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Abstract 

This thesis describes the preparation and reactivity of lithium molybdenum nitride 

samples and the preparation and characterisation of the nitride precursors. It has 

been shown that samples containing lithium molybdenum nitride (LiMoN2) can be 

formed from the direct ammonolysis of lithium molybdate (Li2MoO4), although it 

has proved challenging to produce the nitride as a single phase material. 

The “LiMoN2” samples were observed to be catalytically active for ammonia 

synthesis in reaction with nitrogen containing feed gas (25% N2/H2). An impurity, 

which cannot be indentified through powder X-ray diffraction, was demonstrated 

to be the likely active phase in the sample. 

The role of ‘lattice’ nitrogen in the ammonia synthesis reaction was investigated 

through reactions with a feed gas with no source of nitrogen present (25% Ar/H2). 

It was shown that this proposed active phase will produce ammonia, in the 

absence of nitrogen in the feed gas. 

One candidate impurity that could be responsible for this anomalous activity was 

lithium nitride. Reactions were conducted and it was seen that lithium nitride was 

very active in the production of ammonia. Subsequent investigations showed that 

the generation of ammonia probably originates from the direct decomposition of 

lithium amide. 
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1 Introduction 

1.1 Background 

1.1.1 Nitrides 

The significant and rapid progress in nitride chemistry has been seen over the last 

decade or so with improved classification and development of new synthetic 

routes leading to new nitride materials. The synthesis of nitrides is still very 

complex with large thermodynamic barriers which occur from the making and 

breaking of N≡N bonds (945 kJmol-1 for N≡N compared to 498 kJmol-1 for O=O). 

Many nitrides, especially those containing s-block elements, are air and moisture 

sensitive, and rapidly form oxides, hydroxides and ammonia upon contact with 

oxygen or moisture. These factors can therefore contribute to the low abundance 

of nitride compounds, compared to those of the oxides or carbides1. 

Recent developments in the handling methods for air sensitive samples and 

improved diffraction techniques have led to a revival in the area of nitride 

chemistry and thus a large increase in research. 

There are many sub-groups of nitrides from binary and ternary nitrides2 to 

oxynitrides and nitride halides. Nitrides can be sub-divided into ionic, covalent 

and interstitial types1. 

The progress from binary to higher nitrides was initially hampered by issues with 

synthetic procedures and the analytical methods used. This however has meant 

that there are numerous binary nitrides of metals and non-metals that are well 

characterised. Many have very useful applications such as semiconductors (GaN), 

optoelectronic devices (AlN, GaN and InN)3 and high temperature refractory 

ceramics (AlN, BN and TiN)1. 

Alkali metal nitrides are dominated by lithium nitride, Li3N. There are wide 

ranging methods of producing Li3N, from the reaction of nitrogen with lithium 

dissolved in liquid sodium4 to the high temperature reaction of solid lithium under 

nitrogen. Originally lithium nitride had been proposed to have a cubic molecular 

lattice5, however it was correctly characterised structurally in the 1930s by Zintl 
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and Brauer6. The structure that they proposed was one of a nitrogen atom 

surrounded by eight lithium atoms, six lithium atoms in the same plane, trigonally 

coordinated to the nitrogen atom, and one linearly coordinated to the nitrogen 

atom above and below the plane, thus forming a hexagonal bipyramid (Figure 

1-1). In 1976, Rabenau and Schulz determined the space group was P6/mmm7. 

Figure 1-1: Structure of Lithium Nitride. 
Purple spheres – Li, Green Spheres – N, hexagonal bipryamidal structure space group P6/mmc. 

Boukamp and Huggins showed that polycrystalline Li3N had a Li-ion conductivity 

of approx. 10-4Ω-1cm-1 8. Recent work has been done looking at lithium 

nitridometalates Li3-x-yMxN (M = Cu, Co, Ni; y = Li vacancy). These have been 

shown to be promising for anode materials. The substitution of the transition 

metal has important consequences for the physical properties9,10 and it has been 

shown that substitution of an aliovalent transition metal increases the conductivity 

in the nitride11. 

Ionic conductivity is reported to occur due to a vacancy hopping mechanism and 

when taking into consideration that the Li+ ions which are in the same plane as the 

nitrogen ion are more weakly bound than those above and below the plane, it was 

concluded that the mechanism occurs between lithium ions in the [Li2N] plane 

perpendicular to the c-axis. There are two separate mechanisms operating within 

lithium nitride. The above mechanism is found to be in operation at temperatures 
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below 300K, but upon increasing the temperature, a second process, in which the 

conduction was occurring parallel to the c-axis, begins to take place. 

The potential applications that have been looked at for lithium nitride include 

hydrogen storage for use in hydrogen-oxygen fuel cells; this has arisen in the 

search for cleaner energy as a means to replace fossil fuels. Application as a solid 

electrolyte in lithium ion batteries has also been investigated. 

The existence of heavier alkali metal nitrides is debateable due to their low 

thermodynamic stability. Recent work has been conducted into sodium nitride 
12,13,14 and potassium nitride15. Sodium nitride has been synthesised via the 

deposition of the desired elements as an atomic level dispersion and, the resulting 

solid formed at liquid nitrogen temperatures, ordered structures are formed on 

heating12. However more recently the plasma assisted synthesis13 has been 

described by Vajenine, in which elemental sodium with gaseous nitrogen is 

activated by capacitive high frequency discharge at pressures of up to 4 mbar 

without heating. 

Alkaline earth nitrides have also been synthesised by reactions involving non-

gaseous sources of nitrogen, e.g. decomposition of sodium azide16,17. Sodium flux 

reactions also take advantage of this decomposition, from which the sodium is 

derived. This method has been shown to be a superior way of producing single 

crystals of a good enough quality for single crystal X-ray diffraction analysis. 

NaN3 decomposition reactions generate high pressures when the metal and 

gaseous N2 form, thus autoclaves or sealed vessels are used. 

More reactive gaseous nitrogen sources, such as ammonia or mixtures of 

hydrogen and nitrogen, have been used in reactions with oxide, halide or sulfide 

precursors to form both binary and ternary transition metal nitrides. These have 

been reported to be successful at much lower temperatures than the more 

traditional solid state synthesis methods18,19,20. This is limited to a very specific 

temperature range outside of which an incomplete reaction, a partially crystalline 

product, or thermal decomposition is observed. Oxynitrides especially can be very 

difficult to distinguish from nitride products, leading to the theory that many 

nitrides assigned in the literature are possibly imides, amides and oxynitrides21. 
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Ternary nitrides were investigated initially by Juza et al.2 from the 1940s 

onwards. The initial synthesis methods for formation of ternary nitrides 

containing lithium were; (1) nitriding of a mixture of Li3N + M with N2 or NH3; 

(2) nitriding of an alloy LimM and (3) reaction of binary nitrides (Li3N +MnN) 

under a N2 atmosphere. Further methods have been used to synthesise nitrides 

including the production of Ni-Mo bimetallic nitrides22 via the programmed 

temperature reaction of the bimetallic oxide with a mixture of H2 and N2 gas 

instead of NH3. The formation of the nitrides is also possible from a reaction in a 

salt melt or through preparation from other ternary nitrides, or through reactions in 

autoclaves23. 

The early 1990s saw a rapid increase in the number of alkaline- and alkaline 

earth-metal-transition-metal nitrides including MNiN (M = Ca, Sr or Ba)24, 

Ba3MN4 (M = Mo and W) and M2LiFe2N3 (M = Sr and Ba). The potential 

applications for ternary nitrides are wide ranging from novel semiconductors and 

superconductors to corrosion resistant materials; these are being used to enhance 

processes and products. Titanium aluminium nitride (TiAlN) is being used as a 

wear-, corrosion-, and diffusion-resistant coating for cutting and drilling tools. 

The creation of improved diffusion barriers has enabled the use of copper 

interconnects in integrated circuits allowing advances in a new generation of 

faster computer chips25. Other research shows how they have applications such as 

high temperature ceramics26, catalysts or magnetic materials . 19

 atoms. 

The formation of the transition metal nitrides is possible via a wide variety of 

methods from the conventional high temperature processes to the moderate-

temperature conditions seen in topotactic transformations and the novel uses of 

sulfides and nitridation precursors27. 

Many ternary and higher nitride structures that have been formed contain 

transition metals that display very unusual co-ordination to nitrogen. Ternary 

nitrides that display this are A3MN3 (A = alkaline earth, M = V, Cr, Mn, Fe)28,29 

and Ca6MN5 (M = Fe, Ga, Mn)30 which contain M3+ co-ordinated to three 

nitrogen
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Ternary nitrides of the stoichiometry AMN2 (A = alkali metal, alkaline earth metal 

or transition metal; M = transition metal or lanthanide) crystallize into a variety of 

different structures. For example, LiMN2 (M = Mo or W) are hexagonally 

coordinated to six nitrogen atoms in a trigonal prismatic coordination18,31 

(LiMoN2 is explored in further detail in section 1.1.4). In NaMN2 (M = Nb, Ta) 

the cations are coordinated to nitrogen in an octahedral geometry32,33. 

Bimetallic molybdenum nitrides have been synthesised and used in hydrogenation 

reactions, for example the Fischer-Tropsch reaction34,35, hydrodenitrogenation 

(HDN) and hydrodesufurization (HDS)36,37.  

1.1.2 Catalysis 

In general terms, catalysis is an acceleration of the rate of a process or reaction, 

brought about by a separate compound, usually present in small and managed 

quantities. It permits reactions or processes to take place more effectively or under 

milder conditions than would otherwise be possible.  

The term ‘catalysis’ was first coined in 1835 when the chemist J. J. Berzelius 

proposed that a catalyst is a compound which, when added to a chemical reaction, 

increases the rate of the reaction but the compound itself is not consumed in the 

reaction. Therefore the catalyst, for heterogeneous systems, more often than not 

acts as a place for a reaction to occur with some reactants adsorbed onto the 

surface. Additional reactants react with the molecules adsorbed on the surface and 

the products are then desorbed from the catalyst leaving the active site free for 

further reactions to take place. 

Heterogeneous catalysis is where the catalyst and the reactants are in different 

phases, e.g. a solid catalyst with a gas phase reactant. It is widely used in industry 

due to its robustness, ease of separation of the catalyst from the products formed 

and its relative cheapness in comparison to homogeneous catalysts. An example 

of heterogeneous catalysis is in catalytic converters on cars to eliminate carbon 

and nitrogen monoxides from the exhaust gases. The surface of the catalyst acts as 

a site for carbon and nitrogen monoxides to adsorb onto, they then react and 

desorbs as carbon dioxide and nitrogen gas. 
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Pt/Pd/Rh
( ) ( ) 2( ) 2( )2CO  + 2NO  2CO + Ng g g⎯⎯⎯⎯→g

1.1.3 Ammonia Synthesis Catalysts 

The search for catalysts to be used in the synthesis of ammonia has been pursued 

for the last 90 years. In 2005 the worldwide production of ammonia totalled 121 

million tonnes38 with 80% of this being used for fertilisers. New catalysts are 

being sought in order to allow for the current Haber process (iron catalyst) which 

uses high pressures (~250atm) and temperatures (400-500°C) to be surpassed by a 

reaction which requires less harsh conditions. Schlögl in his review39 looks at the 

progress of new ammonia synthesis catalysts which are being seen as a possible 

replacement of the current iron catalyst. 

One possibility for this would be molybdenum nitride, which has been well 

established40,41,42,43. The rate determining step was originally thought (according 

to Hillis et al.40) to be the conversion of adsorbed nitrogen to gas phase NH3 

rather than the actual nitrogen adsorption. Subsequently this was investigated by 

Aika and Ozaki41 who argued that the adsorption of nitrogen was the rate 

determining step. With various molybdenum nitride structures possible the surface 

area and activity of the catalyst is variable. It is therefore possible to produce high 

and low surface area catalysts of γ-Mo2N. This means that the synthetic route to 

the nitride will have a large effect on the catalytic activity of the catalyst44. The 

system however shows signs of ammonia decomposition which is detrimental to 

an ammonia synthesis catalyst. 

Recent research has shown that Cs+ doped ternary molybdenum nitride 

(Co3Mo3N) has a higher activity than the commercial iron catalyst. Applying the 

volcano principle, in which components possessing both weak and strong nitrogen 

binding strengths are combined to form a catalyst with optimal binding strength, 

Jacobsen et al.45 rationalised the high activity of Co3Mo3N. Structural nitrogen is 

proposed to be a requirement due to its ability to stabilise the active (111) surface 

plane. 

It has been shown in recent work that the η-6 Co3Mo3N has interesting properties 

and under harsh reduction conditions with 25% Ar/H2 is transformed to η-12 
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Co6Mo6N. This allows for the possibility of ‘lattice’ nitrogen being used in a 

novel nitrogen transfer pathway46. 

Cs+ Doped Co3Mo3N has a remarkably high activity for ammonia synthesis47, as 

shown in Table 1-1. It has been shown that Cs+-promoted catalyst at 400°C under 

3.1MPa reaches 40% of the equilibrium yield, and is four times more active than 

the doubly promoted iron catalyst. 

Table 1-1: Ammonia synthesis activities of various catalysts48. 
Catalyst Rate 

(μmol.hr-1g -1) 

Surface Area 

(m2g-1) 

Specific Activity 

(μmol.hr-1m-2) 

Fe-K2O-Al2O3 330 14 24 

Co3Mo3N 652 21 31 

Co3Mo3N-K (5 mol %) 869 17 51 

Co3Mo3N-K (30 mol %) 364 8 46 

Co3Mo3N-Cs (2 mol %) 986 16 62 

Co3Mo3N-Cs (10 mol %) 586 10 59 

The high activity of nitrides for ammonia synthesis is notable, and it is possible to 

question the role of ‘lattice’ nitrogen in the reactions of nitrides. One possibility, 

which has analogies in the Mars van-Krevelen mechanism49 in oxidation catalysis 

with oxides, is that the ‘lattice’ nitrogen is itself active. This possibility has not 

received much attention as nitrides are perceived to be inert. Some work has been 

carried out using vanadium aluminium oxynitrides (VAlONs) in propane 

ammoxidation50 in which a double Mars van-Krevelen redox mechanism is 

proposed involving ‘lattice’ oxygen and surface N species.  

In view of the results of recent work into the activity of ‘lattice’ nitrogen in Mo2N 

and Co3Mo3N, it was decided to extend studies to additional ternary molybdenum 

nitride systems. In this project, lithium molybdenum nitride has been investigated 

in this respect. 

1.1.4 Lithium Molybdenum Nitride 

Lithium molybdenum nitride (LiMoN2) is a fairly recent discovery – DiSalvo et 

al.18 reported its existence in the early 1990s. The discovery was made during 

their search for ternary or higher nitrides that exhibit high-Tc superconductivity 

similar to those of the oxides, other uses are in the area of lithium ion batteries. 
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Lithium molybdenum nitride can be synthesised via numerous methods such as 

the decomposition of Li2Mo(NtBu) under flowing ammonia, or reaction of 

Li2MoO4 with ammonia gas. The reaction is extremely sensitive to temperature 

and time with the ternary nitride forming only within a very narrow temperature 

region. Incomplete reaction occurs at low temperatures whereas at higher 

temperatures partial decomposition to γ-Mo2N is observed.  

Figure 1-2: Structure of Lithium Molybdenum Nitride. 

(Blue = N, Green = Li and Mo – shared site) Space group R3m. 

This was the first layered metallic nitride, and the structure allows for lithium to 

be deintercalated and reintercalated, the structure of which is shown in Figure 1-2. 

It was also the first example of a ternary nitride formed from the ammonolysis of 

a molecular organometallic molecule (Li2Mo(NtBu)4) or of a ternary oxide 

(Li2MoO4). 

1.2 Aim 

This project was designed to study the preparation and reactivity of lithium 

molybdenum nitride as an ammonia synthesis catalyst with a possible source of 

active ‘lattice’ nitrogen. The activity of the nitride towards ammonia synthesis in 

the absence of gas-phase N2 was investigated as an example of nitrogen transfer 

reaction. Also investigations into the preparation and characterisation of the 

nitride precursor were under taken. 
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2 Experimental and Methodology 

2.1 Sample Preparation 

The sample preparation followed methods based on the literature. The nitrides 

were prepared in two stages, firstly synthesising a precursor and then using 

ammonolysis to convert the precursor into the final nitride. 

The precursor, lithium molybdate, was prepared via three methods: (1) high 

temperature synthesis from lithium carbonate and molybdenum trioxide18, (2) 

room temperature preparation using molybdenum trioxide and hydrated lithium 

hydroxide51 and (3) lithium hydroxide and ammonium molybdate salt in a 

precipitation reaction in ethanol52. 

The precursors (from all of the above mentioned methods) were heated in a tube 

furnace to 710°C for 14 hours under flowing ammonia gas (10mlmin-1) and then 

cooled to room temperature, still under a flow of ammonia gas (Figure 2-1). 

Figure 2-1: Ammonolysis Rig. 
Ammonia flowed at 10mlmin-1 over a sample situated centrally within the furnace. 

2.2 Sample Testing 

Materials were tested for their performance as ammonia synthesis catalysts by 

using a fixed bed, continuous flow, 10.5mm i.d. quartz glass reactor. 0.4g of 

sample in a powder form was held centrally (using silica wool plugs) within the 

reactor tube which was housed within a furnace. 

The feed gas mixture was introduced into the reactor at a total flow rate of 

60mlmin-1, through a mass flow controller. The exhaust gas was bubbled through 

a dilute sulfuric acid mixture. Once the reaction was started, the conductivity 

change of a known concentration and volume of acid solution was used to 

determine the quantity of ammonia produced.  
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Catalyst testing was conducted under two different feed gas regimes, (a) BOC 

25% nitrogen/hydrogen (stoichiometric NH3 synthesis mixture) [25% N2/H2] and 

(b) BOC 25% argon/hydrogen [25% Ar/H2]. 

The sample was first exposed for two hours at 700°C to the 25% N2/H2 gas mix to 

nitride in-situ to allow sufficient time for the surface of the sample to be re-

nitrided before the ammonia synthesis experiments were carried out. After 2 hours 

at 700°C the temperature was reduced to 400°C. The exhaust gas from the reactor 

was then bubbled through a sulfuric acid solution, (200ml, 0.00108mol.l-1 and at 

ambient temperature) and the ammonia yield was calculated by detecting the 

conductivity decrease of the sulfuric acid solution with respect to time. 

Each sample was tested under both feed gases. The reaction with 25% N2/H2 

mixture was conducted for 5½ hours at 400°C. For the 25% Ar/H2 gas the feed 

gas was changed after the renitriding stage and then measurements were taken 

when the feed gas had been changed to the Ar/H2, during the reaction the 

temperature was raised by 100°C at intervals to 500°C, 600°C and finally to 

700°C to see the effect on the nitrogen in the sample. The reactor set-up is shown 

in Figure 2-2. 

Figure 2-2: Reaction Rig. 
Schematic showing the reactor setup for ammonia synthesis testing. 
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2.3 Characterisation 

2.3.1 X-ray Diffraction 

During this project, powder X-ray diffraction (XRD) was used as the main method 

of characterisation. This technique can be used to identify known phases rapidly 

and estimate sample purity. Further, by the process of indexing diffraction data 

unit cell parameters for samples can be determined and refined. The crystal 

structures can be refined by using the Rietveld method. 

Bragg devised a method of explaining X-ray diffraction, where a crystal is 

regarded as a layered construct which gives a regularly repeating structure. 

Diffraction occurs when the distance between the layers (planes) are of a similar 

scale to that of the wavelength (λ) of the X-ray radiation and thus acts as a 

diffraction grating. 

X-rays are generated by accelerating electrons from a tungsten filament towards a 

target (most commonly used examples are Cu or Mo) applying a high voltage, 

giving Kα wavelengths of 1.5148Å and 0.7107Å respectively. Electrons with 

enough energy eject core electrons from their atomic orbital causing electrons in 

higher energy orbitals to decay, emitting X-ray radiation (Figure 2-3Figure 2-4). 

The Kα X-ray wavelength is selected by using a secondary monochromator. 

Figure 2-3: Emission Lines. 
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Figure 2-4: Copper emission diagram. 

In a diffractometer, the X-ray beam is focused on to the sample, leading to X-ray 

scattering with a characteristic pattern of spots. The scattering of X-ray radiation 

on interaction with the electrons in a structure is described by Bragg’s law (Figure 

2-5) where the diffracted beams are equated to reflections from planes passing 

through points in the crystal. 

An X-ray diffraction pattern is obtained from the elastic scattering of the X-rays 

by the electrons within the sample. Heavier elements have a greater number of 

electrons and will therefore scatter more X-rays and this increases the intensity of 

the observed peaks. Lighter elements (especially hydrogen) have very few 

electrons and as such do not scatter the X-rays as well. Liquids, glasses and 

amorphous solid compounds lack long range order, as such they do not produce 

characteristically defined diffraction patterns and thus cannot be characterised.  
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Figure 2-5: Bragg’s Law Diagram. 

Two parallel incident X-ray beams, A and B, must be in phase to produce 

constructive interference for a reflection to be produced. Beam B must travel an 

extra distance, XYZ, compared to beam A for the beams to remain in phase. This 

distance is related to the interplanar spacing dhkl and angle of incidence by: 

2 sinXYZ d θ=  

Equation 1: 
Where d = plane separation, θ = Bragg angle and XYZ is the path difference. 

For constructive interference to occur and produce a reflection XYZ must be 

equal to a whole number of wavelengths: 

XYZ nλ=  

Equation 2: 
Where n = an integer and λ = radiation wavelength. 

Bragg’s law can be achieved through a combination of equations Equation 1: and 

Equation:  

2 sinn dλ θ=  

Equation 3: 

Where n is an integer, λ is the wavelength of the incident X-rays, d is the distance between the 

planes in the crystal and θ is the angle of incidence of the X-rays. 
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Crystal systems are derived from the d-values through identification of the planes 

involved. Planes are defined by the Miller indices, hkl, the reciprocal positions 

where the planes cut the a, b and c axes respectively. If, for example, the plane 

intersects axes at x = ½, y = ⅓ and z = ∞, the Miller index of the plane is h = 2, k 

= 3, l = 0 or (230). The values are either positive, negative or zero and useful in 

explaining the plane separation of a crystal. Each crystal system (cubic, 

tetragonal, etc) has an expression that denotes the plane separation (dhkl), these are 

shown in Table 2-1. 

Table 2-1: Equations for d-spacings in the different crystal systems. 

Crystal System Expression for dhkl 

Cubic 
2 2

2 2

1

hkl

h k l
d a

2+ +
=  

Tetragonal 
2 2 2

2 2

1

hkl

h k l
d a

+
2c

= +  

Orthorhombic 
2 2

2 2 2

1

hkl

h k l
d a b c

2

2= + +  

Hexagonal 
2 2

2 2

1 4
3hkl

h hk k l
d a

⎛ ⎞+ + 2

2c
= +⎜ ⎟

⎝ ⎠
 

Monoclinic 
2 2 2 2

2 2 2 2 2

1 1 sin 2 cos
sinhkl

h k l hl
d a b c ac

β β
β
⎡ ⎤

= + + −⎢ ⎥
⎣ ⎦

 

 

Triclinic 
2 2 2 2 2 2 2 2 2 2 2 2

2 2

2 2

2

1 1 sin sin sin

 2 (cos cos cos ) 2 (cos cos cos )

 2 (cos cos cos )

hkl

h b c k a c l a b
d V

hkabc kla bc

hlab c

α β γ

α β γ β γ

α γ β

⎡= + +⎣

+ − +

⎤+ − ⎦

α−  

where 
1

2 2 2 21 cos cos cos 2cos cos cosV abc α β γ α β γ⎡ ⎤= − − − +⎣ ⎦  

In a typical powder X-ray diffraction experiment, the sample is irradiated from a 

moving source and a moving detector measures the intensity of the diffracted X-

rays, the measurements are carried out in the Bragg-Brentano geometry as a flat 

plate sample. 
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Powder diffraction data was collected using a Siemens D5000 instrument (Figure 

2-6), utilising Cu-Kα radiation at room temperature. The samples were ground 

using a pestle and mortar in order to make sure that the crystals were randomly 

orientated. The powder was then mounted in a depression on the sample holder, 

and the surface flattened so that the level of the surface and the slide were 

consistent. 

The patterns were collected using a step scan of size 0.02° 2θ over a 5–85° 2θ 

range and a step time of 0.8 seconds. When diffraction data was required for 

Rietveld refinement, higher intensities were needed. This was achieved by 

increasing the step time to 11 seconds and increasing the range from 5–105° 2θ. 

The patterns were compared to known patterns on the Inorganic Crystal Structure 

Database, (ICSD) or the Joint Committee on Powder Diffraction Standards, 

(JCPDS) database. 

Figure 2-6: D5000 Schematic. 
(The generator and detector move (θ1 and θ2) around a fixed sample giving 2θ readings). 

Rietveld53,54 refinements were carried out using the Generalised Structure 

Analysis Suite (GSAS)55 and EXPGUI56 software. The Rietveld method is a full 

profile refinement in which the powder pattern is fitted to a structural model. The 

process allows for accurate determination of cell dimensions, angles and atomic 
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positions. It includes preferred orientation and peak asymmetry in the refinement 

and also allows for multiple phases to be analysed and refined simultaneously. 

The principle of the refinement process is to reduce a function M which represents 

the difference between a calculated profile y(calc) and the observed data y(obs). 

Rietveld described such an equation: 

Equation 4: Where Wi is the statistical weight, c = overall scale factor such that ycalc = cyobs. 

21 obs calc
i i i

i

M W y y
c

⎧ ⎫= −⎨ ⎬
⎩ ⎭

∑  

The accuracy of the experimental to the calculated model is measured by a series 

of R factors, Rprofile (Rp), Rexpected (Rexp), Rweighted profile (Rwp). The most meaningful 

of these mathematically is Rwp in which the numerator is the residual that is being 

minimised during the refinement. 

Equation 5: 
Where yi = diffraction intensity. 

profile

( ) ( )
100

( )

i i
i

p

i

y obs y calc
R R

y obs

⎡ ⎤−
⎢ ⎥= = ⎢ ⎥
⎢ ⎥⎣ ⎦

∑
∑

 

 
Equation 6: 
Where N = number of observations, P = number of refinable parameters, C = number of 
constraints and wi = 1/yi. 

( )
[ ]
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( )i i
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R R

w y obs

⎡ ⎤
− +⎢ ⎥

= = ⎢ ⎥
⎢ ⎥
⎣ ⎦
∑

 

 
Equation 7 
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2.3.2 Scanning Electron Microscopy 

Scanning Electron Microscopy (SEM) in combination with Energy Dispersive X-

rays (EDX) can be used to study the morphology, texture and surface features of a 

sample along with defining the elements associated with the interesting 

morphological features. The instrument set-up is shown in Figure 2-7. High 

resolution micrographs detailing the features can be produced for particles as 

small as 10nm although a working limit of 100nm is more realistic. 

Figure 2-7: SEM Schematic. 

The surface of the sample is analysed for both primary and secondary electrons as 

they are scattered or emitted from the surface. In the electron gun of a SEM, 

electrons are emitted from a tungsten filament and accelerated through a high 

voltage of 50-100kV. The electrons are focused to a small spot, between 50-100Å 

in diameter, on the sample surface using a condensing lens. The electron beam 

then scans the sample and two types of interaction can occur; an elastic collision 

and an inelastic collision, these are all shown in Figure 2-8. 
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Elastic collisions occur when the electrons in the beam hitting the samples bounce 

off at high energy (>50eV), which are detected at high angles. These are termed 

Back Scattered Electrons (BSE) and tend to scatter after penetrating deep into the 

sample. The degree of scattering is related to the number of electrons in the 

sample and hence the chemical composition. 

Inelastic collisions occur when the electrons interact with the sample before 

emitting an electron. These, as a result, are low energy electrons (<50eV) and are 

detected at low angles. These are termed Secondary Electrons (SE) and as they 

come from the sample they have a higher surface detail than the BSE. Both 

interactions occur simultaneously within the microscope and the image can be 

obtained by selecting the detector. BSE imaging is useful particularly for non-

conducting samples which cannot be imaged by SE due to the sample charging in 

the electron beam. 

Figure 2-8: Scattering within a Scanning Electron Microscope. 

The Auger effect which causes the emission of an electron from an atom initiates 

the emission of a second electron. When an electron is removed from a core level 

of an atom, leaving a vacancy, an electron from a higher energy level may fall into 

the vacancy, resulting in a release of energy. Although sometimes this energy is 

released in the form of an emitted photon, the energy can also be transferred to 

another electron, which is ejected from the atom. This second ejected electron is 

called an Auger electron. 
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EDX is a complementary technique, when a sample is bombarded with electrons 

which results in the emission of some X-rays. Electrons removed from low-lying 

orbitals create vacancies which can be filled by electrons of higher energy. The 

higher energy electrons that relax down into the vacancies will emit X-rays that 

are specific to the energy difference between the high and low energy state and 

therefore specific to the element that has emitted it. Elemental analysis on a small 

isolated part of a sample is theoretically possible. The results are displayed 

graphically and the peak heights seen are not directly related to the atomic ratio, 

as some atoms give much stronger signals than others but the instrument can 

interpret the data to give an approximate atomic ratio. The peak positions are 

assigned to the appropriate transition. Different atoms have different possible 

transitions depending on how the energy in the core electron shells (L, K and M) 

compare to the incident electrons. K lines are caused by X-rays emitted because of 

an electron dropping into a K level as shown by Figure 2-9, but L and M lines 

may also occur. However there are constraints to this hence a beryllium window is 

used to screen the detector from X-rays of higher energy, so that elements that 

have a lower atomic number than beryllium are not able to be assessed. Elements 

heavier than sodium can be routinely determined and in theory all elements from 

beryllium can be determined. 

Samples were ground and a small amount of them scattered over a double-sided 

adhesive carbon mounted on an aluminium tab. Measurements were carried out 

using ultra-high vacuum.  
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Figure 2-9: Energy level diagram involved in EDX. 
 

2.3.3 Surface Area Determination 

During the project surface area measurements were carried out on the samples. 

The surface area for catalysts is very important, as high surface areas can often 

lead to the possibility of increased catalytic activity which can enable the sample 

to be used for different applications.  

The method of calculating the surface area was described by Brunauer, Emmett 

and Teller in 193857. This was an expansion of the Langmuir theory for 

monolayer molecular adsorption, to multilayered adsorption using the hypotheses: 

(1) gas molecules adsorb infinitely on a solid in layers, (2) the first layer and 

second layer are seen as different to each other and subsequent layers are the same 

as the second layer, and (3) the Langmuir theory can be applied to each layer. 
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Equation 8: Where p and p0 are the equilibrium and the saturation pressure of adsorbates at the 
temperature of adsorption, v0 is the adsorbed gas volume, vm is the volume of gas required to 
complete a unimolecular adsorbed layer, and c the BET constant 
 

[ ]0 0 0

1 1

m m

p c p
v p p v c v c p

⎛ ⎞−
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Equation 9: Where R is the molar gas constant, T is the absolute temperature, E1 is the heat of 
adsorption for the first layer and EL is that for the second and higher layers and is equal to the heat 
of liquefaction 
 

1exp LE Ec
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The BET method is widely used in surface science for the calculation of surface 

areas of solids by physical adsorption of gas molecules. The total surface area 

Stotal and specific surface area S are found through the equations: 

Equation 10: Where N is Avogadro’s number, s is the adsorption cross section, V is the molar 
volume of adsorbent gas and a is the weight of the sample. 
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a

=
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There are various types of isotherms ranging from the type I isotherm as explained 

above and shown in Figure 2-10, to the type II and IV isotherms which are based 

on multiple layers as shown in Figure 2-11. Only types II and IV are used in the 

BET method. There are other isotherms such as types III, V and VI. 

- 28 - 



Figure 2-10: Type I isotherm. 

Figure 2-11: Type II and IV isotherms. 

Type II isotherms are common for pore-free materials and are based on multilayer 

adsorption starting at point B. Type IV isotherms are similar to type II at low 

pressure however they show pore condensation at high pressure, they also show 

hysteresis as seen in Figure 2-11. 
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The surface areas of the samples during the project were determined by applying 

the (BET) method to nitrogen physisorption isotherms determined at liquid 

nitrogen temperatures. The isotherms were measured and displayed using a 

Micromeritics Flow Prep 060 and Gemini BET machine. The samples were 

degassed at 110oC overnight to remove any adsorbed moisture prior to the 

analysis. 

2.3.4 Elemental Analysis 

CHN (Carbon, Hydrogen and Nitrogen) analysis was performed by Mrs Kim 

Wilson using a CE-440 elemental analyser. These results were used to analyse the 

amount of ammonia evolved during the reaction and to obtain a value for the 

amount of nitrogen present in the samples. 
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3 Lithium Molybdenum Oxide (Li2MoO4) – A Precursor to 

Lithium Molybdenum Nitride (LiMoN2) 

3.1 Introduction 

Lithium molybdenum oxide (Li2MoO4) has been widely studied in the past with 

two structures being reported; either that of a rhombohedral cell of space group R-

358, or a hexagonal P32
59 structure.  

The formation of the R-3 form of the molybdate was reported to be through 

crystallisation of slowly cooled LiF-MoO3 fluxes in platinum crucibles in air58. 

The structure was seen to crystallise into the structure type of the mineral 

phenacite (Be2SiO4), and therefore this polymorph of lithium molybdate is 

isostructural with lithium tungstate60, as shown in Figure 3-1. 

Figure 3-1: The R-3 polymorph of Lithium Molybdate, Li2MoO4. 
Magenta spheres – Li, and purple tetrahedra – MoO4. 

The method synthesis of P32 lithium molybdate is not reported in the paper by 

Barinova et al.59 although, it was stated that it was obtained from tiny well-faceted 

single crystals grown at the Institute of Physical Chemistry, Russian Academy of 

Sciences. The structure is as shown in Figure 3-2. Because of a lack of 

information about the synthetic route to the P32 structure it is hard to draw 

correlations between the synthetic process and the difference in structure of the 

two polymorphs. It can be seen that the polymorphs differ in the fact that they 

have a different centre of symmetry in the unit cell 
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Figure 3-2: The P32 polymorph of Lithium Molybdate, Li2MoO4.  
Magenta spheres – Li, and purple tetrahedra – MoO4. 

3.2 Experimental 

Three synthetic routes were used to produce the molybdate, a high temperature 

synthesis following the method used by DiSalvo18, a room temperature synthesis 

as described by Yip51 and a precipitation reaction described by Inagaki52. 

Table 3-1: Masses of the relevant compounds. 
Mass (g) 

Sample 
Synthesised 

Temp (°C) MoO3 Li2CO3 LiOH·H2O (NH4)6Mo7O24·4H2O

1 650 2.484 1.275   

2 550 2.480 1.278   

3 550 2.481 1.271   

4 450 2.491 1.280   

5 500 2.487 1.274   

6 80   0.689 2.390 

7 20 2.484  0.827  

8 500 2.497 1.272   

9 20 3.315  1.930  

10 20 3.272  1.918  

11 500 3.337 1.699   

12 20 3.324  1.939  

13 500 3.337 1.699   

N.B. Samples marked in blue were not formed in pure phase so they were not analysed further. 
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The high temperature synthetic route used a stoichiometric amount of lithium 

carbonate and molybdenum trioxide, as shown in Table 3-1. They were ground 

using a mortar and pestle and then heated in an alumina crucible for 18 hours to 

the temperature as shown and then cooled slowly. When conducted by DiSalvo18 

this synthesis was completed at 650°C. However during this project a range of 

temperatures from 500°C to 650°C was shown to produce the molybdate in pure 

phase after 18 hours of heating under air. Below 500°C the sample was shown to 

contain quantities of the starting materials molybdenum trioxide and lithium 

carbonate indicating that the minimum temperature limit for the production of the 

pure phase molybdate over the time scale chosen is around 500°C. The 

stoichiometric equation for the pathway occurring is given below: 

3( ) 2 3(s)MoO  + Li CO  2 4(s) 2( ) Li MoO  + COs

The room temperature synthesis described by Yip51, uses a stoichiometric mixture 

of hydrated lithium hydroxide and molybdenum trioxide, as shown in Table 3-1, 

which is thoroughly ground using a mortar and pestle until a very fine paste 

forms. This paste is then dried at 100°C for 20 minutes, yielding the molybdate as 

shown below: 

g

3(s) 2 (s) 2 4(s) 2 (l)MoO  + 2LiOH H O   Li MoO  + 3H O

→

⋅

Further attempts to form the molybdate via the precipitation reaction first 

described by Inagaki52, were unsuccessful. The process was multi-stage with 

ammonium molybdate salt and lithium hydroxide in solution, which was heated to 

around 80°C to remove the ammonia enriched solutes. The remaining solution 

was then dropped into ethanol which, with agitation, should have precipitated 

lithium molybdate. However attempts to synthesise the molybdate this way were 

not successful. Large amounts of water were required to dissolve the starting 

materials and a precipitate of the molybdate was not observed, even when the 

ethanol solution was cooled to induce precipitation. The expected process had 

been: 

→

( )2 (aq) 4 7 24 2 (aq) 2 4(s) 3(g) 2 (l)6
28LiOH H O  + 2 NH Mo O 4H O   14Li MoO  + 12NH  + 56H O⋅ ⋅ →
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The samples obtained through the first two methods were characterised through 

powder X-ray diffraction, allowing for the comparison of the patterns with those 

of known samples previously recorded on the JCPDS or ICSD.  

Powder diffraction data was collected using a Siemens D5000 instrument, 

utilising Cu-Kα radiation at room temperature. The samples were ground using a 

mortar and pestle in order to make sure that the crystals were randomly orientated. 

The powder was then mounted in a depression on sample holder, and the surface 

flattened so that the level of the surface and the slide was the same. As previously 

described in Section 2.3.1 the patterns were collected using a step scan of size 

0.02° 2θ over a 5°–85° 2θ range and a time per step of 0.8 seconds. When 

diffraction data required for Rietveld refinements the step time and range was 

increased to 11 seconds and 5°–105° 2θ respectively. 

A Phillips XL30 ESEM was used to examine the morphology and texture of the 

samples. As previously described in Section 2.3.2 the instrument was used in high 

vacuum with an operating voltage of 20kV, spot size of 4 and a working distance 

of 10mm. A secondary electron detector was used to obtain the images. To 

complement this, energy dispersive analysis by X-rays (EDX) was used to obtain 

the elemental composition of the sample. 

The BET surface areas were measured using a Micromeritics Flow Prep 060 and 

Gemini BET machine. The samples were degassed at 110oC overnight to remove 

any adsorbed moisture prior to the analysis. 

3.3 Results and Discussion 

The samples were analysed using X-ray diffraction. The pattern shown in Figure 

3-3 was matched to that for lithium molybdenum oxide (12-0763) on the JCPDS 

index. The method of synthesis in the matched pattern was by the crystallisation 

of a solution of lithium hydroxide and ammonium molybdate observed by the 

United States National Bureau of Standards61. The pattern was that of the R-3 

polymorph with lattice parameters a = b = 14.3368Å, c = 9.5889Å; comparable 

with that of Kolitsch’s work in which the parameters for the same polymorph was 

a = b =14.330(2)Å, c = 9.584(2)Å58.  
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Figure 3-3: XRD pattern of Sample 10. 
Lithium molybdate, Li2MoO4, prepared via the room temperature synthesis51. 

Figure 3-3 shows the XRD pattern of sample 10, collected over a short scan time, 

which is not conclusive enough to determine which polymorph of the molybdate 

is present. The P32 polymorph has characteristic reflections present at low 2θ 

values which are not present in the R-3 polymorph. However it was possible that 

high noise and background levels could be obscuring the low intensity reflections.  

It would be possible to ascertain the correct polymorph by obtaining higher 

quality data from longer scans and then refining the patterns. The characteristic 

(200) and (11-1) reflections for the P32 polymorph are very weak in comparison to 

some of the other peaks (211) and (220) and so using a Rietveld quality scan 

reduces the background and sharpens any reflections present, so that phase 

identification is possible. 

Using a scan time of 15 hours and a step time of 11 seconds per step it is possible 

to use the GSAS55programme to refine the structure and conclusively say what 

effect the synthetic methods had on the structure of lithium molybdate. 

It was shown that after refinements, the XRD patterns could be accurately 

matched to that of the R-3 polymorph published by Kolitsch58, with no sign of the 

characteristic reflections of the P32 polymorph. This suggests that the synthetic 

methods described in Section 3.1, will only form the R-3 polymorph. 
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The synthetic methods mentioned above for the R-3 polymorph have their 

limitations though, as the high temperature synthesis has only been shown to work 

between 500°C–650°C. Below 500°C the process is incomplete with impurities 

present in large quantities. Using the room temperature synthesis it is possible to 

produce the molybdate to the same purity without the need for prolonged heating. 

This leaves a large gap in the range over which the R-3 polymorph can be 

synthesised in its pure phase. 

The observed difference plots (Figure 3-4, Figure 3-5 and Figure 3-6) and the 

related refined parameters (as described in Table 3-2, Table 3-3 and Table 3-4) 

show purity of the samples with only reflections matching those of lithium 

molybdate (Li2MoO4) present.  

To make the refinements as reasonable as possible the oxygen atoms were 

constrained to refine the thermal parameter as the same value and the thermal 

parameters for the lithium atoms were fixed at a suitable value. 

 
Figure 3-4: Final profile fit obtained from the X-ray diffraction data for Li2MoO4 (Sample 8). 
Sample prepared via the high temperature synthetic route at 500°C. 
The observed data are crosses, the calculated profile the solid line and the lower continuous line 
the difference plot. Tick marks show allowed reflection positions. 
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Table 3-2: Sample 8 Refined parameters. 
χ2 =1.782 (50 Variables), Rwp (%) = 15.7, Rp (%) = 11.81; 
R-3, a = b = 14.33964(17) Å, c = 9.59257(13) Å. 
‡ - Parameters fixed 

Atoms x y z 100x Uiso /Ueq (Å2) 

Li 1 0.1453(33) 0.4581(29) 0.2575(35) 1.00‡ 

Li 2 0.3082(32) 0.8435(30) 0.5880(37) 1.00‡ 

Mo 0.11797(14) 0.64681(13) 0.4151(4) 0.63* 

O 1 -0.0044(9) 0.6614(13) 0.4363(20) 1.05(16) 

O 2 0.2400(8) 0.7803(10) 0.4190(27) 1.05(16) 

O 3 0.1211(10) 0.5785(11) 0.2547(25) 1.05(16) 

O 4 0.1267(8) 0.5795(9) 0.5712(25) 1.05(16) 

 U11 (Å2) U22 (Å2) U33 (Å2) U12 (Å2) U13 (Å2) U23 (Å2) 

Mo 0.37(13) 0.62(14) 0.67(11) 0.15(11) -0.11(13) 0.21(16) 

 
 
 
 
 

 
Figure 3-5: Final profile fit obtained from the X-ray diffraction data for Li2MoO4 (Sample 10). 
Sample prepared via the room temperature synthetic route. 
The observed data are crosses, the calculated profile the solid line and the lower continuous line 
the difference plot. Tick marks show allowed reflection positions. 
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Table 3-3: Sample 10 Refined parameters. 
χ2 =1. 561 (49 Variables), Rwp (%) = 12.50, Rp (%) = 9.04; 
R-3, a = b = 14.33694(16) Å, c = 9.58906(13) Å. 
‡ - Parameters fixed 

Atoms x y z 100x Uiso /Ueq (Å2) 

Li 1 0.1490(27) 0.4590(22) 0.229(10) 2.0‡ 

Li 2 0.3069(25) 0.8500(27) 0.556(10) 2.0‡ 

Mo 0.11828(11) 0.64700(11) 0.4168(5) 1.60* 

O 1 0.0032(8) 0.6634(10) 0.4048(25) 2.16(14) 

O 2 0.2367(7) 0.7777(8) 0.4242(24) 2.16(14) 

O 3 0.1246(8) 0.5825(9) 0.2545(22) 2.16(14) 

O 4 0.1252(7) 0.5817(8) 0.5686(23) 2.16(14) 

 U11 (Å2) U22 (Å2) U33 (Å2) U12 (Å2) U13 (Å2) U23 (Å2) 

Mo 1.53(11) 1.63(11) 1.68(10) 0.89(9) 0.09(12) 0.06(14) 

 
 
 
 
 

Figure 3-6: Final profile fit obtained from the X-ray diffraction data for Li2MoO4 (Sample 12). 
Sample prepared via the room temperature synthetic route. 
The observed data are crosses, the calculated profile the solid line and the lower continuous line 
the difference plot. Tick marks show allowed reflection positions. 
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Table 3-4: Sample 12 Refined parameters. 
χ2 =1.735 (49 Variables), Rwp (%) = 13.98, Rp (%) = 10.34; 
R-3, a = b = 14.33947(18) Å, c = 9.59049(15) Å. 
‡ - Parameters fixed 

Atoms x y z 100x Uiso /Ueq (Å2) 

Li 1 0.1473(30) 0.4614(26) 0.265(5) 1.50‡ 

Li 2 0.3069(29) 0.8472(26) 0.595(6) 1.50‡ 

Mo 0.11839(13) 0.64701(13) 0.4150(4) 1.34* 

O 1 0.0021(9) 0.6628(11) 0.4051(25) 1.81(16) 

O 2 0.2371(8) 0.7800(9) 0.4293(24) 1.81(16) 

O 3 0.1266(10) 0.5830(10) 0.2480(22) 1.81(16) 

O 4 0.1279(8) 0.5834(9) 0.5667(24) 1.81(16) 

 U11 (Å2) U22 (Å2) U33 (Å2) U12 (Å2) U13 (Å2) U23 (Å2) 

Mo 1.02(12) 1.29(13) 1.52(11) 0.52(11) 0.14(13) -0.01(16) 

By comparing the bond length data collected as shown in Table 3-5 with those 

reported by Kolitsch (Table 3-6) it is possible to see how the synthesised samples 

are subtly different. Bond lengths differences show how the tetrahedra of LiO4 are 

more compact in the samples prepared in the project than those reported by 

Kolitsch and vice versa for the MoO4 tetrahedra. 

Table 3-5: Selected Bond lengths of Li2MoO4 samples. 
Sample 8 Sample 10 Sample 12 

Vector Length (Å) Vector Length (Å) Vector Length (Å) 

Li1-O1 2.02(4) Li1-O1 2.107(28) Li1-O1 2.034(33) 

Li1-O2 1.87(4) Li1-O2 2.04(4) Li1-O2 1.86(4) 

Li1-O3 1.92(4) Li1-O3 1.937(27) Li1-O3 1.916(29) 

Li1-O3 1.96(4) Li1-O3 1.77(4) Li1-O3 1.97(4) 

{Li1-O} 1.943 {Li1-O} 1.964 {Li1-O} 1.945 

Li2-O1 2.03(4) Li2-O1 1.961(30) Li2-O1 2.005(32) 

Li2-O2 1.88(4) Li2-O2 1.81(4) Li2-O2 1.93(4) 

Li2-O4 1.90(4) Li2-O4 1.994(25) Li2-O4 2.023(32) 

Li2-O4 1.88(4) Li2-O4 1.96(4) Li2-O4 1.78(4) 

{Li2-O} 1.923 {Li2-O} 1.931 {Li2-O} 1.935 

Mo1-O1 1.880(11) Mo1-O1 1.801(10) Mo1-O1 1.830(11) 

Mo1-O2 1.838(10) Mo1-O2 1.806(9) Mo1-O2 1.812(10) 

Mo1-O3 1.837(21) Mo1-O3 1.857(14) Mo1-O3 1.747(14) 

Mo1-O4 1.819(21) Mo1-O4 1.743(15) Mo1-O4 1.895(16) 

{Mo-O} 1.844 {Mo-O} 1.802 {Mo-O} 1.821 
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Table 3-6: Bond lengths adapted from ref. 58. 
Vector Length (Å) Vector Length (Å) 

Li1-O2 1.947(4) Li2-O2 1.942(4) 

Li1-O3 1.954(3) Li2-O1 1.949(4) 

Li1-O1 1.956(3) Li2-O4 1.975(4) 

Li1-O3 2.003(4) Li2-O4 2.002(4) 

{Li1-O} 1.965 {Li2-O} 1.967 

Mo-O1 1.7586(13)   

Mo-O2 1.7633(14)   

Mo-O3 1.7650(14)   

Mo-O4 1.7690(13)   

{Mo-O} 1.764   

 

The bond angles for the samples (Table 3-7) are in the same range as those 

reported by Kolitsch58 suggesting that the tetrahedra of both LiO4 and MoO4 are 

also distorted in the samples made during the project. The LiO4 tetrahedra show 

increased distortion with bond angles ranging from 98° to 125°. 

This increased distortion and more compact framework, of both the LiO4 and 

MoO4 tetrahedra, gives a clearer view as to the difference in lattice parameters 

between those related to the refined patterns (as detailed previously) and the 

published values of a = 14.330(2) Å, c = 9.584(2) Å. 
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Table 3-7: Selected Bond angles for Li2MoO4 samples. 
Sample 8 Sample 10 Sample 12 

Angle Degrees Angle Degrees Angle Degrees 

O1-Li1-O2 117.7(20) O1-Li1-O2 104.1(17) O1-Li1-O2 113.3(21) 

O1-Li1-O3 101.9(20) O1-Li1-O3 103.3(17) O1-Li1-O3 106.8(18) 

O1-Li1-O3 99.8(16) O1-Li1-O3 105.0(20) O1-Li1-O3 102.5(19) 

O2-Li1-O3 111.0(19) O2-Li1-O3 110.3(19) O2-Li1-O3 108.1(17) 

O2-Li1-O3 116.9(21) O2-Li1-O3 121.2(17) O2-Li1-O3 114.8(18) 

O3-Li1-O3 108.0(18) O3-Li1-O3 111.0(20) O3-Li1-O3 111.0(19) 

O1-Li2-O2 101.0(19) O1-Li2-O2 113.4(21) O1-Li2-O2 106.4(21) 

O1-Li2-O4 98.9(19) O1-Li2-O4 103.3(16) O1-Li2-O4 98.9(17) 

O1-Li2-O4 111.3(18) O1-Li2-O4 105.3(20) O1-Li2-O4 111.3(22) 

O2-Li2-O4 106.4(18) O2-Li2-O4 107.9(19) O2-Li2-O4 108.9(18) 

O2-Li2-O4 122.6(22) O2-Li2-O4 117.2(17) O2-Li2-O4 124.8(20) 

O4-Li2-O4 113.5(20) O4-Li2-O4 108.8(18) O4-Li2-O4 103.5(19) 

O1-Mo1-O2 109.7(6) O1-Mo1-O2 108.6(6) O1-Mo1-O2 109.8(6) 

O1-Mo1-O3 115.0(7) O1-Mo1-O3 109.3(11) O1-Mo1-O3 114.9(12) 

O1-Mo1-O4 106.6(7) O1-Mo1-O4 111.5(11) O1-Mo1-O4 106.8(12) 

O2-Mo1-O3 107.9(7) O2-Mo1-O3 108.8(6) O2-Mo1-O3 103.1(6) 

O2-Mo1-O4 104.7(7) O2-Mo1-O4 101.5(6) O2-Mo1-O4 106.5(6) 

O3-Mo1-O4 112.3(5) O3-Mo1-O4 116.7(4) O3-Mo1-O4 115.4(4) 

From the SEM micrographs it is possible to see the size and morphology of the 

samples. The images show that the molybdate samples have a very varied 

structure within the small amount viewed on the SEM, with the particles ranging 

from clusters of small particulates to larger angular particles as seen in Figure 3-7 

and Figure 3-8. 
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Figure 3-7: SEM image of Li2MoO4 (Sample 2). 
Sample prepared via the high temperature synthetic route. 
 
 
 

Figure 3-8: SEM image of Li MoO  (Sample 2). 2 4
Sample prepared via the high temperature synthetic route. 
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The samples made through the high temperature method are all very comparable 

and the particles in the selected area scan show similar morphology with a 

combination of the rounded and angular particles throughout the samples and a 

variation in size of particulates from 30 μm to 50μm approximately. 

Using Energy Dispersive X-ray analysis (EDX) taken over numerous different 

spot scans, it is possible to show that the particles contain molybdenum and 

oxygen. Lithium cannot be detected using EDX.  

Table 3-8: EDX data for different points on Sample 2 taken from Figure 3-7. 
Mo 1.03 1.14 1.06 0.98 

Ratio 
O 3.87 4.21 4.13 4.05 

The ratio between Mo and O for the K-peaks was seen as shown in Table 3-8 to 

be a 1:4 Mo:O suggesting that the molybdate (Li2MoO4) as observed by XRD is 

present. This evidence, along with that of the XRD patterns, suggests the 

molybdate is pure phase throughout each of the samples. 

For the molybdates synthesised at room temperature, the SEM images show very 

small scale particles with no evidence of the large scale particles seen for the 

lithium molybdates formed at higher temperatures, as shown previously. The 

particles as seen in Figure 3-9 and Figure 3-10 are of a few microns in length in 

contrast to the 50 micron particles seen when the molybdate is formed at 

temperatures between 500°C and 650°C. 
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Figure 3-9: SEM image of Li2MoO4 (Sample 12). 
Sample prepared via the room temperature synthetic route. 
 

Figure 3-10: SEM image of Li2MoO4 (Sample 12). 
Sample prepared via the room temperature synthetic route. 

Due to technical problems with the instrument at the time of measurement it was 

not possible to collect EDX data for these samples. Hence the ability to confirm 

the composition of the crystals in the above figures was limited. 

The surface areas of the molybdates formed via the two synthetic methods were 

very similar with the samples prepared at room temperature, having a surface area 
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of ca. 5m2g-1, compared with that of the high temperature synthesis which had a 

surface area of ca. 3.5m2g-1. 

With two polymorphs (R-3 and P32) of lithium molybdate possible to be 

synthesised via various methods as described in previous work58,59, studies were 

carried out to see if conversion between the two polymorphs was possible and 

most interestingly if the R-3 polymorph could be converted to the P32 polymorph. 

If this was possible it would show conversion from a simpler symmetry to a more 

complex symmetry. 

Initially thermal analysis was conducted using a Netzch STA 409 PC, which is a 

highly sensitive balance which allows for small weight loss to be observed with 

heating. The profile uses a heating rate of 10°C/min up to 800°C. Over this time a 

small mass loss of 1.7% was observed, which could be assigned to the loss of 

waters of crystallisation from the sample. The other major event that occurred 

could be assigned to the melting point for Li2MoO4 however this started around 

15°C before the reported melting point of 705°C so could be associated with the 

melting process (just prior to complete melting). The temperature profile is shown 

in the trace (Figure 3-11). 

Figure 3-11: STA trace of Li2MoO4. 
Sample prepared via the room temperature synthetic route. 
The trace shows the loss of waters of crystallisation and the melting point of the lithium molybdate 
at 705°C. 
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To further explore the effect of the temperature, the molybdate was analysed using 

variable temperature XRD, which allowed for the sample to be heated and 

analysed in-situ. The temperature was raised to 700°C over an extended period of 

time to allow for high quality X-ray diffraction patterns to be obtained. The 

resultant patterns which were obtained in the region 10 - 32° 2θ (within which the 

characteristic (200) and (11-1) reflections of the P32 polymorph are found) are 

shown in Figure 3-12. 

Figure 3-12: Variable temperature XRD patterns of the R-3 polymorph of lithium molybdate. 
a = 30°C, b = 100°C, c = 300°C, d = 500°C, e = 600°C, f = 620°C, g = 640°C, h = 645°C, i = 
655°C, j = 660°C, k = 700°C, l = 500°C, m = 30°C after cooling. 

As the temperature was increased in the XRD there was a thermal expansion of 

the unit cell which can be easily seen in the shift of the Bragg reflections to a 

lower 2θ value (Figure 3-13). 

Figure 3-13: Patterns showing shift of (10-2) peak with increasing temperature. 
a = 30°C, b = 100°C, c = 300°C, d = 500°C, e = 600°C, f = 620°C, g = 640°C. 

After 660°C there is a formation of a reflection at 17° 2θ and an enlargement of 

the (220) reflection (as seen in Figure 3-12), due to the formation of Li2MoO3. 
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After 700°C the pattern has a reduced intensity but is still able to be matched to 

the R-3 polymorph of Li2MoO4. This can be seen in the two patterns taken at 

500°C and 30°C on cooling in Figure 3-12. The melting point of lithium 

molybdate (Li2MoO4) is 705°C and this could be assigned to the changes at 

around 700°C which afterwards shows a very weak series of reflections related to 

the molybdate. 

The variable temperature XRD showed that the R-3 polymorph was not converted 

to the P32 polymorph on heating. This suggests that converting between the two 

polymorphs is not possible and that the events seen in the STA trace at 700°C are 

due to the melting of the sample. This is confirmed by the XRD patterns which 

show a broadening and weakening of the reflections. 

3.4 Summary 

From the data collected, it is possible to say that the lithium molybdate (Li2MoO4) 

can be formed as a pure phase via two different methods. The high temperature 

synthesis reacting lithium carbonate and molybdenum trioxide produces the R-3 

polymorph of lithium molybdate. This polymorph however can also be formed by 

the room temperature preparation using mono-hydrated lithium hydroxide and 

molybdenum trioxide which, when ground together, form a paste with the help of 

the waters of crystallisation. 

The possibility of conversion between the two polymorphs (R-3 and P32) has not 

been shown under the conditions used during this work, with only the R-3 

polymorph58 observed via XRD. This however does not conclusively mean that 

conversion between the two is not possible as the synthetic route to the P32 

polymorph59 has not been reported. 

Both methods (as previously described) give the pure phase R-3 lithium 

molybdate, however the room temperature preparation gives a much more 

crystalline product than the higher temperature preparation. 

However the SEM images show a distinct difference. The high temperature 

molybdates are seen to be made up of larger scale particles with very angular 

edges as opposed to those seen in the room temperature preparation which are 
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smaller and resemble a tube or rod like structure. The surface areas of the 

molybdates are both very small with an average surface area for the high 

temperature samples of 3.5 m2g-1 compared to the slightly higher 5 m2g-1 for the 

room temperature synthesised samples. 

Hence all of the evidence seen in the X-ray diffraction and the SEM images and 

EDX show that the molybdate formed is always that of the R-3 polymorph as 

proposed by Kolitsch58. The polymorph has been shown by variable temperature 

diffraction to expand up to a temperature of approximately 600°C and then at 

approximately 660°C Li2MoO3 is formed. This is only seen briefly and is then 

followed by the melting of the molybdate at 705°C. The EDX of the samples all 

confirm the presence of four oxygen atoms for every molybdenum atom. 

With all of the data collected it can be shown that lithium molybdate (Li2MoO4) 

can be formed via two different methods to give very pure samples with no 

impurity phases. Both methods of synthesis give the R-3 polymorph under the 

conditions used in the project. 
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4 Lithium Molybdenum Nitride (LiMoN2) 

4.1 Introduction 

As previously described in section 1.1.4, the synthesis of lithium molybdenum 

nitride was first reported in 1992 by DiSalvo et al.18. When analysed, the resultant 

nitride was found to contain an impurity of lithia (Li2O). The presence of both 

lithium molybdenum nitride and lithia showed that the reaction proceeds as 

expected with the reaction following the pathway: 

2 4(s) 3(g) 2(s) 2 (s) 2(g) 2 (g)
7 71 1Li MoO  + NH  LiMoN  + Li O  + N  + H O3 2 6 2→

DiSalvo et al. also proposed that another impurity present was γ-Mo2N which was 

excluded from the refinement of the neutron diffraction data they published. The 

molybdenum nitride is possibly formed from a reaction of incompletely reacted 

molybdenum trioxide left from the starting molybdate. This would form γ-Mo2N 

on exposure to NH3, as seen in previous work conducted on MoO3
62. 

Alternatively it could be formed from the decomposition of LiMoN2. 

Another method of preparation could be via the ammoniation of lithium 

molybdenum sulfide which although not shown directly for LiMoN2, has been 

shown to work for the analogous lithium tungsten nitride LiWN2 system19. 

4.2 Experimental 

The nitride was formed by the ammonolysis of lithium molybdenum oxide 

(Li2MoO4) inside a tube furnace with the molybdate in an alumina boat over 

which a flow of ammonia (10mlmin-1) was passed for 14 hours at 710°C. This 

process follows the method described by DiSalvo18. The ammonolysis was also 

conducted in a silica tube for 14 hours at 710°C but at 90mlmin-1, this follows the 

method employed by Aika41 and McKay46 which uses a plug-flow regime. The 

regime used is shown in Table 4-1. 
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Table 4-1: Precursor samples nitrided at 710°C to give lithium molybdenum nitride. 
Nitrided under 

Sample 

Precursor 

Synthesised 

Temp (°C) 

NH3 NH3 

(Plug-flow) 

25% N2/H2 

1 650 √   

2 550 √   

3 550 √   

5 500 √   

8 500 √   

10 20 √   

11 500  √  

12 20 √   

13 500   √ 

The samples were characterised through powder X-ray diffraction and compared 

to the patterns of known samples previously recorded in the JCPDS or ICSD.  

Powder diffraction data was collected using a Siemens D5000 instrument, 

utilising Cu-Kα radiation at room temperature. The samples were ground using a 

mortar and pestle in order to make sure that the crystals were randomly orientated. 

The powder was then mounted in a depression on sample holder, and the surface 

flattened so that the level of the surface and the slide was the same. As previously 

described in Section 2.3.1 the patterns were collected using a step scan of size 

0.02° 2θ over a 5°–85° 2θ range and a time per step of 0.8 seconds. When 

diffraction data required for Rietveld refinements the step time and range was 

increased to 11 seconds and 5°–105° 2θ respectively. 

A Phillips XL30 ESEM was used to examine the morphology and texture of the 

samples. As previously described in Section 2.3.2 the instrument was used in high 

vacuum with an operating voltage of 20kV, spot size of 4 and a working distance 

of 10mm. A secondary electron detector was used to obtain the images. To 

complement this, energy dispersive analysis by X-rays (EDX) was used to obtain 

the elemental composition of the sample. 

The BET surface areas were measured using a Micromeritics Flow Prep 060 and 

Gemini BET machine. The samples were degassed at 110oC overnight to remove 

any adsorbed moisture prior to the analysis. 
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4.3 Results and Discussion 

The samples were analysed using X-ray diffraction, initially over a one hour scan 

to identify the phases present. The patterns recorded after a one hour scan were 

very noisy with a large background reading and extra reflections, indicating some 

form of impurity present in the sample. 
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Figure 4-1: XRD pattern of Sample 8. 
Sample prepared via the high temperature synthetic route. 
Showing the presence of impurities (lithium molybdate remaining from the precursor stage). 

Figure 4-1 shows how the amorphous background and the extra reflections 

between 20 and 30° 2θ, do not allow for the sample to be fully characterised as the 

amorphous background could be obscuring reflections relating to other impurities. 

The scan does allow for the main phase, LiMoN2, to be identified along with the 

strong reflections (211) and (21-2) of Li2MoO4. 

The exact nature of the impurities varied from sample to sample, lithia was always 

present as per the reaction scheme proposed by DiSalvo18; however the molybdate 

content was variable.  

Elemental analysis of the samples showed a sub-stoichiometric amount of 

nitrogen present. This cannot be conclusively attributed to a lack of nitrogen in the 

LiMoN2 due to the impurities present in each sample (lithia and lithium 

molybdate). However, based on calculations from the elemental analysis the 

nitrides, were still showing a sub-stoichiometric amount of nitrogen present, with 

the samples produced at higher temperatures as shown in Table 4-2. 
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Table 4-2: Elemental analysis showing percentage of N in the samples. 
Sample Wt % 

Nitrogen 

% of Expected Nitrogen 

content* 

Assumed 

stoichiometry 

1 12.30 74% “LiMoN1.48” 

3 13.04 78% “LiMoN1.56” 

5 12.54 75% “LiMoN1.5” 

8 11.52 69% “LiMoN1.38” 

10 10.58 63% “LiMoN1.26” 

12 9.00 54% “LiMoN1.08” 

*Calculated from the weight % of nitrogen present in the sample and the expected amount of 
nitrogen.  
N.B.: Loadings and stoichiometry based on the presence of LiMoN2 and Li2O. 

However the XRD patterns showed no variation from the recorded pattern of 

LiMoN2 recorded by DiSalvo. This suggests that there may be other impurities 

present in the samples which were not being accounted for in the calculations used 

to obtain the loading and assumed stoichiometry. This would have the effect of 

reducing the stoichiometry of the nitrides without altering the pattern obtained 

from XRD. 

In an attempt to try and identify other impurities in the sample, a longer scan time 

was used (previously used to indentify the lithium molybdate) in order to refine 

and fully characterise the samples. The refined patterns are shown in Figure 4-2 

and Figure 4-3 and the respective data in Table 4-3 and Table 4-4. 

To make the refinements as reasonable as possible the lithium and molybdenum 

atoms as they are site sharing are constrained to be refined to the same values for 

position and thermal parameters and the nitrogen atoms were constrained to refine 

the thermal parameter to the same value. The same constraints were used for the 

molybdate as described previously. 
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Figure 4-2: Final profile fit obtained from the X-ray diffraction data for LiMoN2 (Sample 8). 
The observed data are crosses, the calculated profile the solid line and the lower continuous line 
the difference plot. Tick marks show allowed reflection positions. 
 
Table 4-3: Sample 8 Refined parameters. 
χ2 = 3.083 (45 variables), Rwp (%)  = 20.28, Rp (%) = 15.87; 
‡ - Parameters fixed 
Lithium Molybdenum Nitride; R3m, a = b = 2.87088(22) Å, c = 15.7405(20) Å. 
Atoms x y z Occupancy 100x Uiso /Ueq (Å2) 

Li 1 0.0 0.0 -0.0029(9) 0.85‡ 0.74(9) 

Mo 1  0.0 0.0 -0.0029(9) 0.15‡ 0.74(9) 

Li 2 0.0 0.0 0.819738 0.15‡ 0.71(31) 

Mo 2 0.0 0.0 0.819738 0.85‡ 0.71(31) 

N 1 0.0 0.0 0.2546(20) 1‡ 0.54‡ 

N 2 0.0 0.0 0.4209(15) 1‡ 0.54‡ 

Lithia: Fm-3m, a = b = c = 4.6230(1) Å 

Li 1 0.0 0.0 0.0 1‡ 0.25‡ 

O 1 0.25 0.25 0.25 1‡ 0.25‡ 

Lithium Molybdenum Oxide (Li2MoO4); R-3, a = b = 14.358(4) Å, c = 9.643(4) Å 

Li 1 0.1411(2) 0.4550(2) 0.2532(2) 1‡ 0.90‡ 

Li 2 0.3090(2) 0.8562(2) 0.5823(2) 1‡ 0.90‡ 

Mo 1 0.1379(17) 0.6622(24) 0.3867(16) 1‡ 0.75(3) 

O 1 -0.0401(2) 0.5569(2) 0.3968(6) 1‡ 0.80‡ 

O 2 0.3379(2) 0.6750(10) 0.5957(8) 1‡ 0.80‡ 

O 3 -0.0664(9) 0.3454(10) -0.2271(4) 1‡ 0.80‡ 

O 4 0.1337(7) 0.5752(4) 0.5740(2) 1‡ 0.80‡ 
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Figure 4-3: Final profile fit obtained from the X-ray diffraction data for LiMoN2 (Sample 10). 
The observed data are crosses, the calculated profile the solid line and the lower continuous line 
the difference plot. Tick marks show allowed reflection positions. 
 
Table 4-4: Sample 10 Refined parameters. 
χ2 = 4.241 (26 Variables), Rwp (%) = 22.01, Rp (%) = 16.81; 
‡ - Parameters fixed 
Lithium Molybdenum Nitride; R3m, a = b = 2.87131(27) Å, c = 15.6528(24) Å. 

Atoms x y z Occupancy 

Li 1 0.0 0.0 0.02613(6) 0.85‡ 

Mo 1 0.0 0.0 0.02613(6) 0.15‡ 

Li 2 0.0 0.0 0.8453(11) 0.15‡ 

Mo 2 0.0 0.0 0.8453(11) 0.85‡ 

N 1 0.0 0.0 0.2864(17) 1‡ 

N 2 0.0 0.0 0.4495(16) 1‡ 

Lithia: Fm-3m, a = b = c = 4.6213(16) Å 

Li 1 0.0 0.0 0.0 1‡ 

O 1 0.25 0.25 0.25 1‡ 

Lithium Molybdenum Oxide (Li2MoO4); R-3, a = b = 14.3539(29) Å, c = 9.6003(23) Å 

Li 1 0.141(28) 0.455(28) 0.25(7) 1‡ 

Li 2 0.309(20) 0.856(30) 0.58(7) 1‡ 

Mo 1 0.1198(11) 0.6490(12) 0.420(4) 1‡ 

O 1 0.0052(3) 0.6646(7) 0.41520(1) 1‡ 

O 2 0.2336(6) 0.7768(6) 0.41607 (7) 1‡ 

O 3 0.1192(5) 0.5789(1) 0.26342(2) 1‡ 

O 4 0.1190(7) 0.5781(3) 0.56859(9) 1‡ 
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The refinements show that the nitride has residual molybdate reflections 

remaining in the sample and that the lithia proposed in the reaction profile is also 

present. The phase fractions shown in Table 4-5 give an idea of the quantity of 

impurities present in the samples. 

Table 4-5: Phase fractions from refined samples. 
(Weight Fractions) 

Sample 
Phase 

8 10 

LiMoN2 0.10765 x10-5 0.67809 

Li2O 1 0.05334 

Li2MoO4 0.13120 x10-6 0.26857 

 

Comparing the bond lengths and angles of the synthesised samples (Table 4-6 and 

Table 4-7) with those published by DiSalvo (Table 4-8) show how very different 

the structures are – with the published bond lengths being consistent between the 

Mo-N and the Li-N. However this is not the case with the samples synthesised 

from both room temperature and higher temperatures, where the bond lengths are 

varied and shows a distortion in the structure. This is also seen in the bond angles 

which are very different for the samples synthesised and the literature results. 

 
Table 4-6: Selected bond lengths LiMoN2. 

8 10 

Vector Length (Å) Vector Length (Å) 

Mo1-N1 (x3) 2.043(13) Mo1-N1 (x3) 2.014(15) 

Mo1-N2 (x3) 2.178(15) Mo1-N2 (x3) 2.176(16) 

Li1-N1 (x3) 2.043(13) Li1-N1 (x3) 2.014(15) 

Li1-N2 (x3) 2.178(15) Li1-N2 (x3) 2.176(16) 
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Table 4-7: Selected bond angles for LiMoN2. 
Angle Degrees Angle Degrees 

N1-Mo1-N1 

(x3) 
89.3(7) 

N1-Mo1-N1 

(x3) 
90.9(9) 

N1-Mo1-N2 

(x3) 
76.2(7) 

N1-Mo1-N2 

(x3) 
75.0(8) 

N1-Mo1-N2 

(x6) 
133.46(24) 

N1-Mo1-N2 

(x6) 
132.95(29) 

N1-Li1-N1 

(x3) 
89.3(7) 

N1-Li1-N1 

(x3) 
90.9(9) 

N1-Li1-N2 

(x3) 
76.2(7) 

N1-Li1-N2 

(x3) 
75.0(8) 

N1-Li1-N2 

(x6) 
133.46(24) 

N1-Li1-N2 

(x6) 
132.95(29) 

N2-Li1-N2 

(x3) 
82.5(7) 

N2-Li1-N2 

(x3) 
82.6(7) 

 
 
Table 4-8: Bond lengths and angles adapted from ref. 18. 

Vector Length (Å) Vector Length (Å) 

Mo1-Nl (x3) 2.095 (4) Lil-Nl (x3) 2.179 (18) 

Mol-N2 (x3) 2.091 (4) Lil-N2 (x3) 2.098 (17) 

Angle Degrees Angle Degrees 

N1-Mo1-N1 (x6) 86.34 (9) N1-Li1-N2 (x3) 177.3 (9) 

N1-Mo1-N2 (x3) 75.45 (9) N1-Li1-N2 (x6) 95.72 (8) 

N1-Mo1-N2 (x6) 133.41 (3) N2-Li1-N2 (x3) 86.2 (9) 

N1-Li1-N1 (x3) 82.3 (8)   

The morphology of lithium molybdenum nitride, when analysed by SEM, was 

seen to be very different in places to that of the molybdate precursor, the surface 

of the particles were covered in lots of small scale particulates (Figure 4-4 and 

Figure 4-5). The large particles are expected to be some molybdate that has not 

been reacted with the NH3 during the ammonolysis (c.f. Figure 3-7) [This cannot 

be confirmed due to technical difficulties with the EDX at the time of 

measurement]. 
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Figure 4-4: SEM image of LiMoN2 (Sample 5). 
Sample prepared via the high temperature synthetic route. 
 
 

Figure 4-5: SEM image of LiMoN2 (Sample 8). 
Sample prepared via the high temperature synthetic route. 

The appearance of small scale particulates only occurs after the ammonation 

process and none of these are seen prior to the exposure of the molybdate to a 

flow of ammonia. The process has the same effect on the molybdates synthesized 

at room temperature as shown in Figure 4-6 and Figure 4-7. 
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Figure 4-6: SEM image of LiMoN2 (Sample 12). 
Sample prepared via the room temperature synthetic route. 
 
 

Figure 4-7: SEM image of LiMoN2 (Sample 12). 
Sample prepared via the room temperature synthetic route. 
 

The formation of small scale ‘plates’ can be attributed to the formation of the 

nitride, although this cannot be verified by EDX as this shows that there is oxygen 

present in the sample with a 1:1:1 ratio of Mo:N:O suggesting the formation of an 

oxynitride or confirming the presence of Li2O and Li2MoO4 along with LiMoN2 

as seen by XRD. 

The formation of the nitride though reaction with ammonia gas at 700°C in an 

alumina boat was very different to the result of the process used by Aika41 and 
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McKay46 in which the sample was held in a silica tube between two silica wool 

plugs and then ammonia passed through the sample. 

The resultant pattern acquired from X-ray diffraction (as seen in Figure 4-8) 

shows pure phase lithium molybdenum nitride with none of the residual lithium 

molybdate peaks seen in the previous reactions conducted in the alumina boat. 
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Figure 4-8: XRD pattern of Sample 11. 

A Rietveld refinement was carried out and the resultant pattern was indeed the 

lithium molybdenum nitride along with trace amounts of lithia (which could form 

from the reaction of any excess lithium on exposure to the air or moisture when 

the sample is discharged from the reactor). The observed difference plot and 

related data is shown in Figure 4-9 and Table 4-9. 
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Figure 4-9: Final profile fit obtained from the X-ray diffraction data for LiMoN2 (Sample 11). 
The observed data are crosses, the calculated profile the solid line and the lower continuous line 
the difference plot. Tick marks show allowed reflection positions. 
 
 
Table 4-9: Sample 11 Refined parameters. 
χ2 =1.825 (25 Variables), Rwp (%) = 16.01, Rp (%) = 12.60; 
‡ - Parameters fixed 
Lithium Molybdenum nitride; R3m, a = b = 2.8776(8) Å, c = 15.741(4) Å. 

Atoms x y z Occupancy 100x Uiso /Ueq (Å2)

Li 1 0.0 0.0 -0.04235(9) 0.85‡ 1.96(14) 

Mo 1  0.0 0.0 -0.04235(9) 0.15‡ 1.96(14) 

Li 2 0.0 0.0 0.7849(10) 0.15‡ 2.00‡ 

Mo 2 0.0 0.0 0.7849(10) 0.85‡ 2.00‡ 

N 1 0.0 0.0 0.1793(14) 1‡ 2.4(5) 

N 2 0.0 0.0 0.3286(14) 1‡ 2.4(5) 

Lithia: Fm-3m, a = b =  c = 4.6463(28) Å 
Li 1 0.2500 0.2500 0.2500 1‡ 2.50‡ 

O 1 0.0 0.0 0.0 1‡ 2.50‡ 

The ‘clean’ pattern formed from the reaction in the plug-flow regime shows how 

the effect of the flow of ammonia through the sample rather than over it affects 

the nitride. The plug flow regime is seen to fully nitride the samples and leave no 

oxide phases in the bulk nitride as seen in the regime in which an alumina boat is 

used.  
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Further syntheses were carried out using a 25% N2/H2 feed gas to see if the 

reaction could be conducted under this feed gas mixture. This has some 

background in work conducted by McKay in which Co3Mo3N can be partially 

synthesised using this as opposed to NH3 gas. 
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Figure 4-10: XRD pattern of Sample 13. 

The pattern shown in Figure 4-10 is that of Li2MoO3 indicating that the molybdate 

is transformed from Li2MoO4 to Li2MoO3. This reaction is not seen under NH3, 

but is a pure phase product as seen by the XRD pattern. Refinements were 

undertaken and the results are shown in Figure 4-11 and Table 4-10. 

Figure 4-11: Final profile fit obtained from the X-ray diffraction data for Sample 13. 
The observed data are crosses, the calculated profile the solid line and the lower continuous line 
the difference plot. Tick marks show allowed reflection positions. 
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Table 4-10: Sample 13 Refined parameters. 
χ2 =2.069 (40 Variables), Rwp (%) = 16.24, Rp (%) = 12.62; 
‡ - Parameters fixed 
Lithium Molybdenum oxide; R-3m, a = b = 2.8791(5) Å, c = 14.9524(22) Å. 

Atoms x y z Occupancy 100x Uiso /Ueq 

(Å2) 

Mo 1 0.0 0.0 0.50 0.385(14) 1.794(8) 

Li 1 0.0 0.0 0.50 0.615(14) 1.794(8) 

Li 2 0.0 0.0 0.0 1.0‡ 1.75‡ 

O 1 0.0 0.0 0.24737(34) 1.0‡ 1.37(4) 

The presence of only lithium molybdate (Li2MoO3) shows how the reaction feed 

gas of 25 % N2/H2 has no nitridation capability towards Li2MoO4 under the 

conditions applied and thus apparently only reduces the molybdate. 

4.4 Summary 

The formation of a very crystalline nitride with few or no impurities present was 

found to be very problematic. The nitrides formed all appeared to have poorly 

crystalline character with a suggestion of amorphous components when analysed 

by X-ray diffraction. Many of the samples still had remnants of the starting 

molybdate present and also significant quantities of lithia which is expected from 

the reaction scheme. 

The nitrides formed via a plug-flow regime were found to only contain the nitride 

and lithia with no molybdate trace found. This regime allowed for the ammonia to 

pass through the sample and for the whole sample to be exposed to the gas as 

opposed to the method primarily employed using a silica boat in which the gas is 

passed over the surface of the sample, eliminating potential ‘by-pass’ effects. 

The possibility for incomplete nitridation while employing the boat method is 

highly likely as the sample is only exposed to the gas on the surface and relies on 

diffusion between the particles. This would explain the large quantities of the 

molybdate present in the sample when analysed by X-ray diffraction. This is 

further enforced by the SEM which shows small plate like particles on the surface 

of the oxide particles (i.e. an oxide core). EDX confirms the presence of oxygen in 

the samples. This could, as previously stated, be due to the molybdate being 

incompletely nitrided although it could also be due to the formation of an 
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oxynitride. These have been seen previously for molybdenum nitrides48. This 

possibility is hard to confirm as any possible oxynitride structure is not known 

and X-rays cannot distinguish between O2- and N3-. 

The possibility of the oxynitrides would also explain the sub-stoichiometric 

quantities of nitrogen found in the samples when analysed. The presence of the 

oxynitride could account for the low nitrogen content as could mixtures of the 

oxides and (oxy)-nitrides. 

The surface area of the samples is low with an average area of ca. 4m2g-1. This is 

about the same as the molybdate precursor although presence of the small scales 

‘plates’ on the surface could have been expected to increase the surface area. 

When the molybdate precursor was reacted with 25% N2/H2, the sample was 

reduced to Li2MoO3. This is not as expected as for the synthesis of Mo2N from the 

direct reaction of MoO3 with 25% N2/H2. However the presence of Li2MoO3 is 

consistent more with the heating of the molybdate as previously seen in the 

variable temperature XRD shown in Figure 3-12. 
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5 Ammonia Synthesis Testing 

5.1 Introduction 

The use of molybdenum containing nitrides for ammonia synthesis has been 

widely researched previously and many possible catalysts have been discovered. 

Binary molybdenum nitrides have been long known for their ammonia synthesis 

efficacy41,42,43,44.The best of the nitrides reported to date are cobalt molybdenum 

nitride and caesium promoted cobalt molybdenum nitride (as discussed previously 

in Section 1.1.3)45,47,48. For ease of comparison with the literature, the reactions 

using lithium molybdenum nitrides described in this section were carried out 

under comparable conditions to those applied by Aika and co-workers43,63 who 

studied Co3Mo3N and Cs+/Co3Mo3N. 

Generally nitrides have a relatively high activity for ammonia synthesis and the 

possible role of the ‘lattice’ nitrogen in the system can be questioned. It is 

possible that a Mars van Krevelen like mechanism, in which the ‘lattice’ nitrogen 

itself is active, could occur. 

The role of ‘lattice’ nitrogen in Co3Mo3N has now been investigated further with 

the formation of a new η-12 phase Co6Mo6N46 by hydrogenation with 25% Ar/H2 

at high temperatures being reported. During denitridation it was the ‘lattice’ 

nitrogen which provided the source of nitrogen for the synthesis of the ammonia 

observed. Therefore, as described in this section, additional M-Mo-N systems 

have been studied to investigate if this process is seen in other systems. 

5.2 Experimental 

The samples were all tested at ambient pressure for their potential as ammonia 

synthesis catalysts. The method employed used a fixed bed reactor over which 

reactant gas (60mlmin-1) of either 25% N2/H2 or 25% Ar/H2 was flowed. The 

production of ammonia was measured by the change in conductivity of 200ml 

0.00108 molL-1of sulfuric acid, a procedure adopted by Aika and co-workers41,43. 
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The reaction conditions were kept constant with a fixed amount of sample (0.4g) 

and an initial pre-treatment stage in which the sample was exposed to 25% N2/H2 

gas for 2 hours at 700°C, which removed any surface oxide layers present . The 

reactor was then cooled to 400°C, the appropriate reaction gas was selected and 

the conductivity measurements started. In the reactions conducted under 25% 

Ar/H2 the temperature was increased at different stages throughout the reaction to 

monitor the production of ammonia as a function of temperature. 

The samples were tested under either a 25% N2/H2 gas mixture or a 25% Ar/H2 

gas mixture. The 25% N2/H2 mix allows for the samples to be tested for their 

ability to form ammonia with an external source of nitrogen. The 25% Ar/H2 mix 

demonstrates the ability of the sample to produce ammonia with the only source 

of available nitrogen being that present in the nitride itself. Thus the reactivity of 

the ‘lattice’ nitrogen can be assessed. 

The samples examined were all subject to elemental analysis both before and after 

reaction to determine the effects of the different reactant gases. This was used to 

observe the extent to which the ‘lattice’ nitrogen is active in the samples, as any 

change in the percentage of nitrogen can be linked to the activity of the nitrogen. 

5.3 Results and Discussion 

5.3.1 25%/75% N2/H2 feed gas reactions 

The reactions using 25% N2/H2, were run for 5½ hours at 400°C after an initial 

pre-treatment stage at 700°C for 2 hours under 25% N2/H2. This removed any 

surface oxide which may have formed on discharge to air after ammonolysis. The 

samples exhibited similar reaction profiles. There was a relatively sharp initial 

drop in conductivity over the first 30 to 60 minutes, then a plateauing of the 

change in concentration of the acid solution. This can be clearly seen in Figure 5-1 

and Figure 5-2. 
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Figure 5-1: Reaction profile for samples 5 and 8 at 400°C under 25% N2/H2. 
The blue line indicates the initial conductivity decrease; the magenta line represents the subsequent 
plateau effect. 
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Figure 5-2: Reaction profiles for samples 10 and 12 at 400°C under 25% N2/H2. 
The blue line indicates the initial conductivity decrease; the magenta line represents the subsequent 
plateau effect. 

The profile is similar for nitrides prepared using both types of precursor, i.e. those 

synthesised at room temperature and those synthesised at high temperature. This 

profile can potentially be attributed to surface NHx species, remaining from the 

initial pre-treatment stage of the reaction, being hydrogenated in the first 60 

minutes, after which a steady state rate of NH3 production occurs. The possibility 

of surface NHx species has been reported in previous work carried out on 

molybdenum nitride, suggesting that the species adsorb on the surface of the 
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nitride during preparation and/or pre-treatment and then desorb during 

reaction64,65. 

The ratio of the rates of reaction for the samples between the relatively large 

initial decrease and the plateau is around an order of magnitude. Table 5-1 shows 

the rates of reaction, calculated from the change in conductivity in the sulfuric 

acid solution. 

Table 5-1: Rates of reaction for samples reacted under 25% N2/H2 feed gas. 
Rate of Reaction (molh-1g-1) 

Sample 
Initial Plateau 

1 3.650 x10-5 6.722 x10-6 

2 1.460 x10-5 5.628 x10-6 

5 2.920 x10-5 5.831 x10-6 

8 2.190 x10-5 6.810 x10-6 3.650 x10-6 

10 2.555 x10-5 6.990 x10-6 

12 8.030 x10-5 1.069 x10-5 4.674 x10-7 

After reaction, the samples were analysed by X-ray diffraction as seen in Figure 

5-3 and Figure 5-4. This allowed a comparison to be made between the samples 

before and after the reaction and any changes that had occurred to the structure to 

be identified.  
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Figure 5-3: XRD patterns showing differences before and after reaction for Sample 8 with 25% 
N2/H2 feed gas. 
Red = Li2MoO4, Green = Li2MoO3 
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Figure 5-4: XRD patterns showing differences before and after reaction for Sample 10 with 25% 
N2/H2 feed gas. 
Red = Li2MoO4, Green = Li2MoO3 

The XRD patterns still show the main phase to be the LiMoN2. The main changes 

seen in the patterns relate to a reduction in the relative intensity of the lithium 

molybdate (Li2MoO4) reflections and an increase in the reflections related to that 

of lithium (IV) molybdate (Li2MoO3). The formation of these reflections and the 

loss of the Li2MoO4 reflections can be correlated with an experiment performed 

on the precursor lithium molybdate, where Li2MoO4 was entirely converted to 

Li2MoO3 under flowing 25% N2/H2 gas (Section 3.3). 

Table 5-2: Elemental compositions of samples. 
Elemental composition 

(Nitrogen wt %) Sample 

Pre Reaction Post (N2/H2) 

Loading of N in 

Lithium 

molybdenum nitride* 

Assumed 

Stoichiometry

Post (N2/H2) 

2 9.81 9.45 57% “LiMoN1.13” 

5 12.54 10.91 66% “LiMoN1.32” 

8 11.52 9.33 56% “LiMoN1.13” 

10 10.58 7.94 48% “LiMoN0.96” 

12 9.00 6.45 39% “LiMoN0.78” 

* Loadings calculated from the weight % of nitrogen present in the sample.  
N.B.: Loadings and stoichiometry based on the presence of LiMoN2 and Li2O. 

- 68 - 



From the elemental analysis, it is possible to calculate the assumed stoichiometry 

of the samples, which is shown to be reduced upon reaction as shown in Table 

5-3. This illustrates that the samples are more nitrogen deficient after reaction 

with 25% N2/H2, which could be attributed to the loss of surface NHx species 

upon reaction.  

Table 5-3: Assumed stoichiometries of samples. 
Assumed Stoichiometry 

Sample 
Pre Reaction Post (N2/H2) 

2 “LiMoN1.18” “LiMoN1.13” 

5 “LiMoN1.5” “LiMoN1.32” 

8 “LiMoN1.38” “LiMoN1.13” 

10 “LiMoN1.26” “LiMoN0.96” 

12 “LiMoN1.08” “LiMoN0.78” 

N.B.: Stoichiometry based on the presence of LiMoN2 and Li2O. 

The calculations used to determine the stoichiometries, rely on the presence of 

lithium nitride and lithia only, therefore excluding the possibility of starting 

material remaining in the sample. 

5.3.2 25%/75% Ar/H2 feed gas reactions 

The samples were initially treated with 25% N2/H2 for two hours at 700°C which 

removes any surface oxide from the sample prior to the reaction. After pre-

treatment, the temperature was lowered to 400°C and the feed gas changed to 25% 

Ar/H2. As with 25% N2/H2, the samples all showed an initial relatively sharp 

decrease in conductivity followed by a plateau at 400°C and then after, the 

temperature increase to 500°C, the conductivity decreased again and likewise 

after further temperature rises to 600°C and 700°C.  

This is clearly shown in Figure 5-5 in which the profile has been split into the 

different temperature ranges. 
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Figure 5-5: Reaction profile of Sample 5 under 25% Ar/H2. 
Magenta line = 400°C, Orange line = 500°C, Purple line = 600°C and Green line = 700°C. 

The profile clearly shows the initial decrease in conductivity in the first 30 to 60 

minutes followed by the plateau effect, then after the temperature is increased to 

500°C the conductivity decrease is more rapid. After a further increase in 

temperature to 600°C and then 700°C the decrease in conductivity shows a large 

initial drop followed by a slowing in the rate. However the rate doesn’t level off, 

as was observed at lower temperatures.  

Figure 5-6: Reaction profile of Samples 10 and 12 under 25% Ar/H2. 
Magenta line = 400°C, Orange line = 500°C, Purple line = 600°C and Green line = 700°C. 
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The samples synthesised at different temperatures all showed similar profiles as 

shown in Figure 5-5 and Figure 5-6. The main area of difference is at 700°C 

which shows differences in the profiles depending on the sample. Table 5-4 shows 

that the rates of reactions for the samples are fairly consistent across the samples 

with no major differences in the rates depending on the method of synthesis. 

Table 5-4: Rates of reactions for samples undergoing ammonia synthesis testing with 25% Ar/H2 
feed gas. 

Temperature (°C) 
 Sample 

400 500 600 700 

3 
1.679 x10-4 

1.115 x10-5 
9.308x10-6 

9.855 x10-5 

2.972 x10-5 

1.259 x10-4 

3.891 x10-5 

5 
4.015 x10-5 

1.580 x10-6 
1.259 x10-5 

7.665 x10-5 

9.308 x10-6 

8.213 x10-5 

2.896 x10-5 

10 
3.650 x10-5 

2.404 x10-6 
1.296 x10-5 

6.935 x10-5 

1.527 x10-5 

1.150 x10-4 

3.680 x10-5 

Rate of 

Reaction 

(molh-1g-1) 

12 
8.760 x10-5 

2.920 x10-6 
1.729 x10-5 

6.014 x10-5 

1.705 x10-5 

8.906 x10-5 

5.110 x10-5 

The temperatures have different values relating to the different stages of the reaction process 
(some areas have two rates relating to the initial decrease or plateau stage). 

The reactions are seen to be very temperature dependent and increasing the 

temperature at which the reaction is conducted increases the amount of ammonia 

produced. With no nitrogen present in the feed gas the sample produces ammonia 

with the nitrogen present in the sample and this means that the total amount of 

ammonia which can be produced is limited. 

Table 5-5: Elemental compositions of samples 
Elemental composition 

(Nitrogen wt %) Sample 

Pre Reaction Post (Ar/H2) 

Loading of N in 

Lithium 

molybdenum nitride* 

Assumed 

Stoichiometry 

3 13.04 7.59 46% “LiMoN0.92” 

5 12.54 10.44 63% “LiMoN1.26” 

10 10.58 6.61 40% “LiMoN0.80” 

12 9.00 5.61 34% “LiMoN0.68” 

* Loadings calculated from the weight % of nitrogen present in the sample.  
N.B.: Loadings and stoichiometry based on the presence of LiMoN2 and Li2O. 
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The elemental composition shows that the samples have lost a considerable 

amount of nitrogen as shown in Table 5-5. However this is not reflected in the 

post-reaction XRD studies as the “lithium molybdenum nitride” phase is still 

observed after reaction and the position of the reflections remain unshifted. The 

weight percentage of nitrogen from elemental analysis can be used to calculate the 

assumed stoichiometry of the samples post-reaction. Table 5-6 shows the 

substantial differences between the samples pre- and post-reaction, as expected. 

Table 5-6: Assumed stoichiometry of samples. 
Assumed Stoichiometry 

Sample 
Pre Reaction Post (Ar/H2) 

3 “LiMoN1.56” “LiMoN0.92” 

5 “LiMoN1.5” “LiMoN1.26” 

10 “LiMoN1.26” “LiMoN0.80” 

12 “LiMoN1.08” “LiMoN0.68” 

Therefore another source of nitrogen must be present in the reaction that cannot be 

seen within the XRD pattern. Either it is obscured by other reflections or else it is 

contained within the amorphous background. 

5.3.3 Lithium Nitride Reactions 

With lithia being an impurity present in the reaction, lithium is present in a slight 

excess during the reaction. This could be converted by reaction with ammonia or 

25% N2/H2 to, for example, lithium nitride. Accordingly such lithium nitride 

samples have been examined. 

Ammonia synthesis reactions with both 25% N2/H2 and 25% Ar/H2 were 

conducted so that a direct comparison could be drawn between the lithium 

molybdenum nitride and the lithium nitride samples. 

- 72 - 



0.4g of Li3N (Alfa Aesar) was exposed to air for an hour prior to the reaction. 

This, as with the lithium molybdenum nitride, would be expected to react with air 

and form oxides and, in the case of lithium nitride, amides and imides. The 

sample was initially treated for two hours under 25% N2/H2 gas at 700°C. The 

temperature was then reduced to 400°C and followed as described previously by 

the change in conductivity of sulfuric acid. 

The reaction demonstrated that the sample was able to produce ammonia at 400°C 

for a longer period of time than that possible in the lithium molybdenum nitride 

samples. This prolonged production of ammonia can be clearly seen in Figure 5-7 

in which the conductivity decrease is rapid and constant throughout the reaction. 

The general form of the profile differs from those reported in this chapter. The 

comparatively large initial decrease followed by plateau as seen in the reaction 

with lithium molybdenum nitride was not observed. 
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Figure 5-7: Reaction profile of lithium nitride under 25% N2/H2 at 400°C. 

The constant ammonia production rate for lithium nitride is considerably higher 

than the rate for lithium molybdenum nitride. The rate of 1.445 x10-4 molhr-1g-1 

for the lithium nitride is comparable to that of the lithium molybdenum nitride at 

700°C under 25% Ar/H2 and is close to the mass normalised activity (6.60 x10-4 

molhr-1g-1) for Co3Mo3N reported by Aika and co-workers43,66. The XRD patterns 

(Figure 5-8) show that the pre- and post-reaction samples are very different and 

show how the sample changes from the combination of α- and β-lithium nitride, 

amide, and hydroxide to lithium imide, oxide and hydride after reaction. 
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The presence of the hydroxide and amide prior to reaction is expected due to the 

exposure to air, presence of imide, oxide and hydride after reaction can be 

attributed to the exposure of the sample to air post reaction and also possibly to 

moisture content of the gases used in the reaction. 
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Figure 5-8: XRD patterns of the sample pre and post reaction. 
Magenta pattern = pre reaction, blue line = post reaction 25% N2/H2. 
Pale blue = LiOH, Green = Li3N, Magenta = LiNH2, Orange = Li2NH, Red = LiH, Dark Blue = 
Li2O. 

The reaction with 25% Ar/H2 feed gas produces ammonia at 400°C for a 

considerable amount of time at a constant rate of production. The rate is once 

again comparable with the lithium molybdenum nitride at 700°C but will continue 

producing ammonia for some hours as shown in Figure 5-9. 

300

400

500

600

700

800

900

1000

0 2 4 6 8 10 12 14
Time (Hours)

C
on

du
ct

iv
ity

 (u
S/

cm
)

Figure 5-9: Reaction profile of lithium nitride under 25% Ar/H2. 
Magenta Lines = 400°C, Green Line = 700°C 
N.B. Different flasks of acid were needed to follow the reaction hence the different traces. 
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The rate of the reaction was constant at 400°C for up to 13 hours at which time 

the temperature was increased to 700°C, after which point the reaction appeared 

to end. This sudden cessation in the reaction could be due to the complete 

decomposition of lithium nitride at high temperatures. 

The rate of reaction (shown in Table 5-7) for the different traces illustrates how 

the reaction proceeds with the rate remaining fairly constant at 400°C, averaging 

3.525 x10-4 molhr-1g-1
, and increasing when the temperature was increased to 

700°C. This rate is almost three times as fast as the rate for the lithium nitride 

under 25% N2/H2 (1.445 x10-4 molhr-1g-1); however the exposure to air prior to 

reaction may have been different causing this difference in the rates of reaction for 

the two gas regimes. 
Table 5-7: Rates of reaction for reaction of lithium nitride with 25% Ar/H2. 

Li3N (Figure 5-9) 
 

400°C 700°C 

Rate of 

Reaction 

(molhr-1g-1) 

3.728 x10-4 

3.784 x10-4 

3.596 x10-4 

3.159 x10-4 

2.832 x10-4 

1.275 x10-3 

1.059 x10-4 

The XRD patterns show how the samples once again change from a mixture of the 

α- and β-Li3N and the lithium amide and some hydroxide to the hydride and oxide 

and imide post-reaction. This is shown in Figure 5-10. 
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Figure 5-10: XRD patterns of the sample pre and post reaction. 
Magenta pattern = pre reaction, blue line = post reaction 25% Ar/H2. 
Pale blue = LiOH, Green = Li3N, Magenta = LiNH2, Orange = Li2NH, Red = LiH, Dark Blue = 
Li2O. 

The conversion to the imide and oxide is observed again in the post-reaction 

samples under (25% Ar/H2). The reactions seem to be consistent with both feed 

gas regimes. The formation of the ammonia is therefore not dependent on the 

presence of nitrogen in the feed gases. 

Therefore with the presence of N2(g) ruled out the role of H2(g) in the reaction was 

investigated. A reaction using pure Ar(g) was used with no initial pre-treatment 

under 25% N2/H2, thus avoiding any form involvement from either N2 or H2 gases 

in the reaction. The reaction followed the same heating regime – with an initial 

two hours at 700°C, before the temperature was reduced to 400°C and the rate of 

conductivity change was measured.  

Figure 5-11 shows this profile under pure argon gas indicating a similar reaction 

profile to that indicated in Figure 5-7. The comparison of the rates of reaction 

under pure argon with the 25% Ar/H2, shows how the rates at 400°C are 

comparable (1.108 x10-4molhr-1g-1 compared with 3.525x10-4 molhr-1g-1 

respectively). The comparisons between the rates can be seen in Table 5-8 and 

Table 5-9 and Table 5-10 at the end of this chapter. 
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Figure 5-11: Reaction profile of Li3N under Ar at 400°C. 

The XRD pattern of the post reaction sample (Figure 5-12) was also similar with 

lithium hydride and oxide being present. This demonstrates that the process is 

analogous to the samples reacted under 25% Ar/H2, thus assumed route of 

ammonia generation is through the decomposition of lithium amide. There is also 

the possibility that moisture in the feed gases and/or atmosphere causes the 

formation of lithium oxide during the reaction. 
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Figure 5-12: XRD pattern of post reaction Li3N with Ar at 400°C. 

Hu and Ruckenstein67 had previously reported that in a reaction under He(g), 

lithium amide would form ammonia. This was shown to occur via the 

decomposition of the amide. 

2 2 32LiNH Li NH + NH→
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Table 5-8: Rates of reactions for samples undergoing ammonia synthesis testing with 25% N2/H2 
feed gas. 

Rate of Reaction (molh-1g-1) 
Sample 

Initial Plateau 

1 3.650 x10-5 6.722 x10-6 

2 1.460 x10-5 5.628 x10-6 

5 2.920 x10-5 5.831 x10-6 

8 2.190 x10-5 6.810 x10-6 3.650 x10-6 

10 2.555 x10-5 6.990 x10-6 

12 8.030 x10-5 1.069 x10-5 4.674 x10-7 

 
 
Table 5-9: Rates of reactions for samples undergoing ammonia synthesis testing with 25% Ar/H2 
feed gas. 

Temperature (°C) 
 Sample 

400 500 600 700 

3 
1.679 x10-4 

1.115 x10-5 
9.308x10-6 

9.855 x10-5 

2.972 x10-5 

1.259 x10-4 

3.891 x10-5 

5 
4.015 x10-5 

1.580 x10-6 
1.259 x10-5 

7.665 x10-5 

9.308 x10-6 

8.213 x10-5 

2.896 x10-5 

10 
3.650 x10-5 

2.404 x10-6 
1.296 x10-5 

6.935 x10-5 

1.527 x10-5 

1.150 x10-4 

3.680 x10-5 

Rate of 

Reaction 

(molh-1g-1) 

12 
8.760 x10-5 

2.920 x10-6 
1.729 x10-5 

6.014 x10-5 

1.705 x10-5 

8.906 x10-5 

5.110 x10-5 

 
 
Table 5-10: Rates of reaction for reaction of lithium nitride with 25% Ar/H2. 

Li3N (Figure 5-9) 
 

400°C 700°C 

Rate of Reaction 

(molhr-1g-1) 

3.728 x10-4 

3.784 x10-4 

3.596 x10-4 

3.159 x10-4 

2.832 x10-4 

1.275 x10-3 

1.059 x10-4 
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6 Conclusion 

The precursor, lithium molybdate (Li2MoO4), was shown to be relatively easily 

synthesised using two methods – a room temperature51 and a high temperature18 

synthetic route. Both routes gave very pure samples of the R-3 polymorph, as 

confirmed by X-ray diffraction and scanning electron microscopy. The surface 

area of the samples was however very low with an average surface area of 5m2g-1. 

Ammonolysis of the precursor has been shown to form nitrides with some 

impurities present.  

The samples were tested as ammonia synthesis catalysts by reaction with 25% 

N2/H2 gas and 25% Ar/H2 gas. The latter was used to determine the potential 

reactivity of lattice nitrogen. A relatively large amount of ammonia was produced 

in the first 30-60 minutes of reaction which was attributed to desorption of surface 

NHx species. This was followed by a period of steady state reaction. 

The reactions with 25% Ar/H2 showed that the samples were active and would 

produce ammonia in the absence of nitrogen in the feed gas. Increasing the 

temperature highlighted that the rate of reaction is very temperature dependent. 

Post-reaction X-ray diffraction however indicated no change in the position of the 

reflections for LiMoN2, thus confirming the presence of an active phase which is 

not seen by XRD. 

Lithium nitride was seen as a possible source of the impurity due to the presence 

of lithium in excess during the formation of the nitride. Ammonia synthesis 

reactions, under both 25% N2/H2 and 25% Ar/H2, were undertaken and the rates of 

reaction for both feed gases were similar. This led to the conclusion that nitrogen 

was not required in the feed gas to produce ammonia. The requirement of 

hydrogen in the feed gas was investigated through a reaction under pure Ar(g). The 

results were once again comparable to those previously found with the 25% N2/H2 

and Ar/H2. This therefore shows that the Li3N requires no external source of 

nitrogen or hydrogen in the feed gas to form ammonia. Hence, it can be assumed 

that the evolution of ammonia is through the direct decomposition of lithium 

amide. 
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8 Supplementary Information 

This information can be found on the CD attached to the cover of the thesis. 

Information includes: 

GSAS refinement data for: 

 Sample 8 (Li2MoO4) 

 Sample 10 (Li2MoO4) 

 Sample 12 (Li2MoO4) 

 Sample 8 (LiMoN2) 

 Sample 10 (LiMoN2) 

 Sample 11 (LiMoN2) 

 Sample 13 (LiMoN2) 
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