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Abstract

Given an algebraic theory which can be described by a (possibly symmetric) operad P ,

we propose a definition of the weakening (or categorification) of the theory, in which

equations that hold strictly for P -algebras hold only up to coherent isomorphism. This

generalizes the theories of monoidal categories and symmetric monoidal categories, and

several related notions defined in the literature. Using this definition, we generalize the

result that every monoidal category is monoidally equivalent to a strict monoidal category,

and show that the “strictification” functor has an interesting universal property, being left

adjoint to the forgetful functor from the category of strict P -categories to the category of

weak P -categories. We further show that the categorification obtained is independent of

our choice of presentation for P , and extend some of our results to many-sorted theories,

using multicategories.

2



Contents

Abstract 2

List of Figures 5

Acknowledgements 6

Declaration 8

0 Introduction 9

0.1 Remarks on notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1 Theories 11

1.1 Syntactic approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2 Clones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.3 Lawvere theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.4 Finitary monads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.5 Equivalences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2 Operads 24

2.1 Plain operads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2 Symmetric operads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3 Finite product operads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.4 Adjunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.5 Existence and monadicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.6 Explicit construction of Fpl and F pl
Σ . . . . . . . . . . . . . . . . . . . . . . 42

2.7 Syntactic characterization of the forgetful functors . . . . . . . . . . . . . . 46

2.8 Operads and syntactic classes of theories . . . . . . . . . . . . . . . . . . . . 50

2.9 Enriched operads and multicategories . . . . . . . . . . . . . . . . . . . . . 56

3



CONTENTS 4

2.10 Maps of algebras as algebras for a multicategory . . . . . . . . . . . . . . . 63

3 Factorization Systems 64

4 Categorification 70

4.1 Desiderata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.2 Categorification of strongly regular theories . . . . . . . . . . . . . . . . . . 71

4.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.4 A more general approach: factorization systems . . . . . . . . . . . . . . . . 76

4.5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.6 Symmetric monoidal categories . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.7 Multicategories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.8 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.9 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5 Coherence 95

5.1 Strictification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.2 Universal property of st . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.3 Presentation-independence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6 Other Approaches 108

6.1 Pseudo-algebras for 2-monads . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.2 Laplaza sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.3 Non-algebraic definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

References 116



List of Figures

2.1 Composition in a multicategory . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2 Composition in the operad S of symmetries . . . . . . . . . . . . . . . . . . 29

2.3 Composition in the little 2-discs operad . . . . . . . . . . . . . . . . . . . . 30

2.4 “Combing out” the F-action . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.5 Grafting of trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.6 Composition in S × P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.1 Part of Wk(1)3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.2 A multigraph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.3 A multigraph enriched in directed graphs . . . . . . . . . . . . . . . . . . . 91

5



Acknowledgements

First and foremost, I must thank my supervisor, Dr Tom Leinster, for his help and en-

couragement with all aspects of this thesis and my research. I could not have wished for

a better supervisor. I would like to thank Steve Lack for invaluable help with pseudo-

algebras: the argument of Theorem 6.1.9 is due to him (any errors, of course, are mine).

I would like to thank Michael Batanin for suggesting I consider the construction of Def-

inition 4.4.1 in the context of symmetric operads. I would like to thank Jeff Egger and

Colin Wright for invaluable motivational advice, which in both cases came exactly when

it was most needed. I would like to thank Jon Cohen for suggesting Examples 4.5.2 and

4.5.3, and Hitesh Jasani for helping me to see the benefits of isolating the concept of la-

belling functions. I would like to thank the night staff at Schiphol airport, for providing

quite the best environment for doing mathematics I’ve ever encountered. I would like to

thank Wilson Sutherland, both for his excellent teaching of undergraduate mathematics

and for encouraging me to apply for this PhD, and Samson Abramsky and Bob Coecke,

for first showing me the beauty of category theory. Thanks to all those who commented

on drafts of this thesis: Rami Chowdhury, Malcolm Currie, Susannah Fleming, Cath How-

dle, John Kirk, Avril Korman and Michael Prior-Jones. Thanks to Hannah Johnson for

Sumerological ratification. I am grateful to EPSRC, for funding this research.

Much of the challenge of this PhD has been retaining some semblance of sanity through-

out, so the people below are those who have provided welcome distraction (as opposed to

the unwelcome kind). Thanks must go to Ruth Elliot, my co-organizer for the Scottish

Juggling Convention 2008, who did far more than her share despite being in recovery from

a serious motorbike accident; to the rest of Glasgow Juggling Club (and to Alia Sheikh for

first teaching me to juggle); to the hillwalking and rock climbing crowd, namely Katie Ed-

wards, Martin Goodman, Michael Jenkins, Andy Miller, Elsie Riley, Jo Stewart, Richard

Vale, Bart Vlaar, Dan and Becca Winterstein, Stuart White, and especially Philipp Rein-

6



LIST OF FIGURES 7

hard; to my office-mates, James Ferguson, Martin Hamilton, Gareth Vaughan and John

Walker, for the good times; to the members of NO2ID Scotland, particularly Geraint Be-

van, Richard Clay, James Hammerton, Alex Heavens, Bob Howden, Jaq Maitland, Roddy

McLachlan, Charlotte Morgan, and John Welford; to the students and instructors at Glas-

gow Capoeira; and to all at the theatre group Two Shades of Blue. I would like to extend

sincere and heartfelt thanks to the Chinese emperor Shen Nung, the Ethiopian goat herder

Kaldi, the Sumerian goddess Ninkasi, and the unnamed Irish monk who, according to leg-

end, discovered or invented tea, coffee, beer and whisky respectively.

I would like to thank my parents, Dick and Jackie Gould, for their patience and support,

and particularly my father for showing me that mathematics could be beautiful in the first

place. Finally, I would like to thank my wonderful girlfriend Ciorstaidh MacGlone, who

(when not contending for the computer) has been an endless source of love, sympathy,

support and tea.



Declaration

I declare that this thesis is my own original work, except where credited to others. This

thesis does not include work forming part of a thesis presented for another degree.

8



Chapter 0

Introduction

Many definitions exist of categories with some kind of “weakened” algebraic structure, in

which the defining equations hold only up to coherent isomorphism. The paradigmatic

example is the theory of weak monoidal categories, as presented in [ML98], but there are

also definitions of categories with weakened versions of the structure of groups [BL04],

Lie algebras [BC04], crossed monoids [Age02], sets acted on by a monoid [Ost03], rigs

[Lap72], vector spaces [KV94] and others. A general definition of such categories-with-

weakened-structure is obviously desirable, but hard in the general case. In this thesis, we

restrict our attention to the case of theories that can be described by (possibly symmetric)

operads, and present possible definitions of weak P -category and weak P -functor for any

symmetric operad P . We show that this definition is independent (up to equivalence) of

our choice of presentation for P ; this generalizes the equivalence of classical and unbiased

monoidal categories. In support of our definition, we present a generalization of Joyal and

Street’s result from [JS93] that every weak monoidal category is monoidally equivalent to

a strict monoidal category: this holds straightforwardly when P is a plain operad. This

generalization includes the classical theorem that every symmetric monoidal category is

equivalent via symmetric monoidal functors and transformations to a symmetric monoidal

category whose associators and unit maps are identities.

The idea is to consider the strict models of our theory as algebras for an operad,

then to obtain the weak models as (strict) algebras for a weakened version of that operad

(which will be a Cat-operad). In particular, we do not make use of the pseudo-algebras of

Blackwell, Kelly and Power, for which see [BKP89]. Their definition is related to ours in

the non-symmetric case, however: we explore the connections in Chapter 6. We weaken

the operad using a similar approach to that used in Penon’s definition of n-category:

9



CHAPTER 0. INTRODUCTION 10

see [Pen99], or [CL04] for a non-rigorous summary.

In Chapters 1, 2 and 3, we review some essential background material on theories,

operads and factorization systems. Most of this is well-known, and only one result (in

Section 2.8) is new. In Chapter 4, we present our definitions of weak P -category, weak

P -functor and P -transformation. We start with a näıve, syntactic definition that is only

effective for strongly regular (plain-operadic) theories. We then re-state this definition

using the theory of factorization systems, which allows us to apply it to the more general

symmetric operads. Section 4.6 uses this definition to explicitly calculate the categorifi-

cation of the theory of commutative monoids with their standard signature, and shows

that this is exactly the classical theory of symmetric monoidal categories. In Chapter 5,

we treat the problem of different presentations of a given operad: we use this to prove

that the weakening of a given theory is independent of the choice of presentation. We

also prove some theorems about strictification of weak P -categories. In Chapter 6, we

compare our approach to other approaches to categorification which have been proposed

in the literature.

Material in this thesis has appeared in two previous papers: the material on stric-

tification for strongly regular theories was in my preprint [Gou06], and the material on

signature-independence was in my paper [Gou07], which was presented at the 85th Peri-

patetic Seminar on Sheaves and Logic in Nice in March 2007, and at CT 2007 in Carvoeiro,

Portugal.

0.1 Remarks on notation

Throughout this thesis, the set N of natural numbers is taken to include 0. We shall

occasionally adopt the • notation from chain complexes and write, for instance, p• for a

finite sequence p1, . . . , pn and p•• for a double sequence. We shall use the notation n to

refer to the set {1, . . . , n} for all n ∈ N: the set 0 is the empty set. We shall use the

symbol 1 to refer to terminal objects of categories and identity arrows, as well as to the

first nonzero natural number; it is my hope that no confusion results.



Chapter 1

Theories

The first step will be to obtain a mathematical description of the notion of an algebraic

theory, of which the familiar theories of groups, rings, modules etc. are examples. In this

chapter, we present some standard ways of doing this, and prove that they are equivalent.

The most convenient description for our purposes will be the notion of clone, which appears

to have been introduced by Philip Hall in unpublished lecture notes in the 1960s, and may

be found on [Coh65] page 132, under the name “abstract clone”. The treatment here

follows [Joh94]. The remainder of the material in this chapter is all well-known, and may

be found in e.g. [Bor94] chapters 3 and 4, or [AR94] chapter 3.

In the next chapter, we shall describe operads, which allow us to capture certain alge-

braic theories in an especially simple way, suitable for categorification, and we shall show

how operads relate to the clones described in this chapter.

1.1 Syntactic approach

The most traditional way of formalizing algebraic theories is syntactic. In this approach,

we abstract from the standard “operations plus equations” description (used to describe

e.g. the theory of groups) to create presentations of algebraic theories, and define a

notion of an algebra for a presentation.

Definition 1.1.1. A signature Φ is an object of SetN.

In other words, a signature is a sequence of sets Φ0,Φ1,Φ2, . . . .

Fix a countably infinite set X = {x1, x2, . . . , }, whose elements we call variables.

Throughout, let Φ be a signature.

11



CHAPTER 1. THEORIES 12

Definition 1.1.2. Let n ∈ N. An n-ary Φ-term is defined by the following inductive

clauses:

• x1, x2, . . . , xn are n-ary terms.

• If φ ∈ Φm and t1, . . . , tm are n-ary terms, then φ(t1, . . . , tm) is an n-ary term.

A Φ-term is an n-ary Φ-term for some n ∈ N.

Definition 1.1.3. Let t be an n-ary Φ-term. Then var(t) is the sequence of elements of

{x1, . . . , xn} given as follows:

• var(xi) = (xi),

• var(φ(t1, . . . , tn)) = var(t1) ++ var(t2) ++ . . . ++ var(tn),

where ++ is concatenation.

Definition 1.1.4. Let t be an n-ary Φ-term. Then supp(t), the support of t, is the

subset of {x1, . . . , xn} given as follows:

• supp(xi) = {xi},

• supp(φ(t1, . . . , tn)) = supp(t1) ∪ supp(t2) ∪ . . . ∪ supp(tn),

Definition 1.1.5. Let t be an n-ary Φ-term, with var(t) = (xi1 , . . . , xim). The labelling

function label(t) of t is the function m→ n sending j to ij .

Definition 1.1.6. An n-ary Φ-equation is a pair (s, t) of n-ary Φ-terms. A Φ-equation

is an n-ary Φ-equation for some n ∈ N.

Definition 1.1.7. An n-ary term t is linear if label(t) is a bijection, and strongly

regular if label(t) is an identity. An equation (s, t) is linear if both s and t are linear,

and strongly regular if both s and t are strongly regular.

In other words, a term is linear if every variable is used exactly once, and strongly

regular if every variable is used exactly once in the order x1, . . . , xn. Up to trivial rela-

bellings, an equation is linear if every variable is used exactly once on both sides, though

not necessarily in the same order: an example is the commutative equation x1.x2 = x2.x1.

An equation is strongly regular if every variable is used exactly once in the same order on

both sides. An example is the associative equation x1.(x2.x3) = (x1.x2).x3, though some
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care is needed. Strictly, a Φ-equation is a pair (n, (s, t)) where n ∈ N and s, t are n-ary

Φ-terms. The equation (3, ((x1.x2).x3, x1.(x2.x3))) is strongly regular, but the equation

(4, ((x1.x2).x3, x1.(x2.x3))) is not.

Classically, an n-ary equation (s, t) is regular if label(t) and label(s) are surjections:

however, we will not consider regular equations further. The term “linear” is borrowed

from linear logic, and the term “strongly regular” is due to Carboni and Johnstone (from

[CJ95]).

Definition 1.1.8. A presentation of a (one-sorted) algebraic theory is

• a signature Φ,

• a set E of Φ-equations.

Elements of Φn are called (n-ary) generating operations.

Definition 1.1.9. Let P = (Φ, E) be a presentation of an algebraic theory. P is linear

if every equation in E is linear, and strongly regular if every equation in E is strongly

regular.

We will return to the consideration of linear and strongly regular presentations once

we have defined operads.

Definition 1.1.10. Let Φ be a signature. An algebra for Φ is

• a set A,

• for each n-ary operation φ, a map φA : An → A. These are called the primitive

operations of the algebra A.

Let Φ be a signature, and A a Φ-algebra. Each n-ary Φ-term t gives rise to an n-ary

derived operation tA : An → A, defined recursively as follows:

• if t = xi, then tA is projection onto the ith factor,

• if t = φ(t1, . . . , tm), then tA is the composite

An
((t1)A,...,(tm)A)// Am

φA // A .

Let termn Φ denote the set of n-ary derived operations over Φ. Then term Φ is a

signature for every signature Φ. A morphism of signatures f : Φ → Ψ induces a map

f̄ : term Φ → term Ψ. Indeed, term is an endofunctor on SetN, and in Section 2.8 we shall

show that it is actually a monad.
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Definition 1.1.11. Let P = (Φ, E) be a presentation of an algebraic theory. A P -algebra

is a Φ-algebra A such that, for every equation (s, t) in E, the derived operations sA, tA are

equal.

An algebra for Φ is an algebra for (Φ, {}). Conversely, every algebra for (Φ, E) is an

algebra for Φ.

Definition 1.1.12. Let Φ be a signature, and A and B be Φ-algebras. A morphism

of Φ-algebras f : A → B is a map f : A → B which commutes with every primitive

operation:

An
fn

//

φA

��

Bn

φB

��
A

f // B

for every n ∈ N and every n-ary primitive operation φ. If P = (Φ, E) is a presentation,

then a morphism of P -algebras is a morphism of Φ-algebras.

By an easy induction, a morphism of Φ-algebras will commute with every derived

operation too.

Given a presentation P , there is a category Alg(P ) whose objects are P -algebras and

whose arrows are P -algebra morphisms. We shall call a category C a variety of algebras

(or simply a variety) if C is isomorphic to Alg(P ) for some presentation P .

We will need to consider closures of sets of equations; the idea is that the closure of

E contains the members of E and all of their consequences.

Definition 1.1.13. Let t be an n-ary Φ-term, and t1, . . . , tn be Φ-terms. Then the graft

t(t1, . . . , tn) is the Φ-term defined recursively as follows.

• If t = xi, then t(t1, . . . , tn) = ti.

• If t = φ(s1, . . . , sm), where φ ∈ Φm and s1, . . . , sm are n-ary Φ-terms, then

t(t1, . . . , tn) = φ((s1(t1, . . . , tn)), . . . , sm(t1, . . . , tn)).

Definition 1.1.14. Let Φ be a signature and E be a set of Φ-equations. The closure Ē

of E is the smallest equivalence relation on term Φ which contains E and is closed under

grafting of terms:

• if (s, t) ∈ Ē, then (s(t1, . . . , tn), t(t1, . . . , tn)) ∈ Ē for all t1, . . . , tn.

• if (si, ti) ∈ Ē for i = 1, . . . , n, then (t(s1, . . . , sn), t(t1, . . . , tn)) ∈ Ē for all t.
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1.2 Clones

Clones attempt to capture theories directly: a clone is to a presentation of an algebraic

theory as a group is to a presentation of that group.

Definition 1.2.1. A clone K is

• a sequence of sets K0,K1, . . . ,

• for all m,n ∈ N, a function • : Kn × (Km)n → Km,

• for each n ∈ N and each i ∈ {1, . . . , n}, an element δin ∈ Kn

such that

• for each f ∈ Kn, g1, . . . , gn ∈ Km, h1, . . . , hm ∈ Kp,

f • (g1 • (h1, . . . , hm), . . . , gn • (h1, . . . , hm)) = (f • (g1, . . . , gn)) • (h1, . . . , hm)

• for all n, all i ∈ 1, . . . , n and all f1, . . . , fn ∈ Km,

δin • (f1, . . . , fn) = fi

• for all n and f ∈ Kn,

f • (δ1n, . . . , δ
n
n) = f

Example 1.2.2. Let C be a finite product category, and A be an object of C. The

endomorphism clone of A, End(A), is defined as follows:

• End(A)n = C(An, A) for each n ∈ N,

• for all n ∈ N and i ∈ {1, . . . , n}, the map δin is the projection of An onto its ith

factor,

• for all n,m ∈ N, all f ∈ End(A)n, and all g1, . . . , gn ∈ End(A)m, the morphism

f • (g1, . . . , gn) is the composite fh, where h is the unique arrow Am → An induced

by the maps g1, . . . , gn and the universal property of An.

Definition 1.2.3. A morphism of clones f : K → K ′ is a map in SetN which commutes

with the composition operations and δs.

Definition 1.2.4. Let K be a clone, and C a finite product category with specified finite

powers. An algebra for K in C is an object A ∈ C and a morphism of clones K → End(A).
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Equivalently, an algebra for a clone K in a finite product category C with specified

powers is

• an object A of C,

• for each n ∈ N and each k ∈ Kn, a morphism k̂ : An → A

such that

• for all n ∈ N and all i ∈ {1, . . . n}, the morphism δ̂in is the projection of An onto its

ith factor;

• for all n,m ∈ N, all f ∈ Kn, and all g1, . . . , gn ∈ Km, the diagram

Am

bg1

����
��

��
��

��
��

�

h

��

cgn

��3
33

33
33

33
33

33

̂f•(g1,...,gn)

vv

A A

An
bδ1n

aaCCCCCCCC bδn
n

=={{{{{{{{

f

��
A

commutes, where h is the unique arrow induced by the universal property of An.

Definition 1.2.5. Let A and B be algebras for a clone K in a finite product category C

with specified finite powers. A morphism of algebras A → B is a morphism F : A → B

in C such that the diagram

An
Fn

//

k̂
��

Bn

k̂
��

A
F // B

commutes for all n ∈ N and all k ∈ Kn.

Algebras for a clone and their morphisms form a category: we call this category

AlgC(K), or Alg(K) in the case where C = Set.

Clones can be enriched in any finite product category V in an obvious way: the sequence

of sets K0,K1, . . . becomes a sequence of objects of V, and so on.
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1.3 Lawvere theories

Lawvere theories are a particularly elegant approach to describing algebraic theories, in-

troduced by Lawvere in his thesis [Law63]. Like a clone, a Lawvere theory (sometimes

called a finite product theory) is an object that represents the semantics of the theory

directly; in Lawvere theories, the data are encoded into a category. Algebras for the theory

are then certain functors from the Lawvere theory to Set.

Definition 1.3.1. A Lawvere theory is a category T whose objects form a denumerable

set {0,1,2, . . . }, such that n is the n-th power of 1. A morphism of Lawvere theories

T → S is an identity-on-objects functor T → S which preserves projection maps. The

category of Lawvere theories and their morphisms is called Law. An algebra for T is

a functor F : T → Set which preserves finite products. A morphism of algebras is a

natural transformation. The category of T -algebras is the full subcategory of [T ,Set]

whose objects are finite-product-preserving functors.

Lawvere theories encode algebraic theories by storing the n-ary operations of the theory

as morphisms n → 1.

We can consider algebras for Lawvere theories in categories other than Set: an algebra

for a Lawvere theory T in a finite product category C is just a finite-product-preserving

functor T → C. This captures our usual notions of, for instance, topological groups: a

topological group is just an algebra for the Lawvere theory of groups in the category Top.

Much the same could be said for clones and presentations, of course, but in this case the

definition is especially economical.

We may generalize this definition as follows:

Definition 1.3.2. Let S be a set. An S-sorted finite product theory is a small

finite product category whose underlying monoidal category is strict and whose monoid

of objects is the free monoid on S. Elements of S will be called sorts. Algebras and

morphisms of algebras are defined as above.

1.4 Finitary monads

Recall that a monad on a category C is a monoid object in the category [C, C] of endo-

functors on C. Concretely, a monad is a triple (T, µ, η) where

• T : C → C is a functor,
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• µ : T 2 → T is a natural transformation,

• η : 1C → T is a natural transformation,

and µ, η satisfy coherence axioms which are analogues of the usual associativity and unit

laws for monoids, namely

T 3

µT

~~||
||

||
|| Tµ

  B
BB

BB
BB

B

T 2

µ
!!B

BB
BB

BB
B T 2

µ
}}||

||
||

||

T

(1.1)

T
Tη //

1T   A
AA

AA
AA

A T 2

µ

��

T
ηToo

1T~~}}
}}

}}
}}

T

(1.2)

We shall often abuse notation and refer to the monad (T, µ, η) as simply T .

Definition 1.4.1. Let (T1, µ1, η1), (T2, µ2, η2) be monads on a category C. A morphism

of monads (T1, µ1, η1) → (T2, µ2, η2) is a natural transformation α : T1 → T2 such that

the diagrams

T 2
1

µ1 //

α∗α

��

T1

α

��
T 2

2 µ2

// T2

(1.3)

1
η1 //

η2 ��>
>>

>>
>>

> T1

α

��
T2

(1.4)

commute.

Monads on C and monad morphisms form a category Mnd(C). This notion (or rather,

a 2-categorical version) was introduced and studied by Street in [Str72].

Definition 1.4.2. A category C is filtered if every finite diagram in C admits a cocone.

Equivalently, C is filtered if:

• C is nonempty;

• for every pair of parallel arrows A
f //
g

// B in C, there is an arrow h : B → C such

that hf = hg;
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• for every pair of objects A,B, there is an object C and arrows

A
f

  @
@@

@@
@@

C

B

g

>>~~~~~~~

Filteredness generalizes the notion of directedness for posets (a directed poset is a

poset in which every finite subset has an upper bound). A filtered category which is also

a poset is precisely a directed poset.

Definition 1.4.3. A filtered colimit in a category C is the colimit of a diagramD : I → C,

where I is a filtered category.

Theorem 1.4.4. Every object in Set is a filtered colimit of finite sets.

Proof. Let X ∈ Set, and consider the subcategory I of Set whose objects are finite subsets

of X and whose morphisms are inclusions. This is a directed poset, and thus a filtered

category. X is the colimit of the inclusion of I into Set.

Theorem 1.4.5. Let I be a small category. Colimits of shape I in Set commute with all

finite limits iff I is filtered.

Proof. See [MLM92], Corollary VII.6.5.

Definition 1.4.6. A functor F : C → D is finitary if it preserves filtered colimits.

Definition 1.4.7. A monad (T, µ, η) on C is finitary if T is finitary.

A finitary monad on Set is determined by its behaviour on finite sets, in the following

sense: since every set X is a filtered colimit of its finite subsets, then TX has to be the

colimit of the images under T of the finite subsets of X.

1.5 Equivalences

Let (Φ, E) be a presentation of an algebraic theory. We define K(Φ,E) to be the clone whose

operations are elements of the quotient signature (term Φ)/Ē, with composition given by

grafting, and δin = xi for all i, n ∈ N. By definition of Ē, grafting gives a well-defined

family of composition functions on K(Φ,E). Conversely, given a clone K, we may define a



CHAPTER 1. THEORIES 20

presentation of an algebraic theory (ΦK , EK), by taking (ΦK)n = Kn for all n ∈ N, and

for all n,m ∈ N, all k ∈ Kn and all k1, . . . , kn ∈ Km, letting Em contain the equation

k(k1(x1, . . . , xm), . . . , kn(x1, . . . , xm)) = k • (k1, . . . , kn)(x1, . . . , xm).

Lemma 1.5.1. Let K be a clone. Then K(ΦK ,EK) is isomorphic to K.

Proof. See [Joh94], Lemma 1.7.

Lemma 1.5.2. Let (Φ, E) be a presentation of an algebraic theory. Let (Φ′, E′) be the

presentation obtained from the clone K(Φ,E). Then the category Alg(Φ, E) is isomorphic

to the category Alg(Φ′, E′)

Proof. See [Joh94], Lemma 1.8.

Definition 1.5.3. Let K be a clone. We say that K is strongly regular (resp. linear)

if there exists a strongly regular (resp. linear) presentation P such that K = K(Φ,E).

Given a clone K, we construct a Lawvere theory TK for which TK(n,m) = (Kn)
m.

Suppose f = (f1, . . . , fm) ∈ TK(n,m) and g = (g1, . . . , gp) ∈ TK(m,p), then the composite

gf is (g1 • (f1, . . . , fm), . . . , gp • (f1, . . . , fm)). By the axioms for a clone, this is a category,

with the identity map on n being (δ1n, . . . , δ
n
n). It remains to show that n is the nth power

of 1 for every n ∈ N. The ith projection of n onto 1 is evidently δin: we must show that

these have the requisite universal property. Take m,n ∈ N, and n maps f1, . . . , fn : m → 1

in TK . The diagram

m
f1





h
��

fn

��

n

δ1nzzuuuuuuuuuu

δn
n $$I

IIIIIIIII

1 . . . 1

commutes if and only if h = (f1, . . . , fn), and hence n is indeed the nth power of 1, and

so TK is a Lawvere theory.

The Lawvere theories so constructed evidently respect isomorphisms of clones. Fur-

thermore, the diagram

Clone
T(−) //

Alg
##F

FFFFFFFFFFF Law

Alg
||zz

zz
zz

zz
zz

zz

CATop

commutes up to equivalence:
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Theorem 1.5.4. Let K be a clone. Then Alg(K) ≃ Alg(TK).

Proof. Let A be a K-algebra. We define a TK-algebra FA as follows:

• FAn = An for all n ∈ N;

• If k ∈ TK(n, 1) = Kn, then FAk = k̂;

• if (k1, . . . , kn) : m → n in TK , then FA(k1, . . . , kn) is the unique arrow Am → An

such that the diagram

Am

bk1

��








bkn

��1
11

11
11

11
11

11
11

��
An

cδ1n}}{{
{{

{{
{{

cδn
n !!C

CC
CC

CC
C

A . . . A

commutes.

Let f : A→ B be a morphism of K-algebras. Then the diagram

An
fn

//

bk
��

Bn

bk
��

A
f // B

commutes for all n ∈ N and all k ∈ Kn. By the universal property of Bm, the diagram

An
fn

//

FA(k1,...,km)

��

Bn

FB(k1,...,km)

��
Am

fm

// Bm

commutes for all n,m ∈ N and all (k1, . . . , km) : n → m in TK . Hence Ff = (fn)n is a

natural transformation FA → FB, and hence a morphism of TK-algebras. This defines a

functor F(−) : Alg(K) → Alg(TK); we wish to show that it is an equivalence.

For every TK-algebra G, we may define a K-algebra A by setting A = G1 and k̂ =

G(n
k

−→ 1) for all k ∈ Kn and all n ∈ N. Then FA is isomorphic as a TK-algebra to

G, and hence the functor F(−) : Alg(K) → Alg(TK) is essentially surjective on objects.

We shall show further that it is full and faithful. Let A and B be K-algebras, and let

αn : FA → FB be a morphism between their associated TK-algebras. Since the diagram

An
αn //

cδi
n
��

Bn

cδi
n

��
A

α1 // B
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commutes for all n ∈ N and all i ∈ {1, . . . , n}, it must be the case that αn = αn1 for all n.

Hence, the diagram

An
αn

1 //

bk
��

Bn

bk
��

A
α1 // B

must commute for all n ∈ N and all k ∈ Kn. So α1 is a K-algebra morphism, and

αn = Fα1 . Hence F(−) is full. Suppose Ff = Fg; then (Ff )1 = (Fg)1, so f = g. Hence

F(−) is faithful; and hence it is an equivalence of categories.

Given a Lawvere theory T , we can construct a clone KT , as follows:

• Let (KT )n = T (n,1) for all n ∈ N.

• For all n,m ∈ N, all f ∈ (KT )n and all g1, . . . , gn ∈ (KT )m, let f • (g1, . . . , gn) =

f ◦ (g1 + · · · + gn) ◦ ∆, where (g1 + · · · + gn) is the unique map mn → n in T such

that the diagram

mn

g1+···+gn

��

yyssssssssss

%%KKKKKKKKKK

m

g1

��

m

gn

��

n

yyttttttttttt

%%JJJJJJJJJJJ

1 . . . 1

commutes, and ∆ : m → mn is the diagonal map (or equivalently, the image of the

codiagonal function mn → m under the contravariant embedding of F into T ).

• For all n ∈ N and all i ∈ 1, . . . , n, let δin be the ith projection n → 1.

This extends to a functor K(−) : Law → Clone, as follows: given Lawvere theories T1

and T2, and a morphism of Lawvere theories F : T1 → T2, let KF be the map of signatures

sending k ∈ (KT1)n = T1(n,1) to Fk ∈ (KT2)n = T2(n,1). Since F is a functor, and thus

commutes with composition in T1, T2, then KF must commute with composition in KT1

and KT2 . Since F preserves finite products, it commutes with the projection maps in KT1

and KT2 . Thus, KF is a morphism of clones.

Theorem 1.5.5. The functor K(−) is pseudo-inverse to the functor T(−).
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Proof. Since every object in a Lawvere theory is a copower of 1, a Lawvere theory T is

entirely determined (up to isomorphism) by the hom-sets T (n,1), and thus by KT . The

theorem follows straightforwardly.

Given a Lawvere theory T , we construct a monad (T, µ, η) on Set as follows:

• If X is a set, let TX =
∫ n∈F

T (n,1) ×Xn.

• If x ∈ X, then η(x) = (1, x) ∈ TX.

• If f : n → 1 in T and (fi, x
i
•) ∈ T (ki,1) ×Xki for i = 1, . . . , n, then

µ(f, ((f1, x
1
•), . . . , (fn, x

n
• ))) = (f ◦ (f1 + · · · + fn), x

•
•)

Theorem 1.5.6. The monad so constructed is finitary.

Proof. See [AR94], Theorems 3.18 and 1.5, and Remarks 3.4(4) and 3.6(6).

Given a finitary monad T on Set, we can construct a Lawvere theory T . Take the full

subcategory FT of the Kleisli category SetT whose objects are finite sets. Now let T be

the skeleton of the dual of FT . The monad induced by this Lawvere theory is isomorphic

to the original monad: see [AR94], Remark 3.17 and Theorem 3.18.

The moral of the above theorems is that presentations, clones, Lawvere theories and

finitary monads on Set all capture the same notion, and may be used interchangeably.

Further, the notion that is captured corresponds to our usual intuitive understanding of

equational algebraic theories.

The equivalence between (finitary monads on C) and (monads on C that may be de-

scribed by a finitary presentation) may actually be generalized to the case where C is an

arbitrary finitely presentable category: see [KP93].



Chapter 2

Operads

Operads arose in the study of homotopy theory with the work of Boardman and Vogt

[BV73], and May [May72]. In that field they are an invaluable tool: [MSS02] describes

a diverse range of applications. Independently, multicategories (which are to operads as

categories are to monoids) had arisen in categorical logic with the work of Lambek [Lam69].

Multicategories are sometimes called “coloured operads”.

We will use multicategories and operads as tools to approach universal algebra: while

operads are not as expressive as Lawvere theories, they can be easily extended to be so,

and the theories that can be represented by operads provide a useful “toy problem” to

help us get started.

Informally, categories have objects and arrows, where an arrow has one source and one

target; multicategories have objects and arrows with one target but multiple sources (see

Fig. 2.1); and operads are one-object multicategories. Multicategories (and thus operads)

have a composition operation that is associative and unital.

=

Figure 2.1: Composition in a multicategory

24
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2.1 Plain operads

Definition 2.1.1. A plain multicategory (or simply “multicategory”) C consists of the

following:

• a collection C0 of objects,

• for all n ∈ N and all c1, . . . , cn, d ∈ C0, a set of arrows C(c1, . . . , cn; d),

• for all n, k1, . . . kn ∈ N and c11 . . . , c
n
kn
, d1, . . . , dn, e ∈ C0, a function called composition

◦ : C(d1, . . . , dn; e) × C(c11, . . . , c
1
k1

; d1) × · · · × C(cn1 , . . . , c
n
kn

; dn) → C(c11, . . . , c
n
kn

; e)

• for all c ∈ C, an identity arrow 1c ∈ C(c; c)

satisfying the following axioms:

• Associativity: f ◦ (g• ◦ h
•
•) = (f ◦ g•) ◦ h

•
• wherever this makes sense (we borrow the

• notation for sequences from chain complexes)

• Units: 1 ◦ f = f = f ◦ (1, . . . , 1) for all f .

A plain multicategory C is small if C0 forms a set. In line with the definition above, we

shall take all our multicategories to be locally small: this restriction is not essential.

We say that an arrow in C(c1, . . . , cn; d) is n-ary, or has arity n. We remark that

taking n = 0 gives us nullary arrows. This is in contrast to the definition used by some

authors, who do not allow nullary arrows.

Definition 2.1.2. A morphism of multicategories F : C → D is a map F : C0 → D0

together with maps F : C(c1, . . . , cn; c) → D(Fc1, . . . , F cn;Fc) which commute with ◦ and

identities. A transformation of multicategory maps α : F → G is a family of arrows

αc ∈ D(Fc;Gc), one for each c ∈ C, satisfying the analogue of the usual naturality squares:

for all maps f : c1, . . . , ck → c in C, we must have

αc ◦ Ff = Gf ◦ (αc1 , . . . , αck)

One is tempted to write this last condition as

Fc1, . . . , F ck
Ff //

αc1 ,...,αck

��

Fc

αc

��
Gc1, . . . , Gck

Gf
// Gc
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but care must be taken: in a general multicategory, αc1 , . . . , αck does not correspond to

any single map, as it would in a monoidal category.

Small plain multicategories, their morphisms and their transformations form a 2-

category: we shall use the notation Multicat for both this 2-category and its underlying

1-category.

To simplify the presentation of our first example, we recall the notion of unbiased

monoidal category from [Lei03] section 3.1:

Definition 2.1.3. An unbiased weak monoidal category (C,⊗, γ, ι) consists of

• a category C,

• for each n ∈ N, a functor ⊗n : Cn → C called n-fold tensor and written

(a1, . . . , an) 7→ (a1 ⊗ · · · ⊗ an)

• for each n, k1, . . . , kn ∈ N, a natural isomorphism

γ : ⊗n ◦ (⊗k1 × · · · × ⊗kn) −→ ⊗P

ki

• a natural isomorphism

ι : 1A → ⊗1

satisfying

• associativity: for any triple sequence a••• of objects in C, the diagram

(((⊗a•11) ⊗ · · · ⊗ (⊗a•1k1)) ⊗ · · · ⊗ ((⊗a•n1) ⊗ · · · ⊗ (⊗a•nkn
)))

||xxxxxxxxxxxxxxxx

##F
FFFFFFFFFFFFFFF

((⊗a•1•) ⊗ · · · ⊗ (⊗a•n•))

""E
EEEEEEEEEEEEEEE

((⊗a•11) ⊗ · · · ⊗ (⊗a•nkn
))

{{xxxxxxxxxxxxxxxx

(a1
11 ⊗ · · · ⊗ a

mkn

nkn
)

commutes.
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• identity: for any n ∈ N and any sequence a1, . . . , an of objects in C, the diagrams

(a1 ⊗ · · · ⊗ an)
(ι⊗···⊗ι) //

1

''OOOOOOOOOOOOOOOOOOOOOO
((a1) ⊗ · · · ⊗ (an))

γ

��
(a1 ⊗ · · · ⊗ an)

(a1 ⊗ · · · ⊗ an)
ι //

1

''OOOOOOOOOOOOOOOOOOOOOO
((a1 ⊗ · · · ⊗ an))

γ

��
(a1 ⊗ · · · ⊗ an)

commute.

Example 2.1.4. Let C be a locally small unbiased weak monoidal category. The under-

lying multicategory C′ of C has

• objects: objects of C;

• arrows: C′(a1, . . . , an; b) = C(a1 ⊗ · · · ⊗ an, b);

• composition given as follows: if fi ∈ C′(ai1, . . . , a
i
ki

; bi) for i = 1, . . . , n and g ∈

C′(b1, . . . , bn; c), then we define g ◦ (f1, . . . , fn) as

⊗
i,j a

i
j

f◦(g1,...,gn)

��

γ⊗···⊗γ //
⊗

i(
⊗

j a
i
j)

N

i fi

��
c

⊗
i big

oo

Definition 2.1.5. Let M and C be plain multicategories. An algebra for M in C is a

morphism of multicategories M → C.

Definition 2.1.6. Let M be a plain multicategory, and C be an unbiased monoidal cate-

gory. An algebra for M in C is a morphism of multicategories from M to the underlying

multicategory of C.

A plain operad (or simply “operad”) is now a one-object multicategory. Morphisms

and transformations of operads are defined as for general multicategories. As before,
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we use the notation Operad for both the 2-category of operads, morphisms and trans-

formations, and its underlying 1-category. Operads are to multicategories as monoids are

to categories: just as with monoids, this allows us to present the theory of operads in a

simplified way.

Lemma 2.1.7. An operad P can be given by the following data:

• A sequence P0, P1, . . . of sets

• For all n, k1, . . . , kn ∈ N, a function ◦ : Pn × Pk1 × · · · × Pkn → PP

ki

• An identity element 1 ∈ P1

satisfying the following axioms:

• Associativity: f ◦ (g• ◦ h
•
•) = (f ◦ g•) ◦ h

•
• wherever this makes sense

• Units: 1 ◦ f = f = f ◦ (1, . . . , 1) for all f.

Proof. Using the symbol ∗ for the unique object, let Pn = P (∗, . . . , ∗; ∗), where the input

is repeated n times. The rest of the conditions follow trivially from the definition of a

multicategory.

Lemma 2.1.8. Let P and Q be operads. A morphism f : P → Q consists of a function

fn : Pn → Qn for each n ∈ N such that, for all n, k1, . . . , kn, the diagram

Pn × Pk1 × · · · × Pkn

fn×fk1
×···×fkn

��

◦ // PP

ki

fP

ki

��
Qn ×Qk1 × · · · ×Qkn ◦

// QP

ki

commutes, and that f1 preserves the identity object.

If f and g are morphisms of operads from P to Q, then a transformation from f to g

is an element α ∈ Q1 such that α ◦ Fp = Gp ◦ (α, . . . , α) for all n ∈ N and all p ∈ Pn.

Proof. Trivial.

Definition 2.1.9. If a morphism of operads f : P → Q is such that fn has some property

X for all n ∈ N, we say that f is levelwise X.

Example 2.1.10. Let A be an object of a multicategory C. The endomorphism operad

of A is the full sub-multicategory End(A) of C whose only object is A. In terms of the
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description in Lemma 2.1.7, End(A)n is the set of n-ary arrows from A, . . . , A to A.

Composition is as in C.

In particular, if C is the underlying multicategory of some monoidal category C′, then

End(A)n = C′(A⊗ · · · ⊗A,A). This is the case we shall use most frequently.

Example 2.1.11. There is an operad S for which each Sn is the symmetric group Sn.

Operadic composition is given as follows: if σ ∈ Sn, and τi ∈ Ski
for i = 1, . . . , n, then

σ ◦ (τ1, . . . , τn) :

j∑

i=1

ki +m 7→
∑

i:σ(i)<σ(j+1)

ki + τj+1(m)

for all j ∈ {1, . . . , n} and m ∈ {0, . . . , kj+1 − 1}. Informally, the inputs are divided into

“blocks” of length k1, k2, . . . , kn, which are then permuted by σ: the elements of each block

are then permuted by the appropriate τi. For an example, see Figure 2.2.

Figure 2.2: Composition in the operad S of symmetries

Example 2.1.12. There is an operad B for which each Bn is the Artin braid group Bn.

Composition is analogous to that for S: the inputs are divided into blocks, which are

braided, and then the elements of the blocks are braided.

Example 2.1.13. Fix an m ∈ N. There is an operad LD for which each LDn is an

embedding of n copies of the closed unit disc Dm into Dm. Composition is by gluing – see

Figure 2.3.

LD is known as the little m-discs operad.

Since we wish to use operads to represent theories, we need to have some way of

describing the models of those theories.

Definition 2.1.14. Let P be an operad. An algebra for P in a multicategory C is an

object A ∈ C and a morphism of operads (ˆ) : P → End(A).
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Figure 2.3: Composition in the little 2-discs operad

Where C is a monoidal category, this is equivalent to requiring an object A ∈ C, and

for each p ∈ Pn a morphism p̂ : A⊗n → A such that 1̂ = 1A and p̂ ◦ (q̂1 ⊗ · · · ⊗ q̂n) =

̂p ◦ (q1 ⊗ · · · ⊗ qn) for all p, q1, . . . , qn ∈ P . A third equivalent definition is, for each n ∈ N,

a map hn : Pn ⊗ A⊗n → A, such that hn(p, hn(q•,−)) = hP

ki
(p ◦ q•,−) for all p ∈ Pn,

qi ∈ Pki
, and h1(1,−) = 1A. We leave the proofs of these equivalences as an easy exercise

for the reader, and will make use of whichever formulation is most convenient at the time.

Definition 2.1.15. Let P be a plain operad, and (A, (ˆ)) and (B, (ˇ)) be algebras for P

in a multicategory C. A morphism of algebras is an arrow F : A→ B in C such that, for

all n ∈ N, the diagram

Pn

(ˆ)
��

(ˇ) // End(B)n

−◦(F,...,F )
��

End(A)n
F◦− // C(A, . . . , A;B)

commutes.

The definition of morphism may be stated equivalently in terms of any of the three

characterizations of algebras given above.
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2.2 Symmetric operads

Definition 2.2.1. A symmetric multicategory is a multicategory C and, for every

n ∈ N, every σ ∈ Sn, and every A1, . . . An, B ∈ C, a map

σ · − : C(A1, . . . , An;B) −→ C(Aσ1, . . . , Aσn;B)

f 7−→ σ · f

such that

• For each f ∈ C(A1, . . . , An;B), 1 · f = f .

• For each σ, ρ ∈ Sn, and each f ∈ C(A1, . . . , An;B),

ρ · (σ · f) = (ρσ) · f

• For each permutation σ ∈ Sn, all objects A1
1, . . . , A

n
kn
, B1, . . . , Bn, C ∈ C and all

arrows fi ∈ C(Ai1, . . . , A
i
ki

;Bi) and g ∈ C(B1, . . . , Bn;C),

(σ · g) ◦ (fσ1, . . . , fσn) = (σ ◦ (1, . . . , 1)) · (g ◦ (f1, . . . fn)).

• For each A1
1, . . . , A

n
kn
, B1, . . . , Bn, C ∈ C, σi ∈ Ski

for i = 1, . . . , n, and each fi ∈

C(Ai1, . . . , A
i
ki

;Bi), g ∈ C(B1, . . . , Bn;C),

g ◦ (σ1 · f1, . . . , σn · fn) = (1 ◦ (σ1, . . . , σn)) · (g ◦ (f1, . . . , fn)).

where σ ◦ (1, . . . , 1) and 1 ◦ (σ1, . . . , σn) are as defined in Example 2.1.11.

This definition is unusual in that the symmetric groups act on the left rather than on

the right as is more common: however, this change is essential for our later generalization

to finite product multicategories in Section 2.3.

Definition 2.2.2. Let C1 and C2 be symmetric multicategories. A morphism (or map) F

of symmetric multicategories is a map F : C1 → C2 of multicategories such that F (σ · f) =

σ · F (f) for all n ∈ N, all n-ary f in C1, and all σ ∈ Sn.

Definition 2.2.3. Let M and C be symmetric multicategories. An algebra for M in C

is a morphism of symmetric multicategories M → C.

Definition 2.2.4. A symmetric operad is a symmetric multicategory with only one

object.
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In this case, the definition is equivalent to the following:

Definition 2.2.5. A symmetric operad is an operad P together with an action of the

symmetric group Sn on each Pn, which is compatible with the operadic composition:

Pn ×
∏
Pki

(σ·−)×1×···×1 //

1×σ∗
��

Pn ×
∏
Pki

◦

��

Pn ×
∏
Pσki

◦

��
PP

ki

(σ◦(1,...,1))·− // PP

ki

Pn ×
∏
Pki

1×(ρ1·−)×···×(ρn·−)//

◦

��

Pn ×
∏
Pki

◦

��
PP

ki

(1◦(ρ1,...,ρn))·− // PP

ki

Pn

1·−

''

1

77 Pn

Maps of symmetric operads are just maps of symmetric multicategories.

Example 2.2.6. The operad S of symmetric groups, as given in Example 2.1.11. The

action of Sn on Sn is given by σ · τ = τσ−1.

Example 2.2.7. Let C be a symmetric multicategory, and A ∈ C. The symmetric

endomorphism operad End(A) of A is the full sub-(symmetric multicategory) of C

whose only object is A.

If C is the underlying symmetric multicategory of a symmetric monoidal category, then

End(A)n = C(A⊗n;A) for each n ∈ N, and the actions of the symmetric groups are given

by composition with the symmetry maps.

Definition 2.2.8. Let P be a symmetric operad. An algebra for P in a multicategory

C is an object A and a map h : P → End(A) of symmetric operads. A morphism

(A, h) → (A′, h′) of P -algebras is an arrow F : A→ B in C such that h′F = Fh.

As with plain operads, the definitions of an algebra for a symmetric operad P and of

morphisms between those algebras may be stated in several equivalent ways.

2.3 Finite product operads

The definition of categorification in Chapter 4 is couched in terms of operads. To generalize

it, therefore, we might generalize the definition of operad so that it is capable of expressing

every (one-sorted) algebraic theory.
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This generalization is not new: our “finite product operads” were presented by Tronin

under the name “FinSet-operads”. Our Theorem 2.3.12 appears in [Tro02], and Theorem

2.3.13 appears as Theorem 1.2 in [Tro06]. A fuller treatment was given by T. Fiore (who

called them “the functional forms of theories”) in [Fio06]. Tronin’s paper constructs an

isomorphism between the category of finite product operads and the category of algebraic

clones which commutes with the forgetful functors to SetN; Fiore’s constructs an equiv-

alence between the category of finite product operads and that of Lawvere theories, and

also shows that this equivalence preserves the categories of algebras.

Let F be a skeleton of the category of finite sets and functions, with objects the sets

0, 1, 2, . . . , where n = {1, 2, . . . , n}.

Definition 2.3.1. A finite product multicategory is:

• A plain multicategory C;

• for every morphism f : n→ m in F, and for all objects C1, . . . , Cn, D ∈ C, a function

f · − : C(C1, . . . , Cn;D) → C(Cf(1), . . . , Cf(n);D)

satisfying the following axioms:

• the F-action is functorial: f · (g · p) = (f ◦ g) · p, and idn · p = p wherever these

equations make sense;

• the F-action and multicategorical composition interact by “combing out”:

(f · p) ◦ (f1 · p1, . . . , fn · pn) = (f ◦ (f1, . . . , fn)) · (p ◦ (pf(1), . . . , pf(n)))

where (f ◦ (f1, . . . , fn)) is given as follows:

Let f : n→ m, and fi : ki → j
i
for i = 1, . . . , n. Then

f ◦ (f1, . . . , fn) :
∑
ki →

∑
ji

f ◦ (f1, . . . , fn) :
(∑p−1

i=1 kf(i)

)
+ h 7→

(∑f(p)−1
i=1 ji

)
+ fp(h)

for all p ∈ {1, . . . , n} and all h ∈ {1, . . . , kf(p)}. See Figure 2.4. The small specks

represent inputs to the arrow that are ignored.

It is now possible to see why we chose to have our symmetries acting on the left in

Definition 2.2.1: in this more general case, only a left action is possible.
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=

Figure 2.4: “Combing out” the F-action

Definition 2.3.2. A finite product operad is a finite product multicategory with only

one object.

We will see in Section 2.8 that finite product operads are equivalent in expressive power

to Lawvere theories or clones: hence, every finitary algebraic theory provides an example

of a finite product operad. As before, the sets Pn contain the n-ary operations in the

theory. For illustrative purposes, we work out two examples now:

Example 2.3.3. Let R be a ring, and Pn = R[x1, . . . , xn] (the set of polynomials in n

commuting variables over R) for all n ∈ N. If p ∈ Pn and qi ∈ Pki
for i = 1, . . . , n, then

(p ◦ (q1, . . . , qn))(x1, . . . , xPn
i=1 ki

) = p(q1(x1, . . . , xk1), . . . , qn(x(
Pn−1

i=1 ki)+1, . . . , x
Pn

i=1 ki
))

and if f : n→ m, then

(f · p)(x1, . . . , xm) = p(xf(1), . . . , xf(n))

Example 2.3.4. Let Pn be the set of elements of the free commutative monoid on n

variables x1, . . . , xn. Elements of Pn are in one-to-one-correspondence with elements of

Nn. We call the nth component of p ∈ Pn the multiplicity of the nth argument.

Composition is defined as follows:



p1

...

pn


 ◦







q11
...

q1k1


 , . . . ,




qn1
...

qnkn





 =




p1q
1
1

...

pnq
n
kn




and if f : n→ m,

f ·




p1

...

pn


 =




∑
f(i)=1 pi

...
∑

f(i)=m pi
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Or, in more familiar notation:

(xp11 . . . xpn
n ) ◦ (x

q11
1 . . . x

q1k1
1 , . . . x

qn
1

(
Pn−1

i=1 ki)+1
. . . x

qn
kn

Pn
i=1 ki

) = x
p1q

1
1

1 x
p1q

1
1

2 . . . x
pnq

n
kn

Pn
i=1 ki

f · (xp11 . . . xpn
n ) = xp1

f(1) . . . x
pn

f(n)

= x

P

f(i)=1 pi

1 . . . x

P

f(i)=m pi

m

Example 2.3.5. Let C be a finite product category, and A be an object of C. Then there

is a finite product operad End(A), the endomorphism operad of A, where End(A)n =

C(An, A), and f ·p is p composed with the appropriate combination of projections to relabel

its arguments by f .

Definition 2.3.6. Let M , N be finite product multicategories. A morphism F : M → N

consists of

• for each object m ∈M , an object Fm ∈ N ;

• for each n ∈ N and all m1, . . . ,mn,m ∈M , a map

Fm1,...,mn,m : M(m1, . . .mn;m) → N(Fm1, . . . , Fmn;Fm)

commuting with the F-action, the unit and composition.

Definition 2.3.7. Let M be a finite product multicategory. An algebra for M in a finite

product multicategory C is a map of finite product multicategories M → C. An algebra

for M in a finite product category C is a map of finite product multicategories from M to

the underlying finite product multicategory of C. Finite product multicategories and their

morphisms form a category called FP-Multicat.

In the special case of finite product operads, these definitions are equivalent to the

following:

Definition 2.3.8. Let P , Q be finite product operads. A morphism F : P → Q is a

sequence of maps Fi : Pi → Qi commuting with the F action, the unit and composition.

Definition 2.3.9. Let P be a finite product operad. An algebra for P in a finite product

category C is an object A ∈ C and a map of finite product operads P → End(A).

Finite product operads and their morphisms form a category called FP-Operad.

Example 2.3.10. The algebras in C for the operad described in Example 2.3.3 are asso-

ciative R-algebras in C.
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Example 2.3.11. The algebras for the operad described in Example 2.3.4 are commuta-

tive monoid objects in C.

Theorem 2.3.12. FP-Operad ∼= Clone.

Proof. We shall construct a functor K(−) : FP-Operad → Clone, and show that it is

bijective on objects, full and faithful.

If P is a finite product operad, let KP be the following clone:

• (KP )n = Pn for all n ∈ N,

• composition is given by composition in P : if p ∈ Pn and p1, . . . , pn ∈ Pm, then

p • (p1, . . . , pn) ∈ (KP )m is f · (p ◦ (p1, . . . , pn)) ∈ Pm, where

f : nm → m

x 7→ ((x− 1) mod m) + 1,
(2.1)

• for all n ∈ N and all i ∈ n, the projection δin is f in · 1, where

f in : 1 → n

1 7→ i.
(2.2)

It is easily checked that KP satisfies the axioms for a clone given in Definition 1.2.1.

On morphisms, K(−) acts trivially: morphisms of clones and of finite product operads

are simply maps of signatures commuting with the extra structure, and K(−) preserves

the underlying map of signatures.

Let K be a clone. Let PK be the finite product operad for which

• (PK)n = Kn for all n ∈ N,

• 1 = δ11,

• p ◦ (p1, . . . , pn) = p • (p1 • (δ1m, . . . , δ
k1
P

ki
), . . . , pn • (δ

k1+···+kn−1+1
P

ki
, . . . , δ

P

ki
P

ki
)) for all

n and k1, . . . , kn ∈ N, all p ∈ Kn, and all p1 ∈ Kk1 , . . . , pn ∈ Kkn ,

• f · p = p • (δ
f(1)
m , . . . , δ

f(n)
m ) for all n,m ∈ N, all f : n→ m and all p ∈ Kn.

We will show that KPK
= K for all K ∈ Clone, and that PKP

= P for all P ∈

FP-Operad. Let K be a clone. Then (KPK
)n = (PK)n = Kn for all n ∈ N. If n,m ∈ N,

k ∈ Kn and k1, . . . , kn ∈ Km, then the composite k • (k1, . . . , kn) in KPK
is given by the
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composite f · (k◦ (k1, . . . , kn)) in PK , where f is given by (2.1) above. This in turn is given

by the composite

(k • (k1 • (δ1nm, . . . , δ
m
nm), . . . , kn • (δ(n−1)m+1

nm , . . . , δnmnm)))

• (δ1m, . . . , δ
m
m, . . . , δ

1
m, . . . , δ

m
m)

in K. By the associativity law for clones, this is equal to

k • ( k1 • (δ1nm, . . . , δ
m
nm) • (δ1m, . . . , δ

m
m, . . . , δ

1
m, . . . , δ

m
m),

. . . ,

kn • (δ
(n−1)m+1
nm , . . . , δnmnm) • (δ1m, . . . , δ

m
m, . . . , δ

1
m, . . . , δ

m
m))

which in turn may be simplified to k • (k1, . . . , kn) as required. For every n ∈ N and every

i ∈ n, the projection δin in KPK
is given by f in · 1, where f in is defined in (2.2): this in turn

is given by 1 ◦ (δin) = δ11 • (δin) = δin. Hence KPK
= K.

Conversely, let P be a finite product operad we shall show that PKP
= P . For every

n ∈ N, the set (PKP
)n is equal to Pn. The unit element is given by 1 = δ11 = f1

1 · 1 = 1.

If p ∈ Pn and pi ∈ Pki
for i = 1, . . . , n, then the composite p ◦ (p1, . . . , pn) is given by

p • (p1 • (δ1m, . . . , δ
k1
P

ki
), . . . , pn • (δ

k1+···+kn−1+1
P

ki
, . . . , δ

P

ki
P

ki
)) in KP , which in turn is given

by (after simplification) p ◦ (p1, . . . , pn) in P . Hence P = PKP
, and K(−) is bijective on

objects. The reasoning above also suffices to show that K(−) is well-defined on morphisms

and full (since preserving a finite product operad structure amounts exactly to preserving

the associated clone structure). Since the morphisms of both categories are simply maps of

signatures with extra properties and K(−) commutes with the forgetful functors to SetN,

then K(−) is faithful. Hence K(−) is an isomorphism of categories, and FP-Operad ∼=

Clone.

Theorem 2.3.13. Let P be a finite product operad. Then Alg(P ) ∼= Alg(KP ).

Proof. Let (A, (ˆ)) be a P -algebra. Since the elements of the finite product endomorphism

operad End(A) are endomorphisms of A, and composition is given by composition of

morphisms, then KEnd(A) = End(A), the endomorphism clone of A. Since the functor

K(−) : FP-Operad → Clone is an isomorphism, a morphism of finite product operads

P → End(A) is exactly a map of clones KP → End(A). Hence an algebra for P is

exactly an algebra for KP . A morphism between P -algebras is a morphism between their

underlying objects that commutes with p̂ for every p ∈ Pn and every n ∈ N; this is true

iff it commutes with k̂ for every k ∈ (KP )n and every n ∈ N.
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2.4 Adjunctions

In the next few sections, we shall show that there is a chain of monadic adjunctions

FP-Operad

U
fp
Σ

��
U

fp
pl

yy
U fp

uu

Σ-Operad

UΣ
pl

��

FΣ
fp ⊣

OO

UΣ

yy

Operad

F
pl
Σ ⊣

OO

Upl

��

F
pl
fp

99

SetN

Fpl ⊣

OO
FΣ

99
Ffp

55 (2.3)

The notation is chosen such that F xy ⊣ Uyx , and UyxU zy = U zx . The notation is inspired

by the exponential notation used for hom-objects: the source category of one of these

functors is determined by its superscript, and the target category is determined by its

subscript. The “pl” stands for “plain”. A similar chain of adjunctions (for PROPs rather

than operads) was discussed in [Bae], pages 51–59.

We refer to the monad UyxF xy as T xy . The right adjoints Upl, UΣ
pl and U fp

Σ are found

by forgetting respectively the compositional structure, the symmetric structure, and the

actions of all non-bijective functions, and will not be described further. By standard

properties of adjunctions, the composite functors are adjoint: FΣ ⊣ UΣ etc.

2.5 Existence and monadicity

All the left adjoints in (2.3) are examples of a more general construction. We shall now

investigate this general case, and show that the adjunction which arises is always monadic.

But first, we have so far only asserted that U fp, U fp
Σ and U fp

pl have left adjoints. We

shall show that these left adjoints must exist for general reasons.

Let FP be the category of small categories with finite products and product-preserving

functors.

Lemma 2.5.1. Let C and D be small finite-product categories, let C be cartesian closed and

have all small colimits, and let Q : C → D preserve finite products. Then the adjunction

[D, C]
Q!

⊥

//
[C, C]

Q∗
oo ,



CHAPTER 2. OPERADS 39

where Q∗ is composition with Q and Q! = LanQ, restricts to an adjunction

FP(D, C)
Q!

⊥

//
FP(C, C)

Q∗
oo ,

Proof. Certainly Q∗ restricts in this way, since Q preserves finite products. FP(C, C) and

FP(D, C) are full subcategories of [C, C] and [D, C], so if we can show that Q! restricts to

a functor FP(C, C) → FP(D, C), then it is automatically left adjoint to the restriction of

Q∗.

Let X : C → C preserve finite products. We must show that Q!X : D → C preserves

finite products. We shall proceed by showing that Q!X preserves terminal objects and

binary products.

Recall that

(Q!X)(b) ∼=

∫ a

D(Qa, b) ×Xa

for all b ∈ D. Hence, using 1 for the terminal objects in D and C,

(Q!X)(1) ∼=

∫ a

D(Qa, 1) ×Xa

∼=

∫ a

1 ×Xa

∼=

∫ a

Xa

∼= X1

∼= 1

since X preserves finite products and the colimit of a diagram D over a category with a

terminal object 1 is simply D1.

Now, let b1, b2 ∈ D. Then

(Q!X)(b1 × b2)

∼=

∫ a

D(Qa, b1 × b2) ×Xa (2.4)

∼=

∫ a

D(Qa, b1) × D(Qa, b2) ×Xa (2.5)

∼=

∫ a (∫ c1

D(Qc1, b1) × C(a, c1)

)
×

(∫ c2

D(Qc2, b2) × C(a, c2)

)
×Xc (2.6)

∼=

∫ a,c1,c2

D(Qc1, b1) × D(Qc2, b2) × C(a, c1) × C(a, c2) ×Xa (2.7)

∼=

∫ a,c1,c2

D(Qc1, b1) × D(Qc2, b2) × C(a, c1 × c2) ×Xa (2.8)
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∼=

∫ c1,c2

D(Qc1, b1) × D(Qc2, b2) ×

(∫ a

C(a, c1 × c2) ×Xa

)
(2.9)

∼=

∫ c1,c2

D(Qc1, b1) × D(Qc2, b2) ×X(c1 × c2) (2.10)

∼=

∫ c1,c2

D(Qc1, b1) × D(Qc2, b2) ×Xc1 ×Xc2 (2.11)

∼=

∫ c1,c2

D(Qc1, b1) ×Xc1 × D(Qc2, b2) ×Xc2 (2.12)

∼=

(∫ c1

D(Qc1, b1) ×Xc1

)
×

(∫ c2

D(Qc2, b2) ×Xc2

)
(2.13)

∼= (Q!X)(b1) × (Q!X)(b2) (2.14)

(2.4) is the definition of Q!; (2.5), (2.8) and (2.11) are from the definition of products;

(2.6) and (2.10) are applications of the Density Formula; (2.7), (2.9) and (2.14) use the

distributivity of products over colimits in C (since C is cartesian closed), and (2.12) uses

the fact that X preserves finite products.

So Q! preserves terminal objects and binary products, and hence all finite products.

Corollary 2.5.2. The functors U fp
Σ , U

fp
pl and U fp all have left adjoints.

Lemma 2.5.3. Let S be a set, whose elements we will call sorts. Let T and T ′ be S-sorted

finite product theories, such that T ′ is a subcategory of T and the inclusion of T ′ into T

preserves finite products. Let Alg(T ) be the category of T -algebras and morphisms in some

finite product category C, and Alg(T ′) be the category of T ′-algebras and morphisms in C.

Then the free/forgetful adjunction

Alg(T ′)
F

⊥

//
Alg(T )

U
oo

is monadic, provided the left adjoint F exists.

Proof. We will make use of Beck’s theorem to prove monadicity: precisely, we shall make

use of the version in [ML98] VI.7.1, which states that U is monadic if it has a left adjoint

and it strictly creates coequalizers for U -absolute coequalizer pairs. Recall that a functor

G : C → D strictly creates coequalizers for a diagram A
f //
g

// B in C if, for every

coequalizer e : GB → E of Gf and Gg in D, there are a unique object E′ in C and a

unique arrow e′ : B → E′ such that GE′ = E and Ge′ = e, and moreover that e′ is a

coequalizer of A
f //
g

// B .

Let A
f //
g

// B be a U -absolute coequalizer pair in Alg(T ), and e : UB → E be the

coequalizer of UA
Uf //
Ug

// UB . We wish to extend E to a functor E′ : T → C. Define E′
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to be equal to E on objects. On arrows, we shall define E′ using the universal property of

E and the U -absolute property of A
f //
g

// B .

For each arrow φ : s1 × · · · × sn → r1 × · · · × rm in T (where si, rj ∈ S), consider the

diagram

∏
UAsi

Q

Ufsi //
Q

Ugsi

//

Aφ

��

∏
UBsi

Q

esi //

Bφ

��

∏
Esi

E′φ

��∏
UArj

Q

frj //
Q

grj

//
∏
UBrj

Q

erj //
∏
Erj

(2.15)

in C, where e : UB → E is a coequalizer for UA
Uf //
Ug

// UB .

Since A
f //
g

// B is a U -absolute coequalizer pair,
∏
esi

:
∏
UBsi →

∏
Esi is a

coequalizer. Since f and g are T -homomorphisms, (2.15) serially commutes, so (
∏
erj )φ

factors uniquely through
∏
esi

. Define E′φ to be this map, as shown (and note that

E′φ = Eφ if φ is in T ′). This definition straightforwardly makes E′ into a functor T → C.

Since E is a T ′-algebra, and products in T are the same as products in T ′, we may deduce

that E′ : T → C preserves finite products, and thus is a T -algebra. Clearly, E′ is the

unique extension of E to a T -algebra such that e is a T -algebra morphism. It remains to

show that e is a coequalizer map for A
f //
g

// B in Alg(T ).

Suppose A
f //
g

// B
d // D is a fork in Alg(T ). Then UA

Uf //
Ug

// UB
Ud // UD is a

fork in Alg(T ′), so Ud factors through e; say Ud = he. We must show that h is a T -

homomorphism. As before, take φ : s1 × · · · × sn → r1 × · · · × rm in T , and consider the

diagram

∏
UAsi

Q

Ufsi //
Q

Ugsi

//

Aφ

��

∏
UBsi

Q

esi //

Bφ

��

Q

Udsi ((QQQQQQQQQQQQ

∏
E′si

E′φ

~~

Q

hsi

��∏
UDsi

Dφ

~~

∏
UArj

Q

frj //
Q

grj

//
∏
UBrj

Q

erj //

Q

Udrj ((QQQQQQQQQQQQQ

∏
E′rj

Q

hrj

��∏
Drj

(2.16)

We must show that the curved square on the far right commutes. Now (Dφ)◦(
∏
dsi

) =

(Dφ)◦ (
∏
hsi

)◦ (
∏
esi

), and (
∏
Udrj )◦ (UBφ) = h◦e◦ (UBφ) = h◦ (Eφ)◦ (

∏
esi

), since e
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is a T -algebra homomorphism. But (
∏
Udrj ) ◦ φ = φ ◦ (

∏
di), so Dφ ◦ (

∏
hsi

) ◦ (
∏
esi

) =

h ◦ (Eφ) ◦ (
∏
esi

). And
∏
esi

is (regular) epic, so h ◦ (Eφ) = (Dφ) ◦ (
∏
hsi

).

So h is a T -algebra homomorphism. Hence U strictly creates coequalizers for U -

absolute coequalizer pairs, and hence is monadic.

This result could also have been deduced from the Sandwich Theorem of Manes: see

[Man76] Theorem 3.1.29 (page 182).

Theorem 2.5.4. All the adjunctions in diagram 2.3, namely FΣ
fp ⊣ U fp

Σ , F
pl
fp ⊣ U fp

pl , Ffp ⊣

U fp, F pl
Σ ⊣ UΣ

pl, FΣ ⊣ UΣ and Fpl ⊣ U
pl, are monadic.

Proof. Each category mentioned is a category of algebras for some N-sorted theory, and

the monadicity of each adjunction mentioned is obtained by a simple application of Lemma

2.5.3. For instance, symmetric operads are algebras for the theory presented by

• operations: one of the appropriate arity for each composition operation in Definition

2.2.5, and an operation σ · − for each n ∈ N and each σ in Sn.

• equations: one for each instance of the axioms in Definition 2.2.5, and an equation

(σ · −) ◦ (ρ · −) = σρ · − for each σ, ρ ∈ Sn and every n ∈ N.

2.6 Explicit construction of Fpl and F
pl
Σ

The previous section showed that Fpl and F pl
Σ exist for general reasons, but it will be

useful later to have an explicit construction of these functors. For this reason, we shall

now explicitly construct functors SetN → Operad and Operad → Σ-Operad, and prove

that they are left adjoint to Upl and UΣ
pl.

Definition 2.6.1. Let Φ be a signature. An n-ary strongly regular tree labelled by

Φ is an element of the set trn Φ, which is recursively defined as follows:

• | is an element of tr1 Φ.

• If φ ∈ Φn, and τ1 ∈ trk1 Φ, . . . , τn ∈ trkn Φ, then φ ◦ (τ1, . . . , τn) ∈ trP

ki
Φ.

In graph-theoretic terms, all our trees are planar and rooted. They need not be level.

We shall abuse notation and write φ instead of φ ◦ (|, . . . , |), for φ ∈ Φn.

Given a signature Φ, the objects of the plain operad (FplΦ)n are the elements of trn Φ,

and composition is given by grafting of trees:
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=

Figure 2.5: Grafting of trees

• | ◦ (τ) = τ

• If τ1 ∈ trk1 Φ, . . . , τn ∈ trkn Φ, then

(φ◦(τ1, . . . , τn))◦(σ1, . . . , σP

ki
) = φ◦(τ1◦(σ1, . . . , σk1), . . . , τn◦(σ(

P

ki)−kn+1, . . . , σ
P

ki
))

See Figure 2.5.

The unary tree | is thus the identity in (FplΦ).

Fpl acts on arrows as follows. Let f : Φ → Ψ be a map of signatures. Then:

• (Fplf)| = |

• (Fplf)(φ ◦ (τ1, . . . , τn)) = (fφ) ◦ ((Fplf)τ1, . . . , (Fplf)τn)

It is readily verified that with this definition Fpl is a functor SetN → Operad.

We define natural transformations η : 1SetN → UplFpl and ǫ : FplU
pl → 1Operad as

follows:

ηΦ(φ) = φ ◦ (|, . . . , |) (2.17)

ǫP (|) = 1P (2.18)

ǫP (φ ◦ (τ1, . . . , τn)) = φ ◦ (ǫP (τ1), . . . , ǫP (τn)) (2.19)

where P ∈ Operad,Φ ∈ SetN, φ ∈ Φ, and τ1, . . . , τn are arrows of P .

In other words, ǫP is given by applying composition in P to the formal tree FplU
plP .

Lemma 2.6.2. (Fpl, U
pl, η, ǫ) is an adjunction.

Proof. We proceed by checking the triangle identities. We require to show that

Fpl
Fplη//

1Fpl $$I
IIIIIIIII FplU

plFpl

ǫFpl

��
Fpl

(2.20)
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Upl
ηUpl

//

1
Upl $$JJJJJJJJJJ UplFplU

pl

Uplǫ

��
Upl

(2.21)

commute. For (2.20), we proceed by induction on trees. We shall suppress all subscripts

on natural transformations in the interest of legibility. For the base case:

ǫFpl(Fplη(|)) = ǫFpl(| ◦ (|))

= | ◦ (ǫ(|))

= |

= 1Fpl
(|).

For the inductive step, let Φ be a signature, φ be an n-ary element of Φ, and τ1, . . . , τn be

trees labelled by Φ. Then:

(ǫFpl)((Fplη)(φ ◦ (τ1, . . . , τn))) = ǫFpl(φ ◦ (τ1, . . . , τn) ◦ (|, . . . , |))

= φ ◦ (τ1, . . . , τn) ◦ ((ǫFpl)(|), . . . , (ǫFpl)(|))

= φ ◦ (τ1, . . . , τn)

= 1Fpl
(φ ◦ (τ1, . . . , τn))

Hence ǫFpl ◦ Fplη = 1Fpl, as required.

For (2.21), let P be a plain operad, and let p be an n-ary arrow in P .

(Uplǫ)((ηUpl)(p)) = Uplǫ(p ◦ (|, . . . , |))

= p ◦ ((Uplǫ)(|), . . . , (Uplǫ)(|))

= p ◦ (1, . . . , 1)

= p

= 1Upl(p)

So Uplǫ ◦ ηUpl = 1Upl , as required.

We now consider the “free symmetric operad” functor F pl
Σ . We shall explicitly define

a functor S ×− : Operad → Σ-Operad and show that it is left adjoint to UΣ
pl, and hence

isomorphic to F pl
Σ .

If P is a plain operad, an element of (S×P )n is a pair (σ, p), where p ∈ Pn and σ ∈ Sn;

i.e., (S × P )n = Sn × Pn. Composition is given as follows:

(σ, p) ◦ ((τ1, q1), . . . , (τn, qn)) = (σ ◦ (τ1, . . . , τn), p ◦ (qσ(1), . . . , qσ(n)))



CHAPTER 2. OPERADS 45

The symmetric group action is given by ρ · (σ, p) = (ρσ, p).

=

Figure 2.6: Composition in S × P

Lemma 2.6.3. (S × −) is left adjoint to UΣ
pl. The unit of the adjunction is given by

η : 1 → UΣ
pl(S × −)

ηP : p 7→ (1, p),

and the counit is given by

ǫ : (S × −)UΣ
pl → 1

ǫP : (σ, p) 7→ σ · p.

Proof. As before, we proceed by checking the triangle identities. First, let P be a plain

operad, p be an n-ary arrow in P , and σ ∈ Sn. Then (σ, p) is an element of S × P .

(ǫ(S × −))(S × η)(σ, p)) = (ǫ(S × −))(σ, (1, p))

= σ · (1, p)

= (σ ◦ 1, p)

= (σ, p)

Now let P ′ be a symmetric operad, and p′ be an n-ary arrow in P ′.

(UΣ
plǫ)(ηU

Σ
pl(p

′)) = (UΣ
plǫ)((1, p

′))

= 1 · p′

= p′

So the triangle identities are indeed satisfied, and (S × −) ⊣ UΣ
pl.

Hence, F pl
Σ = S × −.
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Definition 2.6.4. Let Φ be a signature. An n-ary permuted tree labelled by Φ is an

element of (F pl
Σ FplΦ)n = (FΣΦ)n. An n-ary finite product tree labelled by Φ is an

element of (FfpΦ)n.

By Lemma 2.6.3, a permuted tree is a pair (σ, t), where t ∈ trn Φ and σ ∈ Sn, and

(by analogous reasoning) an n-ary finite product tree is a pair (f, t), where t ∈ trm Φ and

f : m→ n.

2.7 Syntactic characterization of the forgetful functors

There is also a syntactic characterization of the forgetful functor UΣ
pl. Given a symmetric

operad P , we take the signature given by all operations in P (in other words, the signature

UΣP ). We then impose all the plain-operadic equations that are true in P , and take the

plain operad corresponding to this strongly regular theory. This operad is UΣ
plP .

We start by making this precise.

Definition 2.7.1. Let Φ be a signature. A plain-operadic equation over Φ in n

variables is an element of ((UplFplΦ)n)
2 (that is, a pair of n-ary strongly regular trees

over Φ), and a plain-operadic equation over Φ is an element of
∑

n((U
plFplΦ)n)

2.

We shall show that a plain-operadic equation over Φ is the same thing as a strongly

regular equation over Φ.

Definition 2.7.2. Let P be a plain operad. A presentation for P is a signature Φ, a

signature E, and maps e1, e2 : FplE → FplΦ such that, for some φ,

FplE
e1 //
e2

// FplΦ
φ // P

is a coequalizer. We say that a regular epi φ : FplΦ → P generates P , or that φ (or,

where the choice of φ is clear, Φ) is a generator of P .

Presentations and generators for symmetric and finite product operads are defined

analogously.

We will see how these “presentations” are related to presentations of algebraic theories

in Section 2.8. We now wish to describe the family of all strongly regular equations that

are true in a given symmetric operad P : we will then show that this, together with the

signature given by UΣP , is a presentation for UΣ
plP as claimed.
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Definition 2.7.3. Let P be a plain operad, and φ : FplΦ → P be a generator for P . Let

E be a subsignature of (UplFplΦ)2, so that each En is a set of n-ary Φ-equations. Let i be

the inclusion map E
� � // (UplFplΦ)2 , and π1, π2 be the projection maps (UplFplΦ)2 →

UplFplΦ. Then P satisfies all equations in E if the diagram

FplE
π1i //

π2i

// FplΦ
φ // P

is a fork.

We say that a symmetric or finite product operad satisfies a signature of equations if

the analogous condition holds in Σ-Operad or FP-Operad.

Recall the notion of the “kernel pair” of a morphism:

Definition 2.7.4. Let f : A → B in some category C. The kernel pair of f is the pair

W
p //
q

// A of maps in the pullback square

W
y

p //

q

��

A

f

��
A

f // B

if this pullback exists.

Lemma 2.7.5. Let ǫ be the counit of the adjunction Fpl ⊣ Upl. Let Q
π1 //
π2

// Fpl(U
ΣP )

be the kernel pair of the component

ǫUΣ
plP

: FplU
ΣP = FplU

plUΣ
plP → UΣ

plP,

of ǫ. Let h be the unique map Q→ (FplU
ΣP )2 induced by π1, π2. Then the image of Uplh

is the largest signature of plain-operadic UΣP -equations satisfied by P .

Proof. Q, π1, π2 are given by the diagram

Q
y

π1 //

π2

��

FplU
ΣP

ǫ

��
FplU

ΣP
ǫ // UΣ

plP

As a right adjoint, Upl preserves pullbacks; we take the standard construction of pullbacks

in SetN as subobjects of products, in which case h is an inclusion map. An element of

(UplQ)n is then a pair (e1, e2) of n-ary strongly regular UΣP trees such that ǫ(e1) = ǫ(e2).

Hence, Q is a signature of plain-operadic UΣP -equations satisfied by P . Conversely, let

E be a signature of plain-operadic UΣP -equations satisfied by P , and let (e1, e2) be an

element of En: then ǫ(e1) = ǫ(e2) and so (e1, e2) is an element of (UplQ)n.
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Corollary 2.7.6. Let R be the plain operad generated by UΣP , satisfying exactly those

plain-operadic equations satisfied by P . Then

FplU
plQ

Uplπ1 //

Uplπ2

// FplU
ΣP

is a presentation for R, where the overbars refer to transposition with respect to the ad-

junction Fpl ⊣ U
pl.

We recall some standard results.

Lemma 2.7.7. The counit of a monadic adjunction is componentwise regular epi.

Proof. See [AHS04] 20.15.

Lemma 2.7.8. If X
f //
g

// Y
h // Z is a coequalizer in some category, and if e : W → X

is epi, then W
fe //
ge

// Y
h // Z is a coequalizer.

Proof. Suppose W
fe //
ge

// Y
i // A is a fork. Then ife = ige, so if = ig since e is epi.

So X
f //
g

// Y
i // A is a fork, and hence i factors uniquely through h.

Lemma 2.7.9. In categories with all kernel pairs, every regular epi is the coequalizer of

its kernel pair.

Proof. Let C have all kernel pairs, and A
f //
g

// B
e // C be a coequalizer diagram in

C. Let W
p //
q

// B be the kernel pair of e. We will show that W
p //
q

// B
e // C is a

coequalizer diagram. Since ef = eg, we may uniquely factor (f, g) through W:

A

g

��0
00

00
00

00
00

00
0

f

((PPPPPPPPPPPPPPP

i

  
W

y
p

//

q

��

B

e

��
B

e // C

Suppose W
p //
q

// B
h // D is a fork. hp = hq, so hpi = hqi, so hf = hg. By the

universal property of e, we may factor h uniquely through e. So W
p //
q

// B
e // C is a

coequalizer diagram, as required.
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Lemma 2.7.10. Let P be a symmetric operad, and let Q, π1, π2 be as in Lemma 2.7.5.

Then the coequalizer of the diagram

Q
π1 //
π1

// FplU
ΣP

is UΣ
plP .

Proof. Let ǫ′ be the unit of the adjunction F pl
Σ ⊣ UΣ

pl. This adjunction is monadic, so ǫUΣ
plP

is regular epi by Lemma 2.7.7. By Lemma 2.7.9, ǫUΣ
plP

is the coequalizer of its kernel pair,

i.e.

Q
π1 //
π2

//
∑

n(U
plFplU

ΣP )n

ǫ
UΣ

pl
P

// UΣ
plP

is a coequalizer diagram.

Theorem 2.7.11. Let P be a symmetric operad. Then UΣ
plP is the plain operad whose

operations are those in P , satisfying exactly those plain-operadic equations which are true

in P .

Proof. The adjunction Fpl ⊣ U
pl is monadic, so if ǫ′ is its counit, then ǫ′Q : FplU

plQ → Q

is (regular) epi by Lemma 2.7.7. Hence, by Lemma 2.7.8,

FplU
plQ

π1ǫ
′
Q //

π2ǫ
′
Q

// FplU
ΣP

ǫ
UΣ

pl
P

// UΣ
plP

is a coequalizer. But π1ǫ
′
Q = Uplπ1, and similarly π2ǫ

′
Q = Uplπ2. Hence, by Corollary

2.7.6, UΣ
plP is the plain operad generated by UΣP , satisfying all plain-operadic equations

true in P . Since UΣP = UplUΣ
plP , the n-ary operations of UΣ

plP are exactly the n-ary

operations of P .

We may generalize this as follows:

Theorem 2.7.12. Let C be a category with pullbacks, and T be a monad on C. Let

( TA
a // A ) ∈ CT . Let E

φ1 //
φ2

// TA be the kernel pair of a in C. Then

FTE
φ̄1 //

φ̄2

// FTA
ǫ(A,a) // (A, a)

is a coequalizer in CT , where FT : C → CT is the free functor, and ǫ is the counit of the

adjunction FT ⊣ UT .

Proof. As above.
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Corollary 2.7.13. Let P be a finite product operad. Then U fp
Σ P is the symmetric operad

whose operations are given by those of P , satisfying all linear equations that are true in

P , and U fp
plP is the plain operad whose operations are given by those in P , satisfying all

strongly regular equations that are true in P .

2.8 Operads and syntactic classes of theories

We have defined notions of algebras for plain, symmetric and finite product operads. We

might ask how these are related to the algebraic theories of Chapter 1: are the algebras

for an operad P algebras for some algebraic theory TP ? If so, what can we say about the

theories that so arise?

We will show the following:

• Plain operads are equivalent in expressive power to strongly regular theories.

• Symmetric operads are equivalent in expressive power to linear theories.

• Finite product operads are equivalent in expressive power to general algebraic theo-

ries.

The first equivalence is proved in [Lei03]. The second has long been folklore (see,

for instance, [Bae] page 50), but as far as I know no proof has appeared before. An

(independently found) proof does appear in an unpublished paper of Adámek and Velebil,

who also consider the enriched case. The third equivalence was proved in two stages by

Tronin, in [Tro02] and [Tro06].

Recall the definitions of strongly regular and linear terms from Definition 1.1.7, and

the definitions of strongly regular, permuted and finite product trees (Definitions 2.6.1 and

2.6.4).

Let Φ be a signature. We will show that there is an isomorphism between the set

(TfpΦ)n and the set of n-ary words in Φ, and that this isomorphism restricts to further

isomorphisms as follows:
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(TfpΦ)n ∼= {n-ary words in Φ}

(TΣΦ)n
?�

OO

∼= {n-ary linear words in Φ}
?�

OO

(TplΦ)n
?�

OO

∼= {n-ary strongly regular words in Φ}
?�

OO

(2.22)

The maps in the left-hand column can be viewed as inclusions between different sets of

finite product trees, or equivalently as maps arising from the units of the adjunctions

FΣ
fp ⊣ U fp

Σ and F pl
Σ ⊣ UΣ

pl.

Let Φ be a signature. Observe that trees in Φ give rise to terms according to the

following recursive algorithm:

• Let τ be an n-ary strongly regular tree, and Y = (y1, y2, . . . , yn) a finite sequence

of variables. The term term(τ, Y ) arising from τ with working alphabet Y is

given as follows:

– If τ = |, then term(τ, Y ) = y1.

– If τ = φ ◦ (τ1, . . . , τn), then

term(τ, Y ) = φ(term(τ1, (y1, . . . , yi1)), . . . , term(τn, (y1+in−1 , . . . , yin))),

where i1 is the arity of τ1, and ij − ij−1 is the arity of τj for j > 1.

• The term term(τ) arising from τ is term(τ, (x1, x2, . . . , xn)).

• Let σ · τ be a permuted tree. Then term(σ · τ) = term(τ, (xσ1, xσ2, . . . , xσn)).

• Let f · τ be a finite product tree. Then term(f · τ) = term(τ, (xf(1), xf(2), . . . , xf(n))

Definition 2.8.1. Let t be a Φ-term. We define a plain-operadic tree tree(t) recursively:

• if t is a variable, let tree(t) = |.

• if t = φ(t1, . . . , tn), let tree(t) = φ ◦ (tree(t1), . . . , tree(tn)).

Lemma 2.8.2. Every Φ-term t is equal to term(f · τ) for a unique finite product tree

(f · τ).

Proof. We will show

1. if t is a Φ-term, then term(label(t) · tree(t)) = t;
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2. if (f ·τ) is a finite product tree, then f = label(term(f ·τ)) and τ = tree(term(f ·τ)).

(1) Let t be a Φ-term. Let f = label(t), and τ = tree(t). Then term(f · τ) is

term(τ, (xf(1), . . . , xf(n))). We proceed by induction.

• if t = xi, then term(f · τ) is term(|, (xi)), which is xi.

• if t = φ(t1, . . . , tn), where each ti has arity ki, then

term(f · τ) = term(φ ◦ (tree(t1), . . . , tree(tn)), (xf(1), . . . , xf(n)))

= φ(term(tree(t1), (xf(1), . . . , xf(k1))), . . . ,

term(tree(tn), (xf((
Pn−1

i=1 ki)+1), . . . , xf(
Pn

i=1 ki))))

= φ(t1, . . . , tn)

= t.

(2) Let τ be an n-ary plain-operadic tree in Φ, and f a function of finite sets with

codomain m. Let t = term(f · τ). We proceed as usual by induction on τ .

• If τ = |, then t = xf(1); then tree(t) = | = τ and label(t) is the function 1 → m

sending 1 to f(1), i.e. label(t) = f .

• If τ = φ ◦ (τ1, . . . , τn), then

t = term(φ ◦ (τ1, . . . , τn), (xf(1), . . . , xf(
P

ki)))

= φ(term(τ1, (xf(1), . . . , xf(k1))), . . . , term(τn, (xf((
Pn−1

i=1 ki)+1)) . . . , xf(
Pn

i=1 ki))))

By induction, var(t) = (xf(1), . . . , xf(
P

ki)), so label(t) = f , and tree(t) = φ ◦

(τ1, . . . , τn) = τ as required.

We have now established the isomorphism in the top line of 2.22. If we use this

isomorphism to identify finite product operads with finitary monads on Set, we may view

the functor F pl
fp as the well-known functor sending a plain operad to its associated monad

on Set.

Lemma 2.8.3. Let t be a Φ-term. Then t is linear iff t = term(τ) for some permuted tree

τ , and strongly regular iff t = term(τ) for some strongly regular tree τ .
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Proof. In Lemma 2.8.2, we factored every Φ-term t into a strongly regular tree tree(t)

and a labelling function label(t). By definition, t is linear iff label(t) is a bijection, which

occurs iff t = term(σ · τ) for some plain-operadic tree τ and some bijection σ. Hence,

the linear terms and permuted trees are in one-to-one correspondence. Similarly, strongly

regular terms and plain-operadic trees are in one-to-one correspondence.

The commutativity of 2.22 now follows from our explicit construction of FΣ and Fpl in

Section 2.4.

Lemma 2.8.4. Let (Φ, E) be a presentation of an algebraic theory. Then (Φ, E) is linear

if and only if the projection maps E
π1 //
π2

// term (Φ) may be factored through the map

TΣΦ
η // TfpΦ

∼ // term Φ :

E
π1 //
π2

//

    

TfpΦ
∼ // term Φ

TΣΦ
∼ //

η

77oooooooooooo
{linear Φ-terms}

)
	

77nnnnnnnnnnnn

Proof. By definition, the presentation is linear iff π1, π2 factor through the signature of

linear Φ-terms. By Lemma 2.8.3, this signature is isomorphic to TΣΦ, so we are done.

Theorem 2.8.5. Let Q ∈ FP-Operad. Then

1. Q is strongly regular iff there exists a P ∈ Operad such that Q ∼= F pl
fpP ;

2. Q is linear iff there exists a P ∈ Σ-Operad such that Q ∼= FΣ
fpP ;

Proof. We will consider the linear case; the strongly regular case is proved analogously.

If Q is linear, then there exists a linear presentation E
// // FfpΦ for Q. We may

regard E as a subobject of the signature of Φ-equations. By assumption, E consists only

of linear equations; by Lemma 2.8.3, every (s, t) ∈ E is (term(σ1 · τ1), term(σ2 · τ2)) for

some pair (σ1 ·τ1, σ2 ·τ2) of permuted trees. So the diagram E
//// FfpΦ in FP-Operad

is the image under FΣ
fp of a diagram

E′ //// FΣΦ

in Σ-Operad. This diagram has a coequalizer: call it P . The functor FΣ
fp is a left adjoint,

and thus preserves coequalizers: hence, Q is the image under FΣ
fp of P .
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Now suppose Q = FΣ
fpP for some symmetric operad P . We may take the canonical

presentation of P :

FΣU
ΣFΣU

ΣP
ǫFΣU

Σ
//

FΣU
Σǫ

// FΣU
ΣP

ǫ // P

and apply FΣ
fp to it:

Ffp(U
ΣFΣU

ΣP )
FΣ

fpǫFΣU
Σ

//

FfpU
Σǫ

// FfpU
ΣP

FΣ
fpǫ // FΣ

fpP = Q

Since FΣ
fp is a left adjoint, it preserves coequalizers, so the transpose of this parallel pair

is a presentation for Q. Take this transpose:

UΣFΣU
ΣP

ǫFΣUΣ
//

FΣUΣǫ

// UΣFΣU
ΣP

η′ // U fpFfpU
ΣP

U fpFΣ
fpǫ // U fpQ

where η′ is the unit of the adjunction Ffp ⊣ U fp, and the bars refer to transposition with

respect to the adjunction FΣ ⊣ UΣ.

This is in precisely the form required for Lemma 2.8.4.

Example 2.8.6. The theories of monoids and pointed sets are strongly regular, because

the finite product operads corresponding to these theories are in the image of F pl
fp ; the

theory of commutative monoids is linear but not strongly regular, because the finite prod-

uct operad whose algebras are commutative monoids is in the image of FΣ
fp but not in the

image of F pl
fp .

There is a little more to be said about these classes of theories.

Definition 2.8.7. A wide pullback is a limit of a (possibly infinite) diagram of the form

•

��=
==

==
==

==
==

•

&&LLLLLLLLL

... •

•

88rrrrrrrrr

...

Definition 2.8.8. A natural transformation α : F → G is cartesian if every naturality

square

FA
Ff //

αA

��

FB

αB

��
GA

Gf // GB
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is a pullback square.

Definition 2.8.9. A monad (T, µ, η) is cartesian if T preserves pullbacks and µ, η are

cartesian natural transformations.

Theorem 2.8.10. A plain operad is equivalent to a cartesian monad on Set equipped with

a cartesian map of monads to the free monoid monad.

Proof. See [Lei03] 6.2.4. Let 1 be the terminal plain operad; algebras for 1 are monoids.

Since 1 is terminal, every plain operad P comes equipped with a map ! : P → 1. This

induces a cartesian map of monads T! : TP → T1, and T1 is the free monoid monad.

Lemma 2.8.11. Let T, S be endofunctors on a category A, let α : T → S be a carte-

sian natural transformation, and let S preserve wide pullbacks. Then T preserves wide

pullbacks.

Proof. This follows from the facts that wide pullbacks are products in slice categories and

that the functor f∗ : A/B → A/A induced by a map f : A→ B is product-preserving.

Corollary 2.8.12. Let P be a plain operad. Then the functor part of the monad TP

arising from P preserves wide pullbacks.

Definition 2.8.13. A functor F : C → Set is familially representable if F is a coprod-

uct of representable functors. A monad (T, µ, η) on Set is familially representable if T

is familially representable.

Theorem 2.8.14. (Carboni-Johnstone) Let C be a complete, locally small, well-powered

category with a small cogenerating set, and let F : C → Set be a functor. The following

are equivalent:

1. F is familially representable;

2. F preserves wide pullbacks.

Proof. See [CJ95], Theorem 2.6.

Corollary 2.8.15. The monad associated to a strongly regular theory is familially repre-

sentable.

However, the inclusion is only one-way: there exist cartesian monads (T, µ, η) such that

T is familially representable but the induced theory is not strongly regular. For instance,

take the theory of involutive monoids:
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Definition 2.8.16. An involutive monoid (or monoid with involution) is a monoid

(M, ., 1) equipped with an involution i : M →M , satisfying i(a.b) = i(b).i(a).

The theory of involutive monoids is familially representable, but not strongly regular

— see [CJ04].

2.9 Enriched operads and multicategories

In the previous sections we considered operads P where P0, P1, · · · ∈ Set, and composition

was given by functions. It is possible to consider operads where P0, P1, . . . lie in some other

category; the resulting objects are called enriched operads. Enriched operads have many

applications and a rich theory: for instance, topologists often consider operads enriched

in Top or in some category of vector spaces. Our treatment here will be brief, sufficient

only to set up the definitions of Chapter 4: for more on enriched operads, see [MSS02].

Throughout this section, let (V,⊗, I, α, λ, ρ, τ) be a symmetric monoidal category.

Definition 2.9.1. A V-multicategory C consists of the following:

• a collection C0 of objects,

• for all n ∈ N and all c1, . . . , cn, d ∈ C0, an object C(c1, . . . , cn; d) ∈ V called the

arrows from c1, . . . , cn to d,

• for all n, k1, . . . kn ∈ N and c11 . . . , c
n
kn
, d1, . . . , dn, e ∈ C0, an arrow in V called compo-

sition

◦ : C(d1, . . . , dn; e) ⊗ C(c11, . . . , c
1
k1

; d1) ⊗ · · · ⊗ C(cn1 , . . . , c
n
kn

; dn) → C(c11, . . . , c
n
kn

; e)

• for all c ∈ C, a unit uc : I → C(c; c)

satisfying the following axioms:

• Associativity: For all b•••, c
•
•, d•, e ∈ C, the following diagram commutes:

C(d•; e) ⊗ C(c1•; d1) ⊗ · · · ⊗ C(cn• ; dn)

⊗C(b11•; c
1
1) ⊗ · · · ⊗ C(bnkn•

; cnkn
)

◦ //

◦

��

C(d•; e) ⊗ C(b1••; d1) ⊗ · · · ⊗ C(bn••; dn)

◦

��
C(c••; e) ⊗ C(b11•; c

1
1) ⊗ · · · ⊗ C(bnkn•

; cnkn
) ◦ // C(b•••; e)
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• Units: For all c•, d ∈ C, the following diagram commutes:

C(c•; d)
λ //

1

++VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV

ρn

��

I ⊗ C(c•; d)

u⊗1

**VVVVVVVVVVVVVVVVVV

C(c•; d) ⊗ I ⊗ · · · ⊗ I

1⊗u⊗n ++WWWWWWWWWWWWWWWWWWW
C(d; d) ⊗ C(c•; d)

◦

��
C(c•; d) ⊗ C(c1; c1) ⊗ · · · ⊗ C(cn; cn)

◦ // C(c•; d)

(We suppress the symmetry maps in V for clarity).

Definition 2.9.2. A symmetric V-multicategory is a V-multicategory C and, for every

n ∈ N, every σ ∈ Sn, and every a1, . . . an, b ∈ C, an arrow

σ · − : C(a1, . . . , an; b) −→ C(aσ1, . . . , aσn; b)

in V such that

• for each n ∈ N and each a1, . . . , an, b ∈ C, the arrow 1n · − : C(a1, . . . , an; b) →

C(a1, . . . , an; b) is the identity arrow on C(a1, . . . , an; b),

• for each σ, ρ ∈ Sn,

(ρ · −)(σ · −) = (ρσ) · −

• for each n, k1, . . . , kn ∈ n, each σ ∈ Sn and ρi ∈ Ski
for i = 1, . . . , n, and for all

a1
1, . . . , a

n
kn
, b1, . . . , bn, c ∈ C, the diagram

C(b1, . . . , bn; c) ⊗
⊗n

i=1 C(ai1, . . . , a
i
n; bi)

(σ·−)⊗
Nn

i=1 (ρi·−)

tthhhhhhhhhhhhhhhhhh

◦

��;
;;

;;
;;

;;
;;

;;
;;

;;
;;

C(bσ1, . . . , bσn; c) ⊗
⊗n

i=1 C(aiρi1
, . . . , aiρin

; bi)

1⊗σ∗

��

C(a1
1, . . . , a

n
kn

; c)

σ◦(ρ1,...,ρn)

����
��

��
��

��
��

��
��

��
�

C(bσ1, . . . , bσn; c) ⊗
⊗n

i=1 C(aσiρσi1
, . . . , aσiρσin

; bσi)

◦ **VVVVVVVVVVVVVVVVVV

C(aσ1
ρσ11, . . . , a

σn
ρσnkn

; c)

commutes, where σ ◦ (ρ1, . . . , ρn) is as defined in Example 2.1.11.
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In the case V = Set (with the cartesian monoidal structure), this is equivalent to

Definition 2.2.1.

Let F be a skeleton of the category of finite sets and functions, with objects the sets

0, 1, 2, . . . , where n = {1, 2, . . . , n}.

Definition 2.9.3. A finite product V-multicategory is

• A plain V-multicategory C;

• for every function f : n→ m in F, and for all objects C1, . . . , Cn, D ∈ C, a morphism

f · − : C(C1, . . . , Cn;D) → C(Cf(1), . . . , Cf(n);D) in V

satisfying the conditions given in Definition 2.9.2, where (f ◦ (f1, . . . , fn)) is as given in

Definition 2.3.1.

In the case V = Set, this is equivalent to Definition 2.3.1.

Definition 2.9.4. A (plain, symmetric, finite product) V-operad is a (plain, sym-

metric, finite product) V-multicategory with only one object.

Definition 2.9.5. Let C, D be plain V-multicategories. A morphism F : C → D is

• for each object C ∈ C, a choice of object FC ∈ D,

• for each n ∈ N and all collections of objects A1, . . . , An, B ∈ C, an arrow

C(A1, . . . , An;B) → D(FA1, . . . , FAn;FB) in V

such that

• for all A ∈ C, the diagram

I

u

����
��

��
��

��
��

��

u

��;
;;

;;
;;

;;
;;

;;
;;

C(A;A)
F // D(FA;FA)

commutes;

• for all n, k1, . . . , kn ∈ N and all C,B1, . . . , Bn, A
1
1, . . . , A

n
kn

∈ C, the diagram

C(B•;C) ⊗
⊗n

i=1 C(Ai•;Bi)
◦ //

F⊗···⊗F

��

C(A•
•;C)

F

��
D(FB•;FC) ⊗

⊗n
i=1 D(FAi•;FBi)

◦ // D(FA•
•;FC)
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commutes.

Suppose that V is cocomplete. Let Q be a (plain, symmetric, finite product) V-operad,

and A an object of V. Let Q ◦A denote the coend

∫ n∈C

Qn ×An

where C is

• the discrete category on N if Q is a plain operad;

• a skeleton B of the category of finite sets and bijections if Q is a symmetric operad;

• a skeleton F of the category of finite sets and all functions if Q is a finite product

operad.

This notation is taken from Kelly’s papers [Kel72a] and [Kel72b] on clubs.

The various endomorphism operads defined in Examples 2.1.10, 2.2.7 and 2.3.5 transfer

straightforwardly to the V-enriched setting. An algebra for a (plain, symmetric, finite

product) V-operad P in a (plain, symmetric, finite product) V-multicategory C is an object

A ∈ C and a morphism (ˆ) : P → End(A) of the appropriate type. Equivalently, an algebra

for P in C is an object A ∈ C and a morphism h : P ◦A→ A such that the diagram

P ◦ P ◦A
1◦h //

◦

��

P ◦A

h
��

P ◦A
h // A

commutes, and h(1P ,−) is the identity on A.

Remark 2.9.6. There is another possibility, that of considering internal multicategories

in the category V, which gives a different notion: now C0 is an object in V rather than a

collection. An internal operad in V is an internal multicategory C such that C0 is terminal

in V. We shall not consider internal multicategories or operads further.

We shall in particular consider the case V = Cat, and Cat-operads again have a simple

concrete description:

Lemma 2.9.7. A (plain) Cat-operad Q is a sequence of categories Q0, Q1, . . . , a family

of composition functors ◦ : Qn × Qk1 × . . . × Qkn → QP

ki
and an identity 1Q ∈ Q1,

satisfying (strict) functorial versions of the axioms given in 2.1.7.
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Lemma 2.9.8. A symmetric Cat-operad is a plain Cat-operad Q with a left group action

of each symmetric group Sn on the corresponding category Qn, strictly satisfying equations

as in Definition 2.2.5.

Lemma 2.9.9. A finite product Cat-operad is a plain Cat-operad Q equipped with func-

tors f ·− : Qn → Qm for each function f : n→ m of finite sets, strictly satisfying equations

as in Definition 2.3.1.

All of these lemmas can be established by a straightforward check of the definitions.

Just as 2-category theory has a special flavour distinct from the theory of V-categories

in the case V = Cat, so the theories of Cat-operads and Cat-multicategories have unique

features:

Definition 2.9.10. Let Q be a finite product Cat-operad, and let Q◦A
α
→ A,Q◦B

β
→ B

be algebras for Q in Cat. A lax morphism of Q-algebras A → B consists of a 1-cell

F : A→ B and a 2-cell φ : βF → Fα satisfying the following conditions:

A
F //

η

��

&&

1

����

B

η

��
1

xx

Q ◦A
1◦F //

α

��

����}� φ

Q ◦B

β

��

= A

F
&&

F

88 B

A
F

// B

(2.23)

Q ◦Q ◦A

µ

��

1◦1◦F//

����

Q ◦Q ◦B

µ

��

Q ◦Q ◦A

µ

}}{{
{{

{{
{{

{{
{{

1◦1◦F//

1◦α

��

������ φ

Q ◦Q ◦B

µ

!!D
DDDDDDDDDD

1◦β

��
Q ◦A

1◦F //

α

��

������ φ

Q ◦B

β

��

= Q ◦A

α

!!D
DD

DD
DD

DD
DD

D
Q ◦A

1◦F //

α

��

������ φ

Q ◦B

β

��

Q ◦B

β

||zz
zz

zz
zz

zz
zz

A
F

// B A
F

// B

(2.24)
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Qm ×An

1×f∗

xxrrrrrrrrrr
1×Fn

&&LLLLLLLLLL
Qm ×An

1×f∗

xxrrrrrrrrrr
1×Fn

&&LLLLLLLLLL

f∗×1

��

Qm ×Am

α

��

1×Fm

&&LLLLLLLLLL
Qm ×Bn

1×f∗

xxrrrrrrrrrr

f∗×1

��

Qm ×Am

α

��

�� ��

Qm ×Bn

f∗×1

��
�����
 φ

Qn ×Bm

β

��

�� ��

= Qn ×An

α

xxrrrrrrrrrrrr

1×Fn
&&LLLLLLLLLL

22
22

____ks
φ

A

F
&&MMMMMMMMMMMMM Qn ×Bn

β
xxqqqqqqqqqqq

A

F
&&MMMMMMMMMMMMM Qn ×Bn

β
xxqqqqqqqqqqq

B B
(2.25)

for all functions f : m→ n.

A morphism (F, φ) is weak if φ is invertible, and strict if φ is an identity.

Lax morphisms for algebras of plain Cat-operads are required to satisfy 2.23 and 2.24,

and lax morphisms for algebras of symmetric Cat-operads are required to satisfy 2.23,

2.24 and the restriction of 2.25 to the case where f is a bijection.

We shall make use of a more explicit formulation in the plain case.

Lemma 2.9.11. Let Q be a plain Cat-operad, and let (A, h) and (B, h′) be Q-algebras. A

lax map of Q-algebras (A, h) → (B, h′) is a pair (G,ψ), where G : A→ B is a functor and

ψ is a sequence of natural transformations ψi : h′i(1 × Gi) → Ghi, called the coherence

maps, such that the following equation holds, for all n, k1, . . . , kn ∈ N:

Qn ×Qk1 × · · · ×Qkn ×A
P

ki

1×1n×G
P

ki

��

hk1
×···×hkn //

����
DLψk1

×···×ψkn

Qn ×An

1×Gn

��

hn //

����
>Fψn

A

G

��
Qn ×Qk1 × · · · ×Qkn ×A

P

ki

h′k1
×···×h′kn

// Qn ×Bn

h′
// B

=

Qn ×Qk1 × · · · ×Qkn ×A
P

ki

1×1n×G
P

ki

��

hP

ki //

����
CKψP

ki

A

G

��
Qn ×Qk1 × · · · ×Qkn ×B

P

ki

h′P
ki

// B

(2.26)
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and the diagram

Ga
δ′1 //

1

��

h′(1P , Ga)

ψ1

��
Ga

Gδ1

// Gh(1P , a)

(2.27)

commutes. The morphism is weak if every ψ is invertible, and strict if every ψ is an

identity.

Proof. This can be established by a straightforward check of the definition.

Definition 2.9.12. Let Q,A,B etc. be as above, and let (F, φ), (G, γ) be lax morphisms of

Q-algebras A→ B. A Q-transformation F → G is a natural transformation σ : F → G

such that

Q ◦A
1◦F ++

1◦G
33

�� ��
�� σ

α

��

����~� γ

Q ◦B

β

��

Q ◦A
1◦F //

α

��

����~� φ

Q ◦B

β

��

=

A
G

// B A

F
((

G

66
�� ��
�� σ B

(2.28)

Lemma 2.9.13. A Q-transformation σ : (F, φ) → (G,ψ) is invertible as a natural trans-

formation if and only if it is invertible as a Q-transformation.

Proof. “If” is obvious: we concentrate on “only if”. It is enough to show that σ−1 is a

Q-transformation, which is to say that

h(q,Ga•)
ψ //

h(q,σ−1
a• )

��

Gh(q, a•)

σ−1
h(q,a•)

��
h(q, Fa•)

φ // Fh(q, a•)

(2.29)

commutes for all (q, a•) ∈ Q◦A, and this follows from the fact that σh(q,a•)◦φ = ψ◦h(q, σa•).

Finite product Cat-operads, their morphisms and transformations form a 2-category

called Cat-FP-Operad. Similarly, there is a 2-category Cat-Operad of plain Cat-

operads, their morphisms and transformations, and a 2-category Cat-Σ-Operad, of sym-

metric operads, their morphisms and transformations.
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Theorem 2.9.14. There is a chain of monadic adjunctions

Cat-FP-Operad

U
fp
Σ

��
U

fp
pl

yy

U fp

ww

Cat-Σ-Operad

UΣ
pl

��

FΣ
fp ⊣

OO

UΣ

yy

Cat-Operad

F
pl
Σ ⊣

OO

Upl

��

F
pl
fp

99

CatN

Fpl ⊣

OO
FΣ

99

Ffp

77 (2.30)

Proof. This follows from Lemmas 2.5.1 and 2.5.3, via an application of the argument of

Theorem 2.5.4.

Since operads can be considered as one-object multicategories, a Cat-operad P (of

whatever type) is really a 2-dimensional structure. We will therefore refer to the objects

and morphisms of the categories Pi as 1-cells and 2-cells of P , respectively.

2.10 Maps of algebras as algebras for a multicategory

Let P be a plain operad. We form a multicategory P̄ = 2 × P , where 2 is the category

( · // · ). We may describe P̄ as follows: there are two objects, labelled 0 and 1;

the hom-sets P̄ (0, . . . , 0; 0) and P̄ (x1, . . . , xn; 1) are copies of Pn, for xi ∈ {0, 1}, and

P̄ (x1, . . . , xn; 0) = ∅ if any of the xis are 1. Composition is given by composition in P .

An algebra for P̄ is a pair A0, A1 of P -algebras, and a morphism of P -algebras A0 → A2.

See [Mar], Example 2.4 for more details.

We can extend this construction by defining a multicategory ¯̄P = 3×P , whose algebras

are composable pairs of maps of P -algebras, a multicategory
¯̄̄
P = 4 × P whose algebras

are composable triples of maps of P -algebras, and so on. With the obvious face and

degeneracy maps, these multicategories form a cosimplicial object in the category of plain

multicategories.

The same construction can be performed for symmetric and enriched operads, and the

result continues to hold.



Chapter 3

Factorization Systems

The theory of factorization systems was introduced by Freyd and Kelly in [FK72] (though

it was implicit in work of Isbell in the 1950s). We shall use it in subsequent chapters to

define the weakening of an algebraic theory. Here, we recall the basic definitions and some

relevant theorems.

The material in this chapter is standard, and may be found in (for instance) [Bor94]

or [AHS04]; for an alternative perspective and some more historical background (as well

as the interesting generalization to weak factorization systems), see [KT93].

Definition 3.0.1. Let e : a→ b and m : c→ d be arrows in a category C. We say that e

is left orthogonal to m, written e⊥m, if, for all arrows f : a→ c and g : b→ d such that

mf = ge, there exists a unique map t : b→ c such that the following diagram commutes:

a
∀f //

e

��

c

m

��
b

∃!t
??

∀g
// d

Definition 3.0.2. Let C be a category. A factorization system on C is a pair (E ,M)

of classes of maps in C such that

1. for all maps f in C, there exist e ∈ E and m ∈ M such that f = me;

2. E and M contain all identities, and are closed under composition with isomorphisms

on both sides;

3. E ⊥M, i.e. e⊥m for all e ∈ E and m ∈ M.

Example 3.0.3. Let C = Set, E be the epimorphisms, and M be the monomorphisms.

Then (E ,M) is a factorization system.

64
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Example 3.0.4. More generally, let C be some variety of algebras, E be the regular

epimorphisms (i.e., the surjections), and M be the monomorphisms. Then (E ,M) is a

factorization system.

Example 3.0.5. Let C = Digraph, the category of directed graphs and graph morphisms.

Let E be the maps bijective on objects, and M be the full and faithful maps. Then (E ,M)

is a factorization system.

In deference to Example 3.0.3, we shall use arrows like // // to denote members of E

in commutative diagrams, and arrows like // // to denote members of M, for whatever

values of E and M happen to be in force at the time.

We will use without proof the following standard properties of factorization systems:

Lemma 3.0.6. Let C be a category, and (E ,M) be a factorization system on C.

1. E ∩M is the class of isomorphisms in C.

2. The factorization in 3.0.2 (1) is unique up to unique isomorphism.

3. The factorization in 3.0.2 (1) is functorial, in the following sense: if the square

A
f //

g

��

B

h
��

C
f ′ // D

commutes, and f = me, f ′ = m′e′, then there is a unique morphism i making

A
e // //

g

��

// m //

i

��

B

h
��

C
e′ // // // m

′
// D

commute. Thus, given a choice of e ∈ E and m ∈ M for each f in C(such that

f = me), we may construct functors E∗,M∗ : [2, C] → [2, C]:

E∗ : f 7→ e

E∗ : (g, h) 7→ (g, i)

M∗ : f 7→ m

M∗ : (g, h) 7→ (i, h).

These functors are determined by E and M uniquely up to unique isomorphism.
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4. E and M are closed under composition.

5. E⊥ = M and ⊥M = E, where E⊥ = {f in C : e⊥ f for all e ∈ E} and ⊥M =

{f in C : f ⊥m for all m ∈ M}.

Proofs of these statements may be found in [AHS04] section 14.

We will also use the following fact:

Lemma 3.0.7. Let C be a category with a factorization system (E ,M). Let T be a monad

on C and let E = {f in C : Uf ∈ E} and M = {f in C : Uf ∈ M}, where U is the forgetful

functor CT → C. Then (E ,M) is a factorization system on CT if T preserves E-arrows.

Proof. This is established in [AHS04], Proposition 20.24: however, we shall provide a proof

for the reader’s convenience. We shall establish the axioms listed in Definition 3.0.2.

1. Take an algebra map

TA
Tf //

a

��

TB

b
��

A
f // B

Applying axiom 1 to the factorization system (E ,M), we obtain a decomposition f = me,

where e : A→ I and m : I → B. We wish to lift this to a decomposition of f as an algebra

map. In other words, we need a map i : TI → I making the diagram

TA
Te // //

a

��

TI
Tm //

i

��

TB

b
��

A
e // // I // m // B

commute, such that (I, i) is a T -algebra. Since T preserves E-arrows, Te⊥m, and we may

obtain i by applying this orthogonality to the diagram

TA
a //

Te

��

A
e // I

m

��
TI

Tm
//

∃!i

88

TB
b

// B.

It remains to show that (I, i) is a T -algebra. For the unit axiom, consider the diagram

A
e // //

ηA

��
1

##

I // m //

ηI

��

B

ηB

��
1

{{

TA
Te // //

a

��

TI
Tm //

i

��

TB

b
��

A e
// // E //

m
// B
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The top squares commute by naturality, and the outside triangles commute since (A, a)

and (B, b) are T -algebras. Hence the diagram

I
��

m

��?
??

??
??

��

A

e
?? ??��������

e �� ��?
??

??
??

? B

I
?? m

??�������

commutes if the dotted arrow is either 1I or iηI . By orthogonality, iηI = 1I .

For the multiplication axiom, observe that the diagrams

T 2A
T 2e // //

µA

��

T 2I
T 2m //

µI

��

T 2B

µB

��
TA

Te // //

a

��

TI
Tm //

i

��

TB

b

��
A e

// // E //
m

// B

T 2A
T 2e // //

Ta

��
aµA

��

T 2I
T 2m //

T i

��

T 2B

Tb

��
bµB

��

TA
Te // //

a

��

TI
Tm //

i

��

TB

b

��
A e

// // E //
m

// B

both commute. So the diagram

T 2A
µA //

T 2e

����

TA
a // A

e // I
��

m

��
T 2I

T 2m

//

44

T 2B µB

// TB
b

// B

commutes if we take the dotted arrow to be either iµI or i(Ti). By orthogonality, iµI =

i(Ti).

2. The image under U of an isomorphism in CT is an isomorphism in C. The class

E contains all isomorphisms in C, so E = U−1(E) contains all isomorphisms in CT . By

similar reasoning, E is closed under composition with isomorphisms, and M also satisfies

these conditions.

3. We wish to show that E ⊥M. Take T -algebras




TAya

A


,




TByb

B


,




TIyi

I


,




TJyj

J
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and algebra maps

TA
Te //

a

��

TI

i

��
A

e // I

, TJ
Tm //

j

��

TB

b
��

J
m // B

, TA
Tf //

a

��

TJ

j

��
A

f // J

, TI
Tg //

i

��

TB

b
��

I
g // B

where the first two maps are in E and M respectively. Suppose that ge = mf . Now, e ∈ E

and m ∈ M, so e⊥m, and there is a unique map t in C such that

A
f //

e

��

J

m

��
I

∃!t
??

g // B

commutes. We wish to show that t is a map of T -algebras.

Consider the diagram

TA
Te //

a

��

Tf

##
TI

Tt //

i

��

Tg

##
TJ

Tm //

j

��

TB

b
��

A
e //

f

;;I
t //

g

;;J
m // B

We wish to show that the middle square commutes: the assumptions tell us that all other

squares commute. Recall that Te⊥m, and apply orthogonality to the square

TA
jTf //

Te
��

J

m

��
TI

∃!u
==

gi // B

Now,

j(Tf) = fa (f is a map of T -algebras)

= tea (Definition of t)

= ti(Te) (e is a map of T -algebras)

and mti = gi by definition of t, so ti = u by uniqueness. Similarly,

gi = b(Tg) (g is a map of T -algebras)

= b(Tm)(Tt) (Definition of t)

= mj(Tt) (m is a map of T -algebras)

and j(Tf) = j(Tt)(Te) by definition of t, so j(Tt) = u by uniqueness. Hence j(Tt) = ti,

and t is a map of T -algebras.

By construction, t is unique. So e⊥m in CT , so E ⊥M. All the axioms are satisfied,

and so (E ,M) is a factorization system on CT .
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Example 3.0.8. Let (E ,M) be the factorization system on Digraph described in Exam-

ple 3.0.5 above, and let T be the free category monad. Cat is monadic over Digraph, and

T preserves the property of being bijective on objects. Hence, this gives a factorization

system (E ,M) on Cat where E is the collection of bijective-on-objects functors, and M

is the collection of full and faithful functors.

Example 3.0.9. Similarly, there is a factorization system on DigraphN, where E is the

class of maps that are pointwise bijective on objects, and M is the class of maps that are

pointwise full and faithful. This lifts to a factorization system (E ,M) on CatN, in which

E is the class of pointwise bijective-on-objects arrows, and M is the class of pointwise

full-and-faithful arrows.

Example 3.0.10. Let C = CatN, E be the pointwise bijective-on-objects maps, and M be

those that are pointwise full and faithful. Since Cat-Operad is monadic over CatN and

the monad preserves bijective-on-objects maps, this gives a factorization system (E ,M)

on Cat-Operad where E is the class of levelwise bijective-on-objects maps, and M is the

class of levelwise full and faithful ones. Similarly, there is a factorization system (E
′
,M

′
)

on Cat-Σ-Operad where E
′
is the class of bijective-on-objects maps, and M

′
is the class

of levelwise full and faithful ones.

We shall need one final piece of background:

Theorem 3.0.11. If X is a set and T is a monad on SetX then the regular epis in

(SetX)T are the pointwise surjections. In other words, the forgetful functor U : (SetX)T →

SetX preserves and reflects regular epis.

Proof. See again [AHS04] section 20, in particular Definition 20.21 and Proposition 20.30.



Chapter 4

Categorification

4.1 Desiderata

Many categorifications of individual theories have been proposed in the literature. We

aim to replace these with a general definition, which should satisfy the following criteria

insofar as possible:

• Broad: it should cover as large a class of theories as possible.

• Consistent with earlier work: where a categorification of a given theory is known,

ours should agree with this categorification or be demonstrably better in some way.

• Canonical: it should be free of arbitrary tunable parameters (and if possible should

be given by some universal property).

We shall return to these criteria in Section 4.9 and evaluate how close we have come

to achieving them.

Our strategy is as follows: we start with a näıve version of categorification for strongly

regular theories, which closely parallels Mac Lane and Benabou’s categorification of the

theory of monoids. This will be an unbiased categorification, which treats all operations

equally, without regarding any as “primitive”: for instance, if P is the terminal operad

(whose strict algebras are monoids), then the weak P -categories will have tensor products

of all arities, not just 0 and 2. We then re-express our definition of categorification in

terms of factorization systems, which allows us to generalize our definition in two directions

simultaneously: to symmetric operads, and to operads with presentations. We then use

this new definition to recover the classical theory of symmetric monoidal categories (at

70
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which several other proposed general definitions of categorification fail), and investigate

what it yields in the case of some other linear theories.

4.2 Categorification of strongly regular theories

The idea is to consider the strict models of our theory as algebras for an operad, then to

obtain the weak models as (strict) algebras for a weakened version of that operad (which

will be a Cat-operad). We weaken the operad using a similar approach to that used

in Penon’s definition of n-category, as described in [Pen99]. A non-rigorous summary of

Penon’s construction can be found in [CL04].

Throughout this section, let P be a plain (Set-)operad.

Let D∗ : Operad → Cat-Operad be the functor which takes discrete categories

levelwise; i.e., (D∗P )n is the discrete category on the set Pn. In terms of the “n-cell”

terminology introduced in Chapter 3, the 1-cells of (D∗P )n are n-ary arrows in P , and the

only 2-cells are identities.

Definition 4.2.1. The unbiased weakening of P , Wk(P ), is the following Cat-operad:

• 1-cells: 1-cells of D∗FplU
plP ;

• 2-cells: if A,B ∈ (FplU
plP )n, there is a single 2-cell A→ B if ǫ(A) = ǫ(B) (where ǫ

is the counit of the adjunction Fpl ⊣ U
pl), and no 2-cells A→ B otherwise;

• Composition of 2-cells: the composite of two arrows A → B → C is the unique

arrow A→ C, and in particular, the arrows A→ B and B → A are inverses;

• Operadic composition: on 1-cells, as in FplU
plP , and on 2-cells, determined by the

uniqueness property.

See Fig. 4.1, which illustrates a fragment of the unbiased weakening of the terminal

operad 1. Since 1n is a singleton set for every n ∈ N, then Wk(1)n is the indiscrete

category whose objects are unlabelled n-ary strongly regular trees for all n ∈ N. We may

embed the discrete category on each Pn in Wk(P )n, via the map p 7→ p ◦ (|, . . . , |). We

shall occasionally abuse notation and consider some p ∈ Pn as a 1-cell of Wk(P )n.

Theorem 4.2.2. Wk(P ) is the unique Cat-operad with the following properties:

• Wk(P ) has the same 1-cells as D∗FplU
plP ;
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Figure 4.1: Part of Wk(1)3

• we may extend the counit ǫP : FplU
plP → P to a map of Cat-operads Wk(P ) →

D∗P , which is full and faithful levelwise.

Proof. Immediate.

We may now make the following definition:

Definition 4.2.3. A weak P -category is an algebra for Wk(P ).

In the case P = 1, this reduces exactly to Leinster’s definition of unbiased monoidal

category in [Lei03] section 3.1. There, two 1-cells φ and ψ have the same image under ǫ iff

they have the same arity, so the categories Wk(1)i are indiscrete. If h : Wk(P ) ◦ A → A

is a weak P -category, we refer to the image under h of a 2-cell q → q′ in Wk(P ) as δq,q′ .

This is clearly a natural transformation h(q,−) → h(q′,−). As a special case, we write δq

for δq,ǫ(q) (where we consider ǫ(q) as a 1-cell of Wk(P ) as described above).

Definition 4.2.4. A strict P -category is an algebra for D∗P .

Equivalently, a strict P -category is a weak P -category in which every component of δ

is an identity arrow.

Definition 4.2.5. Let (A, h) and (B, h′) be weak P -categories. A weak P -functor from

(A, h) to (B, h′) is a weak map of Wk(P )-algebras. A strict P -functor from (A, h) to

(B, h′) is a strict map of Wk(P )-algebras.

Equivalently, a strict P -functor is a weak P -functor for which all the coherence maps

are identities. These definition are natural generalizations of the definition of weak and

strict unbiased monoidal functors given in [Lei03] section 3.1.
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Definition 4.2.6. Let (F, φ) and (G,ψ) be weak P -functors (A, h) → (B, h′). A P -

transformation σ : (F, φ) → (G,ψ) is a Wk(P )-transformation (F, φ) → (G,ψ), in the

sense of Definition 2.9.12.

Note that there is only one possible level of strictness here.

There is a 2-category, Wk-P -Cat, whose objects are weak P -categories, whose 1-

cells are weak P -functors, and whose 2-cells are P -transformations. Similarly, there is

a 2-category Str-P -Cat of strict P -categories, strict P -functors, and P -transformations,

which can be considered a sub-2-category of Wk-P -Cat.

Definition 4.2.7. A P -equivalence is an equivalence in the 2-category Wk-P -Cat.

Lemma 4.2.8. Let P be a plain operad, (A, h) and (B, h′) be weak P -categories, and

(F, φ), (G,ψ) : (A, h) → (B, h′) be weak P -functors. A P -transformation σ : (F, φ) →

(G,ψ) is invertible as a P -transformation if and only if it is invertible as a natural trans-

formation.

Proof. This is a straightforward application of Lemma 2.9.13.

4.3 Examples

Unfortunately, few well-studied theories are strongly regular. We will consider the follow-

ing examples:

1. the trivial theory (in other words, the theory of sets);

2. the theory of pointed sets;

3. the theory of monoids;

4. the theory of M -sets, for a monoid M .

While we could easily invent a new strongly regular theory to categorify, this would not help

us to see how well our definition of weakening accords with our intuitions. Further examples

will be considered later, when the machinery to categorify theories-with-generators and

linear theories has been developed.

We will first need to introduce an auxiliary definition:

Definition 4.3.1. Let C be a category, and (T, µ, η) be a monad on C. We say that

(T, µ, η) is trivial if η is a natural isomorphism.
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Lemma 4.3.2. The identity monad on C is initial in the category Mnd(C) of monads on

C, with the unique morphism of monads (1C , 1, 1) → (T, µ, η) being η.

Proof. First we show that η is a morphism of monads in the sense of Street (Definition

1.4.1). One axiom corresponds to the outside of the diagram

1
η //

1

��

T
ηT //

1

  A
AA

AA
AA

A

1
��

T 2

µ

��
1 η

// T
1

// T

commuting; all the inner segments commute (the top right triangle by the unit axiom for

monads), so the outside must commute. The other axiom corresponds to the diagram

1
1 //

η
��?

??
??

??
1

η

��
T

and this commutes trivially. Hence, η is a morphism of monads 1 → T .

Now suppose that α : 1 → T is a morphism of monads. From the unit axiom for monad

morphisms, the diagram

1
1 //

η
��?

??
??

??
1

α

��
T

must commute, so η = α.

Corollary 4.3.3. A monad (T, µ, η) on C is trivial if and only if it is isomorphic to the

identity monad on C.

Proof. If T is isomorphic to the identity monad, then by Lemma 4.3.2 the isomorphism

concerned must be η, so η must be invertible. It is readily checked that if η is invertible,

then η−1 must be a morphism of monads, so if T is trivial then it is isomorphic to the

identity monad.

Example 4.3.4. The trivial theory: Let 0 be the initial operad, whose algebras are sets.

An unbiased weak 0-category is a category equipped with a specified trivial monad, for the

following reason. 0 has only one operator (call it I), of arity one. Hence (FplU
pl0)1 ∼= N,

and all other (FplU
pl0)n’s are empty. All derived operations in the theory of sets are

composites of identities, and thus equivalent to the identity. So all objects of Wk(0)1 are

isomorphic. Hence, I ∼= id. All diagrams commute: in particular, those giving the monad
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and monad morphism axioms commute, so in any weak 0-category (C, (ˆ)), the functor

Î is a monad, and the isomorphism Î → 1C is an isomorphism of monads. By Corollary

4.3.3, Î must be trivial.

Conversely, suppose T is a trivial monad on a category C. We wish to show that µ is

also invertible, and thus that C is an unbiased weak 0-category. From the monad axioms,

we have that

T
ηT //

id   A
AA

AA
AA

A T 2

µ

��
T

commutes. But ηT is invertible, so µ must be its inverse. So id ∼= T ∼= T 2 ∼= T 3 ∼= . . .,

and all diagrams commute. Hence C is an unbiased weak 0-category.

If (C, S) and (D, T ) are weak 0-categories, then a weak 0-functor (C, S) → (D, T ) is a

functor F : C → D and a natural isomorphism φ : TF → FS, such that the equations

C
S

����
��

��
�

S

��

F //

||||
:Bφ−1

D

T

��

C

S ��>
>>

>>
>>

C
F

//

____ +3µ

D

=

C
S

����
��

��
�

F //

����
;Cφ−1

D

T

��

T

~~}}
}}

}}
}

C

S ��>
>>

>>
>>

F //

����
;Cφ−1

D

T   A
AA

AA
AA

C
F

// D

____ +3µ

and

C

##

1C
____ +3η S

��

F //

����
;Cφ−1

D

T

��
C

F
// D

=

C

����
;Cφ−1

F //

1C

��

D

T

||

____ +3η1D

��
C

F
// D

are satisfied.

Example 4.3.5. Pointed sets: Let P be the operad with a single element of arity 0

(call it ∗) and a single element of arity 1 (the identity). Strict algebras for P in Set are

pointed sets. The set (FplU
plP )0 is countable (it has elements ∗, I∗, I2∗, I3∗, . . ., and so is

(FplU
plP )1 (it has elements id, I, I2, . . .). So an unbiased weak P -category is a category C

equipped with a distinguished object ∗̂ and a trivial monad Î.

If (C, (ˆ)) and (D, (¯) are unbiased weak P -categories, then a weak P -functor (C, (ˆ)) →

(D, (¯)) is a triple (F, φ, ψ), where F and φ are as in Example 4.3.4, ψ : ∗̄ → F ∗̂ is an

isomorphism, and there is exactly one natural isomorphism Īn∗̄ → F Îm∗̂ composed from

φs and ψs for each m and each n ∈ N.
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Example 4.3.6. Monoids: An unbiased weak 1-category is precisely an unbiased weak

monoidal category in the sense of Definition 2.1.3. An unbiased weak 1-functor is an

unbiased weak monoidal functor. For a proof, see [Lei03] Theorem 3.2.2.

Example 4.3.7. M -sets: Let M be a monoid, and N be the operad such that

N1 = M

Ni = ∅ whenever i 6= 1

with composition of arrows of arity 1 given by the multiplication in M . An algebra for

N in Set is an M -set. An unbiased weak N -category is a category C with a functor

m̂ : C → C for each m ∈ M. For every equation m1m2 . . .mi = n1n2 . . . nj that is true

in M , there is a natural isomorphism δ
n1...nj
m1...mi : m̂1m̂2 . . . m̂i → n̂1n̂2 . . . n̂j . If e is the

identity element in M , then ê is a trivial monad. All diagrams involving these natural

isomorphisms commute. Hence, an unbiased weak N -category is a category C together

with a weak monoidal functor M → End(C). If (C, (ˆ)) and (D, (¯)) are unbiased weak

N -categories, an unbiased weak N -functor is a functor F : C → D together with natural

transformations φm : m̄F → Fm̂ for all m ∈ M , such that if m1m2 . . .mi = n1n2 . . . nj

in M , there is precisely one natural isomorphism m̄1 . . . m̄iF → Fn̂1 . . . n̂j that can be

formed by composing δs and φs.

4.4 A more general approach: factorization systems

Recall from Definition 2.7.2 the definition of a presentation and a generator for an operad.

We will define a categorification of any symmetric operad equipped with a generator,

generalizing the unbiased categorification defined in Section 4.2. In particular, we shall

consider categorification with respect to the component of the counit ǫP : FΣU
ΣP → P

at a symmetric operad P ; this is a generator for P since both

FΣU
ΣFΣU

ΣP
ǫFΣU

Σ
//

FΣU
Σǫ

// FΣU
ΣP

ǫ // P

and

FΣU
ΣP ×P FΣU

ΣP
π1 //
π2

// FΣU
ΣP

ǫ // P

are coequalizer diagrams (the latter by Lemma 2.7.9). We will then show that the cat-

egorification is independent of our choice of generator, in the sense that the symmetric

Cat-operads which arise are equivalent (and thus have equivalent categories of algebras).
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Definition 4.4.1. Let Φ be a signature, P be a symmetric operad, and φ : FΣΦ → P be

a regular epi in Σ-Operad. Then the weakening (or categorification) Wkφ(P ) of P

with respect to φ is the (unique-up-to-isomorphism) symmetric Cat-operad such that the

following diagram commutes:

D∗FΣΦ
D∗φ //

b %% %%LLLLLLLLLL D∗P

Wkφ(P )

:: f

::tttttttt

where f is full and faithful levelwise, b is levelwise bijective on objects, and D∗ is the

levelwise discrete category functor Σ-Operad → Cat-Σ-Operad. The existence and

uniqueness of Wkφ(P ) follow from Lemma 3.0.6 applied to the factorization system on

Cat-Σ-Operad described in 3.0.10 above.

Definition 4.4.2. Let φ,Φ and P be as above. A φ-weak P -category is an algebra for

Wkφ(P ).

Note that any strict algebra for P can be considered as a φ-weak P -category (for any

φ), via the map Wkφ(P ) // // D∗P .

Definition 4.4.3. Let φ,Φ and P be as above. A φ-weak P -functor is a weak map of

Wkφ(P )-algebras.

Definition 4.4.4. Let P be a symmetric operad, and FΣE
e1 //
e2

// FΣΦ be a presentation

for P , with φ : FΣΦ → P being the regular epi in Definition 2.7.2. The weakening of P

with respect to (Φ, E) is the weakening of P with respect to φ.

Definition 4.4.5. The unbiased weakening of P is the weakening arising from the counit

ǫ : FΣU
ΣP → P of the adjunction FΣ ⊣ UΣ. Call this symmetric Cat-operad Wk(P ).

Lemma 4.4.6. Let φ,Φ and P be as above. Then, for every n ∈ N, the category Wkφ(P )
n

is the equivalence relation ∼ on the elements of (FΣΦ)n, where t1 ∼ t2 if φ(t1) = φ(t2).

Proof. Let n ∈ N, and t1, t2 ∈ Wkφ(P )
n
. The objects of Wkφ(P )

n
are the elements of

(FΣΦ)n, by construction. Since φn factors through a full functor Wkφ(P )
n

// // (D∗P )n

and (D∗P )n is the discrete category on Pn, there is an arrow t1 → t2 in Wkφ(P )
n

iff

φ(t1) = φ(t2). Since this functor is also faithful, such an arrow must be unique. Hence

Wkφ(P )
n

is a poset; it is readily checked that it is also an equivalence relation.
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An obvious question is how this notion of weakening is related to the version defined for

plain operads in Section 4.2. In light of Theorem 4.2.2, it is clear that the plain-operadic

version can be re-phrased as in Definition 4.4.5 above, but with the factorization occurring

in Cat-Operad rather than Cat-Σ-Operad. We may generalize it to give a definition of

the weakening of a plain operad P with respect to a generator φ:

Definition 4.4.7. Let P be a plain operad, Φ be a signature, and φ : FplΦ → P be a

regular epi. The weakening Wkφ(P ) of P with respect to φ is the plain Cat-operad

given by the bijective on objects/levelwise full and faithful factorization

D∗FplΦ
D∗φ //

%% %%LLLLLLLLLL
D∗P

Wkφ(P )

::

::uuuuuuuu

in Cat-Operad. A φ-weak P -category is an algebra for Wkφ(P ).

But do the weak algebras for a strongly regular theory T change if we consider T as a

linear theory instead? We now answer that question in the negative.

Theorem 4.4.8. Let P be a plain operad, let Φ be a signature, and let φ : FplΦ → P be

a regular epi. Then Wk
F

pl
Σ φ

(F pl
Σ P ) ∼= F pl

Σ (Wkφ(P )) in the category Cat-Σ-Operad.

Proof. First note that Wk
F

pl
Σ φ

(F pl
Σ P ) is well-defined: F pl

Σ is a left adjoint, and hence

preserves colimits, so F pl
Σ φ is a regular epi in Σ-Operad.

Wk
F

pl
Σ φ

(F pl
Σ P ) is defined by its universal property, so it is enough to show that the

Cat-operad F pl
Σ (Wkφ(P )) also has this property. Specifically, it is enough to show that if

D∗FplΦ
D∗φ //

b %% %%LLLLLLLLLL
D∗P

Wkφ(P )

:: f

::uuuuuuuu

is the bijective-on-objects/full-and-faithful factorization of φ, then in the diagram

D∗FΣΦ
D∗F

pl
Σ φ

//

F
pl
Σ b && &&MMMMMMMMMMM D∗F

pl
Σ P

F pl
Σ (Wkφ(P ))

88 F
pl
Σ f

88pppppppppp

the arrow F pl
Σ b is bijective on objects and the arrow F pl

Σ f is levelwise full and faithful (note

that D∗F
pl
Σ = F pl

Σ D∗). But this follows straightforwardly from the explicit construction of

F pl
Σ in Section 2.6.
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Corollary 4.4.9. Let P be a plain operad, φ : FplΦ → P generate P , and A be a φ-

weak P -category in the sense of Definition 4.4.7. Then A is an F pl
Σ φ-weak F pl

Σ P -category

in the sense of Definition 4.4.2. Conversely, every F pl
Σ φ-weak F pl

Σ P -category is a weak

P -category.

Proof. A F pl
Σ φ-weak F pl

Σ P -category is a category A and a morphism Wk
F

pl
Σ φ

(F pl
Σ P ) →

End(A) of symmetric Cat-operads. By Theorem 4.4.8, this is equivalent to a morphism

F pl
Σ (Wkφ(P )) → End(A) in Cat-Σ-Operad, which is equivalent by the adjunction F pl

Σ ⊣

UΣ
pl to a morphism of plain Cat-operads Wkφ(P ) → UΣ

pl End(A). This is exactly a φ-weak

P -category.

Note that we had to apply F pl
Σ to φ to obtain a generator for F pl

Σ P . This means that

the theorem does not tell us that the unbiased categorification is unaffected by whether

we consider our theory as a linear or a strongly regular one. In fact, it is not the case that

Wk(F pl
Σ P ) ∼= F pl

Σ (Wk(P )) in general.

Example 4.4.10. Consider the terminal plain operad 1 whose algebras are monoids. F pl
Σ 1

is the operad S of Example 2.1.11, for which each Sn is the symmetric group Sn. Then the

objects of Wk(S)n are n-leafed permuted trees with each node labelled by a permutation,

whereas the 1-cells of (F pl
Σ Wk(1))n are unlabelled permuted trees. These two sets are not

canonically isomorphic. Hence, there is no canonical isomorphism between Wk(S) and

F pl
Σ Wk(1).

However, we can make a weaker statement: the two candidate unbiased weakenings are

equivalent in the 2-category Cat-Σ-Operad. We shall return to this point in Corollary

5.3.3.

4.5 Examples

Example 4.5.1. Consider the trivial theory (given by the initial operad 0), with the

empty generating set. A weak algebra for this theory (with respect to this generating set)

is simply a category. FΣ is a left adjoint, and hence preserves colimits, so FΣ∅ is the initial

operad, and the coequalizer φ : FΣ∅ → 0 is therefore the identity. Hence Wkφ(0) is also

the initial operad, and so a φ-weak 0-category is just a category. A φ-weak 0-functor is

just a functor.
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Example 4.5.2. Consider the operad P of Example 4.3.5, generated by one nullary op-

eration ∗. Let φ be the associated regular epi. Then Wkφ(P ) has one nullary object and

no objects of any other arity; the only arrow is the identity on the unique nullary object.

In fact, Wkφ(P ) = D∗P . So a weak algebra for this theory and this generating set is a

category C with a distinguished object ∗̂ ∈ C. A φ-weak P -functor from (C, (ˆ)) to (D, (¯))

is a functor F : C → D and an isomorphism ∗̄
∼
→ ∗̂.

Example 4.5.3. Consider again the operad P of Example 4.3.5, this time generated

by four nullary operations A,B,C,D (which are all set equal to each other). Let φ be

the associated regular epi. Then Wkφ(P )0 is the indiscrete category on the four objects

A,B,C,D, and Wkφ(P )
i

is empty for all other i ∈ N. Hence a φ-weak P -category is

a category C containing four specified objects Â, B̂, Ĉ and D̂. These four objects are

isomorphic via specified isomorphisms δAB, δAC , δAD etc, and all diagrams involving these

isomorphisms commute:

Â
δAB //

δAD

##G
GGGGGGGGGGGGGGGGGG

δAC

��

B̂

δBD

��

δBC

{{wwwwwwwwwwwwwwwwwww

Ĉ δCD

// D̂

and δXY δY X = 1
X̂

for all X,Y ∈ {A,B,C,D}.

Let (C, (ˆ)) and (D, (¯)) be φ-weak P -categories. A φ-weak P -functor (C, (ˆ)) →

(D, (¯)) consists of

• a functor F : C → D,

• an isomorphism φXY : X̄
∼
→ FX̂ for all X ∈ {A,B,C,D},

such that, for all X,Y ∈ {A,B,C,D}, there is precisely one isomorphism X̄ → FŶ formed

by compositions of δs and φs.

4.6 Symmetric monoidal categories

Consider the terminal symmetric operad P , whose algebras in Set are commutative

monoids, and the following linear presentation (Φ, E) for P :

• Φ0 = {e},Φ2 = {.}, all other Φis are empty;

• E contains the equations
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1. x1.(x2.x3) = (x1.x2).x3

2. e.x1 = x1

3. x1.e = x1

4. x1.x2 = x2.x1

This linear presentation gives rise to a symmetric-operadic presentation (Φ, E), as de-

scribed in Lemma 2.8.3. Let φ : FΣΦ → P be the coequalizer in the diagram

FΣE
// // FΣΦ

φ // P

We shall now prove that the algebras for Wkφ(P ) are classical symmetric monoidal

categories. More precisely, we shall show the following:

1. for a given category C, the Wkφ(P )-algebra structures on C are in one-to-one corre-

spondence with the symmetric monoidal category structures on C;

2. there exists an isomorphism (which we construct) between the category Wk-P -Cat

and the category of symmetric monoidal categories and weak functors;

3. the isomorphism in (2) respects the correspondence in (1).

To fix notation, we recall the classical notions of symmetric monoidal category and

symmetric monoidal functor:

Definition 4.6.1. A symmetric monoidal category is a 7-tuple (C,⊗, I, α, λ, ρ, τ),

where

• C is a category;

• ⊗ : C × C → C is a functor;

• I is an object of C,

• α : A⊗ (B ⊗ C) → (A⊗B) ⊗ C is natural in A,B,C ∈ C;

• λ : I ⊗A→ A and ρ : A⊗ I → A are natural in A ∈ C;

• τ : A⊗B → B ⊗A is natural in A,B ∈ C,
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α, λ, ρ, τ are all invertible, and the following diagrams commute:

(A⊗B) ⊗ (C ⊗D)

α

$$J
JJJJJJJJJJJJJJJJJJJJJJJ

A⊗ (B ⊗ (C ⊗D))

1⊗α

��

α
44jjjjjjjjjjjjjjjj

((A⊗B) ⊗ C) ⊗D

A⊗ ((B ⊗ C) ⊗D)

α
**TTTTTTTTTTTTTTTT

(A⊗ (B ⊗ C)) ⊗D

α⊗1

::tttttttttttttttttttttttt

(4.1)

A⊗ (I ⊗ C)
α //

1⊗λ

  A
AA

AA
AA

AA
AA

AA
AA

A
(A⊗ I) ⊗ C

ρ⊗1

~~}}
}}

}}
}}

}}
}}

}}
}}

A⊗ C

(4.2)

A⊗ I
τ //

ρ

��6
66

66
66

66
66

66
6 I ⊗A

λ

��		
		

		
		

		
		

		

A

(4.3)

(A⊗B) ⊗ C
τ //

α−1

��

C ⊗ (A⊗B)

α

��
A⊗ (B ⊗ C)

1⊗τ
��

(C ⊗A) ⊗B

τ⊗1
��

A⊗ (C ⊗B)
α // (A⊗ C) ⊗B

A⊗ (B ⊗ C)
τ //

α

��

(B ⊗ C) ⊗A

α−1

��
(A⊗B) ⊗ C

τ⊗1
��

B ⊗ (C ⊗A)

1⊗τ
��

(B ⊗A) ⊗ C
α−1

// B ⊗ (A⊗ C)

(4.4)

A⊗B

1 %%KKKKKKKKKK

τA,B // B ⊗A

τB,A

��
A⊗B.

(4.5)

Definition 4.6.2. Let M = (C,⊗, I, α, λ, ρ, τ) and N = (C′,⊗′, I ′, α′, λ′, ρ′, τ ′) be sym-

metric monoidal categories. A lax symmetric monoidal functor F : M → N consists

of

• a functor F : C → C′,
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• morphisms F2 : (FA) ⊗′ (FB) → F (A⊗B), natural in A,B ∈ C,

• a morphism F0 : I ′ → FI in C′,

such that the following diagrams commute:

FA⊗′ (FB ⊗′ FC)
α′

//

1⊗′F2

��

(FA⊗′ FB) ⊗′ FC

F2⊗
′1

��
FA⊗′ (F (B ⊗ C))

F2

��

F (A⊗B) ⊗′ FC

F2

��
F (A⊗ (B ⊗ C))

Fα // F ((A⊗B) ⊗ C)

(4.6)

(FB) ⊗′ I ′FB
ρ′ //

1⊗′F0

��

FB

(FB) ⊗′ (FI)
F2 // F (B ⊗ I)

Fρ

OO I ′ ⊗′ (FB)
λ′ // FB

(FI) ⊗′ (FB)
F2 //

F0⊗
′1

OO

F (I ⊗B)

Fλ

OO (4.7)

(FA) ⊗′ (FB)
τ ′ //

F2

��

(FB) ⊗′ (FA)

F2

��
F (A⊗B)

Fτ // F (B ⊗A).

(4.8)

F is said to be weak when F0, F2 are isomorphisms, and strict when F0, F2 are identities.

Recall also the coherence theorem for classical symmetric monoidal categories. For any

n-ary permuted Φ-tree (σ · t), let (σ · t)M be the functor Mn →M obtained by replacing

every . in t by ⊗ and every e by I, and permuting the arguments according to σ, so

(σ · t)M (A1, . . . , An) = tM (Aσ1, . . . , Aσn) for all A1, . . . , An ∈M . In particular, we do not

make use of the symmetry maps on M in constructing these functors. Then:

Theorem 4.6.3. (Mac Lane) In each weak symmetric monoidal category M there is a

function which assigns to each pair (σ · t1, ρ · t2) of permuted Φ-trees of the same arity n

a unique natural isomorphism

canM (σ · t1, ρ · t2) : (σ · t1)M → (ρ · t2)M : Mn →M

called the canonical map from σ · t1 to ρ · t2, in such a way that the identity of M and

all instances of α, λ, ρ and τ are canonical, and the composite as well as the ⊗-product of

two canonical maps is canonical.

Proof. See [ML98] XI.1.
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Finally, recall the coherence theorem for weak monoidal functors:

Lemma 4.6.4. Let M,N be monoidal categories, and F : M → N be a weak monoidal

functor. For every n ∈ N and every strongly regular Φ-tree v of arity n, there is a unique

map Fv : vN (FA1, . . . , FAn) → FvM (A1, . . . , An) natural in A1, . . . , An ∈ M and formed

by taking composites and tensors of F0 and F2, such that the diagram

vN (FA1, . . . FAn)
Fv //

canN

��

FvM (A1, . . . , An)

FcanM

��
wN (FA1, . . . FAn)

Fw // F (w)M (A1, . . . , An)

commutes for all n ∈ N, all v, w ∈ (FplΦ)n, and all A1, . . . , An ∈ M.

Proof. See [ML98], p. 257.

We may use this result to sketch a proof of a coherence theorem for weak symmetric

monoidal functors:

Theorem 4.6.5. Let M,N be symmetric monoidal categories, and F : M → N be a weak

symmetric monoidal functor. Let σ ·v be an n-ary permuted Φ-tree. Then there is a unique

natural transformation

Mn Fn
//

(σ·v)M

��
����
>FFσ·v

Nn

(σ·v)N

��
M

F
// N

formed by composing tensor products of F2 and F0, possibly with their arguments permuted.

Furthermore, if ρ · w is another permuted Φ-tree, then the diagram

(σ · v)N (FA1, . . . FAn)
Fσ·v //

canN

��

F (σ · v)M (A1, . . . , An)

FcanM

��
(ρ · w)N (FA1, . . . FAn)

Fρ·w // F (ρ · w)M (A1, . . . , An)

commutes.

Proof. Let Fσ·v(A1, . . . , An) = Fv(Aσ(1), . . . , Aσ(n)), and similarly on morphisms. Then

Fσ·v has the required type. We may decompose canM (σ·v, ρ·w) as permM (σ, ρ) canM (v, w),

where permM (σ, ρ) : Fσ·v → Fρ·v is a composite of τs.
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Equation 4.8 and Lemma 4.6.4 together imply that the diagram

(σ · v)N (FA1, . . . FAn)
Fσ·v //

permN

��

F ((σ · v)M (A1, . . . , An))

FpermM

��
(ρ · v)N (FA1, . . . FAn)

Fρ·v //

canN

��

F ((ρ · v)M (A1, . . . , An))

FcanM

��
(ρ · w)N (FA1, . . . FAn)

Fρ·w // F ((ρ · w)M (A1, . . . , An))

commutes. It remains to show that Fσ·v is unique with this property.

Suppose that Fσ·v is not unique for some σ · v, and that there exists some natural

transformation G : (σ · v)N (FA1, . . . , FAn) → F ((σ · v)M (A1, . . . , An)), composed of ten-

sor products of components of F0 and F2, such that G 6= Fσ·v. Suppose further that σ · v

and G have been chosen to be a minimal counterexample, in the sense that of all such coun-

terexamples, σ may be written as a product of the smallest number of transpositions. If no

transpositions are used, then we have a contradiction, because then σ = 1n, and Lemma

4.6.4 tells us thatG = Fv. But suppose σ = t1t2 . . . tm where each ti is a transposition: then

t1 ·G is a natural transformation (σ ·v)N (FAt11, . . . , FAt1n) → F ((σ ·v)M (At11, . . . , At1n)),

and thus a transformation (t1σ · v)N (FA•) → F ((t1σ · v)M (A•)). But t1σ = t2t3 . . . tm,

and thus (by minimality of σ), it must be the case that t1 ·G = Ft1σ·v = t1 · Fσ·v. Hence

G = Fσ·v.

We now proceed to relate the classical theory of symmetric monoidal categories to the

more general notion of categorification we developed in previous sections.

By Lemma 4.4.6, if τ1, τ2 are n-ary 1-cells in Wkφ(P ) (in other words n-ary permuted

Φ-trees), there is a (unique) 2-cell τ1 → τ2 in Wkφ(P ) iff τ1 ∼ τ2 under the congruence

generated by E. By standard properties of commutative monoids, this relation holds iff

τ1 and τ2 take the same number of arguments, so there is exactly one 2-cell τ1 → τ2 for

every n ∈ N and every pair (τ1, τ2) of n-ary 1-cells in Wkφ(P ).

Let SMC denote the category of symmetric monoidal categories and weak maps be-

tween them. We shall define functors S : SMC → Wk-P -Cat and R : Wk-P -Cat →

SMC, and show that they are inverses of each other.

Let M = (C,⊗, I, α, λ, ρ, τ) be a symmetric monoidal category. Let SM be the weak

P -category (ˆ) : Wkφ(P ) → End(C) defined as follows:

• On 1-cells of Wkφ(P ), (ˆ) is determined by .̂ = ⊗ and ê = I.
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• If δ : τ1 → τ2 is an n-ary 2-cell in Wkφ(P ) (i.e. a morphism in the category

Wkφ(P )
n
), let δ̂ be the canonical map τ̂1 → τ̂2.

Lemma 4.6.6. SM is a well-defined Wkφ(P )-algebra for all M ∈ SMC.

Proof. The 1-cells of Wkφ(P ) are the same as those of FΣΦ; hence, (ˆ) is entirely de-

termined on 1-cells by a map of signatures Φ → UΣ End(C), which we have given. On

2-cells, Theorem 4.6.3 and the uniqueness property of 2-cells in Wkφ(P ) tell us that if

δ1, δ2 are 2-cells in Wkφ(P ), then δ̂1.δ2 = δ̂1 ⊗ δ̂2 = δ̂1̂.δ̂2, and δ̂1δ2 = δ̂1δ̂2 wherever δ1, δ2

are composable. Hence, (C, (ˆ)) is a well-defined Wkφ(P )-algebra.

Given symmetric monoidal categories M and N , and a weak symmetric monoidal

functor F : M → N , we would like to define a weak P -functor SF = (F, ψ) : SM → SN .

Let ψσ·v,A•
= Fσ·v for all n ∈ N, all σ · v ∈ (FΣΦ)n, and all A1, . . . , An ∈M . By Theorem

4.6.5, this is natural in σ · v and in A1, . . . , An. The other axioms for a weak P -functor

are all implied by the coherence theorem (Theorem 4.6.5). This can be generalized: a lax

symmetric monoidal functor F determines a lax P -functor SF , and a strict symmetric

monoidal functor F determines a strict P -functor SF .

Now, let C be a Wkφ(P )-algebra, with map (ˆ) : Wkφ(P ) → End(C). We shall

construct a symmetric monoidal category R(C, (ˆ)) = (C,⊗, I, α, λ, ρ, τ). Take

• ⊗ = .̂

• I = ê

• α = δ̂1, where δ1 : −.(−.−) → (−.−).− in Wkφ(P )3,

• λ = δ̂2, where δ2 : e.− → − in Wkφ(P )1,

• ρ = δ̂3, where δ3 : −.e→ e in Wkφ(P )1,

• τ = δ̂4, where δ4 : (−.−) → (12) · (−.−) in Wkφ(P )2.

Lemma 4.6.7. R(C, (ˆ)) is a symmetric monoidal category.

Proof. Because there is at most one 2-cell τ1 → τ2 for any pair of 1-cells τ1, τ2 in Wkφ(P ),

all diagrams involving these commute. In particular, the axioms for a symmetric monoidal

category are satisfied. The 2-cells in End(C) are natural transformations, so α, λ, ρ and

τ (as images of 2-cells in Wkφ(P ) under the map (ˆ) : Wkφ(P ) → End(C)) are natural

transformations. All 2-cells in Wkφ(P ) are invertible, so α, λ, ρ and τ are all natural

isomorphisms. Hence (C,⊗, I, α, λ, ρ, τ) is a symmetric monoidal category.
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Let (F, ψ) : (C, (ˆ)) → (C′, (ˇ)) be a weak morphism of Wkφ(P )-algebras. Then let

R(F, ψ) : R(C, (ˆ)) → R(C′, (ˇ)) be the following symmetric monoidal functor:

• the underlying functor is F ,

• F0 is ψe◦1 : ě→ F ê,

• F2 is ψ.◦1 : (̌.)F 2 → F (̂.).

The coherence diagrams (4.6), (4.7) and (4.8) all commute by virtue of the coherence

axioms for a weak morphism of Wkφ(P )-algebras and the naturality of ψ. Hence (F, F0, F2)

is a symmetric monoidal functor.

Lemma 4.6.8. Let (C,⊗, I, α, λ, ρ, τ) be a symmetric monoidal category. Then

RS(C,⊗, I, α, λ, ρ, τ) = (C,⊗, I, α, λ, ρ, τ).

Proof. Let RS(C,⊗, I, α, λ, ρ, τ) = (C,⊗′, I ′, α′, λ′, ρ′, τ ′). Their underlying categories are

equal, both being C.

⊗′ = .̂ = ⊗

I ′ = ê = I

α′ = δ̂1 = α, the unique canonical map of the correct type

λ′ = δ̂2 = λ

ρ′ = δ̂3 = ρ

τ ′ = δ̂4 = τ

Lemma 4.6.9. Let (C, (ˆ)) be a Wkφ(P )-algebra, and let (C′, (ˇ)) = SR(C, (ˆ)). Then

(C, (ˆ)) = (C′, (ˇ)).

Proof. Their underlying categories are the same. As above, (ˇ) is determined on objects

by the values it takes on . and e: these are ⊗ = .̂ and I = ê respectively. So (ˇ) = (ˆ)

on objects. If δ : τ1 → τ2, then δ̌ is the unique canonical map from τ̌1 → τ̌2, which, by an

easy induction, must be δ̂. So (ˇ) = (ˆ), and hence (C, (ˆ)) = SR(C, (ˆ)).

Lemma 4.6.10. Let M = (C,⊗, I, α, λ, ρ, τ) and N = (C′,⊗′, I ′, α′, λ′, ρ′, τ ′) be symmetric

monoidal categories, and let (F, F0, F2) be a weak symmetric monoidal functor M → N .

Then RS(F, F0, F2) = (F, F0, F2).
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Proof. Let (G,G0, G2) = RS(F, F0, F2). Then G is the underlying functor of S(F, F0, F2)

which is F , and G0, G2 are both the canonical maps with the correct types given by

Theorem 4.6.5: that is to say, they are F0 and F2 respectively.

Lemma 4.6.11. Let (C, (ˆ)) and (C′, (ˇ)) be Wkφ(P )-algebras, and let (F, φ) : (C, (ˆ)) →

(C′, (ˇ)) be a weak morphism of Wkφ(P )-algebras. Then SR(F, φ) = (F, φ).

Proof. Let (G, γ) = SR(F, φ). Then G is the underlying functor of R(F, φ), which is F .

Let (F, F0, F2) = R(F, φ). Each component of γ is then by definition the correct component

of the canonical map arising from F0, F2 in the process described in Theorem 4.6.5. By

the “uniqueness” part of the Theorem, this must be the corresponding component of φ.

Hence γ = φ.

Theorem 4.6.12. S and R form an isomorphism of categories SMC ∼= Wk-P -Cat.

Proof. Lemmas 4.6.8 and 4.6.9 show that R and S are bijective on objects; Lemmas 4.6.10

and 4.6.11 show that R and S are locally bijective on morphisms. Hence, R and S are a

pair of mutually inverse isomorphisms of categories.

4.7 Multicategories

We can tell this whole story for (symmetric) multicategories as well as just operads. We

sketch this development briefly here, although the remainder of the thesis will continue to

focus on the special case of operads.

Definition 4.7.1. A (directed) multigraph consists of

1. a set of vertices V ,

2. for each n ∈ N and each sequence v1, v2, . . . , vn, w of vertices, a set E(v1, . . . , vn;w)

of funnels from v1, . . . , vn to w.

Definition 4.7.2. Let M1 = (V1, E1) and M2 = (V2, E2) be multigraphs. A morphism

of multigraphs f : M1 →M2 is

1. a function fV : V1 → V2,

2. for each finite sequence v1, v2 . . . vn, w of vertices in M1, a function

fv1,...,vn
w : E1(v1, . . . , vn;w) → E2(fV (v1), . . . , fV (vn); fV (w)).
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We say that a funnel f ∈ E(v1, . . . , vn;w) has source v1, . . . , vn and target w; we say

that two funnels are parallel if they have the same source and target. The reason for

the “funnel” terminology should be clear from Figure 4.2. We shall say that a multigraph

has some property P locally if every E(v1, . . . , vn;w) is P , and similarly a morphism f

of multicategories is locally P if every fv1,...,vn
w is P .

Multigraphs and their morphisms form a category which we shall call Multigraph.

Figure 4.2: A multigraph

In order to proceed with the rest of the construction, we will need to consider subcat-

egories of Multicat, Multigraph etc.

Definition 4.7.3. LetX be a set. Then MultigraphX is the subcategory of Multigraph

whose objects are multigraphs with vertex set X, and whose morphisms are identity-on-

vertices maps of multigraphs. We define MulticatX and Σ-MulticatX similarly.

For each X ∈ Set, there is a chain of adjunctions similar to that given in Section 2.4:

FP-MulticatX

U
fp
Σ

��
U

fp
pl

yy
U fp

uu

Σ-MulticatX

UΣ
pl

��

FΣ
fp ⊣

OO

UΣ

yy

MulticatX

F
pl
Σ ⊣

OO

Upl

��

F
pl
fp

99

MultigraphX

Fpl ⊣

OOFΣ

99

Ffp

55

These adjunctions are monadic, by Lemma 2.5.1 and Lemma 2.5.3. Note that SetN can
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be regarded as Multigraph1: thus, the adjunctions of Section 2.4 are just the restrictions

of the adjunctions above to the one-vertex case.

We can consider multigraphs enriched in some category V:

Definition 4.7.4. Let V be a category. A V-multigraph M = (V,E) consists of

1. a set V of vertices,

2. for each n ∈ N and each finite sequence v1, v2 . . . vn, w of vertices, an object of V

called E(v1, . . . , vn;w) of funnels from v1, . . . , vn to w.

Definition 4.7.5. Let M1 = (V1, E1) and M2 = (V2, E2) be V-multigraphs. A morphism

of V-multigraphs f : M1 →M2 is

1. a function fV : V1 → V2,

2. for each n ∈ N and each finite sequence v1, v2 . . . vn, w of vertices in M1, an arrow

E1(v1, . . . , vn;w) → E2(fV (v1), . . . , fV (vn); fV (w)) in V.

The category of V-multigraphs and their morphisms is called V-Multigraph. The

category whose objects are V-multigraphs with vertex-set X and whose morphisms are

identity-on-vertices maps is called V-MultigraphX . In particular, we shall consider multi-

graphs enriched in the category Digraph of directed graphs. An object of the category

Digraph-Multigraph consists of

1. vertices (or objects);

2. funnels, each of which has one object as its target, and a sequence of objects as its

source;

3. edges, which each have one funnel as a source and one as a target: the source and

target of a given edge must be parallel.

The factorization system construction of Example 3.0.10 works in this broader setting

too. Let X be a set. The factorization system (E ,M) on Digraph of Example 3.0.5 gives

rise to a factorization system (E ′,M′) on Digraph-MultigraphX , where E consists of

maps which are bijective on objects and funnels, and M consists of maps which are locally

full-and-faithful. This lifts to a factorization system (E ′′,M′′) on Cat-MultigraphX via
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Figure 4.3: A multigraph enriched in directed graphs

Lemma 3.0.7. By the usual argument, there is a chain of monadic adjunctions:

Cat-FP-MulticatX

U
fp
Σ

��
U

fp
pl

yy

U fp

ww

Cat-Σ-MulticatX

UΣ
pl

��

FΣ
fp ⊣

OO

UΣ

yy

Cat-MulticatX

F
pl
Σ ⊣

OO

Upl

��

F
pl
fp

99

Cat-MultigraphX

Fpl ⊣

OOFΣ

99

Ffp

77

Since Cat-MulticatX is monadic over Cat-MultigraphX , this in turn lifts to a fac-

torization system on Cat-MulticatX . Similarly, we obtain a factorization system on

Cat-Σ-MulticatX .

A generator for a plain multicategoryM with object-setX is a multigraph Φ = (X,E)

together with a regular epi FplΦ → M in MulticatX . Similarly, a generator for a

symmetric multicategory M with object-set X is a multigraph Φ = (X,E) together with

a regular epi FΣΦ →M in Σ-MulticatX .

We can therefore extend Definition 4.4.7 above, in the obvious way. Let D∗ be the

embedding of MulticatX into Cat-MulticatX via the (full and faithful) discrete category

functor applied locally.

Definition 4.7.6. Let M be a plain multicategory with object-set X, and let φ : FplΦ →

M be a regular epi in MulticatX . Then the weakening of M with respect to φ is the
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unique-up-to-isomorphism Cat-multicategory Wkφ(M) such that the following diagram

commutes:

D∗FΦ
D∗φ //

b %% %%LLLLLLLLLL D∗M

Wkφ(M)

99 f

99sssssssss

where f is locally full and faithful, and b is locally bijective on objects (i.e., each map of

sets of funnels in b is a bijection). The uniqueness of Wkφ(M) follows from properties of

the factorization system on Cat-MulticatX given above.

Definition 4.7.7. Let M be a (symmetric) multicategory. The unbiased weakening

of M is the weakening of M with respect to the counit ǫ of the adjunction Fpl ⊣ Upl

(respectively, the adjunction FΣ ⊣ UΣ).

Definition 4.7.8. Let M be a multicategory, and let φ : FplΦ → M be a regular epi

in MulticatX . A φ-weak M-algebra is an algebra for Wkφ(M). An unbiased weak

M-algebra is an algebra for Wk(M).

We define weakenings of symmetric multicategories analogously.

4.8 Examples

Example 4.8.1. Let M be the multicategory generated by

0
f // 1

g // 2

Then a weak algebra for M in Cat with respect to this generating set consists of a diagram

0̂
f̂ // 1̂

ĝ // 2̂

in Cat, whereas an unbiased weak M -algebra is a diagram

0̂

f̂ ��;
;;

;;
;;

;

cgf //
�� ��
�� ∼

bI0 99 2̂ bI2ee

1̂

ĝ

AA��������

bI1

XX

where Î0, Î1 and Î2 are trivial monads.
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Example 4.8.2. Consider the theory T whose algebras are a monoid M together with an

M -set A. Then a weak T -algebra with respect to the standard presentation (a binary and

nullary operation on M , and an operation M×A→ A) is a classical monoidal category M̂ ,

a category Â, and a weak monoidal functor M̂ → End(Â). An unbiased weak T -algebra

is an unbiased monoidal category M̂ , a category Â equipped with a trivial monad ÎA, and

an unbiased monoidal functor M̂ → End(Â) which commutes up to coherent isomorphism

with ÎA.

Example 4.8.3. Let P be an operad, and let P̄ be the multicategory from Section 2.10

whose algebras are pairs of P -algebras with a morphism between them. It seems clear that

an unbiased weak P̄ -category is a pair of unbiased weak P -categories and an unbiased weak

P -functor between them; a rigorous proof would first require a coherence theorem to be

proven for weak maps of Cat-operad algebras, and currently no such theorem is known.

4.9 Evaluation

At the beginning of this chapter, we proposed three criteria that a successful definition of

categorification should satisfy: namely, it should be broad, consistent with earlier work,

and canonical. The examples considered throughout the chapter show that our theory

agrees with the standard categorifications that are within its scope. It is determined by

the universal property given by the factorization system on Cat-Σ-Operad: the only

tunable parameter is the choice of generator of a given theory, and in Chapter 5 we shall

see that the weakening of a given theory is independent (up to equivalence) of the generator

used. The main problem is the breadth of our theory: as presented, it is restricted to linear

theories, preventing us from categorifying the theories of groups, rings, Lie algebras, and

many other interesting nonlinear theories. We shall now show what happens when we try

to extend our theory to general algebraic theories.

Lemma 4.9.1. There is a factorization system (E ,M) on Cat-FP-Operad where E is

the collection of maps which are bijective on objects, and M is the collection of maps which

are levelwise full and faithful.

Proof. The proof is exactly as for the proof of existence of the factorization systems on

Cat-Operad and Cat-Σ-Operad given in Example 3.0.10.

Theorem 4.9.2. Let P be the finite product operad whose algebras are commutative
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monoids, and D∗ : FP-Operad → Cat-FP-Operad be the levelwise “discrete category”

functor. Let Q be the finite product Cat-operad given by the factorization

D∗FfpU
fpP

D∗ǫP //

$$ $$I
IIIIIIIII

D∗P

Q
>>

>>||||||||

Then an algebra for Q is an unbiased symmetric monoidal category C such that, for all

A ∈ C, the component τAA of the symmetry map τ is the identity on A⊗A.

Proof. We adopt the notation for elements of P introduced in Example 2.3.4. Let f be

the unique function 2 → 1, and let t : 2 → 2 be the permutation transposing 1 and 2.

Then ǫ(f ·
[

1
1

]
) = [2] ∈ P1. Let (C, (ˆ)) be a Q-algebra. We shall write ˆ[1

1

]
(A,B) as A⊗B.

We may impose a symmetric monoidal category structure on C, where the symmetry map

is the image under (ˆ) of the unique map δ :
[

1
1

]
→ t ·

[
1
1

]
in Q1. All diagrams in Q1

commute, so in particular, the following diagram commutes:

[2] // f ·
[

1
1

]

f ·
[

1
1

] f ·δ

;;vvvvvvvvv

OO

The two unlabelled arrows are mutually inverse. Applying (ˆ) to the entire diagram, and

evaluating the resulting functors at A ∈ C, we see that the following diagram commutes:

ˆ[2](A) // A⊗A

A⊗A

τAA

::uuuuuuuuuu

OO

and hence τAA = 1A⊗A.

This is not the case for most interesting symmetric monoidal categories. Hence this

definition of categorification would fail to be consistent with earlier work.



Chapter 5

Coherence

There are many “coherence theorems” in category theory, but in practice they usually fall

into one of two classes:

1. “All diagrams commute”, or more precisely, that diagrams in a given class commute

if and only if some quantity is invariant.

2. Every “weak” object is equivalent to an appropriate “strict” object.

Since the diagrams of interest in theorems of type 1 will usually commute trivially in a

strict object, a coherence theorem of type 2 usually implies one of type 1. However, estab-

lishing the converse is usually harder. In the previous chapter, our “weak P -categories”

were defined explicitly in terms of an infinite class of commuting diagrams (namely, those

diagrams which become identities under the application of the counit of the adjunctions

FΣ ⊣ UΣ or Fpl ⊣ U
pl): it is therefore interesting to see if we can prove a theorem of type

2 about them. We do this in Section 5.1, and investigate an interesting property of the

strictification functor in Section 5.2.

In Section 5.3, we investigate how the operad defining weak P -categories is affected by

our choice of presentation for P . While the independence result obtained is not a coherence

theorem of the usual form, it can be seen as a coherence theorem in a higher-dimensional

sense: that the process of categorification is itself coherent.

For other related work, see Power’s paper [Pow89].

95
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5.1 Strictification

Let P be a plain operad, andQ = Wk(P ), with π : Q→ D∗P the levelwise full-and-faithful

map in Theorem 4.2.2. We again adopt the • notation from chain complexes and write,

for instance, p• for a finite sequence of objects in P , and p•• for a double sequence. Let

Q◦A
h

−→A be a weak P -category. We shall construct a strict P -category st(A) and a weak

P -functor (F, φ) : st(A) → A, and show that it is an equivalence of weak P -categories.

This “strictification” construction is closely related to that given in [JS93] for monoidal

categories; however, it is more general, and since we work for the moment with unbiased

weak P -categories, our construction has some additional pleasant properties.

In fact, st is functorial, and is left adjoint to the forgetful functor Str-P -Cat →

Wk-P -Cat (see Section 5.2). The theorem then says that the unit of this adjunction is

pseudo-invertible, and that the strict P -categories and strict P -functors form a weakly

coreflective sub-2-category of Wk-P -Cat.

If P is a plain operad, let ι be the embedding

ι : UplD∗P → UplWk(P )

ι(p) = p ◦ (|, . . . , |)

Note that this is a morphism in CatN, not in Cat-Operad.

Definition 5.1.1. Let P , Q, h, A, ι be as above. The strictification of A, written

st(A), is given by the bijective-on-objects/full and faithful factorization of h(ι◦1) in Cat:

P ◦A
ι◦1 //

$$ $$H
HHHHHHHH Q ◦A

h // A.

st(A)

<<

<<yyyyyyy

We shall show that st(A) is a strict P -category. We may describe st(A) explicitly as

follows:

• An object of st(A) is an object of P ◦A.

• If p ∈ Pn and a1, . . . , an ∈ A, an arrow (p, a•) → (p′, a′•) in st(A) is an arrow

h(p, a•) → h(p′, a′•) in A. We say that such an arrow is a lifting of h(p, a•). Com-

position and identities are as in A.

We define an action h′ of P on st(A) as follows:
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• On objects, h′ acts by h′(q, (p, a•)
•) = (π(p ◦ (p•)), a••) where p ∈ Pn and (pi, ai•) ∈

st(A) for n ∈ N and i = 1, . . . n.

• Let fi : (pi, ai) → (p′i, a
′
i) for i = 1, . . . , n. Then h′(p, f•) is the composite

h(p ◦ (p•), a•)
δ−1
p◦(p•)
−→ h(p ◦ (p•), a•) = h(p, h(p1, a1), . . . , h(pn, an))
h(p,f•)
−→ h(p, h(p′1, a

′
1), . . . , h(p

′
n, a

′
n)) = h(p ◦ (p′•), a

′
•)

δp◦(p′•)
−→ h(p ◦ (p′•), a

′
•).

Lemma 5.1.2. st(A) is a strict P -category.

Proof. It is clear that the action we have defined is strict and associative on objects and

that 1P acts as a unit: we must show that the action on arrows is associative. Let

f ji : (pji , a
j
i•) → (qji , b

j
i•), σ ∈ Qn, and τi ∈ Qki

for j = 1, . . . , ki and i = 1, . . . , n. We wish

to show that h′(σ ◦ (τ•), f
•
• ) = h′(σ, h′(τ1, f

•
1 ), . . . , h′(τn, f

•
n)).

The LHS is

h(σ ◦ (τ•) ◦ (p••), a
•
•)

δ−1
σ◦(τi)◦(p

•
•)

−→ h(σ ◦ (τ•), h(p
1
1, a

1
1•), . . . , h(p

kn
n , a

kn
n•))

h(σ◦(τ•),f•• )
−→ h(σ ◦ (τ•), h(q

1
1, b

1
1•), . . . , h(q

k′n
n , b

k′n
n•))

δσ◦(τ•)◦(q••)
−→ h(σ ◦ (τ•) ◦ (q••), b

•
•).

The RHS is

h(σ ◦ (τ•) ◦ (p••), a
•
•)

δ−1
σ◦(τi◦(p

•
•))

−→ h(σ, h(τ1 ◦ (p•1), a
•
1•), . . . , h(τn ◦ (p•n), a

•
n•))

h(σ,h′(τ•,f•• ))
−→ h(σ, h(τ1 ◦ (q•1), b

•
1•), . . . , h(τn ◦ (q•n), b

•
n•))

δσ◦(τi◦(p
•
•))

−→ h(σ ◦ (τ•) ◦ (q••), b
•
•),

where each h′(τi, f
•
i ) is

h(τi ◦ (p•i ), a
•
i ))

δ−1
τi◦(p

•
i
)

−→ h(τi, h(p
1
i , a

1
i•), . . . , h(p

ki

i , a
ki

i•))
h(τi,f

•
i )

−→ h(τi, h(q
1
i , b

1
i•), . . . , h(q

ki

i , b
ki

i•))
δτi◦(p

•
i
)

−→ h(τi ◦ (q•i ), b
•
i ).

So the equation holds if the following diagram commutes:
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h(σ ◦ (τ•) ◦ (p••), a
•
•)

δ−1
σ◦(τi)◦(p

•
•)

uukkkkkkkkkkkkkkkkkkkk
δ−1
σ◦(τi◦(p

•
•))

))SSSSSSSSSSSSSSSSSSSS

δ−1
σ◦(τ•)◦(p••)

��
h(σ ◦ (τ•), h(p

•
•, a

•
•))

h(σ◦(τ•),f•• )

��

h(σ, h(τ• ◦ (p••), a
•
•))δσ◦(τ•)

oo

h(σ,h(τi,f
•
i ))

��

/.-,()*+1 /.-,()*+2

h(σ ◦ (τ•), h(p
•
•, a

•
•))

h(σ,δ−1
τ•◦(p

•
•)

)

oo

h(σ,h′(τ•,f•• ))

��
h(σ ◦ (τ•), h(q

•
•, b

•
•))

δσ◦(τ•)◦(q••)
))SSSSSSSSSSSSSSSSSSSS

h(σ, h(τ• ◦ (q••), b
•
•))

δσ◦(τ•◦(q
•
•))

��

δσ◦(τ•)

oo
h(σ,δτi◦(p

•
i
))
// h(σ, h(τ• ◦ (q••), b

•
•))

δσ◦(τ•◦(q
•
•))

uukkkkkkkkkkkkkkkkkkkk

h(σ ◦ (τ•) ◦ (q••), b
•
•)

The triangles all commute because all δs are images of arrows in Q, and there is at most

one 2-cell between any two 1-cells in Q. /.-,()*+2 commutes by the definition of h′(τi, f
•
i ), and

/.-,()*+1 commutes by naturality of δ.

Lemma 5.1.3. Let Q ◦ A
h

−→A and Q ◦ B
h′
−→B be weak P -categories, (F, π) : A → B

be a weak P -functor, and (F,G, η, ǫ) be an adjoint equivalence in Cat. Then G naturally

carries the structure of a weak P -functor, and (F,G, η, ǫ) is an adjoint equivalence in

Wk-P -Cat.

Proof. We want a sequence (ψ•) of natural transformations:

Qi ×Bi

1×Gi

��

h′i //

����
>Fψi

B

G

��
Qi ×Ai

hi

// A

Let ψi be given by

Qi ×Bi

1×Gi

��

h′i //

����
=Eψi

B

G

��
Qi ×Ai

hi

// A

=

Qi ×Bi 1 //

1×Gi

��

Qi ×Bi
h′i // B

G

��

����
?G1×ǫi

� �� �
KSπ
−1
i

Qi ×Ai

1×F i
wwwwww

;;wwwwww

hi

// A

F

>>}}}}}}}}}}}}}}

1
// A

zzzz
9Aη
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We must check that ψ satisfies (2.26) and (2.27) from Lemma 2.9.11. For (2.26):

LHS =
1×G

P

ki

��

h′k1
×···×h′kn //

����
;Cψk1

×···×ψkn

1×Gn

��

h′n //

����
;Cψn

G

��
hk1

×···×hkn

//
h

//

=

1 //

1×G
P

ki

��

h′k1
×···×h′kn // 1 //

1×Gn

��

h′n //

G

��

����
;C1×ε

P

ki

� �� �
KSπ−1

k1
×···×π−1

kn
����
;C1×εn

� �� �
KSπ
−1
n

1×F
P

ki
��������

??��������

hk1
×···×hkn

//

1×Fn

��������

??��������

1
//

1×Fn

��������

??��������

h
//

����
;C1×ηn

F��������

??��������

1
//

����
;Cη

=

1 //

1×G
P

ki

��

h′k1
×···×h′kn // 1 // h′n //

G

��

����
;C1×ε

P

ki

� �� �
KSπ−1

k1
×···×π−1

kn
� �� �
KSπ
−1
n

1×F
P

ki
��������

??��������

hk1
×···×hkn

//

1×Fn

��������

??��������

1
//

1×Fn

��������

??��������

h
//

F��������

??��������

1
//

����
;Cη

=

1 //

1×G
P

ki

��

h′
k1

×···×h′
kn // h′n //

G

��

����
;C1×ε

P

ki

� �� �
KSπ−1

k1
×···×π−1

kn
� �� �
KSπ
−1
n

1×F
P

ki
��������

??��������

hk1
×···×hkn

//

1×Fn

��������

??��������

h
//

F��������

??��������

1
//

����
;Cη

=

1 //

1×G
P

ki

��

h′P
ki //

G

��

����
;C1×ε

P

ki

� �� �
KSπ
−1
P

ki

1×F
P

ki
��������

??��������

hP

ki

//

F��������

??��������

1
//

����
;Cη

=
1×G

P

ki

��

h′P
ki //

����
;CψP

ki
G

��
hP

ki

//

= RHS.
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For (2.27), consider the following diagram:

Gb
δ1Q //

1

))

ηG

��

/.-,()*+2

h(1P , Gb)

ψ1

vv

η

��

/.-,()*+1

GFGb
GFδ1Q//

1

��

/.-,()*+3

GFh(1P , Gb)

π−1
1

��
/.-,()*+5

GFGb
Gδ′1Q

//

Gǫ

��

/.-,()*+4

Gh′(1P , FGb)

Gh′(1P ,ǫ)
��

Gb
Gδ′1Q

// Gh′(1P , b)

(2.27) is the outside of the diagram. /.-,()*+1 commutes by the triangle identities. /.-,()*+2 commutes

by naturality of η. /.-,()*+3 commutes since (F, π) is a P -functor. /.-,()*+4 commutes by naturality of

δ. /.-,()*+5 is the definition of ψ. Hence the whole diagram commutes, and (G,ψ) is a P -functor.

To see that (F,G, η, ǫ) is a P -equivalence, it is now enough to show that η and ǫ are

P -transformations, since they satisfy the triangle identities by hypothesis.

Write (GF,χ) = (G,ψ)◦(F, π). We wish to show that η is a P -transformation (1, 1) →

(GF,χ). Each χq,a• is the composite

h(q,GFa•)
ψq,Fa• // Gh(q, Fa•)

Gπq,a•// GFh(q, a•)

Applying the definition of ψ, this is

h(q,GFa•)
η // GFh(q,GFa•)

Gπ−1
// Gh(q, FGFa•)

GhqǫF // Gh(q, Fa•)
Gπ // GFh(q, a•)

The axiom on η is the outside of the diagram

h(q, a•)
1 //

h(q,η)

��

η

((QQQQQQQQQQQQ
h(q, a•)

η

��

GFh(q, a•)
Gπ−1

//

GFh(q,η)

��

/.-,()*+1

/.-,()*+2

Gh(q, Fa•)

Gh(q,Fη)

��

1

((QQQQQQQQQQQQ
/.-,()*+3

h(q,GFa•)
η // GFh(q,GFa•)

Gπ−1
// Gh(q, FGFa•)

Gh(q,ǫF )// Gh(q, Fa•)
Gπ // GFh(q, a•)

/.-,()*+1 commutes by naturality of η, /.-,()*+2 commutes by naturality of π−1, and /.-,()*+3 commutes since

Gπ ◦ Gπ−1 = G(π ◦ π−1) = G1 = 1G. The triangle commutes by the triangle identities.

So the whole diagram commutes, and η is a P -transformation. By Lemma 4.2.8, η−1 is

also a P -transformation. Similarly, ǫ and ǫ−1 are P -transformations.
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The statement of the lemma is a fragment of the statement that Wk-P -Cat is 2-

monadic over Cat. Compare the fact that monadic functors reflect isos.

Theorem 5.1.4. Let Q ◦A
h

−→A be a weak P -category. Then A is equivalent to st(A) in

the 2-category Wk-P -Cat.

Proof. Let F : st(A) → A be given by F (p, a•) = h(p, a•) and identification of maps.

This is certainly full and faithful, and it is essentially surjective on objects because δ−1
1Q

:

h(1P , a) → a is an isomorphism. By Lemma 5.1.3, it remains only to show that F is a

weak P -functor.

We must find a sequence (φi : hi(1× F i) → Fh′) of natural transformations satisfying

equations (2.26) and (2.27) from Lemma 2.9.11. We can take (φi)q,(p•,a••) = (δq◦(p•))a•• for

q ∈ Qn and (p1, a
1
•), . . . , (pn, a

n
• ) ∈ st(A). For (2.26), we must show that

1×F
P

ki

��

h′k1
×···×h′kn //

����
;Cφk1

×···×φkn

1×Fn

��

h′n //

����
;Cφn

F

��
hk1

×···×hkn

//
h

//

= 1×F
P

ki

��

h′P
ki //

����
;CφP

ki
F

��
hP

ki

//

All 2-cells in this equation are instances of δ. Since there is at most one 2-cell between

two 1-cells in Q, the equation holds.

For (2.27) to hold, we must have

F (p, a•)

1
��

δ1Q// h(1P , F (p, a•))

φ1P

��
F (p, a•)

Fδ′1Q

// Fh′(1P , (p, a•))

(5.1)

Since st(A) is a strict monoidal category, δ′ = 1. Apply this observation, and the defini-

tions of F , φ and h′; then (5.1) becomes

h(p, a•)

1
��

δ1Q// h(1P , h(p, a•))

δ1P ◦(p)

��
h(p, a•) 1

// h(p, a•)

Since there is at most one arrow between two 1-cells in Q, this diagram commutes. So

(F, φ) is a weak P -functor, and hence (by Lemma 5.1.3) an equivalence in Wk-P -Cat.
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Example 5.1.5. Consider the initial operad 0, whose algebras are sets. We saw in Ex-

ample 4.3.4 that unbiased weak 0-categories are categories equipped with a trivial monad.

By Theorem 5.1.4, every unbiased weak 0-category is equivalent via weak 0-functors to a

category equipped with a monad which is the identity: in other words, a category.

Example 5.1.6. Consider the terminal operad 1, whose algebras are monoids. Theorem

5.1.4 tells us that every unbiased weak monoidal category is monoidally equivalent to a

strict monoidal category.

5.2 Universal property of st

Let P be a plain operad.

Theorem 5.2.1. Let U ′ be the forgetful functor Str-P -Cat → Wk-P -Cat (considering

both of these as 1-categories). Then st is left adjoint to U ′.

Proof. For each (A, h) ∈ Wk-P -Cat, we construct an initial object A
(F ′,ψ)
−→ st(A) of the

comma category (A ↓ U ′), thus showing that st is functorial and that st ⊣ U ′ (and

that (F ′, ψ) is the component of the unit at A). Let (B, h′′) be a strict P -category, and

(G, γ) : A → U ′B be a weak P -functor. We must show that there is a unique strict

P -functor H making the following diagram commute:

A

(F ′,ψ)

����
��

��
��

��
��

��

(G,γ)

��3
33

33
33

33
33

33
3

U ′ st(A)
(H,id) //_______ U ′B

(5.2)

(F ′, ψ) is given as follows:

• If a ∈ A, then F ′(a) = (1, a).

• If f : a → a′ in A then F ′f is the lifting of h(1, f) with source (1, a) and target

(1, a′).

• Each ψ(p,a•) is the lifting of (δ1Q
)h(p,a•) : h(p, a•) → h(1, h(p, a•)) to a morphism

h′(p, F ′(a)•) = (p, a•) → (1, h(p, a•)) = F ′(h(p, a•)).

For commutativity of (5.2), we must have H(1, a) = G(a), and for strictness of H, we

must have H(p, a•) = h′′(p,H(1, a)•). These two conditions completely determine H on

objects.
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Now, take a morphism f : (p, a•) → (p′, a′•), which is a lifting of a morphism g :

h(p, a•) → h(p′, a′•) in A. Then Hf is a morphism h′′(p,Ga•) → h′′(p′, Ga′•): the obvious

thing for it to be is the composite

h′′(p,Ga•)
γ // Gh′′(p, a•)

Gg // Gh′′(p′, a′•)
γ−1

// h′′(p′, Ga′•)

and we shall show that this is in fact the only possibility. Consider the composite

(1, h(p, a•))
ψ−1

// (p, a•)
f // (p′, a•)

ψ // (1, h(p′, a′•))

in st(A). Composition in st(A) is given by composition in A, so this is equal to the lifting

of δ1Q
◦ g ◦ δ−1

1Q
= h(1, g) to a morphism (1, h(p, a•)) → (1, h(p′, a′•)), namely F ′g. So

f = ψ−1 ◦ F ′g ◦ ψ, and Hf = Hψ−1 ◦HF ′g ◦Hψ. By commutativity of (5.2), HF ′ = G

and Hψ = γ, so Hf = γ−1 ◦Gg ◦ γ as required.

This completely defines H. So we have constructed a unique H which makes (5.2)

commute and which is strict. Hence (F ′, ψ) : A → U ′ st(A) is initial in (A ↓ U ′), and so

st ⊣ U ′.

The P -functor (F, φ) : st(A) → A constructed in Theorem 5.1.4 is pseudo-inverse to

(F ′, ψ), which we have just shown to be the A-component of the unit of the adjunction

st ⊣ U ′. We can therefore say that Str-P -Cat is a weakly coreflective sub-2-category of

Wk-P -Cat. Note that the counit is not pseudo-invertible, so this is not a 2-equivalence.

Example 5.2.2. Consider again the initial operad 0, whose algebras are sets. We saw

in Example 4.3.4 that unbiased weak 0-categories are categories equipped with a specified

trivial monad. Let Triv denote the category of such categories, with morphisms being

functors that preserve the trivial monad up to coherent isomorphism. A strict unbiased

0-category is a category equipped with a monad equal to the identity monad, which is

simply a category. So Cat is a weakly coreflective sub-2-category of Triv.

5.3 Presentation-independence

We will now show that the weakening of a symmetric operad P is essentially independent

of the generators chosen. This generalizes Leinster’s result (in [Lei03] section 3.2) that the

theory of weak monoidal categories is essentially unaffected by the choice of a different

presentation for the theory of monoids.

We will need the following lemma:
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Lemma 5.3.1. In Cat-Σ-Operad, if P
α //
β

// Q
γ // R is a fork, and γ is levelwise full

and faithful, then α ∼= β.

Proof. We shall construct an invertible Cat-Σ-operad transformation η : α→ β. We form

the ηns as follows: for all p ∈ Pn, let γα(p) = γβ(p). Since γ is levelwise full, there exists

an arrow (ηn)p : α(p) → β(p) such that γn((ηn)p) = 1γα(p). Since γ is levelwise full and

faithful, this arrow is an isomorphism. Each ηn is natural because, for all n ∈ N and

f : p→ q in Pn, the image under γ of the naturality square

α(p)
(ηn)p //

α(f)
��

β(p)

β(f)
��

α(q)
(ηn)q // β(q)

is

γα(p)
1 //

γα(f)
��

γβ(p)

γβ(f)
��

γα(q)
1 // γβ(q)

which commutes since γα = γβ. Since γ is faithful, the naturality square commutes,

and ηn is natural. It remains to show that the collection (ηn)n∈N forms a Cat-Σ-operad

transformation, in other words that the equations

Pn × P•

αn×α• ,,

βn×β•

22
�� ��
�� ηn×η•

◦

��

����

Qn ×Q•

◦

��
PP

ki βP

ki

// QP

ki

=

Pn × P•

αn×α• //

◦

��

����

Qn ×Q•

◦

��
PP

ki

αP

ki
++

βP

ki

33
�� ��
�� η

P

ki QP

ki

(5.3)

(η1)1 = 1 (5.4)

Pn

αn

))

βn

55
�� ��
�� ηn

σ·−

��

����

Qn

σ·−

��
Pn

βn

// Qn

=

Pn
αn //

σ·−

��

����

Qn

σ·−

��
Pn

αn

))

βn

55
�� ��
�� ηn Qn

(5.5)

hold, for all n, k1 . . . kn ∈ N and every σ ∈ Sn. As above, it is enough to show that the

images of both sides under γ are equal, and this is trivially true by definition of η.

Let P be a symmetric operad.
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Theorem 5.3.2. Let Φ ∈ SetN and let φ : FΣΦ → P be a regular epi. Then Wkφ(P ) is

equivalent as a symmetric Cat-operad to Wk(P ).

Proof. Let Q be the weakening of P with respect to φ : FΣΦ → P . By the triangle

identities, we have a commutative square

FΣΦ
φ //

FΣφ
��

P

1

��
FΣU

ΣP
ǫP // P

By functoriality of the factorization system, this gives rise to a unique map χ : Q→ Wk(P )

such that

FΣΦ // //

φ

&&

FΣφ
��

Q // //

χ

��

P

1

��
FΣU

ΣP // //

ǫP

88Wk(P ) // // P

commutes. We wish to find a pseudo-inverse to χ.

Since Σ-Operad is monadic over SetN, a regular epi in Σ-Operad is a levelwise

surjection by Theorem 3.0.11. So we may choose a section ψn of φn : (FΣΦ)n → Pn for all

n ∈ N. So we have a morphism ψ : UΣP → UΣFΣΦ in SetN. We wish to show that

FΣU
ΣP

ǫP //

ψ

��

P

1

��
FΣΦ

φ // P

commutes. This follows from a simple transpose argument:

FΣU
ΣP

ψ̄ // FΣΦ
φ // P

UΣP
ψ // UΣFΣΦ

UΣφ // UΣP = UΣP
1 // UΣP

FΣU
ΣP

ǫ // P.

This induces a map

FΣU
ΣP // //

ǫP

&&

ψ

��

Wk(P ) // //

ω

��

P

1

��
FΣΦ // //

φ

88Q // // P
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We will show that ω is pseudo-inverse to χ. Now,

Q // //

ω

��

P

1

��
Wk(P ) // //

χ

��

P

1

��
Q // // P

commutes. So Q
1Q //
χω

// Q // // P is a fork. By Lemma 5.3.1, χω ∼= 1Q, and similarly

ωχ ∼= 1Wk(P ). So Q ≃ Wk(P ) as a symmetric Cat-operad, as required.

Corollary 5.3.3. Let P be a plain operad. Then F pl
Σ (Wk(P )) ≃ Wk(F pl

Σ P ).

Proof. Let φ : FplU
plP → P be the component at P of the counit of the adjunction

Fpl ⊣ U
pl. Let ǫ be the counit of the adjunction F pl

Σ ⊣ UΣ
pl.

By Theorem 4.4.8, there is an isomorphism F pl
Σ (Wkφ(P )) ∼= Wk

F
pl
Σ φ

(F pl
Σ P ), and by

Theorem 5.3.2, there is an equivalence Wk
F

pl
Σ φ

(F pl
Σ P ) ≃ Wk(F pl

Σ P ). Hence F pl
Σ (Wk(P )) ≃

Wk(F pl
Σ P ).

Corollary 5.3.4. Let P be a plain operad. Then the category Wk-P -Cat is equivalent

to the category Wk-F pl
Σ P -Cat.

This tells us that the unbiased categorification of a strongly regular theory is essentially

unaffected by our treating it as a linear theory instead.

Example 5.3.5. Considering again the trivial theory 0, we see that Triv ≃ Cat.

This can be generalised to the multi-sorted situation:

Lemma 5.3.6. Let X be a set, and f be a regular epi in the category Cat-MulticatX or

in the category Cat-Σ-MulticatX . Then f is locally surjective on objects.

Proof. MulticatX is monadic over MultigraphX by Lemma 2.5.1 and Theorem 2.5.3,

and an object of MultigraphX can be considered as an object of SetY , where Y = X×X∗,

and X∗ is the free monoid on X: for each x ∈ X, and each sequence x1, . . . , xn ∈ X∗,

there is a set of funnels x1, . . . , xn → x. Hence, by 3.0.11, every regular epi in MulticatX

is locally surjective.
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The objects functor O : Cat → Set has both a left adjoint D and a right adjoint I.

Hence O and I preserve products, and hence by Lemma 2.5.1 they induce an adjunction

Cat-MulticatX
O∗

⊥

//
MulticatX

I∗

oo .

Since O∗ is a left adjoint, it preserves colimits, and in particular regular epis: hence, every

regular epi in Cat-MulticatX must be locally surjective on objects.

The symmetric case is proved analogously.

Theorem 5.3.7. Let M be a (symmetric) multicategory, and φ : FplΦ → M (or in the

symmetric case, φ : FΣΦ → M) be a regular epi. Then the weakening of M with respect

to φ is equivalent as a Cat-multicategory to Wk(M).

Proof. The proof is exactly as for Theorem 5.3.2.



Chapter 6

Other Approaches

6.1 Pseudo-algebras for 2-monads

We begin by recalling some standard notions of 2-monad theory.

Definition 6.1.1. A 2-monad is a monad object in the 2-category of 2-categories, in

the sense of [Str72]; that is to say, a 2-category C, a strict 2-functor T : C → C, and

2-transformations µ : T 2 → T and η : 1C → T satisfying the usual monad laws:

T 3

µT

  B
BB

BB
BB

B
Tµ

~~||
||

||
||

T 2

µ
!!B

BB
BB

BB
B T 2

µ
}}||

||
||

||

T

(6.1)

T
Tη //

1T   A
AA

AA
AA

A T 2

µ

��

T
ηToo

1T~~}}
}}

}}
}}

T

(6.2)

As is common for ordinary 1-monads, we will usually refer to a 2-monad (C, T, µ, η) as

simply T .

The usual notion of an algebra for a monad carries over simply to this case:

Definition 6.1.2. Let (C, T, µ, η) be a 2-monad. A strict algebra for T is an object

108
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A ∈ C and a 1-cell a : TA→ A satisfying the following axioms:

T 2A
µ

""F
FFFFFFF

Ta

||xxxxxxxx

TA

a
##F

FF
FF

FF
FF

TA

a
{{xx

xx
xx

xx
x

A

(6.3)

A
η //

1A !!C
CC

CC
CC

C TA

a

��
A

(6.4)

For our purposes, it is more interesting to consider the well-known pseudo-algebras

for a 2-monad. These are algebras “up to isomorphism”:

Definition 6.1.3. Let (C, T, µ, η) be a 2-monad. A pseudo-algebra for T is an object

A ∈ C, a 1-cell a : TA→ A, and invertible 2-cells

T 2A
µ

""F
FFFFFFF

Ta

||xxxxxxxx

____ +3
α

TA

a
##F

FF
FF

FF
FF

TA

a
{{xx

xx
xx

xx
x

A

A
η //

1A !!C
CC

CC
CC

C
����
=Eβ
TA

a

��
A

satisfying the equations

T 3A
T 2a

{{xxxxxxxx
µT

##F
FFFFFFF

Tµ

��

T 3A
T 2a

{{xxxxxxxx
µT

##F
FFFFFFF

T 2A

Ta

��

����

T 2A

µ

��

T 2A

Ta

��

µ
##F

FF
FF

FF
FF

T 2A

µ

��

Ta{{xx
xx

xx
xx

x8888 � 
Tα

T 2A
Ta

{{wwwwwwww

µ
##G

GGGGGGG
= TA

a

��

TA

a
##G

GGGGGGGG TA

a
{{wwwwwwwww

TA

a
##G

GGGGGGGG

����
?Gα 7777

��
α

TA

a
{{wwwwwwwww

A

____ +3α

A

(6.5)
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TA
1





1

��

Tη

��

TA

a

��

a

��

TA
a

~~||
||

||
|| 1

��

ηT

""F
FFFFFFF

T 2A
Ta

||xxxxxxxx
µ

""F
FFFFFFF

= = A
η

  B
BB

BB
BB

B

1
//

����
=Eβ

T 2A
µ

""F
FFFFFFF

Ta

||xxxxxxxx

TA

a
##F

FF
FF

FF
FF

TA

a
{{xx

xx
xx

xx
x

A TA

a
##F

FF
FF

FF
FF

TA

a
{{xx

xx
xx

xx
x

A

____ +3α

A

____ +3α

(6.6)

Definition 6.1.4. Let (C, T, µ, η) be a 2-monad, and let (A, a, α1, α2) and (B, b, β1, β2)

be pseudo-algebras for T . A pseudo-morphism of pseudo-algebras (A, a, α1, α2) to

(B, b, β1, β2) is a pair (f, φ), where f : A→ B is a 1-cell in C and φ is an invertible 2-cell:

TA
Tf //

a

��
����~� φ

TB

b
��

A
f

// B

satisfying the axioms

T 2A
T 2f //

µA

��

����

T 2B

µB

��
TA

Tf //

a

��

������ φ

TB

b

��
A

f
// B

=

T 2A
T 2f //

Ta

��

������ Tφ

T 2B

Tb

��
TA

Tf //

a

��

������ φ

TB

b

��
A

f
// B

(6.7)

A
f //

ηA

��

!!

1A ____ks
α−1

2

����

B

ηB

��
1B

}}

____ks
β−1
2

TA
Tf //

a

��

����~� φ

TB

b

��
A

f
// B

= A

f
''

f

77
�� ��
�� 1f B

(6.8)

This gives rise to a category Ps-Alg(T ) for any 2-monad T .

Every cartesian monad T on Set gives rise to a 2-monad T̄ on Cat in an obvious way,

and (as we saw in Theorem 2.8.10) every plain operad P gives rise to a cartesian monad

TP on Set. So an alternative definition of “weak P -category” might be “pseudo-algebra

for T̄P ”.
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In order to explore the connections between this idea and the notion of weak P -category

given in previous chapters, we shall need some theorems from [BKP89] and related papers.

Theorem 6.1.5. (Blackwell, Kelly, Power) Let T be a 2-monad with rank on a cocomplete

2-category K, let Alg(T )str be the 2-category of strict T -algebras and strict morphisms, and

Alg(T )wk be the 2-category of strict T -algebras and weak morphisms. Then the inclusion

J : Alg(T )str → Alg(T )wk has a left adjoint L. Thus every strict T -algebra A has a

pseudo-morphism classifier p : A → A′ (where A′ = JLA), such that for all B ∈ K,

and every pseudo-morphism f : A→ B, we may express f uniquely as the composite of p

and a strict morphism:

A
p //

f   @
@@

@@
@@

@ A′

Jf̄

��
B

Proof. See [BKP89], Theorem 3.13.

Theorem 6.1.6. (Blackwell, Kelly, Power) Let f : S → T be a strict map between 2-

monads with rank on a cocomplete 2-category K. Then the induced map f∗ : Alg(T )str →

Alg(S)str has a left adjoint, and the induced map f∗ : Alg(T )wk → Alg(S)wk has a left

biadjoint.

Proof. See [BKP89], Theorem 5.12.

Corollary 6.1.7. Composing this left adjoint with the left adjoint of Theorem 6.1.5 gives

us an adjunction

Alg(S)wk

F

⊥

//
Alg(T )str

U
oo

Theorem 6.1.8. (Power, Lack) Let T be a 2-monad with rank on a cocomplete 2-category

K of the form CatX for some set X, and let T preserve pointwise bijectivity-on-objects.

Let (A, a) be a strict T -algebra. Then the pseudo-morphism classifier A′ for A may be

found by factorizing the structure map a : TA→ A as a pointwise bijective-on-objects map

followed by a locally full-and-faithful map:

TA
a //

!! !!C
CC

CC
CC

C A

A′

>>

>>~~~~~~

Proof. The construction is given in Power’s paper [Pow89], and the universal property of

the algebra constructed is proved in Lack’s paper [Lac02].
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This argument is due to Steve Lack (private communication).

Theorem 6.1.9. Let P be a plain operad. Let TP be the monad induced by P on Set. Then

a pseudo-algebra for T̄P is a weak P -category in the sense of Definition 4.2.1. Furthermore,

there is an isomorphism of categories Ps-Alg(T̄P ) ∼= Algwk(P ).

Proof. Cat-Operad is monadic over CatN via one of the special monads of Theorem

6.1.8, and hence, for every plain Cat-operad P , the pseudo-morphism classifier of P is

none other than Wk(P ). Hence, if A is a category, then a strict map of Cat-operads

Wk(P ) → End(A) is precisely a weak map P → End(A), or equivalently a T̄P -pseudo-

algebra structure on A.

We may also use these ideas to provide a simple proof of the strictification result in

Theorem 5.1.4. The map P → Wk(P ) given by Theorem 6.1.5 is pseudo, but it has a strict

retraction q : Wk(P ) → P . This is equivalent to a strict map of monads TWk(P ) → TP .

By Corollary 6.1.7, this induces a 2-functor Alg(P )str → Alg(Wk(P ))wk with a left

adjoint. This functor is simply the inclusion of the 2-category of strict P -categories, strict

P -functors and P -transformations into the 2-category of weak P -(categories, functors,

transformations), and its left adjoint is the functor st constructed in Section 5.1. The fact

that any weak P -category A is equivalent to st(A) is a consequence of the fact that any

pseudo P -algebra is equivalent to a strict one, and this holds by the General Coherence

Result of Power.

However, pseudo-algebras are less useful in the case of linear theories. Since the monads

arising from symmetric operads are not in general cartesian, we may not perform the

construction given above. We may, however, use the existence of colimits in Cat, and

consider the 2-monad

A 7→

∫ n∈B

Pn ×An

for any symmetric operad P . If P is the free symmetric operad on a plain operad P ′, this

2-monad is equal to T̄P ′ . Yet this coend construction also leads to problems.

Let T be the “free commutative monoid” monad on Set, and S be the “free monoid”

monad on Set. Since these both arise from symmetric operads, we may lift them to 2-

monads T ′, S′ on Cat as described above. T ′ is the free commutative monoid monad on

Cat, which is to say the free strict symmetric monoidal category 2-monad; similarly, S′

is the free strict monoidal category 2-monad. For each category A, there is a functor
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πA : S′A→ T ′A which is full and surjective-on-objects; hence, if (A, a, α1, α2) is a pseudo-

algebra for T ′, we obtain an S′-pseudo-algebra structure by precomposing with πA:

S′A

πA
����

T ′A

a

��
A

S′2A

(π∗π)A
����

T ′2A
T ′a

{{wwwwwwww
µ

##G
GGGGGGG

____ +3α1

T ′A

a
##G

GGGGGGGG T ′A

a
{{wwwwwwwww

A

A

1A

��

η // S′A

πA
����

A
η //

1A !!C
CC

CC
CC

C
����
=Eα2
T ′A

a

��
A

The S′-pseudo-algebra structure so obtained is uniquely determined. Since πA is full and

surjective-on-objects, it is epic, and so every pseudo-algebra for S′ is a pseudo-algebra for

T ′ in at most one way. Hence we may view all pseudo-algebras for T ′ as pseudo-algebras

for S′ (that is, as monoidal categories) with extra properties. But there exist monoidal

categories with several choices of symmetric structure on them. For instance, consider the

category of graded Abelian groups, with tensor product (A⊗B)n =
⊕

i+j=nAi ⊗Bj . As

well as the obvious symmetry, there is another given by τAB(a⊗ b) = (−1)ijb ⊗ a, where

a ∈ Ai, b ∈ Bj .

We can say at least something about the extra properties that pseudo-algebras for T ′

must have:

Theorem 6.1.10. A pseudo-algebra for T ′ is a symmetric monoidal category A in which

x⊗ y = y ⊗ x for all x, y ∈ A.

Proof. Recall our construction of the finite product operad whose algebras are commu-

tative monoids in Example 2.3.4. From this, we may deduce that if A is a set, then an

element of TPA is a function A→ N assigning each element of A its multiplicity: in other

words, a multiset of elements of A. Let (A, a, α, β) be a pseudo-algebra for T ′ in Cat.

Then we have a binary tensor product:

x⊗ y := a(x1y1)

where x1y1 is the function A → N sending x and y to 1 and all other objects of A to

0. The tensor is defined analogously on morphisms. The components of α and β give us

associator, symmetry and unit maps, and it can be shown that they satisfy the axioms for

a monoidal category. However, since the function x1y1 is equal to the function y1x1 for

all x, y ∈ A, it must be the case that x⊗ y = y ⊗ x.
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Since not all symmetric monoidal categories satisfy this condition, it is apparent that

a näıve approach to categorification based on pseudo-algebras is doomed to fail, and that

more sophistication is required. In fact, I conjecture that a stronger condition holds: that

the symmetry maps are all identities.

In the specific case of symmetric monoidal categories, we may remedy the situation as

follows. Let T be the “free symmetric strict monoidal category” 2-monad. Then pseudo-

algebras for T are precisely symmetric monoidal categories.

6.2 Laplaza sets

This notion was introduced by T. Fiore, P. Hu and I. Kriz in [FHK], as a generalization of

Laplaza’s categorification of rigs in [Lap72]. It was introduced as an attempt to correct an

error in the earlier definition of categorification proposed in [Fio06]; the error in question

is essentially that discussed in Section 4.9 above.

Definition 6.2.1. Let T be a finite product operad. A Laplaza set for T is a subsignature

of U fpT .

Concretely, a Laplaza set S for T is a sequence S0 ⊂ T0, S1 ⊂ T1, . . . of subsets of

T0, T1, . . . .

Definition 6.2.2. Let T be a finite product operad, and S be a Laplaza set for T . A

(T, S)-pseudo algebra is

• a category C

• for each φ ∈ Tn, a functor φ̂ : Cn → C,

• coherence morphisms witnessing all equations that are true in T ,

such that, if

• s1, s2, t1 and t2 are elements of (FfpU
fpT )n,

• δ1 : ŝ1 → t̂1 and δ2 : ŝ2 → t̂2 are coherence morphisms,

• ǫ(s1) = ǫ(s2) ∈ S and ǫ(t1) = ǫ(t2) ∈ S,

then δ1 = δ2.

This definition can be recast in terms of strict algebras for a finite product Cat-operad.

By judicious choice of Laplaza set, one can recover the classical notion of symmetric

monoidal category and Laplaza’s categorification of the theory of rigs.
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6.3 Non-algebraic definitions

Various definitions have appeared that are inspired by the notions of homotopy monoids

etc. in topology. In [Lei00], Leinster proposes a definition of a “homotopy P -algebra in M”

for any plain operad P and any monoidal category M ; his shorter paper [Lei99] explores

this definition in the case P = 1. Related (but more general) is Rosický’s work described

in [Ros].

These definitions stand roughly in relation to ours as do the “non-algebraic” definitions

of n-category in relation to the “algebraic” ones: see [CL04].



References
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Adámek, Jǐŕı, 50
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