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Abstract

The field of Computational Neuroscience is where neuroscience and computational mod-

elling merge together. It is an ever-emerging area of research where thelevel of biological

modelling can range from small-scale cellular models, to the larger network scale models. This

MSc Thesis will detail the research carried out when looking at a small network of two neu-

rons. These neurons have been modelled with a high level of detail, with the intention of using

it to study the phenomenon of Spike-Timing-Dependent Plasticity (or STDP).Spike-Timing-

Dependent Plasticity is the occurrence of either a strengthening or weakening in connection

between two neurons, depending on the temporal order of stimulation between them. A major

part of the work detailed is the focus on what mechanisms are responsible for these changes in

plasticity, with the goal of representing the mechanisms in a single learning rule.The results

found can be directly compared to data previously seen by scientists who worked on in-vitro

experiments. The research then goes on to look at further applications ofthe model, in par-

ticular, looking at certain deficits seen in people with Schizophrenia. We modify the model to

include these cellular impairments, then observe how this affects the standardSTDP curve and

thus affects the strengthening/weakening between the two neurons.
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1 Introduction

Computational Neuroscience is a field which has developed exponentially within the past twenty

years. Throughout the past decade it has also become an area which has received serious credibility

and collaboration from the neuroscience community. A largepart of its fruition is due to the

increase in processing power that computers now have, allowing for more finer detailed models and

simulations to be realised, while reducing the run-time required to simulate them. With the extra

power and speed available, computational neuroscientistshave a greater freedom when creating

neuron or brain models from the detailed cellular level to the larger-scale network-level. Examples

of network-level models are the scientists who have studiedthe visual cortex, with very successful

results in replicating these processes [1, 2].

There has been a lot of focus on computational neuroscientists working alongside biologists in

creating realistic cell and network models, in the hope of testing/hypothesising theories or produc-

ing potential pharmacological cures for neurological disorders.

One of the first types of realistic neuron models was developed by scientist Wilfrid Rall, who

used “Cable Theory” to come up with a multicompartmental model of the neuron with dendrites and

axon [3, 4, 5, 6]. In more recent times, a high-profile projectunderway is the “Blue Brain project”

[7] managed under the collaboration of IBM and the Ecole Polytechnique Federale de Lausanne,

who, using the Blue Gene supercomputer, are currently modelling a biophysically realistic cortical

column.

1.1 Research Focus

The research focus over the past two years has centered on thestudy of synaptic plasticity in a

microcircuit of two neurons. A brief definition of plasticity is to characterise it as the strength in

connection between the two synaptic terminals (end points)of a neuron. This definition of plasticity

will be further elaborated on in Section 7. The microcircuitconsists of a pyramidal neuron with

attached interneuron. Put simply, this circuit consists ofan excitatory (pyramidal) cell innverating
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a smaller (interneuron) cell which in turn performs a negative feedback, or inhibition, onto the

excitatory cell. The pyramidal neuron simply gets its name from its cell body (also known as the

soma) resembling the shape of a pyramid. Interneurons are a type of smaller neuron that project

onto larger neurons like pyramidal cells and are generally inhibitory in nature, by reducing the

“excitatory” activity of these pyramidal neurons. What is the reason for looking at a circuit of two

neurons? Looking at the ability to make neural connections in these microcircuits (also known as

plasticity) is of great interest, in particular when comparing these results with similar experiments

carried out in-vivo and in-vitro.

1.2 Abstraction level of model

One main objective is to take this small network of two neurons, add the detail of ionic channels and

certain receptors which interact during cell firing, then develop theories on how these mechanisms

actually work during processes such as learning. Thus, the research is not focused on the brain’s

higher-level behaviourism of learning itself, but instead, it is focused around thelevel of detail

required or comprised in developing the cellular model of the neuron, in particular hypothesising

which cellular mechanisms play key roles in synaptic plasticity, the phenomenon associated with

memory and learning.

There are two other major considerations which have to be evaluated before a model can be

constructed, and both are of equal importance. The first is deciding what exactly should be mod-

elled and what can safely be ignored. To do this, we have to look at the physiology of the neuron

and observe how these properties/characteristics should be expressed computationally. The second,

which will be discussed in more detail in consequent chapters, is what approach to computational

modelling is most suitable for the research, i.e is it a viable option to use a software package such

as the GENESIS [8] package used for this research?
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1.3 GENESIS - What is it?

For this research, the software package “GENESIS” [8] was decided on as suitable to model the

cortical microcircuit. GENESIS is an open-source softwarepackage, with its acronym standing for

GEneral NEural SImulation System. The developers state that it is a: “General purpose simulation

platform developed to support simulation of neural systemsranging from subcellular components

and biochemical reactions to complex models of single neurons, simulations of large networks, and

systems-level models”. The GENESIS programming language is similar to C and allows modifi-

cation of the software if required for more complex models. If the user wishes to add code to the

simulator, this can be done in C. Recompiling of the source codeallows the new functions to then

become part of the GENESIS structure. For the purpose of research demands, we have written

a new object which satisfactorily implements learning processes. Fragments of this code will be

shown in later sections. The software’s hierarchical structure will also be discussed in the following

sections. Before any of the programming decisions can be discussed, we have to firstly look at the

physiology of the neuron to get a better understanding abouthow neurons behave.

2 Physiology of the Neuron

To be capable of sufficiently modelling the neuron, we look atits physiology, and in particular,

the characteristics of the neuronal membrane. In mammals, the central nervous system (CNS)

consists of the brain and spinal cord and there are approximately 10 billion neurons present. Each

cell then connects through to tens of thousands of other cells. On the next page is a diagram of

a typical neuron which can be found in the central nervous system. It is appropriate to note that

interneurons are similar to the figure below, but stereotypically have short or no axon part to them

and are generally inhibitory by nature.

A typical neuron, as seen in Fig. 1, consists of a soma, axon (and axon hillock which joins

the soma to the axon), neuronal membrane separating the outside of the cell from the inside and

dendrites which transmit signals to nearby neurons. The soma is also known as thecell bodyand
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Figure 1:Sketch of typical neuron. The neuron is made up of the soma (or cell body), axon and dendrites.
The neuron has a membrane which separates the fluid inside the cell from theoutside. The dendrites are
branch-like and are the point (in many neurons) where electrical signalsare transmitted to. This signal
is propagated down the neuronal body towards the axon, which then transmits across the cell to the next
dendrite.

is generally spherical in shape. Inside the soma is a fluid called cytosol; the clear internal fluid

of the cell containing proteins necessary for synaptic transmission amongst other important roles.

Inside the soma is the cell-nucleus which is made up of DNA molecules and proteins. The axon

part of the neuron is where signals are transmitted from the cell body, down through the axon from

the “terminal button” and across the “synaptic cleft” - the space between the presynaptic neuron

and postsynaptic neuron. The axon itself is covered by a myelin sheath, which acts as an insulator

to the axon, keeping the electrical impulses generated fromthe cell body from travelling outward

before reaching the axon terminal and across to the dendriteof another neuron. Dendrites are

branch-like in nature and are where the presynaptic signalsare transmitted to, with some of the
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transmitters being sent back to the presynapse (a phenomenon known as “re-uptake”). This is of

course a simplified explanation of what happens during synaptic transmission, and this process will

be further clarified later in the report.

2.1 The “Passive” neuronal membrane

The passive membrane of a neuron separates the inside of the cell from the outside. When we look

at circuit equivalents, we will see it can be successfully represented by a simple RC circuit.

Firstly, it is important to look at the components which the membrane is physiologically made

from, then express its electrical properties in a simple circuit format. This allows a clearer approach

to be used when constructing a circuit equivalent model of the cells. Thephospholipid bilayeris

what the cell membrane is primarily composed of. It consistsof a layer of lipid molecules made

up from polar heads and non-polar fatty-acid tails. These tails face each other with the polar heads

pointing outwards, thus meaning the bilayer is able to separate the intracellular and extracellular

fluid.

Figure 2: Phospoholipid Bilayer. The phospholipid bilayer is how the neuronal membrane separates the
intracellular fluid from the extracellular. Inserted into the membrane are proteins known as ion-channels
which, when open, can allow the influx and outflux of ions such as potassium and sodium.

Inserted into the lipid bilayer are proteins known as ionic-channels and receptors. These allow

ions such as sodium and potassium to flow in and out of the membrane using gate-like mechanisms.

When the cell is at rest, the sodium and potassium ions inside the cell (intracellularly) sit at a ratio
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of a low concentration ofNa+ ions to a high concentration ofK+ ions. Outside the cell, or extra-

cellularly, there is a low concentration of potassium ions in comparison to a higher concentration

of sodium (Na+).

The phospholipid bilayer acts as a membrane capacitance, and in fact has a very high capac-

itance due to being almost impermeable to ions. This is with the exception of those ions moving

through gated channels under certain “permissive” conditions. The membrane capacitance,Cm, is

the measurement of how much charge has to be spread across themembrane for a voltage potential,

Vm, to build up (Q = CVm).

When the potential difference between the extracellular voltage changes with respect to the

intracellular voltage, a current will begin to flow across the capacitance,Ic. This is calculated by

differentiatingQ = CVm and is as follows:

Ic = C
dVm(t)

dt
(1)

As mentioned, a passive membrane can be represented by an RC circuit (Figure 3). This is true if

assuming the neuron is of a small spherical space with diameter “d” and the total membrane area

given byπd2[9]. The total capacitanceC is given by multiplying the membrane capacitanceCm

by the membrane area. The current through the resistanceIR is given by subtracting the resting

voltage potential from the membrane potential and dividingby R:

IR =
Vm − Vrest

R
(2)

When applying a fixed current such as the current injection, the membrane capacitanceCm

forces a limit on how quickly the membrane potentialVm can change. Thus for larger membrane

capacitances, a slower change in membrane voltage is seen. During this passive state, it is important

to note that there is no charge moving across the intracellular membrane. As the membrane voltage

changes, a change in charge occurs allowing current to flow, represented by Eq. 1. The current itself

never flows across the capacitance and the charge is distributed across both sides of the membrane.
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The extremely high resistivity of the lipid bilayer means that it prevents any large amounts of

charge from passing across the cell membrane. This membraneresistivity is roughly around one

billion times higher than that of the intracellular fluid, cytoplasm. In terms of the circuit discussed

so far, this means the membrane can be adequately represented by the capacitance,Cm.

Proteins which are embedded in the cell membrane act as “gates” in the phospholipid bilayer.

These gates allow ions to pass in and out of the membrane in addition to allowing the transmission

of information/signals. The proteins can be ion channels, neurotransmitters, receptors, pumps and

enzymes. For the purpose of this research, we only focus on ion channels (also known as pores)

and certain receptors which are integral in synaptic plasticity.

For further simplicity, we describe the flow of current through the ionic channels by using a

simple linear resistance,R (Eq. 2). As we also have to consider the membrane resting potential,

we have a simple circuit that consists ofC, R andVrest which describes the “passive” behaviour of

the membrane. This membrane resistance is usually known as the “specific membrane resistance”,

Rm, and has unitsΩ· cm2. The resistance (R) can be calculated by dividingRm by the membrane

area in question. The passive conductance per unit area of membrane is known as the “specific

leak conductance”,Gl = 1
Rm

, and has unitsS/ cm2. We can look at these components briefly in a

simple RC circuit (Fig. 3).

If initial conditions are applied to Eq.1, then the voltage trajectory can be modelled. By assum-

ing that the membrane potential at time t = 0 is equal to the resting potential when there is no input

(Iinj = 0, Vm(t = 0) = Vrest), we can say thatdVm

dt
= 0. This means that when the cell is at rest and

is receiving no input from a current pulse, the cell will continue to remain atVrest.

Applying a step currentI0 = IR+IC with constant amplitude at t = 0, Eq.1 can then be rewritten

as:

Vm(t) = v0e
−t
τ + v1 (3)

wherev0 andv1 depend on the initial conditions. Applying a current allowsthe voltage to change

just enough to cause a potential difference across the membrane,without causing it to surpass the
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Figure 3: Simplified circuit diagram of the passive neuronal membrane. The capacitance,C, represents
the high membrane resistance from the phospholpid bilayer, with the parallel resistanceR being the passive
membrane resistance,Vrest the resting membrane potential, andIinj the input into the circuit.

“threshold voltage”, where spiking would occur.

By substituting Eq. 3 into Eq. 1 and cancelling out any duplicate variables yields:

v1 = Vrest + RI0 (4)

We can findv0 by applying the initial conditionVm(t = 0) = v0 + v1 = Vrest. Vm can then be

calculated by setting the steady-state voltage potential of the cell in response to the current when

V∞ = RI0:

Vm(t) = V∞(1 − e
−t
τ ) + Vrest (5)

This means that the membrane potentialVm deviates away fromVrest at an exponential rate,

with time constantτ . How quickly it actually diverges depends on the time constant τ = RC.

Thus, the smaller or larger the capacitance, then the smaller or larger the current required to charge

it, respectively.

It has been mentioned that a constant current source can be used as an excitatory input to the

neuron to allow changes in the behaviour of the membrane voltage. When observing real neurons,
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it is seen that inputs into the neuron come from excitation orinhibition of the membrane voltage

through receptors and ion channels embedded on the cell membrane. The next section describes

some inputs to the cell which cause this rise or decline in membrane potential.

3 Synaptic input into a neuron

For any activity to be initiated in a neuron, there has to firstly be some input to the presynaptic

side of the cell to invoke either an excitatory response (rise in membrane voltage), or inhibitory

response (fall in membrane voltage) in the postsynaptic neuron.

The communication of neurons through “point-to-point” contact, when the end points (orter-

minals) meet, is known assynaptic transmission.

A typical synaptic connection is made up from the connectionbetween a presynaptic termi-

nal (usually the axon terminal) and a postsynaptic terminallocated either on the dendrite, or cell

body (soma), however, there are occasions where the contactis via dendrite-dendrite or axon-axon

connections.

3.1 Characteristics of synaptic transmission

The characteristics of synaptic transmission can be split into three stages between the presynaptic

terminal and postsynaptic neuron, as seen in Fig.4.

The process of synaptic transmission is started when an action potential travels down the axon

to the presynaptic terminal. At this point, calcium ions flowinto the presynapse. This causes

“vesicles” (stores of neurotransmitters) to move downwards and fuse to the membrane where the

neurotransmitters are released. The neurotransmitters travel across the gap separating the pre- and

postsynaptic membrane called the “synaptic cleft”. The neurotransmitters then diffuse across this

cleft (travelling from a higher concentration level to a lower) and bind to the receptors on the post-

synapse. For example, these neurotransmitters could bind to sodium channels and allow an influx

of sodium to the postsynaptic cell. As sodium ions are positively charged, the associated positive
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Figure 4:Diagram of Stages in Synaptic Transmission. Diagram is redrawn from Jessel and Kandel’s paper
on synaptic transmission[10]. (1). The action potential propagates fromthe soma to the axon terminal. (2).
Calcium channels on the axon terminal open to allow Ca2+ ions to flow inwards and fuse to the membrane,
causing neurotrasmitters to be released across to the postsynaptic neuron. (3). These neurotransmitters bind
to the postsynaptic neuron, causing ion channels to open and Na+ ions to flow into the cell.

current carried by the ions (known as an excitatory postsynaptic current, or, EPSC) would lead

to a rise in the membrane potential for around 1ms known as an excitatory postsynaptic potential

(EPSP).

The interaction between different neurotransmitters and receptors on the postsynaptic terminal

causes many diverse actions in synaptic transmission such as “fast synaptic transmission”. Fast

synaptic transmission is the quick onset of associated excitatory or inhibitory postsynaptic currents,

usually occurring at times<1 ms, with their durations lasting less than 20 ms.

The majority of “fast synaptic transmission” is governed byamino acids. These acids can be

split into those which are excitatory in nature (causing or adding to the generation of an action po-

tential), and those which are inhibitory decrease the possibility of an action potential to be elicited.

The main excitatory neurotransmitters which bind to postsynaptic receptors are known asglutamate

andaspartateand the inhibitory neurotransmitters areγ-amino-butyric acid (GABA) andglycine.
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3.1.1 Receiving Input - Postynaptic Receptors

Postsynaptic receptors can be split into two different types. The first are those which are directly

coupled with ion channels, known as “ionotropic receptors”. Binding of a neurotransmitter to

an ionotropic receptor leads to the fast opening of the linked ion channels. Examples of these

ionotropic receptors are the GABAA receptor, the NMDA receptor (N-Methyl-D-aspartic acid) and

non-NMDA receptors such as AMPA (α-amino-3-hydroxy-5-methyl-4-isoxezole propionate) re-

ceptors. All of these receptors will be further elaborated on throughout this section. The second

type of receptor is known as a “metabotropic receptor”. Withthe metabotropic receptor, binding

of a neurotransmitter activates a “second messenger” such as calcium ions. Once the second mes-

senger diffuses to its destined site “of action”, it binds toa particular ion channel to modulate the

properties of the channel. The special properties of calcium will also be furthered upon in later

sections.

3.2 Excitatory and Inhibitory Currents

Activation of a synapse that is excitatory results in a synaptic currentIsyn which depolarises the

postsynaptic membrane. This current causes a momentary rise in membrane potential known as

an EPSP. However, activation of an inhibitory synapse can either cause the membrane potential

to remain around the membrane potentialVrest, or cause anoutwardcurrent to flow. This outward

current would produce a momentary dip in voltage that hyperpolarises the cell. This dip is known as

an inhibitory postsynaptic potential, or IPSP. Put simply,activation of an excitatory synapse results

in a positive current injectioninto the cell, whereas activation of an inhibitory synapse allows the

outward flow of current from the cell, causing an IPSP.

3.3 Excitatory Synaptic Input

The majority of fast excitatory neurotransmitters found inthe central nervous system of vertebrates

are glutamate. The application of glutamate or aspartate onneurons causes fast depolarisation of
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the postsynaptic cell. There are two distinct classes of excitatory glutamate synapses known as

NMDA and non-NMDA synapses. Those non-NMDA synapses bind toagonists such as AMPA.

The other glutamate receptor called an NMDA receptor, reacts differently from the former as will

be explained shortly. What now will be described is the process undergone when an action potential

travels down towards the presynaptic terminal releasing glutamate across the synaptic cleft toward

a postsynaptic AMPA receptor.

3.3.1 AMPA Receptor

During an action potential, the excitatory amino-acid, glutamate, is released from the presynaptic

terminal. When the glutamate has diffused across the synaptic cleft and bound to the postsynaptic

AMPA receptor, its associated channel opens, allowing sodium and potassium to flow across the

membrane. At non-NMDA receptors such as ionotropic AMPA receptors, the postsynaptic chan-

nels activate very quickly. The peak value of the synaptic current usually occurs very quickly (<

1ms) with an exponential decay with time constant ranging between 0.5 ms and 3 msec. Wilfrid

Rall described the time course of the synaptic conductance ofthe AMPA receptor as an alpha func-

tion [11]. This alpha function is used to describe a “smooth”conductance change, rather than some

approximations which use a rectangular pulse. It is also used in the GENESIS software (discussed

in later sections) and is described as follows:

gsyn(t) = gmax
t

tp
e(1−t/tp) (6)

The function increases transiently to a maximum conductance gmax at t = tp. After the function

peaks at its maximum, the conductancegsyn(t) has a slow decline back to zero. Fig.5 shows the

smooth conductance change seen when ions pass through AMPA receptors compared to the slower

conductance change though NMDA receptors.
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Figure 5: Conductance change comparison between AMPA/GABA receptors and NMDA-receptors. The
single alpha function characterises the fast synaptic conductance change from the AMPA receptors, whereas
the NMDA receptor has a slower rise and decay time described by a dual-alpha exponential function.

3.3.2 NMDA Receptor

Unlike the non-NMDA receptor, the conductance change associated with the NMDA receptor is

dependent on the membrane potential voltage,Vm.

If the cell membrane of the postsynaptic neuron is at rest when glutamate is bound to the NMDA

receptor, the receptor opens, but is also blocked by magnesium ions which sit in front of the NMDA

receptor. As the postsynaptic membrane becomes depolarised, the magnesium ions move outward

from the receptor and the NMDA receptor becomes permeable tosodium, potassium and calcium

ions, as visualised in Fig.6.

Figure 6:Ions travelling through NMDA-receptor once magnesium block is lifted.

The NMDA conductance has a significantly slower time-coursein comparison to the AMPA

conductance. This is a result of the receptor’s dependence on the cell membrane potential, Vm,
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as well as being dependent on magnesium, which obstructs theNMDA-R until the cell becomes

depolarised. This then allows the receptor to become permeable to Na+, K+ and Ca2+ ions.

The voltage-dependent NMDA conductance,gNMDA(t), is calculated from the following [9]:

gNMDA(t) = ḡ
e

−t
τ1 − e

−t
τ2

1 + η[Mg2+]e−γVm
(7)

With rise and decay timesτ1 = 2 ms,τ2 = 100 ms and maximal conductance,ḡ. The Magnesium-

block parameters are:γ = 0.06/mV,η = 0.33/mM and magnesium concentration, [Mg2+] = 2mM.

This voltage-dependent conductance,gNMDA(t), increases as the cell is depolarised.

These are the main excitatory receptors which are used in themicrocircuit model for the re-

search undertaken. We now look at inhibitory receptors, in particular GABA receptors, which are

responsible for causing inhibition, and sometimes under special circumstances, cause excitation.

3.4 Inhibitory Synaptic Input - GABA Receptors

GABA receptors are usually located in the membrane of excitatory neurons and receive innerva-

tion from inhibitory neurons such as interneurons. There are two types of postsynaptic receptors

associated with GABA-releasing terminals, called GABAA and GABAB receptors. Both act dif-

ferently from each other, with the common factor being that both bind GABA. For the purpose of

this report and model to date, we only look at the GABAA receptor. Like the AMPA receptor, the

GABAA receptor isionotropic. The result of GABA binding to the receptor is the opening of chlo-

ride channels. Chloride ions are generally present inside and outside of the cell, with the majority

concentrated on the outside. When the chloride channels open, a flow of negatively charged chlo-

ride ions move into the cell causing a change in conductance to be seen. The change in postsynaptic

conductance from the influx of the negatively charged ions rises very rapidly (<1ms), and decays

within 10-20ms. Thus, the conductance change can be approximated again by Rall’s single-pool

alpha exponential model.

A characteristic which separates the GABAA receptor from its excitatory NMDA and non-
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NMDA counterparts is that the location of the GABAA receptor can be found on the soma of the

neuron, as opposed to the dendrite or axon.

It was found by Aihara [12] and also discussed by Edward O’ Mann [13] that fast GABAergic

transmission onto other cells can cause a phenomenon known as “shunting inhibition” [13]. GABA

receptors are connected to chloride channels (Cl−) which have a reversal potential near to that of

the resting membrane potential of the pyramidal cell (ECl− ≈ Erest ≈ −65mV ). When the Cl−

channels are activated they cause brief, but significant, changes to the membrane potential,Vm re-

sulting in large increases in conductances leading on to thegeneration of an inhibitory postsynaptic

potential. This is the process of shunting inhibition. Thisshunting inhibition is of great interest,

particularly when observing what effect this inhibition has on plasticity in the small microcircuit

model.

Now we have an idea of what types of receptors allow synaptic input to the neuron, we can

then look at what happens when there is repeated stimulationto the inputs of a neuron, which result

in the generation of action potentials and begin the processof synaptic transmission leading to

plasticity changes.

4 The Action Potential

In neurophysiology, an action potential is also known as a “nerve impulse”, or “spike”, and is

usually one or more short voltage pulses which propagate downwards from a cell’s membrane.

They are also generated in the nerve fibres of cells controlling muscular function, but we are only

interested in action potentials generated from the neuron cell-body and travel down the axon. When

a cell is at rest, the voltage inside is negative and sits approximately between -65mV and -70mV

depending on the type of cell. The action potential can be thought of as a brief reversal of the

resting membrane potential when the inside of the cell becomes positively charged. This is known

asdepolarisation.

Figure 7 shows how a generalised action potential looks, butthese can vary slightly in different
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Figure 7: Diagram of Stages in Action Potential generation. (1). Once the threshold of excitation has
been reached (-65mV), sodium channels open allowing the positively chargedNa+ ions to enter. At the
same time, potassium channels open, allowing the negatively chargedK+ ions to leave the cell, driving the
membrane potential close to the equilibrium potential forN+ ions. (2). After 1ms when the voltage is at its
peak, theNa+ channels begin to close. Potassium ions leave the cell and the membrane voltage is driven
down towards the equilibrium potential forK+ ions. (3). As the membrane potential is driven down towards
the resting potential, it undershoots towards theK+ equilibrium potential. The potassium channels close
and any excess potassium is diffused away.

cell types in vertebrates and invertebrates. The first part of the action potential is known as the “ris-

ing phase” and is characterised by a quick, steep depolarisation of the cell membrane until it reaches

around +40mV (equilibrium potential for sodium). The next stage of the action potential, where the

voltage rises above 0V and rushes towards +40mV, is known as the “overshoot”. After this we have

a repolarisation of the cell as it is driven back negatively towards the resting potential for potassium

(≈ -80mV), and actually becomes more negative than the cell resting potential itself. This part

of the action potential is known as the “falling phase”. As the potential is driven to a value more

negative than the resting potential, it is known as the “after-hyperpolarisation” or “undershoot” for

short. Due to a process from the “sodium-potassium” pump thebalance of sodium/potassium ions

is restored intracellularly and extracellularly, by the exchange of 3 sodium ions inwards for every 2

outwards. This allows the membrane potential to return to its resting potential of≈ -65 millivolts.

Usually this process lasts around 2 ms, and during this hyperpolarisation there is a period known

as the “absolute refractory period”, where it is physicallyimpossible for another action potential to
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be invoked due to the sodium channels remaining in an inactive state. When we go on to look at

the more detailed Hodgkin and Huxley model, the ionic processes of the action potential will be

explained in more detail.

Firstly, we begin by implementing a simple spiking (the invocation of action potentials) model

for which we can add in realistic synaptic inputs and ionic processes to. We will use a “leaky

integrate and fire” model. Viewed as a simplistic model by many, it was recently investigated by

Jolivet et al [14] that in fact the integrate and fire model washighly accurate in modelling spike

trains seen in real neurons.

5 The Leaky Integrate and Fire model

The integrate and fire model originates from Stein and others[15, 16], basing their work on a

spiking cell model by Lapicque at the beginning of the twentieth century [17, 18]. The reason

for its popularity is that it manages to successfully represent two important characteristics of the

spiking neuron. The first is the integrating nature of the passive, subthreshold “domain” when the

cell is resting, which integrates any excitatory or inhibitory inputs to the cell. The second property

is the models ability to produce spiking once the threshold voltage has been reached. The integrate

and fire model’s can come in many varieties, with the most wellknown being the “perfectintegrate

and fire model” and the “leakyintegrate and fire model”.

The perfect integrate and fire model can be represented by a sole capacitor, which integrates

any charge received by synaptic inputs with a set voltage threshold for spiking. Opposed to the

perfect model is the leaky integrate and fire model, which hasthe addition of a resistance,R, to

include any leakage currents through the cell membrane. It also models the decay of the membrane

potential after spiking effectively.

If using a simple, sole, capacitor, then any input current the circuit receives will be summated

linearly:
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C
dV (t)

dt
= I(t) (8)

Equation 8 determines the subthreshold time course for the cell’s membrane potential, if initial

conditions are applied. When the membrane potential reachesthreshold,Vth, a spike is initiated and

the charge built up on the capacitance is “shunted” back to zero by a switch. In the cell membrane

this is done by various ionic conductances flowing inwards and outwards of the cell, which shall

be discussed in the Hodgkin-Huxley model section. It can be seen from this equation that the firing

rate is linearly related to the input current, as the output is based on the integration of the input

current,I(t).

However, when referring back to Section 2 detailing the passive neuronal membrane, the leaky

integrate and fire model (Fig. 8) allows for a more realistic behaviour by introducing theleak

resistanceR. The leak resistance being the conductance/resistance resulting from ions flowing in

Figure 8:Diagram of Leaky-Integrate and Fire circuit.

and out the membrane during the cell’s resting potential. Rewriting Eq.8 with the inclusion of the

leak resistance is then:

C
dV (t)

dt
+

V (t)

R
= I(t) (9)

If we multiply this equation byR then we can introduce the membrane time constantτm = RC.

We then get:

τm
dV (t)

dt
= −V (t) + RI(t) (10)
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We know from the previous section that the subthreshold voltage is dependent on the input

current,I(t), with respect to the time constantτ = RC (Equation 5). The time frame of the

membrane potential responding to a step of constant current, remaining on from time t=0, is solved

below by setting t to zero:

V (t) = IR(1 − e
−t
τ ) + V (t = 0)e

−t
τ (11)

The membrane potential then charges upwards at an exponential rate to its stationary maximum

value V = IR. Looking at Fig.9, we can see the membrane voltage in response to a current

injection.

Figure 9:Voltage response to current pulse. Voltage increases until it reaches its maximum,IpulseRm.

The leaky integrator model will only remain true to Eq.11 forvoltage values beneath the thresh-

old, Vth. This is due to the voltage being reset to zero once the threshold for reaching spiking has

been met.

The threshold current required for an action potential is:

Ith =
Vth

R
(12)

For any current,I, which passes the thresholdIth, an output impulse will be generated at time
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Tth, such thatIR(1 − e
−Tth

τ ) = Vth remains true. By rearranging this to solve forTth, the time to

see a voltage spike can be calculated as:

Tth = −τ ln(1 −
Vth

IR
) (13)

If we presume that the current input is still present when thevoltage is reset after an impulse,

the membrane will once again charge towards the membrane threshold and trigger another spike at

time Tth + tref . tref is known as the refractory period, and is the time taken between the voltage

resetting to zero and restarting the process of charging. This is shown diagrammatically in Fig.10.

Figure 10:Spiking of LIF circuit during current pulse. The membrane voltage charges towards its mem-
brane threshold which evokes another spike at timeTth + tref . The time taken between the voltage dropping
back to zero and charging again is known as the refractory period,tref .

Now that we have an idea of how, theoretically, spiking neurons can be modelled, we progress

to looking at which biological processes take place for the generation of spikes. By introducing the

Hodgkin and Huxley parameters to the model, we can then incorporate the influx and outflux of

ions which determine the membrane voltage once a current injection has been applied.
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6 Hodgkin and Huxley model

Hodgkin and Huxley are well-known names in the field of neuroscience due to their groundbreaking

work to describe ionic processes and voltage dependent conductances during an action potential,

which they studied on a giant squid axon [19, 20, 21, 22]. These studies lay the foundations of

many modelling techniques such as compartmental modelling[23]. However, as we will discover

further on, only describing the potassium and sodium conductances is not sufficient for the depth

of detail required for the model, and other conductances have to be taken into consideration. Part

of Hodgkin and Huxley’s work was to formulate equations allowing the mathematical description

of ionic processes seen during an action potential. To understand what this exactly means, it is

now necessary to look at the action potential more in-depth to observe what takes place inside and

outside the cell membrane.

6.0.1 Generation of The Action Potential - In the Cell

Figure 11:Diagram of invoked action potential. When the membrane receives stimulation from an exci-
tatory input, the membrane voltage has a brief rise in the positive direction. If the membrane continues to
receive stimulation to push the voltage above the “membrane threshold”, sodium channels open and an action
potential is elicited. The voltage is driven upwards towards the equilibrium potential for sodium ions (+62
mV). After 1ms, the sodium channels close and the cell voltage is driven downwards towards the equilib-
rium potential of potassium ions (-80 mV). Also at this point, potassium ions willleave the cell. The voltage
briefly goes below the membrane threshold due to it rushing towards the resting potential of K+ and this is
known as the “undershoot”. Another action potential cannot be elicited until the membrane voltage returns
to its resting potential. This period of time between the undershoot and the nextaction potential is known as
theabsolute refractory period.
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When the cell is at rest, its voltage sits approximately between -70mV and -65mV, which is

close to the equilibrium potential of the potassium ions inside the cell. When the membrane re-

ceives stimulation from an excitatory input, this causes the membrane voltage to have a brief depo-

larisation. If these stimulations cause a voltage increaseabove the “membrane threshold” of -55mV,

the action potential is invoked and the cell depolarises rapidly towards the equilibrium potential for

sodium ions, +62mV. This is due to the large “driving force” on sodium ions from the negatively

charged cell membrane at rest. Hence, when the membrane threshold has been reached, the sodium

channels open briefly allowing sodium ions to rush through and to further drive the cell potential

positive. The overshoot comes from the potential rising above 0V towards the equilibrium potential

of sodium (ENa). Into a millisecond of the action potential, the sodium channels inactivate while

the potassium channels remain open. This means that potassium can flow back into the cell and

drive the potential back down. As the cell was positively charged previous to this, the potassium

ions are now strongly drawn back into the cell due to a smallerconcentration gradient inside the

cell which causes the membrane potential to become negativeagain.

However, as there is now a higher proportion of potassium ions to sodium ions inside the cell,

the voltage potential of the cell goes towards the equilibrium potential for potassium ions (EK) at

-80 mV. This remains like this until the potassium channels close again. The absolute refractory

period is when the sodium channels become inactivated as a result of strong depolarisation of the

cell, and they cannot reset to an active state until the membrane potential of the cell returns to a

slightly less negative voltage towards the cell resting potential of -65mV.

What Hodgkin and Huxley did during their series of experiments of the giant axons seen in

squids was to come up with a model which explained the underlying mechanisms of an action

potential in this giant axon [19, 20, 21, 22].

It is worthy to note that in the case of the squid axon, there are only two voltage-dependent

processes as opposed to that seen in mammals. Those two are the sodium and potassium conduc-

tances.

They found that the fundamental processes behind the actionpotential came from two main
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conductances; the sodium conductance,GNa, and the potassium conductance,GK as well as a

smaller contribution from the “leak” conductance,Gl, which doesn’t depend on the membrane

potential. This allows the total membrane current to be catergorised into its separate elements. The

total membrane current, due to the sum of ionic currents and capacitive current, is then expressed

as:

Cm
dVm

dt
+ Iion = Iext (14)

Cm is the membrane capacitance,Vm is the intracellular potential (or membrane potential).

Iion is the sum of the ionic currents flowing across the membrane, and Iext relates to an externally

applied current.

6.1 Electrical Equivalent circuit for Squid Axon patch

The Hodgkin-Huxley model takes the squid axon nerve and models it as two passive components,

the capacitanceCm and leak conductanceGl (flowing out of the cell), and two active voltage-

dependent components,GNa andGK as seen in Fig.12.

Figure 12: Circuit equivalent diagram of cell membrane, based on the work from Hodgkin and Huxley.
The capacitance, Cm represents the phospholipid bilayer.GK , GNa andGleak are the associated potassium,
sodium and leak conductances carried by the ions travelling in and out of the neuronal membrane.

The total ionic current which flows is the sum of the sodium, potassium and leak current:
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Iion = INa + IK + Ileak (15)

This can be rewritten in terms of Ohm’s Law:

Iion = GNa(Vm − ENa) + GK(Vm − EK) + GL(Vm − EL) (16)

As we can see, each ionic current has an associated conductanceGK and equilibrium potential,

EK . The expressionIk = Gk(Vm − Ek) comes from the assumption that the ionic current is

proportional to the sum of the conductance and driving force(membrane potential).

The equilibrium potential for each ion is calculated using the Nernst equation (see Appendix

B).

At the time of Hodgkin and Huxley’s experiments, there was nodefinitive evidence of what ex-

act membrane channels existed and they instead came up with voltage-dependent “gating particles”

to describe the dynamics of the conductances. These gating particles described the activation and

inactivation of the channels. These particles can only be inone of two states, open or closed, and

this being dependent on time and membrane voltage. When thesegates for a particular ion areall

“permissive” at the one time, ions can pass through the channel. The channel is then referred to as

being open. If any of the gates are in a “non-permissive” state, then the gate remains closed.

6.1.1 The Potassium Current,IK

Taken from Hodgkin and Huxley’s 1952d paper [22], the modelled potassium current, which has a

higher ratio of ionsinsidethe cell, is given by:

IK = ḡKn4(V − EK) (17)

gK is the maximal conductance and given in units of mS/cm2, the potassium batteryEK is relative

to the resting potential of the axon.n describes the state of the “activation particle” and is a

dimensionless number between 0 and 1. As we haven4, this means there are 4n states we are
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looking at. It can be thought of representing the probability of a gate being in a permissive state. If

we presume that the probability of a gate opening (or being inthe permissive state) isn, then the

probability of the gate being non-permissive or closed is 1-n. A non-permissive state is when there

is no current flowing through the conductance. All gates haveto be permissive to allow the channel

to open, therefore, if one of the gates are in a non-permissive state then the potassium channel

remains closed.

Hodgkin and Huxley assume that there are only these two states of “permissive” and “non-

permissive” for a single particle and that this developmentbetween the states can be described

using a first-order kinetics model. This can be written as:

n
βn⇀↽
αn

1 − n (18)

Whereαn is a voltage-dependent rate constant, given in units of 1 persecond. The rate constant

specifies how many transitions occur between the closed and open states whereasβn expresses the

number of transitions from the open to the closed states again given in units of 1 per second. We

can then write this relation as a first-order differential equation:

dn

dt
= αn(V )(1 − n) − βn(V )n (19)

These rate constantsαn andβn can also be described in voltage-dependent terms:

dn

dt
= αn(V )(1 − n) − βn(V )n (20)

whereτn =

τn =
1

αn + βn
(21)

andn∞ =

n∞ =
αn

αn + βn

(22)
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These are described in terms of a voltage-dependent time constantτn(V ) and steady-state value

n∞(V ).

Hodgkin-Huxley calculated the approximate voltage dependencies of the rate constants for the

potassium conductance. They found that the relationship between the conductance and membrane

potential is exponential and that when looking at the steady-state potassium membrane conductance

for under 20mV, the conductance increases at an exponentialrate when varying the voltage V by

4.8mV. Looking at the voltage sensitivity for the sodium conductance reveals that it has an even

higher sensitivity.

Hodgkin and Huxley found that saturation of the membrane conductance occurred at higher

levels of depolarisation [19] and described this relationship through the voltage-dependent rate

constants [22]:

αn(V ) =
10 − V

100(e(10−V )/10 − 1)
(23)

βn(V ) = 0.125e−V/80 (24)

V is the membrane potential relative to the axon’s resting potential (mV). Figure 13 shows the

voltage-dependent time constants and steady-state valuesof the potassium activation variable.

Figure 13: Activation and inactivation variables and time constants for each of the corresponding
ion rate-variables.

Looking at these plots we can see that the time constantτn has a bell-shaped dependency for
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each of the rate variables. However,n∞ consistently increases with respect to the membrane po-

tential. The plot of the relationship between the steady-state potassium conductance and membrane

potential is exceptionally steep and this is seen in Eq.17 with the “fourth-power” relationship be-

tweenGk andn. A characteristic of many ionic conductances is that the effective conductance

increases the more the cell membrane is depolarised.

Relating to the diagram of the sodium dynamics (Figure 13), wecan see that there is a more

complex evolution of the rate parameters.

6.1.2 The Sodium Current,INa

Using kinetics, Hodgkin and Huxley had to theorise that there was not just an activation particle,

but also the existence of an inactivation particle for sodium. They describe the sodium current as

[22]:

INa = ḡNam
3h(V − ENa) (25)

Where ¯gNa is the maximal sodium conductance when all the channels are open and was found

by Hodgkin and Huxley to equal 120 mS/cm2. The equilibrium, or resting potential, for sodium,

ENa = 115mV and is relative to the axon’s resting potential.m andh are in dimensionless units

with 0 ≤ m, h ≥ 1. By convention, the sodium current is negative, that is, inward throughout the

physiological voltage range (forV <ENa). As we can see, the sodium conductance was modelled

using threem gates and onen gate giving the four gating particles that make up the transition

between the open and closed state for the ion channel. it should be noted that as well asm being the

probability that the activating particle is “permissive”,h is the probability that the “non-permissive”

state is not in its inactivating state.

We now have two first-order differential equations which describe the rate constants:

dm

dt
= αm(V )(1 − m) − βm(V )m (26)
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and
dh

dt
= αh(V )(1 − h) − βh(V )h (27)

These voltage dependent rate constants were approximated once again by Hodgkin and Huxley

as follows [22]:

αm(V ) =
25 − V

10(e(25−V )/10 − 1)
(28)

βm(V ) = 4e−V/18 (29)

αh(V ) = 0.07e−V/20 (30)

βh(V ) =
1

e(30−V )/10 + 1
(31)

When referring back to Figure 13, we see thatτm and τh are similar to that ofτn. m∞ is

an increasing function of V which is what is expected, however, h∞ decreases as the membrane

depolarisation increases. This is a standard behaviour of the inactivation particle. If this inactivation

particle were not to be included then the sodium conductancewould remain at its maximum value

in the presence of a depolarising voltage step.

6.2 Expressing The Complete HH Model

Before we can write the complete membrane model equation using the Hodgkin-Huxley expres-

sions for the active components of the membrane, We also haveto consider the passive and voltage-

independent “leak” conductance. The leak conductance,Gl, is independent of the voltage and re-

mains constant over time. Hodgkin and Huxley measured this conductance asGl = 0.3mS/cm2 and

corresponds to a passive membrane resistance ofRm = 3333Ω·cm2. This passive element also has

an associated membrane potential, however, Hodgkin and Huxley did not measureVrest itself but
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instead adjusted it to give a total membrane current of zero at the resting potential, V = 0.

Vrest was instead defined through the equation:

GNa(0)ENa + GK(0)EK = GlVrest = 0 (32)

This was then calculated to be +10.613mV with membrane capacitanceCm = 1µF/cm2. At

the membrane resting potential, the effective membrane resistance due to the sum of the potassium,

sodium, and leak conductances is equal to 857Ω · cm2. This is equivalent to a passive membrane

time constant of roughly 0.85 ms.

We can now write an expression which describes all the currents flowing across the patch of

axonal membrane:

Cm
dV

dt
= ḡNam

3h(ENa − V ) + ḡKn4(EK − V ) + gl(Vrest − V ) + Iinj(t) (33)

We now have an idea of how action potentials are invoked from the observation of the Hodgkin-

Huxley model of ion movement. As we are interested in modelling plasticity via biophysical pa-

rameters, it is therefore of great importance to now includea model of calcium dynamics, as we

will find out in Section 7 the critical role these Ca2+ ions play in synaptic plasticity.

6.3 Calcium Dynamics

The movement of calcium ions during cell excitation and inhibition play a major role in the change

in synaptic plasticity between neurons. They are importantfor signalling long term potentiation

and long term depression. More clearly, the change in calcium concentration can signal either

a strengthening or deterioration in connection between thepre- and postsynaptic terminals of a

neuron.

We have discussed how Hodgkin and Huxley categorised the dynamics of sodium and potas-

sium ions, and now we focus on how such dynamics can be represented for the Ca2+ ions. One

such relevent publication by Desthexe et al catergorises many different types of calcium currents
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[24], and their activation/inactivation particles are displayed in the same form as those categorised

by Hodgkin and Huxley. The calcium current which has been implemented in our model is known

as a “low-threshold calcium current”,IT , and its activation and inactivation variables are:

IT = ḡCa2+m2h(V − ECa2+)

ṁ = −
1

τm(V )
[m − m∞(V )]

ḣ = −
1

τh(V )
[h − h∞(V )]

ḡCa2+ = 1.75 mS/cm2 and is the maximum conductance value of the calcium current,V is the

cell membrane potential,ECa2+ the reversal potential.m andh are the activation and inactivation

variables and their functions and time constants are calculated from:

m∞(V ) =
1

1 + e−
V +52

7.4

τm(V ) = 0.44 +
0.15

e
V +27

10 + e−
V +102

15

h∞(V ) =
1

1 + e
V +80

5

τh(V ) = 22.7 +
0.27

e
V +48

4 + e−
V +407

50

To use these parameters in our model, we then have to integrate them into the program environ-

ment we choose to use. In the GENESIS [8] source-code (the simulator we use to code our model),

the change in calcium concentration is calculated from a single-pool exponential:

dCa2+/dt = B · ICa2+ − Ca2+/τCa2+ (34)

This models the low-threshold calcium current,ICa2+, with parameters:̄gCa2+ = 1.75mS/Cm2,

decay-timeτCa2+ = 30ms,[Ca2+]i = 2mM. B = 1e12 (1 / calcium charge (CCa2+) multiplied by
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the Faraday constant multiplied by the ion shell volume).

Ca2+ is the resulting concentration of the calcium ions and Ca2+
base is the base-level concentration,

giving Ca2+ = Ca2+
base + Ca2+. We can then show a plot of the low-threshold calcium current:

Figure 14: Calcium dynamics. The calcium model used was a single pool exponential of the form
dC/dt = B · Ik −C/τ , modelling a low threshold calcium current,ICa2+, with parameters:̄GCa2+

= 1.75mS/Cm2, τCa2+ = 30ms,[Ca2+]i = 2mM, B = 1e12.Ca2+ is the resulting concentration of
theCa2+ ions andCabase the base-level concentration, givingCa2+ = Ca2+

base + C.

Implementing this in our model meant the task of writing a newcalcium channel. The code

for the channel, along with the other receptors and dynamicsare in the Appendix (Section C).

Now we have discussed synaptic inputs, simple spiking models and added ionic detail with the

Hodgkin-Huxley model, we can move on to looking at synaptic plasticity.

7 Plasticity

Synaptic plasticity was first hypothesised as a mechanism for learning and memory by Canadian

psychologist Donald Hebb in 1949 [25]. His proposal was that“neurons which fire together, wire

together”. The idea was that the strength between two neurons would strengthen if the timing of

firing from each was almost instantaneous, and that with repeated firing, these connections would

continue to increase in weight. It was discovered later on byBliss and Lømo in 1973 [26] that this

was in fact true and the phenomenon was termed long term potentiation, or LTP. They found that

by stimulating the pre- and postsynaptic terminals via high-frequency stimulation (HFS) resulted

in a strengthening between the synapses during conditioning experiments. The opposite of this
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behaviour is known as long-term depression (LTD), and occurs when the postsynaptic neuron is

stimulated slightly before the pre-, resulting in a declinein synaptic strength.

7.1 Biophysical mechanisms of plasticity

In excitatory synapses, a neurotransmitter called glutamate is released from the presynaptic axon

terminal and activates several types of postsynaptic receptors in the dendrite of the postsynaptic

neuron. These postsynaptic glutamate-gated ion channels allow positively charged ions into the

postsynaptic cell and these glutamate-dependent channelsare known as AMPA and NMDA recep-

tors and commonly found on many excitatory synapses.

The calcium ion elevation/reduction through the NMDA receptors are integral to the changes

observed in plasticity, with elevations in Ca2+ influx causing long term potentiation, whereas a

moderate rise in the influx tends to result in synaptic depression. This will be expanded upon in the

synaptic potentiation and depression sections.

It has been previously mentioned that the NMDA receptor differs from the AMPA receptor

in a few significant ways. Firstly, unlike the AMPA receptors, the NMDA-receptor conductance

is dependent of the voltage. This is due to magnesium ions which sit in front of andblock the

receptor. This is known as the “Magnesium-block”. When the cell is at resting potential, any

inward current going through the NMDA receptor is blocked. When the cell becomes depolarised,

The Magnesium ions begin to move from the receptor and current is allowed to flow inwards. The

other characteristic of the NMDA receptor is that it conducts calcium ions. The NMDA receptors

can act in a similar nature to those of the behaviour described by Donald Hebb, showing that an

increase in weighting between two neurons is facilitated bythe influx of calcium ions into the

postsynaptic NMDA receptor from a presynaptic input. Hence, it has been said that the magnitude

of calcium ions which pass through the NMDAR can signify how much pre- and postsynaptic

activation is present.

The NMDA receptor is also known to have another special property during plasticity changes,

in that it is responsible for calculating any change in strength between two neurons, then signalling
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this to the AMPA receptors, which update the weight strength. This is seen in figure 15 as a simple

block diagram. The “signalling” behaviour is an important part of the model used and is fulfilled

in our model by introducing a “learning rule” to dictate any changes in strength between connected

neurons.

Figure 15: Block Diagram of how NMDA signals weight change between neurons. Na+ ions enter the
AMPA receptor allowing depolarisation of the cell membrane. This removes theMg2+ block from the
NMDA receptor and allows an influx of calcium through the receptor. The NMDA receptor acts as a “second
messenger” calculating the weight change (implemented using a learning rule)and passing this to the AMPA
receptor to update.

7.1.1 Mechanisms of synaptic potentiation

The simplest way to observe synaptic potentiation is to use high frequency stimulation (HFS)

[26, 27] on the pre- and postsynaptic cell terminals to induce synaptic transmission from the presy-

napse. The presynaptic activation (an action potential generated from the presynaptic neuron)

causes the release of glutamate, an excitatory amino acid known as a “neurotransmitter”. This

neurotransmitter acts on postsynaptic AMPA receptors by opening them and allowing the flow of

sodium through to further depolarise the cell. This depolarisation allows theMg2+ block to be

lifted and then allowing the continuation of depolarisation by the influx of calcium into the recep-

tors. This calcium influx is thought to enhance the synaptic effectiveness and thus associated with

plasticity. Excitatory synaptic transmission in the hippocampus and the prefrontal cortex is thought

to be governed by glutamate receptors. On the commencement of synaptic transmission, Na+ ions

which flow through AMPA receptors on the postsynptic neuron causes excitatory postsynaptic po-

tentials. In addition to this, there is also the influx of calcium ions through NMDA receptors. The

calcium flux occurs after glutamate binding to the NMDA receptor, and at the same time as the

postsynaptic membrane is becoming depolarised. Depolarisation of the membrane then allows the
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Mg2+ block to be lifted and calcium ions to enter trough the NMDA receptors. It can be said, there-

fore, that calcium ion entry through the NMDA receptors can be used to signal when the presynaptic

and postsynaptic neurons are active at the same time. It has been shown by Lisman [27] that a rise in

the concentration of calcium inside the postsynaptic cell,also known as the “intracellular calcium

concentration” or [Ca2+]i, is linked with the induction of LTP. He states that significant influxes of

Ca2+ through NMDA receptors cause an increase in the connection between two neurons, and also

points out that this increase in synaptic weight is seen by the “enhanced” or increased magnitude

in the synaptic current carried by Na+ ions through the AMPA receptors. Thus, he states that LTP

can be governed by a Hebbian-like rule, where constant stimulation of one cell onto another results

in a prolonged episode of postsynaptic depolarisation. It should also be noted that while LTP can

be invoked using high-frequency stimulation, during the event of spike-timing-dependent plasticity

(STDP), discussed in the next section, LTP is only seen usinglow-frequency stimulation.

7.1.2 Mechanisms of synaptic depression

Classifying what mechansisms are exactly responsible has yet to be discovered, and this question is

an integral part of the research. From what is known from physiologists is that it can be presumed

that weak coincidence of spiking-events (action potentials) causes a decline in synaptic strength. In

other words, if the postsynaptic neuron spikes before the pre- then a reduction in weight is observed

[28, 29]. A weakened coincidence between two spikes (ActionPotentials) could therefore cause

a reduction in the NMDA-R activation causing a smaller influxof Ca2+. Lisman also looked at

long term depression, and proposed that if LTP is governed byHebbian mechanisms, then LTD is

mediated by “anti-Hebb” mechanisms [27]. This was thought to be the result of moderate increases

in [Ca2+] through NMDA receptors which did not fully elicit action potentials in the postsynaptic

cell.

Newer data on LTD from 2007 by Keiko Tanaka’s lab looked at thecrucial role Ca2+ played

in synaptic depression [30]. They looked at the relationship between long term depression and the

level of postsynaptic calcium ion concentration, to attempt to establish a relationship between them
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and possible mechanisms. What was found was that the relationship between LTD and postsynaptic

[Ca2+]i could be described by a “leaky-integrator” function. Tanaka’s lab found that they could

induce long term depression by simply increasing the intracellular calcium concentration in the

postsynaptic cell. It was the duration of elevated [Ca2+]i, however, which was the key factor in

whether synaptic depression would happen or not. They reported that synaptic depression emerges

from a mechanism that integrates the postsynaptic Ca2+ signals, and that the magnitude of LTD

depended on thelevelof intracellular calcium concentration and duration of elevation, showing a

leaky-integrator manner.

The relationship between LTD and [Ca2+]i was also said to be sigmoidal in shape. Duration of

[Ca2+]i influenced the sensitivity of LTD. In simpler terms, there was a higher sensitivity to peak

levels of intracellular calcium, and lower sensitivity to integrated [Ca2+]i at longer time durations,

described as a leaky integrator. Tanaka also showed that postsynaptic Ca2+ alonewas enough in

itself to induce synaptic depression, but, this is only truefor [Ca2+]i which pass a threshold level. In

summary, their work on LTD found that its induction hinged onthe rise in [Ca2+]i above a certain

threshold concentration. The level of [Ca2+]i required for LTD was said to be comparatively low,

but rather the timescale in which the [Ca2+]i remains elevated is what governs if it will be seen.

This study by Tanaka has played a crucial role in the research, so much so that in later sections when

our model will be discussed, we refer to Tanaka’s leaky-integrator expression for a mechanism of

LTD.

The bi-directionality of synaptic weight discussed by Lisman and later elaborated on many other

scientists [28, 31, 29], who looked at coincidental timing between pre- and postsynaptic timing

between the spiking of coupled-neurons and its effect on synaptic weighting. This phenomenon

was later termed “Spike-Timing-Dependent Plasticity”.

7.2 Spike-Timing-Dependent Plasticity

Spike-Timing-Dependent Plasticity, or STDP, is a special phenomenon in plasticity dependent on

the timing of pre-synaptic and postsynaptic action potentials, resulting in either an increase in
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weight between the neurons, or decrease. The term itself wasnot fully established until a group of

separate studies [28, 29, 31] all looked into how the millisecond timing of these action potentials

could either weaken or strengthen the synaptic connection.

Figure 16: STDP curve taken from Markram et al. 1997 [28]. The left diagram shows the timing of
the action potentials against the EPSPs. When the EPSP occurs before the postsynaptic action potential, a
strengthening in plasticity is seen (LTP). When the timing protocol is reversedand the postsynaptic action
potential is elicited before the EPSP, a decline in synaptic strength is witnessed(LTD).

The mechanisms behind LTP during spike-timing dependent plasticity are well-known to be

a result of calcium influx into postsynaptic NMDA-Receptors.The mechanisms behind LTD are

a little less clear. Magee and Johnstone and Henry Markram’sresearch teams were both in close

succession of each other when first looking into STDP, both specifically looking into the role of

“Back Propagating Action Potentials” in the invoking of longterm potentiation [31, 28]. Back-

propagating action potentials are action potentials whichtravel from the postsynaptic soma back to

the dendrites, and they are believed to play a major role in signalling changes in synaptic plasticity

[31]. Magee states that these BPAPs provide a sufficient signal necessary in forming an associa-

tion between the synaptic input and spiking action potential output. They suggest that due to the

physical distance which separates the input from the output, a rapid feedback signal like the back-

propagating action potential is sufficient to signal the association between the pre- and postsynaptic

neuron, like a coincidence detection mechanism. Action potentials propagate quickly into the soma

and dendrites and cause significant depolarisation to the cell membrane (EPSPs). Furthermore, this

causes dramatic increases in the intracellular calcium concentration in the postsynaptic cell.

They noted that BPAPs which were inhibited by dendritic hyperpolarisation (when the mem-
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brane potential is driven negative) resulted in the amount of action potentials invoked by correlated

pre- and postsynaptic EPSPs becoming greatly reduced. Thisthen meant the amount of postsynap-

tic action potentials propagating back to the dendrites wasfurther reduced (or inhibited), causing a

decrease in the pairing between neurons, also known as long term depression or LTD.

Markram’s lab were also looking at the coincidence timing ofpostsynaptic action potentials

and the EPSPs that they generated [28]. Their experimental results suggested that the coincidence

between postsynaptic action potentials and EPSPs caused changes in the overall excitatory postsy-

naptic potentials generated. The amplitude of the EPSPs were significantly increased or decreased

depending on the “precise-timing” of the postsynaptic action potentials with respect to the EPSPs.

Like Magee, they found that BPAPs act as a modification signal in the strength between synaptic

connections, dependent on the timing of the pre- and postsynaptic activity. Their main conclusion

was that when postsynaptic action potentials occur in a time-window of 10ms before the EPSP,

then the excitatory postsynaptic current (EPSC) magnitude was reduced (LTD). When the tempo-

ral order was reversed and the postsynaptic AP was elicited 10msafter the EPSP, then the EPSC

magnitude was increased (LTP). This is seen in Fig.16.

The term “spike-timing-dependent plasticity” was first coined by Bi and Poo in their 1998 paper

[29], and they furthered Magee and Markram’s works by detailing the effect relative timings of pre-

to postsynaptic spiking had on synaptic plasticity. They were also the first to use the more familiar

style of STDP plot where both timings (postsynaptic spikingbefore pre- and vice-versa) are seen

on the same plot (Fig. 17).

What’s more is that further to showing the importance of spike-timing on plasticity, they

claimed that both LTP and LTD were dependent on the activation of NMDA receptors, further

establishing the notion that a moderate rise in [Ca2+]i being responsible for synaptic depression

and a transient increase in the intracellular calcium concentration resulting in potentiation. Poten-

tiation was said to arise when repetitive low-frequency stimulation was applied to the presynaptic

neuron. The EPSPs generated were capable of then invoking action potentials in the postsynap-

tic cell. When they measured the magnitude of the excitatory postsynaptic currents, their results
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Figure 17:STDP curve taken from Bi and Poo 1998 [29].

showed that the repeated stimulation resulted in an increased synaptic plasticity between the two

neurons. Their work on LTD was also important showing that repeated injections of current into

the postsynaptic cell before the synaptic input resulted ina continual decline in EPSC amplitude,

also known as LTD. This was termed negatively-correlated spiking.

In addition to showing that NMDAR’s were crucial in LTP and LTD, Bi & Poo looked at

the role of calcium channels in positive and negatively correlated spiking [29]. For the positive

incidence, they said that the activation of voltage-gated calcium channels may occur collectively

with NMDA receptors and that the influx of calcium through thechannels work alongside the

Ca2+ influx through NMDA receptors in initiating LTP [31, 29, 32].In the negatively-correlated

incidence, Bi & Poo found that a slower elevation of calcium ions through Ca2+ channelsbefore

synaptic activation (postsynaptic AP before presynaptic input) may be responsible for the initiation

of synaptic depression.

It was therefore highly established that the influence of calcium influx during synaptic trans-

mission was vital for both increased synaptic efficacy and reduced plasticity strength.
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8 Computer Modelling of STDP

There are a wide variety of synaptic plasticity models used ranging from simple, abstract, spiking

models through to more in-depth models which seek to accurately replicate biophysical mecha-

nisms realistically. Of greatest relevance to the research, there have been two models by different

laboratory groups. The first to be discussed, is the work fromHarel Shouval and his research

team. As mentioned in the previous section, NMDA receptor activity appears to be critical to the

induction of synaptic potentiation and decline. Shouval, Bear and Cooper came up with a “uni-

fied model” of NMDA receptor-dependent STDP [33], where theyquantified how much synaptic

depression and potentiation could be seen, based on the amount of postsynaptic NMDA receptor

activation during stimulation.

8.1 Shouval model of NMDA receptor-dependent STDP

Shouval’s experimental work focused on looking beyond the initial discoveries [31, 28, 29] and

concentrated on the role of Ca2+ influx through NMDA receptors, in an attempt to use a single

“learning rule” which would dictate whether strengtheningor depression between synapses would

occur. Their protocol was to run these experiments under thesame, although computer-modelled,

conditions as those used by Markram et al. One idea that was fundamental in their model was that

modest increases in postsynaptic Ca2+ through NMDA receptors triggers LTD, whereas transient

increases in Ca2+ influx would result in LTP, as previously noted by Lisman, amongst others [27,

34, 35]. They draw from evidence [36, 37] that a moderate elevation in Ca2+ correlates with the

induction of LTD, while larger, transient, elevations trigger the onset of LTP. Thus establishing the

importance of Ca2+ in determining the sign and magnitude of synaptic plasticity.

In this paper, Shouval makes three key assumptions for his model to work. The first is that Ca2+

is the primary signal required for synaptic plasticity. Thesecond is that the majority, or dominant

source, of Ca2+ influx to the postsynaptic neuron goes through NMDA receptors. Lastly, is the

role of back-propagating action potentials. In Shouval’s model, those BPAPs contributing to STDP
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have a slow, “after-depolarising” tail component to them.

For his first assumption (Ca2+ being the primary signal required), he sets thresholds for which

calcium levels determine if LTP or LTD will occur. If the intracellular Ca2+ concentration goes

above the first threshold,Θd, then LTD will occur. If the intracellular concentration surpasses the

top threshold,Θp, then long term potentiation should be expected. When looking at the pairing

of postsynaptic activity with pre- (referred to as post-prestimulation), and vice-versa (pre-post),

NMDA receptors are said to be the largest source of calcium influx to the postsynaptic neuron.

Shouval goes on to say that thechangein postsynaptic calcium concentration is mediated by the

NMDA receptor activity, and the activation of the NMDAR’s dictate how much or little Ca2+ influx

is seen in the postsynaptic neuron.

For his experiments, LTP is seen when the pre-post stimulation protocol produces a large ele-

vation in postsynaptic [Ca2+]i, which should go above the higher concentration threshold,Θp. It

makes sense that in his model, for LTD to be seen, we have a reversal of these requirements. That

is, during post-pre stimulation, the [Ca2+]i must only increase very modestly, so as to only go above

the bottom threshold for Ca2+ influx (Θd) for long-term depression to be seen. Linking in Shouval’s

third assumption of BPAPs having a slow after-depolarising tail, he states that the influence of the

BPAP to the sign of the plasticity plays a role on Ca2+ influx through the NMDA receptor.

An interesting finding from Shouval’s work was that of pre-post LTD seen, showing a more

symmetrical STDP curve in comparison to that seen in Bi & Poo’s1998 paper [29]. This pre-post

LTD was seen when the timing-window for stimulation was extended beyond the standard +20ms

time-scale. Shouval claims that this pre-post LTD may be dueto the number of NMDA receptors

in an “open-state” continuously reducing after initial binding of glutamate to NMDARs. He says

that this may be responsible, in conjunction with the level of Ca2+ required for LTD sitting at an

intermediate value. This value has been suggested as one between a concentration that causes no

change in plasticity, and one which would go on to produce LTP(aboveΘp).

The phenomenon of pre-post LTD has still to be widely recognised or rejected, and Shouval

states that if there are further experiments which go on to falsify his findings, then his calcium
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hypothesis should be adapted.

8.1.1 Refinement of Shouval Model

In 2005, Shouval went on to look at stochastic properties of NMDA receptor activity and calcium

influx [38], to attempt to provide an explanation for the pre-post LTD witnessed in his previous

experiments. He states that their original prediction of pre-post LTD had not yet been fulfilled

in experimental conditions, with the exception of data found by Nishiyama’s lab [39]. This has

been put down to the lack of experimentation in the later regions of∆t beyond +20ms. This later

paper is an elaboration by Shouval of the pre-post LTD and a refinement of the Ca2+ dynamics

used in their model. Their model still uses lower and higher threshold bands (Θd andΘp), but now

includes scenarios where the glutamate neurotransmitter fails to be released from the presynapse.

Consequently this results in a failure to bind to the postsynaptic NMDAR, and thus, a failure in

Ca2+ influx to the postsynaptic receptor.

The Shouval model is one of great significance and relevance to the research undertaken. Many

models attempt to use a single “rule” to govern the bi-directionality of synaptic plasticity. The work

carried out over the past two years seeks to refine and update aplasticity rule known as the ISO

learning rule [40, 41, 42]. Different from Shouval, the ISO rule is based on a differential-Hebbian

rule [43] that decides plasticity strength from the correlation of the presynaptic activity with the

changein postsynaptic activity.

8.2 The ISO learning model

Unlike Shouval’s model where the change in [Ca2+]i represents the postsynaptic activity, the ISO

learning rule (Isotropic Sequence Order learning) updatessynaptic weight based on the correla-

tion of presynaptic activity with thederivativeof the postsynaptic activity. The 2004 paper from

Saudargiene and Porr [44] puts forward a model of synaptic plasticity using key mechanisms to de-

termine the calculation of weight-change. Their paper suggests the temporal change (or derivative)

of the postsynaptic membrane potential correlated with conductance of the NMDA receptor.
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Like Shouval, they address that back-propagating action potentials play a role in STDP [45],

however, this is strictly limited to the shaping of the curve. That is, fast decaying BP spikes are

shown to produce a typical asymmetric STDP curve, whereas slow decaying BPAPs result in sym-

metrical Hebbian learning curves. The main aim of the paper was to provide an analytical solution

of spike-timing dependent plasticity based on the biophysical properties of the neural membrane

and NMDA receptor. Saudargiene et al address that higher levels of calcium influx lead to a poten-

tiation in synaptic plasticity, and that synaptic depression occurs when there is a moderate rise in

[Ca2+]i.

What distinguishes their model is that a differential term has been included to represent postsy-

naptic activity. It was put forward [46] that thechangein Ca2+ concentration (through NMDARs)

determines whether LTP or LTD is seen.

8.3 Why improve this model?

As stated, the research completed during the past two years seeks to further improve the ISO learn-

ing rule. It is not the rule as such which had to be re-thought.It was however, the components of

the learning rule which was desired to be modified. More specifically, the biophysical properties

modelled had to be refined with more detail. The task was to include NMDA receptor activity, cal-

cium dynamics and also take into account the effect other ions have on the synaptic weight. Further

to this, looking at how inhibitory neurons projecting onto an excitatory neuron affected the overall

plasticity curve was of great interest, as this had previously not been investigated. Thus, we now

proceed to look at how such a model should be constructed.

8.4 What type of model to use?

Many different approaches could have been taken when deciding what type of equivalent model

would suit the research best. This is mainly due to the level of detail one can decide to begin

the model from. Also, it is important to figure out whether onehas to delve into levels of detail

which may not be required. For example, two classical ways ofmodelling the neuron are known
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as the cable theory model and compartmental modelling. Both allow a high level of detail to be

modelled, both achieving this under different assumptionsabout the model, but also both being

too high a level of detail required for the research. We buildour model from the Leaky Integrate

and Fire model described, with added Hodgkin-Huxley parameters. We then add more detail to the

model with calcium dynamics, AMPA, NMDA and GABA-ergic receptors, to allow plasticity and

inhibition to be modelled in a more realistic manner.

8.5 Merging theory with practice

Throughout the previous sections we have discussed the basic elements of the neuronal membrane,

the ionic processes taking place, stages in synaptic transmission, and solid, stable models used to

emulate them. We now go on to discuss the practical side of this research, that is, the implemen-

tation of our model. We go on to model two neurons, one a pyramidal neuron (excitatory), one an

interneuron (inhibitory), and observe the synaptic plasticity during experiments like those carried

out previously by others.

9 The Model

The software GENESIS [8] (GEneral NEural SImulation System) is an open-source software pack-

age which allows a variety of uses in computer modelling. It is described by its developers as

a “General purpose simulation platform developed to support simulation of neural systems rang-

ing from subcellular components and biochemical reactionsto complex models of single neurons,

simulations of large networks, and systems-level models”.It uses a hierarchical structure to allow

modular programming similar to that of C++.

One of the appealing reasons to use GENESIS is that the user isnot limited to the channels and

synapses included in the standard version of the software. As the software is written in C, the user

can create their own custom synapses/channels and receptors by recompiling the skeleton architec-

ture of the software to include code written by the user. Realistic parameter values for the pyramidal
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Figure 18:Hierarchical structure of GENESIS programming environment (taken from the Book of GENE-
SIS [8].

cell conductance, membrane potential and NMDA/GABA conductances can be implemented into

these receptors and channels by using values quoted from biology papers or from morphological

data sites like neuromorpho.org1.

As GENESIS uses compartmental modelling to represent a neuron, each segment of a cell

(dendrites, soma, axon) can be constructed using separate compartments and then linked together

using messages.

We use a simpler model of the neuron, using two compartments for each cell, one for the soma,

and one for the axon.

9.1 Why use GENESIS?

We wish to use GENESIS to construct a reduced pyramidal cell model consisting of a soma and

axon. The model was created using a custom-compiled versionof the GENESIS-sim 2.3 modelling

tool[8] and consists of a cortical pyramidal cell and attached GABAergic inhibitory interneuron

(Fig. 19). To this model, we add the NMDA, AMPA and GABA receptors where appropriate, and

implement Hodgkin-Huxley and modelled Ca2+ dynamics.

GENESIS allows linking of the two compartments using messages called “SPIKE” messages to

1http://neuromorpho.org/
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Figure 19: Graphical representation of model designed using the GENESIS-sim software. Here we can
see the excitatory “input” which is the modelled presynaptic input into the pyramidal cell. The modelled
action potential is simply a delta impulse function,∆t. Attached to the pyramidal cell are AMPA and
NMDA receptors. A current injection into the pyramidal cell stimulates the neuron enough to generate
the postsynaptic action potential. This travels from the pyramidal cell body and the axon activating the
NMDA receptors on the GABAergic interneuron, allowing an influx of Ca2+ into the cell. If the excitation is
strong enough the interneuron releases GABAergic neurotransmitters back to the pyramidal cell, inhibiting
as it does so. Both the pyramidal cell and interneuron use the Hodgkin-Huxley model to implement ionic
conductances realistically.

transmit information from the compartment and receive backwards. Once the cortical microcircuit

has been constructed, the first objective was to study plasticity in the pyramidal neuron itself, then

go on to add the interneuron and observe what effects this hason spike-timing-dependent plasticity.

Further applications of the model involved looking at the microcircuit in reference to studies done

in vivo and in vitro. Further to this, when reviewing resultsobtained from experimental data, we

go on to link a study of hypofrontality, a condition which causes a decrease in cortical activity, in

patients with impairment to receptors with our model which looks at plasticity and impairing the

NMDARs to look at the effects of this.

9.2 Simulation Protocol

The spike-timing simulations are achieved by using two signals, one being the presynaptic input,

and the other the postsynaptic stimulus. Through the difference in timing of invoked pre- and

postsynaptic action potentials, we can look at the spike-timing-dependant plasticity of the small
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network. This is done by observing the synaptic strength between the pre-and postsynaptic termi-

nals, known as∆ρ. The presynaptic signal used is known as the “spiking input”(i.e. an excitatory

input) and this input excites the postsynapse of the pyramidal cell. This is achieved in GENESIS by

using a modelled action potential much like a delta impulse,δt. After a delay of 0.4s (chosen as the

most suitable timing to apply the postsynaptic signal), thepostsynaptic stimulation comes from a

modelled current pulse injection into the soma. What resultsis a postsynaptic action potential. As

these pre- and postsynaptic spikes are shifted through the simulation runtime from negative to pos-

itive timings (i.e. postsynaptic before presynaptic spikes towards pre-postsynaptic), the resulting

synaptic weight-change∆ρ is plotted as the familiar STDP curve.

Like the models discussed [44, 41, 33, 38], we have to specifya learning rule in our model

which will calculate the change in synaptic plasticity as a result of the biophysical parameters

present. In our model, we hope to use a learning rule which reflects processes undergone during

in-vitro and in-vivo STDP experiments.

9.3 The Learning Rule

One of the main reasons behind using this model was to attemptto establish the mechanisms in-

volved in plasticity by implementing them in a “learning rule”. Previous to this model, Saudargiene

et al [44] used a learning rule based on NMDA conductance correlated with the change in postsy-

naptic membrane voltage, which was later deemed to be unrealistic. What we wish to do is to

update this learning rule with processes thought to be more realistic. This is done by separating the

learning rule into two parts, one which calculates the weight change for pre-post stimulation, and

the other for post-pre, all the while remaining as a single rule describing the plasticity changes.

It has been discussed in Section 7 that AMPA receptors play a role in updating the synaptic

weight change which has been reliant on the NMDA receptor activity. Thus, in the simulation, the

change in weight between synapses is calculated by the NMDA receptors and is then updated by

the AMPA receptor. The calculated AMPA receptor weight,∆ρ, is updated through every step of

the simulation:
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∆ρ = LTP + LTD (35)

where:

LTP = µ · NMDAact · Θ([Ca2+]′i) (36)

As it is seen, the mechanisms for LTP and LTP have been separated into two parts. For calcu-

lation of a positive increase in synaptic strength we have the correlation of the NMDA receptor ac-

tivity NMDAact with the positive derivative of the intracellular calcium concentrationΘ([Ca2+]′i,

which is then multiplied by the learning rate,µ. Θ is simply the Heaviside function which takes

the positive part of the calcium concentration.

For LTD, we have essentially the same components to the equation, with the exception of the

Ca2+ part:

LTD = γ · NMDAact · Θ(−[Ca2+]′filt) (37)

Taking the negative derivative of filtered Ca2+ outflux,Θ(−[Ca2+]′filt is the implementation of

the leaky-integrator filtering of calcium that was discussed in Section 7.1.2 as a proposed mech-

anism of LTD by Tanaka[30]. Again,NMDAact is the NMDA receptor activity, andγ is the

respective learning rate.

To see how the rule is broken up into the separate elements which make up the intricate mech-

anisms undergone during LTP and LTD, we can refer to the blockdiagram shown in Fig. 20 and

compare to learning rule above (Equation 35).

The elements of the learning rule have also been plotted on the same diagram as to give an idea

of how their properties contribute to the weight-change when correlated (Fig.21). The first is the

simple calcium concentration derivative plot, which is required for calculations of LTP. Directly

below the positive calcium concentration is the filtered, negative derivative of the calcium concen-
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Figure 20:Block Diagram of STDP learning rule used.I1 represents the variable spiking-event (current
injection) timing, which can be altered to give either LTD or LTP depending on itsoccurrence before or
after the fixed input,I0. These two inputs are summated to give the timing difference between post and
presynaptic spiking,T . In both parts of the learning rule there are HH ion channels and detailed calcium
dynamics modelled. For both LTP and LTD, the derivative of the calcium concentration,[Ca2+]′i is found.
For LTP, the positive derivative of the[Ca2+]i is taken. For LTD, the derivative is put through a lowpass
leaky-integrator filter before taking the negative derivative of this. Boththe positive and negative derivatives
are dependent on NMDA-receptor activation which will affect the change in plasticity.

tration, which is used in the calculation of LTD. Finally, wesee the NMDA receptor activation. It

is well documented that the role of NMDA receptor activity iscrucial in both the potentiation and

fall in weight-strength between synapses.

We have now looked diagrammatically how each part of the learning rule is made up. Before

looking at any results of STDP simulations, we finally have tolook at how the leaky-integrator

process written about by Tanaka [30] has been implemented inthe GENESIS model.
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Figure 21:(a). Positive derivative ofCa2+ concentration,[Ca2+]′i, is used to model the positive part of the
postsynaptic Ca2+ influx seen during LTP. (b).[Ca2+]′filt; the negative part of the filtered Ca2+ ([Ca2+]′filt

<0). We do this by filtering the calcium concentration using a leaky integrator model (Section 9.4), then
taking the negative part of its derivative. (c). Activation of NMDA-R allows the influx of intracellular
calcium to the postsynaptic receptor. Depending on how fully the receptor opens, the synaptic plasticity can
either increase or decrease (LTP or LTD).I0, the current injection, results in depolarisation of the cell which
in turn enables the postsynaptic NMDA-Rs to open.T is the delay betweenI0 and the NMDA-R opening,
thus, any influx of Ca2+ into the receptor is delayed byT .

9.4 Modelling LTD - The Leaky-Integrator Filter

As mentioned,[Ca2+]′filt is the negative part of the derivative of the intracellular calcium concen-

tration ([Ca2+]′filt <0). The study by Tanaka reported that a possible mechanism for LTD could

be a slower outflux of calcium from the postsynaptic NMDA-Receptor [30] and was compared as

a leaky-integrator filtering of the calcium. It was shown that having a slow and steady decay in

[Ca2+]i would result in LTD as opposed to LTP which occurs when there is a transient increase in

[Ca2+]i. It was therefore decided this should be included in the learning rule.

Using a simple differential equation to give lowpass filtering of the calcium concentration, the

derivative was calculated and then the negative part was used in the learning rule to express the

LTD. The leaky integrator equation is in the form:

[Ca2+]′filt = [Ca2+]′filt + [Ca2+]i − ([Ca2+]′filt · τ) (38)

Comparing the calcium concentration to the lowpass filtered concentration (Fig. 14), we can
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see a slower decay in the concentration.

Figure 22:Comparison of Leaky integrator filtered Ca2+ against calcium concentration Filter constantτ =
0.8ms.

The code for the leaky integrator, along with the other code written can be found in Appendix

C.

10 Results

Each simulation ran through 150,000 steps and STDP curves were generated by running single

simulations repeatedly with a time shift ‘T ’ between pre- and postsynaptic spiking events, starting

from t = -0.10s to t = 0.10s and shifting in increments of 0.001s. The single simulation run-time

is calculated by multiplying the number of simulation stepsby dt = 4e−6, giving a time of 0.6s.

We now look at three separate STDP experiments. The first is looking at STDP in the pyramidal

cell alone, the second looks at the changes in the STDP curve when a GABA-ergic interneuron is

attached to the pyramidal cell. The third and final experiment is to look at what happens to STDP

in the microcircuit when there is a reduction in NMDA receptor activity.

10.1 Pyramidal cell, no interneuron

In Fig.23, we have plotted three STDP curves, each using a different ‘τ ’ value (τ = 0.8 ms, 0.05

ms and 5 ms) for the filtering of the Ca2+ outflux. On the Y-axis we have the change in weight,

∆ρ, and this is plotted against the interspike intervalT (X-axis), which is the timing between pre-
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and postsynaptic spiking. The interspike interval is calculated by finding the values of the time

of presynaptic spiking, tpre, and subtracting this from the postsynaptic timing, tpost. It is observed

that different filtering of the[Ca2+]i produces three noticeably different STDP curves. While the

LTP part remains consistently the same, we can clearly see there are three distinct alterations seen

in the LTD part of the curve. By changing the decay constant ‘τ ’ of the leaky integrator, we can

directly affect the shape of the LTD seen which in turn changes the STDP plot shapes. Comparing

Fig. 23(a) to Fig. 23(b), it can be observed that the time LTD is present during the negative time

window is much longer. When the filter has a long decay time (Fig. 23(c)), there is a noticeable

decrease in time as well as magnitude of LTD present. We can also make the general observation

that the STDP curve Fig. 23(a) is strikingly similar to results seen in vitro [28, 31, 29].

10.2 Pyramidal cell with attached interneuron

As mentioned in Fig.19, the attached interneuron is a modelled GABAergic interneuron (known as

a chandelier cell) with NMDA and GABA receptors, along with detailed HH channels [47].

However, instead of plotting three different curves using the different ‘τ ’ values, we have cho-

sen the ‘τ ’ (0.8 ms) which allows for the most biologically accurate output. Again the weight

change,∆ρ, is plotted against the interspike interval,T . When looking at the STDP curve of pyra-

midal cell with attached interneuron (solid lines) in comparison to without interneuron (dashed

lines) in Fig. 24, it is interesting to observe the decline inmagnitude and shape of LTD, while long-

term potentiation remains the same. This is due to the dual nature of the GABAergic interneuron.

In particular, the process of shunting inhibition from the GABAA receptors (which was discussed in

Section 3.4) can result in some interesting behaviours affecting the pyramidal cell. Shunting inhi-

bition, which as well as being inhibitory on the pyramidal cell, can lead to either depolarization or

hyperpolarization of the postsynaptic cell depending on the GABAergic current. In the instance of

our model, when hyperpolarization occurs, the pyramidal cell’s membrane potential is driven neg-

ative towards the GABA reversal potential. This causes a dampening “shunting inhibition” on the

pyramidal cell followed by depolarization causing an excitatory effect. Looking at the comparison
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Figure 23:STDP using leaky-integrator modelled LTD. Insets in top right hand of eachplot display LTD
part of the STDP curve. (a). Leaky integrator time constant,τ = 0.8 ms. STDP curve looks like the expected
asymmetrical weight-change curve. (b). Filtering of[Ca2+]i with τ = 0.05 ms now gives a longer and larger
LTD part to the STDP curve. (c). When the decay constant is set toτ = 5 ms, LTD significantly diminishes
and lasts only for a short period (occurring just beforeT < 0s).
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between with and without interneuron in Fig. 24, we can recognise that LTD is reduced when the

interneuron is attached. It can be suggested that the inclusion of the interneuron during simulations

causes excitation in the pyramidal cell. Even though the interneuron is inhibitory by nature, a small

increase in conductance can lead to the membrane threshold of the pyramidal cell to be surpassed,

and thus causing an excitatory effect on the cell resulting in less LTD being witnessed, as seen in

Fig. 24 (dashed line).

Figure 24:Comparison between STDP plots of pyramidal cell with (dashed line) and without (solid line)
interneuron, both usingτ = 0.8 ms. By comparing the STDP curve with attached interneuron to without
interneuron (dashed line), a distinct decrease in magnitude in LTD is seen,which causes a noticeable shape
change to the curve. We can then say that by adding the interneuron to the circuit, we are witnessing an
increase in the excitatory activity in the pyramidal cell, which leads on to the reduction in synaptic depression
(LTD). That is, during post-presynaptic spike-timings (T < 0), GABAergic conductance changes have an
excitatory effect on the synaptic plasticity and cause LTD to be diminished.

60



10.3 Reducing the NMDA activation

NMDA receptors are responsible for the majority of calcium influx into a cell [48]. Therefore if

there is an impairment to the NMDA receptors, we should observe two effects; a distinct decrease

in magnitude of plasticity and a reduction in inhibition from the attached interneuron. From this,

we can predict that a sizeable reduction in magnitude of the overall STDP curve should be seen as

well as a complete change in shape to what was observed in Fig.24. When we study the effects

the attached interneuron and NMDA receptor impairment has on the STDP curve, it is reasonable

to conclude that reducing NMDA-R activity impairs the GABAergic inhibition on the pyramidal

cell by decreasing the GABAergic conductance,ḡGABA. This disinhibition of the pyramidal cell’s

excitatory activity (due to the reduced GABA conductanceḡGABA) allows the pyramidal cell’s

membrane potential to increase, causing a potentiation in synapse strength during the negative

timing window. Therefore, the amount of LTD seen in comparison to that seen in Fig. 25 is

increased.

Figure 25:Reducing the NMDA receptor activity affects both the pyramidal cell and interneuron. Reduced
NMDA activity will cause a decline in the influx of intracellular calcium into the pyramidal cell. Thus, any
plasticity changes seen during LTP and LTD will be proportionally smaller andin ratio to the NMDA receptor
activity. In addition to this, reduction in NMDA receptor activity will also affect the GABAergic interneuron.
The reduction in NMDA-R activity means that the interneuron’s ability to produce inhibitory GABAergic
neurotransmitters will be drastically impaired. In turn, this causes the reduction in LTD previously seen in
Fig.24 to be markedly reversed.
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10.4 Conclusion

Through the research undertaken, the effects of adding an interneuron to a small cell-network has

been shown to clearly modify the phenomenon of spike-timing-dependent plasticity. It has been

determined that using a learning rule incorporating biophysical properties of the cell is sufficient

to model mechanisms taking place during STDP. The background of cellular modelling along with

comparative models within the field have been presented so asto demonstrate where this research

picks up from. From using biophysical properties of the cellduring synaptic activity, differences

between STDP with and without the inhibitory interneuron have been presented, along with ad-

ditional results showing that reduced NMDA activation can result in a reduction in the excitation

of the interneuron, which thus goes on to diminish GABA release. It has been concluded that this

model, as to date, has successfully been able to use a biophysically realistic learning rule to govern

the plasticity changes seen during spike-timing-dependent plasticity. From these results it can be

surmised that the addition of an inhibitory interneuron to apyramidal cell will result in the reduction

in Long-Term Depression observed during the STDP simulations, suggesting that the interneuron

has an excitatory effect on the pyramidal cell. By reducing the NMDA-Receptor activity within the

network, we were then given the opportunity to look at a topical hypothesis currently in the field

of Neuroscience research. That is, the NMDA-Receptor impairment link currently being made to

those who suffer from Schizophrenia. During the third simulation, we showed that by reducing

NMDA-Receptor activation (Fig. 25), the previously seen excitatory effects of the interneuron (as

seen in Fig. 24) had been reversed and were similar to that of when no interneuron was attached

(Figures 23,24). It can be concluded that an impairment in NMDA-Receptor activity results in a

decrease in the excitation of the interneuron, which in turnleads on to the reduced GABAergic

activity in the cell. Thus, the overall effect that the interneuron has on the network is impaired.

The results of these three STDP experiments have been thoroughly considered and compared

to relevant in vitro/vivo data in the field [28, 29, 31, 49, 50,51]. It is also important to discuss what

impact these results have, what improvements could and should be made to the model, and most

crucially, how these results can be used.
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11 Discussion

We have shown that it is possible to model Ca2+ dependent LTD realistically during STDP sim-

ulations. Rather than have set Ca2+ concentration thresholds which determine whether LTP or

LTD should take place, as is the case with Shouval’s model [33], our approach determines LTP

and LTD by therate of changein calcium influx/outflux. By using our biophysically realistic

learning rule, which applies differential Hebbian learning to scale the LTP/LTD parts separately,

we have eliminated the positive-timing LTD that was seen by Shouval and Aihara [12, 33, 38],

but not seen during in-vitro experiments [28, 31, 29]. Our model eliminates positive-timing LTD

through the slow release of calcium, meaning the IPSPs generated during the LTP-window will

not be strong enough to cause depolarisation of the postsynaptic membrane, thus eliminating the

decline in synaptic strength.

Comparing our new learning rule to those such as the ISO learning rule [44, 42, 41, 40], the

greatest noticeable difference between the two is the inclusion of Hodgkin-Huxley parameters and

realistic calcium dynamics. Also, it can be noted that our new learning rule has been split into

two separate terms which describe the pre- and postsynapticmechanisms of LTP and LTD rather

than one term describing all. This allows for a greater precision in the modelling of the cellular

processes undergone during spike-timing plasticity.

In our implementation of the leaky integrator filtering of Ca2+, we have shown that it is possible

to model the relationship between Ca2+ dynamics and LTD, as stated by Tanaka [30]. However,

the LTD seen may actually be caused by mechanisms opposing the data found by Tanaka. New

research [52, 53] has shown that the weakening of synapse strength translated as LTD could in fact

be caused by a retrograde transmitter moving backwards intothe presynaptic neuron through an

NMDA receptor on the presynapse. This retrograde transmitter passing through the presynaptic

NMDARs is then believed to cause the weakening of the synapticstrength. This finding allows for

further research to be carried out to investigate this claimmore thoroughly.
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11.1 Applications

We know that hypofrontality is a condition seen in patients with schizophrenia, and with our model

we have replicated this decrease in cortical activity. By reducing the NMDA receptor activity, we

are actively causing an increase in the LTD seen, shifting the ratio of LTD/LTP towards that of

LTD. Observing our results when NMDA-R activation is reduced (Fig. 25), the inhibition that

was seen when attaching an interneuron (Fig. 10) has now beenreversed and causes anincrease

in LTD. Using this information along with studying the effects of NMDA-R impairment on the

inhibitory interneuron, we can note the obvious changes in the balance between LTP and LTD. It

was seen by Tegner et al and Song et al that the ratio of LTD to LTP (α = LTD/LTP) is essential

for stable learing to occur [54, 55]. In particular, a balanced firing rate requires a learning ratio

slightly larger than unity.(α = LTD/LTP >1.00). We hypothesise that the NMDA-R reduction

causes a shift in the balance between LTD/LTP causing the alpha value,α, to become significantly

larger than unity gain. We propose the larger ratio of LTD to LTP acts as a catalyst in causing

hypofrontality. Expanding our model to a larger network would allow observations in the change

in ratio of depression to potentiation,α = LTD/LTP, towards LTD in patients with hypofrontality.

Thus, a possible application for this model would be to develop the microcircuit into a larger

network of neurons and observe working memory when there is NMDA receptor impairment. This

type of model would be of interest to those who are working in the research field of schizophrenia

[50, 51]. A further improvement on the model is to look at which NMDA-Receptor subtypes are

actually responsible for long-term depression. It has recently been found [52] that LTD might

actually be a result from activation of presynaptic NMDA receptors. Further investigation has to be

done before applying this to the model.

There could also be further investigations carried out to look at what effect the interneuron has

on plasticity changes, focusing on the GABAergic strength projecting onto the neuron, as well as

the effects it has on spike-timing. It would also be beneficial to look at more complex stimuli to

the circuit, and observe how plasticity is altered during bursts of spikes, which would further add

to the biophysical realism of the model.
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Shaping of STDP curve by interneuron and Ca2+ dynamics
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Spike-timing-dependent plasticity is a special form of Hebbian learning where the relative

timing of post- and presynaptic activity determines the change in synaptic weight. Recent stud-

ies have shown that the shape of the postsynaptic potentialsdetermine the shaping of the STDP

curve.Consequently, interneurons change the shape of the postsynaptic potential, thus affecting the

overall shaping of the STDP weight-change curve. The weightchange rule used is split into two

parts: LTP is modelled by NMDA activity multiplied by the derivative of the calcium concentration

and LTD is modelled using Ca2+ only. The result of this is a STDP curve which depends of the

Ca2+ dynamics, but is changed by the presence of the attached interneuron. Reduced NMDA ac-

tivity in the model also presents an opportunity to model deficits seen by schizophrenia patients by

observing the transformed plasticity plots. Reducing the NMDA activity not only reduces plasticity

in the pyramidal cell, but also reduces the activity of the input NMDA receptor of the GABA-ergic

interneuron. Therefor NMDA hypofunction has two effects; as well as scaling down LTP, there

will also be a disinhibition of the interneuron, which will then cause an increase in LTD.

1Dept. of Electronics and Electrical Engineering, University of Glasgow, G12 8LT, Scotland.
2BCCN Göttingen, University of G̈ottingen, Bunsenstr.10 (at the MPI), D-37073 Göttingen, Germany.
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A.2 CNS July 07

A working memory model with three factor learning

Paolo Di Prodi1, Lynsey McCabe1, Bernd Porr1, FlorentinẄorgötter2.

Cortical models of working memory exhibit persistent activity which is needed in situations

where temporal stimulus-stimulus or stimulus-rewards associations have to be learned. Individual

neurons or small subgroups can be switched into persistent activity by a localized stimulus which

we call CS whereas a global stimulus (US) is used to switch off the activity. To achieve this

behaviour the network has to be fine tuned to prevent global oscillations or global silence. Here we

present a working memory which fine-tunes its activity by itself and is learning stable persistent

activity with the help of three factor Hebbian learning. Thethird factor serves here as a switch

which enables learning only at certain moments. Here we switch on learning either at the moment

of the CS or at the moment of the US. This leads to stable memory traces after a few trials. The

third factor is motivated by the activity of dopaminergic neurons in the VTA which either fire at the

moment of the CS or of the US.
1Dept. of Electronics and Electrical Engineering, University of Glasgow, G12 8LT, Scotland.
2BCCN Göttingen, University of G̈ottingen, Bunsenstr.10 (at the MPI), D-37073 Göttingen, Germany.
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A.3 FENS July 08

Observing STDP of pyramidal cell and attached interneuron microcircuit using detailed Ca2+

dynamics

Lynsey McCabe1, Paolo Di Prodi1, Bernd Porr1, Florentin Ẅorgötter2.

Synaptic weight change sensitive to the relative timing of pre- and postsynaptic activity is

known as spike-timing-dependent-plasticity, or STDP. We present a model where LTD is mod-

elled by leaky integrator filtering of the change in Ca2+ concentration. The model consists of a

pyramidal cell, attached interneuron (which performs feedback inhibition) and detailed Ca2+ dy-

namics. We show that attaching an interneuron to the pyramidal cell will greatly alter the overall

asymmetry of the STDP curve, particularly observing a distinct reduction in LTD magnitude. In

addition to this, we have shown that by reducing the NMDA-R activity, there is an overall reduction

in the magnitude of the STDP weight-change curve. This is of particular interest in the research

field of schizophrenia where patients are known to have NMDA-receptor impairment. From this

study we have shown that the inhibitory interneuron greatlyreduces LTD during STDP. The greater

the inhibition from the interneuron, the less LTD is seen in the weight-change curve. By using our

cortical microcircuit model, we show how NMDA hypofunctioncould be a possible mechanism of

how the NMDA antagonist PCP causes cortical hypoactivity after a time lapse of a few days.

1Dept. of Electronics and Electrical Engineering, University of Glasgow, G12 8LT, Scotland.
2BCCN Göttingen, University of G̈ottingen, Bunsenstr.10 (at the MPI), D-37073 Göttingen, Germany.
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A.4 SNG Aug 08

STDP in modelled cortical microcircuit using biophysically realistic learning rule

Lynsey McCabe1, Paolo Di Prodi1, Bernd Porr1, Florentin Ẅorgötter2.

Spike-Timing-Dependent Plasticity, or STDP, is a well-known phenomenon reliant on the spe-

cific timing between pre- and postsynaptic neural activity.We present a learning rule which uses

postsynaptic NMDA processes correlated with calcium influxto calculate LTP. For LTD, the presy-

naptic NMDA activation is correlated with a retrograde transmitter. Our results successfully repro-

duce data taken from neurophysiological experiments. The model used is a cortical microcircuit

and consists of a pyramidal cell, attached interneuron (which performs feedback inhibition) and

detailed Ca2+ dynamics. By adding the interneuron to the pyramidal cell, we show that the effect

of the GABAergic inhibition causes an altered symmetry of the weight-change curve as well as

changing the time-window and shaping of LTD. We go on to show the influence NMDAR impair-

ment has on the microcircuit and how this leads to a shift in t he ratio of LTD/LTP seen during

STDP. Observing the strong influence the inhibitory interneuron along with NMDAR impairment

has on the pyramidal cell, we theorise that these may play a possible role in hypofrontality seen in

patients with schizophrenia.

1Dept. of Electronics and Electrical Engineering, University of Glasgow, G12 8LT, Scotland.
2BCCN Göttingen, University of G̈ottingen, Bunsenstr.10 (at the MPI), D-37073 Göttingen, Germany.
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B The Nernst Equation

The Nernst equation is used to calculate the equilibrium voltage potential for an ion:

Eion = 2.303
RT

zF
log10

[ion]o
[ion]i

(39)

Eion is the ionic equilibrium potential, or “resting potential”, R is the universal gas constant,

T is absolute temperature (and proportional to Eion), z is the charge of the ion, and is inversely

proportional to Eion. F is Faraday’s constant and[ion]i and [ion]o are the ionic concentrations

inside and outside the cell, respectively.

These are simplified when calculating at body temperature (37◦C) asRT
F

becomes a constant:

Ek = 61.54mV · log10
[K+]o
[K+]i

(40)

ENa = 61.54mV · log10
[Na+]o
[Na+]i

(41)

ECa = 30.77mV · log10
[Ca2+]o
[Ca2+]i

(42)

Thus, when calculating the membrane resting potential at body temperature, we only need to

know the intracellular and extracellular concentrations of the specific ions we are interested in.
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C GENESIS Code

C.1 AMPA Receptor

/ * ====================================

Synaptic Channels

====================================== * /

function make_AMPA_pyramid(path, name)

str path

str name

echo "creating AMPA pyramidal synapse in "{path}

pushe {path}

create ampalearn {name}

setfield {name} \

Ek {AMPArev} \ // reversal potential of the synapse

tau1 {tau1_ampa} \ // secs

tau2 {tau2_ampa} \ // secs

gmax {gextAMPA} // Siemens

pope

end

function make_AMPA_interneuron(path,name)

str path

str name

echo "creating AMPA interneuron synapse in "{path}

pushe {path}
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create synchan {name}

setfield {name} \

Ek {AMPArev} \ // reversal potential of the synapse

tau1 {tau1_ampa} \ // secs

tau2 {tau2_ampa} \ // secs

gmax {gextI} // Siemens

pope

end

C.2 NMDA Receptor

/ * ========================================

NMDA "learning" receptor

(allows implementation of plasticity rule)

=========================================== * /

function make_NMDA_learning(path,name)

str path

str name

pushe {path}

create nmdalearn {name}

setfield {name}\

Ek {AMPArev} \ // same reversal potential as AMPA synapse

tau1 {tau1_nmda} \ // NMDA rise time (secs)

tau2 {tau2_nmda} \ // NMDA decay time secs

gmax {gextNMDA} // max NMDA conductance

create Mg_block {name}/Mg_block

setfield {name}/Mg_block \

CMg {CMg} \
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KMg_A {1.0/eta} \

KMg_B {1.0/gamma}

addmsg {name} {name}/Mg_block CHANNEL Gk Ek

pope

end

C.3 GABA Synapse

/ * ------------------------------------------------

"Generic" GABA synapse - gmax should be set later

according to type of neuron

------------------------------------------------- * /

function make_general_GABA(path,name)

str path

str name

pushe {path}

create synchan {name}

setfield {name}\

Ek {GABArev} \ // GABA reversal potential

tau1 {tau1_gaba} \ // secs

tau2 {tau2_gaba} \ // secs

gmax {gmaxGABA}

echo "GABAin created in "{path}

pope

end
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C.4 Calcium Channel

// genesis script file - Ca_channel.g

float gcamax = -1e-12

// typical value for CA reversal potential is 120mV

float carev = -0.1 // Volts

float Vmin = -80e-3

float Vmax = 80e-3

// npoints resolution can be modified to suit...

int npoints = 8000

// Calcium concentration

float tauCA = 30e-3 // calcium depletion is slow

float Cain = 2 // intracellular calcium concentration... 2m M per litre

float B = 1e12

float CAbaseline = 0 // the baseline calcium concentration 0 mM

float shelltick = 1e-6

/ * ------------------------------------------

Generated tabchannel to model low threshold

calcium current - Gbar is 1.75mS/Cmˆ2

-------------------------------------------- * /

function m_inf_V(V)

float V

float minf=0;

float tempexp=0;
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tempexp=-(V+52)/7.4

minf=1/(1+{exp {tempexp}})

return {minf}

end

function m_tau_V(V)

float V

float taum=0;

float tempexp1,tempexp2

tempexp1=(V+27)/10

tempexp2=-(V+102)/15

taum=0.44+(0.15/({exp {tempexp1}} + {exp {tempexp2}}))

return {taum}

end

// Fill the table with generated values

function fill_table_X(path,name)

str path

str name

pushe {path}

float Vstep={getfield {name} X_A->dx}

echo "Vstep is "{Vstep}

int index

int maxpts={getfield {name} X_A->xdivs}

echo "Points are "{maxpts}

float V={Vmin}

for (index=0;index<={maxpts};index=index+1)

float m_inf={m_inf_V {V}}

float m_tau={m_tau_V {V}}
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setfield {name} X_A->table[{index}] {m_inf}

setfield {name} X_B->table[{index}] {m_tau}

V=V+Vstep

end//end for

pope

end

function h_inf_V(V)

float V

float hinf=0;

float tempexp=0;

tempexp=(V+80)/50

hinf=1/(1+{exp {tempexp}})

return {hinf}

end

function h_tau_V(V)

float V

float tauh=0;

float tempexp1,tempexp2

tempexp1=(V+48)/4

tempexp2=-(V+407)/50

tauh=22.7+(0.27/({exp {tempexp1}} + {exp {tempexp2}}))

return {tauh}

end

function fill_table_Y(path,name)

str path,name

pushe {path}
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float Vstep={getfield {name} Y_A->dx}

echo "Vstep is "{Vstep}

int index

int maxpts={getfield {name} Y_A->xdivs}

echo "Points are "{maxpts}

float V={Vmin}

for (index=0;index<={maxpts};index=index+1)

float h_inf={h_inf_V {V}}

float h_tau={h_tau_V {V}}

setfield {name} Y_A->table[{index}] {h_inf}

setfield {name} Y_B->table[{index}] {h_tau}

V=V+Vstep

end//end for

pope

end

function gen_CA_conc(path,name)

str path,name

pushe {path}

echo "Generating CA conc in "{path}"with name "{name}

create Ca_concen {name}

setfield {name} B {B} tau {tauCA} Ca_base {CAbaseline} \

Ca {Cain} thick {shelltick}

end

function gen_CA_channel(path,name)

str path,name

pushe {path}

create tabchannel {name}
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echo "Generating tabchannel in "{path}" with name "{name}

setfield {name} Ek {carev} Gbar {gcamax} Xpower 2 \

Ypower 1 Zpower 0

call {name} TABCREATE X {npoints} {Vmin} {Vmax}

call {name} TABCREATE Y {npoints} {Vmin} {Vmax}

fill_table_X {path} {name}

fill_table_Y {path} {name}

tweaktau {name} X

tweaktau {name} Y

echo "generating CaConc object in "{path}" with name CaConc "

gen_CA_conc {path} "CaConc"

addmsg {path}/{name} {path}/CaConc I_Ca Ik

pope

end
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C.5 Leaky Integrator Filter

if (channel->caconc_diff<0.0) channel->caconc_diff=0. 0;

channel->ltd_calc=(channel->ltd_calc)+((atof(caConc Str)) -

\\ ((channel->ltd_calc) * (channel->tau_const)));

printf(" ltd calc is %f\n" , channel->ltd_calc);

channel->lowpassderiv= (channel->ltd_calc - channel->l td_calc_prev);

channel->ltd_calc_prev= channel->ltd_calc;

printf(" low pass deriv %f\n" , channel->lowpassderiv);

if ((channel->lowpassderiv)<0) {

channel->lowpassderiv=((channel->lowpassderiv) * (channel->gainLTD));

} else {

channel->lowpassderiv=0.0;

}

C.6 The Learning Rule

/ * channel->deltaNMDA calculates update of synapse weight * /

channel->deltaNMDA=(channel->mu * channel->X * channel->diff ) +

\\((channel->gamma) * (channel->lowpassderiv) * channel->X);

/ * channel->mu and channel->gamma are learning rates, channe l->X is NMDA

activation, channel->diff is the positive derivative of ca lcium concentration

and channel->lowpassderiv is the filtered negative deriva tive of the calcium

concentration. * /
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D Parameters

D.1 Ionic equilibrium potentials (SI Units)

• Pyramidal CellENa = 0.055 V

• Pyramidal CellEK = -0.090 V

• InterneuronENa = 0.045 V

• InterneuronEK = -0.10 V

• Eleak = -0.065 V

D.2 NMDA receptor

• Rise timeτ1 = 2 ms

• Decay timeτ1 = 10 ms

• ḡNMDA = 15 nS

D.3 AMPA receptor

• Rise timeτ1 = 2 ns

• Decay timeτ1 = 2 ms

• ḡAMPA = 1 nS

D.4 GABA receptor

• Rise timeτ1 = 10 ns

• Decay timeτ1 = 10 ms

• ḡGABA = 25 nS //can be increased to implement shunting inhibition
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D.5 Soma parameters for pyramidal cell

• Pyramidal CellErest = -0.060 V

• Pyramidal Cell̄gleak = 25 nS

• Pyramidal CellRm = 1
ḡleak

Ω

• Pyramidal CellCm = 0.5 nF

D.6 Soma parameters for interneuron

• InterneuronErest = -0.070 V

• Interneuron̄gleak = 20 nS

• InterneuronRm = 1
ḡleak

Ω

• InterneuronCm = 0.2 nF
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