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Abstract

The experimental and computational studies of microRNAs, a novel class of gene

regulators, discovered relatively recently, is a rapidly growing field. In partic-

ular, researchers are focusing on identifying the targets of microRNAs and the

roles of microRNAs in post-transcriptional gene regulation; the work presented

in this thesis is a contribution to this field. Here, a range of kinetic models of

gene regulation is studied computationally with a view to explore and predict

the stochasticity in gene expression and to review the hypothesis that, in addi-

tion to reducing levels of target mRNA and proteins, microRNAs tune down the

noise in protein output. Previously, it has been shown that other factors such

as activation and deactivation rates of gene promoters have a direct effect on

the variation of gene expression and the effect of microRNAs on protein output

from different promoters is directly studied here. In addition, our methodology

allows for a comparison of transcriptional and post-transcriptional modes of gene

regulation. Finally, a model is proposed for the study of more realistic problems

of many targets.

The challenging motivation of this thesis is the use of different statistical meth-

ods to explore gene expression and noise in protein output. Stochastic numerical

simulations have been compared to theoretical analysis, such as the Probability

Generating Function Approach and the method of matrices developed by Gadgil

et al, showing similar results for the magnitude of noise in different systems. The

Langevin Equation and Tau-Leaping methods (for which Matlab codes are devel-

oped here) are shown to be excellent approximations to the Gillespie Algorithm.
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Chapter 1

Introduction

1.1 Biological Background

The most important element in all living organisms is the cell since it plays a

main role in the organism’s structure and functionality. In fact, the cell is the

smallest unit considered in a living organism and is classified in two broad groups:

prokaryotes and eukaryotes. Some organisms, such as most bacteria, are unicel-

lular, consisting of a single cell and often referred to as prokaryotes while bigger

organisms, such as humans, plants, trees and yeast are multi-cellular or eukary-

otes, which are much more internally complex than prokaryotes. Both groups

have certain features in common, such as DNA, genomic part of the cell, and

RNA. The DNA carries the hereditary information via genes, while RNA, tran-

scribed from DNA, contains the necessary information to synthesize proteins and

other vital molecules.

Proteins are essential parts of organisms that participate in every process within

cells, therefore protein synthesis (that starts with gene expression) plays a vital

role in the living organism. This also depends on lots of factors and regulators

that are themselves products of the gene expression. In fact, one single cell can

have thousands of proteins, resulting in thousands of interconnections between

proteins, and thousands of complex processes such as protein synthesis. So, the

overall picture of the cell is very complex.
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CHAPTER 1. INTRODUCTION 2

Despite all this general complexity, a two-step process can optimally characterise

the action of protein production: transcription and translation. The processes

of transcription and translation are carried out in the cell, to read each gene and

produce the protein. In transcription a phase one strand of DNA molecule, the

genetic information, is copied into a complementary RNA strand. This RNA

strand is then processed to the short-lived mRNA (messenger RNA). When the

transcription is finished, the portion of the DNA that coded for a protein, i.e.

a gene, is then represented by a mRNA molecule that can be used as a template

for translation. Translation is the second step process of making proteins. It is

the process that decodes the transcribed mRNA to produce the relevant protein.

(Figure 1.1 illustrates the two-step process that describes gene expression.)

Figure 1.1. Gene Expression: transcription-translation

This figure describes the two step process of gene expression (protein production). DNA
molecules are translated into mRNA by transcription. Protein is synthesized from mRNA

molecules by transcription.
http://www.anselm.edu/homepage/jpitocch/genbio/transcrtransl.JPG

This complex process of gene expression exists in every cell of an organism and

allows the production of protein is often referred to as the Central Dogma of

Biology.
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1.2 MicroRNA

MicroRNAs (miRNAs) have emerged as a new class of gene regulatory elements

in plants and animals. Their definitive functions are not yet clearly specified and

experimental identification of miRNA targets is difficult. This is why over the

past decade the focus of interest of many researchers has been into identifying

the miRNAs ranges of various organisms tissues, developmental processes, and

predicting the mRNA targets of these numerous miRNAs. It is known that miR-

NAs act post-transcriptionally, influencing the stability, compartmentalization,

and translation of their target mRNAs (Carthew 2006) but the mechanisms of

these processes have not yet been identified.

Mature miRNAs are small non-coding RNA molecules that regulate the expres-

sion of messenger RNAs (mRNAs). Made up of approximately 22 nucleotides,

miRNAs are estimated to comprise 1% - 5% of animal genes, making them one

of the most abundant classes of regulators, and their regulatory impact more

prevalent than was previously suspected. Their widespread and important role

in animals is highlighted by recent estimates that up to 30% of an organism’s

protein-coding genes are subject to miRNA-mediated control (Lewis et al. 2005,

Stark et al. 2005) and is evidenced by their evolutionary conservation (Rajewsky

2006). Recent advances indicate that the miRNAs play a significant role in many

biological processes such as developmental timing, cell proliferation, differentia-

tion, apoptosis, metabolism, and morphogenesis (Ambros 2004, Carthew 2006).

MiRNAs function differently in plants than they do in animals; for example in

plants, miRNAs inhibit a target mRNA by almost perfect base-pairing to comple-

mentary sequences (Standart & Jackson 2007); whereas in animals, they tend to

make imperfect partial base pair contacts with their target transcript (Rajewsky

2006).

The miRNA can exert its regulating effect on the target post-transcriptionally

that means on mRNA degradation and/or on protein translation. This mecha-

nism is an efficient way of regulating the production of a diverse range of proteins.
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1.3 Stochasticity/Noise in gene expression

Stochastical variations occur inside the cells. The stochasticity arises from fluc-

tuations in transcription and translation of gene expression, despite constant

environmental conditions, and it is measured by the amount of noise (variation)

in the expression of mRNA, protein, or other involved reactants. This means that

two identical cells can show different expressions. Furthermore, a unique cell is

expressed differently from time to time because of the intrinsic stochasticity.

Intrinsic noise refers to the stochasticity that comes from genetically identical

cells and organisms, with identical environmental exposures, which exhibit re-

markable diversity because of the random nature of the biochemical reactants

such as the finite number of molecules of the reactants of gene expression. In

terms of noise of protein in a cell, this means the variance between levels of pro-

tein (or number of protein molecules), implying that sometimes the same protein

will be expressed in larger amounts and other times in smaller amounts.

In order for everything to work properly and all the successive processes to take

place (which depend on the amount of protein), the cells need to receive a ranged

amount of protein. If a cell contains different levels of protein, consequently the

noise is large, and the processes dependent on the protein might not occur.

The noise, variability among equal populations, can be a disadvantage and pro-

duces generally detrimental effects on cellular function with potential implications

for diseases. For example diseases such as Cancer: in the theory of the origin of

cancer, some mechanisms stop working and important genes get out of control

producing lots of noise in the protein expression. However, noise can also be an

advantage in, for example, cell flexibility: bacteria, when submitted to a certain

change of environmental conditions (such as temperature) should die, but instead

survive because of the noise production in their protein.
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1.4 Aims

This project deals with the study of stochasticity in gene expression and its regu-

lation with miRNA. The stochastic phenomenon in gene expression has attracted

interest for several years because of its implications for cellular regulation and

non-genetic individuality. Also, in the last few years, the novel mode of gene

regulation by miRNAs has raised many interesting questions and speculations

regarding their roles in the cellular regulatory networks. One of the roles that

is ascribed to miRNAs is that they tune gene expression and protein produc-

tion. That is why one of the important questions which will be addressed here is

whether miRNAs affect (reduce) noise in gene expression and optimize the level

of the protein.

Therefore, the goal of this thesis is to elucidate some of the general principles

and mechanisms of microRNA action. To this end, models of the gene-regulatory

circuits that involve microRNAs will be developed to predict and evaluate the

dependence of the intrinsic noise of the protein output on system parameters and

find out which factors regulate (minimise, or attenuate) this variation.

To answer these questions, several models will be proposed to describe some cir-

cuits of the biological systems and different analyses will be carried on to study

with them. Stochastic numerical simulations, such as Gillespie Algorithm, and

Langevin Equation (Higham 2007), will be used as well as more efficient numer-

ical implementation, τ− leaping simulation (Gillespie 2001). These statistical

techniques will be compared against other theoretical analysis such as the Prob-

ability Generating Function Approach (Takasu 2005) or the methodology used in

Gadgil et al. (2005), to tackle in distinct ways through the nature of the problem.

1.5 Thesis Overview

Chapter 1 explains the biological problem of interest that is analysed in this the-

sis. This chapter introduces basic explanations about the concepts involved in

this work such as gene expression, gene regulators such as microRNA (miRNA),

and stochasticity of gene expression. The aims of the study are also stated.
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In chapter 2, different models of gene expression used in this thesis are described.

This chapter is divided in two blocks: models of transcriptional gene regula-

tion that do not take into account miRNAs and models of post-transcriptional

gene regulations where miRNA can regulate a target gene. The first part of this

chapter introduces a standard model for gene expression, while the second part

discusses the models with miRNA where the gene circuit structure depends on

the number of targets that the regulator miRNA has.

Chapter 3 reports the methodology used to simulate the chemically reacting

systems presented here. The methodology is divided in two types of analysis,

numerical and theoretical analysis. Both types of analysis with various examples

demonstrate that there exists a good approximation between the two methods

that enable estimating expressions for the noise of the reactants.

Chapter 4 shows the results obtained from several in-silico experiments, where

the noise and the effect of miRNA and other parameters of the models on pro-

tein output and target mRNA are explored. In this chapter, the models and the

methodology introduced in the two previous chapters are used.

Finally, chapter 5 exposes and discusses the roles that this novel class of reg-

ulator has, highlighting the effect of miRNA on reducing noise in protein output

in addition to reducing protein levels. This chapter concludes that statistical

techniques used in this thesis are suitable for studying noise in gene expression,

and can be extended to larger models with good approximated results.



Chapter 2

Gene Expression Models

“All models are wrong-but some models are useful”

(George P. E. Box)

This chapter introduces different models of gene expression used in this project

to study gene regulation and stochastic fluctuations in this process. The models

range from the basic model that considers only two major processes of transcrip-

tion and translation up to more complex ones, ranging from, for example, studies

which uses the 1 target mRNA model, that studies only one target independently

of anything else, to one that uses the model called N target mRNA model. But

principally most of the work is centered on the study of the one target model as

it is simpler, and can be used as an introduction to models with higher number

of targets as it is done in this thesis.

This chapter introduces microRNAs and their effect into the models, in order

to study the stochastic changes on the levels of mRNA, and proteins.

7
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2.1 Models of transcriptional gene regulation

2.1.1 Simple Model (Prokaryotic Model)

The Simple Model gives a basic mathematical representation of gene expression

(or transcription), taking the minimum number of reactions and variables needed

to represent all of the essential features of transcription, translation and inter-

actions between genes in a regulatory network (see model in Figure 2.1). This

model was introduced by Thattai & van Oudenaarden (2001). Moreover, it is

associated with prokaryotic expression (eg: cells in plants, or bacteria).

The model describes the fundamental two-step process of transcription and trans-

lation that a gene, continuous stretch of a genomic DNA molecule, executes to

make the protein. To better understand this process of protein synthesis, the

two stages have to be clear: transcription is the process in which DNA (gene)

is transcribed into mRNA (messenger RNA) and translation is when mRNA is

translated into protein. The degradations of both mRNA and protein are also

included in this model. Figure 2.1 shows a graphic description of this model.

Figure 2.1. Simple model of gene expression

Simple model of gene expression. Transcription of the gene into mRNA , mRNA translation
into proteins and both decays of mRNA and protein molecules are described with kr, kp, γr

and γp, the respective rate constants.

Each of the different four reactions mentioned above have a rate constant asso-

ciated with it: kr, transcription; kp, translation; γr, mRNA degradation and γp,

protein degradation. The rate constants define the velocity or rate, at which such
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molecules change from one type to another, or are produced or degraded. At the

same time, these rates regulate each of the processes implied in this circuit.

Stochastic Reactions for a Simple Model

The stochastic Simple Model describes explicitly two stochastic birth and death

processes of the species, or reactants, mRNA and protein:

1) ∅ kr−→ mRNA
γr〈M〉−→ ∅

2) ∅ kd〈M〉−→ protein
γp〈P 〉−→ ∅

Each of these processes are compounds of two reactions that correspond to the

birth and death of the implied reactants successively and different associated

rates that depend on the type of reactions. For example:

∅ kr−→ mRNA

represents transcription (or mRNA production), where kr is the rate at which

mRNA is produced. Degradation of mRNA is represented by:

mRNA
γr〈M〉−→ ∅,

where γr is the rate of linear degradation (or decay). The total rate of mRNA

decay is γr multiplied by 〈M〉, because it is the number of available mRNA

molecules.

Precisely, the two processes are split up in four first-order reactions which de-

scribe each step as a single random event. The first-order reactions can be cat-

egorized in four types: production from a source, degradation, conversion, or

catalytic production from a source. These categories with their correspondent

rate constants can be found in the study by Gadgil et al. (2005, pg. 911).
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The four reactions are the following:

1) ∅ kr−→M
}

Production from a source

2) ∅ kp〈M〉−→ P

}
Catalytic production from a source

3) M
γr〈M〉−→ ∅

4) P
γp〈P 〉−→ ∅

 Degradation reactions

(2.1)

where mRNA, protein, mRNA mean, and mean of protein are encoded by M, P,

〈M〉 and 〈P 〉 successively. In the Simple Model, mRNA and protein are the only

two species of interest, and in fact, they are the only measurable species in this

model.

Deterministic equations (ODE’s) for a Simple Model

This system is described by the following rate equations:
dM

dt
= kr − γrM

dP

dt
= kpM − γpP

(2.2)

where M and P are concentrations of mRNA and protein, respectively. Other

parameters are the same as in system 2.1.

2.1.2 General Model (Eukaryotic Model)

The General Model includes two states of the gene’s promoter in addition to tran-

scription and translation. Presented in Figure 2.2, it was originally constructed
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by Raser & O’Shea (2004), and includes two states of the gene’s promoter in addi-

tion to the two-step processes of transcription and translation, and the respective

decays of mRNA and protein. This model is associated with the eukaryotic ex-

pression (eg: cells from higher organisms, such as the human organism.)

Figure 2.2. General model with two states of the gene’s promoter

Two states of the gene’s promoter (gene, inactive state; gene∗, active state). The gene* is
capable of transcription (or mRNA synthesis). Transition between these two states is

reversible and the total number of promoters is conserved, i.e. gene+ gene∗ = ng.
Transcription takes place from gene∗, and all the other reactions and constants are equal to

those in Figure 2.1.

The two states of the promoter considered are the inactive state of the gene, gene,

where transcription can not take place, and the active state, gene∗, that permits

the transcription activation. Transition between these two states is reversible and

total number of promoters is conserved, i.e. gene + gene∗ = ng, where ng is the

total number of gene copies.

Promoter Types

Three kinetic mechanisms of promoter transcriptional activation are distinguished

in this model Raser & O’Shea (2004).

• In case 1, the activation step is infrequent relative to transcription and the

active promoter state is stable. The rate constants of this first mechanism

are: ka, kd << kr, where ka is the activation rate of the promoter, kd the

deactivation rate, and kr the transcription rate.
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• In case 2, the activation is again infrequent, but a rapid reversion to the

inactive state and the active promoter state is unstable. The rate constants

in this second case satisfy: ka << kr and kd >> kr, which implies a

relatively infrequent to be in the active state of the promoter. The promoter

is more often in the inactive state than in the active one.

• In case 3, the activation step is frequent due to the rate constants: ka, kd >>

kr, but the promoter changes very quickly between different states. This

promoter is called prokaryotic. Because of the rapid rate constants of

activation/inactivation of the promoter, the transcription only occurs dur-

ing a fraction of the events that change the promoter from one state to

another. Moreover the model actually reduces to Simple Model considered

before. (See the promoter types summarized in table 2.1)

Table 2.1. Promoter types

Promoters Rate Relationships

Stable (1) ka, kd � kr
Unstable (2) ka � kr, kd � kr
Prokaryotic (3) ka, kd � kr

Promoter types with the respective rate constants; (ka is activation rate promoter constant,
kd is inactivation rate promoter constant, kr transcription).

In terms of molecular biology, in case of the stable promoter, the probability to

bind DNA* (active promoter state of the gene) and to begin the transcription is

higher than for the prokaryotic, because once a molecule is in the active state,

it takes more time until the reverse reaction is successful because the ratio for

this reverse reaction is small. Instead, for the prokaryotic promoter, when the

rates are larger there is more chance for DNA to go from one state to the other

without stopping for an interval of time in one place. Unstable promoter how-

ever is the case where the activation step is much smaller than the inactivation,

and consequently the promoter has smaller probability to be in the active state,

DNA*, in comparison to two other promoters.
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Stochastic Reactions for a General Model

This model has a total of six first-order reactions. The first four are equal to the

reactions from the Simple Model (in system 2.1), and two remaining reactions

corresponds to transitions between the two states of the gene.

These two new reactions are:

5) D
ka〈D〉−→ D∗

6) D∗
kd〈D∗〉−→ D

 Conversion reactions
(2.3)

DNA and DNA∗ are encoded by D and D∗, and 〈D〉, 〈D∗〉 are their respective

means. Then, the system of reactions that describes the General Model is a

described by the systems 2.1 - 2.3, where the species of interest are: DNA (gene

inactive), DNA∗ (gene active), mRNA and protein.

Deterministic equations (ODE’s) for a General Model

This system is described by the following rate equations:

dD∗

dt
= kaD − kdD∗

dM

dt
= krD

∗ − γrM

dP

dt
= kpM − γpP

(2.4)

where D and D∗ are the fractions of the available inactive and active gene copies

respectively. M and P are concentrations of mRNA and protein, respectively.

The other parameters are the same as in systems 2.2 and 2.3.
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Because the total number of genes is constant:

DT = D +D∗ ⇒ D = DT −D∗ (2.5)

we can compute D from this equation, where DT is the total number of gene

copies.

2.2 Models of post-transcriptional gene regula-

tion by MicroRNAs

In a basic microRNA-mediated post-transcription circuit a gene is regulated by a

microRNA. One miRNA has many (up to hundreds) target genes, but for simplic-

ity only one target will be considered to start with and will be described by two

models, the Simple-miRNA Model and the General-miRNA Model. Afterwards

the models that consider two targets will also be described and can be easily

extended to N targets. In fact, the models of two targets or N will be similar

to the one target model, in terms of the types of reactions, the reactants of the

system and parameters. But as the name indicates, the miRNA will have two

or more targets, wich implies nearly double reactions, reactants and parameters

for two targets, or much more of them for N targets, as well as interdependence

between the targets.

The miRNA can exert its regulating effect post-transcriptionally on the target (or

targets, but just one target will be considered for simplicity) on mRNA degrada-

tion and/or on protein translation (see Figure 2.3). These loci of miRNA action,

allocated on the post-transcriptional steps of gene expression, can be divided into

the three different modes of regulation described in Table 2.2 (see also Figure 2.3):

Case1, there is no miRNA neither in mRNA degradation or protein production;

Case2, there is miRNA but only in the degradation of mRNA; Case3, miRNA is

either present in mRNA degradation and protein production.
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Table 2.2. MiRNA cases by location

Location**
Cases No mRNA Protein

1 X
2 X
3 X X

The symbol X indicates if a column is contained or not in the case.
Location**: No → There is no presence of miRNA; mRNA → miRNA present in mRNA

decay; Protein → miRNA present in translation.

Therefore, when a transcript is a target of a specific miRNA, the rates of mRNA

degradation and translation are not longer independent of miRNA level and they

will be expressed by γ∗r and k∗p, respectively, where the symbol * denotes that they

depend on miRNA. In the previous section, these two rates for gene transcription

models were considered constant and defined as γr and kp.

Explicitly, miRNA enhances the rate of mRNA degradation and/or inhibits the

protein production rate. Plausible models for miRNA-mediated mRNA target

degradation assume that the rate of mRNA degradation depends linearly on the

miRNA level (Khanin & Vinciotti 2008),

γ∗r = γr(1 + d ·m) (2.6)

where d ≥ 0 is the miRNA-mediated fold-change in the target mRNA degradation

rate relative to the basal degradation rate, γr, which does not depend on miRNA.

MiRNA levels are described by m, number of miRNA molecules, though for the

models with one target different levels of miRNA are not considered (assump-

tion that the miRNA level is constant), and then m indicates whether miRNA is

present can be set to one if it is present without loss generality (and zero if it is

absent). If miRNA does not affect this target degradation rate, then d = 0, and

the mRNA degradation rate is γr.

The miRNA-mediated translational repression can be described by:
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k∗p =
kp

K + amm
(2.7)

where K is the half-saturation concentration or level of miRNA at which half

of the maximum effect (downregulation) is achieved. The other variable am

is Boolean and takes the values 0 or 1, depending if miRNA regulates mRNA

degradation (then it would be am = 0) or it regulates both rate constants:

mRNA decay and translation (being then am = 1). For convenience the trans-

lation rate, kp, that is in the numerator will be converted to kp · K, as follows

k∗p = kpK/(K + amm), thus if miRNA is not present m = 0 the translation rate

is kp.

2.2.1 1 mRNA target Model: Simple-miRNA Model

The Simple-miRNA Model is an implementation of the Simple Model with miRNA.

This model only adds the miRNA molecule to the Simple Model, and it considers

the changes of the relative rate constants affected for miRNA (see figure 2.3).

In particular, the model describes the process of miRNA-mediated regulation of

mRNA degradation and/or translation.

Stochastic Reactions for a Simple-miRNA Model

This model consists of four first-order reactions, the same ones as in the Simple

Model ( system 2.1) but with the rates of mRNA degradation and translation

being dependent on miRNA in the model.

The four reactions are the following:
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Figure 2.3. Simple-miRNA Model

This model is an implementation of the Simple Model, with miRNA. Transcription and
protein decay have associated the rates kr and γp respectively, as in the Simple Model. But
the rate constants affected by miRNA are mRNA degradation and protein production with

am=0,1 and the respective rates:

γ∗r = γr(1 + dm), k∗p =
kpK

K + amm
.

1) ∅ kr−→M
}

Production from a source

2) ∅
k∗p〈M〉−→ P

}
Catalytic production from a source

3) M
γ∗r 〈M〉−→ ∅

4) P
γp〈P 〉−→ ∅

 Degradation reactions

(2.8)

The only differences to the Simple Model in system (2.1) are the constants γ∗r ,

and k∗p of mRNA decay and protein production, because here they are dependent

on miRNA and defined as in 2.6 -2.7.

Deterministic equations (ODE’s) for a Simple-miRNA Model

The equations for this model are:
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dM

dt
= kr − γ∗rM

dP

dt
= k∗pM − γpP

(2.9)

where M and P are concentrations of mRNA and protein, respectively. The other

parameters are the same as in system 2.8.

2.2.2 1 mRNA target Model: General-miRNA Model

The General-miRNA Model is the implementation of the General Model with ad-

ditional miRNA effect. Or, it is an implementation of the Simple-miRNA Model

but adding a promoter with two states. Therefore, this model describes the pro-

cess of gene expression with two states of promoter and with miRNA-mediated

regulation of mRNA degradation and/or translation. Again, miRNA enhances

the rate of mRNA degradation and inhibits the protein production rate (see fig-

ure 2.4 for an ilustration of the model.)

Figure 2.4. General-miRNA Model

The two states of the gene’s promoter (gene, inactive state; gene∗, active state), such as
promoter from Figure 2.2. MiRNA actuates either in mRNA degradation and/or in

translation, with the same rates as Figure 2.3 such as transcription and protein decay that are
equal to the Simple-miRNA model.
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Stochastic Reactions for a General-miRNA Model

This model splits up in six first-order reactions in the same way as the General

Model. This system can be described by the combination of the reactions of the

Simple-miRNA Model and the reactions for transition between gene’s promoter

states. Then, the General-miRNA Model is defined as the combination of the

systems 2.8 -2.3.

Deterministic equations (ODE’s) for a General-miRNA Model

This system is described by the following rate equations:

dD∗

dt
= ka(1−D∗)− kdD∗

dM

dt
= krD

∗ − γ∗rM

dP

dt
= k∗pM − γpP

(2.10)

where D∗ is the fraction of the available active gene copies, and M and P are

concentrations of mRNA and protein, respectively. The parameters are the same

as in systems 2.8 -2.3.

(Note: Here the symbol * does not represent the same in all the terms, for D∗

represents gene in active state and for γ∗r , k
∗
p, constants dependent on miRNA.)

2.2.3 2 mRNA targets Model

In this section, the two mRNA targets model introduced describes miRNA-

mediated repression of two targets. Again for simplicity the models that will

be studied in this section will be reduced to simple but representative models of

one miRNA with two targets.

The Two mRNA targets Model illustrated in Figure 2.5 can be introduced as

a simple-double version of the Simple-miRNA model, ‘simple’ because now the
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production of protein that was in the Simple-miRNA model will not be consid-

ered and ‘double’ because miRNA has two targets. However, some more reactions

such as the production and degradation of miRNA will be taken into account,

and also the association and dissociation of the complex regulators of mRNA-

miRNA. This is required to study interdependency between the targets via a

common regulator, miRNA in this case, that controls both of them.

The Two mRNA targets Model from Figure 2.5 as we said before consid-

Figure 2.5. Two mRNA targets Model

MiRNA has two mRNA targets. This model considers miRNA production and degradation
with the respective rate constants pm, δm. Because there are two targets all the following

reactions are double with the associated rates: transcription of mRNA (rate constants: q1, q2),
mRNA decay (δ1, δ2), association and dissociation of mRNA-miRNA complex (denoted by

m∗
1, m∗

2 the complexes and with rate constants: β1, β2, β
−
1 , β

−
2 )), degradation of the

mRNA-miRNA complexes (δ∗1 , δ
∗
2), and the reaction from the mRNA-miRNA complex that

miRNA returns to the pool (δ∗1q, δ
∗
2q).

ers production and degradation of miRNA with the respective rate constants
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pm, δm. Because miRNA has two targets, mRNA1 and mRNA2, two transcrip-

tion rates are allocated for each production of mRNA with their respective rates

q1, q2, and two mRNA decays for each target (with rate δ1, δ2). In this model

the inclusion of miRNA binding to target mRNA, becoming a mRNA-miRNA

complex, denoted by m∗1 and m∗2 in the figure 2.5 are also taken into account.

Their rate constants for the association of these complexes are β1, β2, the rates

for the dissociations are β−1 , β
−
2 , and the rates for their respective degradations

are δ∗1, δ
∗
2. MiRNA exerts its downregulating effect on the targets by accelerating

the degradation rate of the complexes having δ∗1/δ1 > 1, δ∗2/δ2 > 1 (Khanin &

Higham 2009). In addition, miRNA returns to the cytoplasmic pool with the

constant rate q (δ∗1m
∗
1 + δ∗2m

∗
2), where q ≤ 1 is the miRNA turnover rate (Levine

et al. 2007).

In the previous miRNA models the level of miRNA m was assumed to be ei-

ther present (miRNA=1) or absent (miRNA=0). This is a step to make the

model more realistic, and it considers positive real numbers instead of just two

levels, for the values of miRNA molecules.

Stochastic Reactions for a 2 mRNA targets Model

This model splits up in six first-order and second-order reactions. The reactions

are described as follows:
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1) ∅ q1−→M1

2) ∅ q2−→M2

 Production from a source

3) M1
δ1〈M1〉−→ ∅

4) M2
δ2〈M2〉−→ ∅

 Degradation of mRNA

3) M1 +miRNA
β1〈M1〉〈miRNA〉−→ m∗1

4) M2 +miRNA
β2〈M2〉〈miRNA〉−→ m∗2

 Formation of complex

5) m∗1
β−1 〈m∗1〉−→ M1 +miRNA

6) m∗2
β−1 〈m∗2〉−→ M2 +miRNA

 Dissociation of complex

7) m∗1
δ∗1〈m∗1〉−→ ∅

8) m∗2
δ∗1〈m∗2〉−→ ∅

 Degradation of complex

9) m∗1
δ∗1q〈m∗1〉−→ miRNA

10) m∗2
δ∗1q〈m∗2〉−→ miRNA

 MicroRNA turnover from complex

11) ∅ pm−→ miRNA
}

Production from a source

12) miRNA
δm−→ ∅

}
Degradation of miRNA

(2.11)
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This large system represents the Two mRNA targets Model where the variables

M1,M2 encode the first mRNA and the second respectively; all the other ones,

plus the constants, have already been explained in the introduction of this section.

2.2.4 N mRNA targets Model

This model describes miRNA-mediated repression of many targets, and it is in-

troduced under the name of a Multi-step model of microRNA-mediated target

regulation in the recent work of Khanin & Higham (2009). In fact, the descrip-

tion for this model can be given taking the explanation for the Two mRNA targets

Model but generalizing to the N case. This means that for example two reactions

for production of each target, now will become N reactions. Similarly, for the

number of reactions of mRNA decays, miRNA complex association and dissoci-

ation, and all the other reactions that take place in the models of two targets.

This generalization to the N case includes many more similar type of reactions,

parameters and variables than before, increasing the degree of complexity and

the difficulty for any study of more than 2 targets. In addition, substantial ex-

perimental data is required for a realistic simulation of N targets simple. Rate

constants for each type of reaction should be sampled from empirical distribution

estimated from experimental observations. This data is just becoming available.

For this reason, the N targets model is only introduced in this thesis. It is shown

that given sufficient experimental data one can easily extend the two targets

model to the N targets case.

In particular, for a system of N targets the number of variables is 2N + 1 given

by N mRNA targets (m1, . . . ,mN), N mRNA-miRNA complexes (m∗1, . . . ,m
∗
N),

and miRNA. The number of reactions that take place is 6N + 2. To see more

easily from where this number appears we decompose it in 2N +2N +N +N +2,

where the first 2N comes from the production and decay of the targets, the next

2N from the bindings and unbindings of miRNA-mRNA to form and dissociate

the complexes, the next N for the complex decays, N more of miRNA returning

to the pool, and the last 2 from the production and miRNA decay. All these

reactions and variables will give a high computational cost for any simulation
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carried on.

The N mRNA targets Model is closer to the idea of how the biological systems

works. Modelling a realistic system, that includes a large amount of targets,

one can study the effect of miRNA over the different targets, how many miRNA

molecules bind mRNA and how many do not, whether groups of genes can be

classified depending on these bindings, whether and how the miRNA levels de-

crease, how this is affected globally by the noise produced, and lots of other

things that escape from the work presented in this thesis. But this can be a very

interesting future work, with all the introductory explanations given here.



Chapter 3

The Methodology

3.1 Introduction & Aims

One accurate way to study the biological problem, and take into account all the

stochastic reactions and changes that the biological system experiences over time,

it is tracking each of the molecules of the different reactants over time. In this

study we use both Numerical Simulations and Analytical Analysis, and we com-

pare the results.

Principally for the Numerical Analysis, three stochastic simulations have been

used: Stochastic Simulation Algorithm (or SSA for short) as described in the

work by Higham (2007), simulating the system with randomly different reac-

tions, one by one at a time, in the process of gene expression, and for differ-

ent times; Langevin Equation, as used in Gillespie (2000), Khanin & Higham

(2008), Higham & Khanin (2008), which replaces the massive ODE system used

in the Chemical Master Equation (Higham 2007) with a small stochastic dif-

ferential equation system that is more amenable to computation; and the Tau-

Leaping Method (Gillespie 2001) that approximately advances the process by a

pre-selected time τ , which may encompass more than one reaction event. Finally,

an example of dimerization is simulated by the three methods to compare their

results.

25



CHAPTER 3. THE METHODOLOGY 26

Two studies were carried out analytically. Both of these methods use the Chemi-

cal Master Equation (Higham 2007) or CME for short, which gives the probability

of change from a state n (where the number of molecules for each reactant, each

random variable, are specified for these state n), over time. The first method uses

the Generating Function Approach to find the means and the variances for the

variables in the study. The second method, for systems where the reactions are

only unimolecular uses a general formula given in the recent study of (Gadgil et

al. 2005), to easily calculate the moments of the Master Equation. Examples for

a Simple model and a General model are also studied in the Analytical section

and the two methods are compared.

The aim of this chapter is to accurately describe the different methods carried

out for the study of the different models.

3.2 Numerical Analysis

Let X be a chemical reacting system consisting of N molecular species S1, . . . , SN ,

and with M chemical reaction channels R1, . . . , RN . Let Xi(t) denote the number

of molecules of the species Si at time t, that describes the state of the system

at time t. Let I=1,. . ., N and J=1,. . ., M be respectively, the sets of indexes

over the species and the reactions channels sets. Our goal is to estimate the state

vector X (t) ≡ (X1(t), . . . , XN(t)), given that the system was in state X (t0) = x0

at some initial time t0.

Each reaction channel Rj represents an instantaneous physical event that changes

the population of at least one reactant specie, and is characterized by its state

change vector νj ≡ ν1j, . . . , νNj and by its propensity function aj; where νij is

called the stoichiometric matrix that denotes the change in Xi caused by one Rj

event and aj(x)dt, given the system is in state X (t) = x, is the probability that

a reaction Rj occurs in the infinitessimal interval [t, t+ dt).
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The propensity function is defined as:

aj(x) = hj(x)cj, (3.1)

where hj(x) is the number of distinct reactant molecules combinations, whose

function is calculated differently depending of the type of reaction associated

(i.e. first order, second order, or dimerization), and cj is the rate constant of Rj.

Examples:

1. S1
cj−→ S2 : νj = (−1, 1, 0, . . . , 0); aj(x)dt = (cjdt)× x1 ⇒ aj(x) = cjx1

2. S1 + S2
cj−→ 2S2 : νj = (−1, 1, 0, . . . , 0); aj(x)dt = (cjdt)× x1x2 ⇒ aj(x) = cjx1x2

3.2.1 Stochastic Simulation Algorithm (SSA)

Background

The Stochastic Simulation Algorithm, also known as the Gillespie Algorithm, has

been employed extensively for numerically solving the chemical master equation

(Gillespie 1992) and to study the evolution of chemically reacting systems. This

method was developed by Gillespie (Gillespie 1976).

The SSA is a discrete and exact procedure. It is ‘discrete’ in the sense that

every reaction is individually simulated, one molecule at a time, implying that

X (t) is always represented by a non-negative integer random variable (number of

molecules), and ‘exact’ because it is based on computing realisations of the state

vector under the same microphysical hypothesis as the chemical master equation

(CME). Thus, using the stochastic simulation algorithm for a system is equiva-

lent to solving the Chemical Master Equation for the system, but the difference

is that this algorithm computes single realisations of the state vector rather than

an entire probability distribution from the CME, which is commonly impossible

to solve for most practical problems.

The aim of this algorithm is to draw two random numbers at each time step,
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one denoting the next reaction index and the other to determine the time of the

next reaction. But because every reaction event is exactly simulated, this pro-

cedure exposes the problem that it is computationally very expensive for large

populations of some chemical species and for fast reactions involved in the system.

The Method

We assume the system to be “well-stirred” (spatially uniform) and restricted to

some constant volume Ω at a constant temperature.

The SSA simulates the system’s trajectories of X(t) by random reactions gen-

erating at each step two random numbers, one representing the number of the

next reaction, and the second for the time at which the next reaction will appear

[Gillespie (2007); Higham (2007)].

To generate X(t), a starting point to develop the method of SSA is the probabil-

ity function p(τ, j|x, t)dτ , which denotes the probability that the next reaction

jth occurs over the infinitesimal interval [t + τ ,t + τ + dτ), given X(t)=x. It is

defined as follows:

p(τ, j|x, t) = P0(τ |x, t)aj(x)dτ, (3.2)

where aj(x)dτ is the probability that the jth reaction takes place in the infinites-

imal interval dτ , and P0(τ |x, t) is the probability that no reaction happens in

[t,t+ τ). Applying the laws of probability, P0 is defined as

P0(τ |x, t) = exp(−a0(x)τ), (3.3)

where

a0(x) =
∑M

j=1 aj(x). (3.4)
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Thus, the initial probability derives to the joint density function for two random

variables τ and j, given by

p(τ, j|x, t) = aj(x)exp(−a0(x)τ). (3.5)

It allows us to simulate independently the two random variables, implying that τ ,

time until next reaction occurs, is an exponential random variable with mean

(and standard deviation) 1/a0(x), while j, next reaction index, is a statistically

independent integer random variable with point probabilities aj(x)/a0(x). One

of the Monte Carlo procedures for generating samples of these two variables is

the so-called direct method, and it consists in: draw two random numbers r1 and

r2 from the uniform distribution in the unit interval, and take

τ =
1

a0(x)
ln(

1

r1
) (3.6)

j = the smallest integer satisfying

j∑
k=1

(ak(x) > r2a0(x). (3.7)

Finally, the jump to the next state in the system can be effectuated:

X(t+ τ) = X(t) + νj.
(3.8)

Summary

The Gillespie’s algorithm can be summarized as follows:

1. Compute aj(x), ∀j=1, . . . ,M, and a0(x)

Evaluate the M propensity functions aj(x) and their sum a0(x) from Eq.

3.4.

2. Generate r1 and r2

Generate two numbers from the uniform distribution in the unit-interval.

3. Compute τ

Set the time for the next reaction in Eq. 3.6, using the uniform sampled

variable r1.
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4. Compute j

Set the index of the next reaction satisfying Eq. 3.7, using r2.

5. Update the system

Update the system substituting t ← t + τ and x← x + νj (equivalent to

Eq. 3.8).

In practice, after the last step, we return to the first step to keep on updating

the system, or stop in the case that t has passed a specified value related to the

number of iterations that have been taken.

3.2.2 Chemical Langevin Equation

Background

Another stochastic method to describe the time-evolution of a chemical reacting

system is the approximating Chemical Langevin Equation (CLE). It was intro-

duced to accelerate the Gillespie Algorithm, replacing the massive ODE’s system

of the CME by stochastic differential equations (SDEs).

The CLE is a continous stochastic process, in the sense that the state-vectors

that represent the molecular evolution of the system over time are given by real

values in contrast to the non-negative integer values obtained with the SSA. The

system X is represented by a set of nonlinear, autonomous SDEs, with one SDE

for each chemical species. The solution of the jth equation will represent in num-

ber of molecules the amount of the jth specie at time t.

This representation by SDEs of the system reduces the number of components

in the system allowing for gain in acceleration. However there is lost of accuracy

in the results, because the discrete value variables obtained with the previous

method are now given by real numbers.
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The Method

In the CLE the chemical reacting system will be represented by X (t). Also the

amount of species i that the system has at time t is represented by a real-valued

random variable, Xi(t), in contrast to the non-negative integer variables that

represented the SSA.

The Stochastic differential equation that describes the system evolution in CLE

takes the form of an Ito’s equation:

dXi(t)

dt
=

M∑
j=1

νjiaj(X(t)) +
M∑
j=1

νji

√
aj(X(t))Wj(t), (i = 1, . . . , N) (3.9)

where Wj(t), for j = 1, . . . ,M are independent scalar Brownian motions.

As explained in Gillespie (2000), an equivalent equation to this “white-noise

form” of Langevin equation (eq.3.9) is the following expression

Xi(t+ dt) = Xi(t) +
M∑
j=1

νjiaj(X(t))dt+
M∑
j=1

νji

√
aj(X(t))dtNj(t)

= Xi(t) +
M∑
j=1

νji

(
aj(X(t))dt+

√
aj(X(t))dtNj(t)

)
, (i = 1, . . . , N)

which is precisely a discretization of the continuous time problem (from eq.3.9).

Where dt can be substituted by τ (just for a change on notation) and Nj(t) is

the “unit normal” random variable Nj(0, 1). The τ is an arbitrary positive value

that satisfies the following two conditions (Gillespie 2000):

• Condition 1: τ will be small enough that no propensity function aj(x)

suffers an “appreciable” change in its value.

• Condition 2: τ will be large enough that the expected number of reactions

aj(x)τ for each type Rj firing in the interval [t+ t+ τ ] is larger than 1.
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Obtaining then the new state of the system:

Xi(t+ τ) = Xi(t) +
M∑
j=1

νji

(
aj(X(t))τ +

√
aj(X(t))τNj(t)

)
, (3.10)

(i = 1, . . . , N).

In fact, the above equation is similar to the one obtained by the method of

τ -leaping but with kj, number of Rj reactions that occur in a duration τ if

its propensity function remained constant at the value aj(x(t)), being a normal

random variable instead of a Poisson. So we are saying that

kj = aj(X(t))τ +
√
aj(X(t))τNj(t), (i = 1, . . . , N) (3.11)

is a variable from a Normal distribution with mean and variance aj(X(t))τ ,

when for the method τ -leaping this variable is drawn from Poisson distribution

Pj(aj(x(t)), τ). This is because different assumptions motivate these methods –

for τ -leaping each aj(x(t)) will have a relatively small change over [t, t+ τ), when

for Langevin equation the following assumption holds each aj(x(t))τ is large.

From the probability theory it is known that a Poisson random variable with

large mean is well approximated by a normal random variable with equal mean

and variance.

Finally the state-vector can be updated by the simplified expression of

Xi(t+ τ) = Xi(t) +
M∑
j=1

νjikj (i = 1, . . . , N). (3.12)

Summary

The steps to carry on with the method of CLE are summarised as follows:

1. Compute aj(x), ∀j=1, . . . ,M, and a0(x)

Evaluate the M propensity functions aj(x) and their sum a0(x) =
∑M

j=1 aj(x).
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2. Compute rj, ∀j=1, . . . ,M

Sample N random normal numbers from Nj(0, 1).

3. Compute Kj(x(t), τ)

Compute the N random variables Kj from Eq. 3.11 using the sample of

the previous step.

4. Update the system

The system is updated by incrementing the time by τ and evaluating the

new state X(t + τ) with Eq. 3.12.

This algorithm repeats itself from step 1 to 4 while t does not overpass the

pre-determined number of steps fixed by the user.

3.2.3 Tau-Leaping Method

Background

The τ -leaping method (or TL for short) was introduced by Gillespie (2001) to de-

scribe approximately the stochastic time evolution of chemical reacting systems.

It was introduced in order to speed up the Gillespie’s SSA, with the basic idea of

advancing the system by a pre-selected time τ during which many reactions occur.

The computer times required to simulate numerically chemical reacting system

over time with exact procedures such as SSA tend to be prohibitively long if

the molecular populations of at least some of the reactant species are very large

and/or some of the reactions are very fast.

The τ -leaping method chooses the time increment of the simulation steps in

a manner that the propensity functions do not suffer any appreciable change in

its value, during the entire interval [t, t + τ ]; this is called the Leap Condition.

It determines how many times each reaction channel fires in this time and leaps

from one subinterval to the next, instead of stepping along from one to other

reaction. This approximation, as well as the Chemical Langevin Equation, can

produce acceptable losses in accuracy but produces significant gains in simulation

speed at the same time.
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The Method

To set up the X(t) = x states of the system over time, the intervals of time

through which this method leaps over are chosen first. Then the number of dif-

ferent reactions kj, for all j=1,..,M (where M is the number of reactions types)

that will occur within the intervals are computed.

The choice of the interval consists of choosing a τ , for the interval [t, t+ τ ], that

is neither ‘too big’ nor ‘too small’. By not ‘too big’ this means that τ satisfies the

Leap Condition (Gillespie (2001), page 1719), and ‘too small’ refers to duration

of τ , that at least, many reaction events occur (Gillespie 2001); see also Higham

(2007). As there are at least two and usually many reactions in a time interval,

the TL has significant gains in acceleration over the SSA method, which moves

one time step along reaction by reaction. If the acceleration is not significant –

this is the case when TL does not include more than one reaction firing in the in-

terval – and taking into account that TL is an approximate procedure, then it will

be better to use the exact procedure of SSA, even if it fires only one reaction per τ .

This last condition, about the small size of τ , can be controlled by low bounding

τ by 2/a0(x) (Gillespie (2001), page 1721). Since the expected time to the next

reaction in the SSA is 1/a0(x), then if

τ ≤ 2
a0(x)

, (3.13)

where the numerator could arguably be replaced by anything between 1 and 10,

it will be inefficient to use τ -leaping. Thus, the τ selected will be supplemented

by the tau-leaping method for the exact SSA instead.

For each different state of the system X(t), τ will be chosen so that satisfies

the leap Condition and the bounding by 2/a0(x). Once τ is calculated, the num-

ber of reactions of each type Rj will be kj, and approximated by Pj(aj(x)τ),

a statistically independent Poisson random variable with mean aj(x)τ (where

aj(x)τ is interpreted as the probability that one Rj event will occur in the next

τ time units).
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Equations for TL following the method of Gillespie (2001)

Thus, the expression of the number of firings for each type of reaction Rj is given

by

kj = Pj(aj(x)τ), ∀j=1, . . . ,M. (3.14)

The next state of the system will be determined by λ, and replaced by

X(t+ τ)→ X(t) + λ,

where the expected net change in state in [t,t+ τ) will be

λ̄ ≡ λ̄(x, τ) = ΣM
j=1[aj(x)τ ]νj = τξ(x), (3.15)

thus ξ(x) is defined as

ξ(x) ≡ ΣM
j=1[aj(x)νj], (3.16)

ξ(x) can be interpreted as the mean or expected state change in a unit of time.

Once λ is computed, the problem of ensuring that λ will not exhaust any of

the reactants driving them to a negative population appears. Different resolu-

tions of this problem have been studied and published, one of them can be found

in Cao et al. (2005), which introduces a control parameter that classifies as “crit-

ical” any reaction Rj that is in danger of exhausting any of its reactants. Besides

these resolutions, a simple encoding version in Matlab (numerical computing en-

vironment and programming language) is shown in this project, and it consists

in recalculating λ until the obtained value does not exhaust the reactant. Thus,

λ satysfies:

λ(i) + X(i) ≥ 0, ∀j=1, . . . ,N. (3.17)

If this condition is not satisfied, λ and τ are set up to zero in the manner that

there is no leap and neither a new state for the system. Everything is recalculated
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again from the beginning.

Finally, the largest value of τ that is consistent with the Leap condition, and

hence the optimal choice for τ given the value chosen for ε (0 < ε < 1), is

τ = Minjε[1,M ]{εa0(x)/|
∑N

i=1 ξi(x)bji(x)|} (3.18)

where bji(x) and a0(x) are

bji(x) =
∂aj(x)

∂xi
(j=1, . . .,M; i=1,. . .,N) (3.19)

a0(x) =
M∑
j=1

aj(x). (3.20)

So finally the leap condition is executed, and with τ and kj the new values

of time and state are calculated updating the system as follows:

t → t+ τ

x → x + λ.
(3.21)

Summary

Overall, the steps of the tau-leaping method can be summarized as follows:

1. Compute τ

(a) Compute aj(x), ∀j=1, . . . ,M, and a0(x)

Evaluate the M propensity functions aj(x) and their sum a0(x) (sum

in Eq. 3.20)

(b) Compute bji(x), ∀j=1, . . . ,M, ∀i=1, . . . ,N

Compute the MN partial derivatives bji in Eq. 3.19

(c) Compute ξ(x) and find τ

Compute the N dimension vector ξ from Eq. 3.16 to find the smallest
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of the M ratios from Eq. 3.18

(d) Evaluate τ boundary condition

If τ satisfies Eq. 3.13 then reject it and execute instead SSA. Else if τ

is larger than 2/a0(x), then accept it and proceed to next step.

2. Sample kj and compute λ, ∀j=1, . . . ,M

Generate the M sample value kj of the Poisson random variable from Eq.

3.14 and compute the N dimension vector λ in Eq. 3.15.

If λ(i) does not satisfy Eq. 3.17 move backwards and come back to step 1,

but if it satisfies the condition proceed to next step.

3. Effectuate leap condition.

Effectuate the leap condition in Eq. 3.21

The system can keep being updated by the leap condition repeating this algorithm

several times until the number of steps of the iteration, fixed by the user, is

overtaken.

3.2.4 Example of Dimerization: Comparison within Meth-

ods

The purpose of this section is to simulate an example of dimerization, already

studied in the work of Khanin & Higham (2008) but with a slightly different ob-

jective here, which is to show that for three different numerical techniques – the

methods of SSA, Langevin and Tau-leaping – the means and theirs confidence

intervals (CIs) match.

Dimerization is the process where proteins produced from mRNA combine to

form complexes. This process can be complex so to simplify things, the model is

reduced to protein that are produced from a source and possible reversibility of

dimerization is ignored.
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The stochastic reactions that describe this simple dimer model are the follow-

ing:

1) ∅ k1−→ P

2) P + P
ka−→ P2

3) P
γp−→ ∅

4) P2

γp2−→ ∅

where P encodes the protein monomer and P2 the protein dimer, the respective

propensity functions for each reaction are:

a1 = k1

a2 = ka

a3 = γpP

a4 = γp2P2

The aim is to test whether the results match, or are approximate enough, when

comparing between the three different numerical methods: SSA, CLE and Tau-

Leaping frameworks. The implemented code for the Tau-Leaping in Matlab (for

this model) introduced in this project is described in Appendix A.

Proceeding computationally the constants and initial values of P and P2 are

also taken from the example given in Khanin & Higham (2008). The rates are

k1 = 5, ka = 0.01, γp = 0.1 and γp2 = 0.01, with the molecular initial data of

P(0)=10 and P2(0) = 2, and time interval of 0 ≤ t ≤ 20. Computing the simula-

tions by the three methods over K = 104 paths, we computed the sample means

approximations and confidence intervals for P and P2. The step size used in the

CLE is 20/500 = 0.04, and the ε used in Tau-Leaping is 0.04 because it is the

value recommended in Gillespie (2007). The results are given in Table 3.1, which

contains the 95% confidence intervals for each sample mean.
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Table 3.1. 95% confidence intervals for the monomers and dimers by the different
methods

P P2 time

SSA [17.8, 18.0] [27.8, 28.1] 18.1sec
CLE [17.8, 18.0] [27.9, 28.1] 13.8sec
TAU [18.0, 18.2] [24.1, 24.4] 2.47min

The results of the 95% CIs of the means of P and P2 at time t=20 are given by the methods
of SSA, CLE and Tau-Leaping. The CLE uses stepsize 20/500 = 0.04 and Tau-Leaping uses ε

of 0.04.

From Table 3.1, we see that the SSA and CLE confidence intervals overlap for

both monomer and dimer protein. Meanwhile with Tau-leaping they only overlap

for the monomer. The explanation of the bias error given by the results of P2 for

Tau-leaping with the other two methods depends partly on the accuracy param-

eter of ε taken. Where if the error with which the user sets up the tau-leaping

for the simulation is getting smaller (closer to zero) the approximation will be

also closer to the results obtained by SSA. However, the fact that this limit is not

exactly the same is not relevant, because the gain in time when the simulation of

tau-leaping is applied is worthwhile when it allows reasonably large step sizes to

be used. Even though in this example, the dimer model with the chosen initial

number of molecules and other parameters does not accelerate the method of SSA.

Table 3.2 shows the accuracy of the Tau-leaping method for different values of ε

for the same variables P and P2. This is just a sample of how the variation of

the accuracy error can change the different values of the results. The relevant

thing is that in order to gain more accuracy (i.e. smaller error) the simulation

becomes computationally expensive, but because one of the objectives of using

Tau-leaping is to accelerate the SSA, practically some lose accuracy is allowed

for in order to be able to spend less time in the simulation.
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Table 3.2. 95% confidence intervals for the monomers and dimers by different ε
using Tau-leaping

ε 0.9 0.5 0.09 0.05 0.009 0.005
P [31.3 31.9] [15.1, 15.4] [17.9, 18.1] [18.0, 18.2] [17.9, 18.0] [17.8, 18.0]
P2 [27.4, 27.8] [23.4, 23.7] [20.3, 20.7] [22.0, 22.4] [27.2, 27.4] [27.7, 27.9]

95% CIs of the means of P and P2 at time t=20 for several values of ε using Tau-Leaping. And
when the ε is getting smaller the approximation to the results of SSA (Table 3.1) the results
are more similar and accurate.

Table 3.2 shows that the first two ε the results are very different of the results

of SSA for the monomer P, even though they seem more accurate for the dimer.

Thus it can be concluded that for this example to have some accurate results,

the bounds of ε will have to be between 0 and 0.5 instead of between 0 and 1

as it is defined in the section of the Tau-Leaping method.

Finally the conclusions are:

1. The simulations of SSA, CLE and Tau-Leaping match the results closely

for a very simple dimer model, with an allowance of accuracy error in Tau-

Leaping of 0.04.

2. For the dimer model, the CLE accelerates the SSA, whereas Tau-Leaping

is not under the best conditions in terms of number of molecules and/or

parameters of the system to accelerate the method of Gillespie.

3. When the error of accuracy for Tau-leaping gets smaller, the limit of the

protein levels becomes closer to the results given by SSA.
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3.3 Analytical Analysis

In this section two analytical methods are described, the Probability Generating

Function and the method developed by Gadgil et al (2005). Both methods at-

tempt to solve the Chemical Master Equation (or CME for short (Higham 2007))

by alternative techniques. The Master Equation cannot be solved analytically

except for a small number of specific simple systems, that is why other methods

have to be applied.

The noise in the stochastic variables of interest q, noise strength, is usually

measured by either the Fano factor or the coefficient of variation. Until recently

the standard measure was the coefficient of variation (CV) defined as follows:

CV = δq/〈q〉 (3.22)

where δq is standard deviation and 〈q〉 is the mean. The CV is used as a measure

of noise in Elowitz et al. (2002), Swain et al. (2002) and Raser & O’Shea (2004).

The second measure, the Fano factor ν, is defined as the ratio between the

variance and the mean:

ν = δq2/〈q〉 (3.23)

introduced by Thattai & van Oudenaarden (2001), and used in Blake et al. (2003)

and Ozbudak et al. (2002). As the definition shows, the Fano factor of an arbi-

trary stochastic system is related to the standard deviation and reveals deviations

from Poissonian behavior. This measure of noise is sensitive and will be used prin-

cipally in all the studies in this project.

It must be noted however that the use of different measures of noise may lead

to different conclusions concerning the importance of noise in underlying process

(Swain et al. 2002).
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3.3.1 Probability Generating Function

Background

The Generating Function Approach (Takasu 2005) is used in this thesis to analyse

the CME. The idea is to calculate the mean and the variance for all the reactant

variables of the system. This will be carried out by deriving the equations for

the first and second moments of their distributions. The advantage of the prob-

ability generating function is that it provides an analytical solution whereas

generally the CME does not, thus enabling the calculation of the probability dis-

tribution function for the distribution of each reactant in such systems.

The probability generating function is associated with a probability distribution

Pn(t), defined as:

G(z, t) =
∑

n Pn(t)zn

Some of the properties of this function are given as follows:

1. Substituting z = 1 in G :

G(z, t)|z=1 =
∑
n

Pn(t)1n = 1. (3.24)

2. Differentiating G respect to z, and substituting z = 1:

∂

∂z
G(z, t)

∣∣∣∣
z=1

=
∑
n

nPn(t)1n−1 = < n > (3.25)

where < n > is the mean of the reactant variable n.

3. Differentiating G respect to z twice, and substituting z = 1:

∂2

∂z2
G(z, t)

∣∣∣∣
z=1

=
∑
n

n(n− 1)Pn(t)1n−2 = < n2 > − < n >(3.26)
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At this point we observe that the property (2), first-order moment of the prob-

ability generating function G, gives already the mean of the reactant variable

n. While the property (3), the second-order moment of G, gives an expression

that is different but very close to the formula for the variance of n (Eq. 3.27), in

the sense that contains also terms of < n2 > and < n > like the variance formula.

So, recalling the formula for the variance:

V ar[n] = < n2 > − < n >2 (3.27)

we observe that property (3) given by Eq. 3.26, second-order moment of G, is

quite close to be equal to the expected formula of the variance of the variable n.

So, a quadratic function of < n > differ from these two equations 3.27 and 3.26,

which is the following:

< n > − < n >2 = V ar[n]−
(
∂2

∂z2
G(z, t)

∣∣∣∣
z=1

)
. (3.28)

Therefore, we can rewrite now the formula of the variance just in terms of G :

V ar[n] =
∂2

∂z2
G(z, t)

∣∣∣∣
z=1

+ < n > − < n >2 (3.29)

=

{
∂2

∂z2
G(z, t) +

∂

∂z
G(z, t) +

(
∂

∂z
G(z, t)

)2
}∣∣∣∣∣

z=1

. (3.30)

In fact, this is a result from standard statistical theory that links probability gen-

erating function to the moments of the random variable. Thus, the variance of

the random variable n has also been expressed in terms of G, as we did previously

with the mean.
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This shows that if we can obtain the probability generating function, and solve

its first and second-order moments, then we can calculate easily the mean and

variance of n.

The Method

To obtain the probability generating function, G, we need to write down the

CME, that involves all the different reactions (see Gadgil et al. (2005) for ex-

planation about how to build the CME). The probability generating function is

called on the second step and it has to be written down in concordance with the

number of variables that the system has. The next step involves substitution of

the CME in the previous expression. To obtain the term dP
dt

(of the CME ex-

pression) requires differentiating both sides of the equation with respect to time.

After that, the expression have to be manipulated until dG
dt

depends only on terms

of G, instead of P.

The aim is to study the properties of the system at steady-state that is when

the system has no changes over time (or the minimum changes). Therefore, the

expression of the variation of the function G over time is set up to 0 and written

as follows, dG
dt

= 0. From this point differentiating with respect to the different

variables once and twice the last expression, the first and second moments for all

the variables respectively can be found. Finally, using the properties (2) and (3)

explained in the section 3.3.1, the means and variances of the different variables

of the system are computed, and the Fano factor is obtained.

Summary

The Probability Generating Function method can be summarized as follows:

1. Write down the Master equation.

2. Call G (Generating Function) and differenciate w.r.t time.

3. Substitute the Master Equation in G.

4. Simplify the equation just in terms of G.
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5. Put at steady-state ⇒ ∂G
∂t

= 0.

6. Find the partial derivatives 1st and 2nd order (for all zi).

7. Find out the 1st and 2nd moments.

8. Set up: zi = 1,∀ i (where zi are the species).

9. Give an expression for E[zi] and Var[zi].

10. Find the Fano factor.

3.3.2 Gadgil et al

Background

A recent paper published in the Bulletin of Mathematical Biology Gadgil et al.

(2005) describes the general methodology for biological systems that contain only

first-order reactions. Here their method is applied to the study of gene expression

(basically in one mRNA target models, because all the reactions are of first-order).

The method of Gadgil et al. (2005) is based on using a general formula to easily

calculate the moments of the Master Equation. Thus, this method is more simple

than the method of the Generating Function Approach, because it only consists

in writing correctly matrices for the rate constants and later doing algebraic op-

erations instead of having to introduce the CME.

Table 3.3 classifies the first-order reactions in four groups corresponding to the

following reactions: production from a constant source, degradation, conversion

to another species, and production catalyzed by another species. The rate con-

stants associated to each reaction type help to define later the incidence matrices

for the different reaction types.

Method

The method is based on applying the formulas for the first and second-order mo-

ments matrices given in the paper of Gadgil et al. (2005). This requires defining
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Table 3.3. The four classes of first-order reactions considered in the stochastic
model

Label Type of reaction Reaction Rate

I Production from a source ∅ −→Mi ksi
II Degradation Mi −→ ∅ kdi ni
III Conversion Mj −→Mi kconij nj

IV Catalytic production from a source ∅
Mj−→Mi kcatij nj

This table shows the classification of the first-order reactions (Gadgil et al. 2005) with their
associated rate constants.

a priori the matrices of the rate-constants that are also used to compute these

formulas. With the first-order moments the means of the reactants are already

given (see Eq. 3.25), and with the second-order moments the variances can be

easily found, as the computation requires just another additional step, that is

explained in the following paragraph.

Four matrices that correspond to different reaction types, one for each type,

are given as follows: Ks = diag{ksi }, Kd = diag{kdi }, Kcat = kcatij and Kcon that

is defined as

Kcon
ij =


kconij if i 6= j

−
∑′

k k
con
ij if i 6= j.

(3.31)

The first-order moments matrix is computed by the following system of equations:

d

dt
M(t) = (Kcon +Kcat −Kd)M(t) +Ks1 (3.32)

= KM(t) +Ks1, (3.33)

where M(t) = [E[N1(t)], . . . , E[NS(t)]]T and K is defined by the second equality.
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The matrix containing the second-order moments is:

d

dt
V (t) = KV (t) + (KV (t))T + Γ(t) + ΓT (t), (3.34)

where Γij(t) ≡ (Kcat
ij −Ks

ii)Mj(t).

So, the second-order moments are already computed and the last step involves

computation the variances, that follow from the second-order moments. This

step requires adding the mean and subtracting the squared mean of each reac-

tant to the corresponding second-order moments. Their variances are obtained

as explained by Eq. 3.29.

Finally the Fano Factor for each reactant is calculated by dividing the variance

by the mean.

Summary

The method of Gadgil et al. (2005) can be summarized as follows:

1. Set up the rate matrices: Ks, Kd, Kcat and Kcon.

2. Compute K (where K = Kcon +Kcat −Kd, from Eq. 3.32 and 3.33).

3. Find out the means of the different reactants with the first-order moments

matrix (Eq. 3.33).

4. Find out the second-order moments matrix (Eq. 3.34).

5. Compute the variances from Eq. 3.29.

6. Find the Fano factor.

3.3.3 Example of General Model: Gadgil et al

The General model can be separated in six first-order reactions, given by the

systems 2.1 and 2.3 in Chapter 2. There are four species of interest: DNA,
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DNA*, mRNA and protein (encoded by D, D∗, M and P, respectively). To

apply Gadgil et al, first of all, we define the vector of the means, M(t), that will

be:

M(t) = [E[D],E[D∗],E[M ],E[P ]]

.

Furthermore, because we have four species (D, D∗, M and P) the matrices of the

rate constants have dimensions 4x4:

Ks =


0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 ; Kd =


0 0 0 0

0 0 0 0

0 0 γr 0

0 0 0 γp

 ;

Kcon =


−ka kb 0 0

ka −kb 0 0

0 0 0 0

0 0 0 0

 ; Kcat =


0 0 0 0

0 0 0 0

0 kr 0 0

0 0 kp 0

 .

Then, K is defined as K = (Kcon +Kcat −Kd):

K =


−ka kb 0 0

ka −kb 0 0

0 kr −γr 0

0 0 kp −γp

 .

Thus, the first-order moment matrix is calculated by Eq. 3.33,


d
dt
E[D]

d
dt
E[D∗]

d
dt
E[M ]
d
dt
E[P ]

 =


−ka kb 0 0

ka −kb 0 0

0 kr −γr 0

0 0 kp −γp

 ·


E[D]

E[D∗]

E[M ]

E[P ]
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Set the system at steady-state by putting
(
d
dt
M(t) = ~0

)
:


0

0

0

0

 =


−ka kb 0 0

ka −kb 0 0

0 kr −γr 0

0 0 kp −γp

 ·


E[D]

E[D∗]

E[M ]

E[P ]

 ⇒



E[D] =
kd
ka
E[D∗]

E[D∗] =
ka
kd
E[D]

E[M ] =
kr
γr
E[D∗]

E[P ] =
kp
γp
E[M ]

The first and second equations, in the above system, are linearly dependent (i.e.

they give the same results). Thus, removing the first equation and using Eq. 2.5

(from Chapter 2), the system of solutions is reduced to:

E[D∗] =
kaDT

ka + kd

E[M ] =
kr
γr
E[D∗]

E[P ] =
kp
γp
E[M ]

(3.35)

This system represents the solutions of the first-order moments (reactant means),

where DT is the total number of gene copies.

The next step is finding the second-order moments by the following formula (Eq.

3.34):
d
dt
V (t) = KV (t) + (KV (t))T + Γ(t) + ΓT (t), where Γij(t) ≡ (Kcat

ij −Ks
ii)Mj(t).

First of all, the second-order moment matrix with the correlations is defined
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is as follows,

V (t) :=


E[D2 −D] E[DD∗] E[DM ] E[DP ]

E[D∗D] E[D∗2 −D∗] E[D∗M ] E[D∗P ]

E[MD] E[MD∗] E[M2 −M ] E[MP ]

E[PD] E[PD∗] E[PM ] E[P 2 − P ]

(3.36)

It must be noted, however, that this matrix is symmetric. For example: E[DD∗] =

E[D∗D] or E[DM ] = E[MD]. Thus, to make the notation simpler, the matrix

V (t) is rewritten as follows,

V (t) =


v11 v12 v13 v14

v21 v22 v23 v24

v31 v32 v33 v34

v41 v42 v43 v44

 and
by symmetry−−−−−−−→


v11 v12 v13 v14

v12 v22 v23 v24

v13 v23 v33 v34

v14 v24 v34 v44

(3.37)

The term KV (t) results in:

KV (t) =


−kav11 + kdv12 −kav12 + kdv22 −kav13 + kdv23 −kav14 + kdv24

kav11 − kdv12 kav12 + kdv22 kav13 − kdv23 kav14 + kdv24

krv21 − γrv13 krv22 − γrv23 krv23 − γrv33 krv24 − γrv34

kpv13 − γpv14 kpv23 − γpv24 kpv33 − kpv34 kpv34 − γpv44



The matrix Γij(t) is defined as,

Γij(t) = (Kcat
ij −Ks

ii)Mj(t) =


0 0 0 0

0 0 0 0

0 krE[D∗] 0 0

0 0 kpE[M ] 0

 (3.38)
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=⇒ Γtij(t) =


0 0 0 0

0 0 krE[D∗] 0

0 0 0 kpE[M ]

0 0 0 0

 (3.39)

Now, d
dt
V (t) can be computed (by Eq. 3.34). To simplify the next expression we

use the notation aij = d
dt
vij(t), and the result is the following,


a11 a12 a13 a14

... a22 a23 a24

...
. . . a33 a34

. . . . . . . . . a44

 ⇒



a11 = −2kav11 + 2kdv12

a12 = −kav12 + kdv22 + kav11 − kdv12

a13 = −kav13 + kdv23 + krv21 − γrv13

a14 = −kav14 + kdv24 + kpv13 − γpv14

a22 = 2kav12 + 2kdv22

a23 = kav13 − kdv23 + krv22 − γrv23 + krE[D∗]

a24 = kav14 + kdv24 + kpv23 − γpv24

a33 = 2krv23 − 2γrv33

a34 = krv24 − γrv34 + kpv33 − kpv34 + kpE[M ]

a44 = 2kpv34 − 2γpv44

The matrix is completed by dots because it is symmetric: the lower triangle of

the matrix is the symmetrical to the upper triangle.

Here, to find out the solutions of the second-order moment matrix, we put the

system at the steady-state ( d
dt
V (t) = ~0):
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0 = −2kav11 + 2kdv12 (⇒ d
dt
v11 = 0)

0 = −kav12 + kdv22 + kav11 − kdv12 (⇒ d
dt
v12 = 0)

0 = −kav13 + kdv23 + krv21 − γrv13 (⇒ d
dt
v13 = 0)

0 = −kav14 + kdv24 + kpv13 − γpv14 (⇒ d
dt
v14 = 0)

0 = 2kav12 + 2kdv22 (⇒ d
dt
v22 = 0)

0 = kav13 − kdv23 + krv22 − γrv23 + krE[D∗] (⇒ d
dt
v23 = 0)

0 = kav14 + kdv24 + kpv23 − γpv24 (⇒ d
dt
v24 = 0)

0 = 2krv23 − 2γrv33 (⇒ d
dt
v33 = 0)

0 = krv24 − γrv34 + kpv33 − kpv34 + kpE[M ] (⇒ d
dt
v34 = 0)

0 = 2kpv34 − 2γpv44 (⇒ d
dt
v44 = 0)

(3.40)

An attempt to solve the system at this point will result in having all the variables

depending on one, because the system is linearly dependent. So, the second

equation ( d
dt
v12 = 0) that depends on the first and the fifth equations, is removed.

Using Eq. 2.5, the variable v12 is substituted by the next expression:

v12 = E[DD∗] = E[(DT −D∗)D∗] = DTE[D∗]− E[D∗2],

where E[D∗2] can be found by,

v22 = E[D∗2 −D∗] = E[D∗2]− E[D∗]

⇒ E[D∗2] = v22 − E[D∗].

Finally, we arrive at

v12 = (DT + 2)E[D∗]− v22.

In this particular example, DT = 1, reducing the last expression to

v12 = 3E[D∗]− v22. (3.41)

So, by removing the second equation and substituting the new expression for v12,

results in the system 3.40 that is solved using the mathematical solver software

Maple 9.5 ) yielding the corresponding values for vij for all i, j = 1, .., 4.
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If i 6= j, vij’s are the correlations: E[DD∗], E[DM ], E[DP ], E[D∗M ], E[D∗P ],

E[MP ]; If i = j, vij’s are defined by the second-order moments:

v11 = E[D2 −D] = E[D2]− E[D]

v22 = E[D∗2 −D∗] = E[D∗2]− E[−D∗]
v33 = E[M2 −M ] = E[M2]− E[−M ]

v44 = E[P 2 − P ] = E[P 2]− E[−P ]

From these equations, the variances of the reactants are easy to find using Eq. 3.29

and the solutions given in the system 3.67. The results are very large expressions,

for some of them, that is why here only the expressions for variance of mRNA

(M) and noise of mRNA and protein(P) are expressed.

The variance of mRNA is

V ar〈M〉 =
kakr (kdkr + k2

a + 2kdka + k2
d + γrka + kdγr)

(γr(ka + kd + γr)(ka + kd)2)
(3.42)

and the Fano factor of mRNA is given by

Fano〈M〉 =
V ar〈M〉
〈M〉

= 1 +
kdkr

(ka + kd)(ka + kd + γr)
. (3.43)

The Fano factor of protein is expressed by

Fano〈P 〉 = 1 +
kp

γr + γp

(
1 +

kdkr
(ka + kd)(ka + kd + γr)

(1 +
γr

ka + kd + γp
)
)
.(3.44)
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3.3.4 Example of Simple Model: Comparison within Meth-

ods

Example of Simple Model: Probability Generating Function Approach

The CME for the Simple model (model from Figure 2.1, in Chapter 2 ) is given by the

four following reactions:

1) ∅ kr−→M : production from a source

2) M
γr〈M〉−→ ∅ : degradation

3) M
kp〈M〉−→ P : catalytic reaction

4) P
γp〈P 〉−→ ∅ : degradation

where M and P represent mRNA and protein, respectively.

Before writing down the CME, the following notation is introduced: the number of

molecules of mRNA 〈M〉 is denoted by n1 , and the number of molecules of protein

〈P 〉 is given by n2. To understand how the construction of the CME works, and how

each reaction contributes to the CME, we introduce details in Table 3.4.

Thus, the CME is built by summing the equation terms of each reaction (from Table

3.4), and it is written as:

d

dt
P (n1, n2, t) = kr (P (n1 − 1, n2, t)− P (n1, n2, t))

+kp (n1P (n1, n2 − 1, t)− n1P (n1, n2, t))

+γr ((n1 + 1)P (n1 + 1, n2, t)− n1P (n1, n2, t))

+γp ((n2 + 1)P (n1, n2 + 1, t)− n2P (n1, n2, t)) (3.45)
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Table 3.4. Contributions to the CME for a Simple Model

Reaction Rate terms in equation Reaction type

∅ kr−→M kr krP (n1 − 1, n2, t)− krP (n1, n2, t) production from a source

M
γrn1−→ ∅ γr γr(n1 + 1)P (n1 + 1, n2, t)− γrn1P (n1, n2, t) degradation

M
kpn1−→ P kp kpP (n1, n2 − 1, t)− kpP (n1, n2, t) catalytic reaction

P
γpn2−→ ∅ γp γp(n2 + 1)P (n1, n2 + 1, t)− γpn2P (n1, n2, t) degradation

This table shows the different parts from each reaction that contribute to the CME. Note that
P (ni, t) can be written as Pni

(t), but here we use the first notation for convenience.

Now, to determine the average numbers 〈n1〉 and 〈n2〉 in the steady-state and the vari-

ances of n1 and n2, we will write the CME in terms of G.

Recall the generating function approach:

G(z1, z2, t) =
∑
n1,n2

zn1
1 zn2

2 P (n1, n2, t) (3.46)

Consider first:

∂G

∂z1
(z1, z2, t) =

∑
n1,n2

n1z
n1−1
1 zn2

2 P (n1, n2, t) (3.47)

∂G

∂z2
(z1, z2, t) =

∑
n1,n2

n2z
n1
1 zn2−1

2 P (n1, n2, t) (3.48)
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From equation 3.46, differentiate both sides with respect to time to easily obtain in the

right hand side the CME:

∂

∂t
G(z1, z2, t) =

∑
n1,n2

zn1
1 zn2

2

d

dt
P (n1, n2, t) (3.49)

Take equation 3.49, and substitute it in the right hand side the CME given by equation

3.45:

∂

∂t
G(z1, z2, t) = kr

(∑
n1,n2

zn1
1 zn2

2 P (n1 − 1, n2, t)−
∑
n1,n2

zn1
1 zn2

2 P (n1, n2, t)

)

+ kp

(∑
n1,n2

n1z
n1
1 zn2

2 P (n1, n2 − 1, t)−
∑
n1,n2

n1z
n1
1 zn2

2 P (n1, n2, t)

)

+ γr

(∑
n1,n2

(n1 + 1)zn1
1 zn2

2 P (n1 + 1, n2, t)−
∑
n1,n2

n1z
n1
1 zn2

2 P (n1, n2, t)

)

+ γp

(∑
n1,n2

(n2 + 1)zn1
1 zn2

2 P (n1, n2 + 1, t)−
∑
n1,n2

n2z
n1
1 zn2

2 P (n1, n2, t)

)
(3.50)

The right hand side of equation (3.50), expressed by four main terms, shows that each

of these terms has similarities with the expressions given by (3.47) and (3.48). So,

playing around with these equations and trying to give a final expression only on terms

of G instead of P, we obtain that the above equation can be expressed as follows:

∂

∂t
G(z1, z2, t) = kr(z1 − 1)G(z1, z2, t)

+kpz2(z1 − 1)
∂G

∂z1
(z1, z2, t)

+γr(1− z1)
∂G

∂z1
(z1, z2, t)

+γp(1− z2)
∂G

∂z2
(z1, z2, t) (3.51)



CHAPTER 3. THE METHODOLOGY 57

After that, the system is set up at steady-state implying the following:

∂

∂t
G(z1, z2, t) = 0 (3.52)

therefore equation 3.51 is rewritten as:

0 = kr(z1 − 1)G(z1, z2, t) + kpz2(z1 − 1)
∂G

∂z1
(z1, z2, t) + γr(1− z1)

∂G

∂z1
(z1, z2, t)

+γp(1− z2)
∂G

∂z2
(z1, z2, t) (3.53)

The last equation expressed only in terms of G allows us to find the first and second-

order moments. So, using properties (2) and (3) from the Probability Generating

Function, differentiate equation 3.53 with respect to z1 once and to z2, and later dif-

ferentiate the same equation again with respect to z1 twice and the same for z2. The

first and second-order moments of G for each reactant (n1 and n2) will be obtained.

Finding the first-order moments:

For example, to find out the mean of the mRNA, that is the mean of n1, property (2) is

applied. Again, the notation is changed to make simpler the equations carried on, and

we will write just G for what before was G(z1, z2, t). So, we just need to differentiate

equation 3.53 with respect to z1, and later substitute z1 and z2 equal to 1:

0 =
(
krG+ kr(z1 − 1)

∂G

∂z1
+ kp(z2 − 1)

∂G

∂z1
+ kpz1(z2 − 1)

∂2G

∂z2
1

+ (−γr)
∂G

∂z1

+(1− z1)
∂2G

∂z2
1

+ γp(1− z2)
∂2G

∂z1∂z2

)∣∣∣∣
z1=z2=1

(3.54)
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substituting z1 = z1 = 1, and
∂G

∂z1
= 〈n1〉 and simplifying:

0 = kr − γr〈n1〉 ⇒ 〈n1〉 =
kr
γr

⇒ 〈M〉 = kr
γr

(3.55)

To find out the mean of the protein, or n2, we apply the property (2), as before.

The difference here is that we differentiate with respect to z2 instead of z1. So the

differentiation with respect to z2 yields:

0 =
(
kr(z1 − 1)

∂G

∂z2
+ kpz1

∂G

∂z1
+ kpz1(z2 − 1)

∂2G

∂z2
1

+ γr(1− z1)
∂2G

∂z2
1

+ (−γp)
∂G

∂z2

+γp(1− z2)
∂2G

∂z2
2

)∣∣∣∣
z1=z2=1

(3.56)

Substituting and simplifying results in:

0 = kp〈n1〉 − γp〈n2〉 ⇒ 〈n2〉 =
kp〈n1〉
γp

⇒ 〈P 〉 = kp〈n1〉
γp

(3.57)

Finally, as the property (2) indicates, the first-order moments of G give the means of

the two reactant variables of the system, mean (M) and protein (P).

Finding the second-order moments:

To find out the second-order moments, the property (3) is applied computing partial

derivatives of the second-order, and substituting z1 = z2 = 1. In this subsection all

the intermediate steps are not shown as the computation of involves many steps and

lengthy formulas calculations. The steps to follow to obtain the results are described

as follows:

• Differentiate twice the equation 3.53 with respect to z1, and later substitute z1
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and z2 equal to 1. The results are given by:

∂2G

∂z2
1

=
kr
γr

∂G

∂z1
=

(
kr
γr

)2

(3.58)

• Differentiate twice the equation 3.53 with respect to z2, and later substitute z1

and z2 equal to 1. Here the solution is more complex, because ends up in terms

of
∂2G

∂z2∂z1
. And it gives the following:

∂2G

∂z2
2

=
kp
γp

∂2G

∂z2∂z1
. (3.59)

Thus, to find out
∂2G

∂z2∂z1
, expression 3.54 has to be differentiated with respect

to z2. The results are as follows:

∂2G

∂z2∂z1
=

∂2G

∂z2
2

γp
kp

(3.60)

and substituting the above result in equation 3.61, to obtain:

∂2G

∂z2
2

=
kp

γp(γr + γp)
kr

(
kp
γr

)(
kr
γp

+
kr
γr

+ 1
)
. (3.61)

It has been shown that the second-order moments of G for the two reactant variables

of the system, mRNA and protein, have been obtained by property (3). Now, the only

property left to compute is the variance of the reactants.

Finding the variance:

Once we have the first and second-order moments for the two variables, we can find
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their variances just applying equation 3.30.

The variance for mRNA is:

V ar〈M〉 =
∂2G

∂z2
1

+ 〈M〉 − 〈M〉2 = 〈M〉 (3.62)

The variance for protein is:

V ar〈P 〉 =
∂2G

∂z2
2

+ 〈P 〉 − 〈P 〉2

=
kp

γp(γr + γp)
kr

(
kp
γr

)(
kr
γp

+
kr
γr

+ 1
)

+ 〈P 〉 − 〈P 〉2

=
kp
γp

kr
γr

+
(

kp
γr + γp

(
kr
γp

+
kr
γr

+ 1
)

+ 1− 〈P 〉
)

= 〈P 〉+
(

kp
γr + γp

(
kr
γp

+
kr
γr

+ 1
)

+ 1− 〈P 〉
)

(3.63)

So, without the need to solve the CME and making use of the Probability Generating

Function, we have found out the mean and the variance for the mRNA and the protein.

So the noise can be computed using the formula for the Fano factor, and the theoretical

noise expressions for mRNA and protein are given by:

Fano〈M〉 =
V ar〈M〉

〈M〉
=

〈M〉
〈M〉

= 1. (3.64)

Fano〈P 〉 =
V ar〈P 〉

〈P 〉
=

〈P 〉+
(

kp

γr+γp

(
kr
γp

+ kr
γr

+ 1
)

+ 1− 〈P 〉
)

〈P 〉

=
kp

γr + γp

(
kr
γp

+
kr
γr

+ 1
)

+ 1− krkp
γrγp

= . . . = 1 +
kp

γr + γp
. (3.65)
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These formulas are the same as in the work of Thattai & van Oudenaarden (2001).

The only difference is in the notations. Thattai & van Oudenaarden (2001) used the

notation b = kp

γr
and η = γp

γr
, resulting in:

Fano〈P 〉 =
V ar〈P 〉

〈P 〉
= 1 +

b

1 + η
. (3.66)

Example of Simple Model: Gadgil et al

To apply the method of Gadgil et al to the Simple Model is much easier and quicker

than for the General Model, because there are only two species (mRNA and protein) to

study, instead of four, and then the dimensions of all the matrices involved are smaller.

Here some tips are given for the different matrices computed for finding out the Fano

factor for the two reactants involved. The vector of the means is defined only for the

two species:

M(t) = [E[M ],E[P ]].

The K ’s matrices of rate constants are:

Ks =

 kr 0

0 0

 ; Kd =

 γr 0

0 γp

 ; Kcon =

 0 0

0 0

 ;Kcat =

 0 0

kp 0

 .

Then K is defined as K = (Kcon +Kcat −Kd) =⇒ K =

 −γr 0

kp −γp

 .

Thus, the first-order moments can be calculated by Eq. 3.33, and the results are
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the following: 
E[M ] =

kr
γr

E[P ] =
kp
γp
E[M ]

(3.67)

To find the second-order moments (by Eq. 3.34), the involved matrices are the follow-

ing:

V (t) :=

 E[M2 −M ] E[MP ]

E[PM ] E[P 2 − P ]

 =

 E[M2 −M ] E[MP ]

E[MP ] E[P 2 − P ]

 .

The term KV (t) is defined as,

KV (t) =

 −γrE[M2 −M ] −γrE[MP ]

kpE[M2 −M ]− γpE[MP ] kpE[MP ]− γpE[P 2 − P ]



and Γij(t) as,

Γij(t) =

 krE[M ] krE[P ]

kpE[M ] 0

 =⇒ Γtij(t) =

 krE[M ] kpE[M ]

krE[P ] 0

 .

The computation of the second-order moment matrix, d
dtV (t), gives

 −2γrE[M2−M ]+2krE[M ] kpE[M2−M ]−(γp+γr)E[MP ]+kpE[M ]+krE[P ]

kpE[M2−M ]−(γp+γr)E[MP ]+kpE[M ]+krE[P ] 2(kpE[MP ]−γpE[P 2−P ])



Setting the system at steady-state (= 0) results in the second-order moments from
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which the variances and Fano factors are readily written. The variances are:

V ar〈M〉 =
kr
γr

(3.68)

V ar〈P 〉 = E[P ]
[

kp
γr + γp

(
E[M ] + 1 +

kr
γp

)
+ 1− E[P ]

]
. (3.69)

The Fano factors are given by

Fano〈M〉 =
V ar〈M〉

E[M ]
=

E[M ]
E[M ]

= 1. (3.70)

Fano〈P 〉 =
V ar〈P 〉

E[P ]
= 1 +

kp
γr + γp

. (3.71)

Finding out that the expressions for the noise of mRNA and protein, that have been

obtained by the method of Gadgil et al. (2005) (Eq. 3.70 and 3.71), are the same as

the results obtained by the Probability Generating Function Approach for the Simple

Model (results given by Eq. 3.64 and 3.65 or 3.66).

3.4 Conclusions of the methodology

The first analytical method studied in this thesis, the Probability Generating Function,

is a standard method in Probability Theory (see the book of Van Kampen (2007)). This

method uses the explicit formula of a probability generating function associated to a

probability distribution and their properties of the first and second order moments

to explain the expectation and variance at the same time. This method has become

one of the main components to develop the formulae for the means and the variances
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of the stochastic reactants involved in the differential chemical master equation that

described the Simple Model. With the two first moments for the mRNA and protein,

we could also find out the formulae for the Fano factor and all the results compared to

the expressions obtained by the method of Gadgil et al. (2005). Thus, both theoreti-

cal methods ended in the same results for the Simple Model. Finally, we have assessed

the credibility of the findings with also equal results (also see Higham & Khanin (2008)).

These results have evolved in the development of the formulae for a more complex

model, the General Model, where the second analytical method by Gadgil et al. was

applied. It has appeared to be shorter than the probability generating approach, in

terms of computations, and it allowed us one more time to develop the second stage

of formulae that defined the means and variances for the mRNA and protein of this

model, and consequently to find out the formula for the noise (or Fano factor). This

analytical evaluation for the noise was then used to compare with numerical method-

ology in Chapter 4, specifically in section 4.2.

In addition, three numerical methods were compared and first evaluated on a Dimer ex-

ample in this section, and in further analysis (it will be seen in 4). Numerical methods

have been coded to simulate several systems and scenarios, elucidating that all three:

the SSA, the Langevin Equation and the Tau-Leaping methods are good approxima-

tions to simulate the behaviour of our stochastic models.



Chapter 4

Noise Analysis

4.1 Introduction

The principal goal of this thesis is to estimate the intrinsic noise through the simulation

of stochastic systems for different gene expression models (introduced in Chapter 2).

Specifically, the aim is to analyse the behaviour of the system at a steady-state and

study how their properties vary with the number of molecules. Furthermore, the aim

is to find out the factors that affect this variance and, if possible, ways of regulating

the genes to reduce this variance.

Steady state, in terms of stochastic systems, is when the system conserves a ‘par-

ticular form’ in the behaviour for all the variables (number of molecules of reactants)

relative to it. Because of the intrinsic variation always generated in the cell, this steady

state will never be constant, but the means of the variables and the variations produced

by the noise will remain bounded because the variables describe a constant probability.

Although, if the system is very noisy, the boundaries will be quite large and the steady

state will not be too precise. Even so, steady state implies that the probability that

various different states will be repeated will remain constant and this stable situation

will enable the prediction of the system in the future.

65
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Once the stochastic system reaches the steady state, and from the range of variability

obtained in this situation, the mean and variance of the variables of interest can be

computed and analysed.

4.2 Analysis of the model with One Target

4.2.1 In-silico experiment 1: Steady-state & noise by pro-

moters

This study focuses on exploring the mean, 〈q〉, and the variance, δq2, of the number

of molecules of each species q in the steady state for several gene regulatory modules.

The modules are three different simulated cases of gene regulation by miRNA and

three different promoters, and is the first part of a larger study concerning the effect

of miRNA on gene transcription.

The aim is to study whether miRNA reduces noise in protein production as has been

suggested by several authors (Hornstein & Shomron 2006). In addition, it is informa-

tive to study whether the effect of miRNA reduction of noise is the same for different

promoter types.

The model used to describe the process for this experiment is the General-miRNA

model, explained in Chapter 2 (Figure 2.4).

The various miRNA cases (Table 2.2) depend on a ‘signal’ which only affects the pres-

ence/activation of them. This means that if there is no signal there are no miRNAs,

but if there is a signal, miRNAs can exert its downregulating effect on either mRNA

degradation or translation and mRNA degradation at the same time. The frequency

of promoters being in an active state largely depends on the activation/desactivation
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rates. The three different structures of the model, depending on the location and pres-

ence of miRNA, are studied through these three different promoter cases, implying

that the parameters of the system are fixed for the three miRNA cases, while the rate

constants of the activation/deactivation of the promoters are changed according to the

three different types.

Three promoters simulated in this study (Table 4.1), only differ in the relative magni-

tude of the rate constants of two reactions. Table 4.1 specifies the rates used in this

study for the three types of promoter: the first promoter, stable, has slow but equal

rates; the second, unstable, has a slow activation step and much faster inactivation;

and the third, prokaryotic, has larger, and equal, rates than the other promoters. Con-

sequently in the global structure of the model this third promoter has more chance of

changing from active to inactive state, and vice versa, than the other two promoters.

Table 4.1. Promoter Rates

Rate constants
Promoters ka kd

Stable (1) 0.001 0.001
Unstable (2) 0.001 1
Prokaryotic (3) 1 1

Promoter rates for 3 promoter types (see Table 2.1); (ka goes from inactive state to active of
the promoter, kd from active state to inactive). The transcription rate used was kr = 0.1.

To have a further idea about how a small or large reaction rate value can affect one of

these genetic circuits, one may think for a moment of the following situation: If the rate

constant to form ‘reactant X’ is a small value, it means that the rate at which ‘reactant

X’ forms is slow, thus with less production or a low probability to form ‘reactant X’

than if it was a larger value.
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In summary, with the three different modes of regulation by miRNA and the three

promoter types considered, nine cases are studied.

Methods & Results

In this study, two methods are used, one numerical and the other theoretical. The nu-

merical method is the Gillespie Algorithm (Higham 2007) that simulates the system of

the General Model at steady state for the nine cases, obtained to combine three miRNA

modes of regulation and three promoter types described in the previous section, and

to estimate an expression for the noise. The analytical procedure is derived from the

formulae by Gadgil et al. (2005) to study the noise theoretically and to compare results

obtained by these two methods.

The Gillespie Algorithm gives an approximation of the system’s variable values, such

as the number of molecules of mRNA or protein, and simulates one reaction at a time

over an interval fixed by the user. The simulation is carried out over a large period of

time to make sure that it takes the system to a steady-state. From this steady-state

we compute an expression for the noise.

The parameters used for this model are the rate constants used in (Bundschuh et

al. 2003). The initial values for the reactants of the system (D, D∗, mRNA, protein)

are obtained from the steady-states values computed by the deterministic approach.

This approach is defined for a non-linear ordinary differential equations (ODEs) in

the system 2.10 (defined in Chapter 2), which produces concentrations of the chemical

species instead of counts of molecules, as does the stochastic approach. The initial

values, therefore, come from setting up of the rate equations of ODEs to zero:
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(0 =) dD
dt = kdD

∗ − kaD

(0 =) dD∗

dt = kaD − kdD∗

(0 =) dM
dt = krD

∗ − γrM

(0 =) dP
dt = kpM − γpP,

(4.1)

which results in the mean values at steady-state:

D = kd
ka+kd

Dtotal

D∗ = ka
ka+kd

Dtotal

M = (kr/γr)D∗

P = (kp/γp)M.

(4.2)

These mean values, before the start of the simulation, have to be introduced as inte-

gers, i.e. we round them in the algorithm, because the Gillespie Algorithm works for

integers numbers of the reactant variables, and with the correspondent parameters.

For the analytical procedure, because all the reactions are unimolecular, the method

of (Gadgil et al. 2005) is applied using the formula of the Fano factor obtained theo-

retically (see Section 3.3.2), and substituting the relevant parameters for each of the

cases of miRNA modes of regulation and promoter types. This yields the following

formulas (the same as formulas 3.43 and 3.44 in Section 3.3.2) for mRNA and protein
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respectively:

Fano〈M〉 = 1 +
kdkr

(ka + kd)(ka + kd + γr)

Fano〈P 〉 = 1 +
kp

γr + γp

(
1 +

kdkr
(ka + kd)(ka + kd + γr)

(1 +
γr

ka + kd + γp
)
)

In the prokaryotic promoter, the main source of stochasticity is translational burst-

ing (Thattai & van Oudenaarden 2001), or the number of proteins produced per life-

time of a transcript. This is reflected in the parameter called translational efficiency

(b = kp/γr).

The general formula for the protein Fano factor (Eq. 3.44) for the case of prokary-

otic promoter reduces to:

Fano〈P 〉 = 1 +
kp/γr

1 + γp/γr

Indeed, because ka, kd,� kr, the term

kdkr
(ka + kd)(ka + kd + γr)

� 1.

The mRNA molecules have Poisson distribution with Var(M) =< M > and Fano〈M〉 =

1.

The eukaryotic model of gene regulation has additional sources of noise due to promoter

switching from inactive to active states (Raser & O’Shea 2004). Infrequent (relative

to transcription) promoter activation rate contributes to fluctuations in mRNA and

protein levels (transcriptional bursting). The size of bursts in transcription depends on

the average number of mRNAs produced between promoter activation and deactiva-

tion; the ratio kr/kd is referred as transcriptional efficiency (Kærn et al. 2005). If the
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transition rates of promoter activation and deactivation are very slow, the mRNAs and

proteins track the states of the promoter. In this case, miRNA can be very efficient in

reducing the noise, as it reduces translational efficiency, by either enhancing degrada-

tion rate of target mRNA, γr, and/or decreasing translation rate, kp. See parameters

kp/γr and γp/γr above.

It is therefore tempting to speculate that noise in protein production is minimized

for essential, highly-connected, genes, wherein there is an additional burden on trans-

lational rate, that for eukaryotes can be exerted via miRNAs.

Fraser et al. (2004) estimated the noise in protein production for nearly every yeast

gene. These authors found that noise in protein production is minimized in genes for

which it is likely to be most harmful, specifically essential genes and genes encoding

protein complex subunits. The noise is minimal for genes with high (frequent) tran-

scription and low (inefficient) translation rates. Noise minimization is not without a

cost as the high transcription and high mRNA decay rates that are needed to minimize

noise are energetically expensive and are thus expected to be advantageous only when

the benefit of reducing noise in a particular gene’s expression outweighs this cost.

The role of miRNA in reducing noise in protein output might also explain the seem-

ingly counterintuitive prevalence of positive expression correlation in miRNA-target

pairs found in human and mouse genomes (Tsang et al. 2007), as the role of miRNAs

might be to decrease the translational efficiency and to reduce the noise in protein

output, rather than eliminate it completely.

The results obtained from the stochastic simulation of a system with the General-

miRNA model are displayed in Table 4.2, which contains the mean and standard de-

viation of the mRNA and protein levels at steady-state. The results for the noise,

given by the Fano factor measure of mRNA and protein are shown in Table 4.3, for the
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numerical study (using Eq. 3.23) and the analytical method (formulas given by Eq.

3.44).

Table 4.2. Steady-states for mRNA and protein

miRNA mode Promoter case mRNA protein
of regulation mean std mean std

1 Stable (1) 30.1 16.4 1614.6 667.0
Unstable (2) 1.5 1.4 48.6 26.1
Prokaryotic (3) 26.5 5.2 1598.5 124.0

2 Stable (1) 12.1 6.2 627.5 234.8
Unstable (2) 1.1 1.3 19.0 10.5
Prokaryotic (3) 8.7 2.9 527.7 38.6

3 Stable (1) 12.3 6.5 212.4 81.4
Unstable (2) 1.2 1.5 5.5 3.6
Prokaryotic (3) 8.6 2.9 174.7 21.4

The means and standard deviations for the mRNA and protein at steady-states, for each
different miRNA and promoter cases. Simulation run-time 80.000 time units.

Looking at the results of Table 4.2 the largest levels of molecules for means of protein

are given by the stable promoter followed by the prokaryotic. They are the ones that

allow more production of protein, while the unstable promoter, produces a low amount

of protein. In part, this was expected from the definition of this second promoter (in

Table 4.1), where the activation rate of the gene is much slower than its deactivation,

being less probable for the gene to be in active state and consequently lower protein

production. It is also shown that the presence of miRNA in the system represses the

production of protein, in particular when it exerts its regulation on mRNA degradation

and translation (case 3 ), more so than when it does it only on mRNA degradation (case

2 ). In this case 3, all promoters exhibit a reduction in the level of protein in comparison

to the others. In contrast, the levels of mRNA that are also reduced with the pres-

ence of miRNA are not affected differently for being regulated by miRNA mode 2 or
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Table 4.3. Noise at steady-states for mRNA and protein

NUMERICAL ANALYTICAL

miRNA mode Promoter case Fano factor Fano factor
of regulation mRNA protein mRNA protein

1 Stable (1) 8.89 275.57 9.47 203.52
Unstable (2) 1.33 14.02 1.94 19.47
Prokaryotic (3) 1.02 9.62 1.02 10.56

2 Stable (1) 3.20 87.84 4.65 71.80
Unstable (2) 1.49 5.82 1.88 7.85
Prokaryotic (3) 0.97 2.82 1.02 4.55

3 Stable (1) 3.47 31.19 4.65 24.60
Unstable (2) 1.80 2.38 1.88 3.28
Prokaryotic (3) 0.97 2.63 1.02 2.18

Noise in mRNA and protein levels at steady-state computed by numerical and analytical
methods (using the Fano factor).

3 because what matters here is that miRNA acts on (increasing) the mRNA decay rate.

Table 4.3 presents results for the noise. This table shows how similar are the results

comparing the two methods. Analytical and Numerical methods show the same pat-

tern for the Fano factors in the different miRNA modes of regulation and for all three

promoters. The values of the Fano factor for each case just differ by a small amount

between the two methods. The stable promoter seems to be the noisiest among three

cases, while the prokaryotic the least noisy. Both methods demonstrate that the system

without miRNA (case 1 ) has larger values of noise for all three promoters. Instead,

when miRNA is present in the system (cases 2 and 3 ) the noise is reduced, in particular

the noise is small when miRNA acts on both, mRNA degradation and translation.

Figure 4.1 shows a plot illustrating the protein behaviour at a steady-state for the
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three different promoters. Here the three plots represent the system for the three pro-

moters, each of them displaying the steady-states of protein for the systems with and

without miRNA. The plots are in the same scale and the noise is represented by jagged

lines, some more noisy than other ones, and with more or less variability. The nois-

iest of the promoters is the stable and the least one is the prokaryotic. Visually it is

not clear that the unstable promoter is not the least noisy because of the scale of the

plots and that is why afterwards Figure 4.2 is introduced to illustrate its instability.

Besides, it is clear that the stable promoter is the noisiest because the variance is wide,

equally so for the system with miRNA (red lines) as for that without (blue lines), in

concordance with the numerical results obtained in Table 4.3. Furthermore, from these

plots (in exception of the plot for the unstable promoter that is clarified in Figure 4.2),

the height and width of the lines representing the system without miRNA, show that

miRNA represses the production of protein, thereby reducing the noise since its protein

production is expressed under the system without miRNA.

The plot in Figure 4.2 is a zoom in to the middle (second) plot in Figure 4.1 illus-

trating the noise produced by the second (unstable) promoter. The increased scale of

the y-axis allows to see more clearly how noisy it is. For example, the two systems cross

at some points in time, where the protein production of the system without miRNA

is below the levels produced for the system with miRNA. This happens just for a few

periods of time, and could be caused by the huge noise produced in the first system.
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Figure 4.1. Noise of protein at steady state for three different promoters.

The fluctuations in the protein levels at steady state for three promoters (stable, unstable,
and prokaryotic respectively): without miRNA (red line) and with miRNA present (blue line).

Protein levels (molecules number) are plotted against time (only the steady-state interval).
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Figure 4.2. Noise of protein at steady state for the unstable promoter.

The fluctuations in the protein levels for the unstable promoter at steady state: without
miRNA (red line) and with miRNA present (blue line). Protein levels (molecules number)

plotted against time (only the steady-state intervals) have several scattered peaks at diff erent
values of protein, demonstrating that the unstable promoter is very noisy.
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Conclusions

In this in-silico experiment we have tested three different modes of gene regulation by

miRNA for three different promoters. The main observations are:

1. Protein and mRNA levels at steady-state are much higher for the system with a

stable promoter than an unstable, while the prokaryotic produces medium levels

of proteins (Table 4.2).

2. Stable promoter is the noisiest, the higher Fano factor values in the columns of

Table 4.3 are always in this promoter. Thus, comparing stable and prokaryotic

promoters that have similar mean protein output (Table 4.2), their Fano factors

differ 20-fold.

3. The production of protein is significantly decreased with the third miRNA mode

of regulation (both miRNA decay and protein translation are down), followed by

the second mode (mRNA decay only) which shows a smaller but also measurable

decrease. Meanwhile, for the mRNA, the presence of miRNA in the system

(modes 2 and 3 ) decreases levels of mRNA as well, but between both modes

there is no difference (Table 4.2).

4. In the presence of miRNA the noise decreases for all three promoters. The largest

decrease is for the stable promoter. (See Table 4.3, that with mode 2 and 3 the

values of Fano factor are smaller than with mode 1 ).

5. Stable promoter is highly sensitive to the decrease of noise of protein with the

appearance of miRNA, as we can see from the results with a ratio of 8.8 (∼

275.57 / 31.19), from the numerical results, and ratio of 8.2 (∼ 203.52 / 24.60),

from the analytical results.

6. Noise in prokaryotic promoter is the least affected by the presence of miRNA,

with a ratio of 3.6 (∼ 9.62 / 2.63), from the numerical results, and with a ratio

of 4.8 (∼ 10.56 / 2.18), from the analytical results.
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7. The effect of miRNA is less significant in the noise of mRNA than protein.

Moreover, from Table 4.3, it is trivial that the Fano factor of mRNA, for the

prokaryotic promoter, defines a Poissonian distribution of mRNA because all the

values are approximately 1.

8. The Fano factors show similar values for the two methods applied, verifying and

matching the results for the numerical study as for the analytical.

Finally, it can be concluded that the presence of miRNA decreases protein production;

the presence of miRNA decreases the noise as being measured here by the Fano factor

for all promoters; and the noisiest promoter, in terms of the Fano factor measure

of protein levels, is the stable promoter and it shows the largest decrease caused by

miRNA.

4.2.2 In-silico experiment 2: Transition Times

Biological systems change over time. This can be the result of different external fac-

tors and specific signals, e.g. high osmosis or stress caused by physical or chemical

parameters, such as pressure or harmful molecules. The system response can turn a

regulation of specific genes and pathways on or off. To understand biological systems

it is important to know how quickly and reliably different genetic circuits respond to

external stimulus. For example, what type of gene regulatory circuit responds quicker

(and with less variability) when regulation is turned on or off. Problems of this type

have been studied by several groups, including Shimoni et al. (2007) for small RNAs.

Two types of regulation will be contrasted here, post-transcriptional target regula-

tion by miRNA and transcriptional target regulation by a transcription factor (TF). It

is assumed that the “signal” a sudden change in the external conditions, turns on the

regulation. In the first scenario the signal activates the presence of miRNA: the miRNA

molecules bind the transcripts of the target gene, accelerate target mRNA degradation
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rate and inhibit the protein translation step. In the transcriptional regulation, signal

activates production of TF: the regulatory TF binds to the promoter of the target gene

and represses its transcription.

Therefore, the aim of this study is to describe quantitatively the transition time that

a specific system takes to change from one state to another. Usually, transition time

is measured as half-time, or the time it takes the system to move half-way between

two steady states that correspond to different levels of signal. For example, looking

at protein levels and considering two states depending on signal (signal={0,1}), the

transition time that goes from signal=0 to 1 is t1/2, where:

t1/2 = time to go from P(signal=0) to
|P (signal = 0)− P (signal = 1)|

2
(4.3)

Figure 4.3 illustrates the transition time for a protein from a state 0 to a state 1 (of

the signal). The level of the target protein (number of molecules) is presented versus

time, starting from the moment of time at which the regulation is turned on. At time

t=0, a “signal” arrives turning on the regulation.

The properties of post-transcriptional regulation by miRNA to transcriptional regula-

tion by TF will be also compared.

For the first scenario of post-transcriptional regulation the system is modeled by the

General-miRNA Model. The study of this circuit is compared for each of three dif-

ferent promoters and for each of three different miRNA location cases. The different

modes of regulation by miRNA are dependent on the activation of the “signal” over

time, which means that without a signal there is no miRNA, and if the signal is on,

the miRNA is present. MiRNA acts on the system either in the step of mRNA degra-

dation or in two steps at a time: mRNA degradation and translation (see Table 2.2).
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Figure 4.3. Transition time for protein from state 0 to 1

The transition time from the state=0 (no signal, Protein(signal=0)) to the state 1 (signal
present, Protein(signal=1)). The transition time, t1/2, is computed as time it takes the

system to go from the original state (state=0) to the state that is half-way between state=0
and state=1. The x-axis is time, the left and right y-axis show the protein levels (same scales).

Combining three promoter types with the three miRNA modes of regulation gives a

total study of nine different cases of the circuit. The promoters are dependent on the

activation/deactivation rates of the gene (see Table 2.1), whilst the miRNA modes of

regulation are determined by the location of miRNA in the system (Table 2.2). If

miRNA is not present (signal is off) then the model is reduced to the General Model.

In the second scenario, transcriptional regulation as described by the General model

has been considered, wherein the TF only affects the transcription rate, kr.

To compute transition time from the in-silico experiment, an initial and a final state

of the system have to be computed a priori. The initial state is the one at which the

system starts (at time t=0 ), and the final state is reached by the system when the sig-

nal is permanently on. Protein profiles change between two steady-states: one of the

system that is not subjected to regulation, and the other when the regulation is turned

on. For each of these cases the transition time is calculated as the time it takes the

protein to go half-way between two steady-states calculated as means. For instance,
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when a single gene is repressed, the transition time denotes the half-way between a

starting point (steady-state) where the system is not regulated and a final state where

the system is repressed. The transition time for the recovery of the target gene indi-

cates the half-way between the starting point of the system repressed at steady-state

and the final state where the regulation is off (system is de-repressed).

Experimental Results

The Gillespie’s stochastic simulation (Higham 2007) is used in this study for two main

simulations. Firstly, system’s steady state at the initial and final states of interest,

P(0) and P(1) are computed. Secondly, the transition times between these two states

are computed. Here transition time is defined as the time it takes for a protein to go

from its initial state (P(0)) at t = 0 to half level between P(0) and P(1) (see Eq. 4.3).

For each protein level P(0) and P(1) and all types and different modes of regulation

by TF and miRNA, a confidence interval (CI) of transition time is computed as mean

± std.

The transition times for transcriptional and post-transcriptional types of regulation

are compared using the constraint that the initial and final states for both regulatory

systems are fixed at the similar values. When the regulation is off, protein levels are

the same in both types of regulatory circuits: regulatory circuits without miRNA or

TF reduce simply to the General Model. When the regulation is switched on, the tran-

scription rate, kr for TF model, is adjusted to result in the same value as the repression

caused by miRNA to insure similar levels in both systems. The following steps set up

this type of equivalence between states:

1. Compute steady-states for the system regulated by miRNA (6 cases = 6 steady-

states). Store only the protein levels (P).

2. Find out kr, the transcription rate constant for the system regulated by TF.
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Using ODEs system 4.2 and the values from step 1, compute:

〈P 〉 =
kp
γp
〈M〉 =⇒ 〈P 〉 =

kpkr
γpγr

〈D∗〉 =⇒ kr =
γpγr
kp〈D∗〉

〈P 〉

where kp, γp, γr, 〈P 〉 and 〈D∗〉 are known and fixed at the same level for both

scenarios.

(Obtaining then the kr rates for all 6 protein levels stored previously).

One has to note that the kr values computed above are used for stochastic simulations

of the circuit regulated by a TF. This sometimes result in protein values that are dif-

ferent from the ones obtained from deterministic approach.

Trials of 100 runs are computed for each scenario. The computation of the system’s

steady state is run over 80,000 time units to make sure that the system reaches steady-

state. To determine the transition times, the time chosen for the simulation is shorter,

just 4,000 time units, because all the transition time values are always under 2,000

units. The mean and standard deviation for 100 runs, confidence intervals and noise

(Fano factor) of the response times are computed and recorded in Tables 4.4 -4.5.

Table 4.4 shows the transition times obtained from the study of the system repres-

sion by two types of regulators. The means of the transition times in the case of

miRNA and TF regulation are different (looking at rows) only for the stable and the

prokaryotic promoters. The CIs, with a confidence of 95%, also show this difference

because the results do not overlap at all. Instead, the unstable promoter does not show

a significant difference between the two types. The noise is very small for the stable

and prokaryotic promoters, when the system is repressed by miRNA acting on both

mRNA degradation and translation (system repressed to case3). Moreover, in the same

cases the system regulated by miRNA shows a faster response than regulated by TF.

This study of TF-regulation could have been restricted by considering three cases only:

three different promoters. However, six cases are considered, as in miRNA regulation,
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because the transcription rate kr of this system is set up depending on the system

regulated by miRNA.

In Table 4.5, the transition times for the recovery (de-repression) of the system are

computed after the repression has been switched off. Looking at the noise of all the

cases, the prokaryotic promoter is the only one that shows lower Fano factors, i.e.

prokaryotic promoter is the least noisy. In general for the recovery of the system it

can be seen that the means and the 95% CIs of the transition times for both types

of regulations (by miRNA and TF) show similar responses of the system. In fact, the

CIs overlap. Morover, the noisiest transition times are given by the unstable promoter

because has the largest noise. This is probably because the steady-states for a system

with or without miRNA are very close.

Now, let us compare the transition times for different modes of miRNA regulation

for each promoter type with the results obtained in the Table 4.4. It is clear that

when miRNA only affects degradation of target mRNA, the transition times in protein

are extremely noisy for all three types of promoters (Table 4.4, column of Fano factor

for the system regulated by miRNA). So, for targets that are repressed purely on the

level of mRNA, it is difficult to predict the time it takes to reach a required protein

level. It is therefore tempting to speculate that genes that switch on vital pathways

via miRNA upon the arrival of a signal are regulated on protein translation level. This

ensures a more predictable time for switching pathways on and off, in particular for the

stable and prokaryotic type of promoters, because they are less noisy than the unstable.

In addition, achieving similar level of protein repression, less time is required for

miRNA-regulated genes, when miRNA affects mRNA degradation and translation,

than for TF-regulation. Importantly, the transition times for these modes of miRNA-

regulation are less noisy than TF-regulated genes (for all three types of promoters).

Similar results hold for de-repression.
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It can therefore be concluded that repression by miRNAs for stable and prokaryotic

promoters when miRNA exerts its effect on protein translation (in addition to mRNA

degradation) is clearly faster than the one mediated by TF. In this study, it is assumed

that both TF and miRNA appear instantaneously as soon as the signal is switched on.

In reality, production of TF follows the signal with some delay, reinforcing our conclu-

sion that repression by miRNA happens on the faster time-scale than the repression

on transcriptional level. This has indeed been proposed by Hobert (2008) and shown

to be the case for small RNAs in bacteria using ODE model by Shimoni et al. (2007).

The simulated levels of proteins at steady-states are compared between the two meth-

ods: the stochastic simulation and the deterministic approach (ODEs). It is important

to see if the values for steady-states, computed by these approaches are far away or

close. Recall that to simulate the system stochastically, the levels of the different species

were initialised using the ODE system (4.2). The results obtained by the Gillespie al-

gorithm are in Table 4.6 and by the deterministic approach in Table 4.7.

From Table 4.6 it can be seen that the system regulated by TF represses the mRNA

transcript more than the regulation by miRNA (mode 3 of miRNA regulation), how-

ever, for protein this is inversed (the system regulated by miRNA exerts repression on

level of protein more than the regulatory circuit). Besides, the results of the deter-

ministic approach (Table 4.7) do not show that regulation by miRNA represses protein

more than regulation by TF for all three promoters. This is because the deterministic

approach does not take into account the intrinsic stochasticity of this regulatory circuit.

The steady-states for the first three rows in both tables are the same values (between

regulation types) because the mode of miRNA regulation 1 denotes that the regulation

is off, then means that the regulation by TF is also off, and then the system is the

same in both cases. Finally, the most consistent promoter between the stochastic and

deterministic results is the prokaryotic.
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Table 4.6. Steady-states by Stochastic Simulation

miRNA mode Promoters By miRNA By TF
of regulation mRNA protein mRNA protein kr

1 Stable 31.2 1679.9 31.2 1679.9 0.1
Unstable 1.6 57.2 1.6 57.2 0.1
Prokaryotic 26.8 1630.4 26.8 1630.4 0.1

2 Stable 10.8 525.4 12.4 678.2 0.0334
Unstable 1.2 19.7 0.9 29.1 0.0013
Prokaryotic 8.5 505.5 9.8 520.8 0.0322

3 Stable 12.4 209.6 5.1 279.7 0.0133
Unstable 1.2 4.1 0.6 14.9 0.0003
Prokaryotic 8.7 179.2 4.7 234.7 0.0114

Steady-states of mRNA and protein computed by the Stochastic Approach, for two types of
regulation (post-transcriptional by miRNA and transcriptional by TF). The rate kr is the
constant used in regulation by TF, which sets up equal final levels with the system regulated
by miRNA.

Another study on the system post-transcriptionally regulated by miRNA has been

carried out in this thesis to compare the protein levels at the different steady-states of

the system with miRNA, and of the system without. (It should be noted that when

miRNA is present, it is considered to act on mRNA degradation and translation). Af-

ter computing the results for the transition times of the system while it was recovering

from the repression of the regulation (Table 4.5), the Fano factors for t1/2 in the case

of the unstable promoter were very large, and we therefore investigate whether two

steady-states separate from each other.

Figure 4.4 illustrates the protein levels for a system with and without miRNA for

three different promoters. The distribution of the protein levels (number of molecules)

is given by histograms. There are three plots, one for each promoter type. Each plot

has two sets of protein data, representing initial and final states (with and without

miRNA). In the cases wherein the histograms for the initial and final states overlap or
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Table 4.7. Steady-states by Deterministic Approach

miRNA mode Promoters By miRNA By TF
of regulation mRNA protein mRNA protein kr

1 Stable 25.6 1571.4 25.6 1571.4 0.1
Unstable 0.5 31.1 0.5 31.1 0.1
Prokaryotic 25.6 1571.4 25.6 1571.4 0.1

2 Stable 8.5 523.8 11.6 525.4 0.0334
Unstable 0.2 10.4 0.0 0.4 0.0013
Prokaryotic 8.5 523.8 8.4 515.8 0.0322

3 Stable 8.5 174.6 3.0 184.2 0.0133
Unstable 0.2 3.5 0.0 0.1 0.0003
Prokaryotic 8.5 174.6 2.8 169.7 0.0114

Steady-states of mRNA and protein computed by the Deterministic Approach, for two types
of regulation (post-transcriptional by miRNA and transcriptional by TF). The rate kr has the
same value that in the previous Table 4.6.

are very close, the estimation of the transition time (t1/2) will not be right. Because by

the definition transition time denotes the time to reach half-way between two different

states of the system. However, if the initial and final states might not be different at

all, the definition of transition time would not make sense here (for initial and final

states not well distinguished).

In Figure 4.4, it is easy to see that the presence of miRNA optimises the production

of protein (see Table 4.6). The histograms for the system with miRNA occupy the

lower ranges on the graphs (situated more in the left side) than the system without

miRNA which reaches much larger values in the protein synthesis. The means are

given in the plots. For the first two types of the promoters, stable and unstable, the

two steady-states overlap or almost overlap, with the specific parameters used to simu-

late the system in this study; this means that there is no significant difference between

initial and final states. This is contrasted with the prokaryotic promoter case, where
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the histograms do not overlap, and miRNA shifts protein range to lower values. In ad-

dition, miRNA sharpens protein range, or tunes protein levels, as it has been proposed

by many experimentalists.

The parameters used in the simulations can be one of the causes that affects this

overlap between two states (regulated and not by miRNA). That is why here, we pro-

pose for further work to investigate whether the increase of parameters from the model,

such as d or K, will help to define a large differentiation between the two states. Recall,

section 2.2, that d is the miRNA-mediated fold-change in the target mRNA degrada-

tion rate, and K is the half-saturation concentration or level of miRNA at which half

of the maximum downregulating effect is achieved.

So, recapitulating, the aim of this section was to study the transition times based

on the implication that the two states had to be different. However, the histograms for

these particular systems at steady-states, show that only for the prokaryotic promoter

there is a significance difference between protein levels of a system with miRNA and a

system without. Therefore, it makes no sense to consider the other two cases in terms

of studying the transition times.

Following these results, the most reasonable study of transition times for the particular

models exposed in this project, will be to carry out a stochastic simulation for the

transition states for regulatory systems that contain the prokaryotic promoter. (Figure

4.5 shows the results.)

Figure 4.5 represents the level of the target protein (number of molecules) versus time:

transcriptional regulation (TF, blue line) and post-transcriptional (miRNA, red line),

for the repression and recovery of systems with a prokaryotic promoter. The plot on

the left represents repression of the system, and the plot on the right recovery from

repression (or de-repression) for three representative simulations. An external stimulus
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switches the regulation and the protein goes to a repressed (or recovered) state respec-

tively. The post-transcriptional repression by miRNA shows a faster response of the

system compared to the transcriptional repression of the same magnitude, principally

in the repression of the system. However, the recovery of the system displays more

noise than the repression.

Conclusions

The purpose of this study was to investigate the time taken for a protein to go from

not repressed state to repressed one (and vice versa). In particular, we wanted to in-

vestigate whether transition time is different for different promoter types, and between

transcriptional and post-transcriptional modes of regulation.

Transition times have been described by the mean, standard deviation and confidence

intervals of 100 runs, and computed between two states of the system (or a protein): a

state without repression and a repressed state. Different promoter types and different

regulation modes have been considered, contrasting at the same time two types of regu-

lations: the post-transcriptional regulation by miRNA and the transcription regulation

by TF.

When the signal switches on, the repressor, the protein level decreases. The least

noisy promoter is prokaryotic, but only when the system is repressed by miRNA that

exerts mRNA degradation and inhibits protein translation (see Table 4.4). Therefore,

the conclusions are just centered for the case of the prokaryotic promoter which is the

only valid case for the further analysis. In this case We can conclude that the system

regulated by miRNA shows a faster response to a signal than regulated by TF.

In the recovery of the system, when it changes from a repressed state to a state free of

regulation (de-repressed), the prokaryotic promoter is again the least noisy (see Table

4.5). The system response is not particularly different between transcriptional and
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post-transcriptional modes of regulation.

Gene circuits, like the one with a prokaryotic promoter and miRNA repressing the

system (or de-repressing) acting on both target mRNA degradation and protein trans-

lation is the least noisy. So, perhaps constructions like this have evolved to have very

precise systems response in terms of transition time between different states.
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Figure 4.4. Histograms for the system with and without miRNA

(a) (b)

(c)

The Probability Distributions of the protein level at two steady-states of the system: one
without miRNA (red histograms) and the other with miRNA being present (blue) for different
types of promoters (stable (a), unstable (b) and prokaryotic (c)). The prokaryotic promoter is
the only one that displays a good differentiation of the two states. NOTE: The means are not
exactly equivalent to those in Table 4.6 because these plots have been obtained in a simulation
run for a longer period of time, to have more data of the protein at steady-state.
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Figure 4.5. Repression and Recovery of a single gene with a prokaryotic pro-
moter

Response of the gene circuit with a prokaryotic promoter to the repression (plot on the left)
and for the recovery from it (right plot). The level of protein of 3 simulations versus time is
shown for two types of regulation: transcriptional by TF (blue) and post-transcriptional by

miRNA (red).
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4.2.3 In-silico experiment 3: Fluctuations in the signal

The following in-silico experiment is a study of the effect of the presence of miRNAs

in the system, in particular whether it helps to filter out fluctuations in the signal.

Biological systems are affected by different external and internal factors including

molecular signals, which results in the activation or deactivation of Transcription Fac-

tors (TFs) (various proteins that bind DNA and play a role in the regulation of gene

expression by promoting transcription), and miRNAs. In our systems, the mRNA and

miRNA production rates can be either increased or decreased by activator/de-activator

signals (the cases considered here). However, the signals received by a biological system

are not always real. Sometimes, the signals are just some noise, and even when signals

are real, they can be affected by random fluctuations. These small effects can cause

some unexpected changes in the sensitive protein synthesis and can be propagated fur-

ther in the network.

In this study, fluctuation of the signal is considered to be switching on for a very

short period of time and then turned off again. This switching on and off is repeated

several times. The result of these fluctuations in activator signal is followed by short

activation in mRNA and miRNA production. Later (after a short activator period

of time) their rate constants are deactivated, i.e. return to zero (or to a initial very

low values). In the case of a deactivator signal, the opposite effect is observed: the

deactivation followed by activation of these rates (when the deactivator signal switches

on and off respectively).

The goal of this simulation is to see whether activation/deactivation of a miRNA to-

gether with its mRNA target will filter out the noise in the signal. In fact, over 90

intronic miRNAs have been identified using bioinformatic approaches to date, but the

function of the vast majority of these molecules remains to be determined (Rodriguez

et al. 2004). We here investigate whether one of the roles of these intronic miRNAs is
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to filter out the effect of the signal on the host mRNA.

Experiment

In this experiment two models with one target are compared: one model includes

a miRNA and another does not. These are the models of General Model type and

General-miRNA Model (with two variations). Firstly, production and decay of miRNA

are considered when miRNA is present. Secondly, both models include a TF, that af-

fects the transcription step binding to the promoter of the target gene and activating

its transcription. The first model does not have miRNA, only TF, and the second

model includes a miRNA which affects mRNA stabilization and protein translation.

The signal regulates (activates or deactivates) both TF and miRNA. Figures 4.6 and

4.7 show these two models.

Figure 4.6. General Model with TF

General Model with a transcription factor. This model is like the General Model (Figure 2.2,
explained in Chapter 2 ) but considering a TF, which regulates transcriptionally the gene

affecting only the transcription rate, kr.

Two types of signal are being considered, one being an activator and the other being

a deactivator. In the case of a simulation with an activator signal, the gene regulatory

circuit produces very little mRNA at rest (low kr). When the signal arrives, the TF

(for both models) and miRNA (considered only in the second model) become activated.

In the case of a deactivator signal, TF and miRNA are active but become deactivated
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Figure 4.7. General Model with TF and miRNA

General-miRNA model with a transcription factor. This model is like the General-miRNA
model (Figure 2.4, in Chapter 2 ) but considering a TF. Model with two regulations: the

transcriptional one from the TF, and the post-transcriptional from miRNA.

upon the arrival of the signal.

This study is not focused on the effect of different promoters, therefore only two models

with an unstable promoter are simulated (check Table 2.1 for promoters).

Figure 4.8 and 4.9 illustrate the structure of the regulatory circuit for an activator

signal and deactivator.

The appearance of the signal can be represented by a threshold function, which is

switched on-off several times, over the time interval of interest. Figure 4.10 shows a

graphical example of how the fluctuations of an active signal (top plot) affects the

behaviour of the system (bottom plot), making the protein production from the second

graph increases immediately after the several activations of the signal (peaks from the

first plot).
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Figure 4.8. Activator signal

The architecture of the Activator Signal over the system. In the first diagram (on the left),
the signal activates the cellular transcription factor (TF), which at the same time activates a
downstream target gene. Simultaneously, in the second plot (on the right), signal activates
both TF and miRNA (miR), where the transcription of a miRNA creates a safeguarding

post-transcriptional channel that represses leaky transcript (mRNA).

Figure 4.9. Deactivator signal

The architecture of the Deactivator Signal over the system. The main structure over the
system is the same as before with the Activator Signal (Figure 4.8), but instead of activating

both TF and miRNA, the signal deactivates them.
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Figure 4.10. Signal fluctuations and system response.

Representation of an Activation Signal. Top plot: the signal switching on-off several times
over a period of time of 80,000 time units. Bottom: protein production for the system under
the affect of this activation signal. The protein levels are increased very soon after the signal

is activated but take a while to go to the background level.
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Methodology

To carry on this study, numerical simulations using the Gillespie Algorithm for two

models with one target (one with miRNA, Fig, 4.7, and the other without, Fig. 4.6)

are carried out.

This algorithm runs over the interval of time of 80,000 time units with the param-

eters:

ka = 0.001, kd = 0.1, γp = 0.0007 (protein degradation), δm = 0.01 (miRNA degra-

dation). Then if the Transcription Factor is regulating the system kr = 0.1 (mRNA

production), if not, kr = 0.001. The next three constants depend on miRNA, if miRNA

is not present: γr= 0.0039 (miRNA degradation), kp = 0.0429, pm = 0 and if miRNA

is present γr = 0.0117, kp = 0.0286 and pm = 0.5. A hundred samples for each system

are simulated.

The signal appears at time zero (t = 0), that is when the mRNA production (kr,

rate constant) and the miRNA production (pm, rate constant) are activated or deacti-

vated. When the signal is off (or disappears), the parameters are set up to the original

values. So, over the time line the signal is switched on and off several times (in Figure

4.10 where the signal is switched on-off 6 times) always being on for a very short time.

The signal is computed independently in each simulation, being the number of on-off

switches a random number. The time vector that denotes the times of the switches

on-off of the signal is described by a piece of Matlab code in the Appendix B.

Results

Let us first consider the activator signal:

In this case (for both models), the mRNA and protein levels are low (or zero) as

TF is not activated and, until the arrival of the signal, the system is repressed. Rates
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of mRNA production and miRNA production in the second model increase upon ar-

rival of the signal. This increase remains activate until the signal is switched off again.

The production of the protein is still working but for a short while more (i.e. for the

rest of molecules of mRNA that were already produced, and allowed the translation

from mRNA into protein molecules). Several on-off of the signal happen along the time

interval.

For the model with miRNA, the signal also triggers a production of miRNA that

downregulates protein production. Once the signal is switched on, transcription of both

mRNA and miRNA are activated simultaneously: the TF promotes the transcription

of the target, while miRNAs exerts downregulating effect. Thereby the transcription

of the target produced by the TF is counteracted by the miRNA repression of the

target, as Figure 4.11 indicates by the relative frequencies of the protein levels of 100

simulations.

Let us now consider the deactivator signal:

For both models, the protein production is controled by TF and the signal deacti-

vates it. This means that before the signal appears, the system is in a certain state

producing mRNA and proteins, but the signal deactivates TF, resulting in a very low

mRNA production, that consequently causes a decrease in protein production just for

the time when the signal is on. Later, the signal is switched off again, and the system

returns to its initial state. This is repeated several times depending on the random

fluctuation generated by the piece of code introduced previously.

In the second model, at t = 0 the system is producing mRNA proteins and miR-

NAs at a certain level, until the arrival of the signal, wich is switched on, then both

TF and miRNAs are deactivated. So, if a target is controlled by both TF and miRNA,
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TF promotes the transcription of the target while miRNA represses it directly. The

signal stops both regulations, i.e. the kr transcription rate decreases to a very low rate

and pm miRNA production goes to zero. The protein level in the presence of miRNA is

again much lower than in the model without miRNA, as it is shown in Figure 4.12 with

the representation of the relative frequencies of the protein levels, for 100 simulations.

Conclusions

In this in-silico experiment, two basic regulatory circuits are tested in their ability to

filter out external noise. The first model is a basic gene regulation model, while the

second model also includes miRNA. Noise is presented as fluctuations in the fixed level

of a signal. The signals considered are two, activator and deactivator, which are the

responsible for the activation or deactivation of the TF and miRNA production rates.

We considered a first model, wherein a TF activates the process of transcription, and

with the appearance of the signal the TF is activated or deactivated, depending of the

type of signal. The second model, also includes a miRNA: the TF is an activator of

the target, while the miRNA a repressor. Both regulators are activated or deactivated

with the arrival of the signal. The signal is expressed by fluctuations always actuating

in a short time interval, such as noisy signals or false activations in the system.

Finally, it has been shown that the system with miRNA is less susceptible to the

presence of noisy signals than the system without miRNA. This is because the pres-

ence of miRNA helps to prevent the system of expressing protein when the signal is

not real. This is due to the fact that miRNA represses the target.
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Figure 4.11. Levels of protein for an activator signal.

The histograms of the protein levels for an activator signal switched on-off over an interval of
time of 80,000 time units averaged over 100 simulations. Left plot is for a system regulated by
TF only; right plot is for a system regulated by TF and miRNA. When the signal is on, only
two rate constants are affected: kr = 0.1, and pm = 0.5; the signal is off, kr = 0.001 and pm =

0. The common rate constants for the two systems are: ka = 0.001 , kd = 0.1, γp = 0.0007
and δm = 0.01. Protein production is higher when miRNA is not present (left: mean = 14.2,
γr= 0.0039, kp = 0.0429), compared to the case wherein miRNA is present (right: mean =

1.2, γr = 0.0117 and kp = 0.0286).
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Figure 4.12. Levels of protein for a deactivator signal.

The histograms of the protein levels for an activator signal switched on-off over an interval of
time of 80,000 time units averaged over 100 simulations. Left plot is for a system regulated by
TF only; right plot is for a system regulated by TF and miRNA. When the signal is on, only
two rate constants are affected: kr = 0.0011, and pm = 0; the signal is off, kr = 0.1 and pm =

0.5. All the other rate constants are the same than in figure 4.11. Protein production is
higher when miRNA is not present (left: mean = 57.4), compared to the case wherein miRNA

is present (right: mean = 4.7).
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4.3 Analysis of the model with Two Targets

To carry on the different studies of this section, two methods that supposedly speed

up the simulation of the Gillespie algotithm have been codified in this thesis, particu-

larly, for the specific model of two targets. These methods are Langevin Equation and

Tau-Leaping.

The code for Langevin (see Appendix D) was implemented from a previous code from

Higham and Khanin (2007) for the case of a simplified protein monomer-dimer system.

The code for Tau-Leaping (see Appendix C) has been codified in this project for this

model.

4.3.1 In-silico experiment 1: Comparison within 3 numer-

ical methods

This section considers a model that studies the regulatory system with miRNA and

two targets, the two mRNA targets model (see Figure 2.5 in section 2.2.3). Because two

targets imply more variables and more reactions the first important thing to do, be-

fore carrying any other study, is to compare three methods (Gillespie Algorithm, SSA;

Langevin Equation, CLE; Tau-Leaping) in terms of good approximations as well as in

terms of low computationally costs. Thus, the aim here is to see whether the CLE and

Tau-Leaping speed up the simulation of SSA, and also they are good approximations

of the SSA.

About the mRNA targets, consider first that they are expressed at the same level

in the absence and in the presence of miRNA. This implies that for the rate constants

for two targets are the same (transcription rates: q1 = q2; mRNA degradation rates:

δ1 = δ2; complex formation/dissociation rates: β1 = β2, β−1 = β−2 ; complex degrada-

tion rates: δ∗1 = δ∗2 ; and rates for miRNA turnover from complex to the pool rates:

δ∗1q = δ∗2q).
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Experimental Results

The simulations of two mRNA targets model are run by three stochastic methods

(SSA, CLE and Tau-Leaping) and the results are compared and illustrated in Figure

4.13, which represents the levels of the two targets and the miRNA. Here mRNA is

present in either free (unbounded) form or in a complex with miRNA (bounded), i.e.

mRNA|miRNA complex. The levels of the target mRNAs are computed by the sum of

both levels (free mRNA and bound mRNA). The CLE uses a step size of 1000/500=2,

and the ε used in Tau-Leaping is 0.04. The plots show that the three methods give

good approximated results because all the lines are very close over the time interval.
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Figure 4.13. Two target model behavior simulated by three methods

The first plot shows the levels of free mRNA1 and the complex mRNA1|miRNA versus time
(tfinal = 1000) by the numerical methods SSA (blue), CLE (red) and Tau-Leaping (green).

Second plot is the same but it shows the levels of the second target. The third plot shows the
levels of miRNA itself. The two targets are expressed at the same level, where the parameters

are qi = 10, δi = 0.01, βi = 0.0001, β−i = 0.1, δ∗i = 0.05, for i = {1, 2}, q = 1.
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From Figure 4.13, it seems that both CLE and Tau-Leaping hold a good approximation

to the SSA. A second numerical study on the means and the CIs of the means of the

different reactants will confirm this conclusion.

Table 4.8 contains the numerical values of the CIs of the level means of the reac-

tants: mRNA1, mRNA2 and miRNA. In fact, the reactants mRNA1 and mRNA2 are

considered as the sum of both mRNAs, free and bound. It also contains the elapsed

time of each method to run the simulation until steady-state (set up at the final time of

1000). As the two targets of the system have been set up at the same levels, the steady

states for each target do not show a big difference between them. This means that

miRNA can bind with the same probability to the first target and to the second one.

The table also shows the time it takes for each method to simulate results, wherein it

can be seen that Langevin is the fastest one.

Table 4.8. 95% CI for the reactant level means by three numerical simulations

mRNA1 + mRNA2 +
mRNA1|miRNA mRNA2|miRNA miRNA Time

Gillespie (491.6, 492.0) (511.9, 512.3) (498.1, 498.4) 9.10 min
Langevin (509.2, 515.2) (499.1, 503.1) (480.7, 486.6) 0.16 sec

Tau-Leaping (511.4, 517.2) (478.6, 481.3) (484.7, 487.9) 3.36 sec

This Table contains the CIs of the mRNA target levels and miRNA computed by three
methods, and the time elapsed to run each of them. See Figure 4.13 for graphical

representation.

Conclusions

A model with two targets has been simulated and with it, it has been shown that the

Langevin Equation and Tau-Leaping are good approximations for the Gillespie algo-

rithm (see Figure 4.13 and Table 4.8).
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Moreover, the simulation of Langevin Equation accelerates Gillespie as does Tau-

Leaping, but Langevin Equation is the fastest method (see Table 4.8). It should be

noted and taken into account for this last assumption that the CLE and Tau-Leaping

depend on the number of the step size used in the CLE and the ε used in Tau-Leaping.

The simulations also demonstrate that the probability that miRNA binds two tar-

gets with the same levels are equal (see Table 4.8 where the results for two targets at

steady-state are the same).

4.3.2 In-silico experiment 2: Steady-states and noise by

increase of miRNA

As it has already been discussed in this thesis, the expressions of the reactants of a

gene regulatory circuit are noisy for nature. The factors that help to reduce this noise

are investigated in this thesis, with the main focus on the effect that miRNA has over

them. So the aim of this test on steady-states is to investigate whether different initial

levels of miRNA have any effect on the amount of noise in the levels of target proteins.

This study is a continuation of the previous one (in section 4.3.1). The model studied

is the two mRNA targets model and the rate constants and variables are also taken

from the previous section (see caption in Figure 4.13 for the rate constants). The only

thing that changes here is the initial number of miRNA, because it is now the focus

of the study. Although, here we have the advantage that we can start running the

simulations with Langevin or Tau-Leaping instead of the Gillespie Algorithm, because

it has been proven in the previous study that these methods accelerate the SSA.
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Experimental Results

Three miRNA levels are considered: 500, 1000 and 2000 (copies per cell), to simulate

the two mRNA targets model the simulation used in this project is Tau-Leaping (with

ε = 0.04). This simulation is given by plots that contain the evolution of two mRNA

targets over time and for three different miRNA levels. After that, the numerical values

obtained for the noise of each reactant, in terms of Fano factors, are also given for three

miRNA levels.

Figure 4.14 graphically shows the effect that miRNA levels causes on each of the two

targets (targets with same levels). At low level of miRNA (500 copies per cell, top

curve) the degree of downregulation of the targets is not as large as at higher levels of

miRNA (for instance at 2000 copies per cell, bottom curve). This illustrates that the

level of downregulation is determined by the level of miRNA itself.

In addition, higher levels of miRNA reduce the noise in protein output (Table 4.9).

Table 4.9. Fano factor of the two targets and miRNA by levels of miRNA

FANO FACTOR
500 miRNAs 1000 miRNAs 2000 miRNAs

mRNA1+mRNA1|miRNA 58.3 17.8 3.9
mRNA2+mRNA1|miRNA 61.4 19.1 5.6

miRNA 3.9 2.0 0.9

Fano factors of the levels of two targets and miRNA for three miRNA levels. The Fano
factors of the two targets decrease with increase of miRNA levels: 500, 1000 and 2000 copies

per cell. (Results by Tau-Leaping method, ε = 0.04.)
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Figure 4.14. Two targets of miRNA simulated for three different miRNA levels

The three miRNA levels are represented on the targets by different colours: 500 (blue), 1000
(red) and 2000 (green) and versus time. The first two plots represent the targets. Other

parameters are the same as in Figure 4.13.
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Conclusions

In this example of two targets of one miRNA, we have demonstrated that the effect

of target downregulation on the targets depends on the level of miRNA. So, for high

miRNA levels the system experiences a larger degree of target downregulation.

The presence of miRNA, and even more the increase in miRNA levels causes a de-

crease in the noise for all the reactants. This means that miRNA attenuates the noise

the levels of target proteins.

4.3.3 In-silico experiment 3: Effect changing parameters

on targets

External signals are often a source of changing some of the system parameters and rate

constants. For instance, let be a system of two mRNA targets, and a signal affects

the production rate of one mRNA targets. Then, we might expect that the miRNA

are used differently by two targets, and in particular we might expect that the miRNA

molecules are “used up” by the target that has a higher rate of production, and there-

fore higher level.

The aim of this study is then to analyse how the regulation by fixed initial number of

molecules of miRNAs is affected by the levels of two mRNA targets, for different cases.

More precisely, this experiment studies how the first target mRNA1 is consequently

affected when the level of the second target mRNA2 is increased by an external signal.

To increase the level of the second target, the production rate, q2 (see the system of

reactions 2.11, chapter 2), is increased. At the same time, different initial numbers of

miRNAs -low, medium and high- are set up to give a global view of how the levels of the

mRNA targets are affected by these two variables. After this, a third variable is intro-

duced in the study, the miRNA-mediated fold-change in the target mRNA degradation

rate d (see Eq. 2.6 in chapter 2), to analyse how it affects the changes experienced by
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the system.

To carry on this simulation the model that is used for this scenario is the two mRNA

targets model, the same model as in the two previous experiments. Therefore, the pa-

rameters and initial values will be considered the same as before until further notice.

Here the Langevin equation or Tau-Leaping method are used to simulate the system.

Experimental Results

This study uses the simulation of Langevin Equation with a step size of L = 1 for three

different miRNA levels and an increase on q2, production rate (transcription rate) of

the second target. So, the parameters of the model remain the same, except for an

increase of q2, where q2 = {1, 10, 20, 40, 60, 80, 100}, and the three miRNA levels are

500, 1000 and 2000 (miRNA copies per cell), obtaining the results displayed in Figure

4.15.

In Figure 4.15 it is shown the effects that q2 produces on the first target. In general,

it can be seen that the increase of production of the second mRNA target, q2, implies

an increase on the first target (the lines on the plot have mainly a positive slope ev-

erywhere, and this happens for all three levels of miRNA). The effect is particularly

pronounced when levels of miRNAs are low (for example the upper line in the plot

that also manifests the larger slope) and it indicates that the first target has been more

affected by the increase on q2, than for higher miRNA levels.

At this stage of the experiment, another factor comes up as a point of interest in

this study. It is the fold-change parameter of mRNA degradation denoted by di, for

i = {1, 2} (see Figure 2.5, Chapter 2). This parameter is the factor that accelerates

the degradation of mRNA, or in other words, the parameter that participates in the

rate constant of the decay of the mRNA|miRNA complexes as (diδ∗i ) for i = {1, 2}.

Clearly, the higher di is the quicker mRNA|miRNA complexes decay, resulting in larger
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target downregulation. For large di, the targets are strongly affected by miRNA, while

weakly affected targets have small values (di ≤ 1/2). The question to answer is how

this parameter affects the extent of the target downregulation?

This question can be split up into two more steps: one that studies the changes of

the system over d1 while d2 remains constant (at the value of 5), and the other, which

changes d2 and leaves d1 at a constant value (d1 = 5). We want to study whether

indirect effect of one target caused by the changes in the other target depends on the

strength of miRNA-mediated downregulation by each of them. For example, if a target

that is regulated transcriptionally (target 2) is a weak miRNA target, then it is likely

that the increase of it level on the other strong miRNA target will be small, as not

much miRNA will be used up. Alternatively, effect of transcriptionally regulated strong

target on a weaker miRNA target is more significant.

Figure 4.16 displays the first process with four subplots for the following values of

d1 = {3, 5, 10, 20}. The first plot is for d1 = 3, the second (top on the right plot) is

for d1 = 5, the third (bottom on the left plot) is for d1 = 10 and the fourth is for

d1 = 15. The same study but in the opposite way is displayed in Figure 4.17, analysing

the changes on d2 instead of d1, and observing now which dependence d2 has with the

downregulation of the targets.

Thus, Figure 4.16 and 4.17 show that the miRNA-mediated fold-change in the tar-

get mRNA degradation rates di, i ={1,2}, is significant effect on downregulation of

the targets. Principally the first figure (Figure 4.16) demonstrates that for a strong

mRNA target (target1, high d1) the increase in the level of the second mRNA target

(increase of q2) and by different miRNA level is much more downregulated than for a

weak miRNA target (target1, small d1).

Meanwhile, the second set of figures (Figure 4.17) demonstrates that the indirect
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miRNA-caused changes in the level of the first target (mRNA1) by increasing the

production rate of target2 (increase of q2), depends on the level of downregulation of

this target (d2). This means that when the level of target2 are increased due to some

external factors (as for example here that its transcription rate becomes higher) and

if target2 is strong (d2 higher than d1), then it will require more miRNA to be used

up for the second target than target1, meaning that it will be less miRNA left for

target1, whose level will also become higher. If however target2 is weak (d2 smaller

than d1), then increase in target2 level will have smaller influence on the level of target1.

Therefore it has been shown that the effect of one target on another target via miRNA

regulation of both of them depends on the strength of miRNA downregulation of each

target (d1 and d2 parameters).

Conclusions

By simulating stochastic model, with two targets, it has been shown that the increase

in the level of one of these targets indirectly affects the level of the other. Similar

results have been obtained by (Khanin & Higham 2009) using ODE-type model. For

instance, as it is shown in this experiment, the increase of the rate constant of one

target production implies the increase of the level of the other target. This is caused

by the indirect miRNA-mediated effect of the first target. This means that for a fixed

level of miRNA, when the second target is increased, the first target is less downregu-

lated as miRNA, that is common to both of them, is used up by the second target.

At high miRNA levels, the immediate effect of increase of one target by the increase

of another one is less pronounced. This implies that for an unlimited number of copies

of miRNAs per cell, this effect could be negligible. However, for a realistic situa-

tion wherein cell has only a limited highly controlled number of miRNA molecules,
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this effect should be taken into account, in particular, while interpreting various exper-

imental datasets, including microarrays that only measure expression levels of mRNAs.

In a situation where the second target is increased (q2) and the number of miRNA

copies per cell is limited, the strong miRNA-regulated (higher d1) target will be more

downregulated. Also, if the fold-change of the second target (d2) increases, for a low

miRNA level the levels of mRNA1 increase as well, meanwhile at higher levels (i.e.

bigger than 2,000) the levels of the first target decrease, being again downregulated.
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Figure 4.15. Two targets of miRNA simulated for three different miRNA levels

Errorbar plot of the effect of the transcription rate q2 of mRNA2 for different miRNA levels
on the target 1. The levels of miRNA 500, 1000 and 2000 are represented by blue (upper line),

red (mid line) and green (lower line) respectively. Here q = 0.9 and other parameters as in
Figure 4.13.
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Figure 4.16. Two targets of miRNA simulated for different miRNA levels, over
the increase of q2, and depending on d1

Effect of the fold-change rate d1 of the decay of mRNA1, for different miRNA levels and
different q2. All parameters are as in Figure 4.15, except for q2 and d1.
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Figure 4.17. Two targets of miRNA simulated for different miRNA levels, over
the increase of q2, and depending on d2

Effect of the fold-change rate d2 of the decay of mRNA2, for different miRNA levels and over
a increase in q2. All parameters are as for Figure 4.15, except for q2 and d2.
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4.4 Analysis of the model with N Targets

Each miRNA regulates hundreds of targets. In addition, there are several hundred

miRNAs that act cooperatively. To study complex behaviour of the cell, one needs to

do large realistic simulations that involve many regulators (TF and miRNA) and their

targets. Here the initial steps towards this type of analysis are described together with

some ideas for further work on studying these interactions.

In this thesis we prepared the code for a model with N targets to be run by the

stochastic simulation of Gillespie to be ready for studies related to this model. To be

sure that the code was right, we took N = 2 in the N targets code and we compared

the results to the two targets code.

4.4.1 In-silico experiment 1: Comparison between 2 tar-

gets Model and N targets

In order to set up the code of N targets and simulate its behaviour over time, one has

to come up with a model distribution for system parameters, such as rate constants

and initial levels. The rate constants will be sampled from value intervals taken from

experimental observations. The initial values for mRNAs levels will be sampled from a

probability distribution, specifically from the Pareto distribution. MiRNA is still being

a variable introduced by the user.

One of the cumbersome steps of this analysis is to define algebraically all the reac-

tions that can occur in a system of N targets. This is given by the stoichiometric

matrix, νij , where the rows represents the different reactants and the columns the re-

actions. The reactions expressed in this matrix will be called one to one, randomly, by

Gillespie to produce the simulation, where each column is called the jth reaction that

fires each time. The stoichiometric matrix is included below and it demonstrates how

a large system like this works, and how many reactions take place.
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The stoichiometric matrix for a system with N targets looks as follows:

n cols n cols n cols n cols n cols n cols 2cols

1 0 ... 0 |-1 0 ... 0 |-1 0 ... 0 | 1 0 | | | 0 0 m1

0 1 | 0 -1 | 0 -1 | 1 | | | . .

. . | . . | . . | . | 0 | 0 | . .

. | . | . | | | | . .

. | . | . | | | |

0 ... 1 | 0 ... -1 | 0 ... -1 | 0 ... 1 | | | 0 0 mn

-----------|------------|------------|------------|------------|------------|----- --

| | 1 0 ... 0 |-1 0 |-1 0 |-1 0 | 0 0 m1*

| | 0 1 | -1 | -1 | -1 | . .

0 | 0 | . . | . | . | . | . .

| | . | | | | . .

| | . | | | |

| | 0 ... 1 | 0 ... -1 |0 ... -1 | 0 ... -1 | 0 0 mn*

-----------|------------|------------|------------|------------|------------|----- --

0 | 0 |-1 -1 ...-1 | 1 1 ... 1 | 0 | 1 1 ... 1 | 1 -1 miRNA

Rows: 2n+1

Cols: 6n+2

In this matrix each row represents a reactant that participates in the model of N

targets. There are 2N + 1 reactants (rows): m1,. . . ,mN , m∗1,. . . ,m∗N and miRNA.

Here mi are the mRNA targets and m∗i are the mRNA-miRNA complexes, for all

i={1, . . . , N}. Each column represents a different reaction. There are 6N + 2 columns,

where the first six groups of N reactions describe the following: mRNA production,

mRNA degradation, mRNA-miRNA complex formation, mRNA-miRNA complex dis-

sociation, mRNA-miRNA complex degradation, mRNA-miRNA complex return to the

pool, and the last two columns refer to the production of miRNA and its degradation.

In this study the main objective is to simulate the N targets model for N = 2 (as
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described above), to make sure that it works properly. One way to do this is to simu-

late first the code of N targets, sampling all the initial mRNA levels and rate constants,

and later apply the Gillespie simulation to study the evolution of the system over time.

Sampling gives different values of levels and rate constants for each run. The next step

is to compare the N (= 2) targets with the two targets code: the two targets code can

be run with the rate constants obtained by sampling in the N -code.

A simpler way to compare the equivalence of these two codes is to go the opposite

way. This means that we start with the two targets code, for which initial values and

rate constants have been introduced from the previous in-silico experiment 2, and these

values are used in the code of N targets. Then, we run the simulation for the general

code of N targets, setting N = 2. The system behaviour obtained is very similar to

the results for two targets in section 4.3.2, because the constants and initial values are

the same.

The results obtained with the N targets code are shown in Figure 4.18 and they are

similar than in Figure 4.13, giving the concordance between the behaviour of the two

systems. Thus, it is confirmed that the dynamic stochiometric matrix construction for

N targets works correctly. The plots show similar results for both models

We conclude this analysis after this comparison between the two targets code and the

N targets code with N = 2.

For further work, here there are two ideas about how to study these interactions:

• One way to do it could be taking the N targets, classifying them in three groups,

for example by amount of molecules of mRNA (low, medium, high). The question

is to study whether the extent of target downregulation is determined by the

target levels or only by kinetic parameters.
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Figure 4.18. N target model versus 2target model, setting N=2

Comparision of a N targets model (whith N=2) (blue line) and the two targets model itself
(red line).The constants are: q1 = q2 = 10, δ1 = δ2 = 0.01, β1 = β2 = 0.0001, β−1 = β−2 = 0.1,

δ∗1 = δ∗2 = 0.05, pm = 5, q = 1.

• Another in-silico experiment is to study the N target interactions by fixing only

one target and observing how differently it is affected by miRNA depending on

the rest of the group.



Chapter 5

Conclusions and Discussion

This thesis deals with studying stochasticity in gene expression and gene regulation.

Principally, the thesis concerns with the study of noise in protein production for differ-

ent types of gene promoters and the effect that a new class of post-transcriptional gene

regulators, microRNAs (miRNAs), have on the amount of noise in the protein output.

Various in-silico experiments of gene regulation model were extensively simulated using

three stochastic numerical methods.

By simulations of gene-regulatory circuits that involve miRNAs, we effectively con-

firm the hypothesis formulated at the beginning of this thesis, that miRNAs tune down

gene expression and attenuate the variation or noise in the level of protein.

The different scenarios where these models have been involved and the statistical tech-

niques worked through have been very suitable to determine this conclusion. The

following sections describe the conclusions from each experiment more accurately.

123
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5.1 Assessing the methodology

Three different stochastic numerical methods have been tested in this dissertation.

These are Gillespie Algorithm, Langevin equation and Tau-leaping method. The Gille-

spie Algorithm is a computationally expensive method. Both chemical Langevin Equa-

tion and Tau-Leaping method are supposed to accelerate the Gillespie Algorithm. We

found that the Chemical Langevin Equation accelerates it, while Tau-Leaping does not

always speed things up. The latter depends on the number of molecules and values of

rate-constants. Another observation is that considering the Tau-Leaping method with

a small accuracy error (i.e. nearly zero) the approximation to the Stochastic Simulation

Algorithm gets much better but, instead, the simulation is very expensive computation-

ally. Our simulations confirm that both Chemical Langevin Equation and Tau-Leaping

methods give good approximations to the results obtained by the Stochastic Simulation

Algorithm (or Gillespie Algorithm) for gene regulation model.

The conclusions about the numerical methods are evidenced with the example of simple

dimerization, where the results match for all three methods. A second example of a

gene expression model of two mRNA targets, implying first-order and second order re-

actions, also verifies that simulations of Langevin Equation and Tau-Leaping not only

accelerate the Gillespie Algorithm Simulation, but also the approximations are very

close to the exact SSA procedure.

Other two analytical methods, the Probability Generating Function and the method of

Gadgil et al (2005), have been examined. Both methods yielded the same theoretical

results for the formulas of the noise of mRNA and protein, given by the Fano factor,

for the Simple Model of gene expression. Moreover, we developed the formulas of noise

for the reactants of a General Model of gene expression, with the analytical method,

Gadgil et al. This representation of the theoretical results has been contrasted with

the results of numerical simulation (see first example of analysis of noise, section 4.2.1)
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giving a very good approximation between the two different types of methodology,

analytical versus numerical.

5.2 Conclusions from one target model

5.2.1 Steady-state & noise by promoters

Our extensive simulations of post-transcriptional gene regulation by miRNAs reveal

that miRNA contribution to attenuating the noise in protein output depends on the

type of gene promoter. In other words, miRNA effect on reducing noise in protein

levels depends on the rate-constants of promoter switching between active and inactive

states. The so-called stable promoter that results in the highest among three promoter

types protein output is the noisiest, while the prokaryotic promoter is the least noisy

and produces medium levels of proteins. Unstable promoter produces smallest levels of

protein and has medium noise. The general conclusion is that the presence of miRNA

not only reduces the levels of target mRNA and protein, but also helps to tune down

the noise in protein levels.

5.2.2 Transition Times

A number of studies involving regulation of a gene circuit by miRNA have been carried

out in this thesis and interesting results obtained. In one of the studies, we looked at

the system’s response to a sudden change of miRNA regulator and compared it to the

response due to change of transcription factor regulator. In the first case, the system

is controlled on post-transcriptional level, and in the second case, similar changes in

protein levels are caused on transcriptional level, so that transcription factor is a repres-

sor. Two types of scenarios were considered: an external signal causes increase in the

repressor levels causing the system to get repressed, while another scenario considers a

signal that decreases the repressor causing the relief of the repression (de-repression). It

emerges that the gene regulated at post-transcriptional level by miRNA shows a faster
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response to a repressor signal than a system that is regulated by transcription factor.

Furthermore, the transition times for a miRNA-regulatory circuit are less noisy than

for a system regulated by transcription factor. In other words, proteins regulated by

miRNA have a fast and accurate (less noisy) response to its repressor levels than those

proteins with similar parameters that are regulated by transcription factors. We can

speculate that essential proteins whose response to certain external signals require pre-

cise timing for being switched on and off are regulated on post-transcriptional level by

miRNA that transfer these signals to these proteins. These results hold for prokaryotic

promoter. Further simulations with different rate-constants, such as the fold-change

of mRNA degradation and the half-saturation concentration of the protein translation

step, are needed to check whether similar types of conclusions hold for at least some

parameter ranges for the stable and unstable types of promoters.

5.2.3 Fluctuations in the signal

Another interesting observation from our in-silico experiments is that miRNAs may

help filtering out noisy external signals. In particular, it has been shown in this thesis

that systems regulated by a miRNA that is switched on/off by an external signal are less

noisy on protein level than those systems that are regulated purely on transcriptional

level. In other words, miRNA-regulated systems wherein miRNA is a sensor for external

signal are less affected by signal fluctuations than systems regulated by transcription

factors. We conclude that miRNA prevents the system to express protein when there

is no real signal. Indeed, nearly half of human miRNAs are transcribed from protein-

coding genes (intronic miRNAs), and some of these miRNAs downregulate their host

genes by targeting their 3’UTRs. We propose that such construction has evolved for

essential proteins to filter out external noise.
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5.3 Conclusions using two targets models

Most simulations in this thesis deal with a single target of a miRNA. Further studies

should involve considering multiple targets, and their interdependence. It should be

noted than in more complex systems, such as in the circuits with two targets, the level

of miRNA becomes a crucial factor as well as other parameters. Systems with low level

of miRNA exhibit so-called target cross-talk, wherein changes in one target (on tran-

scriptional level) are reflected in the changes of the other target(s) via indirect role of

their common miRNA. Further work in this direction is needed to incorporate multiple

targets with different topologies.
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Appendix A

Tau-Leaping Code for a dimer

% TAULEAPING DIMER.M

%

% Simple implementation of the Tau-Leaping Method on the simplified protein

% monomer-dimer system.

%

% This version runs the model up to time tfinal

% for N times in order to evaluate the confidence interval

% for the endpoint 1st and 2nd moments.

%

% Adapted from DJH’s SIAM Review code for the case of a

% simple dimerization model.

%

% Martina Marba (2008)

clear all

clc

%stoichiometric matrix

V = [1 -2 -1 0; %monomer

0 1 0 -1]; %dimer
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%%% Parameters and Initial Conditions %%%

N = 1e4; %runs

c(1) = 5; % rate const for production of protein monomer

c(2) = 0.01; % rate const for dimerization

c(3) = 0.1; % rate const for decay of monomer

c(4) = 0.01; % rate const for decay of dimer

tfinal = 20;

%%% This needed specific for Tau-leaping %%%

epsilon=0.04; %Gillespie et al, 2007

d=size(V);

N_Species = d(1); %number of Species

M = d(2); %number of Reactions

%%% End specific for Tau-Leaping %%%

for nn = 1:N

X = zeros(2,1);

b = zeros(M,N_Species);

xi = zeros(N_Species,1);

X(1) = 10;

X(2) = 2;

Xold = X;

t = 0;

count = 1;

tvals = zeros(tfinal,1);

begin=(length(X)+1);

Xvals = zeros(begin,tfinal);

tvals(1) = 0;

Xvals(:,1) = [t X’]’;

while t < tfinal

%the propensity functions can’t be negative

a(1) = c(1); %production of protein monomer

a(2) = c(2)*X(1)*(X(1)-1)/2; %dimerization

if X(1)<=1

a(2)=0;

end

a(3) = c(3)*X(1); %monomer decay
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a(4) = c(4)*X(2); %dimer decay

asum = sum(a);

%%% Matrix ’bij’ (partial derivatives) by hand.

b(1,1)= 0; %da1/dx1

b(2,1)= (c(2)*(X(1)-1)/2)+ c(2)*X(1)*(1/2); %da2/dx1

b(3,1)= c(3); %da3/dx1

b(4,1)= 0; %da4/dx1

b(1,2)= 0; %da1/dx2

b(2,2)= 0; %da2/dx2

b(3,2)= 0; %da3/dx2

b(4,2)= c(4); %da4/dx2

% vector ’xi’.

for j=1:M

xi(:,j) = a(j)*V(:,j);

end

xi=sum(xi,2);

vector = zeros(1,M);

for h=1:M

vector(h)= epsilon*asum/abs((xi(1)*b(h,1)+xi(2)*b(h,2)));

end

index=find(vector==Inf);

vector(index)=[];

%Now we find ’tau’

tau = min(vector);

%CONDITION: To control that tau is not smaller than Gillespie’s tau

if tau<=2/asum

disp([’Is better apply Gillespie at this point. t= ’,num2str(t)])

%pause

end

%END CONDITION

k=zeros(M,1);

lambda=zeros(N_Species,1);

for j=1:M

k(j)=poissrnd(a(j)*tau);
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lambda= lambda + k(j)*V(:,j);

end

% CONTROL that no reactant population will be driven negative

if ((lambda(1)+X(1)) <0 || (lambda(2)+ X(2)) <0)

tau=0;

lambda=zeros(N_Species,1);

end

t = t + tau;

Xold = X;

X = X + lambda;

count = count + 1;

Xvals(:,count) = [t X’]’;

end

Pfinal(nn) = Xold(1); % state of P at time tfinal.

P2final(nn) = Xold(2); % state of P2 at time tfinal.

end

Pmean = mean(Pfinal);

Pstd = std(Pfinal);

Pconf = [Pmean-1.96*Pstd/sqrt(N),Pmean+1.96*Pstd/sqrt(N)]

Psqmean = mean(Pfinal.^2);

Psqstd = std(Pfinal.^2);

Psqconf = [Psqmean-1.96*Psqstd/sqrt(N),Psqmean+1.96*Psqstd/sqrt(N)]

P2mean = mean(P2final);

P2std = std(P2final);

P2conf = [P2mean-1.96*P2std/sqrt(N),P2mean+1.96*P2std/sqrt(N)]

P2sqmean = mean(P2final.^2);

P2sqstd = std(P2final.^2);

P2sqconf = [P2sqmean-1.96*P2sqstd/sqrt(N),P2sqmean+1.96*P2sqstd/sqrt(N)]



Appendix B

Code of the Switching Times of

the signal (Fluctuations in the

signal)

% timevectorcode.m (29.11.08)

%

% Piece of code for the time vector that denotes the random number of on-off switches

% of a signal. This code creates first a random vector, that represents a fluctuation %

of a signal (see the two first if conditions), and later it associates the % rate constants

that the system takes depending on the signal being on or off. % In particularl here,

the signal is deactivator.

%

% Martina Marba 2008

N_parts = ceil(rand*1000); %Number of times that signal switches on-off

tduring = rand*30; %Durability of the signal.

L = tfinal/N_parts; %Points of the vector where signal switches on

if (tduring > L)

fprintf(1, ’PROBLEM: variable tduring > L, and this is not manageable’);
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end

tgaps= L-tduring; %L=tduring + tgaps

if (tduring >= tgaps)

while (tduring >= tgaps)

tduring=rand*20;

end

end

while t < tfinal

vector=zeros(1,2*N_parts+1);

vector(1) = 0;

for i=2:2:2*N_parts

vector(i)= ((i-2)/2)*L+ tduring;

vector(i+1)= (i/2)*L;

end

for i=1:2:2*N_parts

if (vector(i) <= t && t < vector(i+1)) %parts where signal is on

c(3)=1e-3; %kr

c(7)=0; %pm

end

if (vector(i+1) <= t && t <= vector(i+2)) %parts where signal off

c(3)=0.1;

if (mir==true)

c(7)=0.5;

end

end

end

end



Appendix C

Tau-Leaping Code for two

targets model

% tauleaping.m (10.11.08)

%

% Simple implementation of the Tau-Leaping Method for two mrna targets.

% This function returns a matrix with the values of the reactants over

% time and the time vector. The inputs are V, X, c and tfinal, where

% V = stochiometric matrix, X = initial values of the reactants, c = vector

% with the constants and tfinal. (Equal inputs for all methods)

%

% NOTE: b(i,j) and the variable ’vector’ different for each model (by hand)

%

% Martina Marba 2008

function Xvals=tauleaping1(V, X, c, tfinal)

%%% This needed specific for Tauleaping %%%

epsilon=0.04; % Gillespie et al, 2007

d=size(V);
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N_Species = d(1); % number of Species

M = d(2); % number of Reactions

%%% End specific for Tau-Leaping%%%

b = zeros(M,N_Species);

xi = zeros(N_Species,1);

Xold = X;

t = 0;

count = 1;

tvals = zeros(tfinal,1);

begin=(length(X)+1);

Xvals = zeros(begin,tfinal);

tvals(1) = 0;

Xvals(:,1) = [t X’]’;

while t < tfinal

%the propensity functions can’t be negative

a(1) = c(1); %production of mRNA1

a(2) = c(2)*X(1); %decay of mRNA1

a(3) = c(3); %production of mRNA2

a(4) = c(4)*X(2); %decay of mRNA2

a(5) = c(5)*X(1)*X(5); %formation of complex1 microRNA:mRNA1

a(6) = c(6)*X(2)*X(5); %formation of complex2 microRNA:mRNA1

a(7) = c(7)*X(3); %dissociation of complex1

a(8) = c(8)*X(4); %dissociation of complex 2 microRNA:mRNA2

a(9) = c(9)*X(3); %decay of complex1

a(10) = c(10)*X(4); %decay of complex2

a(11) = c(11); %microRNA production

a(12) = c(12)*X(5); %microRNA decay

a(13) = c(13)*X(3); %microRNA turnover from complex1 (and miRNA return to the pool)

a(14) = c(14)*X(4); %microRNA turnover from complex2 (and miRNA return to the pool)

asum = sum(a);

%%% Matrix ’bij’ (partial derivatives) by hand.

b=zeros(M,N_Species); %Only some are different to 0.

b(2,1)= c(2); %da2/dx1

b(5,1)= c(2)*X(5); %da5/dx1

b(4,2)= c(4); %da4/dx2
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b(6,2)= c(6)*X(5); %da6/dx2

b(7,3)= c(7); %da7/dx3

b(9,3)= c(9); %da9/dx3

b(13,3)= c(13); %da13/dx3

b(8,4)= c(8); %da8/dx4

b(10,4)= c(4); %da10/dx4

b(14,4)= c(14); %da14/dx4

%vector ’xi’.

for j=1:M

xi(:,j) = a(j)*V(:,j);

end

xi=sum(xi,2);

vector = zeros(1,M);

for h=1:M

vector(h)= epsilon*asum/abs((xi(1)*b(h,1)+xi(2)*b(h,2)+xi(3)*b(h,3)+xi(4)*b(h,4)));

end

index=find(vector==Inf);

vector(index)=[];

%Now we find ’tau’

tau = min(vector);

%CONDITION: To control that tau is not smaller than Gillespie’s tau

if tau<=1/asum

disp([’Is better apply Gillespie at this point. t= ’,num2str(t)])

% pause

end

%END CONDITION

k=zeros(M,1);

lambda=zeros(N_Species,1);

for j=1:M

k(j)=poissrnd(a(j)*tau);

lambda= lambda + k(j)*V(:,j);

end
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% CONTROL that no reactant population will be driven negative:

if ((lambda(1)+X(1)) <0 || (lambda(2)+ X(2)) <0 || (lambda(3)+ X(3)) <0 || (lambda(4)+ X(4)) <0)

tau=0;

lambda=zeros(N_Species,1);

end

t = t + tau;

Xold = X;

X = X + lambda;

count = count + 1;

Xvals(:,count) = [t X’]’; %Ara guardem el temps i les X junts, a la mateixa matrix

end

Xvals(:,count:end)= [];

return;



Appendix D

Langevin Code for two targets

model

% langevin.m (27.06.08)

%

% Simple implementation of the code of D J Higham and R Khanin, 2007, to simulate

the

% Chemical Langevin Equation for a simple two mRNA targets model regulated by

miRNA.

% This version runs the model up to time tfinal and

% returns the values of all the reactants over time.

%

% Adapted from D J Higham and R Khanin (2007) code for

% the case of a simplified protein monomer-dimer system.

%

% Martina Marba, 2008.

function Xvals=langevin1(V, X, c, tfinal)

L= 5e2; %test a
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%L= 5e3; %test b

tau=tfinal/L; %stepsize

Xold = X

t = 0;

count = 1;

begin=(length(X)+1);

Xvals = zeros(begin,tfinal);

tvals(1)=0;

Xvals(:,1) = [t X’]’;

for k =1:L

a(1) = c(1); %production of mRNA1

a(2) = c(2)*X(1); %decay of mRNA1

a(3) = c(3); %production of mRNA2

a(4) = c(4)*X(2); %decay of mRNA2

a(5) = c(5)*X(1)*X(5); %formation of complex1 microRNA:mRNA1

a(6) = c(6)*X(2)*X(5); %formation of complex2 microRNA:mRNA1

a(7) = c(7)*X(3); %dissociation of complex1

a(8) = c(8)*X(4); %dissociation of complex 2 microRNA:mRNA2

a(9) = c(9)*X(3); %decay of complex1 and return of microRNA to the pool

a(10) = c(10)*X(4); %decay of complex2 and return of microRNA to the pool

a(11) = c(11); %microRNA production

a(12) = c(12)*X(5); %microRNA decay

a(13) = c(13)*X(3); %microRNA turnover from complex1

a(14) = c(14)*X(4); %microRNA turnover from complex2

for m =1:length(a)

d(m) = tau*a(m)+sqrt(abs(tau*a(m)))*randn;

end

X = X + d(1)*V(:,1) + d(2)*V(:,2) + d(3)*V(:,3) + d(4)*V(:,4) + d(5)*V(:,5) + d(6)*V(:,6)

+ d(7)*V(:,7) + d(8)*V(:,8) + d(9)*V(:,9) + d(10)*V(:,10)+ + d(11)*V(:,11) + d(12)*V(:,12)

+ d(13)*V(:,13) + d(14)*V(:,14);

count = count + 1;

t = t + tau;
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Xvals(:,count) = [t X’]’;

end

Xvals(:,count:end)= [];

return;
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