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Abstract 
 
 

Digital imaging has long been available in radiology in the form of computed tomography 

(CT), magnetic resonance imaging (MRI) and ultrasound.  Initially the transition to general 

radiography was slow and fragmented but in the last 10-15 years in particular, huge 

investment by the manufacturers, greater and cheaper computing power, inexpensive 

digital storage and high bandwidth data transfer networks have lead to an enormous 

increase in the number of digital radiography systems in the UK. There are a number of 

competing digital radiography (DR) technologies, the most common are computer 

radiography (CR) systems followed by indirect digital radiography (IDR) systems. 

 To ensure and maintain diagnostic quality and effectiveness in the radiology 

department appropriate methods are required to evaluate and optimise the performance of 

DR systems.  Current semi-quantitative test object based methods routinely used to 

examine DR performance suffer known short comings, mainly due to the subjective nature 

of the test results and difficulty in maintaining a constant decision threshold among 

observers with time.  Objective image quality based measurements of noise power spectra 

(NPS) and modulation transfer function (MTF) are the ‘gold standard’ for assessing image 

quality.  Advantages these metrics afford are due to their objective nature, the 

comprehensive noise analysis they permit and in the fact that they have been reported to be 

relatively more sensitive to changes in detector performance.  The advent of DR systems 

and access to digital image data has opened up new opportunities in applying such 

measurements to routine quality control and this project initially focuses on obtaining NPS 

and MTF results for 12 IDR systems in routine clinical use. 
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 Appropriate automatic exposure control (AEC) device calibration and a 

reproducible measurement method are key to optimising X-ray equipment for digital 

radiography.  The uses of various parameters to calibrate AEC devices specifically for DR 

were explored in the next part of the project and calibration methods recommended.  

Practical advice on dosemeter selection, measurement technique and phantoms were also 

given. 

 A model was developed as part of the project to simulate CNR to optimise beam 

quality for chest radiography with an IDR system.  The values were simulated for a chest 

phantom and adjusted to describe the performance of the system by inputting data on 

phosphor sensitivity, the signal transfer function (STF), the scatter removal method and the 

automatic exposure control (AEC) responses.  The simulated values showed good 

agreement with empirical data measured from images of the phantom and so provide 

validation of the calculation methodology.  It was then possible to apply the calculation 

technique to imaging of tissues to investigate optimisation of exposure parameters.  The 

behaviour of a range of imaging phosphors in terms of energy response and variation in 

CNR with tube potential and various filtration options were investigated.  Optimum 

exposure factors were presented in terms of kV-mAs regulation curves and the large dose 

savings achieved using additional metal filters were emphasised.  Optimum tube potentials 

for imaging a simulated lesion in patient equivalent thicknesses of water ranging from 5-40 

cm thick for example were: 90-110kVp for CsI (IDR); 80-100kVp for Gd2O2S (screen 

/film); and 65-85kVp for BaFBrI.  Plots of CNR values allowed useful conclusions 

regarding the expected clinical operation of the various DR phosphors.  For example 80-90 

kVp was appropriate for maintaining image quality over an entire chest radiograph in CR 

whereas higher tube potentials of 100-110 kVp were indicated for the CsI IDR system.  

Better image quality is achievable for pelvic radiographs at lower tube potentials for the 
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majority of detectors however, for gadolinium oxysulphide 70-80 kVp gives the best image 

quality. 

 The relative phosphor sensitivity and energy response with tube potential were also 

calculated for a range of DR phosphors.  Caesium iodide image receptors were 

significantly more sensitive than the other systems.  The percentage relative sensitivities of 

the image receptors averaged over the diagnostic kV range were used to provide a method 

of indicating what the likely clinically operational dose levels would be, for example 

results suggested 1.8 µGy for CsI (IDR); 2.8 µGy for Gd2O2S (Screen/film); and 3.8 µGy 

for BaFBrI (CR). 

 The efficiency of scatter reduction methods for DR using a range of grids and air 

gaps were also reviewed.  The performance of various scatter reduction methods: 17/70; 

15/80; 8/40 Pb grids and 15 cm and 20 cm air gaps were evaluated in terms of the 

improvement in CNR they afford, using two different models.  The first, simpler model 

assumed quantum noise only and a photon counting detector.  The second model 

incorporated quantum noise and system noise for a specific CsI detector and assumed the 

detector was energy integrating.  Both models allowed the same general conclusions and 

suggest improved performance for air gaps over grids for medium to low scatter factors 

and both models suggest the best choice of grid for digital systems is the 15/80 grid, 

achieving comparable or better performance than air gaps for high scatter factors.  The 

development, analysis and discussion of AEC calibration, CNR value, phosphor energy 

response, and scatter reduction methods are then brought together to form a practical step 

by step recipe that may be followed to optimise digital technology for clinical use. 

 Finally, CNR results suggest the addition of 0.2 mm of copper filtration will have a 

negligible effect on image quality in DR.  A comprehensive study examining the effect of 

copper filtration on image quality was performed using receiver operator characteristic 
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(ROC) methodology to include observer performance in the analysis.  A total of 3,600 

observations from 80 radiographs and 3 observers were analysed to provide a confidence 

interval of 95% in detecting differences in image quality.  There was no statistical 

difference found when 0.2 mm copper filtration was used and the benefit of the dose 

saving promote it as a valuable optimisation tool. 
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1          Introduction 

 

1.1 Preamble 

Digital imaging has long been available in radiology in the form of computed tomography 

(CT), magnetic resonance imaging (MRI) and ultrasound.  Initially the transition to general 

planar radiography was slow and fragmented but in the last 10-15 years in particular, huge 

investment by the manufacturers, greater (and cheaper) computing power, inexpensive 

digital storage and high bandwidth data transfer networks have lead to an enormous 

increase in the number of digital radiography systems in the UK.  The rate of transition to a 

fully digital hospital environment was also accelerated by government initiatives and 

investment in the National Health Service (NHS) information technology (IT) 

infrastructure (the National Programme for IT, NPfIT).  There are a number of competing 

digital technologies; the most common in the UK are computed radiography (CR) systems 

followed by indirect digital radiography (IDR) systems. 

1.2 Aims 

The principle objective of this project was to investigate and determine ways to assess and 

optimise digital radiography systems for clinical use.   

1.3 Structure of this Thesis 

This thesis consists of eight chapters.  Chapter 2 begins with a review of quality control in 

digital radiography.  The technologies of popular digital radiography systems are explored 
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and tabulated lists of appropriate quality control tests and recommended tolerances are 

given.  Chapter 3 describes a detailed study of the measurement of quantitative image 

quality metrics for twelve indirect digital radiography systems.  Experiences of the 

application of what were traditionally the ‘gold standard’ laboratory type tests for 

measuring image quality are shared and practical knowledge of the experimental 

uncertainties and expected variations is sought.  Chapter 4 focuses on automatic exposure 

control (AEC) devices and compares empirical assessments of the performance of the 

devices with different digital radiography systems with a theoretical model based on the 

energy absorbed in the image receptor.  Appropriate AEC device calibration with a 

reproducible measurement technique is key to optimising X-ray equipment for digital 

radiography.  Chapter 5 details the development of a model used to simulate the 

performance of an indirect digital radiography system to predict contrast-to-noise ratio 

(CNR) values and allow an assessment of gross image quality in chest radiography.  The 

results of the model are compared with practical measurements from a chest phantom.  It is 

hoped the model could then be used to simulate clinical details for examining what 

exposure factors and techniques are appropriate for different X-ray detector technologies.  

Chapter 6 explores the application of this model, using lesion equivalent materials e.g. 

muscle with different image receptors, to characterise detector performance based on CNR 

and energy absorbed in the phosphors.  The chapter was also expanded to include other 

factors relevant to optimising digital radiography systems such as the effects of additional 

filtration, tube potential and choice of scatter reduction method.  Chapter 6 also proposes a 

practical strategy or recipe for optimising digital equipment for clinical use.  Chapter 7 is a 

specific study detailing the investigation of whether the addition of copper filtration has a 

measurable effect on image quality with an indirect digital radiography detector.  The 

study uses receiver operator characteristic methodology to examine high and low contrast 

materials in a phantom to simulate bone and soft tissue features and the cost–benefit 

implications of using additional filtration are explored.  Finally, Chapter 8 summarises and 
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concludes the salient points of the investigation and developments addressed in the thesis, 

indicating areas for potential future development. 
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2  Quality Control in Digital Radiography 

 

2.1 Introduction 

Quality assurance (QA) in digital radiography is a term which represents a comprehensive 

program developed to evaluate the performance of all aspects of the medical imaging 

chain.  Such programs will typically include methods to test the performance of each piece 

of equipment or process forming a link in this chain, and for example may include tests on 

the X-ray tube, the image receptor, the image archive and the image display monitor.  The 

individual tests required to assure that the level of quality is being maintained are termed 

quality control (QC) tests.  QC typically refers to the performance of specific tests to 

determine equipment performance on a periodic basis. 

 Acceptance testing however, involves specific tests to determine whether initial 

performance of a system are accepted to met the tender purchase specifications.  

Acceptance tests often overlap with tests which are legally required 1 to commission digital 

equipment for clinical use, termed commissioning tests.  An important function of 

commissioning tests is to allow baselines of performance to be established for comparison 

against future performance, to detect subtle long term degradation in image quality.   

 In digital radiography QC tests are performed at recommended intervals and the 

outcomes are compared to commissioning results to verify that the system is operating to 

preset levels of performance.  Such testing however rarely assesses the fundamental 

determinants of image quality for example the modulation transfer function (MTF) or noise 

power spectrum (NPS).  These tests are usually performed under controlled laboratory 
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conditions by the manufacturers and are rarely performed by users of the systems (most 

often being used to compare specification data or acceptance test results at the time of 

purchase).  QC performed as part of acceptance and commission testing and routinely 

thereafter are generally simplified measures of specific parameters derived from the 

fundamental image quality metrics.  For example threshold contrast detail detectability for 

an object detail of different sizes is a simplified measurement of the NPS and the limiting 

resolution measured with a bar pattern is a surrogate test of the MTF at the Nyquist 

frequency. 

 In this chapter all recommended QC tests for digital radiography are summarised.  

First, the fundamental principles of operation of digital radiography systems are explored, 

so that the specific QC tests appropriate for the technology may be presented in context. 

 

2.2  Digital Radiography Technology 

Digital imaging has long been available in radiology in the form of computed tomography 

(CT), magnetic resonance imaging (MRI) and ultrasound.  Initially the transition to general 

planar radiography was slow and fragmented but in the last 10-15 years in particular, huge 

investment by the manufacturers, greater (and cheaper) computing power, inexpensive 

digital storage and high bandwidth data transfer networks have lead to an enormous 

increase in the number of digital radiography systems in the UK.  The rate of transition to a 

fully digital hospital environment was also accelerated by government initiatives and 

investment in the National Health Service (NHS) information technology (IT) 

infrastructure (the NHS National Programme for IT, NPfIT).  There are a number of 

competing digital technologies, the most common in the UK are computer radiography 

(CR) systems followed by indirect digital radiography (IDR) systems.  Brief reviews of the 
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technology of both systems are given in the following sections, a more comprehensive 

examination of the technology and underlying physics are available in the literature 2-6. 

 

2.2.1 Computed Radiography 

CR X-ray detectors or imaging plates (IPs) are housed in a protective case, similar in size 

and appearance to screen/film cassettes.  An image processor known as the CR ‘reader’ or 

‘digitiser’ processes the latent image captured by the detector.  After latent image readout 

the signal is digitised, stored as a two-dimensional array and transferred to a display device 

for review.  The phosphor layer deposited on the IP to detect incident X-rays is typically 

manufactured from barium fluro-hailde crystals with europium dopant.  Bromine is most 

commonly used as the halide element and some manufacturers also add small quantities of 

iodine or strontium.  Phosphor layers are typically ~200 μm thick. 

 When X-rays interact with the phosphor electron hole pairs are created and 

immediately begin to recombine, emitting light through the process of fluorescence.  Some 

of the electrons get trapped at positions in the crystal lattice where the dopant has created 

imperfections or F-centres (areas where the local energy levels are perturbed).  Fortunately 

the number of electrons that get trapped is proportional to the X-rays absorbed in the 

phosphor, allowing for the formation of a latent image.  The trapped electrons 

spontaneously and randomly return to a more stable energy state (called ground) with time 

in a process called latent image decay.   

 An electron may be deliberately released from its ‘trap’ to the ground state if 

stimulated with enough energy, e.g. red light from a diode laser (680 nm wavelength).  The 

return of the electron to the ground state is accompanied by the emission of a light photon 

with a shorter wavelength than the one absorbed, closer to blue light (~ 415 nm).  The 
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capture of the blue light, the photostimulated luminescence (PSL) completes the process 

whereby the latent image from an IP is used to produce an image signal in the CR reader. 

 Mechanically the IP is readout inside the reader in a raster fashion, figure 2.1.  The 

laser light is guided to a position on the IP through a series of mirrors and lenses.  Because 

at any one time only a single point (defined by the laser beam spot size) on the IP is 

irradiated, the capture of PSL within the light guide will generate a signal that corresponds 

to that point.  The limiting resolution of the system will ultimately depend on the sampling 

frequency which is limited by the laser beam spot size and the decay lag of PSL.  The 

decay lag is most limiting in the scan direction and is responsible for relatively poorer 

resolution of CR systems in that direction.  The mechanical process of removing the IP 

from the cassette and passing it through the reader will eventually result in damage to the 

IP either as a result of malfunction or wear and tear and image artefact and uniformity tests 

are recommended as part of routine QC. 

 Typically only one third of the PSL photons are collected by the light guide and 

presented to the bi-alkali of the photomultiplier tube (PMT).  The PMT then converts the 

PSL to electrons with only 25% efficiency.  The noise inherent in the few electrons 

representing a single X-ray is the weakest link in the CR system and is the “secondary 

quantum sink”.  CR system gain 2 is approximately 1 electron per 10 keV and the success 

of the technology may be attributed to the very high signal gain and inherent low noise of 

the PMT.  The output of the PMT is passed through a logarithmic or square root amplifier.  

An analogue to digital converter then quantises the signal to 4096 or 16384 grey levels 

(corresponding to 12 bits and 14 bits for more recent systems).  The non-linear amplifier is 

used so that the dynamic range of the signal may be compressed and digitisation accuracy 

preserved over the limited number of discrete grey levels. 
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Figure 2:1  Internal components of a CR reader.  The plate is moved in a continuous motion 
through the laser beam scan by mechanical rollers (image adapted from AAPM Monograph No.30 
6).  

 

 The readout process described, fails to remove all traces of the latent image.  

Before the IP is returned to the cassette inside the reader, it is first flashed with high 

intensity white light to remove any residual signal. 

 

2.2.2 Indirect digital radiography 

CR as with conventional radiography is a two stage process.  After X-ray exposure of the 

cassette, user intervention is required to transfer the cassette to the film processor or CR 

reader.  This can take many minutes particularly in busy departments performing hundreds 

of examinations per week.  Indirect radiography detectors (commonly refereed to as flat 

panel detectors) form integrated systems where the detector is integrated with the X-ray 

generator.  IDR systems require no user interaction, other than the control of the X-ray 

exposure, and the image is acquired and sent for reporting at the click of a button.  The 

improvement in work flow IDR systems afford is obvious.  However, they require a 
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significant capital investment and thought must also be given to patient flow or the ‘bottle 

neck’ will simply move from the X-ray room to the patient waiting /changing facility or 

supporting services. 

 A flat panel detector consists of a large two-dimensional array of X-ray absorption 

material fabricated on a thin glass sheet and divided into individual square regions, 

corresponding to pixels.  The X-ray absorption materials used may be classified into two 

main types: those that produce charge on interaction with X-rays i.e. photoconductors and 

those which produce light i.e. phosphors.  The active components of the pixels are made 

from hydrogenated amorphous silicon (a-Si:H).  The pixels are designed to measure charge 

if a photoconductor is being used or light and then charge if a phosphor is being used.  It is 

thus, the output of the X-ray detection material rather than the X-rays themselves that is 

measured and flat panel systems are energy integrating rather than photon counting 

detectors.  In the phosphor approach X-ray energy is first converted to light before 

eventually being converted to charge in the sensing element of the a-Si:H pixel.  For this 

reason digital detectors employing phosphors are coined as ‘indirect’ digital radiography 

systems.  Flat panel systems using photoconductors or ‘direct’ digital radiography systems 

were used in the past for general radiography but are now mostly confined to specialist 

areas such as mammography and electronic portal imaging devices in radiotherapy. 

 There are many prompt emitting phosphors which could be used in IDR systems.  

The most common are gadolinium oxysulphide (used extensively in screen/film systems) 

and thallium doped caesium iodide (used extensively in image intensifiers but doped with 

sodium instead).  CsI IDR systems are the most common in the UK.  CsI can be grown in 

crystal needle like structures which act as light guides to the emitted fluorescent light.  As 

a result, relatively thick phosphor layers can be used (up to 600 μm thicknesses) which 

improves X-ray detection efficiency while maintaining acceptable spatial resolution.  A 
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schematic showing the flat panel array with associated electronics is shown in figure 2:2.  

One striking aspect of this technology is the surface area of the flat panel which is taken up 

by the electronics.  For IDR systems the fractional area of the sensing element which is 

photosensitive is known as the geometric fill factor.  This is a major issue confronting the 

design of arrays for high resolution applications such as mammography because the 

smaller the pixel size the larger the relative area the electronic components take up.  Pixel 

sizes of 150 μm used in general radiography IDR systems typically have fill factors of 0.6 

5.   

 

Figure 2:2 Schematic depicting a flat panel array.  The pixel element or sensitive area may either 
be simply a storage capacitor if a photoconductor is used or is a photodiode if a phosphor is used.  
In either case a semiconductor will store the charge generated the magnitude of which will be 
accessed and read line by line during readout, controlled by the TFT switch. 

 

 To acquire a radiographic image with a general radiography IDR system the flat 

panel is put into an initialisation state ready for an incoming signal.  The scanning control 

circuitry holds all thin film transistor (TFT) switches off while the X-ray exposure is made.  
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When the exposure has completed the switches of the first row of the array are switched on 

and the charge stored in each pixel element is amplified, recorded and addressed to its 

specific location of the array, figure 2:2.  The first array is then switched off and the 

second array is switched on, the process continues until the image is reconstructed line-by-

line.  It is interesting to note that a fundamental difference between the applications of IDR 

systems in general radiography and fluoroscopy is in the readout mode.  For fluoroscopic 

applications pixel elements are readout in a similar manner however, when a particular line 

of pixels is being readout the other pixels remain sensitive to radiation and are combined to 

provide imaging information 5. 

 To reduce costs flat panel detectors are usually manufactured in smaller substrates 

and tiled together to cover the imaging area.  Two or four detector tiles are generally used.  

This results in a stitching artefact (best seen with a fine wire mesh) between the tiles as 

well as slight differences in sensitivity.  The difference in sensitivity may be correct for by 

the system (known as a gain correction).  The amount of dark current present in the 

semiconductor electronics in each pixel will also vary and this correction is known as an 

offset correction.  The gain correction is made using multiple exposures, usually with a 

metal filter in place to approximate a specific beam quality (e.g. 21 mm Aluminium), to 

calculate the correction required for each pixel in the array to achieve equal sensitivity.  

The offset correction is made by acquiring an image with no exposure and then correcting 

for the variation across all pixels.  Gain and offset corrections are performed during what 

the manufacturers’ term detector calibration or flat field correction.  Systems usually 

require recalibration after a fixed no of acquisitions or time period has reached and is 

usually performed by the user. 
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2.3 QC Tests for Digital Radiography 

There are many tests which relate to system performance or image quality in an indirect 

way which are important in assuring the performance and effectiveness of a digital 

radiography system.  Table 2.1 and Table 2.2 list the set of tests for CR and IDR 

recommended in IPEM Report 32 vii which is currently in press 7.  The report aims is to 

give guidance on acceptance testing and routine QC for CR and IDR systems, building on 

the various sources of existing guidance 6,8,9.  Further details and background on 

performing the specific tests are provided in IPEM Report 91 8 and technical protocols may 

be downloaded from www.kcare.co.uk. 

 For testing image quality however, Fourier based objective image quality metrics 

such NPS and MTF have advantages over the simpler semi-quantitative test object based 

methods in that they no longer rely on the observer maintaining a constant decision 

threshold with time.  The MTF and NPS have also been shown to be more sensitive to 

changes in detector performance than test object based tests10.  The measurement methods 

are well established 11 and have been used in numerous studies to evaluate: direct and 

indirect digital radiography systems 12; computed radiography systems 13,14 and digital 

mammography systems 15.  To date, such tests can only verify if digital detectors are 

functioning according to the manufacturers’ specification.  Much work is needed to gain an 

appreciation of how common detector faults manifest as changes in MTF and NPS with 

time and what the expected experimental uncertainties are.  The study described Chapter 3 

aims to examine the practicalities and experimental uncertainties in performing these 

measurements in a busy clinical X-ray department so that protocols may be developed to 

eventually include the measurements in routine QC. 
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Table 2:1  IPEM Report 32 vii draft ‘QC tests for Computed Radiography’.   

QC TEST AIM Remedial Level Suspension Level 

Detector dose indicator 
(DDI) calibration 

Indicated exposure (IE) 
= the expected 
computed exposure (E)  

IE/E < 0.8, IE/E > 1.2  
IE/E for any  
image > 10%  

IE/E < 0.5, IE/E > 1.5  

Signal transfer 
properties  simple relationship  mean IE/E trend line 

R2 fit < 0.95   

DDI consistency – 
short-term  

Coef. Of variation 
(CoV) of IE = 0%  CoV of IE > 10%  CoV of IE > 20%  

Matching of CR plates  IE same for all plates  IE varies by > 20% 
between plates   

DDI consistency – 
long-term  IE = baseline  baseline ± 20%  baseline ± 50%  

Differences between 
CR readers  IE same for all readers  IE varies by > 20% 

between readers  n/a  

Dark noise Agfa: SAL < 100    

 Fuji: pixel value < 280    

 Kodak: EI < 80 or < 
380 (High Resolution) baseline + 50%   

Condition of cassettes 
and image plates  clean and undamaged  dirt on image plate  damage to image plate  

Visual check of 
uniformity  no obvious artefacts  dots and lines apparent  gross non-uniformity  

Measured uniformity  CoV of STP- corrected 
ROI values = 0%  

CoV of STP- corrected 
ROI values > 10%  

STP (Signal Transfer 
Properties of detector) 

Erasure cycle 
efficiency  no ghosting visible  visible ghost  

STP-corrected pixel 
values in ghost & 
surrounding area > 1% 

Threshold contrast 
detail detectability  

fitted curve similar to 
baseline & reference  

deviation of  curve 
from baseline >15%   

Limiting high contrast 
spatial resolution  approach Nyquist limit  baseline - 25%   

Laser beam function  

edge continuous across 
whole image uniform 
‘stair’ characteristics 
across whole image  

obvious jitter   

Moiré patterns  not visible   visible  
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Table 2:2  IPEM Report 32vii Draft QC tests for Indirect Digital Radiography.   

QC TEST AIM Remedial Level Suspension Level 
  
  
  DDI calibration  

 

indicated exposure 
should agree with 
measured exposure 
within 20%   

DDI consistency  no gross artefacts  

variation in calculated 
indicated exposures 
normalised to receptor 
dose should not differ 
by > 20% from baseline  

variation in calculated 
indicated exposures 
normalised to receptor 
dose should not differ 
by > 50% from baseline 

Linearity & System 
transfer properties simple relationship  trend line fit should 

have R2 fit > 0.95   

Dark noise   50% increase from  
baseline   

Uniformity  no obvious artefacts  
CoV of 5 STP 
corrected ROI values 
 < 5%  

CoV of 5 STP 
corrected ROI values 
 < 10%  

Blurring / line defects / 
Stitching artefacts   

Two broken lines 
together or separated 
by one line  

 

Measuring stitching 
artefacts    > 2´ pixel pitch  

Dead pixel  
map/detector  
element failure  

 Refer to manufacturer  
tolerance  

Clusters of broken 
pixels particularly near 
centre of detector are 
the biggest concern 
Two broken lines 
together or separated 
by one line  

  
  
  

Uncorrected defective 
detector elements  

 

All defective pixels  
should be corrected  
out by the system  

 

Image retention  No obvious ghost 
image  >0.5%  >1%  

Threshold contrast 
detail detectability   One point on smoothed 

curve Baseline ± 30%  

Limiting spatial  
resolution  

may be limited by 
display if scored from 
review workstation, 
particularly in no or 
limited zoom  

should approach 
Nyquist limit; 
Baseline+/-20%  
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3    Quantitative Image Quality Metrics 

 

3.1 Introduction 

3.1.1 Background theory 

The limitation imposed by the statistical nature of image quanta on image quality was first 

recognised by Rose in 1948.  The relationship between the number of image quanta and 

perception was described in terms of a change in signal-to-noise ratio (ΔSNR) for the 

detection of a uniform detail in a uniform background.  The defining equation, known as 

the Rose Model is given by 

  b
b

b
Rose nAC

nA
nnA

SNR =
−

=Δ
)( 0     Equation 3:1 

where n0 is the mean quanta per unit area of an object detail of area A, resulting in contrast 

C (defined as [nb-n0]/nb) and nb is the mean quanta per unit area of an equal area of the 

background1.   

 The limitations of this model have however quickly become apparent with modern 

digital systems (discussed in detail by Burgess 1999)2.  The most salient shortcoming of 

the Rose method is the oversimplification of noise as evident in digital X-ray systems.  

Noise in the Rose model is treated as both uncorrelated and Poisson distributed where in 

practical situations neither may be the case3.  The Rose model gives misleading results 

when the image quanta are statistically correlated, or when the sampling function – 

normally the point spread function of the system, does not correspond well with the size or 

shape of the object detail4.  Only if the details diameter is large with respect to the 
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correlation distances does the noise variance become independent of the detail shape and 

the Rose method gives an accurate approximation of image noise4.  Burgess (1999) 

describes using detection theory how the model corresponds to a very specific detection 

task called ‘signal known exactly’ (SKE) and background known exactly (BKE) detection 

task2. 

 The Rose model forms the bases of much work carried out by medical physicists in 

assessing the performance of digital X-ray systems.  There are many contrast-detail test 

objects available with a range of object details of various sizes and contrasts to suit 

particular imaging modalities.  The detectability of low contrast details increases with 

detail diameter and contrast as expected from equation (1) in a SKE/BKE detection task.  

Rose showed that the ΔSNR must have a value of 5 or greater for reliable detection of the 

uniform object detail.   

 Unfortunately such experiments are far removed from providing a thorough 

analysis of the actual X-ray detector. The semi-quantitative test object approach relies 

heavily on the subjective evaluation of images by an observer.  Furthermore, the noise 

associated with such systems is complex and may include components of primary quantum 

noise, secondary quantum noise, aliasing noise, additive noise such as electronic noise or 

dark current and multiplicative noise such as structure noise3,5.  The use of transfer theory 

with Fourier based metrics facilitates the analysis needed to include these sources and 

allows a more through examination of image signal and noise2. 

 

3.1.2 Objective image analysis metrics 

The frequency dependant detective quantum efficiency DQE is currently the most common 

method used when comparing digital radiographic systems, because it characterizes the 
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systems overall signal-to-noise transfer properties under ideal (low scatter) conditions.  

The method is well established6 and has been used in numerous studies to evaluate: direct 

and indirect digital radiography systems7; computed radiography systems8,9 and digital 

mammography systems10. 

 The DQE(f) may be defined in terms of the pre-sampled modulation transfer 

function (MTF) and the noise power spectrum (NPS) as follows11 

  2
2

2 ..
)(
)(.)( ina SNRK

fNPS
fMTFGfDQE =      Equation 3:2 

 

where G is the detector gain, Ka is the detector incident exposure in µGy, and SNRin
2 is the 

number of incident quanta per unit area per µGy.  When detector gain is defined as signal 

output, S for a given X-ray quanta per unit area Q at the input of the detector, equation (2) 

may be defined as 

  
QfNNPS

fMTFSNRK
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Q
SfDQE ina ).(
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where NPS/S2 is the normalised noise power spectra (NNPS) and Q = Ka.SNRin
2.   

 The use of objective image analysis based on MTF and NPS has advantages over 

the semi-quantitative test object based method in that it no longer relies on the skill of the 

observer maintaining a constant decision threshold with time.  The MTF and NPS have 

also been shown to be more sensitive to changes in detector performance than test object 

based tests12. 
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3.2 Study aim 

The aim of this study is to examine the Fourier based image quality metrics MTF, NPS and 

DQE in the evaluation of a number of indirect digital radiographic systems of the same 

type.  The study will also examine the practicalities and experimental uncertainty in 

performing these measurements in a busy clinical X-ray department (as opposed to a 

dedicated laboratory) with the hope of eventually including the measurements in a routine 

QA program. 

 

3.3 Materials and Methods 

To address potential differences in measured DQE arising from variations in test 

methodology the International Electrotechnical Commission (IEC) developed guidelines 

published in IEC 62220-111.  The IEC 62220-1 standard specifies the conditions under 

which the MTF, NPS and linearization of data are to be measured and defines the method 

of calculating the DQE(f) using these quantities and the measured air kerma at the detector, 

as defined in equation 3:2.  The standard details the acquisition and processing conditions 

and the nature of the test device for determining the MTF (precision machined Tungsten 

edge).  A standardized radiation beam quality must also be used and is achieved using a 

specified thickness of 99.9% pure Aluminium filtration and a nominal tube voltage which 

is adjusted to give a specific half value layer.  For the purposes of this study the IEC 

62220-1 standard was adopted as faithfully as practicable. 
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3.3.1 Indirect digital radiography systems studied 

Data are presented for 12 indirect digital radiography detectors marketed as part of the 

‘Digital Diagnost’ range by Philips.  The detector is a Trixell Pixium 4600, which has a 

caesium iodide (CsI) scintillator coupled to a photodiode thin film transistor array.  The 

detector area is 43 x 43 cm2 with 3120 x 3120 pixel matrix and a pixel pitch of 143 µm.  

The detectors are all clinically operational in six rooms of the main X-ray department in 

the Imaging Centre at Belfast Royal Victoria Hospital. 

 The data required to calculate the quantitative parameters was obtained during 

scheduled routine QA visits to each room over a two week period.  The images were 

transferred from each individual system to the PACS archive and were downloaded from 

PACS to an office PC in uncompressed DICOM format via a remote access network. 

 

3.3.2 X-ray factors and technique 

A Philips diagnostic X-ray tube (SRO2550), a wall stand detector and a table detector were 

situated in each of six rooms.  Exposures were made with radiation beam quality RQA 5, 

using 21 mm of Aluminium filtration inserted at the tube head and adjusting the tube 

potential around 70kVp to get a HVL of 7.1 mmAl11.  In some cases particularly for table 

detectors a source-to-image distance (SID) of greater than 180 cm was the not possible and 

therefore an achievable SID of 140 cm was chosen.  All measurements used a small focal 

spot and an irradiated field size of 25 x 25 cm2. A calibrated solid state dosemeter 

(Barracuda R100, Molondal, Sweden) was placed on the detector cover in the centre of the 

beam.  The dose area product (DAP) meter reading and the mAs were also recorded for 

each acquisition.  The exposure to the detector was calculated using the inverse square law 

for the distance to the actual image receptor surface, an allowance of 3% was made to 

correct for the transmission of the detector cover.  To acquire the images for quantitative 
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analysis, the tube output was calculated in terms of mAs/µGy to deliver the intended 

exposures and the DAP meter readings were used to monitor the output and correct for any 

minor deviations. 

 

3.3.3 Image acquisition settings 

It is not possible to get raw image data off the Philips system and all images used for 

quantitative analysis had some amount of pre-processing applied.  A previous study of this 

detector type found two pre-processing steps applied to all raw image data7: (a) an 

unsharp-mask filter is applied where the enhancement factor increases from 0 to 1.5 

linearly with exposure up to an exposure of 2.4 µGy, beyond which the factor is constant at 

1.5.  (b) De-striping filters are applied in the horizontal and vertical directions, presumably 

to reduce detector structure noise.  Philips confirmed that these pre-processing steps are 

applied to all ‘raw’ image data acquired with ‘Digital Diagnost’ systems. 

 

3.3.4 Image analysis software 

The software routines used to measure the edge spread function and the NPS for this study 

were developed in IDL (RSI Inc, Boulder, USA) for use on CR systems by Workman9.  As 

Fourier based metrics are increasingly utilised software routines to compute them have 

become more widely available to clinical medical physics departments outside of 

specialised laboratories.  An analysis of six common routines used for the determination of 

the pre-sampled MTF with the edge technique, including the algorithm prescribed in the 

IEC 62220-1 standard, was performed by Samei et al (2005)13.  The results were analysed 

in terms of variability as well as accuracy of the resulting MTF and the difference between 

the individual MTFs and the mean MTF was below 0.02.  The agreement of the MTF 
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results was judged sufficient for the measurement of MTF necessary for the determination 

of DQE. 

 

3.3.5 Signal Transfer Property 

Multiple uniform images were acquired at seven exposure levels (covering the clinical 

range of use) for each detector.  The averages of the pixel values in regions covering ~ 

80% of each image area were determined and the results plotted as a function of exposure 

for each detector, figure 3:1.  This function is known as the conversion function or signal 

transfer function and defines the signal transfer properties (STP) of each detector.  The 

pixel values were proportional to the logarithm of exposure and all systems demonstrated 

good linearity with a correlation coefficient, R2 > 0.99. The STP relationship was used to 

linearize the image data before quantitative analysis. 

y = 2643.2Ln(x) + 13340
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Figure 3:1  Signal transfer property of a Trixell Pixium 4600 detector. 
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3.3.6 The modulation transfer function 

The pre-sampled MTF was measured using the edge technique13-16.  The pre-sampling 

MTF characterises the frequency response of the detector up to the point of sampling by 

the discrete pixel matrix.  This includes the response of the X-ray converter (CsI) and an 

aperture function depending on the system readout (the active area of each pixel in an 

integrating detector)17.  Note: a difficulty arises with digital detectors because the detector 

response to a signal may depend on not just the properties of the detector itself but also on 

the signal pattern and its location relative to the pixel matrix.  Therefore the signal 

transfer is a two step process influenced by the ‘analogue’ stage of the signal described by 

the pre-sampled MTF and the sampling18.  The pre-sampled MTF is a property of the 

detector and independent of the signal pattern. 

 The test object consisted of a tungsten sheet with dimensions 100 mm x 100 mm x 

1 mm with a precision machined and polished edge.  The edge was positioned on the table 

top to assess table detectors and on the detector housing for the wall stand measurements.  

The detector surface at the three unpolished sides of the test object was covered by lead 

aprons to minimise the effect of secondary radiation from the test object.  X-ray beam 

alignment was verified using a cylindrical alignment tool with two steel bearings 

(Gammex-RMI, Nottingham, UK).  The test object was imaged at a slight angle (typically 

3 degrees) between the machined edge and the pixel matrix at an exposure level of 4 µGy 

to the detector. 

 The images were then imported into IDL and the algorithm used to compute the 

MTF consisted of the following main steps: (a) A linearized region of interest (ROI) of 

approximately 50 mm x 50 mm was defined with the edge at the centre.  (b) The edge 

angle was determined using a simple method.  The image was displayed magnified on the 

screen and the user was required to select two points, either end of the edge, by clicking 
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the mouse on the edge at each location.  (c) The two dimensional (2D) image data were re-

projected around the edge and oversampled to form an edge spread function (ESF) with a 

bin spacing of 0.1 pixels.  The data were then filtered with a median filter to reduce noise.  

(d) The ESF is differentiated to form the line spread function (LSF).  The LSF tails were 

smoothed to zero, this ensures it remains a periodic function, required by Fourier analysis.  

(e) The MTF is calculated in the direction perpendicular to the edge by taking the modulus 

of a fast Fourier transform (FFT) of the LSF and normalising its value to unity at zero 

spatial frequency. 

 The Trixel Pixium 4600 detector consists of four subpanels tiled together.  MTF 

measurements were made at the centre of each subpanel for two detectors, measurements 

on the remaining 10 detectors were made at the centre of a subpanel chosen at random.  

Differences in the MTF measured in each subpanel were expected to be minimal, as noted 

in a previous study7 where the correlation coefficients of the MTFs were greater than 

0.997. 

 

3.3.7 The normalised noise power spectrum 

The noise power spectra of the systems were measured using four uniform images acquired 

at 4 µGy exposure level and RQA 5 for each detector (the number of images are such that 

at least 4 million pixels are used for analysis11).  The NPS is essentially the pixel variance 

(noise) as a function of spatial frequency.  The contributions to the total NPS are the result 

of many processes including: X-ray quantum noise; Poisson excess noise (resulting from 

variations in secondary quanta detected, e.g. light photons, electrical charge); electronic 

noise from preamplifiers in the readout stage; and fixed pattern or structure noise from 

sources such as the CsI or pixel array structure5,10. 
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 The acquired images were imported to IDL and the NPS analysis algorithm was 

applied.  The algorithm consists of the following main steps:  (a) A region of 

approximately 125 mm x 125 mm was delineated at the centre of each image (defined as 

ROImain).  (b) Data in ROImain were linearized using the STP, effectively converting the 

image segment into variations in air kerma as opposed to variations in pixel values.  (c) 

Trend removal was performed by subtracting a 2D second order polynomial from ROImain.  

This removes the influence of low frequency non-uniformities or artefacts on the NPS.  (d) 

The analysis region was broken up into half overlapping 256 pixels x 256 pixels regions of 

interest, ROIsub.  The squared modulus of the 2D Fourier transform was calculated for each 

ROIsub.  (e) The 2D transforms from each ROIsub were averaged to give the 2D NPS 

ensemble.  (f) Finally the normalised noise power spectra (NNPS) is obtained by dividing 

the ensemble by the square of the mean value of ROImain (i.e. by air kerma2) 

The IEC standard recommends the display of one dimensional NPS in each orthogonal 

direction.  For each direction, this was done by taking seven spatial frequency bins on 

either side of the axis, excluding the axis itself. 

 The working equation for the NPS according to the standard is11 
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where, 

ΔxΔy is the pixel spacing in the horizontal and vertical directions 

M is the number of ROIs (i.e. the number of ROIsub’s) 

I(xi,yi) is the linearized data (after correction by the STP) 

S(xi,yi) is the trend removal polynomial (optionally fitted). 
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 Uniform images were also acquired at approximately 0.5, 1.2, 2.4 and 6.2 µGy to 

examine NPS at multiple exposure levels and at 50, 60, 81, 91 and 117 kVp to examine the 

effect of beam quality. 

 

3.3.8 Detective quantum efficiency 

Detective quantum efficiency was calculated for the 12 detectors in this study by 

substituting the MTF and NNPS values into equation 3:3.  The number of photons per unit 

µGy mm2 (SNRin
2) for RQA 5 was taken from the IEC report11 and the standard exposure 

level used for the NNPS and MTF measurements was 4 µGy. 

 The effect of beam quality on DQE was investigated for a clinically representative 

range of beam qualities, provided by peak tube potentials ranging from 50 to 117 kVp, 

table 1.  To calculate the DQE for each beam quality an accurate estimate of SNRin
2 must 

be made, equation 3:3.  Depending on whether the X-ray detector is being considered as an 

ideal photon counting detector or an ideal energy integrating detector, the value of SNRin
2 

is weighted either by the no. of exposure quanta per unit area or the energy of all exposure 

quanta per unit area, respectively11,19.  For the ‘counting’ detector the no. of photons per 

mm was obtained simply by integrating the X-ray spectrum.  However for the ‘energy 

integrating’ detector SNRin
2 was calculated as19 
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where ϕ(E) is the X-ray spectrum with energy E. 

 Photon fluences were calculated from data on X-ray photon spectra generated at 

different tube potentials for a constant potential unit with a tungsten rhenium anode having 
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a of 16º target angle and filtered by 2.5 mm of aluminium20.  The fluence was adjusted for 

attenuation with 21 mm Al using tabulated data on mass attenuation coefficients in a 

spreadsheet program.  The spectra were also normalised to an exposure of 1 µGy using 

mass energy absorption coefficient data obtained from the same source20 to calculate air 

kerma for each spectra.  

 Table 3:1  Spectra data used in examining the effect of beam quality on DQE. 

Tube potential (kVp) 50 60 70 81 96 117 

HVL (mmAl) 4.75 5.98 7.05 8.13 9.25 10.44 

Mean energy (keV) 42.2 47.9 53.2 58.5 64.4 71.5 

SNRin
2 (counting) 23999 27860 30292 31787 32184 31311 

SNRin
2 (energy integrating) 23779 27448 29652 30924 31003 29606 

 

3.4 Results and Discussion 

3.4.1 Modulation transfer function 

Figure 3:2 shows the pre-sampled MTF calculated along the vertical and horizontal 

directions for 12 detectors.  The mean of the spatial frequencies at the 0.5 MTF point was 

1.3 mm-1 and the standard deviation from 24 measurements was 0.13, giving a coefficient 

of variation (cov) of 10%.  A value of 1.3 at the 0.5 MTF point was reported previously7 

for a CsI detector using a 200µm pixel pitch.  It is interesting to note that the larger pixel 

pitch also resulted in a noticeable increase in aliasing due to under-sampling the MTF, at 

the Nyquist frequency the relative MTF values were 0.25 and 0.1 in the previous and 

present studies, respectively.  Similar values were also reported in an alternative study21 

using a Pixium 4600 detector (0.5MTF = 1.4). 

 In an ideal system the line spread function would be a delta function with a width 

equal to the pixel pitch.  The MTF of this ideal function is the sinc function.  As can be 
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seen from figure 3:2 the measured pre-sampling MTF is significantly below the limit set by 

the pixel sampling aperture (0.143 µm).  This has been reported in previous studies7,12,21 

and is possibly due to re-absorption of k-shell fluorescence at a position remote from the 

initial interaction 22 or charge trapping within the pixel electrodes23,24. 

 Figure 3:3 shows the same data expressed as the area under each MTF curve from 

zero to the Nyquist frequency (3.5 mm-1) calculated using ‘Sigmaplot’ software (version 

10, Systat Inc., Germany).  The average area under the MTF curve was 1.67, which can be 

seen to vary by approximately ±10%. 
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 Figure 3:2  Measured MTF data for 12 Trixell Pixium 4600 detectors,    
 measured in the horizontal and vertical directions. 
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  Figure 3:3  Computed area under each MTF curve, calculated from   
  horizontal and vertical MTF measurements on 12 detectors. 

 

 Results for the means of the MTF measured in the vertical and horizontal directions 

were similar 1.8% ±0.5% (mean variation ± standard error); indicating that pre-sampling 

MTF is isotropic and does not exhibit directional dependence, figure 3:4. 
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 Figure 3:4  Average MTF measured in the horizontal and vertical direction. 
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 The noise equivalent aperture (NEA) is a single figure measure that has been found 

to correlate well with the visual impression of image sharpness9.  It is derived from the 

measured MTF from zero to the Nyquist frequency, fN as follows: 

  ( )
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The NEA was calculated using the composite MTF for each detector (i.e. the MTF 

averaged in the horizontal and vertical directions).  The mean NEA for 12 detectors in this 

study was 0.22 mm2 ±0.02 mm2 (mean ± standard error), comparable to an NEA of 0.21 

reported previously21. 

 Figure 3:5 examines the effect of the different geometries used to measure the MTF 

on the table top and wall stand.  A slight difference was noticeable in the average values 

for the table and wall stand detectors.  With the tungsten edge placed on the wall stand 

cover a slightly greater MTF is observed from 0.3 to 2.3 cycles/mm; above 2.7 cycles/mm 

however, the MTF is greater for the edge placed on the table top.  A mean variation ± 

standard error of 3.3% ±0.5% up to the Nyquist frequency was observed.   
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 Figure 3:5  Average MTF measured with the table and wall stand detectors,  
 using slightly different geometries. 

 

 The results for the MTF measurements made at the centre of each of 4 subpanels, 

for two different detectors were significant.  A mean variation ± standard error of 3.5% 

±0.7% from zero to the cut-off frequency was recorded. 

 The results presented in this study can be seen as field test measurements and the 

MTF was generally assessed with the edge test object placed on the outer cover of the wall 

stand or on the table top where appropriate.  However, it was possible to obtain a set of 

repeated measurements with one detector whereby the test object was placed on the outer 

cover of the wall stand and directly onto the surface of the image receptor (i.e. with the 

outer cover and the AEC chamber layer removed).  The results are shown in figure 3:6.  

There was surprisingly little variation between the measurement set-ups, with a mean 

variation of 1.7% ±0.2% up to the cut-off frequency. 
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 The effect of an edge polished to submicron level smoothness at 90 degrees when 

compared with a standard cut unpolished edge on the assessment of MTF was also 

investigated and results are shown in figure 3:6.  The MTF of the standard edge was lower 

by a mean variation of 2% ±0.4%.   

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2 2.5 3 3.5

spatial frequency (mm-1)

M
TF

polished edge on detector

polished edge on wallstand

unpolished edge on wallstand

 

  Figure 3:6  Effect of geometry and edge ‘smoothness’ on MTF. 

 
 In order to obtain an estimate of the reproducibility of the MTF algorithm, the 

analysis was repeated twelve times on the same image.  The results showed a mean 

variation of 2.3% ±0.4%.  The accuracy involved in sampling the image data to produce 

the edge spread function (using the method used in this study) was estimated previously18.  

The systematic error in the MTF estimate was reported to be approximately equal to 1/4N, 

where N is defined as the reciprocal of the tangent of the edge angle.  In the present study 

we aimed to use a nominal edge angle of 3 degrees (achieved within a tolerance of ±2 

degrees) giving a maximum error of 2.2% at the Nyquist frequency.  Summing the two 

errors gives us a total expected uncertainty of 3.5% in the determination of MTF.  
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3.4.2 Normalised Noise Power Spectra 

Figure 3:7 presents the NNPS results in the horizontal and vertical directions for the 12 

detectors studied.  The mean NNPS and percentage cov at: 1 mm-1; 2 mm-1; and 3 mm-1 

are: 8.9x10-06 (10%); 6.8x10-06 (7%); and 4.7x10-06 (13%), respectively.  

0.0E+00

2.0E-06

4.0E-06

6.0E-06

8.0E-06

1.0E-05

1.2E-05

1.4E-05

1.6E-05

0 0.5 1 1.5 2 2.5 3 3.5

spatial frequency mm-1

N
N

PS
 (m

m
2 )

 

Figure 3:7  NNPS results in the horizontal and vertical directions for the 12 detectors studied. 

 

 Figure 3:8 illustrates the mean NNPS for the six table and six wall stand detectors, 

in each orthogonal direction.  There was a significant difference between the vertical and 

horizontal NNPS values.  The NNPS in the vertical direction was on average 2.4% higher 

from 0.2 to 2.0 cycles/mm; above that however, the NNPS was higher in the horizontal 

direction by an average of 6.2%.  The difference observed in NNPS in the orthogonal 

directions may be attributed to the spatial structures of the TFT elements7.  Figure 3:8 also 

illustrates a slight difference in the NNPS observed for the table and wall stand detectors, 

although this is within the uncertainty on the NPS estimates.   
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 Figure 3:8  Average NNPS results in the horizontal and vertical directions for the 
 table and wall stand detectors. 

 

 The relative uncertainty in the NPS estimate can be calculated as 1/√Nbin , where 

Nbin is the number of independent frequency bins used17,25.  Nbin is calculated as: 

  meanbin binRMN ..=       Equation 3:7 

where M is the number of ROIsub regions, R is the number of rows used to section ROImain 

and binmean is the mean number of NPS points in a bin per row.  The sampling frequency 

resolution of the NPS estimate was (256 x 0.143)-1 = 0.027 mm-1 the data were then re-

binned into 0.1 mm-1 bins for the 2D plots, giving binmean = 4.  Nbin is therefore 64 x 8 x 4 = 

2048 giving an uncertainty of 2.2% assuming non-overlapping regions of interest (ROIs).  

Dobbins et al (2006) have shown that when half-overlapping ROIs are used estimation of 

uncertainty is inversely proportional to the relative areas used, and in this case is reduced 

by 1/√2 to 1.6%.  The normalised NPS is also dependent on an accurate assessment of the 

air kerma at the image receptor.  The overall uncertainty with the NNPS measurement is 
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thus given by the summation of the 1.6% NPS error with that of an estimated exposure 

uncertainty of 3%, giving a total of 3.4%. 

 Figure 3:9 represents a greyscale image of a 2D NPS for one of the detectors.  The 

NPS shows a marked depression on the horizontal and vertical axis due to low frequency 

artefact and pre-processing applied to the images, as discussed previously.  In particular 

the de-striping filters impact the NPS results and horizontal and vertical lines can be seen 

clearly.  Ideally the quantitative image analysis would be performed on unprocessed image 

data.  However, in situations where this is not possible careful image quality assessments 

can still be valid as long as they take note of exactly what pre-processing operations were 

preformed7,26.  

 

  Figure 3:9  An example of the measured 2D NPS at 4µGy. 

 
 The one dimensional NPS data presented in this study (figures 3:7 & 3:8) are an 

average of 7 spatial frequency bins taken either side of each axis, excluding the axis data 

itself, as recommended by IEC 62220-111.  Averaging 14 bins and excluding the axes 

minimises the impact of the de-striping filter pre-processing on the NPS estimates 

presented.  However an unsharp-mask filter was also applied and the effect of this filter on 

the image data was investigated. 
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 The unsharp-mask algorithm may be defined as 

  )( SIIE −+= β       Equation 3:8 

 

where E is the enhanced image, I is the original image, S is the unsharp or smoothed 

version of I and β is a factor which controls the amount of enhancement.  The frequency 

range enhanced depends on the size of the smoothing kernel; larger kernels enhance lower 

spatial frequencies; and smaller kernels enhance higher spatial frequencies.  To understand 

the processing changes applied to the image data we need to consider how much 

enhancement is present, how it is scaled and how it affects the NPS, figure 3:10. 

 

  

(a) (b) (c) 

Figure 3:10 Schematic showing the effect of unsharp-mask processing. (a) Typical NPS spatial 
frequency distribution (b) An unsharp-mask filter (c) The resulting spatial frequency distribution. 

 

 The variation in NNPS with exposure is illustrated in figure 11.  The relative noise 

power is seen to decrease with increasing exposure.  At low doses the NNPS is quantum 

limited and the relative noise varies with the reciprocal of exposure.  At higher doses 

however the NNPS approaches a lower limit as the relative contribution to the NNPS 

comes more from the fixed pattern or structure noise component.   
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Figure 3:11  Measured variation in NNPS with spatial frequency for a range of exposure levels. 

 

 The data presented in figure 3:11 are re-plotted in figure 3:12, where the NNPS is 

shown as a function of detector air kerma for selected spatial frequencies.  It is clear from 

figure 3:12 that primary quantum noise is the dominant noise component as the NNPS falls 

with a slope of minus one.  For spatial frequencies above 0.2 mm-1 the NNPS can be seen 

to follow a different trend between approximately 1 and 2.5 µGy; above ~2.5 µGy 

however, it resumes a slope of approximately minus one.  The change in the trend of the 

NNPS with exposure for different spatial frequencies is a characteristic of the unsharp-

mask filtering applied in pre-processing the image data. 
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Figure 3:12  Variation in measured NNPS with detector air kerma for selected spatial frequencies. 

 

 Dividing the NNPS values measured at 1.2, 2.4, 4 and 6.2 µGy by the values 

measured at 0.5 µGy and normalising this ratio to unity at 0.2 mm-1 allows us to see the 

effect of the enhancement factor on the spatial frequency of the image data, figure 3:13.  

For exposures ≥ 1.2 µGy the relative NNPS increases with spatial frequency up to ~ 1.8 

mm-1, beyond 1.8 mm-1 the ratio remains constant at approximately 1.6. 
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Figure 3:13  Measured NNPS for selected exposures, relative to those values at 0.5 µGy.  This 
NNPS filter may be used to understand changes made to image data as a result of unsharp-mask 
pre-processing. 

 

 The results presented in this study can be seen as field test measurements and 

similar to the case with the MTF measurements, NNPS was generally assessed from 

uniform images acquired with detector covers, AEC chambers and a table in place, where 

appropriate.  However, it was possible to obtain a set of repeated NNPS measurements 

with one detector whereby the outer cover of the wall stand and the AEC chamber layer 

were removed to expose the detector.  The results are shown in figure 3:14.  There was a 

statistically insignificant variation between the measurement set-ups, with a mean variation 

of 2.0% ±0.2% up to the cut-off frequency, well within the estimated NNPS measurement 

uncertainty of 3.4%. 

 The final set of NNPS measurements were acquired to assess the effect of using 

very high purity Al (type 11999 alloy) as specified in IEC 62220-111.  Standard Al of the 

type frequently used in medical physics departments to assess beam quality is 99.0% pure.  
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Apart from being relatively expensive, very high purity Al is also uncommon and has been 

shown in a previous study27 to cause low frequency mottle in the 2D NPS.  The effect of 

using very high purity Al and standard Al for NNPS measurements can be seen in Figure 

3:15.  The NNPS using standard Al is 1.5% ±0.3% less than that measured using very high 

purity between 0.3 mm-1 and 2.3 mm-1.  This difference is less than the uncertainty in the 

NNPS measurement.  The measured NNPS at ≤ 2 mm-1 is however statistically significant 

where a 58% difference was observed.  The gross overestimate in NNPS at low frequency 

is attributed to the manufacturing method and relatively larger grain size with very high 

purity Al compared to standard Al27. 
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Figure 3:14  Measured NNPS at 4µGy with and without detector cover and AEC layers in place. 
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 Figure 3:15  Measured NNPS at 4µGy comparing high purity Al (type 11999 alloy,  
 99.99% purity) and standard Al (type 1100 alloy, 99.0% purity) filters. 

 

3.4.3 Detective Quantum Efficiency 

 Figure 3:16 reports the DQE calculated from the measured data in the horizontal 

and vertical directions for the 12 detectors studied.  The DQE trend for each detector is 

seen to peak between approximately 0.3 and 0.4 mm-1, below ~ 0.3 mm-1 the detector 

exhibits a linear decrease with frequency, resulting from artefact as NPS tends to infinity 

when the spatial frequency approaches zero.  At frequencies above 0.4 mm-1 the slope 

decreases and the DQE asymptotically approaches zero.  The average peak DQE was 0.68 

with a mean variation of 11% ±0.6%.  The uncertainty in the DQE measurements is a 

combination of the uncertainties in the measurements of MTF (3.5%) and NNPS (3.4%) 

i.e. the terms in equation (3), giving an overall uncertainty of 6%. 
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Figure 3:16  Measured DQE at 4µGy in orthogonal directions for 12 detectors studied. 

 

 The average DQE in the horizontal and vertical directions differ by only 4%, thus 

DQE values may be averaged and stated to be valid for both axes.  The format of 

conformance statements to include DQE is outlined in the IEC standard11.  Table 3:2 

presents the average results for the 12 detectors in this format.   

 Table 3:2  Average DQE results for 12 detectors in IEC62220-111 format. 

Irradiation 
RQA / µGy 

Spatial Frequency  
cycles/mm 

DQE 
axes average 

0.5 0.62 
1.0 0.40 
1.5 0.20 
2.0 0.11 
2.5 0.07 

5 / 4.0 

3.0 0.04 
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 DQE was also investigated as a function of DAK.  Figure 3:17 illustrates DQE in 

the graphical reporting format recommended in the IEC standard.  Measurements are 

presented for four exposure levels; 1.2, 2.4, 4.0 and 6.2 µGy, plotted for discrete spatial 

frequencies from 0.5 mm-1 up to the cut-off frequency.  The DQE reduces as the DAK is 

increased, due to the growing influence of structured noise on the DQE.  Structured noise 

is a multiplicative noise source (multiplied by the X-ray signal), which becomes 

progressively more important as the exposure increases25.  The magnitude of the drop in 

DQE is also accentuated by the changes in NNPS due to the unsharp mask enhancement 

factor. 
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Figure 3:17  Measured DQE at selected exposure levels for one of the  detectors studied. 

 

 Figure 3:18 shows the DQE as a function of DAK averaged from at 0.5 to 3.0 mm-1 

spatial frequencies.  There is a reduction in the average DQE from 0.34 to 0.2 or 41% as 
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the air kerma at the detector is increased from 0.4 to 6.2 µGy.  Considering the images 

used in this study for quantitative analysis were corrected for offset and gain variations, a 

40% reduction in DQE at this exposure level is surprising and may indicate the particular 

detector needs flat fielding recalibration.  A similar drop in DQE with exposure was noted 

in previous studies on digital mammography25 and indirect digital radiography28 systems. 
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 Figure 3:18  DQE as a function of DAK averaged from 0.5 to 3 cycles/mm.  
 Error bars indicate a 6% uncertainty in DQE measurements. 

 

 The effect of beam quality on the DQE estimate is reported in figure 3:19, data on 

the X-ray spectra used are given in table 3:1. 
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 Figure 3:19  Measured DQE for a range of peak tube potentials. 

 

 The peak DQE varied by ± 9% from the mean at 50 and 117 kVp.  For spatial 

frequencies greater than ~0.5 mm-1 the DQE falls initially with a similar slope but 

eventually the slope lessens for larger tube potentials approaching the cut-off frequency.  

This spatial frequency dependence should in theory allow the DQE to give a better 

estimate of detector performance with tube potential than estimates from the quantum 

efficiency of CsI calculated solely on the basis of the energy absorbed from incident 

photon fluence. 

 Peak DQE or DQE(0) as a function of tube potential is shown in Figure 3:20.  DQE 

was calculated using equation 3:3 for the case of the ideal photon counting detector and the 
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ideal energy integrating detector.  The calculated values of SNRin
2 used for each case are 

listed in table 3:1.  Error bars indicate a 6% uncertainty in the DQE estimate.  As expected 

the DQE is a strong function of kVp.  Decreasing the X-ray energy (i.e. tube potential) 

improves the DQE as the X-ray photons are more efficiently absorbed in the detector. 
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 Figure 3:20  DQE(0) as a function of tube potential.  Error bars indicate    
 a 6% uncertainty in the DQE estimate. 

 

3.5 Conclusions and Recommendations 

This study has described the use of objective image performance parameters in 

characterising 12 indirect digital X-ray detectors of the same type.  The IEC DQE 

measurement methodology was successfully applied to detectors in a clinical X-ray room.  

The following are comments and recommendations for the determination of DQE from 

measurements made on detectors in-situ: 
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• The uncertainty in the measurements of MTF was 3.5% and NPS was 3.4%.  This 

gave a total uncertainty in the measurement of DQE of 6%, equal to the maximum 

uncertainty allowable following the IEC protocol11. 

• The mean DQE(0) value was 0.68 at 4µGy with a mean variation of 11% ±0.6%.  

This agrees will with published data21 on the Trixel Pixium 4600 detector (0.65 @ 

4.1 µGy) 

• Very high purity aluminium (99.9%) has been shown to cause an overestimation in 

the low frequency NPS.  Standard quality aluminium (99.0%) of the type 

commonly found in medical physics departments gives comparable results and is 

therefore recommended. 

• There is no significant difference between the MTF measured with the polished and 

unpolished tungsten edges.  An unsmoothed precision cut 90º edge is sufficient. 

• There was also no significant difference between the MTF and NPS measurements 

made on the outer cover and directly on the detector face.  This is an important 

point which helps motivate the use of the IEC standard in the clinical X-ray room 

and promotes comparison with published results from manufacturers’ ‘laboratory’ 

type tests.  In fact the actual definition of a ‘Digital X-ray imaging device’ quoted 

from the IEC standard is “device consisting of a digital X-ray detector including 

the protective layers installed for use in practice, the amplifying and digitizing 

electronics, and a computer providing the original data of the image”.  ‘In 

practice’ could reasonably be assumed to be in clinical practice thus including the 

outer cover.  It seems sensible that manufacturers are asked to provide ‘system’ 

figures for the detector as installed clinically i.e. including covers, AECs etc. 
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• All data in this study were acquired using the internal collimators to limit the beam 

area.  This does not strictly adhere to the IEC protocol where the use of two 

external beam limiting devices is stipulated.  Use of the internal collimators instead 

of the IEC specified external collimators has been shown to yield better estimates 

of the MTF and DQE while diminishing the complexity of image acquisition27. 

• Quantitative image quality measurements are possible with pre-processed image 

data but will only remain valid in light of a priori knowledge of the magnitude and 

type of processing applied. 

• The DQE dependence on spatial frequency was shown to vary with tube potential 

(i.e. beam energy).  Frequency dependant DQE should in theory give a better 

estimate of the detector performance with tube potential than estimates from the 

quantum efficiency of CsI calculated solely on the basis of the energy absorbed 

from incident photon fluence.  Tube potentials between 60 and 100kVp are 

optimum for the Pixium 4600. 

• The ideal signal-to-noise at the input of the detector is different for analysis which 

assumes the detector is an energy integrating detector, than that assuming it is a 

photon counting detector.  Care is required when calculating SNRin
2 for different 

beam qualities.  As the indirect digital X-ray systems used in this study are energy 

integrating detectors, SNRin
2 (energy integrating) values were used to assess beam 

quality dependence of DQE.  (Note: The values of SNRin
2 in the IEC protocol are 

photon counting values.) 

• DQE results show significant changes with exposure due to the influence of 

structure noise but also the applied pre-processing filters.  In general the relative 

noise increased with exposure leading to a reduction in DQE.  However, as long as 
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the noise equivalent quanta is high enough for clinical diagnosis additional noise (at 

relatively higher exposures) may be inconsequential. 

 

This study has shown that practically it is possible to include objective image quality 

parameters in an X-ray equipment quality assurance program, using IEC 62220-111 as a 

guide.  However the determination of DQE and its constituent parameters is currently 

restricted to ‘acceptance’ tests to verify digital detectors are functioning as stated in the 

manufacturers’ specification.  Data will need to be collected over a period of time and 

lessons learned on how common detector faults manifest as changes in MTF or  NPS.  It is 

only then we can consider setting tolerances for the remedy or suspension of digital 

detectors from clinical service based on these parameters.  A first step along this road is an 

appreciation of the measurement uncertainties involved and the variation of MTF and NPS 

values for multiple systems operating clinically and known to be in good adjustment, data 

which this study has provided. 
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4    Automatic Exposure Control Devices 

 

4.1 Introduction 

Automatic exposure control (AEC) devices are designed to improve the consistency of 

image acquisition in radiography.  Such devices enable images to be recorded for patients 

of varying thickness, for different regions of the body, and with different tube potentials 

using exposures close to the optimum.  This is achieved through automatic termination of 

exposures at preset air kerma levels at the image receptor.  Conventional X-ray systems 

using film radiography are set to give similar optical densities, but the variation in 

sensitivity of digital detectors with photon energy is significantly different from that of 

screen-film phosphors.  Calibrating AECs for the kV dependence of digital systems 

therefore requires the use of alternative parameters, ideally linked to the quality of the 

image.  Digital radiography systems have broader dynamic ranges than film and since the 

grey levels in the displayed image can be adjusted, the image quality is not contrast 

limited.  As a result, it is the amount of noise in the image which limits the perception of 

detail and so the image quality, for most digital radiography systems.  Thus the signal-to-

noise ratio (SNR) provides a useful quantity for judging image acceptability and so 

evaluating image quality.  The level of SNR will be determined by the image receptor 

sensitivity and the exposure level.   

 Exposure tables are no longer needed to set radiographic parameters as the AEC 

systems of modern X-ray generators have the capability to take the energy response of 

image receptors into account.  These systems typically have several calibration curves 
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stored in memory.  Depending on the X-ray tube voltage selected, the cut-off dose of the 

AEC is changed according to these curves. 

 At installation, when the X-ray system is accepted into clinical use, the appropriate 

kV compensation curve is selected and adjusted if required.  The chosen correction curve 

will need to simultaneously take into account the energy response of the image receptor 

and the energy response of the dosimeter forming part of the AEC device, usually an 

ionisation chamber.  The curve may also be influenced by ‘local’ factors such as inherent 

beam filtration, choice of attenuating phantom used for testing, table top attenuation and 

Bucky design. 

 AEC calibration curves stored in the memory of X-ray generators are typically 

produced to suit the energy dependence of screen-film phosphors.  These curves may not 

be optimised for DR systems and may need to be adjusted for use with a particular digital 

image receptor at installation.  The ability to adjust the shape and position of the curve 

varies with X-ray generator manufacturer and model.   

 Some generators operate using an exposure point (EP) scale which logarithmically 

grades tube potential and tube current time products, producing exposure increments of 

10[0.1].  Therefore, a change in exposure of 3 EPs for example, results in a doubling of the 

DAK (10[0.1])3.  The ability of AEC systems based on the EP scale to achieve a specified 

target DAK at a reference kV (usually ~ 80 kV) can be achieved within a tolerance of ± 1/2 

EP or a change of ± 12% in DAK.  Once the target DAK of the curve is established at the 

kV reference point, the shape of the curve at other tube potentials (usually 60 and 125kV) 

may be manipulated within a tolerance of ± 1/8 EP or 3% in DAK. 

 There are many models of X-ray generator available in the UK and some are 

particularly suited for AEC calibration with DR systems.  These systems enable the 
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reference voltage values which determine the AEC cut-off point to be entered into the 

system directly at each kV decade.  Thus, allowing fully configurable and relatively 

precise AEC calibration curves to be established.  Older X-ray generators which use 

analogue circuitry to adjust AEC sensitivity are often as configurable as modern software 

driven microprocessor generators which may only offer a selection of predefined curves. 

 Tests to evaluate the performance of AEC devices may be categorised into those 

necessary to commission DR equipment and those required to test AEC function routinely.  

Commissioning tests are more comprehensive and require the establishment of a kV 

compensation curve trend and the absolute detector air kerma level. 

 In this chapter, the variation in photon energy absorbed in the detector, which is a 

measure of the sensitivity of the image receptor, has been calculated for different X-ray 

beam qualities.  This has been compared with responses of digital radiography detectors, 

assessed in terms of the detector dose indicator (DDI) registered by the different systems 

and the image SNR, for application in calibrating AECs for digital radiography.  X-ray 

company engineers often use phantoms of aluminium or copper instead of more tissue 

equivalent materials, such as water or PMMA, when setting up AECs, because these are 

more convenient to handle.  The use of phantoms made from different materials has been 

investigated and the influence of scatter on measurements made under a variety of 

conditions has been studied.  The range of AEC calibration options available has been 

reviewed and the more practical methods are recommended for routine use. 
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4.2 Theory 

The response of a phosphor when exposed to mono-energetic photons of energy E can be 

evaluated in terms of the absorbed energy A (E).  

  ]}.)./)(exp[(1{)( tEEEA en ρρμ−−=     Equation 4:1 

where µen (E) is energy absorption co-efficient, ρ density and t the thickness of the 

phosphor layer.  The energy absorbed in the phosphor for different detectors is a measure 

of the receptor sensitivity and is directly linked to the pixel value in the resulting image 1.  

In order to assess the response of a phosphor or its sensitivity to X-ray beams, which have 

photons with a range of energies, the absorption must be averaged over all the photons 

impinging on the image receptor. 
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where A (kV, filt) is the absorbed energy for an X-ray beam of given tube potential (kV) 

and filtration, EkV is the maximum photon energy in the spectrum and ψE is the photon 

fluence in energy interval E to E+dE 2.  The sensitivity has been calculated using equation 

(2) for X-ray beams with different radiation qualities in order to establish the expected 

variations with tube potential for several types of image receptor.  The X-ray beam used in 

the calculations was for a 16o target angle, filtered by 2.5 mm of aluminium, with a 0.2 mm 

copper filter added for some calculations 2.  The X-ray beams were corrected for 

transmission through a 200 mm thick water phantom to simulate the attenuation properties 

of a patient.  No correction was made for scatter, but the differences between the spectra of 

the primary X-ray beam and scattered radiation transmitted in the forward direction are 

small 3.  These results have then been used to predict relative values for determining the 

AEC cut-off dose at different tube potentials for each type of image receptor. 
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4.3 Method 

The manufacturers of digital imaging systems use a variety of detector dose indices (DDIs) 

related to the amount of light generated from the phosphor, either by photo-stimulable 

luminescence in the case of computed radiography (CR) or X-ray stimulated fluorescence 

for caesium iodide indirect digital radiography (IDR).  The DDI values are calculated from 

analysis of the histogram of image pixel values over an appropriate region of interest and 

provide a quantity that is related to the detector sensitivity.  Images with a similar value for 

the DDI should reflect a consistent level of absorbed dose to the detector at different tube 

potentials.  Studies have been carried out using CR systems manufactured by Kodak, Fuji 

and Agfa, and Siemens IDR equipment.  Exposures relating to the use of different 

parameters for setting up AECs were made using a 200 mm thick water phantom, 

comprising pairs of tanks with outer dimensions 300 mm x 300 mm x 100 mm with 5 mm 

thick Perspex walls.  Air kerma was measured with an Unfors Xi solid state dosimeter 

(Unfors Instruments AB, Billdal, Sweden) for exposures with a range of mAs settings for 

each kV value.  For CR the solid state dosimeter was set into a modified cassette to 

measure detector air kerma (DAK).  Similar exposures were then repeated with a CR 

image plate and the DDI recorded.  The same CR cassette, field size and region of interest 

at the centre of the image plate were used for each exposure and the time between 

exposures and readout kept at 120 s ± 20 s in order to minimise variations.  The cassettes 

were readout using the processing options specified by the manufacturers to give a fixed 

dynamic range and linear greyscale.  For the IDR system, the DAK was recorded by 

placing the solid state dosimeter on the surface of the detector array cover, behind the grid, 

in the centre of the X-ray field and similar exposures repeated with the dosimeter removed 

to determine the DDI values.  The SNR was defined as the mean pixel value divided by the 

standard deviation and taken from regions of interest of approximately 10 cm2 drawn at the 

centre of each image. 



   

80 

 For some indirect digital radiography systems it is not possible to position a 

dosimeter behind the grid immediately in front of the image receptor.  In such cases the 

DAK must be derived from a measurement of the incident air kerma at the surface of the 

image detector housing, which will include scattered radiation that will be removed by the 

grid.  This must be taken into account in calibration of the AEC.  

 Practical measurements to assess the influence of the type of phantom and its 

position were made on a CR system, for which the AEC had previously been set up to 

terminate exposures at a similar air kerma level across the whole range of tube potentials.  

The 200 mm thick water phantom was first positioned at the tube adjacent to the light 

beam diaphragm and the measurements repeated with the phantom placed in front of the 

detector housing.  Similar measurements were made with a 20 mm thick aluminium 

attenuator at the X-ray tube.  The DAK was measured with the Unfors Xi dosimeter placed 

in the Bucky tray as already described, but measurements were also made of the air kerma 

at the detector housing in front of the grid with the dosimeter positioned in the centre of the 

beam, taking care to avoid overlap with the central AEC chamber.  In all cases sets of 

measurements were made both with and without the grid in position.  Some measurements 

were also made with a Keithley triad dosimeter with a 15 cm3 ionisation chamber (Keithley 

Instruments Inc., USA), in order to assess the contribution made by backscatter to the 

value recorded. 

 

4.4 Results 

4.4.1 Theoretical Assessment 

The relative responses of a gadolinium oxysulphide screen system (phosphor thickness 

0.20 mm): a CR imaging plate made from BaFBr85%,I15% (phosphor thickness 0.22 mm); 

and a caesium iodide IDR image receptor (phosphor thickness 0.5 mm) were calculated 
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using equation 2 and are compared in Figure 4:1.  Results for X-ray beams with an 

additional 0.2 mm of copper are compared with other data.  Whereas the sensitivity of rare-

earth screen-film systems increases between 60 kV and 100 kV, that for the CR system 

declines continuously with tube potential from 50 kV upwards, and that for the caesium 

iodide IDR system declines above 80 kV. 
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Figure 4:1  Variation of phosphor sensitivity with tube potential for a gadolinium oxysulphide 
(Gd2O2S) film-screen phosphor (0.20 mm thick), BaF(Br85%, I15%) CR phosphor (0.22 mm), and 
a CsI IDR  phosphor (0.50 mm).  Data is shown for X-ray beams filtered by 2.5 mm of aluminium, 
and by 2.5 mm of aluminium plus 0.2 mm of copper. 

 

 The expected relative AEC setting required to compensate for the differences in 

phosphor sensitivity in the diagnostic X-ray range have been computed for the three types 

of image receptor and are shown in Figure 4:2.  The DAK should be increased by 8-10% 

between 80 kV and 100 kV for CR, and by 3-4% for IDR, whereas no change is required in 

screen-film air kerma.  The DAK required by CR is 7-9% lower at 60 kV than 80 kV, 

whereas there is little change in the requirement for IDR and the dose required for the rare-

earth screen-film system is 10-12% higher.  If the X-ray beam is filtered by an additional 
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0.2 mm of copper, the ideal AEC setting at 100 kV relative to that at 80 kV is only 

changed by 1%, which is negligible compared with the accuracy with which most AECs 

can be adjusted. 
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Figure 4:2  Theoretical evaluation of the variations in AEC setting for image receptor doses with a 
film-screen system, a CR system and an IDR system for X-ray beams with and without an 
additional 0.2 mm copper, normalised to the response at 80 kV. 
 

4.4.2  Empirical Assessment 

The relative sensitivity of an Agfa CR system at different tube potentials was evaluated 

empirically from measurements using different image performance indicators: pixel value, 

DDI, and SNR (Figure 4:3).  It was possible to adjust the AEC cut-off values within a 

tolerance of 3%.  All indicators show a similar trend within ±2% and should therefore have 

equal validity in determining the correct kV compensation curve required to calibrate the 

AECs for the loss in detector sensitivity with tube potential. 
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Figure 4:3  Comparison of the relative sensitivities of indicators that relate to image plate response 
for an Agfa CR system, normalised to the response at 80 kV.  Error bars indicate an achievable 
tolerance of 3% in adjusting the AEC. 

 

 The DDI was chosen for the purpose of this study.  Relative detector dose settings 

to give similar DDI values for various digital radiography systems and for maintaining a 

constant film density for a screen-film system are shown in Figure 4:4.   Kodak and Fuji 

CR systems both use the phosphor BaFBr85%I15% :Eu employed in the calculation and 

trends are within a few percent of those predicted (Figure 4:2).  The change with kV is less 

for the Agfa CR system where strontium is also incorporated in the phosphor 4.  The 

required image receptor doses to give a constant DDI rise more steeply below 80 kV than 

predicted by the calculations.  This may result from additional attenuating material in the 

X-ray table-top, grid and cassette cover.  Above 80kV the image receptor doses to give a 

constant DDI rise marginally less steeply than those predicted, but the practical 

measurements also include the energy response of the ionisation chamber in the AEC 

device. 
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Figure 4:4  AEC settings for a rare-earth film-screen system, an IDR (CsI) system and three 
computed radiography systems derived from practical measurements to give a similar DDI value 
relative to the response at 80 kV.  Error bars indicate an achievable tolerance of 3% in adjusting the 
AEC. 

 

4.4.3 Absolute Dose level 

The starting position chosen for setting up the DDI dose level for CR systems was that the 

image receptor dose should correspond to a 400 speed screen-film system at 80 kV.  This 

is defined by ISO 92361 as S = 10-3 Gy / ks Gy, where ks is the air kerma at a fixed 

distance behind the specified phantom to produce a net film optical density of 1.0 5.  The 

standard measurement conditions specify four techniques at 50, 70, 90 and 120 kV using 

different amounts of aluminium or PMMA attenuating material.  Measurements at ten 

hospitals using five different 400 speed index screen-film combinations gave image 

receptor doses between 2.3 µGy and 3.4 µGy with a mean of 2.8 μGy.  A DAK of 2.7 µGy 

was chosen as a starting point (DAKref) for setting up CR systems in the West of Scotland.   
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4.4.4 Attenuating Phantom Material 

Transmitted X-ray spectra similar to those for 200 mm water can be obtained using thin 

metal phantoms, and these are often used for tests by medical physicists and equipment 

engineers. Since the quality of the transmitted X-ray beam will affect the response of the 

CR and IDR image plates, calculations were performed to predict responses for several 

different attenuating phantoms.  Relative AEC dose settings for CR and IDR systems that 

would be determined for a selection of phantoms are shown in Figure 4:5. 

 Phantoms made from water (200 mm), PMMA (200 mm), and aluminium (20 mm) 

all gave relative responses within ±0.5% between 80 kV and 125 kV, but when 2 mm of 

copper was used to attenuate the beam, the dose levels required to give the same image 

response at 100 kV and 125 kV were 4.5% and 9.5% higher respectively than at 80 kV.  

Spectra similar to those transmitted through 200 mm of water may be obtained by reducing 

the copper thickness to 0.5 mm, but use of this filter is impractical because of the high 

transmitted air kerma.  Although the X-ray spectra transmitted through the different 

phantoms are similar, the air kerma levels are not.  The mAs settings required to terminate 

the AEC with different thicknesses of phantom relative to those for 200 mm water are 1.4, 

0.8, and 0.4 for 200 mm PMMA, 20 mm aluminium, and 2 mm copper respectively.  The 

very high air kerma per mAs for a 0.5 mm thick copper phantom requires smaller exposure 

time durations that can be achieved in practice.    

 

 

 

(a) 
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Figure 4:5  Calculated values for the relative AEC setting required for (a) a CR system and (b) an 
IDR system using four alternative phantom materials to simulate the X-ray beam transmitted 
through a patient. 
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4.4.5 Influence of Grid and Position of Attenuating Phantom 

Measurements of the DAK corresponding to termination of the AEC on a CR system for a 

range of tube potentials with the water phantom at different positions and with and without 

a grid in place in front of the detector are shown in Figure 4:6.  Experimental error in the 

measurement of DAK was largely due to variations in tube output (~3%) and AEC device 

reproducibility (~1.5%).  Air kerma measurements with the water attenuator positioned at 

the tube and at the detector housing are similar to within experimental error, when the grid 

is in place.  However, when the grid is removed the results are significantly different.  

With the water phantom placed at the tube the DAK is similar to that recorded with the 

grid in place up to 100 kV, but is about 10% lower at 120 kV.  However when the water 

phantom is positioned near to the detector housing, the mean DAK recorded by the 

dosimeter drops to two thirds of its original value. 
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Figure 4:6  Plots of air kerma measured at the image detector for a CR system with the AEC set up 
to give a constant DAK across the range 60 – 120 kVp. Sets of results are shown for a 200 mm 
thick water phantom positioned at the image receptor and at the X-ray tube, with and without the 
grid in place in front of the dosimeter.  Error bars indicate an experimental error of 3.3% in 
measuring DAK. 
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 In Figure 4:7 the variation with tube potential of the incident air kerma measured at 

the detector housing for water and aluminium attenuators are compared for set ups with 

and without a grid.  When the grid is in place, the incident air kerma values are higher by a 

factor of 1.56.  There is no significant difference between results recorded using water or 

aluminium as an attenuator.  The same X-ray equipment was used for the measurements in 

Figures 4;6 and 4:7 and the water at tube results differ only in position of the dosimeter in 

the Bucky tray and on the detector housing, behind and in front of the grid respectively. 
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Figure 4:7  Plots of air kerma measured in front of the housing for the image detector and grid of a 
CR system with the AEC set up to give a constant DAK across the range 60 – 120 kVp. Sets of 
results are shown for a 200 mm thick water phantom and a 20 mm thick aluminium phantom, both 
positioned adjacent to the X-ray tube, with and without the grid in place.  Error bars indicate an 
experimental error in of 3.3% in measuring DAK. 

 

4.4.6 Dosimeter Type 

Sets of measurement were repeated using an ionisation chamber.  The disadvantage of the 

ionisation chamber is that it will also be sensitive to radiation scattered back from any 
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object on which it is placed.  Results showed that the air kerma measurements for a CR 

system could be increased by 30% with a grid in place and 50% when no grid was used. 

 

4.5 Discussion 

4.5.1 Digital radiography requirements 

Results from this study have demonstrated that the image receptor dose levels required for 

digital radiography systems need to increase with tube potential in order to give a similar 

detector response.  The relative response of the DDI at different tube potentials follows a 

similar pattern to the SNR and relates to the level of image quality.  

 Maintaining a constant DDI is recommended as the method of choice for setting up 

AECs for digital radiography.  Evaluation of the image receptor response prior to setting 

up a new imaging system using a simple spreadsheet calculation can provide valuable 

guidance on performance.  Typical AEC calibration curves are stored in the memories of 

X-ray generators to suit the energy dependence of screen-film systems, but may not be 

available for digital radiography systems.  Therefore it is important to adjust the response 

for use with CR or IDR systems at installation.  The facility to adjust the shape (kV 

dependence) and position (AEC sensitivity) of the curve varies with X-ray generator 

manufacturer and/or model but can usually be configured within a tolerance of ±12% for 

the sensitivity and ±3% for the kV dependence.   

 A target reference DAK value (DAKref) should be chosen for setting up a digital 

radiography system that is suitable for the X-ray equipment being used and the image 

quality required for the range of examinations being performed.  This will be influenced by 

local factors such as imaging requirements, beam filtration, table-top and grid attenuation.  
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The final decision on acceptability of noise at the dose level chosen should be made by the 

radiologists / radiographers in the department based on clinical requirements.  In the West 

of Scotland the DAKref values employed are 2.7 ±0.2 µGy at 80 kV for CR imaging plates 

and 2 ±0.15 µGy for IDR systems.  These DAKref levels relate to measurements made 

behind the grid.  If the dosimeter can only be placed in front of the grid, a correction will 

need to be applied for grid attenuation (typically giving a 30% - 40% reduction).  

Additional copper filter options are available on many DR systems and the use of a 0.2 mm 

filter in an optimisation strategy would only give a difference of 1% in relative response at 

different kVs and so would not require AEC recalibration. 

 

4.5.2  Measurement of image receptor dose 

In order to set up an AEC system at different tube potentials, X-ray beams filtered to 

generate spectra similar to those transmitted through the body should be used (e.g. 200 mm 

water, 200 mm PMMA, 20 mm aluminium), Figure 4:5.  X-ray spectra transmitted by 2 

mm copper are sufficiently different to give a measurable discrepancy in AEC response 

and so use of a copper phantom is not advised.  Output reproducibility problems were 

avoided when using the aluminium phantom by ensuring that the exposure time setting 

remained above 10 ms either by selection of a small mA and/or by selecting a small focal 

spot size. 

 The best type of radiation instrument to use for carrying out the measurements is a 

solid state dosimeter, as these are mounted on a lead backing plate and are less sensitive to 

differences in backscattered radiation.  If an ionisation chamber is used, then a correction 

will need to be applied to account for the additional backscatter recorded, which may 

increase the measured dose by 30% with a grid or 50% without a grid.   
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 The best arrangement for measurement of image receptor dose is to place the 

dosimeter on the receptor behind the grid.  If this is not possible, then other alternatives can 

be used, but none is ideal.  In all other cases the phantom must be positioned at the X-ray 

tube to reduce contributions from scatter.  A 20 mm thick aluminium sheet will provide a 

more practical and safer phantom for use in this arrangement.  The second option is to 

place the dosimeter on the cover in front of the grid and make a correction for grid 

attenuation.  The disadvantage of this is that an accurate value for the attenuation of the 

grid may not be available.  The other alternatives involve removal of the grid.  If the 

dosimeter is placed on the image receptor, the measurement at 80 kVp is similar to that 

with the dosimeter behind the grid, but the cut-off air kerma falls with kV (figure 4:6), 

because of contributions from scatter to the AEC chamber air kerma.  However, this 

provides a reasonable method of establishing DAKref and the DDI can then be used to set 

up the AEC at other tube potentials.  When the dosimeter is placed on the outer cover of 

the detector housing, this gives a DAK that is 10% - 20% higher (Figure4:7) than that at 

the image receptor (Figure 4:6), because of attenuation by the cover and the difference in 

FDD, although a correction could be applied to allow for these.  

 Contributions from scattered radiation and different responses of radiation 

dosimeters can be the cause of confusion.  Measurements where the dosimeter is placed 

behind the grid or where the phantom is positioned near to the X-ray tube, in order to 

minimise the amount of scatter detected, are consistent.  However, when the water 

phantom is placed adjacent to the detector and the grid removed, the AEC cuts off the 

exposure at a lower detector air kerma level (Figure 4:6), because of the contribution from 

scattered radiation.  The reason for this is the difference in angular response of the solid 

state dosimeter and the AEC ionisation chamber.  The solid state device which 

incorporates filters in front of a small dosimeter element is more directional, the response 

reduces by as much as 50% at angles approaching 30 degrees, whereas the AEC ionisation 
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chamber is sensitive to radiation from all directions.  Thus in a scatter field where radiation 

impinges from different directions the ionisation chamber records all the incident radiation 

with a similar weighting, whereas the response of the solid state dosimeter is lower for the 

scattered radiation incident at a higher angle.  

 

4.5.3  Procedure for calibration of AEC Device 

The following steps are recommended in calibrating an AEC device for digital 

radiography: 

• Check the DDI calibration of the X-ray system using the method recommended by 

the manufacturer. 

• Global DDI values should not be used to determine the absolute dose level for 

setting up AEC systems because of differences in equipment and set-up between 

different centres.  It is recommended that DDI values are calibrated against DAK 

for each system. A discussion of the factors affecting the accuracy and 

reproducibility of DDIs is given in the appendix to this chapter (section 4.7). 

• Adjust the AEC calibration to obtain the required target DAKref at 80 kVp.  The air 

kerma for CR can be measured using a cassette with a cut out to take a solid state 

dosimeter.  

• Measure DDI at 80 kV using this set up (DDIref). 

• Measure DDI over the range of tube potentials to be used in clinical practice, 60-

120 kV.  For all measurements use the same field size, the same imaging plate and 

a similar time delay between exposure and readout for CR systems.   

• Adjust the AEC calibration to achieve DDI values similar to DDIref at all tube 

potentials.  Since the variation in response with kV is less for CsI IDR systems 

(Figures 4:2 and 4:4), adjustment of the AEC to give a constant air kerma level at 

all tube potentials may be considered acceptable. 
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The DAK required to achieve a constant DDI across the diagnostic kV range may be 

determined empirically through trial and error.  When the relationship between DDI and 

exposure is known, the required air kerma may be calculated from the DDI observed 

(DDIkV) and DAK recorded (DAKkV) for each kV.  Equations defining DDI for most CR 

systems may be rearranged to derive equations for the image receptor dose and these are 

given in Table 4:1.   

   Table 4:1  Calculation of DAK at particular kV from initial dose and DDI values recorded  

Manufacturer DDI definition Required Image Receptor Dose  

Agfa SAL / √Dose =  constant DAK kV  × (SAL ref
2 / SALkV 

2) 

Fuji S × Dose  = constant DAK kV × (S kV / S ref)   

Kodak EI – 1000 × log10(Dose) = constant DAK kV × 10 [(EI ref – EIkV)/1000] 

     NB: DAK kV and DDI kV are measured values at each kV before adjustment. 

 

 If the kV dependence of a digital detector is known, then direct measurements of 

DAK may be employed for AEC calibration, for example using multiplication factors 

derived from Figures 4:2 and 4:4 for tube potentials between 80 kV and 130 kV.  This 

method is by far the quickest and simplest to use in the field. 

 Typical normalised target DAK values for selected CR systems are shown in Table 

4:2.  The values shown are a guide only and may vary with X-ray equipment, CR model 

and IP generation. 

       Table 4:2  Target DAK values for selected CR image plates normalised to 80kV. 

kV 60 70 80 90 100 110 120 
Agfa MD30 0.99 0.98 1.00 1.00 1.02 1.06 1.09 
Fuji ST-VI 1.05 1.01 1.00 1.01 1.06 1.10 1.15 
Kodak GP 1.04 0.94 1.00 1.04 1.09 1.14 1.19 

 

 The relatively smaller energy dependence of DR R image receptors compared to 

film-screen, coupled with modern X-ray generators producing more reproducible outputs, 
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should in theory allow a tighter tolerance in determining the correct AEC function with DR 

systems.  The achievable tolerance in calibrating AECs using the DDI method was found 

to be approximately 14% and has three main components, the ability to configure the 

generator to deliver the target DAK (~13%), the measurement of DAK – exposure 

reproducibility (~1%), dosimeter calibration (~2%); and DDI accuracy and reproducibility 

(including readout delay and calibration tolerance etc. ~5%). 

 The acceptance limits for film optical density when evaluating AECs with 

conventional radiography have been set at ± 0.2 OD units.  Wilkinson and Heggie 

demonstrated that a change of ± 0.2 OD on film corresponds to a change of ± 17 % in the 

air kerma to the film 6.  This correlates well with our estimated achievable tolerance in the 

DDI method.  Based on the 17 % exposure variation the following values define equivalent 

limits of acceptability in terms of DDI for properly calibrated CR systems running at 400 

speed equivalence: Fuji S ± 90; Kodak EI ± 70; and Agfa SAL ± 97.  Similar values may 

be calculated for other digital X-ray systems. 

 

4.6 Conclusions 

The energy responses for digital radiography systems are different from those of screen-

film combinations, and require the exposure to be increased at higher tube potentials.  AEC 

systems may be set up using phantoms of water, PMMA or aluminium and the DDI or a 

measurement based on air kerma used to establish AEC cut-off levels.  Use of a solid state 

dosimeter, which can be placed behind the anti-scatter grid and in front of the image 

receptor, is the preferred method.  Particular care should be taken where the dosimeter 

cannot be placed behind the grid, as scatter contributions to the measurements can be 
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significant.  In this case, the attenuating phantom must be placed at the X-ray tube in order 

to reduce scatter and the use of 20 mm of aluminium is recommended. 

4.7 Appendix  

4.7.1 Factors affecting the accuracy and reproducibility of DDIs 

Manufacturers of digital X-ray systems promote DDIs as having a rather loose relation to 

DAK when used clinically.  If factors such as the X-ray generator, inherent X-ray beam 

filtration, tube voltage, menu options, patient size, positioning set-up, collimation and 

elapsed time from exposure remain unchanged, the DDI is then a relative representation of 

DAK.  These many variables all contribute to the wide range of DDIs for each examination 

type obtained clinically.  As discussed in chapter 4, the calibration of DDI for each digital 

X-ray system are performed under specific, repeatable set-up conditions to minimise many 

of these variables.  The relationship between DDI and DAK is thus more precise under 

controlled exposure conditions.  The accuracy of the DDI value however, may also depend 

on the following factors: 

 

4.7.2 Energy Dependence 

The energy dependence of digital X-ray detectors understandably vary with detector 

technology but notably also varies for the same technology with manufacturer and 

generation of IP.  CR exhibits a large energy dependence, relative to IDR or DDR but 

significantly less than traditional screen-film systems.  The energy responses of selected 

DR systems are shown in Figure 4:4, as the relative reciprocal sensitivities.  The response 

of a typical 400 speed index screen-film system is also included for comparison.  Data 

were collected with a 20 cm water phantom placed on the table top, a focus to detector 
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distance of 115cm and with the IP or screen-film cassette placed in the Bucky tray, similar 

to a clinical situation.  Experimental error was minimised by using the same model GE 

Proteus X-ray system for film and CR measurements.  The difference in energy 

dependence between the three CR manufacturers may be attributed to subtle differences in 

composition and manufacturing of the IPs.  Kodak and Fuji CR systems use phosphors 

composed of BaF(Br85%I15%):Eu whereas Agfa use a phosphor material which includes Sr 

4.  The thickness and density of the phosphor layer and its concentration of dopants differ 

between manufacturers.  The energy responses shown in Figure 4:4 are dependent on local 

variables for example, inherent X-ray tube filtration and voltage response of the radiation 

detector forming part of the AEC device (usually an ionisation chamber).  Other 

generations of IP from the same CR manufacturer may also exhibit an energy response 

different than those illustrated. 

 

4.7.3 Calibration of DDI 

Manufacturers each recommend specific beam quality and exposure conditions to calibrate 

their digital X-ray systems to produce the expected DDI value for a given incident 

exposure.  In the past, measurements to check the calibration made using different 

dosimeter designs (ionisation chambers or lead backed solid state detectors etc.) with or 

without lead aprons to reduce backscatter, and with various field sizes, have resulted in 

some confusion.  It is important that the DDI calibration of the digital system is checked 

using the method recommended by the manufacturer before any attempt at determining 

AEC function using the DDI is made.  
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4.7.4 Beam Quality Variations 

Experimental work performed by Tucker and Rezentes demonstrate the dependence of 

pixel values (and hence DDI) on the amount of energy deposited on an IP1.  At a given 

exposure, it is the spectral content that determines the amount of energy absorbed by the 

phosphor.  The equations relating DDI with the exposure incident on the image receptor in 

table 4.1 are valid in only a general form as they are difficult to reproduce in field 

measurements.  The constants defining these relationships are seen to vary from one 

installation to another as the ability to reproduce exact beam quality and exposure 

conditions vary 6,7.  This is a particular problem with Fuji CR systems as the procedure for 

calibration recommends an unfiltered 80 kVp beam.  Under these circumstances the range 

of half value layers (HVLs) encountered in clinical practice is typically 2.5-4.0 mm Al and 

pixel values are most sensitive to variations in beam quality in this range of HVLs 1. 

 The exposure conditions suitable for testing AEC function should include 

attenuating material which mimics the attenuation and scatter properties of a real patient.   

Phantoms containing tap water, slabs of PMMA or blocks of solid water are commonly 

used.  The constants in the equations relating DDI to exposure will need to be redefined 

depending on the type of attenuating material chosen 6,7. This fact coupled with a DDI 

dependence on the inherent X-ray beam quality warrants caution if attempting to define 

target DDI values for AEC calibration across multiple X-ray installations.   

 
4.7.5 IP DDI and readout time variations 

DDI values are affected by the length of the time delay between exposure and readout.  

The slope of this decay is temperature dependent but also varies with IP generation and 

manufacturer.  A consistent delay time should be used to increase the precision of DDI 

values.  A variation of 2% in DDI values from IPs of the same type having received a 
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similar exposure may be expected.  This error may be halved if using the same IP for DDI 

measurements. 

 

4.7.6 Method of DDI calculation and field size dependence 

As mentioned previously, DDI values are calculated from analysis of the image histograms 

taken over a specific region of interest and each manufacturer defines their DDI relating to 

the mean or median exposure determined from these histograms.  The appropriate region 

of interest is calculated using sophisticated algorithms that help define the clinically 

relevant data. These algorithms discard unexposed regions outside the area of collimation 

and also areas which are directly exposed to the primary beam, outside the patient 

anatomy.   The irradiated field size and relative fraction of the total image area which these 

‘discarded’ regions make up affect the algorithm identifying the clinically relevant data 

and thus have a direct effect on the calculated DDI value.   

 Increasing field size also has the effect of increasing scatter towards the centre of 

the image causing it to be non-uniform.  This non-uniformity is accentuated using 

increasing attenuation and higher tube potentials as used in testing AEC function, creating 

large differences between the mean and central exposures.  When testing AEC systems 

with film, the optical density is usually sampled only at a reference point in the centre of 

the exposed area.  Thus DDIs computed using the mean or median exposure to the image 

receptor introduce an additional energy dependence when compared to screen-film 

systems.   For this reason a DDI based on exposure within a predefined area may be more 

indicative of AEC performance 8.  

 Kodak recommends selecting a region of interest over the central AEC chamber, 

whereby the window and level settings are adjusted to obtain target ‘code values’, as a 
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method to test AEC function with their CR systems 9.  AEC tests using Fuji CR systems 

may be performed on ‘semi-automatic’ mode. In this mode the S number is determined by 

analyzing the image histogram for a predetermined rectangular shaped subregion located at 

the centre of the IP. Similarly, AEC testing with Agfa CR may be calculated from a region 

of interest drawn in the centre of the image to produce a scan average level (SAL) value, 

from which the lgM may then be calculated.   
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5     Contrast-to-noise Ratio Model 

 

5.1 Introduction 

Digital radiography (DR) imaging systems have a large dynamic range and high detective 

quantum efficiency.  These factors, coupled with the ability to process the image, remove 

some of the constraints on the exposure needed to produce an acceptable diagnostic image 

with screen-film techniques.  The chest is one of the more difficult regions of the body to 

image with radiography because of the need to portray structures in tissues with both high 

and low attenuations.  The limited dynamic range of conventional screen-film systems has 

lead to the development of techniques designed primarily to provide acceptable image 

contrast in areas with differing attenuation on the same film.  The accepted exposure 

conditions for chest radiography with screen-film techniques may not necessarily be 

optimal for the more flexible digital systems.   

 The most important factor affecting imaging performance for the range of tissue 

attenuations in different parts of a chest radiograph is the spectral quality of the X-ray 

beam, determined primarily by the tube potential and the beam filtration.  adiographic 

contrast relates to the choice of optimum quality for the X-ray beam and is crucial in 

determining whether the image signals created by key anatomical features relevant for 

diagnosis, are perceptible against the background of the surrounding tissue.  Since spectral 

sensitivities of digital detectors are different from those of conventional rare-earth screen-

film systems the spectral quality of the X-ray beam that will produce the best image with a 

digital detector is likely to be different for screen-film.  The perceptibility of details within 

the image is degraded by noise, predominantly caused by statistical fluctuations of X-ray 
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photons and a measurement of the contrast-to-noise ratio (CNR) provides a useful indicator 

of gross imaging performance.   

 Image metrics such as modulation transfer function (MTF) and detective quantum 

efficiency (DQE) are important for characterising the intrinsic performance of digital 

detectors.  However, in optimisation of clinical imaging performance the choices of tube 

potential, filter options and scatter reduction techniques to provide the best image contrast 

with the lowest dose are of prime importance.  Although the CNR does not give 

information on the perceptibility of details of differing size, it does provide data on how 

well objects of different attenuation can be imaged and this relative performance should 

show similar trends for objects of all sizes. 

 Measurement of the CNR has been used in investigations into optimisation of 

exposure parameters for digital radiography of the chest 1-4. In the present study, 

theoretical assessments of CNR using computer simulations have been compared with 

results of practical studies on a phantom to assess whether they can provide a useful 

adjunct in optimisation.  The theoretical evaluation has been used to predict and compare 

imaging performance for a range of tube potentials with added copper filtration applied to 

techniques used in clinical practice.  The potential role of computer simulation 

methodology in determining the optimum factors for clinical imaging with various digital 

X-ray systems is discussed in Chapter 6. 

 

5.2 Method 

A Siemens Aristos VX IDR vertical bucky system, designed for erect chest and skeletal 

examinations, was employed for the study. The X-ray tube (Opti 150/30/50HC, Siemens) 
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had filtration equivalent to 2.5 mm of aluminium, with the facility to include additional 

copper filters.  The digital detector is a Trixell Pixium 4600, which has a caesium iodide 

(CsI) scintillator coupled to a photodiode thin film transistor array.  The detector area is 43 

x 43 cm2 with a 3120 x 3120 pixel matrix and a pixel pitch of 143 µm.  IDR images were 

obtained of a geometric chest phantom (07-646, Nuclear Associates, USA), which has 

been designed for monitoring the performance and assessing image quality of digital 

radiography systems, figure 5:1.  It has a response for imaging systems which is similar to 

that of a normal PA chest radiograph in terms of attenuation and scattering properties 5,6, 

although the dynamic range of transmitted radiation is narrower than that found in clinical 

chest images 7.  The phantom provides a useful tool for comparing imaging performance in 

regions of differing attenuation and testing theoretical assessment of image quality, 

although the limitations in representing a clinical chest radiograph must be borne in mind.  

The phantom is constructed from sheets of copper and aluminium cut into shapes that 

resemble a chest radiograph.  These are sandwiched between two sheets of acrylic to 

provide additional attenuation and scatter.  The background attenuation in these parts of the 

phantom is represented by 50.8 mm of acrylic, 2.0 mm of aluminium with 0.5 mm of 

copper.  Additional thicknesses of copper equal to 0.5 and 1.5 mm have been added to 

simulate attenuation in the heart, and subdiaphragm or abdomen regions respectively.  This 

allows image quality characteristics to be studied for attenuations equivalent to different 

parts of the thorax and abdomen within one phantom.  Copper disks of varying thickness 

and size are positioned in the lung, heart and abdomen regions of the phantom to evaluate 

contrast detail.  The disk thicknesses ranged from 0.006 to 0.076 mm in the lung, from 

0.013 to 0.127 mm in the heart, and from 0.051 to 0.406 mm in the abdomen region.  Disk 

diameters ranged from 0.5 to 6 mm.  A radiograph of the chest phantom is shown in figure 

5:1. 
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Figure 5:1  A Radiograph of Nuclear Associates Chest Phantom (model 07-646) 

 

 Radiographs of the phantom were acquired using three radiographic techniques 

employed in clinical practice in the West of Scotland.  The first technique used a grid (80 

cm-2, ratio = 15) with a 1.8 m source to image distance (SID), the second involved using 

the same SID but without the grid, and the third technique used a 150 mm air gap and a 

SID of 3.6 m.  Sets of 32 images were acquired for each of the three techniques.  Each set 

contained images recorded with eight kilovoltages ranging from 60 to 133 kV with the 

beam filtered either by 2.5 mm of aluminium alone or by 2.5 mm of aluminium with 

additional 0.1 mm, 0.2 mm or 0.3 mm of copper.  For each technique the exposure factors 

were chosen to give a similar dose behind the lung with two lateral ionisation chambers 

selected in the automatic exposure control (AEC).  The AECs were set up to comply with 

the Siemens image quality assurance program (IQAP), for a sensitivity class of 560 

(receptor dose of 1.8 µGy ± 20% using 2.1 mm Cu).  All images were processed using 
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settings adopted in routine clinical practice for chest radiography.  The images were 

compressed using JPEG lossless compression, stored in the DICOM 3.0 format and 

transferred to a research workstation via compact disk, as there was not an integrated 

picture archive and communication system in the hospital.  Osiris freeware software was 

used for image analysis (Dr. Jean-Paul Vallee, University Hospital of Geneva, 

Switzerland). 

 Contrast detail observations were performed on a dedicated two mega pixel high 

luminance (> 400 cdm-2) display monitor, calibrated to DICOM Standard PS 3-14 8.  Three 

medical physicists viewed image sets acquired for each technique with the beam filtered by 

2.5 mm of aluminium alone, and by 2.5 mm of aluminium with additional 0.2 mm, on 

three separate occasions, making a total of 432 image scores.  Ambient lighting was kept to 

a minimum and the viewing distance was about 1 m.  The contrast provided by disks in 

different parts of the image was calculated for the different X-ray beam qualities 9 

employed.  Contrast detail plots are normally used for images acquired using similar beam 

qualities.  The variation of contrast with tube potential makes a simple plot of threshold 

contrast versus detail diameter difficult to interpret, and so plots of the number of details 

seen against detail diameter were made for each tube potential.  The total number of details 

observed in the lung, heart and abdomen regions were also recorded for each image.   

 Values for the CNR were computed for all five of the 6 mm diameter disks for the 

lung, heart and abdomen regions of each image.  Regions of interest (ROIs) containing 

approximately 800 pixels were drawn to compute the mean and standard deviation of pixel 

values.  One ROI was positioned at each disk location (D) and five ROIs surrounding each 

disk (B).  The contrast signal at each disk site was defined as the difference between the 

mean pixel value with the disk SD and the mean of the mean pixel values in the five ROIs 

surrounding that disk site BS , (SD – BS ).  Image noise was defined as the mean of the 
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standard deviations for the background ROIs, Bσ .  The CNR was computed from the ratio 

of the measured signal and the noise. 

 Before CNR measurements were performed two corrections were made on the 

image data. Firstly, the pixel values were linearised by applying the inverse signal transfer 

function (STF).  The STF was obtained from a series of five open field exposures covering 

an exposure range of approximately 2 - 40 µGy for each kilovoltage setting.  Secondly, a 

correction was made to reverse changes made to image pixel data as a result of image 

processing as applied in routine clinical practice, such as look up table selection, 

amplification adjustment and spatial frequency gain settings.  The second correction was 

necessary to evaluate the overall performance of the IDR system using both raw image 

data and with the normal image processing applied to clinical chest radiographs.  A simple 

phantom was designed to enable this correction to be made.  The phantom was designed so 

that the histogram of pixel values would mimic that of a PA chest examination and allow 

the IDR system to process the phantom as if it were a standard adult chest.  The phantom 

consisted of a grid of 24 copper filters of thicknesses ranging from 0.007 mm to 0.5 mm on 

a base comprising 50 mm thick PMMA and a 2 mm thickness of aluminium.  Relative 

fluences were calculated from attenuation data for the X-ray spectra used for the imaging 

process.  These data were used to derive the relationships between the pixel values in the 

clinical chest processed images and the raw pixel values for each X-ray spectrum 

employed.  The relationship between the CNR in the chest processed image and that for the 

raw image data was then calculated. 

 The dose-area product was recorded for each exposure.  For image acquisitions 

with no additional copper filtration a value for the effective dose for an equivalent chest 

PA radiograph was calculated from the dose-area product using effective dose conversion 

coefficient data (mSv / Gy cm2) 10.  A logarithmic curve fit was applied (r2 = 0.99) to 
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provide coefficients at kilovoltages (kVs) not supplied.  PCXMC Monte Carlo software 

was used to calculate the effective dose in cases where additional copper filtration was 

used (Radiation and Nuclear Safety Authority, Finland).  The effective dose was used in 

calculations of a figure of merit equal to the CNR2 divided by the effective dose3. 

 

5.3 Theoretical Model 

The theoretical model was developed in order to study the relationships between the CNR 

and beam quality in different parts of a chest image.  If the model could predict the 

relationships between CNR and beam quality for the chest phantom, then it might provide 

useful information about how the CNR might vary with tissue thickness and allow imaging 

performance in different parts of a chest image to be predicted based on tissue attenuation 

data.  It was hoped that use of a relatively simple model would enable variations due to 

factors such as image processing and automatic exposure control (AEC) setting to be 

identified so that appropriate adjustments could be made.  

 Photon fluences were calculated from data on X-ray photon spectra generated at 

different tube potentials for a constant potential unit with a tungsten rhenium anode having 

a 16o target angle and filtered by 2.5 mm of aluminium 11.  Photon spectra equating to the 

photon fluence incident on a surface at 1.0 m from the focus were adjusted by means of the 

inverse square law to derive the number of photons incident on individual pixels at the 

image receptor.  The fluences were adjusted for attenuation in filters and phantom 

materials using tabulated data on mass attenuation coefficients 12.  The fluence of X-ray 

photons of energy E transmitted through the phantom, and incident on the image receptor 

ψr(E) was represented by: 
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where ψi(E) is the photon fluence incident on the phantom, and µt(E), ρt and dt are 

attenuation coefficient, density and thickness respectively for each layer of phantom 

material t through which the X-ray beam has passed.  All calculations were performed for 

individual photon energies in 1 keV intervals covering the relevant energy spectrum.   

 The air kerma Kair incident on the image receptor and the AEC through the lung 

field of the chest radiograph for any X-ray spectrum was calculated for each tube voltage 

V from the equation: 
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where μen/ρ is the mass energy absorption coefficient for air.  In order to simulate the use 

of an AEC device behind the lung field for termination of each exposure, the values for the 

photon fluence were normalised to give similar values for the air kerma transmitted 

through the lung fields (KairV) at each tube potential V.  Relative mAs values at each kV 

were then adjusted to fit the form of the Siemens IQAP AEC correction curve.  The fitted 

air kerma curve was then scaled to simulate a radiographic speed of 560 i.e. a detector dose 

of ~ 1.8 µGy at 81kV. 

 The energy absorbed in the CsI scintillator of the IDR system A(E), from photons 

of energy (E) can be calculated from the equation: 

  )e-(E)(1ψ=A(E)
xx
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en dρ
ρ
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r     Equation 5:3 

where ψr(E) is the photon energy fluence incident upon the image receptor, and µen(E)/ρx, 

ρx and dx are the mass energy absorption coefficient, density and thickness respectively of 
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the X-ray image receptor phosphor.  The relative efficiencies of detection for the different 

photon spectra transmitted through various parts of the phantom or the body were derived 

by summing equation 5:3 over all photons within the spectrum and dividing the result by 

the total photon fluence. 

 The difference in radiographic contrast C(E) resulting from photons of energy E for 

a feature with linear attenuation coefficient µ2(E) in an object with attenuation µ1(E) was 

derived from the equation: 

  
Δμ(E)de1

I(E)
ΔI(E)

(E)I
(E)I(E)IC(E) (E)]dμ(E)μ[

1

21 21 ≈−==
−

= −−  Equation 5:4 

where I2(E) and I1(E) are the intensities transmitted through the feature and the 

surrounding area, and d is the thickness of the feature.  Equation 5:4 was summed over the 

relevant X-ray spectra in order to derive values for the image contrast.  For a given beam 

quality, the contrast signal ∆I can be expressed in terms of the corresponding difference in 

the mean number of X-ray photons detected by each image pixel ( NΔ ).  X-ray photons 

obey Poisson statistics, therefore the quantum noise, is proportional to the square root of 

the mean number of photons detected ( N ), and the CNR for an ideal image receptor with 

only quantum noise can be expressed as: 

  
NΔμd

N
NΔCNR ==      Equation 5:5 

where the number of photons (N) incident on an image receptor pixel of area (A) is given 

by: 
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CNR values were calculated from the photon transmissions through different parts of the 

chest convolved with the response of the CsI detector to determine values for N  and 

these substituted together with the detail attenuation (∆µ) and thickness (d) into equation 

(5).  The calculations were then used to study the variation of CNR with tube potential and 

thickness of copper filtration. 

 The air kerma incident on the surface of the phantom or the body (subscript I) at a 

particular tube voltage V,  KairVI is given by: 

  
∑
=

⋅⋅=
kVpE

0

en
iVIairVI ρ

μ
E(E)ψK      Equation 5:7 

Equation 5:7 was used in deriving an entrance surface dose (ESD) equating to that for a 

chest radiograph by multiplying by the back scatter factor (BSFV) for the corresponding 

tube potential and filtration for a chest radiograph 13.  A value for the effective dose (EDV) 

was derived from the ESD using conversion coefficients EDV/ESD (Cv) 10.  PCXMC 

Monte Carlo software was used to calculate EDV and ESD in cases where additional 

copper filtration was used (Radiation and Nuclear Safety Authority, Finland).   

  EDV = KairVI·BSFV·CV     Equation 5:8 

 
 System performance relating to both image quality and dose can be compared using 

a figure of merit (FOM), defined as the square of the CNR divided by a measure of dose. 

The FOM is independent of the number of photons or exposure level and so provides a 

useful quantity for comparing imaging performance for different X-ray beam qualities.  

For the purpose of this study, figures of merit FOMiV were derived with a range of tube 

potentials for details in different parts of the chest phantom image (i) by dividing the CNR2 

by the effective dose as defined in equation (9). 
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  FOMVI = CNRVI
2 / EDV     Equation 5:9 

 

 The calculations described so far only relate to the transmitted primary beam and 

do not contain any contribution from scattered radiation.  An indication of the effect of 

scatter was obtained by superimposing a uniform background of noise on the image, 

increasing the variance by a factor 1/√(1-SoV) where SoV is the scatter fraction for X-rays 

generated with a tube potential of V, taken for a 100 mm, 150 mm and 200 mm thickness 

of water 11, this being the closest approximation to the lung, heart and abdominal areas of 

the chest for which scatter fraction data were available. 

 Theoretical values for the CNRs including scatter (CNRVs) were derived from the 

formula: 

  CNRVs = CNRV √(1-SoV)     Equation 5:10 

 

 The impact of a 15/80 grid was represented by incorporating data for grid scatter 

factors (Sg) and the primary transmission (TpV), to give CNRigV: 

  CNRigV = CNR √ [TpV (1-SgV)]    Equation 5:11 

 

These equations were used to evaluate the variation in CNR and FOM with tube potential 

for the different areas of the chest phantom for comparison with practical measurements 

made on images.  The details in the phantom used in the calculations were made from 

copper with thicknesses of 0.076 mm, 0.127 mm and 0.406 mm in the lung, heart and 

abdomen regions respectively. 
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5.4 Results 

Results of the scoring of the number of details seen in images for the lung and abdomen 

regions of the phantom taken using the grid technique are shown in Figure 5:2.  The 

standard error in the number of details recorded from nine observations (three observers on 

three occasions) was 0.14.  The plots show the number of details seen in images recorded 

at various tube potentials for disks with areas ranging from 0.2 to 28 mm2.  Optimizing the 

window and level settings for each individual region of the phantom resulted in the same 

number of details recorded as images displayed with the default window and level display 

settings of 4095 and 2047 respectively.  For the lung, the number of details visible fell as 

tube potential was increased from 60 kV to 133 kV, whereas for the abdomen detail 

visibility tended to first increase with tube potential and then gradually decrease as tube 

potential was increased further.  The pattern is similar for all detail sizes, although the 

number of details seen are different. 

 Plots of the total number of details of all sizes seen by the observers in each test 

object against tube potential (Figure 5:3) demonstrate trends in detail perception with beam 

quality.  The plots relate to different techniques used, and show improvement in detail 

perceptibility with removal of scatter.  In all cases the images recorded with a grid showed 

the largest number of details.  Differences between use of a grid and an air gap to remove 

scatter were small for imaging details in the lung, but there was a more significant 

difference between the two techniques for the abdomen. 
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Figure 5:2  Detail visibility curves showing the number of details seen plotted against the detail 
diameter for a range of tube potentials using the grid technique for (a) the lung, and (b) abdomen 
regions.  Error bars indicate a 0.14 standard error from nine observations (three observers on three 
occasions). 
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Figure 5:3  Average umbers of details of all sizes detected in contrast detail test objects in the lung 
(solid line) and abdomen (dotted line) regions of the phantom plotted against tube potential for 
images recorded using the grid, no grid and air gap techniques using (a) 2.5mm filtration and (b) 
2.5mmAl filtration and 0.2mm Cu. 
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 The STF for the Trixell Pixium 4600 digital detector is shown in Figure 5:4.  There 

is a linear relationship between the pixel value and the incident exposure for a given beam 

quality.  However, there is some dependence of the STF on tube potential, with the system 

being most sensitive around 80 kV.  The variation is likely to be due partly to detector 

response and partly attenuation in layers between the phantom and image detector array.  

To account for this dependency linear fits were applied to data for each tube potential (r2 = 

1) and the image data were corrected using the resulting equations. 
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Figure 5:4  (a) Plots of air kerma incident on the image plate against pixel value for different tube 
potentials used in deriving the STF and (b) Pixel value against kV for an incident air kerma of 
2.5µGy 
 

A radiograph of the LUT phantom and resulting image pixel histogram are shown in figure 

5:5 (a).  A typical adult chest radiograph is shown in figure 5:5 (b) with associated pixel 

histogram.  
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(a) (b) 

  

  

Figure 5:5 (a) A Radiograph of the LUT phantom with associated image histogram and (b) A 
typical adult chest radiograph with image histogram.  The similar histogram shapes will ‘trick’ the 
IDR system into processing both images as thought they were PA chest examinations. 

 

 The relationship between pixel values for the chest processed image data and the 

raw image data is shown in Figure 5:6.  Again, curve fits were applied for each tube 

potential (r2 = 0.99) and the image data were corrected using the resulting equations. 
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Figure 5:6  Plot of raw pixel values against image processed pixel values obtained using clinical 
settings routinely used for chest radiography. 

 

Relationships between the CNR and tube potential in different parts of images of the chest 

phantom recorded using the grid and air gap techniques to reduce scatter are shown in 

Figure 5:7.   

 

 

 

 



   

117 

0

2

4

6

8

10

12

50 60 70 80 90 100 110 120 130 140

kV

C
N

R
Lung grid Lung  air gap

Heart grid Heart air gap

Abdomen grid Abdomen air gap

 

Figure 5:7  Plots of the measured values of CNR against tube potential, for the lung, heart and 
abdomen regions of the phantom, using a grid and an air gap technique to reduce scatter.  Error 
bars indicate where the error in the value is greater than the size of the data symbol. 
 

 CNR fractional errors were calculated from the partial derivatives of the function 

defining the CNR.  In most cases the error in the value was less than the size of the data 

symbol.  The CNR was highest in the lung region at low tube potentials (60-80kV) and 

gradually fell as the tube potential was increased.  The CNR for the heart followed a 

similar trend, but the values were lower and declined more slowly changing little at higher 

tube potentials.  The CNR in the high attenuation abdomen region gradually increased as 

the tube potential was raised, reaching a maximum at 90-110 kV and then fell as the tube 

potential was increased further.  Results for the two scatter reduction techniques followed a 

similar pattern with tube potential, but the average CNR values with the air gap were 20% 

lower in the lungs, 25% lower in the heart and 30% lower in the abdomen regions. 
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 The variations with tube potential for each region of the phantom mimicked trends 

seen in the contrast detail observations (Figure 5:3), although the overall performance in 

the contrast detail analysis for the lung region was poorer relative to the abdomen than 

might have been expected from the CNR measurements.   

 The trends in CNRs with tube potential calculated using the theoretical simulation 

(equation 5) for the transmitted primary radiation are shown in Figure 5:8. 
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Figure 5:8  Plots of CNR against tube potential, calculated from the model simulation for the 
transmitted primary beam for different regions of the phantom. 
 

 Practical measurements of CNR for imaging of the chest phantom with scatter and 

with a grid are compared with theoretical simulations, using equations 5:10 and 5:11 

respectively, in Figures 5:9.  The trends seen in the practical measurements and 

simulations for the lung and heart regions were similar, but measured CNRs for the 

abdomen declined more rapidly below 80 kV than the theoretical predictions.  Values for 

the FOM, which takes into account the effective dose to the patient as well as the image 
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quality (equation 5:9), were derived from the practical measurements and the theoretical 

simulations, and are plotted in Figure 5:10.  The trends in practical measurements and 

simulations are again in reasonable agreement, although the result for the abdomen fell 

more rapidly at lower tube potentials.  For imaging the lung, the FOM was highest at 60 

kV - 70 kV, and for the heart 70 kV – 90 kV.  The change in FOM for the abdomen 

followed a different pattern, peaking at 90 kV – 120 kV.  The FOM for lung imaging was 

slightly higher when no grid was used than for imaging with a grid, because the effective 

dose was lower, but the FOMs for imaging the heart and abdomen were higher with a grid. 
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Figure 5:9  Plots of measured values of CNR against tube potential with curves derived from the 
model, for different regions of the phantom (a) for primary and scatter, and (b) with grid to remove 
scatter.  Error bars indicate where the error in the value is greater than the size of the data symbol. 
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Figure 5:10  Plots of measured and calculated values of FOM against tube potential, for different 
regions of the phantom (a) for primary and scatter and (b) with grid to remove scatter.  Error bars 
indicate where the error in the value is greater than the size of the data symbol. 
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 The FOM from practical measurements recorded using the air gap and grid 

techniques to reduce scatter are compared in Figure 5:11. 
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Figure 5:11  Plots of measured values of FOM against tube potential, for different regions of the 
phantom with grid and air gap techniques to remove scatter.  Error bars indicate where the error in 
the value is greater than the size of the data symbol. 

 

 For the lung, the FOM for the air gap technique was higher, but for the abdomen, 

the FOM for the grid technique was higher. For the heart the FOM at 60-80 kV is higher 

when a grid is used, while at 80-130 kV the FOM with an air gap is higher.  Theoretical 

simulation of the air gap technique was considered beyond the capability of the simple 

model and only experimental measurements were employed for this comparison. 

 Similar measurements were made incorporating a 0.2 mm thick copper filter in the 

X-ray beam and CNRs and FOMs derived from practical measurements and theoretical 

simulations are compared in Figure 5:12. Again there is reasonable agreement between the 

two, apart from the data for the abdomen at lower tube potentials.  CNRs and FOMs from 
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practical measurements for X-ray beams with and without the additional copper are 

compared in Figure 5:13.  The 0.2 mm thick copper filter reduced the average CNR by 3% 

for the lung, while that for the heart and abdomen increased by 1% and 2% respectively.  

However, the lower entrance surface dose required to maintain the same level of exposure 

at the image receptor behind the lung for the lower tube potentials meant that the FOMs 

were significantly higher for images recorded with the copper filter.   
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Figure 5:12  Plots of measured values and curves calculated from the model for (a) the CNR and 
(b) the FOM against tube potential for X-ray beams with an added 0.2 mm of copper filtration, 
using the grid technique. Error bars indicate where the error in the value is greater than the size of 
the data symbol. 
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Figure 5:13  Plots of measured values for (a) the CNR and (b) the FOM against tube potential, 
comparing data with and without an additional 0.2 mm of copper filtration.  Error bars indicate 
where the error in the value is greater than the size of the data symbol. 
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5.5 Discussion 

Traditionally the limited dynamic range of conventional screen-film systems required the 

use of higher tube potential settings.  The Council of European Communities (CEC) 

Guidelines 14 give an example of good technique for postero-anterior (PA) radiographs of 

the chest as use of a 400 speed class wide latitude screen-film combination with 125 kV X-

rays, a 180 cm source-to-image distance (SID) and a grid.  A relatively high tube potential 

and a wide latitude (lower contrast) film are recommended in order to obtain good 

penetration through the higher attenuation regions and maintain the range of exposure 

levels through both the lung and the mediastinum within the dynamic range of the film.  

However, other studies suggest that higher contrast film provides a better level of image 

quality 15.  Digital radiography systems have redefined the conventional relationship 

between image receptor exposure and contrast through the broader dynamic range and the 

capacity for processing after image acquisition, which allows the contrast and brightness of 

an image to be optimised independently.  Thus parameters that are most appropriate for 

chest imaging need to be re-evaluated.  

 With hundreds of different X-ray examinations performed in a typical radiography 

department the scope for optimisation is vast.  Optimisation techniques must be simple to 

implement and practical.  Optimisation in diagnostic radiology is generally regarded as 

finding the lowest dose to the patient that does not jeopardise a correct diagnosis.  

However, describing the image quality needed for ‘correct diagnosis’ is not 

straightforward.  Image quality parameters such as MTF and DQE enable the performance 

of the image receptor to be characterized, such measurements are essential for equipment 

evaluation, but are beyond the scope of most radiography / medical physics departments.  

Optimisation of technique in a radiology department usually comprises choices of tube 

potential, filtration and method of scatter removal and there is a need to find a metric 
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which can be applied to clinical imaging tasks to compare and evaluate different options.  

Contrast-to-noise ratio has been examined as such a metric in this study. 

 Scoring of the visibility for details in regions of the chest phantom with differing 

attenuation showed that more details could be seen in the lung images taken with lower 

tube potentials, while for those of the abdomen more details were visible when tube 

potentials of 90-110 kV were used (Figure 5:2 and 5:3).  The significance of contrast detail 

relationships at different tube potentials is more difficult to translate into performance 

indicators directly, since the contrast depends on X-ray beam quality.  However, they do 

allow some comparisons to be made. Summing of the number of details visible gives an 

indication of gross imaging performance.  Figure 5:3 shows the improvement in imaging 

performance achieved through use of a grid.  It also demonstrates that the air gap technique 

is effective in improving image quality for the lung, but less so for the abdomen from 

which there is a higher level of scatter.  

 Contrast is the most important factor influencing choice of tube potential for 

imaging tissues with different attenuations.  The contrast-to-noise ratio determined for 

objects containing several hundred pixels has the potential to provide a useful parameter 

for comparing imaging performance for X-ray beams with different beam qualities.  The 

relationship between the CNR measurements and tube potential (Figure 5:7), in general 

reflects the variation in the number of details detected (Figure 5:3), and shows a larger 

percentage difference between the results with the grid and air gap techniques for the 

abdomen than for the lung.  The main difference between the CNR and the overall detail 

detection results is that when results for the lung are compared with those for the abdomen, 

the number of details detected is lower than would have been expected from the CNR 

results.  This may be due to the poorer response of the human visual system to contrast 

changes in the darker (lung) region of the phantom, as predicted by the Barten model 16. 



   

128 

 The results in this study show that the CNR and detail detection are higher in the 

lung and heart regions at lower tube potentials, while those in the abdomen are higher for 

tube potentials of 90-110 kV (Figures 5:3 and 5:9).  Thus the optimum tube potential 

depends on whether relatively high CNR values are required in the lung, and what level of 

image quality is needed in the heart or abdomen regions to make a clinical diagnosis.  In a 

real chest radiograph, the exposure level behind the lung is significantly greater than for 

the other regions and the limiting factor for the CNR is anatomical noise rather than 

quantum noise 17, so the heart and abdomen regions are more important for determining the 

optimum potential. 

 The FOM provides a comparison of imaging performance with different beam 

qualities that takes dose into account and for this study the effective dose, which is linked 

more closely to risk, was used (equation 5:9).  The FOM for the lung was highest at 60–70 

kV, while that for the heart was higher at 70-90 kV and that for the abdomen at 90-120 kV 

(Figure 5:10).  With regard to techniques for scatter reduction, FOMs are highest for 

imaging of the lung at low tube potentials without a grid (Figure 5:10), but the FOM for 

imaging of more attenuating tissues is poor, unless a technique for scatter removal is 

employed.  The FOM results for lung imaging are higher for the air gap technique, 

although the grid technique is better for imaging the abdomen (Figure 5:11).  Values for 

the FOM are significantly higher for beams with copper filtration, because of the lower 

effective dose (Figure 5:13).   

 Thus the choice of the optimum technique and exposure paramters may vary with 

the criteria to be fulfilled for a given diagnostic task.  The use of copper filtration has 

minimal effect on image quality and since it reduces the dose significantly it provides an 

advantage.  The disadvantage is that a higher tube current will be required to compensate 

for attenuation in the filter and for this reason a 0.2 mm thick Cu filter may provide a 

compromise.  With regard to the technique for scatter removal, since the dose for the air 
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gap technique is lower than that with a grid, this is the better one to use for imaging lung 

tissue.  However, since the imaging performance appears less satisfactory for the heart and 

abdomen regions, it may be appropriate to base selection of the technique on the clinical 

requirements, with the air gap being used as routine, and a grid technique where detail in 

the mediastinum is crucial.  The best compromise for tube potential to image the chest 

phantom would appear to be 90-110 kV, although for cases where only imaging of the lung 

was important, tube potentials of 70 kVp or even lower might provide the best contrast.  

However, it must be borne in mind that the attenuation and background noise properties of 

materials making up the phantom are different from those of tissue 7,17 and this will 

influence imaging performance for different beam qualities. 

 Studies of the use of digital systems for chest imaging have drawn different 

conclusions about the optimum tube potential.  Practical measurements on computed 

radiography (CR) systems have shown that the signal to noise ratio (SNR) for lung and 

heart imaging was highest at 60 kV – 80 kV 1 and that the image quality, with regard to 

detecting lung abnormalities in phantoms and human volunteers, was superior in images 

recorded using 80-110 kV than with higher tube potentials 18,19.  A study  of the SNR for a 

selenium based DDR system (Thoravision), concluded that when effective dose was taken 

into account, the optimum tube potential was between 90 and 110 kV 2.  However, a recent 

study of a CsI IDR detector systems concluded that 120 – 130 kV, with a 0.2 mm copper 

filter was the optimum imaging condition 3, although the FOM for the lung from this study 

was higher between 95 kV and 110 kV.  A theoretical study of CNR and FOM for a CsI 

IDR system also concluded that 120 kV and 0.2 mm of copper was optimum, although the 

entrance surface dose was used in calculations of the FOM rather than effective dose 20.  

The assessment carried out in this study on a phantom that mimics the range of 

attenuations in a chest radiograph gives broadly similar conclusions to the majority of 

other studies on optimisation of chest radiography.  Results indicate that tube potentials of 
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90 kV – 110 kV should be optimum with an additional 0.2 mm of copper filtration 

providing an additional dose advantage.  As far as the technique for scatter reduction is 

concerned, a study of screen-film radiography showed little difference in image quality 

between use of the grid and air gap technique 21, so the dose advantage of the air gap 

technique meant that this was preferred, in agreement with the present results. 

 This study has indicated that the CNR could provide a useful method for evaluating 

the potential image contrast obtainable from different X-ray beam spectra.  Digital imaging 

systems provide the potential for increasing perceived image contrast locally by using 

different gradients depending on the area being examined e.g. lung or abdomen.  Use of the 

CNR for assessing images is not limited by the range of contrast that can be displayed in a 

single image, but allows the potential contrast achievable to be separated from perception 

of the displayed image.  The application of signal to noise ratios (SNRs), CNRs and FOMs 

for optimisation of techniques has been applied to experimental measurements of 

phantoms simulating chest imaging conditions 1-4.  If realistic values of the CNR can be 

calculated from data on X-ray spectra and object attenuations, calculations can be used to 

predict the CNR and its variation with beam quality. SNRs derived by Monte Carlo 

simulation for an anatomical phantom have been applied in assessing optimisation of tube 

potential and grid characteristics for imaging lung tissue with screen-film systems 22, 

although not for specific clinical equipment.  

 In the present study, a simpler theoretical approach using attenuation data has been 

applied to a particular imaging system.  The calculated values have been matched to the 

performance of the particular imaging system through application of the STF and the AEC 

response at different tube potentials.  Calculated results have been shown to be in 

reasonable agreement with experimental measurements (Figures 5:9, 5:10 and 5:12).  Use 

of the chest phantom, for which the composition is known, has allowed such comparisons 

to be made under several different imaging conditions, and this is seen as a prerequisite to 
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use of this approach for optimisation studies on new systems in order to ensure that results 

provide a realistic representation of system performance.  However, once these have been 

established, then potentially the method could be used to simulate the imaging of tissues 

within the body.  This should provide a method linked more closely to practical clinical 

imaging performance, and could overcome some of the drawbacks in use of phantoms with 

very different elemental compositions from tissue.  Such calculations could be useful in 

optimisation tasks when considering the choice of tube potential and filtration options for 

imaging patients of different sizes.  One other factor that must be considered, when 

applying the technique to optimisation of clinical imaging, is that the quantum noise level 

may not be the limiting noise factor for the CNR.  A study of detection of low contrast 

nodules in the lung indicated that for this task anatomic noise rather than quantum noise 

was the limiting factor 17.  Thus additional noise factors will need to be added for 

computation of CNR values for specific clinical imaging tasks. 

 

5.6 Conclusion 

A technique has been investigated that may be useful in optimisation of clinical 

radiographic imaging.  The CNR has been measured in different parts of a phantom 

simulating the chest and results have been shown to follow a similar pattern to contrast 

detail detection techniques.  Results suggest that tube potentials between 90 kV and 110 

kV are optimal for imaging the range of attenuations in the phantom.  Imaging of the more 

attenuating tissues of the heart and abdomen required a technique for removal of scattered 

radiation, although this was not necessarily required for lung imaging.  The FOM, which 

takes account of effective dose for a chest radiograph, was higher for the lung when an air 

gap technique was used to remove scatter, but that for the heart and abdomen was higher 

for the grid technique.  A simple theoretical simulation of the CNR and FOM has been 
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developed and adjusted to describe the performance of an IDR system by inputting data on 

the STF and AEC responses.  Theoretical predictions show good agreement with results 

measured from images of the phantom and so provide a validation of the calculation 

methodology.  It should be possible to apply the calculation technique to imaging of tissues 

in order to investigate optimisation of exposure parameters. 
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6      Application of CNR Model 

 

6.1 Introduction 

A model to simulate contrast-to-noise ratio (CNR) and figure of merit (FOM) from X-ray 

spectra data and calculations of absorbed energy was developed.  Details of this model are 

described in the previous chapter with application to digital chest radiography.  CNR 

values were simulated for a geometric chest phantom and adjusted to describe the 

performance of a particular indirect digital radiographic (IDR) system by inputting data on 

phosphor sensitivity, the signal transfer function (STF), the choice of scatter removal 

technique and the automatic exposure control (AEC) responses.   The simulated values 

showed good agreement with results measured from images of a phantom and so provide 

validation of the calculation methodology.  In the present study the model was used with a 

similar calculation methodology, to investigate optimising exposure factors using 

thicknesses of patient constituent materials such as muscle, soft tissue, fat and bone, 

measured from sections of adult computed tomography (CT) scans.  CNR and absorbed 

energy calculations for a range of digital radiographic image receptors commonly used in 

Radiology departments were investigated and practical suggestions regarding tube 

potential, filtration options and relative dose levels are made. 

 The CNR performance of grids and air gaps as methods of scatter reduction for 

digital radiography were also investigated.  Scatter is inevitably generated in a patient in 

any radiographic examination.  As a result image contrast is reduced and scatter acts as an 

additional noise source.  The popularity of grids in screen-film radiography is due to the 

effective contrast improvement resulting from the grids selective removal of more scatter 
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than primary radiation.  In conventional radiography the cost of the contrast improvement 

is a corresponding increase in patient exposure which is necessary to compensate for the 

reduced X-ray fluence reaching the screen-film and thus maintain a diagnostically 

acceptable optical density range.  Grid choice in conventional radiography was therefore a 

balance between the contrast improvement factor and the Bucky factor, which describes 

the necessary exposure increase.   

 With the wide dynamic range and variable gain of digital systems however, the 

image receptor exposure does not necessarily have to be increased to obtain an image of 

suitable diagnostic quality 1.  The perceptibility of image details in such a digital image is 

limited primarily by noise and the effect of scatter reduction methods should therefore be 

considered according to both the change in radiographic contrast and the noise level, 

promoting the CNR as a suitable quantity.  Considering quantum noise, the largest noise 

component, CNR values were computed for a range of frequently used grid types and two 

practical choices of air gap (15 cm and 20 cm).  A more comprehensive analysis of scatter 

reduction methods considering both quantum and system noise for a CsI IDR system was 

also performed.   Data were compared with the ideal grid and practical conclusions on the 

choice of scatter reduction method for digital systems are made. 

 

6.1.1 Background Theory 

The most important factor affecting radiographic contrast and thus imaging performance 

for the range of tissue attenuations found in standard fluoroscopic and radiographic 

examinations is the spectral quality of the X-ray beam, determined primarily by the tube 

potential and the beam filtration.  Imaging performance however, is also characterised by 

the energy response and sensitivity of the image receptor to the incident X-ray beam.  The 
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responses of phosphors used in a range of digital image receptors are explored in this 

chapter in terms of CNR and photon energy absorbed.  To define the context of this 

application and to highlight the importance of beam quality in imaging performance the 

basic attenuation and interaction processes and their relative contributions are first briefly 

reviewed. 

6.1.1.1 Photoelectric absorption & Compton scatter 

For an X-ray beam incident on an image receptor, there exists three alternatives for each 

photon: It can penetrate the material without interacting; it can interact with the material 

and be completely absorbed depositing all its energy; or finally, it can interact and be 

scattered from its original direction possibly depositing part of its energy 2.  In the 

formation of a radiological image emphasis must be made on the different mechanisms 

responsible for the transfer of energy to the image receptor and the production of scattered 

radiation.  The most important of these mechanisms are photoelectric absorption and 

Compton scattering as they result in the transfer of energy to electrons which then impart 

that energy to the image receptor 3. 

 The probability of a particular photon interaction process occurring is usually 

expressed in terms of the atomic cross section, σ.   In the energy region ≤ 100keV the 

photoelectric effect becomes most important and the following relation is approximately 

valid. 

  3

4  
E
Z

pe ∝σ         Equation 6:1 

where σpe is the interaction cross section per atom for the photoelectric effect, Z is the 

atomic number and E is the energy of the incident X-rays.  The probability of photoelectric 
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absorption increases rapidly with the atomic number so it produces good contrast between 

tissues with different elemental compositions.   

 The atomic cross section for Compton scattering, σce may be described by the 

following expression 2. 

  
A

ce
ce N

A . 
ρ
μ

σ =        Equation 6:2 

where, µce is the linear attenuation coefficient, A the relative atomic weight (grams/mole), 

and NA Avogadro’s number (atoms/mole).  Unlike photoelectric interactions where the 

photon is totally absorbed, Compton scattering is an inelastic process in which the X-ray 

photon losses some of its energy and is deflected from its original path, creating a 

background of random events or noise that degrades the image.  Rearranging equation 6:2, 

the mass attenuation coefficient for Compton scattering can be expressed in terms of NA/A 

or the number of atoms per gram.  The probability of Compton scattering is therefore 

mostly independent of Z or tissue composition and dependent on tissue density, and the 

overall contribution to radiographic contrast is also relatively independent of photon 

energy, figure 6:1. 
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Figure 6:1 Attenuation coefficients for photoelectric absorption and Compton scattering in cortical 
bone and soft tissue, as a function of photon energy 4.  The mean photon energy range for 
diagnostic spectra typically used in medical imaging is highlighted in red. 

 

6.2 Methodology 

The responses of different image receptors with tube potential and filter options were 

investigated with the aid of a spreadsheet attenuation model (described in Chapters 5).  

Data sets consisting of X-ray spectra, mass attenuation coefficients and mass energy 

absorption coefficients in 1 keV intervals from 1 keV to 150 keV were used 2,4. 

 The energy absorbed in each image receptor A(E) was calculated for the 

appropriate range of energy intervals using equation 4.1.  Data for the phosphors used in 

the calculations are listed in table 6.1 5,6. 
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 Table 6:1  Data used in computing energy responses of image receptor phosphors 5,6 

Phosphor Thickness (µm) Density (g/cm3) 

Caesium Iodide (CsI) 500 4.51 
Selenium (Se) 500 4.25 
Gadolinium Oxysulphide (Gd2O2S) 200 7.34 
Barium Fluro-bromide-iodide (BaFBr85%I15%) 200 4.8 
Barium Fluro-bromide (BaFBr) 200 4.9 
Calcium Tungstate (CaWO4) 200 6.06 

 

 In order to assess the response of a phosphor to poly-energetic diagnostic X-ray 

beams (and compare X-rays of different radiation qualities), the absorption must be 

averaged over all the photons impinging on the image receptor and the sensitivity of each 

image receptor to diagnostic X-ray beams were calculated using equation 4:2. 

 Photon fluences were computed using equation 5.1 with data for X-ray spectra at 

different tube potentials, adjusting for attenuation through different filter materials and 

tissues and substituting tabulated mass attenuation coefficients 2,4.  Representative 

thicknesses of the various tissues within the different parts of the chest (lung region), 

abdomen and pelvis traversed by the X-ray beam were measured from sections of a 

‘reference’ adult whole body CT scan while also inspecting coloured photographs of the 

transverse regions corresponding to the CT slices.  The images were available as part of the 

Visual Human Project (National Library of Medicine, Bethesda, USA)7.  The data are 

given in table 6:2. 

  Table 6:2  Tissue types and thicknesses used in CNR computations. 

Thickness (cm) 
Material 

Lung Heart Abdomen Pelvis 
ADIPOSE 3 3 5 5 
BONE 1 1.5 1 4 
LUNG 4 1.5 0 0 
MUSCLE 5 12 10 6 
BREAST 1 0 0 0 
TISSUE 0.5 0.5 12 12 
AIR 14 8 1 1 
WATER 0.5 2.5 1 1 
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 Values for the entrance air kerma (EAK) were computed using equation 5:2.  The 

EAK was used to show how dose varies with tube potential for different filtration options 

and for different representative patient thicknesses and detector types. 

 CNR values were computed using equation 5.5.  The signal of interest is a large 

(i.e. not resolution limited) low contrast feature, so that the effect of the spatial resolution 

on the system can be neglected.  Pixel dimensions of 150 μm were employed in the 

estimates of N and contrast values were computed for a feature of 2 mm thick muscle as a 

simulated lesion, within a background of composite materials chosen from table 6:2 for a 

particular examination.  For chest radiography in which different tissues are portrayed in 

the same image, CNRs have been calculated based on similar levels of air kerma 

transmitted through the lung field in order to mimic exposures terminated by an automatic 

exposure control device.  For the abdomen and pelvis examinations air kerma level 

adjustments were made to give a similar system dose as if the AECs were situated behind 

the abdomen and pelvis respectively. 

 Image receptor performance relating to both image quality and patient dose can be 

compared using an image quality figure or figure of merit (FOM).  CNR is proportional to 

√N, whereas patient dose is proportional to the no. of photons N, so a FOM that is 

independent of N and relates solely to differences in radiation quality can be defined as the 

quotient of CNR2, divided by a measure of dose (equation 5:9), either the system dose or 

the effective dose where appropriate, were applied in the calculations.  PCXMC Monte 

Carlo software was used to calculate the effective dose for the range of tube potentials 

investigated for the chest, abdomen and pelvis examinations (Radiation and Nuclear Safety 

Authority, Finland).   

 The performance of grids and air gaps as methods of scatter reduction for digital 

radiography were investigated by computing values for a contrast-to-noise improvement 
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factor, CNRif.  The contrast to noise improvement factor is the ratio of the CNR obtained 

with a grid or airgap CNRsr to that obtained without the grid or airgap, CNRp&s, 

  
sp

sr
if CNR

CNR
CNR

&

=       Equation 6:3 

Considering the case of an ideal detector and only quantum noise the improvement which 

the grid or air gap brings to the CNR is equal to the product of the primary radiation 

transmission Tp and the square root of the Bucky factor, B 8, 

  BTCNR p
q
if ×=       Equation 6:4 

In the case of real digital radiographic systems there are other noise sources to consider, 

although all are smaller in magnitude.  In which case the total noise amplitude, Namp can be 

described by the addition of noise equivalent quanta arising from quantum noise only, 

NEQq and noise equivalent quanta arising from system noise, NEQs giving the total noise 

equivalent quanta, NEQt 9, 

  tsqamp NEQNEQNEQN =+=     Equation 6:5 

 The total CNR improvement factor including system noise T
ifCNR  can be expressed 

as 9 

  
0

0

/1
/1

qs

qsq
if

T
if NEQNEQB

NEQNEQ
CNRCNR

⋅+

+
×=    Equation 6:6 

 where NEQq0 is the total photon fluence of the primary and scattered radiation at 

the entrance of the grid or air gap after transmission through the patient. 

 Experimental data collected from the evaluation of CsI radiographic detectors 

(discussed in Chapter 3) were used to compute the ratio NEQs/NEQq.  DQE is often 

fundamentally expressed as the ratio of the square of the signal to noise ratio (SNRout)2 at 
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the output of an imaging system to that at the input (SNRin)2, where the signal is defined as 

the signal difference as a fraction of the number of available photons, N 2,10.  CNR is the 

preferred notation in this thesis (equation 5.5), therefore reserving signal to be defined as 

simply the mean pixel value in a region of interest of a digital image.  NEQt is the total 

noise equivalent quanta arising from quantum and system noise, this is equivalent to the 

number of X-ray quanta which actually interacts and transfers energy to the imaging 

system, (CNRout)2,  

  
( )
( ) ( )22

2

in

t

in

out

CNR
NEQ

CNR
CNR

DQE ==     Equation 6:7 

The value of NEQt was calculated for the CsI radiography systems using the average DQE 

results presented in figure 3.16 and the energy integrating value of (CNRin)2 at 81kVp from 

table 3.1. 

 When considering only photon quantum noise DQE is equivalent to the quantum 

detection efficiency, η (= 1- e-μ(E)d, where μ(E) is the linear attenuation coefficient and d is 

the thickness of the CsI phosphor) and only the number of photons attenuated are 

considered, not the transfer of energy to the detector.  By substituting  η for DQE and 

NEQq0  for NEQt into equation 6:7 and using the photon counting value of (CNRin)2 at 

81kVp from table 3.1, the value of NEQq0 was calculated.  NEQs was determined as the 

last unknown in equation 6:5 and the ratio NEQs/NEQq0 was thus obtained.   

 Air gaps are usually specified by the air gap distance alone.  The distance chosen 

must be great enough to provide an improvement in image quality while remaining within 

the constraints of acceptable focal spot blurring and geometrical magnification.  The 

physical parameters primary transmission Tp, and selectivity Σ, were calculated for a 15 cm 

and a 20 cm air gap at a focus to image distance of 180 cm, using a geometrical 

computation method validated by Sorenson and Floch 11.  According to this model the 



   

143 

scattered radiation behaves as if it originated from a point source located at some distance, 

x from the exit side of object being imaged, towards the focal spot.  Sorenson and Floch 

found that for a wide range of experimental parameters (kVp, SID, object thickness, field 

size) the distance x lies consistently in the range 15 – 20 cm.  Using this model an effective 

scatter point source distance of x = 17.5 cm was chosen for this study. 

 

6.3 Results and Discussion 

6.3.1 Beam Quality 

6.3.1.1 Filtration 

X-ray beams used for medical imaging contain photons with a wide range of energies.  

Figure 6:2 shows typical patient incident X-ray spectra that may be expected to produce a 

400 speed equivalent pelvic radiograph with a digital X-ray system at a receptor dose of 3 

µGy.  Additional filtration with thicknesses of 0.1mm Cu, 0.2mm Cu and 0.2mm Cu and 

2mm Al are included for comparison.   
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Figure 6:2  Typical patient entrance X-ray spectra for a 400 speed equivalent pelvic radiograph.  
Additional filtrations of 0.1mm Cu, 0.2mm Cu and 0.2 mm Cu and 2mm Al, commonly used in 
medical practice are shown.  X-ray spectra data includes inherent filtration of 2.5mm Al. 

 

 The copper filters are seen to absorb a high proportion of low energy photons (20-

50keV).  The greater the proportion of photons absorbed however reduces the intensity of 

the transmitted X-ray beam, particularly at lower energies thus decreasing the skin dose to 

the patient significantly.  X-ray spectra transmitted through a typical patient pelvis (table 

6:2), which ultimately impinges on the image receptor to form the image, are shown in 

figure 6:3 (a).  Similar intensities of transmitted X-rays are required for beams with various 

filters to achieve a similar system dose level or detector air kerma (DAK).  However a 

small but noticeable increase exists in the relative number of photons incident on the 

detector as the beam filtration is increased.  The difference is greater for spectra 

transmitted through less penetrating areas, for example the lung, figure 6:3 (b).   
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(a) pelvis examination (b) chest examination 
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Figure 6:3  Typical X-ray spectra incident on the image receptor to produce a (a) a 400 speed 
equivalent pelvic radiograph and (b) a 400 speed equivalent chest radiograph.  Additional 
filtrations of 0.1mm Cu, 0.2mm Cu and 0.2mm Cu and 2mm Al, commonly used in medical 
practice are shown.  X-ray spectra data used include inherent filtration of 2.5mm Al. 

 

The relative increase in the mean energy for more heavily filtered X-ray beams and the 

increase in the number of photons available to interact with the image receptor ultimately 

affect the quality of the recorded image signal.  The small mean energy increase will result 

in a slight drop in image receptor sensitivity but this is outweighed by the increase in signal 

i.e. the number of photons contributing to the image, particularly when a photon counting 

quantum limited detector is modelled.  The signal improvement can be expressed as an 

increase in CNR as beam filtration is increased.  The rate of decline of CNR with tube 

potential for more heavily filtered beams is expected to increase, as phosphor sensitivity 

decreases with increasing mean energy and the relative noise increases with the square root 

of the number of photons.  This behaviour is conveyed in figure 6:4 where the figure of 

merit (for a constant DAK of 3 μGy with a CsI IDR system) is plotted against tube 

potential for a 2 mm thick muscle feature in a background of 200 mm water, to 

approximate a patient abdomen.  The increase in FOM with 0.1 mm, 0.2 mm and 0.3 mm 
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copper filters was 3.3% (maximum at 83 kVp), 6% (maximum at 81 kVp) and 7.7% 

(maximum at 79 kVp), respectively.  The corresponding relative increase in FOM with 

each additional 0.1 mm filter was thus 3.3%, 2.7% and 1.7% (and expected to fall to 0.3% 

as the trend continues with 0.4 mm copper added).  This is one of the reasons digital 

radiography systems used in general radiography do not offer more than 0.3 mm copper as 

available filter options.  The choice of filter thickness is also made considering the extra 

tube loading required to reach the system dose level.  The tube output would need to be 

increased by almost 50% at 80 kVp to provide the necessary DAK to compensate for a 

filter of 0.2 mm copper.  This has an impact on tube lifetime and cost benefit analysis of 

using additional copper filtration is considered further in Chapter 7. 
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Figure 6:4  Plots of FOM against kVp for various copper filters with a CsI digital radiography 
system, calculated using a 2 mm thick muscle feature in a background of 200 mm water to 
approximate a patient abdomen at a 3μGy DAK. 
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 Plotting FOM values against kVp with various phantom thicknesses eg. 5 to 40 cm 

water, and recording the tube potential corresponding to the maximum FOM for each 

phantom thickness, enables the complete regulation curves to be determined for digital 

radiography or flat panel fluoroscopy systems (similar to isowatt curves used in modern 

image intensifiers).  Kilovoltage-miliamperesecond-regulation curves were calculated for a 

CsI IDR system at a 3 μGy dose level, where the FOM for a 2 mm muscle feature was 

always at a maximum, figure 6:5.  The diagonal cross-wise running curves correspond to 

the kVp and mAs values necessary for a constant system dose using varying phantom 

thicknesses simulating patient attenuation with 0.0 mm (no dash), 0.1 mm (short dash) and 

0.2 mm (long dash) copper and 5 cm, 10 cm, 15 cm, 20cm, 25 cm, 30 cm and 40 cm water.  

The diagonal cross-wise running curves indicate practically how the exposure factors one 

must select to drive a digital X-ray system to achieve a constant image receptor dose when 

presented with various representative patient thicknesses (5 to 40 cm water) and with both 

standard spectra (2.5 mmAl) and spectra filtered with additional copper, which could be 

included in an optimisation programme.  

The X-ray spectra incident on a 2mm thick muscle detail included with each phantom 

thickness were filtered with 2.5 mm aluminium and additional thicknesses of 0 mm, 0.1 

mm, 0.2 mm, 0.3 mm and 0.9 mm copper filters to show what effect additional filters have 

on the FOM and thus image quality.  For example, the maximum FOM data read from 

figure 6:4 corresponds in figure 6:5 to the points (87, 9.64); (83, 12.56); (81, 15.62); and 

(79, 19.36) for CsI 0.0 mm, 0.1 mm, 0.2 mm and 0.3 mm copper respectively, with a 

phantom attenuation of 20 cm water and 0.0 mm copper.  The corresponding mAs values 

were computed from the CNR model discussed in the methodology and in chapter 5, for a 

specific X-ray tube for which spectra data were available 2.  Figure 6:5 demonstrates that 

maximum FOM and thus  image quality is achievable by selecting exposure factors which 

allow the mean photon energies of incident X-ray spectra (kVp’s) to match the energy 
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response of the detector and not simply by just choosing an mAs value, for particular 

patient thicknesses.  Better image quality was achieved at lower tube potentials as the 

amount of filtration was increased.  The relative drop in optimum kV with the addition of 

the copper filters had the effect of counteracting the drop in sensitivity caused by the beam 

hardening, as the range of photon energies in the incident spectra were optimised to match 

the energy response of the CsI detector.  Conversely, as the phantom thicknesses were 

increased the optimum kVp increased also as higher photon energies were required to 

maintain transmitted X-ray intensities and keep the system dose level constant.  A 

reduction in the tube potential of 10 kVp for example, was necessary to achieve the 

maximum FOM for X-ray beams filtered with 0.2 mm copper incident on a 20 – 30 cm 

thick water phantom.  However an increase in tube potential, is necessary to maximise the 

FOM when patient attenuator thickness is increased, the rate of increase depending on the 

radiation quality of the incident X-rays.  A 10 kVp increase was necessary for imaging a 

30 cm water phantom relative to one 20 cm thick but for the same phantoms the required 

increase falls to 8 kVp, 6 kVp and 5 kVp for beams filtered with 0.1 mm, 0.2 mm and 0.3 

mm copper, respectively. 
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Figure 6:5  Calculated kV-mAs-regulation curves for a CsI radiography system with a selection of 
copper filtration options, with which the FOM and thus image quality is always at a maximum.  
Cross wise diagonal curves represent exposure factors to achieve a constant system dose of 3 μGy 
for various patient attenuators. 

 

 An indication of how entrance air kerma for a PA chest examination is expected to 

vary with tube potential and filter options is shown in figure 6:6, using data from table 6:2.  

At 75 kVp a reduction of 50% in EAK with a corresponding ~40% reduction in effective 

dose can be achieved by using 0.2 mm copper.  The relative effective dose falls at a slower 

rate as lower energy photons make a larger contribution to the dose absorbed at the skin 

surface than that absorbed for deeper organs within the body.  In general the effective dose 

variation with tube potential will depend on the projection examined at the relative position 

of radio-sensitivity organs in the body. 
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Figure 6:6  Normalised entrance air kerma computations using different copper filter options for a 
PA chest examination terminated using an AEC device behind the lung.  X-ray spectra data used 
include inherent filtration of 2.5mm Al. 

 

6.3.1.2 Tube Potential 

The potential difference applied between the anode and cathode of an X-ray tube will limit 

the maximum photon energy available and determine the overall shape of the X-ray spectra 

used for imaging.  The optimum potential depends on the thickness of the body part being 

imaged, the level of radiographic contrast required for diagnosis and the energy response 

of the image receptor.  Consideration must also be given to the effect of tube potential on 

patient dose.  It was mentioned in the previous section that a copper filter of 0.2 mm used 

in an AP chest examination can achieve a reduction in effective dose by as much as 40%.  

However similar reductions are possible by increasing the tube potential alone, for 

example a reduction of 50% in effective dose is possible simply by increasing the tube 

potential from 70 to 90 kVp, figure 6:6.  This also has the advantage of increasing the X-
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ray intensity transmitted through the mediastinum but with a trade-off of reduced contrast 

in the lung field.  In this case the optimum kVp will depend on the patient size and 

requirements necessary for diagnosis but the level of image quality attainable will also be a 

factor of the energy response and absolute sensitivity of the image receptor used.  Figure 

6:7 shows how the EAK declines with tube potential for imaging conditions adjusted to 

give a similar imaging response at each tube potential. 
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Figure 6:7  Normalised Entrance air kerma as a function of the tube potential with different 
phosphors, required to give a similar response for imaging a 20 cm thick piece of tissue.  Results 
are also shown for EAK required to obtain images for a CsI detector with different thicknesses of 
tissue, intended to approximate an abdominal section of the body with patients of various size. 

 

 Results are plotted for CR and IDR phosphors for imaging a 20 cm thick piece of 

tissue, intended to approximate a patient abdomen to show how differences in the energy 

response and absolute sensitivity translate into patient dose.  Results are also shown for 15 

cm, 25 cm and 30 cm thick sections for a CsI phosphor to demonstrate the changes in dose 
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required for imaging different patient sizes.  For example, in order to obtain the same 

image quality in radiographs of an abdomen corresponding to a medium to large patient 

(30 cm tissue) relative to that required of a small to medium patient (20 cm tissue) one 

would need to increase the EAK by a factor of ten at 70 kV.  However, increasing the tube 

potential by ten to 80 kVp requires only a more moderate increase of a factor of two in 

EAK for the same image receptor signal.  The optimum solution therefore would be a 

compromise between increasing tube potential to achieve acceptable patient dose levels 

while maintaining image contrast to enable clinical diagnosis to be made. 

 Figure 6:7 also demonstrates the increase in EAK needed to maintain a constant 

image signal with tube potential for gadolinium oxysulphide (Gd2O2S) and barium 

flurohalide (BaFBrI) image receptors.  The comparatively shallower slopes and the 

relatively greater exposures required to maintain image quality is a direct consequence of 

their energy response and absolute sensitivity, respectively.  Phosphor sensitivity and 

energy dependence are discussed in more detail in the following section. 

 
6.3.2 Phosphor Sensitivity 

6.3.2.1 Absorbed Energy 

An important feature of the photoelectric effect is the increase in the probability of an 

interaction when an incident photon has energy just above the energy required to free a 

bound electron from its particular atomic shell.  This is expressed as a sharp increase in the 

linear mass attenuation coefficients, referred to as absorption edges, figure 6:8.  Absorption 

edges associated with K shell electrons have important applications as contrast agents in 

radiology.  Consideration of mass attenuation coefficient values must be made when 

predicting image quality by simulation calculation such as computing CNR values, 

particularly when the subject for optimisation is a simulated feature or lesion.  Figure 6:8 
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demonstrates how iodine, aluminium and copper have significantly different coefficients 

and therefore care must be taken if these materials are used to mimic tissue for such 

simulations.  Metal or Iodine features are however useful in practical test objects where 

empirical data may be collected to help validate simulation models such as the method 

described in Chapter 5. 
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Figure 6:8  Mass attenuation coefficients of various materials, as a function of photon energy. 

 

The K absorption energies for constituent materials play an important role in characterising 

the response of image receptors with photon energy.  The position of the K-edges for 

digital radiography phosphors are shown in figure 6:9 corresponding to: 35.98 keV (Cs) 

and 33.2 keV (I) for CsI;  33.2 keV (I) and 37.4 keV (Ba) for BaFBrI and BaFBr;  50.2 
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keV (Gd) for Gd2O2S;  69.5 keV (W) for CaWO4;  and 12.5 keV for Se.  Absorption edges 

associated with other outer shell electrons are too low to be of any practical significance. 

 The variations in sensitivity of digital radiography phosphors with absorbed photon 

energy are shown in figure 6:10.   
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Figure 6:9  Mass energy absorption coefficients for phosphors used in digital radiography, 
computed using data listed in table 6:1. 
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Figure 6:10  Relative energy absorbed in digital radiography phosphors as a function of incident 
photon energy, computed using data listed in table 6:1. 

 

 Relative sensitivities of the same phosphors to X-ray beams corresponding to 

different tube potentials have been calculated and are portrayed in figure 6:11.  The X-ray 

spectra were corrected for transmission through 2.5 mm aluminium and 200 mm tissue to 

approximate standard patient attenuation. 
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Figure 6:11  Relative phosphor sensitivity as a function of tube potential, for phosphors commonly 
used in digital radiography, computed using phosphor data listed in table 6:1 and X-ray spectra 
transmitted through 2.5 mm Al and 200 mm tissue. 

 

 Caesium iodide image receptors are significantly more sensitive than the other 

systems available due to a combination of the relatively large mass attenuation coefficient 

and the ability to utilise the light guiding character of the CsI needle structure and 

incorporate a thick phosphor layer.  The percentage relative sensitivities of the image 

receptors averaged over the tube potential range 60 to 125 kVp are:  CsI - 97%;  Gd2O2S - 

63%;  Se - 55%,  BaFBrI - 45%;  BaFBr - 46%;  and CaWO4 - 42%. 

 Gadolinium oxysulphide screen-film systems have been successfully used in 

clinical practice for a relatively long time.  Doyle and Martin reported a mean image 

receptor dose of 2.8 µGy at ten hospitals using 400 speed index screen-film combinations 

12.  The sensitivity of indirect digital radiography (IDR) systems is similar to that for the 

screen-film equivalent.  Using the relative sensitivity values computed from figure 6:11, a 
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mean image receptor dose of 2.8 µGy for Gd2O2S suggests approximate dose levels of: 1.8 

µGy for CsI;  3.2 µGy for Se;  3.9 µGy for BaFBrI;  3.8 µGy for BaFBrI;  and 4.2 µGy for 

CaWO4. 

 CsI IDR systems provided by three manufacturers (Philips, Siemens & Cannon) 

have been successfully set up in hospitals in the West of Scotland and Northern Ireland 

with image receptor doses of 1.8±0.2 µGy.  However larger variations exist for barium 

flurohalides, the phosphor most widely used in computed radiography (CR).  Comparison 

of the imaging performance of the CR phosphor with Gd2O2S, used in screen-film systems 

suggests an increase in radiation exposure of 30% to 40% to compensate for the lower 

sensitivity, figure 6:11.  However, this is offset by sophisticated image processing 

techniques, noise reduction algorithms and the better contrast and dynamic range of digital 

systems, which in the majority of cases allows satisfactory imaging with a CR system 

employing a similar dose level to that of screen-film systems at 80 kVp, typically 2.5-3 

µGy.  This approach had been adopted in the West of Scotland and Northern Ireland with 

satisfactory results for all but one manufacturer, where dose levels up to 4 µGy at 80kVp 

are required.  The higher dose level is needed to compensate for the relatively simpler 

noise reduction algorithms employed and imaging plate technology that has undergone 

relatively few generation improvements compared to other CR vendors on the market. 

 Apart from providing a comparison of the absolute sensitivity levels, figure 6:11 

also illustrates a marked difference in the sensitivity trend of the selected image receptors 

with tube potential.  The sensitivity of Gd2O2S increases with tube potential by 12% 

between 60 kVp and 100 kVp, whereas that of the CR phosphors decline by 19% over this 

range.  This change in energy response has important implications for calibrating 

automatic exposure controls (AECs) for use with digital image receptors.  Calibrating 

AECs for use with digital X-ray image receptors is discussed in detail in Chapter 4. 
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6.3.2.2 Contrast-to-noise Ratio 

There is a great need for a metric which can be calculated theoretically and empirically and 

can describe gross imaging performance without approaching the constraints implied by 

the resolution limitations of an imaging system.  For large low contrast details, described in 

Fourier space as having a low spatial frequency, the modulation transfer function of digital 

imaging systems approaches 100% and assessments of image quality based on such details 

should therefore be comparable among different digital systems.  CNR is the metric of 

choice in this study and is used to allow both a comparison of digital radiography systems 

utilising different phosphors and an examination of how each are affected by radiation 

quality.  Values of the CNR have been calculated for a chest examination with data listed 

in table 6:2 for the lung, heart and abdomen regions.  Different thicknesses of tissue feature 

were used in different parts of the image in order to view the relationships on the same 

scale.  Results are shown for a range of digital radiography phosphors and give an 

indication of how the visualisation of tissue structure varies in different parts of the chest 

image and how this changes with tube potential, figures 6:12, 6:13 and 6:14.  The chest 

examination was simulated under the conditions in which the air kerma behind the lung 

field remained constant, in order to mimic the termination of exposures with an AEC 

device. 
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Figure 6:12  Variation in contrast-to-noise ratio with tube potential for a 1 mm muscle feature in 
the lung region of a chest image, for an exposure terminated by an AEC device behind the lungs.  
Results are shown for a range of digital radiography systems.  Data listed in tables 6:1 and 6:2 were 
used in the calculations. 
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Figure 6:13  Variation in contrast-to-noise ratio with tube potential for a 3 mm muscle feature in 
the heart region of a chest image, for an exposure terminated by an AEC device behind the lungs.  
Results are shown for a range of digital radiography systems.  Data listed in tables 6:1 and 6:2 were 
used in the calculations. 
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Figure 6:14  Variation in contrast-to-noise ratio with tube potential 5 mm muscle feature in the 
abdominal region of a chest image, for an exposure terminated by an AEC device behind the lungs.  
Results are shown for a range of digital radiography systems.  Data listed in tables 6:1 and 6:2 were 
used in the calculations. 
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There are differences in imaging performance with different phosphors, resulting from the 

variation in energy response and sensitivity depicted in figure 6:10 and figure 6:11.  The 

CsI phosphor results follow a similar trend to those presented for a chest phantom in 

Chapter 5.  The CNR for the lung declines with tube potential for all of the phosphors 

studied except gadolinium oxysulphide, in which case it stays approximately constant 

between 50 and 90 kVp.  In practice the noise is not only due to quantum mottle but also 

has structural and anatomical components (Chapter 3).  For lung tissue, for which the 

number of photons in the image is higher, the anatomic noise may dominate13.  In the heart 

and abdominal areas of the chest greater contrast-to noise ratios are achieved at higher tube 

potentials, 80 – 110kVp for the heart, figure 6:13, and > 90 kVp for the abdominal area, 

figure 6:14.  Although for the selenium and CR phosphors there is a slight reduction in 

CNR values with increasing kVp in these areas.  In practice both high and low kVp 

techniques are used for chest radiography.  With CR 80-90 kV is generally used and this 

seems a good compromise in maintaining image quality over the entire image.  Higher kV 

techniques are favoured with IDR systems and in the West of Scotland and Northern 

Ireland 100 -110 kV preferred.  Tube potentials are often increased further still however as 

this is sometimes required to achieve the necessary transmission in the abdominal regions 

in populations of larger patients.   

 CNR values were also computed for abdomen and pelvis examinations where in 

each case simulations were made with the AEC device positioned behind the abdomen and 

pelvis respectively, as used in clinical practice.  The energy response and relative 

sensitivity of the different phosphors behaved similarly, although the CNR values fell with 

increasing tube potential at a greater rate.  Figure 6:15 shows the results for the pelvis 

examination.  The results are comparable to figure 6:13.  The relatively larger gradients 

seen in the CNR values for the pelvis are the result of beam hardening in examinations 

with greater tissue attenuation, in which case better sensitivity and thus image quality is 
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achieved toward lower tube potentials and X-ray spectra with lower mean energies, figure 

6:10.  Provided of course that the X-ray transmission is high enough to ensure the level of 

quantum noise and patient dose are acceptable. 

 A useful application of computing CNR values for different regions of the body is 

that the reciprocal will determine AEC device settings needed to maintain a constant CNR 

for a particular examination.  Figure 6.16 shows the reciprocal of the CNR result plotted in 

figure 6.12 and normalised to 80 kVp.  The dose required to adjust the AEC at a particular 

kVp is simply the square root of the CNR increase relative to 80 kV. 
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Figure 6:15  Variation in contrast-to-noise ratio with tube potential for a 5 mm muscle feature in 
the pelvic region, for an exposure terminated by an AEC device behind the pelvis.  Results are 
shown for a range of digital radiography systems.  Data listed in tables 6:1 and 6:2 were used in the 
calculations. 
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Figure 6:16  Variation in reciprocal CNR with kVp for a 1 mm muscle feature in the chest, for an 
exposure terminated by an AEC device behind the lung.  Results are shown for a range of digital 
radiography systems.  Data are the reciprocal of that shown in figure 6:12. 

 

 Similar to results computed for various copper filters in Section 6.3.1.1, calculating 

FOM values with various phantom thicknesses, enables regulation curves to be determined 

for different digital radiography systems.  KV-mAs-regulation curves were calculated for 

digital radiography image receptors at a 3 μGy system dose level, where the FOM for a 2 

mm muscle feature was always at a maximum, figure 6:17.  The diagonal cross-wise 

running curves correspond to phantom thicknesses of 0.0 mm, 0.1 mm and 0.2 mm copper 

with 5 cm, 10 cm, 15 cm, 20cm, 25 cm, 30 cm and 40 cm water.  The X-ray spectra 

incident on each phantom thickness was filtered with 2.5 mm aluminium.  The optimised 

exposure factors for the various phosphors are clearly very different.  Most surprising are 

the high tube potentials to achieve the maximum figures of merit with gadolinium 

oxysulphide phosphors.  Although the relatively high position of the k-edge in figure 6:10 
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and the variation in relative sensitivity in figure 6:12 explains the trend.  This behaviour 

may sometimes be masked in conventional radiography where intensifying screens and 

optical density values must also be considered.  However the increasing sensitivity and 

reduction in relative dose with increasing kVp is evident in figure 4.4, where a constant 

optical density is maintained. 
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Figure 6:17  Calculated kV-mAs-regulation curves for digital radiography phosphors, with which 
the FOM is always at a maximum. Cross wise diagonal curves represent exposure factors to 
achieve a constant system dose of 3 μGy for various patient attenuators. 

 

6.3.3 Scatter Reduction 

The results reported up to this point in the chapter relate to the transmitted primary beam 

and do not take into account scattered radiation reaching the image receptor.  They 

nevertheless allowed us to demonstrate basic relationships between radiation quality, 

image quality and dose that can be applied in optimisation of digital radiography systems.  
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The simulations also allowed us to examine the relative differences in energy response of 

phosphors.  In this section results are presented which consider scatter and the principal 

methods aimed at removing it, use of a grid and air gap.   

 Figure 6:16 demonstrates the effect of scatter and use of a 15/80 grid (grid ratio 

15:1 / strip density 80 lines/cm) on CNR values for simulated chest, abdomen and pelvis 

examinations with a CR system.  CNR values were computed using data listed in table 6:1 

and table 6:2 and equations 5:10 and 5:11.  Clinical scatter fraction data were available for 

the lung, abdomen and pelvis examinations at 120 kV, 60 kV and 80kV respectively2 and 

these were adjusted for other tube potentials using the scatter factor trends from 15 cm, 20 

cm and 25 cm water at a 35 cm x 40 cm field size to approximate each region. 
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Figure 6:18  Variation of contrast-to-noise ratio with tube potential for a BaFBrI CR phosphor.  X-
ray spectra were corrected for transmission through the chest, abdomen, and pelvis, table 6:2. 
Results are presented for primary transmission only, primary and scatter with no grid and primary 
and scatter with a 15/80 grid. 
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The improvement in image quality with a 15/80 grid is conveyed as an increase in CNR 

relative to the data presented which includes scatter with the primary, figure 6:18.  CNR 

values with a grid gradually reduce with increasing tube potential as the levels of scatter 

increase.  As briefly mentioned in the introduction to this chapter, the wide dynamic range 

and variable gain of digital systems mean that the image receptor exposure does not 

necessarily have to be increased to obtain an image of suitable diagnostic quality.  In 

conventional radiography increasing exposure levels were required to maintain appropriate 

optical densities but digital systems are noise limited and not contrast limited.  FOM values 

were calculated for different body parts at a constant system dose of 3μGy with a CR 

system.  Results show the improvement in image quality afforded by use of a 15/80 grid 

even with the increase in effective dose to the patient required to maintain a constant 

system dose.   

0.01

0.1

1

10

100

40 50 60 70 80 90 100 110 120 130

kVp

FO
M

 (C
NR

2 /E
ffe

ct
iv

e 
do

se
)

Chest Chest with grid
Abdomen Abdomen with grid
Pelvis Pelvis with grid

 

Figure 6:19  FOM as a function of kVp for imaging different body parts.  A constant system dose 
of 3μGy was maintained and the mAs values used to compute the effective dose for the grid data 
were increased by the grid Bucky factor. 
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The magnitude of improvement in image quality with a 15/80 grid was greater for areas of 

the body where there is a greater scatter to primary ratio, figure 6:19.  For chest 

examinations where image quality in the lung is considered paramount, using a 15/80 grid 

seems to have no measurable advantage.  However it must be bourn in mind that scatter 

fractions can vary strongly from point to point within an image.  In a typical chest 

radiograph scatter fractions of 0.5 in the lung field, 0.8 in the heart region and 0.9 in the 

abdominal area have been reported 14.  The decision on whether or not to use a grid 

therefore depends on the imaging requirements across the entire chest image.  Figure 6:19 

also indicates the improvements in image quality possible when imaging the abdomen and 

pelvis with a grid. 

 The improvement in image quality when applying scatter reduction methods with 

digital radiography systems can be quantified by computing the relative increase in CNR 

when implementing these methods.  This parameter is the contrast-to-noise ratio 

improvement factor, CNRif (defined by equation 6:3).  CNRif values were calculated for a 

range of grids common in general radiography and paediatrics using published grid data 2 

in equation 6:4, Table 6:3.  For comparison, results are also shown for a 15 cm and 20 cm 

air gap, figure 6:20.  The physical properties to describe the behaviour of the air gaps were 

calculated using the inverse square law for values of primary transmission, and the 

effective scatter point model 9 for values of selectivity. 

  Table 6:3 Grid data2 used to compute CNRif 

 Grid Air Gap 

 8/40 17/70 15/80 20 cm 15 cm 

Selectivity (Σ) 6.6 13.6 7.8 4.4 3.42 

Primary Transmission (Tp) 0.64 0.64 0.74 0.81 0.81 
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Figure 6:20  Contrast-to-noise ratio improvement factor as a function of scatter fraction for a range 
of popular scatter reduction methods in general and paediatric radiography. CNR values were 
computed assuming only quantum noise sources (quantum noise model). 

 

It is evident from figure 6:20 that using a grid or air gap actually reduces image quality 

where very low scatter fractions are involved (< 0.3).  The greater selectivity of grids 

compared to air gaps provides improved image quality when using grids in situations 

where the scatter fractions are relatively large (> 0.6).  The performance of the air gaps 

however are better for lower scatter fractions (0.3 - 0.6).  Similar results were found in the 

chest phantom study and are presented in Chapter 5, where the FOM values for lung 

imaging are higher for the air gap technique and the grid technique was better for imaging 

the abdomen, figure 5:11. 
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 The case of an ideal detector with quantum noise only is sufficient to model the 

relative performance of different grid types or air gaps of different thicknesses.  To 

examine the improvement in CNR for a particular digital system to make specific practical 

recommendations however, requires a more comprehensive noise model as the system 

noise for the detector in question and not just the number of quanta detected needs 

consideration 9.  The total CNRif values considering both quantum and system noise for a 

CsI digital radiography system were calculated using equation 6:6.  A value of 0.3 was 

computed for the ratio NEQs/NEQq0.  Results for a selection of grid types and practical air 

gap distances are shown in figure 6:21 for a CsI radiography system.   
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Figure 6:21  Contrast-to-noise ratio improvement factor as a function of scatter fraction for a range 
of popular scatter reduction methods in general and paediatric radiography.  CNR values were 
computed using both system and quantum noise sources (system noise model) for a CsI detector. 

 

Comparing the curves with figure 6:20 there is a reduction in CNRif when both system and 

quantum noise are considered.  The reduction is more pronounced for scatter reduction 
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methods with a higher Bucky factor i.e. the grids.  When incorporating a more complete 

noise model the performance of a 15 cm and 20 cm air gaps are superior to those of a 

selection of grid types frequently used in radiography.  Similar results were found in a 

theoretical assessment 9 of a digital system in a study by Neitzel although the data were not 

corrected for the drop in primary transmission through the extra air gap distance and as a 

result the air gap data presented were higher than those practically achievable (converging 

to one for a scatter factor of zero). 

 

6.3.4 Conclusions and Recommendations 

Predicting image quality by simulation calculation such as performed in this study can 

deepen our understanding of image acquisition and image quality parameters and 

ultimately improve radiologists’ performance for detection of lesions in medical images.  It 

can also save on time and resources in the implementation and optimisation of digital 

radiography systems in the clinical environment.  The features of interest optimised in this 

study consisted of thicknesses of several mm of muscle, as discussion with radiologists 

indicated such features are most comparable to a lesion, itself being an important and 

clinically relevant feature in general radiographic examinations of the chest, abdomen and 

pelvis.  However, the spreadsheet model and method outlined are easily adapted to suit 

other specific clinical examinations, such as use of a blood vessel filled with iodine 

contrast medium to optimise angiographic procedures or barium for examinations of the 

digestive tract. 

 The application and findings of the CNR model discussed in this chapter may be 

summarised into the following points to form a useful strategy to aid in optimising digital 

detectors for clinical use: 
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1. Obtain physical data on image receptor 

 Six phosphors commonly used in digital X-ray imaging systems were examined in 

this study, table 6:1.  Data on the phosphor thickness and deposition density have a 

large effect on calculations of absorbed energy and relative sensitivity, equations 4:1, 

4:2 and knowledge of the specific data for the particular system examined is a 

prerequisite in being able to model its behaviour.   

 When using physical data on image receptors to compare the relative dose 

efficiency or to assess the expected clinically operational dose levels, consideration 

also must be given to the ‘fill factor’ and the phosphor ‘packing factor’.  The fill factor 

is the fractional area of a digital radiographic detector which actually contains the 

sensitive element (photocathode or capacitor), the rest of the detector area contains the 

readout electronics.  Similarly the phosphor layers used in computed radiography (CR) 

imaging plates are not 100% phosphor but contain a plasticiser to bind the phosphor 

grains together.  The efficiency of CR phosphors are reduced by a phosphor ‘packing 

factor’, reflecting the reduction in the mass loading of the phosphor layer.  For the 

detectors examined in this study both factors approach 0.6 5, 15 and therefore do not 

affect the relative energy absorption values shown in figure 6:10.  However as 

technology progresses these values are likely to change and verification with the 

relevant manufacturer that the correct phosphor data is being used is therefore 

recommended 

 
2. Calculate the phosphor energy absorption, A(E) 

 The k-absorption edges of phosphors used in radiology vary significantly, figure 

6:9 and knowledge of the phosphor type and thickness enables the computation of the 
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amount of energy absorbed, figure 6:10 and thus allows an assessment of the relative 

sensitivity and energy response of an image receptor to clinically relevant X-ray 

spectra, figure 6:11.  The sensitivity and energy dependence of phosphors are critical in 

determining what the optimum exposure factors are likely to be. 

 
3. Compute CNR for clinically relevant feature 

 For the purpose of this study simulating general radiographic examinations of the 

chest, abdomen and pelvis, the clinically relevant features were 1 mm, 3 mm and 5 mm 

thick muscle.  Calculating CNR values for clinically relevant features enables an 

examination of gross imaging performance of changes in radiation quality and energy 

response without approaching the constraints implied by the resolution limitations of 

an imaging system.  The variation in CNR with tube potential for the lung region of a 

chest radiograph for example, is shown in figure 6:12.  The energy response and 

optimum tube potential differs significantly for each of the image receptors studied, 

particularly when the CNR is also used to examine other regions of the same image i.e. 

the heart, figure 6:13 and abdominal areas, figure 6:14 of the chest.  The CsI phosphor 

results show similar trends to those determined empirically with a chest phantom, 

presented in Chapter 5.  The CNR plots allow us to draw useful conclusions regarding 

the expected clinical operation of the various phosphors.  For example 80-90 kVp 

seems appropriate for CR whereas higher tube potentials of 100-110 kVp are indicated 

for the CsI IDR system.  Better image quality is achievable for pelvic radiographs at 

lower tube potentials (figure 6:15) however, for gadolinium oxysulphide phosphors 70-

80 kVp gives the best image quality. 
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4. Evaluate extra filtration options 

 One of the most useful advantages of digital radiography systems is the ability to 

adjust image contrast, either at image acquisition or display.  This frees the imaging 

system from the constraints affecting the relatively narrower latitude and contrast 

limited screen/film systems.  The reduction in radiographic contrast expected with the 

addition of metal filters may thus be compensated for in a digital system and the image 

quality criterion is the level of noise alone.  An investigation into whether 0.2 mm 

copper affects detail detectability for high and low contrast details using receiver 

operator characteristic (ROC) methodology with a CsI IDR system is described in 

Chapter 7, no significant difference was found for the phantom studied. 

 Many digital radiography systems are now commercially available with a number 

of metal filter options, usually consisting of copper and/or aluminium and particular 

thicknesses may be automatically pre-programmed for use with specific examinations.  

Large dose savings can be achieved with additional filtration, for a 75kV chest 

examination for example, a reduction of 50% in EAK and ~40% in effective dose is 

possible by using 0.2 mm copper, figure 6:6.  Where available, additional filtration 

options should therefore be evaluated and considered for clinical use, especially for 

fluoroscopy and paediatrics where deterministic effects and radiation doses are 

particularly significant. 

 
5. Calibrate AEC to A(E) or constant DDI 

 The energy responses of digital radiography systems are different than those of 

screen/film combinations, and require the exposure to be increased at higher tube 

potentials.  At installation, when a digital radiography system is accepted into clinical 

use, the appropriate kV compensation curve must be selected and adjusted if required.  
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Various methods of determining the kV compensation curve and absolute dose level 

required to calibrate AEC devices for DR and CR systems are discussed in detail in 

Chapter 4.  It is also possible to determine AEC calibration curves for a specific 

clinical task to maximise the CNR values at each kVp, figure 6:16.  Care must be 

exercised if adopting this approach however as the system may only be optimised to 

provide maximum image quality for the specific feature used to compute the CNR e.g 

2 mm muscle, which may not be indicative of radiographic image quality for 

alternative examinations.  

 
6. Review scatter removal requirements and technique 

 Scatter is inevitably generated in a patient in any radiographic examination.  As a 

result radiographic contrast is reduced and scatter acts as an additional noise source.  

As mentioned in Section 6.1, the choice of scatter removal technique in conventional 

radiography was a balance between the contrast improvement afforded, Cif and the 

necessary exposure increase or Bucky factor, B.  Cif is proportional to B and the 

constant of proportionality for a given exposure condition is the grid / air gap primary 

transmission Tp.  In digital imaging where both the radiographic contrast and the noise 

level need to be considered, any improvement in image quality by a grid or air gap is 

more appropriately evaluated using measures of how both contrast and noise change, 

for example the contrast-to-noise ratio improvement factor, CNRif.  For a given 

exposure condition, CNRif is proportional to √B (equation 6:3) and therefore has - 

relative to Cif and contrast limited screen/film systems - less dependence on the Bucky 

factor and more emphasis on the primary transmission Tp.  Since air gaps do not absorb 

primary quanta they have inherently better signal transfer with higher Tp values than 

grids, although they have comparatively lower selectivity.  This gives air gaps the 
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advantage with mid-to-low scatter fractions (0.6 – 0.3) with grids remaining the better 

choice of scatter removal technique for larger scatter fractions > 0.6, figure 6:20.   

 Depending on the exposure conditions (geometry, kVp, filtration) the requirements 

of the technique used to remove scatter will need to be reviewed for digital 

radiography.  Whether or not scatter removal is even necessary also needs 

consideration as depending on the scatter fractions involved, image quality may in fact 

be degraded and worse than using no scatter reduction method, figures 6:20 and 6:21.  

 More in depth analysis of the improvements in image quality achievable with grids 

and air gaps may be performed taking into account the effect of both quantum and 

system noise (equations 6:6, 6:7) although the analysis requires the availability of 

detailed NPS and DQE data for the detector under study (Chapter 3).  Comparing the 

results of this model, figure 6:20 with those of the simple quantum model figure 6:16, 

however allows the same general conclusions.  Both models suggest improved 

performance for air gaps over grids for medium to low scatter factors and both models 

suggest the best choice of grid for digital systems is the 15/80 grid, achieving 

comparable or better performance than air gaps for high scatter factors.  Calculations 

using grid technical performance data and equation 6:4 should therefore prove useful in 

evaluating new or existing scatter removal methods for digital systems and indicate if 

improvements can be made or further investigation is needed. 

 
7. Use A(E), CNR and FOM data to review exposure factors 

 In the UK and in many other European countries when digital radiography systems 

are first installed in a clinical environment the existing exposure factors (usually from 

the previous conventional radiography techniques using screen/film) are adopted.  The 

rational is that this will allow radiographers and day to day users of the system more 
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latitude in coming to terms with the new technology and steep learning curve.  This 

approach helps to provide a relatively smooth transition and supplies the radiologists 

with images that are similar to those they are used to reporting, images from a high 

kVp chest technique with a grid for example look significantly different to those 

acquired at lower tube potentials.  The manufacturers’ software or applications 

specialist then usually pays a return visit to the clinical site some months later to give 

selected ‘key’ users of the system more advanced training and to address any image 

quality issues, if required.  The disadvantage in this approach is that if image quality is 

considered acceptable, then no changes are made and the exposure factors as used 

conventionally remain in use.  The situation is unlikely to change unless a survey of 

patient doses highlights a particular examination as requiring further investigation.  It 

does not however gauge if the digital system is operating most effectively with 

maximum image quality and full use of its features. 

 Simulations of CNR, FOM and A(E) of the type presented in this study provide a 

useful starting point and an indicator as to what to expect from digital radiography 

systems, even before they are installed clinically and allow general conclusions to be 

drawn on what tube potentials and relative dose levels are likely to be optimum.  Two 

different Canon IDR systems for example are installed in one hospital in the West of 

Scotland, one is a 43 cm x 43 cm CXDI 40C which is a CsI:Tl detector ~600 μm thick 

the other detector is a 43 cm x 43 cm CXDI 40G which has the same 160 μm pixel 

pitch but the image receptor is Gd2O2S:Tb ~ 200 μm thick.  The relatively higher 

sensitivity of the CsI system in this case allows for lower exposure factors to be used 

however examinations are performed at similar tube potentials.  General Electric also 

have a number of IDR systems in the West of Scotland whereby some use Gd2O2S:Tb 

phosphors and some use CsI. 
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 kV-mA regulation curves have proved very useful for setting up and adjusting the 

automatic brightness control on image intensifiers (which also use CsI phosphors albeit 

with sodium rather than thallium doping).  Knowledge of the phosphor efficiency 

decrease with age allows the gradients of these curves to be adjusted at service visits to 

provide optimal image quality for a range of patient thicknesses, field sizes and 

filtrations.  Similar curves may be produced with X-ray spectra data and spreadsheet 

software using the method discussed in this study.  Figure 6:17 gave an example of 

regulation curves for common CR and DR phosphors where FOM is always at a 

maximum.  As mentioned in the discussion, the optimum tube potential for Gd2O2S 

phosphors were unexpectedly high as the need for acceptable contrast, among other 

factors, kept the tube potentials down when the phosphor was used in conventional 

radiography.  Optimum tube potentials of 80-110 kVp for CsI detectors were probably 

expected.  Selenium detectors were initially marketed by Eastman Kodak as part of 

their DirectView DR range but the company have recently moved to CsI phosphors and 

Se detectors for general radiography are relatively uncommon in the UK.  The 

optimum tube potential for the CR phosphor was lower than expected where 70 kVp 

was optimum for a 2 mm muscle feature in a water phantom of standard 20 cm 

thickness.   

 
8. Survey patient doses, set DDI ranges and identify specific system attributes 

 Clinical efficiency and effectiveness in radiology is maximised when the best 

image quality achievable and appropriate available features are utilised for the existing 

digital radiography equipment.  Practical optimisation in a radiology department 

however, is generally a balance between time and cost resources available (helped by 

the amount of interest and support in the local department) and the magnitude of the 

previous patient dose survey results for standard examinations or levels of satisfaction 
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with current image quality.  When new digital equipment is installed it is useful to 

work with the manufacturers’ application specialist (possibly attending application 

specialis training sessions, particularly useful for interventional and cardiology suites) 

to familiarise oneself with specific system attributes and image processing options 

available e.g. grid suppression, post-processing options.  AEC calibration and review 

of available filter options and scatter reduction methods should be performed as soon 

as possible.  A survey of patient doses using a representative sample of patient size and 

examination type should be performed after the equipment is installation process has 

completed.  It is useful to review results of similar equipment at other centres.  

Technical data for digital systems is often easier to obtain at the tender response stage 

of procuring digital radiography equipment.  Following the outcome of the patient dose 

survey steps 4, 5, 6 or 7 may need review.  Setting DDI ranges is recommend by some 

manufacturers however unless this is performed automatically or is frequently updated 

it may be more useful and reproducible to record representative dose-area-product 

values (see Appendix Chapter 4). 
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7          ROC Study 

 

7.1 Introduction 

7.1.1 Study Objective 

In Chapter 5 both experimental measurements and theoretical computations of contrast-to-

noise ratio using a chest phantom, suggest the addition of 0.2 mm of copper filtration will 

have a negligible effect on image quality.  The analysis however was only indicative, as 

the limited number of details and range of detail sizes available in the chest phantom 

allowed.  The aim of this study is to use ROC methodology on image data obtained with 

the same X-ray detector, to include the observer in the imaging chain and examine the 

effect of additional copper filtration on image quality to include both detector and observer 

performance, to include a wider range of detail sizes and contrasts. 

 

7.1.2 Background theory of ROC Methodology 

Although some diagnoses are more complex, a basic classification tool in medicine is the 

binary test which yields two discrete results (e.g. positive and negative), to infer an 

unknown, such as whether a disease is present or absent.  In radiological imaging a 

diagnostic test looks for a particular ‘signal’, however defined, and attempts to ignore or 

reject other events, which are called ‘noise’.  The discrimination is not made perfectly 

because noise events may mimic signal events.  Observations of noise alone events and 

noise plus signal events produce values of a decision variable that may be assumed to vary 
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from one occasion to another, with overlapping distributions of the values associated with 

the two classes of events.  Modern detection theory treats the problem as one of 

distinguishing between two statistical hypotheses1.  A diagnostic test can therefore be 

thought of as a means to separate a population into two subsets one where the disease is 

present, and one where it is absent.  The accuracy of these tests is commonly assessed 

using measures of sensitivity SN and specificity SP, where 

  
FNTP

TPSN
+

=  and,      Equation 7:1 

  
TNFP

TNSP
+

= ,      Equation 7:2 

 
TP, TN, FP, and FN are the counts of true positives, true negatives, false positives, and 

false negatives, respectively. 

 From equation 7:1, the sensitivity depends only on TP and FN i.e. measurements of 

diseased subjects, similarly specificity as defined in equation (2) depends only on healthy 

subjects (TN and FP), and so neither one depends on the prevalence of disease in the test 

population.  For this reason sensitivity and specificity are more popular measures of 

diagnostic test accuracy than measures such as percentage of correct diagnoses etc.2 

 With two alternative events and two corresponding diagnostic alternatives, the data 

are those of a two-by-two decision matrix3, table 7:1.  The event is considered to be 

positive or negative, and the diagnosis made is correspondingly positive or negative.  

Therefore there are two correct outcomes TP and TN and there are two ways in which the 

actual event and the diagnosis can disagree i.e. two kinds of errors, FP and FN.  Data from 

a diagnostic test consist of observed frequencies from those four possible outcomes. 
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 Table 7:1  Decision matrix for two events and two diagnostic alternatives. 

 Event  

Diagnosis Positive Negative 

Positive TP FP 

Negative FN TN 

Total TP + FN FP + TN 

 

 It should be noted that in light of a positive event, the diagnosis is either positive or 

negative and the proportions of positive and negative diagnosis, TP/(TP+FN) and 

FN/(TP+FN) sum to 1.  Likewise for a negative event the FP and TN fractions are 

complements.  Therefore in a test of a diagnostic system all the relevant information with 

regard to accuracy can be obtained by recording the fractions TP or FN and either FP or 

TN.  The most popular choices1 are to record the top row in table 1, i.e the true positive 

fraction TP (= SN, equation 7:1) and the false positive fraction FP (=1-SP, equation 7:2).  

These form the basis of accuracy measures of diagnostic tests and are fundamental to 

producing receiver operating characteristic (ROC) curves where (1- specificity) and the 

sensitivity form the X and Y axes respectively. 

 When the results of a test are binary such as the presence or absence of disease, 

then the test has only one pair of sensitivity and specificity values.  However in many 

diagnostic situations making a decision in binary mode is difficult, impractical or clinically 

unrealistic.  The diagnostic confidence levels or decision criteria to interpret radiological 

images may vary considerably among observers.  Radiologists can differ in their estimates 

of prior probabilities and of costs and benefits and so adopt different criteria1.  As the 

decision criterion becomes more lax for example, the sensitivity increases while the 
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specificity decreases, and vice versa.  As a result a single pair of sensitivity and specificity 

values is insufficient to describe the full range of diagnostic performance of a test2. 

 ROC methodology was derived to deal with multiple pairs of sensitivity and 

specificity values.  Better decision performance is indicated by ROC curves that lie higher 

in the unit square (toward the top left), figure 7:4.  The curve itself represents all the 

compromises between sensitivity and specificity that can be achieved by a diagnostic 

system as the decision criterion or confidence threshold is varied, therefore defining a 

measure of accuracy that is independent of both the prevalence of disease and of the 

decision criterion to adopt a positive diagnosis4.  Each discrete point on the graph (or 

operating point) is generated by using different confidence thresholds for a positive test 

result. 

 In medical imaging the operating points are usually generated using one of two 

main experimental approaches5.  In the first approach the observer is required to view 

sequential images and give a binary response as either yes / no (positive or negative) for 

each image.  The images are then reread on several occasions with the reader motivated to 

give a stricter or a more lenient confidence threshold.  The observer’s responses for each 

occasion are then compared with the truth, thus forming TP and FP pairs, each of which is 

plotted as a point in the unit square.  This approach follows the concept of ROC 

methodology but it is experimentally inefficient requiring each observer to read the images 

N times to generate N points on the ROC curve. 

 In the second approach to generating operating points the observer is required to 

comment using different levels of confidence to report his/her impression of the state of 

truth, for example on whether a suspected lesion is present or not.  The categories are 

usually given quantitative labels such as: (1) definitely present; (2) probably present; (3) 

possibly absent; (4) probably absent; and (5) definitely absent.  It is not necessary for 
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different observers to interpret the ratings categories the same way4.  To help reduce bias in 

the results (and avoid data degeneracy) it is however useful to select the ratings to generate 

TP and FP pairs that help stratify the operating points uniformly along the ROC curve i.e 

choosing the categories with roughly the same frequency if the disease prevalence was ~ 

50%6.   

 The idea behind the ratings method is shown schematically in figure 7:1.  The 

vertical lines represent the four confidence thresholds that define the boundaries between 

the five ratings categories described above.  To compute the operational points to plot the 

ROC curve we use the ratings responses to establish an equivalent response as if the test 

were a binary test (similar to the first approach).  For example, a rating of (5) definitely 

absent, represents a ‘yes’ or positive response in a ‘yes/no’ experiment whereby the 

observer adopts a very strict confidence threshold; and we can interpret cases with any 

other rating as those equivalent to a no or negative response in that experiment.  We can 

then analyze the rating data to calculate a TP and FP pair, i.e one operational point on the 

ROC curve.  A second point on the curve may be computed by summing the responses 

from categories (4) and (5) for example and calling them positive (equivalent to a ‘yes’ 

response in ‘yes/no’ experiment).  Third and fourth points are calculated similarly, and 

thus we have 4 operational points derived from five category ratings.  Practically, 

observers find it difficult to partition subjective judgments into more than five or six 

categories and so the majority of ROC studies found in the literature which use the rating 

method contain ROC curves plotted from only 4 or 5 operational data points1,3,4,7,8. 
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Figure 7:1  Probability density of a diagnostic test with two populations, healthy and diseased, 
assumed to follow a binormal distribution. 

 

 Once the operating points are known an ROC curve can be fitted to the ordinal data 

either empirically or parametrically.  The empirical method involves simply joining the 

operating points, including points (0, 0) and (1, 1).  The area under the ROC curve, Az may 

be determined from the empirical ROC curve using the trapezoidal rule however this has 

been shown to produce a large downward bias in the estimate of Az and is rarely used for 

medical imaging tasks3,9,10.  The alternative is to apply a parametric model whereby we 

assume the test data or some transformation of the test data, follow a certain distribution.  

The most common approach is to assume a binormal distribution (two Gaussian 

distributions: one representing test results of the ‘healthy’ and the other representing test 

results of the ‘diseased’), figure 7:1.  This assumption has been shown to be remarkably 

robust for the variety of data distributions typically found in ROC studies10-12.  Using 
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parametric methods to estimate the true ROC curve can reduce the estimated error and 

increase the statistical power of a study11.  The resulting curve is called the fitted or smooth 

ROC curve.  There are commercial and shareware computer programs that calculate the 

fitted ROC curve on the basis of a binormal distribution; these programs make use of 

maximum likelihood statistical estimates13.  A number of studies provide a comparison of 

computer programs popular among ROC methodologists11,14. 

 When a binormal distribution is assumed, the shape of the ROC curve is entirely 

determined by two parameters: a, the standardized difference of the means µ of the 

distributions of test results; and b, the ratio of the standard deviations σ of the distributions 

of the healthy, H and diseased, D, where 

  
H

HDa
σ

μμ −
=   and   

D

Hb
σ
σ

=   Equation 7:3 

The curve actually takes the form of a straight line if drawn on normal deviate axes, where 

a is the ‘Y’ intercept and b is the slope4.  In ‘ROC’ space the curve may be parameterized 

as11: 

 aySpecificitbySensitivit .)1.( ϕ+−=      Equation 7:4 

and the area under the curve Az is calculated by: 
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b
azA ϕ       Equation 7:5 

 where ϕ is the standard normal cumulative distribution function.  The task of curve 

fitting therefore becomes one of computing numerical values for a and b, the curve may 

then be plotted and/or Az determined. 
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7.2 Materials and Methods 

7.2.1 Study Phantom 

TRG, a statistical contrast-detail phantom designed for use in general radiography was 

chosen for this study (model 07-750, Nuclear Associates, USA).  The phantom consists of 

twelve columns of ten disks each.  Columns 1 to 6 are made from polyvinylchloride (PVC) 

disks, intended to be a high contrast bone substitute and columns 7 to 12 are made from 

polymethyl-methacrylate (PMMA) which act as low contrast details intended to represent 

muscle.  Half of the disks in each column contain a hole. The size of the hole varies from 

0.5 to 1.0 mm in the PVC disks in column 1 to 6 and from 0.9 to 2.0 mm in the PMMA 

disks in columns 7 to 12.  The depth of the holes is equal to their diameter with each hole 

positioned eccentrically on each disk.  The presence of holes was randomized 

independently for each radiograph.  The probability of a hole being present at any location 

was 0.5.  Ten different arrangements of the disks on the TRG phantom were created.  A 

radiograph of the phantom is shown in figure 7:2.  The total size of the phantom is 16 x 14 

cm. 

 
Figure 7:2  Radiograph of TRG statistical phantom (Nuclear Associates, USA). 
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7.2.2 Image acquisition and display 

A Siemens Aristos indirect digital radiography (IDR) system, designed for erect chest and 

skeletal examinations, was employed for this study.  The X-ray tube (Opti 150/30/50HC, 

Siemens) had filtration equivalent to 2.5 mm of aluminium, with the facility to include 

additional copper filters.  The digital detector is a Trixell Pixium 4600, which has a 

caesium iodide (CsI) scintillator coupled to a photodiode thin film transistor array. The 

detector area is 43 × 43 cm2 with a 3120 × 3120 pixel matrix and a pixel pitch of 143 μm.  

To increase scatter radiation, IDR images were acquired of the TRG phantom sandwiched 

between two sheets of 2.5 cm thick PMMA and two sheets of 1 mm thick Aluminium, with 

one sheet of each material on either side.  The phantom provides a useful tool for 

comparing imaging performance for both high contrast (bone substitute) and low contrast 

(muscle substitute) details.  The extra PMMA and Aluminium gave scatter conditions 

similar to those in the geometric chest phantom as discussed in Chapter 5. 

 Radiographs of the phantom were obtained using a radiographic technique 

employed in clinical practice for chest radiography: a source-to-image distance (SID) of 

1.8 m, using an anti-scatter grid.  Ten sets of images were acquired.  Five sets contained 

images recorded at 8 kVs ranging from 60 to 133 kV with the beam filtered by 2.5 mm of 

aluminium alone and the remaining five sets with the beam filtered by 2.5 mm of 

aluminium with additional 0.2 mm of copper.  The choice of 0.2 mm represents a good 

compromise between tube loading and the reduction of patient dose.  For each technique 

the exposure factors were chosen to give a similar dose behind to the image receptor with 

the central ionization chamber selected in the automatic exposure control (AEC).  The 

AECs were set up to comply with the Siemens image quality assurance program (IQAP), 

for a sensitivity class of 560 (receptor dose of 1.8 μGy ± 20% using 2.1 mm Cu).  The 

positions of the details in the test object were varied randomly after each exposure using an 

array of details chosen from a selection of 10 known arrangements, table 7:3.  All images 
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were processed using a linear look-up table and no un-sharp masking or spatial frequency 

enhancements were used.  The images were compressed using JPEG lossless compression, 

stored in the DICOM 3.0 format and transferred to a research workstation via compact 

disk.  Osiris freeware software was used for image analysis (Dr Jean-Paul Vallee, 

University Hospital of Geneva, Switzerland). 

 There were a total of 80 radiographs to analyse.  Contrast detail observations were 

performed on a dedicated two mega pixel high luminance (>400 cdm−2) display monitor, 

calibrated to DICOM Standard PS 3-14 15. Three experienced observers (two physicists 

and one technologist) viewed five image sets acquired with and without additional copper 

filtration.  Ambient lighting was kept to a minimum and the viewing distance was about 1 

m.  Observers were permitted to adjust the brightness and contrast controls (using image 

viewing software) to perceived optimum levels.  The phantom images were displayed for 

reading at a zoom factor of 2, without applying software pixel interpolation.  

 

7.2.3 Data Analysis 

ROC curves were generated using the rating data method, as described in section 

Background theory on ROC methodology.  The probability of the existence of a critical 

detail i.e. a hole in a specific position, was expressed using a rating scale of 5 categories: 

(1) definitely present; (2) probably present; (3) possibly absent; (4) probably absent; and 

(5) definitely absent.  Each category was expressed as a percentage 100, 75, 50, 25 and 0% 

and entered into a spreadsheet program by selecting the relevant rating from a dropdown 

list for each cell, table 7:2 (light grey boxes). 
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Table 7:2  An example of the spreadsheet program used to input and analyse observer data. 
Image: F Array: 4

75 100 25 100 0 100 1 100 25 25 25 0 100
75 50 100 50 100 25 2 50 75 100 100 100 0
25 0 100 100 0 0 3 50 50 25 0 100 100
50 25 0 75 25 100 4 75 25 75 25 25 25
75 100 100 0 100 0 5 75 75 75 0 0 0
75 50 25 0 100 100 6 25 50 50 100 100 100
50 100 75 100 50 100 7 75 50 50 100 100 0
50 75 25 0 0 100 8 75 75 100 50 100 25
75 50 0 25 100 0 9 75 75 0 25 0 100
75 0 0 100 100 0 10 25 0 50 100 0 100
1 2 3 4 5 6 7 8 9 10 11 12

75 100 100 100 100 100 + 50 25 100 100 100 100
50 25 100 100 100 100 75 25 75 25 100 100
75 100 100 75 100 100 75 50 75 100 100 100
50 100 75 100 100 100 75 75 100 100 100 100
50 0 0 100 100 100 25 0 50 100 100 100
25 50 25 50 0 25 - 100 75 25 25 0 0
25 0 0 0 0 0 50 50 25 0 25 25
75 50 25 0 25 0 75 75 50 0 0 0
75 75 25 0 50 0 25 50 50 50 0 0
75 50 0 25 0 0 75 75 0 25 0 25

% Rating 100 75+ 50+ 25+ 0+ 100 75+ 50+ 25+ 0+
(+) counts 20 4 3 1 2 + 16 6 3 4 1
(-) counts 0 4 5 8 13 - 1 5 6 8 10

0.67 0.80 0.90 0.93 1.00 TPF 0.53 0.73 0.83 0.97 1.00
0.00 0.13 0.30 0.57 1.00 FPF 0.03 0.13 0.40 0.67 1.00

Manual 
ROC  

 

 The data input by the observer were then compared with the true positions of the 

details.  Visual basic macros were written for this purpose.  An example of one of the 10 

arrays used in the study is given in table 7:3.  The real position of a detail is marked with a 

‘1’ and the absence of a detail a ‘0’.  The macro selects the data entered in the light grey 

boxes, table 7:2 and compares it to determine if the true detail is present or not by selecting 

the correct array formation, in this case array 4.  The program then outputs the data into 

two subsets of responses where the true detail is present (+) and responses where the true 

detail is absent (-).  This table of data are shown in table 7:2, under the light grey boxes, 

where (+) and (-) responses are separated by a line.  As an example look at the first four 

responses in column 6 table 7:3 (encircled red), the true positions are 1001 and the 

observer’s responses were 100, 25, 0, 100, corresponding position, table 7:2 (encircled 

red).  The two 100 responses were a ‘hit’ or (+) response and the 25 was a miss or (–) 
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response.  All five details in column 6 were correctly chosen by the observer (red 

brackets), represented by five 100’s and the 25 was a miss (-) (red triangle). 

Table 7:3  An example of one of ten arrays of details used to randomise the positions of details in 
the TRG phantom. 

Array 4
bone substitute muscle substitute

1 2 3 4 5 6 7 8 9 10 11 12
0 1 0 1 0 1 1 0 1 0 0 0 1
1 0 1 0 1 0 2 1 0 1 1 1 0
0 0 1 1 0 0 3 0 0 0 0 1 1
1 1 0 1 0 1 4 1 1 1 1 0 0
1 1 1 0 1 0 5 0 0 1 0 0 0
0 0 0 0 1 1 6 0 1 0 1 1 1
1 1 1 1 0 1 7 1 0 0 1 1 0
1 0 0 0 0 1 8 0 0 1 0 1 0
0 0 1 0 1 0 9 1 1 0 0 0 1
0 1 0 1 1 0 10 1 1 1 1 0 1  

 

 The total numbers of corrected responses or counts were then summed for each of 

the five categories.  These are shown in table 7:2 as (+) counts and (-) counts for the bone 

substitute (left) and muscle substitute (right).  For example, the number of positive counts 

in the 25% category for bone was only 1, the observers’ response, the true response and the 

mark recorded are highlighted in blue boxes.  There are many commercial and freeware 

programs to parameterise this data to produce ROC curves.  In this study the ROCKIT 

program (Kurt Rossmann Laboratories, University of Chicago) was used to perform the 

parametric curve fitting and error analysis13.  Diagnostic accuracy was measured using the 

area under the binormal ROC curves, Az.  A total of 3,600 observations were analysed 

(1800 high contrast and 1800 low contrast):  2 contrasts x 10 rows x 6 sizes = 120 

interpretations per radiograph x 2 radiographic techniques (without and without copper 

filtration) x 5 detail arrangements x 3 observers.  The total 3,600 interpretations equals 300 

interpretations per hole size (there are 10 test objects per hole size per radiograph). 
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 As with any semi-automated approach using computer software it is prudent to 

check the quality of raw data which is input.  Particularly with rating ROC methodology as 

regardless of how many observations are made curve fitting algorithms are still applied to 

only 5 operational data points.  The true positive fractions and false positive fractions of 

the (+) and (-) count data listed in table 7:2 were used to manually calculate the operational 

data points for each of the categories (shown in yellow).  These are cumulative fractions of 

30 (5 categories x 6 different objects) for example, the 100% category had 20 (+) counts 

the true positive fractions (TPF) was therefore 20/30 = 0.67, similarly the 75% category 

had 4 positive counts and the corresponding TPFis 0.67 + 4/30 = 0.8.   

 The images were read over a two month period and presented anonymously to the 

observers.  The tube potential, radiographic technique and most importantly choice of the 

10 arrangements of the arrays of details in the phantom, were randomised in order to 

remove any reading order or memory bias effects16,17. 

 

7.2.4 Investigation of image quality with detail diameter 

ROC curves give a clear indication of the true or false detection of details.  The curves 

generated in this study provide an indication of the probability of detecting pathology 

substitute details of a given size and contrast under defined irradiation conditions.  The 

greater the detail size or the better the imaging technique the higher the ROC curve is 

situated.  The probability of a true answer or diagnostic accuracy Pdet is calculated by 

means of SN and SP values18 where 

  
2det

SPSN
FNFPTNTP

TNTPP +
=

+++
+

=    Equation 7:6 
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TP, TN, FP, and FN are the fractions of true positives, true negatives, false positives, and 

false negatives, respectively.  To examine image quality variations with detail size (i.e. 

hole diameter) for the cases with and without copper filtration the probability of detecting 

each particular detail were calculated using equation (6) and the results segregated by hole 

size. 

 

7.2.5 Hypothesis testing and statistical significance 

In comparing two imaging systems or two techniques for the same imaging system with 

ROC analysis, thought must be given to how a possible difference between two ROC 

curves must be quantified.  This in turn dictates the null hypothesis that one must use to 

evaluate the statistical significance of the difference between the ROCs.  In general this 

will depend on how the imaging techniques or systems are employed in clinical practice.  

In this study we are interested in evaluating the effect of additional copper filtration on 

image quality and we adopt a strict definition of equivalent system performance such that 

the two techniques are considered different unless we can show that the ratings data sets 

arose from the same binormal ROC curve.  Therefore we define the null hypothesis as 

stating: there is no difference between the data sets which created the ROC curves for the 

0.0 mmCu and the 0.2 mmCu cases i.e. copper filtration has no measurable effect on image 

quality, and the research hypothesis states: there is a measurable difference in image 

quality when adding 0.2 mmCu filtration.   

 The null hypothesis was addressed using a bivariate Chi-square test of the 

simultaneous differences between the a parameters and between the b parameters of the 

two ROC curves. 
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7.3 Results 

An example of the raw data (operational points) determined empirically from two different 

observers are shown in figure 7.3 (a) and (b).  The data represent one reading from each 

observer at each of eight different tube potentials ranging from 60 to 133 kVp. 
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Figure 7:3 An example of manually calculated operational data points for two different observers 
(a) and (b) for only one reading at each of eight tube potential ranging from 60 – 133 kVp. 
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The ROCKIT program13 was used to produce a set of parameters a, b, Az and standard 

error of Az, SE(Az) for both high contrast and low contrast details for each radiograph read 

by the observers.  The observer averaged values of a and b; Az and SE(Az) are listed in 

table 7:4(a) for high contrast and table 7:4(b) for low contrast details, respectively.  The 

mean values of a and b were used to plot ROC curves using a specialised program called 

PlotROC (Kurt Rossmann Laboratories, University of Chicago)13. 

Table 7:4 Parametric values computed using ROCKIT for (a) high contrast and (b) low contrast 
details, data are mean of three observers. 

 
(a) 
High Contrast (bone substitute)

kVp a b Az SE(Az) a b Az SE(Az)
60 1.19 0.35 0.86 0.06 1.27 0.74 0.85 0.06
71 1.07 0.75 0.78 0.07 0.79 0.58 0.74 0.07
81 0.76 0.60 0.74 0.07 0.86 0.69 0.73 0.07
90 1.10 0.71 0.81 0.07 0.95 0.57 0.79 0.06
100 0.84 0.58 0.75 0.09 0.80 0.72 0.73 0.07
109 0.59 0.75 0.66 0.08 0.51 0.59 0.66 0.07
121 0.84 0.83 0.74 0.07 0.63 0.71 0.68 0.08
133 0.34 0.79 0.60 0.09 0.46 0.72 0.64 0.08

mean: 0.84 0.67 0.74 0.07 0.78 0.67 0.73 0.07

0.0 mmCu 0.2 mmCu

 

(b) 
Low Contrast (mucsle substitute)

kVp a b Az SE(Az) a b Az SE(Az)
60 1.50 0.80 0.85 0.05 1.24 0.58 0.86 0.05
71 1.32 0.76 0.84 0.05 1.82 0.85 0.89 0.05
81 1.16 0.42 0.83 0.06 1.83 1.22 0.84 0.06
90 1.28 0.86 0.82 0.06 1.73 1.26 0.84 0.06
100 1.04 0.69 0.80 0.06 1.36 0.92 0.80 0.06
109 1.04 0.61 0.78 0.06 1.42 1.27 0.81 0.06
121 0.91 0.60 0.78 0.06 1.02 0.56 0.80 0.06
133 1.07 0.70 0.79 0.06 1.15 0.95 0.75 0.06

mean: 1.16 0.68 0.81 0.06 1.45 0.95 0.82 0.06

0.0 mmCu 0.2 mmCu

 

 ROC curves were examined for bone substitute material without copper filtration, 

to analyse the effect of varying tube potential on image quality.  The results are illustrated 

in figure 7:4.  The diagonal line corresponds to chance i.e. a probability of 0.5. 
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Figure 7:4  Pooled ROC plots for bone substitute material for a range of tube potentials. 

 

 ROC curves were determined for images acquired at eight different kVs ranging 

from 60 to 133kVp, for cases with and without copper filtration.  The curves showed a 

similar trend to those shown in figure 7:4 for bone, for the muscle substitute material and 

the ranking of higher diagnostic accuracy for lower tube potentials were not affected by the 

addition of 0.2 mm Cu.  The clearest way of presenting this data is to plot the areas under 

each of the ROC curves generated against tube potential; the results are shown in figure 

7:5(a) for bone substitute and 7:5(b) for muscle substitute, respectively.  The data are 

pooled for three observers. 
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Figure 7:5  The area under the ROC curve plotted as a function of tube potential for (a) bone 
substitute and (b) muscle substitute materials.  The error bars indicate the standard error in the 
measurement of Az. 



   

198 

 Values of a and b averaged for all kVps and over 3 observers were used to plot 

ROC curves to compare muscle and bone substitute materials with and without copper 

filtration, figure 7:6.  There is less than 1% difference in the mean values of Az for 

examinations taken with and without copper filtration, this difference is within the standard 

error estimate and is not statistically significant. 
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Figure 7:6  ROC plots for muscle and bone substitute materials with 0.0 mmCu and 0.2 mmCu 
added filtration.  Data are pooled over the diagnostic kV range for three observers. 

 

 The results of the Chi-square tests are shown in table 7:5.  Since P-values are 

greater than 0.05 for all tube potentials studied there is no strong evidence that the areas 
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under the ROC curves differ and we have obtained a statistically non-significant result i.e. 

we failed to disprove the null hypothesis.  Since we do not have evidence the null 

hypothesis is false we have to accept that the addition of copper filtration makes no 

measurable difference to observed image quality. 

 Table 7:5  Mean Chi-square test results for three observers at eight tube potentials. 
 The null hypothesis is accepted, where P> 0.05. 

kV 60 71 81 90 100 109 121 133

Bone subsitiute mean

χ 2 1.58 1.88 2.81 0.16 0.64 3.15 0.34 1.59 1.52
P value 0.5 0.5 0.3 0.9 0.7 0.3 0.9 0.5 0.55

Muscle substitute
χ 2 1.88 0.97 2.26 0.92 0.77 0.51 2.08 1.46 1.35
P value 0.4 0.6 0.3 0.6 0.7 0.8 0.4 0.5 0.55  

 The ROC curves in figures 7:5 and 7:6 show the true and false positive fractions in 

detecting TRG details of ten different sizes. There is an overlap of detail diameters on the 

bone and muscle substitute materials at 0.9 mm and 1.0 mm.  There were 300 individual 

interpretations of each detail size made by the observers.  The probability of detecting a 

particular hole size in a given disk was calculated using equation 7:6.  The results are 

plotted as a function of hole or detail diameter in figure 7:7. 
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Figure 7:7  Probability of detecting a hole in a given disk of the TRG phantom, as a function of 
hole detail diameter. 

 

7.4 Discussion and Conclusion 

All ROC parameters in this study were computed for each observer individually, and then 

averaged to compute the data presented herein, table 7:4.  A common error in ROC 

methodology involving more than one observer is to pool all the data across the observers 

to produce one large data set, which is then fit by a program for example ROCKIT, to 

produce the pooled ROC curve.  This however is likely to produce biased results and 

underestimates of Az as the approach assumes all observers operate at essentially the same 

operating points17.  For multi-observer studies it is recommended that a and b parameters 

are calculated for each observer individually and then averaged to produce a pooled study 

ROC curve17. 
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 It should be noted that the majority of ROC programs (including ROCKIT) 

consider only variations due to case sampling and do not include within reader and 

between reader variations19.  The standard deviation of the estimates of Az derived from 

each observers interpretations in this study was 0.04, giving a coefficient of variation of 

5% in the values of Az.  The observers employed in this study are experienced (> eight 

years) and within reader and between readers variations are likely to be small, they are also 

unlikely to introduce bias in the study as the images were presented randomly and 

anonymously. 

 An important consideration in designing an ROC study is in determining the 

appropriate sample size to demonstrate the required statistical power.  The sample size 

needs to be sufficiently large such that if an important difference in performance exists it is 

unlikely to go undetected in a test of significance.  Knowing in advance the approximate 

standard errors associated with an estimate of Az, it is possible to calculate how many cases 

need to be studied so that a comparison of two imaging techniques will have a specified 

degree of statistical power or sensitivity.  This power depends on how small the 

probabilities α and β of committing a type I or type II error are.  (Type I errors are errors in 

rejecting the null hypothesis, when it is actually true i.e a sensitivity type error and Type II 

errors are errors in accepting the null hypothesis when it is actually false i.e. a specificity 

type error).  Typically one seeks a power (100- β) of 90% or 95% so that if an actual 

difference exists we are 90% or 95% certain that the difference will be reflected in samples 

that will be declared ‘statistically significant’.  Traditionally, one uses a type I error 

probability or α of  0.05 (5%) as the criterion for a significant difference9,19. 

 To estimate the sample size needed for this study a trial run was first performed.  A 

small number of test images were acquired with and without copper filtration and the areas 

under the resulting ROC curves were calculated.  The initial results showed typical values 
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of Az ranging from 0.78 to 0.83.  From tabulated data published in the literature9 the 

sample size of the number of ‘healthy’ and ‘diseased’ subjects required to provide a 

probability of 95% of detecting various differences between the values of Az under the 

ROC curves was estimated.  Using a one sided test of significance with a p value = 0.05, 

there were 889 ‘healthy’ subjects required and 889 diseased subjects required.  The 

statistical power in the present study was achieved with 900 interpretations of details 

where the hole detail was present (diseased) and 900 interpretations where the detail was 

absent (healthy). 

 Similar to the contrast-to-noise ratio results for the lung presented in Chapters 5 

and 6, in the present study greater diagnostic accuracy is afforded by lower tube potentials, 

figure 7:4 and figure 7:5.  Indeed the image receptor dose level, the X-ray transmission and 

scatter conditions are similar for the TRG phantom set-up and that of the chest phantom.  

Figures 7:5 (a) and (b) show the change in Az with tube potential for the high contrast bone 

substitute and low contrast lung substitute materials, respectively.  There is a greater 

spread in the results for the bone substitute material and the diagnostic accuracy indicated 

by Az, falls with increasing kV at a steeper rate than that of the muscle substitute data.  

The greater spread of data in figure 7:5(a) may be attributed to the relative increase in 

noise particularly quantum mottle, associated with the reduced X-ray flux passing through 

the high contrast details.  With such a low signal level the reduction in radiographic or 

inherent contrast with increases in tube potential has a marked effect and the energy 

response of the detector becomes significant.  This behaviour is also demonstrated in figure 

6:4 where increasing mean photon energy of relatively more filtered beams fall with tube 

potential at a steeper rate. 

 More important to the objectives of this study, figure 7:5 also illustrates that the 

addition of 0.2 mm copper filtration does not give a statistically significant difference in 

diagnostic accuracy when compared with a similar technique without copper filtration.  
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These findings are also demonstrated in figure 7:7 where a different analytical technique, 

based on the probability of detecting particular details was used.  The addition of 0.2 mm 

copper at the mid-diagnostic energy range 70 - 80 kV has an entrance surface dose saving 

of typically 50% with a corresponding reduction in effective dose of approximately 40%, 

depending on the projection (see Chapter 6).  Since image quality has been shown to be 

unaffected by this amount of additional copper filtration.  The only disadvantage in using 

the extra filtration is that the tube output will need to be increased to compensate for the 

reduction in photon fluence.  The tube output would need to be increased by almost 50% at 

~ 80 kV in order to compensate for a filter of 0.2 mmCu, figure 6:5.  This may have an 

impact on the tube lifetime and also on exposure times.   

 

7.5 References 

 
 [1]  Swets JA. Measuring the accuracy of diagnostic systems. Science 1988 Jun 

3;240(4857):1285-93. 

 [2]  Obuchowski NA. Receiver operating characteristic curves and their use in radiology. 
Radiology 2003 Oct;229(1):3-8. 

 [3]  Park SH, Goo JM, Jo CH. Receiver operating characteristic (ROC) curve: practical 
review for radiologists. Korean J Radiol 2004 Jan;5(1):11-8. 

 [4]  Metz CE. ROC methodology in radiologic imaging. Invest Radiol 1986 
Sep;21(9):720-33. 

 [5]  Green DM, Swets JA. Signal detection theory and psychophysics. Huntington, New 
York: Krieger; 1974. 

 [6]  Walsh SJ. Limitations to the robustness of binormal ROC curves: effects of model 
misspecification and location of decision thresholds on bias, precision, size and 
power. Stat Med 1997 Mar 30;16(6):669-79. 

 [7]  Goodenough DJ, Rossmann K, Lusted LB. Radiographic applications of receiver 
operating characteristic (ROC) curves. Radiology 1974 Jan;110(1):89-95. 

 [8]  Metz CE. Receiver operating characteristic analysis: a tool for the quantitative 
evaluation of observer performance and imaging systems. J Am Coll Radiol 2006 
Jun;3(6):413-22. 



   

204 

 [9]  Hanley JA, McNeil BJ. The meaning and use of the area under a receiver operating 
characteristic (ROC) curve. Radiology 1982 Apr;143(1):29-36. 

[10]  Hajian-Tilaki KO, Hanley JA, Joseph L, Collet JP. A comparison of parametric and 
nonparametric approaches to ROC analysis of quantitative diagnostic tests. Med 
Decis Making 1997 Jan;17(1):94-102. 

[11]  Lasko TA, Bhagwat JG, Zou KH, Ohno-Machado L. The use of receiver operating 
characteristic curves in biomedical informatics. J Biomed Inform 2005 
Oct;38(5):404-15. 

[12]  Hanley JA. The robustness of the "binormal" assumptions used in fitting ROC 
curves. Med Decis Making 1988 Jul;8(3):197-203. 

[13]  University of Chicago. Reciever Operating Characteristic program software 
downloads. http://www-radiology.uchicago.edu/krl/KRL_ROC/software_index6.htm. 
Date accessed: 2008 Sep 30. 

[14]  Zweig MH, Campbell G. Receiver-operating characteristic (ROC) plots: a 
fundamental evaluation tool in clinical medicine. Clin Chem 1993 Apr;39(4):561-77. 

[15]  National Electrical Manufacturers Association (NEMA). Digital Imaging and 
Communications in Medicine (DICOM): Part 14. Greyscale Display Standard 
Function PS 3.14. Tarrytown, NY: NEMA; 2000.  

[16]  Metz CE. ROC analysis in medical imaging: a tutorial review of the literature. Radiol 
Phys Technol 2008;(1):2-12. 

[17]  Metz CE. Some practical issues of experimental design and data analysis in 
radiological ROC studies. Invest Radiol 1989 Mar;24(3):234-45. 

[18]  Gurvich VA. Statistical approach for image quality evaluation in daily medical 
practice. Med Phys 2000 Jan;27(1):94-100. 

[19]  McNeil BJ, Hanley JA. Statistical approaches to the analysis of receiver operating 
characteristic (ROC) curves. Med Decis Making 1984;4(2):137-50. 

[20]  National Council on Radiation Protection and Measurements (NCRP). Limitation of 
Exposure to Ionizing Radiation. Maryland, USA; 1993. Report No.: 116. 

[21]  J D Robb and G A M Webb. Value of Unit Collective Dose for Use in the 1990s. 
Holburn, London: National Radiation Protection Board (NRPB); 1993. Report No.: 
2, Volume 4. 

 
 
 

 

 



   

205 

8      Summary and Conclusions 

 

8.1 Summary and Final Conclusions 

 
Digital radiography (DR) systems have been in widespread use in the UK for over a 

decade.  As with all clinical equipment, appropriate methods are required to evaluate and 

optimise the performance of these systems, to ensure and maintain quality and 

effectiveness in the radiology department.  Current testing methods routinely used to 

examine DR performance suffer known short comings, mainly due to the subjective nature 

of the test results, an apparent gap between physical test object based results and clinical 

performance and difficulty in maintaining a constant decision threshold among observers 

with time.  Objective image quality based measurements of noise power spectra (NPS) and 

modulation transfer function (MTF) are the ‘gold standard’ for assessing image quality1.  

The advent of DR systems and access to digital image data has opened up new 

opportunities in applying such measurements to routine quality control.  Advantages these 

metrics afford are due to their objective nature, the comprehensive noise analysis they 

permit and in the fact that they have been reported to be more sensitive to changes in 

detector performance2. 

 The standardisation of testing methodology with the IEC 62220-1 report3 published 

in 2003 was the first step as this allows manufacturers and medical physicists to directly 

compare results.  Chapter 3 provides useful recommendations in the application of the IEC 

standard, with some minor adjustments, to a clinical environment.  The total uncertainty in 

the measurement of DQE was 6%.  This is within the tolerance the standard allows and is 
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encouraging considering some practical modifications to the measurement technique were 

necessary, for example, a shorter source to image distance and use of the X-ray tubes 

internal collimators to define the field size.  Measurement uncertainties of 3.5% for the 

MTF and 3.4% for the NPS were found.  However an unexpectedly large variation of 11% 

±0.6% was found in the  measurement of detective quantum efficiency (DQE) at zero 

spatial frequency for the 14 detectors studied, although the mean value of 0.68 at 4μGy 

was similar to that reported in the literature4.  The measurements of DQE will be repeated 

at future QC visits and in time it is hoped will allow an analysis of detector faults and how 

they may manifest as changes in DQE, NPS or MTF. 

 In Chapter 4 it was conveyed how the energy responses of digital radiography 

systems differ from those of screen/film combinations.  It was demonstrated how this 

affects automatic exposure control (AEC) calibration for DR systems and increasing 

exposures at higher tube potentials were required.  The uses of various parameters to 

calibrate AECs were explored and two equivalent methods are recommended based on a 

measurement of the detector dose indicator or detector air kerma.  Practical advice on 

dosemeter selection and recommendations on choice and positioning of patient equivalent 

phantoms are also given. 

 There is a strong need for a metric which can be calculated theoretically and 

empirically and can describe gross imaging performance without approaching the 

constraints implied by the resolution limitations of an imaging system.  For large low 

contrast details, described in Fourier space as having a low spatial frequency, the 

modulation transfer function of digital imaging systems approach 100% and assessments 

of image quality based on such details should therefore be comparable among different 

digital systems.  Contrast-to-noise ratio (CNR) was used in this thesis to allow both a 

comparison of digital radiography systems utilising different phosphors and an 
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examination of how each are affected by radiation quality.  Chapter 5 detailed the 

development of a model to simulate CNR to optimise beam quality for chest radiography 

with an indirect digital radiography system (IDR).  CNR values were simulated for a chest 

phantom and adjusted to describe the performance of the IDR system by inputting data on 

phosphor sensitivity, the signal transfer function (STF), the scatter removal method and the 

automatic exposure control (AEC) responses.   The simulated values showed good 

agreement with empirical data measured from images of the phantom and so provide 

validation of the calculation methodology.  The study allowed useful conclusions to be 

drawn on what beam qualities are optimum for chest radiography.  The CNR results 

showed that CNR and detail detection are higher in the lung and heart regions at lower tube 

potentials, while those in the abdomen are higher for tube potentials of 90-110kVp.  

However when the effective dose was taken into account and a figure of merit (FOM) was 

used, optimum results were found for the lung at 60-70 kVp, while that for the heart was 

higher at 70-90kVp and that for the abdomen at 90-120kVp.  With regard to technique for 

scatter removal, the FOM results for lung imaging were higher for the air gap technique 

and the grid technique was better for imaging the abdomen. 

 As the theoretical CNR results were validated with measurements from images of 

the chest phantom, it was possible to apply the calculation technique to imaging of tissues 

to investigate optimisation of exposure parameters.  Application of the CNR model was 

discussed in Chapter 6.  The model was used to investigate the behaviour of a range of 

imaging phosphors in terms of energy response and variation in CNR with tube potential 

and various filtration options.  Results indicated large dose savings could be achieved 

using additional metal filters, for example a saving of 40% in effective dose is possible 

using 0.2 mm copper for a PA chest examination.  Regulation curves of the type 

commonly used in image intensifiers were developed for a CsI IDR system.  Exposure 

factors which provide maximum image quality for imaging a simulated lesion of 2 mm 
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muscle were presented for different X-ray beam filtrations and patient attenuator 

thicknesses.  The regulation curves demonstrated that image quality is maximised by 

reducing the tube potential when extra copper filter thicknesses are used.   

 The relative phosphor sensitivity and energy response with tube potential were 

calculated for phosphors commonly used in digital radiography.  Caesium iodide image 

receptors are significantly more sensitive than the other systems available due to a 

combination of the relatively large mass attenuation coefficient and the ability to utilise the 

light guiding character of the CsI needle structure and incorporate a thick phosphor layer.  

The percentage relative sensitivities of the image receptors averaged over the tube potential 

range 60 to 125 kVp were:  CsI - 97%;  Gd2O2S - 63%;  Se - 55%,  BaFBrI - 45%; and 

CaWO4 - 42%.  Using these relative sensitivity values a crude assessment of the dose 

levels the phosphors are likely to operate clinically at are 1.8 µGy for CsI; 2.8 µGy for 

Gd2O2S; 3.2 µGy for Se;  3.8 µGy for BaFBrI; and 4.2 µGy for CaWO4.  CsI IDR systems 

provided by three manufacturers (Philips, Siemens & Cannon) have been successfully set 

up in hospitals in the West of Scotland and Northern Ireland with image receptor doses of 

1.8±0.2 µGy.  However larger variations exist for barium flurohalides, the phosphor most 

widely used in CR.  Comparison of the imaging performance of the CR phosphor with 

Gd2O2S, used in screen-film systems suggests an increase in radiation exposure of 30% to 

40% to compensate for the lower sensitivity.  However, this is offset by sophisticated 

image processing techniques, noise reduction algorithms and the better contrast and 

dynamic range of digital systems, which in the majority of cases allows satisfactory 

imaging with a CR system employing a similar dose level to that of screen/film systems at 

80 kVp, typically 2.5-3 µGy.  This approach had been adopted in the West of Scotland and 

Northern Ireland with satisfactory results for all but one manufacturer, where the expected 

dose levels up to 4 µGy at 80kVp are required.  The higher dose level is needed to 

compensate for the relatively simpler noise reduction algorithms employed and imaging 
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plate technology that has undergone few technological improvements compared to other 

CR vendors on the market. 

 The CNR results presented in Chapter 6 simulated general radiographic 

examinations of the chest, abdomen and pelvis, for clinically relevant features of muscle.  

This enabled gross imaging performance of changes in radiation quality and energy 

response without approaching the constraints implied by the resolution limitations of the 

detectors studied.  The energy response and optimum tube potential differed significantly 

for each of the phosphors studied, particularly when the CNR is also used to examine other 

regions of the same image i.e. the lung, heart and abdominal areas of the chest.  The CsI 

phosphor results show similar trends to those determined empirically for theses areas with 

a chest phantom, presented in Chapter 5.  Plots of CNR values allowed us to draw useful 

conclusions regarding the expected clinical operation of the various phosphors.  For 

example 80-90 kVp was appropriate for maintaining image quality over the entire chest 

radiograph in CR whereas higher tube potentials of 100-110 kVp were indicated for the 

CsI IDR system.  Better image quality is achievable for pelvic radiographs at lower tube 

potentials for the majority of detectors however, for gadolinium oxysulphide 70-80 kVp 

gives the best image quality.  Chapter 6 also presented regulation curves for Gd2O2S, CsI, 

BaFBrI and Se to demonstrate the exposure factors required to maintain maximum image 

quality when imaging a 2 mm thick piece of muscle at a constant system dose level for a 

range of patient attenuator thicknesses.  The optimum tube potentials for imaging a 2 mm 

thick muscle feature in thicknesses of water ranging from 5-40 cm thick were: 90-110kVp 

for CsI; 80-100kVp for Gd2O2S; 65-85kVp for BaFBrI; and 55-70kVp for Se. 

 Results presented in Chapter 6 also demonstrated how the efficiency of scatter 

reduction methods varies with scatter factor.  It was shown with computations of FOM that 

for a constant detector dose, better image quality is achieved with the use of a 15/80 grid 

for the abdomen and pelvis examinations, however not necessarily for the chest if image 
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quality in the lung is considered paramount.  It must be bourn in mind however that scatter 

fractions can vary strongly from point to point within an image and in a typical chest 

radiograph scatter fractions of 0.5 in the lung field, 0.8 in the heart region and 0.9 in the 

abdominal area have been reported 5.  The decision on whether or not to use a grid 

therefore depends on the imaging requirements across the entire chest image.  The 

improvements in image quality when applying scatter reduction methods was determined 

by assessing the improvement in CNR they afford, termed the CNR improvement factor, 

CNRif.  The performance of various scatter reduction methods: 17/70; 15/80; 8/40 Pb grids 

and 15 cm and 20 cm air gaps were evaluated in terms of CNRif using two different 

models.  The first assumed quantum noise only and a photon counting detector.  The 

second model incorporated quantum noise and system noise for a specific CsI detector and 

assumed the detector was energy integrating.  Data presented in Chapter 3 was used for the 

real value of system noise.  The quantum noise model results indicated that using a grid or 

air gap can actually reduce image quality where very low scatter fractions are involved (< 

0.3).  The greater selectivity of grids compared to air gaps provides improved image 

quality when using grids in situations where the scatter fractions are relatively large (> 

0.6).  The performance of the air gaps however are better for lower scatter fractions (0.3 - 

0.6).  Similar results were found in the chest phantom study presented in Chapter 5, where 

the FOM values for lung imaging are higher for the air gap technique and the grid 

technique was better for imaging the abdomen.  Comparing the results of this model, with 

those of the system noise model allowed the same general conclusions.  Both models 

suggest improved performance for air gaps over grids for medium to low scatter factors 

and both models suggest the best choice of grid for digital systems is the 15/80 grid, 

achieving comparable or better performance than air gaps for high scatter factors.  The 

simpler noise model should therefore be sufficient to evaluate new or existing scatter 

removal methods for digital systems and indicate if improvements can be made or further 

investigation is needed. 
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 Chapter 6 finally outlines a recipe or strategy that may be used to optimise DR 

equipment.  This is summarised in the following steps: 

1. Obtain physical data on image receptor 

2. Calculate the phosphor energy absorption, A(E) 

3. Compute CNR for clinically relevant feature 

4. Evaluate extra filtration options 

5. Calibrate AEC to A(E) or constant DDI 

6. Review scatter removal requirements and technique 

7. Use A(E), CNR and FOM data to review exposure factors 

8. Survey patient doses, set DDI ranges and identify specific system attributes 

 

 Both experimental measurements and theoretical computations of CNR using a 

chest phantom presented in Chapter 5, suggested the addition of 0.2 mm of copper 

filtration will have a negligible effect on image quality.  The analysis was only indicative 

however, as the number of details and range of detail sizes available in the chest phantom 

were limited.  A more comprehensive study examining the effect of copper filtration on 

image quality was performed using receiver operator characteristic (ROC) methodology to 

include both observer and detector performance.  The study was detailed in Chapter 7.  A 

total of 3,600 observations from 80 radiographs and 3 observers were analysed to provide a 

confidence interval of 95% in detecting various differences between the values of Az, the 

area under the ROC curves - accepted as an indicator of diagnostic accuracy.  No statistical 

difference was found in image quality when 0.2 mm copper was used and the benefit of the 

dose saving promote it as a valuable optimisation tool.   

 There is a disadvantage in using the extra filtration in that the tube output will need 

to be increased to compensate for the reduction in photon fluence.  It was demonstrated 

that the tube output would need to be increased by almost 50% at ~ 80 kV in order to 

compensate for a filter of 0.2 mm copper.   



   

212 

 

8.2 Suggestions for Further Work 

• MTF and NPS are universally accepted as ‘gold standard’ image quality metrics.  

They allow objective specification of digital detector performance.  However very 

little is known on how common detector faults manifest as changes in MTF or 

NPS.  Such data will need to be collected over time from equipment known to be in 

good adjustment.  It is only then we can consider setting tolerances for the remedy 

or suspension of digital detectors from clinical service based on these parameters. 

• Results presented in Chapter 5 showed a positive correlation between empirical 

measurements of CNR and the number of details observed in a phantom.  More 

work is needed to investigate how CNR measurements compare with the visibility 

of details for a larger range of contrasts and details sizes, possibly saving much 

time on routine QC. 

• The CNR model developed for this thesis was applied to a variety of image 

receptors used in general radiography.  The model is easily adaptable to other 

specialist areas of radiography such as paediatrics and mammography.  The 

regulation curves presented in Chapter 6 may also be explored for application to 

fluoroscopy, particularly for new flat panel systems. 

• Results presented in Chapter 6 indicate that the air gap scatter reduction method is 

at least equal, and for medium to low scatter factors superior to grids for a CsI 

system.  The efficiency of scatter reduction techniques and relative merits of using 

an air gap need to be explored further. 

• Image processing options specific to different digital radiography manufacturers 

need to be investigated and possibly standardised.  The current ad-hoc way of 

adjusting image processing reactively when image quality is questionable is not 
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sufficient to realise the full benefit and level of image quality achievable from the 

technology. 

• Thousands of digital systems are now in use in the UK a survey specifically 

focused on digital imaging, indicating exposure factors and techniques, similar to 

the national reference dose reports would prove very beneficial. 
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