

asynchronous version of the Itai Rodeh leader election protocol (IRP) [35]. This protocol

has already been analysed, using PRISM, for fixed size systems [1]. In addition, some

formal analysis has been carried out for the Itai Rodeh leader election protocol, by hand.

However, we are not aware of any work to date that attempts to tackle the parameterised
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model checking problem for these protocols using a similar approach to ours. The protocol

is described in full in [35], we give an overview below.

We first note that it has been shown for an anonymous ring of processes (i.e. where the

process id’s are unknown) that are identical up to renaming, there is no deterministic

algorithm that can elect a unique leader [3]. However, if we loosen the condition ‘a unique

leader must be chosen’ to ‘a unique leader must be chosen with probability 1’ then it is

possible to employ a probabilistic algorithm to break the symmetry of the processes and

allow a unique leader to be elected (assuming we know the size of the ring). This is the

basis of the IRP.

The algorithm proceeds in two phases. Initially all processes are deemed active. In the first

phase a process selects 0 or 1, each with probability a half. Having chosen its preference,

a process can then send its selection to the next process in the ring (the ring being unidi-

rectional). When a process receives its neighbours choice, if it is 1 and its own choice was

0 then the process will become passive and will then only pass on messages that it receives

(although incrementing any counter it receives, see below). For any other combination of

choices the process remains active and moves to phase two.

In the second phase, any active process transmits a counter, initialised to 0, that is passed

around the ring. Each time this counter passes through a passive process it is incremented

by one. Therefore, if an active process receives a counter with value N − 1 (where N is

the size of the ring) it must be the only remaining active process and so can declare itself

leader. On the other hand, if an active process receives a counter with value less than

N − 1 it cannot be unique and so will proceed to phase 1 and select its preference again.

This continues until a leader is chosen.

Note that in practice, although we describe the protocol as proceeding in phases, in reality,

because the system is asynchronous, the processes do not execute phases together, so for

example one process may be in phase one while another has completed phase two. The

sequence of actions, however, for a single process is as described above.
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6.2.2 Parameterised Models of the IRP

The IRP has been modelled and verified (for rings of a fixed size) using the PRISM

probabilistic model checker [1,30]. We have modified these PRISM definitions to model the

IRP using asynchronous communication with neighbouring processes transmitting along

channels of length N , where N is the size of the ring. As an example, a PRISM definition

for a ring of size three is given in Appendix F.

We let Γ denote the set of rings (of size greater than one), with the vertices of each graph

G in Γ labelled by the values 0, 1 . . . , |G|−1. Also, we let Φ = {G(2)} where G(2) is the ring

of size two. We have written a script program that can generate PRISM specifications of

the IRP for every member of Γ, based on PRISM specifications that we defined for rings

up to size 5. We denote the set of specifications that can be generated by this script by

S(Γ) = {S(G)|G ∈ Γ} and the family of models over S(Γ) by MΓ = {MG |G ∈ Γ}.

For G = (E,V, I) ∈ Γ, the set of variables associated with SG is the set XG = ∪N−1
i=0 X

i
G ∪

CG ∪ GG where Xi
G denotes the set of local variables of process i, GG the set of global

variables and CG the set of channel variables with, for 0 ≤ i ≤ N − 1,

Xi
G = {statei, senti, receivei, pi, ci},

CG = {chi,j |(i, j) ∈ E}

GG = {leader}

The variable domains are given by, for 0 ≤ i ≤ N − 1, chi,j ∈ CG ,

D(statei) = {active, passive, leader, finish},

D(senti) = {0, 1, 2},

D(receivei) = {0, 1, 2},

D(ci) = {0, 1, . . . , N − 1},

D(pi) = {0, 1, 2},

D(leader) = {⊥, 0, 1, . . . , N − 1},

D(chi,j) = {empty, 0, 1, . . . , N − 1}.

We let ActG denote the set of actions associated with MG .

For communication graph, G, a ring of size N the corresponding PRISM definition S(G)

describes modules for the set of processes in the ring and for the set of channels. We
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Figure 6.1: State graph for a single process, processi, in a model, MG , of the Itai Rodeh

protocol
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consider the module specification for processi (0 ≤ i ≤ |G| − 1. The variable statei

represents the state of process i. The variable senti stores a value from {0, 1, 2} where 0

indicates that no messages have been sent, 1 means that process i has sent its preference

and 2 that process i has also sent its counter. Similarly receivei has domain {0, 1, 2} and

if receivei = 0 then process i has received no messages, if receivei = 1 then process i

has received its neighbours preference and if receivei = 2 then process i has also received

its neighbours counter. The variable ci stores the value of any counter that process i

receives. When process i chooses its preference this is stored in pi which has value 2

before the process has chosen its preference or preference value 0 or 1 once chosen. Also, if

statei = passive, pi also stores the value of any preference it receives from its neighbour.

The modules for all other processes have the same local variables as processi but are

renamed with the process id.

The unique global variable, leader, has an indexed domain and is set to the value of a

process index if a process is elected leader. We assume that processh is the left neighbour

of processi and processj is the right neighbour (h 6= i, i 6= j, h 6= j, 0 ≤ j, h ≤ |G − 1|).

The module for the channel from process i to process j (channel i, j) has local variables

ch1
i,j , ch

2
i,j ,. . . , ch

N
i,j , representing each of the positions in a channel of length N . Each local

variable may store the value of a process’s preference or a process’s counter and therefore

has a value in the range empty, 0, 1, . . . , N − 1. Note that empty is a default value used

to initialise the variables and to represent the fact that nothing is stored in that position

in the channel. The channel is FIFO and so whenever an item is sent on the channel it is

stored in the first free position. If the channel is full, i.e. if ch1
i,j is not equal to empty, then

the send cannot occur. Similarly, whenever process j receives a message from channel i, j,

this will be read from ch1
i,j and all other messages will be ‘shifted’ one place up the channel

i.e. the message in ch2
i,j will be moved into ch1

i,j , the message in ch3
i,j will be moved into

ch2
i,j etc. If the channel is empty i.e. ch1

i,j = empty then process j cannot perform a read.

For convenience, we use chi,j to denote channel i, j and let chi,j [n] = chni,j . The variables

for all other channels are the same as for channel i, j up to renaming of the channel index.

Initially, processi will have statei = active, senti = 0, receivei = 0, ci = 0, pi = 0 and sim-

ilarly for all the other process modules. Also, initially chh,i = chi,j = [empty, . . . , empty]

(and similarly for all channel modules). From this state, the only executable statement

for processi sets sets pi = 0 or pi = 1 with equal probability.
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Having chosen a preference, processi can then either receive its neighbours preference if

this is available from its in channel or it can send its own preference on its out channel.

If processi sends its preference then chi,j [1] is set to the value of pi and senti is set to 1.

From this state it is only possible for processi to read its neighbours preference. Whenever

processi reads its neighbours preference from its in channel then it sets receivei = 1 and if

pi = 0 and chh,i[1] = 1 then state1 = passive, otherwise statei = active. First we assume

that statei = active. If senti = 0 then processi can send its preference, setting senti = 1

and sending pi on its out channel. If senti = 1 and receivei = 1 then processi can send

its counter (which will have value 0), setting senti = 2. If senti = 1 and receivei = 2 then

processi must have received a counter from another active process. Hence, once it has sent

its counter processi must choose another preference and so we set senti = 0, receivei = 0,

ci = 0 and pi = 0 and can then proceed as described above.

When statei = active, if receivei = 1 then processi can receive its neighbours counter.

In this case, if senti < 2, i.e. processi has not yet sent its counter then this must be the

counter of another process and receivei is set to 2. If, on the other hand, senti = 2 and

processi receives a counter with value less than N − 1 then there must be other active

processes present in the ring and it is necessary to choose again. Thus, statei = active,

senti = 0, receivei = 0, ci = 0, pi = 0 and the protocol proceeds as described above.

If, however, processi receives a counter value of N−1 then processi must be the only active

process in the ring and so the local variables are set so that statei = leader, senti = 0,

receivei = 0, ci = 0 and pi = 0. From this state, the assignments are made such that

leader = i and statei = finish and the protocol terminates.

Assume that pi = 0 and processi has received its neighbours choice which is equal to 1

so that statei = passive. In this case, processi can then receive its neighbours counter if

this is available. Assuming that value C is received then ci is set to C + 1 and receivei is

set to 2.

If statei = passive and senti = 0 then processi can send its preference, setting senti = 1.

Having sent its preference, if processi has received its neighbours counter i.e. receivei = 2

then processi can pass on the counter, setting senti = 0, receivei = 0, ci = 0, pi = 0.

From this state, processi can only receive its neighbours preference, in which case it sets

receivei = 1. The process will continue to behave as described above until a process is
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elected leader. Note that the behaviour of any of the process or channel modules will be

identical to that described above.

Figure 6.1 gives the local state graph associated with processi. Note that only the variables

of processi are included in the labelling of the states and we omit action labels (and

associated ‘dashed edges’) for clarity of presentation. We use the notation < g > to

indicate a guard g that must be true in order for a transition to be taken. It is assumed,

however, that guards referring to the state of the channels (a send can only take place if

a channel is not full, a read can only take place if a channel is not empty) are implicit.

Figure 6.2 also gives an example execution for the PRISM specification for a ring of size

three. In the figure, we abbreviate the values active, passive, leader and finish by A,P,L

and F respectively. The value of the channel variables are given in the square brackets

([]). We do not use the default value of empty to indicate an empty position but instead

only show values that are sent on the channel. The first value between the square brackets

is the first to be read from the channel.

6.2.3 Model checking the IRP using PRISM

The table in Figure 6.2.3 gives the results of building and then verifying (with respect to

Property 1, below) a model in PRISM from our definition for rings of size N = 2, 3, 4, 5.

It displays the time taken to build the model, the number of states of the MDP and the

number of nodes in the MTBDD. The last column also gives the time taken to verify the

property defined below (where leader represents the global boolean variable of the PRISM

specification that is initially equal to zero and is set to the value of the process index when

that process is elected leader). Note that Property 1 is an unindexed QLTL\X property.

Property 1 A leader is elected with probability 1.

P≥1[♦¬(leader = ⊥)]

6.2.4 Parameterised model checking of the IRP

Having verified the Itai Rodeh leader election protocol for fixed sizes of ring using the

PRISM model checking tool, we now tackle the problem of proving properties for an arbi-
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Figure 6.2: Example execution of the PRISM specification of the Itai Rodeh protocol for

a ring of size three
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Table 6.1: Model sizes and build and verification times

N Time(s) States Nodes Property 1

2 0.077 91 1882 0.052

3 0.405 994 10874 0.609

4 1.956 12177 50297 5.248

5 11.370 150507 181253 37.510

trary size of ring. In order to do so, we can exploit the proof technique for probabilistically

degenerative systems described above.

We aim to show that the Itai Rodeh protocol is probabilistically degenerative. Intuitively,

for a ring of some size, once a set of processes become passive then the protocol behaves

like a smaller ring of processes. However, it cannot be described as deterministically

degenerative as for the Firewire protocol since a passive process is chosen probabilistically.

Note also that a passive process can still pass on messages and increment the value of any

counter it receives (the maximum value of which is dependent on the size of the ring).

Nonetheless, it is still possible to employ an inductive proof in the manner described

above if we restrict the set of propositions that we consider. Specifically, for the models

MG ∈ MΓ of the IRP, for a ring of size greater than or equal to two, we intend to prove

the following.

Theorem 6.2.1. Let φ be Property 1, then for any G ∈ Γ, MG satisfies φ.

Using the methodology described in Section 6.1.2 above, we prove properties of our base

family of models ({MG(2)}) by model checking and then for N > 2, establish a relationship

between MG and MG′ for each reduced graph G′ of G under a particular type of incomplete

cyclic reduction.

Lemma 6.2.2. For all G ∈ Φ, MG |= φ, where φ is Property 1.

Proof. By model checking (see entry for N = 2 in Table 6.2.3).

In a similar manner as for the TIP, we show that MΓ is (probabilistically) degenerative

with base Φ by considering each of the conditions given in Definition 6.1.6 in turn, having
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defined an appropriate set of reductions and corresponding set of variables for each model

in MΓ.

Join Reductions

We define a family of distributions QΓ over sets of reductions on graphs in Γ.

Definition 6.2.3. Given G = (E,V, I) ∈ Γ and 0 ≤ i ≤ N − 1, let disjoint i(G) denote the

family of sets of i vertices of G such that no two vertices in a set in disjoint i(G) has an

edge between them. Furthermore, let join i(G) be the family of sets of vertices of G such

that, for each {k1, k2, . . . , ki} ∈ disjoint i(G), V \ {k1, k2, . . . , ki} ∈ joini(G).

Note that for G = (E,V, I) ∈ Γ, disjoint0(G) = {∅} and therefore join0(G) = {V }.

Lemma 6.2.4. If G is a ring, then for ⌊N/2⌋ < i ≤ N , disjoint i(G) = ∅ and for 1 ≤ i ≤

⌊N/2⌋, |disjoint i(G)| ≥ 1.

Proof. Let G ∈ Γ for |G| = N . Define K as the set of all vertices of G that are labelled by

an odd value. It should be apparent that there are no bigger sets of disjoint vertices of G:

adding any vertex to K would result in a sequence of vertices that are not disjoint. For

N even, |K| = N/2 and for N odd, |K| = (N − 1)/2. For 1 ≤ i ≤ |K|, a set of disjoint

vertices of size i can be derived by removal of vertices from K.

In the sequel, we let σG
Ji be a permutation (for ⌊N/2⌋ ≥ i ≥ 0, J i ∈ joint i(G)) on the

vertex labels of G = (E,V, I) ∈ Γ, which permutes the indices such that the vertices of

G in V \ J i have the largest indices and the order of the indices of the vertices in J i is

preserved.

Definition 6.2.5. Let G = (E,V, I) ∈ Γ with |G| = N and for ⌊N/2⌋ ≥ i ≥ 0 let

J i = {j0, j1, . . . , jN−1−i} ∈ joint i(G) with jt < jt+1 for 0 ≤ t < N − 1 − i. Let J̄ i =

V \J i = {k0, . . . , ki−1} where ku < ku+1 for 0 ≤ u < i−1. Define the bijective map σG
Ji on

the set {⊥, 0, 1, 2, . . . , N − 1} such that σG
Ji(⊥) = ⊥, σG

Ji(jt) = t for all 0 ≤ t ≤ N − 1 − i

and σG
Ji(ku) = u+N − i for all 0 ≤ u ≤ i− 1.

Furthermore, because we want to reduce to a new ring, we must identify a set of edges

that will close the subgraph induced by any subset of the vertices of a ring in join i(G).
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Definition 6.2.6. Let VJi be the subset of the set of vertices in a set J i in joini(G) (for

G ∈ Γ, ⌊N/2⌋ ≥ i ≥ 0) such that for each v ∈ VJi there is no outgoing edge from v in the

graph G[J ]. Similarly, let UJi be the set of vertices such that for each u ∈ UJi there is no

incoming edge to u in the graph G[J i]. For v0 ∈ VJi, u ∈ UJi, let (v0, u) ∈ FG
Ji if and only

if there exists edges (v0, v1), (v1, v2), . . . , (vn−1, vn), (vn, u) for some N ≥ n ≥ 1 such that

for each 0 ≤ i ≤ n − 1, (vi, vi+1) is in the edge set of G but not in the edge set of G[J i],

and similarly for (vn, u).

Definition 6.2.7. For G ∈ Γ \ Φ, define a set of join reductions on G as

JoinG = {(FG
Ji , J

i, σG
Ji)| for all J i ∈ joini(G) for every ⌊N/2⌋ ≥ i ≥ 0}.

Note that for i = 0 in Definition 6.2.7, the unique join reduction (FG
J0 , J

0, σG
J0) is equivalent

to the identity reduction. An example of a graph obtained under a join reduction for N = 5

and i = 2 is shown in Figure 6.3.

Let G ∈ Γ (with |G| = N and let Di = {j0, j1, . . . , ji−1} ∈ disjoint i(G) with jt−1 < jt for

1 ≤ t ≤ i− 1. We want the probability that in the first round of the Itai-Rodeh protocol,

every process in Di becomes passive and all other processes remain active. In order for this

to happen we must have a sequence of preference choices (assuming that j0’s preference is

the first in the sequence) of the form

(0z01y0)(0z11y1) . . . (0zi−11yi−1) for zr, yr ≥ 1, zr + yr = dr (6.2)

where dr is the number of processes between each pair of processes jr, jr⊕i1 in Di. The

number of sequences of the form (0z1y), z, y ≥ 1 is given by z+ y− 1. Therefore, the total

number of sequences of the form of 6.2 is given by

i−1∏

r=0

dr − 1

and hence the probability of the processes in Di becoming passive while the remaining

processes remain active is given by
∏i−1
r=0 dr − 1

2N
.

Definition 6.2.8. For G ∈ Γ let µG : JoinG → [0, 1] be a distribution over the set of join

reductions of G such that, for the ring of size 2, G(2),

µG(2)((∅, V, ι)) = 1
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and for G ∈ Γ \ Φ,

µG((∅, V, ι)) =
2

2N
,

and for every J i ∈ disjoint i(G), for all ⌊N/2⌋ ≥ i ≥ 0,

µG((F J
i

G , J i, σG
Ji)) =

∏i−1
r=0 dr − 1

2N
.

We can now define a set of reductions on a graph G ∈ Γ.

Definition 6.2.9. Define the set of join reductions over Γ as

QΓ = {µG |G ∈ Γ}

Essentially, a join reduction is a reduction in which a covering set of vertices is removed,

the removing vertices are relabelled to have the smallest index values and edges are added

to preserve the ring. We can show that the set of join reductions is reducible to the

singleton set containing the ring of size two, with probability 1.

Lemma 6.2.10. The set QΓ is reducible to Φ with probability 1.

Proof. For all G ∈ Γ, construct an infinite state DTMC G = (Γ,Γ,P, L) over G = {g}

where, for ∆,∆′ ∈ Γ,

P(∆,∆′) =
∑

R∈support(µ∆),∆′=R(∆)

µ∆(R),

and D(g) = {0, 1} with, for all G ∈ Γ, L(G) = {g = 1} if G ∈ Φ, L(G) = {g = 0},

otherwise.

We prove, by induction on the size of a graph that for all G, G |= P≥1[♦g = 1].

Base Case: Let G ∈ Γ be the ring of size two. Then by definition of the labelling function

of G, g = 1 ∈ L(G) and thus GG |= P≥1[♦g = 1].

Induction Step: Suppose that, for all F ∈ Γ with |F| = N for N ≥ 2, F |= P≥1[♦g = 1].

Let G ∈ Γ with |G| = N + 1. Let µG ∈ QΓ be the distribution over the join reductions

on G. Since |G| ≥ 3, there must be at least one complete join reduction in support (µG).

Note that for any complete join reduction of G, the reduced graph F will be such that

2 ≤ |F| ≤ N . Let ∆ be the set of reduced graphs of G under some complete join reduction

in support(µG) then clearly the probability of reaching a state in ∆ from G is 1. By the
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3 2

14

0

1

02(F J2

Γ , J2, σJ
2

Γ )

Figure 6.3: An example of graph G (left) and the graph σJ
2

G (G)[J2]⊕F J
i

G (right) obtained

under a join reduction where J2 = {1, 3, 4}.

induction hypothesis, the probability of reaching a state with g = 1 from a state in ∆ is

equal to 1 and therefore, G |= P≥1[♦g = 1].

By induction, Γ is therefore reducible to Φ with probability 1 under QΓ.

We now define a subset of the variable set of a model of a join reduced graph.

Definition 6.2.11. Given MG over XG and a join reduction, R = (FG
i , J

i, σGi ), define,

X
′

R(G) = {leader} ∪ ∪j∈Ji{statej}.

Define AP ′
R(G) to be the set of atomic propositions over X

′

R(G).

Now we show how MΓ, with join reductions, is probabilistic degenerative, by demonstrat-

ing that each of the conditions of Definition 6.1.6 is fulfilled.

Condition 1 (Reduced Variables and Actions)

Lemma 6.2.12. Given a graph G ∈ Γ that is not the ring of size two and a complete join

reduction, (F J
i

G , J i, σJ
i

G ) then,

XG \ CG = X
σJi

G
(G)

\ CG ,D(XG) = D(X
σJi

G
(G)

),ActG = Act
σJi

G
(G)
.

Lemma 6.2.13. Given a graph G ∈ Γ that is not the ring of size two and a complete join

reduction, JoinJ
i

G = (F J
i

G , J i, σJ
i

G ) then,

X
JoinJi

G
(G)

⊆ X
σJi

G
(G)
,D(X

JoinJi

G
(G)

) ⊆ D(X
σJi

G
(G)

),Act
JoinJi

G
(G)

⊆ Act
σJi

G
(G)
.
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The proofs of Lemmas 6.2.12 and 6.2.13 follow from the definition of the variable sets,

variable domains and action sets over S(Γ) and from the definition of the join reductions

given previously.

Condition 2 (Matching Adversaries)

We partition the paths of the adversaries of an IRP model according to their behaviour

with respect to the processes that become passive. Specifically, we classify them according

to the processes that choose zero and their left neighbour chooses 1 in the first round. If j

is such a vertex then the value of variable statej will change from active to passive when

it receives its neighbours choice. Process j is then guaranteed to remain passive and its

effect under the adversary can be ignored.

Definition 6.2.14. Let G ∈ Γ \ Φ and let J i ∈ joini(G) for some 1 ≤ i ≤ ⌊N/2⌋. For an

adversary A ∈ AdvMG
, a path ω ∈ PathAs0 is said to be first-full with respect to J i iff,

ω |= ∧j∈Ji receivej = 0U (receivej = 1 ∧ state i = PASSIVE)

∧k/∈Ji receivek = 0U (receivek = 1 ∧ statek = ACTIVE).

Define PAs0(J
i), the set of paths under A that are first-full w.r.t. J i.

Lemma 6.2.15. Let G ∈ Γ and let A ∈ AdvMG
. The set

{PAs0(J
i)|J i ∈ disjoint i(G), 0 ≤ i ≤ ⌊N/2⌋}

is a measurable partition of PathAs0 .

Proof. For each 0 ≤ i ≤ ⌊N/2⌋, for J i ∈ disjoint i(G), the set of paths PAs0(J
i) is described

by a LTL property and is therefore measurable.

The set of paths PAs0(J
i) represents the paths under which exactly the J i processes become

passive in the first round. For any Kj, 0 ≤ j ≤ ⌊N/2⌋, Kj 6= J i, it is not possible to

choose the Kj processes as passive in the first round as well as the J i processes. Therefore

PAs0(J
i) ∩ PAs0(K

j) = ∅.

In the first round, either the J i processes are chosen to become passive for some J i ∈

disjoint i(G), 1 ≤ i ≤ ⌊N/2⌋ or no processes are selected to become passive. Therefore,

ProbAs0(
⋃

0≤i≤⌊N/2⌋ P
A
s0(J

i)) = 1.
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Table 6.2: Result of applying ΣG
Ji to an atomic proposition, a, for 0 ≤ h, i ≤ N (where σ

is an abbreviation of σG
Ji)

.

a ΣG
Ji(a)

stateh = x stateσ(h) = x

senth = x sentσ(h) = x

receiveh = x receiveσ(h) = x

ch = x cσ(h) = x

ph = x pσ(h) = x

leaderh = x leaderσ(h) = σ(x)

chh,i = x chσ(h),σ(i) = x

Let G ∈ Γ \ Φ and for some J i ∈ joini(G), let JoinJ
i

G = (F J
i

G , J i, σG
Ji) be a join reduction

of G. Let APG be the set of atomic propositions over XG and let APσG
Ji

(G) be the set

of atomic propositions over XσG
Ji (G). We define a bijective map ΣG

Ji : APG → APσG
Ji(G)

as shown in Table 6.2. The mapping ΣG
Ji permutes any process indices appearing in an

atomic proposition according to σG
Ji (abbreviated in the table to σ). We can show that

ρG
Ji , the path index map induced by σG

Ji is an isomorphism between adversaries in Adv jMG

and adversaries in Adv j
′

M
σG

j
(G)

.

Lemma 6.2.16. Let G ∈ Γ\Φ. Let J i ∈ joini(G) and let (F J
i

G , J i, σG
Ji) be a join reduction

for J i. For every adversary A of MG, there exists some adversary A′ of M
σJi

G
(G)

such that

A is isomorphic to A′ under ρG
Ji, the path index mapping induced by σG

Ji .

Proof. Let G ∈ Γ \ Φ and let J i ∈ join i(G) and let (F J
i

G , J i, σG
Ji) be a join reduction for

J i. Let MG = (S, s0,Steps ,Act , L) and M
σJi

G
(G)

= (S′, s′0,Steps ′,Act ′, L′). Let A be an

adversary of MG that is first-full with respect to J i. Let α be a finite path in Pathfin(s0)

and suppose A(α) = (a, µ) for (a, µ) ∈ Steps(last(α)). Let α′ = ρG
Ji(α) be the finite path

in Pathfin(s
′
0) obtained under the path index map induced by σJ

i

G .

Suppose that (a, µ) = (rk, µ) corresponds to a transition associated with processk choosing

a preference value of 0 or 1. Then µ(t1) = µ(t2) = 0.5 for t1, t2 ∈ S. If rk is enabled from

last(α) then since last(α′) = ςG
Ji(last(α)), rσ

Ji

G
(k) is enabled from last(α′) (where ςG

Ji is the

index map induced by σJ
i

G ). Let (a′, µ′) = (rσ
j
G
(k), µ′) where µ′(t′1) = µ′(t′2) = 0.5 such

that t′1, t
′
2 ∈ S′. It should be clear that t′1 = ςG

Ji(t1), t
′
2 = ςG

Ji(t2) and µ(t1) = µ(t′1) = 0.5

and µ(t2) = µ′(t′2) = 0.5. We can choose adversary A′ such that A′(last(α′)) = (a′, µ′).
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We can consider each of the transitions shown in Figure 6.1 in a similar way. Thus we can

construct A′ so that, from Definition 3.5.18, A′ is isomorphic to A under ρG
Ji .

In Lemma 6.2.17 we show that, for every set of paths in the partition of an adversary of

MσG
Ji

(G)[Ji] there exists a randomised adversary of MσG
Ji

(G)[Ji] ⊕ F J
i

G , that is stuttering

equivalent with respect to the set of atomic propositions defined in Definition 6.2.11.

Lemma 6.2.17. Let G ∈ Γ \ Φ, J i ∈ disjoint i(G) and R = (F J
i

G , J i, σG
Ji) be the join

reduction for J i. Let A be an adversary of MG, and let A′ be an adversary of M
σJi

G
(G)

such that A is isomorphic to A′ under ρG
Ji, the path index mapping induced by σG

Ji. Then

there exists some randomised adversary E′ of MR(G) such that ρG
Ji(P

A
s0(J

i)) and E′ are

stuttering equivalent w.r.t. AP ′
R(G).

Proof. Let MσG
Ji (G) = (S, s0,Steps ,Act , L) and MR(G) = (S′, s′0,Steps ′,Act ′, L′). Let A

be an adversary of MG , and let A′ be an adversary of M
σJi

G
(G)

such that A is isomorphic

to A′ under ρG
Ji , the path index mapping induced by σG

Ji . Let AP∗ , AP ′
R(G) and Π =

ρG
Ji(P

A
s0(J

i)).

For a path, α, such that α ≤ γ for γ ∈ Π let,

P̄(α) =
P(α)

ProbA
′

s0 (Π)
.

Furthermore if,

α = s0
a1,µ1
−→ s1

a2,µ2
−→ . . . sn−1

an,µn
−→ sn,

then for any 1 ≤ i ≤ n, let si−1
ai,µi−→ si be a first-round transition under α if and only

if ai is an action local to processk and in every state in α up to si−1, processk has not

yet received and sent a counter. Let the set of actions occurring in first-round transitions

under α be denoted by First(α). Also, for γ ∈ Π with, γ = s0
a1,µ1
−→ s1

a2,µ2
−→ . . . sn−1

an,µn
−→

sn
an+1,µn+1

−→ . . . , let second si
(γ) denote the finite path α starting in si with final state,

sj+1 such that sj
aj+1,µj+1
−→ sj+1 is not a first-round transition and every transition up to

sj is a first-round transition. Define,

Second s(Π) = {second s(γ)|γ ∈ Π}.

Let H ⊆ Pathfin(s0) × Pathfin(s
′
0) be the relation given by ∀α ∈ Pathfin(s0), α

′ ∈

Pathfin(s
′
0), H(α,α′) iff

traceAP∗(α) ≃ traceAP∗(α′),
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and,

actAct
σG

Ji
(G)

\First(α)(α) = actActR(G)

(α).

We define a randomised adversary, E′, over MR(G) and sets, D0, D1, D2,. . . such that

∀n ≥ 0, Dn ⊆ {α ≤ γ|γ ∈ Π}, by induction. We show that for all n ≥ 0,

IH1 For every α ∈ Dn, α
′ ∈ cutE

′

(n), if H(α,α′) then for every m < n there exists

prefixes β ≤ α and β′ ≤ α′ such that β ∈ Dm, β′ ∈ cutE
′

(m) and H(β, β′).

IH2 If µn, µ
′
n are the distributions over Dn and cutE

′

(n), respectively, defined by, for

α ∈ Dn, α
′ ∈ cutE

′

(n), µn(α) = P̄(α) and µ′n(α
′) = ProbE

′

s0 (C(α′)) then µn ⊑H µ′n.

Base case: For n = 0, cutE
′

(0) = {s′0}. Let D0 = {s0}. Immediately, IH1 holds. By

definition P̄(s0) = ProbE
′

s′0
(C(s′0)) = 1. Therefore, µ′0 ⊑H µ0 and so IH2 holds.

Induction step: Assume that IH1 and IH2 hold for some n ≥ 0. We define Dn+1 and

E′(α′) for all α′ ∈ cutA
′

(n).

Suppose Dn = {α0, α1, . . . , αkn
}. For 0 ≤ j ≤ kn, let sj = last(αj). Define Dn+1 =

∪kn

j=0{αj .β|β ∈ Second sj
(Π)}.

Suppose that α = αj.β ∈ Dn+1. Then β = γ
a,µ
−→ t such that last(γ)

a,µ
−→ t is not a

first-round transition under α while every transition in γ is.

Suppose, for α′ ∈ cutE
′

(n), H(αj , α
′). Therefore,

actAct
σG

Ji
(G)

\First(α)(αj) = actActR(G
(α′).

Since the transitions in γ are all first-round transitions under α and last(γ)
a,µ
−→ t is not a

first-round transition, it should be clear that a is enabled from last(α′). Let

E′(α′)(a, µ′) =
P(γ)

∑

β∈Secondsj
(Π)

.

By the definition of Dn+1 and cutE
′

(n+1), IH1 and IH2 are satisfied. From Lemma 3.5.13

it follows that Π ≃ A′.

It should be apparent from Lemmas 6.2.16 and 6.2.17 and the definition of the path index

map that,
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Lemma 6.2.18. For every adversary A in MG (G ∈ Γ \ Φ) there exists a join reduction

R = (F J
i

G , J i, σG
Ji) such that PAs0(J

i) is isomorphic to PA
′

s′0
(σJ

i

G (J i))(= ρG
Ji(P

A
s0(J

i))) for

some adversary A′ in MσG
Ji (G) with PA

′

s′0
(σJ

i

G (J i)) stuttering equivalent to some randomised

adversary E′ in MR(G) w.r.t. AP
′

R(G).

6.2.5 Proof of Theorem 6.2.1

Proof. From Lemma 6.2.10, the set Γ is reducible to {MG(2)} with probability 1. By

Lemmas 6.2.12, 6.2.13 and 6.2.18, the conditions of Definition 6.1.6 are satisfied by MΓ

(under the join reductions). Thus, MΓ is probabilistic degenerative with base Φ. By

Lemma 6.2.2 Property 1 holds for M2. Since Property 1 is unindexed with appropriate

atomic propositions, by Theorem 6.1.7, it is satisfied by MG for all G ∈ Γ.

6.3 Discussion

6.3.1 Specifying Degenerative Systems

Clearly the applicability of our approach is strongly dependent on the form of the model

used to represent a system: a parameterised family of models of a system that appears

to degenerate may not be degenerative. Therefore, it would be useful to identify some

heuristics that can be used to guide the manner in which the system is modelled. For

example, it is clear that in order for a family of models to be degenerative then for a

process there must be a reachable local state that once reached guarantees that the process

will ‘acquiesce’ (for example by terminating or by only passing on received messages). It

must also be the case that with probability 1 some process (or set of processes) will reach

this state. Furthermore, we must have that, for any execution along which a process or

set of processes reach a quiescent state, any action performed by such a process must be

a stutter action.

Note that these heuristics do not guarantee that a family of models is degenerative. In

fact, much of the work in establishing this is based on identifying the sets of ‘reduced’

variables and domains. In terms of the IRP, for example, it was necessary to consider a

very small subset of the variables and their domains. This was due to the cyclic behaviour
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of each process in the protocol. In the TIP example a process did not return to a previously

visited state and therefore it was only necessary to ensure that actions of the degenerating

processes were stuttering actions. For IRP, on the other hand, it was necessary to ensure

that every action that occurred before a degenerate state was reached was a stutter action.

This can therefore be quite a severe restriction (but note that in practice this need not

limit the properties in which we are interested, as was the case for the IRP).

6.3.2 Convergent Properties

In terms of work closely related to our inductive schema for degenerative systems we

mention the work by Duflot et al. described in [27] and [28]. In [27], an approach to

proving the convergence of self-stabilising randomised protocols for parameterised rings is

given. By appealing to results of Markov theory it is shown that, given a non-increasing

measure on the state space of the model, if there exists a ‘distance’ measure between states

and an ordering relation on the measure that satisfies certain conditions then it is possible

to deduce that the protocol will converge to some legitimate set of states with probability

1. In [28] this technique is applies to an adaptation of Lehmann-Rabins solution to the

dining philosophers problem that does not require fairness constraints, and show that for

the modified algorithm a philosopher will eventually eat with probability 1.

The technique is described only in terms of rings with synchronous communication, al-

though it appears possible that it could be extended to other topologies and perhaps also

for asynchronous communication. The technique is also limited to proving ‘convergence’

to a set of states with probability 1 and therefore temporal logic is not considered. Our

technique, on the other hand, provides a theoretical framework to prove quantitative prop-

erties of systems expressed as (a restricted class of) LTL\X formula. However, it may be

that the type of properties that are of interest that we can actually analyse by this method

are in practice only converging probability 1 properties: the two properties that we con-

sider for the TIP and IR examples are of this form. This would require further rigorous

study to determine.

As with our technique, the approach of Duflot et al. is not automated and in particu-

lar requires the identification of a measure on the set of states along with an ordering.

Similarly our technique requires reductions to be defined and the identification of sets of
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reduced variables. One of the benefits of the convergence technique is that the conditions

on the measure and the ordering are defined locally i.e. it is only necessary to consider

single transitions of the probabilistic model rather than paths. This is a weakness of our

technique that is inherent to establishing stutter equivalence. It might be that we can

consider other relations, such as the weak simulation relations described in [58], that are

defined ‘locally’, i.e. with respect to individual transitions. Note, however, that these are

defined in terms of MDPs rather than in terms of adversaries, and we would therefore need

to modify our approach to take this into account. Using a relation of this type would have

the added benefit of allowing us to consider PCTL, rather than LTL properties. Under a

simulation style relation we can only establish properties of the form P≥p[φ] (where φ is a

PCTL path formula).

Assuming that the convergence approach of [27] and [28] can be extended to prove con-

vergence properties of protocols arranged in arbitrary topologies, it seems likely that this

technique would also be applicable to degenerative systems. In fact, it might be particu-

larly useful in showing that a set of topologies is reducible to some base with probability

1. In the case of the TIP, for example, we can define a distance measure to be the number

of level 1 nodes and an ordering <, the usual ordering on positive natural numbers and

for Itai Rodeh we could use the same order and define a distance measure to be the size of

the ring. It remains to be determined whether these satisfy the definitions of [27] and [28].

On the other hand, it might be also true that our technique could be extended to verifica-

tion of, for example, self-stabilising protocols. Consider, for example, the self-stabilising

protocol of [34]. Although this does not degenerate in the manner we have defined, it

seems apparent that for a system with N > 1 processes, once a configuration has been

reached in which there are m, say, tokens then this system is related to the system with

m processes and m tokens. The main difficulty in showing this would be in determining a

relation of an appropriate form such that we could generalise this principle to any system

of this type.

One of the weaknesses of our approach as it stands is that we consider families of models

derived from PRISM specifications. PRISM provides support for verification of PCTL

properties, whereas we establish results for a class of quantitative LTL properties. Al-

though we can still verify a subset of properties that are in both LTL and PCTL, this

is a severe restriction. One solution to this, described above, would be to adapt our re-
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sults to consider a relation other than stuttering equivalence. Alternatively, our approach

could be adapted to consider families of models specified in other modelling languages,

such as Probmela, which is supported by the Liquor model checking tool. Liquor can be

used to verify both LTL and PCTL properties and therefore may be a more appropriate

verification tool in this instance.

Summary We have presented a definition of a probabilistically degenerative family of

models parameterised by a communication topology. Based on this definition we have

established that in order to verify certain types of property for a probabilistically de-

generative family of models, it is sufficient to consider some subset of the family that

corresponds to a base subset of the communication topology. This is demonstrated by

considering a family of MDP models of the Itai-Rodeh leader election protocol, which we

show is probabilistically degenerative.



Chapter 7

Probabilistic Parameterised

Verification of Semi-Degenerative

Systems

Outline We consider randomised distributed systems that are degenerative but that

cannot be considered as deterministically or probabilistically degenerative. We give a

definition for a family of probabilistic models to be semi-degenerative. A simple gossip

protocol is provided as an example of a semi-degenerative family of models and the degen-

erative nature of the protocol is exploited in order to establish that given PCTL properties

that hold for a base system model hold for the entire family.

7.1 Introduction

In Chapters 5 and 6 we presented a technique for verification of degenerative systems by

induction, establishing that, for a degenerative family of models, if a property is true for

some base family of models then it is true for the entire family of models. We considered

two example systems in which, for each model the system was guaranteed to reach a state

that corresponded to a state in a ‘smaller’ model. The definition of deterministically and

probabilistically degenerative families of MDP models from these chapters are such that

the models must ‘converge’ to a base system model with probability 1. We consider now

159
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families of models that degenerate, but that may also terminate. Thus, with probability

1 a model reaches a degenerate state or it reaches a terminal state from which it is not

possible reach a state in a smaller model. It is possible that we could extend the approach

described in the previous two chapters to be applicable to these systems. However, we

consider here an illustration of an alternative approach through analysis of a simple gossip

protocol example.

7.2 Semi-Degenerative Families of Models

Like in the previous chapters we give the definition for a family of models to be degenerative

by considering a structural relation between models in the family. We consider here a

relation between models where one is ‘embedded’ in the other. Whereas in the previous

chapters we considered MDPs, here we consider DTMC models. We discuss the possibility

of extending this work to MDP models at the end of this chapter.

Definition 7.2.1. Let D = (S, s0,P, L) be a DTMC. A DTMC D′ = (S′, s′0,P
′, L′) is a

sub-chain of D (denoted D′ ⊑ D) if and only if S′ ⊆ S, s′ ∈ S′ ⇔ s′ is reachable from s′0,

and for all s′, t′ ∈ S′, P′(s′, t′) = P(s′, t′).

Based on Definition 7.2.1 we can give a definition for a family of models (over a set of

specifications) to be semi-degenerative. A family of DTMC models is semi-degenerative if

every ‘smaller’ model is a sub-chain of a ‘larger’ model (we formalise this below). The use

of the sub-chain relation in our definition is somewhat different from that of the stuttering

equivalence relation employed for the deterministically and probabilistically degenerative

families of models of the previous two chapters. Intuitively, this relation implies that the

behaviour of some model, before it reaches some state of a ‘smaller’ model, is independent

of the behaviour of the smaller model, but thereafter it is identical to that of the smaller

model. Under the stuttering equivalence relation, on the other hand, the behaviour of a

model before and after a state of a smaller model is reached, need only be equivalent to

the behaviour of the smaller model up to stuttering.

In this chapter we assume that the topology of the system is regular and therefore we can

consider the family of specifications to be parameterised by the size of the system (number

of processes) rather than by the communication topology.
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Definition 7.2.2. For some c ≥ 2, let S = {S(N)|N ≥ 1} be a family of specifications for

a system of size N and let D = {D(S(N))|N ≥ 1} be the corresponding family of DTMC

models. D is semi-degenerative with base c if and only if for all N > c, D(S(N − 1)) ⊑

D(S(N)).

We describe a family of models satisfying the above conditions as semi-degenerative be-

cause it is not necessarily possible to reach the ‘base’ system model D(S(c)) from every

state. In other words there may exist states from which the probability of reaching a state

in D(S(c)) is zero. This highlights another difference between the semi-degenerative sys-

tems and the those types of degenerative behaviour given in the previous chapters, where

we assumed that we were guaranteed to reach a ‘base’ system model. In Definition 7.2.3 we

distinguish between three types of states of a DTMC in terms of some sub-chain: terminal,

degenerative and semi-degenerative. For a DTMC, D = (S, s0,P, L), a set T ⊆ S, and a

state s ∈ S, let ps(T ) = Probs({ω ∈ Path(s)|ω = s0 → . . .→ t→ . . . for some t ∈ T}).

Definition 7.2.3. Suppose D = (S, s0,P, L) is a DTMC and D′ = (S′, s′0,P
′, L′) is a

sub-chain of D. Then, for s ∈ S, s is terminal w.r.t. S′ if and only ps(S
′) = 0, s is

degenerative w.r.t. S′ if and only if ps(S
′) = 1, and s is semi-degenerative w.r.t. S′

otherwise.

We prove reachability properties for a family of semi-degenerative models. As discussed

above the behaviour of a model prior to reaching a state of a sub-chain is independent of

the sub-chain’s behaviour. In order to prove properties of a family of semi-degenerative

models we need to establish some results for the behaviour of each model in the family

with respect to the property. This is strictly dependent on the property and model under

consideration, thus it is difficult to provide a general theorem for proving results of semi-

degenerative families of models. In the following section we prove two example properties,

by induction, for an example semi-degenerative system.



162

7.3 Case Study: A Gossip Protocol

7.3.1 Gossip Protocols

We consider a class of randomised, distributed algorithms commonly known as gossip or

epidemic protocols, which disseminate information in a peer-to-peer network. The ideas

behind gossip protocols are originally derived from the field of epidemiology, the study of

disease spread.

The SIR model of disease spread (see for example [11]) subdivides a population into those

that are susceptible (have not yet contracted a disease), those that are infective (have

contracted the disease and may pass it on) and those that are removed (had the disease

and are now immune or dead). In the simplest form of the model, susceptible individuals

become infective (with some probability, B, say) and infective individuals then become

removed (again with some associated probability, Q say). It is also possible to extend

this model to consider births, natural deaths, vaccination, spatial spread, mutation of

the disease etc. but only the basic model will be considered here. It is usual to employ

a system of differential equations to model the spread of disease in a population. This

deterministic approach is an accurate representation for large populations, but for smaller

populations it is more appropriate to use stochastic methods.

Gossip protocols are designed to propagate information throughout a network of sites, in

much the same way as diseases. An ‘infection’ will appear at some site and the information

that this represents must be propagated throughout the network. This is done by randomly

choosing a (set of) site(s) to ‘infect’. Each ‘infected’ site may then eventually become

‘removed’, according to some mechanism, and stop transmitting the information. Whereas

the study of epidemiology is concerned with the containment of a disease, gossip protocols

are designed to rapidly propagate information to as many sites as possible.

In spite of their advantages, gossip protocols are not suitable in every situation and have

two significant weaknesses. Firstly, because the protocol is based on randomised behaviour,

there is no guarantee that everyone will receive an ‘infection’. This problem can be alle-

viated by infrequently executing a more heavyweight protocol, that gives a deterministic

guarantee on the spread of the information, in parallel with the gossip protocol.

However, this solution conflicts with the second weakness, which is that, although the
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behaviour of the protocol at a local level is relatively simple, the precise nature of the global

behaviour is often difficult to understand. This means that the use of gossip protocols in

conjunction with other protocols can be unpredictable. The analysis of these systems is

therefore very important. Most of the investigations into the behaviour of these protocols

so far has relied on manual proof, experimentation and simulation. However, by making

use of probabilistic model checking, for systems of a fixed size, the protocols can be verified

automatically.

In the following sections we consider a simple gossip-style protocol and discuss how the

PRISM probabilistic model checking tool is employed to verify it. We then tackle the

PMCP based on the degenerative nature of the protocol using the approach described in

the previous section.

7.4 SIR Protocol

We consider a distributed peer-to-peer network of sites with a fully connected topology. At

the start of the protocol one site will be considered infective, i.e. it has some information

for distribution to the remaining susceptible sites. Any infective site can then infect

any susceptible site, with the susceptible site choosing to become infective with some

probability, β. Any infective site may also, at any point, choose to become removed with

probability ρ, in which case that site is no longer interested in forwarding information and

no longer participates in the protocol.

7.4.1 Model Checking the SIR Protocol with PRISM

We make some simplifying assumptions for the protocol. The first, is that there is only

ever one form of information present in the system at any one time. Second, we consider

our system to be free from failure, a common assumption when performing model checking.

The PRISM specification for the SIR protocol with three network sites is given in Appendix

G. Notice that the protocol is modelled as a DTMC. For a system of size N , we consider

each network site as a process and model a single site as a PRISM module sitei (1 ≤ i ≤ N).

Each module has a single local variable, statei (0 ≤ i ≤ N − 1), tracking the state of the

process. There are three possible states: Susceptible, Infective, Removed. Any process
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that is in the Susceptible state randomly chooses an Infective process (assuming that

there is one) and will then become Infective with probability B, where B is a global

constant in the range [0 . . . 1]. An Infective process is only able to move to the Removed

state, which it does so with probability Q, where Q is also a global constant in the range

[0 . . . 1]. Note that initially one module is in the Infective state while the remainder are

initialised to be Susceptible.

There are a number of properties that are of interest to us when verifying our model. Here

we concentrate on two properties, which we respectively define informally and formally (in

PCTL) below.

Property I1 With probability 1, the spread of the update will terminate.

P≥1 [♦(state1! = Infective& state2! = Infective&...& stateN ! = Infective)]

Property I2 Upon the spread of the update terminating, with probability greater than

or equal to a half, there will be no susceptibles remaining.

P≥1/2 [♦(state1! = Infective& ...& stateN ! = Infective&

!(state1 = Susceptible | state2 = Susceptible |...| stateN = Susceptible))]

These properties have been verified using PRISM for N = 2, 3, ..., 15 sites.

A Population Model of the SIR Protocol

The model in Appendix E is an individuals model. Our model is highly symmetric and

our properties are not dependent on the identity of any particular site. We can therefore

employ a ‘population’ level model, with fewer states where, rather than maintaining the

state for each process in a system, we instead count the number of processes in each state.

A PRISM specification of the population model is given in Appendix H. We model the

protocol with a single module that has two state variables, s and i, which maintain the

number of susceptible and infective sites in the protocol. Note that we omit the number of

removed sites since this can be calculated from the total number of sites and the number of

susceptible and infective sites. If a susceptible site becomes infective then s is decremented

by one and i incremented accordingly. If an infective site becomes removed then i is
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decremented by one. The only other possible transition is a self-loop in which case s and

i are unchanged.

Consider the probabilities of a site changing its state. Let s and i denote the number

of susceptibles and infectives respectively. Let P[S → I] denote the probability of a

susceptible site becoming infective. Let P[I → R] denote the probability of an infective

site becoming removed and let P[S → S] denote the probability of remaining in the same

state. Then:

P[S → I] =
i

s.i+ i
.B.s = B.

s

s+ 1

P[I → R] =
1

s.i+ i
.Q.i = Q.

1

s+ 1

P[S → S] = 1 − (P[S → I] + P[I → R])

= 1 − (B.
s

s+ 1
+Q.

1

s+ 1
)

= 1 −
B.s+Q

s+ 1

Note that we also introduce a global positive integer constant, N , the total number of

sites, to our population specification. Rather than defining separate specifications for each

size of system as for the individual specification, with the population specification we can

define a single specification using the parameter N to represent the number of sites.

We can verify the three properties specified below for at least one hundred sites, greater

than the number of sites for which we could verify the individual level SIR protocol. Note

the comparability of Property P1 and Property P2 to Property I1 and Property I2 of the

individual level models given above.

Property P1 With probability 1, the spread of the update will terminate.

P≥1[♦(i = 0)]

Property P2 With probability at least a half, when the spread of the infection termi-

nates, there will be no susceptibles remaining.

P≥1/2[♦(i = 0&s = 0)]
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Figure 7.1: Probability of Property P2 holding against N

Property P3 With probability at least a half, eventually the number of infectives will

be greater than the number of susceptibles.

P≥1/2[♦(i > s)]

As discussed in Section 3.4, PRISM can return the actual probability of a property holding,

as well as simply checking a bound. This probability can be plotted against a varying

parameter, as can be seen in Figure 7.1, where the total number of sites (N) is plotted

against the probability of the update spread completing with no remaining susceptible

sites, for N = 2, 3, . . . 50.

7.5 Parameterised Model Checking of the SIR Protocol

The SIR protocol is a degenerative system. Intuitively, for any network of N sites, once a

site becomes removed, the protocol behaves as a system of N − 1 sites. However, notice

that upon removing a site we may no longer have any infective sites and the protocol will

terminate, possibly with some susceptible sites remaining. Figure 7.2 shows the DTMCs

generated from the population level model for two, three, four and five sites (note that

each state is shown as x, y, where s = x and i = y). It should be apparent that the
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Figure 7.2: DTMCs for the SIR protocol for 2,3,4 and 5 sites

smaller models are subgraphs of the larger ones. Note also, however, that there exist

states where the protocol terminates without reaching a state of the smaller model D2.

For example, state (4, 0) is a terminal state. Hence, it would appear that the protocol is

semi-degenerative in the manner defined in Section 7.2.

In the sequel, for n ≥ 2, let S(n) denote the population SIR protocol PRISM specification

with N = n. Let Dn = D(S(n)), S = {S(n)|n ≥ 2} and D = {Dn|n ≥ 2}.

Lemma 7.5.1. The family of models D is semi-degenerative with base 3.

Proof. For N ≥ 3 let DN = (SN , s
N
0 ,PN , LN ). Let N > 3. Clearly SN−1 ⊆ SN . Suppose

that s ∈ SN−1. Then s = (x, y) such that x + y ≤ N − 1. It should be clear that s is

reachable from sN−1
0 . If s = (x, y) is reachable from sN−1

0 = (N − 2, 1) then s ∈ SN−1.

Since S(N) is identical to S(N − 1) except for the initialisation of parameter N and since

S(N) is independent of N , ∀s, s′ ∈ SN−1, PN (s, s′) = PN−1(s, s
′).

By employing Lemma 7.5.1 we now prove that Property P2 and Property P3 are satisfied

by DN for all N ≥ 3.
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Property P2

We show that the probability of the SIR protocol terminating with no remaining suscep-

tibles is at least a half for any size of system. We verify this property in terms of the

population level specification of the SIR protocol.

Theorem 7.5.2. If φ denotes Property P2 then for any n ≥ 2, Dn |= φ.

Proof. By induction on N , the number of processes.

As should be apparent from the DTMCs given in Figure 7.2, from the initial state in a

model SN+1, it is possible to reach a state in SN that is not the initial state. In fact,

any path from the initial state in SN+1 must pass through a state, (s, i), in SN such that

s + i = N . Therefore, it is not enough to prove our property holds in the initial state of

every model. We must also show that it holds in any state where s+ i = N .

Base Case:

For N = 3, we have verified by model checking in PRISM that,

∀r = (s, i) s.t. s+ i = 3, S3, r |= P≥1/2[♦(s = 0&i = 0)].

Induction Step:

For N ≥ 3 assume that

∀r = (s, i) s.t. s+ i = N, SN , r |= P≥1/2[♦(s = 0&i = 0)]

Let px,y denote the probability of reaching state (s = 0, i = 0) from the state (s = x, i = y).

Then, for 0 ≤ m ≤ N − 1, we can write the probability of reaching (s = 0, i = 0) from any

state with s+ i = N + 1 as the sum of the probability of states with s+ i = N .
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pm,N−m+1 = 1.
1
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.
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.
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.
4

5
. . .
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.
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.
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4
.
4
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.
m

m+ 1
.p1,N−1
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.
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4
.
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5
. . .
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m
.
m

m+ 1
.p2,N−2

+
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4
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. . .
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m
.
m
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.p3,N−3

...

+
1

m
.
m

m+ 1
.pm−1,N−m+1

+
1

m+ 1
.pm,N−m

Notice that, with the exception of the final term, the denominators and numerators in

each of the products all cancel, hence,

pm,N−m+1 =
1

m+ 1

m∑

k=0

pk,N−k

=
1

m+ 1

(

1 +
m∑

k=1

pk,N−k

)

since, ∀y ≥ 0, p0,y = 1

≥
1

m+ 1

(

1 +

m∑

k=1

1

2

)

from our inductive assumption

=
1

m+ 1

(

1 +
1

2
m

)

=
m+ 2

m+ 1
.
1

2

≥
1

2
since

m+ 2

m+ 1
≥ 1

Finally, notice that the behaviour of the initial state (i.e. when m = N) is actually

somewhat different from the other states since removing an infective results in a transition

into the state (s = N − 1, i = 0), and note that pN−1,0 = 0 for any N . Therefore we need

to resolve this case separately as follows:

pN,1 =
N

N + 1
.pN−1,2

≥
N

N + 1
.
N + 1

N
.
1

2

=
1

2
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Therefore, by induction,

∀N ≥ 3,∀r = (s, i) s.t. s+ i = N SN , r |= P≥1/2[♦(s = 0&i = 0)].

Since, for s = N − 1, i = 1, s+ i = N ,

∀N ≥ 3, SN |= P≥1/2[♦(s = 0&i = 0)]

Property P3

Notice that the set of states satisfied by (i > s) is not a subset of S2 as for Property P2.

Nonetheless our proof follows similar lines to that for Property P2.

Theorem 7.5.3. For N ≥ 2,SN |= P≥1/2[♦(i > s)].

Proof. By induction on N .

Base Case:

For N = 2, we have verified by model checking in PRISM that,

∀r = (s, i) s.t. s+ i = 3, S3, r |= P≥1/2[♦(i > s)].

Induction Step:

For N ≥ 2 assume that

∀r = (s, i) s.t. s+ i = N, SN , r |= P≥1/2[♦(i > s)]

Let px,y denote the probability of reaching state (s = 0, i = 0) from the state (s = x, i = y).

Note that for s+ i = N + 1, ps,i = 1 if i > s. In particular, this is true if s is less than or

equal to (N + 1)/2 for N odd and less than or equal to N/2 for N even.
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If N is odd then we have that, for (N + 1)/2 ≤ m < N ,

pm,N−m+1 =
N+1

2
N+1

2 + 1
.
N+1

2 + 1
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. . .
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.
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2 + 1
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2 + 1
N+1
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.
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.
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.
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m
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+
1

m
.
m

m+ 1
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+
1

m+ 1
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Notice that, with the exception of the final term, the denominators and numerators in

each of the products all cancel, hence,

pm,N−m+1 =
N + 1

2
.

1

m+ 1
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+
1

m+ 1
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+
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+
1

m+ 1
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+
1

m+ 1
.pm,N−m

Therefore,

pm,N−m+1 =
1

m+ 1


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N + 1

2
+
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∑
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 from our inductive assumption
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Thus,

pm,N−m+1 ≥
1

2

⇐⇒
(N + 3)/2 +m

m+ 1
≥ 1

⇐⇒ N + 3 ≥ 2

⇐⇒ N ≥ −1

We have that N ≥ 2 and thus pm,N−m+1 ≥ 1
2 .

Finally, notice that the behaviour of the initial state (i.e. when m = N) is actually

somewhat different from the other states since removing an infective results in a transition

into the state (s = N − 1, i = 0), and note that pN−1,0 = 0 for any N . Therefore we need

to resolve this case separately as follows:

pN,1 =
N

N + 1
.pN−1,2

≥
N

N + 1
.
1

N
.

(
N + 1

2
+

(

N − 1 −
N + 1

2
+ 1

)
1

2

)
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1

N + 1
.
1

2
.

(

2N + 1 −
N + 1

2

)

=
1

N + 1
.
1

2
.

(
3N + 1

2

)

=
1

2

3N + 1

2N + 2

Thus,

pN,1 ≥
1

2

⇐⇒
3N + 1

2N + 2
≥ 1

⇐⇒ 3N + 1 ≥ 2N + 2

⇐⇒ N ≥ 1

Since N ≥ 2, pN,1 ≥ 1
2 .
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Similarly, if N is even, for N/2 ≤ m < N ,
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Notice that, with the exception of the final term, the denominators and numerators in

each of the products all cancel, hence,
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Thus,

pm,N−m+1 ≥
1

2

⇐⇒
N/2 + 2 +m

m+ 1
≥ 1

⇐⇒ N/2 ≥ −1

⇐⇒ N ≥ −2

Hence, pm,N−m+1 ≥ 1
2 .

Then, for the initial state,

pN,1 =
N

N + 1
.pN−1,2

≥
N

N + 1
.
1

N
.

(
N

2
+ 1 +

(

N − 1 −
N

2

)
1

2

)

=
1

2

3N + 2

2N + 2

Hence, pN,1 ≥ 1
2 .

Therefore, by induction,

∀N ≥ 3,∀r = (s, i) s.t. s+ i = N SN , r |= P≥1/2[♦(i > s)].

Since, for s = N − 1, i = 1, s+ i = N ,

∀N ≥ 3, SN |= P≥1/2[♦(i > s)]

7.6 Discussion

A ‘Continuum’ of Degenerative Systems The distinction between degenerative and

semi-degenerative families of models is not absolute and indeed depends on the property

considered. For example, if we were to verify the property “with probability 1 eventually

the number of infectives equals zero” then we could consider the SIR protocol as proba-

bilistically degenerative since every model converges to the base system model (any system

model for which the number of infectives equals zero) with probability 1. However, other

system and property combinations may not conform to any of the degenerative definitions

outlined in this thesis.
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Convergent Properties In Section 6.3 we discussed the work of Duflot et al. [27, 28]

and its relation to our work on degenerative systems. In the case of the SIR protocol

population models, it would appear that this work is again applicable. In particular, we

could define a measure on the states of the model based on the number of infectives and

then employ the usual ordering on the natural numbers. It should be apparent that the

measure is non-increasing and therefore, we can establish certain qualitative properties of

the protocol. Again, however, we cannot consider quantitative properties such as Property

P2 described above.

Infinite-state Models of Probabilistic Systems It should be obvious that, rather

than considering the models derived from our PRISM specification of the population ver-

sion of the SIR protocol as a family, we could instead define them in terms of a single

infinite-state model. In [43], the authors describe a sound but incomplete algorithm for

determining the maximum probability of a reachability property holding in a infinite state

MDPs. The method relies on establishing symbolic transition types. Since each model in

the family of SIR protocol models has a transition distribution over states that does not

correspond to a transition distribution in the smaller models, it is unclear whether this

method would be applicable to our example.

Families of MDPs Probabilistic distributed systems with concurrently executing pro-

cesses are normally modelled using a Markov Decision Process and therefore, ideally, our

technique should be applicable to MDP models. In this chapter, on the other hand, we

employ DTMC models. However, when considering probabilistic reachability (i.e. the

probability of reaching a set of states in a MDP from some state) as we do in this chapter,

it is only necessary to analyse simple adversaries [13]. For any finite path of a MDP, a

simple adversary chooses a distribution based only on the last state of the path regard-

less of the states previously visited. Hence, the Markov chain associated with a simple

adversary can be considered as a finite state DTMC. We can therefore apply the results

obtained in this chapter to the DTMCs derived from simple adversaries. Thus, it should

be possible to extend our results to families of MDPs.
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Summary In this chapter we considered an approach for families of DTMC models that

‘converge’ to a base system model with probability less than 1 i.e. for which with some

non-zero probability it is possible to reach a ‘terminal’ state from which it is not possible

to reach a state of the base system model. We formally define these models by considering

a sub-chain relation that, intuitively, relates two models if one is ‘embedded’ in the other.

Any family of models for which, for all N , the model of a system of size N is a sub-

isomorphism of the model of a system of size N + 1 are described as semi-degenerative.

We illustrated that induction can be employed to prove properties of semi-degenerative

systems by considering a simple example of a gossip protocol, which we specified in PRISM.

We defined two types of specifications, one at the individual level and one at the population

level. We verified certain properties of these for fixed sizes of system using PRISM and

then tackled the parameterised model checking problem for the population specification

using inductive reasoning.



Chapter 8

Open Problems

Outline In this chapter we highlight the limitations of our techniques by providing

examples of systems for which our methods are not currently applicable and then suggest

ways in which we can overcome these limitations.

8.1 A Replicated Databases Gossip Protocol

In Chapter 7 we described a class of protocols commonly referred to as gossip protocols.

Here we consider one such protocol due to Demers et al. [25]. Demers et al. describe a

gossip protocol for maintaining updates within a replicated distributed database environ-

ment that is based on a variation of the SIR model. A network site must maintain a list

of ‘infective’ updates (updates to the database which it has made and wishes to spread to

other sites). Any site with a non-empty list of updates chooses another site uniformly at

random and transmits the list of updates. If that site is susceptible with respect to any

of the updates, i.e. it has not yet received the update, it will make that update and add

it to its infective list. If, however, the site has already received some update on the list,

then the infecting site will, with some fixed probability, remove the item from its list.

We have developed a PRISM ‘population’ specification to model the rumour mongering

replicated databases protocol (RDP) of Demers et al. The specification is very similar

to that given for the SIR protocol in Appendix H except that it is for a MDP and the

probabilities associated with the updates are different.
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Figure 8.1: DTMCs for the replicated databases gossip protocol for 2,3,4 and 5 sites

Figure 8.1 shows the MDP models that would be generated from our PRISM population

specification, for two, three, four and five sites and k = 1. Each state is labelled with

two values. The first of these denotes the number of susceptible sites (that haven’t yet

received the update), and the second the number of infective sites (that have received the

update and are still passing it on). Note that there is only one non-deterministic choice

from each state and therefore we omit the dashed transition lines from the diagram. We

emphasise at this point that the probabilities associated with the transitions in the model

are dependent on N , the number of sites.

Consider the parameterised model checking problem for the RDP. We observe that, once a

site becomes removed, it no longer actively participates in the protocol. It would appear,

therefore, that the RDP is degenerative. However, on closer inspection, we realise that,

once a site becomes removed, it is still possible for other infective sites to send messages to

that site, whereby the infective site may then itself become removed. Therefore, a removed

site will maintain a passive role in the protocol.

The degenerative behaviour of the protocol can be seen structurally in the underlying

Markov chain (see Figure 8.1). It should be apparent that, ignoring the probabilities, the

smaller models are, structurally speaking, almost subgraphs of the larger ones (with the

exception of an additional transition from the state (N−1, 1) to the state (N−1, 0) in the

larger model). However, unlike the SIR protocol, the transition probabilities change as N
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changes. This is because the probabilities are dependent on N , the number of sites, which

is in turn related to the fact that a removed site still passively participates in the protocol.

In particular, notice that the ‘downward’ transition probabilities in the corresponding

subgraph decrease as N increases, while the ‘horizontal’ transition probabilities increase

with N . This means that the model MN is not embedded in MN+1 and therefore the

family of models associated with the population specification of the RDP cannot be semi-

degenerative. This also makes it difficult to devise an invariant for the protocol in the

manner of Chapter 4.

Verification of qualitative properties is independent of the actual probabilities in a model

and therefore it may be appropriate to consider properties such as these, but note that the

terminating behaviour of the protocol precludes proving properties which ‘converge’ to the

base system since these inherently will hold with probability between 0 and 1. Nonetheless

it may be possible to prove a property such as “with probability 1 eventually the number

of infectives is zero” since this holds in every terminal state of the model.

This example illustrates well two of the limitations of the techniques described for de-

generative systems in Chapters 5, 6 and 7. Namely, we require the behaviour of any

degenerative system once it has ‘degenerated’ to exactly match that of a ‘smaller’ system

and the behaviour of the system to be independent of the size of the system. In the case of

the RDP, the transition probabilities are dependent on the size of the system and therefore

the behaviour of a ‘degenerated’ system is different from that of any ‘smaller’ system.

8.2 A Weak Shared Coin Protocol

In Section 1.4 we discussed the weak shared coin protocol of Aspnes and Herlihy [6]. This

protocol is used to return the result of a set of coin flips by a set of concurrently executing

processes such that there is some bound on the probability of every process flipping heads

(or tails). The protocol operates by employing a shared counter that each process can

read from and write to. The size of the counter is determined by the number of processes,

N and an independent parameter K > 1. Each process will flip a coin, choosing heads or

tails with equal probability. If a process chooses heads then it will increment the counter

and if it chooses tails it will decrement the counter. It will then read the counter and if

the value lies between some upper and lower threshold values (determined by N and K)
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then it will flip the coin again. If, on the other hand, the counter value is below the lower

threshold, the process will choose tails and terminate, and similarly if the counter value is

above the upper threshold it will choose heads and terminate.

Once a process has terminated, the protocol proceeds independently of that process. The

protocol therefore appears to exhibit degenerative behaviour. One of the difficulties in

formally establishing that the protocol is degenerative is due to the size of the counter,

which is dependent on N . However, if only the local state of each of the processes is con-

sidered (as was the case for the Itai Rodeh protocol in Chapter 6), it may still be possible

to prove that the protocol is degenerative. Note that the processes degenerate probabilis-

tically rather than deterministically and therefore we would need to establish that the

protocol was probabilistically (rather deterministically) degenerative. As an alternative,

it would be interesting to investigate whether the techniques described in Chapter 7 for

semi-degenerative systems could be extended to be applicable in this instance. This is

further work.

8.3 Determining the Size of a Ring

In Chapter 6 we considered the Itai Rodeh protocol for determining a leader in an anony-

mous ring. To ensure correct operation of the protocol it is necessary for each process in

the ring to know the size of the ring it is operating in. It has been shown that a leader

election protocol that terminates with probability 1 exists only if the size of the ring is

known to be within some bounds.

In some situations, this may not be known and must be determined. A randomised algo-

rithm has been devised that determines the correct size of the ring with probability 1 if it

is known that it lies in the bound −2N, . . . , 2N [35]. We consider an alternative algorithm

that does not require any information about the size of the ring but that gives a guarantee

of correctness with probability arbitrarily close to 1 [35]. Each process participating in the

protocol chooses an id value of 0 or 1 with equal probability and then transmits this value

along with the a counter which contains the highest counter value it has seen so far. If

a process receives a message with id value equal to its own id then it updates its counter

depending on the counter value received and then transmits a new message. Each process

does this r times, where r is a constant parameter of the protocol.
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We have defined PRISM specifications for the system described above based on the algo-

rithm given in [35]. Note that channels are assumed to be FIFO and of length two (this

is shown to be sufficient in [35]).

For this algorithm, for any size of ring N , in [35] it is proven that there is a lower bound of

2−Nr/2 for the probability of error in determining the ring size correctly (it is also shown

that the actual value is 2−(N−1)r , where N is prime).

Parameterised verification of this protocol using the techniques described in the previous

chapters is difficult. The complexity of the protocol inhibits the derivation of an invariant

in the manner of Chapter 4 and the protocol does not exhibit degenerative behaviour in

the manner prescribed in Chapters 5, 6 or 7. It would seem clear therefore that there are

systems for which it is not straightforward to apply any of our methods.

Summary In this chapter we have considered some open problems that remain to be

tackled. In particular, we considered three examples of systems that are not currently

accomodated by any of our techniques: a replicated databases gossip protocol, a proba-

bilistic protocol to determine the size of a ring and the weak shared coin protocol of Aspnes

and Herlihy. Each of these systems displayed properties that deemed our inductive and

abstraction techniques inapplicable. In some of these cases we provided suggestions for

extending our techniques such that they could be applied. In others it would appear that

new techniques are necessary.



Chapter 9

Conclusions

Outline This chapter concludes the thesis, providing an overview of the work described

in the previous chapters.

9.1 Introduction

As discussed in Chapters 1 and 2, model checking is a useful verification technique for

the formal analysis of distributed systems. Model checking tools verify that properties

capturing the correct behaviour of some system are satisfied by a model of the system.

Properties are usually specified using a temporal logic (Section 2.3) and models as Kripke

structures (Section 2.2). Verification is generally done by searching the state-space of

the model. However, the state-space of the model grows rapidly with the number of

components being modelled (the state-space explosion problem) and so model checking

tools must employ (a variety of) techniques to combat this problem.

In this thesis we have considered the verification of randomised distributed systems. Prob-

abilistic model checking tools, such as PRISM (see Section 3.4), provide the means to

perform quantitative as well as qualitative analysis of systems. PRISM enables the verifi-

cation of properties, specified in a probabilistic temporal logic, against probabilistic models

of a system, specified using PRISM. In particular, PRISM provides support for defining

MDP models (described in Section 3.2.2) which display non-deterministic as well as prob-

abilistic behaviours and are therefore an appropriate model for randomised distributed
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systems. These are verified with respect to properties described in the PCTL temporal

logic (see Section 3.3).

One of the limitations of model checking of distributed systems is that it is only possible

to consider systems that have a fixed number of components. The problem of verifying

a distributed system for an arbitrary number of components, the parameterised model

checking problem, was introduced in Chapter 1 along with a summary of some of the work

that has been undertaken on tackling the problem. A considerable body of work exists

on tackling the PMCP for non-probabilistic systems but the problem has not been widely

considered for probabilistic systems. The PMCP is undecidable, implying that, in order

to solve it, it is necessary to either consider methods that are sound but incomplete or

consider classes of distributed systems for which the problem is decidable.

9.2 Network Invariants and Abstraction

In Chapter 4 we tackled the PMCP for a token ring protocol by constructing a network

invariant using an approach based on data abstraction, employed previously for a number

of non-probabilistic systems. We specified models of the protocol, and the invariant, using

Promela and established that any properties that hold for the invariant are true for any

model of the protocol for an arbitrary sized ring. Using model checking we proved that

certain properties were satisfied by the invariant. Furthermore, we constructed an invariant

for probabilistic models of the token ring protocol specified using PRISM. By adapting the

proof for the non-probabilistic case, we established that certain properties that were true

of the invariant were also true of every model of the protocol. Since a network invariant

does not always exist [62], this approach is sound but incomplete.

We constructed our proof for the token ring protocol manually. It would be interesting to

establish whether we could automate the proof, for example by extending an automatic

invariant technique of [39] to the probabilistic domain. Furthermore, it would be conve-

nient to define an abstract specification from any given concrete specification, using a set

of generic restrictions to guide the construction. If suitable restrictions were used then

the abstract specification would be guaranteed to be a valid abstraction of the concrete

specification. Hence, an extension of this work is to analyse the use of abstraction, in

order to determine whether such restrictions exist and if so, what they are.
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9.3 Degenerative Systems

In Chapters 5 and 6 we solved the PMCP by considering a restriction on the types of

systems that we analyse. Specifically, we provided a technique for reasoning about a

class of parameterised probabilistic systems described as degenerative. We distinguished

between deterministically and probabilistically degenerative families of MDP models for a

system. Under a particular scheduler a deterministically degenerative system model will

degenerate to some system model with probability 1. For a probabilistically degenerative

system on the other hand, under some scheduler the system model will degenerate to some

set of system models with probability 1.

We presented inductive proof schemas for reasoning about these two classes of systems,

generalising an inductive proof that was introduced for a non-probabilistic parameterised

distributed system [49]. The proof schema provides a method for establishing that any

property that holds of a model of a system with some base topology will hold for a model

of any system size and configuration. The technique relies on showing that any behaviour

in a model of the system of a given size is (observationally) ‘equivalent’ to a behaviour in

a model of a smaller system.

We employed two case studies to demonstrate our method. In Chapter 5 we considered

a family of models of the IEEE 1394 Firewire tree identify protocol [33] and provided an

inductive proof over the system topology (trees) to show that a certain class of probabilistic

temporal logic properties that are satisfied by a model of a system with a star topology

are satisfied by a model of a system with any acyclic topology. In Chapter 6 we considered

the Itai Rodeh leader election protocol for rings and proved a similar result, over the set

of rings.

In Chapter 7 we considered an extension to degenerative systems, by defining a semi-

degenerative family of models of a system. Models of this type degenerate but may also

terminate before reaching a model of a smaller system. We gave an example of a simple

gossip protocol, showing that the family of models is semi-degenerative. We then exploited

the semi-degenerative property and employed induction to prove properties of the protocol

for an arbitrary number of network sites.
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9.4 Open Problems

Finally, in Chapter 8 we described three examples of parameterised randomised distributed

systems for which none of the approaches described above were applicable. Future work

is to extend our techniques to deal with these examples.

Summary We have provided a summary of the work described in the thesis, outlining

the approaches we have considered for tackling the parameterised model checking problem.
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Appendix A

Promela Specification for Counter

Token Ring Protocol

/**************************************************************

*

* COUNTER TOKEN RING PROTOCOL (CONCRETE VERSION)

*

* Several processes pass a token counter between them.

* When work is true, token counter is decremented

* When work is reset the protocol recommences.

*

**************************************************************/

#define N 4 //no of processes

#define c 5 //initial value of counter

//define channels for token to be passed on (ch[1] = process 0

//to process 1, ch[3] = process 2 to process 3 etc..)

chan ch[N] = [1] of {int};

bool work=false; // whether process should work

bool done=false; // once work is false, can’t be reset until !done
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// and once work is true, can’t be set false until done

bool end=false; // when the token=0 this is set to true

int finished=0; // add 1 to finished when token decremented

//(only used for verifying properties)

/*****************************************************************

* Arbiter process

*/

proctype arbiter()

{

change:

if

:: atomic{(done && work)-> work=false; goto change;} // 7.

:: atomic{(!done && !work)-> work=true; goto change;} // 8.

fi;

}//arbiter

/****************************************************************/

proctype process(chan in,out;int id)

{

int token=0; // stores counter value

bool possess=false;// set possess to true when token is received,

// (only used for verifying properties)

bool working=false;// set working to true when process does work

// set back to true once done to pass token (for verification)

idle:

do

::atomic{full(in)->in?token; possess=true;} // 1. accept token



195

rcvd: if

::atomic{!work && empty(out) -> // 2. pass token

out!token;

possess=false;}

::atomic{work && token>1 && empty(out)->//3.decrement token

working=true;

token--;

done=true;

fi;}

pass: atomic{!work && empty(out) -> // 4. pass token

out!token;

possess=false;

done=false;

working=false;}

::atomic{work && token==1 -> // 5. finished

working=true;

token--;

finished++; end = true; goto finish;

fi;

od;

finish:

goto finish; // 6. finished so loop

}//process

/*************************************************************/

init{

atomic{ // 0. initialise protocol

run process(ch[0],ch[1],0);

run process(ch[1],ch[2],1);

run process(ch[2],ch[3],2);

run process(ch[3],ch[0],3);

run arbiter();
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ch[0]!c; // always start with process 0

}

}//init

/************************************************************/



Appendix B

Promela Invariant Specification

for Counter Token Ring Protocol

/**************************************************************

*

* COUNTER TOKEN RING PROTOCOL (INVARIANT VERSION)

*

* Several processes pass a counter token between them.

* When the arbiter process decides, the counter is decremented

* and the protocol then recommences.

* Protocol finishes when process has token that

* equals zero.

*

*

**************************************************************/

#define m 3 //no of concrete processs+1

#define c 5 //initial value of counter

// channels for token to be passed on (ch[0] = process N to process 0,

// ch[1] = process 0 to process 1, ch[2] = process 1 to process 2 etc.)
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chan ch[m] = [1] of {int};

bool work=false; // whether process should work

bool done=false; // once work is false, can’t be reset until !done

// and once work is true it can’t be set false until done

bool end=false; // when the token=0 this is set to true

int finished=0; // add 1 to finished when token decremented

//(only used for verifying properties)

/****************************************************************

* Arbiter process

*/

proctype arbiter()

{

change:

if

:: atomic{(done && work)-> work=false; goto change;} // 7.

:: atomic{(!done && !work)-> work=true; goto change;} // 8.

fi;

}//arbiter

/****************************************************************/

proctype process(chan in,out;int id)

{

int token=0; // stores counter value

bool possess=false;// set possess to true when token is received,

// (only used for verifying properties)

bool working=false;// set working to true when process does work

// set back to true once done to pass token (for verification)

idle:
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do

::atomic{full(in)->in?token; possess=true;} // 1. accept token

rcvd: if

::atomic{!work && empty(out) -> // 2. pass token

out!token;

possess=false;}

::atomic{work && token>1 && empty(out)->//3.decrement token

working=true;

token--;

done=true;

fi;}

pass: atomic{!work && empty(out) -> // 4. pass token

out!token;

possess=false;

done=false;

working=false;}

::atomic{work && token==1 -> // 5. finish

working=true;

token--;

finished++; end = true; goto finish;

fi;

od;

finish:

goto finish; // 6. finished so loop

}//process

/************************************************************/

proctype abstract_process(chan in,out;int id)

{

int token=0; // abstract token counter
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idle:

do

::atomic{full(in)->in?token;} // 1. accept token

rcvd: if

::atomic{!work && empty(out) ->// 2.(a) pass token

out!token;}

::atomic{!work && empty(in) -> // 2.(b) keep token

in!token;}

::atomic{work && token>1 -> // 3. decrement counter

working=true;

token--;

done=true;}

if

pass: ::atomic{!work && empty(out) -> // 4.(a)

out!token; //pass token to neighbour

done=false;}

::atomic{!work && empty(in) -> // 4. (b)

in!token; //pass token back to self

done=false;}

fi;

::atomic{work && token==1 -> // 5. finish

token--;

finished++; end = true; goto finish;

fi;

od;

finish:

goto finish; // 6. finished so loop

}//abstract_process

/**************************************************************/

init{
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atomic{ // 0. initialise protocol

run process(ch[0],ch[1],0);

run process(ch[,ch[2],1);

run abstract_process(ch[2],ch[0],2);

run arbiter();

ch[0]!c;

}

}//init

/*************************************************************/



Appendix C

PRISM Specification for Counter

Token Ring Protocol

nondeterministic

const int c=5; // initial value of counter assumed to be at least 1

const int N=4; // number of processes

const int idle=0; const int rcvd=1;

const int pass=2; const int finish=3;

const int empty=0;

global ch0:[0..c] init c; global ch1:[0..c] init empty;

global ch2:[0..c] init empty; global ch3:[0..c] init empty;

global end : bool init false;

global finished : [0..N] init 0;

module process0
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possess0 : bool init false;

working0 : bool init false;

loc0 : [idle..finish] init idle;

token0 : [0..c] init 0;

// receive token

[] (loc0=idle & ch0!=empty) -> \\ 1.

1: (possess0’=true) & (ch0’=empty) & (loc0’=rcvd) & (token0’=ch0);

// randomly choose to work or just pass on token

// when decrementing counter, if it reaches zero, protocol terminates

// otherwise it is passed on

[] (loc0=rcvd & ch1=empty & token0=1) -> \\ 2.

0.5:(loc0’=finish)&(working0’=true)&(token0’=token0-1)

&(finished’=finished+1)&(end’=true)

+0.5: (loc0’=idle) & (possess0’=false) & (ch1’=token0) & (token0’=0);

[] (loc0=rcvd & ch1=empty & token0>1) -> \\ 3.

0.5: (working0’=1) & (token0’=token0-1) & (loc0’=pass)

+0.5: (loc0’=idle) & (possess0’=false) & (ch1’=token0) & (token0’=0);

// pass on token having decremented token counter

[] (loc0=pass & ch1=empty) -> \\ 4.

1:(loc0’=idle)&(ch1’=token0)&(possess0’=false)

&(working0’=false)&(token0’=0);

// counter has reached zero so process can finish

[] (loc0=finish) -> (loc0’=loc0); \\ 5.

endmodule

module process1=process0[loc0=loc1, token0=token1,

possess0=possess1, working0=working1, ch0=ch1, ch1=ch2] endmodule
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module process2=process0[loc0=loc2, token0=token2,

possess0=possess2, working0=working2, ch0=ch2, ch1=ch3] endmodule

module process3=process0[loc0=loc3, token0=token3,

possess0=possess3, working0=working3, ch0=ch3, ch1=ch0] endmodule



Appendix D

PRISM Invariant Specification for

Counter Token Ring Protocol

nondeterministic

const int c=5; // initial value of counter, assumed to be at least 1

const int N=4; // number of processes

const int idle=0; const int rcvd=1;

const int pass=2; const int finish=3;

const int empty=0;

global ch0:[0..c] init c; global ch1:[0..c] init empty;

global ch2:[0..c] init empty;

global end : bool init false;

global finished : [0..N] init 0;

module process0
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possess0 : bool init false;

working0 : bool init false;

loc0 : [idle..finish] init idle;

token0 : [0..c] init 0;

// receive token

[] (loc0=idle & ch0!=empty) -> \\ 1.

1: (possess0’=true) & (ch0’=empty) & (loc0’=rcvd) & (token0’=ch0);

// randomly choose to work or just pass on token

// when decrementing counter if it reaches zero protocol terminates

// otherwise it is passed on

[] (loc0=rcvd & ch1=empty & token0=1) -> \\ 2.

0.5:(loc0’=finish)&(working0’=true)&(token0’=token0-1)

&(finished’=finished+1)&(end’=true)

+0.5: (loc0’=idle) & (possess0’=false) & (ch1’=token0) & (token0’=0);

[] (loc0=rcvd & ch1=empty & token0>1) -> \\ 3.

0.5: (working0’=true) & (token0’=token0-1) & (loc0’=pass)

+0.5: (loc0’=idle) & (possess0’=false) & (ch1’=token0) & (token0’=0);

// pass on token having decremented token counter

[] (loc0=pass & ch1=empty) -> \\ 4.

1:(loc0’=idle)&(ch1’=token0)&(possess0’=false)

&(working0’=false)&(token0’=0);

// counter has reached zero so process is finished

[] (loc0=finish) -> (loc0’=loc0); \\ 5.

endmodule

module process1=process0[loc0=loc1, token0=token1,

possess0=possess1, working0=working1, ch0=ch1, ch1=ch2] endmodule
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module abstract_process2

loc2 : [idle..finish] init idle;

token2 : [0..c] init 0;

// receive token

[] (loc2=idle & ch2!=empty) -> \\ 1.

1: (loc2’=rcvd) & (ch2’=empty) & (token2’=ch2);

// randomly choose to work or just pass on token

// when decrementing token, if it is zero protocol terminates

[] (loc2=rcvd & ch1=empty & token2=1) -> \\ 2.1

0.5: (loc2’=finish)&(token2’=token2-1)

&(finished’=finished+1)&(end’=true)

+0.5: (loc2’=idle) & (ch1’=token2) & (token2’=0);

[] (loc2=rcvd & ch1=empty & token2>1) -> \\ 3.1

0.5: (token2’=token2-1) & (loc2’=pass)

+0.5: (loc2’=idle) & (ch1’=token2) & (token2’=0);

// abstract process can non-deterministically choose

// to keep token by sending on abstract channel

[] (loc2=rcvd & ch2=empty & token2=1) -> \\ 2.2

0.5: (loc2’=finish)&(token2’=token2-1)

&(finished’=finished+1)&(end’=true)

+0.5: (loc2’=idle) & (ch2’=token2) & (token2’=0);

[] (loc2=rcvd & ch2=empty & token2>1) -> \\ 3.2

0.5: (token2’=token2-1) & (loc2’=pass)

+0.5: (loc2’=idle) & (ch2’=token2) & (token2’=0);

// pass on token having decremented token counter

// (abstract process can choose to pass to itself)
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[] (loc2=pass & ch1=empty) -> \\ 4.1

1: (loc2’=idle) & (ch1’=token2) & (token2’=0);

[] (loc2=pass & ch2=empty) -> \\ 4.2

1: (loc2’=idle) & (ch2’=token2) & (token2’=0);

// counter has reached zero and process is finished

[] (loc2=finish) -> (loc2’=finish); \\ 5.

endmodule



Appendix E

PRISM Specification for TIP

nondeterministic

const int start=0;

const int child_handshake=1;

const int parent_handshake=2;

const int handshakes_complete=3;

const int response=4;

const int contention=5;

const int winner=6;

const int loser=7;

const int become_child=8;

const int finish=9;

const int empty=0;

const int be_my_parent=1;

const int be_my_child=2;

const int ack=3;

global elected : [0..N] init 0;

const int N=3;
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const int v0=1;

const int v1=2;

const int v2=1;

const int nodeid0=1;

const int nodeid1=2;

const int nodeid2=3;

global toss0 : [0..2] init 0;

global toss1 : [0..2] init 0;

global toss2 : [0..2] init 0;

global zeroone : [empty..ack] init empty;

global onezero : [empty..ack] init empty;

global onetwo : [empty..ack] init empty;

global twoone : [empty..ack] init empty;

module node0

position0 : [start..finish] init start;

child0_0 : [0..N] init 0;

child0_1 : [0..N] init 0;

child0_2 : [0..N] init 0;

adj0 : [0..v0] init v0;

remaining_partner0 : [0..N] init 0;

no_of_requests0 : [0..N] init 0;

[] (position0=start & onezero=be_my_parent) ->

(position0’=child_handshake) & (no_of_requests0’=1)

& (onezero’=empty) & (child0_0’=nodeid1); // 1.

[] (position0=start & onezero=empty) ->

(position0’=child_handshake) & (no_of_requests0’=0)

& (remaining_partner0’=nodeid1); // 4.

[] (position0=child_handshake & adj0=v0
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& remaining_partner0=0 & zeroone=empty) ->

(position0’=parent_handshake) & (zeroone’=be_my_child); // 2.

[] (position0=child_handshake & adj0=v0 &

remaining_partner0=nodeid1 & zeroone=empty) ->

(position0’=parent_handshake) & (zeroone’=be_my_parent); // 5.

[] (position0=child_handshake & adj0=1 & no_of_requests0=1

& child0_0=nodeid1 & zeroone=empty) ->

(position0’=parent_handshake) & (zeroone’=be_my_child); // 16.

[] (position0=parent_handshake & adj0=v0 & remaining_partner0=0

& onezero=ack) ->

(position0’=finish) & (no_of_requests0’=0) & (elected’=nodeid0) &

(adj0’=0)& (child0_0’=0)& (child0_1’=0)& (child0_2’=0) & (onezero’=empty); // 3.

[] (position0=parent_handshake & adj0=v0 & remaining_partner0=nodeid1) ->

(position0’=handshakes_complete); // 6.

[] (position0=parent_handshake & adj0=1 & no_of_requests0=1

& child0_0=nodeid1 & onezero=ack) ->

(position0’=finish) & (onezero’=empty) & (elected’=nodeid0)

& (no_of_requests0’=0) & (child0_0’=0) & (adj0’=0); // 17.

[] (position0=handshakes_complete & no_of_requests0=adj0-1)

-> (position0’=response); // 7.

[] (position0=response & remaining_partner0=nodeid1

& onezero=be_my_child) ->

(position0’=become_child) & (remaining_partner0’=0)

& (onezero’=empty); // 8.

[] (position0=response & remaining_partner0=nodeid1

& onezero=be_my_parent) ->

(position0’=contention) & (onezero’=empty); // 10.
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// contention (probabilistic choice always

// made by nodeid with smallest id)

[] (nodeid0<nodeid1 & position0=contention

& remaining_partner0=nodeid1 & toss0=0) ->

0.25 : (position0’=winner) & (toss0’=1)

+ 0.25 : (position0’=loser) & (toss0’=2)

+ 0.5 : (toss0’=0); // 11.

[] (nodeid0>nodeid1 & position0=contention

& remaining_partner0=nodeid1 & toss1=1) ->

(position0’=loser) & (toss1’=0); // 13.

[] (nodeid0>nodeid1 & position0=contention

& remaining_partner0=nodeid1 & toss1=2) ->

(position0’=winner) & (toss1’=0); // 12.

// winner

[] (position0=winner & remaining_partner0=nodeid1 & zeroone=empty) ->

(zeroone’=be_my_parent) & (position0’=response); // 14.

// loser

[] (position0=loser & remaining_partner0=nodeid1 & onezero=be_my_parent) ->

(onezero’=empty) & (position0’=child_handshake) & (adj0’=1)

& (remaining_partner0’=0) & (no_of_requests0’=1) & (child0_0’=nodeid1)

& (child0_1’=0) & (child0_2’=0); // 15.

[] (position0=become_child & zeroone=empty) ->

(position0’=finish) & (zeroone’=ack) & (no_of_requests0’=0)

& (remaining_partner0’=0) & (adj0’=0) & (child0_0’=0)

& (child0_1’=0) & (child0_2’=0); // 9.

[] (position0=finish& position1=finish& position2=finish) ->

(position0’=finish);

endmodule
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module node1

position1 : [start..finish] init start;

child1_0 : [0..N] init 0;

child1_1 : [0..N] init 0;

child1_2 : [0..N] init 0;

adj1 : [0..v1] init v1;

remaining_partner1 : [0..N] init 0;

no_of_requests1 : [0..N] init 0;

[] (position1=start & zeroone=be_my_parent & twoone=be_my_parent) ->

(position1’=child_handshake) & (no_of_requests1’=2)

& (zeroone’=empty) & (twoone’=empty) & (child1_0’=nodeid0)

& (child1_1’=nodeid2); // 1.

[] (position1=start & zeroone=empty & twoone=be_my_parent) ->

(position1’=child_handshake) & (no_of_requests1’=1)

& (remaining_partner1’=nodeid0) & (twoone’=empty)

& (child1_0’=nodeid2); // 4.

[] (position1=start & zeroone=be_my_parent & twoone=empty) ->

(position1’=child_handshake) & (no_of_requests1’=1)

& (remaining_partner1’=nodeid2) & (zeroone’=empty)

& (child1_0’=nodeid0); // 4.

[] (position1=child_handshake & adj1=v1 & remaining_partner1=0

& onezero=empty & onetwo=empty) ->

(position1’=parent_handshake) & (onezero’=be_my_child)

& (onetwo’=be_my_child); // 2.

[] (position1=child_handshake & adj1=v1 & remaining_partner1=nodeid0

& onezero=empty & onetwo=empty) ->

(position1’=parent_handshake) & (onezero’=be_my_parent)

& (onetwo’=be_my_child); // 5.
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[] (position1=child_handshake & adj1=v1 & remaining_partner1=nodeid2

& onezero=empty & onetwo=empty) ->

(position1’=parent_handshake) & (onezero’=be_my_child)

& (onetwo’=be_my_parent); // 5.

[] (position1=child_handshake & adj1=1 & no_of_requests1=1

& child1_0=nodeid0 & onezero=empty) ->

(position1’=parent_handshake) & (onezero’=be_my_child); // 16.

[] (position1=child_handshake & adj1=1 & no_of_requests1=1

& child1_0=nodeid2 & onetwo=empty) ->

(position1’=parent_handshake) & (onetwo’=be_my_child); // 16.

[] (position1=parent_handshake & adj1=v1 & remaining_partner1=0

& zeroone=ack & twoone=ack) ->

(position1’=finish) & (no_of_requests1’=0) & (elected’=nodeid1)

& (adj1’=0)& (child1_0’=0)& (child1_1’=0)& (child1_2’=0)

& (zeroone’=empty) & (twoone’=empty); // 3.

[] (position1=parent_handshake & adj1=v1 & remaining_partner1=nodeid0

& twoone=ack) ->

(position1’=handshakes_complete) & (twoone’=empty); // 6.

[] (position1=parent_handshake & adj1=v1 & remaining_partner1=nodeid2

& zeroone=ack) ->

(position1’=handshakes_complete) & (zeroone’=empty); // 6.

[] (position1=parent_handshake & adj1=1 & no_of_requests1=1

& child1_0=nodeid0 & zeroone=ack) ->

(position1’=finish) & (zeroone’=empty) & (elected’=nodeid1)

& (no_of_requests1’=0) & (child1_0’=0) & (adj1’=0); // 17.

[] (position1=parent_handshake & adj1=1 & no_of_requests1=1

& child1_0=nodeid2 & twoone=ack) ->

(position1’=finish) & (twoone’=empty) & (elected’=nodeid1)

& (no_of_requests1’=0) & (child1_0’=0) & (adj1’=0); // 17.
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[] (position1=handshakes_complete & no_of_requests1=adj1-1) ->

(position1’=response); // 7.

[] (position1=response & remaining_partner1=nodeid0

& zeroone=be_my_child) ->

(position1’=become_child) & (remaining_partner1’=0)

& (zeroone’=empty); // 8.

[] (position1=response & remaining_partner1=nodeid0

& zeroone=be_my_parent) ->

(position1’=contention) & (zeroone’=empty); // 10.

[] (position1=response & remaining_partner1=nodeid2

& twoone=be_my_child) ->

(position1’=become_child) & (remaining_partner1’=0)

& (twoone’=empty); // 8.

[] (position1=response & remaining_partner1=nodeid2

& twoone=be_my_parent) ->

(position1’=contention) & (twoone’=empty); // 10.

// contention (probabilistic choice always

// made by nodeid with smallest id)

[] (nodeid1<nodeid0 & position1=contention

& remaining_partner1=nodeid0 & toss1=0) ->

0.25 : (position1’=winner) & (toss1’=1)

+ 0.25 : (position1’=loser) & (toss1’=2)

+ 0.5 : (toss1’=0); // 11.

[] (nodeid1>nodeid0 & position1=contention

& remaining_partner1=nodeid0 & toss0=1) ->

(position1’=loser) & (toss0’=0); // 13.

[] (nodeid1>nodeid0 & position1=contention

& remaining_partner1=nodeid0 & toss0=2) ->

(position1’=winner) & (toss0’=0); // 12.

[] (nodeid1<nodeid2 & position1=contention

& remaining_partner1=nodeid2 & toss1=0) ->
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0.25 : (position1’=winner) & (toss1’=1)

+ 0.25 : (position1’=loser) & (toss1’=2)

+ 0.5 : (toss1’=0); // 11.

[] (nodeid1>nodeid2 & position1=contention

& remaining_partner1=nodeid2 & toss2=1) ->

(position1’=loser) & (toss2’=0); // 13.

[] (nodeid1>nodeid2 & position1=contention

& remaining_partner1=nodeid2 & toss2=2) ->

(position1’=winner) & (toss2’=0); // 12.

// winner

[] (position1=winner & remaining_partner1=nodeid0 & onezero=empty) ->

(onezero’=be_my_parent) & (position1’=response); // 14.

[] (position1=winner & remaining_partner1=nodeid2 & onetwo=empty) ->

(onetwo’=be_my_parent) & (position1’=response); // 14.

// loser

[] (position1=loser & remaining_partner1=nodeid0

& zeroone=be_my_parent) ->

(zeroone’=empty) & (position1’=child_handshake) & (adj1’=1)

& (remaining_partner1’=0) & (no_of_requests1’=1) & (child1_0’=nodeid0)

& (child1_1’=0) & (child1_2’=0); // 15.

[] (position1=loser & remaining_partner1=nodeid2 & twoone=be_my_parent) ->

(twoone’=empty) & (position1’=child_handshake) & (adj1’=1)

& (remaining_partner1’=0) & (no_of_requests1’=1) & (child1_0’=nodeid2)

& (child1_1’=0) & (child1_2’=0); // 15.

[] (position1=become_child & onezero=empty & child1_0=nodeid2) ->

(position1’=finish) & (onezero’=ack) & (no_of_requests1’=0)

& (remaining_partner1’=0) & (adj1’=0) & (child1_0’=0)

& (child1_1’=0) & (child1_2’=0); // 9.

[] (position1=become_child & onetwo=empty & child1_0=nodeid0) ->

(position1’=finish) & (onetwo’=ack) & (no_of_requests1’=0)
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& (remaining_partner1’=0) & (adj1’=0) & (child1_0’=0) & (child1_1’=0)

& (child1_2’=0); // 9.

endmodule

module node2

position2 : [start..finish] init start;

child2_0 : [0..N] init 0;

child2_1 : [0..N] init 0;

child2_2 : [0..N] init 0;

adj2 : [0..v2] init v2;

remaining_partner2 : [0..N] init 0;

no_of_requests2 : [0..N] init 0;

[] (position2=start & onetwo=be_my_parent) ->

(position2’=child_handshake) & (no_of_requests2’=1) & (onetwo’=empty)

& (child2_0’=nodeid1); // 1.

[] (position2=start & onetwo=empty) ->

(position2’=child_handshake) & (no_of_requests2’=0)

& (remaining_partner2’=nodeid1); // 4.

[] (position2=child_handshake & adj2=v2 & remaining_partner2=0

& twoone=empty) ->

(position2’=parent_handshake) & (twoone’=be_my_child); // 2.

[] (position2=child_handshake & adj2=v2 & remaining_partner2=nodeid1

& twoone=empty) ->

(position2’=parent_handshake) & (twoone’=be_my_parent); // 5.

[] (position2=child_handshake & adj2=1 & no_of_requests2=1

& child2_0=nodeid1 & twoone=empty) ->

(position2’=parent_handshake) & (twoone’=be_my_child); // 16.
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[] (position2=parent_handshake & adj2=v2 & remaining_partner2=0

& onetwo=ack) ->

(position2’=finish) & (no_of_requests2’=0) & (elected’=nodeid2)

& (adj2’=0)& (child2_0’=0)& (child2_1’=0) & (child2_2’=0)

& (onetwo’=empty); // 3.

[] (position2=parent_handshake & adj2=v2 & remaining_partner2=nodeid1) ->

(position2’=handshakes_complete); // 6.

[] (position2=parent_handshake & adj2=1 & no_of_requests2=1

& child2_0=nodeid1 & onetwo=ack) ->

(position2’=finish) & (onetwo’=empty) & (elected’=nodeid2) &

(no_of_requests2’=0) & (child2_0’=0) & (adj2’=0); // 17.

[] (position2=handshakes_complete & no_of_requests2=adj2-1) ->

(position2’=response); // 7.

[] (position2=response & remaining_partner2=nodeid1

& onetwo=be_my_child) ->

(position2’=become_child) & (remaining_partner2’=0) & (onetwo’=empty); // 8.

[] (position2=response & remaining_partner2=nodeid1

& onetwo=be_my_parent) ->

(position2’=contention) & (onetwo’=empty); // 10.

// contention (probabilistic choice always made by nodeid with smallest id)

[] (nodeid2<nodeid1 & position2=contention

& remaining_partner2=nodeid1 & toss2=0) ->

0.25 : (position2’=winner) & (toss2’=1)

+ 0.25 : (position2’=loser) & (toss2’=2)

+ 0.5 : (toss2’=0); // 11.

[] (nodeid2>nodeid1 & position2=contention

& remaining_partner2=nodeid1 & toss1=1) ->

(position2’=loser) & (toss1’=0); // 13.
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[] (nodeid2>nodeid1 & position2=contention

& remaining_partner2=nodeid1 & toss1=2) ->

(position2’=winner) & (toss1’=0); // 12.

// winner

[] (position2=winner & remaining_partner2=nodeid1 & twoone=empty) ->

(twoone’=be_my_parent) & (position2’=response); // 14.

// loser

[] (position2=loser & remaining_partner2=nodeid1 & onetwo=be_my_parent) ->

(onetwo’=empty) & (position2’=child_handshake) & (adj2’=1)

& (remaining_partner2’=0) & (no_of_requests2’=1) & (child2_0’=nodeid1)

& (child2_1’=0) & (child2_2’=0); // 15.

[] (position2=become_child & twoone=empty) ->

(position2’=finish) & (twoone’=ack) & (no_of_requests2’=0)

& (remaining_partner2’=0) & (adj2’=0) & (child2_0’=0)

& (child2_1’=0) & (child2_2’=0); // 9.

endmodule



Appendix F

PRISM specification for Itai

Rodeh protocol

nondeterministic

const int ACTIVE = 0;

const int PASSIVE = 1;

const int LEADER = 2;

const int FINISH = 3;

global leader : [0..N] init 0;

const int id0=1;

const int id1=2;

const int id2=3;

const int N=3; // number of processes

module process0

// COUNTER
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c0 : [0..N-1];

// STATES

s0 : [ACTIVE..FINISH];

// PREFERENCE

p0 : [0..2] init 2;

// VARIABLES FOR SENDING AND RECEIVING

receive0 : [0..2];

// 0 not received anything

// 1 received choice

// 2 received counter

sent0 : [0..2];

// 0 not send anything

// 1 sent choice

// 2 sent counter

// pick value

[] (s0=ACTIVE & p0=2) -> 0.5 : (p0’=0) + 0.5 : (p0’=1);

// send preference

[p_0_1snd] (s0=ACTIVE) & (p0<2) & (sent0=0) -> (sent0’=1);

// receive preference

// stay active

[p_2_0rcv] (s0=ACTIVE) & (p0<2) & (receive0=0)

& ((p0=1 & ch_2_0_1=0) | (p0=1 & ch_2_0_1=1) | (p0=0 & ch_2_0_1=0)) ->

(receive0’=1);

// become inactive

[p_2_0rcv] (s0=ACTIVE) & (p0<2) & (receive0=0) & (p0=0) & (ch_2_0_1=1) ->

(s0’=PASSIVE) & (receive0’=1);
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// send counter (already sent preference)

// not received counter yet

[c_0_1snd] (s0=ACTIVE) & (p0<2) & (sent0=1) & (receive0=1) ->

(sent0’=2);

// received counter (pick again)

[c_0_1snd] (s0=ACTIVE) & (p0<2) & (sent0=1) & (receive0=2) ->

(p0’=2) & (c0’=0) & (sent0’=0) & (receive0’=0);

// receive counter and not sent yet

// (note in this case do not pass on as will send own counter)

[c_2_0rcv] (s0=ACTIVE) & (p0<2) & (receive0=1) & (sent0<2) ->

(receive0’=2);

// receive counter and sent counter

// only active process (decide)

[c_2_0rcv] (s0=ACTIVE) & (p0<2) & (receive0=1) & (sent0=2) & (ch_2_0_1=N-1) ->

(s0’=LEADER) & (p0’=2) & (c0’=0) & (sent0’=0) & (receive0’=0);

// other active process (pick again)

[c_2_0rcv] (s0=ACTIVE) & (p0<2) & (receive0=1) & (sent0=2) & (ch_2_0_1<N-1) ->

(p0’=2) & (c0’=0) & (sent0’=0) & (receive0’=0);

// send preference (must have received preference)

[p_0_1snd] (s0=PASSIVE) & (p0<2) & (receive0>0) & (sent0=0) ->

(sent0’=1);

// send counter (must have received counter first) and can now reset

[c_0_1snd] (s0=PASSIVE) & (p0<2) & (receive0=2) & (sent0=1) ->

(s0’=PASSIVE) & (p0’=2) & (c0’=0) & (sent0’=0) & (receive0’=0);

// receive preference

[p_2_0rcv] (s0=PASSIVE) & (p0=2) & (receive0=0) & (ch_2_0_1<2) ->

(p0’=ch_2_0_1) & (receive0’=1);
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// receive counter

[c_2_0rcv] (s0=PASSIVE) & (p0<2) & (receive0=1) & (ch_2_0_1<N-1) ->

(c0’=ch_2_0_1+1) & (receive0’=2);

// store leader

[] (s0=LEADER) -> (leader’=id0) & (s0’=FINISH);

// finished (loop)

[done] (s0=FINISH) -> (s0’=s0);

[done] (s0=PASSIVE) -> (s0’=s0);

endmodule

module chan_0_1

ch_0_1_1 : [0..N] init N;

ch_0_1_2 : [0..N] init N;

ch_0_1_3 : [0..N] init N;

// buffer preference

[p_0_1snd] (ch_0_1_1=N) -> (ch_0_1_1’=p0);

[p_0_1snd] (ch_0_1_1!=N& ch_0_1_2=N)-> (ch_0_1_2’=p0);

[p_0_1snd] (ch_0_1_1!=N& ch_0_1_2!=N& ch_0_1_3=N)-> (ch_0_1_3’=p0);

// buffer counter

[c_0_1snd] (ch_0_1_1=N) -> (ch_0_1_1’=c0);

[c_0_1snd] (ch_0_1_1!=N& ch_0_1_2=N)-> (ch_0_1_2’=c0);

[c_0_1snd] (ch_0_1_1!=N& ch_0_1_2!=N& ch_0_1_3=N)-> (ch_0_1_3’=c0);

// transmit preference

[p_0_1rcv] (ch_0_1_1!=N) ->
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(ch_0_1_1’=ch_0_1_2) & (ch_0_1_2’=ch_0_1_3) & (ch_0_1_3’=N);

//transmit counter

[c_0_1rcv] (ch_0_1_1!=N) ->

(ch_0_1_1’=ch_0_1_2) & (ch_0_1_2’=ch_0_1_3) & (ch_0_1_3’=N);

endmodule

module process1=process0[

id0=id1,s0=s1,p0=p1,c0=c1,sent0=sent1,receive0=receive1,

p_0_1snd=p_1_2snd,p_2_0rcv=p_0_1rcv,c_0_1snd=c_1_2snd,

c_2_0rcv=c_0_1rcv,ch_2_0_1=ch_0_1_1] endmodule

module chan_1_2=chan_0_1[

p0=p1,c0=c1,p_0_1snd=p_1_2snd,p_0_1rcv=p_1_2rcv,

c_0_1snd=c_1_2snd,c_0_1rcv=c_1_2rcv,

ch_0_1_1=ch_1_2_1,ch_0_1_2=ch_1_2_2,ch_0_1_3=ch_1_2_3

] endmodule

module process2=process0[

id0=id2,s0=s2,p0=p2,c0=c2,sent0=sent2,receive0=receive2,

p_0_1snd=p_2_0snd,p_2_0rcv=p_1_2rcv,c_0_1snd=c_2_0snd,

c_2_0rcv=c_1_2rcv,ch_2_0_1=ch_1_2_1] endmodule

module chan_2_0=chan_0_1[

p0=p2,c0=c2,p_0_1snd=p_2_0snd,p_0_1rcv=p_2_0rcv,

c_0_1snd=c_2_0snd,c_0_1rcv=c_2_0rcv,ch_0_1_1=ch_2_0_1,

ch_0_1_2=ch_2_0_2,ch_0_1_3=ch_2_0_3] endmodule



Appendix G

PRISM ‘Individuals’ Specification

for SIR Protocol

probabilistic

const double B=1; // probability of infection

const double Q=1; // rate of removal

const int Susceptible=0;

const int Infective=1;

const int Removed=2;

module site1

state1 : [Susceptible..Removed] init Susceptible;

[] (state1=Infective) ->

Q : (state1’=Removed) + (1-Q) : (state1’=state1);

// site is susceptible and is contacted by an infected site

[] state1=Susceptible & state2=Infective ->

B : (state1’=Infective) + (1-B) : (state1’=state1);
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[] state1=Susceptible & state3=Infective ->

B : (state1’=Infective) + (1-B) : (state1’=state1);

endmodule

module site2 =site1[

state1=state2,deliver1=deliver2,state2=state1

] endmodule

module site3

state3 : [Infective..Removed] init Infective;

[] (state3=Infective)

-> Q : (state3’=Removed) + (1-Q) : (state3’=state3);

endmodule



Appendix H

PRISM ‘Population’ Specification

for SIR Protocol

// population model derived from individual SIR model

probabilistic // DTMC model

const int N=3; // number of sites

const double B=1; // probability of infection

const double Q=1; // protbability of removal

module population

s : [0..N] init N-1; // number of susceptibles

i : [0..N] init 1; // number of infectives

[] (i>0 & s>0) -> (B*s/(s+1)) : (s’=s-1) & (i’=i+1)

+ (Q/(s+1)) : (i’=i-1)

+ (1-((B*s+R)/(s+1))) : (s’=s);

[] (i>0 & s=0) -> (Q/(s+1)) : (i’=i-1)
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+ (1-((B*s+Q)/(s+1))) : (s’=s);

[] (i=0) -> 1 : (i’=i);

endmodule


