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Preface

Chapter 1 introduces the phenomenon of gravitational waves and outlines the prin-

ciples that lie behind interferometric gravitational wave detectors. Potential sources –

of astronomical interest – are discussed and the response of a simple Michelson inter-

ferometer to gravitational waves given. Current detectors are detailed and the need for

future detectors presented, along with a selection of the astrophysical results already

produced by current generation detectors.

Chapter 2 details the myriad noise sources that inhibit the detection of gravitational

waves with interferometric detectors. Noise due to seismic effects, thermal noise and

photon noise is discussed, and suitable expressions for quantifying these processes given.

In particular, the thermal noise from various heat-driven effects in the mirror substrates

and coatings is discussed. Additionally, the control theory that underpins the successful

operation of all gravitational wave interferometers is outlined.

Chapter 3 outlines an experiment for the direct interferometric measurement of the

thermal noise spectrum of a test-mass mirror, of the sort typically used in gravitational

wave interferometers. The measurement scheme of the experiment is introduced, the

relevant limiting noise effects are described and estimated, and the final design sensi-

tivity of the experiment presented.

Chapter 4 details the implementation of the experiment described in Chapter 3.

The design and installation of the suspension system necessary to seismically isolate

the test optics is described, as is the design and construction of a flame fibre pulling

machine – necessary to produce suitable fused silica fibres for the test optic suspensions.

The stabilisation of the frequency of the measurement laser is also detailed, as well as

all the electronics, calibration and experiments performed; before the final sensitivity

level is presented. The work presented in this chapter was performed in collaboration

with Dr Mike Plissi, Dr Borja Sorazu and Dr Bryan Barr.
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Chapter 5 recounts the experiments performed on the three-mirror coupled cavity

system in the JIF lab. Different modulation schemes and their relative merits are

discussed, modelled and measured; a novel and flexible optical modulation scheme is

presented; and methods for optimising the relevant control signals outlined. The work

presented in this chapter was performed in collaboration with Dr Bryan Barr and Dr

Sabina Huttner.

Chapter 6 summarises the salient points of the previous chapters, and gives per-

spectives on possible implications and future related work.

Appendix A lists numerous materials properties and constants, primarily related to

estimating the levels of thermal noise due to the various thermal dissipation mechanisms

detailed in Chapter 2.

Appendix B contains schematics and discussion of the electronics used in both the

thermal noise measurement, and coupled cavity control experiments.

Appendix C briefly summarises how to effectively measure the open and closed-loop

transfer functions of interferometric control systems.
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Summary

In 1905, Einstein postulated that the speed of light is not only finite, but that

its speed in vacuum is a universal limit that no process can exceed. The Theory of

General Relativity later extended this concept to include gravitational interactions,

and Eddington’s timely measurements of stellar positions during a solar eclipse in 1919

confirmed that gravity’s effect on spacetime is both real and entirely physical – not

merely a mathematical curiosity.

With the death of Newton’s notions of universal time and instantaneous gravity

came the idea of gravitational waves as distortions in space-time that propagate the

gravitational interaction at the speed of light. These gravitational waves are emitted

from any object undergoing a non-axi-symmetric acceleration of mass, but – due to the

exceptionally weak coupling between gravitational waves and matter – are expected to

induce displacements of the order of 10−18 m in kilometre-scale detectors: the extraor-

dinary diminutiveness of this effect has thus far precluded any direct detection of the

phenomenon.

Numerous gravitational wave detectors have been built since the 1960s, in the form

of both interferometric detectors and resonant mass devices. Interferometric detectors

currently represent the most promising form of detector, due to their relatively wide-

band response to gravitational wave signals and promising levels of sensitivity. In recent

years a worldwide network of these interferometric detectors (LIGO, GEO600, Virgo

and TAMA300) have begun to approach (or indeed reach) their design sensitivities.

Although these detectors have started to provide upper limit results for gravita-

tional wave emission that are of astrophysical significance, there have as yet been no

direct detections. As such, work is underway to upgrade and improve these detec-

tors. However, increasing the signal sensitivity necessarily leads to an increase in their

sensitivity to their limiting noise sources. Two critical noise limits that must be char-
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acterised, understood, and hopefully reduced for the benefit of future detectors, are

thermal noise (from mirror substrates, reflective coatings and suspension systems) and

photon noise – associated with the intrinsic shot noise of light and the noise due to

light’s radiation pressure.

Two interferometric experiments designed to help inform on these phenomena were

constructed at the University of Glasgow’s Institute for Gravitational Research.

The first experiment compared the relative displacement noise spectra of two spe-

cially constructed optical cavities, to extract the thermal noise spectrum of a single

test mirror. In future experiments, this optic could be changed and the thermal noise

spectrum for any suitable combination of mirror substrate and reflective coating eval-

uated.

The second experiment involved the investigation of suitable control schemes for

a three-mirror coupled optical cavity. As the resonant light power in interferometers

increases in future devices (in order to decrease the photon shot noise) the need to

de-couple the control schemes that govern the respective cavities so that they can be

controlled independently, becomes more important. As a three-mirror cavity effectively

represents a simple coupled system, it provides a suitable test-bed for characterising

suitable control schemes for more advanced interferometers.

Together, these experiments may provide information useful to the design of future

gravitational wave interferometers.



When you are face to face with a difficulty,

you are up against a discovery

William Thomson

Baron Kelvin of Largs



Chapter 1

Gravitational Waves &

Interferometry

1.1 Introduction

Wave phenomena permeate almost every aspect of science. Observations of oscillations

in media provide information on both the nature of the medium and the properties of

whatever process is occurring; and can be made, from a distance, without disturbing

the source itself.

Seismic waves have been used to infer the internal structures of the Earth and the

Sun, Alfvén waves transport energy in plasmas, longitudinal pressure waves in gas are

interpreted as sound; and electromagnetic waves provide information on all processes

that result in the emission of light.

The twentieth century saw the measurable electromagnetic spectrum widen from

the purely optical to include infra-red, ultra-violet, radio, X-ray and γ-ray observa-
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tions. Our picture of the universe improved accordingly; measurement of the cosmic

microwave background [1] allowed the age of the universe to be quantified, and X-ray

observations have proven the existence of black holes at the centre of our galaxy [2].

The prospect of examining the sky, in an entirely new and novel spectrum then,

is an exciting one. According to the Theory of General Relativity, certain astrophysi-

cal events will channel significant amounts of energy, not into electromagnetic events,

but into gravitational interactions. These astrophysical gravitational wave phenomena

should have unique properties that distinguish them from their electromagnetic coun-

terparts, and make them an invaluable tool for studying the universe in the twenty-first

century and beyond.

1.2 Relativity & Gravitational Waves

Einstein’s theory of General Relativity [3] recast the familiar notions of Newtonian

gravity; classifying gravity as a geometrical distortion of a universal medium (termed

spacetime) acting with finite speed, rather than an instantaneous force. Gravitational

waves – oscillations in the background medium – are a physical consequence of this

interpretation.

This viewpoint was initially explored by Einstein in 1905 in the Theory of Special

Relativity [4], to allow co-ordinate frame transformations to agree with the Maxwellian

view of light. An event in spacetime can be characterised by four co-ordinates (one

temporal and three spatial); x0, x1, x2, x3.

The invariant interval between two events is then defined as

ds2 = −(dx0)2 +
3∑

n=1

(dxn)2, (1.1)

where ds is the invariant interval, dxn is the difference in the nth co-ordinate be-

tween the two events (xn2 − xn1 ) and the time co-ordinate x0 is measured in metres.

Compare this to an analogous expression for the distance (R) squared between two
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events in Newtonian mechanics:

R2 =
3∑

n=1

(dxn)2. (1.2)

Observers at different points in spacetime obtain the same value for the invariant

interval between any two events, in the same way that observers at different points in

Newtonian space would measure the same physical distance between two events.

This concept can be expressed by rewriting Equation 1.1 as

ds2 = ηµνdx
µdxν , (1.3)

where nµν is the Minkowski metric for describing flat spacetime with no gravita-

tional influence. In Cartesian co-ordinates this is given by,

nµν =



−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


.

In the presence of gravity, Equation 1.3 can then be written as,

ds2 = gµνdx
µdxν (1.4)

gµν = ηµν + hµν , (1.5)

where hµν is a perturbation from the flat Minkowski metric caused by e.g. gravita-

tional waves and gµν is the resultant metric – or curvature – of spacetime.

According to General Relativity, gravitational radiation will be highly non-linear

close to the source, but will conform to a simple wave equation in the weak-field limit
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[5] :

(
∇2 − ∂2

(∂x0)2

)
hµν = 0 . (1.6)

Noting that the x0 co-ordinate can be expressed as x0 = ct leads to the more

intuitive expression (
∇2 − 1

c2

∂2

∂t2

)
hµν = 0 , (1.7)

delineating gravitational radiation as a wave phenomenon, propagating at the speed of

light.

1.3 Properties of Gravitational Waves

Gravitational radiation from astrophysical sources has many features that distinguish it

from electromagnetic radiation, and as such its observation may bring unique insights.

• The small coupling constant of gravity implies that gravitational radiation will

interact weakly with surrounding matter. As such, any radiation will arrive at

Earth essentially unhindered from its source, unlike electromagnetic information

which is easily scattered and absorbed by intervening matter.

• Gravitational radiation emanates from within the host system, allowing a po-

tentially unique view of the processes involved. Any electromagnetic radiation

detected is typically emitted from the outermost active region.

• Gravitational radiation may allow us to see events that are highly energetic, but

relatively weak electromagnetic emitters. These may include the mergers of black

holes and neutron stars, and the motions of dark compact bodies – and may also

include new phenomena.

No monopole or dipole gravitational emission is possible [6], with quadrupole being

the minimum order of excitation required to generate gravitational waves. Thus, grav-
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itational waves can only be generated when there is a non-axisymmetric acceleration

of mass or energy [7].

Gravitational radiation has two separate polarisation components, termed h+ and

h×, rotated 45◦ with respect to each other: an arbitrary gravitational wave will consist

of a superposition of these two components. A wave incident on an idealised ring of

test-mass particles will alternately stretch and squeeze the system in perpendicular

directions returning the ring to its original form after intervals of π and 2π in every 2π

period cycle. See Figure 1.1.

Figure 1.1: The effects of an h+ (top) and h× (lower) polarised gravitational wave, incident normal
to the page, passing through two rings of test particles. The five stages depicted are 0, π

2 , π, 3π
2 , 2π

in the gravitational wave cycle, and the distortion effect is strongly exaggerated for visual clarity.

The amplitude of a gravitational wave, commonly termed the strain is defined (see

Section 1.5.2) as,

h =
2∆L

L
(1.8)

where h is the dimensionless strain amplitude, L is the the length considered (e.g.

the diameter of the idealised ring of test-masses in Figure 1.1), and ∆L is the effective

length change imparted by the passing gravitational wave, e.g. the major axis of the

distorted ring in Figure 1.1 minus the undistorted diameter.
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1.4 Sources of Gravitational Waves

In summary, the presence of matter or energy curves spacetime, with any localised

disturbances in the medium caused by non-axisymmetric accelerations of mass propa-

gating as gravitational waves at the speed of light – see Equation 1.7.

1.4.1 Gravitational Radiation in the Laboratory

Although all massive objects radiate gravitational energy while undergoing non-axi-

symmetric accelerations, even extreme laboratory based experiments will not produce

measurable effects. A massive iron cylinder of length l, rotating about its centre (with

its ends tracing out a circle of diameter d = l) will emit gravitational radiation with a

luminosity [6]

Lgw =

(
ml2ω3

24

)2(
G

c5

)
, (1.9)

where G is the Newtonian gravitational constant, m is the mass of the cylinder, l is

the length of the cylinder, ω the angular rotation frequency and c the speed of light. For

a 5 m iron cylinder with a radius of 0.5 m rotating at 1 kHz (taking ρFe = 7783 kgm−3

[8]) this corresponds to an emitted luminosity of just Lgw = 2.86×10−26 Js−1.

Additionally, comparing this emission process to the rotational energy of the system

yields the fractional rate of rotational energy lost to gravitational emission, neglecting

decay of rotational frequency:

Lgw

Erot

=
Lgw

ml2ω2

24

' 10−36 s−1 . (1.10)

The creation of suitable observable radiation in the laboratory is unfeasible due to

both the small magnitude of the energy emitted and the small transduction coefficient

between the mechanical and gravitational processes.

However, astrophysical sources where high-energy accelerations of mass are involved

may provide events of suitable luminosity to be observable on Earth. These sources

may include supernovae, black hole and/or neutron star coalescences, oblate neutron
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stars, and the Big Bang itself.

1.4.2 Burst Sources

Burst sources are short-lived, transient phenomena caused by catastrophic stellar events.

These events may include supernovae and the coalescence of dense compact objects e.g.

neutron stars, black holes and white dwarfs.

Supernovae

Supernovae are extremely luminous stellar events, which can exceed the brightness of

their host galaxy. The absolute (electromagnetic) magnitude of a Type Ia supernova

event can be [9] M ' −19.5, corresponding to a bolometric luminosity of the order of

5×109 L�.

Although extremely powerful, the emitted electromagnetic radiation is heavily scat-

tered by surrounding envelopes of gas and dust: a gravitational observation could

illuminate the poorly understood mechanisms behind these events and their evolution.

Type Ia supernovae consist of a white dwarf star accreting mass from a partner

object, until it exceeds the Chandrasekhar limit (MCh = 1.38M�), causing the core

to collapse – potentially forming a neutron star. These are not thought to produce

significant amounts of gravitational radiation.

Type II supernovae however are caused by the radiation pressure in a large aging

star failing to balance the gravitational force, causing the star to collapse, leaving a

dense object; either a white dwarf or a neutron star. If this process is non-axisymmetric,

observable gravitational waves may be emitted. Also, due to conservation of angular

momentum, a rapidly spinning compact object will remain. If this resultant object has

a suitably asymmetric distribution of mass, it may continue to emit gravitationally,

“ringing down” until completely de-excited.

The gravitational wave strain h at Earth from such a source is estimated [10] to be,

h ' 5×10−22

(
E

10−3M�c2

)(
15 Mpc

r

)(
1 kHz

f

)(
1 ms

t

)
, (1.11)
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where E is the amount of energy emitted from the event gravitationally at frequency

f in an observation time t, and r is the distance to the source in Mpc.

Coalescences

Two dense astronomical objects (e.g. black holes, neutron stars, white dwarfs) orbiting

each other in a binary system will lose energy via gravitational wave emission. This

situation is similar to the gedanken experiment outlined in Section 1.4, where rotational

energy is lost in the system due to gravitational emission. The key difference here is

that the energy loss causes an orbital decay, bringing the objects physically closer and

increasing the orbital frequency, thus increasing the energy lost to gravitational waves

and accelerating the orbital decay.

This process results in an energetic collision and eventual coalescence of the two

objects. During the preceding inspiral phase, the emission will be of lesser amplitude

but at an essentially constant frequency. When the objects approach, the gravitational

wave emission level will rise, as will the frequency, culminating in a so-called “chirp”

waveform. This is then thought to be followed by a ring-down phase as the objects

settle, then possibly an ongoing periodic level of emission if the final object is notably

asymmetric and rotating.

The detectable strain at Earth from two coalescing neutron stars at frequency f ,

and distance r from the Earth, is estimated to be [11],

h ' 1×10−23

(
100 Mpc

r

)(
Mb

1.2 M�

) 5
3
(

f

200 Hz

) 2
3

, (1.12)

where Mb = (M1M2)
3
5/(M1 + M2)

1
5 is termed the mass parameter of the binary

system, and the two objects have masses M1 and M2 respectively.

The gravitational luminosity of two solar mass objects in decaying circular orbits

around each other is depicted in Figure 1.2.
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Figure 1.2: The gravitational wave luminosity emitted from a hypothetical source consisting of two
stellar mass objects with orbital radii varying from 1 AU to 1 R�. The gravitational wave luminosity
becomes comparable to the electromagnetic luminosity (L� = 3×1026 Js−1) at small orbital radii.

1.4.3 Rotating Sources

Rotating sources are persistent and periodic sources such as rapidly rotating neutron

stars and pulsars, characterised by a particular rotation frequency – where the rotation

frequency of the object is half that of the emitted gravitational waves. Typical rotation

periods for pulsars are in the region ∼ 2 ms → 5 s. To generate observable gravita-

tional waves, the object must deviate from pure sphericity either through localised

“mountains” or global oblateness, given by the equatorial ellipticity ε.

The strain amplitude at Earth from such an object is estimated [12] to be,

h ' 6×10−25

(
f

500 Hz

)2(
1 kpc

r

)(
ε

10−6

)
, (1.13)
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1.4.4 Binary Inspiral Sources

Binary inspirals occur when two dense objects (black holes and neutron stars being

the most sensible candidates) lose energy in the form of gravitational radiation. The

subsequent orbital decay leads to a greater loss of energy in the form of gravitational

waves, until the bodies eventually collide and coalesce into a single entity, which may

then continue to emit gravitationally as it de-excites and emits a ring-down waveform:

see Section 1.4.2. The initial period of this process is a binary system, with a relatively

stable orbital frequency. Although the gravitational waves emitted will be weaker

than at the coalescence stage, the continuous orbit and predictable waveform allow

for long signal integration times, increased signal to noise ratio and repeated verifiable

observations.

1.4.5 Stochastic Sources

A stochastic gravitational wave background – analagous to the COBE and WMAP[1]

results for electromagnetic radiation – should exist, consisting of low-level signals from

unresolvable binaries in the galaxy and relic cosmological effects from processes occur-

ring in the Planck epoch, shortly after the Big Bang. The gravitational force is thought

to have de-coupled from the other forces at around this time (tPlanck ' 10−43 s), so a

measurement of this effect and any associated inhomogeneities may inform cosmolog-

ical theories on how the universe began and developed, as well as provide an insight

as to how the fundamental forces of nature interact. Most predictions state that any

stochastic background will be present at a very low level (h ∼ 10−25) and low fre-

quency. It will require multiple space-based detectors to detect, due to the incoherent

superposition of signals, and low frequencies involved.

1.5 Detection Methods

Recall from Figure 1.1 that a gravitational wave will cause an alternating perpendicular

oscillation of the metric. To detect such a wave, this must be converted into an electrical
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or mechanical signal that we can amplify and analyse.

1.5.1 Resonant Bars

In the 1960s, Joseph Weber began research on the use of resonant bar detectors. This

method exploits the natural resonance modes of large metallic masses, typically alu-

minium cylinders. The relatively high quality factor – or Q – of aluminium gives it a

particularly sharp mechanical resonance – responding strongly in a narrow frequency

band. Bars were constructed with resonances in the stellar inspiral/burst range of

0.8 → 1 kHz, and fitted with piezo-electric transducers, converting the mechanical

motion into an electrical signal that could then be amplified and processed.

Despite the apparent simplicity of the idea, complications and lack of sensitiv-

ity hampered Weber’s efforts. Claims of coincident detections were not later veri-

fied by other experiments. Many other bar detectors now exist around the world

(NIOBE[13], NAUTILUS[14], AURIGA[15], ALLEGRO[16], EXPLORER[14]) with

peak sensitivites from the most sensitive of these instruments being of the order of

10−21 m/
√

Hz [17][18].

Resonant mass detectors are hindered by several factors. It is difficult to construct,

maintain and suitably isolate such a mass seismically, and cryogenic cooling is required

to limit thermal noise effects. However, the most fundamental issue with resonant

mass detection is one of bandwidth – resonant masses are intrinsically sensitive only

to gravitational waves close to their mechanical resonant frequencies. Widening this

bandwidth necessarily requires reducing the peak sensitivity.

1.5.2 Interferometry

In 1887, Michelson and Morley used what became known as a Michelson interferometer

to ultimately disprove the existence of a universally pervasive etheric medium for the

transmission of electromagnetic waves. Schematically, this device consisted of a light

source, a 50% beam-splitter optic, and two mirrors at the ends of two equal length

paths, perpendicular to each other. The light, having travelled down both – nominally
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identical arms – was then recombined and the position of the resultant interference

fringes examined to give a measure of the change in relative position of the two end

mirrors. Michelson and Morley showed that there was no measurable drift in their

measurement of this phase shift. The diurnal and annual motions of the Earth around

the Sun would have caused such an effect, had an etheric medium existed.

The Michelson Interferometer

The inherent L shape of a Michelson type interferometer can be utilised in the detection

of gravitational waves: a Michelson interferometer works by comparing the lengths of

two perpendicular optical paths, and a gravitational wave alters the metric in just such

a fashion; as one optical path is shortened, the other is lengthened, and vice-versa.

Figure 1.3: The effect of a suitably polarised gravitational wave on a Michelson interferometer at
0, π2 ,

3π
2 stages of a wave cycle. Here, the components of the interferometer replace the idealised test-

masses of Figure 1.1, with the beam-splitter optic at the centre. As one arm of the interferometer is
contracted, the other is lengthened, with the reverse occurring later in the cycle.

If we consider an interferometric detector orientated such that the arms lie along the

x and y axes, and a suitably orientated, linearly polarised gravitational wave is incident

on the instrument along the z axis, we have (when the waveform h+(t) representing

the gravitational wave is a maximum),
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gµν =



−1 0 0 0

0 1 + |h+| 0 0

0 0 1− |h+| 0

0 0 0 1


.

When events are measured by propagating photons, the invariant interval is ds2 = 0.

We then find,

(dx0)2 = (1 + |h+|)(dx1)
2

+ (1− |h+|)(dx2)
2

+ (dx3)2 . (1.14)

Choosing the photons travelling in the x1 direction (dx2 = dx3 = 0) we see that,

dx1

dx0
=

1√
1 + |h+|

' 1

1 + |h+|
2

. (1.15)

Rearranging this expression then gives,

dx0 = dx1 +

( |h+|
2

)
dx1 , (1.16)

where |h+| � 1.

Defining ∆L = dx0 − dx1 (i.e. the proper distance traversed by the photon in the

presence of a gravitational wave, minus the length of the arm in the x direction) and

setting dx1 = L we arrive at a definition of the dimensionless gravitational wave strain:

|h+| = 2∆L

L
. (1.17)

The same expression can be derived by following the same treatment for photons

propagating in the perpendicular arm. So, the minimum gravitational wave strain

detectable is linearly proportional to the arm length L of the Michelson interferometer.

If the light entering the interferometer along the x axis is a monochromatic field of
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amplitude A and angular frequency ω then

Ein = Aei(ωt−kx+φ), (1.18)

where k = 2π
λ

is termed the wavenumber, and λ is the wavelength of the light.

Setting the phase at the beam-splitter (φ = 0) and noting that power P = EE∗, it

can be shown [5] that the power at the output port is

Pout(Φ) =
Pin

2
(1 + cos(Φ)), (1.19)

where Φ is the relative phase difference between the two beams on recombination.

A Michelson interferometer then acts as a transducer between gravitational induced

phase shift, and detected light power.

Differentiating with respect to Φ gives

dPout =
Pin

2
sin(Φ)dΦ =

PinΦ

2
dΦ, (1.20)

where it is assumed the interferometer is operated close to the dark fringe point

(Φ ' 0), i.e. where most of the light returns to the input.

A suitably orientated sinusoidal gravitational wave of angular frequency ωg and

amplitude h interacting with an interferometer will have the following form:

h cos(ωgt) =
2∆L

L
. (1.21)

The total phase shift imparted due to the gravitational wave (on recombination at

the beam-splitter, i.e. after a single round trip) is

dΦ = k∆L =
2π

λ

hL

τ

∫ τ

t−τ
cos(ωgt)dt , (1.22)

giving, finally, an expression for the imparted phase shift in terms of the angular

frequency of the input light ω, the dimensionless strain amplitude h, the measurement

time t, the angular frequency of the gravitational wave ωg and the length of time for a
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photon to traverse an arm, τ :

dΦ =
4πhL

λτωg

sin
(ωgτ

2

)
cos
[
ωg

(
t− τ

2

)]
(1.23)

=
hω

ωg

sin
(ωgτ

2

)
cos
[
ωg

(
t− τ

2

)]
. (1.24)

As longer arm lengths lead to greater sensitivity to gravitational waves, it is desir-

able to increase the optical paths in the arms of the interferometer. From Equation 1.24

it can be seen that the optimal storage time for a photon is τ = π
ωg

, which implies an

ideal arm length of L = 200 km for detection of a 1 kHz gravitational wave signal.

This can be partially achieved through physically building the arms as long as

possible – with a functional limit of a few km. Lengthening the time τ that each photon

spends in the interferometer arms can also be achieved through the use of Herriott delay

lines, which fold a long optical path in one arm by reflecting the beam off of each end

optic several times (at different spatial locations) or – more commonly – through the

use of integrated Fabry-Perot cavities, which spatially superimpose multiple beams:

see Figure 1.4.

If the interferometer is constructed with appropriate cavities giving the τ = π
ωg

condition then the phase shift given at the output of the interferometer – taking both

arms into account – is given by,

dΦmax =
2hω

ωg

sin(ωgt), (1.25)

and the maximum change in output power is now given by (see Equation 1.20

previously)

dPmax
out =

PinΦhω

ωg

sin(ωgt). (1.26)

Optical recycling techniques are also employed to increase the sensitivity and shape

the frequency response of detectors.
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Recycling

Power recycling makes use of the fact that most of the light in a detector operating

on the dark fringe is reflected back towards the input. This light is effectively wasted,

but can be reflected back into the system with the addition of a power recycling optic

placed between the light source and the beam-splitter optic. As an interferometer

operating on the dark fringe is effectively a mirror, the power recycling optic forms

a resonant Fabry-Perot cavity with the rest of the system; increasing the circulating

power and thus the output signal, as according to Equation 1.26.

The technique of signal recycling can also be used, and also requires an additional

optic, this time placed between the beam-splitter optic and the detection photodiode

at the output port. This forms a resonant optical cavity between the output – where

the signal light is present – and the interferometer as a whole. In broadband signal

recycling, the signal recycling cavity can be made to resonate at a frequency ω ± ωg

where ω is the laser’s angular frequency and ωg the angular frequency of a target

gravitational wave. The storage time of the signal photons is then dominated by the

storage time of the signal recycling cavity, and can be enhanced accordingly, at the

expense of the detector’s bandwidth. The signal recycling cavity can also be tuned

to be resonant with the laser light, increasing bandwidth at the expense of signal

amplitude, or detuned to a position between these two states.

This allows the sensitivity response of a detector to be increased at specific frequen-

cies, allowing a detector to search for known signals with established periodicities. A

schematic of a Fabry-Perot Michelson interferometer with power and signal recycling

can be seen in Figure 1.4.

1.5.3 Detectors

A worldwide network of large-scale interferometric detectors now exists. The Laser

Interferometer Gravitational wave Observatory or “LIGO” [19] installations (in Han-

ford, Washington and Livingston, Louisiana) consist of two 4 km detectors, and one

additional 2 km instrument housed in the same enclosure as the 4 km Hanford machine.
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Figure 1.4: A schematic of a Michelson interferometer incorporating power recycling, signal recy-
cling, and Fabry-Perot cavities in the arms. In order, the optical components are: a) power recycling
mirror, b) beam-splitter optic, c) cavity input couplers, d) cavity end mirrors, e) signal recycling
mirror.
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This increases confidence in any signal detected (it is unlikely that an erroneous signal

will appear in all detectors at the same time) and also provides directional information

on the signal source. The LIGO detectors employ power recycling and Fabry-Perot

cavities in the arms to increase sensitivity, and are currently operating at their design

sensitivity of h ∼ 10−23/
√

Hz, where h is now the strain sensitivity: see Figure 1.6.

Virgo [20], in Cascina near Pisa, Italy, is a 3 km long system, featuring extensive

seismic isolation for the main optical components to allow operation at a strain sen-

sitivity of 10−22 /
√

Hz down to 50 Hz. Similarly to LIGO, it uses power recycling

techniques and Fabry-Perot cavities.

Figure 1.5: View northeast along Virgo’s 3 km arm.

TAMA300 [21] is a 300 m arm-length interferometer based near Tokyo, Japan, and

is the test-bed for a larger planned detector – the LCGT [22]. The LCGT (Large-scale

Cryogenic Gravitational wave Telescope) baseline design specifies 3 km arm-length,

cryogenic cooling of the major optical components and the use of sapphire substrates

for the mirrors.
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Figure 1.6: The calibrated strain sensitivities of the two 4 km LIGO instruments (green and blue),
Virgo (grey) and GEO600 (magenta) as of May 2007. The design goals are shown in black, yellow
and red respectively.
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GEO600 (see Figure 1.7) is a British-German collaboration, situated near Han-

nover in Germany. With a 600 m baseline it is inherently less sensitive than the larger

detectors, but employs several advanced techniques to allow it to compete in sensitivity.

Figure 1.7: The GEO600 interferometric gravitational wave detector, situated in Ruthe, near Han-
nover, Germany. The two perpendicular 600 m long arms can be seen, meeting in the central station
which houses the input laser, beam-splitter, and other optics and control electronics.

GEO600 has pioneered the use of quasi-monolithic fused-silica suspension systems

to suspend the interferometer optics, reducing the thermal noise effects associated

with the wire suspensions used in other current generation detectors. It also features

multiple-stage suspension systems, used to seismically isolate the mirrors and employs

advanced optical techniques – signal and power recycling – to both boost the input

power into the interferometer, and selectively amplify certain signal frequencies, thus

reshaping the device’s sensitivity curve. Both signal recycling and quasi-monolithic

fused-silica suspension techniques are due to be incorporated in future detectors.

Although LIGO successfully meets its design criteria and sensitivity, it may not be

sensitive enough to perform meaningful astronomy. Advanced LIGO, an upgrade due

to be performing observations in 2014, will provide an order of magnitude increase in
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sensitivity, with event rates for neutron star binary coalescences predicted to be between

two a year, and three per day [23]. LIGO will also undergo an incremental upgrade

– Enhanced LIGO – increasing sensitivity by a factor of ∼ 2 before Advanced LIGO

is fully implemented. As the time-averaged antenna response pattern for a Michelson

interferometer to gravitational waves is almost spherically symmetric [5], this increase

in sensitivity will increase the predicted event rate by a factor of ∼ 8.

Virgo+ [24], a proposed sequential upgrade to the Virgo detector follows similar

lines to Enhanced LIGO, upgrading the laser system and suspension setup to improve

sensitivity. Similarly, there are plans to upgrade the Virgo detector to Advanced Virgo

[24], with comparable sensitivity to Advanced LIGO.

GEO600 has plans to improve its system through upgrading its laser, optimising

its sensitivity curve for high frequencies [25] (hence the name “GEO-HF”), and inves-

tigating new optical techniques; complementing the push towards low frequencies by

other detectors.

Efforts are also underway to design and build a third-generation detector, called the

Einstein gravitational wave Telescope [26] or “ET”, utilising the knowledge gained in

the research and development of current and next generation devices. This project is

still in the design stage, but could provide an order of magnitude increase of sensitivity

over even Advanced LIGO.

Another future detector is the space-based LISA [27] (Laser Interferometer Space

Antenna). This consists of three identical spacecraft flying in a triangular formation,

20◦ behind the Earth, forming an interferometer with a 5×106 km arm-length. With

seismic noise restrictions lifted, it should be able to observe gravitational waves at

much lower frequencies (0.1 mHz → 0.1 Hz), and as such observe different sources

such as galactic white dwarf binaries and supermassive black holes. LISA Pathfinder,

a technology demonstration mission for LISA, is due to fly in 2010 [28].
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1.6 Astrophysical Results

In 1993, Hulse and Taylor [29] were awarded the Nobel Prize for their work showing that

the binary pulsar PSR1913+16 system was in an orbit decaying according to general

relativistic predictions for gravitational wave emission. Although their results agreed

with general relativity, they still relied on electromagnetic information, and as such are

indirect evidence for gravitational emission. More recently, similar indirect evidence

has been observed in the timing of quasi-periodic optical outbursts from quasar OJ 287;

where the measured timing of the bursts agrees with the general relativistic predictions

of energy loss due to gravitational emission in the system to within 10% [30].

The properties of the radio galaxy 3C 66B have been constrained by analysing long-

term timing residuals from pulsar PSR B1855+09. The notion that the system may

be a supermassive black-hole binary – as tentatively suggested from radio astronomy

observations [31] – was ruled out with 95% confidence when no gravitational wave

signature was detected in the pulsar timing data [32].

While a direct, confirmed detection remains elusive, several meaningful astrophysi-

cal results have already been obtained from the interferometric gravitational wave de-

tectors currently operational. For instance: an upper limit of h = 2.6× 10−25 has been

placed on the gravitational emission from pulsar PSR J1603-7202, and the equatorial

ellipticity of pulsar PSR J2124-3358 has been constrained to ε < 10−6 [33]. Addition-

ally, data from LIGO’s fifth science run imposed the limit that the gravitational wave

power radiated from the Crab pulsar is no more than 4% of the total emitted power

from its rotational spin-down [34].



Chapter 2

Noise & Control

2.1 Introduction

In order to detect gravitational wave induced strains, interferometers must be able

to confidently detect displacement spectral densities of the order of 10−21 m/
√

Hz or

better, over a frequency range of a few tens of Hz to several hundred Hz. It is vitally

important that all relevant noise sources that may limit the sensitivity of a gravitational

wave detector are reliably characterised or estimated. As the fundamental aim is the

detection of a phenomenon whose characteristics have yet to be observed, all non-

signal variables must be accounted for to allow any sort of meaningful detection. If a

detector operates with an unexplained noise peak above its design sensitivity, this can

– philosophically at least – be equally well ascribed to a gravitational wave source as it

can an arbitrary noise source, thereby reducing the probability of a reliable detection.

It is essential that the main optical components of the interferometer act as free,

isolated masses, and that the interferometer be held on resonance (or “locked”) for
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long periods of time by e.g. controlling the position of one or more optics, or altering

the frequency of the input laser.

2.2 Noise

There are several sources of noise that limit the sensitivity of gravitational wave inter-

ferometers. Broadly, these fall into three categories: seismic, thermal and photon noise.

The first fundamentally limits detection at low frequencies (typically between ∼ 10 Hz

and 100 Hz) and – while it can be heavily attenuated – can never be completely re-

moved from a ground-based instrument.

Thermal noise limits gravitational wave interferometers in their most sensitive regime,

between the limit imposed by seismic noise and the effect of photon shot noise (which

typically dominates the sensitivity above several hundred Hz) and manifests itself

through several related, yet distinct, temperature dependent mechanisms, covered in

more depth in Section 2.2.2. Theoretically these effects could be removed, or heavily

reduced, through extensive cryogenic cooling.

Noise from the light source also inevitably couples in to the detected signal in var-

ious ways, discussed further in Section 2.2.3.

Additionally, a further limit to detection arises from gravitational gradient effects,

detailed in Section 2.2.4.

2.2.1 Seismic Noise

An inevitable consequence of siting a detection system on the ground is that seismic

motions may couple into the detection. In the case of a gravitational wave interfer-
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ometer, this is especially important as the suspended masses are required to be free

(along the axis of the propagating laser beam) in the sense that they are acted on by

external (non-gravitational1) sources as little as possible in the detection band.

Seismic noise along any direction, at a suitably quiet site, can be roughly charac-

terised by the following displacement noise spectrum above ∼ 1 Hz [35];

x̃seis =

(
10−7

f 2

)
m/
√

Hz. (2.1)

This implies that without any seismic isolation, the residual motion of an interfer-

ometer optic due to seismic effects will be ∼ 10−11 m/
√

Hz at 100 Hz, some ten orders

of magnitude above the ∼ 10−21 m/
√

Hz required for gravitational wave detection.

Suspending the main interferometer optics as the lowest stage of a multiple pen-

dulum system – in conjunction with a pre-isolation platform – provides the required

level of seismic isolation. A train of n multiple pendulums will suppress the horizontal

coupling of seismic noise by a factor dependent on the number of pendulums and their

associated resonant frequency (or equivalently, length) as follows,

x̃seis =

(
f0

2

f 2

)n(
10−7

f 2

)
m/
√

Hz (2.2)

where f0 is the resonance frequency of the pendulum, and f0 � f . If we assume

an optic is suspended as a train of three identical pendulums of 40 cm length, then the

isolation supplied by the pendulums will reduce the effective seismic motion on the final

optic to the required ∼ 10−21 m/
√

Hz at ∼ 50 Hz. Extending this further, a setup of 8

identical multiple pendulums pushes this limit down to ∼ 5 Hz, where gravity gradient

effects start to dominate – see Section 2.2.4. The suppression of seismic noise in the

vertical direction (which over a 4 km detector will directly couple into horizontal motion

with a factor of ∼ 0.1% [36]) is achieved through the use of multiple stages of cantilever

blade springs. These are designed to exhibit vertical resonances at lower frequencies

than the suspension wires, and thus provide suitable isolation over the required range.

1gravity gradient noise being an unavoidable exception
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Additionally, it should be noted that while pendulums may supply sufficient iso-

lation at frequencies above their resonances, any motion near those resonances will

be effectively amplified. Therefore, pendulum resonances must be kept outside of the

detector’s measurement band, and suitably damped.

2.2.2 Thermal Noise

Introduction

Thermal noise arises from the random thermally induced motions of the atoms com-

prising the interferometer’s test-mass mirrors and suspension systems. The magnitude

of this noise source can be reduced in two ways; lowering the temperature to directly

reduce unwanted atomic motion; suitably shaping the energy spectrum of the thermal

motion. The difficulties associated with cryogenically cooling large, isolated optical

systems has meant that the latter method has been favoured for first and second gen-

eration gravitational wave detectors. Third generation detectors may use a combination

of both approaches.

The mirrors in interferometric detectors are typically made from a high quality, low

optical absorption substrate of fused-silica (SiO2) and are then layered (see Figure 2.1)

with alternating dielectric materials (e.g. SiO2, Ta2O5, Al2O3, TiO2) to form a highly

reflective coating at the appropriate laser wavelength – 1064nm for an Nd:YAG laser

– with very low levels of scattering and absorption. Thermal noise effects can arise

from both the substrate material, and the coating, as well as from the elements used

to suspend the mirrors.

Theory

In 1877, Ludwig Boltzmann connected the realm of the microscopic to the macroscopic

through his formulation of the Second Law of Thermodynamics:

S = kb ln Ω . (2.3)
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The macroscopic quantity of entropy (S) is directly related to the number of avail-

able microscopic states (Ω) via Boltzmann’s constant – kb.

The generalised Nyquist relation (hereafter referred to as the Fluctuation Dissi-

pation Theorem, or simply FDT) of Callen and Welten [37]2 similarly relates the

macroscopic dissipation of a system to its level of microscopic fluctuation.

One can use this relation to express the displacement power spectral density of a

substrate surface as [40],

Ξ(f) =
kbT

π2f 2
<[Y (f)] = ξ2(f) , (2.4)

where ξ(f) ≥ 0 is then the associated amplitude spectral density in m/
√

Hz, T is

temperature in K, f is frequency, and Y (f) is the admittance function of a thermally

driven mechanical oscillator.

The measured thermal noise contribution can then be directly estimated by defining

the admittance function as

Y (f) = iω
ξ(f))

F (f)
, (2.5)

where the external driving force F then comes from the force exerted on the front

face of the optic by the laser beam. This then leads [41] to the following general

expression for displacement power spectral density:

Ξ(f) =
2kbT

π2f 2

Wdiss

F 2
0

. (2.6)

This expression relates the average power dissipated (Wdiss) from an arbitrary force

(F0) to the resulting displacement power spectral density. An expression for the dis-

placement power spectral density due to any arbitrary effect can then be found, as-

suming the quantity Wdiss resulting from the effect is known.

2further discussed by Callen and Greene in [38][39]
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Mirror Substrates and Dielectric Coatings

Test-mass mirrors in interferometric detectors are typically constructed from a low loss,

low optical absorption material such as fused silica, and then coated with a multi-layer

stack of alternating thin dielectric films – see Figure 2.1.

If the substrate, and two coating materials have refractive indices ns, n1, n2 (with

n2 > n1), then the power reflectivity coefficient of the resultant mirror (with an even

number of coating layers – n) will be [42],

Rn =

ns
(
n2

n1

)n
− 1

ns

(
n2

n1

)n
+ 1

2

. (2.7)

The contributions towards displacement sensitivity of several thermal processes

involving the coatings and substrate are outlined below, where Ξx denotes the resultant

displacement power spectral density from a process x, and the radius of the laser beam

(r0) is taken to be at the point where the intensity of the beam is Pmax

e2
. Additionally,

it is assumed that r0 � Rmass, where Rmass is the radius of the test-mass optic.

Brownian Noise in Substrates and Coatings

Both the optic substrate, and the coating will have intrinsic levels of Brownian thermal

motion. Equation 2.6 can be extended [43][44] to produce,

Ξbrown(f) =

(
2kbT

π
3
2fr0Ys

)
φeff , (2.8)

where r0 is the radius of the laser beam, f is frequency, Ys is the Young’s modulus

of the substrate material and φeff is the effective loss angle (in radians) of the combined

substrate and coating stack.

In general, the loss angle φ of a material is related to the material’s quality factor
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Figure 2.1: Schematic representation of mirror substrate with a multi-layered dielectric coating.
The substrate (typically fused-silica) has refractive index ns. The coating materials have refractive
indices n1 and n2 respectively. Each layer of coating has the physical thickness d1 = dop

n1
and d2 = dop

n2

respectively, where the optical thickness dop is typically λ
4 , with λ being the laser wavelength.
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Q as follows,

Q(ω0) = φ(ω0)−1 = 2π

(
Estored

Elost per cycle

)
, (2.9)

where ω0 denotes a resonant frequency, and the final term represents the fractional

energy lost in one cycle due to the dissipation.

The effective loss angle for a combined substrate and coating is,

φeff = φs +
d

r0

√
π

(
Y‖φ‖
Ys

+
Ysφ⊥
Y⊥

)
, (2.10)

where φs is the mechanical loss angle of the substrate, d is the total physical thick-

ness of the coating layer, and Ys is the Young’s modulus of the substrate. The quantities

Y⊥, Y‖, φ⊥, φ‖ are defined as follows;

Y‖ =
Y1d1 + Y2d2

d
, (2.11)

Y⊥ =
d

d1
Y1

+ d2
Y2

, (2.12)

φ‖ =
Y1φ1d1 + Y2φ2d2

dY‖
, (2.13)

φ⊥ = Y⊥

(
φ1d1

Y1

+
φ2d2

Y2

)
. (2.14)

Y⊥, Y‖, φ⊥, φ‖ are the combined coating layer’s Young’s modulus and loss angles;

parallel, or perpendicular, to the coating/substrate interface.

Y1 and Y2 are the individual coating material’s Young’s moduli, d1 and d2 are their

respective physical thicknesses, and d is the total physical thickness of the coating.

Knowledge of these material properties can then provide an estimate of the Brownian

thermal noise in the combined coating and optic substrate, according to Equation 2.8.
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Thermoelastic Noise in Substrates and Coatings

Any material with a non-zero thermal expansion coefficient (α) will experience an inho-

mogeneous temperature distribution, associated with strain gradients in the material,

when a localised force is applied. This effect causes a flow of heat energy in a test-mass,

leading to dissipation. The thermal expansion coefficient is defined as,

α =
1

l

dl

dT
, (2.15)

where dT is a change in temperature and dl the temperature induced change in length

of a length l.

The displacement spectral density due to thermoelastic dissipation in the substrate

of an optic is [45],

Ξsub thermo(ω) ' 8√
2π

kbT
2α2

s (1 + σs)
2κs

ρ2
sC

2
s
r30√

2
ω2

, (2.16)

where αs, σs, κs, ρs and Cs are the substrate’s thermal expansion coefficient, Poisson

ratio, thermal conductivity, density and specific heat capacity respectively.

Thermoelastic dissipation effects will also occur in the multi-layer dielectric coating

stack. The power spectral density from a coating layer can be expressed as [46],

Ξcoat thermo(f) ' 8
√

2kbT
2

π
√

2πf

d2

2r2
0

(1 + σs)
2
C2

avg

C2
s

α2
s√

κsCs

∆2 (2.17)

where d is the total coating physical thickness and the quantity ∆2 is,

∆2 =

{
Cs

2αsCavg

(
αavg

1− σavg

[
1 + σavg

1 + σs

+ (1− 2σs)
Yavg

Ys

])
− 1

}2

(2.18)

and a quantity Xavg is a weighted combination of the two material properties,

Xavg =
d1

d
X1 +

d2

d
X2 . (2.19)
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Thermorefractive Noise

Dissipation from thermorefractive effects are analogous to those from the thermoelastic

process: the thermoelastic effect derives from a non-zero coefficient of thermal expan-

sion, and the thermorefactive effect from a temperature dependent refractive index.

Any temperature inhomogeneities in the optic will lead to localised fluctuations in the

refractive index, and therefore the phase-front of any probing laser beam, causing an

effective displacement noise to be induced in any measurement.

The displacement power spectral density from this effect in the mirror substrate is

given by [47][48],

Ξthermoref(f) =

√
2β2

0kbT
2λ2

πr2
0

√
2πρsCsκsf

(2.20)

where λ is the wavelength of the light used and the other symbols represent the quan-

tities defined previously.

The temperature dependence of the refractive index is defined as,

β =
dn

dT
, (2.21)

where n is the refractive index, and dT a change in temperature.

In Equation 2.20 the term β0 denotes the effective temperature dependence of the

refractive index for either the substrate (β0 = βs) or a combined expression for the

coating layer,

β0 =
n1n2(β1 + β2)

4(n2
1 − n2

2)
, (2.22)

where n1, n2, β1, β2 are the refractive indices and refractive index temperature

dependencies of the two coating materials.

Suspension Thermal Noise

Another contribution towards the thermal noise spectrum comes from the mechanical

dissipation of the pendulum suspension elements.
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Pendulum Mode: The main pendulum mode of a suspended optic can be modelled

as a harmonic oscillator, with a driving force F (ω), acting on a mass m with effective

spring constant k,

F (ω) = mẍ+ k(1 + iφ(ω))x , (2.23)

where φ is then the loss angle of the system. Applying the FDT gives the following

expression [5] for pendulum mode displacement power spectral density:

Ξpend(ω) =
4kbT

ω

φp(ω)ω2
0

m[w4
0φ

2
p(ω) + (ω2

0 − ω2)2]
. (2.24)

The loss angle of the pendulum (φp) is related to the loss angle of its constituent

material (φs) [49],

φp(ω0) ' φs(ω0)
n
√
PYsI

2mgl
, (2.25)

where P is the tension in one suspension element, n is the number of suspension

elements, I is the moment of inertia of the suspension element (I = πr4

4
for a cylindrical

wire/fibre), Ys is the material’s Young’s modulus, m is the mass of the optic, and l the

length of the pendulum.

Violin Modes: The transverse vibrational modes (commonly termed violin modes)

of the suspension elements will also have an impact on the thermally induced dis-

placement noise. The violin modes form a slightly anharmonic series, with resonant

frequencies defined [49] as,

fn =
n

2l

√
P

ρlin

[
1 +

2

l

√
YsI

P
+
YsI

2P

(nπ
l

)2
]
, (2.26)

where fn is the frequency of the nth mode, ρlin is the linear density (kg m−1), and

l is the length of the pendulum.

The periodicity of the violin modes implies that a suspension system designed to

have the main pendulum resonance peak outside the detection band will still have

violin resonances inside the detection band. The use of low loss suspension materials
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such as fused-silica can help alleviate this by effecting very narrow resonances which

can be identified and subsequently removed from measured data.

The contribution to the displacement noise spectral density from the nth violin

mode of a cylindrical element of length l and radius r is given by [35],

Ξviol
n (ω) =

8kbTω
2
0φn

mω[w4
nφ

2
n(ω) + (ω2

n − ω2)2]
, (2.27)

where the loss of the nth violin mode (φn) is,

φn ' D−1
n

[(
1 +

8ds

r

)
φs + φnonlin

]
. (2.28)

The term ds denotes the dissipation depth – related to the typical depth of micro-

cracks in the material surface, which contributes towards dissipation. For a fused-silica

fibre produced in a flame pulling machine, this is ∼ 1×10−4 m [35] [50].

The dilution factor Dn is given by,

D−1
n =

2

l
√
k

1 +

(
4 + (nπ)2

2

)
l
√
k

 , (2.29)

with the value k being

k =
P +

√
P 2 + 4YsIρlinω2

n + P

2YsI
. (2.30)

Finally, the loss angle contribution from nonlinear thermoelastic effects (associated

with thermal gradients from stress induced during fibre bending) is,

φnonlin =
YsT

(
αs − Pγ

(πr2Ys)

)
ρsCs

ωτ

1 + (ωτ)2
, (2.31)

where

τ =
4r2

13.55κs

, (2.32)

and

γs =
1

Ys

dYs

dT
; (2.33)
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where γs is the temperature dependancy of the material’s Young’s modulus.

2.2.3 Laser Noise

Intensity and Frequency Noise

Fluctuations in both intensity and frequency will couple into the output of an inter-

ferometric gravitational wave detector, adversely affecting the sensitivity. Frequency

fluctuations can form from internal length changes in the laser cavity, and impose a

limit on the detector’s strain sensitivity,

hfreq =
∆f

f

∆L

L
(2.34)

where ∆f is a fluctuation in frequency f , and ∆L is the offset between arms of

length L.

Intensity fluctuations impose a similar limit,

hP =
∆P

P

∆L

L
(2.35)

where P is the laser power, ∆P is the power fluctuation, L is the arm length, and

∆L is the length offset between the interferometer arms.

The Standard Quantum Limit

The Standard Quantum Limit represents the best possible measurement sensitivity as

defined by Heisenberg’s Uncertainty Principle. The limit describes the optimal operat-

ing boundary between the effects of radiation pressure noise, and photon-counting shot

noise. The latter scales inversely with the square root of the input laser power (shot

noise is reduced at higher powers) while the former increases with the square root of

the input power – more photons implies more “back action” on the test-mass mirror.

The optimum laser power for a given mass m in a simple Michelson interferometer is
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given by [5],

Popt = πcλmf 2 . (2.36)

Future detectors may use squeezing techniques to evade this limit. The uncertainty

principle can be expressed as,

∆n∆φ ≥ 1

2
, (2.37)

where ∆n is the uncertainty in the number of photons, and ∆φ is the uncertainty

in phase. Light noise may be “squeezed” in one quadrature (∆φ for phase measure-

ments), at the expense of the other, thus decreasing phase noise below that allowed by

the standard quantum limit while still obeying the uncertainty principle. The limits

imposed by shot noise are dealt with in more detail in Section 2.3.1.

2.2.4 Gravity Gradient Noise

A final limit to the sensitivity of gravitational wave detectors comes in the form of grav-

ity gradient noise. This limit arises from the changing mass distribution in and around

the interferometer altering the local gravitational field, which then couples directly into

the positions of the test-mass optics. This effect is small, but may fundamentally limit

ground-based detectors, defining their low-frequency measurement regime [5].

The seismic induced gravitational gradient limit for the LIGO Hanford observatory,

in terms of strain sensitivity, has been estimated [51] as ∼ 6×10−23 /
√

Hz at 10 Hz.

While below LIGO’s current sensitivity at this frequency (see Figure 1.6) this effect

may affect the potential sensitivities of future instruments.
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2.3 Control

In order to operate an interferometer, it is essential that the optical cavities within

the system are controlled, and held to the correct operating point. The Fabry-Perot

cavities in interferometers are typically held on resonance through use of the Pound-

Drever-Hall [52] scheme (also known as RF Reflection locking) or extensions thereof,

and controlled using negative feedback systems. Both of these concepts are outlined

below.

2.3.1 Fabry-Perot Cavities

Background

Fabry-Perot cavities are essential components of gravitational wave interferometers,

and consist of two partially transmitting (but typically highly reflective) mirrors. Here,

ρ1 and ρ2 are the respective mirror’s amplitude reflection coefficients, and τ1, τ2 the

amplitude transmission coefficients, defined such that,

ρ2
n + τ 2

n = 1 . (2.38)

Figure 2.2: A schematic of a Fabry-Perot cavity. Mirrors 1 and 2 (with amplitude reflection and
transmission coefficients ρ1, ρ2, τ1, τ2) are separated by a length L, with their reflective surfaces facing
each other. The light reflected from the system is separated from the input light with a polarising
beam-splitter and quarter wave-plate setup.

If the input field (setting the phase at the input coupler to zero) is given by,

Ein = E0e
iωt , (2.39)
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where ω is the angular frequency of the laser and t is time, then the light field

transmitted through the cavity can be found by considering the superimposed fields;

Etrans = Ein

(
τ1τ2e

−ikL + τ1ρ2ρ1τ2e
−3ikL + τ1ρ2ρ1ρ2ρ1τ2e

−5ikL + . . .
)
. (2.40)

The first term in parentheses represents the field transmitted straight through the

system, the second term the field that has reflected off the second mirror, then returned

from the first, and so on. This can be simplified by summing the terms, using the

identity
∞∑
n=0

an =
1

1− a (where a < 1),

Etrans = Ein

[
τ1τ2e

−ikL
∞∑
n=0

(
ρ1ρ2e

−i2kL)n] = Ein

(
τ1τ2e

−ikL

1− ρ1ρ2e−2ikL

)
. (2.41)

A similar expression can be found for the reflected field:

Eref = Ein

[
−ρ1 + τ 2

1 ρ2

∞∑
n=0

(
ρ1ρ2e

−i2kL)n] = Ein

(
−ρ1 +

τ 2
1 ρ2

1− ρ1ρ2e−i2kL

)
. (2.42)

We can now plot the transmitted field as a function of one of the mirror’s offset

from resonance3 – see Figure 2.3. Here, as the second mirror is shifted through 40◦,

the amplitude of the transmitted field is seen rising, reaching a maximum as the phase

offset becomes zero at the resonance. This 40◦ range is equivalent to ∼ 1.2×10−7 m

offset in cavity length.

It is now useful to define some parameters commonly used when dealing with optical

cavities.

The finesse of a cavity is given by,

F =
π
√
ρ1ρ2

1− ρ1ρ2

=
FSR

FWHM
, (2.43)

where FSR is the free spectral range of the cavity (the separation between distinct

3the optical simulation software FINESSE [53] is used for these simulations
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Figure 2.3: The amplitude and phase evolution of the throughput light of a Fabry-Perot cavity over
a single resonance. The blue trace shows the amplitude of the field, the green trace depicts the phase.
The cavity in this example consists of two mirrors, the first with an amplitude reflectivity ρ1 = 0.9899,
the second with ρ2 = 0.995, separated by L = 10 m.
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resonances in Hz) and FWHM is the “full-width half-maximum” measure of a single

resonance feature, also measured in Hz – see Figure 2.4. The FWHM value is also

termed the linewidth of the cavity, and is twice the value of the cavity bandwidth.

−200 −180 −160 −140 −120 −100 −80 −60 −40 −20 0 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

mirror offset / deg

ar
b

FSR

FWHM

Figure 2.4: Depiction of the free spectral range (FSR) and linewidth (FWHM) of the same cavity
as in Figure 2.3. Transmitted power is shown in blue.

The FSR is given by,

FSR =
c

2L
, (2.44)

where L is the length of the cavity, and the free spectral range is then the inverse

of the time for a photon to traverse the cavity and return.

Modulation and Locking

Fabry-Perot cavities can be held on resonance through use of the technique known as

Pound-Drever-Hall locking. This involves imposing a set of sidebands on to the main
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carrier light, by either amplitude or phase modulating the carrier beam.

As a cavity will (ideally) only allow light within its own linewidth to resonate, the

sideband fields – which are offset from the main carrier in frequency – will reflect from

the front face of the cavity when on resonance. This provides a static phase reference,

so that light returning from the cavity (which may have additional phase imparted to

it from a gravitational wave, or other effect) will then interfere with the sideband field,

causing a beat at the sideband modulation frequency. This effect is then detectable

using a standard photodiode and mixer arrangement, where the photodiode acts as a

square-law detector of the light field and the mixer is used to extract the component

oscillating at the modulation frequency. The demodulated signal provides a bi-polar

error signal which can be used to feed back to either the length of the cavity, or the

frequency of the laser, to hold the system on resonance.

Optical modulators (in the form of LiNbO3 crystals) are used to create the phase

modulation sidebands for this technique, typically at RF frequencies & 10 MHz.

A sinusoidal phase modulation imposed on the input beam can be expressed as,

Emod = E0e
i(ωt+m cos(ωmt)) , (2.45)

where E0 is the input laser field, ω is the laser’s angular frequency, t is time, β is

the modulation index, ωm is the angular frequency of the modulation and Emod is the

resultant modulated field.

Using the Jacobi-Anger identity,

eiz cos θ =
∞∑

n=−∞

inJn(z)einθ , (2.46)

this can then be rewritten as,

Emod = E0e
iωt
[
J0(m) + J1(m)eiωmt − J1(m)e−iωmt

]
, (2.47)
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where higher order sidebands have been omitted (i.e. assuming m� 1) and the Jn(m)

terms are Bessel functions of the first kind, defined as,

Jn(m) =
∞∑
x=0

(−1)x

x!(x+ n)!

(m
2

)n+2x

. (2.48)

A modulation index of m = 0.2 then, implies that a factor of ∼ (m
2

)2
= 1% of the

original carrier power will be directed into each sideband.

The superposition of phase-shifted carrier and phase-reference sideband field is then

detected on a photodiode and demodulated using a mixer and a local oscillator of the

same frequency as the phase modulation. When the phase of the local oscillator is set

correctly, the output from the mixer will be an appropriate bi-polar error signal: see

Figure 2.5.
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Figure 2.5: A typical Pound-Drever-Hall error signal for a Fabry-Perot cavity. Here, the cavity is
identical to previous examples, but with a 1 MHz phase modulation added to the input field, with
modulation index m = 0.2. The blue trace is the reflected power from the cavity, the red trace is the
demodulated output from an in-phase mixer, connected to a photodiode detecting the return light
from the cavity.

When the phase of the local oscillator is correctly set, the slope of the error signal

for the carrier light resonance is maximised. When the local oscillator is 90◦ out of

phase, the error signal slopes for the sidebands are then emphasised: see Figure 2.6.

It is possible then, to use a combination of phase modulators, mixers, and photo-
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diodes to produce a suitable error signal for either feeding back to the light source –

thus stabilising the frequency of the laser to the length of the cavity – or feeding back

to the length of the cavity, effectively measuring the displacement noise of the cavity

with reference to the stability of the laser frequency: see Figure 2.7.

 

-20
-15

-10
-5

 0
 5

 10
 15

 20
mirror offset / deg -80

-60
-40

-20
 0

 20
 40

 60
 80

LO phase / deg

-0.2
-0.15

-0.1
-0.05

 0
 0.05

 0.1
 0.15

 0.2

Abs 

Figure 2.6: Variance of the Pound-Drever-Hall error signal with local oscillator phase. The cavity
properties here are identical to those in Figure 2.5, which corresponds to the error signal when the
local oscillator phase is 0◦.

Figure 2.7: Schematic of a Fabry-Perot cavity with optical phase modulator, local oscillator source,
photodiode, demodulating mixer and possible feedback paths.
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Measurement Limits

The quantum nature of light fundamentally limits the resolution to which laser fre-

quency noise or cavity displacement noise can be measured.

The light used to make these measurements is the reflected light from a Fabry-Perot

cavity. For a simplified, symmetric cavity (ρ1 = ρ2 = ρ ' 1) with high reflectivity

mirrors (τ1 ' 0) Equation 2.42 can be simplified to,

Eref = Ein

(
ρ(eiφ − 1)

1− ρ2eiφ

)
= EinΓ(φ) , (2.49)

where φ = 2kL, and Γ(φ) is then a complex reflection coefficient.

The reflected light power from the cavity (including phase modulation) can be given

by the expression,

Pref = EmodE
∗
mod = |C|2 + |S+|2 + |S−|2︸ ︷︷ ︸

DC terms

+(CS∗+ + C∗S+) + (CS∗− + C∗S−) + . . .︸︷︷︸
2φ terms

(2.50)

where the terms representing the carrier, upper sideband and lower sideband from

Equation 2.47 have been rewritten as,

C = J0(m)E0e
iωt = aeiφΓ(φ) , (2.51)

S+ = J1(m)E0e
iωteiωmt = beiΦΓ(Φ) , (2.52)

and

S− = J1(m)E0e
iωte−iωmt = be−iΦΓ(−Φ) , (2.53)

for simplicity. Also, ±Φ = φ±φm where φm = ωmt represents the differing phase

evolution of the sidebands with respect to the carrier.

The demodulation performed by the mixer provides an error signal proportional to

the modulation frequency terms. So, discarding the DC and 2ωm terms gives the error

signal ε as,
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ε = 2ab {< [Γ(φ)Γ∗(Φ)− Γ∗(φ)Γ(−Φ)] cos(φm) (2.54)

+ =[Γ(φ)Γ∗(Φ)− Γ∗(φ)Γ(−Φ)] sin(φm)}

⇒ dε = 4
√
PcPs =[Γ(dφ)] , (2.55)

where dε is the error signal around resonance (taking the terms proportional to

sin(φm) for an optimally phased local oscillator), Pc is the power of the carrier light

and Ps is the power in one sideband. Γ(Φ) = −1 as the sidebands should be entirely

reflected, and Γ∗(dφ) = −Γ(dφ) around the resonance, where φ = dφ.

Near the resonance, the error signal from the mixer is linear, and the change in

phase detected is,

dφ = 2k dL =
4π

λ
dL , (2.56)

implying that the carrier reflection coefficient around resonance Γ(dφ) can be written

as,

Γ(dL) '
(

ρ

1− ρ2

)(
i4π

λ
dL

)
(2.57)

' i
4F
λ
dL . (2.58)

Substituting this into Equation 2.55 gives,

dε = 16
√
PcPsF dL

λ
, (2.59)

and we now define the term µ as,

µ =
dε

dL
. (2.60)

The measurement quantity involved is typically the displacement amplitude spectral
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density of a cavity, (or the frequency amplitude spectral density of the light source)

which is related to µ by,

ξx =
ξε
µ

(2.61)

where ξx is the displacement amplitude spectral density in m/
√

Hz, ξε is the am-

plitude spectral density of the error signal in V/
√

Hz and µ is then in Vm−1 if the

detector used has a linear voltage response to incident light power.

The shot noise in the error signal ε has the following form [5] [54] within the cavity

bandwidth,

ξε =

√
4hcPs

λ
, (2.62)

which then leads to the following expression for the shot noise limited displacement

amplitude spectral density of a cavity:

ξx =
1

8F

√
hcλ

Pc

. (2.63)

Equivalently, this can be expressed as the shot noise limited frequency measurement

on the laser,

ξf =
f

L
ξx =

1

8FL

√
hc3

λPc

. (2.64)

Equation 2.63 and Equation 2.64 represent the limits to which the cavity displace-

ment noise and laser frequency noise can be measured, in absence of greater noise

sources.

2.3.2 Feedback & Control Systems

It has been shown that an optical cavity (or indeed, a system of optical cavities) can

be used to measure the frequency fluctuations of a laser, and that a complementary

setup can be used to measure the displacement noise of a cavity. However, for such
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measurements to be performed practically, the system must be held on resonance. This

is achieved by first attaining an appropriate error signal (as outlined in Section 2.3.1).

This error signal may then require filtering, before being applied to either the laser or

the cavity mirror in question, forming a negative feedback control loop.

Figure 2.8: Schematic of a control loop applied to the length feedback of a Fabry-Perot cavity. The
optical system is described as the plant, with the photodiode arrangement then the sensor. A servo
and actuator then process the error point signal and provide appropriate feedback to hold the cavity
on resonance. Equally, feedback could be applied to the laser.

The system is then characterised by a complex transfer function, which is the prod-

uct of the individual transfer functions of the different subsystems,

Gtot = Gservo[GsensorGactuatorGplant] = GH , (2.65)

where Gservo = H is the complex transfer function of the filter stage (typically

known), and G is the combined complex transfer function of the other subsystems.

The quantity Gtot is termed the open-loop gain of the system, and as such is the

complex gain of all the appropriate feedback elements, when no feedback is being ac-

tively applied.

When the loop is then closed and negative feedback is applied, the sensor supplies

a control signal, which is then filtered by the servo and sent to the actuator, which
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applies the feedback. The feedback signal supplied by the actuator then alters the

plant, bringing it towards equilibrium (i.e the operating point). If noise (ξn) is present

(either specifically injected or fundamental) at the point of actuation ξa, and the output

of the servo system is ξservo then,

ξa = ξservo + ξn , (2.66)

ξservo = GHξa . (2.67)

Rearranging, this gives;

ξa =
ξn

1−GH , (2.68)

ξservo =

(
GH

1−GH
)
ξn . (2.69)

So, the noise in term ξa is suppressed by the factor 1
1−GH , where GH is the open-

loop gain, and suppression occurs when |GH| > 1. The factor 1
1−GH is also termed the

closed-loop gain. Note that as the servo acts to suppress changes in the plant, GH < 0

will typically be true within the desired control bandwidth.

While there is no theoretical limit to the amount of noise suppression shown here, in

reality any measurement will be limited by e.g. shot noise effects, as outlined previously

in Section 2.3.1.

Stability

For a control loop to be stable, the phase of the complex open-loop gain must be within

±180◦ (where the phase at DC is taken as 0◦) when a unity gain frequency is reached

– i.e. when the amplitude of the open-loop gain is equal to one. Failing to meet

this condition results in positive feedback. The difference between the phase of the

open-loop gain at the unity gain frequency, and the region of instability is termed the

phase margin. Practically it is deemed prudent to build systems with a phase margin
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of at least 40◦, to take account of potential unknown phase delays in the subsystems.

Similarly, the term gain margin is defined as the difference between the maximum and

minimum safe possible gain – i.e. those that do not move the unity gain frequency into

a region of instability. A large gain margin allows adjustments in the gain to be made

safely without causing the system to lose stability. Additionally, if multiple feedback

paths (where actuators only act over a certain frequency range for instance) are used

then at the crossover points, where one path becomes dominant over the other, the

phase difference between the paths must be less than 180◦ and the frequency response

of the paths must differ by ≤ 2 powers of frequency.

Transfer Functions

Characterising the open and closed loop gains of a system (where not all the transfer

functions are necessarily known) can be achieved by injecting known signals into one

point of the loop.

If a signal ξinj is injected into the system directly before the servo filtering stage

then,

ξ0 = ξep + ξinj , (2.70)

ξep = ξ0GH , (2.71)

where ξ0 is the input to the servo stage, and ξep is the output of the plant. Rear-

ranging gives,

ξ0

ξinj

=
1

1−GH , (2.72)

ξep

ξinj

=
GH

1−GH , (2.73)

which are the open-loop and closed-loop transfer functions respectively. Injecting

a signal into a closed loop system, and monitoring the system’s response, yields the

appropriate transfer functions.



Chapter 3

A Direct Thermal Noise

Measurement Experiment:

Design

3.1 Introduction & Motivation

Thermal noise effects are the dominant limit to sensitivity in a gravitational wave

interferometer’s most sensitive frequency range. It is important to be able to char-

acterise this phenomenon, so that different mirror coatings, substrates and test-mass

compositions can be evaluated reliably and accurately.

Typically, the thermal noise of an optic or substrate is estimated by measuring

the object’s mechanical quality factor or Q, and extrapolating the thermal noise con-

tribution in the gravitational wave detection band using the Fluctuation-Dissipation

Theorem as follows [55] :
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The object in question is suspended by e.g. a single loop of silk thread in a vac-

uum system, where its resonant modes are excited by an electrostatic driving plate.

A Michelson interferometer is used to sense the mechanical ringdown of the object’s

resonant modes. The optic acts as the end mirror of one interferometer arm, with the

other arm being formed by two mirrors – one mounted on a loudspeaker, the other

on a piezo-electric transducer (PZT). Feedback to the loudspeaker (to compensate for

slow drifts of the optic position) and the PZT (above the audio range of the speaker)

allows the system to stay locked and facilitates a measurement of the mechanical ring-

down. The exponential envelope of the ringdown can then be related to the Q, and

the associated loss angle at the resonant frequency φω0 (where Qω0 = 1
φω0

) through the

following expressions:

A(t) = A0e
−ω0t

2Q = A0e
− (ω0t)φω0

2 , (3.1)

ln[A(t)] = −(ω0t)φω0

2
+ ln[A0] . (3.2)

Here, the excited resonance frequency is ω0, and the initial amplitude of the ring-

down signal is A0. The loss angle can be extracted by plotting the natural log of the

decaying amplitude A(t) against time.

Typically, mechanical Qs in the region of 108 will be measured for resonant modes

in the 50→ 100 kHz range, for a fused silica mirror substrate.

This figure must then be translated into a relevant level of thermal noise in terms

of displacement noise spectral density. From the FDT, the thermally induced displace-

ment noise power spectral density from such an harmonic oscillator is given by,

Ξ(ω) =

(
4kbT

ω

)
φ(ω)ω2

m[ω0
4φ2(ω) + (ω0

2 − ω2)2]
. (3.3)

Knowledge of the Q, and some assumptions about the frequency dependence of

the loss angle φ(ω) then allow the thermal noise in the gravitational wave band to

be estimated. For example, a mode at 60 kHz exhibiting a Q of 108 implies that the
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thermal displacement noise at 500 Hz will be ∼ 6×10−23 m/
√

Hz, if φ(ω) is frequency

independent.

While useful, this method has limitations: it infers the level of thermal noise as

opposed to sensing it explicitly, and it is unavoidably sensitive to other forms of loss

(in the suspension or clamping structure) adversely affecting the Q. It can therefore be

difficult to separate the intrinsic properties from those associated with the measurement

process.

As future generation detectors require increasingly stringent limits on noise sources,

the importance of characterising the thermal properties of critical optics becomes

paramount. New materials, coatings, dopants, and bonding techniques may affect

the thermal noise contribution in unknown ways that may not be readily quantifiable

from a typical Q measurement.

An interferometric measurement senses the thermal noise contribution directly, in

the measurement band of interest – where it will limit advanced gravitational wave in-

terferometers – and should eliminate the inherent uncertainties of mechanical resonance

measurements.

3.2 Experimental Outline

3.2.1 Introduction

To directly measure the thermal noise contribution, one can imagine constructing an ex-

periment where a single thermally limited Fabry-Perot cavity is locked to a monochro-

matic light source. The Fabry-Perot cavity effectively amplifies the phase-front alter-

ations caused by the fluctuating mirror surfaces, and the feedback signal required to

lock the system is then related to the displacement noise of the optics. While feasible,

this concept needs considerable refinement before it can ultimately be employed.

An over-coupled cavity has the input mirror more transmissive than the sum of

all other losses in the cavity1, and is desirable for use in phase or displacement mea-

1For a suitably low loss system it can equivalently be said that an over-coupled cavity has the
output optic more reflective than the input coupler.
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surements as the light reflected from such a system exhibits a larger variation of phase

shift around a resonance than the under-coupled case [56]. Additionally, any extra

losses accrued on the optic surfaces with time will have a lesser adverse effect on the

signal in an over-coupled system. As thermal noise due to the coating increases with

the number of dielectric layers (and therefore also with reflectivity) it is the end, more

reflective, optic that will exhibit the larger intrinsic thermal fluctuation.

Recall from Section 2.2.2 that a small measurement beam leads to a correspondingly

larger thermal noise signal. As such it may seem prudent to arrange a small beam waist

on the end mirror, and a larger spot on the input optic – see Figure 3.1. This would

cause the thermal noise signal from the end optic to dominate the measurement further.

Figure 3.1: A naive schematic of the layout of a thermal noise measurement cavity: the final optic
is more reflective than the input coupler, is probed at a beam waist and used as the dominating test
optic of the system.

However, this requires that the end optic should always be more reflective than the

input optic – to maintain the over-coupled state – which imposes restrictions on the

optic substrate and coating when performing new measurements. Indeed, it requires

that the test optic should always have more dielectric layers (and thus a higher level

of intrinsic thermal noise) than the reference optic – so we can never effectively test a

configuration where the test optic has relatively low levels of thermal fluctuation. The

only appropriate topology is to define the input optic of the cavity to be flat, with the

end mirror concave and of higher reflectivity – see Figure 3.2. Although the end mirror

has more coating layers and therefore higher intrinsic thermal noise, the input optic

may still dominate the measurement through having a suitably small beam waist on

its surface, relative to that on the end mirror.
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Figure 3.2: A schematic layout of a thermal noise measurement cavity: the input coupler is flat, with
its reflecting surface coinciding with a beam waist. The end mirror is concave and more reflective than
the input optic. The thermal noise contribution from the input mirror dominates the measurement.

To successfully sense the thermal variations of the optic surfaces, the laser light

used to probe the surface must be sufficiently frequency stable; otherwise the frequency

variations in the measurement beam will dominate the thermal noise signal from the

test cavity. The frequency noise of a typical free-running Nd:YAG laser is ∼104

f
Hz/
√

Hz

[57], while the achievable level of sensitivity can be expressed as,

∆f

f
=

∆L

L
, (3.4)

where ∆f is the frequency noise of a laser of frequency f in Hz/
√

Hz, and ∆L is the dis-

placement noise of a cavity with length L in m/
√

Hz. Using an unmodified free-running

laser, the sensitivity to displacement noise in a 1 m optical cavity is ∼ 3×10−14 m/
√

Hz

at 1 kHz. A thermally induced displacement noise of this level is, in principle at least,

detectable – if an appropriately sized beam is used to make the measurement. An or-

der of magnitude estimate can be obtained using Equation 2.8 to estimate the required

beam radius to sense the Brownian thermal noise of a fused silica substrate2. This

implies that a suitable beam radius is r0 ' 1×10−15 m. Clearly, this is nonsensical and

another solution must be found. The level of laser stabilisation must be improved.

As outlined in Section 2.3.1 it is possible to both lock an optical cavity to the

frequency of a light source, and lock the frequency of a laser to the length of an optical

2Material properties can be found in Appendix A
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cavity.

If the laser is stabilised to a cavity of length L1 and the test cavity has a length L2

then the measurable displacement noise of the test cavity is (recalling Equation 2.64 –

the shot noise limited frequency noise of a laser locked to a cavity),

∆L2 = L2

(
∆f

f

)
=

(
L2

L1

)
1

8F1f

√
hc3

λP
, (3.5)

where ∆L2 is the shot noise limited displacement noise of the test cavity, ∆f is the

frequency noise of a laser of frequency f , L1 and L2 are the respective cavity lengths,

F1 is the finesse of the cavity, λ is the laser wavelength and P is the light power of the

carrier light in the laser stabilisation cavity.

By minimising the ratio L2

L1
(through having the measurement cavity considerably

shorter than the cavity used for the laser stabilisation) it is possible to maximise the

measurement’s sensitivity to ∆L2.

In summary: to achieve the goal of direct thermal noise measurement we need to

construct a two cavity system where the term ∆L2 < ξthermal; i.e. where the displace-

ment noise that we can measure is less than the thermally induced displacement noise

we expect, and where all other noise sources are also minimised or suppressed. This

can be effected through the use of a short high finesse test cavity – with respect to a

longer laser stabilisation cavity – and a small beam waist on the designated test optic,

to ensure that it dominates the measurement.

3.2.2 Experimental Layout

The JIF Facility

To this end, an experiment was constructed in the IGR JIF facility, which houses a 10 m

gravitational wave interferometer prototype in a Class 1000 clean area. The facility was

designed to test systems and optical configurations for advanced full-scale gravitational

wave detectors and houses several main optics suspensions similar to those found in
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GEO600.

The lab consists of nine vacuum tanks, forming a folded L shape interferometer

– see Figure 3.3. One arm houses a Fabry-Perot cavity of length 9.78 m, made up

of two mirrors – an inboard test mass (ITM) and an end test mass (ETM). Two

additional steering mirrors are used to direct the beam into the cavity. Each tank

contains a support structure formed from “Bosch” aluminium extrusions, large enough

to support two triple pendulum systems culminating in 2.7 kg fused silica optics, with

an upper stage supported by rubber damping elements. The input laser is a single-

mode, single-frequency, continuous-wave Innolight Mephisto Nd:YAG non-planar ring

oscillator (NPRO), operating at 2 W.

The ITM and ETM masses are ultra-low loss silica optics with multi-layered di-

electric reflective coatings, suspended as the final stages in a triple pendulum, and can

be acted on via reaction pendulums suspended behind them. The lowest stage of the

reaction pendulum is an aluminium mass, with identical dimensions to the silica optics.

This mass has attached coils, wired to feedthroughs in the surrounding tank. The main

optics have small magnets bonded to their non-reflective sides; inducing a current in

the reaction mass coils allows sufficiently delicate control of the position of the main

optics.

The low frequency pendulum modes, and alignment of the test-mass suspensions,

are controlled via a combined system of coils, magnets, infra-red LEDs and shadow

sensing techniques, governed by a LabVIEW
TM

control system. The uppermost stage

of the triple pendulum has combined magnet/flag attachments on its extremities, which

pass through LED/coil/sensor elements attached to the frame superstructure. Changes

in the light levels for each degree of freedom are then interpreted as pendulum motion,

and a corrective signal sent through the coils, effectively damping the motion.

The optic labelled PRM is (nominally) the power recycling mirror for the system,

and is a standard 1" diameter optic housed in an aluminium mass, suspended as a dou-

ble pendulum. For these measurements it was replaced with a blank, anti-reflection

coated optic, with the same radius of curvature as the reflective power recycling mirror
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Figure 3.3: JIF lab layout: the system consists of nine interconnected vacuum tanks, with one
main arm cavity, an optional power recycling cavity, and a short test cavity for thermal noise mea-
surements. The laser bench holds the laser, phase modulators, single mode optical fibre, Faraday
isolators, detection photodiode and mode-matching lenses, as well as other associated optics.
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(Rc = −15 m), to keep the mode-matching condition into the main arm cavity valid

for different experimental configurations.

The optical cavity in the main arm (hereafter termed the arm cavity or simply AC)

serves as the frequency reference for the laser. A short, 10 cm thermal noise measure-

ment cavity is housed in the first input tank.

The secondary arm in the system was not used in any of these experiments.

The thermal noise experiment (TNE) tank contains seven suspensions: two fused

silica suspensions comprising the test cavity, four small optic suspensions – required to

steer, mode-match and separate the outgoing light – and one reaction suspension, to

provide feedback signals to the test cavity. The test optics used in the thermal noise

measurement cavity are smaller in size (3" diameter) and mass (∼ 360 g) than the main

optics used in the AC. In more detail, they are:

• The inboard test mass suspension, or ITMTNE. Its final stage is the thermal

noise test optic. This mirror is suspended from the intermediate stage by silica

fibres, and the upper stage by a single wire-loop from cantilever springs.

• The end test mass suspension, or ETMTNE comprises the silica end mirror of

the test cavity, and a silica intermediate stage. Aside from the optical properties

of the final stage mirror, this suspension is identical to ITMTNE.

• RM is the reaction mass suspension. This is an all metal construction whose final

stage is an aluminium mass (of the same dimensions as the silica test optics),

with four coils attached to the front side. These are then used to actuate on

four corresponding magnets bonded to the rear face of the ETMTNE. It is also

suspended from cantilever blades to aid vertical isolation.

• Immediately preceding the ITMTNE is the mounting unit, or MU . It is a com-
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bined polarising beam-splitter and quarter wave-plate setup. This effectively

splits the light returning from the cavity from the ingoing light, and ejects it

through a viewport in the tank, to be detected by the photodiode on a small

optical bench.

• A flat steering mirror (S1) is used to direct light into the cavity.

• A suspension with a mode-matching (and steering) optic – MM . This is used to

both correctly set the mode-matching condition into the system, and steer the

light. The radius of curvature of the mode-matching optic is Rc = 0.15 m.

• The beam-splitter suspension (BS) is used to pick light off from the main system

and inject it into the thermal noise measurement cavity. It has a power reflectivity

of 33%.

A rendered mock-up of the thermal noise measurement tank can be seen in Fig-

ure 3.4, and a schematic showing the relative positions of the optics in Figure 4.19.

The optical properties of the critical optics from both cavities are summarised in

the table below.

PRMblank ITM ETM ITMTNE ETMTNE

ρPRM = 0 ρITM = 0.99497 ρETM = 0.99998 T = 600ppm T = 10ppm

Rc = −15 m Rc =∞ Rc = 15 m Rc =∞ Rc = 0.15 m

Table 3.1: Mirror properties: the values for the arm cavity optics are given as amplitude reflectivity
coefficients, and as transmitted power (in parts per million) for the thermal noise measurement optics.
Note that the transmission values for the thermal measurement optics are design specifications, and
were not measured. Also, all transmissive optics were AR coated on their non-reflective faces.

The theoretical finesse values for the respective cavities can then be calculated

(using Equation 2.43) as FAC = 621 and FTNE = 104.
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Figure 3.4: SolidWorks R© mock-up of the thermal noise measurement tank [58].
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Measurement Scheme

Using phase modulation sidebands at 46.526 MHz, the laser is stabilised to the length of

the AC using a Pound-Drever-Hall method as detailed in Section 2.3.1, via feedback to

a (PZT) bonded to the laser crystal, and (via a high-voltage amplifier) an electro-optic

modulator in the beam path. The servo for the laser stabilisation feedback is designed

to provide stabilisation over a large range, from DC to ∼ 40 kHz. Feedback to the

position of the ETM is used at low frequencies (≤ 1 Hz). The thermal noise test cavity

is then locked via feedback to the ETMTNE position using a separate 10 MHz locking

scheme – see Figure 3.5 – with the servo having a unity gain frequency of ∼ 150 Hz.

The error-point of the feedback above the unity gain frequency can then be calibrated

to give the desired displacement noise measurement.

Figure 3.5: Control scheme layout for the direct thermal noise measurement experiment: Phase
modulation sidebands at 10 MHz and 46.526 MHz are imparted on the light by two electro-optic
modulators. The control signal derived from the 46.526 MHz signal is filtered through a servo and
used to feed back to the frequency of the laser via a PZT and electro-optic modulator – and additionally
to feed back to the cavity length at low frequencies. Similarly, the 10 MHz sideband signal is used to
control the length of the measurement cavity.
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3.2.3 Sensitivity & Design

As detailed in Section 2, there are myriad noise sources that must be quantified and

structured such that the thermally induced displacement noise of the test optic is the

dominant noise source in the measurement.

Shot Noise Limit

The shot noise limited frequency noise of the signal readout required to lock a laser

to a cavity “x” (or equivalently to lock a cavity length to a laser) can be expressed as

[57],

∆fx(f) = Λx

√√√√(hc(1− J2
0 (mx)MxVx)

16ληxPx

)[
1 +

(
2f

Λx

)2
]
× (3.6)(

1

M1J0(mx)J1(mx)

)(
1

1−√1− Vx

)
Hz/
√

Hz ,

where Λx is the linewidth of the cavity, J0(mx) is the amplitude of the main carrier

light, J1(mx) is the amplitude of a phase modulation sideband, mx is the modulation

index of the sidebands, Mx is the fraction of input power Px matched into the cavity, ηx

is the quantum efficiency of the photodetector, and Vx is the cavity visibility defined

as V = Pmax−Pmin

Pmax
, where Pmin and Pmax are the minimum and maximum intensities

measured when the system passes through a resonance – where the cavity here is

assumed to be over-coupled.

As there are two distinct measurement points in this system – one detection point

controls the laser frequency, and another the length of the short cavity – there will be

two uncorrelated contributions: ∆f1 and ∆f2.

Recall from Equation 3.4 the relation,

∆f

f
=

∆L1

L1

=
∆L2

L2

. (3.7)
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By rearranging, it can be seen that,

∆L2 =
L2

f
∆f =

L2

f

√
∆f1

2 + ∆f2
2 . (3.8)

For the measurement to succeed we require the shot noise limited frequency noise

contribution from the laser to be below the equivalent contribution from the thermal

noise fluctuations of the test optic, i.e. ∆f1 < ∆f2. Neglecting sideband size and

photodetector efficiency – and recalling that light is injected into the TNE via a 33%

beam-splitter – this condition will be met by a factor of [59],

F1L1

F2L2

√
P1

P2

=
√

2

(F1L1

F2L2

)
' 10 . (3.9)

Radiation Pressure & Intensity Noise

Fluctuations in laser power can give rise to fluctuations in test-mass position, through

radiation pressure effects. As the test masses in the TNE are relatively light, this

should be evaluated. The contribution from this noise source can be estimated as [5],

ξrad(f) =
F

cπ3f 2m
∆P , (3.10)

where

∆P =

√
Phc

λ
, (3.11)

for a shot noise limited case, and

∆P = P ×RIN (3.12)

for the case where the power fluctuations are dominated by the intensity noise of

the laser. Here RIN is the relative intensity noise in units of Hz−
1
2 . Assuming an
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input power of 333 mW, a finesse of 104, a mirror mass of 360 g and an intensity noise

dominated RIN level of 3 × 10−8/
√

Hz [60], this yields a level of 3×10−20 m/
√

Hz

at 1 kHz for the thermal noise test cavity. Given that the optics in the AC are more

massive, the finesse lower and the cavity longer – the final noise contribution from this

effect in that cavity will be attenuated by a factor of ∼ 104.

Seismic Noise

To attenuate seismic noise (see Section 2.2.1), all the TNE optics are suspended as

double stage pendulums, with the optics comprising the test cavity being suspended

as quasi-monolithic assemblies, with fused silica fibres forming the lower suspension

elements. The length of the upper stage of the suspensions is 38.6 cm and the lower

stage 56.2 cm, pushing the main pendulum mode resonance down to ≤ 700 mHz.

The relatively long suspension stages (and correspondingly lower pendulum reso-

nances) provide greater horizontal isolation at frequencies above the pendulum reso-

nance than typical, shorter suspensions, thus widening the range where thermal effects

from the optical substrates and coatings will limit the system. See Figure 4.1, Fig-

ure 4.10, and Figure 4.15 for images of the TNE suspensions.

All of the suspensions in the TNE tank are aligned through the use of 10 mm

diameter magnets bonded to the rear of the upper mass. These magnets interact with

coils wound round copper formers, attached to the frame structure in the tank, allowing

alignment forces to be exacted through passing a current through these coils. The main

pendulum resonance is damped via the eddy-current damping effect that arises from

the magnets from the alignment system interacting with the copper formers of the

alignment coils. This technique has been shown [61] to reduce resonant pendulum

mode quality factors to Q ' 5. See Figure 4.16 for a picture of the eddy-current

damping and alignment systems.

Vertical seismic motion can couple into horizontal mirror motion, due to both pen-

dulum imperfections and – for full-scale detectors – the curvature of the Earth. The

magnitude of this coupling effect can be considered to be ∼ 0.1% [62]. To ameliorate
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this effect, the test cavity (and reaction) suspensions are suspended by cantilever blades

attached to the frame. These provide a soft vertical spring (in comparison to the verti-

cal resonance from the suspension wires) with a low resonance frequency. The topmost

section of the frame (from which all the optics are suspended), sits on damped rubber

spring elements (formed from GE RTV615 silicone rubber with added graphite) which

help isolate the system [63] further – both horizontally and vertically. Additionally,

as all the optics in the TNE tank are suspended from effectively the same point, any

differential vertical motion should be minimised.

The seismic noise contribution to the measurement from the AC optics is consid-

erably smaller compared to that from the TNE optics. This is due to two factors:

firstly, the motion of the mirrors contributes less to the readout signal by the factor

L1

L2
; secondly, the ITM and ETM optics are suspended more rigorously. As they are

designed to be very similar to GEO600 main suspensions, they have three pendulum

stages for horizontal isolation and two stages of cantilever blades to aid vertical isola-

tion. Although the main pendulum resonances occur at slightly higher frequencies (due

to shorter wire lengths), the horizontal isolation increases as ∼ f−6 above a few Hz,

due to the triple pendulum. As such the seismic noise contribution from the TNE test

cavity is the dominating seismic effect.

Suspension Thermal Noise

As outlined in Section 2.2.2, there can be a significant thermal noise contribution

from the suspension elements in any suspended optical system, from both the main

pendulum mode, and transverse violin modes. Silica fibres are used to suspend the

optics in the thermal noise test cavity, as the loss of standard steel wire loops – or

wire and clamp arrangements – may be large enough to overcome the thermal noise

contribution from the optics themselves. The low loss of the silica suspension elements

effectively channels the thermal energy into the main pendulum and transverse violin

modes, reducing suspension induced thermal noise contributions in the measurement

band.
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The loss angle of the pendulum defines its thermal noise contribution, and is pro-

portional to r2

l
(see Equation 2.25) where r is the radius of a cylindrical suspension

element, and l is the length. To reduce the effect of pendulum thermal noise, long, thin

silica fibres must be used. Fibres of length 57 cm and diameter 100µm were chosen, as

these provide sufficient pendulum thermal noise attenuation without imposing undue

practical limitations.

However, constructing a low loss, high Q, system also implies that the transverse

violin modes (see Figure 3.6) will have similarly high Q values3.

Figure 3.6: Violin modes: schematic representation of a fibre with no excitation, then first and
second order violin excitation respectively. Note that the motion depicted here is highly exaggerated.

From Equation 2.26 it can be seen that these modes will form a slightly anharmonic

series beginning at ∼ 200 Hz for the TNE parameters. Their thermal noise contribution

can be calculated from Equation 2.27.

Coating & Substrate Thermal Noise

Using the formulae from Section 2.2.2, it is possible to estimate the level of thermally

induced displacement noise expected from the test cavity. Assuming no optical losses

in the mirrors, that they meet their design specification and that they consist of al-

ternating λ
4

layers of SiO2/ Ta2O5; and estimating a beam radius of 155µ at the front

reflective face of the test optic, the various thermal noise contributions can be esti-

mated, as shown in Figure 3.7. The dashed lines indicate contributions from the end

mirror (with solid lines denoting effects from the primary test optic), and the thick

3More specifically, Qviolin = Qpendulum
2
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black line is then the total noise. As can be seen, the thermal noise from the test optic

dominates over that of the end mirror.
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Figure 3.7: Thermal noise contributions from various sources, over the two test cavity optics. Brow-
nian noise, thermoelastic and thermorefractive effects are shown. The overall sensitivity is dominated
by the primary test optic.

Although the AC optics also contribute coating and substrate thermal noise to

the measurement, the contribution is reduced by both the length ratio of the cavities

(∼ 102) and the ratio between the respective measurement beam sizes – the beam

radius on the ITM is 1.5 mm compared to 1.5×10−4 m on the thermal noise test optic.

Finally, summing all the appropriate noise sources gives a sensitivity curve for the

experiment – see Figure 3.8

The measurement is dominated by seismic noise at low frequencies, the thermal

noise of the test cavity above ∼ 100 Hz, and lastly by shot noise at frequencies above

the cavity bandwidths.
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Figure 3.8: Noise budget for the TNE experiment. Thermal noise from the optics (dominated by
the contribution from the test optic – see Figure 3.7) is shown as the dominant contribution in purple,
the shot noise limit is shown in light blue, and the seismic noise contribution in green. The peak at
∼ 20 Hz is due to the vertical resonance of the silica fibre suspension elements. Pendulum thermal
contributions are depicted in blue, with the numerous peaks being caused by the violin resonances of
the silica fibres – no damping of these resonances is assumed here. Finally, the total sensitivity curve
is shown in black.



Chapter 4

A Direct Thermal Noise

Measurement Experiment:

Implementation

4.1 Introduction

The previous chapter detailed the design and measurement ideas behind a direct in-

terferometric thermal noise measurement experiment, which may help to inform the

choice of optical substrates and coatings for future gravitational wave interferometers.

This chapter expands these ideas and focuses on the implementation of the experiment.

The production of suitable silica fibres, optical suspension systems, the measurement

scheme and electronics will be discussed, and final results presented.
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4.2 Silica Fibre Production

As detailed in Section 3.2.3, it is necessary to suspend the critical measurement optics in

the experiment from suspension elements made from a high Q, low loss, material (such

as fused silica), to reduce the contribution of the suspension element thermal noise to

the measured thermal noise spectrum. Long, thin fused silica fibres are required, and

must be affixed in such a way that no extra loss is induced – ensuring that the thermal

noise of the coating and substrate is the dominant thermal effect.

A fibre pulling machine was constructed to produce fibres of length 57 cm, and

diameter ∼ 100µm. These were then to be welded to fused silica ears, which were

silicate bonded to the masses. This bonding process introduces an aqueous hydroxide

bonding solution to the two pieces of silica to be bonded – here the ears and the silica

masses. The hydrophilic silica is then “etched”, forming a layer of silicate gel between

the pieces which – over time – becomes a solid bond layer.1 Ideally the bond layer

is ∼ 100 nm thick; this can be accomplished if the bonding surfaces are polished to a

flatness of λ/10, where λ is 633 nm – the wavelength of the He:Ne laser typically used

to make the appropriate measurement.

As both the upper and lower masses were fashioned from fused silica, this combina-

tion of fused silica suspension elements, attachment ears and silicate bonding created

a quasi-monolithic structure, where the only non-contiguous part was the thin bond

layer between the ears and the test-masses. Although the bond layer can exhibit rela-

tively significant loss, the small ratio of the bond volume to the test optic volume (and

the small beam size localising the measurement away from the bond area) effectively

reduces the bond’s contribution to the thermal noise spectral density to insignificant

levels [64] [66].

These silicate bonding and fibre welding techniques were successfully pioneered on

the suspensions used in the GEO600 detector [35].

In addition to a quasi-monolithic lower stage, the silica suspensions had a wire-loop

element suspending the upper mass from maraging steel cantilever blades for vertical

1More details on this technique can be found in other documents: [55] [64] [65]
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seismic isolation: a schematic can be seen in Figure 4.1. Various dimensions of the

suspension systems can also be found in Table 4.1.

4.2.1 Fibre Pulling Machine

To produce suitable silica suspension elements, a rod of Suprasil 300 grade fused silica

was melted by a hydrogen/oxygen flame and rapidly stretched in a controlled fashion,

creating a long cylindrical fibre as the molten silica cooled. Similar methods have

been used to successfully produce both cylindrical fibres for GEO600, and rectangular

cross-section fused silica “ribbons” [49].

The flame pulling machine constructed to make the fibres for this experiment can

be seen in detail in Figure 4.2, and a close-up of the burning stage in Figure 4.3. The

operating procedure was as follows:

Two pieces of silica stock of 5 mm diameter were held in the vertical position by

two screw clamps, with each clamp being attached to rigid arms that could be moved

vertically – in opposing directions – by a motor-driven chain system controlled by

LabVIEW. A piece of thinner, 1.5 mm silica rod was then welded (using an electrolytic

torch2) between the two 5 mm pieces, effectively connecting the two movable arms.

Once the silica was in place, hydrogen gas was fed through the system at a rate of

10 L/min, exiting via five nozzles in a circular ring-burner (see Figure 4.3).

This was ignited using a standard spark gun. Oxygen was then fed in, up to a

rate of 6 L/min, until the flame became a sharp blue. Gas flow rates were controlled

with a combination of fine needle valves (calibrated for each gas) and coarser on/off

controls. Additionally, a small fan was mounted above the ring burner to cool the upper

aluminium clamp. This helped minimise excess expansion of the aluminium under the

heat, and consequent slipping of the silica rod.

2A self-contained hydrogen and oxygen generator and burner. The flame produced is clean and
easily controlled, providing ∼ 100 W of heat, at high temperature, over a small area – adjustable via
interchangeable burner nozzles.
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Figure 4.1: SolidWorks render [58] of a TNE quasi-monolithic fused silica suspension, used to
suspend the measurement optics. The upper, dark blue detail figure shows the upper mass, with
magnets bonded to one face, and fused silica ears and break-off prisms (to provide a defined bending
point for the upper wire loop) silicate bonded to the two side faces. A single wire loop passes under
the mass, connecting to the blade/clamp assemblies above. The light blue figure depicts the lower
silica mass, with identical ears bonded to the flat sides – providing attachment points for the fused
silica fibres that connect it to the upper mass.
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Figure 4.2: The flame pulling machine, used to manufacture the silica fibres used in the TNE ex-
periment. a: the gas inlet valves for hydrogen (red) and oxygen (blue). b: the electromagnet used to
hold the burner in place during the burn period. The arrows depict the motion of the arms during a
pull. The burner and fan assembly can be seen in more detail in Figure 4.3.
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Figure 4.3: Detail of the pulling machine ring-burner. Five nozzles direct the flow of hydrogen
towards a central point. After this is ignited, oxygen is fed in and the ring burner swung into place –
with the centre coincident with the silica rod. A small black fan can be seen on the left, cooling the
upper clamp to prevent slippage of the silica.

Once ignited, the ring burner was swung into position, with the confluence of the

flames coinciding with the thin silica rod. This motion tripped a microswitch, signalling

to the LabVIEW control system that the burn period had begun. This caused an

electromagnet to engage, holding the ring burner in position for a set time (typically

2 seconds) before releasing, whereupon the burner swung away from the silica and the

motor was driven to separate the clamping arms, thus stretching the molten silica.

The arms were then stopped at the required length by the LabVIEW system, and

additionally a fail-safe switch cut the power to the motor before the lower arm hit the

end of its rail. The gas to the burner, and the fan, were then turned off manually.

Finally, fibres were carefully removed using a diamond file and tweezers, before being

placed in a perspex shielded box to protect them from dust and accidental damage.

4.2.2 Fibre Characterisation

Using this method, fibre lengths were found to vary by ∼ 5 mm, so care had to be taken

to select fibres of consistent length. The storage box was designed to be the correct

height with respect to a reference fibre, and fibres that proved too long or too short
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were discarded.

Additionally, fibres were found to be asymmetric in diameter, often (but unpre-

dictably) being thinner at the lower end. The most homogenous fibres were chosen by

carefully bending the fibre into an Ω shape. The least symmetrical fibres exhibited an

obvious asymmetry and were discarded.

The origin of this asymmetry was investigated, and found to be independent of

both burn time and pulling speed. Another possible factor was the asymmetric cooling

imposed by the fan.

As the fan was turned off manually after each pulling cycle, it continued to operate

during the pulling stage. Although the burner (and hence the fan) swung away from

the fibre at this point, it is possible that the residual airflow caused an asymmetric

cooling. Several tests were performed without the fan, but this frequently led to the

upper silica piece slipping and as such it was not possible to produce reliable fibres for

comparison. Similarly, the burner was also turned off manually after the pulling cycle,

providing an asymmetric source of heat. Due to the rapidity of the pulling stage, it

was not possible to manually shut off both the power to the fan and the gas to the

burner in order to evaluate this effect properly.

Another possible source of the asymmetry was the variable angle and tension of

the silica rod. As the 1.5 mm diameter stock was too thin to clamp sufficiently tightly

without breaking, it was welded between two thicker pieces of silica, which were held

in the clamps permanently. Each time a fibre was pulled, a short piece of 1.5 mm rod

was welded to the upper thick silica piece. This was then heated with the electrolytic

torch until the newly welded piece loosened, and became vertical due to gravity. The

two arms of the pulling machine were then brought together, with the lower end of the

thin rod meeting the thicker silica. If not correctly aligned at this point, the upper

weld would have to be redone. Even when optimally aligned, a slight angle and tension

would be introduced to the rod on releasing the lower arm after the lower weld – see

Figure 4.4. Certainly, it was noted that particularly bad welds – with a visible angle

imparted to the thin silica stock – would lead to either heavily asymmetric fibres or
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even cause the fibre to break mid-pull. It seems that this method of clamping and

welding was the likely source of the fibre asymmetry.

Figure 4.4: Representation of a “bad weld”. The thinness of the silica stock used to create the fibres
caused a systematic uncertainty in the pulling process, leading to non-uniformity and non-repeatability
of the fibres.

The diameter of the fibres was determined by measuring their vertical bounce fre-

quencies and length, and relating this to the fibre thickness through the relation below3,

fvert =
1

2π

√
Y πr2

lm
, (4.1)

where Y is the Young’s modulus of the fibre material, fvert is the vertical bounce

frequency, l is the fibre length, m the mass suspended, and r the fibre radius.

The apparatus used for these measurements can be seen in Figure 4.5. Typically,

the fibres were found to have a vertical bounce mode of ∼ 22 Hz, corresponding to a

diameter of ∼ 120µm.

In summary: using the flame pulling machine – and bounce test rig – fused silica

suspension elements satisfying the design requirements were produced. Although some

fibres exhibited asymmetry in diameter and variability in length, these were easily

discarded in favour of more consistent examples.

3this work was carried out by Mr Nicolas Crouzet.
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Figure 4.5: Apparatus for “bounce testing” the silica fibres, to determine their average diameter.
Fibres were clamped at the upper stage (a), and attached to a free mass (representing the design
payload) at the lower end – b. A magnet attached to this lower mass was then excited by a coil (c),
driven by the voltage output of a signal generator. The frequency of maximum vertical response of
the system could then be measured by observing the trace on an oscilloscope of a flag moving past a
split-photodiode (d).
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4.2.3 Violin Modes and Fibre Coating

When using silica fibres as a suspension element, one must take account of the high

mechanical Q of their transverse violin modes. These modes form a slightly anharmonic

series: recall Equation 2.26

fn =
n

2l

√
T

ρlin

[
1 +

2

l

√
EI

T
+
EI

2T

(nπ
l

)2
]
, (4.2)

where n is the mode number, T is the load on the fibre, ρlin is the linear density, l

is the length of the fibre, E is the Young’s modulus and I is the moment of inertia. As

relatively long fibres are required (compared to, for example, the∼ 30 cm GEO600 silica

suspension elements) the violin modes will therefore occur at relatively low frequencies

for a given fibre diameter – see Figure 4.6 below.
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Figure 4.6: Relation between fibre thickness and violin resonances for a 57 cm fused silica fibre.

Given that fibre diameters of ∼ 100µm were used, violin resonances from ∼ 200 Hz

upwards could be expected. This is within the measurement band where we wish to

characterise the thermal noise due to the optic substrate and coating. The violin modes



4.2: Silica Fibre Production 79

can also be expected to have mechanical quality factors of the order of
Qpend

2
where

Qpend is the Q of the fundamental pendulum mode. As these transverse resonances are

both low loss and in the desired measurement range, they must be either damped or

controlled.

A technique used in the GEO600 suspension systems [35], is to selectively coat the

fibre surface at specific points – halfway and a quarter length along the fibre – with a

lossy material. This acts to damp the anti-nodes of the violin mode resonances, while

preserving the mechanical Q of the fundamental pendulum mode – required for low

pendulum thermal noise. The damped fibres used in the GEO600 detector show a

reduction in violin mode Q of a factor of ∼ 100 [67].

To achieve this, a coating jig was constructed where fibres could be loaded vertically

and clamped securely, before being laid horizontally and coated with a nitrocellulose

lacquer4 (pigment free commercial nail varnish) in the correct locations over ∼ 2 cm

lengths. A sliding magnifying glass and fixed metal rule were attached to the jig to

ensure repeatability. The fibre coating jig can be seen in Figure 4.7, and a coated test

fibre in Figure 4.8.

Figure 4.7: The fibre coating jig. Fibres were loaded with the jig in a vertical orientation and
clamped in place. The jig could then be placed horizontally allowing the fibres to be coated. Slots in
the fibre clamps allowed a metal rule to be screwed in place, and a sliding magnifying lens assembly
allowed detailed viewing of the coated areas during and after coating.

The coating was applied using a piece of silicone tubing, tapered at the application

end. The hollow tubing was partially filled with the lacquer, and could be gently

4A commercial epoxy (EPO-TEK 301[68]) was also tested but found to lack the appropriate vis-
cosity to reliably adhere to the fibres for the required curing time.
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squeezed to steadily release it onto the fibre surface. Care had to be taken to apply

successive applications relatively quickly (under one minute per area), as the coating

would start to set, leading to thin filaments breaking away when new layers were

applied. These trailing strands could potentially contact the fibre surface, causing

microcracks and a consequent degradation of the fibre’s strength.

4.3 Silica Suspension Installation

Once suitable fibres had been produced, the silica suspensions could be assembled and

installed in the measurement tank. The suspensions were first assembled in a jig, for the

purposes of welding the fibres in place and correctly balancing the system. Once welded

and finally balanced, the jig was then carefully lowered into the measurement tank

for installation, and then removed once the suspensions were secured. The assembly

process is summarised below:

• The silica masses were placed in their respective positions (see Figure 4.10, po-

sitions c and e) and secured on their front faces by small Teflon R© pieces that

were rotated into place, and on their flat sides by aluminium plates which held

the masses in the lateral direction.

• A pre-assembled long wire and clamp assembly (constructed on a separate jig)

was then attached; with the two clamps screwing into the topmost part of the

Figure 4.8: Detail of a test silica fibre, coated with damping material over three areas. Care had
to be taken to ensure that the coating was as homogenous as possible and did not form unwanted
globules – see the rightmost area.
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installation jig (Figure 4.10a), and the wire itself looping underneath the upper

silica mass. As the wire was slack in this condition, it was typically held with a

black wire-wrap (Figure 4.10b), to ensure that it didn’t interfere with either the

silica ears or – later in the installation process – the silica fibres. See Figure 4.1

for a schematic reference of the suspension layout.

• It was then possible to suspend the upper mass by lowering the platform it

was resting on – (Figure 4.10d). The suspension point of the jig could then be

moved forward, allowing the mass to exhibit any tilt imbalances without being

constrained by the jig. If any imbalance was observed at this point, it could be

coarsely corrected by slightly shifting the break-off point of the wire on the silica

break-off prism.

• With the installation jig in its secure position (that is, with neither mass free)

the silica fibres could then be welded. As the wire-loop for the upper suspension

stage passed through – and close to – the silica fibres (the distance between the

weld points on the ears was 13 mm), it was necessary to hold the wire away from

the weld area during welding. The procedure for welding the fibres was as follows:

Fibre welding

– One upper clamp was removed from the upper suspension point and attached

to a post (screwed into the same optical breadboard that the jig itself was

attached to) such that the wire was then horizontal with respect to the

suspension.

– A fibre was selected, carefully removed from its storage box and placed in

a vertical jig consisting of two long metal tweezers rigidly attached to an

aluminium bar. This held the fibre securely while welding.

– The fibre was welded quickly – merely enough to keep it in place – at the

upper ear position. This was then repeated at the lower ear.
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– When the fibre was securely attached to both ears, the welds could be im-

proved. This was done by heating the ear, and gently pushing the butt

of the fibre inwards with a silica tool piece, then thoroughly heating both

pieces and repeating the process. See Figure 4.11.

– Once the upper weld was satisfactory, the lower weld could be attended to

in a similar fashion.

– Typically at this point it was necessary to adjust the tension in the fibre. As

such the welding at the upper and lower ears was something of an iterative

process: completely finalising the weld meant that the butt of the silica

(i.e. the end of the fibre) became subsumed into the ear, and any further

adjustments would be difficult.

– This process was then repeated with the other fibre, after which the wire

could be replaced at its upper suspension point, and the welding process

repeated for the two fibres on the other side.

• Once all four fibres were welded satisfactorily to the ears, the lower mass could be

suspended from the upper mass point (Figure 4.10d) to observe any imbalances.

If present these imbalances could be corrected by adjusting the tension in the

fibres as described previously. A suspended optic can be seen in Figure 4.9.

• Now the system could be fully suspended, with both masses free. Again, at this

point any imbalances could be observed and corrected. It was seen that the lower

mass typically exhibited some tilt – this was largely corrected through bonding

steel washers to the upper mass. No extra masses could of course be bonded to the

lower optic, and at this point it was difficult to adjust the fibres further without

risking the loss of a fibre (and potentially its neighbouring fibre). The ETMTNE

suspension in particular exhibited a significant tilt, as the strong curvature of the

mirror surface caused a mass deficit on the front half of the optic.

• Once finally balanced, the suspension was secured (with the cantilever blades
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now in place) and transferred to the measurement tank where it was carefully

lowered into place. The roots of the cantilever blades could then be attached to

the upper frame section in the tank and the suspension released. In reality this

was a time consuming and risky process, as the blades could only be fully secured

when the upper mass was suspended. As such, an iterative routine of tightening

the blade’s screws, and lowering the upper mass, was performed. Additionally, it

was difficult to release the lower mass due to its depth in the tank, and the risk

of accidentally touching the silica fibres.

• Immediately after suspension in the tank, aluminium catchers were slid into place

underneath the lower masses, and the eddy-current damping and alignment units

placed behind the upper masses. These also served as rudimentary catchers for

the upper masses, while the eddy-current damping effect significantly reduced

the residual motions of the suspensions.

Figure 4.9: Detail of a suspended thermal noise cavity optic in the installation jig. Here the lower
platform of the jig has been lowered, suspending the test optic from the upper mass via the welded
silica fibres.



4.3: Silica Suspension Installation 84

The ETMTNE suspension was installed and aligned such that the return beam

returned to the input laser bench. The ITMTNE suspension followed, and the MU

suspension placed such that the return beam from the inboard optic exited through

the measurement tank viewport – recall Figure 3.4 for the internal tank layout. Note

that all the aluminium suspensions were installed prior to the silica assemblies to lessen

the risk of accidental damage. The MU and RM suspensions were moved to the end

of their respective ranges beforehand, and shifted back carefully afterwards.

4.3.1 Installation Challenges

Although the suspensions were successfully installed according to the processes out-

lined in Section 4.3, there were a number of setbacks, which may inform the design of

similar experiments.

The first installation attempt of the ETMTNE failed due to an excess roll present

on the upper mass that was not visible when suspended in the jig. On attempting

to correct for this, the upper mass violently snapped back into the kinks it had made

in its suspension wire. This could have been averted if cylindrical upper stages had

been used. To alleviate this as best as possible, the upper wire loop was subsequently

kept taught during welding and the damping/alignment units for the silica masses were

re-machined to allow for small roll offsets.

The second ETMTNE installation failed due to an excess of tilt in the system.

Initially, the installation jig functionality allowed the assembly to be suspended from

the uppermost point and the upper mass stage, but did not allow the suspension to

move forward. This effectively masked the level of tilt that was actually present in the

suspension, as the surface of the jig partially constrained the suspended optics. On

installation the system tilted dangerously and induced a slow bouncing motion which

quickly exacerbated the tilt further, causing a fibre to fail. To correct for this the jig

was altered to provide the facility to shift the suspension point forwards, allowing the

masses to tilt freely. It became apparent that stainless steel counterweights had to be
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Figure 4.10: A partially suspended and fully welded silica suspension, assembled in its installation
jig. The jig allowed both the upper and lower masses to be suspended so that any imbalances in the
suspension could be corrected. In this figure the lower stage only is suspended – the wire suspending
the upper stage (which is slack when the upper stage is not suspended) is constrained by a wire-wrap
(b) to stop it interfering with the silica ears or fibres.
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Figure 4.11: Test welding a silica fibre to an example ear. The fibre is first held in a tweezer jig, and
manipulated using silica pieces as tools. The inset shows an example ear and the different stages of
fibre welding: the area circled is considered monolithic, the area immediately below this is unfinished,
and the near fibre is only attached via a placeholder weld.
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bonded to the front side of the upper masses to counteract the mass of the magnets

bonded to their reverse sides.

The silicate bonding of the ears to the upper masses was also shown to be suspect.

On the third ETMTNE installation attempt, a bond failed while a fibre was being

welded to the associated ear. Notably, this weld location had been thermally cycled

several times due to the previous aborted installation attempts. The side of the mass

was then tested on a Fizeau interferometer to quantify the flatness, but it was not

possible to measure reliably due to the excess residue localised around the ear – see

Figure 4.12.

Figure 4.12: Attempted flatness measurement of the area around a failed silicate bond. The ear
area is clearly visible, as is the contact region the bond had with the mass.

An identical spare mass (with no ears or break-off prisms bonded to it) was mea-

sured however, and shown to have one side polished flat to the required λ/10 level

(where λ = 633 nm), with the other side only ∼ λ/3 (see Figure 4.13), indicating that

the vendor had neglected to superpolish both sides. Additionally, on close inspection

another fully assembled upper mass exhibited a visible gap between the ear and the

mass surface: this ear failed immediately on welding – see Figure 4.14.

Although the flatness requirements for silicate bonding are well known, this expe-

rience emphasises the need for stringent testing and characterisation of surfaces before

committing to a bond.
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Figure 4.13: Interferometry measurement of the relative flatness of two sides of an upper stage
mass. One side (the figure to the right) is seen to be polished to the requisite λ/10, where the other
side is only ∼ λ/3.

Figure 4.14: A failed silicate bond. The circled area shows a clear air gap between the ear and the
surface of the silica mass. This ear immediately failed on attempting to weld a fibre.
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4.3.2 Metal Suspensions

Recall from Section 3.2.2 that there were five non-silica suspensions in the measure-

ment tank: the reaction mass, the mounting unit, the beam-splitter, a mode-matching

optic and a steering optic. The aluminium suspensions resembled the silica ones in

most regards: the differences being that they were all-metal, had central holes cut in

the lower masses for mounting standard mirror optics, they had wire and clamp as-

semblies instead of silica elements and they were suspended from simple plates bolted

to the top of the frame in the tank, rather than from cantilever blades. The reaction

mass suspension was essentially a hybrid of the two designs, being all aluminium, but

suspended from cantilever blades, with the lower mass machined with recesses for coils

(to provide the feedback to the ETMTNE). These suspensions were trivially installed.

A schematic can be seen in Figure 4.15.

silica metal
upper stage mass 360 g 348 g
lower stage mass 370 g / 350 g 382 g

upper stage length 38.5 cm 38.5 cm
lower stage length 58.5 cm 56 cm

upper stage dimensions 69.3× 37× 62 mm 69.3× 37× 62 mm
lower stage dimensions 69.3(76.2)× 38.1 mm 69.3(76.2)× 38.1 mm

Table 4.1: Properties of the thermal noise experiment suspensions. Note that the ETMTNE lower
mass was ∼ 20 g lighter due to the mirror curvature, and that the masses quoted are with additions
such as ears or clamps. The lower stage length for the silica suspension given was the distance from
the top of the upper ear, to the bottom edge of the lower ear. The values in brackets represent the
diameter of the cylindrical masses, as opposed to the distance between the flat sides.

The upper stages of all the suspensions had their fundamental pendulum mode

resonance damped via a combined damping and alignment unit, mounted behind the

respective masses5. The units consisted of an L-shaped bracket (which also served

as a rudimentary catcher for the upper stages) holding a vertical plate, upon which

four copper coil-formers were attached. These copper pieces were hollow and designed

to allow the 10 mm wide magnets bonded to the masses to pass inside with 1 mm

total clearance. They also served as formers for enameled wire coils which served as

5Note that the damping/alignment units were mounted in front of the ETMTNE and ITMTNE

due to the close proximity of the other suspensions.
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Figure 4.15: SolidWorks renders [58] of the TNE aluminium suspensions. The reaction mass
(RM) suspension is shown to the left, suspended from cantilever blades and sporting coils attached
to the lower mass. The BS, S1 and MM suspensions followed the design of the central diagram.
The MU suspension had a markedly different lower stage – detailed here at the right – comprising
a polarising beam-splitter (grey), quarter wave-plate (blue) and mirror (purple) to act as an optical
circulator.
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non-invasive alignment controls for the suspensions: see Figure 4.16.

Figure 4.16: The silica upper stages of the thermal noise test cavity. The eddy-current damping
and alignment units can be seen mounted behind the upper silica stages. These provided alignment
control and damping of the fundamental suspension modes.

The alignment coils were soldered to 10-pin connectors, which attached to ribbon

cables that exited the tank through one of two feedthroughs. Each coil could be ad-

dressed individually, but to simplify the alignment control they were wired in pairs with

opposing polarity: each suspension could then be adjusted in both tilt and rotational

degrees of freedom. This was achieved with simple potentiometer and op-amp circuits,

applying adjustable voltages across the coils – see Appendix B.1.

The nominal clearance of 1 mm between the magnets and the copper caused some

difficulty in the installation of the units. Although the plate holding the copper formers

was free to be adjusted in tilt, and the main bracket could be easily rotated, it was

difficult to judge visually whether the magnets were contacting the inner sides of the

copper formers.

Additionally, on aligning the individual suspensions, the clearance of the magnets

with respect to the copper formers would change, occasionally leading to contact, and

a subsequent manual rotation of the suspension and damper was required to correct
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the effect. It was necessary to adjust the position of the dampers several times on all

suspensions before proper alignment and non-contact was achieved.

These installation difficulites were exacerbated with the silica systems, for two rea-

sons. Firstly, it was not desirable to move the silica systems manually once installed,

and secondly, it became apparent that the cantilevered systems exhibited slight offsets

in roll – making installation of the regular dampers impossible without causing magnet

contact. It was then necessary to retrofit the damper and alignment units with a roll

adjustment feature, visible as the cross-shaped structure on the rear of the devices as

shown in Figure 4.16.

4.4 Laser Frequency Stabilisation

As discussed in Section 3.2.1, it was necessary to stabilise the frequency of the mea-

surement laser. This enabled the displacement noise of the thermal noise test cavity –

and specifically the single test optic – to dominate the measurement.

4.4.1 Requirements

The laser frequency stabilisation was achieved through locking the frequency of the 2 W

Nd:YAG laser to the length of a long (with respect to the thermal noise measurement

cavity) optical cavity system. We wish to measure thermal noise of the order of ∼
10−17 m/

√
Hz in a 10 cm test cavity, with the laser stabilised to the length of a 9.78 m

reference cavity. It was therefore decided to aim for a level of frequency stability of,

or better than, ∼ 1.4×10−4 Hz/
√

Hz. This level of frequency stabilisation has an

equivalent displacement noise in the test cavity of 5×10−20 m/
√

Hz: some way below

the predicted thermally induced displacement noise signal, as depicted in Figure 3.7.

4.4.2 Feedback Scheme

As outlined in Section 3.2.2, the feedback scheme for the stabilisation of the laser

frequency was achieved via a standard Pound-Drever-Hall scheme, where phase modu-
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lation sidebands are imposed on the laser light by an EOM before entering the system.

These sidebands, displaced from the main carrier light by 46.526 MHz (see Section 5.3.2

for discussion on the choice of modulation frequencies) then interfere with the phase

shifted carrier light returning from the cavity, creating a beat signal that is then de-

tected on a photodiode (similar to the one used for the TNE measurement, detailed in

Appendix B.3) and demodulated by a mixer, thus generating a suitable locking signal

– see Figure 3.5.

In addition to the photodiode/mixer combination, the sensing scheme also contained

a signal generator and power amplifier to provide the signal to the EOM, and a low-pass

filter and amplifier to send the demodulated output signal to a control room above the

interferometer lab, where the signal generators and frequency stabilisation servo were

housed.

4.4.3 Servo Design & Performance

The frequency stabilisation servo was required to provide the necessary level of fre-

quency stability over at least the measurement range of the thermal noise experiment

and operate stably, keeping the reference cavity locked (and thus the frequency of the

laser suitably stable) for indefinite periods of time, to enable easy commissioning of

the thermal noise cavity locking scheme.

The servo acted over three separate paths, governing different feedback frequency

regimes. Low frequency feedback (< 1 Hz) was governed by coil/magnet feedback to

the position of the ETM mirror – the end mirror of the reference arm cavity. At

high frequencies (> 9 kHz) the feedback was governed by an EOM on the laser bench.

Between these two regions, a PZT mounted on the laser crystal was the dominant

feedback element. The feedback servo (see Appendix B.6 for further details) was

designed to provide both a high open-loop gain (and thus high suppression of frequency

noise) over a wide band – with the high frequency feedback element (the EOM) having

a unity gain frequency at ≥ 100 kHz – and stability according to the criteria outlined in

Section 2.3.2, while taking into account the frequency responses of the arm cavity and
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the feedback elements. A diagram of the laser frequency stabilisation circuit can be

seen in Figure B.9, and swept-sine responses of the different feedback paths (compared

to modelled outputs) in Figure 4.17.

Assuming that the free-running frequency noise from the laser is approximately

∼ 104 Hz/
√

Hz at 1 Hz [57] and decreases proportionally with frequency, it is possible

to estimate the closed-loop frequency noise of the laser when the arm cavity is held

locked by the frequency stabilisation servo – see Figure 4.18. The modelled close-loop

frequency noise is seen to meet the requirement from Section 4.4.1 above.

4.5 Thermal Noise Measurement

Recalling Section 3.2.2 and Figure 3.5, the full measurement scheme of the thermal

noise experiment consists of the laser frequency stabilisation path discussed above,

and another feedback loop. This feeds back to the position of the ETMTNE, thus

locking the thermal noise test cavity using the light stabilised from the long reference

cavity, where the error-point signal for the position feedback can then be interpreted

as the displacement spectrum of the cavity; and therefore the thermal noise associated

with the ITMTNE, as discussed throughout Chapter 3.

Through locking the cavity with a low unity gain frequency (ideally ∼ 150 Hz) and

measuring the error-point, the effect of noise sources due to the feedback process can

be ignored, and the noise due to the sensing then dominates. This of course imposes

the restriction that the unity gain frequency be low, which can complicate the design

and operation of the feedback servo, especially when violin resonances are expected to

lie outside the nominal control bandwidth.

4.5.1 Measurement Scheme

The specific layout of the TNE cavity locking and measurement scheme can be seen

in Figure 4.19. The error signal required to lock the cavity is produced in a similar

way to that for the arm cavity: phase modulation sidebands at 10 MHz (an arbitrary
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Figure 4.17: Gain and phase responses of the frequency stabilisation servo for both the EOM and
PZT paths. The measured responses are compared to those from the circuit modelling software LISO
[69].
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the frequency stabilisation servo. Note that although this estimate includes the frequency response of
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frequency chosen simply to lie outside the cavity bandwidth) were imposed by an

EOM on the optical bench. The return light from the thermal noise cavity was ejected

through a viewport in the vacuum tank, and a demodulated error signal produced

by a TFM-3H mixer, local oscillator from an Agilent 33120A signal generator, and a

resonant photodiode (see Appendix B.3) setup on a small optical bench, attached to

the tank. This signal (along with a DC output from the photodiode) was then passed to

a differential send/receive chain (to minimise electronic pick-up – see Appendix B.4),

and into a dSPACE controller box, situated several metres away.

The dSPACE system comprised an analogue-to-digital conversion, a programmable

digital filter algorithm, and a digital-to-analogue conversion on exiting the box. The

flexible digital filtering of the dSPACE system was chosen to allow different servo

models to be prototyped and tested quickly and easily. As the presence of several

strong violin modes in the measurement band was anticipated, a relatively complex

servo design could be expected and as such, the use of a flexible and easily adaptable

feedback system was advantageous6. Sequences of filters could be defined in a simple

MATLAB R© script, before being compiled and uploaded. It also featured a graphical

control environment, where the input and output signals could be viewed remotely.

Additionally, it was straightforward to arrange triggered and timed events, e.g. the

servo could be set to activate when the DC light had dropped below a certain threshold,

or extra integrators at low frequency could be set to activate after several seconds of

lock, to increase the gain at low frequencies.

As the dSPACE system operates digitally, it requires conversion to and from the

digital domain. As such, whitening (and corresponding de-whitening) filters were used

to combat the effects of quantisation noise – see Appendix B.5.

On exiting the dSPACE box, the feedback signal was de-whitened and then passed

through another differential sending chain to a coil-driver box (see Appendix B.2)

which then provided the feedback signal to the cavity by inducing currents in the coils

mounted on the reaction mass, behind the ETMTNE.

6the dSPACE controller was written by Dr Borja Sorazu.
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Figure 4.19: Control schematic for the thermal noise measurement tank. A signal is detected on
a resonant photodiode before being demodulated and sent through a differential sending chain to a
digital filter. On exiting this filter the feedback signal is sent to a coil-driver unit, which drives a
current through the feedback coils mounted on the RM .

Alignment of the optics in the tank was achieved using manually tunable poten-

tiometers to control the current in the alignment coils, mounted behind the upper mass

stages – see Figure 4.16. A diagram for this circuit can be see in Figure B.1.

4.6 Commissioning & Results

4.6.1 Miscellaneous Measurements

Using the laser frequency stabilisation scheme as discussed in Section 4.4, and evac-

uating the interferometer system to a pressure of ∼ 10−5 torr, it was possible to lock

the main arm cavity – for several hours at a time – with a fringe visibility (defined in

Section 3.2.3) of ∼ 0.13.

Optimised mode-matching was achieved through the adjustment of two converging

lenses (mounted on translational stages) on the optical bench, and the measurement of

the beam size using a commercial beam profiler. For the arm cavity, the fraction of the



4.6: Commissioning & Results 99

incident power matched into the cavity was determined to be M = 0.94. Similarly, the

mode-matching into the thermal noise cavity was performed by adjusting the position

of the MM suspension optic and measuring the beam size and position, and was

determined to be MTNE = 0.95. Note that this measurement was performed before

the silica optics were in place, and the beam waist position was optimised to where the

reflective face of the ITMTNE would be once installed.

Additionally, the modulation indices of the sidebands were determined by examin-

ing the output of a scanning Fabry-Perot cavity on the optical bench – see Figure 4.20.

Comparing the relative power in the sidebands to that in the carrier allowed the mod-

ulation indices to be measured as m46.526 = 0.73 and m10 = 0.67 respectively for the

arm cavity and thermal noise cavity control sidebands.

The power levels incident on the photodiodes, and the main cavity were measured

using a commercial laser power meter, and found to be PTNE ' 70 mW, PAC ' 50 mW

and Pin ' 800 mW for the power incident on the TNE photodiode, the AC photodiode

and the input power to the system respectively. All of these parameters are required to

estimate the sensitivity of the measurement to the desired thermal noise fluctuation,

as discussed in Chapter 3.
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Figure 4.20: A scanning cavity measurement of the frequency spectrum of the light. The carrier,
10 MHz and 46.526 MHz sideband fields are clearly visible. The respective modulation indices are
m46.526 = 0.73 and m10 = 0.67.
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4.6.2 Test Cavity Operation

Initial locking of the thermal noise test cavity was achieved using a simple analogue

servo – a differentiator and integrator setup giving a linear frequency response between

10 Hz and 1 kHz. This gain profile, when combined with the frequency response of the

suspended optic, gives a 1
f

slope over a wide frequency range. This allowed the cavity

to lock for ∼ 10 s. The response of this prototype servo was then easily duplicated

digitally using the dSPACE system.

Using the locking scheme and dSPACE system described, it was possible to lock

the thermal noise cavity for tens of minutes with a fringe visibility of ∼ 0.1.

With both cavities locking reliably, it was then possible to perform a displacement

noise measurement.

The open and closed-loop transfer functions of the thermal noise cavity were first

characterised by injecting a swept-sine signal into the alternative input of the first

send/receive stage, and measuring at the alternative output of the second stage. These

results (see Figure 4.21 and Figure 4.22) show that the system had a unity gain fre-

quency of ∼ 400 Hz, but that it exhibited significant noise below 100 Hz: specifically

at 30 Hz and 100 Hz.

Similarly, by injecting a swept-sine source into the error-point input of the frequency

stabilisation servo, a transfer function of the reference cavity was also measured – see

Figure 4.23. Although this followed the approximate shape of the modelled response,

the overall gain was attenuated – reaching the unity gain frequency at ∼ 8 kHz.

A calibrated measurement of the displacement sensitvity of the thermal noise cavity

was then performed.

This was achieved by injecting a swept-sine signal at the point a in Figure 4.24.

By taking the ratio of the signal spectra obtained at points c and b it was possible to

construct a calibration curve (Γ); essentially characterising the response of the thermal

noise error-point to signals injected onto the PZT at each frequency. The calibrated
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Figure 4.21: Open and closed-loop gain transfer functions of the locked thermal noise test cavity.
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Figure 4.22: Open and closed-loop phase transfer functions of the locked thermal noise test cavity.
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Figure 4.23: Measured and modelled open-loop response of the AC. The gain of the modelled
response has been scaled appropriately.

Figure 4.24: Schematic of the calibration scheme for the thermal noise cavity displacement spectra
measurement. Signals could be injected into the frequency stabilisation servo for the main arm
cavity, and the servo output and thermal noise error-point compared to give a calibrated displacement
sensitivity for the thermal noise experiment.
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displacement spectral density for any measurement was then,

∆L =
L2

f
ΓγΠξc, (4.3)

where γ is the ratio between two corresponding calibration peaks (providing a

scaling factor for the calibration curve Γ for each measurement), Π is the PZT response

in V/
√

Hz, L2 is the length of the test cavity and f the frequency of the laser and ξc

is the measured error-point of the TNE system.

Using this method, a calibrated displacement spectra was obtained for the thermal

noise cavity, along with an equivalent noise spectrum due to the excess laser frequency

noise – or more accurately, the noise in the PZT path measured directly at point b.

These are plotted in Figure 4.25 along with measurements of the analyser noise, and

the “dark noise” present when the electronics were active, but with no operational

feedback applied. Although the measurements were seen to be above both analyser

noise and electronic dark noise, the spurious peaks in the dark noise spectrum indicate

the presence of electronic interference. The low unity gain frequency of the laser sta-

bilisation scheme also implies that the goal for the stabilisation of the laser frequency

may not have been achieved at the time of the measurement. Additionally, it was

subsequently found that the power supply for the laser was faulty, causing excess noise

at 100 Hz and multiples thereof, although this is not thought to have limited these

measurements.

4.7 Conclusions

A suitable facility for the measurement of test-mass mirror and coating thermal noise

was constructed in the IGR JIF facility. All the necessary systems required to ap-

propriately isolate the measurement optics were successfully installed, included two

quasi-monolithic fused silica suspensions – see Figure 4.26. Initial commissioning was

performed, and while both optical cavities were capable of locking for extended peri-

ods, the performance of the system was seen to be limited by unknown electronic noise
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Figure 4.25: Measured calibrated displacement spectrum of the thermal noise cavity, along with
measurements of the PZT noise, analyser noise, dark noise, and the design sensitivity of the system,
obtained from measured parameters.
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coupling into the laser frequency feedback path.

Figure 4.26: The lower stages of the thermal noise measurement cavity, suspended in the tank. The
reaction mass can be seen behind the ITMTNE .

However, this should not present an insurmountable difficulty – an improvement in

the laser frequency stabilisation, eradication of all spurious electronic noise and proper

tailoring of the feedback loop via the dSPACE system should provide a commensurate

improvement in the sensitivity of the thermal noise experiment, allowing coating and

substrate thermal noise effects to be directly measured.

One future experiment already planned is to evaluate the effect of silicate bonding

on the thermal noise spectrum of an optic – see Figure 4.27. As future detectors may

employ test-mass mirrors constructed as a composite of smaller masses, silicate bonded

together, this as yet unmeasured potential noise source will require investigation.
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Figure 4.27: A replacement thermal noise experiment test optic. Here the optic is shown in two
pieces, prior to silicate bonding. This will create a composite mass with the lossy bond layer close to
the measurement beam, allowing the effect of the bonding process on the thermal noise spectrum to
be directly quantified.



Chapter 5

Control of a Three-Mirror Coupled

Cavity

5.1 Introduction & Motivation

Any interferometric topology formed from more than two partially transmissive and

reflective optics can be considered a coupled cavity system, where the behaviour of one

part of the system can influence the state of another. Gravitational wave interferom-

eters are typically comprised of numerous coupled cavities (depending on the specific

detector topology); where the distinct cavities are coupled through the laser light, the

nature of the resonant condition in each cavity, and (potentially) the opto-mechanical

effect of the light’s radiation pressure on the nominally free mirror masses.

An optical cavity (or combinations thereof) in a detector often represents an im-

portant degree of freedom that gives – or combines to form – the signal output of

the detector. As any effective detector must be held at its operating point, all of the
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degrees of freedom within the coupled optical system must be controlled.

In Section 2.3.1 the concept of using a single set of phase modulation sidebands to

control a single optical cavity was introduced, and subsequently implemented in the

experiments detailed in Chapter 3 and Chapter 4.

Current, and planned second generation gravitational wave interferometers, use

techniques such as multiple sets of phase modulation sidebands to effectively control all

relevant length degrees of freedom [70]1. Methods such as gain hierarchy are employed,

where inter-cavity coupling is suppressed by the relative gains of the control servos.

However, such systems can require extensive effort to be expended in the control system

design, in order to de-couple the various length sensing signals.

Additionally, as the circulating light power increases in future detectors (∼ 1 MW

in Advanced LIGO), the need to de-couple the control signals of different parts of the

interferometer becomes more critical. An increase in circulating power brings with

it an increase in the radiation pressure exerted on the mirrors – pushing them away

from their resonant rest positions – resulting in a rigid optical spring effect that can

dominate the mirror motion and complicate any control system. These optical spring

effects have already been seen in large-scale interferometers [71].

The goal of any de-coupling scheme is to diagonalise the relevant control matrix.

This matrix represents the degree to which the sensing schemes for the separate degrees

of freedom are sensitive to each other. A representation of a control matrix for two

generic coupled degrees of freedom (ΦA and ΦB) and their respective error signals (A

and B) is shown in Table 5.1.

Ideally, the (normalised) diagonal components will equal unity, whereas the off-

diagonal components will be zero – signifying no sensitivity to the other degrees of

freedom, and an orthoganalised control scheme. In the case of a gravitational wave

1Angular degrees of freedom (the mutual alignment between the mirror faces) are typically con-
trolled with differential wavefront sensing techniques.
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ΦA ΦB

A dA
dΦA

dA
dΦB

B dB
dΦA

dB
dΦB

Table 5.1: A generic control matrix for two variables ΦA and ΦB and their respective error signals
– A and B.

interferometer, the components ΦA and ΦB would typically represent an optical phase

or physical cavity length, with A and B then being the demodulated error signals used

to hold these quantities close to their respective operating points.

To test control systems and de-coupling schemes, it is desirable to set up a simplified

system as a proof of concept. The simplest relevant coupled optical system consists

of three freely suspended mirrors, forming a single interferometer arm coupled to a

recycling cavity – see Figure 5.1 – hereafter termed a three-mirror coupled cavity.

Figure 5.1: A full-scale gravitational wave interferometer consists of a sequence of coupled optical
cavities. To simplify the study of appropriate control schemes, a simplified three-mirror coupled cavity
system was used; effectively representing a single interferometer arm (AC) with a power recycling
cavity (PRC).
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5.2 Experimental Layout

Utilising the JIF interferometer prototype in its power recycling configuration (with a

reflective optic in the PRM position, in place of the blank optic used for the experiments

in Chapter 4), a three-mirror coupled cavity system was formed comprising the power

recycling mirror (PRM), inboard test-mass (ITM) and end test-mass (ETM)2: recall

Figure 3.3 and Table 3.1 for an overview of the system’s layout and optical properties,

and see Figure 5.2 for a schematic of the experimental setup.

Figure 5.2: The three-mirror coupled cavity experiment setup. A short (5.16 m) power recycling
cavity and a long 9.78 m arm cavity were formed by three suspended mirrors. One electro-optic
modulator (EOM) forms part of the laser frequency stabilisation scheme, while three more provide
modulation sidebands for the length sensing scheme.

Three electro-optic modulators generated modulation sidebands for the control of

the system: EOM1 (with reference to Figure 5.2) generated modulation components

at 14.525 MHz, EOM2 at 10 MHz and EOM3 at 46.526 MHz respectively. The control

scheme and choice of frequencies is detailed further in Section 5.3.

The return light from the three-mirror coupled cavity was separated by a Faraday

isolator in the beam path, and directed towards two resonant InGaAs photodiodes,

similar to the one detailed in Appendix B.3. In conjunction with TFM-3H mixers,

local oscillator signals and appropriate low-pass filtering, these photodiodes provided

the demodulated error signals for both constituent cavities. The 46.526 MHz modu-

2Additionally, two steering mirrors were present within the PRC to direct the light around the
folded interferometer arm.
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lation frequency was provided by an Agilent 8648A signal generator, while the other

frequencies were generated by Agilent 33120A models.

The AC was controlled through feedback to the laser frequency over three paths,

similarly to the method described in Chapter 3 and Chapter 4. Here however, the

low frequency feedback was governed by the temperature control of the laser crystal,

controlled through a low frequency integrator circuit, acting below ∼ 0.6 Hz. Addition-

ally, some features in the electronic control servo for the laser (see Appendix B.6) were

switched to allow for the higher effective finesse (and therefore lower cavity bandwidth)

of the coupled system – see Figure 5.3 and Figure 5.4 for the optical transfer functions

of the standalone arm cavity and the three-mirror coupled system respectively. The

error signal for the control of this cavity was derived using the standard PDH method

of imposing modulation sidebands (at 46.526 MHz) and using a demodulated signal as

the error-point, as detailed in Chapter 4.
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Figure 5.3: Optical transfer function for the arm cavity: optical gain is shown in red, and phase in
green.

The power recycling cavity was controlled by feeding back to the position of the

PRM, through a coil/magnet actuator system designed to operate up to a unity gain

frequency of ∼ 500 Hz. The error signal for this feedback path was derived from the

demodulation of the beat between the 10 MHz sidebands and the 14.525 MHz sidebands,
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Figure 5.4: Optical transfer function for the three-mirror coupled cavity: optical gain is shown in
red, and phase in green.

with the local oscillator signal for this process provided by a separate signal generator

(phase-locked to the 10 MHz oscillator) operating at the beat frequency – 4.525 MHz.

The control scheme and choice of frequencies is covered in more detail in Section 5.3.

5.3 Control Scheme

5.3.1 Overview

As gravitational wave interferometers become more complex, it becomes necessary to

increase the complexity of their control systems. As single cavities can be controlled

by PDH sensing techniques, it is natural to extend these methods when dealing with

multiple cavities; employing perhaps separate modulation frequencies for each cavity

to be controlled.

For a single cavity, the error signal is constructed from the interference between the

carrier light – which exhibits a small relative phase shift on returning from a cavity

that has undergone a disturbance – and a set of static (with respect to the carrier)

phase modulation sidebands: see Section 2.3.1. A suitable set of signals for controlling

a coupled cavity system can be constructed from a superposition of any set of such
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“static” and “sensitive” components. Coupling effects arise when two or more separate

length sensing schemes share common sensing components.

To de-couple the sensing and control scheme for the three-mirror coupled cavity,

the following system was employed:

An amplitude modulated sideband field (at 14.525 MHz) was chosen to be resonant

in the power recycling cavity alone, thus removing any common dependence on the

carrier light phase. The PRC length control signal was then derived from the interfer-

ence of this field with a set of 10 MHz phase modulated sidebands, that were resonant

in neither the arm or power recycling cavities.

Using a phase modulated sideband field at the same frequency generated an un-

suitable control signal, offset from zero when far from a resonance, and without the

desired bi-polarity around the operating point – see Figure 5.5.

Figure 5.5: Modelled PRC error signal using phase modulated sidebands at 14.525 MHz. A mini-
mum, rather than a zero-crossing, appears at the operating point.

The 14.525 MHz amplitude modulated component could be adjusted to be either a

pair of amplitude modulation sidebands, or a single (upper or lower) sideband where

appropriate, using a novel modulation setup – detailed in Section 5.4.

The positions of the key modulation frequencies with respect to the cavity free

spectral ranges, and each other, can be seen in Figure 5.6. The central carrier compo-
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nent is seen to be resonant in the arm cavity, while its control sidebands lie outside the

linewidths of both cavities. Simultaneously, the 14.525 MHz field is seen to be resonant

in the power recycling cavity.
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Figure 5.6: The resonant features of the three-mirror coupled cavity experiment. The free spectral
ranges of the main arm cavity (solid black) and the power recylcing cavity (dashed black) are shown
with the carrier position shown in blue, 14.525 MHz sidebands in green and 46.526 MHz sidebands in
red. The carrier is seen to be resonant in the AC while being anti-resonant in the PRC – in which
the amplitude modulated components are resonant.

5.3.2 Modulation Frequencies

In addition to the restrictions imposed by the positions of the respective cavity res-

onances, the modulation frequencies were required to fulfill certain criteria. The de-

modulated error signals were required to be zero at the desired condition (when the

carrier was resonant in the arm cavity), and the frequencies were required to be kept

relatively low (≤ 100 MHz) to ease the design and construction of the associated elec-

tronics. They were also required to not be direct multiples of each other, to minimise

any adverse coupling between signal harmonics.

A model of the system was written using the frequency domain interferometer sim-
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ulation software FINESSE [53], which is capable of simulating error signals, transfer

functions and light powers for arbitrary combinations of typical optical and electrical

interferometer components. Using the FINESSE model of the system, it was clear

that any modulation frequency suitably removed from the carrier resonance – or a cav-

ity free spectral range – would provide a suitable demodulated control signal for the

arm cavity.

Initially the modelling was performed using macroscopic cavity lengths that later

proved incorrect, namely 5.35 m and 9.67 m for the PRC and AC respectively. Using

these lengths the modulation frequency 46.526 MHz was chosen for the arm cavity

control, as it fulfills the criteria outlined above, and it was initially thought that this

frequency would provide an optimal control signal gradient. The modelled demodulated

error signal around this frequency region is shown in Figure 5.7.3 4
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Figure 5.7: Modelled error signal for the arm cavity.

Similarly, the modulation frequency 13.937 MHz was initially chosen to provide the

control signal for the power recycling cavity, in conjunction with the 10 MHz modula-

tion field, whose frequency was chosen effectively arbitrarily on the condition that it

3The error signal is shown against the cavity tuning in degrees, which is equivalent to δl
(

360
λ

)
,

where δl is a change in the cavity length and λ is the laser wavelength.
4Modulation indices of m = 0.3 (for all sidebands) are used for these simulations.
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was non-resonant in either cavity.

The modulation frequency for the resonant field in the power recycling cavity is

equivalent to half the cavity’s free spectral range, as a consequence of the need to

have the carrier simultaneously anti-resonant. A simulated error signal for the power

recycling cavity can be seen in Figure 5.8.
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Figure 5.8: Modelled error signal for the power recycling cavity.

On correcting the erroneous lengths, subsequent remodelling indicated that the

arm cavity control signal was relatively insensitive to changes in the arm length – see

Figure 5.9. As such, the modulation frequency was not changed.

The gradient of the control signal for the power recycling cavity however was seen

to vary significantly with the length of the cavity – see Figure 5.10. To compensate for

this, the modulation frequency was changed to 14.525 MHz, and the resonant circuit

that coupled electrical power to the electro-optic modulator (see Appendix B.7) was

retuned accordingly.

The different length dependencies of the two signals can be understood simply by

considering that the arm cavity control sidebands need only lie outside the arm cavity

linewidth, whereas the sideband field that provides the control signal for the power
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Figure 5.9: The gradient of the AC error signal as a function of the cavity length, keeping the
modulation frequency constant at 46.526 MHz. Large changes in the cavity length have relatively
little effect on the gradient of the error signal.
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Figure 5.10: The gradient of the PRC error signal as a function of the cavity length, keeping the
modulation frequency constant at 13.937 MHz.
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recycling cavity must lie within the PRC linewidth. Thus any change in macroscopic

cavity length (and hence free spectral range) will have a greater impact on the power

recycling cavity signal.

Using the final, corrected, lengths and modulation frequencies for the system, it

was possible to construct a graphical representation of the de-coupled control matrix,

by plotting the respective error signals against simulated motion in either part of the

coupled cavity system. This can be seen in Figure 5.11 to Figure 5.14; the control

signals exhibit bi-polar responses to their respective degrees of freedom, and minimal

responses to each other. The model control matrix is then given by the (normalised)

gradients – taken at the zero crossing – of these four signals.
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Figure 5.11: PRC error signal response to motion
of the PRM.
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Figure 5.12: PRC error signal response to motion
of the ITM.

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 89  89.5  90  90.5  91

AC
 e

rro
r s

ig
na

l /
 a

rb

PRC / deg

 

Figure 5.13: AC error signal response to motion
of the PRM.
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Figure 5.14: AC error signal response to motion
of the ETM.
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5.4 Sideband Generation

In Section 5.3 it was shown that an amplitude modulated component would provide

a suitable error signal for a de-coupled three mirror system. Amplitude modulation

sidebands are typically generated by combining two phase modulated beams, requiring

the use of two separate electro-optic modulators. Here, a novel, single modulator

system was used, which was also capable of generating single sideband modulation,

where either the upper or lower modulation sideband alone was present.

5.4.1 Background

The polarisation state of laser light can be passively manipulated through the use of

optical wave-plates. These are typically bi-refringent optical elements, that exhibit two

possible propagation axes with different refractive indices – termed the ordinary and

extraordinary axes5. For a linearly polarised input, rotating the wave-plate around

the optical axis alters the proportion of the incident light that is polarised along each

orthogonal crystal axis.

As each component polarised along the two axes will experience a different phase

retardation due to the difference in refractive indices, cutting the wave-plate to a spe-

cific thickness ensures that the light exiting the wave-plate will be composed from two

light fields with a fixed relative phase lag. The thickness of the waveplate determines

the phase difference accrued, and the rotation angle of the wave-plate determines the

relative proportions of these two fields.

Two common forms of wave-plate are the quarter wave-plate and the half wave-

plate. The former retards one propagating component (with respect to the other) by a

phase equivalent to a quarter of a wavelength. At the specific orientation angle where

the amount of light polarised along the ordinary and extraordinary axes are equal, the

output light will be circularly polarised. If the wave-plate is aligned such that all the

5These are also sometimes referred to as slow and fast axes, where the lower refractive index
indicates the fast axis.
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light is polarised along either the ordinary or extra-ordinary axis, the output will be

linearly polarised. Between these two conditions the output light will exhibit elliptical

polarisation. The half wave-plate functions similarly, retarding one component by a

phase equivalent to half the wavelength. On recombining at the output face of the

optic, the orthogonal components combine to form a light field with a polarisation

rotated with respect to the input field – equal to twice the angle of the rotation of the

wave-plate.

An electro-optic phase modulator is an active electrical component (often a lithium

niobate – LiNbO3 – crystal), which operates by retarding the phase of the light passing

through it; the retardation being proportional to an applied (often high frequency)

voltage. This effect acts to retard the phase of the light polarised only in the actuation

plane of the crystal, and the input light is set to be polarised along this plane before

entering the modulator, thus creating phase modulation sidebands. By rotating the

modulator with respect to the optical axis, the applied phase modulation sidebands

are only applied to the carrier component that is polarised along the actuation axis.

In general the modulator now acts as a voltage controllable wave-plate with a fixed

rotation angle, and can in principle be made to mimic either a quarter wave-plate or

half wave-plate by applying the correct voltage at DC. See Figure 5.15 for a schematic

of the modulator layout.

Figure 5.15: The flexible optical modulation setup. Linearly polarised light is phase modulated
along one axis as it passes through a rotated phase modulator. Two wave-plates and an output
polariser then allow selected components of the modulated light to pass through to the system.
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5.4.2 Modulation Process

Light entering the system is first linearly polarised (if it is not already so) by a polarising

beam-splitter cube, before passing through the rotated modulator. As the modulator

is rotated at 45◦ with respect to the polarisation of the light, half of the light will travel

along each axis, with one component experiencing the phase modulation imposed by

an electrical input signal at 14.525 MHz.

It can be instructive to view the phase modulation process graphically in terms of

phasors – see Figure 5.16.

Figure 5.16: A phasor representation of phase modulation. The modulation can be decomposed
into a static carrier (i.e. the axes of the Argand plane rotate at the angular frequency of the carrier
light) and oscillating phasor in quadrature. This oscillating component can be further decomposed
into two phasors with opposing phases, rotating in opposite directions.

Here the input light is depicted as a vector in the Argand plane with a length

proportional to the amplitude of the light, where the phase is then given by the angle

of the vector with respect to the real axis. The phase modulated light can be viewed

as comprising a (reduced amplitude) carrier component, and an imaginary oscillatory

part, which can be further decomposed into two counter-rotating (at the rate of the

modulation frequency) phasors.

At the output of the modulator, the structure of light can be depicted as in Fig-

ure 5.17, with the phase modulation sidebands now polarised at 45◦ with respect to

the carrier light.

The light then passes through a quarter wave-plate. This optic can be rotated such
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Figure 5.17: A phasor depiction of the output light from the modulator. The sideband field is
polarised at 45◦ with respect to the carrier field.

that either the carrier becomes circularly polarised – in which case the sidebands will

become linearly polarised, and orthogonal with respect to each other – or the carrier

remains linearly polarised, in which case the sidebands become circularly polarised

with opposing chirality. Rotation angles in-between these two states will lead to all

components being elliptically polarised. In fact, as some power is inevitably lost in

one of the carrier components – required to generate the sidebands – the reconstructed

carrier field at the output face of the modulator will not in general be polarised exactly

at 45◦ with respect to the sideband field, and a degree of ellipticity will typically be

present in either or both fields after the quarter wave-plate.

On passing through the half wave-plate, the components can be rotated in polari-

sation so that they either pass through the polarising beam-splitter, or are rejected.

In summary: the modulator imposes phase modulation sidebands that are polarised

at 45◦ to the carrier light; the quarter wave-plate induces a degree of circular polari-

sation to either – or both – the sidebands and carrier; the half wave-plate and output

polarising beam-splitter then allow these components to be selectively passed through

to the cavity system, or rejected. An unavoidable consequence of this scheme is that

half of the input light is typically rejected.



5.4: Sideband Generation 124

5.4.3 Analysis

This process can be analysed more thoroughly using the Jones calculus notation for

the polarised light and optics involved. In this notation, a monochromatic beam of

light is represented by,

Earb =

 Ex

Ey

 (5.1)

where Earb is an arbitrarily polarised light field, and Ex and Ey represent the electric

field component vectors along those respective axes. If the light is linearly polarised

along one axis (here the x axis), it can then be represented by,

Elinx = E0e
iω0t

 1

0

 . (5.2)

Polarising optical components can also be concisely represented in this notation.

A quarter wave-plate (where the extraordinary axis is aligned along the x axis) is

represented by,

QWP = ei
π
4

 1 0

0 −i

 , (5.3)

and a half wave-plate by

HWP =

 i 0

0 −i

 . (5.4)

In general, a voltage controllable wave-plate, can be represented by,

VWP =

 eiα 0

0 e−iα

 , (5.5)

where α is the angle of phase retardation induced by the electro-optic process.

Finally, for an optic X rotated by an angle θ around the optical axis, its resultant
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Jones matrix X(θ) will be,

X(θ) = R(−θ)X R(θ), (5.6)

where the rotation matrix R(θ) is,

R(θ) =

 cos(θ) sin(θ)

− sin(θ) cos(θ)

 ; (5.7)

and the output state of a beam (Eout) encountering first an optic X and then Y is

given by the multiplication of the Jones matrix elements as follows:

Eout = Y X Ein . (5.8)

In general, an oscillatory optical modulation can be expressed as,

Emod = E0e
iωt
[
Mc + iMue

iωt + iMle
−iωt] , (5.9)

where Mc represents the amplitude of the carrier post-modulation, and Mu and Ml

represent the amplitude of the upper and lower sidebands respectively.

The electric field after the rotated modulator – Emod – is given by,

Emod = EinR
(
−π

4

)
VWP (α)R

(π
4

)
. (5.10)

This then leads to the following three terms for the amplitudes of the three resultant

components of the light; the carrier, the upper sideband and the lower sideband,

Mc = J0(m), (5.11)
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Ml = J1(m)R

(−π
4

) e−iα 0

0 eiα

R(π
4

)
, (5.12)

Mu = J1(m)R

(−π
4

) eiα 0

0 e−iα

R(π
4

)
. (5.13)

General expressions for the complex final fields before the output polariser can be

given in terms of α, θ0 the rotation angle of the modulator, and θH and θQ (the rotation

angles of the half and quarter wave-plates respectively) [72]. By setting conditions for

the desired outputs (e.g. that both the real and imaginary parts of Mu be zero, for

lower single sideband modulation), expressions for the required angles of the optics can

be found, using a symbolic mathematical application such as Maple
TM

to simplify

the multiplication of the Jones matrices.

The most relevant expressions are as follows:

For upper or lower single sideband modulation,

θQ =
1

2
arctan

[
sin(4θ0)(cos(2α)− 1)

cos(2α)cos(4α)− 1− cos(4θ0)− cos(2α)

]
, (5.14)

θH = −1

2
arctan

[
tan(α) sin(2θ0 − 2θQ)

tan(α) cos(2θ0 − 2θQ)± 1

]
. (5.15)

And, for the amplitude modulation case,

θH = arctan

[
sin(θQ)

cos(θQ) + 1

]
. (5.16)

In this case the rotation angle of the quarter wave-plate was essentially arbitrary,

and only the relative orientation between the quarter and half wave-plates was relevant.
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5.4.4 Results

The power recycling cavity error signals for these situations were then modelled. The

error signal for the amplitude modulation case can be seen in Figure 5.18, and the

corresponding error signal for the (upper) single sideband modulation case can be seen

in Figure 5.19.

These modelled signals were then verified in the experimental setup. By misaligning

the ETM, and allowing the PRM to swing freely through resonances, the demodulated

error signals were plotted: see Figure 5.20 and Figure 5.21 for the measured error sig-

nals using amplitude modulation and single sideband modulation respectively.

For the amplitude modulation case, the locking signal shows a clear qualitative

agreement with the simulated case. In addition to possessing the “correct” features

that correspond to resonances of the carrier light and the modulated components,

several additional resonances are seen. These are thought to be due to higher order

spatial modes partially resonating in the system. These could never be fully suppressed,

despite taking care to align the optics.

Similarly, for the single sideband modulation case, the measured error signal strongly

resembles the model. Spurious features due to higher order modes are present, in ad-

dition to extra noise thought to have arisen due to the incomplete cancellation of

the lower sideband, and the inherently smaller signal size associated with the single

sideband scheme.
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Figure 5.18: Modelled error signal for the power recycling cavity, using amplitude modulation
sidebands at 14.525 MHz. In addition to the central bi-polar slope due to the sidebands, resonances
from the carrier and upper and lower beat frequencies ±4.525 MHz are present.
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Figure 5.19: Modelled error signal for the power recycling cavity, using a single sideband modulation
at 14.525 MHz. In addition to the central bi-polar slope due to the sidebands, resonances from the
carrier and upper and lower beat frequencies ±4.525 MHz are present. The signal is asymmetric due
to the lack of a lower sideband resonance.
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Figure 5.20: Measured demodulated error signal for the power recycling cavity using amplitude
modulation sidebands. Additional features are due to higher order spatial modes partially resonating
in the system.
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Figure 5.21: Measured demodulated error signal for the power recycling cavity using single sideband
modulation. Additional features are due to higher order spatial modes and incomplete cancellation of
the lower sideband field.
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5.5 Error Signal Optimisation

In Section 5.3.2 it was noted that the power recycling cavity length sensing scheme

was sensitive to changes in the macroscopic length of the PRC. Equivalently, this

can be expressed as sensitivity to offsets in modulation frequency; where the nominal

frequency used was 14.525 MHz. In order to obtain an optimised error signal for the

power recycling cavity, it was necessary to match the modulation frequency to the

length of the cavity, which could alter with temperature fluctuations, or due to local

suspension shifts caused by cycling the vacuum system.

To match the modulation frequency to the true cavity length, a set of error signal

sweeps (where the system moves freely through a single resonance) were performed at

different demodulation phases of the 4.525 MHz local oscillator. For these measure-

ments, the ETM was again misaligned and the AC control sidebands turned off, so

only the power recycling cavity resonances appeared. The modulation scheme used

was the amplitude modulation variant, with dual sidebands.

The “true” modulation frequency was found by altering the modulation frequency

and demodulation phase variables, and comparing the resultant demodulated error

signals to those modelled in FINESSE.

The first step in this process was to record error signal sweeps for different val-

ues of 4.525 MHz demodulation phase. A set of example sweeps (both modelled and

measured) is shown in Figure 5.22.

The shapes of the resonance features that appeared in the error signal (specifically

those due to the carrier and the amplitude modulation sidebands) over different demod-

ulation phases were compared to the model and used to characterise the modulation

frequency setup.

The traces seen in Figure 5.22 were performed using a modulation frequency of

14.735 MHz, and it can be seen that the gradient of the resonance feature due to the

carrier (denoted by c) changes sign between traces C and D, while the gradient of the

central resonance due to the modulation sidebands (denoted by 14±) changes sign at

a different demodulation phase – between traces F and H.
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Figure 5.22: Measured (left) and modelled (right) error signal sweeps for the power recycling cavity.
Here, the sideband modulation frequency was offset to 14.735 MHz and the sweeps were performed
in 20◦ increments. The resonances are denoted as follows: c is the carrier resonance, 10± is the
resonance due to the 10 MHz phase modulation field, 4± is the resonance due to the beats between
the 10 MHz field and the ∼ 14 MHz field. The central feature (14±) represents the locking signal,
due to the ∼ 14 MHz sidebands. The modulation indices were m = 0.6 for the 10 MHz sidebands and
m = 0.03 for the amplitude modulated sidebands.

The sign change of the central feature was marked with a “ripple” feature (most

visible in traces F to H), indicating that the upper and lower amplitude modulation

sidebands were not simultaneously resonant in the power recycling cavity – implying

that the modulation frequency was too high or too low for the physical cavity length.

A detail of this region for various demodulation phases can be seen in Figure 5.23.

By adjusting the modulation frequency so that the carrier and central ∼ 14 MHz

ripple feature changed sign at the same demodulation phase, the modulation frequency

could be matched to the cavity length with a resolution of ∼ 200 kHz. For too high a

frequency the ∼ 14 MHz feature sign change occurred at a lower demodulation phase

than the carrier sign change, and vice-versa. By setting the demodulation phase of

the sidebands to be that of the carrier sign change point, and then adjusting the

modulation frequency of the sidebands and local oscillator, the carrier and central

∼ 14 MHz features could be made to change sign at the same demodulation phase.

This served as a useful coarse adjustment step – judging the state of the ripple feature

was somewhat subjective, thus limiting the useful accuracy.

A finer optimisation could then be achieved by adjusting the demodulation phase to
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Figure 5.23: Detail of the PRC error signal for various demodulation phases, where the modulation
frequency is offset by ∼ 200 kHz.

the point where the gradient of the carrier resonance changed sign, and then adjusting

the modulation frequency until the ripple features overlapped and were minimised –

see Figure 5.24 and Figure 5.25. This procedure allowed frequency optimisation to

∼ 1 kHz, and was performed with the error signal 90◦ out of phase, as this allowed the

ripple features to be minimised more easily.

Ultimately this process was limited by the presence of higher order spatial modes –

present due to small misalignments between the three mirrors – whose features on the

error signal could not easily be distinguished from those of the carrier or modulation

sideband resonances.

5.6 Coupling Measurements

Using the methods for sideband generation described in Section 5.4, the methods for

error signal optimisation described in Section 5.5, and the FINESSE model developed

for the system, the appropriate control matrices for both the amplitude and single

sideband modulation cases could be modelled, and evaluated experimentally.

After manually aligning all three mirrors, the three-mirror coupled cavity system
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Figure 5.24: Modelled PRC error signals, shown out of phase, where the 10± and 4± features are
prominent. A change in demodulation phase causes features from the carrier and central signal to
appear, whereas a change in modulation frequency only causes a central ripple.
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Figure 5.25: A measured, frequency optimised, error signal for the PRC, shown out of phase where
the resonance features of the carrier and the amplitude modulation sidebands have been minimsed by
optimising the modulation frequency. Modelled plots are shown in Figure 5.24.
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could be locked (simply a matter of enabling the two locking servos and waiting several

seconds until the mirrors were all simultaneously close to their locking points) and

control signals injected to deduce the required control matrices.

Using a Stanford SR785 spectrum analyser, a signal source was injected into either

the arm cavity, or power recycling cavity servo at a single frequency (6.016 kHz 6),

immediately after the appropriate error point. With the system locked, the level of the

injected signal peak was then measured at the respective error-points. Figure 5.26 and

Figure 5.27 show example spectra measured at the AC and PRC error-points respec-

tively, for a 30 mVPk injection into the AC feedback path.

In calculating the control matrices, this measured signal level was then adjusted

to account for the optical transfer functions of the cavities, and the open loop gain

response of the arm cavity servo – the signal injection lay outwith the control bandwidth

of the power recycling servo, and so did not require this correction.

To calibrate the relative responses of the two actuators involved (that is, the PZT

and the coil/magnet actuator driving the motion of the PRM) the power recycling

cavity was locked to the main carrier light, and a signal injected into the PRC servo.

The transfer function gain at this frequency was measured, before a similar signal was

then injected into the PZT path, and again measured at the PRC error point, thus

providing a measure of the relative effects of the two actuation paths.

6This specific frequency was chosen to coincide with the location of a spectrum analyser measure-
ment bin.
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Figure 5.26: The AC error-point spectrum, with a 30 mVPk signal at 6.016 kHz injected after the
AC error-point.
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Figure 5.27: The PRC error-point spectrum, with a 30 mVPk signal at 6.016 kHz injected after the
AC error-point.
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5.6.1 Amplitude Modulation Scheme

In general it was possible to adjust the power recycling cavity error signal’s demodu-

lation phase to either maximise the error signal, or alternatively to minimise the error

signal’s coupling to the other degree of freedom. The zero crossing of the power recy-

cling cavity error signal always appears at the carrier anti-resonance point, and so the

carrier should be fully resonant in the arm cavity, regardless of the chosen demodulation

phase – see Figure 5.28.

The optimal demodulation phase (for the PRC) was chosen to minimise the coupling

to the arm cavity signal7. This was achieved through injecting a test signal, and

adjusting the demodulation phase until this injected signal was minimised in the arm

cavity feedback spectrum.
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Figure 5.28: The PRC error signal for various demodulation phases, for the amplitude modulation
scheme.

Using the chosen demodulation phase, FINESSE was used to calculate the appro-

priate control matrix, and the methods outlined above used to measure the control

matrix of the real system – see Table 5.2. Note that the control matrices presented

7Note the demodulation phase for the arm cavity was trivially set to maximise the AC error signal.
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here are normalised as a whole – and not by each row individually – to allow more

direct comparison of the two modulation methods.

ΦPRC ΦAC

PD4 6.4×10−6 1.4×10−6

PD46 9.3×10−2 1

ΦPRC ΦAC

PD4 1.3×10−5 1.9×10−11

PD46 2.5×10−3 1

Table 5.2: Measured (left) and modelled (right) normalised control matrices for the amplitude
modulation control scheme. All entries are normalised to the arm cavity length sensing signal – the
lower right entry.

As required, the non-diagonal terms are smaller than the diagonal ones. The power

recycling cavity error signal’s response to motion of the PRC is seen to be less than

modelled, and – more importantly – the coupling between this signal and motion from

the AC is seen to be a factor of 105 larger than modelled. This can be explained due

to the fact that this signal was optimised by adjusting the demodulation phase. In

practice, this was achievable with a resolution of ∼ 0.1◦. A finer phase adjustment

would feasibly have led to better de-coupling between the degrees of freedom.

The discrepancies in the other matrix elements are thought to originate from resid-

ual misalignments between the optics, and the presence of higher order spatial modes.

Even though considerable time was spent manually aligning the optics in an attempt

to minimise this effect, more accurate and stable alignment could certainly improve

the results.

5.6.2 Single Sideband Scheme

For the single sideband modulation scheme, the zero crossing of the power recycling

cavity error signal is not always at the carrier anti-resonant point for arbitrary demod-

ulation frequencies – see Figure 5.29. As such, the demodulation phase that coincided

with the carrier’s anti-resonance was chosen, fulfilling the condition of having the max-

imum amount of light resonant in the arm cavity, while potentially degrading the level

of de-coupling.
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Figure 5.29: The PRC error signal for various demodulation phases, for the single sideband modu-
lation scheme.

Again, the FINESSE model was used to calculate a theoretical control matrix,

while the experimental matrix was measured identically to the amplitude modulation

scheme case. The resultant modelled and measured control matrices are presented in

Table 5.3.

ΦPRC ΦAC

PD4 2.1×10−6 9.0×10−5

PD46 3.2×10−2 1

ΦPRC ΦAC

PD4 1.9×10−6 2.8×10−5

PD46 2.5×10−3 1

Table 5.3: Measured (left) and modelled (right) normalised control matrices for the single sideband
control scheme. All entries are normalised to the arm cavity length sensing signal – the lower right
entry.

Here, the measured matrix elements more closely resemble those from the model.

However, it can be seen that in both the model and the measured cases, the AC con-

tribution to the PRC error signal (the top right element in the matrix) is larger than

the contribution from the power recycling cavity itself. As such, although this scheme

more closely matches the prediction, it provides a lesser degree of de-coupling than
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the amplitude modulation scheme. The discrepancies in the matrix elements are again

thought to be due to problems of mis-alignment, and the setting of the demodulation

phase. One advantage of the single sideband modulation scheme is that the demodu-

lation phase setting (chosen to maximise the power in the AC) was less sensitive and

easier to achieve than that in the amplitude modulation scheme – set by adjusting the

demodulation scheme to minimise the size of an injected signal.

5.7 Conclusions

The central goal of these experiments was to effectively de-couple the control signals

associated with the two key degrees of freedom of a three-mirror coupled cavity system.

While this was broadly achieved, the degree of de-coupling achieved was ultimately

limited by the presence of alignment errors in the system [73] and the finite available

adjustability of the demodulation phases.

The amplitude modulation scheme exhibited the best degree of de-coupling, whereas

the single sideband modulation scheme required less fine adjustment of the demodula-

tion phase, and agreed with the simulated model more closely.

Despite the observed discrepancies, these results provide a useful proof of concept

for similar techniques to be used in future detectors, or other complex coupled optical

systems. In particular, it is assumed that the observed alignment issues would either

be eradicated or greatly reduced by an auto-alignment system, present on all full-scale

detectors.

In addition, a novel method for the flexible generation of different modulation com-

ponents was developed, modelled and successfully implemented; and the utility and

accuracy of the simulation software with respect to a real, complex, optical system was

verified.
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Conclusions

Interferometric gravitational wave detectors are currently beginning to reach their de-

sign sensitivities and return data that is of scientific and astrophysical importance.

While this represents a significant achievement, it will be necessary to improve detec-

tor sensitivities even further in order to perform astronomy in any meaningful sense.

Current detectors are limited by several fundamental noise sources. Arguably the

most important noise source arises from thermal effects. In order to reduce – or at

least quantify – this noise contribution, it will be necessary to measure it directly.

While measurements of mechanical resonances can provide useful insights into the phe-

nomenon, only a direct thermal noise measurement system can unambiguously quantify

this noise source in the relevant measurement band.

The first part of this work involved the design, modelling, construction and initial com-
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missioning of just such an interferometric measurement. All the necessary subsystems

required to isolate and control the measurement optics were successfully installed. A

flame fibre pulling machine was built, allowing the successful construction of two quasi-

monolithic fused silica suspensions.

Initial commissioning of the measurement system was performed, and calibrated sen-

sitivity spectra for the thermal noise measurement cavity recorded, utilising a flexible

digital control system.

Although the measured displacement spectrum was not limited by the thermal noise of

the desired test optic, there is no evidence to suggest that further, more rigorous, com-

missioning work and “noise hunting” will not locate and eradicate the adverse noise

sources, resulting in a measurement system operating at, or near, its design goals.

When fully functional, the system should provide an easily adaptable facility for the

direct measurement of the thermal noise associated with test-masses, in the gravita-

tional wave detection band. One future extension of the system already planned, is to

evaluate the thermal noise levels of a silicate bonded composite mass – proposed for

use in future detectors.

As interferometric gravitational wave detectors develop into second and third gen-

eration devices, the input laser power can be expected to increase, and the optical

topologies can be expected to grow more complex. These developments will lead to

the optical cavities in future devices becoming strongly inter-coupled, through optical,

and opto-mechanical means.

The second major part of this work concerned the design and implementation of a

novel extension to the standard Pound-Drever-Hall optical cavity control scheme, in

an effort to de-couple the control of a three-mirror coupled cavity system. The sys-

tem was successfully designed, and modelled; and appropriate electronics for the con-
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trol scheme installed. Measurements of the relevant control matrices for two control

schemes (one involving amplitude modulation sidebands, the other a single sideband

modulation scheme) were performed and compared to those modelled in software.

The results for the amplitude modulation scheme exhibited the best de-coupling be-

tween the relevant degrees of freedom, while the single sideband control scheme results

more closely resembled the modelled values. Although both control schemes were

ultimately limited by practical issues (such as mirror alignment), the three-mirror cou-

pled cavity system was successfully and reliably locked using both methods, and the

experiment provided a proof of concept for the potential use of similar extensions to

the Pound-Drever-Hall technique in future detectors, or other complex optical systems.

Finally, these two relatively dissimilar experiments were successfully performed in the

10 m JIF prototype, effectively aiding in the commissioning of the facility and demon-

strating its utility as an interferometric test-bed for future gravitational wave detectors.
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Appendix A

Material Properties

Symbol Value/Units Description

αSiO2 5.5×10−7 K−1 Thermal expansion coefficient for SiO2 [74]

αTa2O5 3.6×10−6 K−1 Thermal expansion coefficient for Ta2O5 [74]

YSiO2 7.2×1010 Pa Young’s modulus for SiO2 [49]

YTa2O5 1.4×1011 Pa Young’s modulus for Ta2O5 [74]

σSiO2 0.17 Poisson ratio for SiO2 [48]

σTa2O5 0.23 Poisson ratio for Ta2O5 [74]

nSiO2 1.45 Refractive index for SiO2 [74]

nTa2O5 2.03 Refractive index for Ta2O5 [74]

φbulkSiO2
5×10−8 rad Loss angle for bulk SiO2 [49]

φlayerSiO2
1×10−4 rad Loss angle for thin layer SiO2 [74]

φlayerTa2O5
3.8×10−4 rad Loss angle for thin layer Ta2O5 [74]

CSiO2 1.64×106 JK−1m−3 Specific heat capacity for SiO2 [74]

CTa2O5 2.1×106 JK−1m−3 Specific heat capacity for Ta2O5 [74]

κSiO2 1.38 Wm−1K−1 Thermal conductivity for SiO2 [74]

κTa2O5 33 Wm−1K−1 Thermal conductivity for Ta2O5 [74]

ρSiO2 2200 kgm−3 Density of SiO2 [49]

βSiO2 1.5×10−5 K−1 Temperature dependence of nSiO2
1 [47][75][76]

βTa2O5 1.21×10−4 K−1 Temperature dependence of nTa2O5 [47]

γSiO2 1.52×10−4 K−1 Temperature dependence of YSiO2 [77]

1the value given in [47] is −1.5×10−5 K−1. The negative sign is considered erroneous as [75] uses
the positive value cited above for Advanced LIGO noise estimations, and [76] gives roughly the same
value of ∼ +1.25×10−5 K−1.
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Appendix B

Electronics

Alignment

To allow remote control of the alignment of the mirrors inside the vacuum enclosure,

all the suspensions involved in the thermal noise experiment had four 10 mm × 5 mm

magnets (made from NeFeB) bonded to the rear sides of their upper stages. A DC

force was then applied to these magnets by passing current through coils placed behind

them. The circuit used to supply these signals is seen below in Figure B.1.
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Figure B.1: Alignment control circuit: the suspensions were aligned by applying force to the upper
stages by driving a current through a coil of resistance ∼ 10 Ω. Variations of this circuit provided
alignment control over all seven suspensions.
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A fine (ten turn) potentiometer provided an input level of between ±5 V, followed

by a buffer amplifier, a voltage divided and an output stage. The BS suspension used

the circuit as pictured above. The other metal suspensions required increased range,

and so had the 1 kΩ resistor before the output stage removed. The silica suspensions

required yet more range, so (additionally) the resistor to ground in the output stage

was reduced from 500 Ω to 242 Ω.

The BS required less adjustable range, as it had the longest optical path to the

output, while the silica suspensions required extra range as it was not desirable to

manually shift the suspensions – readily achievable with the all-metal ones – so any

initial suspension offsets had to be compensated electronically.

Coil Driver

The feedback signal to lock the cavity was provided in a similar way to the alignment

control: via an electromagnetic force applied to magnets bonded to the ETMTNE

mass. The optic had four 5 mm × 3 mm magnets bonded to its rear side, while the

RM suspension lower stage held four coils.

TLE2227

TLE2227
TLE2227

TLE2227

1k
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1k
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1k

coil

Figure B.2: TNE coil driver circuit: four of these circuits provided the feedback signals to the four
coils attached to the lower RM mass, enabling the test cavity to be locked. Note that the op-amps
used were changed to OPA227s, due to stability problems with the TLE2227 models.
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The coil driver circuit used was adapted from the circuit used to provide the coil

driver signals for the larger masses used in the main arm cavity. This contained a

differential receiving stage, one input of which was simply grounded for use in the

TNE setup. The coils were connected in series with a 1 kΩ resistor to reduce the

current through the feedback coils to more manageable levels.

Additionally, a four-way splitter box was in place prior to the coil-driver circuit.

This contained four potentiometers, used to optionally adjust the voltage applied to

each coil separately. Note that these were all set to unity gain for the measurements

performed.

Photodiode

The signal used to lock the thermal noise test cavity (and therefore measure the dis-

placement noise) comes from the interference of the main carrier light with the imposed

phase modulation sidebands, which must be in the radio-frequency range to lie suffi-

ciently outside any cavity linewidths. Typically, small modulation indices are used, so

the detection photodiode must be optimised to detect small signals at high frequencies.

In addition, it is also useful to be sensitive to changes in the DC light power, as this

allows monitoring of the overall light level, and can facilitate triggering methods1. A

passive resonant LC circuit can fulfill these requirements – see Figure B.3 below.

The resonant circuit is formed between a variable inductor (here marked as 3 µH)

and the parasitic capacitance of the photodiode (∼ 85 pF) along with any stray capac-

itance present. A high-pass RC filter at the entrance to the high frequency path and a

low-pass LR filter in the DC path effectively separate the small high frequency signal

component from the overall light level. The photodiode used was an EG&G InGaAs

model C30642GH with a 2 mm2 active area and photocurrent generation efficiency of

∼ 0.78 A/W, and was reverse biased at 7 V. The 1 n capacitor provided a ground to

the RF path of the circuit, while presenting an effectively infinite impedance at DC.

1The time taken to successfully lock a cavity can be reduced by activating the feedback when the
cavity is transiently resonating. This can be achieved by monitoring the DC return light and triggering
the feedback control to coincide with a preset threshold.
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Figure B.3: TNE photodiode circuit. The resonant high frequency path was tunable around the
10 MHz target by approximately ±1 MHz. A low noise, high frequency OPA620 op-amp was used in
the RF path, while an OPA227 and BUF634 combination comprised the DC path.

The impedance (ZRF) of the high frequency path – used to convert the signal current

from the photodiode into a voltage – is given by [78],

ZRF ' Q

√
L

C
, (B.1)

where Q is a measure of the strength of the resonance, and L and C are the

inductance of the variable inductor, and C the capacitance of the photodiode.

The Q was measured by placing a wound wire coil (connected to a signal generator)

above the circuit, and monitoring the output pin of the photodiode with an oscilloscope.

The circuit could first be tuned to the correct resonant frequency by setting the output

of the signal generator to 10 MHz and adjusting the tunable inductor until a maximum

output was achieved. The Q could then be found by varying the signal generator output

frequency about the resonance, and noting the photodiode output – see Figure B.4.

The Q factor was then the resonant frequency of the peak, divided by the width at 1√
2

of its maximum.
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The signal voltage is proportional to both the incident photocurrent and the imped-

ance ZRF. The impedance will also have a thermal Johnson noise associated with it,

proportional to
√
ZRF. It is desirable then to maximise this conversion impedance (and

therefore the Q) in order to increase the signal-to-noise ratio of the detection process.
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Figure B.4: Response of the TNE resonant photodiode circuit around 10 MHz.

The Q measured for the thermal noise experiment photodiode was Q ∼ 8, giving a

value of ZRF = 1.5 kΩ

Note that the resistors in the gain stage of the RF path are neglected in this analysis,

but as their resistances are considerably lower than that of the conversion impedance,

their relative Johnson noise will be correspondingly less significant.

It is now possible to estimate an equivalent photocurrent – INE – due to the noise

in this resonant conversion process [78] by evaluating the following expression:

INE =
1

2e

(
4kbT

ZRF

+ I2
op +

V 2
op

Z2
RF

)
. (B.2)

Here, e is the charge on an electron, kb is Boltzmann’s constant, T is the temper-

ature, Iop is the input current noise of the op-amp used, and Vop is the input voltage

noise of the same op-amp. Using the appropriate values for the OPA620KP op-amp
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used in the high frequency path2 this was calculated to be INE = 60 µA.

The voltage noise of the output can then be expressed as [79][80],

ξ2
V = 2eZ2

RF (IDC + INE) , (B.3)

where IDC is the DC photocurrent. For the noise associated with the detection

system to be lower than that of the photocurrent shot noise, INE must be smaller than

IDC. As IDC = 0.78× 70×10−3 = 5.46×10−2 A, when a nominal 70 mW is incident on

the photodiode, this condition is satisfied.

Returning to the DC path, the relatively large and constant value of IDC necessitates

the use of the BUF634 in conjunction with the OPA227, to act as a high-current buffer

amplifier.

Sample traces from the photodiode outputs (after the RF output has been demod-

ulated and low-pass filtered) can be seen in Figure B.5.
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Figure B.5: The reflected DC light from the cavity, and associated demodulated error signal – as
measured with the thermal noise resonant photodiode – is shown here as the cavity passes through a
single resonance.

2Iop = 2.3×10−12 A/
√

Hz and Vop = 2.3×10−9 V/
√

Hz.
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Differential Signals: Sending & Receiving

To reduce electrical pick-up noise accrued when traversing the lab, differential “send/

receive” boxes were constructed. In send mode, these would take an input signal and

output it through two channels, one of which was inverted. In receive mode, the circuit

would subtract these two channels, thus subtracting any common noise, and outputting

both a positive and negative version of the signal, each with ×2 gain. See Figure B.6.

Figure B.6: Circuit diagram for the differential send / receive boxes.

Whitening & De-whitening

Converting a signal from the analogue to digital domain (e.g. on entering the dSPACE

system) inevitably results in some loss of information, termed quantisation noise. The

amplitude spectral density noise associated with converting an analogue voltage into

its digital representation is [81]

ξADC =

√
∆2

12fN

V/
√

Hz, (B.4)

where ∆ is the minimum representable voltage (i.e. the voltage range of the input

divided by the resolution of the conversion process) and fN is the Nyquist frequency,

equivalent to half the sampling frequency.

This expression can be rewritten in terms of the input voltage range Vrange, the time



app.ix

between discrete samples ts and the number of bits associated with the analogue to

digital conversion – b – as follows:

ξADC =
Vrange

2b
ts
6

V/
√

Hz. (B.5)

This represents not a noise limit, but an effect that is actively imposed on the signal.

As it is a white noise spectrum that is applied to all measurement frequencies, it will act

to limit the dynamic range of the feedback at higher frequencies, where the feedback

signal is typically smaller. To combat this, the signal is whitened before entering

the dSPACE system, and then de-whitened on exiting. The whitening filter – see

Figure B.7 – acts to (approximately) reshape the error signal towards a flat spectrum,

while the de-whiteneing filter – see Figure B.8 – performs the inverse operation.

Figure B.7: Circuit diagram for the dSPACE whitening filter.

Figure B.8: Circuit diagram for the dSPACE de-whitening filter.
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Frequency Stabilisation Servo

The laser frequency stabilisation servo was designed to feed back to the laser frequency

through two primary paths: the PZT bonded to the laser, and an EOM phase mod-

ulator in the path of the laser beam. The PZT path was the “slow” path, governing

frequencies up to ∼ 10 kHz, with the EOM element controlling feedback at frequencies

above this, up to the unity gain frequency of the system. At very low frequencies

(≤ 1 Hz), either the ETM position feedback was used (via a coil-driver and reaction

mass set-up), or the temperature control feature of the laser was implemented.

The two paths consist of numerous stages, designed to impose frequency filters such

that – in conjunction with the optical cavity and feedback element responses – the

system is controlled stably up to ∼ 100 kHz. Other features notable in the diagram –

Figure B.9 – are potentiometers to control the relative gains of the two paths, trimming

potentiometers for the removal of unwanted DC offsets in the system and an additional

buffer amplifier at the input to allow unobtrusive monitoring of the input error point.

Additionally a Stanford pre-amp was placed after the PZT output to allow extra ad-

justability, and a high voltage amplifier was used to send the feedback signal to the

EOM.
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Figure B.9: Circuit diagram for the laser feedback servo, with outputs for the PZT on the laser
crystal and the feedback EOM.
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Miscellany

Modulators

To achieve modulation sidebands of any reasonable amplitude, large voltages must be

applied across the electro-optic modulators. A typical half-wave voltage (that is, the

voltage required to induce a phase shift of π radians) is of the order of several hundred

volts. The large voltages and high frequencies involved require the power transfer

circuit to be suitably impedance matched, to both reduce unwanted electrical pick-up

in other electronics, and to maximise the efficiency of the sideband generation.

An auto-transformer circuit – see Figure B.10 – was used, with a resonant LC circuit

formed by the capacitance of the EOM itself (and an optional trimming capacitor for

adjustment) and an air-wound coil inductor. The input impedance was matched to the

50 Ω source by adjusting the input tapping point on the coil.

C eom C trim

R 
lo

ss

Figure B.10: Auto-transformer circuit for matching power into electro-optic modulators.

Low-Pass Filter

When dealing with demodulated signals, it is frequently desirable to low-pass filter

them to effectively remove residual high frequency noise from pre-demodulation, the

LO input to the mixer, and stray high frequency pick-up. The filter in Figure B.11 is

an effective T-filter design that provides > 90 dB of filtering at 10 MHz when matched
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into a 50 Ω load, as is shown in Figure B.12.

50uH 13.3uH

14.4nF

Figure B.11: Circuit design for the 300 kHz low-pass T-filter.
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Figure B.12: Modelled gain and phase response of the low-pass T-filter.

Zener Clamp

When attempting to first feed back to a system, where the appropriate gain levels are

not know, it can be useful to restrict the feedback signal to known safe levels. However,

reducing the gain can alter the characteristics of the feedback loop. Using two Zener

diodes, back-to-back in a Zener “clamp” setup, as pictured in Figure B.13 restricts the

maximum voltage to ±Vzener where Vzener is the Zener voltage of the diode, and the
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current is then given by Imax = Vs−Vzener

R
; where Vs is the input voltage and R is the

resistor pictured. This circuit acts to restrict the maximum output of a system without

adversely affecting the gain.

Z1

Z2

R

Figure B.13: Zener “clamp” circuit, to restrict maximum signal without adversely affecting gain.
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Appendix C

Measuring Loop Transfer Functions

When constructing a control system to stabilise a generic plant, it is desirable

to know both the open and closed-loop transfer functions of the system. However,

frequently – and specifically in the case of an interferometer – it is not always easy to

measure the transfer functions of each stage in the loop and simply find their product.

An optical cavity feedback system, such as the Pound-Drever-Hall method described

in Section 2.3.1, is only linear close to the operating point of the cavity: i.e. the system

must be locked (the loop must be closed) for any meaningful characterisation to take

place.

A method for obtaining both the open and closed-loop transfer functions for such

a system, using a standard spectrum analyser and software, is presented below.

Open-Loop Transfer Function

In order to measure an open-loop transfer function of a servo system while the system

is locked, a suitable injection and measurement stage must be found. Preferably, this

should be the inverting input of an inverting amplifier stage, where the amplifier stage

presents a flat frequency response over the measurement range.

A swept-sine measurement from the input of the stage to its output (taking care

not to cause any saturation) should then be performed. This measurement gives,

T1 =
Gx

1−GH , (D.1)

where Gx is the transfer function of the measurement stage, and GH is the open-
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loop transfer function of the complete system.

The same measurement should then be performed with the loop unlocked, and the

inputs to the electronics grounded so as to avoid injecting large transient signals due

to cavity resonances. This measurement gives,

T2 = Gx, (D.2)

and the open-loop transfer function GH is then given by,

GH = 1− T2

T1

. (D.3)

Closed-Loop Transfer Function

To obtain a closed-loop transfer function the measurements required are exactly the

same as above, but with differing analysis. The closed-loop transfer function GH
1−GH is

given by,

GH

1−GH =
T1

T2

− 1, (D.4)

where T1 is the swept-sine response of an injection stage in the electronics while the

loop is locked, and T2 is the same measurement with the loop open.

Practical Method

The analysis above assumes that the quantities T1 and T2 are vectors of complex num-

bers, representing the gain and phase of the measurement. Depending on the specific

analyser and methods used, this may or may not be the case. In the case where a

Stanford SRS785 analyser (or similar) is used, the following method will yield the ap-

propriate information.

The measurement traces should be saved in the analyser’s internal “.78D” format,

via the Display to Disk option. The srt785.exe command line application can then be

used to convert the internal format into a three column ASCII delimited file consisting
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of [frequency, real, imaginary ] data. An example command being,

srt785 /Oasc /D /Cx,r,i SRS001.78D T1.asc

On importing the data into MATLAB, the real and imaginary parts can be com-

bined into a complex number, and the appropriate transfer functions constructed as

follows:

load T1.ASC -ASCII

load T2.ASC -ASCII

freq = T1(:,1);

T1z = T1(:,2) + i*T1(:,3);

T2z = T2(:,2) + i*T2(:,3);

OLTF = 1 - (T2z./T1z);

OLTF_gain = abs(OLTF);

OLTF_gain_dB = 20*log10(OLTF_gain);

OLTF_phase = angle(OLTF);

CLTF = (T1z./T2z) - 1;

CLTF_gain = abs(CLTF);

CLTF_gain_dB = 20*log10(CLTF_gain);

CLTF_phase = angle(CLTF);

Plotting the transfer function vectors against the frequency vector defined in the

first line then yields the required transfer function plots.
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