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Abstract

The field of Computational Neuroscience is where neuroscience andutatopal mod-
elling merge together. It is an ever-emerging area of research whetevitleof biological
modelling can range from small-scale cellular models, to the larger netwdekracaels. This
MSc Thesis will detail the research carried out when looking at a smallanktef two neu-
rons. These neurons have been modelled with a high level of detail, withtémion of using
it to study the phenomenon of Spike-Timing-Dependent Plasticity (or STE#tke-Timing-
Dependent Plasticity is the occurrence of either a strengthening or niagki@ connection
between two neurons, depending on the temporal order of stimulation retixneza. A major
part of the work detailed is the focus on what mechanisms are resporwibie$e changes in
plasticity, with the goal of representing the mechanisms in a single learningTiaéeresults
found can be directly compared to data previously seen by scientists witkedvon in-vitro
experiments. The research then goes on to look at further applicatighe afodel, in par-
ticular, looking at certain deficits seen in people with Schizophrenia. We yntidifmodel to
include these cellular impairments, then observe how this affects the st&8itlaRIcurve and

thus affects the strengthening/weakening between the two neurons.
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1 Introduction

Computational Neuroscience is a field which has developedrexgially within the past twenty
years. Throughout the past decade it has also become anlscehas received serious credibility
and collaboration from the neuroscience community. A lgvge of its fruition is due to the
increase in processing power that computers now have,ialidier more finer detailed models and
simulations to be realised, while reducing the run-timeunexgl to simulate them. With the extra
power and speed available, computational neuroscieriigsts a greater freedom when creating
neuron or brain models from the detailed cellular level ®ldrger-scale network-level. Examples
of network-level models are the scientists who have stuttiediisual cortex, with very successful
results in replicating these processes [1, 2].

There has been a lot of focus on computational neurosdiemtsrking alongside biologists in
creating realistic cell and network models, in the hope stitg/hypothesising theories or produc-
ing potential pharmacological cures for neurological digos.

One of the first types of realistic neuron models was develdpescientist Wilfrid Rall, who
used “Cable Theory” to come up with a multicompartmental nhotihe neuron with dendrites and
axon [3, 4, 5, 6]. In more recent times, a high-profile projguderway is the “Blue Brain project”
[7] managed under the collaboration of IBM and the Ecole Ralyhique Federale de Lausanne,
who, using the Blue Gene supercomputer, are currently mindellbiophysically realistic cortical

column.

1.1 Research Focus

The research focus over the past two years has centered @tuthe of synaptic plasticity in a
microcircuit of two neurons. A brief definition of plastigits to characterise it as the strength in
connection between the two synaptic terminals (end poaigheuron. This definition of plasticity
will be further elaborated on in Section 7. The microciraonsists of a pyramidal neuron with

attached interneuron. Put simply, this circuit consistaroéxcitatory (pyramidal) cell innverating



a smaller (interneuron) cell which in turn performs a nagafeedback, or inhibition, onto the
excitatory cell. The pyramidal neuron simply gets its nanoenfits cell body (also known as the
soma) resembling the shape of a pyramid. Interneurons asgeaof smaller neuron that project
onto larger neurons like pyramidal cells and are generaliybitory in nature, by reducing the
“excitatory” activity of these pyramidal neurons. What ig tieason for looking at a circuit of two
neurons? Looking at the ability to make neural connectiarteése microcircuits (also known as
plasticity) is of great interest, in particular when compgrthese results with similar experiments

carried out in-vivo and in-vitro.

1.2 Abstraction level of model

One main objective is to take this small network of two nest@ud the detail of ionic channels and
certain receptors which interact during cell firing, themalep theories on how these mechanisms
actually work during processes such as learning. Thus,abearch is not focused on the brain’s
higher-level behaviourism of learning itself, but inste#éds focused around thkevel of detail
required or comprised in developing the cellular model ef tleuron, in particular hypothesising
which cellular mechanisms play key roles in synaptic ptastithe phenomenon associated with
memory and learning.

There are two other major considerations which have to briateal before a model can be
constructed, and both are of equal importance. The firstdglohg what exactly should be mod-
elled and what can safely be ignored. To do this, we have to d&dhe physiology of the neuron
and observe how these properties/characteristics shewdgdressed computationally. The second,
which will be discussed in more detail in consequent chaptemwhat approach to computational
modelling is most suitable for the research, i.e is it a \ealption to use a software package such

as the GENESIS [8] package used for this research?



1.3 GENESIS - What is it?

For this research, the software package “GENESIS” [8] wasdael on as suitable to model the
cortical microcircuit. GENESIS is an open-source softwaaekage, with its acronym standing for
GEneral NEural SImulation System. The developers statettisea: “General purpose simulation

platform developed to support simulation of neural systeanging from subcellular components
and biochemical reactions to complex models of single nesjrsimulations of large networks, and
systems-level models”. The GENESIS programming languagmilar to C and allows modifi-

cation of the software if required for more complex modefghé user wishes to add code to the
simulator, this can be done in C. Recompiling of the source edidess the new functions to then

become part of the GENESIS structure. For the purpose o&relsealemands, we have written
a new object which satisfactorily implements learning psses. Fragments of this code will be
shown in later sections. The software’s hierarchical stmecwill also be discussed in the following
sections. Before any of the programming decisions can besksd, we have to firstly look at the

physiology of the neuron to get a better understanding at@utneurons behave.

2 Physiology of the Neuron

To be capable of sufficiently modelling the neuron, we looktaphysiology, and in particular,
the characteristics of the neuronal membrane. In mammascéntral nervous system (CNS)
consists of the brain and spinal cord and there are approsiyn®0 billion neurons present. Each
cell then connects through to tens of thousands of othes.c@h the next page is a diagram of
a typical neuron which can be found in the central nervousesys It is appropriate to note that
interneurons are similar to the figure below, but stereasify have short or no axon part to them
and are generally inhibitory by nature.
A typical neuron, as seen in Fig. 1, consists of a soma, axot &xon hillock which joins

the soma to the axon), neuronal membrane separating thidewofsthe cell from the inside and

dendrites which transmit signals to nearby neurons. Theageralso known as theell bodyand
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Dendrite

Axon
terminal

Myelin sheath

Figure 1:Sketch of typical neuron. The neuron is made up of the soma (or cell) baxiyn and dendrites.
The neuron has a membrane which separates the fluid inside the cell franttide. The dendrites are
branch-like and are the point (in many neurons) where electrical sigmalsransmitted to. This signal
is propagated down the neuronal body towards the axon, which thesntitasnacross the cell to the next
dendrite.

is generally spherical in shape. Inside the soma is a fluiéaaytosol; the clear internal fluid
of the cell containing proteins necessary for synapticsmaesion amongst other important roles.
Inside the soma is the cell-nucleus which is made up of DNAetues and proteins. The axon
part of the neuron is where signals are transmitted froméHdoody, down through the axon from
the “terminal button” and across the “synaptic cleft” - thgase between the presynaptic neuron
and postsynaptic neuron. The axon itself is covered by aimghkath, which acts as an insulator
to the axon, keeping the electrical impulses generated thentell body from travelling outward
before reaching the axon terminal and across to the denafriémother neuron. Dendrites are

branch-like in nature and are where the presynaptic sigaraldransmitted to, with some of the
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transmitters being sent back to the presynapse (a phenonkewwavn as “re-uptake”). This is of
course a simplified explanation of what happens during syoapnsmission, and this process will

be further clarified later in the report.

2.1 The “Passive” neuronal membrane

The passive membrane of a neuron separates the inside @ltfi@m the outside. When we look
at circuit equivalents, we will see it can be successfulpresented by a simple RC circuit.

Firstly, it is important to look at the components which thembrane is physiologically made
from, then express its electrical properties in a simpleusiformat. This allows a clearer approach
to be used when constructing a circuit equivalent model efcills. Thephospholipid bilayeis
what the cell membrane is primarily composed of. It consi$ta layer of lipid molecules made
up from polar heads and non-polar fatty-acid tails. Thetefece each other with the polar heads
pointing outwards, thus meaning the bilayer is able to sgpahe intracellular and extracellular

fluid.

| Phospholipid
Bilayer

Intracellular

Figure 2: Phospoholipid Bilayer. The phospholipid bilayer is how the neuronal memstsaparates the
intracellular fluid from the extracellular. Inserted into the membrane areipsok@own as ion-channels
which, when open, can allow the influx and outflux of ions such as potassig sodium.

Inserted into the lipid bilayer are proteins known as ioth@nnels and receptors. These allow
ions such as sodium and potassium to flow in and out of the mamelursing gate-like mechanisms.

When the cell is at rest, the sodium and potassium ions ins&ledll (intracellularly) sit at a ratio
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of a low concentration oiVa™ ions to a high concentration @& ions. Outside the cell, or extra-
cellularly, there is a low concentration of potassium iamg@mparison to a higher concentration
of sodium (Va™).

The phospholipid bilayer acts as a membrane capacitandandact has a very high capac-
itance due to being almost impermeable to ions. This is vinéhexception of those ions moving
through gated channels under certain “permissive” comiti The membrane capacitan€g,, is
the measurement of how much charge has to be spread acrossititgane for a voltage potential,
Vi, to build up Q = CV,,,).

When the potential difference between the extracellulatagal changes with respect to the
intracellular voltage, a current will begin to flow across ttapacitancel.. This is calculated by

differentiating@) = CV,,, and is as follows:

Vi (1)

]:
Ccdt

(1)

As mentioned, a passive membrane can be represented by amdR{E (€iigure 3). This is true if
assuming the neuron is of a small spherical space with dexr\ét and the total membrane area
given byrd?[9]. The total capacitanc€' is given by multiplying the membrane capacitar¢g
by the membrane area. The current through the resistgneegiven by subtracting the resting

voltage potential from the membrane potential and dividigids:

Vm - ‘/Tes
Ip= et (2)

When applying a fixed current such as the current injectioa,flembrane capacitancg,
forces a limit on how quickly the membrane potentig] can change. Thus for larger membrane
capacitances, a slower change in membrane voltage is seenglhis passive state, it is important
to note that there is no charge moving across the intraeelloaémbrane. As the membrane voltage
changes, a change in charge occurs allowing current to fipsesented by Eq. 1. The current itself

never flows across the capacitance and the charge is distilibaross both sides of the membrane.
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The extremely high resistivity of the lipid bilayer meansttlit prevents any large amounts of
charge from passing across the cell membrane. This membgaistivity is roughly around one
billion times higher than that of the intracellular fluid,toplasm. In terms of the circuit discussed
so far, this means the membrane can be adequately représsritee capacitancé;,,,.

Proteins which are embedded in the cell membrane act ass™gatéhe phospholipid bilayer.
These gates allow ions to pass in and out of the membrane iticadid allowing the transmission
of information/signals. The proteins can be ion channadsyotransmitters, receptors, pumps and
enzymes. For the purpose of this research, we only focusroohannels (also known as pores)
and certain receptors which are integral in synaptic egti

For further simplicity, we describe the flow of current thgbuthe ionic channels by using a
simple linear resistance? (Eg. 2). As we also have to consider the membrane restingnpiaite
we have a simple circuit that consists@f R andV,..,; which describes the “passive” behaviour of
the membrane. This membrane resistance is usually knowredspecific membrane resistance”,
R,,, and has unit§)- cm?. The resistancel{) can be calculated by dividing,, by the membrane
area in question. The passive conductance per unit arearmbraee is known as the “specific
leak conductance';;, = ﬁ, and has unit$/ cm?. We can look at these components briefly in a
simple RC circuit (Fig. 3).

If initial conditions are applied to Eq.1, then the voltaggectory can be modelled. By assum-
ing that the membrane potential at time t = 0 is equal to thiEngepotential when there is no input
(Zin; =0, V,,(t=0) =V,s), we can say tha—dthTm = (. This means that when the cell is at rest and
IS receiving no input from a current pulse, the cell will dooe to remain at/..;.

Applying a step currenly = Iz+ I with constant amplitude att =0, Eq.1 can then be rewritten

as:

Vin(t) = voe = + vy 3)

wherev, andv; depend on the initial conditions. Applying a current allavs voltage to change

justenough to cause a potential difference across the memhwéheut causing it to surpass the

14



Iinj <> — Cm

rest

Figure 3: Simplified circuit diagram of the passive neuronal membrane. The capeejtd, represents
the high membrane resistance from the phospholpid bilayer, with the paeslisiancez being the passive
membrane resistancg,.; the resting membrane potential, ahg; the input into the circuit.

“threshold voltage”, where spiking would occur.

By substituting Eq. 3 into Eqg. 1 and cancelling out any dupdicariables yields:
U1 = ‘/rest + RIO (4)

We can finduy by applying the initial conditiotV,,,(t = 0) = vy + v1 = Vyest- Vi €an then be
calculated by setting the steady-state voltage potenititileocell in response to the current when

Voo = RIj:

Vm(t) - Vvoo(1 - G_Tt> + ‘/;"est (5)

This means that the membrane potentigl deviates away fronV,.,, at an exponential rate,
with time constant-. How quickly it actually diverges depends on the time camsta= RC.
Thus, the smaller or larger the capacitance, then the sneallarger the current required to charge
it, respectively.

It has been mentioned that a constant current source careddeagsan excitatory input to the

neuron to allow changes in the behaviour of the membranag®ltWhen observing real neurons,
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it is seen that inputs into the neuron come from excitatiombibition of the membrane voltage
through receptors and ion channels embedded on the cell membThe next section describes

some inputs to the cell which cause this rise or decline in brare potential.

3 Synaptic input into a neuron

For any activity to be initiated in a neuron, there has tolfirse some input to the presynaptic
side of the cell to invoke either an excitatory responses (mismembrane voltage), or inhibitory
response (fall in membrane voltage) in the postsynapticameu

The communication of neurons through “point-to-point” tawt, when the end points (ter-
minal9 meet, is known asynaptic transmission

A typical synaptic connection is made up from the conneclietween a presynaptic termi-
nal (usually the axon terminal) and a postsynaptic termzdted either on the dendrite, or cell
body (soma), however, there are occasions where the costaatdendrite-dendrite or axon-axon

connections.

3.1 Characteristics of synaptic transmission

The characteristics of synaptic transmission can be spbtthree stages between the presynaptic
terminal and postsynaptic neuron, as seen in Fig.4.

The process of synaptic transmission is started when aornggtitential travels down the axon
to the presynaptic terminal. At this point, calcium ions flowo the presynapse. This causes
“vesicles” (stores of neurotransmitters) to move downwadd fuse to the membrane where the
neurotransmitters are released. The neurotransmittemsl| tacross the gap separating the pre- and
postsynaptic membrane called the “synaptic cleft”. Theroegansmitters then diffuse across this
cleft (travelling from a higher concentration level to a Emyvand bind to the receptors on the post-
synapse. For example, these neurotransmitters could disodium channels and allow an influx

of sodium to the postsynaptic cell. As sodium ions are pesiticharged, the associated positive
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Figure 4:Diagram of Stages in Synaptic Transmission. Diagram is redrawn frosellasd Kandel's paper
on synaptic transmission[10]. (1). The action potential propagatestitrerasoma to the axon terminal. (2).
Calcium channels on the axon terminal open to alloCans to flow inwards and fuse to the membrane,
causing neurotrasmitters to be released across to the postsynaptic. r{8urdinese neurotransmitters bind
to the postsynaptic neuron, causing ion channels to open ahdaXa to flow into the cell.

current carried by the ions (known as an excitatory postsym&urrent, or, EPSC) would lead
to a rise in the membrane potential for around 1ms known axeitatory postsynaptic potential
(EPSP).

The interaction between different neurotransmitters aeeptors on the postsynaptic terminal
causes many diverse actions in synaptic transmission sutfast synaptic transmission”. Fast
synaptic transmission is the quick onset of associatedag®rcy or inhibitory postsynaptic currents,
usually occurring at times' 1 ms, with their durations lasting less than 20 ms.

The majority of “fast synaptic transmission” is governeddmgino acids. These acids can be
split into those which are excitatory in nature (causingddiag to the generation of an action po-
tential), and those which are inhibitory decrease the pdggiof an action potential to be elicited.

The main excitatory neurotransmitters which bind to pasagyic receptors are known glsitamate

andaspartateand the inhibitory neurotransmitters areamino-butyric acid (GABA) anglycine

17



3.1.1 Receiving Input - Postynaptic Receptors

Postsynaptic receptors can be split into two different $ypehe first are those which are directly
coupled with ion channels, known as “ionotropic receptor8inding of a neurotransmitter to
an ionotropic receptor leads to the fast opening of the dnibm channels. Examples of these
ionotropic receptors are the GABAeceptor, the NMDA receptor (N-Methyl-D-aspartic acidjlan
non-NMDA receptors such as AMPAx{amino-3-hydroxy-5-methyl-4-isoxezole propionate) re-
ceptors. All of these receptors will be further elaboratedtooughout this section. The second
type of receptor is known as a “metabotropic receptor”. Witk metabotropic receptor, binding
of a neurotransmitter activates a “second messenger” suchle@um ions. Once the second mes-
senger diffuses to its destined site “of action”, it bindstparticular ion channel to modulate the
properties of the channel. The special properties of cadonill also be furthered upon in later

sections.

3.2 Excitatory and Inhibitory Currents

Activation of a synapse that is excitatory results in a syicaqurrent,,,, which depolarises the
postsynaptic membrane. This current causes a momentarinrimembrane potential known as
an EPSP. However, activation of an inhibitory synapse ctreecause the membrane potential
to remain around the membrane potential,;, or cause awoutwardcurrent to flow. This outward
current would produce a momentary dip in voltage that hyplanses the cell. This dip is known as
an inhibitory postsynaptic potential, or IPSP. Put simabtjvation of an excitatory synapse results
in a positive current injectiomto the cell, whereas activation of an inhibitory synapse adlole

outward flow of current from the cell, causing an IPSP.

3.3 Excitatory Synaptic Input

The majority of fast excitatory neurotransmitters foun¢hia central nervous system of vertebrates

are glutamate. The application of glutamate or aspartateeonons causes fast depolarisation of
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the postsynaptic cell. There are two distinct classes oitawey glutamate synapses known as
NMDA and non-NMDA synapses. Those non-NMDA synapses binagonists such as AMPA.
The other glutamate receptor called an NMDA receptor, sedifterently from the former as will
be explained shortly. What now will be described is the preceslergone when an action potential
travels down towards the presynaptic terminal releasintpgiate across the synaptic cleft toward

a postsynaptic AMPA receptor.

3.3.1 AMPA Receptor

During an action potential, the excitatory amino-acid t@foate, is released from the presynaptic
terminal. When the glutamate has diffused across the synelpft and bound to the postsynaptic
AMPA receptor, its associated channel opens, allowingusndind potassium to flow across the
membrane. At non-NMDA receptors such as ionotropic AMPAepors, the postsynaptic chan-
nels activate very quickly. The peak value of the synapticasu usually occurs very quickly(
1ms) with an exponential decay with time constant rangirtgvéen 0.5 ms and 3 msec. Wilfrid
Rall described the time course of the synaptic conductantteedAMPA receptor as an alpha func-
tion [11]. This alpha function is used to describe a “smoaibriductance change, rather than some
approximations which use a rectangular pulse. It is alsd usthe GENESIS software (discussed

in later sections) and is described as follows:

t _
Gsyn (t) = gmaz;e(l ttr) (6)
p

The function increases transiently to a maximum condu€tgpg, att = t,. After the function
peaks at its maximum, the conductangg,(t) has a slow decline back to zero. Fig.5 shows the
smooth conductance change seen when ions pass through AddBptors compared to the slower

conductance change though NMDA receptors.
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Figure 5: Conductance change comparison between AMPA/GABA receptors arldANMceptors. The
single alpha function characterises the fast synaptic conductancgectitam the AMPA receptors, whereas
the NMDA receptor has a slower rise and decay time described by a da-etponential function.

3.3.2 NMDA Receptor

Unlike the non-NMDA receptor, the conductance change aasatwith the NMDA receptor is
dependent on the membrane potential voltage,

If the cell membrane of the postsynaptic neuron is at restvghgamate is bound to the NMDA
receptor, the receptor opens, but is also blocked by magmasns which sit in front of the NMDA
receptor. As the postsynaptic membrane becomes depdlatiiemagnesium ions move outward
from the receptor and the NMDA receptor becomes permealdedmm, potassium and calcium

ions, as visualised in Fig.6.

Extracellular

Phospholipid
Bilayer

Figure 6:lons travelling through NMDA-receptor once magnesium block is lifted.

The NMDA conductance has a significantly slower time-coumseomparison to the AMPA

conductance. This is a result of the receptor's dependendbeocell membrane potential,,V
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as well as being dependent on magnesium, which obstructdNi2A-R until the cell becomes
depolarised. This then allows the receptor to become pérlméaNa, K+ and C4" ions.

The voltage-dependent NMDA conductangg,pa(t), is calculated from the following [9]:

=t —t

el —em2

7
1+ n[Mg*t]e=7Vm )

gnmpa(t) =g

With rise and decay timeg = 2 ms,7, = 100 ms and maximal conductange, The Magnesium-
block parameters are:= 0.06/mV,, = 0.33/mM and magnesium concentration, M= 2mM.
This voltage-dependent conductange,;pa(t), increases as the cell is depolarised.
These are the main excitatory receptors which are used imitecircuit model for the re-
search undertaken. We now look at inhibitory receptorsainiqular GABA receptors, which are

responsible for causing inhibition, and sometimes undecigpcircumstances, cause excitation.

3.4 Inhibitory Synaptic Input - GABA Receptors

GABA receptors are usually located in the membrane of exriganeurons and receive innerva-
tion from inhibitory neurons such as interneurons. Theeetan types of postsynaptic receptors
associated with GABA-releasing terminals, called GABand GABAg receptors. Both act dif-
ferently from each other, with the common factor being thathlbind GABA. For the purpose of
this report and model to date, we only look at the GAB#&ceptor. Like the AMPA receptor, the
GABA 4 receptor igonotropic. The result of GABA binding to the receptor is the openingldbe
ride channels. Chloride ions are generally present insideoatside of the cell, with the majority
concentrated on the outside. When the chloride channels agéw of negatively charged chlo-
ride ions move into the cell causing a change in conductanice seen. The change in postsynaptic
conductance from the influx of the negatively charged iosssivery rapidly <1ms), and decays
within 10-20ms. Thus, the conductance change can be appated again by Rall’s single-pool
alpha exponential model.

A characteristic which separates the GABAeceptor from its excitatory NMDA and non-
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NMDA counterparts is that the location of the GABAeceptor can be found on the soma of the
neuron, as opposed to the dendrite or axon.

It was found by Aihara [12] and also discussed by Edward O’ MEI3] that fast GABAergic
transmission onto other cells can cause a phenomenon kreoghanting inhibition” [13]. GABA
receptors are connected to chloride channels)@hich have a reversal potential near to that of
the resting membrane potential of the pyramidal cEl;( ~ E,.; ~ —65mV’). When the Ct
channels are activated they cause brief, but significaatgés to the membrane potentig), re-
sulting in large increases in conductances leading on tgeheration of an inhibitory postsynaptic
potential. This is the process of shunting inhibition. Télminting inhibition is of great interest,
particularly when observing what effect this inhibitionshan plasticity in the small microcircuit
model.

Now we have an idea of what types of receptors allow synappatito the neuron, we can
then look at what happens when there is repeated stimulatitwe inputs of a neuron, which result
in the generation of action potentials and begin the prooésynaptic transmission leading to

plasticity changes.

4 The Action Potential

In neurophysiology, an action potential is also known as eVe impulse”, or “spike”, and is
usually one or more short voltage pulses which propagatend@ands from a cell's membrane.
They are also generated in the nerve fibres of cells comtgpitiuscular function, but we are only
interested in action potentials generated from the neustifbody and travel down the axon. When
a cell is at rest, the voltage inside is negative and sitsaqmately between -65mV and -70mV
depending on the type of cell. The action potential can bedghbof as a brief reversal of the
resting membrane potential when the inside of the cell besgpositively charged. This is known
asdepolarisation

Figure 7 shows how a generalised action potential lookshaste can vary slightly in different
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Figure 7: Diagram of Stages in Action Potential generation. (1). Once the thresh@gcdation has
been reached (-65mV), sodium channels open allowing the positivelgeth&’a™ ions to enter. At the
same time, potassium channels open, allowing the negatively chaigeadns to leave the cell, driving the
membrane potential close to the equilibrium potential¥or ions. (2). After 1ms when the voltage is at its
peak, theNa™* channels begin to close. Potassium ions leave the cell and the membrane i®idaigen
down towards the equilibrium potential féi * ions. (3). As the membrane potential is driven down towards
the resting potential, it undershoots towards e equilibrium potential. The potassium channels close
and any excess potassium is diffused away.

cell types in vertebrates and invertebrates. The first gadhnoaction potential is known as the “ris-
ing phase” and is characterised by a quick, steep depdiansa the cell membrane until it reaches
around +40mV (equilibrium potential for sodium). The netetgge of the action potential, where the
voltage rises above 0V and rushes towards +40mV, is knowmeg'®®vershoot”. After this we have

a repolarisation of the cell as it is driven back negativelydrds the resting potential for potassium
(=~ -80mV), and actually becomes more negative than the cdlhgepotential itself. This part
of the action potential is known as the “falling phase”. As ffotential is driven to a value more
negative than the resting potential, it is known as the fafigerpolarisation” or “undershoot” for
short. Due to a process from the “sodium-potassium” pum#t@nce of sodium/potassium ions
Is restored intracellularly and extracellularly, by thelkeange of 3 sodium ions inwards for every 2
outwards. This allows the membrane potential to returnstoeisting potential of -65 millivolts.

Usually this process lasts around 2 ms, and during this Ipgberisation there is a period known

as the “absolute refractory period”, where it is physicaitypossible for another action potential to
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be invoked due to the sodium channels remaining in an irastate. When we go on to look at
the more detailed Hodgkin and Huxley model, the ionic preessf the action potential will be
explained in more detail.

Firstly, we begin by implementing a simple spiking (the io&tion of action potentials) model
for which we can add in realistic synaptic inputs and ioniogassses to. We will use a “leaky
integrate and fire” model. Viewed as a simplistic model by yarnwas recently investigated by
Jolivet et al [14] that in fact the integrate and fire model \waghly accurate in modelling spike

trains seen in real neurons.

5 The Leaky Integrate and Fire model

The integrate and fire model originates from Stein and otfi&ss 16], basing their work on a
spiking cell model by Lapicque at the beginning of the tweithticentury [17, 18]. The reason
for its popularity is that it manages to successfully reenégwo important characteristics of the
spiking neuron. The first is the integrating nature of thespa&s subthreshold “domain” when the
cell is resting, which integrates any excitatory or intebytinputs to the cell. The second property
is the models ability to produce spiking once the thresholthge has been reached. The integrate
and fire model’s can come in many varieties, with the most lwedlwn being the perfectintegrate
and fire model” and theléakyintegrate and fire model”.

The perfect integrate and fire model can be represented ble aapacitor, which integrates
any charge received by synaptic inputs with a set voltagesttoid for spiking. Opposed to the
perfect model is the leaky integrate and fire model, whichthasaddition of a resistance, to
include any leakage currents through the cell membranésdtmaodels the decay of the membrane
potential after spiking effectively.

If using a simple, sole, capacitor, then any input curreatdincuit receives will be summated

linearly:
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av(t) _
O = 1(1) (8)

Equation 8 determines the subthreshold time course fordliie membrane potential, if initial
conditions are applied. When the membrane potential redbheshold);;,, a spike is initiated and
the charge built up on the capacitance is “shunted” backrno lzg a switch. In the cell membrane
this is done by various ionic conductances flowing inwards @amwards of the cell, which shall
be discussed in the Hodgkin-Huxley model section. It carele® $rom this equation that the firing
rate is linearly related to the input current, as the outpuidsed on the integration of the input
current,/(t).

However, when referring back to Section 2 detailing the passeuronal membrane, the leaky
integrate and fire model (Fig. 8) allows for a more realiséhdwiour by introducing théak

resistanceR. The leak resistance being the conductance/resistanaiéimgdrom ions flowing in

- Vv T 23(t- 1)

|

Figure 8:Diagram of Leaky-Integrate and Fire circuit.

and out the membrane during the cell’s resting potential. riRieqy Eq.8 with the inclusion of the

leak resistance is then:

V() V()

CT+ 7 =1(t) 9

If we multiply this equation by then we can introduce the membrane time constant RC.

We then get:

Tm — —V(t) + RI(t) (10)



We know from the previous section that the subthresholdageltis dependent on the input
current, I(t), with respect to the time constant= RC (Equation 5). The time frame of the
membrane potential responding to a step of constant cureanaining on from time t=0, is solved

below by setting t to zero:
V() =IR(1—e7 )+ V(t=0)e7 (11)

The membrane potential then charges upwards at an expahetg to its stationary maximum

valueV = IR. Looking at Fig.9, we can see the membrane voltage in regpttna current

injection.
Ipulse Rm
0.63 | s Rin- - - - vV
- m
0 5 10 15 20 25 30 35 40 t(ms)
Ipulse_ .
Tm

Figure 9:\oltage response to current pulse. Voltage increases until it reachesdtsiama, 7,,,,;sc Ry,

The leaky integrator model will only remain true to Eq.11voftage values beneath the thresh-
old, V. This is due to the voltage being reset to zero once the tbieg$br reaching spiking has
been met.

The threshold current required for an action potential is:

"
Iy, = ??h (12)

For any current/, which passes the threshalg, an output impulse will be generated at time
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Tin, such thaf R(1 — e th) =V, remains true. By rearranging this to solve 9y, the time to

see a voltage spike can be calculated as:
Vin

Ty = —rin(1 - 73) (13)

If we presume that the current input is still present whenvibieage is reset after an impulse,
the membrane will once again charge towards the membraeshibid and trigger another spike at
time T}, + t,.;. L. iS known as the refractory period, and is the time taken betvike voltage

resetting to zero and restarting the process of charging.i¥lshown diagrammatically in Fig.10.

T Tinttes
V(t)
0 20 40 60 80 100 t(ms)
I(t)— . . . . —
0 20 40 60 80 100  t(ms)

Figure 10:Spiking of LIF circuit during current pulse. The membrane voltage astgwards its mem-
brane threshold which evokes another spike at flipet-t,..;. The time taken between the voltage dropping
back to zero and charging again is known as the refractory petiod,

Now that we have an idea of how, theoretically, spiking nesrcan be modelled, we progress
to looking at which biological processes take place for theegation of spikes. By introducing the
Hodgkin and Huxley parameters to the model, we can then jimeate the influx and outflux of

ions which determine the membrane voltage once a curresttion has been applied.
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6 Hodgkin and Huxley model

Hodgkin and Huxley are well-known names in the field of neai@sce due to their groundbreaking
work to describe ionic processes and voltage dependenuctarttes during an action potential,
which they studied on a giant squid axon [19, 20, 21, 22]. &lsadies lay the foundations of
many modelling techniques such as compartmental moddRBjg However, as we will discover
further on, only describing the potassium and sodium cotathees is not sufficient for the depth
of detail required for the model, and other conductances tabe taken into consideration. Part
of Hodgkin and Huxley’s work was to formulate equations\alltg the mathematical description
of ionic processes seen during an action potential. To wtaled what this exactly means, it is
now necessary to look at the action potential more in-deptibserve what takes place inside and

outside the cell membrane.

6.0.1 Generation of The Action Potential - In the Cell

Na' channels
40mV close

omV|---~-------f--}--- T mmmsmmmooeeeoooe
K" channels K' leaves

open, K cell
begins to
leave cell

Membrane potential (mV)

Threshold of
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XCi
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P o
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K" channels
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Excess K outside
diffuses away

Figure 11:Diagram of invoked action potential. When the membrane receives stimulationan exci-
tatory input, the membrane voltage has a brief rise in the positive directione théimbrane continues to
receive stimulation to push the voltage above the “membrane threshold"nsotdannels open and an action
potential is elicited. The voltage is driven upwards towards the equilibriuiengial for sodium ions (+62
mV). After 1ms, the sodium channels close and the cell voltage is drivemwawds towards the equilib-
rium potential of potassium ions (-80 mV). Also at this point, potassium iondesille the cell. The voltage
briefly goes below the membrane threshold due to it rushing towards thegrpstiential of K- and this is
known as the “undershoot”. Another action potential cannot be elicitttithe membrane voltage returns
to its resting potential. This period of time between the undershoot and thagtexi potential is known as
theabsolute refractory period
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When the cell is at rest, its voltage sits approximately betw&OmV and -65mV, which is
close to the equilibrium potential of the potassium ionsdeghe cell. When the membrane re-
ceives stimulation from an excitatory input, this causestiembrane voltage to have a brief depo-
larisation. If these stimulations cause a voltage incrabsee the “membrane threshold” of -55mV,
the action potential is invoked and the cell depolarisegligpowards the equilibrium potential for
sodium ions, +62mV. This is due to the large “driving forcei ®odium ions from the negatively
charged cell membrane at rest. Hence, when the membrasédidéas been reached, the sodium
channels open briefly allowing sodium ions to rush through tanfurther drive the cell potential
positive. The overshoot comes from the potential risingvali®/ towards the equilibrium potential
of sodium Ey,). Into a millisecond of the action potential, the sodiumrugls inactivate while
the potassium channels remain open. This means that potassin flow back into the cell and
drive the potential back down. As the cell was positivelyrglea previous to this, the potassium
ions are now strongly drawn back into the cell due to a smaldeicentration gradient inside the
cell which causes the membrane potential to become negajaie.

However, as there is now a higher proportion of potassiura torsodium ions inside the cell,
the voltage potential of the cell goes towards the equilitorpotential for potassium iong(,) at
-80 mV. This remains like this until the potassium channé&se again. The absolute refractory
period is when the sodium channels become inactivated asult of strong depolarisation of the
cell, and they cannot reset to an active state until the mangbpotential of the cell returns to a
slightly less negative voltage towards the cell restingeptél of -65mV.

What Hodgkin and Huxley did during their series of experirsenit the giant axons seen in
squids was to come up with a model which explained the unieylgnechanisms of an action
potential in this giant axon [19, 20, 21, 22].

It is worthy to note that in the case of the squid axon, theescanly two voltage-dependent
processes as opposed to that seen in mammals. Those twe a@dibm and potassium conduc-
tances.

They found that the fundamental processes behind the aotitential came from two main
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conductances; the sodium conductanGe,,, and the potassium conductancey as well as a
smaller contribution from the “leak” conductanag;, which doesn’'t depend on the membrane
potential. This allows the total membrane current to bergatésed into its separate elements. The
total membrane current, due to the sum of ionic currents apdditive current, is then expressed
as:

AV,

mT 3, Iz'(m: er 14
C at + ¢ (14)

C,, is the membrane capacitandg,, is the intracellular potential (or membrane potential).
I;,,, is the sum of the ionic currents flowing across the membram/a, relates to an externally

applied current.

6.1 Electrical Equivalent circuit for Squid Axon patch

The Hodgkin-Huxley model takes the squid axon nerve and taatdas two passive components,
the capacitanc€’,, and leak conductancé; (flowing out of the cell), and two active voltage-

dependent componentSy, andGx as seen in Fig.12.

Vm
intracellular

{a LIk L
>
%VGNa %GK §GL
—1 Cm
T ENa T EK T Erest

l extracellular

Figure 12: Circuit equivalent diagram of cell membrane, based on the work fromgkio and Huxley.
The capacitance,,;represents the phospholipid bilayéty, Gy, andG., are the associated potassium,
sodium and leak conductances carried by the ions travelling in and owt oktlronal membrane.

The total ionic current which flows is the sum of the sodiuntageium and leak current:
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Iion = [Na + [K + Ileak (15)

This can be rewritten in terms of Ohm’s Law:

[i(m - GNa(Vm - ENa) + GK(vm - EK) + GL(Vm - EL) (16)

As we can see, each ionic current has an associated condeiGtarand equilibrium potential,
Ex. The expressiod, = Gi(V,, — E;) comes from the assumption that the ionic current is
proportional to the sum of the conductance and driving fgneembrane potential).

The equilibrium potential for each ion is calculated usihg Nernst equation (see Appendix
B).

At the time of Hodgkin and Huxley’s experiments, there waslabnitive evidence of what ex-
act membrane channels existed and they instead came upoMale-dependent “gating particles”
to describe the dynamics of the conductances. These gatitigles described the activation and
inactivation of the channels. These particles can only ke of two states, open or closed, and
this being dependent on time and membrane voltage. When glagse for a particular ion awl
“permissive” at the one time, ions can pass through the ataiiihe channel is then referred to as

being open. If any of the gates are in a “non-permissive’estaen the gate remains closed.

6.1.1 The Potassium Current,/x

Taken from Hodgkin and Huxley’s 1952d paper [22], the masteppotassium current, which has a

higher ratio of ionsnsidethe cell, is given by:

Ix = grn*(V — Ex) (17)

gx is the maximal conductance and given in units of mS/dive potassium battery is relative
to the resting potential of the axon: describes the state of the “activation particle” and is a

dimensionless number between 0 and 1. As we hdyehis means there aren states we are
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looking at. It can be thought of representing the probahdita gate being in a permissive state. If
we presume that the probability of a gate opening (or beirtgernpermissive state) is, then the
probability of the gate being non-permissive or closedis B non-permissive state is when there
is no current flowing through the conductance. All gates havee permissive to allow the channel
to open, therefore, if one of the gates are in a non-pernaisstizte then the potassium channel
remains closed.

Hodgkin and Huxley assume that there are only these twosstdtépermissive” and “non-
permissive” for a single particle and that this developmagtiveen the states can be described

using a first-order kinetics model. This can be written as:

nﬂél—n (18)

Qn

Whereq,, is a voltage-dependent rate constant, given in units of $@evnd. The rate constant
specifies how many transitions occur between the closed penl states whereds expresses the
number of transitions from the open to the closed statesagaen in units of 1 per second. We

can then write this relation as a first-order differential&iipn:

dn

T = V)1 =m) = B,(V)n (19

These rate constants, andj, can also be described in voltage-dependent terms:

dn

gt = e =n) = Gu(V)n (20)
wherer,, =

e T 1)
andn., =

S (22)



These are described in terms of a voltage-dependent tingardn, (V') and steady-state value
Moo (V).

Hodgkin-Huxley calculated the approximate voltage depecks of the rate constants for the
potassium conductance. They found that the relationshipd®n the conductance and membrane
potential is exponential and that when looking at the stestdie potassium membrane conductance
for under 20mV, the conductance increases at an exponeatgaivhen varying the voltage V by
4.8mV. Looking at the voltage sensitivity for the sodium dootance reveals that it has an even
higher sensitivity.

Hodgkin and Huxley found that saturation of the membranedaotance occurred at higher

levels of depolarisation [19] and described this relatimmghrough the voltage-dependent rate

constants [22]:

10—V
Ozn(V) - 100(6(10—V)/10 _ 1) (23)
B.(V) = 0.125¢ /%0 (24)

V' is the membrane potential relative to the axon’s restingmial (mV). Figure 13 shows the

voltage-dependent time constants and steady-state \@fities potassium activation variable.
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Figure 13: Activation and inactivation variables and tinomstants for each of the corresponding
ion rate-variables.

Looking at these plots we can see that the time consiahas a bell-shaped dependency for
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each of the rate variables. However, consistently increases with respect to the membrane po-
tential. The plot of the relationship between the steadyegtotassium conductance and membrane
potential is exceptionally steep and this is seen in Eq.1f thie “fourth-power” relationship be-
tweenG, andn. A characteristic of many ionic conductances is that theatiffe conductance
increases the more the cell membrane is depolarised.

Relating to the diagram of the sodium dynamics (Figure 13)caresee that there is a more

complex evolution of the rate parameters.

6.1.2 The Sodium Current,y,

Using kinetics, Hodgkin and Huxley had to theorise thateéh&as not just an activation particle,
but also the existence of an inactivation particle for soditrhey describe the sodium current as

[22]:

[Na = gNam?’h(V — ENa) (25)

Wheregy, is the maximal sodium conductance when all the channelspae and was found
by Hodgkin and Huxley to equal 120 mS/éniThe equilibrium, or resting potential, for sodium,
En, = 115mV and is relative to the axon’s resting potential.and/ are in dimensionless units
with 0 < m, h > 1. By convention, the sodium current is negative, that is, novtaroughout the
physiological voltage range (far <FEy,). As we can see, the sodium conductance was modelled
using threem gates and one gate giving the four gating particles that make up the ttaorsi
between the open and closed state for the ion channel. itdsheunoted that as well as being the
probability that the activating particle is “permissivé’is the probability that the “non-permissive”
state is not in its inactivating state.

We now have two first-order differential equations whichalde the rate constants:

dm

T = (V)L =m) = G (V)m (26)
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and

dh
7 = (V=) = Bu(V)h 27)

These voltage dependent rate constants were approximatedagain by Hodgkin and Huxley

as follows [22]:

(V) = =T, (28)
B(V) = de”V/18 (29)
(V) = 0.07e "/ (30)
5V) = s 31)

When referring back to Figure 13, we see thatand 7, are similar to that ofr,,. m.. is
an increasing function of V which is what is expected, howekeg, decreases as the membrane
depolarisation increases. This is a standard behaviobeahactivation particle. If this inactivation
particle were not to be included then the sodium conductammeed remain at its maximum value

in the presence of a depolarising voltage step.

6.2 Expressing The Complete HH Model

Before we can write the complete membrane model equatioy wsgn Hodgkin-Huxley expres-
sions for the active components of the membrane, We alsotbaamsider the passive and voltage-
independent “leak” conductance. The leak conductafigeis independent of the voltage and re-
mains constant over time. Hodgkin and Huxley measured trisectance a§; = 0.3mS/cm and
corresponds to a passive membrane resistanég,of 3333C2-cnm?. This passive element also has

an associated membrane potential, however, Hodgkin anteifdid not measuré&,.; itself but
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instead adjusted it to give a total membrane current of zetteearesting potential, V = 0.

V,est Was instead defined through the equation:

Gna(0)Eng + G (0)Ex = G Vyest = 0 (32)

This was then calculated to be +10.613mV with membrane d@paeC,, = 1uF/cm?. At
the membrane resting potential, the effective membransta@se due to the sum of the potassium,
sodium, and leak conductances is equal to 857m?2. This is equivalent to a passive membrane
time constant of roughly 0.85 ms.

We can now write an expression which describes all the ctgdowing across the patch of
axonal membrane:

av

Cmﬁ = gnam’h(Eng — V) + Gxn(Ex — V) + gi(Veest = V) + Linj (t) (33)

We now have an idea of how action potentials are invoked fl@mobservation of the Hodgkin-
Huxley model of ion movement. As we are interested in moadglplasticity via biophysical pa-
rameters, it is therefore of great importance to now incladeodel of calcium dynamics, as we

will find out in Section 7 the critical role these €aions play in synaptic plasticity.

6.3 Calcium Dynamics

The movement of calcium ions during cell excitation andlition play a major role in the change
in synaptic plasticity between neurons. They are importansignalling long term potentiation
and long term depression. More clearly, the change in aqal@oncentration can signal either
a strengthening or deterioration in connection betweerptke and postsynaptic terminals of a
neuron.

We have discussed how Hodgkin and Huxley categorised thandis of sodium and potas-
sium ions, and now we focus on how such dynamics can be repeestor the C&" ions. One

such relevent publication by Desthexe et al catergorises/rddferent types of calcium currents
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[24], and their activation/inactivation particles arepd#s/ed in the same form as those categorised
by Hodgkin and Huxley. The calcium current which has beeri@mgnted in our model is known

as a “low-threshold calcium currentl’;-, and its activation and inactivation variables are:

Goa2+ = 1.75 mS/crh and is the maximum conductance value of the calcium curféng,the
cell membrane potentiak'~,2+ the reversal potential»n andh are the activation and inactivation

variables and their functions and time constants are ctlediffrom:

1
Moo(V) = —v5=
14+ e 72

0.15
Tm<v) = 044+ V27 ST
e 10 —+e 15

1
e

0.27
Th(v> = 227+ V+48 V1407
e 4 —He 50

To use these parameters in our model, we then have to intgfeat into the program environ-
ment we choose to use. In the GENESIS [8] source-code (thdation we use to code our model),

the change in calcium concentration is calculated from glstpool exponential:

dCa®t dt = B - Toger — Ca®t [7oees (34)

This models the low-threshold calcium curreht,:+, with parametersgc,2+ = 1.75mS/Cr,

decay-timerg,2+ = 30ms,[Ca?*]; = 2mM. B = 1e12 (1 / calcium charge({¢,2+) multiplied by

37



the Faraday constant multiplied by the ion shell volume).
Ca™" is the resulting concentration of the calcium ions angCas the base-level concentration,

giving Ca&* = Cg,  + Ca*. We can then show a plot of the low-threshold calcium current

Se
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Figure 14: Calcium dynamics. The calcium model used was despapl exponential of the form
dC/dt = B - I, — C'/7, modelling a low threshold calcium currerg;,»+, with parametersé c,»+

= 1.75mS/Crh, 7¢,2+ = 30ms,[Ca®T]; = 2mM, B = 1e12.Ca*T is the resulting concentration of
the Ca** ions andCay,.. the base-level concentration, giviag:>™ = Ca;f,. + C.

Implementing this in our model meant the task of writing a reaicium channel. The code
for the channel, along with the other receptors and dynammiesn the Appendix (Section C).
Now we have discussed synaptic inputs, simple spiking nsodetl added ionic detail with the

Hodgkin-Huxley model, we can move on to looking at synaplasfcity.

7 Plasticity

Synaptic plasticity was first hypothesised as a mechanisrteéoning and memory by Canadian
psychologist Donald Hebb in 1949 [25]. His proposal was thatirons which fire together, wire
together”. The idea was that the strength between two neuwsonild strengthen if the timing of
firing from each was almost instantaneous, and that withatepkfiring, these connections would
continue to increase in weight. It was discovered later oBlss and Lemo in 1973 [26] that this
was in fact true and the phenomenon was termed long termtgdten, or LTP. They found that
by stimulating the pre- and postsynaptic terminals via Hrglquency stimulation (HFS) resulted

in a strengthening between the synapses during condigomperiments. The opposite of this
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behaviour is known as long-term depression (LTD), and aceuren the postsynaptic neuron is

stimulated slightly before the pre-, resulting in a decimsynaptic strength.

7.1 Biophysical mechanisms of plasticity

In excitatory synapses, a neurotransmitter called glutansareleased from the presynaptic axon
terminal and activates several types of postsynaptic tecem the dendrite of the postsynaptic
neuron. These postsynaptic glutamate-gated ion chanh&ls @ositively charged ions into the
postsynaptic cell and these glutamate-dependent chaamegkmown as AMPA and NMDA recep-
tors and commonly found on many excitatory synapses.

The calcium ion elevation/reduction through the NMDA reiloep are integral to the changes
observed in plasticity, with elevations in €ainflux causing long term potentiation, whereas a
moderate rise in the influx tends to result in synaptic degpoes This will be expanded upon in the
synaptic potentiation and depression sections.

It has been previously mentioned that the NMDA receptoredsfffrom the AMPA receptor
in a few significant ways. Firstly, unlike the AMPA receptotise NMDA-receptor conductance
is dependent of the voltage. This is due to magnesium ionshwit in front of andblock the
receptor. This is known as the “Magnesium-block”. When thk iseat resting potential, any
inward current going through the NMDA receptor is blocked.aiflthe cell becomes depolarised,
The Magnesium ions begin to move from the receptor and cuiselowed to flow inwards. The
other characteristic of the NMDA receptor is that it conduzalcium ions. The NMDA receptors
can act in a similar nature to those of the behaviour desgrdyeDonald Hebb, showing that an
increase in weighting between two neurons is facilitatedhsy influx of calcium ions into the
postsynaptic NMDA receptor from a presynaptic input. Herideas been said that the magnitude
of calcium ions which pass through the NMDAR can signify howaim pre- and postsynaptic
activation is present.

The NMDA receptor is also known to have another special ptghiring plasticity changes,

in that it is responsible for calculating any change in siteribetween two neurons, then signalling
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this to the AMPA receptors, which update the weight strengtfis is seen in figure 15 as a simple
block diagram. The “signalling” behaviour is an importaatfof the model used and is fulfilled
in our model by introducing a “learning rule” to dictate arhanges in strength between connected

neurons.

NMDA
AMPA Mg2+],...

1 |

weight change

Figure 15: Block Diagram of how NMDA signals weight change between neurons! idas enter the
AMPA receptor allowing depolarisation of the cell membrane. This removedtre block from the
NMDA receptor and allows an influx of calcium through the receptor. TRHDX receptor acts as a “second
messenger” calculating the weight change (implemented using a learningmdlpassing this to the AMPA
receptor to update.

7.1.1 Mechanisms of synaptic potentiation

The simplest way to observe synaptic potentiation is to ugh frequency stimulation (HFS)
[26, 27] on the pre- and postsynaptic cell terminals to irdsymaptic transmission from the presy-
napse. The presynaptic activation (an action potentiabiggad from the presynaptic neuron)
causes the release of glutamate, an excitatory amino aodrkias a “neurotransmitter”. This
neurotransmitter acts on postsynaptic AMPA receptors lenioyg them and allowing the flow of
sodium through to further depolarise the cell. This depsddion allows thel ¢>* block to be
lifted and then allowing the continuation of depolarisatly the influx of calcium into the recep-
tors. This calcium influx is thought to enhance the synagfecéveness and thus associated with
plasticity. Excitatory synaptic transmission in the hippmpus and the prefrontal cortex is thought
to be governed by glutamate receptors. On the commencermsyraptic transmission, Naions
which flow through AMPA receptors on the postsynptic neuranses excitatory postsynaptic po-
tentials. In addition to this, there is also the influx of @aha ions through NMDA receptors. The
calcium flux occurs after glutamate binding to the NMDA reoepand at the same time as the

postsynaptic membrane is becoming depolarised. Depalanisof the membrane then allows the
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Mg?* block to be lifted and calcium ions to enter trough the NMDAaptors. It can be said, there-
fore, that calcium ion entry through the NMDA receptors cambed to signal when the presynaptic
and postsynaptic neurons are active at the same time. Igasshown by Lisman [27] that arise in
the concentration of calcium inside the postsynaptic edslp known as the “intracellular calcium
concentration” or [C&];, is linked with the induction of LTP. He states that signifitanfluxes of
Ca* through NMDA receptors cause an increase in the connectitwe®n two neurons, and also
points out that this increase in synaptic weight is seen by'#mhanced” or increased magnitude
in the synaptic current carried by Naons through the AMPA receptors. Thus, he states that LTP
can be governed by a Hebbian-like rule, where constant ktimoo of one cell onto another results
in a prolonged episode of postsynaptic depolarisationhdull also be noted that while LTP can
be invoked using high-frequency stimulation, during therg\of spike-timing-dependent plasticity

(STDP), discussed in the next section, LTP is only seen usugrequency stimulation.

7.1.2 Mechanisms of synaptic depression

Classifying what mechansisms are exactly responsible has e discovered, and this question is
an integral part of the research. From what is known from jgihygists is that it can be presumed
that weak coincidence of spiking-events (action potesitiehuses a decline in synaptic strength. In
other words, if the postsynaptic neuron spikes before teetpen a reduction in weight is observed
[28, 29]. A weakened coincidence between two spikes (AdRotentials) could therefore cause
a reduction in the NMDA-R activation causing a smaller infafxCa*. Lisman also looked at
long term depression, and proposed that if LTP is governdddibian mechanisms, then LTD is
mediated by “anti-Hebb” mechanisms [27]. This was thouglite the result of moderate increases
in [Ca2*] through NMDA receptors which did not fully elicit action femtials in the postsynaptic
cell.

Newer data on LTD from 2007 by Keiko Tanaka’s lab looked atdhecial role Ca" played
in synaptic depression [30]. They looked at the relatignigtween long term depression and the

level of postsynaptic calcium ion concentration, to attetogstablish a relationship between them
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and possible mechanisms. What was found was that the redhtpbetween LTD and postsynaptic
[Ca?*]; could be described by a “leaky-integrator” function. Taamiakab found that they could
induce long term depression by simply increasing the iethalar calcium concentration in the
postsynaptic cell. It was the duration of elevated3Qa however, which was the key factor in
whether synaptic depression would happen or not. They tegtinat synaptic depression emerges
from a mechanism that integrates the postsynaptic Ganals, and that the magnitude of LTD
depended on thkevel of intracellular calcium concentration and duration ofval&n, showing a
leaky-integrator manner.

The relationship between LTD and [€3; was also said to be sigmoidal in shape. Duration of
[Ca2*]; influenced the sensitivity of LTD. In simpler terms, theresveahigher sensitivity to peak
levels of intracellular calcium, and lower sensitivity tieégrated [C&]; at longer time durations,
described as a leaky integrator. Tanaka also showed thitypaptic C&" alonewas enough in
itself to induce synaptic depression, but, this is only fargCa2*]; which pass a threshold level. In
summary, their work on LTD found that its induction hingedtba rise in [C&"]; above a certain
threshold concentration. The level of [C§; required for LTD was said to be comparatively low,
but rather the timescale in which the [C§ remains elevated is what governs if it will be seen.
This study by Tanaka has played a crucial role in the reseaoamuch so that in later sections when
our model will be discussed, we refer to Tanaka’s leakygrator expression for a mechanism of
LTD.

The bi-directionality of synaptic weight discussed by Leénand later elaborated on many other
scientists [28, 31, 29], who looked at coincidental timirgjvieen pre- and postsynaptic timing
between the spiking of coupled-neurons and its effect omsyn weighting. This phenomenon

was later termed “Spike-Timing-Dependent Plasticity”.

7.2 Spike-Timing-Dependent Plasticity

Spike-Timing-Dependent Plasticity, or STDP, is a spedmedmommenon in plasticity dependent on

the timing of pre-synaptic and postsynaptic action po#sitiresulting in either an increase in
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weight between the neurons, or decrease. The term itselhoidslly established until a group of
separate studies [28, 29, 31] all looked into how the mitiss®l timing of these action potentials

could either weaken or strengthen the synaptic connection.
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Figure 16: STDP curve taken from Markram et al. 1997 [28]. The left diagramwshthe timing of
the action potentials against the EPSPs. When the EPSP occurs befoostdyaptic action potential, a
strengthening in plasticity is seen (LTP). When the timing protocol is revexsddhe postsynaptic action
potential is elicited before the EPSP, a decline in synaptic strength is witng@34eqd

The mechanisms behind LTP during spike-timing dependestipity are well-known to be
a result of calcium influx into postsynaptic NMDA-Receptofhe mechanisms behind LTD are
a little less clear. Magee and Johnstone and Henry Markresas&sarch teams were both in close
succession of each other when first looking into STDP, bo#tifipally looking into the role of
“Back Propagating Action Potentials” in the invoking of loteym potentiation [31, 28]. Back-
propagating action potentials are action potentials wiraVel from the postsynaptic soma back to
the dendrites, and they are believed to play a major rolegimadiing changes in synaptic plasticity
[31]. Magee states that these BPAPs provide a sufficient lsiggeessary in forming an associa-
tion between the synaptic input and spiking action potéotigput. They suggest that due to the
physical distance which separates the input from the ougoreipid feedback signal like the back-
propagating action potential is sufficient to signal theoaggion between the pre- and postsynaptic
neuron, like a coincidence detection mechanism. Actioemials propagate quickly into the soma
and dendrites and cause significant depolarisation to theneebrane (EPSPs). Furthermore, this
causes dramatic increases in the intracellular calciurceramnation in the postsynaptic cell.

They noted that BPAPs which were inhibited by dendritic hppéarisation (when the mem-
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brane potential is driven negative) resulted in the amotiattion potentials invoked by correlated
pre- and postsynaptic EPSPs becoming greatly reducedthiédrisneant the amount of postsynap-
tic action potentials propagating back to the dendritesfwdber reduced (or inhibited), causing a
decrease in the pairing between neurons, also known aséomgdepression or LTD.

Markram'’s lab were also looking at the coincidence timingooktsynaptic action potentials
and the EPSPs that they generated [28]. Their experimesgalts suggested that the coincidence
between postsynaptic action potentials and EPSPs cauaadehin the overall excitatory postsy-
naptic potentials generated. The amplitude of the EPSPes significantly increased or decreased
depending on the “precise-timing” of the postsynapticatpotentials with respect to the EPSPs.
Like Magee, they found that BPAPs act as a modification sign#gteé strength between synaptic
connections, dependent on the timing of the pre- and posgginactivity. Their main conclusion
was that when postsynaptic action potentials occur in a-tuimelow of 10ms before the EPSP,
then the excitatory postsynaptic current (EPSC) magnituaereduced (LTD). When the tempo-
ral order was reversed and the postsynaptic AP was elicRetsafter the EPSP, then the EPSC
magnitude was increased (LTP). This is seen in Fig.16.

The term “spike-timing-dependent plasticity” was firstroed by Bi and Poo in their 1998 paper
[29], and they furthered Magee and Markram’s works by dieigihe effect relative timings of pre-
to postsynaptic spiking had on synaptic plasticity. Theyenadso the first to use the more familiar
style of STDP plot where both timings (postsynaptic spikirgore pre- and vice-versa) are seen
on the same plot (Fig. 17).

What's more is that further to showing the importance of spikeng on plasticity, they
claimed that both LTP and LTD were dependent on the actwatioNMDA receptors, further
establishing the notion that a moderate rise in?[Gabeing responsible for synaptic depression
and a transient increase in the intracellular calcium cotmagon resulting in potentiation. Poten-
tiation was said to arise when repetitive low-frequencgnatation was applied to the presynaptic
neuron. The EPSPs generated were capable of then invokiiog gotentials in the postsynap-

tic cell. When they measured the magnitude of the excitatostgynaptic currents, their results
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Figure 17:STDP curve taken from Bi and Poo 1998 [29].

showed that the repeated stimulation resulted in an inecegagnaptic plasticity between the two
neurons. Their work on LTD was also important showing thateeged injections of current into
the postsynaptic cell before the synaptic input resulteal @ontinual decline in EPSC amplitude,
also known as LTD. This was termed negatively-correlatekirsy.

In addition to showing that NMDAR'’s were crucial in LTP and LTBi & Poo looked at
the role of calcium channels in positive and negatively eated spiking [29]. For the positive
incidence, they said that the activation of voltage-gatdiem channels may occur collectively
with NMDA receptors and that the influx of calcium through ttleannels work alongside the
Ca™ influx through NMDA receptors in initiating LTP [31, 29, 32In the negatively-correlated
incidence, Bi & Poo found that a slower elevation of calciumsishrough C& channelsefore
synaptic activation (postsynaptic AP before presynappai) may be responsible for the initiation
of synaptic depression.

It was therefore highly established that the influence ofiaat influx during synaptic trans-

mission was vital for both increased synaptic efficacy anldiced plasticity strength.
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8 Computer Modelling of STDP

There are a wide variety of synaptic plasticity models usedying from simple, abstract, spiking
models through to more in-depth models which seek to acelyratplicate biophysical mecha-
nisms realistically. Of greatest relevance to the resedheie have been two models by different
laboratory groups. The first to be discussed, is the work fkemnel Shouval and his research
team. As mentioned in the previous section, NMDA recepttivi#¢ appears to be critical to the
induction of synaptic potentiation and decline. ShouvalarBand Cooper came up with a “uni-
fied model” of NMDA receptor-dependent STDP [33], where themntified how much synaptic
depression and potentiation could be seen, based on thenawfouostsynaptic NMDA receptor

activation during stimulation.

8.1 Shouval model of NMDA receptor-dependent STDP

Shouval’s experimental work focused on looking beyond thtal discoveries [31, 28, 29] and
concentrated on the role of €ainflux through NMDA receptors, in an attempt to use a single
“learning rule” which would dictate whether strengthenorglepression between synapses would
occur. Their protocol was to run these experiments undesdhee, although computer-modelled,
conditions as those used by Markram et al. One idea that waamental in their model was that
modest increases in postsynaptic¢Céhrough NMDA receptors triggers LTD, whereas transient
increases in C4 influx would result in LTP, as previously noted by Lisman, amgst others [27,
34, 35]. They draw from evidence [36, 37] that a moderateatien in C&* correlates with the
induction of LTD, while larger, transient, elevations g&y the onset of LTP. Thus establishing the
importance of C&" in determining the sign and magnitude of synaptic plasticit

In this paper, Shouval makes three key assumptions for hitehto work. The first is that Ca
is the primary signal required for synaptic plasticity. Tdezond is that the majority, or dominant
source, of C&" influx to the postsynaptic neuron goes through NMDA receptdrastly, is the

role of back-propagating action potentials. In Shouvakglel, those BPAPs contributing to STDP
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have a slow, “after-depolarising” tail component to them.

For his first assumption (€a being the primary signal required), he sets thresholds fochv
calcium levels determine if LTP or LTD will occur. If the imtcellular C&" concentration goes
above the first threshold),, then LTD will occur. If the intracellular concentrationrpasses the
top threshold©,,, then long term potentiation should be expected. When |apkinthe pairing
of postsynaptic activity with pre- (referred to as post-ptienulation), and vice-versa (pre-post),
NMDA receptors are said to be the largest source of calcidtoxno the postsynaptic neuron.
Shouval goes on to say that thkangein postsynaptic calcium concentration is mediated by the
NMDA receptor activity, and the activation of the NMDAR’s th¢e how much or little Ca influx
IS seen in the postsynaptic neuron.

For his experiments, LTP is seen when the pre-post stinomgtiotocol produces a large ele-
vation in postsynaptic [Ca];, which should go above the higher concentration threshajd, It
makes sense that in his model, for LTD to be seen, we have esed\d# these requirements. That
is, during post-pre stimulation, the [€4; must only increase very modestly, so as to only go above
the bottom threshold for Ga influx (©,) for long-term depression to be seen. Linking in Shouval's
third assumption of BPAPs having a slow after-depolarisaily he states that the influence of the
BPAP to the sign of the plasticity plays a role on*€anflux through the NMDA receptor.

An interesting finding from Shouval’s work was that of prespTD seen, showing a more
symmetrical STDP curve in comparison to that seen in Bi & P&838 paper [29]. This pre-post
LTD was seen when the timing-window for stimulation was axied beyond the standard +20ms
time-scale. Shouval claims that this pre-post LTD may betdue number of NMDA receptors
in an “open-state” continuously reducing after initial diimg of glutamate to NMDARs. He says
that this may be responsible, in conjunction with the leeCe?* required for LTD sitting at an
intermediate value. This value has been suggested as omedre& concentration that causes no
change in plasticity, and one which would go on to produce (di5oveO,)).

The phenomenon of pre-post LTD has still to be widely recsgmhior rejected, and Shouval

states that if there are further experiments which go on lgfyahis findings, then his calcium
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hypothesis should be adapted.

8.1.1 Refinement of Shouval Model

In 2005, Shouval went on to look at stochastic properties DX receptor activity and calcium
influx [38], to attempt to provide an explanation for the st LTD witnessed in his previous
experiments. He states that their original prediction @&-post LTD had not yet been fulfilled
in experimental conditions, with the exception of data fddny Nishiyama’s lab [39]. This has
been put down to the lack of experimentation in the lateraregjiof At beyond +20ms. This later
paper is an elaboration by Shouval of the pre-post LTD andiaement of the C& dynamics
used in their model. Their model still uses lower and higheeshold bands; and©,)), but now
includes scenarios where the glutamate neurotransmétilertd be released from the presynapse.
Consequently this results in a failure to bind to the postsiind\MDAR, and thus, a failure in
Cat influx to the postsynaptic receptor.

The Shouval model is one of great significance and relevaniteetresearch undertaken. Many
models attempt to use a single “rule” to govern the bi-dicelity of synaptic plasticity. The work
carried out over the past two years seeks to refine and updasssticity rule known as the 1SO
learning rule [40, 41, 42]. Different from Shouval, the 1S@eris based on a differential-Hebbian
rule [43] that decides plasticity strength from the cottiela of the presynaptic activity with the

changein postsynaptic activity.

8.2 The ISO learning model

Unlike Shouval's model where the change in €a represents the postsynaptic activity, the ISO
learning rule (Isotropic Sequence Order learning) updsyesptic weight based on the correla-
tion of presynaptic activity with theerivativeof the postsynaptic activity. The 2004 paper from
Saudargiene and Porr [44] puts forward a model of synapdistigity using key mechanisms to de-
termine the calculation of weight-change. Their paper sstgthe temporal change (or derivative)

of the postsynaptic membrane potential correlated witldaotance of the NMDA receptor.
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Like Shouval, they address that back-propagating actidernpials play a role in STDP [45],
however, this is strictly limited to the shaping of the curviéhat is, fast decaying BP spikes are
shown to produce a typical asymmetric STDP curve, whereasddcaying BPAPSs result in sym-
metrical Hebbian learning curves. The main aim of the paes W provide an analytical solution
of spike-timing dependent plasticity based on the bioptatgproperties of the neural membrane
and NMDA receptor. Saudargiene et al address that highelsle¥ calcium influx lead to a poten-
tiation in synaptic plasticity, and that synaptic depresaccurs when there is a moderate rise in
[Ca*],.

What distinguishes their model is that a differential terra baen included to represent postsy-
naptic activity. It was put forward [46] that thehangein Ca&* concentration (through NMDARS)

determines whether LTP or LTD is seen.

8.3 Why improve this model?

As stated, the research completed during the past two yeeks o further improve the ISO learn-
ing rule. It is not the rule as such which had to be re-thoutihwas however, the components of
the learning rule which was desired to be modified. More dadly, the biophysical properties

modelled had to be refined with more detail. The task was tod@cNMDA receptor activity, cal-

cium dynamics and also take into account the effect otherhawe on the synaptic weight. Further
to this, looking at how inhibitory neurons projecting ontoexcitatory neuron affected the overall
plasticity curve was of great interest, as this had preWonst been investigated. Thus, we now

proceed to look at how such a model should be constructed.

8.4 What type of model to use?

Many different approaches could have been taken when decwdhat type of equivalent model
would suit the research best. This is mainly due to the le¥eletail one can decide to begin
the model from. Also, it is important to figure out whether drasto delve into levels of detail

which may not be required. For example, two classical waysadelling the neuron are known
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as the cable theory model and compartmental modelling. Bty @ high level of detail to be
modelled, both achieving this under different assumptiangut the model, but also both being
too high a level of detail required for the research. We baud model from the Leaky Integrate
and Fire model described, with added Hodgkin-Huxley patarseWe then add more detail to the
model with calcium dynamics, AMPA, NMDA and GABA-ergic rqxters, to allow plasticity and

inhibition to be modelled in a more realistic manner.

8.5 Merging theory with practice

Throughout the previous sections we have discussed the élasnents of the neuronal membrane,
the ionic processes taking place, stages in synaptic tigaagm, and solid, stable models used to
emulate them. We now go on to discuss the practical side sfréfsearch, that is, the implemen-
tation of our model. We go on to model two neurons, one a pydahmeuron (excitatory), one an
interneuron (inhibitory), and observe the synaptic ptatstiduring experiments like those carried

out previously by others.

9 The Model

The software GENESIS [8] (GEneral NEural Simulation Sygtsnan open-source software pack-
age which allows a variety of uses in computer modelling.sltdéscribed by its developers as
a “General purpose simulation platform developed to supgiorulation of neural systems rang-
ing from subcellular components and biochemical reactioromplex models of single neurons,
simulations of large networks, and systems-level modéisises a hierarchical structure to allow
modular programming similar to that of C++.
One of the appealing reasons to use GENESIS is that the usatrlimited to the channels and

synapses included in the standard version of the softwageh@software is written in C, the user
can create their own custom synapses/channels and recbgtarcompiling the skeleton architec-

ture of the software to include code written by the user. Raalparameter values for the pyramidal
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Figure 18:Hierarchical structure of GENESIS programming environment (taken thee Book of GENE-
SIS [8].
cell conductance, membrane potential and NMDA/GABA cornaiices can be implemented into
these receptors and channels by using values quoted frdogpipapers or from morphological
data sites like neuromorpho.drg

As GENESIS uses compartmental modelling to represent aone@ach segment of a cell
(dendrites, soma, axon) can be constructed using separaj@gactments and then linked together
using messages.

We use a simpler model of the neuron, using two compartmentsaich cell, one for the soma,

and one for the axon.

9.1 Why use GENESIS?

We wish to use GENESIS to construct a reduced pyramidal cadlainconsisting of a soma and
axon. The model was created using a custom-compiled veo$itve GENESIS-sim 2.3 modelling
tool[8] and consists of a cortical pyramidal cell and atetiGABAergic inhibitory interneuron

(Fig. 19). To this model, we add the NMDA, AMPA and GABA receqst where appropriate, and
implement Hodgkin-Huxley and modelled €adynamics.

GENESIS allows linking of the two compartments using messaglled “SPIKE” messages to

http://neuromorpho.org/
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Figure 19: Graphical representation of model designed using the GENESIS-stmasef Here we can
see the excitatory “input” which is the modelled presynaptic input into the pyamal. The modelled
action potential is simply a delta impulse functiofdf. Attached to the pyramidal cell are AMPA and
NMDA receptors. A current injection into the pyramidal cell stimulates the are@nough to generate
the postsynaptic action potential. This travels from the pyramidal cell bodyttaa axon activating the
NMDA receptors on the GABAergic interneuron, allowing an influx ofCanto the cell. If the excitation is
strong enough the interneuron releases GABAergic neurotransmitiekddothe pyramidal cell, inhibiting
as it does so. Both the pyramidal cell and interneuron use the Hodgkiteyimodel to implement ionic
conductances realistically.

transmit information from the compartment and receive backis. Once the cortical microcircuit
has been constructed, the first objective was to study piysin the pyramidal neuron itself, then
go on to add the interneuron and observe what effects thisrhagike-timing-dependent plasticity.
Further applications of the model involved looking at themcircuit in reference to studies done
in vivo and in vitro. Further to this, when reviewing resuistained from experimental data, we
go on to link a study of hypofrontality, a condition which c&s a decrease in cortical activity, in
patients with impairment to receptors with our model whicbls at plasticity and impairing the

NMDARSs to look at the effects of this.

9.2 Simulation Protocol

The spike-timing simulations are achieved by using two aligijnone being the presynaptic input,
and the other the postsynaptic stimulus. Through the éiffeg in timing of invoked pre- and

postsynaptic action potentials, we can look at the spikeag-dependant plasticity of the small
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network. This is done by observing the synaptic strengtivéen the pre-and postsynaptic termi-
nals, known ag\p. The presynaptic signal used is known as the “spiking infiLé# an excitatory
input) and this input excites the postsynapse of the pyrahaigll. This is achieved in GENESIS by
using a modelled action potential much like a delta impuiseAfter a delay of 0.4s (chosen as the
most suitable timing to apply the postsynaptic signal),gbstsynaptic stimulation comes from a
modelled current pulse injection into the soma. What ressilésspostsynaptic action potential. As
these pre- and postsynaptic spikes are shifted throughrtheadion runtime from negative to pos-
itive timings (i.e. postsynaptic before presynaptic spik@vards pre-postsynaptic), the resulting
synaptic weight-changap is plotted as the familiar STDP curve.

Like the models discussed [44, 41, 33, 38], we have to speclgarning rule in our model
which will calculate the change in synaptic plasticity aseault of the biophysical parameters
present. In our model, we hope to use a learning rule whickatsflprocesses undergone during

in-vitro and in-vivo STDP experiments.

9.3 The Learning Rule

One of the main reasons behind using this model was to attemgstablish the mechanisms in-
volved in plasticity by implementing them in a “learningetll Previous to this model, Saudargiene
et al [44] used a learning rule based on NMDA conductancestadad with the change in postsy-
naptic membrane voltage, which was later deemed to be ustiealWhat we wish to do is to
update this learning rule with processes thought to be neaiestic. This is done by separating the
learning rule into two parts, one which calculates the wegiange for pre-post stimulation, and
the other for post-pre, all the while remaining as a single describing the plasticity changes.

It has been discussed in Section 7 that AMPA receptors plajeaim updating the synaptic
weight change which has been reliant on the NMDA receptavigctThus, in the simulation, the
change in weight between synapses is calculated by the NMidéptors and is then updated by
the AMPA receptor. The calculated AMPA receptor weighp, is updated through every step of

the simulation:
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Ap=LTP+LTD (35)

where:

LTP = pu- NMDAy - O([Ca*]) (36)

As it is seen, the mechanisms for LTP and LTP have been separdb two parts. For calcu-
lation of a positive increase in synaptic strength we haeectirrelation of the NMDA receptor ac-
tivity NM DA, with the positive derivative of the intracellular calciumncentratior® ([Ca?**];,
which is then multiplied by the learning rate, © is simply the Heaviside function which takes
the positive part of the calcium concentration.

For LTD, we have essentially the same components to the iequatith the exception of the

Cat part:

LTD =~-NMDAq - O(—[Ca®*}y) (37)

Taking the negative derivative of filtered Caoutflux, ©(—[Ca**]’;, is the implementation of
the leaky-integrator filtering of calcium that was discusse Section 7.1.2 as a proposed mech-
anism of LTD by Tanaka[30]. AgainNM DA, is the NMDA receptor activity, and is the
respective learning rate.

To see how the rule is broken up into the separate elementhwinke up the intricate mech-
anisms undergone during LTP and LTD, we can refer to the bib@ggram shown in Fig. 20 and
compare to learning rule above (Equation 35).

The elements of the learning rule have also been plottedersaime diagram as to give an idea
of how their properties contribute to the weight-change nvberrelated (Fig.21). The first is the
simple calcium concentration derivative plot, which isuigd for calculations of LTP. Directly

below the positive calcium concentration is the filteredjatire derivative of the calcium concen-
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Figure 20:Block Diagram of STDP learning rule used, represents the variable spiking-event (current
injection) timing, which can be altered to give either LTD or LTP depending ondtsirrence before or
after the fixed input]y,. These two inputs are summated to give the timing difference between post and
presynaptic spiking7’. In both parts of the learning rule there are HH ion channels and detaileidroa
dynamics modelled. For both LTP and LTD, the derivative of the calcium@uﬂnation,[Cﬁ*]Q is found.
For LTP, the positive derivative of th€'a>*]; is taken. For LTD, the derivative is put through a lowpass
leaky-integrator filter before taking the negative derivative of this. Bloghpositive and negative derivatives
are dependent on NMDA-receptor activation which will affect the ¢jeain plasticity.
tration, which is used in the calculation of LTD. Finally, wee the NMDA receptor activation. It
is well documented that the role of NMDA receptor activitycrsicial in both the potentiation and
fall in weight-strength between synapses.

We have now looked diagrammatically how each part of thenlegrrule is made up. Before
looking at any results of STDP simulations, we finally havdaomk at how the leaky-integrator

process written about by Tanaka [30] has been implementéekiGENESIS model.

55



6(Ca" )| | 1 EA
ot |
0 I

Boi

e('[Cab]‘m)

C
NMDA,,,|’s,.
0 |

0.40 Time (s) 0.45

Figure 21:(a). Positive derivative of'a** concentrationjC'a®*]’, is used to model the positive part of the
postsynaptic Ca influx seen during LTP. (b).Ca®*]};,; the negative part of the filtered €a([Ca**]};;,
<0). We do this by filtering the calcium concentration using a leaky integratoeh{8ection 9.4), then
taking the negative part of its derivative. (c). Activation of NMDA-R atothe influx of intracellular
calcium to the postsynaptic receptor. Depending on how fully the recepsmspthe synaptic plasticity can
either increase or decrease (LTP or LTIy, the current injection, results in depolarisation of the cell which
in turn enables the postsynaptic NMDA-Rs to opé&his the delay betweef, and the NMDA-R opening,
thus, any influx of C&" into the receptor is delayed b

9.4 Modelling LTD - The Leaky-Integrator Filter

As mentioned[Ca**]};, is the negative part of the derivative of the intracellulalcaum concen-
tration (Ca®*];, <0). The study by Tanaka reported that a possible mechanisiT could
be a slower outflux of calcium from the postsynaptic NMDA-R#oe [30] and was compared as
a leaky-integrator filtering of the calcium. It was showntthaving a slow and steady decay in
[Ca?*]; would result in LTD as opposed to LTP which occurs when theretransient increase in
[Ca**];. It was therefore decided this should be included in theniegrrule.

Using a simple differential equation to give lowpass filtgrof the calcium concentration, the
derivative was calculated and then the negative part was insthe learning rule to express the

LTD. The leaky integrator equation is in the form:

[CGH]}M = [CGH];%M + [Ca2+]i - ([CGH]}M - T) (38)
Comparing the calcium concentration to the lowpass filtemttentration (Fig. 14), we can
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see a slower decay in the concentration.

[Ca”]) —
5.01 [Ca®] filtered -—-- ]

4.0p J
040 045 050 0.55
Time (s)

Figure 22:Comparison of Leaky integrator filtered €aagainst calcium concentration Filter constart
0.8ms.

The code for the leaky integrator, along with the other codéem can be found in Appendix

10 Results

Each simulation ran through 150,000 steps and STDP curves generated by running single
simulations repeatedly with a time shift* between pre- and postsynaptic spiking events, starting
from t = -0.10s to t = 0.10s and shifting in increments of 0Q0The single simulation run-time

is calculated by multiplying the number of simulation stéyysit = 4¢=%, giving a time of 0.6s.
We now look at three separate STDP experiments. The firsolgrig at STDP in the pyramidal
cell alone, the second looks at the changes in the STDP curee &w GABA-ergic interneuron is
attached to the pyramidal cell. The third and final experineto look at what happens to STDP

in the microcircuit when there is a reduction in NMDA receapdotivity.

10.1 Pyramidal cell, no interneuron

In Fig.23, we have plotted three STDP curves, each usingferelift ‘-’ value (- = 0.8 ms, 0.05
ms and 5 ms) for the filtering of the €aoutflux. On the Y-axis we have the change in weight,

Ap, and this is plotted against the interspike intef/glX-axis), which is the timing between pre-
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and postsynaptic spiking. The interspike interval is clali@d by finding the values of the time
of presynaptic spiking,t., and subtracting this from the postsynaptic timing,! It is observed
that different filtering of theC'a**]; produces three noticeably different STDP curves. While the
LTP part remains consistently the same, we can clearly gze #re three distinct alterations seen
in the LTD part of the curve. By changing the decay constanhtf the leaky integrator, we can
directly affect the shape of the LTD seen which in turn charthe STDP plot shapes. Comparing
Fig. 23(a) to Fig. 23(b), it can be observed that the time L¥[Present during the negative time
window is much longer. When the filter has a long decay time.(Rg(c)), there is a noticeable
decrease in time as well as magnitude of LTD present. We c@nnahke the general observation

that the STDP curve Fig. 23(a) is strikingly similar to reésween in vitro [28, 31, 29].

10.2 Pyramidal cell with attached interneuron

As mentioned in Fig.19, the attached interneuron is a med&iABAergic interneuron (known as
a chandelier cell) with NMDA and GABA receptors, along witktailed HH channels [47].
However, instead of plotting three different curves usimg different =’ values, we have cho-
sen the +’ (0.8 ms) which allows for the most biologically accuratetmut. Again the weight
changeAp, is plotted against the interspike interval, When looking at the STDP curve of pyra-
midal cell with attached interneuron (solid lines) in compan to without interneuron (dashed
lines) in Fig. 24, itis interesting to observe the declinenagnitude and shape of LTD, while long-
term potentiation remains the same. This is due to the duatenaf the GABAergic interneuron.
In particular, the process of shunting inhibition from th&EA 4 receptors (which was discussed in
Section 3.4) can result in some interesting behavioursiig the pyramidal cell. Shunting inhi-
bition, which as well as being inhibitory on the pyramidall,cean lead to either depolarization or
hyperpolarization of the postsynaptic cell depending @n@#A\BAergic current. In the instance of
our model, when hyperpolarization occurs, the pyramiddlsa@embrane potential is driven neg-
ative towards the GABA reversal potential. This causes apagmmg “shunting inhibition” on the

pyramidal cell followed by depolarization causing an exteity effect. Looking at the comparison
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Figure 23:STDP using leaky-integrator modelled LTD. Insets in top right hand of géathdisplay LTD
part of the STDP curve. (a). Leaky integrator time constart0.8 ms. STDP curve looks like the expected
asymmetrical weight-change curve. (b). Filtering@f:>+]; with 7 = 0.05 ms now gives a longer and larger
LTD part to the STDP curve. (c). When the decay constant is settd ms, LTD significantly diminishes
and lasts only for a short period (occurring just befére: 0s).
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between with and without interneuron in Fig. 24, we can reggythat LTD is reduced when the
interneuron is attached. It can be suggested that the inolo$the interneuron during simulations
causes excitation in the pyramidal cell. Even though therimguron is inhibitory by nature, a small
increase in conductance can lead to the membrane threshiblel gyramidal cell to be surpassed,

and thus causing an excitatory effect on the cell resultmigss LTD being witnessed, as seen in

Fig. 24 (dashed line).

With interneuron - - - - -
46-5 I Without interneuron

3e-51
a 2e-5f
<

1e-5¢

-1e-5¢

-0.08 -0.04 0 004 008

Interspike Interval (T)
Figure 24:Comparison between STDP plots of pyramidal cell with (dashed line) and wtifsolid line)
interneuron, both using = 0.8 ms. By comparing the STDP curve with attached interneuron to without
interneuron (dashed line), a distinct decrease in magnitude in LTD is\s&érh causes a noticeable shape
change to the curve. We can then say that by adding the interneuron twdhi¢, eve are witnessing an
increase in the excitatory activity in the pyramidal cell, which leads on to thectieah in synaptic depression
(LTD). That is, during post-presynaptic spike-timings & 0), GABAergic conductance changes have an
excitatory effect on the synaptic plasticity and cause LTD to be diminished.
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10.3 Reducing the NMDA activation

NMDA receptors are responsible for the majority of calciurfiux into a cell [48]. Therefore if
there is an impairment to the NMDA receptors, we should olesewo effects; a distinct decrease
in magnitude of plasticity and a reduction in inhibitiondndhe attached interneuron. From this,
we can predict that a sizeable reduction in magnitude of leeatl STDP curve should be seen as
well as a complete change in shape to what was observed iP4FigVhen we study the effects
the attached interneuron and NMDA receptor impairment Imathe STDP curve, it is reasonable
to conclude that reducing NMDA-R activity impairs the GAB@& inhibition on the pyramidal
cell by decreasing the GABAergic conductanggsz 4. This disinhibition of the pyramidal cell’s
excitatory activity (due to the reduced GABA conductameaz4) allows the pyramidal cell’s
membrane potential to increase, causing a potentiatiolynapse strength during the negative
timing window. Therefore, the amount of LTD seen in compariso that seen in Fig. 25 is

increased.

| Reduced NMDA act. — |
5e-11 No NMDA-R impairment - - -

4e-11
o 3e-11f
< 2e-11f
1e-11

-le-11r

-0.06 -0.03 0 0.03 0.06

Interspike Interval (T)
Figure 25:Reducing the NMDA receptor activity affects both the pyramidal cell andrieteron. Reduced
NMDA activity will cause a decline in the influx of intracellular calcium into the gayiidal cell. Thus, any
plasticity changes seen during LTP and LTD will be proportionally smalleiraratio to the NMDA receptor
activity. In addition to this, reduction in NMDA receptor activity will also afféiee GABAergic interneuron.
The reduction in NMDA-R activity means that the interneuron’s ability to poedunhibitory GABAergic
neurotransmitters will be drastically impaired. In turn, this causes the reduntiolr D previously seen in
Fig.24 to be markedly reversed.
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10.4 Conclusion

Through the research undertaken, the effects of addingtameuron to a small cell-network has
been shown to clearly modify the phenomenon of spike-tindlagendent plasticity. It has been
determined that using a learning rule incorporating bigitel properties of the cell is sufficient
to model mechanisms taking place during STDP. The backgrotinellular modelling along with
comparative models within the field have been presented sbgamonstrate where this research
picks up from. From using biophysical properties of the delting synaptic activity, differences
between STDP with and without the inhibitory interneuronen@een presented, along with ad-
ditional results showing that reduced NMDA activation casult in a reduction in the excitation
of the interneuron, which thus goes on to diminish GABA re&edt has been concluded that this
model, as to date, has successfully been able to use a bioalhysealistic learning rule to govern
the plasticity changes seen during spike-timing-depenplasticity. From these results it can be
surmised that the addition of an inhibitory interneuron pyeamidal cell will result in the reduction
in Long-Term Depression observed during the STDP simulatisuggesting that the interneuron
has an excitatory effect on the pyramidal cell. By reducirggNiMDA-Receptor activity within the
network, we were then given the opportunity to look at a tapig/pothesis currently in the field
of Neuroscience research. That is, the NMDA-Receptor impamt link currently being made to
those who suffer from Schizophrenia. During the third sitioh, we showed that by reducing
NMDA-Receptor activation (Fig. 25), the previously seenigtory effects of the interneuron (as
seen in Fig. 24) had been reversed and were similar to thahehwo interneuron was attached
(Figures 23,24). It can be concluded that an impairment inDMMReceptor activity results in a
decrease in the excitation of the interneuron, which in teads on to the reduced GABAergic
activity in the cell. Thus, the overall effect that the imteuron has on the network is impaired.
The results of these three STDP experiments have been tifdyoconsidered and compared
to relevant in vitro/vivo data in the field [28, 29, 31, 49, 5Q)]. Itis also important to discuss what
impact these results have, what improvements could anddhbeunade to the model, and most

crucially, how these results can be used.
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11 Discussion

We have shown that it is possible to modePCaependent LTD realistically during STDP sim-
ulations. Rather than have set*Caconcentration thresholds which determine whether LTP or
LTD should take place, as is the case with Shouval's modd| @& approach determines LTP
and LTD by therate of changean calcium influx/outflux. By using our biophysically realist
learning rule, which applies differential Hebbian leagiio scale the LTP/LTD parts separately,
we have eliminated the positive-timing LTD that was seen hguval and Aihara [12, 33, 38],
but not seen during in-vitro experiments [28, 31, 29]. Our modeheiates positive-timing LTD
through the slow release of calcium, meaning the IPSPs gtkduring the LTP-window will
not be strong enough to cause depolarisation of the pogisgmaembrane, thus eliminating the
decline in synaptic strength.

Comparing our new learning rule to those such as the ISO leqmile [44, 42, 41, 40], the
greatest noticeable difference between the two is the simtuof Hodgkin-Huxley parameters and
realistic calcium dynamics. Also, it can be noted that ouw hearning rule has been split into
two separate terms which describe the pre- and postsymaptbanisms of LTP and LTD rather
than one term describing all. This allows for a greater gieaiin the modelling of the cellular
processes undergone during spike-timing plasticity.

In our implementation of the leaky integrator filtering of"Cawe have shown that it is possible
to model the relationship betweenadynamics and LTD, as stated by Tanaka [30]. However,
the LTD seen may actually be caused by mechanisms opposendatia found by Tanaka. New
research [52, 53] has shown that the weakening of synapseg#itrtranslated as LTD could in fact
be caused by a retrograde transmitter moving backwardghet@resynaptic neuron through an
NMDA receptor on the presynapse. This retrograde transnyihssing through the presynaptic
NMDARs is then believed to cause the weakening of the synaptngth. This finding allows for

further research to be carried out to investigate this claone thoroughly.
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11.1 Applications

We know that hypofrontality is a condition seen in patienithwchizophrenia, and with our model
we have replicated this decrease in cortical activity. Byuoag the NMDA receptor activity, we
are actively causing an increase in the LTD seen, shiftiegréttio of LTD/LTP towards that of
LTD. Observing our results when NMDA-R activation is reddd&ig. 25), the inhibition that
was seen when attaching an interneuron (Fig. 10) has nownregersed and causes #trease
in LTD. Using this information along with studying the efftsaf NMDA-R impairment on the
inhibitory interneuron, we can note the obvious changebénblalance between LTP and LTD. It
was seen by Tegner et al and Song et al that the ratio of LTD B (uT= LTD/LTP) is essential
for stable learing to occur [54, 55]. In particular, a bakahdiring rate requires a learning ratio
slightly larger than unity¢ = LTD/LTP >1.00). We hypothesise that the NMDA-R reduction
causes a shift in the balance between LTD/LTP causing thealglue o, to become significantly
larger than unity gain. We propose the larger ratio of LTD TdPLacts as a catalyst in causing
hypofrontality. Expanding our model to a larger network Veballow observations in the change
in ratio of depression to potentiatiom,= LTD/LTP, towards LTD in patients with hypofrontality.

Thus, a possible application for this model would be to dgwye¢he microcircuit into a larger
network of neurons and observe working memory when therédBA receptor impairment. This
type of model would be of interest to those who are workinghmriesearch field of schizophrenia
[50, 51]. A further improvement on the model is to look at whidMDA-Receptor subtypes are
actually responsible for long-term depression. It hasmgddeen found [52] that LTD might
actually be a result from activation of presynaptic NMDAeptors. Further investigation has to be
done before applying this to the model.

There could also be further investigations carried out ¢k lat what effect the interneuron has
on plasticity changes, focusing on the GABAergic strengthgeting onto the neuron, as well as
the effects it has on spike-timing. It would also be beneficdook at more complex stimuli to
the circuit, and observe how plasticity is altered duringskaiof spikes, which would further add

to the biophysical realism of the model.
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Spike-timing-dependent plasticity is a special form of bien learning where the relative
timing of post- and presynaptic activity determines thengfgin synaptic weight. Recent stud-
ies have shown that the shape of the postsynaptic potedaéésmine the shaping of the STDP
curve.Consequently, interneurons change the shape of sh&ypaptic potential, thus affecting the
overall shaping of the STDP weight-change curve. The waighanhge rule used is split into two
parts: LTP is modelled by NMDA activity multiplied by the deative of the calcium concentration
and LTD is modelled using G& only. The result of this is a STDP curve which depends of the
Ca* dynamics, but is changed by the presence of the attachedént®n. Reduced NMDA ac-
tivity in the model also presents an opportunity to modelalsfseen by schizophrenia patients by
observing the transformed plasticity plots. Reducing thel\activity not only reduces plasticity
in the pyramidal cell, but also reduces the activity of theuttlNMDA receptor of the GABA-ergic
interneuron. Therefor NMDA hypofunction has two effects;veell as scaling down LTP, there

will also be a disinhibition of the interneuron, which willén cause an increase in LTD.

1Dept. of Electronics and Electrical Engineering, Univisrsif Glasgow, G12 8LT, Scotland.
2BCCN Gdttingen, University of @ttingen, Bunsenstr.10 (at the MPI), D-37078thgen, Germany.
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A.2 CNS July 07

A working memory model with three factor learning

Paolo Di Prodi, Lynsey McCabg Bernd Port, Florentin\brgotter.

Cortical models of working memory exhibit persistent a¢yiwivhich is needed in situations
where temporal stimulus-stimulus or stimulus-rewardeessions have to be learned. Individual
neurons or small subgroups can be switched into persistéity by a localized stimulus which
we call CS whereas a global stimulus (US) is used to switchhafdctivity. To achieve this
behaviour the network has to be fine tuned to prevent glolzdlatsons or global silence. Here we
present a working memory which fine-tunes its activity bglitend is learning stable persistent
activity with the help of three factor Hebbian learning. Tthed factor serves here as a switch
which enables learning only at certain moments. Here wechwainh learning either at the moment
of the CS or at the moment of the US. This leads to stable memacgs after a few trials. The
third factor is motivated by the activity of dopaminergiaunens in the VTA which either fire at the

moment of the CS or of the US.

!Dept. of Electronics and Electrical Engineering, Univisrsif Glasgow, G12 8LT, Scotland.
2BCCN Gottingen, University of @ttingen, Bunsenstr.10 (at the MPI), D-37078thgen, Germany.
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A.3 FENS July 08

Observing STDP of pyramidal cell and attached interneuron merocircuit using detailed Ca? ™+

dynamics

Lynsey McCabg, Paolo Di Prodi, Bernd Port, Florentin Worgotter?.

Synaptic weight change sensitive to the relative timing k& @nd postsynaptic activity is
known as spike-timing-dependent-plasticity, or STDP. Wespnt a model where LTD is mod-
elled by leaky integrator filtering of the change in Ca2+ coiion. The model consists of a
pyramidal cell, attached interneuron (which performs Beedk inhibition) and detailed Ca2+ dy-
namics. We show that attaching an interneuron to the pyrancell will greatly alter the overall
asymmetry of the STDP curve, particularly observing a dcttreduction in LTD magnitude. In
addition to this, we have shown that by reducing the NMDA-Rvéty, there is an overall reduction
in the magnitude of the STDP weight-change curve. This isaofiqular interest in the research
field of schizophrenia where patients are known to have NMBéeptor impairment. From this
study we have shown that the inhibitory interneuron greatiuices LTD during STDP. The greater
the inhibition from the interneuron, the less LTD is seeri@ Wweight-change curve. By using our
cortical microcircuit model, we show how NMDA hypofunctieould be a possible mechanism of

how the NMDA antagonist PCP causes cortical hypoactivitgradttime lapse of a few days.

!Dept. of Electronics and Electrical Engineering, Univisrsif Glasgow, G12 8LT, Scotland.
2BCCN Gottingen, University of @ttingen, Bunsenstr.10 (at the MPI), D-37078thgen, Germany.
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A.4  SNG Aug 08

STDP in modelled cortical microcircuit using biophysically realistic learning rule

Lynsey McCabg Paolo Di Prodi, Bernd Port, Florentin Worgotter’.

Spike-Timing-Dependent Plasticity, or STDP, is a well-4kmgphenomenon reliant on the spe-
cific timing between pre- and postsynaptic neural actiwiie present a learning rule which uses
postsynaptic NMDA processes correlated with calcium inftugalculate LTP. For LTD, the presy-
naptic NMDA activation is correlated with a retrograde sanitter. Our results successfully repro-
duce data taken from neurophysiological experiments. Tadehused is a cortical microcircuit
and consists of a pyramidal cell, attached interneurondwperforms feedback inhibition) and
detailed Ca2+ dynamics. By adding the interneuron to the pgamell, we show that the effect
of the GABAergic inhibition causes an altered symmetry @& teight-change curve as well as
changing the time-window and shaping of LTD. We go on to shmsvibfluence NMDAR impair-
ment has on the microcircuit and how this leads to a shift ie tdtio of LTD/LTP seen during
STDP. Observing the strong influence the inhibitory intera along with NMDAR impairment
has on the pyramidal cell, we theorise that these may playsilgle role in hypofrontality seen in

patients with schizophrenia.

1Dept. of Electronics and Electrical Engineering, Univirsif Glasgow, G12 8LT, Scotland.
2BCCN Gottingen, University of ®ttingen, Bunsenstr.10 (at the MPI), D-37078thgen, Germany.
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B The Nernst Equation

The Nernst equation is used to calculate the equilibriurtagal potential for an ion:

[ion],

RT
Ez'on = 23037l0910 (39)
2 F

[ion);

E;.» Is the ionic equilibrium potential, or “resting potential? is the universal gas constant,
T is absolute temperature (and proportional tg.k = is the charge of the ion, and is inversely
proportional to E,,. F' is Faraday’s constant arjébn); and [ion], are the ionic concentrations
inside and outside the cell, respectively.

- .- . RT .
These are simplified when calculating at body temperatufgXBas-=- becomes a constant:

(K,

E, =61.54mV - logig K, (40)
Nat],

Eng = 61.54mV - logy [[NZJF]]' (42)
Ca2+ o

Ec, = 30.7TmV - logg [[C’a2+]]- (42)

Thus, when calculating the membrane resting potential dy b@mperature, we only need to

know the intracellular and extracellular concentratiohthe specific ions we are interested in.

75



C GENESIS Code

C.1 AMPA Receptor

| *

Synaptic Channels

*/

function make_AMPA_pyramid(path, name)

str path

str name

echo "creating AMPA pyramidal synapse in "{path}
pushe {path}

create ampalearn {name}

setfield {name} \

Ek {AMPArev} \ /I reversal potential of the synapse
taul {taul ampa} \ // secs

tau2 {tau2_ampa} \ // secs

gmax {gextAMPA} // Siemens

pope

end

function make_AMPA_interneuron(path,name)

str path

str name

echo "creating AMPA interneuron synapse in "“{path}

pushe {path}
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create synchan {name}

setfield {name} \

Ek {AMPArev} \ /I reversal potential of the synapse
taul {taul _ampa} \ // secs

tau2 {tau2_ampa} \ // secs

gmax {gextl} // Siemens

pope

end

C.2 NMDA Receptor

| *

NMDA "learning" receptor

(allows implementation of plasticity rule)

*/

function make_NMDA _learning(path,name)

str path

str name

pushe {path}

create nmdalearn {name}

setfield {name}\

Ek {AMPArev} \ /I same reversal potential as AMPA synapse
taul {taul_nmda} \ // NMDA rise time (secs)

tau2 {tau2_nmda} \ // NMDA decay time secs

gmax {gextNMDA} // max NMDA conductance

create Mg_block {name}/Mg_block

setfield {name}/Mg_block \
CMg {CMg} \
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KMg_A {1.0/eta} \

KMg_B {1.0/gamma}

addmsg {name} {name}/Mg_block CHANNEL Gk Ek
pope

end

C.3 GABA Synapse

| *
"Generic" GABA synapse - gmax should be set later

according to type of neuron

function make_general_GABA(path,name)

str path

str name

pushe {path}

create synchan {name}

setfield {name}\

Ek {GABArev} \ // GABA reversal potential
taul {taul gaba} \ // secs

tau2 {tau2_gaba} \ // secs

gmax {gmaxGABA}

echo "GABAIn created in "{path}

pope

end
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C.4 Calcium Channel

Il genesis script file - Ca_channel.g

float gcamax = -le-12

/I typical value for CA reversal potential is 120mV
float carev = -0.1 // Volts
float Vmin = -80e-3

float Vmax = 80e-3

/I npoints resolution can be modified to suit...

int npoints = 8000

/I Calcium concentration

float tauCA = 30e-3 // calcium depletion is slow

float Cain = 2 // intracellular calcium concentration... 2m
float B = 1lel2

float CAbaseline = 0 // the baseline calcium concentration 0

float shelltick = 1e-6

| *

Generated tabchannel to model low threshold
calcium current - Gbar is 1.75mS/Cm™2

*/

function m_inf_V(V)
float V
float minf=0;

float tempexp=0;
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tempexp=-(V+52)/7.4
minf=1/(1+{exp {tempexp}})
return {minf}

end

function m_tau_V(V)

float V

float taum=0;

float tempexpl,tempexp2

tempexpl=(V+27)/10

tempexp2=-(V+102)/15

taum=0.44+(0.15/({exp {tempexpl}} + {exp {tempexp2}}))

return {taum}

end

/I Fill the table with generated values
function fill_table_X(path,name)
str path

str name

pushe {path}

float Vstep={getfield {name} X_A->dx}

echo "Vstep is "{Vstep}

int index

int maxpts={getfield {name} X_A->xdivs}

echo "Points are "{maxpts}

float V={Vmin}

for (index=0;index<={maxpts};index=index+1)
float m_inf={m_inf_V {V}}

float m_tau={m_tau V {V}}
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setfield {name} X_ A->table[{index}] {m_inf}
setfield {name} X_B->table[{index}] {m_tau}

V=V+Vstep

end//lend for

pope

end

function h_inf_V(V)

float V

float hinf=0;

float tempexp=0;
tempexp=(V+80)/50
hinf=1/(1+{exp {tempexp}})
return {hinf}

end

function h_tau_V(V)

float V

float tauh=0;

float tempexpl,tempexp2

tempexpl=(V+48)/4

tempexp2=-(V+407)/50

tauh=22.7+(0.27/({exp {tempexpl}} + {exp {tempexp2}}))

return {tauh}

end

function fill_table_Y(path,name)

str path,name

pushe {path}

81



float Vstep={getfield {name} Y_A->dx}

echo "Vstep is "{Vstep}

int index

int maxpts={getfield {name} Y_A->xdivs}

echo "Points are "{maxpts}

float V={Vmin}

for (index=0;index<={maxpts};index=index+1)
float h_inf={h_inf_V {V}}
float h_tau={h_tau V {V}}
setfield {name} Y_A->table[{index}] {h_inf}
setfield {name} Y_B->table[{index}] {h_tau}
V=V+Vstep

end//end for

pope

end

function gen_CA_conc(path,name)
str path,name

pushe {path}

echo "Generating CA conc in "{path}'with name "{name}
create Ca_concen {name}

setfield {name} B {B} tau {tauCA} Ca_base {CAbaseline} \
Ca {Cain} thick {shelltick}

end

function gen_CA_channel(path,name)
str path,name
pushe {path}

create tabchannel {name}
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echo "Generating tabchannel in "{path}" with name "{name}

setfield {name} Ek {carev} Gbar {gcamax} Xpower 2 \

Ypower 1 Zpower O

call {name} TABCREATE X {npoints} {Vmin} {Vmax}
call {name} TABCREATE Y {npoints} {Vmin} {Vmax}

fill_table X {path} {name}
fill_table_Y {path} {name}

tweaktau {name} X

tweaktau {name} Y

echo "generating CaConc object in "{path}" with name CaConc

gen_CA_conc {path} "CaConc"

addmsg {path}/{name} {path}/CaConc |_Ca Ik

pope

end
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C.5 Leaky Integrator Filter

if (channel->caconc_diff<0.0) channel->caconc_diff=0.

channel->Itd_calc=(channel->ltd_calc)+((atof(caConc

\\  ((channel->Itd_calc) * (channel->tau_const)));
printf(" Itd calc is %f\n" , channel->ltd_calc);
channel->lowpassderiv=(channel->ltd_calc - channel->I|

channel->Itd_calc_prev= channel->Itd_calc;

printf(" low pass deriv %f\n" , channel->lowpassderiv);
if ((channel->lowpassderiv)<0) {
channel->lowpassderiv=((channel->lowpassderiv)
} else {

channel->lowpassderiv=0.0;

C.6 The Learning Rule

Str)) -

td_calc_prev);

* (channel->gainLTD));

/ = channel->deltaNMDA calculates update of synapse weight */

channel->deltaNMDA=(channel->mu * channel->X

\\((channel->gamma) * (channel->lowpassderiv)

/= channel->mu and channel->gamma are learning rates, channe
activation, channel->diff is the positive derivative of ca

and channel->lowpassderiv is the filtered negative deriva

concentration. x [
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* channel->X);

I->X is NMDA
Icium concentration

tive of the calcium



D Parameters

D.1 lonic equilibrium potentials (Sl Units)

e Pyramidal CellEy, = 0.055 V

Pyramidal CellEx =-0.090 V

InterneuronEy, = 0.045 V

InterneuronE'x =-0.10V

Eleak =-0.065V

D.2 NMDA receptor

Rise timer; =2 ms

Decay timer; =10 ms

gnmpa =15nS

D.3 AMPA receptor

Rise timer; =2 ns

Decay timer; =2 ms

Jampa=1nS

D.4 GABA receptor
e Risetimer; =10 ns
e Decay timer; = 10 ms
e jaapa =25 nS //can be increased to implement shunting inhibition
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D.5 Soma parameters for pyramidal cell

D.6

Pyramidal CellE,..,; = -0.060 V
Pyramidal Cellg;.... = 25 nS
Pyramidal CellR,,, = -1 Q

Pyramidal CellC,, = 0.5 nF

Soma parameters for interneuron

Interneuronk,.,; = -0.070 V
Interneurorng;.., = 20 nS
Interneuronk,,, = ——

Jleak

Interneuron”,,, = 0.2 nF
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