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Abstract

Gate leakage variability in nano-scale CMOS devices is investigated through ad-

vanced modelling and simulations of planar, bulk-type MOSFETs.

The motivation for the work stems from the two of the most challenging issues in

front of the semiconductor industry - excessive leakage power, and device variability

- both being brought about with the aggressive downscaling of device dimensions to

the nanometer scale. The aim is to deliver a comprehensive tool for the assessment

of gate leakage variability in realistic nano-scale CMOS transistors.

We adopt a 3D drift-diffusion device simulation approach with density-gradient

quantum corrections, as the most established framework for the study of device

variability. The simulator is first extended to model the direct tunnelling of electrons

through the gate dielectric, by means of an improved WKB approximation.

A study of a 25 nm square gate n-type MOSFET demonstrates that combined effect

of discrete random dopants and oxide thickness variation lead to starndard deviation

of up to 50 % (10 %) of the mean gate leakage current in OFF(ON)-state of the

transistor. There is also a 5 to 6 times increase of the magnitude of the gate current,

compared to that simulated of a uniform device.

A significant part of the research is dedicated to the analysis of the non-abrupt band-

gap and permittivity transition at the Si/SiO2 interface. One dimensional simulation

of a MOS inversion layer with a 1 nm SiO2 insulator and realistic band-gap transition

reveals a strong impact on subband quantisation (over 50 mV reduction in the ∆-

valley splitting and over 20 % redistribution of carriers from the ∆2 to the ∆4

valleys), and enhancement of capacitance (over 10 %) and leakage (about 10 times),

relative to simulations with an abrupt band-edge transition at the interface.
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Chapter 1

Introduction

We endeavour to analyse the gate leakage variability in nano-scale transistors, through advanced

device modelling and simulation. A brief overview of the problems of leakage and variability

in the context of ultra-scaled semiconductor devices reflects our motivation for the study. We

summarise the objectives of this work, in line with the demands of the semiconductor industry

and complete the introduction with an outline of the subsequent, more technical chapters.

1.1 Leakage and variability in ultra scaled devices

The miniaturisation (scaling) of complementary metal-oxide-semiconductor (CMOS) field-

effect transistors (FETs), providing improved chip performance at a reduced cost through the

simultaneous increase of transistor density and transistor switching speed, has been the main

driver of silicon technology for over three decades (2). Subsequent to the 90 nm technology

node, the semiconductor industry faced two formidable issues that challenged, and continue to

challenge the value of traditional CMOS device scaling. These two issues are excessive leakage

power, and device variability.

Ideally, the energy dissipation in CMOS circuits is due entirely to the switching between

logic levels, referred to as dynamic, or active, power. This is true, under the assumption that

once the input and output levels on the logic gates stabilise, current ceases to flow from the

supply. In reality, leakage currents flow at all times, even when the voltage at the transistor

terminals is stable, and these contribute to the so called static, or leakage, power. Static power is

due to the manifestation of quantum-mechanical phenomena, including gate oxide and band-to-

band tunnelling currents, and over-the-barrier carrier injection in the off-state of the transistor,

resulting in non-negligible sub-threshold drain-source current. These phenomena become more
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1.1 Leakage and variability in ultra scaled devices

pronounced with technology scaling, due to the exponential sensitivity of the gate tunnelling

on oxide thickness, increased channel doping, and the much enhanced influence of the drain

contact over the electrostatics of the device. All this leads to the rapid increase and dominance

of static power dissipation in integrated circuits based on technologies with a smaller than

130 nm lithographic half-pitch, as reported for a variety of products (system-on-chip, desktop

processors, field programmable gate arrays), marketed or prototyped by leading manufacturers

(2; 3; 4; 5). An example of the increasing trend in the three most significant contributors to

the total chip power is illustrated in Fig 1.1, for desktop processor technologies, with the gate

leakage component being the highest. With the aggressive reduction of the gate oxide thickness

beyond 2 nm, gate tunnelling current becomes in the order of, or higher than the sub-threshold

current of a MOSFET, especially for low operating power, high-VT devices (3; 6; 7; 8; 9; 10).

The introduction of alternative gate oxides with high dielectric constant (high-κ) mitigates

the problem of gate tunnelling leakage to a significant extent (11; 12; 13), but entails numerous

other challenges (14; 15; 16; 17), so that a solution for the ultimate scaling of the gate insulator

down to the equivalent oxide thickness of 0.5 nm is as yet unknown.
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Figure 1.1: An example breakdown of the

three most significant power components

(gate leakage, sub-VT drain leakage, and ac-

tive power at 10% activity of the resources)

of a 10 mm2 chip, for a set of four different

desktop processor, high-performance (HP),

technology generations, referenced by their

minimum lithographic line width. Data is

from Ref. (7).

Statistical device variability is the dispersion in the electrical characteristics of identical

MOSFETs. It is typically characterised by a statistical distribution of the threshold voltage,

VT , on which both the on and off (sub-VT ) drain currents depend. Device variability implies

variability in the delay and leakage power of circuits and systems. Therefore it adversely affects

functionality, yield and reliability, and has become a crucial obstacle in a power-constrained

search for performance enhancement through device scaling (18; 19; 20; 21). Variability stems

from two simple facts. First, the fast approach of critical device and interconnect dimensions to

the nano-metre scale requires atomic level precision in their processing, and that is extremely
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1.2 Aims and objectives of the study

challenging to maintain, if at all possible, by mass production fabrication facilities. Second,

certain aspects of silicon technology and MOSFET design imply the existence of uncontrollable,

intrinsic fluctuations in a number of microscopic features in devices with otherwise equivalent

macroscopic parameters (i.e. layout and geometry). Here, we are concerned with intrinsic

parameter fluctuations that are associated with the fundamental atomicity of charge and matter,

and are stochastic in nature. Some well known sources of intrinsic variability are the different

number and spacial configuration of discrete doping atoms, the oxide thickness variation induced

by the roughness of the oxide interface, and the gate-line edge roughness (22; 23; 24; 25; 26;

27; 28; 29).

Gate leakage current has an exponential sensitivity to oxide thickness and oxide field, so that

gate leakage variability is expected from the above mentioned intrinsic parameter fluctuation

sources. A few works briefly address this problem, but do not provide a systematic approach

for the characterisation of gate leakage variability in current and future technology generations

(30; 31; 32; 33). At the same time, there is a growing effort to account for gate leakage variability

in chip-power simulators, used for the power-constrained evaluation of different architectures

and performance factors (4; 34; 35). It is suggested that ignoring the variability in leakage

current leads to the underestimation of the total leakage power by as much as 30 %, in the

65 nm technology (4). Note however, that the underlying gate leakage models used in the chip-

power simulator for making the above prediction are physically, and statistically oversimplified,

because gate leakage variability is very difficult to measure and because no comprehensive

device modelling studies on the subject exist (18). The aim of our work is to bridge this

gap, by establishing a reliable framework for device level simulation of gate leakage variability

in nano-scale MOSFETs, on a statistical scale. The specific objectives in this direction are

summarised below.

1.2 Aims and objectives of the study

The main goal of this research is to develop a simulation framework that allows the study of

gate leakage variability in nano-scale CMOS devices. This includes the following objectives:

• selection of a direct tunnelling model, with an emphasis on computational efficiency, suf-

ficient accuracy, and viability for extension of the approach from a one-dimensional (1D)

to a three dimensional (3D) simulation domain;
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1.3 Thesis outline

• 1D proof of concept - implementation of the model in a 1D simulator and simulation of 1D

gate leakage, comparison with relevant data, calibration of phenomenological parameters;

• 3D proof of concept - incorporation of the tunnelling model in the Glasgow 3D atomistic

drift-diffusion simulator with density-gradient quantum corrections, and simulation of a

uniform device with continuous doping;

• study of gate leakage variability - statistical simulation of gate leakage variability due to

the individual and combined sources of intrinsic parameter fluctuations (random dopant

fluctuations and oxide thickness fluctuation) on a test sub-30 nm n-type MOSFET.

An additional aim of this work is to investigate the impact of the structural and composi-

tional transition at the Si/SiO2 interface, on the inversion layer and gate leakage characteristics

of a MOS structure. The objectives towards this goal are:

• problem formulation - understanding how the atomic transition from Si to SiO2 affects

the change of electronic and dielectric properties at the Si/SiO2 interface;

• 1D simulator development - development of a 1D Poisson-Schrödinger (PS) solver that ac-

counts for a non-abrupt change of conduction and valence band edges, dielectric constant

and effective mass;

• implementation of 1D quantum-mechanical tunnelling model - selection of a quantum-

mechanical tunnelling model, and its incorporation in the PS solver;

• study of the physical consequences of the Si/SiO2 transition - simulation and analysis of

the impact of gradual interface band-gap, permittivity and effective mass transition on

the inversion layer quantisation, capacitance and gate leakage characteristics

1.3 Thesis outline

The exposition of this work is organised as follows.

In Chapter 2 we first review the implications of CMOS device scaling on leakage power, and

gate leakage in particular. Then we elaborate the context of device variability, and anticipate

which of the usual sources of intrinsic parameter fluctuations can affect gate leakage current.

This is followed by a review of the prior art on gate leakage variability.

Chapter 3 comprises a review of the gate leakage mechanisms, with emphasis on direct

tunnelling and its geometrical partitioning in a MOSFET, and a survey of the most common
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direct tunnelling models. The incorporation of a semi-classical, analytical tunnelling model in a

Poisson-density-gradient solver is discussed, and results from 1D gate leakage simulations, used

for the calibration of the model, are finally presented, showing a very good agreement with

experimental data.

Chapter 4 is devoted to the 3D modelling and simulation of gate leakage and gate leakage

variability. A summary of the most commonly used techniques for 3D device simulation is

followed by a description of the Glasgow 3D-atomistic simulator (chosen as the main vehicle

for the study of statistical gate leakage variability), with an emphasis on the modelling of ran-

dom dopant fluctuations and oxide interface roughness, and the implementation of the direct

tunnelling gate current model. Then we present the 3D gate current simulations of a uniform

device, thus validating the established gate leakage modelling framework. The approach is fi-

nally applied to the study of gate leakage in an ensemble of 25 nm gate length n-type MOSFETs,

subject to the individual, as well as the combined influence of random dopant fluctuations and

oxide roughness. Hence, it is shown that for the biases corresponding to the stable points of

a CMOS inverter, there is a large gate leakage variability, and the factors that lead to it are

thoroughly investigated.

Chapter 5 is an extensive study of the non-abrupt transition of electronic properties at

the Si/SiO2 interface, and its impact on the characteristics of the MOS inversion layer. The

issue is introduced by a review of experimental and first-principles studies of the Si/SiO2 in-

terface. This is followed by a systematic comparison of 1D quantum-mechanical simulations

(in the envelope wave function, effective mass approximation) of the inversion layer with an

abrupt (traditional), and a linear interface barrier models, showing a significant increase in

leakage current, enhancement of gate capacitance, and reduction in subband splitting, due to

the gradual band-gap transition. The analysis is extended to the non-abrupt change of dielec-

tric constant and effective mass at the interface, and to the case of a realistic barrier model

(obtained ab initio), and is applied to devices with high-κ dielectric stacks. The development

of the 1D Poisson-Schrödinger solver used in this work is presented in Appendix A, while the

procedure of obtaining a realistic band-edge transition profiles from first-principles calculations

of the interface is described in Appendix B.

We conclude, in Chapter 6, with a summary of the major findings of this work, and a brief

discussion of their implications in the context of present and future semiconductor technology,

thus suggesting directions for future research.
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Chapter 2

CMOS scaling, leakage power,

and variability

This chapter starts with an overview of scaling trends in modern CMOS transistors, with an

emphasis on the impact of scaling on leakage power, and a summary of the dominant leakage

mechanisms. Then we elaborate the context of device variability and its impact on leakage

power. Subsequently, we anticipate the sources of gate leakage variability, and finish with a

review of existing studies on statistical simulations of gate leakage variability.

2.1 Impact of CMOS scaling on leakage power

2.1.1 Device scaling and power dissipation

The primary goal of CMOS scaling is reduction of the cost per functional power, by increasing

the integration density of on-chip components. The elaboration of constant field scaling rules

entails concomitant performance and power consumption improvements, which have shaped the

evolution of silicon technology (36; 37). The concept of device scaling is illustrated in Fig. 2.1.

In constant field scaling, the physical dimensions of the device (gate length LG and width

WG, oxide thickness tox, and junction depth Xj), and the supply and threshold voltages (VDD

and VT respectively), are reduced by the same factor, α > 1, so that the two-dimensional

pattern of the electric field is maintained constant, while circuit density increases by ∼ α2.

This implies that the depletion width (Wd) must also be reduced by the same amount, which is

achieved by increasing the substrate doping NB by α. Consequently, both the gate capacitance

(C = LGWGεox/tox), and the drain saturation current (ID,sat) are scaled down by α. The

6
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Figure 2.1: Conceptual schematic diagram of device scaling (38). Both device and wiring

dimensions are required to scale by the same factor 1/α, in order to increase integration density

by α2. Scaling of the supply voltage by the same factor (1/α) maintains the same 2D electric

field pattern, subject to an equivalent scaling of the depletion width Wd.

saturation current determines the transistor intrinsic switching delay τ ∼ CVDD/ID,sat, which

is thus reduced by α, leading to a performance improvement. At the same time, the power

dissipation (P ∼ ID,satVDD) is reduced by α2, so that the power density (P/(LGWG)) remains

unchanged.

Table 2.1 shows the gate-length, supply voltage, and oxide thickness figures for several recent,

and future technology generations, as projected by the ITRS. It is obvious that present day

device scaling does not adhere to the constant field scaling rules. This is because of several

fundamental, non-scaling factors, and practical considerations (37). Instead, the generalised

scaling rules are followed, where the physical dimensions of the transistor are still reduced by

a factor of α, providing the desired circuit density increase (α2) and performance improvement

(α), but the supply voltage is scaled by β/α, leading to an increase in the magnitude of the

Table 2.1: ITRS-projected LG, EOT and VDD.

Year LG (nm) EOT (nm) VDD (V)

2003 45 1.3 1.2

2005 32 1.2 1.1

2007 25 1.1 1.1

2009 20 0.9 1.0

2011 16 0.6 1.0

2013 13 0.5 0.9

2015 10 0.5 0.9

Trends in two of the critical device di-

mensions, and power supply, from the

ITRS 2003, 2005 and 2007 editions.

Clearly, gate length scales much faster

than supply voltage, resulting in an in-

crease in the source-drain electric field,

and a departure from constant field scal-

ing.

7
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2.1 Impact of CMOS scaling on leakage power

electrical field by 1 ≤ β ≤ α (37; 39). A full list of MOSFET physical parameters, and their

scaling factors, is given for constant field scaling, and generalised scaling in Table 2.2. The last

column in this table shows the rules for selective scaling, which relaxes one more constrain –

the fixed ratio between gate length and width (38). Such relaxation is driven mostly by the

slower scaling pace of on-chip interconnect lines.

Table 2.2: Device parameters and their scaling factors (38)

Physical parameter Scaling Rules Factors

Constant Field Generalized Selective

Gate length (LG), Oxide thickness (tox) 1/α 1/α 1/αD

Wiring width, channel width (WG) 1/α 1/α 1/αW

Voltages (VDD,VT ) 1/α β/α β/αD

Substrate Doping (NB) α βα β/αW

Electric field 1 β β

Gate capacitance (C = LGWGεox/tox) 1/α 1/α 1/αW

Drive current (ID,sat) 1/α β/α β/αW

Intrinsic delay (τ ∼ CVDD/ID,sat) 1/α 1/α 1/αD

Area (A ∝ LGWG, or ∝W 2
G) 1/α2 1/α2 1/α2

W

Power dissipation (P ∼ ID,satVDD) 1/α2 β2/α2 β2/(αWαD)

Power density (P/A) 1 β2 β2(αW /αD)

In constant field and generalised scaling, the same factor, α, is applied to the dimensional and

voltage parameters. In generalised and selective scaling, β is the electric field scaling parameter.

In selective scaling, vertical dimensions and gate length scaling is governed by αD, while gate

width and wiring scaling – by αW < αD.

As can be seen in Table 2.2, under generalised and selective scaling scenarios the dissi-

pated power scales by β2/α2, while the power density increases by β2. The power density is

of paramount importance for chip packaging and systems design, and its increase imposes a

practical limit for the exploitation of device scaling. It is worth noting that in the most recent

technologies, and in the projections of the ITRS, supply voltage hardly scales, i.e. β ≈ α (2; 10).

This already suggests that the power density grows at the same rate as the integration density.

Actually, the issue is even worse than it appears from considering the scaling rules alone, be-

cause of non-scaling factors, leading to the increase and dominance of the static, leakage power.

This is clearly demonstrated by the crossing lines of Fig. 2.2, illustrating the trends in dynamic

and leakage power densities with shrinking gate length. The actual measurements for devices

with gate length between 1 µm and 65 nm are shown with symbols (2). The rapid escalation
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2.1 Impact of CMOS scaling on leakage power

of leakage has ultimately led to power-constrained, application-specific evaluation of scaling

scenarios, since different applications can tolerate different power densities. (e.g. 8 orders of

magnitude difference between the allowed power density of a high-performance processor and

an ultra-low power SRAM) (40).
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Of the two components of consumed power, the dynamic power, dissipated during a switch-

ing between logic states, can be ameliorated by limiting the switching frequency f , to which

it is proportional (Pdyn ≈ CV 2
DDf , per device). The other component – static, leakage power

– dissipated whilst maintaining a logic state, is exponentially sensitive to some of the device

parameters and their variability, as well as to non-scaling factors. Leakage power dissipation is

time-invariant (except for its comparatively weak dependence on the logic state of the transis-

tors) and now poses the most significant scaling limit (2; 35).

2.1.2 CMOS leakage power

CMOS leakage power is due to sub-threshold drain current, and various tunnelling mechanisms

through the potential barriers in the transistor (41).

2.1.2.1 Sub-threshold source-drain leakage

Unlike the saturation drain current, which scales down by β/α, as already discussed, the sub-

threshold drain current actually increases with scaling. This is best understood from the ap-

proximate expression of the off current ID,off (37)

ID,off = IDS(VG = 0, VDS = VDD) = µeffCox
WG

LG
(m− 1)

(kBT

q

)2
e−qVT /mkBT , (2.1)
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Figure 2.3: ITRS projections of the sub-threshold source-drain current (left) showing continu-

ous relaxation of the sub-VT leakage constrain to allow VT down-scaling (42). The sub-threshold

current implies a scaling limit for VT , as shown schematically on the right. This limit is higher

if variability is accounted for. The required performance margin (VDD − VT ) stalls the power

supply scaling too, in the absence of performance boosters.

where µeff is the effective mobility (relatively independent of scaling), and (m − 1) ∼ 1 is the

body-effect coefficient. Note that the oxide sheet capacitance Cox = ε/tox scales by α, while VT

is supposed to scale by β/α, to avoid performance degradation. This latter scaling condition is

related to the intrinsic switching delay of the transistor, which is determined by the saturation

drain current, ID,sat. For short channel MOSFETs, the saturation current may be expressed as

ID,sat = IDS(VG = VDD, VDS = 0) = vsatCoxWG(VDD − VT ), (2.2)

where vsat is the saturation velocity (37). From this expression is clear that reducing VT , at

a given supply voltage, is beneficial to device performance. But this VT reduction leads to

an exponential increase in the off current, as is evident from Eq. 2.1. These contradictory

requirements on VT scaling have led to the continuous relaxation of the power dissipation

constraints and the slowing of supply voltage scaling, as clearly illustrated in Fig. 2.3 (42).

Still, VDD scaling is desirable, because leakage power is proportional to it, while dynamic

power is proportional to its square. In this regard, equation 2.2 also explains the importance

of performance boosters (e.g. high-mobility channel materials, or strained channel) that aim to

improve the saturation velocity vsat (a material property) and alleviate the need to scale VT in

proportion to VDD, without degrading performance.
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2.1 Impact of CMOS scaling on leakage power

2.1.2.2 Band-to-band tunnelling leakage

There are several quantum mechanical tunnelling mechanisms in short-channel MOSFETs, two

of which result in leakage currents that are comparable to, or exceed, the sub-VT leakage. One

of these mechanisms is band-to-band (BTB) tunnelling through the reverse-biased pn-junction

formed between the substrate and the drain region of the transistor. The tunnelling current

is due to electrons tunnelling from the valence band of the p-region, to the conduction band

of the n-region, as is schematically illustrated in Fig. 2.4. This current is much stronger than

the diffusion current of a reverse biased pn-junction, and is a consequence of the retarded field

scaling, and the abruptness of the pn-junction (37). The latter is a direct consequence of the

former factor, because in a generalised scaling scenario, the substrate doping NB must increase

by the product αβ, i.e. even faster than if constant field was maintained. What additionally

exacerbates the problem is that the control of short channel effects in modern, bulk-MOSFETs is

accomplished by the use of a halo-doping implantation, aiming to minimise the drain-induced

depletion in the substrate (41). As a result, the depletion region on each side of the drain

pn-junction is sufficiently narrow that the voltage drop over the junction (due to the built-in

potential, and the drain to body bias) exceeds the Si band-gap value of 1.12 eV (which cannot

scale!), thus allowing band-to-band tunnelling. Deep traps in the depletion region additionally

increase BTB tunnelling (40).

EC
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p+-Si n+-Si

qVbi

qVDSub

EF

EF
EG

Figure 2.4: Schematic energy-band diagram

representation of band-to-band (BTB) tun-

nelling, at the drain-substrate pn-junction

of a MOSFET. Due to high doping levels,

the space charge region is narrow, reduc-

ing the width of the tunnelling barrier, and

qVbi ∼ EG. High drain bias makes VDSub

large enough to align valence states from the

p-Si to conduction band of the n-Si.

2.1.2.3 Gate oxide tunnelling leakage

The other critical tunnelling current is due to carriers tunnelling through the gate oxide of the

MOSFET. It is a consequence of the continuous down-scaling of the SiO2 gate dielectric, as

required to guarantee gate control over the channel, due to device electrostatics. Several tun-

nelling processes give rise to gate leakage, and are discussed in Chapter 3. It will become clear
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Figure 2.5: An example breakdown of the

three most significant passive power com-

ponents (gate tunnelling, sub-threshold

(sub-VT ) leakage, and band-to-band (BTB)

tunnelling) in devices with high thresh-

old voltage (high-VT ), for a set of hand-

held, low operating power (LOP) technol-

ogy generations, referenced by their litho-

graphic line width. Data is from Ref. (7).

that gate tunnelling is exponentially sensitive to the oxide thickness, and the oxide perpendic-

ular field, while it is only linearly dependent on the gate width, and source/drain extension

overlaps. Therefore it also increases exponentially with device scaling. At this stage we must

emphasise that gate leakage is the dominant tunnelling mechanism in devices with SiO2 or with

SiON dielectric gate insulators used in recent technologies. Fig. 2.5 compares the magnitude of

leakage power due to leakage currents discusses so far.

The intolerable growth of gate tunnelling leakage has triggered a radical change in the

silicon technology, which aims to introduce dielectric permittivity scaling through material

engineering. The goal is to scale the oxide sheet capacitance Cox, which is required to maintain

good electrostatic control by the gate, but avoid decreasing the physical thickness of the gate

insulator. This may be achieved by increasing the gate dielectric constant κ, of the insulator,

and is realised in the SiON gate oxides that are in use today. With respect to scaling, the relevant

metric is now the equivalent oxide thickness (EOT), defined through the relation εHK/tHK =

εox/EOT = Cox, where εHK and tHK are the permittivity and physical thickness of the high-

κ material, and εox is the SiO2 permittivity. Therefore, the introduction of high-κ dielectric

materials is seen as the only way to realise the projections of the ITRS for effective oxide

thicknesses reaching 0.5 nm.

However, the transition to high-k gate dielectric also entails a replacement of the poly-Si

gate with a metal gate, which is another formidable technological challenge, in addition to

the difficulties of controlled growth of ultra-thin high-κ oxide films (14). These complications

have delayed the adoption of alternative gate dielectric stacks, and have lead to the continuous

relaxation of EOT scaling requirements, as can be seen in Fig. 2.6.

Concluding this subsection we note that even with viable high-κ dielectric stack solutions,

which are based on hafnia or hafnia-silicate (43), the gate leakage power is anticipated to remain
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Figure 2.6: Projected trends in EOT

scaling, from different editions and up-

dates of the ITRS, and for different

architectures (bulk, UTB-SOI, DG) of

high-performance devices (42). The

requirement for aggressive thinning

has been successively relaxed over the

last three editions of the roadmap

(2005, 2007 and 2008-update), reflect-

ing the delayed adoption of high-κ di-

electric stacks.

comparable to the sub-VT leakage power. This is illustrated in Fig. 2.7, showing the allowed

dissipated power per device, the projected total leakage power, and the contribution from gate

leakage. Note that the ITRS-projected limit of gate leakage density, JG is given in terms of

the target sub-VT off-current at 300 K, Isd,leak,TGT = 0.2 µA/µm, as JGLG = Isd,leak,TGT. At

the same time, the actual limit of the sub-VT leakage is between 0.13 and 0.69 µA/µm, for the

high-performance bulk-MOSFET (10).
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Figure 2.7: ITRS-projected short term

trends in the allowed power per de-

vice (high-performance), its total leakage

power, and the contribution of gate leak-

age. The trend in the allowed power is

dictated by the package-constrained maxi-

mum power density. The negative slope in

the gate leakage and total leakage curves

assumes successful deployment of high-κ

dielectric gate stacks.

From the above discussion it is clear that gate leakage continues to be a major component

of leakage power, and its accurate evaluation remains of paramount importance.

2.2 Variability in ultra-scaled devices

Device variability has emerged as the most significant challenge to continuous device scaling.

This is because the tolerance in the electrical characteristics of devices, induced by the various
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2.2 Variability in ultra-scaled devices

sources of variability, cannot scale in proportion to the nominal values of the electrical parame-

ters. Therefore, design margins are reduced at a circuit and system level, and this impacts yield.

The taxonomy of device variability differs according to the adopted viewpoint (18; 19), but to

understand the importance of characterisation and modelling of variability at different levels of

the design and optimisation process, one must keep in mind the following classifications.

2.2.1 Classification

From a device perspective, variability is intrinsic, arising from fundamental phenomena linked

to the granularity of charge and matter, or extrinsic, triggered by unavoidable tolerances in the

process conditions. Typical sources of intrinsic device variability are random dopant fluctua-

tions (RDF) (both in terms of number and spacial distribution), line edge roughness (LER),

microscopic oxide thickness variation (due to Si/SiO2 interface roughness), all of which result

in device-to-device variability (29). Examples of extrinsic variability are the die-to-die, or

wafer-to-wafer oxide thickness fluctuation, or implantation dose uncertainty (19).

An alternative classification, according to the causes that effect parameter fluctuations,

distinguishes systematic from random variability. The former includes fluctuations of device

characteristics that are identifiable with the specifics of the device layout and neighbourhood,

e.g. LG variation due to optical proximity corrections or transistor orientation. The latter

concerns parameter fluctuations in transistors with identical layout or environment. Systematic

variation can be anticipated, and dealt with by technology optimisation, or in a deterministic

way during circuit design, while random variability simply widens the design margins needed

to guarantee functionality and performance despite the stochastic contribution to timing and

leakage (18; 19).

The selection of appropriate design margins is crucial for the realisation of a profitable

chip design, and requires quantitative knowledge of the impact of different sources of parameter

fluctuation, and the correlation between them. Concerning random variability, statistical device

and circuit modelling and simulation is the only way to obtain such insight.

In our study, we focus on random, intrinsic device variability of gate leakage current. The

different sources of variability and their relevance to gate leakage will be discussed in the next

section (2.3).
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2.2 Variability in ultra-scaled devices

2.2.2 Impact on leakage power and yield

Device variability adversely affects leakage power. This can be inferred directly from Eq. 2.1,

showing an exponential dependence of the sub-threshold drain current (Ioff) on VT , the vari-

ability of which is extensively studied (27; 29; 44). The same sources of variability that induce

threshold voltage fluctuations induce a log-normal distribution in Ioff (i.e. log(Ioff) has a nor-

mal distribution) (19). The inverse correlation between VT and Ioff means that faster devices

have excessive sub-VT leakage. Fig. 2.8 shows the measured frequency-leakage dispersion for

microprocessors from a single wafer. The ratio between the maximum and minimum measured

stand-by leakage (Isb) can be over 20, while the corresponding spread in operating frequency

is limited to 30 % (45). In this case, the spread in leakage current has been correlated to gate

length variation and VT variation. In a power constrained design, this may eventually render a

large number of devices outside specification, and reduce yield.
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Figure 2.8: Spread in frequency

and stand-by leakage, measured

in microprocessors from a single

wafer (45). Leakage is inversely

correlated to chip performance,

and suffers much wider fluctua-

tion.

Knowing the sub-VT leakage dependence on the sources of variability, and more importantly,

knowing the distribution of VT itself, allows performance and power constrained design optimi-

sation, (35), and yield-prediction modelling (46), including Ioff tolerances. However, the gate

leakage, despite its comparable magnitude, and exponential sensitivity to the same sources of

variability, is typically ignored, or accounted for on a simplified, unphysical basis (e.g. assuming

IG = IG,nom exp (f(δtox)), where f is a linear function of the oxide thickness fluctuation δtox)

(46).

The fact that gate leakage variability is typically neglected stems from the difficulties in its

characterisation (18), and from the lack of comprehensive simulation studies on the subject,

as will become clear from the following section. Furthermore, there is no simple correlation

between gate leakage and any of the performance-related parameters.
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2.3 Statistical gate leakage variability - prior art

2.3 Statistical gate leakage variability - prior art

One reason to anticipate gate leakage variability is the exponential dependence of the gate tun-

nelling current on the gate oxide thickness, which is known to vary on a lateral scale of hundreds

of nm, as well as on a much smaller lateral scale of 1 to 30 nm (47; 48). The thickness fluctu-

ations on a smaller lateral scale are associated with Si/SiO2 interface roughness, leading to a

deviation from the nominal oxide thickness by one Si(001) inter-atomic plane distance (0.28 nm)

(49; 50). For a 1 − 1.5 nm SiO2 gate dielectric, such microscopic thickness fluctuations lead

to local tunnelling current density fluctuations of orders of magnitude, and increases the mean

of the total tunnelling current, relative to that of a uniform device (30; 51; 52). In Ref. (32),

this issue is studied on a statistical scale, concluding that as the linear dimensions of a device

are reduced to the order of the interface roughness characteristic length, the fluctuations in the

tunnelling current density cannot self-average and translate to a statistical variation of the to-

tal tunnelling current. However, the modelling approach disregards actual device electrostatics,

and cannot be used to predict the statistical distribution of gate leakage variability in realistic

devices. Fig. 2.9 shows a reconstruction of the interface surface profile and its impact on the

potential, and on the inversion carrier population distributions in a 30 nm gate length n-channel

MOSFET, at low drain and high gate bias. It is expected that the tunnelling current density

fluctuations due to the thickness variation itself are further emphasised by the correlation of

higher local electron density to the thinner regions of the oxide.

Random dopant fluctuations are also considered a source of intrinsic gate leakage variabil-

ity, because they locally modulate the electric field and electron density, to which the direct

tunnelling current is very sensitive. This is visualised in Fig. 2.10, where a typical distribution

of discrete dopant atoms, resulting from a three-dimensional process simulation is shown at the

top of the figure. The bottom part of the figure shows the effect of these impurities on the sur-

face potential and electron density distribution in a 30 nm MOSFET. This effect is sufficient to

induce local tunnelling current density fluctuations, which may not average over the tunnelling

area, and lead to gate current variations from device to device. However, a statistical simu-

lation of a 50-device sample with random dopant fluctuations, reported in Ref. (31), suggests

that in a 30 nm gate length MOSFET, the fluctuations in gate current are associated with

the uncertainty of the source and drain junction positions, rather than to the dopant-induced

fluctuations in the oxide field. Unfortunately, the study was limited to low-drain/high-gate

bias of the transistor, when ionized impurities are screened by the inversion charge carriers.
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2.3 Statistical gate leakage variability - prior art

Figure 2.9: (Left) Si/SiO2 interface profile (top), electron iso-concentration surface, and elec-

trostatic potential, simulated in a 30 nm gate length MOSFET at high VG and low VD (27)

(figure courtesy of A. R. Brown).

Figure 2.10: (Right) Discrete impurity distribution, resulting from a 3D process simulation, and

electron concentration iso-surface, obtained from drift-diffusion/density-gradient simulations

(53) (top) (figure courtesy of A. R. Brown). Effects of the discrete impurities on the surface

potential (surface plot) and electron density distribution in a 30 nm MOSFET (3D slab).

An additional limitation of the approach concerns the purely classical treatment of the device

electrostatics, and the modelling of the discrete impurities through their long range potential

only. Therefore, discarding any correlation between oxide field fluctuations and gate leakage

variability is not definitive.

Another possible source of intrinsic gate leakage variability is line-edge roughness (LER).
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2.3 Statistical gate leakage variability - prior art

Figure 2.11: (Left) Micrograph of parallel lines with sub-100 nm width, showing uncertainty in

the line edge, at a length scale comparable to contemporary MOSFET gate length (top). Effect

of line edge roughness on the electrostatic potential of a 30 nm MOSFET (bottom) (figure

courtesy of A. R. Brown).

Figure 2.12: (Right) Micrograph of a large poly-Si area, showing the random poly-grain size,

shape and orientation, and the very well defined grain boundaries (top). Effect of the poly-Si

granularity on the device electrostatic potential, for grain boundaries across the gate (figure

courtesy of A. R. Brown).

Line edge roughness is caused by the tendencies of the lithographic photoresist to aggregate

in polymer chains. These aggregates are large enough to locally affect the speed of the resist

development process, and eventually translate to loss of resolution and low fidelity of the line

edge, as illustrated in Fig. 2.11. This is of particular importance for the formation of the gate

pattern, and translates to an uncertainty of the gate length along the width of the device. The

impact on the device electrostatic potential is also shown in Fig. 2.11. Although the gate current
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2.4 Summary

is linearly proportional to the gate dimensions, it must be kept in mind that the distribution

of random impurities forming the source and drain extension is correlated to the gate line edge

roughness.

In ultra-scaled MOSFETs, the poly-Si gate grain boundaries also become a source of gate

leakage dispersion between devices (54). This is explained with the segregation of ions at the

grain boundaries which sharply alter the surface potential along those grain boundaries. This is

shown in Fig. 2.12. One may expect that similar effect are to be found due to grains in high-κ

gate dielectric stacks, but none of these effects is further investigated.

It appears therefore, that prior to our study, there was no attempt to thoroughly address

the intrinsic gate leakage variability. This is in spite of the fact that gate leakage variability

has been suggested as a scaling roadblock (due to apparent VT fluctuations induced by the

gate tunnelling current fluctuations) (55), and despite the need to account for it in circuit and

system design and optimisation (34), and parametric yield modelling (46).

2.4 Summary

While device scaling aims to reduce device dimensions, to achieve improvements in integration

density and performance, leakage power grows in an exponential fashion. The design and opti-

misation process becomes performance and power constrained. In this paradigm, the accurate

evaluation of transistor variability in both performance, and power is of paramount importance,

as this information critically impacts design margins, and hence yield. Of the two dominant

leakage mechanisms, only the dependences of sub-VT drain leakage variability are understood,

while gate leakage variability, despite its importance, has not been studied in detail.
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Chapter 3

Leakage through ultra-thin gate

oxides

A brief overview of the known tunnelling mechanisms through ultra-thin oxides and their rele-

vance to gate leakage in nano-scale CMOS transistors is followed by a survey of direct tunnelling

models, and gate current simulation approaches. A semi-classical model, based on a modified

WKB approximation, and its incorporation in a 1D Poisson-density gradient solver are pre-

sented in greater detail. A single value of the oxide tunnelling effective mass provides a good fit

to experimental data for gate leakage from both inversion and accumulation layers, for a broad

range of oxide thicknesses.

3.1 Gate oxide leakage mechanisms

Tunnelling in solids comprises a range of phenomena (56), a few of which give rise to gate leak-

age current in the context of a MOSFET. In a semiconductor-oxide-semiconductor structure,

different tunnelling processes take place depending on the applied bias, oxide thickness, and the

conditions of electrical and thermal stress. One may distinguish Fowler-Nordheim tunnelling

(FNT), direct tunnelling (DT), and trap-assisted tunnelling (TAT), as is schematically illus-

trated in Fig. 3.1. This classification is based on the analytical, semi-classical models that have

been established to explain the tunnelling current-voltage characteristics of the structure under

different experimental conditions (37; 57; 58; 59; 60). Each of these processes contribute to a

different degree to the gate current of a CMOS transistor, and the reasons are discussed below.
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Figure 3.1: Conceptual diagram of tun-

nelling processes through an ultra-thin

gate oxide: Fowler-Nordheim tunnelling

(FNT) to the oxide conduction band,

trap-assisted tunnelling (TAT) through

the oxide band-gap, direct tunnelling

(DT) through the oxide band-gap. DT

may be due to conduction band elec-

trons in extended (ES) or quasi-bound

states (QBS), or from valence band elec-

trons. Holes may tunnel in the DT

regime in an identical fashion to elec-

trons.

3.1.1 Fowler-Nordheim tunnelling

FN tunnelling is associated with electrons reaching the SiO2 conduction band through a trian-

gular potential barrier. In nano-scale MOSFETs, where the supply voltage is in the order of

1 V, one expects relatively few electrons to possess enough energy to do so. This is because

the Si-SiO2 conduction band discontinuity of 3.15 eV is large (37), while at the same time the

voltage drop due to the built-in potential and the applied bias (both in the order of 1 V) is

distributed across the oxide and the space charge layers, resulting in an oxide field of about

8 MV/cm, i.e. 0.8 V across 1 nm oxide. Hence electrons need an excess of 2 eV of incident

energy. Quantitative insight is obtained from the simplest expression for the FN tunnelling

current JFN = F 2
oxC exp(−β/Fox) (61), which in good agreement with experiment (61; 62; 63).

Here, Fox is the oxide field, while C and β are constants, involving the potential barrier height

φB and oxide effective mass mox, so that JFN is not explicitly dependent on the oxide thick-

ness. 1 Assuming φB = 3.15 eV, and mox = 0.5m0 as in Ref. (63), we obtain JFN of 1.0×10−12

and 2 × 10−4 A/cm2, for Fox of 6 and 10 MV/cm, respectively. These values appear to be

orders of magnitude lower than the measured tunnelling current, even in oxides as thick as

3.2 nm at similar Fox (59; 64; 65; 66). Figure 3.2 shows the vast difference between measured

gate leakage from sub-5 nm oxides, and the calculated current JFN , based on the expression

1Experimental results are typically presented on a plot of log(JFN/Fox) versus 1/Fox, to which a straight

line can be fitted, according to the quoted relation, over a wide range of Fox value.
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3.1 Gate oxide leakage mechanisms

above. This discrepancy indicates that there is a dominant transport mechanism, different from

FNT, taking place in ultra-thin oxides (i.e. tox below 4 - 5 nm). The data shown in Fig. 3.2,

and from various other studies, has been reproduced to a good agreement by modelling the

gate current as direct tunnelling current of electrons (57; 65; 67; 68).
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Figure 3.2: Measured (65) gate leakage cur-

rent from n+poly-Si gate into a p-Si(001),

for three different oxide thicknesses, as a

function of the oxide field. Significant dis-

agreement with the calculation of JFN us-

ing the relation quoted earlier in the text,

shows there is another, more important tun-

nelling mechanism at sub-5 nm oxide thick-

ness, which was successfully modelled as a

direct tunnelling process (65; 68).

3.1.2 Direct tunnelling

In the direct tunnelling regime, electrons traverse the entire width of the potential barrier that

is imposed by the conduction band discontinuity (56). The most important feature of the DT

regime is the experimentally established exponential sensitivity with respect to oxide thickness

(64; 65; 69). 1 As the barrier gets thinner, the tunnelling probability dramatically increases

even for electrons near the bottom of the conduction band (i.e. with a very small incident

energy, compared to the top of the barrier). Moreover, the density of these electrons is much

higher, than the ones near the top of the barrier, and as a consequence the DT electron flux,

dominates the gate leakage through sub-5 nm SiO2 films, as was shown in Fig. 3.2.

Direct tunnelling in MOS structures exhibits a weak temperature dependence (associated

with the temperature dependence of the Fermi level on each side of the oxide) (70; 71), allowing

successful interpretation of experimental data in the framework of a single particle, elastic

tunnelling (56). A survey of models for the simulation of DT gate current in MOS structures,

and the associated quantitative results, are deferred until the next two sections. Here, it suffices

to stress, that a two-fold reduction of the oxide thickness tox from 3 nm to 1.5 nm increases the

DT gate current by more than seven orders of magnitude (69; 72), with a current density at

Fox = 8 MV/cm greater than 10 A/cm2, for the thinner oxide.

1Exponential sensitivity of the gate current JG on oxide thickness tox is evident from a plot of log(JGt
2
ox)

versus tox, where the data of all devices for a given bias falls on a straight line (69).

22

figures/c3/jg.fox-nagano.eps


3.1 Gate oxide leakage mechanisms

VSUB = 0

VD
VGVS = 0

SRC

SUB

DR

Gate

IG

IDIso Ich Ido

Isub

= VDD

= 0
= 0
= VDD

DR ExtChannel
band diag. band diag.

n+Si n+Si

p+Si

n+poly

n
+

poly p Si

Channel
depl
inv

n
+

poly n
+

Si p Si

DR Ext
depl
acc

Figure 3.3: Schematic, 2D diagram of an nMOSFET, and simulated energy band-diagrams at

the middle of the channel (Channel), and at the end of the overlapped drain extension (DR Ext).

Two extreme biases are shown: VG = VDD, VD ∼ 0 (red, solid), and VG = 0, VD = VDD (blue,

dash). The former case implicates electrons tunnelling from substrate, while the latter one -

mainly from the gate, to the drain extension. The same energy reference is used, coincident

with the equilibrium Fermi level deep in the Si substrate.

As shown in Fig. 3.1, DT may involve electrons from the conduction band (commonly termed

ECB), or from the valence band (EVB). Electrons in the conduction band can be conceptually

split in two groups - quasi-bound state (QBS) electrons, and extended state (ES) electrons. The

former are confined to the narrow accumulation or inversion quantum well next to the oxide

interface, and have the properties of a 2D electron gas (73). The term quasi-bound reflects

their ability to tunnel through the oxide to unoccupied extended states in the gate, although

the energy levels that these electrons occupy correspond to the stationary (bound) states of

the well. 1 The ES electrons occupy the continuum of energy levels above the surface quantum

well, and have the properties of a 3D electron gas. The presence of electrons with different

properties bears great relevance to the tunnelling models, since accurate determination of the

available amount of charge for tunnelling is of crucial importance.

Figure 3.3 shows a schematic diagram of an n-channel MOSFET and band diagrams in

the direction normal to the oxide at two different geometrical positions, and two different bias

conditions. In the case of high gate voltage and low drain voltage, carriers in the substrate are

confined, and occupy QBS (refer to the red, solid lines in the band-digrams). Tunnelling from

ES may be ignored due to their negligible occupancy. Moreover ES electrons have to overcome

1Assuming a weak coupling between the cathode (the inversion/accumulation layer) and the anode, so that

equilibrium distribution in the cathode is insignificantly disturbed from leakage.
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3.1 Gate oxide leakage mechanisms

the depletion layer in the substrate before reaching the oxide interface and tunnel. This is a

relatively slow process compared to the tunnelling rate through an ultra-thin oxide, due to the

wide depletion layer. ES electrons must be considered if electrons are the majority carriers in

the tunnelling cathode (e.g. the gate in accumulation), since at a low confining potential, ES

electrons form a significant fraction of the total electron population (refer to the blue, dashed

line of the DR ext band-diagram, in the case of low gate voltage and high drain voltage).

Tunnelling of electrons from the valence band (TEVB) results in a hole left behind, at the

cathode, as illustrated in Fig. 3.1. In the context of an n-channel transistor in a CMOS logic

circuit, TEVB could happen only under sufficiently strong inversion of the substrate (i.e. high

gate bias), in which case substrate valence band electrons tunnel to available states in the

conduction band of the gate, contributing to the gate current IG, while the holes left in the

substrate contribute to the substrate current IB (74; 75). TEVB requires that the valence

band edge at the cathode interface is higher than the conduction band edge at the anode

interface. Otherwise, valence band electrons meet a wider tunnelling distance than conduction

band electrons, due to the band bending in each of the Si electrodes, as shown in Fig. 3.1, and

TEVB is comparatively insignificant. Ignoring band-gap narrowing, and assuming the intrinsic

Fermi level to be in the middle of the Si band gap, it is easy to translate this requirement into

a condition for the oxide field strength, namely |Fox|tox > Eg/q. If this condition is satisfied,

the flux of VBE tunnelling electrons is limited only by the tunnelling probability, since electron

density in the valence band is high. However, at this stage the Fermi level in the cathode is above

the conduction band edge, and conduction band electrons have high density too. Moreover,

conduction band electrons have higher tunnelling probability, because the potential barrier for

them is lower by Eg = 1.12 eV, and TECB remains the dominant component of the gate current

(IB/IG < 0.2) (76). A voltage drop above Eg = 1.12 eV is in fact not possible if the power

supply VDD is in the order of 1 V, and therefore TEVB may be disregarded for the study of

CMOS gate leakage variability. It should be kept in mind for tunnelling model evaluations

and calibration however, since oxide characterisation data is often available up to high-voltages

where TEVB is not negligible.

3.1.3 Trap-assisted tunnelling

Point-like defects in the insulator contribute electronic states that are energetically localised in

the oxide band-gap. These states can trap charge, due to their spacial localisation, or facilitate

tunnelling through the oxide - the process being called trap-assisted tunnelling (TAT). There
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is a finite probability of an electron from the cathode (the emitting electrode) tunnelling to

the trap, and this probability is higher than the one for tunnelling through the entire oxide

at the energetic level of the trap. There is of course a finite probability of tunnelling out of

this trap to the anode at opposite side. This simplified description of the process renders TAT

as a two-step tunnelling phenomenon, and forms a basic model for quantitative understanding

through the relation (77) JTAT = q
∫

NT /(τc + τe)dx, where the NT (x) is the trap density at a

distance x away from the tunnelling cathode, τc and τe are the characteristic times for carrier

capture and emission by the trap (dependent on the energy and space location of the trap, and

the oxide field), and integration is performed over the oxide distance. TAT models of various

complexity are reviewed in Ref. (78), differing in the way that capture and emission times are

calculated, and in their account for hopping (through a sequence of traps) and inelastic TAT

(79; 80; 81; 82; 83).

TAT modelling is of greatest importance for the accurate simulations of stress-induced leak-

age current (SILC) – the increase in gate leakage of a device subjected to an electrical stress,

relative to the leakage of the unstressed device.. Since SILC is attributable to the generation

(due to stress) of traps in the oxide, it is used to extract their density, which is linked to oxide

degradation and breakdown (84; 85; 86).

In good quality sub-3 nm thick oxides, the trap concentration is less than 1017 cm−3 (87; 88;

89), and 10 times lower than the concentration in bulk oxides (90). Note that the corresponding

areal density of traps in a 1 nm oxide is 1010 cm−2, which is in the order of the electron sheet

density in a MOS tructure with highly doped substrate at zero gate voltage. Therefore JTAT

is limited by NT , and should affect gate current mainly at low bias, where the DT or FNT

components are relatively small. This hypothesis is confirmed by experiment – a comparison

between IG−VG characteristics of unstressed and stressed devices with identical structure shows

a characteristic flaring of the IV curves of the stressed device at low VG, and a corresponding

increase in the tunnelling current (64; 85).

Experimentally, TAT in sub-2 nm SiO2 appears to be negligible (91), and remains a concern

only for non-volatile memory devices (78), and MOSFETs with high-permittivity dielectric gate

stacks (92; 93).

3.1.4 Hole tunnelling

The tunnelling mechanisms discussed so far for electrons are available for holes too. However,

tunnelling for holes happens at a lower rate, compared to electrons for two main reasons – i)
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holes have higher tunnelling effective mass (94), and ii) the potential discontinuity for holes

is very significantly larger than that for electrons (compare ∆Ev ∼ 4.8 V, and ∆Ec ∼ 3.1 V

for SiO2(37)). This is why p-channel MOSFETs typically exhibit lower gate leakage current

than n-channel MOSFETs at a give channel length, as hole tunnelling current dominates gate

leakage in p-channel MOSFETs with p+poly-Si gate (94; 95).

In line with our objectives to study gate leakage in variability in n-channel nano-CMOS

FETs, we focus, in the subsequent exposition, entirely on the primary tunnelling process –

direct tunnelling of conduction band electrons.

3.2 Direct tunnelling models

Here we give an overview of the models describing direct tunnelling of electrons emitted from

a semiconductor cathode, adopting the independent-particle point of view (96). Tunnelling is

viewed as a one dimensional process, with the customary approximations of total particle energy

conservation, effective mass approximation in all areas of the tunnelling junction, translational

invariance in lateral direction, and a phenomenological treatment of the barrier (56). The last

aspect was implicit in the energy band-diagrams presented in the previous section, and con-

cerns the barrier shape, height ∆Ec,v (conduction/valence band discontinuity), and width tox

(oxide thickness), which are determined from tunnelling-independent experiments. In addition,

tunnelling is assumed to be sufficiently weak, as to not disturb the equilibrium in the cathode

– a condition typically satisfied in MOSFETs under normal operating conditions.

3.2.1 Generalised expression

The expression for the electron tunnelling current density from quasi-bound (QBS) and ex-

tended states (ES) can be written as (30; 56; 78; 97)

JG = q
∑

ν,ι

nν,ι
τν,ι

+ q

∫ ∆Ec

qψs

T (E⊥)N(E⊥) dE⊥. (3.1)

The sum in Eq 3.1 accounts for tunnelling from QBS, where the index ι identifies a subband,

in a valley ν, of the quantised layer in the semiconductor, and nν,ι is the corresponding sheet

density of electrons. Each electron tunnels with a rate 1/τν,ι, where τν,ι is the characteristic

lifetime of the electron QBS.

The integral accounts for tunnelling from ES with a higher energy than the depth of the

potential well, qψs (assuming the bottom of the potential well as an energy reference, and ψs
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being the surface potential). The integrand functions T and N are transmission probability

and supply function respectively (56), and E⊥ is the incident kinetic energy of a particle with

a total energy E = E⊥ + E‖. The supply function itself is (98)

N(E⊥) =
4πm∗

3D

h3

∫ ∞

0

(f(ξc, E) − f(ξa, E)) dE‖, (3.2)

where m∗
3D is the 3D density of states mass in the electrodes, f(E) is the occupational proba-

bility function (i.e. Fermi-Dirac or Maxwell-Boltzmann distribution at thermal equilibrium),1

and ξc,a is the Fermi energy on each side of the insulator, i.e. the cathode and the anode.2

Finding the transmission probability is the major challenge associated with the expression

for the tunnelling from ES. Moreover, T (E⊥) is characteristic for the barrier penetrability at

a given energy, independent of the supply function, and some models for tunnelling from QBS

also make use of it. Next we elaborate on the methods of its calculation.

3.2.2 Transmission Probability

The transmission probability T (E⊥) is defined as the ratio of the transmitted and incident

probability currents (100). Note that it implies itinerant states on each side of the barrier, i.e.

a plane wave, incident on one side of the potential barrier, connected (through a decaying wave

function in the barrier) to another plane wave, on the other side of the barrier. The plane waves

are not normalizable, but as we are interested in the ratio of their densities, transmission is a

well defined concept. Finding T , given a trapezoidal potential barrier, is a typical quantum-

mechanics textbook problem, which is solved i) semi-analytically, deploying Airy functions

(101; 102), ii) numerically, using the transfer-matrix (TM) method (103), or iii) approximately,

using the Wentzel-Kramers-Brillouin (WKB) approximation (98).

The semi-analytical solution is computationally intensive, but not extensible to stacked

dielectrics, which is why it has gained limited popularity (102). The TM method is also

computationally demanding, but can be applied for multi-layered dielectric stacks and bar-

riers of arbitrary shape. It is typically embedded in self-consistent Poisson-Schrödinger solvers

(104; 105; 106; 107; 108), and the method is elaborated in Appendix. A. The dependence of

the accuracy and stability of the TM method on the grid density is a disadvantage, particularly

with a 3D simulation framework in mind. The grid resolution dependence is circumvented by

1By selecting an appropriate non-equilibrium distribution functions for f , it is possible to more accurately

account for hot-carrier tunnelling (78; 99).
2 Equation 3.2 assumes electrodes are described by the same parabolic band-structure (i.e. the same m∗

3D
),

and when applied to the integral of Eq. 3.1, accounts for the bidirectional flux through the barrier.
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the development of the quantum transmitting boundary (QTB) method (109), which requires

however, the inversion of a complex matrix with the dimensionality of the number of grid points.

The TM and the QTB approaches are therefore not considered for the study of gate leakage

variability at this stage, because of their implementation complexity and computational cost.

Here we focus on an improvement of the WKB approximation, which, for the DT regime,

yields results in excellent agreement to the semi-analytical approach involving Airy functions.

The transmission probability in this case is (1; 110)

T = TR × TWKB (3.3)

with the standard WKB transmission probability being (100)

TWKB = exp(−2

∫ −tox

0

κ(x) dx) (3.4)

and the correction factor, in a band-structure-independent form, being (1; 110)

TR =
4vk(0)vκ(0)

v2
k(0) + v2

κ(0)
× 4vk(−tox)vκ(−tox)
v2
k(−tox) + v2

κ(−tox)
, (3.5)

where k(x) and iκ(x) are the real and imaginary electron wave vectors, outside, and inside the

barrier, respectively, while vk and vκ are the corresponding real and imaginary group velocities

(dE/d(~k) and dE/d(~κ), respectively). Hereafter, we refer to the transmission probability

given by the above set of equations as modified WKB (m-WKB) approximation.

The quality of the “correction” is demonstrated in Fig. 3.4, which compares the transmis-

sion probability through a trapezoidal barrier, calculated with Airy functions (i.e. the exact

solution), with the conventional WKB approximation (i.e. Eq. 3.4), and with the m-WKB

approximation (Eqs. 3.3 to 3.5).
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Figure 3.4: Transmission probability as a

function of the incident energy, for a trape-
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(m-WKB) and the exact calculation based
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3.2 Direct tunnelling models

To elucidate the physical significance of the correction term TR, we first recall that the

derivation of the conventional expression of TWKB is done for smoothly varying potential bar-

rier, using the WKB approximation for the wave function in all regions of its validity (i.e. where

|dk/dx| << |k2(x)|), and with the help of connection formulas (100). As the connection formu-

las are invalid at potential discontinuities, Ref. (100) suggests that in such cases, the exact wave

function solutions for each region are used, and matched smoothly at the points of discontinu-

ity. This procedure is followed in the derivation of Eq. 3.3 (110).1 Plane waves are assumed on

each side of the barrier, and connected to real exponents at the inner (for the barrier) side of

the potential discontinuities. The matching conditions ensure wave continuity and probability

current conservation, and give rise to the correction term TR. Wave propagation only inside the

barrier is treated with the WKB theory, reflected in the TWKB term. Therefore the correction

term TR accounts for the wave reflections at the abrupt potential discontinuities (1). Note that

in the limit of a square barrier and a single effective mass throughout, the m-WKB expression

for T reduces to the exact analytical solution for low incident energy (or κtox >> 1) (103)

Tsq =
16k(−tox)k(0)κ2

(k2(−tox) + κ2)(k2(0) + κ2)
exp(−2κtox). (3.6)

As a final comment we show that the requirement for the validity of the WKB approximation,

|dκ/dx| << |κ2(x)|, is satisfied. Considering 1 V voltage drop over 1 nm thick oxide, i.e.

Fox = 10 MV/cm, and an electron with 0.5m0 effective mass (hence parabolic band structure

in the oxide) tunnelling from 3 eV below the top of the trapezoidal barrier, we evaluate

|κ2(x)|
∣

∣

∣

dκ(x)

dx

∣

∣

∣

−1

= κ2(0)
tox

(κ(0) − κ(−tox))
= 9.44 (3.7)

Therefore, the WKB approximation is acceptable for the purpose of our study. In addition,

tunnelling calculations using the m-WKB expression for the transmission probabilities have

already shown good agreement with experiment (72; 91; 94; 95; 110; 112).

3.2.3 Tunnelling from quasi-bound states

A rigorous treatment of tunnelling from a quasi-bound state (QBS) requires the solution of the

time dependent Schrödinger equation. The solution is of the form (113)

Ψ(x, t) = ψ(x)e−λnt/2e−i(En+δE)t/~. (3.8)

1Alternative derivations of the same expression for the transmission probability are obtained independently,

following Bardeen’s transition probability approach (111), and Harrison’s independent-particle tunnelling model

(96), in Refs. (95; 112).
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This assumes the maximum probability of finding the particle in the quantum well initially, at

t = 0, and hence at a corresponding bound state (BS) level En. The coupling of the QBS with

the continuum of states in the gate leads to the following consequences. First, the probability of

finding the particle in the well after time τn = 1/λn is 1/e, i.e. τn is the characteristic lifetime

of the QBS. Second, there is a small shift δE of the QBS energy, with respect to the BS level,

which is due to the coupling of the QBS to the continuum of states in the gate.

One could follow the time dependent formulation to find the leakage current from a QBS,

and obtain that the tunnelling current exponentially decreases in time (114), similarly to an

α-particle decay (113). The case with QBS in a MOSFET is different, since for sufficiently weak

coupling through the gate oxide (assumed at the onset of this section), the tunnelled particle

is instantly replaced through the contacts, and the steady state tunnelling current is constant.

This instantaneous refill of the QBS allows one to ignore its time dependence altogether, and

determine the characteristic lifetime τn, from the properties of the corresponding stationary

state En (114). This is by far the most common approach in device modelling (115). Therefore,

the challenge in modelling QBS leakage current is in the calculation of the QBS lifetime, while

the subband sheet density is usually obtained from a self-consistent solution of the Poisson and

time-independent Schrödinger equations, or an analytical approximation of the inversion layer.

Subsequently we elaborate on the methods of calculating QBS lifetimes.

3.2.3.1 Complex eigen-states

The time dependent factor in Eq. 3.8 can be re-written in the form exp(−i(En − iλn~/2)t/h)

(ignoring δE). Therefore, one can obtain Ψ(x, t) from the stationary state Schrödinger equation

for ψ(x), allowing for complex eigen-energies of the form

En = En − i~/2τn = En − iΓn. (3.9)

This suggests a direct method of obtaining the QBS lifetimes, from the imaginary part of the

complex eigen-states of the time-independent Hamiltonian of the system. However, the coupling

of the QBS to the semi-infinite domain of the anode requires the application of open boundary

conditions. This is realised in the quantum transmitting boundary method (QTBM), but the

Hamiltonian becomes non-linear, because some of the coefficients of the augmented matrix

(incorporating the BC) are energy dependent (109). Despite its complexity, the method has

been successfully used for the simulation of gate current (66; 116; 117). A recently proposed

alternative, the perfectly matched layer (PML) method, based on artificial absorbing boundary
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conditions, makes the Hamiltonian appear linear, non-Hermitian, for finding the eigen-states of

which there are more efficient algorithms, and agrees well with the QTBM results (118).

The complex eigen-value problem can also be solved using an analogy to the transmission

line theory, in a method referred to as the general impedance concept (119), or as the transfer-

resonance method (120). It is successfully used in several works (120; 121; 122; 123).

3.2.3.2 Reflection time and transfer-matrix

There is a widely used alternative of calculating QBS lifetimes. It is based on a consideration of

the reflection time tr, associated with extended states, incident from the cathode, and reflected

back to it (124). It is found that an incident wave with energy coinciding with a QBS suffer much

longer reflection time, compared to incident waves at energies away from the QBS. Moreover,

the energy dependence of tr in the vicinity of a QBS is described by a Lorentzian, with a half

width at half maximum (HWHM) Γn = ~/2τn, τn being the QBS lifetime (124). Finding τn is

thus reduced to the problem of finding Γn.

There are two ways of finding Γn, based on symmetry properties of the transfer-matrix. The

first is to evaluate the derivative of the phase, Θ(E), of the complex reflection coefficient, since

dΘ(E)/dE exhibits the same resonances as the reflection time (125). This approach requires a

very fine step of energy scanning (∼1 peV) to estimate numerically dΘ/dE, and subsequently,

the width of the Lorentzian peaks (105; 114). The second approach relies on the width of a

Lorentzian peak in the energy dependence of 1/|W11|2, W being the transfer matrix (115). Note

that 1/|W11|2 is the principal factor in the transmission coefficient of a resonant system (125).

Although transmission is not a valid concept in the case of QBS, the lack of incident waves

imposes that W11(En) = 0, with En = En+iΓn. Consequently, assuming W11 ∝ (E−En) in the

vicinity of En, it is straight forward to show that 1/|W11|2 has a Lorentzian form around En,

with a HWHM of Γn. Eliminating the need for numerical evaluation of dΘ/dE, this approach

is easier to implement (107; 115).

We implement the second method for QBS lifetime calculation in the Poisson-Schrödinger

solver described in Appendix A, and use it for the work presented in Chapter 5.

3.2.3.3 Wave-function logarithmic derivative

The QBS lifetime can also be obtained from the wave-function of the stationary state ψ(x,E),

following the approach recently presented in Ref. (126). For a real E, ψ can be real too (and

normalizable, except in the anode, where the QBS leaks into extended states), and one can
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define a real function G(x,E) = (1/ψ)(dψ/dx) (i.e. the logarithmic derivative of ψ). G can be

analytically continued to assume a complex argument (with a small imaginary component) of

the form E = E − iΓ, using first order Taylor series (implicitly dependent on x):

G(En) = G(En) +
dG

dE

∣

∣

∣

E=En

(En − En). (3.10)

Taking x = 0 to be the interface between the oxide and the anode (e.g. the gate, for inversion

layer QBS), and an outgoing wave for ψ ∝ exp(−ikx), for x < 0, it follows that G(x,E) = −ik.
By implication, G(0, En) = 0, since for real energy, x = 0 is a classical turning point of k = 0.

Therefore, Eq. 3.10 yields the following relation for Γn, and hence for the QBS lifetime τn (with

the help of Eq. 3.9)

Γn =
k

dG(0, E)/dE
⇒ τn =

~

2k

dG(0, E)

dE

∣

∣

∣

E=En

. (3.11)

An expression for dG/dE can be obtained from the time-independent Schrödinger equation,

written for two infinitesimally differing energies, E1 and E2, such that E2 − E1 = dE, and

taking the difference of the two equations.1 The result, obtained in the original reference (126)

for real wave-functions, and assimilated in Eq. 3.11, reads for τn

τn =
m(0−)

~k(0−)

1

ψ2(0, En)

∫ ∞

0

ψ2(x,En) dx, (3.12)

where m(0−) and k(0−) are the effective mass and wave number in the anode side of the barrier

at x = 0.

The remarkable convenience of this approach originates from its dependence only on the

wave-function, which is typically required in a self-consistent calculation anyway, and hence is

known. This eliminates the need for additional scanning in energy and searching for resonance

peaks, which we found to be numerically challenging, especially for relatively low confine-

ment and small subband level differences. Consequently, we implemented this approach in the

Poisson-Schrödinger solver described in Appendix A. The numerically obtained wave-functions

are complex in this case, and we obtain the QBS lifetime (with ψn(x) = ψ(x,En))

τn =
m(0−)

~k(0−)

1

ψn(0)ψ∗
n(0)

∫ ∞

0

ψn(x)ψ
∗
n(x) dx. (3.13)

Agreement with the lifetimes obtained from this equation, and from the HWHM of 1/|W11|2

resonance, discussed in the previous subsection, is very good.

1The technique is similar to the one used in the derivation of the quantum-mechanical current operator

(103).
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3.2.3.4 Impact frequency and barrier transparency

The earliest conceptual model of tunnelling from QBS consists of a particle oscillating with a

given energy En between two potential barriers, at least one of which has a finite transparency

Tn(En), thus giving rise to an escape rate

1/τn = fnTn, (3.14)

where τn is the QBS lifetime, as previously defined. Here, fn is the number of incidences of

the particle on the barrier, per unit time, hence referred to as impact (or attempt) frequency

(127). For a semi-classical wave-packet representation of the particle, one can obtain the impact

frequency from the reciprocal of the round-trip time between the classical turning points (97)

f−1
n = 2

∫

v−1(x) dx (3.15)

where v(x) =
√

(2/m)(En − U(x)) is the classical (group) velocity, integration is performed

between the two classical turning points (where En = U(x)), and the factor of two accounts for

the full opacity of one of the barriers. This definition of f is formally equated to the quantum-

mechanical propagation time defined through the energy derivative of the phase change induced

by a round trip of the wave function ψ(En) (127).

The other ingredient of Eq. 3.14, Tn, can be found by any of the methods described earlier

for the calculation of the tunnelling probability.

This model has the advantage of simplicity, since it does not explicitly require numerical

evaluation to obtain τn, once En is known (e.g. from a self-consistent Poisson-Schrödinger

solver), and has found very wide use (97; 106; 128). It can be coupled to approximative

solutions of the quasi-levels (or even bound states) of the quantum well (1; 72), and forms the

basis of the fully analytical tunnelling model described next.

3.2.4 Register’s model

Here we link together the model of impact frequency and the modified-WKB expression for

the tunnelling probability, to an approximation of the quantisation effects and sheet-density of

the semiconductor cathode, and obtain an analytical oxide-field dependence of the gate current

density. We refer to this tunnelling model as Register’s model, after its first author (1).

The gate tunnelling current density in this model is

JG = Qsf(E⊥)TmWKB(E⊥), (3.16)
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where Qs is the sheet charge available for tunnelling, f(E⊥) is the impact frequency given by

Eq. 3.15, TmWKB is the tunnelling probability given by Eqs. 3.3 to 3.5. In this form, the model

assumes that a single subband, at energy E⊥, contains all inversion or accumulation charge in

the quantised layer. Energy is referenced from the bottom of the conduction band at the oxide

interface of the cathode, Ec(x = 0). Next we present the analytical relations of these quantities

to the oxide field Fox.

The quantum well is modelled as triangular, with slope dEc/dx = q(εox/εSi)Fox, where εox

and εSi are the permittivity of SiO2 and Si, respectively. Assuming rigid walls for the quantum

well, the wave-vector quantisation condition becomes

2

∫ xc

0

k⊥(x) dx = 2π, (3.17)

where 0 and xc are the classical turning points, and k⊥(x) =
√

(2m⊥/~2)(E⊥ − Ec(x)) reflects

a parabolic E(k) dispersion in Si, with an effective mass m⊥. Solving Eq. 3.17 yields

E⊥ = 0.6
(3π~qm⊥)2/3

2m⊥

(εoxFox
εSi

)2/3

, (3.18)

where the factor of 0.6 compensates for the exaggerated confinement implicated by the assumed

rigid walls, and is obtained by comparison to numerical simulations (1).1 Knowing E⊥, the

interface-normal velocity v⊥(x) =
√

(2/m⊥)(E⊥ − Ec(x)) can be substituted in Eq. 3.15, and

integrated from 0 to xc to obtain the impact frequency

f = 0.6
2q

(3π~qm⊥)1/3

(εoxFox
εSi

)2/3

. (3.19)

The expression for TR is that of Eq. 3.5, independently of the SiO2 band-structure, while

the expressions for TWKB depend on the assumed oxide band-structure, i.e. parabolic or Franz-

type (k =
√

(2m/~2)E(1 − E/Eg), where Eg is the oxide band-gap (130)), and are stated in

the original reference (1), and need not be repeated here.

The last quantity of interest is the amount of tunnelling charge Qs. For accumulation, it

is modelled as field induced, i.e. Qs = εoxFox. For inversion, only the mobile inversion charge

can tunnel, and therefore Qs = εoxFox − QD, where QD is the depletion charge sheet-density

(91).

The efficiency of this model is favourable for its inclusion, as a post-processing step, in any

self-consistent field calculation, where Fox and QD can easily be obtained from the solution of

1Recall that the text-book treatment, based on the WKB approximation, allows for wave penetration into

the sloped barrier, changing the 2π in Eq. 3.17 to 3π/2, thus leading to a prefactor of ∼ 0.8 (129).
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the Poisson’s and charge-density equations (e.g. density-gradient (DG), or Schrödinger equa-

tions). The model has demonstrated sufficient accuracy, even in its simplest form presented here

(1; 91), and is extensible to account for multiple subbands in the quantisation layer (72; 110).

These qualities make it a suitable choice for the study of gate leakage variability, and its in-

corporation in a 1D Poisson-DG simulator, and in the 3D device simulator, will be elaborated

upon in later parts of this work. To close the section of direct tunnelling models, we briefly

address several aspects not mentioned so far.

3.2.5 On the underlying approximations

3.2.5.1 Effective mass approximation

If the true test for the validity of a theory is its relation to experiment, then the use of the

effective mass approximation (EMA) in tunnelling models is justified at least for oxides down to

1.2 nm thickness, by the reasonably good fits to measured JG(VG) data (55; 59; 106; 131). The

answer is not so simple however, because of the number of phenomenological parameters that

enter the equations – shape, thickness, and height, of the tunnelling barrier, and band-structure

of the oxide.

More confidence is gained from microscopic calculations of tunnelling through ultra-thin

oxides. In particular, Ref. (132) presents a tight-binding (TB) calculation of tunnelling in a

Si/SiO2/Si super-cell, accounting for the 3D atomic structure of the tunnelling junction, as well

as the entire electronic structure of Si and SiO2 up to several electron volts. Systematically

comparing the TB and the EMA results, the authors conclude (in regard to electron tunnelling)

that - i) transmission through oxide as thin as 0.4 nm can be qualitatively described with a

bulk band structure, and depends exclusively on the incident (interface-normal) energy of the

particle, up to 1.5 eV electron energy; ii) the EMA, with a single imaginary band in the oxide,

remains adequate for modelling direct tunnelling in oxides as thin as 0.7 nm; iii) an energy

dependent effective mass (e.g. Franz type E(k) dispersion) gives qualitatively accurate voltage

dependence of the transmission probability, although the quantitative overestimation by the

EMA requires the band-edge effective mass, or the oxide thickness to be treated as a fitting

parameter.

An additional support for the EMA applicability is the fact that Ohmic-conduction (i.e.

JG ∝ VG) at an infinitesimal bias, described to be a ground-state property in an ab-initio

density-functional theory simulation (133), is demonstrated also in an EMA-based simulation

(112).
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3.2.5.2 Band-structure mismatch

The adoption of a single, imaginary band, to describe direct tunnelling through the oxide in

the EMA, brings about the issue of momentum conservation, since at the same time, the Si

cathode has 6-ellipsoidal band structure. The problem is understood by the following argument.

Assuming that energy is referenced at the bottom of the Si conduction band at the Si/SiO2

interface, and decomposing the total kinetic energy of the particle in normal (⊥), and parallel

(‖), to the interface plane, the conservation of total energy requires that

~
2k2

⊥

2m⊥
+

~
2k2

‖

2m‖
= ∆Ec +

~
2κ2

⊥

2mox
+

~
2κ2

‖

2mox
, (3.20)

where k and κ denote the wave vector in Si and in SiO2, respectively. Supposing parallel

wave-vector is conserved, i.e. κ‖ = k‖, Eq. 3.20 is transformed into

~
2κ2

⊥

2mox
= E⊥ − ∆Ec −

~
2k2

‖

2mox

(

1 − mox

m‖

)

, (3.21)

where (~2k2
⊥)/(2m⊥) is substituted with E⊥ – the incident, or subband energy. In Si, k‖ and

m‖ depend on orientation of the substrate, with respect to the interface, and moreover, the

ratio mox/m‖ can be greater, or smaller than 1. Therefore, Eq. 3.21 means that the potential

barrier for tunnelling, and hence the tunnelling current itself, is dependent on the substrate

orientation (134). However, a systematic study of the issue showed that tunnelling current

from Si substrate is essentially independent of the substrate orientation (135). This implies a

violation of parallel wave-vector conservation, which is ascribed to interface roughness and the

amorphous nature of SiO2.

Nevertheless, parallel momentum conservation has been advocated (136), since short range

order within the sub-stoichiometric region of the oxide has been observed. Once again more

insight is provided from microscopic, tight-binding calculations, showing that above a certain

critical oxide thickness (between 1 and 3 nm), k‖-breaking is intrinsic to the Si/SiO2 lattice

mismatch, even in crystalline SiO2 models with high degree of lateral periodicity (132). This

readily explains the experimental findings of Ref. (135), where the thinnest oxide is much larger

than 5 nm. However, some barrier height dependence on parallel momentum is observed in the

TB calculations of Ref. (132) for oxide thickness below 2 nm.

Although the issue of band-structure mismatch remains debatable, in our work, we assume

k‖-conservation is violated, and that the tunnelling barrier is independent of the subband and

valley from which electrons tunnel.
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3.3 1D simulation of direct tunnelling gate current

3.2.5.3 Image force

Another complex issue with tunnelling concerns the image force correction to the potential

barrier, as discussed in Refs. (136; 137). Comparison of transmission probabilities calculated

with and without accounting for the image force, indicates that the effect of barrier lowering

due to the image-force can be absorbed to the fitting parameter mox, although a qualitative

discrepancy becomes apparent at high energies (137; 138; 139). Since we are mostly concerned

with tunnelling of electrons near the Si conduction band (i.e. the first two subbands, 0.1 -

0.3 eV above the conduction band), rather than close to the top of the barrier, we consider the

effect of image force to be secondary, and have neglected it, as is common.

3.3 1D simulation of direct tunnelling gate current

The simulation of the gate tunnelling current dependence on gate voltage requires a self-

consistent calculation of the field and charge distribution in the device for each gate bias.

Here we give an overview of a 1D Poisson-density-gradient (P-DG) solver, to which we couple

Register’s tunnelling model (described in the previous section 3.2.4), to obtain IG−VG char-

acteristics from inversion and accumulation. This could be regarded as a 1D prototype of the

3D simulation framework, anticipated for the study of gate leakage variability. It is used to

calibrate the only fitting parameter in the tunnelling model – the oxide effective mass, mox.

3.3.1 Simulation approach

The 1D P-DG solver provides a self-consistent solution for the potential and the carrier dis-

tribution in the direction normal to the interface of an n+poly-Si/SiO2/p-Si structure. The

solver is based on a finite difference discretization, and an iterative solution of the Poisson and

density-gradient (DG) equations, which take into account quantum confinement effects in the

inversion or accumulation layer (140; 141). The equations are

d

dx
(−εdψ

dx
) = q (p− n+ND −NA) (3.22)

d2Sn
dx2

=
12qm∗

n

~2
Sn

(

φn − ψ

2
+ φT ln (Sn)

)

(3.23)

n = niS
2
n (3.24)

φp = − φT ln

(

NA
ni

)

, φT =
kBT

q
(3.25)

p = nie
(φp−ψ)/φT , (3.26)
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Figure 3.5: Typical agreement in the

potential and substrate electron den-

sity distribution between the Poisson-

DG and Poisson-Schrödinger solvers.

The MOS structure has 1.46 nm ox-

ide, 1 × 1020 cm−3 n+-poly-gate, and

5×1017 cm−3 p-Si substrate. Gate volt-

age is 1.5 V.

The effective mass m∗
n in the DG equation for Sn 3.23, and m∗

oxDG – setting a Neumann

boundary condition for Sn at the Si/SiO2 interface,1 are treated as phenomenological param-

eters. They are calibrated through fitting of the substrate carrier distribution against a more

accurate, self-consistent Poisson-Schrödinger solver. Figure 3.5 shows the type of agreement

obtained for tox = 1.46 nm at VG = 1.5V , with m∗
n = 0.15m0 and m∗

oxDG = 0.14m0. We have

verified that there is a very good agreement over the range of the confining fields of interest for

the calibration of the tunnelling model for oxide thicknesses in the range of 1 to 2.5 nm, and

gate biasing from 0 to 2.5 V.

The direct tunnelling calculation is based on Register’s model (1):

JG = Qsf(Fox)T (Fox). (3.27)

Since we assume zero charge in the SiO2 in the Poisson equation, the P-DG solution for the

electrostatic potential, at any gate bias VG, varies linearly across the oxide, allowing the oxide

field Fox to be calculated. This allows calculation of JG(VG). The dependencies of the impact

frequency f(Fox) and tunnelling probability T (Fox) remain the same as in the original work,

and sheet charge in accumulation is still modelled as field-induced, i.e. Qs = ǫoxFox.

The novelty in our work is in the different way of calculating the charge available for tun-

nelling in inversion. The original model used Qs = ǫoxFox − Qd, where Qd is the depletion

charge, accounting for the immobile portion of the induced charge (91). Although this approach

is acceptable for 1D simulations, where Qd can be calculated from the doping concentration of

the substrate, it cannot be adapted to 3D MOSFET simulations with realistic doping profiles,

1The Neumann BC for Sn is derived on the assumption of an exponential decay of the electron density in

the oxide, with a characteristic penetration length xp = ~/
√

2moxDG∆Ec, where ∆Ec is the conduction band

discontinuity at the interface (142).
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3.3 1D simulation of direct tunnelling gate current

particularly if discrete random dopants are to be modelled. The solution is to use the self-

consistent electron concentration n(x) from the P-DG solver and integrate it over the depth of

the substrate, to obtain the inversion sheet charge

Qs = Qi = q

∫ tsub

0

n(x)dx. (3.28)

This is readily applicable to 3D simulations.

3.3.2 Tunnelling model calibration

Here we present 1D simulation results for the direct tunnelling gate current, based on the

approach described above. Comparison is drawn with experimental data used for the calibration

of the tunnelling effective mass, the only fitting parameter in the tunnelling calculations. The

experimental oxide thickness remains unchanged and the conduction band discontinuity at the

Si/SiO2 interface is assumed to be 3.15 eV.

3.3.2.1 Tunnelling from inversion layer

Figure 3.6 shows measured gate current (lines) from n-channel MOSFETs with different ox-

ide thickness under positive gate bias, with source and drain contacts grounded (data from

Ref (72)). The large gate area (4.65 × 10 µm2), and the uniform surface potential in the sub-

strate at this bias allows for the interpretation of the data as one-dimensional tunnelling from

the inverted channel, ignoring the minor contribution from the gate edge. The simulated cur-

rent (symbols), shown in the same figure, agrees very well with the experimental results, for the

entire range of oxide thickness. Throughout the entire study a non-parabolic, Franz-type band-

gap dispersion relation is used for the SiO2 (130), with the band-edge effective mass treated as
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Figure 3.6: Simulated (symbol) and mea-

sured (line, after (72)) direct tunnelling

gate current density from the inversion

channel of large-area MOSFETs with dif-

ferent oxide thicknesses, as indicated. All

structures have identical doping levels of

1× 1020cm−3 for the n+poly-Si gate, and

5×1017cm−3 for the p−Si(100) substrate.
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3.3 1D simulation of direct tunnelling gate current

a fitting parameter. The best fit, shown in Fig. 3.6, is obtained by setting the tunnelling oxide

effective mass mox to 0.67m0. This is the only fitting parameter with respect to tunnelling, and

has a single value. For the oxide thicknesses considered here, the slight increase (from 0.61m0)

of the oxide effective mass compared to Ref. (1) and (72) may be attributed to the different way

that the tunnelling charge is calculated (non self-consistently with the potential, in the case of

Refs. (1; 72)). In our case, the self-consistent charge from the Poisson-DG solver is used, as

described in the previous subsection.

Since we perform numerical integration using a simple trapezoidal approximation, to obtain

the charge available for tunnelling from the inversion layer, it is important to check if there is a

strong dependence of the tunnelling current on the mesh size. The simulations presented so far

were done using a uniform grid with a mesh size of 0.1 nm, which is too fine for 3D simulations.

Fig. 3.7 compares the DT current density simulated with four different node spacings – 0.1, 0.2,

0.25 and 0.5 nm. As expected, there is a slight dependency, observable particularly at lower gate

bias, which actually results from the solution of the discretized Poisson and density-gradient

equations, rather than the numerical integration of the sheet charge. This is evidenced from

the electron density profile away from the interface (at x = 0) shown on the same figure, for

two gate voltages – 0.1, and 1.0 V. Clearly, the electron density is underestimated when using

the coarsest grid (particularly for the low gate bias), which is propagated to the value of the

electron sheet charge. However, the agreement at 0.25 nm mesh spacing is excellent, and we

choose that grid size for the inversion layer discretization in the 3D simulations, to be presented

in the next chapter.
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Figure 3.7: Mesh-size (∆x) depen-

dence of the simulated gate current den-

sity and electron concentration (at VG =

0.1 V, and VG = 1 V) for a MOS struc-

ture biased in inversion. The structure

is n+poly-Si (1×1020cm−3), 1 nm SiO2

p-Si(100) (5 × 1018cm−3). Oxide effec-

tive mass is 0.67m0, as in the preceding

simulations.
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3.3 1D simulation of direct tunnelling gate current

3.3.2.2 Tunnelling from accumulation layer

Figure 3.8 presents a comparison between experimental (solid, green lines) and simulated (con-

nected symbols, blue lines) gate current from the accumulated gate of an n+poly/SiO2/p-Si(100)

structure (measurements from Ref. (91)). Good agreement is achieved for oxide effective mass of

0.67m0. Note that this is the same value of the tunnelling effective mass, used for the simulation

of gate leakage from the inversion layer. Fig. 3.8 additionally shows (red dash) experimental

data for a similar device structure and oxide thicknesses from a different source, Ref. (1). An

appreciable difference is observed between the experimental data from the two sources, partic-

ularly at the thinner oxide of 2.2 nm, although the reported details of samples preparation are

the same. The model matches the data from (1) when simulations are performed with a lower

effective mass of 0.63m0, but the results are omitted from the graph for clarity.
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Figure 3.8: Simulated (symbol) and

measured (line (91), and dash (1)) direct

tunnelling current density from the accu-

mulated poly-Si gate of large-area MOS-

FETs. Substrate is p-Si(100) doped to

5 × 1017cm−3. Oxide thickness is as in-

dicated. The n+poly gate is modelled as

1×1020cm−3-doped n+Si(110), according

to the experimentally observed predomi-

nant orientation of the poly grains.

There is commonly some disagreement between reported experimental data relating to de-

vices with the same nominal oxide thickness, in the case of tunnelling from the accumulated

poly-gate (1; 91; 112; 121). This may be attributed to the different poly-grain orientation and

size, poly-Si doping concentration, or the quality of the poly-Si/SiO2 and Si/SiO2 interfaces

for different processing conditions. (In the present simulations, the poly-Si band structure is

approximated by that of a Si(110), as suggested by the predominant grain orientation reported

in the original experimental works used for the comparison in Fig. 3.8 (1; 91).) On the other

hand, there is better agreement between reported data for the case of tunnelling from inversion

layers (6; 72; 91; 120). Because of this, we choose to keep the tunnelling effective mass set

to mox = 0.67m0, which provides the best fit for inversion, and a good fit to tunnelling from
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3.4 Summary

accumulation. All 3D simulations, to be presented in the next chapter are performed with this

value of mox.

3.4 Summary

In this chapter we identified the direct tunnelling of electrons from quasi-bound states (QBS)

to be the gate leakage mechanism of primary concern, and elaborated on the geometrical par-

titioning of the tunnelling fluxes under different bias conditions of an n-channel MOSFET.

Subsequently we reviewed the principle models for direct tunnelling of electrons from a semi-

conductor cathode, explaining the fundamental concepts behind each of them, and clarifying

the approximations involved.

We considered a modified-WKB expression for the transmission probability through the

barrier, and demonstrated an excellent agreement with the exact evaluation based on Airy

functions. Further emphasis was put on the different ways of calculating QBS lifetimes using

the transmission and reflection coefficients in a transfer-matrix-based approach, and using the

computed wave functions, in an approach by Price (126), which we extended to apply for

complex wave-functions. These two methods are implemented in the Poisson-Schrödinger solver

described in App. A and used for the study of the Si/SiO2 transition layer (see Chapter 5).

For the study of gate leakage variability, we chose the model based on impact frequency

and transmission probability, due to its efficiency, accuracy, and adaptability to any 1D or 3D

device simulator. This approach of QBS lifetime estimation is linked to an approximation of the

quantisation layer in the semiconductor, forming a fully analytical tunnelling model, referred

to as Register’s model (1), in which we improve the tunnelling sheet charge evaluation.

In the last section, we elaborated on the implementation of this model in a 1D Poisson-

density-gradent simulator used as a prototype of the 3D device simulator anticipated for the

gate leakage variability simulations. We show a very good agreement between the simulated

gate leakage current density and the reported experimental data for both accumulation and

inversion bias. Notable in our simulations is the use of a single value of the effective mass in

the oxide, mox/m0 = 0.67, which is the only fitting parameter in the tunnelling model.
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Chapter 4

MOSFET gate leakage variability

While the gate leakage current of a uniform transistor may be analysed as a two-dimensional

problem, to account for microscopic fluctuations that affect the transistor characteristics re-

quires 3D simulations. In this chapter, we summarise the techniques most commonly used for

3D device simulation and among all, select the density-gradient framework, for the study of sta-

tistical gate leakage variability. The methods used to account for random dopant fluctuations

and oxide interface roughness are detailed, as is the implementation of the direct tunnelling

model. Results from the simulations of a uniform device are presented. The approach is finally

applied to the study of gate leakage variability in an ensemble of 25 nm gate length n-type

MOSFETs, resulting from discrete random dopant fluctuations and oxide thickness variation.

4.1 Simulation of MOSFET variability

Initial attempts to model device variability have been based on analytical models with an

a priori assumed statistical (usually Normal) distribution of the parameters, introduced pri-

marily by the impact of discreteness of charge and granularity of matter on device structure

(23; 143; 144; 145). It is now well accepted that only a three-dimensional (3D) simulation

framework can fully capture the complex effects of microscopic fluctuations in real space, and

provide an accurate estimate of the magnitude of variability in future, scaled technologies. 3D

simulation techniques are numeric, and typically, computationally expensive. This latter fact

is an additional challenge, since to obtain a statistically reliable distribution of a given transis-

tor characteristic, e.g. gate current or VT , one must simulate a sufficiently large ensemble of

macroscopically identical, but microscopically different devices. In practice, the ensemble size

would be in the order of 200, to obtain the standard deviation with no more than 5% error, but
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4.1 Simulation of MOSFET variability

should exceed 10, 000, if the details of the tails of the distribution are required (146). In the

following section, we summarise the most established 3D simulation approaches for studying

nano-CMOS device variability, and discuss their applicability for gate leakage simulation.

4.1.1 3D simulation techniques

4.1.1.1 Drift-diffusion with density-gradient corrections

Within the drift-diffusion approximation, electric current is described as a sum of carrier drift

(electric field-driven motion) and carrier diffusion (random motion resulting in a net flow only

in the presence of charge concentration gradient) (147). The corresponding equation for the

electron current density Jn is

Jn = −qnµn∇ψ + qDn∇n. (4.1)

The first and second terms on the right represent the drift and diffusion components respectively,

where q is the elementary charge, n – the electron concentration, ψ – the electrostatic potential,

µn – the electron mobility, andDn = µn(kBT/q) – the diffusion coefficient. Equation 4.1 reflects

a macroscopic point of view, based on an estimate of the average carrier velocity and its linear

dependence on the electric field, and assuming a constant carrier temperature throughout,

equal to the lattice temperature. Its validity is therefore limited to slow field variation, near-

equilibrium conditions, and to devices with dimensions larger than the carrier mean free path,

as could be elucidated by a derivation of Eq. 4.1 from the Boltzmann transport equation (BTE)

(148; 149). A great emphasis in the practical application of this equation (viz. Eq. 4.4) lies on

the use of an appropriate mobility model.

The DD transport model is at the core of DD device simulators that consist of an iterative

numerical procedure for the solution of the coupled Poisson and current continuity equations. 1

The method, first proposed by Scharfetter and Gummel (150), has a remarkable numerical

stability and lends itself to very efficient implementations even in a 3D solution domain (148;

149; 151; 152). This quality has served as a major pull to extend the applicability of the

DD approach to the simulation of nano-scale devices. Two aspects have been successfully

addressed in this regard - i) modifications of mobility models to include dependency on the

carrier concentration, and on the lateral and vertical electric fields (151; 153), and ii) quantum

1The full set of equations relevant for n-channel MOSFET is presented in Section 4.1.2.1.
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corrections to the carrier density (via the Density Gradient (DG) generalisation of the drift-

diffusion framework (140; 141) or the Quantum Drift Diffusion approach (154)), to account for

carrier confinement effects in the inversion layer.

Even with these advancements, the DD framework cannot capture the non-equilibrium

transport effects in a rapidly varying electric field, disregarding velocity overshoot effects (155).

However, in an ultra-short channel MOSFET, the drain current is essentially defined by the

average velocity of carriers near the source, and their concentration around the peak of the

lateral potential barrier (156; 157; 158), so that non-equilibrium carrier dynamics at the drain

end of the device have indirect and relatively minor impact (37). It has been demonstrated

that close to the source, the extracted velocity profile from the DD approach (with suitably

increased saturation velocity) is very similar to the carrier velocity profile obtained from a

more accurate, Monte Carlo simulations of a 50 nm gate-length MOSFET (158). ID − VG

characteristics simulated with carefully calibrated density gradient (DG) simulators compare

very well against experimental data, or full-band Monte Carlo simulations, of devices with gate

length as small as 10 nm (159; 160). The agreement is particularly close in the sub-threshold

region, suggesting appropriate account of the device electrostatics by the DG framework.

Due to the above, the DG simulation approach with quantum corrections has become

the primary technique for the investigation of statistical variability in ultra-scale MOSFETs

(27; 29; 161). One of the most advanced implementations using this approach is the 3D-

atomistic simulator developed at the University of Glasgow, incorporating a number of the

known sources of intrinsic parameter fluctuations, including random dopant fluctuations, oxide

interface roughness, line edge roughness, poly-Si granularity and Fermi-level pinning (27; 162).

It has been successfully applied to the prediction of threshold voltage and drive current vari-

ability in n-channel MOSFETs, scaled according to the ITRS requirements (29).

The applicability of a DD framework for the study of gate leakage is exemplified by existing

commercial and in-house developed 3D DD simulators (31; 151). These are based on a 1D semi-

classical direct tunnelling model, coupled to the 3D drift-diffusion solution of carrier density and

potential. Using a classical DD device simulation and such 1D tunnelling model, gate leakage

variability due to random dopants has been briefly addressed in Ref. (31).

4.1.1.2 Monte Carlo technique

The Monte Carlo (MC) simulation of modern semiconductor devices is based on a particle de-

scription of the charge transport within the system (163; 164). It provides increasingly accurate
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approximation to the solution of the BTE when the number of MC particles is increased. Indi-

vidual point-particle dynamics (drift-collision sequences under the influence of external force) in

an ensemble of free carriers are modelled by a semi-classical equation of motion – the quantum

mechanical interaction between free carriers and the crystal lattice is abstracted away by the

introduction of band structure and the effective mass approximation, while scattering is mod-

elled through perturbation theory, following the Fermi Golden rule. The Monte Carlo method,

as a mathematical algorithm for the aggregation of a probabilistic result from a random sample

of possible inputs, enters to the simulation framework in several ways – selection of an initial

and after-scattering state for each particle, selection of the particle free flight duration, and

selection of a scattering process at the end of the free flight. Throughout the simulated time

for the evolution of the system, statistical information about the individual position of each

carrier in the six-dimensional phase-space is collected. For steady-state simulation, the simu-

lated time is large enough to ensure any effect of the initial state of the ensemble has eroded,

so that the time average of the system states may be interpreted as a steady state ensemble

average. Consequently, the phase-space distribution function of the carriers may be used to

obtain their real-space distribution, as well as the terminal currents.1 Typically, calculation of

particle dynamics is self-consistently coupled to a solution of the Poisson equation through an

iterative loop, to establish the self-consistent electrostatic potential that is the force field for

carrier acceleration, in the presence of an applied bias to the system terminals (167).

The advantage of MC device simulations comes from the ability of the procedure to capture

non-equilibrium and non-local effects, i.e. those of velocity overshoot carrier heating due to

finite carrier relaxation characteristics. It could be modified for the modelling of devices with

microscopic fluctuations, and non-uniformities in the structure. Successful implementation of ab

initio impurity and surface roughness scattering has been demonstrated in a 3D simulation study

of VT and drive current variability in devices with random dopant fluctuations and interface

roughness (168). A significant drawback of the MC approach however is its large computational

cost and implementation complexity.

MC simulations have not gained popularity for the study of direct tunnelling gate leakage

current. This is due to the fact that there is no model of particle dynamics for the electrons

tunnelling with energy lower than the oxide conduction band minimum. Thus the MC method

of solving the BTE within the oxide is applicable only to electrons with higher energy, and

1 It has been shown that the (phase-space and time dependent) distribution function obtained through the

described MC simulation technique satisfies the semi-classical Boltzmann transport equation (BTE) (165; 166).
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with the adoption of idealised SiO2 band-structure and scattering mechanisms (136). MC

device simulations have been combined with a method of estimating the tunnelling probability

of carriers reaching the oxide interface, emphasizing on the importance of the electron energy

distribution function on the gate leakage (30; 99; 136; 169; 170; 171; 172). 1 We note however,

that for a short-channel n-type MOSFET with an ultra-thin oxide i) the maximum gate leakage

current corresponds to the transistor On state (VGS = VDD and VDS = 0, i.e. one of the two

static points of a CMOS inverter), and ii) even at VGS = VDS = VDD, the peak gate leakage

density is linked to the maximum electron concentration near the source end, rather than to

the carrier energy peak near the drain end (30).

4.1.1.3 Non-equilibrium Green’s function formalism

The non-equilibrium Green’s function (NEGF) approach to device simulations is based on

quantum transport theory. The central quantity of interest, from which electron and current

densities are obtained, is the density matrix describing the correlated manner in which energy

states may be occupied (173; 174). The NEGF formalism is a prescription for obtaining the

density matrix from the single electron Green’s function G(E) given by the (simplified) matrix

equation

G = [EI − H − Σ1 − Σ2 − ΣS ]−1, (4.2)

and signifying the response of the system to an impulse excitation within the device. The energy

E here is not an eigen-state, but a contact excitation energy, over which one has to integrate,

to obtain the density matrix. The Hamiltonian H represents the kinetic and potential energy

of a single particle, and reflects the details of the device structure. The electrostatic potential is

obtained self-consistently through a solution of the Poisson equation. I is the identity matrix.

The crucial element in NEGF is the treatment of the contact boundary condition and scattering

through self-energy matrices. In equation 4.2, Σ1,2(E) couple the device to a semi-infinite

contact leads in an analytically exact way, even if they have different Fermi levels. Typically,

the source and drain contacts of a MOSFET are considered, but the gate may be treated on

equal footing, to obtain the gate leakage current (175). The self-energy ΣS(E) accounts for

scattering. 2

The strength of NEGF approach is in its ability to treat an open boundary, non-equilibrium

system in a quantum-mechanically consistent way. Its applicability to device variability stems

1Note that these works use 2D MC simulators, except Ref. (30), which uses a quasi-3D approach
2A more elaborate description, and a derivation of a kinetic equation is found in Refs. (175; 176; 177).
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from two sources. First, one obtains directly the details of the current density within the

device. This is of great importance to understanding the physical origins of the effects that

microscopic non-uniformities have on the device characteristics. (178). Second, one could use

a tight-binding basis representation of the Hamiltonian, and capture the structural variations,

e.g. oxide roughness, and band-structure effects in ultra-scaled devices in truly atomistic repre-

sentation (179). This is conceptually attractive for gate leakage modelling if a crystalline model

of the gate oxide is deployed (132). In addition, the device, including the gate contact, can be

modelled as a single entity. These properties of the NEGF approach with respect to leakage is

in contrast to the previously discussed simulation approaches, which require a different trans-

port model for gate and drain current. Yet, only a few NEGF studies of MOSFET leakage are

known, all with an effective mass Hamiltonian (175; 180; 181).

There are two limitations with present NEGF simulators. The first is large computational

cost, due to the necessity to invert large matrices. This issue is actually prohibitive for using

NEGF approach for variability study on a statistical scale. The second is due to the complexity

in implementing scattering mechanisms. In particular, the scattering self-energy matrix ΣS

depends on the density matrix itself, and must be solved self-consistently, through iterations,

much like the electrostatic potential (173). However, the dependence of ΣS on the density ma-

trix can be very involved. Reliable approximations have not yet been developed nor evaluated,

since the technique is relatively new. This is why even the most advanced 3D real-space NEGF

simulators models the ballistic limit of MOSFET operation (178).

4.1.1.4 Precision versus simulation time

We close the review of three-dimensional (3D) simulation techniques by looking at their relative

accuracy and a consideration of their computational cost. Figure 4.1 shows the ID−VG charac-

teristics of a uniform, 22 nm gate length MOSFET, simulated with NEGF, MC, and DG. The

characteristics at high drain bias (VD = 1.0 V) are shown plotted on a logarithmic scale (left

axis), while the low drain bias (VD = 0.1 V) IV curves are on a linear scale (right axis). In both

cases the current obtained from the NEGF simulations is highest, since no scattering model is

included. The drift-diffusion current appears to be lowest, since it is limited by the saturation

velocity, the effect being appreciably stronger at high-field (high drain bias). However, at low

drain bias, or low electron density in the channel (high drain bias and lower gate bias), the

agreement between the MC and DG simulations is very good. This is due to the fact that

in such a bias regime, the current is mostly due to carrier diffusion, and is controlled by the
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acteristics simulated with 2D NEGF, 3D

MC and 3D DG. The NEGF simulation is
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est current. High-field current in the

DG case is limited by velocity saturation

and is lower, relative to the MC simula-

tion, but at low field compares very well.

(Data courtesy of C. Alexander, A. Mar-

tinez, A.R. Brown, unpublished.)

electrostatics of the device, which are captured with a sufficient accuracy, due to the DG cor-

rections incorporated in the DD simulator. At the same time, since gate leakage is of a critical

relevance to static power dissipation, the bias condition for achieving maximum drive current,

i.e. high VGS voltage and high VDS voltage, is less important. This devalues the advantage of

a MC simulator in providing the energy distributions of electrons at high-fields.

Regarding computational cost, the structure simulated above takes typically a few minutes

per IV point on a modern CPU, for the DG simulator. The MC and the NEGF require the

equivalent of about 10 CPU days per IV point. Efficient parallelization of the NEGF code

makes the problem manageable for analysing uniquely selected configurations of non-uniform

devices, but there is still a gap of over three orders of magnitude performance, relative to DG.

In conclusion, for the study of gate leakage variability on a statistical scale, the complexity

and computational burden of a 3D MC or NEGF device simulator is not justified. The general-

isation of the DD approach, via the DG theory to account for quantum confinement, provides

the essential components for computing the direct tunnelling gate current. It models the elec-

trostatic potential and electron distribution in the desired bias regime with sufficient accuracy

and in a computationally efficient manner. The following subsection summarises the details of

the three-dimensional atomistic DG simulator, at the core of the simulations presented later in

this chapter.

4.1.2 3D atomistic device simulator

Here we give a brief account of the underlying models and details of the implementation of the

Glasgow 3D-atomistic Drift-Diffusion device simulator with Density-Gradient quantum correc-

tions, the development of which is described in more details elsewhere (26; 27; 182; 183).
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4.1 Simulation of MOSFET variability

4.1.2.1 Mathematical Formulation

The following set of equations constitutes the drift diffusion framework with density gradient

corrections (DD-DG).

The Current continuity equation is solved only for electrons (we model an n-channel MOSFET)

in steady state:

∇· Jn = qR (4.3)

Jn = − qnµn∇ψ + qDn∇n, (4.4)

where the electron concentration n is unknown variable. Note that in our case the recombination

rate R is zero. It is possible however to include the gate leakage current into the self-consistent

drain current through R (31).

The Non-linear Poisson equation is

∇· (−ε∇ψ) = q (p− n+ND −NA) , (4.5)

with free carrier concentration given by Boltzmann statistics according to 1

n = nie
(ψ−φn)/φT , φT =

kBT

q
(4.6)

p = nie
(φp−ψ)/φT (4.7)

φn = ψ − φT ln

(

n

ni

)

(4.8)

φp = − φT ln

(

NA
ni

)

. (4.9)

The quasi-Fermi level for holes is fixed (everywhere in the device) to the quasi-Fermi level of

the source contact, which is the potential reference, i.e. where ψ = 0. Impurities are treated as

fully ionised.

To account for quantum confinement effects, Eq. 4.6 and Eq. 4.7 are replaced by the appro-

priate density gradient (DG) relations:

n = niS
2
n, p = niS

2
p (4.10)

∇2Sn =
12qm∗

n

~2
Sn

(

φn − ψ

2
+ φT ln (Sn)

)

(4.11)

∇2Sp =
12qm∗

p

~2
Sp

(

ψ − φp
2

+ φT ln (Sp)

)

, (4.12)

1The electrostatic potential is implicitly defined in terms of the intrinsic Fermi level Ei: ψ = −Ei/q.
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4.1 Simulation of MOSFET variability

where m∗
n and m∗

p are anisotropic effective masses for electrons and holes (with normal and

lateral components relative to the oxide interface), and are both treated as fitting parameters. 1

Accordingly, the quasi-Fermi level φn is modified to account for the effective quantum potential

φn = ψ +
2~

2

12qm∗
n

∇2Sn
Sn

− φT ln (S2
n), (4.13)

where Sn =
√

(n/ni) is the solution of Eq. 4.11.

Ohmic contacts are assumed by ensuring charge neutrality using Dirichlet boundary con-

ditions (BC) for the potential. The particulars are given in Table 4.1. Charge neutrality and

Table 4.1: Boundary conditions.

Contact ψ

Source 0

Drain VD

Substrate −φT ln
(

(NAND) /n2
i

)

Gate VG + φT ln (NP /ND)

NP , ND and NA are the con-

centrations of poly-Si gate donors,

source/drain donors, and substrate ac-

ceptors, respectively. VG and VD are

relative to the source contact, which is

connected to the substrate.

carrier equilibrium define the BC for mobile carriers at the contacts. Non-physical device bound-

aries (e.g. side walls and top side between gate and source/drain contact) assume Neumann

BC with zero normal-derivative of the potential and carrier concentration (148). The current

normal to these boundaries is zero. The density gradient equations 4.11 and 4.12 are subject to

Neumann BC at the oxide interface, which corresponds to a finite penetration of mobile carriers

in the oxide, although such charge is not accounted for in the Poisson equation (the oxide is

idealised, free of any charge). At Ohmic contact and non-physical boundaries, the BC for Sn,p

are zero normal-derivative. This latter fact implicates Neumann boundary conditions for the

minority carriers at contacts as well (184).

4.1.2.2 Implementation Aspects

In discretizing the Poisson, current continuity, and density gradient equations, their integral

form is used, and the control-volume discretization method is applied (also known as box inte-

gration (148)). The basic idea can be visualised in Figure 4.2. It shows the abstract rectangular

box (a cuboid) that surrounds a given grid node, and the six nearest grid nodes. With the help

of the divergence theorem, an integral over the volume of the cuboid is reduced to an integral

1The R-parameter of the DG formalism equals 3 and is implicit in the constant preceding the S term in

equations 4.11 and 4.12.
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over the surface of the cuboid. The Poisson equation is taken as an example in the caption of

the figure. Note that the computation of the surface integrals requires only discretization of

first order partial derivatives, normal to the faces of the control-volume cuboid.

Figure 4.2: An abstract cuboid with a volume

dv, and a surface ds, surrounds a grid node

to which a net charge density ρ is assigned.

Integrating the Poisson equation 4.5 over dv,

we arrive at the integral form of Gauss law:
∫

(∇· ǫ∇ψ)dv =
∮

(ǫ∇ψ) · ds =
∫

ρ dv. Assum-

ing constant ∇⊥ψ over each face of the cuboid,

the surface integral is split into sums, and dis-

cretization does not require interpolation of ǫ

(even if it changes across an interface), as would

be the case in ordinary finite difference scheme.

The control-volume discretization dispenses with the necessity of interpolating elemental

material parameters (constants within an element defined by four grid nodes) which are typically

discontinuous across interfaces (e.g. dielectric constant). This is essential for simulating devices

with microscopic non-uniformities like oxide roughness and discrete impurity atoms.

Discretization of the current continuity follows the Scharfetter-Gummel method, which as-

sumes exponential, rather than linear, variation of free carrier density between neighbouring

grid nodes. The Gummel cycle ensures convergence of the iterative, self-consistent solution by

solving the Poisson and current continuity equations in turn (148; 150). Note that the solution

of the linearised Poisson equation itself is done through a self-consistent, iterative loop with the

solution of the density gradient equations, which is required due to the exponential dependence

between free carrier concentration and electrostatic potential. Neumann boundary conditions

are implemented using the method of image (or phantom) nodes, outside the solution domain,

used to define the derivative at a boundary grid node via a central difference scheme (148; 149).

4.1.2.3 Modelling of random dopant fluctuations

Modelling of the discrete doping atoms consists conceptually of two parts – i) creating such

a distribution of random impurities that is representative of a given continuous doping con-

centration profile, and ii) accounting for the discrete ionized, dopants charge of in the device

electrostatics.
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4.1 Simulation of MOSFET variability

In the 3D atomistic simulator, random dopant distribution is obtain following Ref. (185).

A Si-crystal lattice is constructed (independently of the numerical discretization grid) within

the simulation domain of the device. The probability for finding a dopant at a given lattice site

is computed from the ratio between the desired local doping concentration, and the intrinsic

Si concentration. Using rejection technique, a dopant replaces a Si atom if this probability

exceeds a random number (in the range of 0 to 1) generated for the specific lattice site. It

has been demonstrated that this procedure yields a Poisson distribution, centred around the

average dopant number (of a certain type) per device, as expected (183).

Accounting for the discrete ionised impurities in the drift-diffusion framework requires the

assignment of their charge to the discretization nodes, since it is the charge density that enters

the Poisson equation 4.5, via N+
D and N+

A , which are position dependent. Practically, each

dopant is surrounded by an elemental volume dV of the device grid, so that the question is

how to distribute the equivalent concentration 1/dV between the vertices of this volume. Three

different methods – cloud in a cell (CIC, first-neighbour grid vertexes are assigned charge

density inversely proportional to their distance from the dopant), nearest grid point (NGP,

entire charge density is assigned to the nearest grid vertex), Gaussian smearing (the charge

density is smeared even beyond the boundaries of the volume, with each grid vertex being

assigned an amount proportional to a Gassian distribution centered at the dopant) – have

been evaluated and result in negligible differences in the context of density-gradient corrected

drift-diffusion simulator (183).

This deserves a clarification, since it is known that the Coulomb potential due to an ionised

impurity is analytically singular (i.e. ∝ 1/|r|). In a classical simulation such as DD, the

mobile carriers could become trapped in the sharply resolved Coulomb wells of the ionised

impurities. In a numerical calculation this is further complicated by the fact that the mag-

nitude of the Coulomb potential is mesh dependent, in addition to the dependence on charge

assignment method mentioned above. This is a problem, particularly for majority carriers in

the source/drain regions, where such unphysical trapping results in decreased conductance.

The issue is resolved in a quantum mechanically consistent way in the 3D atomistic simulator.

The density-gradient corrections to the mobile charge, reflect the effect of quantisation within

the potential well of an impurity, making the mobile carriers density less localised around the

dopants and smoothing the potential. 1

1Due to quantisation, shallow impurities have transport activation energies of about 50 meV (37).
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In the present study, we used CIC charge assignment and DG corrections to both electrons

and holes, so that donors and acceptors are treated on equal basis. This practically eliminates

mesh sensitivity, and allows the adoption of a finer mesh in the inversion channel, as required

for the accurate estimation of the charge available for tunnelling.

4.1.2.4 Modelling of oxide thickness fluctuation

The systematic variation in the oxide thickness due to process conditions is not considered here,

and we focus instead on the stochastic oxide thickness fluctuation induced by the microscopic

roughness of the Si/SiO2 interface (47). The model is based on the assumption that the Si/SiO2

interface is well characterised by a two parameter autocorrelation function (ACF), C(r), of the

actual material boundary distance ∆(r) from an ideal (001) interface plane (r is the correlation

radius). 1 The ACF is usually approximated by a Gaussian or an exponential function (47; 48),

having the form

C(r) ≃ ∆2 exp (−r2λ−2) (Gaussian) (4.14)

C(r) ≃ ∆2 exp (−
√

2r2λ−1) (Exponential). (4.15)

Here ∆ is the root-mean-square (RMS) of ∆(r), and λ is the correlation length, describing the

decay of the autocovariance in ∆(r).

The aim is then to create a rough surface that could be characterised by an a priori chosen

set of ACF parameters ∆, and λ, and use it to define the position of the boundary between

Si and SiO2 in the simulator. This is achieved by creating a 2D matrix, representative of

an interface plane, each element of which has a magnitude determined by the power spectrum

obtained from a Fourier transform of the ACF, and a randomly selected phase (26). An inverse-

Fourier transform is performed to yield a real function that can be interpreted as the distance

∆(r). This function is then quantised to one atomic layer of 0.28 nm, to obtain a physically

meaningful interface, with roughness arising from atomic level steps (187).

A comment regarding the values of ∆ and λ is worthwhile. For the Si(001)/SiO2 interface,

experimentally obtained values of ∆ are in the range of 0.15 - 0.3 nm, depending on process

conditions and oxide thickness, and HRTEM analysis show one atomic layer steps being at

the origin of the fluctuations (47; 187; 188; 189). Rough surface reconstruction for device

simulations is typically done with ∆ = 0.3 nm (26; 47; 48; 190). However, there is over

an order of magnitude disagreement in the reported range of λ. Values of 1 to 3 nm are

1Sharp structural transition is implied, ignoring the sub-stoichiometric oxide (186).

54



4.2 MOSFET gate leakage

deduced from HRTEM interface image analysis (47; 187), and established from calculations,

fitting mobility data limited by interface roughness scattering (190; 191). At the same time,

AFM surface analysis report a correlation lengths between 15 and 55 nm (48; 188; 190). It

is argued that AFM cannot resolve short range correlation features (190). More importantly,

smaller correlation length and RMS fluctuations were deduced in Ref. (47) after removing a

background non-uniformity of the oxide thickness, appearing on a scale larger than 20 nm, on

the assumption that such a trend is systematic. The issue remains controversial, particularly

in view of the post-AFM self-affine fractal analysis in Ref. (48), suggesting that stochastic

fluctuations on a larger scale (tens of nm) are intrinsic to the oxidation kinetics.

4.2 MOSFET gate leakage

4.2.1 Direct tunnelling model

We adopt the following approach to calculating the direct tunnelling gate leakage in a 3D MOS-

FET. A one-dimensional (1D) semi-classical tunnelling model is coupled to the 3D-atomistic

device simulator, described in the preceding section, at a post-processing stage. In doing so, the

following approximations are involved. Gate leakage current is not self-consistently calculated,

and its effect on the drain current is ignored. This is justified by the fact that typically, the

direct tunnelling gate leakage in well scaled MOSFETs does not affect significantly the equilib-

rium carrier concentration in the tunnelling cathode. 1 A finite surface element discretization

of the gate oxide interface is performed, and the direct tunnelling current density JG, through

each surface element with area dS, is obtained by 1D calculation. Numerical integration over

the gate area yields the total gate leakage current, IG. In practical terms, and with n being the

number of surface elements,

IG =
n

∑

i

JGidSi. (4.16)

Hence, there is an implicit assumption that dSi is sufficiently small and a constant leakage cur-

rent density is a good approximation of the actual or average tunnelling flux through a segment.

Lateral coupling between the different segments is not considered. Subsequent simulations are

performed using a uniform lateral grid with 1 nm node spacing.

1 This approximation could be dispensed of however, by the inclusion of leakage contribution through the

Generation/Recombination rate term in the current continuity equation, which would allow one to account of

the gate leakage impact on the drain current.
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4.2 MOSFET gate leakage

The calculation of the elemental direct tunnelling current density JG is based on the oxide-

field-dependent, analytical model described in Section 3.3, according to

JG = Qsf(Fox⊥)T (Fox⊥) (4.17)

The equivalent sheet-charge density Qs, and the normal component of the oxide field, Fox⊥,

on which the semi-classical impact frequency f and tunnelling probability T depend, are de-

rived from the three-dimensional electrostatic potential and carrier concentration distributions

obtained from the 3D atomistic simulator, at each bias point. In inversion, Qs equals the elec-

tron charge concentration, integrated over the depth of the substrate, along a line normal to

the interface at the given lateral position of the gate. This advancement of the original model

was already exploited in our 1D simulations, and is of a critical importance when discrete ran-

dom dopants are introduced in the device, for 3D simulations of gate leakage variability. In

accumulation, Qs is modelled as field induced, by Qs = ǫoxFox,⊥. Fox,⊥ is found from the

normal-derivative of the electrostatic potential in the oxide. Since the approach is identical

with the 1D case, we do not need to re-calibrate the tunnelling effective mass, which remains

0.67m0 in our 3D simulations.

4.2.2 Geometrical partitioning

Before we move on to study gate leakage variability, we analyse a uniform device with nominal

geometry and doping related parameters specified in Fig. 4.3 and the adjacent table. The aim is

VSUB = 0

VD
VGVS = 0

SRC

SUB

DR

Gate

IG

ID

LG

Xj

Xov

tox
Iso Ich Ido

Parameter

Dimensions

Gate length, Lg (nm) 25

Gate width, Wg (nm) 25

Gate-S/DE overlap, Xov (nm) 5

S/D Junction depth, Xj (nm) 6

SiO2 thickness, tox (nm) 1

Doping

Substrate p-Si, NA (cm−3) 5 × 1018

Gate n+poly-Si, ND (cm−3) 1 × 1020

Source/Drain n+Si, ND (cm−3) 1 × 1020

Figure 4.3: 2D schematic diagram of the simulated MOSFET, and its geometrical and doping

related parameters. Nominal values are given in the table. Substrate, source, and drain are

uniformly doped. The red arrows represent geometrical partitioning of the gate current.
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4.2 MOSFET gate leakage

to understand the influence of gate and drain bias on gate leakage, and to revise the importance

of the different geometric regions under the gate, i.e. the source and drain extension overlaps,

and the channel. The red arrows in Fig. 4.3 partition the gate current according to these

three distinct regions. The bi-directional arrows associated with the S/DE overlaps anticipate

the bias dependence of the direction of the electron flux through the oxide. In particular,

since the source and drain regions are degenerately doped to the same level as the poly-gate

(1 × 1020 cm−3), the direction of the current through the oxide over the drain extension, Ido,

depends on the voltage difference VG−VD. Regarding the channel component Ich of the direct

tunnelling current, it is always in the indicated direction (for normal CMOS-logic bias of the

transistor). This is clarified with the help of the band-diagrams in Fig. 4.4. At high gate voltage

and low drain voltage, the channel is strongly inverted, while the contact extension overlaps

are accumulated. The electric field is facilitating electron tunnelling from the substrate into

the gate. At low gate voltage and high drain voltage, the poly-gate over the drain extension

is weakly accumulated, facilitating electron tunnelling from the gate into the drain extension.

Due to the built-in potential, the channel region is in depletion, hence the field remains in the

same direction as for high gate voltage.
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Figure 4.4: Conduction band diagrams from two different lateral positions – middle of the

channel (CH), and middle of drain extension overlap (DO). Two different bias conditions are

shown – VG = VDD, VD ∼ 0 (left), and VG ∼ 0, VD = VDD (right).

Note that the bias conditions reflected in these two figures correspond to the two stable

points of a CMOS inverter. Hereafter, the condition of VG = VDD, VD ∼ 0 is referred to as

the On-state of the MOSFET, while the condition of VG ∼ 0, VD = VDD is referred to as the

Off-state. The power supply voltage VDD is 1.0 V throughout this work. Under any of these
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4.2 MOSFET gate leakage

bias conditions, the transistor dissipates only static power, hence the relevance of gate leakage

and its variability is greatest. Next, we separately analyse the influence of VG and VD, and

show the actual results from the simulation of gate leakage.

4.2.3 Gate voltage dependence

Figure 4.5 shows the simulated IG−VG (red), and ID−VG (blue) characteristics of the uniform

device for two different drain voltages – VD = 50 mV (thick, solid lines), and VD = 1.0 V (thin,

dash+ lines). Note the difference in measuring units for the drain (µA) and gate (nA) current.

For both drain voltages, the drain current is between 1 (at low VG) and 5 (at high VG) orders

of magnitude higher than the gate leakage. The obvious qualitative difference in the IG − VG

curves for low and for high drain voltage requires further elaboration, and is best understood

with the help of Fig. 4.6, showing the lateral distribution (along the channel) of the direct

tunnelling current density.
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Figure 4.5: ID − VG (blue) and IG − VG

(red) characteristics at low (solid) and high

(dashed,symbol) VD. Note that IG and ID

are in nA and µA, respectively. The dip in

the IG curve indicates a change in current

direction at the corresponding VD.
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Figure 4.6: Distribution of the gate current

density JG along the channel direction. Two

sets of curves are shown, at high (red) and

low (green) VD. The arrow indicates upper

curves are for higher VG, i.e. 0 (dot), 0.5

(dash), and 1.0 (solid) volts.

At low drain voltage, the increase of VG inverts the channel and accumulates the source

and drain extension overlaps, so that the charge available for tunnelling from the substrate

constantly increases. At the same time, the oxide potential barrier becomes more transparent

due to the stronger confinement that elevates the subbands in the inversion or accumulation

layer in the substrate. This leads to the steady exponential growth of the gate current density
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4.2 MOSFET gate leakage

Figure 4.7: Surface plots of the 2D electron density (top) and electrostatic potential (bottom)

for VG = 0, 0.5, and 1.0 V (left to right), and VD =1.0 V. The gate-drain overlap is the most

distant corner in each plot. Electron concentration below 1011 cm−3 is not shown.

in all three geometrical regions (refer to Fig. 4.3 and the green curves on Fig. 4.6), and the

corresponding increase of the total leakage IG with the increase of VG.

At high drain voltage, there are two competing trends, which determine the IG− VG curve,

and the fact that the tunnelling current changes its sign around the middle of the simulated

gate voltage range. Consider the following three gate bias points – 0, 0.5 and 1.0 V. The 2D

electrostatic potentials and electron concentration distributions at these bias points are shown

(as surface plots) in Fig. 4.7. At low gate voltage, the substrate is depleted, while the gate

regions overlapping the source and drain extensions are accumulated. The electrostatic field

at the drain end is conductive for a significant flux of electrons from this region of the gate,

which explains the JG distribution at VG = 0 in Fig. 4.6 (red, dotted curve). As gate voltage

increases, so does the population of electrons in the source extension and the adjacent part of

the channel, as seen in the middle plots of Fig. 4.7. Tunnelling from the substrate becomes

appreciable, and competes with the tunnelling from the gate, which is meanwhile reduced due

to the diminished drain-gate voltage difference (see Fig. 4.6, red, dashed curve). Eventually,

at VG ∼ 0.5 V, the two tunnelling fluxes cancel each other, leading to the lowest point in the

IG − VG curve. Further VG increase makes the substrate tunnelling component dominate the

gate current, while tunnelling into the drain extension is minimised (see Fig. 4.6, red solid line).
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4.2 MOSFET gate leakage

4.2.4 Drain voltage dependence

The drain voltage dependence of the direct tunnelling gate current is shown in Fig. 4.8, for fixed

gate voltage of 0 V(solid, red line), and for 1.0 V (dashed, symbol). The ID−VD characteristic

at low VG is also shown for a comparison (solid, blue line). In this case, the gate leakage current

is larger in magnitude than the simulated drain current. This is in apparent contradiction to

previous studies (175; 192), and requires further consideration. We first look at the limiting

case of VG = 0 and VD = 1.0 V, as it was already discussed in the preceding subsection.

Gate current is almost entirely composed of electrons tunnelling from the gate into the drain

extension. These electrons would form part of the drain terminal current if gate leakage was self-

consistently included (unlike the simulations presented here), and would raise the sub-threshold

drain leakage to the magnitude of the gate leakage, in agreement with Ref. (175; 192). This

only stresses the importance of including gate leakage in a self-consistent manner for accurate

prediction of static power dissipation, since this limiting bias condition corresponds to a stable

point of a CMOS inverter, the Off-state of the n-type MOSFET.
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of curves are shown, at high (red) and low

(green) VG. The arrow indicates the trend

of JG with increasing VD (∼ 0 (dot), 0.5

(dash), 1.0 (solid)) at a fixed VD.

The shape of the IG − VD characteristics is easy to explain following the exposition so far,

and referring to Fig. 4.9 for the 2D distribution of the direct tunnelling current density. At low

VG, a reduction of VD from 1.0 V steadily reduces the drain-overlap gate leakage component
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4.2 MOSFET gate leakage

as shown in Fig. 4.9 (green curves), but leaves the channel and source-end components almost

unaffected, since nearly the entire voltage drop between the drain and the source happens at the

drain junction. These latter components are minor, since the substrate is depleted of electrons.

At high VG of 1.0 V the substrate has very high electron concentration, and tunnelling from the

source extension and the channel is dominant. If drain voltage is also high, i.e. VD = VG, the

contribution from the drain-overlap region is minimised, as discussed in the previous subsection.

However, reducing VD leads to the accumulation of electrons in the drain extension itself, and

effectively increases the direct tunnelling flux from the substrate. This is clearly seen in Fig. 4.9

and explains why the decrease of VD, at high VG, actually increases the gate leakage.

4.2.5 Critical evaluation

Our results and conclusions presented thus far agree qualitatively and in order of magnitude

with previous investigations of gate leakage in sub-100 nm gate length, sub-2 nm gate oxide

MOSFETs, studied with different techniques – e.g. experimental ((192; 193)), 2D Monte Carlo

((30)), and 2D NEGF ((175)) simulations. Direct comparison against measurements of gate

leakage from an ultra-scaled MOSFET requires a more realistic doping profile to be considered,

outside the immediate objectives of this work. Before applying our approach to study gate

leakage variability however, it is worth briefly evaluating its shortcomings.

The disregard of hot-carrier phenomena has already been discussed in association with the

choice of a 3D simulation methodology, and is known to have little effect on direct tunnelling gate

current, in the devices of interest (30). A more significant issue is the dependence of tunnelling

current only on the perpendicular component of the electric field, effectively employing a 1D

picture of the tunnelling process. This is acceptable for simulations at low drain voltage, since

the lateral component of the field is much smaller than the perpendicular one. There is also

an experimental evidence that the gate-drain extension tunnelling at high drain voltage and

low gate voltage also depends only on the vertical electric field (192) (the measured ID = IG

regardless of the substrate negative bias). We could therefore limit our simulations to low drain

voltage, for IG−VG characteristics, and to low gate voltage, for IG−VD characteristics, which

are also the most important regimes relevant to static power dissipation (i.e. the On- and

Off-states of the MOSFET, explained earlier).

Three other aspects remain disregarded, currently, in our framework. First, the self-

consistency of the drain and gate current. This could be implemented at a later stage. Second,

the effects of electron diffraction around the gate edge (electrons having indirect tunnelling
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path through the oxide spacers) has been recently shown to increase the gate leakage in both

On (over 10-times) and Off-state (about 3 times) (194). To address this, a 3D quantum me-

chanical approach would be required. Finally, the effect of gate width scaling, also shown to

increase the tunnelling current by increasing the perpendicular field near the shallow trench iso-

lations, is also disregarded (195). This would require the implementation of different boundary

conditions, in the DG simulator.

4.3 Gate leakage variability

The 3D simulation approach described above is applied here on a statistical scale to study

the direct tunnelling gate leakage variability in realistic nano-scale MOSFETs. Two prime

sources for local gate current density variation are taken into account - discrete random dopant

fluctuations (RDF) and oxide thickness variation (OTV).

4.3.1 Nominal device and microscopic fluctuations

An ensemble of 230 macroscopically identical, but microscopically different n-channel MOS-

FETs is simulated. The nominal (macroscopic) parameters of the devices are the same as the

uniform device presented in Fig. 4.3 in the preceding section – a 25 nm gate length n-channel

MOSFET with 1.0 nm SiO2 dielectric is taken as an example, with a simplified uniform impu-

rity profile and geometry, but similar to a ’well-behaved’ realistic bulk MOSFET at the given

gate-length (29). In choosing a square gate device we aim to obtain the upper limit in gate leak-

age variability, since in a wider device, the intrinsic fluctuations in local tunnelling density will

self-average over a wider area, and reduce the anticipated spread in the gate current-voltage

characteristics. To illustrate the impact of each of the two sources of statistical variability

individually, as well as their combined effect, the following three sets of devices are simulated:

1. RDF set: devices vary only in the number and spacial configuration of the discrete doping

atoms introduced in the domain under the gate oxide, i.e. in the substrate, and the source

and drain extensions. The poly-Si gate has a uniform, continuous doping level;

2. OTV set: devices vary only in the roughness features of the Si/SiO2 interface, implicating

local oxide thickness variation. Interface roughness of one atomic layer of Si (0.3 nm) is

generated over a 1 nm nominal oxide thickness and a correlation length of 1.8 nm;
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4.3 Gate leakage variability

3. Combined set: the microscopic variations corresponding to the devices of the previous

two sets are simultaneously introduced.

4.3.2 Random dopant fluctuations

4.3.2.1 IG − VG characteristics

Figure 4.10 shows (light-blue lines) the IG−VG characteristics of a sub-sample of 50 simulated

devices with randomly distributed impurities in the substrate, including the source and drain

contacts, at a low drain voltage of 50 mV. The IG−VG curve of the uniform device with the same

nominal doping is shown in black. The curves in red, labelled worst and best, correspond to the

devices with highest and lowest leakage, respectively, at VG = 1.0 V. Such a bias condition (high

gate/source and low drain/source voltages), is important for digital CMOS technology, and

corresponds to the On-state of the transistor. Notably in this case, there is a relatively minor

spread of the gate leakage magnitude, but there is an appreciable increase of the mean value,

with respect to the gate tunnelling current of the uniform device. The increase in magnitude
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Figure 4.10: IG − VG characteristics at low

drain voltage VD = 50 mV for a sub-sample

of 50 devices from the RDF set. For CMOS
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corresponding to the MOSFET On-state.
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Figure 4.11: Gate current histogram for

the ensemble of 230 devices with RDF, un-

der On-state bias conditions. A Gaussian

distribution with mean 〈IG〉 = 4.6 nA and

standard deviation σ = 0.2 nA is fitted.

could be tentatively associated with the exponential sensitivity of the direct tunnelling current

density on the oxide field, which is strongly modulated around the ionized doping atoms near

the oxide interface. The variation in the total gate leakage at high gate bias is relatively small for

two reasons. First, the excess of electron charge in the inversion channel, and in the accumulated
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4.3 Gate leakage variability

S/DE overlaps, screens the Coulomb potential of the impurities. Second, self-averaging of the

fluctuations in tunnelling current density happens over the entire surface of the gate. The

resulting gate leakage dispersion at VG = 1.0 V, for the entire ensemble of 230 devices, is shown

in Fig. 4.11. The spread is confined to less than a factor of two of the mean current (4.6 nA),

which is increased by 50 % from the leakage of the uniform device. The standard deviation is

less than 5 % of the mean (σ = 0.2 nA).

It is interesting to examine in more detail the reason for the observed gate current variations,

in order to understand if they would be augmented, or further reduced by an alternative device

architecture. In this respect, we recall a previous study of the subject, which stated that the

RDF-induced gate leakage variations are not associated with local electric field fluctuations, but

only with the uncertainty in the definition of source and drain overlaps, caused by the random

distribution of acceptor atoms in the contact extensions (31). There are a couple of important

shortfalls in the methodology of this study however. First, a drift-diffusion simulator has been

used without consideration of quantum confinement effects, meaning that a classical electron

distribution is obtained, with an unrealistically high peak at the Si/SiO2 interface. Second,

discrete doping atoms are accounted for only by the explicit incorporation of the long-range

potential of the ionised impurities in the Poisson equation (31; 196). The disregard of the

short-range part of the Coulomb potential of the impurities, and the overestimated electron

concentration at the top of the substrate render the conclusions of the study questionable.

To obtain a clearer understanding of the phenomena involved, we look at the local fluc-

tuations of the tunnelling current density and its two key variables, according to our model,

namely, the normal component of the oxide field and the distribution of electrons in the sub-

strate. These are shown in Fig. 4.12 for the best and worst devices for VG = 1.0 V. The identical

colour maps and displacement scale for the rubber-sheets in both cases facilitate an objective

comparison. We draw the attention of the reader to the following important observations. First,

the leakage contributions of the source and drain extension overlaps seems equal, but the best

device has appreciably lower tunnelling current density within the area of the channel, com-

pared to the worst device. Second, the normal component of the oxide field is rather uniform,

except a few highly localised sharp peaks and valleys, associated with ionised acceptors and

donors respectively, at the interface, which cannot be screened by electrons due to quantum

confinement effects. A peak in the field should contribute to a peak in the current density.

Such a correlation is not observed however, except for a single case (in each of the displayed

devices), where the highest leakage density is associated with the highest field magnitude, due
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4.3 Gate leakage variability

Figure 4.12: Substrate electrons distribution (3D slab), normal component of the oxide field

(middle), and gate leakage density (top,Log-scale) for the best (left) and worst (right) devices

under On-state bias. The iso-lines of the leakage current (purple) are clearly correlated with the

electron distribution at the Si/SiO2 interface. The iso-lines of the normal electric field (blue)

at the interface reflect the very strong localisation of the disturbances in surface potential due

to the discrete impurities, shown as small spheres (blue/red - acceptor/donor atoms).

to an acceptor atom within the area of the drain extension, where donor - and by implication,

electron - concentration is high. The third observation is that the overall pattern of leakage

fluctuations promptly follows the distribution of electron density at the Si/SiO2 interface, which

appears to be, overall, higher for the worst device. It is worth considering that the mean field

of the uniform, best, and worst devices are almost the same - 6.14, 6.24, and 6.18 MV/cm,

respectively. However, the corresponding gate current of 3.0, 2.9 and 4.5 nA, obtained from the

mean tunnelling current density is clearly different for the uniform, best, worst, and similar in

magnitude to the corresponding actual gate current, 3.2, 4.0, and 5.2 nA, respectively.

The above considerations suggest that the variation in tunnelling current from device to

device is due to variation in the inversion charge density, and hence to variation in the effective

doping concentration, which is the only free variable affecting the inversion charge density at

a fixed bias, for the devices being compared. To verify this hypothesis, we show, on Fig. 4.13,

the impurity distribution in the first 6 nm of the substrate, corresponding to the depth of the

shallow contact extensions, for the best and worst devices. An obvious feature of the worst

device is a much smaller number of acceptors under the gate. In particular, there are only 14 of
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4.3 Gate leakage variability

Figure 4.13: Impurity distribu-

tions (red/blue spheres represent-

ing donor/acceptor atoms) within

6 nm below the Si/SiO2 interface.

Source contact is up. Under the

gate of the device, there are 29

acceptors in the best (left) device,

and only 14, in the worst (right)

device. Blue/magenta iso-lines of

the oxide field/gate leakage den-

sity, are also shown.

them, while for the best device, there are 29. The number of acceptors, related to the considered

volume under the gate, yields an equivalent acceptor concentration of 3.7 and 7.7 (×1018 cm−3),

for the worst and best device, respectively. 1 It is well known that given two MOS structures

with identical gate and oxide parameters, the inversion charge density at certain bias is larger

for the one with lower substrate doping level, due to the smaller amount of depletion charge

and corresponding threshold voltage.2 This leads to an increase in the tunnelling current, as

the substrate doping is decreased, and vice versa, the effect being stronger at low gate voltage

(72).

We conclude, that for the selected macroscopic parameters of the simulated ensemble, the

gate leakage variability arises from the variation in the number of acceptor atoms in the first

few nm of the substrate below the gate, and not from the local fluctuations in the leakage

current density that are due to ionized impurities near the Si/SiO2 interface. The fluctuations

in the leakage current density are strong indeed, with the maximum being nearly a 100 times

bigger than the mean value. Similarly to the peaks in the oxide field however, the peaks in

tunnelling current are confined to a very small area - less than a hundredth of the gate surface

- and as such, cannot dominate the value of the total leakage current. This is clarified with

the help of the component density histograms shown in Fig. 4.14, comparing the distribution

of leakage current density magnitudes in the uniform, best, and worst devices. For each device,

the frequency of the histograms is normalised so that the area under the histogram amounts

to unity. Two peaks in the component density are easily distinguished for each device, with

the lower component associated with the mean tunnelling from the channel, and the higher

1Recall that the nominal (uniform) acceptor doping is 5 × 1018 cm−3.
2The depletion charge depends on the entire number of acceptors: 182(135) for best(worst) device.
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Figure 4.14: Component density histograms of

the tunnelling current density in the uniform,

best and worst devices with RDF at high VG

and low VD. The extreme values of tunnelling

current density represent a negligible compo-

nent in the area of the histogram, implying

these are associated with a small number of

elements of the lateral gate mesh. Their sur-

face is insufficiently large to add appreciable

current to the total gate leakage magnitude.

component associated with the mean tunnelling from the gate-overlapped areas of the source

and drain extensions. Note that for the best device, a larger number of components of lower

value contribute appreciably to the area of the histogram – this is consistent with the bigger

number of acceptor dopants in the channel of the best device, leading to a wider dispersion of

tunnelling current density within the channel area. The components with maximum value for

the devices with RDF contribute negligible density to the area of the histogram, as would be

implied by a high localisation of the corresponding peaks in tunnelling current.

At this point it is worth re-examining our initial assertion that the slight increase in

the mean current for the devices with random dopants, compared to the gate leakage of

the uniform device, is due to the exponential sensitivity on the oxide field. In fact, a den-

sity histogram of the oxide field (not shown) suggests identical magnitudes of the field con-

tribute to the mean, while it can be clearly seen in Fig. 4.14 that the components with

highest density in the distribution of JG for the uniform device are with lower magnitude
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Figure 4.15: IG − ID scatter plot.

than the ones for the devices with RDF. Therefore, the

reason for the increase in leakage current, must be an

average increase of the electron density at the inter-

face, for the non-uniform devices. What is causing it is

the fact that away from the discrete ionised acceptors,

which are relatively far apart, the depletion charge is

sub-nominal, compared to the one of the uniform de-

vice. This is supported by the correlation of higher

gate leakage to higher drain current, clearly observed

in the scatter plot on Fig. 4.15.
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4.3 Gate leakage variability

Finally, we anticipate an increase of RDF-induced gate leakage variability with gate area

reduction, as the local peaks in tunnelling density start to represent a more significant fraction

of the total gate current. An alternative device geometry, with an underlap of the source and

drain contacts (197; 198), will increase the gate leakage variability in the On-state of an n-type

bulk MOSFET, since the gate current will be entirely from the inverted channel that is subject

to a variable doping concentration, but the magnitude of the gate current will decrease.

4.3.2.2 IG − VD characteristics

Figure 4.16 shows (light-blue lines) the IG−VD characteristics of the same 50 devices, discussed

above, simulated at 0 V gate voltage. The black curve corresponds to the uniform device, while

the red curves represent the devices with highest and lowest tunnelling current at VD = 1.0 V.

Such a gate bias is important for digital CMOS technology, and corresponds to the Off-state

of the transistor. The spread in gate leakage characteristics in this case is very broad, and for

the ensemble of 230 devices spans over one order of magnitude, as shown in Fig. 4.17. Note

that under the bias conditions of low gate voltage and high drain voltage, the tunnelling flux is

composed of electrons from the accumulation charge at the gate interface into the drain overlap

region. This is a relatively small area, over which self-averaging of the local fluctuations in

local tunnelling current density is less effective. It is interesting to consider if the inter-device
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Figure 4.17: Gate current histogram for the

ensemble of 230 devices with RDF, under

Off-state bias conditions. A Gaussian dis-

tribution with a mean of 〈log10(IG)〉 = −8.8

and a standard deviation of σ = 0.3 is fitted.
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variability arises from the local fluctuations in leakage density, or by the uncertainty of the

pn-junction position, due to acceptor dopant fluctuations.

We first look at the leakage current density fluctuations. The peak tunnelling currents

are 1.2×103 A/cm2, 1.4×103 A/cm2, and 17.0×103 A/cm2, for the best, uniform, and worst

devices respectively, differing by more than an order of magnitude. Within the direct tunnelling

model that we have deployed, the tunnelling current density JG is given by JG = QfT , where

Q is the charge available for tunnelling, f is the impact frequency, and T is the tunnelling

probability. The charge density in the accumulated gate is relatively insensitive from position

to position within a device, and from a device to device, due to the very high, uniform doping

level in the poly-Si. The impact frequency slowly varies with the field (refer to Eq. 3.19),

but the tunnelling probability is exponentially sensitive to the oxide field. At the given bias

conditions the substrate is depleted and the unscreened Coulomb potential of the impurities

strongly modulates the electrostatic field. Figure 4.18 shows a density histogram of the normal

component of the oxide field Fox in the uniform, best and worst devices. The components

with negative value do not contribute to the tunnelling current, because they correspond to

the field in the oxide above the channel area of the transistor, which is devoid of electrons. Of

importance are the positive components in Fox distribution, causing gate electrons to tunnel

into the drain extension. These components are widely dispersed and even the extreme values

for each device have appreciably frequency on the histogram. The peak field differs by a factor of

more than two, between the best (3.7 MV/cm), and worst (8.2 MV/cm) devices, and is therefore

responsible for the large fluctuations in the leakage density.
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Figure 4.18: Density histogram of the nor-

mal component of the oxide field in the uni-

form, best and worst devices. The compo-

nents with positive values correspond to the

oxide field over the drain overlap region and

are widely dispersed. Even the maximum

positive values have comparable density to

the smallest positive components. The neg-

ative values correspond to the oxide field

over the channel.

Considering now the area of the drain extension overlap, we compare in Fig. 4.19 the elec-

trostatic potential and impurities in the substrate, and the magnitude of the tunnelling current

69

figures/c5/rdf.off--Fox.hist.eps


4.3 Gate leakage variability

Figure 4.19: Electrostatic potential and discrete impurities in the substrate, and log of the gate

leakage density for the best (left) and worst (right) devices. The drain end is closer to sight.

Black iso-lines correspond to Fox = 0, suggesting drain extension overlap for the best device.

Local fluctuations in the potential are directly translated in oxide field fluctuations (as the gate

could be thought of equipotential), implicating strong fluctuations in the gate leakage density.

density in the best and worst devices. The overlap area for the best device is clearly smaller than

the overlap area of the worst device, hence correlation clearly exists. The difference in area is

in the order of two however, and cannot explain on its own, as previously suggested (31), the

large difference in the total gate current magnitude – 0.2 nA, best and 4.2 nA, worst.

We conclude, that gate leakage variability in the MOSFET Off-state is primarily due to lo-

calised fluctuations in the tunnelling current density, associated with the microscopic differences

in the number and spacial configuration of doping atoms in the shallow extension region.

4.3.3 Oxide thickness variation

In subsequent simulations we investigate the impact of the Si/SiO2 interface roughness on gate

current variability, by allowing for steps of one atomic layer at the Si(001) surface. Considering

that the interface between the poly-Si gate and the oxide is modelled as flat, and that Si/SiO2

interface roughness is generated over a nominal oxide thickness of 1 nm, this introduces local

variations in the oxide thickness, so that two kinds of regions are formed – with a thickness of

either 0.85 or 1.15 nm.

4.3.3.1 IG − VG characteristics

The IG − VG characteristics of a sub-sample of 50 devices from the OTV set at VD = 50 mV

are shown in Fig. 4.20 (left). The IG − VG curve of the nominal device with a 1 nm thick,
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Figure 4.20: IG − VG characteristics at low drain voltage VD = 50 mV for a sub-sample of

50 devices from the OTV set (left). Gate current histogram for the simulated ensemble of 230

devices with OTV under the On-state bias conditions (right). A Gaussian distribution with a

mean value of 〈IG〉 = 14.6 nA and a standard deviation of σ = 2 nA is fitted.

uniform oxide is shown in black. The curves in red, labelled worst and best, correspond to

the devices with highest and lowest leakage, respectively, at VG = 1.0 V, i.e. in the On-state

of the transistors. There is an appreciable spread of the gate leakage magnitude, and a very

clear increase of the mean value, compared to the gate leakage of the uniform device. As can

be seen in the right graph of Fig. 4.20, for the full ensemble of 230 devices, the mean gate

current is nearly five times higher (∼ 15 nA) than the leakage of the uniform device (∼ 3.2 nA).

The increase in the mean gate current is due to the exponential dependence of the tunnelling

probability on the oxide thickness and is easily understood with the help of the histogram of

the local tunnelling current density shown in Fig. 4.21. On average in the simulations, half of

the gate oxide is thinner than the nominal, while the other half is thicker. This leads to the

presence of two distinct ranges in the dispersion of the gate tunnelling current density, with

similar frequency of occurrence. The mean values of each of the corresponding sub-distributions

are separated by nearly two orders of magnitude, with the total current being determined by the

higher sub-range. Note that in the calibration of the oxide effective mass against experimental

tunnelling data, the oxide roughness was not taken into account, but should be considered in

future simulations. We also find a wide dispersion in the oxide field, the normal component

of which locally varies between 2 and 7 MV/cm for the simulated devices, and recall that a

thinner oxide induces more charge and bears a stronger field, at a fixed bias. Therefore, the

variation in the oxide field further accentuates the tunnelling density fluctuations, leading to a

larger inter-device gate current variation. For the OTV set of devices, the standard deviation
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Figure 4.21: Density histogram of the local

tunnelling current density in the uniform,

best, and worst devices under On-state bias.

The devices with oxide roughness exhibit

two distinct areas of high contribution, as-

sociated with the thinner than nominal, and

thicker than nominal local oxide thicknesses.

of the Gaussian fitted to the simulated gate current distribution is 10 times higher (2 nA)

than in the case of the RDF set (0.2 nA). For the chosen correlation length of 1.8 nm in

generating the interface roughness pattern, the change in oxide thickness happens often enough

to yield relatively small regions, compared to the gate area, with a fixed thickness. This allows

for self-averaging of the local fluctuations in the gate leakage density. Larger values for the

correlation length could be found in literature, however. We anticipate an increase in gate

leakage variability if the oxide roughness correlation length becomes comparable to the gate

length, i.e. if the gate length is further reduced, or if the correlation length is larger.

4.3.3.2 IG − VD characteristics

Figure 4.22 (left) shows (light-blue lines) the IG − VD characteristics of the same 50 devices,

discussed above, simulated at 0 V gate bias. The black curve corresponds to the uniform

device, while the red curves represent the devices with highest and lowest tunnelling current

at VD = 1.0 V, i.e. in the Off-state of the transistor. There is a broadening in the dispersion

of gate leakage characteristics, compared to the On-state bias, but a similar increase in the

mean tunnelling current. The right-hand graph of Fig. 4.22 shows the gate leakage distribution

for the entire ensemble of 230 transistors at VD = 1 V. Note that a log scale is used for the

current, since the variability in this case exceeds one order of magnitude, with the min and max

leakage magnitudes being 0.3 and 4.4 nA, respectively. The mean gate current is 3.2 nA, and

is just over five times larger than the gate current of the uniform device, 0.6 nA. The standard

deviation of 0.6-0.8 nA constitutes nearly 15-20 % of the mean. 1 Leakage variability at high

drain bias for the OTV devices is entirely due to the different patterns of oxide roughness, and

1Figures are indicative only, since the normal distribution, and hence the standard deviation, apply for the

Log of the current.
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Figure 4.22: IG − VD characteristics at zero gate voltage VG for a sub-sample of 50 devices

from the OTV set (left). Gate current histogram for the simulated ensemble of 230 devices with

OTV under the Off-state bias conditions (right). A Gaussian distribution with mean value

〈log10(IG)〉 = −8.5 and standard deviation σ = 0.1 is fitted.

hence oxide thickness variation within the area of the drain extension overlap. The area for

self-averaging is much smaller, compared to the case of high gate voltage and low drain voltages,

and inter-device leakage variability increases. The increase of the mean current, relative to the

leakage of the uniform device is due to the same reason as already discussed for the On-state of

the transistor. Note that for the device with lowest gate current, nearly the entire drain overlap

is under a thicker oxide than the nominal, and this is why the leakage in this case is below that

of the uniform device. This is illustrated in Fig. 4.23.

Figure 4.23: Top to bottom: gate leak-

age density (Log-scale); Si/SiO2 rough-

ness pattern (blue dips indicate a region of

thicker oxide of 1.15 nm, protruding into

the substrate, red islands indicate thinner

oxide of 0.85 nm); potential distribution

in the substrate. The device with lowest

leakage is illustrated. The drain extension

(closer to sight) is separated from the gate

overlap by a thicker oxide, due to which the

leakage of this transistor is lower than the

one of the uniform device.

Since the reason for gate leakage variability is essentially the same for both On- and Off-

state bias conditions, the increased gate leakage dispersion in the Off-state is a confirmation of
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Figure 4.24: IG − VG characteristics at low drain voltage of a sub-sample of 50 devices from

the CMB set (with simultaneous OTV and RDF), to the left. Gate current histograms for each

of the ensembles of 230 devices (RDF - dotted, OTV - dashed, CMB - solid) simulated under

On-state bias, to the right. A Gaussian distribution with mean 〈IG〉 = 14.8 nA and standard

deviation σ = 2 nA is fitted to the data from the CMB set.

our earlier hypothesis, that a reduction of the gate length at a given correlation length increases

leakage variability.

4.3.4 Combined effect of RDF and OTV

In this subsection we report the simulations of the CMB ensemble of devices, featuring both

RDF and OTV. We compare the results against the data from the simulations of individual

sources of intrinsic parameter fluctuations.

4.3.4.1 IG − VG characteristics

The IG−VG characteristics of a subset of 50 devices from the Combined (CMB) set are shown

in Fig. 4.24 (left). As in the earlier discussions, the IG − VG curve of the uniform device is

shown in black, while the lowest and highest lying curves at VG = 1 V are in red. The spread

of characteristics bears the effects of OTV induced variability at high gate voltage, while at low

gate voltage, the dispersion is similar to the one induced by RDF. This is expected, since at high

gate bias, the excess of electron charge in the substrate screens the bare potential of the ionised

impurities, and the RDF induced fluctuations of the tunnelling current density become too

localised, compared to the OTV induced fluctuations. At low gate bias and low drain voltage,

the screening of the impurities, particularly in the channel of the transistor, is not sufficient,
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and the RDF induced fluctuations lead to the increase of gate leakage variability. This bias

regime is of less importance to the operation of digital CMOS devices, however.

The dispersion of gate current in the On-state of the transistors of each of the simulated

ensembles of devices are shown in the right graph of Fig. 4.24. Clearly, for this gate bias and

simulation parameters (macroscopic device geometry, and oxide roughness correlation length),

gate leakage variability is dominated by the effects of oxide thickness variation, and discrete

doping atoms have a negligible impact. This is confirmed also by Fig. 4.25, showing a correlation

of the direct tunnelling current density to the features of the oxide interface roughness, for the

worst device in the CMB set, biased in the On-state. Note that the impurities near the drain

(closer to sight) would have lead to sharp local modulations in the leakage density, in the case

of a flat interface. In the present case however, the stronger dependence of the direct tunnelling

on the barrier thickness dominates.

Figure 4.25: Top to bottom: direct tun-

nelling current density (Log10 of the mag-

nitude), Si/SiO2 interface roughness fea-

tures (blue identifies regions of SiO2 pro-

trusions into the substrate, i.e. thicker

oxide; red corresponds to thinner oxide),

and electron density distribution in the

substrate (to the depth of the shallow

source/drain extensions) of the worst de-

vice from the CMB set. Tunnelling density

fluctuations are correlated to the features

of the oxide, although electron density is af-

fected by impurities near the interface too.

In the On-state of the transistor, there appears to be some dependence between the RDF

and OTV induced gate leakage variability, expressed in a small covariance of 0.16, obtained

from Cov = 0.5(σ2
CMB − σ2

RDF − σ2
OTV ).

4.3.4.2 IG − VD characteristics

The IG − VD characteristics of a subset of 50 devices from the Combined (CMB) set are

shown in the left graph of Fig. 4.26. This graph suggests that both random dopant fluctuations

and oxide thickness variation contribute to the simulated gate leakage variability, since the

spread is even wider than the one from the simulations of the RDF ensemble, and the mean
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Figure 4.26: IG − VD characteristics at 0 gate voltage of a sub-sample of 50 devices from the

CMB set (with simultaneous OTV and RDF), to the left. Gate current histograms for each

of the ensembles of 230 devices (RDF - dotted, OTV - dashed, CMB - solid) simulated under

Off-state bias, to the right. A Gaussian distribution with mean value 〈log10(IG)〉 = −8.4 and

standard deviation σ = 0.3 is fitted to the data from the CMB set.

gate current is significantly increased, as in the simulations of the OTV ensemble of devices.

Such an effect is anticipated, because in this case, gate leakage variability is due to the lack of

sufficient self-averaging of the fluctuations in direct tunnelling current density that are local to

the area of the drain extension overlap. While the density of electrons in the accumulated gate

is essentially constant, the change in tunnelling probability (due to the features of the oxide

roughness), and the sharp modulation of the oxide field, (due to unscreened impurities in the

depleted substrate), are independent phenomena. Their simultaneous manifestation increases

the range of fluctuations in the tunnelling current density, and implicates a wider dispersion in

the total gate current.

A quantitatively clearer picture is obtained from the histograms of gate tunnelling current

in the Off-state of the transistors in each of the simulated ensembles, shown in the right graph

of Fig. 4.26. Note the use of a logarithmic scale, because the spread of gate current exceeds

an order of magnitude. The gate leakage distribution of the Combined set has the highest

mean value of 4 nA, but very close to the mean corresponding to the OTV set, 3.2 nA. For the

CMB set, the standard deviation of the logarithm of the gate current is identical to the one for

the RDF set. Due to the larger mean value however, this translates to 50-100 % of the mean

current (i.e. the interval from −σ to +σ is equivalent to the range of 2 - 8 nA.

In the Off-state of the transistor, the OTV and RDF appear to be statistically independent

sources of variability, as suggested by the minimal covariance of 0.008 that we establish from
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the standard deviations of the fitted Gaussian distributions.

4.4 Summary

The study of MOSFET gate leakage variability requires a physically sound 3D device modelling

technique and simulations of large ensembles of macroscopically identical, but microscopically

different transistors. We reviewed the three most established device modelling frameworks for

performing such analysis – density-gradient (DG), Monte Carlo, and non-equilibrium Green’s

functions (NEGF) – in view of these requirements. Currently, the NEGF and MC simula-

tions cannot meet the demands of computation efficiency, while in terms of accuracy of device

electrostatics, the DG approximation is sufficient, due to its proper accounting of quantum con-

finement effects. MCs advantages in accounting for hot-carrier effects and velocity overshoot

are not critical in ultra-scaled MOSFETs in the regimes relevant for static power dissipation –

low drain and high gate voltage, referred to as On-state, and low gate and high drain voltage,

referred to as Off-state. Therefore we can dismiss MC as a tool to analyse these particular

effects. We cannot profit by the inherent quantum-mechanical treatment of transport in NEGF

and its handling of the gate contact and gate current on equal basis to the source and drain,

due to the paramount complexity involved in such simulations.

By choosing the DG framework, we benefit from the already established and proven capa-

bilities of the Glasgow 3D Atomistic simulator for studying device variability. A section of this

chapter clarifies the mathematical formulation and implementation aspects of this simulator.

In particular, the use of control volume discretization of the Poisson and current continuity

equations, is essential to allow the modelling of microscopic variations between devices. Physi-

cal models of the two principle sources of variability considered in this study - discrete, random

dopant fluctuations (RDF), and oxide thickness variation (OTV) due to oxide interface rough-

ness, are clarified to anticipate their effects on direct tunnelling gate leakage in the transistor.

The advancement of the simulator to account for gate leakage is based on the inclusion,

at a post-processing stage, of the 1D direct tunnelling model described and used in the pre-

vious chapter. Presently, the essential quantities of the model are obtained directly from the

electrostatic potential and electron distribution calculated by the 3D DG simulator.

We first simulate a 25 nm square gate MOSFET with a uniform doping profile, flat interfaces,

and 1 nm SiO2 dielectric, and analyse the gate and drain voltage dependence of the gate leakage.
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Our results qualitatively agree with previous experimental and modelling works (30; 175; 192;

193; 195), and show that

• maximum gate leakage flows at VG = VDD and VD ∼ 0, due to simultaneous electron tun-

nelling from all geometrical partitions of the substrate (i.e. source and drain extensions,

and the channel);

• gate leakage at VG ∼ 0 and VD = VDD is due to the dominant tunnelling from the gate

into the drain extension, and is larger than the sub-threshold (source-to-drain) leakage;

• at high gate and high drain voltage, the source extension and channel provide the domi-

nant tunnelling from the substrate, while the opposite electron flux at the drain extension

overlap is minimised.

We further study three different ensembles of 230 devices, macroscopically identical to the

25 nm uniform MOSFET, but microscopically different. Devices differ from set to set in their

sources of microscopic features – the RDF set has discrete dopants, random in number and

distribution; the OTV set has a rough Si/SiO2 interface introducing random fluctuations of the

oxide thickness by one inter-atomic layer of 0.28 nm; the CMB set combines both sources of

microscopic differences. The effects of RDF and OTV are relatively independent, and

• OTV increases the mean gate leakage 5 times, over the gate current of the nominal

(uniform) device, which is due to the exponential sensitivity of the direct tunnelling to

the oxide thickness.

• At VG = VDD and VD ∼ 0, OTV induces appreciable variability with a standard deviation

of a few % of the mean, while the RDF adds insignificantly to the spread. This is

because the large electron concentration in the substrate at this bias screens the potential

of the ionized impurities, while surface roughness affects both oxide field and carrier

concentration near the interface. This variability is expected to increase if oxide roughness

correlation length becomes comparable to the gate dimensions.

• At VG ∼ 0 and VD = VDD, both RDF and OTV contribute to a large spread in the

gate current, which for the chosen geometry is nearly two orders of magnitude. The

contribution from RDF is stronger since large fluctuations in the local tunnelling density

are implicated by the exposed impurities in the depleted substrate. Due to the narrow

region (drain-extension overlap) determining the tunnelling magnitude, self-averaging is

not effective.
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4.4 Summary

It is evident that gate leakage variability is a very important issue, particularly at high drain,

and low gate bias, where gate tunnelling is the major leakage component in the transistor, and

variability is large. Further effort should address the self-consistent inclusion of the gate leakage

into the drain current calculations, and improve the tunnelling model to account for some

multidimensional aspects of the leakage process, currently omitted – lateral field dependence,

tunnelling paths through oxide spacers, and effects of width scaling. Naturally, such effort must

be put in the perspective of metal/high-κ dielectric gate stacks.
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Chapter 5

Oxide Interface Transition

In the review of tunnelling current models (Chapter 3), it was suggested that the oxide interface

transition region has an appreciable impact, on the direct tunnelling probability for ultra-thin

oxides. This chapter is an extensive study of the non-abrupt change of electronic properties at

such an interface and its impact on the quantisation, capacitance and leakage characteristics

of a MOS inversion layer. After introducing the issue, as revealed by experiments and first-

principles simulations, we detail out the advances made to the 1D Poisson/Schrödinger solver,

which were required for this study. Simulations compared with traditional, abrupt interfaces

demonstrate an order of magnitude increase in leakage current, enhancement of capacitance,

and reduction in subband splitting.

5.1 Introduction

The smallest critical dimension in ultra-scaled MOSFETs is the gate insulator equivalent oxide

thickness (EOT), which at the current VLSI technology generation is of the order of 1 nm,

and is projected to become as small as 0.5 nm (10). For a pure silicon dioxide or oxynitride,

a 1 nm physical thickness is realised in 3 molecular layers (each 0.32 nm thick (199)); for a

high-κ dielectric stack, the interfacial oxide is even thinner (11). Despite the renowned quality

of the Si/SiO2 interface, a physico-chemical transition happens at this interface over a depth

of a few Å, as comprehensively reviewed in Refs. (200; 201). This compositional and structural

transition imparts a non-abrupt variation of the electronic and dielectric properties across the

interface (186; 199; 202; 203; 204; 205; 206; 207). Such variation is intrinsic to the interface

and its impact on the electrical characteristics of devices should become more pronounced with

the aggressive scaling of the oxide.
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5.1 Introduction

5.1.1 Prior art

So far, only a few device-related modelling studies address the physical consequences of a

Si/SiO2 transition layer, the first one dating back to 1977, by Stern (208). Assuming the band-

gap varies linearly from that of Si, to that of the oxide, over a distance of 0.5 nm above the

substrate, his low temperature (4.2 K) calculations showed about 1 % of the lowest subband

inversion charge resides in the dielectric under conditions of high field normal to the interface;

depletion charge dependence of this fraction suggested that scattering of charge in the transi-

tion layer may be partially responsible for mobility degradation that was normally attributed to

surface roughness. The same study, done in the envelope wave function, effective mass approx-

imation, also showed that wave function penetration in the transition layer reduces the split

between the lowest lying subbands of the four-fold and two-fold degenerate valleys, by some tens

of mV. It is not trivial, however, to extrapolate the low temperature results to room tempera-

ture characteristics with a higher level of depletion charge, as found in modern bulk MOSFETs.

Later, Maserjian reported a dependence of the Fowler-Nordheim tunnelling current oscillatory

component on the width of the transition layer, obtaining best fit for a linear potential barrier

transition of 0.25 nm (209). More recently, and adopting similar barrier configuration (0.27 nm

wide transition), Yang et al. reported an order of magnitude increase in the direct tunnelling

leakage, relative to the abrupt band-gap change (210). Watanabe et al. devised a self-consistent

C − V and JG − V fitting procedure for the extraction of oxide thickness and oxide tunnelling

effective mass (131). They report that best fit to the experimental characteristics is obtained by

considering simultaneous transitions of both band-gap and dielectric constant, over a distance

of 0.4 nm from the semiconductor. The tunnelling mass in this case, 0.85, is much larger than

the one obtained for an abrupt oxide barrier, 0.49, compensating for the enhanced tunnelling

due to the gradual conduction band offset. The methodology employed in these two studies

(131; 210), does not give detailed information about the subband levels and subband carrier

populations.

In contrast to the above findings, de Sousa et al. report a decrease in the tunnelling current

associated with a gradual transition of the band-gap, compared with an abrupt change (211).

This is counter intuitive (particularly for their interface localisation parameter α = 0.0), and

could be due to either a systematic limitation of their gate leakage model, 1 to an implementation

1De Sousa et al. use a semiclassical WKB approach for the calculations of tunnelling current (211). It might

be that if one considers only the lowest lying subband in the inversion layer, as a result of the widening of the

potential well, the effective thinning of the tunnel barrier is overcompensated by the lowering of subband level

and impact frequency, associated with the widening of the potential well.
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5.2 The Si/SiO2 interface

mistake, 1 or both. Another unexpected result from their calculations is the degradation of the

total gate capacitance in inversion. 2 We note that the gradual potential barrier at the interface

allows stronger penetration of the subband wave functions, in effect bringing the inversion charge

centroid closer to the gate electrode and is therefore expected to enhance the gate capacitance.

5.1.2 This work

The contradictory results summarised in the previous sub-section require some clarification. A

better understanding of subband quantisation and subband carrier distribution in the presence

of interface transition is also necessary, due to the technological importance of the interface

– particularly in view of modelling and characterisation of high-κ gate stacks (HKGS) with a

sub-nm effective oxide thickness (EOT).

This chapter is an extensive investigation of the impact that interface band-gap and permit-

tivity transition, have on MOS inversion layer characteristics. The next section is a summary

of the experimental and simulation findings regarding the electronic and dielectric properties

of the Si/SiO2 interface. This is followed by a study of the quantisation, capacitance, and di-

rect tunnelling gate leakage characteristics of a metal/SiO2/p-Si(100) structure. A systematic

comparison is drawn between three different models of the interface barrier – the traditional,

abrupt band-gap transition; a gradual linear variation of the band gap across the interface; and

a realistic conduction and valence band evolution obtained from ab initio calculations of the

interface. With the new, non-abrupt barrier model, direct tunnelling gate leakage is simulated

in devices with sub-nm EOT HKGS, in accord with the ITRS projections.

5.2 The Si/SiO2 interface

5.2.1 Atomic structure

The silicon dioxide used as a gate insulator in MOSFETs is typically a thermally grown amor-

phous material (212). It is composed of disordered SiO4 tetrahedral structures, in which a Si

atom – being at the centre – is bonded to the 4 neighbouring O atoms. Each O atom at a vertex

1The published set of equations is incorrect – in particular, the units on each side of Eq. 11 are inconsistent,

considering Eq. 13 (211).
2De Sousa et al. establish capacitance degradation by considering normalised capacitance; however, the

normalisation is done by dividing to the oxide capacitance, calculated by excluding the interfacial layer. This is

inconsistent with their oxide thickness definition, and with the fact that the interfacial layer in their calculations

has the oxide permittivity; hence the normalisation capacitance (i.e. the denominator) of abrupt interface is

smaller than the one for non-abrupt interface (211).
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is shared between two tetrahedra, as depicted on Fig. 5.1, bringing the average ratio between Si

and O atoms to 1:2 – hence, the known stoichiometry of the oxide, expressed as SiO2 (200). The

Figure 5.1: Atomic structure of the Si(001)/SiO2 interface (ball-and-stick model fragment),

red (smaller) and beige (bigger) balls represent O and Si atoms respectively. Typical SiO4 tetra-

hedral configuration (angles and bond-lengths) are annotated. An ideal (for Si(001) surface)

interface is shown, having the minimum possible transition layer – a monolayer of partially ox-

idised Si atoms with two oxygen bonds (Si2+) – considered to be abrupt (213). The suboxide

and the different (relative to bulk) atomic arrangement impart non-abrupt transition in the

electronic and dielectric properties at the interface, as summarised later in the text.

oxide is grown on the surface of a hydrogen-passivated Si substrate (212). Various models have

been proposed to describe the initial oxidation process, in an attempt to predict the possible

atomic configurations at the interface (212; 214; 215; 216; 217; 218; 219; 220). However, a more

detailed knowledge of the interface has been obtained from spectroscopic measurements at a

post-oxidation stage (201), and first principles (ab initio) simulations of Si/SiO2 atomic models

(205; 206; 221). While the exact atomic arrangement at the interface remains unclear, and al-

though crystalline SiO2 forms near the substrate have also been observed (206; 212; 222; 223),

two types of transitional layers are commonly distinguished – compositional, and structural –

following the review in Ref. (201).
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5.2.1.1 Compositional transition layer

The compositional transition layer (CTL) is characterised by the high content of partially

oxidised Si atoms; between 75 and 90 % of the Si atoms have less than four bonds to O atoms,

and are commonly denoted as Si1+, Si2+ and Si3+ (200; 202). This layer, also referred to as the

suboxide or sub-stoichiometric oxide, links the Si lattice of the substrate to the stoichiometric

oxide (the part of the oxide with fully oxidised Si atoms) (201). Although the formation of

a suboxide layer over a Si(100) substrate is considered to be energetically costly, its presence

is ascribed to the lateral boundaries of energetically equivalent, but structurally different Si-

surface orders, and to atomic steps on the Si surface (200; 213; 220).

The suboxide width, reported from recent experiments, varies in the range of 0.2 – 0.5 nm;

the variation is attributed to the different quality of the Si surface and oxide growth condi-

tions. In particular, a suboxide depth of 0.16 nm has been inferred from electron-energy-loss

spectroscopy (EELS) (186), 0.21 nm was deduced from photoemission (PS) experiments (199),

0.4 – 0.51 nm obtained through angle-resolved Si 2p core level X-ray PS (XPS) (201; 224), and

0.53 nm was fitted to high-resolution Rutherford backscattering spectroscopy (HRBS) data

(225). It should be noted that the value of 0.23 nm is the width of the CTL corresponding to

an abrupt interface of oxide grown on ideal Si(100) surface; in such case the suboxide consists

of one monolayer of Si2+ atoms (200; 201; 213). The wider compositional transition is ob-

served together with a distinct localisation of the peak density of the different sub-oxide species

(Si1,2,3+), as shown in Fig. 5.2 (201; 224).

Si Si
0+

(100%)

SiO2 CTL

Si
2+

(64%), Si
1+

(36%)

Si
4+

(29%), Si
3+

(71%)

Si
4+

(65%), Si
3+

(35%)

SiO2 Si
4+

(100%)

Si STL

SiO2 STL

Figure 5.2: Schematic diagram of the Si/SiO2

interface, showing the physical transitional lay-

ers that can be identified (201). The struc-

tural transition layer (STL) differs from its

bulk counterpart by atomic arrangement. The

compositional transition layer (CTL) differs

from SiO2 by chemical composition, containing

sub-oxidised Si atoms (Si1+,2+,3+). Sub-layers

within the CTL are identified by angle resolved

XPS measurements (201; 224). Distribution of

suboxide moieties is from (224).

Reports from ab initio molecular dynamics simulations typically indicate a 0.4 – 0.6 nm

wide suboxide region (206; 216; 226; 227). Abrupt interface models exist in literature (203; 213;
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228), but their validity is questioned by ion-scattering experiments and simulation (229). The

interface models in Ref. (227) are built to reproduce a range of experimental data for Si/SiO2,

emphasising the density ratio between Si1,2,3+ atoms, so not surprisingly they yield a similar

CTL width to the angle-resolved XPS studies (0.5 nm). However, the 2 nm amorphous-SiO2 on

Si(001), reported in Ref. (206) has been obtained from a restraint-free structural optimisation

involving 2000 atoms, and features a suboxide of similar width (0.6 nm).

The importance of a relatively wide suboxide cannot be overstated, since the local dielectric

response is found to be largely affected by the oxidation state of a Si atom and the particularities

of its bonding (201; 230).

5.2.1.2 Structural transition layer

Two structural transition layers (STL) are identified, on each side of the suboxide (201). Their

chemical composition is that of the bulk Si (on the side of the substrate), or that of the

stoichiometric SiO2 (on the opposite side), as indicated in Fig. 5.2. Their atomic arrangement

differs, however, from the corresponding bulk counterparts.

The structural transition in Si appears as a perturbation of the lattice over the topmost

two or three monolayers, with atoms being displaced from their regular lattice position by more

then 0.09 Å. This result has been obtained from ion backscattering experiments and simulations

(229; 231), which probe the Si-side of the interface. While this level of disorder induces strain

amongst the Si surface atoms, and affects the oxidation process and generation of defects (as

revealed by real time oxidation kinetics observations using XPS (220)), we find no data for its

impact on the electronic and dielectric properties of the interface.

The transition on the SiO2 side is studied mostly with XPS, and is believed to extend up to

1 nm into the stoichiometric oxide (201). Experiments suggests that the structural irregularity

in this case is expressed in a reduced Si-O-Si bonding angle (135◦ – 140◦) between the SiO4

tetrahedra, compared to the known value of 144◦ for bulk SiO2 (200; 201). This irregularity

is found to affect the valence band offset, which increases within the SiO2 STL by up to 0.2 V

(201; 204).

5.2.2 Electronic and dielectric properties

5.2.2.1 Band gap transition

The energy band diagram of the Si/SiO2 interface was established by Williams (232), who

determined the band-gap alignment between Si and SiO2, by measuring the energy required
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to excite an electron from the valence band of Si into the conduction band of SiO2. It was

assumed that the change of electronic band gap happens abruptly, as depicted by the solid line

in Fig. 5.3. The offset of the SiO2 conduction and valence band edges, relative to those of Si, is

often considered sufficiently large to justify an even further simplification – that of an infinite

potential barrier at the interface – for the purposes of device modelling, following Ref. (233).

Vacuum
Level

Si CB

Si VB

SiO2 CB

SiO2 VB

1.1 eV

5.15 eV

8.9 eV

4.25 eV
PECT

abrupt
BG change

non-abrupt
BG change

Figure 5.3: Energy band-diagram at

the Si/SiO2 interface. Band gap (BG)

alignment between Si and SiO2 is es-

tablished from the photo-emission cur-

rent threshold (PECT) for Si valence

band (VB) electrons excited to the SiO2

conduction band (CB) (232). Recent

studies indicate a non-abrupt BG transi-

tion at the interface (dashed) (186; 201),

rather abrupt (solid).

The assumption of an abrupt band-gap change at the interface was first revisited by Stern

who – motivated by the early stoichiometry-related studies of the Si/SiO2 interface – assumed

a linear band-gap transition over 0.5 nm in the oxide, as schematically illustrated by dashed

line in Fig. 5.3, and briefly addressed, within the envelope wave-function approximation, the

effect of this transition on MOS inversion layer quantisation and mobility (208). He found

that for a strongly confining potential in the substrate, there is a significant wave function

penetration into the oxide that results in lower subband levels, relative to the abrupt case, and

decreased splitting between the lowest lying subbands of the four-fold and two-fold degenerate

valleys by some tens of mV. Later, Maserjian considered the effect of the transition layer on the

frequency of Fowler-Nordheim (FN) tunnelling current oscillations, and obtained the best fit to

experimental data by assuming a 0.26 nm linear band-gap transition (209). It is worth noting

that the band-gap transition width in both these cases is of the order of the sub-stoichiometric

oxide, discussed already.

While most of the experimental work on determining the stoichiometry and atomic arrange-

ment at the Si/SiO2 interface is based on XPS, it yields information about the atomic core

levels (e.g. Si 2p, O 1s), or the valence band, but lacks information about the conduction band.

Definitive experimental evidence for the non-abrupt transition of the interface band-gap was

published by Muller and co-workers, who used electron energy loss spectroscopy (EELS) to
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5.2 The Si/SiO2 interface

locally resolve the density of unoccupied electronic states by atomic sites and atomic species

near the interface (186). In this experiment, they observed the electronic states in the interface

transition region to be roughly aligned with the conduction band of Si, rather than that of SiO2,

and found a satisfactory large band gap in the oxide only after 0.43 nm. At the same time, the

deduced depth of the suboxide was merely 0.16 nm. Subsequent investigations correlate these

additional unoccupied states with bulk-Si induced conduction states, and with O p-projected

unoccupied densities of states (due to O atoms near the surface, with less than six O second

nearest neighbours, cf. Fig. 5.1) (199; 204; 205; 207; 234; 235).

The fundamentally important conclusion from these studies is that regardless of the type of

Si-to-SiO2 chemical transition – abrupt, or graded through a suboxide of a finite width – the

band gap transition at the interface is not discontinuous, but progressive, over a distance of

about 0.5 nm, with a minor change in the first 0.2 – 0.3 nm away from the Si lattice. Moreover,

this intrinsic feature of the interface should be relatively independent of the specific atomic

structure of the interfacial oxide (crystalline or amorphous).

Further to the above experiments, a number of density functional theory (DFT) simula-

tion studies of the interface electronic properties report a progressive band gap transition over

0.5 – 0.6 nm. These studies consider different SiO2 model structures (crystalline or disordered

polymorphs) varying the complexity of the simulated entity (2D hydrogen-terminated or 3D

periodic supercells of 30 to 2000 atoms) (203; 205; 206; 236; 237; 238).

Ab initio simulation results are of particular relevance to device modelling, since they allow

one to trace the evolution of the conduction and valence band edges versus distance from the Si

interface (205; 236; 239). Typically, DFT calculations of the electronic structure underestimate

the band gap of bulk Si and SiO2, and have some dependency on the choice of an empirical

functional. Recent calculations overcome these issues by the use of the GW-approximation

(240; 241; 242). Further to the good agreement with the known experimental band gaps, these

works confirm that DFT well describes the interface charge density and dipole moments at the

interface.

5.2.2.2 Permittivity variation

Permittivity variation that is local to the interface region has been suggested, based on the

compositional and structural transitions at the interface described before (186; 200). Experi-

mentally, an enhanced high-frequency dielectric response has been deduced from a comparison

of thin oxide film thicknesses measured by ellipsometry, against the thicknesses obtained from
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other techniques, which are independent of permittivity or refractive index (e.g. ion scatter-

ing and high resolution transmission electron microscopy). A number of authors confirmed an

increased refractive index of oxides below 7 nm, and attributed this to the interface transition

(243; 244; 245). Detailed investigations, reported in Refs. (230) and (201), revealed that the

increase of both the static and high-frequency permittivity is due to the sub-stoichiometric

oxide. The authors assign this to the larger polarizability of the electron distribution associ-

ated with partially oxidised Si atoms, and agree quantitatively in their estimates, as shown in

Fig. 5.4, despite employing different methodologies to calculate the effect. A bulk-like dielectric

constant is restored as soon as the Si atoms become fully oxidised, independently of the density

of induced gap states (246; 247; 248). This fact leads to the important conclusion that the

dielectric transition at the interface happens over a shorter distance, compared to the band-gap

transition, since the former is sensitive to the first nearest neighbour (Si-O) atomic arrangement

(246), while the latter is also sensitive to the second nearest neighbour (O-O) (186; 234), and

exceeds the width of the suboxide, as previously discussed. This is also evident in the band-gap

and permittivity profiles versus distance, reported in Ref. (205).
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a function of Si oxidation state. Total
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(205); electronic contribution deduced

from XPS (open circles) are in agree-
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curs in the suboxide (Sin+, with n =

1, 2, 3).

This permittivity enhancement at the interface is of crucial importance to both capacitance

(CV ) and gate leakage (JGV ) characterisation of thin oxides, since an increased oxide capac-

itance, for a given physical thickness, induces more charge in the inversion or accumulation

layer at a particular bias, to which both measurements are sensitive. This issue has already

been addressed by Watanabe, who established an improved fitting of oxide thickness and oxide

tunnelling effective mass, by accounting for a linear transition of both band gap and dielectric

constant, over a distance of 0.4 nm (131).
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5.3 Methodology details

5.3.1 Simulation approach

It is important to understand the impact of the non-abrupt electronic and dielectric transition

at the semiconductor-oxide interface, on the electrical (leakage and capacitance) characteristics

of a MOS structure. For this purpose we use a one-dimensioanal (1D) quantum-mechanical

simulator employing the envelope wave-function, effective-mass approximation (EMA) (249).

Such a tool is suitable for analysing inversion layer properties (121; 233), and is often used

for the characterisation of tunnelling oxides through C − V and JG − V measurements (245;

250). A more direct approach for leakage modelling might be based on first-principles or tight-

binding simulations (132; 133; 251; 252), but these techniques are still not suitable for device

simulation over wide bias range – the wide extent of an accumulation or depletion region,

containing thousands of atoms, represents too onerous a computational burden, and renders

them unsuitable.

The mathematical formulation and implementation details of the simulator, the development

of which constitutes part of this work, are given in Appendix A. In summary, the commonly

available 1D self-consistent Poisson-Schrödinger solver Schred-2.0 (253) has been modified to

allow for

• solution of the Schrödinger equation (SE) with spatially varying effective mass (to account

for wave-function penetration into the dielectric),

• solution of the Poisson equation (PE) with spatially varying permittivity (to account for

non-zero charge density in the dielectric, due to wave-function penetration),

• calculation of the direct tunnelling gate current,

• external definition and spacial dependence of material parameters - band gap, EG(x),

dielectric constant, κ(x), and effective mass, m(x),

where x is the direction normal to the Si/SiO2 interface. The implementation delivers wave-

function solutions subject to open boundary conditions at the dielectric interfaces, and non-

zero charge density in the oxide. A 6-ellipsoidal electron band structure is assumed for the

Si conduction band, and a single, parabolic band structure with effective mass mox = 0.5m0

approximates the SiO2 for the greater part of this study. Inversion layer leakage is calculated

as direct tunnelling of electrons in quasi-bound states (QBS), treated quantum mechanically,
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but non-self consistently – this is a reasonable approximation under the assumption that the

inversion charge density is guaranteed by an adjacent source contact (as in a MOSFET), and

QBS time evolution needs not be followed (114).

Our modifications of the solver make it suitable for the simulation of gate stacks with

high-κ dielectric layers and interfacial oxide. However, we start our investigation with the

simplest structure – metal/SiO2/p-Si(100) – to avoid complications from poly-gate depletion

effects, and to understand the effects pertaining to the semiconductor-oxide interface transition,

in comparison with an ideal, sharp interface. The effects of interfaces in hafnia-based gate

dielectric stacks are presented later in this chapter.

All calculations assume room temperature of 300 K. Exchange and correlation corrections

to the electrostatic potential are not considered in this study, although they could be accounted

for in the original Schred code via the local density approximation (254). Their effect is known

to reduce slightly the subbands in the inversion layer and correspondingly increase the carrier

density at a given bias by about 5 % (255); that impact, in the scope of the current study, is

expected to be the same, regardless of the profile of the interface band-gap and permittivity

transition.

5.3.2 Interface barrier model

Hereafter, the interface barrier model (or simply, interface model) refers to the position of

a nominal interface, with respect to the end of the ordered Si-lattice of the substrate, and

the specifics of the conduction and valence band profiles around that nominal interface. The

nominal interface constitutes the boundary between the substrate and the gate dielectric, from

a device modelling perspective.

In view of the chemical and structural properties of the Si/SiO2 transition, a definition of

a nominal interface is ambiguous. Nevertheless, the topmost fully Si-coordinated atoms of the

substrate lie on a (001) plane, and we associate the nominal interface with this plane. This is

justifiable if we ignore interface roughness in the form of Si-monolayer steps, and the relatively

minor lattice displacements due to residual, oxidation-induced stress 1. By implication, the

entirety of the compositional transition layer is assigned to be part of the oxide, in which case,

the band gap and dielectric constant gradually transition within the oxide, or abruptly change

at the nominal interface. For the metal/SiO2/p-Si(100) structure in mind, the two possibilities

are schematically illustrated in Fig. 5.5, and represent the linear and abrupt interface barrier

1Cf. 5.2.1.2 Structural transition layer
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Figure 5.5: Schematic (flat-) band di-

agram of the abrupt and linear inter-

face barrier models, showing the po-

sition of the nominal interface (the

same for both models) that defines

the oxide thickness (tox). For the lin-

ear barrier model, the band-gap tran-

sition width (ttr), and the suboxide

(light-blue shaded region) width (tso)

are also shown. Permittivity transi-

tion pertains to the suboxide only.

models, to be compared in the next section. Note that the physical thickness of the oxide is

defined as the distance between the nominal interface and the metal/oxide interface; the latter

is assumed to be structurally and electrically sharp.

An alternative view is to conceive a plane, parallel to (001), in the middle of the suboxide,

as a representative of the nominal interface; such view is considered in Refs. (131; 132).

The last interface barrier model we introduce in this work is obtained through DFT calcu-

lations of the interface electronic structure, as described in Appendix B, and is referred to as

realistic.

5.4 Impact on MOS inversion layer

This section reports a comparison between the inversion layer characteristics simulated with the

different interface barrier models described previously. The modelled structure is metal/SiO2/p-

Si(100) with 4.05 eV gate work function, and a uniformly doped substrate to 2 × 1018 cm-3,

unless otherwise stated. Oxide thickness, defined as the distance between the nominal and the

metal-gate interfaces, is varied in the range of 1 – 3.5 nm. To make a meaningful comparison

and estimate the impact of the band-gap transition alone, the permittivity between the two

interfaces is at first fixed to that of bulk oxide, preserving an identical EOT for all barrier

models. The abrupt interface model represents a finite potential barrier, and is associated with

an open boundary condition for the wave functions, so that a finite amount of charge penetrates

in the oxide. This model is the reference point for the subsequent comparisons. An infinite

barrier model is also simulated – it reflects a closed boundary condition for the envelope wave

functions at the nominal interface, so that charge density at this interface vanishes. Together
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5.4 Impact on MOS inversion layer

with the abrupt barrier, it represents the traditional device modelling perspective of the Si/SiO2

interface. The linear barrier model is regarded as an evolution over the abrupt model, with the

aim to obtain a more accurate physical picture. It is characterised by a band-gap transition

layer, ttr, that is varied in the range of 0.2 – 0.6 nm in the following simulations. The widest

transition layer of 0.6 nm approximately corresponds to the total transition width in the realistic

interface model. The evolution of the band edges in this model is markedly different however,

in the latter case (cf. Appendix B). A comment on the non-linearity of the band-transition

profiles is finally presented.

5.4.1 Electrostatics

We first consider the electrostatic effects, reporting the conduction band profile and electron

density distribution for three different interface barrier models – linear, abrupt, and infinite –

in Fig. 5.6. The band-gap transition region of the linear barrier model is ttr = 0.5 nm. The

non-zero wave density in the oxide for the finite abrupt and linear barriers corresponds to a

finite amount of charge being in the dielectric. Clearly, in Fig. 5.6, electron penetration for the

linear case is stronger, bringing the inversion charge centroid closest to the gate. Simulations

with different oxide thickness, tox ∈ [1.0, 3.5] nm, doping level, NA ∈ [1× 1017, 3× 1018] cm−3,

and at different gate bias, VG ∈ [0.0, 2.5] V, result in the same trend.
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Figure 5.6: Conduction band pro-

file and electron density distribution at

1.2 V gate bias (tox = 1.2 nm, ttr =

0.5 nm, NA = 2×1018 cm−3). Identical

magnitude of the peak electron density

and band-bending in Si is observed, re-

gardless of the interface barrier (linear,

abrupt, or infinite). To the linear bar-

rier corresponds the strongest penetra-

tion of electrons however, and charge

centroid moves closest to the gate.

It is interesting to know the fraction of the inversion population that penetrates the dielec-

tric, since carriers in the oxide will exhibit different lateral transport properties than electrons

in the substrate (208). This fraction reaches a few percent at strong inversion, and is shown in

Fig. 5.7 as a function of inversion charge sheet density, Ni, for a few different levels of depletion
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charge sheet density, Nd. A ten-fold increase, relative to the abrupt barrier, is observed when

the gradual band-gap transition happens over 0.5 nm, and is due to the smaller potential barrier

within the transition region. There is also a dependence on the depletion charge sheet density.

This latter fact is due to the stronger band bending required to obtain a given level of inver-

sion carrier density; as a result, subband levels raise, making the potential barrier effectively

lower, hence wave-function penetration stronger (cf. discussion on quantisation, 5.4.2). The

dependence of the fraction of electrons in the oxide on the width of the band-gap transition

region, ttr, is shown in Fig. 5.8, at a fixed inversion charge density, Ni, of 5 × 1012 cm−2. De-

spite the strong sensitivity on the slope of the interface potential barrier, there is essentially no

dependence on the simulated oxide thickness, for tox > 1.0 nm, which is a direct consequence

of the sufficiently large conduction band offset of the oxide, leading to a fast wave function

decay. A characteristic length λ of a wave function penetration in the oxide is obtained from

the slope of its logarithmic derivative at the nominal interface, and for ttr = 0.6 nm the value

is λ ∼ 0.4 nm – two times larger than that for the abrupt interface, 0.2 nm. The characteristic

length for charge penetration is λ/2, as the charge density is proportional to the square of the

wave function modulus.

The results above lead to the conclusion that the non-abrupt interface further enhances

the effects of wave function penetration, leading to a relative reduction of the electrical oxide
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5.4 Impact on MOS inversion layer

thickness and increased capacitance, with respect to the abrupt barrier (256; 257).

Gate capacitance enhancement is readily observed in Fig. 5.9, reporting the normalised

capacitance for the three MOS capacitors corresponding to Fig. 5.6. Total capacitance, CG,

is obtained by differentiating the integrated sheet charge density, Qt with respect to the gate

voltage, VG, as follows: CG = dQt/dVG. The oxide capacitance used for normalisation is

identical for the three devices, Cox = ǫox/tox, since permittivity transition is not considered

here, and the choice of interface barrier model yields identical oxide thickness, tox. The relative

difference in gate capacitance is bias dependent, as clearly shown in the same figure, 5.9, for

the linear case, with respect to the abrupt. Given the oxide thickness of 1.2 nm and 0.5 nm

band transition width in this case, the strong inversion capacitance is increased by over 5 %.
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Figure 5.9: Normalised C−V charac-

teristics for the devices from Fig. 5.6.

Enhancement of wave-function pene-

tration in the oxide, greatest for the

linear interface barrier model, moves

the inversion charge centroid closer

to the dielectric, hence increasing the

gate capacitance relative to the case of

infinite potential barrier.

The strongest discrepancy however is at lower gate bias, near the threshold voltage. This

is consistent with the fact that the inversion charge centroid is closer to the gate electrode,

resulting in a lower effective oxide thickness, and hence a lower threshold voltage VT . VT

reduction is reflected in the left shift of the C−V curve, for linear transition profile, in Fig. 5.9.

We found this reduction to be in the order of 20 mV, independent of the simulated oxide

thickness in the range of 1.0 – 2.0 nm, for a fixed transition width of 0.5 nm.

5.4.2 Quantisation

At this stage it is important to address the impact of the oxide interface transition on subband

energy levels and subband occupancy, on which the properties of the 2D electron gas in the

inversion layer strongly depend.
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Figure 5.10 compares the ground state wave functions (WF) of the 2-fold (denoted Ψ∆2)

and 4-fold (denoted Ψ∆4) degenerate Si ∆-valleys, for a device simulated with infinite, abrupt,

and linear barrier models; the conduction band profiles (linear and abrupt) are also shown for

clarity. Due to the lower quantisation mass and higher energy level, the wave functions of the

∆4 valley are more seriously affected by the type of barrier, and their peak density shifts closer

to the interface, as the confinement to the left is relaxed. This corresponds to the increased

electron density near the interface, discussed in the previous subsection. Noticeably, for the

linear barrier model, the peak density is equidistant from the nominal interface for both wave

functions; if lateral transport in the inversion layer is considered, essentially all carriers will be

subject to interface-related scattering to the same extent.
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tions of Si ∆2 and ∆4 valleys, for three

different barrier models, as indicated.

The conduction band profile for abrupt

and linear interfaces is also shown. The

gradual conduction band discontinuity

impacts mostly Ψ∆4, making its peaks,

and that of Ψ∆2 equidistant from the

nominal interface. Horizontal lines in-

dicate the lowest two subband levels for

the linear barrier model. VG is 1.2 V.

The top graphs of Fig. 5.11 report the variation in energy level of the lowest two subbands,

denoted E∆2
0 and E∆4

0 , for the three different interface barrier models. An obvious consequence

of the weaker confinement at the interface, due to the open-boundary condition for the wave

functions, is the lowering of both subbands, which is most pronounced for the linear barrier

model. In that case, the broadening of the quantum well with energy means the higher subbands

are affected more strongly, hence reducing the splitting between the ∆4 and ∆2 ground states,

which are closest to the Fermi level. A less intuitive result of this process is the significant

redistribution of carriers between the two valleys – their occupancy (percentage of the total

inversion population) is shown in the lower graphs of Fig. 5.11. While for an infinite barrier the

lowest 2-fold degenerate subband contains nearly the entire inversion population (more than

90 %), the finite abrupt barrier reduces this figure by 10 % and increases the population in the

lowest 4-fold degenerate subband accordingly. In the case of a 0.5 nm linear interface transition,
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pancy (below) versus gate voltage for the Si ∆2 and
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is stronger, and reduces the split between the two val-
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age. Device oxide is 1.2 nm; interface transition width
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tion width, ttr, at a fixed inversion

charge, Ni = 5 × 1012 cm−2. At

the widest simulated transition,

the occupancy of ∆4 (∆2) valley

increases (decreases) by 20 %, in-

dependently of oxide thickness.

the effect is even more dramatic – nearly 40 % of the carriers are in the ∆4 valley, and only

around 60 % in the ∆2 valley. Again, in consideration of lateral transport in the inversion layer,

a big fraction of the electrons contained in the ∆4-valley will respond to an applied electric

field with heavier effective mass of 0.315m0, rather than with 0.19m0 of the electrons for the

∆2 valley (258).

The trends of sub-band levels and occupancy changes with the total width of a linear band-

gap transition are shown in Fig. 5.12, for a fixed inversion charge density, Ni, of 5× 1012 cm−2.

Given the same level of depletion and inversion charge sheet densities in constructing this graph,

the results are independent of the oxide thickness, which is larger than the characteristic length

of wave function penetration into the oxide.

5.4.3 Direct tunnelling gate current

Direct tunnelling gate current density dependence on gate voltage is shown in Fig. 5.13, for two

different oxides – 1.2 and 1.8 nm thick – and two different interface barrier models – abrupt and

linear. Comparison between the two barrier model suggests a ten-fold increase in gate leakage
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due to the non-abrupt band-gap transition of 0.5 nm in the linear case. The enhancement in

tunnelling is consistent over the entire range of simulated gate-voltage, and is brought about

by the effective thinning of the tunnelling barrier, as well as the increased electron density in

immediate proximity to the barrier at a given gate bias. The results are in agreement with

simulations reported in Ref. (210) and fitting to leakage data in Ref. (131).1 Therefore the

choice of interface barrier model, and width of the band-gap transition appears to be of great

importance for leakage characterisation of tunnelling oxides.
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Figure 5.13: Direct tunnelling gate current

characteristics for oxide thicknesses of 1.2

and 1.8 nm, with abrupt and linear inter-

face barrier models. Transition width for
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The relative increase in tunnelling current density, JG, with respect to the abrupt interface

model, at a fixed inversion charge density, Ni, of 5×10-12 cm-2, is shown in Fig. 5.14, as a

function of the total width of the linear band-gap transition, ttr. The leakage enhancement at

the widest simulated transition of 0.6 nm exceeds one order of magnitude, and since comparison

is reported at a constant level of inversion charge, the results are independent of the oxide

thickness. The relative increase in the contributions from carriers in the ∆2 and ∆4 Si valleys,

denoted J∆2 and J∆4 respectively, is also displayed in Fig. 5.14. Note that the largest relative

increment corresponds to tunnelling of electrons from the four-fold degenerate sub-bands. This

is due to the relative increase of the occupancy of this valley, arising from the redistribution

1In Ref. (131), there is no direct comparison of leakage with abrupt and non-abrupt interface, but more than

a 2-fold increase in oxide effective mass is required to fit leakage with non-abrupt interface to experimental data
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of carriers discussed earlier (cf. Quantisation 5.4.2), and to the thinner potential barrier, since

energy-wise, the ∆4 sub-bands are higher than the ∆2 ones.

5.4.4 Interface permittivity increase

Permittivity enhancement at the interface is a bias independent phenomenon that is due to the

sub-oxidised Si atoms in the compositional transition layer (CTL) (201; 230). Consequently,

the most simplistic view is that it imparts a reduction of the effective oxide thickness (EOT)

of a MOS capacitor. A dual layer, classical electrostatics model of the oxide is capable of

reproducing the EOT obtained from microscopic permittivity calculations in the DFT formalism

(246). In the dual layer model, the oxide is composed of bulk SiO2 with a constant permittivity

εox = 3.9ε0, and an interfacial suboxide with varying dielectric constant. If the oxidation index

n of the Sin+ moieties is linearly graded over the suboxide, the transition of the dielectric

constant is also linear (230). While the most recent experiments reveal a non-linear distribution

of suboxide species in the CTL, the linear approximation allows for analytic estimate of the

EOT in the presence of a non-abrupt permittivity change. The following relation determines

the EOT of the suboxide itself (EOTso)

EOTso = εox

∫ 0

−tso

1

ε(z)
dz, (5.1)

and with the help of the linear approximation it yields

EOTso = tso
εox

εsi − εox
ln
εsi
εox

, (5.2)

where tso is the suboxide width, εox and εsi are the bulk SiO2 and Si permittivity respectively.

Figure 5.15 shows the departure of the electrical from the physical oxide thickness due to

a linearly graded suboxide of different width. The EOT is reduced by nearly a half of the

suboxide width, when only the Si/SiO2 interface is considered (e.g. for a device with a metal

gate). For a poly-Si gate, the EOT is smaller than the physical thickness almost by tso itself,

since the poly-Si/SiO2 interface exhibits identical properties to the Si/SiO2 interface (186).

It is interesting to know if the permittivity enhancement might be accounted for in device

modelling by assuming the dual layer (DL) model with a fixed permittivity in both layers –

compare the results for linear εso(x) and for fixed εso = 7.1ε0 in Fig. 5.16. The EOT for the

simulated devices is 1.2 nm, tox = EOT for the abrupt interface (homogeneous, bulk-like oxide),

and tox = 1.43 nm for the DL model, since the suboxide is 0.5 nm. Due to the identical EOT, the

electrostatic potential and electron density profiles overlap in the inversion layer, to the right of
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permittivity εso = 7.1ε0 (dotted), or a lin-

early varying εso(x) (dashed). Results with

the two DL models are identical even if non-
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the thin vertical line denoting the nominal interface. The oxide field in the bulk-like part of the

oxide is essentially that of the abrupt case. The only difference appears in the suboxide region,

where the field for the DL with linear εso(x) is initially lower than that for the fixed suboxide

permittivity. The situation is the same even if interface band-gap is non-abrupt, but linearly

varying (over 0.6 nm). Note however, that at a given EOT, the increase of physical thickness

due to the interface permittivity enhancement leads to a decrease in the leakage current (not

shown here). This is of great relevance for fitting leakage current density to experimental

data, where the oxide thickness is obtained from C − V measurements or ellipsometry. For

example, at VG = 1.2 V, the device with single layer oxide (EOT = tox = 1.2 nm) and abrupt

interface has gate leakage density of 3.15 × 102 A/cm2, the DL model with abrupt band-gap

transition yields 0.19 × 102 A/cm2, while the same model with band-gap transition of 0.6 nm

yields 5.67 × 102 A/cm2.
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5.4.5 Effective mass change

The results presented so far reflect the assumption of a fixed effective mass in the oxide, mox =

0.5m0, further implying that the effective mass characterising the two- and four-fold degenerate

valleys of the Si substrate abruptly changes its value at the nominal interface. In what follows

we demonstrate that the magnitude of the observed effects due to non-abrupt transition of the

band-gap largely depend on the value of the oxide mass mox, and that a non-abrupt effective

mass profile across the interface reduces the impact of the band-gap transition.

It is useful to first consider the boundary conditions for the wave function (WF) at the

interface (cf. Appendix A). The matching of the WF derivative at the interface guarantees con-

servation of particle flux across the interface, and if written independently of the discretization

scheme is
1

mox
ψ′
ox(x)|x=0=

1

mSi
ψ′
Si(x)|x=0 , (5.3)

where ψox and ψSi are the WFs to the left and right of the nominal interface (at x = 0),

mox is the effective mass to the left of the interface, and mSi = 0.92m0, for ψSi ≡ ψ∆2, or

mSi = 0.19m0, for ψSi ≡ ψ∆4. Since in the current problem the wave functions are solutions

of the one-dimensional Schrödinger equation for real energies, they could be real too (126), in

which case the slope of the WF at each side of the barrier is given by the corresponding WF

derivative. 1 It is convenient to recast Eq. 5.3 into

ψ′
Si(x)|x=0=

mSi

mox
ψ′
ox(x)|x=0 (5.4)

We observed that ψ′
ox is relatively insensitive to mox, compared to the ratio mSi/mox, which

means that an increase (decrease) of mox translates in a decrease (increase) of ψ′
Si – the slope

of the wave-function to the right of the interface. More formally, a real solution for ψox could

be constructed by a linear combination of a growing and a decaying exponents, and considering

only the growing exponent (a limiting case for an infinitely thick barrier for negative x), we let

ψox(x) = Ceηx , η =

√

2mox

~2
(Ec,ox − Esb) , (5.5)

where C = ψox(x = 0) is a constant, Ec,ox is the oxide conduction band edge, 2 and Esb is

the subband under consideration. Differentiating ψox with respect to x, and with the help of

1If complex exponents are used for the WFs, Eq. 5.3 could be formulated in terms of d|ψox|/dx and d|ψSi|/dx,
i.e. the wave function modulus, rather than the WFs themselves, due to the second boundary condition,

ψox(x = 0) = ψSi(x = 0).
2Ec,ox is assumed invariable with x, to simplify the argument.
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Eq. 5.4, we obtain

ψ′
Si(x)|x=0=

mSi√
mox

ψox(x = 0)

√

2

~2
(Ec,ox − Esb) , (5.6)

which leads to the conclusion stated above (an increase of mox decreases ψ′
Si(x)|x=0, and vice

versa), since mox appears in the denominator, and physically, an increase (decrease) of mox

corresponds to a decrease (increase) of the wave density in the oxide, hence of ψox(x = 0).

The above argument is supported by Fig. 5.17, showing the modulus of the lowest subband

WFs for two values of mox – 0.4m0 (blue dashed line) and 0.85m0 (red dashed line). The

simulated devices are otherwise identical, with 1.2 nm EOT, 0.5 nm suboxide over which the

permittivity varies linearly, and a linear band-gap transition over 0.6 nm. Noticeably, the

increase of mox nearly doubles the effect of the band-gap transition, relative to a device with

an abrupt band-gap at the interface and physical oxide thickness tox = 1.2 nm (shown with

grey solid line). There is a shift in the peak of both WFs towards the interface, increasing the
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electron density too, as shown on the same graph (right axis). This is explained as follows.

A decrease in the WF slope to the right of the barrier, due to the increase of mox, means an

advancement in the phase of the WF at the interface, since the WF in this region is an oscillatory

solution for a quasi-bound state (QBS), and is growing in magnitude. The advancement of the

phase itself means higher WF density at the interface and entails more electrons populating the

corresponding QBS (hence associated with lowering of the QBS level).

It is clear from Fig. 5.17 that the simulated consequences of the non-abrupt band gap tran-

sition are markedly dependent on the value of the oxide effective mass due to its discontinuity

at the interface. Is this a realistic physical picture? A gradual transition of the effective mass

at the interface would bring the ratio mSi/mox closer to 1, making WF derivative nearly con-

tinuous over the interface. Simulation results for such case (assuming effective mass changes

over the thickness of the suboxide, 0.5 nm here), are shown in Fig. 5.18 – thin, solid lines

(thicker, dashed lines) correspond to gradual (abrupt) effective mass transition profiles. What

is interesting to note is that the effect of the gradual effective mass profile on ψ∆2 is opposite

to the corresponding effect on ψ∆4 – compare the blue lines (for mox = 0.4m0) on the upper

and lower graphs. This is expected however, since mSi∆2 is higher than mox, while mSi∆4 is

lower than mox for both values of mox; the gradual transition of the mass profile brings about

an average increase and decrease of the mox associated with ψ∆2 and ψ∆4, respectively. The

results reported in Fig. 5.18 are therefore consistent with the argument in the previous para-

graph, and show that gradual mass transition leads to enhancement of ψ∆2 penetration, and

diminution of ψ∆4 penetration. These competing trends between the two WFs are influenced

(in magnitude) by the value of mox, as can be seen from the electron density distribution plot-

ted with thin, solid lines in Fig. 5.17 for the gradual mass profile – both lines fall between the

corresponding electron density distributions for discontinuous effective mass transition. This

suggests that there is a value of mox, for which the electron density distribution (hence the

impact of band-gap transition on electrostatics and capacitance) is the same, regardless of the

type of effective mass transition.

It is interesting to see how the value and the interface transition profile of the effective

mass affect the leakage current in the presence of a gradual band-gap change. This is shown

in Fig. 5.19 for three different values of mox/m0 – 0.4, 0.5, and 0.85. The difference between

the two extreme values of mox translates into a two orders of magnitude difference between

the corresponding leakage currents. The leakage for a reference device with traditional, abrupt

interface and physical oxide thickness of 1.2 nm is shown as a black, solid line. The rest of
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the simulated devices have the same EOT with larger physical thickness of 1.43 nm, due to

a linear permittivity transition over the suboxide (0.5 nm), and a linear band-gap transition

(over 0.6 nm) at the interface. Despite the difference in the barrier model, the reference and the

non-abrupt device with identical mox have very similar leakage magnitude. Consequently, using

mox as a phenomenological constant in the usual way, one could fit the non-abrupt interface

barrier model to experimental leakage data. Note further, that the influence of the gradual

effective mass profile at the interface is rather small (compare the thin solid lines with the

dashed lines in the same colour), consistent with the small variations in electron distribution

for the two cases. The tunnelling barrier is unchanged.

Last on the subject of effective mass value and transition, we look at the subband levels

and occupancy, reported in Fig. 5.20, resulting from the simulation of the devices described

in the previous paragraph. Consistent with the discussion regarding Fig. 5.17 and Fig. 5.18,

the bigger the mox, the more exaggerated the effect of a gradual band-gap transition, in case

of abruptly changing mox (dashed lines). In the case of a continuous effective mass transition

profile (thin, solid lines) and mox = 0.4m0 (blue), the enhanced penetration of ψ∆2 reduces the

corresponding subband level much more strongly than that of ψ∆4, so that the split between

the two subbands actually increases, and no carrier redistribution between the two- and four-

fold degenerate subbands is observed. For mox = 0.85m0, the effect on ψ∆4 is sufficiently

strong to reduce the ∆-valley splitting and shift about 10% of the carriers from the two-fold

to the four-fold degenerate subbands. Thus, the impact of a non-abrupt band-gap transition

on inversion layer quantisation levels and subband occupancy is significantly reduced if the

effective mass also transitions gradually, rather than being discontinuous. Unfortunately, the
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value and spacial profile of the effective mass (being essentially a macroscopic parameter for

bulk materials) could not be measured, nor directly calculated around the interface.

5.4.6 Beyond the linear transition approximation

This subsection discusses the effect of non-linearity in the band-gap transition profile. Density

functional theory (DFT) simulations of different interface models (both crystalline and disor-

dered structures) show a rather slow initial development of the band-gap, followed by a steeper

rise (203; 205), which is in contrast to the constant gradient of the band-edges for a linear

transition. A similar trend is observed in the work reported in Appendix B. The resulting

conduction and valence band profiles, referred to as the realistic barrier model, are compared

against a linear transition of the band-gap in Fig. 5.21; the total width of the transition is

similar, of the order of 0.6 nm, but the actual profile of the band edges is quite different.

Simulation results for identical devices, aside from the two different barrier models, are

reported in Fig. 5.22. The energy levels of the two lowest lying subbands (hosting almost the

entire electron population in the substrate) are close to the bottom of the quantum well, so that

for the corresponding wave functions in the realistic case, the quantum well is slightly wider,

while the potential barrier is slightly thinner. This induces more inversion charge in proximity

to the oxide for the realistic case, as can be seen in the electron density distribution, (the inset

of Fig. 5.22). Therefore the impact of the non-abrupt band-gap transition is enhanced, due to

the non-linear band-edge profiles, and the exact profile of the band evolution, rather than the

total transition width, determines the magnitude of the observed effect.
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The realistic profile is not obtained without ambiguity however. Appendix B describes

the method used to obtain the realistic profile shown in Fig. 5.21 and discussed in relation to

Fig. 5.22. But this is only one of the three slightly different profiles, resulting from the electronic

structure calculation of the same atomic model of the Si/SiO2 interface. The uncertainty in

the realistic band-gap transition stems partly from the DFT methodology employed for the

electronic structure calculation, and partly from the simple translation of the ab initio obtained

microscopic data, to the macroscopic parameters of band-gap and band-gap offset.

To gauge the extent to which such an uncertainty in the realistic profile changes the impact

of the transition layer on the device characteristics, we simulated devices with the three different

realistic profiles, obtained in Appendix B. A comparison of the results is drawn in Fig. 5.23,

showing the impact of the transition for different interface band-gap transition profiles, on

subband quantisation and occupancy, and on gate tunnelling current. The mismatch in the

realistic profiles results in a spread of the device characteristics. This spread is small, compared
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Figure 5.23: Comparison of the impact of realistic (blue dash) and linear (red line) conduction

and valence band profiles on subband quantisation and occupancy (left), and gate leakage

(right). Results for abrupt interface band-gap transition are also shown (black dot-dash).

Although there is a mismatch between the three realistic profiles, their impact on the device

characteristics is very similar, and stronger than that of a 0.6 nm linear transition.

to the magnitude of the impact that the transition itself implies – compare the set of blue

lines (realistic), with the black line (abrupt), on each graph. Further, it can be noted that the

simulations with a linear barrier model (red lines in Fig. 5.23), with 0.6 nm transition width in

this case, underestimate the impact of the realistic transition. We note, that enhancement of

inversion gate capacitance (not shown), due to the realistic barrier model is ∼ 12 %, while the

enhancement due to a linear barrier model with tTR = 0.5 nm is ∼ 8 % (239).

In conclusion, any of the simulated realistic barrier models exaggerates the magnitude of

the impact that we already considered through simulations with the linear barrier model. The

spread in the characteristics, due to the uncertainty in the realistic profile, may be regarded as

an uncertainty in the transition width tTR, of a linear barrier model.

5.5 Relevance to contemporary and future MOSFETs

The last section revealed the physical consequences of the Si-to-SiO2 transition region on the

inversion layer, based on the analysis of a metal/SiO2/p-Si(001) structure. Present and future

Si technology heavily relies on a number of performance boosters, e.g. channel strain and

alternative gate dielectric stacks, and novel device architectures with ultra-thin Si body with

low impurity concentration (259; 260). The relevance of the interface transition related effects
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to these cases is considered here.

5.5.1 Towards sub-nm gate oxide scaling

It is well known that advanced devices in production nowadays, with EOT in the order of

0.9 - 1.0 nm, use SiON (oxynitride) as gate dielectric to combat oxide reliability issues, at the

same time reducing the gate leakage relative to pure SiO2 of the same EOT (261; 262; 263).

The presence of nitrogen at the interface is found to widen the compositional transition layer

(247; 264). At the same time, there is evidence that N incorporation at the interface forms an

abrupt band gap opening from that of Si, to that of the oxynitride (∼ 2.2 eV or higher) (210).

This means the impact of interface transition observed for pure SiO2 is effectively suppressed

for a SiON dielectric. However, to implement an efficient barrier for Boron penetration without

incurring undesirable flat-band voltage shift and mobility degradation, the Nitrogen profile is

tailored to maximize away from the Si/SiO2 interface (49).

Oxynitrides are exploited to their scaling limit, and further EOT reduction to 0.5 nm, while

keeping the gate leakage below 103 A/cm2, imposes the deployment of high-κ dielectric (HK)

materials, replacing SiO2 and oxynitrides (10). Hafnia-based (HfO2) dielectric stack is already

introduced for the 45 nm technology (11), and together with HfSiOx (hafnia-silicate) emerges

as a potential solution, even compatible with the conventional gate-first fabrication process

(12; 13; 43; 265). However, the formation of a few atomic layers thick SiO2 interfacial layer

(IL) is unavoidable (due to the high-reactivity between O and Si), and is in fact desirable (to

reduce remote scattering mechanisms due to the high-κ layer) (14; 15; 16).

5.5.1.1 Interfacial SiO2

To realise EOT thickness below 1 nm with HfO2 as a high-κ material, one must control the

physical extent of the IL in the range of 0.7 - 0.3 nm. Justifiably, at such thickness, the IL is

regarded as a suboxide (SiOx), and both of its interfaces – with the hafnia, and with the Si

substrate – are important. Due to phase separation at the HfO2/SiO2 interface, the composi-

tional and structural transition at this end is effectively abrupt, if physical roughness due to

hafnia protrusions into the IL is not considered (266). The local dielectric response is linearly

related to the stoichiometry (the oxidation state of Hf and of Si atoms in this case), similarly

to the Si/SiO2 interface, and therefore the change in permittivity is also nearly abrupt (248).

Although the transition of the electronic band-gap from that of SiO2 to that of HfO2 is not

abrupt (267; 268), DFT modelling suggests it is happening over a very short distance, in the
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Table 5.1: dielectric stack parameters

EOT= 0.75 nm Set

(a) (b)

HK type LLDA c-HfO2 a-HfO2

EOT (tHK), nm 0.52(4.0) 0.4(2.05)

κHK 30 20

IL type CCIL HfSiOx SiO2

EOT (tIL), nm 0.23(0.4) 0.35(0.5)

κIL 6.7 5.6

Set-(a) uses typical κ values for HfSiOx

IL formed by cycle-by-cycle HfO2

ALD and RTA, and crystalline c-HfO2

formed through layer-by-layer deposi-

tion and anneal (13; 265). Set-(b) uses

typical κ values for SiO2 IL formed as

a by-product during the amorphous a-

HfO2 layer growth (12; 43).

order of 0.2 nm (269), consistent with the non-linear dependence on Hf contents (248). Con-

cerning the Si/SiO2 interface transition, similar properties as already discussed for ordinary

silicon dioxide dielectric are anticipated and simulated (267).

Taking the above considerations into account, we construct two sets of MOS devices with

a high-κ gate stack of 0.75 nm EOT and different parameters of the dielectrics (permittivity

and thickness), referred to as set-(a) and set-(b), as shown in Table 5.1. Common parameters

for the two stacks, with their typical values for hafnia, are the band gap, Eg = 5.5 eV, and the

conduction band offset (with respect to bulk-Si CB edge), ∆Ec = 1.6 eV, since incorporation

of Si in HfO2 does not change significantly the electronic structure (15; 43; 270). Similarly,

the HK layer effective mass m∗
HK is assumed to be 0.2m0 in all cases (43; 265; 271; 272),

although values in the range 0.1m0 − 0.4m0 are found in literature (273; 274; 275; 276). The

corresponding parameters of the IL have the values for bulk-SiO2: Eg = 8.9 eV, ∆Ec = 3.15 eV,

and m∗
IL = 0.5m0. Single, parabolic band structure describes both the HK and the IL layer.

Within each set, devices differ by the band-gap transition profile – abrupt and realistic. In the

latter case, the Si/IL transition is obtained from the band-edge profile obtained ab initio for

the Si/SiO2 interface; the IL/HK band gap variation is assumed to be linear, over a distance of

0.2 nm. Permittivity changes abruptly at the physical boundaries of the IL, but permittivity

enhancement is accounted for in the dielectric constant used, as quoted in Table 5.1. Substrate

impurity concentration is 7.3×1018 cm-3, in line with the ITRS projection for a bulk-MOSFET

with a metal gate and high-κ dielectric stack of 0.75 nm EOT.

Figure 5.24 shows a comparison of the conduction band profile and electron density distri-

bution, between the realistic cases of set-(a) (solid, red line), and set-(b) (dashed, green line).

The abrupt case of set-(a) is also shown (solid, grey line). The curves for the realistic case of

the two sets overlap, and are clearly shifted from the abrupt case (shown only for set-(a)). The
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5.5 Relevance to contemporary and future MOSFETs

impact of the Si/SiO2 transition is very similar to what was earlier observed for a pure SiO2

insulator, and the IL-HK transition appears to have a negligible impact. Note that electrons

populating the lowest three subbands (denoted with red, horizontal lines on Fig. 5.24, and con-

taining more than 99% of the inversion charge) experience the entire physical thickness of the

gate stack. Consequently, it is the first few Å of the Si/SiO2 transition that are responsible for
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Figure 5.24: Conduction band and

electron density profiles in an MOS de-

vice with high-κ gate stack, 0.75 nm

EOT, simulated with different gate

stack parameters, described in the text.

Real(a) and Real(b) differ in permit-

tivity and physical thickness of the ox-

ides, but have identical band gap tran-

sition. For the non-abrupt cases, elec-

tron distributions in the channel over-

lap, and are offset from the correspond-

ing distribution for abrupt interface.

the observed effects, just like in pure SiO2 dielectric. This is expected also in consideration of

the characteristic length of the electron density decay in the dielectric (established earlier, Cf.

Section 5.4.1), which is in the order of 0.2 nm, i.e. half the thickness of the interfacial layer.

The characteristic length increases in the HK region however, which is due to the simultaneous

reduction of the conduction band offset and effective mass. Figure 5.24 confirms, that for the

simulated devices, the properties of the inversion charge distribution do not depend strongly on

these two parameters of the HK dielectric. Consider the simulated hypothetical dielectric stack,

differing from the realistic case of set-(a) only in that ∆Ec, Eg, and m∗
HK have the same values

as for SiO2 – the resulting density distribution (dotted, light-blue line) is indistinguishable from

the other two curves, corresponding to the realistic profile.

Figure 5.25 shows the normalised C − V characteristics for devices that differ only in their

EOT (tHK respectively; κHK and the IL parameters being the same as for set-(a) in Table 5.1).

The difference in capacitance for lower EOT is more significant (nearly 20 %, for 0.5 nm EOT),

and we find a negligible dependence on substrate impurity (varied in our simulations from 2 to

9×1018 cm-3). As shown in the inset of the same figure, at strong inversion, an identical absolute

capacitance is obtained for a 0.65 nm EOT device, modelled with an abrupt interface, and a

0.75 nm device, modelled with a realistic interface barrier. It is important to note that this
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5.5 Relevance to contemporary and future MOSFETs

result is relatively independent of the effective mass used in the interfacial layer, because it is

due mostly to the shift of carriers closer to the nominal interface, i.e. the profile of the quantum

well is of prime importance. Therefore, accounting for the non-abrupt band-gap transition is

very important for the accurate characterisation and predictive modelling of ultra-thin EOT

devices with HK gate stack.
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Figure 5.25: Normalised C − V char-

acteristics (EOT(tHK) is a parameter;

the same IL and κHK of set-(a) are

used). The realistic band gap tran-

sition (solid) brings more charge near

the interface, resulting in gate capac-

itance increase over the abrupt case

(dashed). A realistic band profile at

thicker (0.75 nm) EOT effects the same

capacitance as a thinner (0.65 nm)

EOT with an abrupt interface (inset).

Concluding this subsection, we state that the impact of progressive band-gap interface tran-

sition on subband levels and occupancy in devices with HK gate stack, is very similar to that

in devices with pure SiO2 gate insulator, decreasing the lowest subband splitting by more than

70 meV and populating an equal amount of electrons in the two- and four-fold degenerate Si

∆-valleys. About 5 % of the inversion charge resides in the oxide, at inversion sheet charge

density of 1013 cm-2 and high impurity concentration of 7.3×1018 cm-3 (108).

5.5.1.2 Gate leakage

Here we consider the influence of the band-gap transition at interfaces, on the gate leakage –

the main reason for the introduction of high-κ dielectric stacks. Figure 5.26 shows the gate

leakage characteristics of the devices from set-(a) (blue lines), and set-(b) (red lines), described

earlier, with 0.75 nm EOT. Another device is also simulated, with a SiO2 IL of 0.5 nm, and

a 2.26 nm thick HK layer of permittivity 16ǫ0 (typical for hafnia silicates (43)), resulting in a

0.9 nm EOT of the gate stack. The effect of a non-abrupt band-gap transition at the interface

is to increase the direct tunnelling current density by over a factor of 10, similarly to the case

of a single layer SiO2 insulator. Due to this increase, the gate current for the simulated devices

with a thicker IL of 0.5 nm exceeds the ITRS gate leakage density limit at 1.0 V. Note however,
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that the effective mass of the IL is not calibrated against experimental data – this is beyond

the scope of the current work, but is essential for the projections of gate leakage in high-κ gate

stacks according to the ITRS.
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Figure 5.26: Direct tunnelling gate

leakage in three devices, simulated with

abrupt (dashed) and realistic (solid)

band-gap transition. The progressive

band-gap transition raises the leakage

current over 10 times, as for pure SiO2

dielectric. The doubling of the HK

layer thickness lowers gate tunnelling

by over 3 orders of magnitude. The

transparency of the IL is reflected in

the steeper curves for tIL = 0.4 nm.

Comparing the curves for 0.75 nm EOT and different stack composition, we observe a dif-

ference in the slope at high gate bias – the steeper curves correspond to the gate stack with the

thicker HK layer. We verified that this is the trend for tHK in the range of 2 – 5 nm, for gate

stacks with the same IL of 0.4 nm. It is indicative of the transparency of so thin an interfacial

layer, effectively putting the inversion charge in contact with the HK layer that has a lower

conduction band offset, and hence, lower tunnelling barrier. As a result, the suppression of

direct tunnelling at high gate voltage is much weaker (about a 100 times leakage reduction for

two times increase in tHK , at Vg = 1.5 V) than it is for lower gate bias (over a 1000 times

leakage reduction for the same increase in tHK , at Vg = 0.5V ).

Figure 5.27 shows the dependence of the gate leakage on inversion sheet charge density, for

different levels of impurity concentration. The gate leakage increases by a factor of 100, with the

increase of doping concentration from 0.5 × 1018 cm−3 to 7.3 × 1018 cm−3. This is consistent

with the stronger band-bending needed to induce the same amount of inversion charge at a

higher level of depletion charge, hence raising the subbands in the inversion layer closer to the

top of the tunnelling barrier. It is also shown that the impact of the non-abrupt band-gap

transition is of the same magnitude, regardless of the impurity concentration, for the relevant

range of inversion charge sheet density.
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increases leakage current too. The pro-

gressive band gap transition has the

same impact, regardless of NA in the

given range of Ni.

5.5.2 Channel strain

Of interest to a p-Si(001) substrate is tensile strain, which improves drive current in n-channel

MOSFETs (277; 278). We model the effect of strain by accounting for the splitting of the

conduction band minima that lowers the conduction band edge of the 2-fold degenerate Si ∆-

valley with respect to the band edge of the 4-fold degenerate valley (which experiences only a

minor shift from its ordinary position in relaxed Si), and by an adjustment of the corresponding

valley effective masses (279; 280). The valley splitting enlarges the band offset at the interface

for carriers in the ∆2 valley and also increases the difference between the lowest two subbands

in the quantised inversion layer (281). Tentative simulations with a 0.5 nm interface band-gap

transition width result in a subband splitting of about 300 mV for the 2 % strained-Si, against

about 100 mV for the relaxed substrate. In effect, less than 1 % of the inversion carriers populate

the ∆4 valley in the case of strain, and the electron distribution is characterised by the density

profile of ψ∆2
0 . This WF is less affected by the non-abrupt interface band-gap change, due to

the increased potential barrier in the case of strain. Moreover, the band-gap transition width is

reduced with the application of tensile strain (238). Therefore, tensile strain reduces the impact

of the interface transition on the inversion layer characteristics.

5.5.3 Ultra-thin body and low substrate doping

Low-doped, ultra-thin body devices are promoted for their superior electrostatic integrity, and

less pronounced short-channel effects (260). We previously showed that the magnitude of the

impact from Si/SiO2 interface transition depends on the depletion charge sheet density, which

in low-doped devices is smaller. However, the ultra-thin body introduces additional confinement

of carriers near the interface, so that wave functions in the channel have similar properties to
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the case of confinement due to very high impurity concentration (258; 282). Therefore the

relevance of the Si/SiO2 interface is the same as in a bulk device. We simulated bulk devices

with low doping concentration of 2×1016 cm-3 – such MOS structures are often used in mobility

and leakage characterisation experiments. The impact of the interface transition in this case is

of similar magnitude to the one observed in simulations of highly doped devices (283). This is

due to the following fact. The low confinement from the ionised impurities significantly reduces

the subbands splitting in the inversion layer – for a 1.1 nm EOT MOS device, all of the first four

subbands contain appreciable amount of carriers. The upper bands, seeing wider opening of the

well due to the non-abrupt band-gap transition, appreciably modulate the electron distribution

and hence capacitance and leakage characteristics. Consequently, consideration of the non-

abrupt transition of interface electronic and dielectric properties remains important for novel

device architectures too.

5.6 Summary

The change of atomic structure at the oxide interface implicates the existence of a transition

region, in which the chemical composition and structural arrangement are different from the

corresponding ones in either bulk Si or SiO2. Detailed experimental and ab initio theoretical

investigations reveal that this transition region imparts a gradual change in the electronic and

dielectric properties over a distance of 0.2 - 0.6 nm away from the top-most atomic plane of

the Si substrate. The extent of this transition is comparable to the gate insulator thickness

in modern MOSFETs and will have an appreciable impact on the electrical properties of the

inversion layer. Our literature review showed however, a lack of comprehensive understanding

of this impact, and the existence of contradictory opinions regarding the qualitative effects.

We developed a self-consistent 1D Poisson-Schrödingersolver that allows the simulation of

MOS inversion layer characteristics with the account of non-abrupt band gap, dielectric con-

stant, and effective mass transition at the oxide interface.

Our simulations of devices with oxides thinner than 3.5 nm, and a linear interface band-

gap variation over a distance of up to 0.6 nm, show that compared to an abrupt interface, the

progressive band-gap transition

• incurs a relatively small change in the electrostatic potential and the electron sheet density,

but shifts the inversion charge centroid significantly closer to the interface – reducing the

average inversion layer thickness by 8 - 10 % for the widest simulated transition
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• increases the fraction of electrons in the oxide barrier, by a factor of 10 (up to 5 % of

the carriers reside in the oxide, at an inversion sheet density of 1×1013 cm-2), at high

impurity concentration

• increases the inversion gate capacitance by nearly 10 %, consistent with the reduction of

the inversion layer thickness, with even greater impact at lower gate bias, and correspond-

ingly lowers the threshold voltage of the structure by 20 - 25 mV

• lowers the subband levels and subband splitting in the inversion quantum well by 50 meV,

leading to a very significant change in the occupancy of the Si two- and four-fold degener-

ate ∆-valleys – nearly 20 % more carriers accumulate in the ∆4 subbands, at the expense

of the depleted ∆2 subbands

• increases the gate leakage more than 10 times (at a fixed oxide effective mass, as in the case

of an abrupt interface), consistent with the effective thinning of the potential barrier due

to the progressive band-gap change, and the increase of electron density in the proximity

of the barrier

We established a link between first-principles simulations of the interface, and device sim-

ulations, by incorporating conduction and valence band-edge profiles obtained from ab initio

(density functional theory) to calculations of the electronic structure, to investigate the effects

of non-linear variation of the interface band-gap. The magnitude of the impact depends mostly

on the particularities of the band-edge evolution across the interface. The more realistic, DFT

band-gap profile enhances the observed effects to the magnitude typical of a 0.6 - 0.7 nm wide

linear transition.

For the first time we presented a detailed analysis of the influence of the oxide effective

mass and its non-abrupt transition. Increment of this mass from the typical value of 0.5m0

enhances the impact of non-abrupt band-gap transition, and vice versa, with the simulated

direct tunnelling current being an exception (i.e. reduced). This is a direct consequence of the

boundary conditions imposed on the electron envelope wave functions, to guarantee particle flux

conservation, and on the fact that carriers in the ∆4-valley have a smaller quantisation mass

and are affected more strongly by the wider band-gap transition and by a larger effective mass

discontinuity. The simulated impact of progressive band-gap transition is greatly suppressed

however, when the effective mass is linearly varied within the transition layer.

114



5.6 Summary

We find that permittivity transition is directly reflected in a reduction of the equivalent oxide

thickness, and could be reliably accounted for in device simulations by adopting a dual layer

model of the oxide. In such a model, the transition region must be assigned a higher dielectric

constant, of ∼ 7, while the rest of the oxide must be attributed a bulk-SiO2 permittivity.

Our results not only agree with the previous analysis done by Stern (208), Yang et al.(210),

and Watanabe et al.(131) (which bare good reference to experimental data), but also provide

a much more comprehensive understanding of the physical consequences of the non-abrupt

interface transition.

The results obtained for SiO2 dielectric have immediate relevance to contemporary and

future devices with high-κ dielectric stacks, because of the presence of an interfacial SiO2 at

the interface with the Si substrate. The Si/SiO2 interface in such devices has a dominant role,

and the impact of its non-abrupt transition on the inversion layer is of the same, or greater

magnitude, compared to the case with a pure SiO2 gate insulator.

Future research on the subject should focus on establishing the correct picture for the

effective mass transition at the interface. A possible approach is through self-consistent fitting

of simulations results to experimentally obtained gate leakage and capacitance data, where the

oxide is well characterised from independent (possibly spectroscopic) experiments determining

the bulk-like band gap and physical thickness. An alternative could lie in using first principles

simulations. The importance of such work could not be overestimated, since high-κ gate stack

characterisation currently relies on interface models that require ad hoc adjustments of the

parameters associated with the interfacial layer, ignoring effects of its non-abrupt transition.
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Chapter 6

Conclusions

Two goals that advance the modelling and understanding of gate leakage in nano-scaled CMOS

transistors were defined at the onset of this research. First, to establish a 3D simulation

framework for the study of gate leakage variability in order to study the factors that affect

gate leakage variability, and quantify it, for a sub-30 nm gate length, n-channel bulk-MOSFET.

Second, to investigate the impact of a gradual transition of the electronic properties at the

Si/SiO2 interface, on the characteristics of a MOS inversion layer. Below is a summary of the

principal finding of the work, followed by a discussion, regarding future directions for research.

6.1 Summary of results and implications

6.1.1 Gate leakage modelling: The pragmatic approach

Gate leakage in contemporary CMOS transistors is dominated by direct tunnelling through the

oxide, and is more severe in n-channel devices, where it is due to electrons tunnelling from quasi-

bound states of an inverted or accumulated surface layer. Direct tunnelling gate current de-

pends mostly on the interface-normal component of the electric field, even in scaled MOSFETs,

which justifies the wide use of 1D direct tunnelling models for the estimation of gate leakage.

Throughout our survey of tunnelling models, we selected one numerical, quantum-mechanical

model, based on the approach in Ref. (126), and one analytical, based on an improved WKB

expression for the tunnelling probability (1). The former is more accurate, and convenient to

implement in the 1D Poisson-Schrödinger solver, used for the study of the Si/SiO2 transition

layer, but unsuitable for incorporation in a 3D device simulator. The latter is very efficient, but

sufficiently accurate, and easy to incorporate in any device simulator, and we choose it for the
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study of gate leakage variability. We incorporated this model in a 1D Poisson-density-gradient

solver, and improved the way tunnelling charge is evaluated, by assuming the self-consistently

obtained, electron sheet charge. Hence we demonstrated a very good agreement with a range

of experimental data, using a single value of the oxide effective mass (mox = 0.67m0), for tun-

nelling from either accumulation, or inversion. The 1D simulator served as a prototype of the

3D device simulator.

6.1.2 Gate leakage variability: Not a myth!

The study of MOSFET gate leakage variability requires a physically sound 3D device modelling

technique and simulations of large ensembles of macroscopically identical, but microscopically

different transistors. The three most established approaches applicable to the simulation of ad-

vanced CMOS transistors are drift-diffusion (DD), often complemented by the density-gradient

(DG) quantum corrections, Monte Carlo (MC), and non-equilibrium Green’s functions (NEGF).

Currently, the NEGF and MC simulations are used mainly for gaining insight in the quantum

transport phenomena and their impact on variability, but are computationally too costly for

the simulation of large statistical ensembles. MC is suited for non-equilibrium transport phe-

nomena but is also computationally expensive. Only the DD/DG method have the required

efficiency, and accurately model device electrostatics with the account of quantum confinement

effects in terms of device electrostatics, due to its proper accounting of quantum confinement

effects.

By choosing the DD/DG framework, we benefit from the already established and proven

capabilities of the Glasgow 3D Atomistic simulator for studying device variability. The simulator

models the most essential sources of intrinsic parameter fluctuations, including random dopant

fluctuations (RDF), and microscopic oxide thickness variation (OTV), which are essential for

the present study. The advancement of the simulator to account for gate leakage is based on the

inclusion, at a post-processing stage, of the 1D, analytical direct tunnelling model, as stated in

the preceding sub-section. Presently, the essential quantities of the model are obtained directly

from the electrostatic potential and electron distribution calculated by the 3D DG simulator.

We first simulate a 25 nm square gate MOSFET with a uniform, continuous doping profile

throughout, flat interfaces, and 1 nm SiO2 dielectric, and analyse the gate and drain voltage

dependence of the gate leakage, for a uniform, continuously doped transistor. Our results

qualitatively agree with previously reported experimental and modelling results (30; 175; 192;

193; 195) and show that – i) the gate current is maximum at high gate voltage, and low drain
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voltage, corresponding to the On-state of the n-channel transistor in a CMOS inverter circuit,

and is due to electrons tunnelling from the substrate (including the overlapped source/drain

extension and channel areas) to the gate; and ii) at low gate voltage and high drain voltage

(the Off-state of the n-channel transistor), the magnitude of the gate current exceeds that of

the drain sub-threshold current, and is due to electrons tunnelling from the gate, to the drain

extension.

We further study three different ensembles of 230, 25 nm gate length, uniform MOSFETs,

macroscopically identical to the, but microscopically different. Devices differ from set to set

in terms of random discrete dopants distribution (RDF), atomic scale interface roughness and

corresponding oxide thickness variation (OTV), or the combination of both. The effects of RDF

and OTV summarised below are relatively independent

• OTV increases the mean gate leakage 5 times, over the gate current of the nominal (uni-

form) device, which is due to the exponential sensitivity of the direct tunnelling to the

oxide thickness.

• At VG = VDD and VD ∼ 0, OTV induces appreciable variability with a standard deviation

of a few % of the mean, while the RDF adds insignificantly to the spread. This is be-

cause the large electron concentration in the substrate at this bias screens the potential

of the ionized impurities, while surface roughness affects both oxide field and carrier con-

centration near the interface. This variability is expected to increase if oxide roughness

correlation length becomes comparable to the gate dimensions.

• At VG ∼ 0 and VD = VDD, both RDF and OTV contribute to a large spread in the gate

current, which for the chosen geometry is nearly two orders of magnitude. The contri-

bution from RDF is stronger since large fluctuations in the local tunnelling density are

implicated by the exposed impurities in the depleted substrate. Due to the narrow region

of the drain-extension overlap, determining the tunnelling magnitude, self-averaging is

not effective.

It is evident that gate leakage variability is a very important issue, particularly at high drain,

and low gate bias, where gate tunnelling is the major leakage component in the transistor,

and variability is very large. Both RDF- and OTV-induced variability will increase with the

reduction of gate length and the further scaling of the oxide thickness. Since gate leakage in

the Off-state of the transistor exceeds the sub-threshold current from the source to drain,
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accounting for it and its variability is required, for the accurate estimation of leakage power in

ultra-scaled devices.

6.1.3 Si/SiO2 interface transition: Can it be ignored?

The change of atomic structure at the oxide interface implies the existence of a transition

region, in which the chemical composition and structural arrangement are different from the

corresponding ones in bulk Si or SiO2. Detailed experimental and ab initio theoretical in-

vestigations reveal that this transition region imparts a gradual change in the electronic and

dielectric properties over a distance of 0.2 - 0.6 nm away from the top-most atomic plane of

the Si substrate. The extent of this transition is comparable to the gate insulator thickness in

modern MOSFETs, or to the thickness of the interfacial layer in high-κ gate stacks, and has

an appreciable impact on the electrical properties of the inversion layer.

We developed a self-consistent 1D Poisson-Schrödinger solver that allows the simulation of

MOS inversion layer characteristics taking into account the non-abrupt band gap, dielectric

constant, and effective mass transition at the oxide interface.

Our simulations of devices with oxides thinner than 3.5 nm, and a linear interface band-

gap variation over a distance of up to 0.6 nm, show that compared to an abrupt interface, the

progressive band-gap transition

• reduces the average inversion layer thickness by 8 - 10 %;

• increases the fraction of electrons in the oxide barrier, by a factor of 10 (up to 5 % of the

carriers reside in the oxide, at an inversion sheet density of 1×1013 cm-2);

• increases the inversion gate capacitance by nearly 10 %, and correspondingly lowers the

threshold voltage of the structure by 20 - 25 mV;

• lowers the subband levels and subband splitting in the inversion quantum well by 50 meV,

leading to a very significant change in the subband occupancy – 20 % more carriers accu-

mulate in the ∆4 subbands, at the expense of the depleted ∆2 subbands;

• increases the gate leakage more than 10 times, consistent with the effective thinning of

the potential barrier due to the progressive band-gap change.

Further, we established a link between first-principles simulations of the interface, and de-

vice simulations, by incorporating conduction and valence band-edge profiles obtained from ab
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initio (density functional theory) calculations of the electronic structure, in our simulations.

Hence we investigate the effects of a realistic variation of the interface band-gap and show that

the magnitude of the impact in this case is enhanced, relative to a linear interface band-gap

transition of similar width.

While the impact of the Si/SiO2 transition appears so large, it is worth asking – is it

real? In this regard, we are the first to present a detailed analysis of the influence of the oxide

effective mass and its non-abrupt transition. The increase of this mass from the commonly used

value of 0.5m0, enhances the impact of non-abrupt band-gap transition on the confinement

effects, and reduces its impact on the direct tunnelling current. The reduction of the oxide

tunnelling mass below 0.5m0 has the opposite effect. This is a direct consequence of the

boundary conditions imposed on the electron envelope wave functions, to guarantee particle

flux conservation. Moreover, the simulated impact of progressive band-gap transition is greatly

suppressed, if a gradual transition of the oxide effective mass is adopted.

We find that permittivity transition is directly reflected in a reduction of the equivalent oxide

thickness, and could be reliably accounted for in device simulations by adopting a dual layer

model of the oxide. In such a model, the transition region must be assigned a higher dielectric

constant, of ∼ 7, while the rest of the oxide must be attributed a bulk-SiO2 permittivity.

At this stage it is worth asking - can we ignore the Si/SiO2 interface transition, and absorb

its impact in the phenomenological parameters (oxide thickness, oxide effective mass, conduc-

tion band discontinuity), describing the oxide potential barrier. As far as gate leakage and

capacitance characterisation is concerned, this is the actual state of affairs, where the interface

is assumed to be abrupt, and oxide thickness and tunnelling mass are fitted to experiments.

The answer may not be so simple for high-κ dielectric stacks, however. In addition, it is not

possible to account for the impact on quantisation, which is relevant to the transport properties

of carriers in the inversion layer.

6.2 Future work

At the time of writing, variability and leakage power have become the most important limita-

tions for the continuation of device scaling, having far reaching implications on all aspects of

semiconductor technology and design. At the same time, the projected life of bulk MOSFET

device architecture for digital logic application is extended to the year 2015. In order to un-

derstand, control and tolerate leakage power variability, it is imperative to accurately evaluate
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its distribution and standard deviation in scaled devices, with a realistic doping profile, e.g.

obtained from process simulations, and with high-κ gate dielectric stacks. While the simulation

framework developed in this work, for studying gate leakage variability, is readily applicable

to the simulation of realistic bulk-MOSFETs, the following advancements are necessary – i)

accounting for the gate tunnelling current in the self-consistent calculation of the drain cur-

rent, so that gate leakage, sub-threshold leakage, and possibly, band-to-band junction to body

tunnelling, could be evaluated; ii) extending the gate tunnelling model to apply for stacked

dielectric layers and metal gate.

The deployment of high-κ (e.g. hafnia based) dielectric stacks entails additional complexity,

associated with the lack of well defined phenomenological parameters, relevant to tunnelling,

e.g. effective mass, and conduction/valence band offsets from silicon. Hafnia based gate stacks

also exhibit acute sensitivity to processing conditions, which affect their morphology and per-

mittivity. The presence of the sub-oxide interfacial layer makes their characterisation even more

challenging and typically relies on ad hoc adjustments of the parameters associated with the

interfacial layer. In this respect, consideration of the Si/SiO2 interface transition may provide

room for improvement – if we better understand the interfacial layer, we will be able to infer on

the parameters of the high-κ dielectric layer with greater certainty. However, future research

on the subject should focus on establishing the correct picture for the effective mass transition

at the interface. A possible approach is through self-consistent fitting of simulations results to

experimentally obtained gate leakage and capacitance data. An alternative could lie in using

first principles simulations.
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Appendix A

Self-consistent

Poisson-Schrödinger solver with

QM tunnelling

A.1 Mathematical Formulation

Here we describe an implementation for the numerical, self-consistent solution of the one dimen-

sional (1D) Poisson (PE) and Schrödinger (SE) equations, using a modified version of Schred 2.0

solver (253), which realises the self-consistent field calculation scheme described in Ref. (249).

The modifications are introduced to allow

• solution of the PE with spatially varying permittivity,

• solution of the SE with spatially varying effective mass

• direct tunnelling gate current computation

• external definition of the spacial dependence of material parameters - band gap, EG(x),

dielectric constant, κ(x), and effective mass, m∗(x), with x being the direction normal to

the Si/SiO2 interface.

The PE in this case is:
d

dx

(

κ(x)
d

dx
ϕ(x)

)

= − 1

ε0
ρ(x) , (A.1)

and its solution delivers the electrostatic potential, relative to the equilibrium Fermi level of the

substrate. Equation A.1 is subject to Dirichlet boundary conditions with the potential values
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A.1 Mathematical Formulation

at the two ends of the device determined by the applied gate voltage and the work-function

difference between the substrate and the gate. The charge density distribution, ρ(x), is derived

from the envelope wave-function in the effective mass approximation, as in the original reference

(253), except that the Schrödinger equation for electrons is (due to the variable effective mass,

(103)):

− ~
2

2

d

dx

(

1

m∗(x)

d

dx
ψν,ι(x)

)

+ U(x)ψν,ι(x) = Eν,ιψν,ι(x) . (A.2)

The indexes ν and ι correspond to a given valley and sub-band of the 6-ellipsoidal structure

of the Si conduction band (233), Eν,ι is the corresponding subband energy, and ψν,ι(x) is the

wave-function solution for the given potential energy profile, U(x). The potential energy is

linked to the electrostatic potential ϕ(x) through

U(x) = −qϕ(x) + E bulk
C + ∆EC(x) , (A.3)

where E bulk
C is the conduction band offset from the equilibrium Fermi lever of the semiconductor,

∆EC(x) is the position dependent variation of the conduction band (due to material variation)

with respect to EbulkC .

The SE (A.2) is solved for each subband energy, Eν,ι, which is in fact a quasi-bound state

(QBS), due to the existing weak coupling of the inversion layer to the gate through the ultra-

thin dielectric. The solution is carried out within the transfer-matrix (TM) formalism similarly

to (104). The potential profile U(x) is approximated by N connected intervals of constant

potential energy, U(x) = Un, for n from 0 to N − 1, and xn ≤ x < xn+1. For a given sub-band

energy, Eν,ι, the wave-function solution of the Schrödinger equation (A.2) in element n is:

ψn(x) = Ane
iknx +Bne

−iknx , kn =

√

2m∗
n

~2
(Eν,ι − Un) . (A.4)

Parabolic E(k) dispersion is assumed throughout. The amplitudes An and Bn are determined

through the additional boundary conditions imposed by the continuity of the wave-function

and the conservation of probability (density) current at each interval boundary (103):

ψn−1(xn) = ψn(xn) ,
1

mn−1

d

dx
ψn−1(xn) =

1

mn

d

dx
ψn(xn) . (A.5)

From equations (A.4) and (A.5) the coefficients of the TM for the barrier between the element

n− 1 and n are derived:

Tn =
1

2

(

(1 + Sn)e
−i(kn−kn−1) xn (1 − Sn)e

−i(kn+kn−1) xn

(1 − Sn)e
+i(kn+kn−1) xn (1 + Sn)e

+i(kn−kn−1) xn

)

, Sn =
mn

mn−1

kn−1

kn
. (A.6)
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A.1 Mathematical Formulation

The transfer-matrix for the whole system (gate-dielectric-substrate) relates the amplitude of

the envelope wave function in the gate region to that in the substrate region according to

(

AN
BN

)

= T

(

A0

B0

)

, T =

(

T11 T12

T21 T22

)

=

N
∏

n=1

Tn . (A.7)

The left-most and right-most intervals, to which correspond solutions ψ0 and ψN , could be con-

sidered semi-infinite, without loss of generality. Since to quasi-bound states (QBS) correspond

wave-functions with evanescent density outside the inversion potential well, it follows that the

amplitudes of the incoming waves from left and right of the system, A0 and BN , must both be

0. From the matrix equation (A.7), and from the symmetry relation T ∗
21 = T22 (125), the above

condition translates to

T22(Eν,ι) = 0. (A.8)

This equation, (A.8), is used as a criterion for the determination of the QBS energy levels as in

(105). Once a subband energy is determined, the corresponding wave-function at each interval

boundary, xn, is obtained from equation (A.4), knowing that

(

An
Bn

)

= (

n
∏

i=1

Ti)

(

A0

B0

)

, (A.9)

and assuming a plane outgoing wave in the left-most semi-infinite interval, that is An = 0 and

Bn = 1.

From the computed wave-function for each subband, the QBS lifetime is obtained following

the approach in Ref. (126) (see section 3.2.3.4 for details) as:

τ =
m∗
n−1

~kn−1

1

|ψn(xn)|2
∫ xN

xn

|ψ(x)|2dx . (A.10)

The index n here corresponds to the boundary delineating the gate from the dielectric; ψn(xn)

is the wave-function at the boundary, while m∗
n−1, and kn−1, are the effective mass, and k

vector, characteristic for the interval immediately to the left of this boundary, i.e. in the gate.

Finally, the tunnelling current at given bias of the structure is obtained by summing up the

contributions from each sub-band (ι) in each valley (ν)

JG = −q
∑

ν,ι

nν,ι
τν,ι

, (A.11)

where nν,ι is the two-dimensional (2D) carrier density (233), and q is the elementary charge.
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Figure A.1: Segmentation of the device for the discretization of the PE and SE. Each element

of width hn between two neighbouring nodes n and n+1 is a homogeneous media, with constant

conduction band offset, ∆ECn, dielectric constant, κn, and effective mass, m∗
n. The electrostatic

potential ϕn is a nodal quantity. It is the solution of the PE and is a smooth continuous

function. The potential energy Un for the solution of the SE is constant within a segment, and

discontinuous, due to the discontinuities of the conduction band offset.

A.2 Discretization Scheme

The numerical self-consistent solution of the PE (A.1) and SE (A.2) requires their discretization

and their coupling through equation (A.3) for the potential energy, and through the charge

density relation to the envelope function density (233). For our specific study, the spatial

variation of the material parameters introduce additional boundary conditions through the

applicable conservation laws.

The PE is discretized using a finite difference (FD) scheme on an irregular grid, which with

reference to Fig. A.1 transforms equation (A.1) into:

−2

hn + hn−1

(

κn
ϕn+1 − ϕn

hn
− κn−1

ϕn − ϕn−1

hn−1

)

=
1

ε0
ρn (A.12)

This discretization scheme preserves the continuity of the electric displacement vector across

the boundary of two segments with a different dielectric constant, and allows us to model the

penetration of electronic charge within the transitional layer of the gate oxide. When applied

to all N nodes of the device grid, equation (A.12) yields a linear system with a tri-diagonal

coefficient matrix M, with elements (for 1 < n < N)

Mnn−1 =
−2κn−1

hn−1(hn + hn−1)
Mnn =

2(κnhn−1 + κn−1hn)

hn−1hn(hn + hn−1)
Mnn+1 =

−2κn
hn(hn + hn−1)

(A.13)
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A.2 Discretization Scheme

The non-linear dependence between charge and electrostatic potential is handled in the solver

following a relaxation scheme through the iteration between solving PE and SE (249).

Using the transfer-matrix (TM) method described in the previous section, the solution of

the SE (A.2) is piece-wise analytical, with constant potential energy within each element of the

discretized device, and delivers the wave-function density at each grid node. As is shown on

Fig. A.1, the discretization of the potential energy transforms equation A.3 into

Un = −q (ϕn + ϕn+1)

2
+ ∆EC n. (A.14)

The average of the electrostatic potential at two adjacent nodes is taken to approximate a

constant electrostatic potential within the segment delimited by the corresponding nodes. This

introduces small error, since the electrostatic potential is a smooth and continuous function,

while the parameters of the medium are constant within an element, but discontinuous at a

node.
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Appendix B

The Si/SiO2 interface - from

atomic structure to device

simulations

Here we present the details of the link between ab-initio calculations of the Si/SiO2 interface

electronic structure, and device simulations. This is relevant to the study of the impact of

Si/SiO2 interface transition layer on the electrical characteristics of an MOS structure, presented

in Chapter 5. More specifically, the interface band-gap profiles obtain here, are used in the

comparison of the effects due to linear and realistic band transitions in 5.4.6.

B.1 Introduction

Our starting point is a 3D-periodic SiO2/Si/SiO2 super-cell, shown in Fig. B.1. The details of

the structural model (α-quartz is assumed for the SiO2) and its optimisation are thoroughly

described in Ref. (239). Here, we are concerned with the translation of the ab initio calculated

electronic structure, to the macroscopic parameters of band gap and band offsets, needed for

device simulation.

Electronic structure is calculated in the density functional theory (DFT), with gradient-

corrected density functionals, using Gaussian-type basis set.1 The total density of states (DOS)

is obtained using the values of one-electron E(k) dispersion, calculated at a pre-defined set of

k-points of the reciprocal space. The corresponding one-electron states are represented as linear

1All DFT data is courtesy to P. Sushko, University College of London. Simulations are performed with the

Crystal 2003 computer code (284).
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Figure B.1: 2D atomic structure of the simulated unit-cell (ball-and-stick representation)

(left), and on atom-projected density of states (pDOS) (right). Interface atomic model is of

α-quartz (203). Bigger (red) balls are Si atoms, smaller (blue) are O. Projected DOS are plotted

in arbitrary units, and offset to the z-coordinate (vertical axis) of the corresponding atom, as

labelled to the side. Vertical lines are a visual guide, suggesting band edges.

combination of atomic orbitals. This allows the projection of the total DOS on such an atomic

basis, and therefore, the calculation of the atom-projected DOS (pDOS). An example of such

a calculation is presented on Fig. B.1 (right).

Results for pDOS, obtained in this way, are not unique, but depend on the chosen density

functional and the choice of pre-defined k-points. It is important to establish the extent to

which such dependence is propagated to the simulated device characteristics, when the DFT

band-profile and realistic transition at the interface is taken into account.

For the unit-cell structure shown in Fig. B.1, we have three sets of pDOS data, resulting from

simulation with two different DFT functionals (pbe and b3lyp)), and two different number of
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B.2 Band-edge extraction

pre-defined k- points (for the b3lyp functional).1 Hereafter, the data sets are referred to as set1

- pbe (small number of k-points), set2 - b3lyp-1 (small number of k-points), set3 - b3lyp-2

(bigger number of k-points). In the rest of this appendix, we elaborate on the procedure to

extract conduction and valence band profiles from the pDOS data, and compare the outcome

from the three data sets.

B.2 Band-edge extraction

Figure B.2 shows the conduction and valence band-edge profiles extracted from the pbe and

b3lyp-2 pDOS data. The band-edges are determined from the highest occupied and lowest

unoccupied states associated with each atom. For each data set, we used three different criteria

of the minimum pDOS that determines the band-edge - 0.01, 0.05, and 0.1 (in arbitrary units).

For 0.05 < min(pDOS) < 0.1 the results for each data set nearly overlap. Below 0.05, the

profiles exhibit a ’hump’ within the transition layer. This ’hump’ is associated with the first O

atom in the fully stoichiometric oxide (i.e. atom 24 on Fig. B.1), whose density of states in the

energy range close to the Si conduction band edge (CBE) is bigger than the extraction criterion

of 0.01. Similar ’hump’ in the band-edge is also present in the profiles in Ref. (205), but not in

Ref. (203).
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Figure B.2: Conduction and valence band edge profiles for pbe and b3lyp-2 sets, resulting (in

each case) from different band-edge determination criteria, min(pDOS), indicated by different

symbols. The unoccupied states contributed by oxygen atoms are indicated by arrows. The

results obtained for a range of criteria, 0.05 < pDOS < 0.10, nearly overlap.

1The same basis set is used in all cases for atom representation (66-21G for Si, and 8-51G for O).
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B.2 Band-edge extraction

−6

−4

−2

 0

−15 −10 −5  0  5

E
ne

rg
y 

(e
V

)

z−coordinate (Å)

PDoS > 0.01

SET 1
SET 2
SET 3

−6

−4

−2

 0

−15 −10 −5  0  5

E
ne

rg
y 

(e
V

)

z−coordinate (Å)

PDoS > 0.1

SET 1
SET 2
SET 3

Figure B.3: Comparison between the three data sets at a fixed band-edge determination

criterion, min(PDoS) > 0.01 (left), and min(PDoS) > 0.1 (right). While the profile of the

CBE seems to be dependent on the functional only (the oxide CBE for set 2 and set 3 nearly

overlap), the VBE in the SiO2 depends strongly on the number of k-points too (there is an

obvious discrepancy between the blue symbols in the region of the oxide).

For all band-edge determination criteria, oxygen atoms deeper in the stoichiometric oxide

contribute states only for energies much higher than the edge determined by the silicon atoms.

However, oxygen atoms within the sub-stoichiometric oxide (delimited by the dotted, green,

vertical line on Fig. B.2) contribute states that lay in the same range as the ones contributed

from Si atoms. Analogous effect is readily observed for the valence-band edge, where the band-

edge determined from the highest occupied states due to O atoms are about 0.5 V above the

band-edge determined from Si atoms.

We find similar qualitative picture for all three data sets, at a given band-edge determination

criterion. It is noticeable however, that the set with bigger number of k-points for the DOS

projection (b3lyp-2) gives more stable (i.e. identical, amongst atoms in the bulk-like region)

band-edges in Si, and VBE in SiO2. Contrary, the SiO2 CBE of the pbe set is most stable.

This trend is independent of the extraction criteria.

Figure B.3 shows a comparison between the extracted band-edge profiles from the three

data sets for two values of the band-edge determination criterion – 0.01 (left) and 0.1 (right).

The figure highlights a quantitative discrepancy, arising from the use of different functionals. It

is clear that both pbe and b3lyp underestimate the bulk SiO2 band-gap (∼8.9 eV), and over-

estimate the bulk Si band-gap (1.12 eV). The former effect is attributed to the DFT approach,

while the latter is partly due to the very small thickness of the ordered Si (5 Å).
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B.3 Band-gap scaling

Figure B.3 also shows that regardless of the band-edge determination criterion and the

number of k-points, the SiO2 conduction band profiles for a given functional (i.e. b3lyp)

nearly overlap. However the different number k-points results in a noticeable disagreement in

the SiO2 valence band profile.

Since there is an obvious difference in the profiles, even for an identical band-edge determi-

nation procedure, at this stage it is not possible to objectively choose any of them for subsequent

device simulation. However, the band-profiles must be scaled, in order to bring their bulk-like

band-gaps to the nominal experimental values for Si and SiO2. It is after this stage, that agree-

ment between the profiles is needed, in order to assert quantitative significance of the device

simulation results.

B.3 Band-gap scaling

We note that for device simulation, not only the band-gap Eg itself, but also the conduction and

valence band offsets, ∆Ec, and ∆Ev, are important. Further, we are interested in comparing

the inversion layer quantisation and tunnelling characteristics of a metal/SiO2/p-Si(100) device

with and without band-gap transition at the oxide interface. The penetration of electrons in

the oxide becomes the main impact factor, and it depends on the potential barrier for electrons

at the interface. Therefore, we choose ∆Ec to be the leading parameter for scaling of the oxide

region. The accuracy of the oxide band-gap is relaxed in this case, leading to an overestimation

of the valence band offset. This is however irrelevant in our study, since calculation of hole

density assumes an infinite potential barrier at the interface. For the region of the Si substrate

however, the band-gap Eg is the leading parameter for scaling.

The scaled conduction and valence band-edge profiles, Ec(z) and Ev(z) respectively, are

obtained from:

Ec(z) = E0 + α(z)∆EDFTc (z) (B.1)

Ev(z) = Ec(z) − α(z)EDFTg (z), (B.2)

where E0 is our energy reference, taken as the CBE of atom 35 in Si (refer to Fig. B.1, which has

the same value regardless of the band-edge determination criterion. The scaling coefficient α

has different value in SiO2, and in Si, in accord with the argument in the preceding paragraph:

α(SiO2) = ∆Enomc /∆EDFTc (atom 11) (B.3)

α(Si) = Enomg /EDFTg (atom 35), (B.4)
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B.3 Band-gap scaling

Table B.1: Band-gap, conduction band offset, and scaling coefficients.

set 1 set 2 set 3

dft Scaled dft Scaled dft Scaled

Eg(Si), eV 1.28 1.12 2.44 1.12 2.44 1.12

∆Ec, eV 1.62 3.15 2.01 3.15 2.01 3.15

Eg(SiO2), eV 5.0 9.7 7.08 11.1 6.65 10.42

α(Si) 0.87 0.46 0.46

α(SiO2) 1.94 1.57 1.57

where ∆Enomc = 3.15 eV, and Enomg = 1.12 eV. In the sub-stoichiometric oxide, α is assumed

to change linearly from the value in Si, to that in SiO2:

α(SiOx) = ((α(SiO2) − α(Si))/tSiOx
)z + α(Si) (B.5)

where z is the distance from the interface, and tSiOx
is the thickness of the sub-stoichiometric

oxide (∼ 2 Å for the α-quartz SiO2 structure adopted in this work).

Table B.1 summarises the important values related to the above equations, for the three

data sets, based on the highest band-edge determination criterion of 0.10. The corresponding

band profiles are shown in Fig. B.4 (left) and a good agreement could be observed. However,

the relative difference between the three profiles in the interface transition region is a few times

the thermal potential (≈ 26 meV), as shown in Fig B.4 (right).
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Figure B.4: Scaled band-profiles corresponding to the three data sets, extracted at the same

band-edge determination criterion, min(PDoS) > 0.1 (left). Dashed (green) line indicates ide-

alised abrupt band-transition assuming Esig = 1.12 eV, Eoxg = 8.95 eV, dEc = 3.15 eV. Relative

error between each two profiles, in multiples of kBT (right) shows appreciable disagreement

between the three conduction band profiles.
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B.4 Conclusions

B.4 Conclusions

The translation of electronic structure obtained from ab-initio DFT simulations, into macro-

scopic band-gap and band-alignment information, for device simulation, is not unique. The

ambiguity stems partly from the first principles simulation routine itself – choice of a SiO2

structural model, density functional, k-space grid for DOS projection, and probably the choice

of atomic basis set. Additional element of uncertainty is implicated by the simplicity of the

procedure for extracting the band-edge. Having in mind the sensitivity of the sub-band quanti-

sation on the shape of the inversion quantum well, one could expect the band-profiles compared

so far to impact the device simulation result to a slightly different degree.
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