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Abstract

A test particle approach is used to study two distinct plasma physics situations.

In the first case, the collisionless response of protons to cold plasma fast Alfvén

waves propagating in a non-uniform magnetic field configuration (specifically, a two-

dimensional X-point field) is studied. The field perturbations associated with the

waves, which are assumed to be azimuthally-symmetric and invariant in the direction

orthogonal to the X-point plane, are exact solutions of the linearized ideal magneto-

hydrodynamic (MHD) equations. The protons are initially Maxwellian, at temper-

atures that are consistent with the cold plasma approximation. Two kinds of wave

solution are invoked: global perturbations, with inward- and outward-propagating

components; and purely inward-propagating waves, localised in distance from the

X-point null, the wave electric field E having a preferred direction. In both cases the

protons are effectively heated in the direction parallel to the magnetic field, although

the parallel velocity distribution is generally non-Maxwellian and some protons are

accelerated to highly supra-thermal energies. This heating and acceleration can be

attributed to the fact that protons undergoing E×B drifts due to the presence of

the wave are subject to an effective force in the direction parallel to B. The localised

wave solution produces more effective proton heating than the global solution, and

successive wave pulses have a synergistic effect. This process, which could play a

role in both solar coronal heating and late-phase heating in solar flares, is effective

for all ion species, but has a negligible direct effect on electrons. However, both

electrons and heavy ions would be expected to acquire a temperature comparable
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to that of the protons on collisional timescales.

In the second case the same approach is used to study the collisional transport of

impurity ions (carbon, mainly, although tungsten ions are also simulated) in spher-

ical tokamak (ST) plasmas with transonic and subsonic toroidal flows. The efficacy

of this approach is demonstrated by reproducing the results of classical transport

theory in the large aspect ratio limit. The equilibrium parameters used in the ST

modelling are similar to those of plasmas in the MAST experiment. The effects

on impurity ion confinement of both counter-current and co-current rotation are

determined. Various majority ion density and temperature profiles, approximat-

ing measured profiles in rotating and non-rotating MAST plasmas, are used in the

modelling. It is shown that transonic rotation (both counter-current and co-current)

has the effect of reducing substantially the confinement time of the impurity ions.

This effect arises primarily because the impurity ions, displaced by the centrifugal

force to the low field region of the tokamak, are subject to a collisional diffusivity

that is greater than the flux surface-averaged value of this quantity. For a given set

of plasma profiles, the carbon ions are found to be significantly less well-confined

in co-rotating plasmas than in counter-rotating plasmas, although the difference

in confinement time between co- and counter-rotation lessens as the mass of the

impurity increases. In the case of carbon ions the poloidal distribution of losses

exhibits a pronounced up/down asymmetry that is consistent with the direction of

the net vertical drift of the impurity ions. Increasing the mass of the impurity ion

is also found to significantly decrease the confinement time in the rotating cases,

though the confinement time for the case of a stationary plasma is increased. Such

studies of impurity transport within tokamaks are important because it is desirable

to expel impurity ions from the plasma to avoid both dilution of the fuel ions and

unacceptable radiation losses from the plasma.
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Summary

The work of this thesis has been quite diverse, taking in as it has a mixture of both

solar physics and tokamak plasma physics. The underlying connection between

the two projects has been in the approach taken, by calculating the orbits of test

particles within the relevant electric and magnetic fields.

Chapter 1 consists of a qualitative overview of the structure of the Sun, magnetic

reconnection and solar flares. Chapter 2 is an overview of fusion plasma physics:

issues concerning tokamak plasma equilibrium, classical transport and impurities are

discussed. The nature of these topics means that a more mathematical description

than Chapter 1 is included. Chapter 3 is devoted to the test particle approach,

explaining the algorithm employed to model them in our codes throughout the course

of the thesis. Chapter 4 is a discussion of some published work on fast Alfvén wave

heating and acceleration of ions in a non-uniform magnetoplasma, and Chapters 5

and 6 consist of (also published) work on the collisional transport of impurity ions

in a rotating spherical tokamak plasma: both Chapters 4 and 6 include detailed

reviews of recent literature. Chapter 7 is a discussion of potential future work that

could be attempted, and expands upon exactly how some of it could be achieved.
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171, 195 and 284Å (denoted by red, yellow and blue respectively). . . 3

1.2 Multiwavelength images of the Sun in (from top left to right): X-ray

(Yohkoh), UV (SoHO), EUV (SoHO), visible white light (BBSO),

Calcium-K (BBSO), Hα (Learmonth), Infra-red (NSO) and radio

(Nobeyama). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Left - Magnetogram of the Sun, taken by MDI (Michelson-Doppler

Imager, onboard SoHO). The darker areas are regions of “south”

(inward-directed) magnetic polarity and the whiter areas are “north”

(outward-directed) magnetic polarity. Right - a reconstruction of the

“magnetic carpet” of the Sun. . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Artist’s impression of the structure of the Sun. . . . . . . . . . . . . . 5

1.5 Variation of temperature across the chromosphere, transition region

and corona. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.6 Photograph of the corona in white light made with a coronagraph. . . 9

1.7 Two-dimensional magnetic X-point with ᾱ = 1. . . . . . . . . . . . . 16
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“Feel like a sundial in the shade

Where flowers fade”

The Lightning Seeds

“Where Flowers Fade”

Chapter 1

Solar Astrophysics

1.1 The Sun: An Introduction

Eight light-minutes away from us lies an extraordinarily complex astrophysical body.

Bound by its own self-gravity yet held up due to the pressure of the incessant nuclear

reaction occurring within, the burning ball of gas we know as the Sun, the closest

star to Earth, dominates our planetary system. Approximately 98% of the mass of

the Solar System is attributable to the Sun, with its radius of R¯ = 6.96×108m and

mass of M¯ = 1.989×1030kg [1] dwarfing even the gas giants of Jupiter and Saturn.

For 4.5 billion years this body has provided energy, in the form of radiated heat and

light, in quantities so large as to render them virtually meaningless to humans: the

energy output of the Sun per second, approximately 3.86× 1026J, is around 6 orders

of magnitude higher than the approximate 5× 1020J of energy the human race used

in the entire year of 2004. And yet, for all the superlatives and astronomically large

numbers we can assign to the Sun, it remains a relatively young, relatively small,

relatively ordinary star. However, the next nearest star, Proxima Centauri, is so

far away that the light that we observe from it was radiated over 4 years prior to

our detection, and so our ordinary Sun receives our extraordinary attention as the

most practical example of stellar physics we can comfortably study. This is not to

ignore the important fact that the small distance, in cosmological terms, between

1
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us and the Sun means that we are constantly affected by its continually-varying

activity, in the form of geomagnetic storms, aurorae, and climactic variability. Thus

observing and studying the Sun has motivations of both practical and theoretical

interest. Additionally, the Sun’s relative banality means that we can be comfortable

that that which we are studying and learning is extrapolatable and applicable across

stellar physics in general, and that we are not studying some isolated, extreme case.

The earliest observations of the Sun were naturally crude, with observations

being made either with the naked eye or during rare solar eclipses. The invention of

the telescope in the 17th century provided the first tool remotely capable of resolving

any fine detail on the solar disc, with the discovery of sunspots (dark patches on

the solar disk), usually attributed to Galileo Galilei, the first major observational

breakthrough. By continually recording the number of observed sunspots over many

decades and even centuries, it has been determined that the Sun has experienced

periodic levels of activity on both short and longer periods: around every 11 years

or so the number of sunspots, an indirect measure of the activity of the Sun, peaks

and falls - this is known as the sunspot cycle. On longer timescales, sunspot number

has been seen to vary irregularly and unpredictably - for example, sunspot activity

almost entirely disappeared for a period of around 70 years during the 17th century, a

time known as the Maunder Minimum. Hale’s discovery that sunspots were magnetic

[2], with each spot having a partner with opposite magnetic polarity, was a key one.

A sunspot is darker than the surrounding photosphere because the magnetic field

inhibits heat transport via convection and cross-field conduction there, and so the

sunspot plasma is cooler than the surrounding plasma. The understanding that

magnetic fields played an important role in the Sun was the primer for most of the

research that has come since.

Observational techniques today are considerably more advanced than the prim-

itive methods used to make the initial observations of the Sun. The arrival of the

computer and space ages, with complex satellites using multiple detectors and sys-

tems, has given us the ability to put mini-observatories above our atmosphere. This

is especially important if we want to observe in windows of the electromagnetic

spectrum that the atmosphere of the Earth is particularly good at blocking out,
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such as X-rays, gamma rays, and ultraviolet (UV) light. Studies of the Sun at these

wavelengths have become the norm, given the extreme energetic violence of many

solar processes such as flares, though multi-wavelength and multi-instrument studies

are important in providing an overall picture of the Sun’s structure and processes:

this is illustrated in Figures 1.1 and 1.2. Note that the images in Figure 1.2 are not

all taken at the same time.

Figure 1.1: A composite image taken by SoHO (Solar and Heliospheric Observatory),

which combines data taken by the EIT (Extreme ultraviolet Imagining Telescope) instru-

ment from three wavelengths, namely, 171, 195 and 284 Å (denoted by red, yellow and blue

respectively). Image from http://sohowww.nascom.nasa.gov/gallery/images/trico1.html.

Over the last two decades several important observing space missions, such as

Yohkoh, TRACE, SoHO, RHESSI et al. have recorded a wealth of data from the

Sun. Much work has been carried out in attempting to reconstruct the all-important

magnetic fields by combining these observations with theory and simulation (see Fig-

ure 1.3). Observations of the magnetic field come from magnetograms, which make

use of the quantum-mechanical Zeeman splitting effect of spectral lines. The degen-

eracy of an electronic configuration will be broken by the presence of a magnetic

field, which causes a spectral line to split into multiple components. The splitting

in wavelength is proportional to the field, and so this can be used to determine the

line of sight magnetic field strength of the solar surface, where the fields of sunspots

break through - estimates suggest the field strength of sunspots is approximately
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Figure 1.2: Multiwavelength images of the Sun in (from top left to right): X-

ray (Yohkoh), UV (SoHO), EUV (SoHO), visible white light (BBSO), calcium-K

(BBSO), Hα (Learmonth), Infra-red (NSO) and radio (Nobeyama). Images from

http://coolcosmos.ipac.caltech.edu/.

Figure 1.3: Left - Magnetogram of the Sun, taken by MDI (Michelson-Doppler Imager,

onboard SoHO). The darker areas are regions of “south” (inward-directed) magnetic po-

larity and the whiter areas are “north” (outward-directed) magnetic polarity. Image from

http://solar-center.stanford.edu/images/890407.gif. Right - a reconstruction of the “mag-

netic carpet” of the Sun. Image from http://umbra.nascom.nasa.gov/ssu/view1.jpg.
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0.01-0.1T. Reconstructing the field lines themselves is difficult, involving the use of

magnetic fields calculated by assuming them to be either potential (∇×B = 0) or

force-free (j × B = 0), under reasonable boundary conditions which we do not go

into in detail here.

1.2 Structure of the Sun

Having hundreds of gigabytes of data from the observing missions mentioned in the

previous section has allowed us to improve upon our knowledge of the outer layers

of the Sun’s atmosphere, which are transparent to electromagnetic radiation. The

same is not true of the solar interior, but helioseismology, coupled with complex

computer models of stellar structure, has helped crystallise our understanding of

the various “layers” that make up the Sun’s overall composition, as illustrated by

Figure 1.4. In this section we briefly examine each layer in turn, starting from the

centre of the Sun and working outwards.

Figure 1.4: Artist’s impression of the structure of the Sun. Image from

http://en.wikipedia.org/wiki/Image:Solar internal structure.svg.
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1.2.1 Core

Extending to a radius of approximately 0.2R¯, the core has the highest temperatures

and densities of the whole Sun: the temperature is estimated to be around 15 million

K, and the density approximately 1.5 × 105 kg m−3 [3]. The core is where the

thermonuclear fusion reactions occur that provide the Sun with energy by creation

of heavier elements such as helium (He) from lighter ones such as hydrogen (H) by

the process of fusion, as evidenced by the observation of neutrinos (byproducts of

these fusion reactions - Chapter 2 contains more detail on this) at Earth originating

from the Sun. At the start of the Sun’s life, the mass fraction of hydrogen at the

core was approximately 0.71, and that of helium was around 0.27 (the remainder was

trace amounts of heavier elements such as carbon (C), nitrogen (N) and oxygen (O)),

but as the Sun has aged those values have changed to ' 0.34 and 0.64 respectively

as fusion depletes the hydrogen fuel source.

1.2.2 Radiative and convective zones

The energy produced in the core is transported outwards by two different methods.

The radiative zone, extending from around 0.2R¯ to 0.7R¯, transfers the energy

produced in the core by various contributions to the opacity of the solar atmosphere

through processes such as bound-bound, free-free or bound-free absorption [4]. In

bound-bound absorption, a bound electron orbiting an atomic nucleus absorbs the

energy of a photon, causing it to make a transition to a higher bound state. If the

energy of the incident photon is greater than the ionisation potential, the electron

can escape the atom and become free - this process is known as bound-free absorption.

Bound-bound transitions produce the emission and absorption lines in the solar

spectrum, whereas bound-free transition produce continua such as the Balmer and

Lyman series. In free-free absorption a free electron can either gain or lose energy as

it moves in the Coulomb field of an atom or ion, resulting in either the emission or

absorption of a photon. This process is responsible for, amongst others, the coronal

X-ray continuum emission. There are also additional contributions from Thomson

scattering of photons by free electrons, which is a continuum scattering process with
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no wavelength dependence, and the continuum of heavier elements. In the convective

zone, which takes over from 0.7R¯ for the remainder of the solar radius, the energy

transfer mechanism is thermal convection: large flows of plasma carry hot material

to the surface, and as it cools near the top, falls back down to the bottom of the

plasma column and receives more heat, starting the process again. This process can

be observed as “granulation” on the surface of the Sun.

Radiative transfer does not occur in the convective zone (the plasma is not

dense or hot enough) and convective transfer does not occur in the radiative zone -

a transition layer known as the tachocline separates the two sharply-differing zones.

The density of the radiative zone (and to a lesser extent the convective zone) is such

that the photons only travel a very brief distance between interactions, and it takes

many orders of magnitude more time for the photons to reach the surface of the Sun

from the core than to reach the Earth from the Sun’s edge (estimates put the photon

travel time within the Sun to be between 104 and 2× 105 years [3], compared to the

8 light minutes travel time to Earth) despite the fact the net distance (i.e. not the

actual distance of the random walk of the photon) travelled to the photosphere is

much less.

1.2.3 Photosphere

The photosphere is the visible surface of the Sun. Below this layer the Sun is opaque

to visible light. The photosphere is the “sharp edge” of the Sun because the op-

tical depth τ changes dramatically with height over a very short distance: in the

isothermal plane-parallel approximation

τ = σn(0)he−z/h (1.1)

where σ is the scattering cross-section, n(0) is the number density of particles at the

surface of the Sun, and h the isothermal “scale height” of the atmosphere

h =
2kBT

mpg
(1.2)

where kB is Boltzmann’s constant, T the temperature of the photosphere (around
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6000K), mp the proton mass and g the local gravity (g = GM¯/R2
¯). Equation 1.1

arises from hydrostatic equilibrium in a plane-parallel atmosphere, combined with

the definition of optical depth in terms of opacity. The opacity in the photosphere is

due to a combination of (wavelength-dependent) effects, such as H− ion bound-free

and free-free transitions, as well as Thomson scattering and other contributions. As

such normally a mean opacity, known as the Rosseland mean opacity (κ), is defined.

With these assumptions, τ falls by a factor e in exactly 1 scale height (360 km) -

and since

h

R¯
' 5× 10−4, (1.3)

we see a sharp edge to the photosphere: τ goes from being much greater than 1 to

much less than 1 in around a thousandth of a solar radius.

1.2.4 Atmosphere

In the same way that Earth’s atmosphere can be divided into layers such as the

mesosphere, troposphere, stratosphere etc., the same can be done for the Sun’s at-

mosphere (all the layers above the photosphere). The chromosphere is a very thin

layer, around 2000 km thick, which is seen in Hα as a pink emission rim during

eclipses (or through Hα filters). Around 500 km above the photosphere the tem-

perature of the chromosphere drops to a minimum of about 4300K [4] but above

this level the temperature climbs steadily, reaching a peak of roughly 104K, before

jumping by a factor of approximately 10 in just a few hundred kilometres in a region

known as the transition region (see Figure 1.5), which joins the chromosphere with

the corona. The corona is a very hot (1-2 million K), irregular zone extending out to

several solar radii. The corona is seen in the X-ray continuum, in UV emission lines,

and in white light, for example with a coronagraph or during an eclipse (Figure 1.6).

Many years spent observing the solar atmosphere has revealed the presence of

various large-scale structures in the corona, chromosphere and photosphere (Section

1.5.1 discusses coronal structures). A combination of fluid mechanics and electro-

magnetism known as magnetohydrodynamics (MHD) is capable of providing a good
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description of such large scale disturbances. In the next section we shall discuss

MHD in more detail.

Figure 1.5: Variation of temperature across the chromosphere, transition region and

corona. Image from http://cseligman.com/text/sun/sunlayer2.jpg.

Figure 1.6: Photograph of the corona in white light made with a coronagraph. Image

from http://sunearthday.nasa.gov/2007/multimedia/gal 019.php.

1.3 MHD and Alfvén Waves

1.3.1 Magnetohydrodynamics

Throughout this thesis, and indeed throughout the fields of solar astrophysics and

tokamak plasma physics in general, the physics of MHD is utilised. Thus a short
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section recapping the simplifications and equations of MHD, and from them the

derivation of the propagating wave modes that an MHD plasma can support, is in

order. The model equations are simply stated [5] - firstly, the standard hydromag-

netic equations for a single fluid plasma, namely:

∂ρ

∂t
+∇ · (ρv) = 0 (1.4)

ρ

(
∂

∂t
+ v · ∇

)
v = −∇p + j×B (1.5)

(
∂

∂t
+ v · ∇

) (
pρ−5/3

)
=

2

3
ρ−5/3ηJ2 (1.6)

E + v ×B = ηj, (1.7)

assuming both scalar pressure and resistivity, where

ntot = ni + ne (1.8)

ρ = ρi + ρe = nimi + neme (1.9)

v = (ρivi + ρeve)/ρ (1.10)

q = qini − ene (1.11)

j = niqivi − neeve (1.12)

p = pi + pe (1.13)

are the equations for number density n, mass density ρ, bulk velocity v, charge

density q, total current j and total pressure p respectively, and subscripts i and e

denote ions and electrons. Equations 1.4-1.7 are the continuity, momentum and

energy equations, and Ohm’s Law, respectively.
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These equations are combined with the reduced electromagnetic equations

∇×B = µ0j (1.14)

∇× E = −∂B

∂t
(1.15)

∇ ·B = 0 (1.16)

∇ · E = 0, (1.17)

where E and B are the electric and magnetic fields respectively and µ0 is the vac-

uum permeability. The motivation behind this model lies in characterising slow

timescale/long wavelength behaviour, hence the removal of the displacement cur-

rent term µ0ε0
∂E
∂t

from Ampère’s Law (Eq. 1.14), due to its association with high-

frequency effects. This results in a relatively simple system, but with the penalty

that electromagnetic waves cannot be described in this model. Additionally other

simplifications are made, such as ignoring the 1
nq

j ×B Hall current term of Ohm’s

law, Eq. 1.7 (which arises from the nature of current flow in a conductor). In the

special case where η = 0, i.e. the plasma is perfectly-conducting, this model is

known as “ideal MHD”. From these equations, the general dispersion relation for

waves in a uniform ideal MHD plasma can be derived.

1.3.2 Ideal MHD wave modes

To look for small departures or perturbations from an ideal MHD stationary equi-

librium with uniform pressure and density, equations 1.4-1.7 can be linearised to

give:

∂ρ1

∂t
+ ρ0∇ · v1 = 0 (1.18)

ρ0
∂v1

∂t
= −∇p1 + j1 ×B0 (1.19)

∂p1

∂t
=

γp0

ρ0

∂ρ1

∂t
(1.20)

E1 + v1 ×B0 = 0 (1.21)

where subscripts 0 denote the equilibrium quantity and 1 the perturbation to the

equilibrium. The assumption of uniform equilibrium pressure means that we are
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assuming that the equilibrium is force-free, and j0 = 0. It is worth pointing out

that one could still have an equilibrium current in this case - it is possible to have

a force-free equilibrium with j0 finite - but it would have to be orthogonal to the

equilibrium field. Assuming that all the perturbations behave as exp [i(k · r− ωt)],

then the equations 1.18-1.20 and 1.15, 1.16 give

−iωρ1 + ρ0ik · v1 = 0 (1.22)

ωv1ρ0 = kp1 +

(
B0 ·B1

µ0

)
k−

(
k ·B0

µ0

)
B1 (1.23)

p1 = c2
sρ1 (1.24)

ωB1 = (k · v1)B0 − (k ·B0)v1 (1.25)

k ·B1 = 0 (1.26)

respectively, where the sound speed cs is defined as

cs =

√
γp0

ρ0

(1.27)

where γ = 5/3 is the ratio of specific heats. Choosing B to be along the z-axis

and the angle between k and B to be θ, and defining the unit vectors b̂ and ẑ by

the expressions B0 = B0b̂ and k = kẑ respectively, the above equations can be

combined to give

[ω2−k2c2
A(ẑ·b̂)]v1 = [k2(c2

s+c2
A)ẑ−k2c2

A(ẑ·b̂)b̂]×(ẑ·v1)−k2c2
A(ẑ·b̂)(b̂·v1)ẑ (1.28)

where the Alfvén velocity cA is defined as

cA =

√
B2

µ0ρ
. (1.29)

Considering the component of v perpendicular to ẑ shows that there is a mode with

ω2 = c2
Ak2 cos2 θ = c2

Ak2
z (1.30)

- this is known as the Alfvén mode or the shear wave, and has a wave vector moving

in the z-direction (parallel to the magnetic field) at the Alfvén speed, as plasma is

displaced perpendicular to both the wave vector and the magnetic field.
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Considering the velocity components of Eq. 1.28 in the ẑ and b̂ direction gives

the equations

[ω2 − k2(c2
s + c2

A)](ẑ · v1) = −k2c2
A cos θ(b̂ · v1) (1.31)

ω2(b̂ · v1) = k2c2
s cos θ(ẑ · v1) (1.32)

respectively, which can be simplified to give the dispersion relation

ω2

k2
=

1

2

(
c2
s + c2

A

)± 1

2

√
[(c2

s + c2
a)]

2 − 4c2
sc

2
A cos2 θ. (1.33)

This describes the magnetosonic modes, where the + solution corresponds to the

fast wave and the − solution the slow wave. These modes involve compression of

plasma along the magnetic field. In the fast magnetosonic wave magnetic pressure

fluctuations are in phase with thermal pressure fluctuations and reinforce each other.

The opposite is true in the slow magnetosonic mode: the magnetic and thermal

pressures are out of phase and thus oppose each other. In Chapter 4 we shall return

to ideal MHD waves in plasmas in the context of coronal heating.

1.4 Magnetic Reconnection

The Sun is incredibly active, dynamic, and energetic, and the key to this is the action

of the complex magnetic field structures interspersed throughout the underlying

structure of the Sun. Even when the Sun is in a quiet phase, microflares and

nanoflares continually occur, particles are accelerated, plasma is heated, energy is

released: the term “quiet” can only be considered relative in this case. One of the

big challenges in solar physics is understanding exactly how this activity is powered,

and how charged particles can be accelerated to moderately relativistic and ultra

relativistic energies in solar flares. It is postulated that the energy required comes

from the release of stored magnetic energy in a nonideal process known as magnetic

reconnection [6]. Reconnection is the mechanism whereby energy-loaded magnetic

fields reconfigure to a lower energy state, thus liberating free energy, in some process

where oppositely directed components of the magnetic field approach each other,
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break, and rejoin in a new configuration. In this section a brief overview of some of

the basic physics behind reconnection is discussed, along with a short description of

two well-known reconnection models.

1.4.1 Magnetic induction and frozen-in fields

An important concept of reconnection is that of the motion of the magnetic field

lines in the plasma. In order to establish what the lines do, we consider a nonideal

plasma (i.e. resistivity η 6= 0) - then Ohm’s Law is

E + v ×B = ηj. (1.34)

Thus, from Eq. 1.15

∂B

∂t
= − (∇× E) = − (∇× ηj) +∇× (v ×B). (1.35)

Ampére’s Law (Eq. 1.14) means that

∂B

∂t
= − η

µ0

[∇× (∇×B)] +∇× (v ×B) , (1.36)

assuming uniform η, and using the vector identity

∇× (∇×B) = ∇ (∇ ·B)−∇2B (1.37)

and Eq. 1.16 we can see that

∂B

∂t
= ∇× (v ×B) +

η

µ0

∇2B. (1.38)

This is known as the induction equation - the first term on the right hand side

represents the advection of field by the flow, and the second term represents the

dissipation of the field due to resistivity. Normally in the solar atmosphere resistivity

is very low (and, approximately, ideal MHD applies), so the equation simplifies to

∂B

∂t
= ∇× (v ×B) . (1.39)
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If we now consider the magnetic flux through a surface S, moving with the stream

velocity v, the flux Φ is given by

Φ =

∫∫

S
B · dS (1.40)

and so it can be seen that the convective derivative of Φ is then

DΦ

Dt
=

∫

S

∫
∂B

∂t
· dS +

∮

L

B · (v × dl) (1.41)

where L is the boundary of the surface. Since

∮

L

B · (v × dl) = −
∮

L

(v ×B) · dl = −
∫

S

∫
∇× (v ×B) dS (1.42)

by Stoke’s theorem, then

DΦ

Dt
=

∫

S

∫ [
∂B

∂t
−∇× (v ×B)

]
· dS. (1.43)

In ideal MHD the right hand side of Eq. 1.43 is zero - this is the “frozen-in flux”

condition. As long as this is valid then the magnetic field lines are “stuck” to the

fluid and will move with the plasma as it moves. This allows magnetic field to

arrange into reconnection-suitable configurations featuring oppositely-directed but

closely-approaching field lines, such as a magnetic X-point (also known as a magnetic

null). Reconnection can occur close to these null points.

1.4.2 The magnetic X-point

Priest and Forbes [6] provide a mathematical description of the null point by ex-

panding the two-dimensional field near the neutral point in a Taylor series, in terms

of a magnetic flux function A (the z-component of the magnetic vector potential)

which gives

A =
B0

2r0

(y2 − ᾱ2x2). (1.44)

Here r0 is the length-scale over which the field varies. The corresponding field

components are given by
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Bx = B0
y

r0

(1.45)

and

By = B0ᾱ
2 x

r0

(1.46)

so that Bx and By are zero on the x- and y-axes respectively. There are two distinct

cases, depending on whether the constant ᾱ is greater than or less than zero: ᾱ > 0

produces hyperbolic field lines (ᾱ < 0 gives elliptical field lines, resulting in an O-

type neutral point), which are plotted in Figure 1.7 for ᾱ =1. We can see that the

neutral point gains its name from the limiting field lines with equation y = ±ᾱx that

pass through the origin - the separatrices - which form an “X” shape. Many authors

have used X-points, which occur naturally when there are two or more sources of

magnetic field, as a paradigm to study magnetic reconnection for both solar flare

and coronal heating models because of their (relative) analytical simplicity. Often

the model is extended, with an “X-line” structure being used, that is, a 2D X-point

structure with a finite magnetic field component Bz in the third dimension, which

is parallel to the reconnection electric field. This allows a particle to gyrate around

this parallel field and stay in the X-point region (and hence the acceleration zone)

Figure 1.7: Two-dimensional magnetic X-point with ᾱ = 1.
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for a longer period of time: for example Hamilton and co-workers [7] studied proton

acceleration at an X-line, self-consistently generating a parallel E-field from the flux

function corresponding to a reconnecting eigenmode of the X-point.

In 2D a magnetic X-point tends to be locally unstable, and so may collapse

(Figure 1.8) to form a current sheet (a thin current-carrying layer across which the

magnetic field changes in magnitude or direction or both).

Figure 1.8: The collapse of a magnetic X-point into a current sheet. Image from www-

solar.mcs.st-andrews.ac.uk.

Dissipation allows the field lines to break and reconnect: this liberates the stored

magnetic energy which can then heat a plasma and accelerate particles to high

energies: theoretical details on more precise descriptions of reconnection were given

by the Sweet-Parker and Petschek models. The work in this thesis is more concerned

with the X-point configuration than the actual process of reconnection, but a brief

discussion and comparison of the two is included below for context. Observationally,

Figure 1.9 illustrates an example of plasma within what is thought to be a coronal

X-point structure (as observed by TRACE) where the field lines of two sunspots of

the same polarity meet and are deflected sideways, forming an X-point structure (the

left section is clearly visible, but the right section may be at a different temperature

and thus is not so clearly visible) so there is good evidence that X-point structures

occur in the solar corona and thus studies involving them are of interest.
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Figure 1.9: A snapshot, taken on 4th September 2000, of two active regions observed

with TRACE in the 171Å passband. Image from http://soi.stanford.edu/results/ Sol-

Phys200/Schrijver/TRACEpodarchive4.html.

1.4.3 Sweet-Parker and Petschek reconnection

The two most well-known reconnection models are those of Sweet-Parker (Parker’s

quantitative model was inspired by Sweet’s qualitative description) and Petschek.

The Sweet-Parker model suggested that, between the opposing magnetic fields about

to undergo reconnection, a region of magnetic diffusion (much longer than it is wide)

lies along the boundary, as shown in Figure 1.10 (top). Outside of the diffusion

region, the plasma β (the ratio of the thermal pressure to the magnetic pressure)

is considerably below unity (magnetic pressure dominates) and the field lines are

frozen-in to the plasma, as described in Section 1.4.1., and cannot penetrate one

another and mix. Inside the diffusion region, however, β is considerably higher than

unity (thermal pressure dominates) because the magnetic field tends to zero at the

boundary between the oppositely-directed field lines. The curvature of the magnetic

field lines means that the curl of the field in the diffusion region is nonzero and thus

from Eq. 1.14 a current j exists in the diffusion region, and hence a component of

the Lorentz force j × B also exists along the current sheet. The resistivity of this

current layer allows magnetic flux from either side to diffuse into and through the

current layer. The j×B force accelerates this plasma to a velocity equivalent to the
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Figure 1.10: Simple diagram of the Sweet-Parker reconnection model (top) and the

Petschek model (bottom) - the grey lines indicate the slow-mode shocks. Image from

Aschwanden [8].

inflow Alfvén speed - this is how reconnection converts magnetic energy to kinetic

energy. The plasma is channeled into the outflow region as shown in Figure 1.10(a).

A key parameter of the Sweet-Parker model is the Lundquist number, S, given

by

S =
vAL

η
, (1.47)

where vA is the Alfvén speed, L is the length of the reconnecting layer and η is the

resistivity. This parameter is of the order 108-1012 in the corona [8] and thus gives
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a very thin reconnection layer. This leads to a reconnection rate M0, defined to be

the Mach number ratio of the external inflow speed v0 to the Alfvèn outflow speed

vA, of

M0 =
1√
S

, (1.48)

that is too slow for, for example, a solar flare. Larger magnetic gradients and currents

are required to speed up the process. The Petschek model attempts to address this

problem by reducing the size of the diffusion area (see Figure 1.10 (bottom)), as

well as considering slow magnetoacoustic shocks in the outflow region, where the

plasma flow speed changes abruptly. The slow shock fronts are efficient at converting

magnetic energy to kinetic energy. Analysis of the Petschek model can be shown to

give a reconnection rate that is dependent on the logarithm of the resistivity,

M0 ' π

8 ln S
, (1.49)

which is approximately three orders of magnitude faster than Sweet-Parker recon-

nection [8], though remains a controversial model.

These two models are among the simplest cases examinable. Numerical simula-

tions and observations only increase our belief that in reality the problem is more

complex. Sweet-Parker and Petschek are examples of steady reconnection, but in

practice the bursty nature of solar flares suggests the process is anything but steady.

Besides, the complexity of reconnection is only magnified when the third dimension

is taken into account, as the number of possible reconnection topologies increases

dramatically.

1.5 Coronal Heating

How the corona is heated has been a long-standing problem in solar physics: as

we saw, the corona is significantly hotter than the photosphere, which is puzzling

as the second law of thermodynamics dictates that heat flows from a hotter to a

colder body. Thus the corona cannot be heated by the photosphere - at least, not

by thermal conduction. So how is the corona heated? A definitive model proves
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elusive, though many mechanisms have been suggested: see e.g. Browning [9] for

a review. The corona continually loses heat by radiation and by conduction down

to the atmospheric layers below, as well as driving the solar wind which convects

heat away from the Sun. Estimates suggest the total amount of power lost from the

corona is of the order of 1021J s−1 [4]. Thus to maintain the corona at its current

temperature any heating mechanism must balance these losses. The inhomogeneity

of the corona means that these losses vary in different regions.

Current thinking tends to suggest heating comes from one of two different general

mechanisms: either magnetic reconnection, or magnetic waves. In reality both are

likely to be important. Coronal heating by magnetic waves shall be discussed within

the context of the work on fast wave heating and acceleration of ions contained in

Chapter 4.

1.5.1 Structure in the corona

The corona is a very tenuous layer of the solar atmosphere, around 8 orders of mag-

nitude less dense than the photosphere. Observed in X-rays, several different coronal

structures can be seen all over the Sun. Dark regions (see left image of Figure 1.11)

are known as coronal holes, which are structures that have their magnetic fields

open at the solar surface and extend some large distance into interplanetary space.

Figure 1.11: Left - image of a coronal hole, taken by Yohkoh. Image from

www.moonraker.com.au/techni/solar.htm. Right - image of a coronal loop, taken by

TRACE. Image from http://www.cosmiclight.com/imagegalleries/sun.htm.
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It is expected that they eventually return to the surface of the Sun, for consistency

with Maxwell’s equations, though it is not known exactly how this happens. Coro-

nal loops are magnetically closed structures, both their footpoints being anchored

somewhere in the surface of the Sun (see right image of Figure 1.11). They generally

have a semi-toroidal structure, and often have a helical structure due to stressed,

twisted, nonpotential magnetic field topologies. Additionally a third type of coronal

structure, the X-ray bright point (XBP), exists: these are compact, small, bi-polar

regions of transient brightening that showed up as a point in early X-ray cameras,

hence their name. XBP’s can appear in great numbers and have a lifespan typically

of a few hours, and a density a few times greater than that of the typical corona.

These three features all have different heating requirements due to their different

loss rates (estimated by Withbroe & Noyes [11] - see Table 1.1), and so may all

be heated by different mechanisms. For now, at least in terms of XBP’s, it is

believed that magnetic reconnection is the heating source. One possible model to

understand this is called the Converging Flux Model [6], which explains how an XBP

can form as two regions of opposing magnetic polarity approach each other. Once

the poles are close enough an X-point forms on the surface, which then rises as

the magnetic fragments continue to approach, and the energy released and plasma

channeled through the X-point structure forms the XBP. As the fragments continue

to move towards each other, eventually the X-point reverses direction, moving back

towards the photosphere. Finally the magnetic fragments meet in the photosphere

and collide, annihilating each other in a process known as cancellation, resulting

in the disappearance of the X-point and the magnetic fragments. In most cases

this process is played out by a bipolar pair of magnetic fragments emerging in

a supergranule cell, and moving towards the cell boundary. Upon reaching the

boundary the fragments can then merge and cancel with one of the opposite-polarity

regions of magnetic flux that accumulate around the edges of supergranular cells all

over the surface of the Sun.

On larger scales than XBP’s, it is thought that nanoflares are an important

feature. Nanoflares consist of numerous tiny transient EUV brightenings which

release approximately 9 orders of magnitude less energy than the largest flares (and
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Table 1.1: Estimated loss rates of coronal features

Feature Loss rate (Wm−2)

Quiet region 300

Coronal hole 800

Active region (0.5-1)×104

hence the name). They are thought to have similar properties to large flares, but

they differ in that they do not need such large magnetic fields and thus can occur

everywhere in the quiet Sun, and not just in active regions. Although they release

much less energy than large flares, their considerable number (of the order of 105

events over the whole Sun at any one time [13]) makes them a likely candidate to

explain the large-scale heating of the corona.

1.6 Flare Physics

A solar flare is a sudden and dramatic eruption of radiated energy (up to 1025−26 J)

and accelerated particles. First observed in 1859 by Carrington and Hodgson as a

localised brightening of a sunspot group (see Figure 1.12), flares have been studied

intensely ever since. As mentioned previously, it is thought that the energy that

powers a flare comes from the reconnection and re-organisation of stressed magnetic

fields to a lower energy state. Generally a flare can be divided into three distinct

Figure 1.12: Carrington’s [10] diagram of the first observed solar flare, seen as a brief

brightening of the two patches at A and B, either side of the group of sunspots.
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phases (see Figure 1.13). First there is an initial preflare phase where stored energy

builds up over a period of several minutes to a few hours, which may be seen as

an enhancement in X-ray radiation - an indication of small-scale or low-level energy

release, as opposed to one of energy storage itself, and is not necessarily located at

the site of the flare itself. The most dramatic phase is the middle impulsive one,

where the peak levels of emission are observed - most evident in hard X-rays, but

the optical, UV and EUV bands see intense emission too. The impulsive phase is

very short, lasting perhaps just a few minutes, and the observed levels of emitted

radiation will then tail off slowly over a longer period of several hours in what is

referred to as the gradual phase.

Figure 1.13 gives a schematic overview of flare emission at different wavelengths,

but what is actually occurring within the Sun to produce these observations? Many

general paradigms have been developed to try to explain the trends of flares: a

widely accepted model is one proposed by Carmichael, Sturrock, Hirayama, Kopp

and Pneuman, and further developed by, among others, Tsuneta [14]. A version

Figure 1.13: Timeline of emission of typical flare in 6 energy bands. Image from Priest

[12].
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of this 2D description (modified from [14], as a result of Yohkoh observations of an

erupting structure beginning before the start of a flare that occurred on the solar limb

on December 2nd 1991, as well as data obtained from numerical MHD simulations)

is shown in Figure 1.14. In this model a loop structure starts to rise and elongate,

stretching the overlying magnetic field, and thus forming a current sheet. As the

loop continues to rise an X-point structure is formed underneath it, and magnetic

reconnection occurs. Plasma is drawn into the diffusion region from the sides around

the X-point, and accelerated by slow shock ridges. The energy released in the

reconnection process accelerates particles downwards in beams, where some collide

with cooler, denser material lower down at the top of the coronal loop (and thus

forming a hard X-ray looptop) and some are channeled down to the chromosphere,

where they heat and evaporate plasma, which fills the loop (and forming a bright

soft X-ray loop). The footpoints of this loop are observed as two Hα “ribbons”. As

the X-point continues to rise and reconnect these ribbons are seen to move apart as

the separation distance between the footpoints increases. Above the reconnection

Figure 1.14: A modified version of the CSHKP standard model for a solar flare. Image

from Tsuneta [14].
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area there is also outflow of material, which forms a shock front as it comes into

contact with a rising loop structure: a remnant of the reconnection process, which

may evolve into a plasmoid structure.

Undoubtedly this model explains many of the observed signatures of flares,

though some of the exact details of the process are still not very well understood.

From the point of view of this thesis, this is largely unimportant: in the context

of the work carried out in solar astrophysics, we will content ourselves with try-

ing to understand possible acceleration mechanisms of particles within the X-point

structure.
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the result comes from God”

Prof. Merkulov

Chapter 2

Fusion Plasma Physics

2.1 Conditions for Fusion

The aim of achieving commercially-useful nuclear fusion has long been one of the

“holy grail” concepts, not just of physics, but of scientific research in general. The

promise of near-limitless yet relatively clean energy is a powerful motivator in a

world debating the impacts of climate change and finite fossil fuel dependence. Nu-

clear power, in both conventional, successful fission and attempted fusion works on

the principle of exploiting the binding energy of the atomic nucleus. Binding energy

per nucleon increases with baryon number until iron is reached, the iron nucleus

having the greatest binding energy per nucleon of any species. A steady decrease

of binding energy per nucleon past the iron nucleus is seen. Fission relies on heavy

reactant nuclei being split and forming lighter, more tightly-bound product nuclei,

plus energy. Fusion takes the opposite approach in the fusing together of two light

nuclei reactants, such as hydrogen or helium (or anything lighter than iron), produc-

ing a product that is lighter than the sum of the initial reactants, releasing energy

as a result. The process is made difficult by the electrostatic repulsion of the two

positively-charged reactant nuclei - to successfully fuse the reactants, the Coulomb

barrier between the two must be overcome, which requires, amongst other things,

high temperatures of the reactants. Fortunately the energy required to do this is

27



2.1. Conditions for Fusion 28

reduced by the process of quantum mechanical tunneling, meaning that it is not

necessary for the fuel ions to have kinetic energies equal to or greater than the po-

tential barrier. From an astrophysical point of view, nuclear fusion is the power

source behind a star, such as our Sun. However, the demands of star and labora-

tory differ somewhat. The Sun’s primary fusion reactions are proton-proton based,

turning six protons into a 4He nucleus via reactions such as:

p + p −→ 2D + e+ + ν

2D + p −→ 3He + γ

This set of reactions is only a small part of the overall picture (in total 3 proton-

proton chains exist, along with the CNO cycle, and helium, carbon, oxygen and

silicon burning, which we do not go into here). However the cross-sections for these

reactions are too small to produce a significant fusion yield in the laboratory and

thus reactions involving more reactive isotopes of hydrogen, deuterium and tritium,

are utilised instead:

2D + 2D −→ 3T + p

2D + 2D −→ 3He + n

2D + 3T −→ 4He + n

The third reaction releases an energy of 17.6 MeV (compared to the 0.26 MeV pro-

duced in the deuterium-producing reaction in the stellar p-p chain), and is favoured

because of the relatively low temperatures required to achieve a useful reaction

cross-section: a D-T reactor would be able to operate at around 10 keV. However,

tritium does not occur naturally (although it can be “bred” by bombarding lithium

with neutrons) and so a D-D reactor has the advantage of using reactant fuel that is

much more plentiful, with the disadvantage that the reactor would have to operate

at a much higher temperature of around 25 keV.

As mentioned previously, in order to facilitate any nuclear fusion reaction, the

Coulomb barrier repulsive electrostatic potential between the two nuclei must be

overcome. To do this, the particles must be heated sufficiently to provide them
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with high thermal velocities, and confined to a certain region for a sufficiently long

period to provide the opportunity of collision. At the high temperatures required

for fusion (for example, 10 keV corresponds approximately to 108 K), the reactant

nuclei are fully ionised, meaning that the fuel is a plasma. The critical issue is to

engineer a plasma that produces sufficient heating from the fusion reaction products

to maintain the temperature of the plasma against the inevitable unavoidable energy

losses (e.g. bremsstrahlung radiation or heat conduction to the device walls) without

resorting to external power input. The break-even point when the power from

fusion reaction equals these losses is known as “ignition”. The minimum conditions

required for ignition can be represented in terms of the plasma electron density ne

and the energy confinement time τe in the well-known Lawson criterion [15]

neτe ≥ 1.5× 1020sm−3, (2.1)

where

τe =
W

Ploss

, (2.2)

W being the energy content of the system and Ploss being the rate of energy loss

of the system. Arguably a more useful quantity, however, is that of the “triple

product” of density, temperature and confinement time

neTτe ≥ 1021 keV sm−3. (2.3)

The values quoted here are for the D-T reaction. The exact figures are dependent

on a number of subtle factors, such as the exact fusion reaction under consideration,

impurity content of the plasma, assumed plasma profiles etc. (for example, for

parabolic density and temperature profiles the right hand side of Eq. 2.3 should be

multiplied by 5). The challenge to physicists is to build a device capable of meeting

the Lawson criterion. Confinement by material walls alone is impractical, given the

large temperatures involved, and so magnetic confinement has been turned to in an

attempt to solve the problem. Many different magnetic confinement devices have

been devised and operated with varying degrees of success, such as the Z-pinch, the



2.2. Tokamaks 30

reversed-field pinch and the stellarator, but the tokamak has largely become the

standard device in the international fusion research program.

2.2 Tokamaks

The tokamak (derived from the Russian phrase toroidal’naya kamera ee magnitnaya

katushka, meaning toroidal chamber with magnetic coils) is a plasma confinement

device that employs both toroidal and poloidal magnetic fields. Figure 2.1 shows a

schematic view of a tokamak, and Figure 2.2 shows the geometry and magnetic field

configuration.

Figure 2.1: A schematic view of a tokamak device. Image from www.splung.com/content/

sid/5/page/fusion.

The toroidal field Bϕ is generated by currents passing through external coils.

Plasma current flowing in the toroidal direction generates a poloidal magnetic field

Bθ, which is typically much smaller than the toroidal field. The combination of Bϕ

and Bθ results in field lines that have a helical trajectory around the torus. The use

of toroidal configuration means that it is convenient to use cylindrical coordinates

(R,ϕ, Z) where R is distance from the torus symmetry axis, ϕ is azimuthal (toroidal)

angle and Z is vertical distance. These coordinates are defined by
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Figure 2.2: Magnetic field geometry of a tokamak. Image from Dendy [16].

R =
√

x2 + y2

ϕ = tan−1(y/x)

Z = z.

In the case of tokamaks with circular poloidal cross-section, it is also useful to define

the minor radial coordinate of the tokamak, r, and the poloidal angle θ,

r =
√

(R−R0)2 + Z2

θ = tan−1

(
Z

R−R0

)

respectively. At the edge of the plasma r = a, the minor radius.

Two general classes of tokamak exist. “Spherical tokamaks” (ST) have much

smaller aspect ratios (the ratio of the major radius to the minor radius, A = R0/a)

than conventional tokamaks - Figure 2.3 compares the shape of a conventional toka-

mak to a spherical one. Typically, ST’s have an aspect ratio of less than 1.5, com-

pared to, for example JET’s aspect ratio of A = 3.1, giving them a much tighter

toroidal shape. This tighter shape is regarded as having certain advantages over

the conventional large designs. Scaling laws mean that tighter aspect ratios give
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Figure 2.3: Comparison of aspect ratios of conventional and spherical tokamaks. Image

from http://www.fusion.org.uk/st/advantages.html.

a higher value for the plasma β (the ratio of the plasma pressure to the magnetic

pressure), meaning that the plasma is more efficiently confined and the densities

and temperatures required for ignition are made easier to achieve. The predecessor

to MAST, START (Small Tight Aspect Ratio Tokamak), achieved the world record

for attained volume-averaged plasma β at approximately 40% [17], more than tre-

bling the previous world record held by DIII-D, a conventional large aspect-ratio

device. Additionally tight aspect ratio tokamaks have the advantage of being much

cheaper to build, as the machine is much smaller, and the power output of electricity

per tonne of nuclear island structure is much lower. However certain physics and

engineering issues remain to be solved with the spherical tokamak but the initial

promise shown by START has led to many other ST’s being commissioned.

MAST (Mega Ampère Spherical Tokamak), also situated at Culham in Abing-

don, achieved first plasma in 1998, and the physics programme began in earnest

in December 1999. MAST’s main aims are to address key physics issues for ITER,

complementing and extending data from conventional tokamaks, as well as exploring

the potential of the spherical tokamak as the basis for a fusion power plant and/or

components test facility. Some of the important design parameters of MAST are

listed in Table 2.1 [18], along with the actual values achieved so far, from the Annual

Report of the EURATOM/UKAEA Fusion Programme (2006/07) [19].
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Table 2.1: MAST operating parameters

Design Achieved

Minor radius a (m) 0.65 0.65

Major radius R0 (m) 0.85 0.85

Aspect ratio ≥ 1.4 1.3

Toroidal field (tesla) 0.52 0.52

Max. plasma current (MA) 2 1.35

Electron cyclotron heating power (MW) 1.5 0.9

Neutral-beam injection power (MW) 5 3.5

Plasma volume (m3) 10 10

2.3 Plasma Equilibrium

2.3.1 Flux functions

Plasma confinement is achieved by the combination of toroidal and poloidal magnetic

field. The addition of the poloidal field is required to create an equilibrium in which

the plasma pressure forces are balanced by the magnetic forces. Consider the MHD

momentum equation

ρ
Du

Dt
= −∇P + j×B + ρg (2.4)

where u is the fluid velocity of an element of plasma, P its pressure, ρ is its density,

j the current and B is the magnetic field (and D/Dt is the convective derivative). If

equilibrium conditions are assumed and flows are neglected then D/Dt is zero, and

if gravity is also neglected then Eq. 2.4 reduces to

j×B = ∇P, (2.5)

which, when combined with Ampère’s Law (Eq. 1.14) describes the pressure, field

and current distribution of a static MHD equilibrium, where B, j and ∇P are

mutually perpendicular. In a tokamak plasma, this means that magnetic field lines

and lines of current lie wrapped around nested surfaces of constant pressure, called
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flux surfaces. This is described by the poloidal magnetic flux function ψ, which is

constant on a given surface, and thus satisfies

B · ∇ψ = 0. (2.6)

In the case of tokamaks the equilibrium configuration is toroidally-symmetric and

so ψ depends only on R and Z. Hence Eq. 2.6 reduces to

BR
∂ψ

∂R
+ BZ

∂ψ

∂Z
= 0. (2.7)

Combining this equation with ∇ ·B = 0 (which becomes

1

R

∂

∂R
(RBR) +

∂BZ

∂Z
= 0

because the divergence of a vector V in cylindrical polar coordinates is

∇ ·V =
1

h1h2h3

[
∂

∂x1

(h2h3V1) +
∂

∂x2

(h1h3V2) +
∂

∂x3

(h1h2V3)

]

where V1, V2 and V3 are the components of V, and h1 = 1, h2 = R and h3 = 1 in

cylindrical coordinates) gives

BR = − 1

R

∂ψ

∂Z
(2.8)

BZ =
1

R

∂ψ

∂R
. (2.9)

Under steady state conditions, and generally in MHD because of the exclusion of

short timescales, ∇·j = 0. The current density j also satisfies an equation analogous

to Eq. 2.7. Hence in the same way, a flux function for the current, f, can also be

derived, because of the symmetry of j and B, and is related to the poloidal current

density by the equations

jR = − 1

R

∂f

∂Z
(2.10)

jZ =
1

R

∂f

∂R
. (2.11)
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From Ampère’s law,

jR =
1

µ0

[
1

R

∂BZ

∂ϕ
− ∂Bϕ

∂Z

]
(2.12)

jZ =
1

µ0

[
1

R

∂

∂R
(RBϕ)− 1

R

∂BR

∂ϕ

]
(2.13)

and the ∂/∂ϕ terms drop out due to the axisymmetry of the system, leaving

jR = − 1

µ0

∂Bϕ

∂BZ

(2.14)

jZ =
1

µ0

1

R

∂

∂R
(RBϕ) (2.15)

Comparing Eqs. 2.10 and 2.11 with 2.14 and 2.15 gives

f =
RBϕ

µ0

, (2.16)

relating the current flux function to the toroidal magnetic field. By taking the scalar

product of Eq. 2.5 with j,

j · (j×B) = j · ∇P (2.17)

i.e.

j · ∇P = 0 (2.18)

and hence

∂f

∂R

∂P

∂Z
− ∂f

∂Z

∂P

∂R
= 0. (2.19)

It follows from Eq. 2.19 that f can be expressed as a function of P , which is itself

a function of ψ and thus f = f(ψ).

2.3.2 The Grad-Shafranov equation

The equilibrium equation j×B = ∇P can be written instead as

jp × iϕBϕ + jϕiϕ ×Bp = ∇P, (2.20)
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where Bp is the poloidal magnetic field, jp is the poloidal current density and iϕ

is the unit vector in the ϕ direction. The equations 2.8, 2.9 and 2.14, 2.15 can be

contracted to

Bp =
1

R
(∇ψ × iϕ) (2.21)

jp =
1

R
(∇f × iϕ). (2.22)

Substituting these two equations into Eq. 2.20 gives

−Bϕ

R
∇f +

jϕ

R
∇ψ = ∇P (2.23)

(remembering, from vector calculus, that

a× (b× c) = b(a · c)− c(a · b)

(a× b)× c = −c× (a× b)

and hence

(∇f × iϕ)×Bϕ = − [∇f(iϕBϕ · iϕ)− iϕ(iϕBϕ · ∇f)]

jϕiϕ × (∇ψ × iϕ) = ∇ψ(jϕiϕ · iϕ)− iϕ(jϕiϕ · ∇ψ)

and that iϕ · ∇f = iϕ · ∇ψ = 0 also). Now

∇f(ψ) =
df

dψ
∇ψ (2.24)

∇P (ψ) =
dP

dψ
∇ψ, (2.25)

and substituting these into Eq. 2.23 results in

jϕ = R
dP

dψ
+ Bϕ

df

dψ
. (2.26)

Also, substituting Eq. 2.16 in gives

jϕ = RP ′ +
µ0

R
ff ′. (2.27)
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The toroidal component from Ampère’s law gives

jϕ =
1

µ0

[
∂BR

∂Z
− 1

R

∂

∂R
(RBZ)

]
(2.28)

and substituting in BR and Bϕ from Eqs. 2.8 and 2.9 produces

µ0jϕ = − 1

R

∂2ψ

∂Z2
− 1

R

[
R

∂

∂R

(
1

R

∂ψ

∂R

)]
. (2.29)

Finally, substituting for jϕ from Eq. 2.27 gives

R
∂

∂R

1

R

∂ψ

∂R
+

∂2ψ

∂Z2
= −µ0R

2P ′(ψ)− µ2
0f(ψ)f ′(ψ), (2.30)

which is known as the Grad-Shafranov equation, and is the equilibrium equation for

an axisymmetric system such as a tokamak.

2.3.3 Solov’ev solutions

A solution to the Grad-Shafranov equation for a spherical tokamak was first inves-

tigated by Solov’ev [21] and later examined by Freidberg [22]. To make progress,

special models that invoke simple choices for the free functions P(ψ) and f(ψ) (whilst

still retaining the important physics) are made. The special model invoked here is

µ0P
′ = −C (2.31)

ff ′ = A (2.32)

where A and C are constants. The result is not derived here, simply stated:

ψ = −A

2
Z2 +

C

8
R4 + c1 + c2R

2 + c3

(
R4 − 4R2Z2

)
. (2.33)

It is straightforward to verify that Eq. 2.33 is a solution of the Grad-Shafranov

equation, with the c1, c2 and c3 terms being solutions of the homogeneous (vacuum)

equation and the A and C terms representing a particular integral. This equation

can be rewritten as

ψ =
Cγ

8

[
(R2 −R2

a)
2 −R4

b)
]
+

C

2

[
[(1− γ)R2 − A

C

]
Z2 (2.34)
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where the constants γ, Ra and Rb replace c1, c2 and c3, and the flux function has

been normalised so that ψ(R, Z) = 0 on the plasma surface. The magnetic axis

thus corresponds to the point R = Ra, Z = 0, and the outer midplane edge of the

plasma is located at the point R = (R2
a +R2

b)
1/2, Z = 0. If the constant C is denoted

instead by ψ0 (if the plasma current is taken to be in the negative ϕ direction then

ψ0 is positive and ψ ≤ 0 throughout the plasma), Ra is instead denoted by R0, and

A is set equal to zero (which means that RBϕ is assumed to be constant; this is the

vacuum solution for Bϕ and is an acceptable approximation for our purposes), then

ψ(R, Z) = ψ0

{
γ

8

[
(R2 −R2

0)
2 −R4

b

]
+

1− γ

2
R2Z2

}
(2.35)

which we shall return to in Chapter 6. The contours of constant ψ of the particular

analytical solution with parameters γ = 0.8, R0 = 0.964m, and Rb = 0.93m is

plotted in Figure 2.4.

Figure 2.4: Equilibrium flux surfaces for a MAST-like plasma corresponding to an analytic

solution of the Grad-Shafranov equation with parameters as given in the text.
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2.3.4 Plasma safety factor

A key measure of a tokamak is the plasma safety factor, qs. The magnetic field lines

wind helically around the magnetic surfaces upon which they are located (see Figure

2.5). The safety factor measures the pitch of the field lines as they follow these helical

paths around the tokamak: a field line will perform qs circuits of the symmetry axis

over the course of a single circuit in the poloidal direction. The qs-value of a tokamak

plasma is an important factor in defining its stability. Kadomtsev [23] derives an

expression for this safety factor: considering the length of an arc in the toroidal

direction gives the distance Rdϕ, and defining the distance covered in the poloidal

direction whilst moving through toroidal angle dϕ to be ds, then the ratio of these

quantities is equivalent to the ratio of the corresponding field components, i.e.

Bϕ

Bθ

=
Rdϕ

ds
, (2.36)

and therefore

dϕ =
Bϕ

RBθ

ds. (2.37)

Figure 2.5: Illustration of the helical structure of the magnetic field in a tokamak. Image

from http://www.jet.efda.org/pages/focus/plasma-edge/images/fig03.jpg.
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Defining the safety factor qs as

qs =
∆ϕ

2π
, (2.38)

where ∆ϕ is the change in toroidal angle on a field line as it traces out one poloidal

circuit, we find that

qs =
1

2π

∮
Bϕ

RBθ

ds (2.39)

and taking the large aspect-ratio approximation, we obtain

qs =
rBϕ

RBθ

, (2.40)

where r is the minor radius of the flux surface and R is the major radius, and Bϕ

and Bθ are the toroidal and poloidal magnetic fields. Remembering our assumption

that RBϕ is constant, and thus f is constant (from Eq. 2.16) and A = 0 (from Eq.

2.32), then from Ampère’s law it then follows that the toroidal field is given by

Bϕ =
B0R0

R
(2.41)

where B0 is the value of B at R = R0.

In reality the safety factor has a radial profile across the magnetic axis, deter-

mined by the density profile of the toroidal current, j(r). Considering Ampère’s

law

∮

C

B · dl = µ0

∫ ∫

S

J · dS = µ0Ienclosed (2.42)

or equivalently

2πrBθ = µ0I(r) (2.43)

where the current inside r is given by

I(r) = 2π

∫ r

0

j(r′)r′dr′ (2.44)

and inserting Eq. 2.40 for qs gives
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qs(r) =
2πr2Bϕ

µ0I(r)R0

(2.45)

or, at the edge of the plasma r = a,

qs(a) =
2πa2Bϕ

µ0IR0

(2.46)

where I is the total current. The safety factor is important in determining the

stability of a tokamak plasma - as a rule of thumb the higher the value of qs, the

greater the stability of the plasma.

2.4 Individual Particle Dynamics

Before plunging into the complex theory of particle dynamics in a device such as

a tokamak (and a solar magnetic field), it is useful to start from a basic viewpoint

of charged particle dynamics and consider briefly some of the drifts an ion may

experience in increasingly-complicated magnetic and electric field geometries.

2.4.1 Particle motion in uniform fields

The motion of a single particle of charge q, mass m in magnetic and electric fields

B and E is determined by the Lorentz force equation

m
dv

dt
= q (E + v ×B) . (2.47)

In the absence of electric fields, and assuming uniform magnetic field, the trajectories

of ions and electrons exhibit simple harmonic oscillation at the gyrofrequency ωc =

qB/m by following circular orbits with radius

rL =
mv⊥
qB

, (2.48)

rL being known as the Larmor radius, and v⊥ the component of velocity perpendicu-

lar to the magnetic field. If there is a component of velocity parallel to the magnetic

field, this results in a helical drift. By taking the scalar product of Eq. 2.47 with

velocity, i.e.
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mv · dv

dt
= qv · (v ×B) (2.49)

it follows that

mv · dv

dt
=

d

dt

(
1

2
mv2

)
= 0. (2.50)

Thus the kinetic energy of the particle remains constant - the magnetic field does

no work on the particle. This is something to bear in mind when simulating test

particles, which we will return to later.

2.4.2 E×B drift

If there is a uniform, constant magnetic field and a non-zero electric field then work

can be done on the particle. A component of E parallel to B results in acceleration in

the direction of B whereas a component of E perpendicular to B results in the drift

of a particle across magnetic field lines. Qualitatively it occurs because when the

particle moves in the direction of the electric field it is accelerated, which increases

the velocity and hence the size of the Larmor radius. As the particles returns against

the electric field, v⊥ decreases and thus the radius of the orbit decreases as well. The

net result of this is shown in Figure 2.6.

Figure 2.6: Illustration of an ion experiencing the E×B drift. Image from Chen [24].

It can be shown that the velocity of the drift of the particle’s guiding centre is given

by

vgc =
E×B

B2
(2.51)

- note this drift is independent of the mass, charge and energy of the particle.
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2.4.3 Curvature drift

If the magnetic field is not uniform, but is instead curved, then a charged particle

moving along its trajectory will experience a centripetal force

Fcen =
mv2

‖
Rc

r̂ (2.52)

where Rc is the radius of curvature of the field line, as shown in Figure 2.7. The

drift velocity corresponding to this force is

vcur =
mv2

‖
qR2

c

Rc × B̂

B2
. (2.53)

Thus the particle will drift either into or out of the plane in which the curvature

lies, depending on the charge state of the particle. In practice curvature drifts are

generally accompanied by grad-B drifts, which we will now discuss.

Figure 2.7: Illustration of forces on a particle in a curved magnetic field. Image from

Chen [24].

2.4.4 Grad-B drift

Uniform magnetic fields make particle orbits much simpler to calculate, but in reality

fields are not as simple as that. If the magnetic field has a transverse gradient then

ions and electrons drift perpendicular to both the magnetic field and the direction

of the gradient (see Figure 2.8) at the velocity
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v∇B = ±1

2
v⊥rL

B×∇B

B2
, (2.54)

This is qualitatively similar to the E×B drift: as the particle moves from a region of

low to high field strength, the Larmor radius decreases, and the converse is obviously

true. Ions and electrons drift in different directions determined by their charge: the

plus sign in Eq. 2.54 applies for the case of ions and the minus sign applies for

electrons.

Figure 2.8: Illustration of the grad-B drift for positively and negatively charged ions.

Image from Chen [24].

2.4.5 Polarisation drift

The polarisation drift comes about as a result of having a time-dependent electric

field perpendicular to the magnetic field. An ion, initially at rest, will move in the

direction of this electric field when it is applied. When the ion has a velocity then it

undergoes the normal qv×B gyration. If the electric field were constant, then there

would be no further vp drift, only the usual E×B drift. However, with the electric

field varying, when it changes direction there is a momentary drift in the opposite

direction, as shown in Figure 2.9. The polarisation drift is a result of the finite time

needed to affect the inertia of the particle. The drift velocity corresponding to this

force can be shown to be [24]

vp = ± 1

ωcB

dE

dt
(2.55)

- ions and electrons drift in opposite directions (where again the plus sign applies for

ions and the minus sign for electrons), thereby producing a net polarisation current

proportional to the rate of change of the electric field.
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Figure 2.9: Illustration of ion undergoing the polarisation drift.

2.5 Classical Transport

Particles gyrating around a magnetic line of force can be diffused across the field

lines by collisions with other particles by means of a random walk. If an ion collides

with another charged particle the direction of travel of the ion is changed and the

particle gyrates around a different field line. Thus the guiding centre of the particle

drifts - generally in the direction opposite to the gradient of the number density of

the particles. We can derive an expression to determine the relative step-size of the

random walk of the guiding centre by considering resistive diffusion in a cylinder,

which is governed by Ohm’s Law and the equation of pressure balance. Crossing

the former with B and substituting the latter gives

E×B + (v ×B)×B = η⊥∇p (2.56)

From geometry

(v ×B)×B = −v⊥B2 (2.57)

and thus

v⊥ =
E×B

B2
− η⊥∇p

B2
. (2.58)

where η⊥ is the resistivity perpendicular to the field. Considering this in cylindrical

coordinates then gives

vr =
EθBz − EzBθ

B2
− η⊥

1

B2

dp

dr
. (2.59)
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The first term on the right hand side of this equation is the E × B drift velocity

required to maintain the condition that the particle motions are such that the mag-

netic flux through any element of fluid in a plasma with zero resistivity remains

constant. The second term is the contribution from resistive effects to this veloc-

ity. From this diffusive flux term a diffusion coefficient can be derived: multiplying

Eq. 2.59 by the particle density n, taking the electric field E = 0 (the first term

on the right hand side disappearing as a consequence), and assuming a constant

temperature T , then dp/dr = kBTdn/dr (where kB is Boltzmann’s constant) and

thus

nvr = nη⊥
kBT

B2

dn

dr
(2.60)

- a particle flux which can be equated to a diffusion coefficient, D, driven by a density

gradient. To determine D, we can write the plasma-β as β = nkBT/(B2/2µ0), and

hence

D =
η⊥β

2µ0

. (2.61)

Defining the thermal speed vT by vT =
√

(2kBT/m), then it follows that β =

nmv2
T /(B2/µ0). Using the well-known relation between diffusivity and collision time

τ for the perpendicular resistivity η⊥ = m/nq2τ (where q is the particle charge),

combined with the expression for the Larmor radius of a thermal particle rL '
mvT /qB, then we get

D =
m

nq2τ

1

2µ0

nmv2
T

B2/µ0

' r2
L

2τ
∼ r2

L

τ
, (2.62)

which is the classical diffusion coefficient - that is, classically, a particle undergoes a

random-walk across the field lines where the step length is of the order of a Larmor

orbit width rL, rather than the collisional mean free path λm, as illustrated in Figure

2.10. By decreasing rL, i.e. by increasing B, we can slow down the perpendicular

diffusion of charged particles.
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Figure 2.10: Illustration of the diffusion of a charged particle across magnetic field lines

via collisions. Image from Chen [24].

2.6 Neoclassical Theory

Having taken the time to introduce the various drifts above, as well as the colli-

sional transport theory for a uniform, cylindrical plasma, we can begin to put these

together and extend to the case of a non-uniform field such as that in a torus. De-

forming a cylinder into an axisymmetric torus destroys poloidal symmetry because

the toroidal field on the inside of the plasma is stronger than that of the outside

(since Bϕ is proportional to 1/R), which has important effects on transport. Col-

lisional transport in a torus is known as neoclassical theory - classical transport is

insufficient to describe the collisions: theoretically predicted collisional transport

rates exceed classical transport by an order of magnitude, or more. In this section

we examine why this is the case.

2.6.1 Trapped particles and banana orbits

We saw in Section 2.4.1 that particles will gyrate around uniform magnetic field lines,

and that their total kinetic energy E = mv2
‖/2 + mv2

⊥/2 is conserved in the absence

of electric fields. Extending the theory to a non-uniform field such as those found

in the tokamak results in additional drift effects occurring, such as the previously-

introduced curvature drift. Particles on the outer side of the torus, where the mag-

netic field is weaker, can be trapped in poloidal and toroidal angle: as the orbit moves

towards a region of stronger magnetic field, the transverse kinetic energy increases
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and the parallel energy decreases. If the particle does not have a sufficiently large

component of velocity parallel to the magnetic field then it cannot penetrate into

the stronger magnetic field region and hence are “bounced” by the magnetic mirrors

(because of the conservation of magnetic moment µ). The poloidal projection of

an orbit of this type traces out a “banana”-type shape, and hence these orbits are

known as banana orbits, as illustrated in Figures 2.11 and 2.12. This is because the

particle drift velocity, vd, is a combination of two drifts, namely, the curvature drift

(Eq. 2.53) and the ∇B (Eq. 2.54) drift. The important drift in a torus comes about

as a result of the variation in toroidal magnetic field strength. Consider an ion in a

plasma where the toroidal magnetic field is in the -ϕ direction. In this case the ∇B

drift is vertically downwards. Thus if the particle is in the top half of the torus the

particle drifts inside the magnetic surface towards the plasma centre, and the oppo-

site is true in the lower half of the torus - the particle drifts outside of the magnetic

surface, away from the plasma centre. This gives a finite width to a trapped particle

orbit. If the particle has sufficient v‖ the particle continues to circulate around the

torus, and the particle is known as a passing or transit particle. Both passing and

trapped particles lie on toroidally symmetric drift surfaces. Particles are displaced

across flux surfaces, which we can show by temporarily assuming the absence of

collisions (this will be discussed further below), and considering the conservation of

toroidal canonical momentum [20].

Figure 2.11: A banana orbit (green) and a passing particle orbit (red) rela-

tive to a magnetic flux surface (blue). Image from http://www.rijnh.nl/research/

fusion physics/computational plasma physics/images/banana.gif.
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Figure 2.12: CUEBIT calculation of a 2.5keV proton banana orbit within a MAST-like

equilibrium.

Starting from the toroidal component of the equation of motion in the absence

of electric fields mv̇ = q(v ×B), i.e.

m
d

dt
(Rvϕ) = qR (−vRBz + vzBR) (2.63)

and using the fact that BR = −1/R(∂ψ/∂Z), BZ = 1/R(∂ψ/∂R), means that

m
d

dt
(Rvϕ) = −qR

(
vR

R

∂ψ

∂R
+

vz

R

∂ψ

∂Z

)
= −q (v · ∇) ψ. (2.64)

Since ∂ψ/∂t = 0,

dψ

dt
= v · ∇ψ (2.65)

then

m
d

dt
(Rvϕ) + q

dψ

dt
= 0 (2.66)

or, in other words
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dpϕ

dt
= 0 (2.67)

where

pϕ = mRvϕ + qψ (2.68)

is the toroidal canonical momentum, a conserved quantity in the absence of colli-

sions. The fact that pϕ is a constant means that orbits involve changes in ψ, i.e. are

displaced across flux surfaces. We will return to pϕ invariance in Chapter 5 in the

context of our numerical algorithm, but for the moment continue to consider the

implications of this. The condition for collisions to prevent trapping can be obtained

by considering the mirror force F = −µdB/ds (where s is the distance along a field

line) and the invariant magnetic moment of a particle, µ = mv2
⊥/2B. Writing the

major radial coordinate as R = R0 + r cos θ and the inverse aspect ratio ε = r/R0,

the variation in toroidal magnetic field strength can be written as

Bϕ =
B0R0

R
=

B0R0

R0 + r cos θ
=

B0R0

R0(1 + ε cos θ)
' B0(1− ε cos θ) (2.69)

if ε is assumed to be small. Since kinetic energy is conserved, i.e. E = m(v2
‖ + v2

⊥)/2

(v‖ and v⊥ being instantaneous values of those variables on the orbit of the particle),

then

v2
‖ =

2E
m
− v2

⊥ (2.70)

where, since kinetic energy is conserved in the absence of collisions and electric fields,

ε is a constant. Invariance of µ means that

mv2
⊥0

2B0

=
mv2

⊥
2B

, (2.71)

where the subscript 0 denotes the value of a variable at θ = 90◦, and thus

v2
⊥ = (1− ε cos θ)v2

⊥0 (2.72)

resulting in
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v2
‖ =

2E
m
− (1− ε cos θ)v2

⊥0 (2.73)

Reflection occurs when the parallel velocity of the particle reaches zero and reverses

sign, which can occur if 2E/m − v2
⊥0 < εv2

⊥0. In other words reflection occurs for

those particles which have v2
‖0 < εv2

⊥0, leading to the general condition

v‖ . ε1/2v⊥ (2.74)

- which is an approximate upper limit on the parallel component of velocity a particle

with arbitrary θ must have to be trapped. Further analysis shows that the equation

of motion of a bounce particle is given approximately by [20]

d2s

dt2
= −ω2

bs (2.75)

where s is the distance along a field line, and the bounce frequency ωb is

ωb =
v⊥

qsR0

(
r

2R0

)1/2

. (2.76)

The average time taken for a particle to be scattered by collisions out of the trapped

region of velocity space is determined by the square of the pitch angle cosine at the

trapped-passing boundary, i.e.

τdetrap ∼ τcoll

(v‖
v

)2

' 2r

R0

τcoll. (2.77)

For particles to be no longer trapped the detrapping time must be smaller than the

bounce time τb = 1/ωb. Combining the above gives then the following condition for

detrapping

τcoll .
(

R0

r

)3/2
qsR0√
2v⊥

, (2.78)

i.e. for particles satisfying this inequality the banana width has no meaning, since

the particles are scattered collisionally through large angles before undergoing a

single bounce orbit. Those particles which do not satisfy the inequality in Eq. 2.78

are displaced across the flux surface by a distance of the order of the width of the
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banana orbit of the particle. A thermal trapped particle with longitudinal velocity

v‖ ∼ ε1/2v⊥ has a banana width given by [25]

∆ =
mv‖
qBθ

(2.79)

which can be written as

∆ =
mv⊥
qB0

v‖
v⊥

B0

Bθ

. (2.80)

Since v‖/v⊥ ' ε1/2 and mv⊥/qB0 = rL

then

∆ ' B0

Bθ

(
r

R0

)1/2

rL (2.81)

i.e.

∆ ' qsε
−1/2rL, (2.82)

that is, a factor of qs/ε
1/2 bigger than the step length associated with classical

diffusion, the Larmor radius rL. This is coupled with the fact that the effective

collision frequency is also enhanced, due to weaker collisions being required to shift

a particle from one banana orbit to another (as the region of phase space in which

particles are trapped is very narrow) compared to the classical case. The effective

collision frequency is given by ν ' νcoll/ε, as we saw from the equation for the

detrapping time τdetrap (Eq. 2.77). For the small collisionality of the banana regime,

the trapped particles dominated the transport. The fraction of particles which are

trapped is of the order ∼ ε1/2, thus resulting in a banana regime diffusion coefficient

Db of [20]

Db ∼ Dcq
2
sε
−3/2 (2.83)

where Dc ' r2
L/τ , i.e. there is an enhancement factor of q2

s/ε
3/2.
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2.6.2 The Pfirsch-Schlüter effect

The trapped particle effect described in the previous section is one of two major

neoclassical effects, and as we saw is only present when the collision frequency

is less than the bounce frequency of the trapped particles. The other important

ramification, due to the toroidal geometry, is always present, and is known as the

Pfirsch-Schlüter effect, which is an extension of the resistive diffusion in a plasma,

as discussed in Section 2.5, to the toroidal regime. Toroidal geometry complicates

the situation because, even though the plasma pressure on a given flux surface is

constant, at larger major radii the geometry of the torus means that the flux surface

area is larger - thus a pressure imbalance exists, leading to a net force outwards along

the major radius. This is balanced by an internal magnetic force, produced by an

additional longitudinal current specific to the torus: this is known as the Pfirsch-

Schlüter current. The formal mathematical derivation of the value of this current

in a plasma with circular cross-section is complex - the result is simply stated here

[20]:

j‖ = − 2r

RBθ

dp

dr
cos θ (2.84)

The pressure gradient term on the right hand-side of Eq. 2.59 is modified by the

effect of this current such that

vr =
EθBz − EzBθ

B2
− η⊥

∇⊥p

B2

(
1 +

2η‖
η⊥

q2
s

)
(2.85)

- the Pfirsch-Schlüter diffusion is enhanced by a factor of 2q2
sη‖/η⊥ over the classical

cylindrical diffusion coefficient Dc by this additional current, i.e.

DPS = Dc

(
1 + 2

η‖
η⊥

q2
s

)
. (2.86)

In the classical case as given by Spitzer’s theory, η‖/η⊥ ' 1/2. So if qs > 1, as is

normally the case in a tokamak, then we see a smaller enhancement than that of

the banana regime, by a factor of 1/ε3/2.
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2.6.3 Collisionality regimes

Coulomb collisions determine the minimal level of transport in a tokamak plasma.

Neoclassical transport describes the enhancement to collisional transport in toroidal

gemoetry: the exact enhancement is determined by the collision frequency of the

plasma. If a trapped particle completes at least one full bounce orbit before be-

ing detrapped by collisions the particle is said to be in the banana regime. This

regime applies at high temperatures where the collision frequency is low. At low

temperatures the collision frequency is high and the particles are said to be in the

Pfirsch-Schlüter regime. We saw in the previous two sections the relationship be-

tween the classical and Pfirsch-Schlüter/banana regime diffusion coefficients. Figure

2.13 displays the dependence of the diffusion coefficient for the differing values of

collisional frequency.

Figure 2.13: Collisional regimes and the variation of the diffusion coefficient D with

collision frequency ν. Image from Wesson [20].

The banana regime applies when the following condition is satisfied:

ν <
ε3/2vT

Rqs

, (2.87)

where vT is the thermal speed of the particles, and the Pfirsch-Schlüter regime takes

over at
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ν >
vT

Rqs

. (2.88)

The collision frequency range ε3/2vT /Rqs < ν < vT /Rqs that separates these two

extremes is known as the plateau regime, a region where untrapped, slowly-transiting

particles contribute to the transport. In this intermediate regime the step-length

is proportional to the square root of the collision time τ , and hence D = δ2/τ

(where δ is the radial step size in one collision time) is independent of τ , i.e. the

plateau regime diffusion coefficient DP is independent of collision frequency, to a first

approximation. In reality the three regimes are more complex than the approximate

regimes depicted in Figure 2.13. Comparing the rates of diffusion it can be seen

that the neoclassical enhancement over the classical level of diffusion is considerably

higher for the banana regime than the other 2 regimes, due to the much larger

characteristic step-length of the particle orbit after a Coulomb collision. This shall

be discussed in the context of our work in Chapter 6.

2.6.4 The Ware pinch effect

The Ware pinch [26] is an effect felt by trapped particles, resulting from the action

upon them of the toroidal electric field, which has a particular direction around the

torus. As the trapped particle orbits in its banana shape around a given flux surface,

the force from the electric field results in a drift velocity, which can be seen from

the equation of motion, displacing the orbit slightly.

mv̇ϕ = q
[
Eϕ + (v ×B)ϕ

]
(2.89)

Over a full bounce period the integral of the term on the left-hand side of Eq. 2.89

is zero and so the steady state time average is also equal to zero and thus

〈
(v ×B)ϕ

〉
= −Eϕ (2.90)

and since

(v ×B)ϕ = vZBR − vRBZ = − 1

R
[v · ∇ψ] = v⊥Bθ, (2.91)
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where v⊥ is the velocity perpendicular to the flux surface, then the pinch velocity,

averaged over time, is

〈v⊥〉 = −Eϕ

Bθ

. (2.92)

Since v⊥ is equivalent to a radial velocity, the net result of this effect (shown in Figure

2.14) is a radially-inward motion meaning that trapped particles can accumulate

towards the centre of a tokamak plasma.

Figure 2.14: Left: Illustration of the Ware Pinch effect. Image from Wesson [20]. Right:

Poloidal projection of a banana orbit in a tokamak with a toroidal magnetic field. Image

from Kadomtsev [23].

2.7 Impurities in Tokamaks

The presence of impurities in a tokamak plasma has important consequences for

both the safety and the operational performance of any thermonuclear fusion device

[27]. Impurities dilute the concentration of the plasma fuel ions and cause the

radiation losses by bremsstrahlung to be enhanced, and thus understanding their

transport within a tokamak is important. The surfaces exposed to hot plasma

in many fusion tokamaks are covered in carbon, either in the form of graphite or

carbon-fibre composites, because of the excellent thermal properties of the element.

However, the erosion rate of carbon at high temperatures is large, although processes

to dope the carbon, such as boronization or siliconization, may improve the erosion

properties (though in the process the thermal characteristics may be degraded). The
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evaporation and sublimation of wall material which has been thermally overloaded

(perhaps due to plasma disruptions) can result in carbon atoms entering the plasma

[28], being ionised, subjected to radial cross-field transport processes and potentially

penetrating the plasma core.

Impurities can be restricted from entering the plasma by keeping the particles

away from the vacuum vessel as much as possible by using material limiters and

magnetic divertors. Also, heavier metals such as tungsten (W) are now being con-

sidered for main chamber plasma facing components [29], in particular the divertor,

because of the lower erosion rates associated with these materials (though high-Z

impurities bring different problems with them, such as higher radiation losses). In

addition, the helium “ash” produced naturally by the successful fusion reactions in

the core of the burning plasma may also cause problems. This ash must be trans-

ported out of the core sufficiently rapidly so as to not accumulate to a level that

dilutes the main fuel ions - each heavy ion provides Z electrons and thus at any given

electron density, assuming quasineutrality, each heavy ion replaces Z hydrogen ions.

The theory of neoclassical impurity transport is well-developed, and we will return

to this in Chapter 6.



“All exact science is dominated by

the idea of approximation”

Bertrand Russell

Chapter 3

The Test Particle Approach

3.1 Why Use Test Particles?

Modelling the evolution of a plasma is a very complex problem. In order to make

progress in areas of astrophysics and fusion physics, sometimes analytically tractable

mathematics is not sufficiently well-developed to be of use. Computer simulations

can be used, not as a replacement to traditional theory and experiment, but as a

useful “third way” designed to complement both of the former: experiments and

devices can be expensive and difficult to build, maintain and operate, data difficult

to obtain, interpret and compare with theory. Computer simulations can help bridge

the gap by providing a perfectly controlled, easily repeatable environment, coupled

with the obvious ability to perform rapidly millions of repetitive calculations that

a human would take months to do. Importantly, computer simulations allow the

examination of non-linear behaviour in plasmas, which is difficult to do analytically.

Of course computer simulations have down-sides and disadvantages too, and this

must be kept in mind when using them, but for the most part they have become a

hugely important aid in furthering plasma physics research.

Having established the need for simulations, the next problem is to establish

the best method of modelling a plasma computationally. A plasma involves the

complicated interaction of many individual particles - electrons and ions (and, in

58
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partially-ionised plasmas, neutral atoms) - and, conceptually at least, the simplest

approach is to integrate numerically the equations of motion of the particles, to-

gether with Maxwell’s equations. However the huge number of particles involved in

any laboratory or astrophysical plasma (as an example, 1 cubic metre of a tokamak

plasma contains typically around 1020 ions [16]) renders this approach untenable

under current (and even foreseeable) computer processing powers. Simulation of

plasma physics by computers is then likely to follow one of the hierarchical meth-

ods of analytical plasma modelling, depending on the time and length scales the

investigation demands, such as kinetic theory, two-fluid theory, or MHD. There are

various different ways to model these computationally. Kinetic codes provide the

most accurate, fundamental description of the physics (in terms of describing the

velocity distribution function of the plasma), while fluid codes describe plasmas in

terms of macroscopic quantities, which makes things simpler but risks not correctly

modelling some of the underlying physics. Hybrid codes use some combination of

the two, treating some components of the system as a fluid and other components

kinetically (for an example of a description of a hybrid code, see e.g. Swift [31]).

Each approach has its own advantages and disadvantages. An alternative method

is the test particle approach that we concentrate on with our own full-orbit particle

algorithm. In a full-orbit simulation, the Lorentz force equation is solved to obtain

the complete orbit of a particle. Some test particle approaches treat the charged

particle motion as a superposition of a relatively fast circular motion around a point

called the guiding centre and the slow drift of this point: the full-orbit approach has

the advantage over this guiding centre approximation in that it is more accurate

and is essential when the Larmor radius is a significant fraction of the magnetic field

scale length. Moreover when collisions are included, cross-field collisional scattering

occurs automatically if the full orbit is calculated. The nature of the algorithm

used in our code is such that particle energy is conserved to machine accuracy in

the absence of non-magnetic forces for arbitrary values of the time-step. The main

disadvantage of our test particle simulations is their failure to consider the back

reaction of the particles to the fields imposed upon it. Charged particles travelling

through electric and magnetic fields generate their own, additional, self-fields, which
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should then be taken into account for a proper self-consistent description. However,

we proceed by assuming that these particles do not significantly affect the overall

field: this is known as the test particle assumption. This assumption is valid pro-

vided that the number of test particles is small compared to the number of bulk

plasma ions and electrons, so that the particles make an insignificant contribution

to the plasma current and charge density. It is trivially true in the sense that the

number of particles simulated is negligible compared to the number of particles in

the real plasma. The actual test is whether the currents and charges of the test

particle species are still negligible when the number of computational particles is

scaled up to a realistic number.

The test particle approach is certainly satisfactory in our impurity transport

calculations (see Chapters 5 & 6) because we model a trace species in the plasma.

The criterion in this case is that product of charge Ze and number density n of the

impurities is small compared to that of the bulk ions - if the flows are comparable

this ensures that the impurities do not contribute significantly to either the current

or the charge density. In the case of the solar physics magnetic X-point calculations

(see Chapter 4) the situation is different because we model bulk ions. The main

justification for the test particle approach in this case is that the equivalent beta of

the simulated ion distribution is small, so that the cold plasma ideal MHD model

(i.e. ideal MHD in the limit in which the plasma pressure is small compared to the

magnetic pressure) used to calculate the fields remains valid.

3.2 A Test Particle Algorithm

As noted in Chapter 2, magnetic fields alone do no work on charged particles, so in

order to simulate orbits accurately, it is necessary to ensure that the total energy of

any particle (that is, the kinetic energy plus the potential energy) in static magnetic

fields is conserved to an acceptable level by the numerical scheme used.

The test particle code employed throughout the work contained in this thesis

is based on the CUEBIT (CUlham Energy-conserving OrBIT) code developed by

K.G. McClements and A. Thyagaraja at UKAEA Culham Division, and applied by
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Hamilton and co-workers [7,32,33]. In its simplest form it is designed to solve the

Lorentz force equations for a test particle (of mass m, and charge Ze) in a magnetic

field B, namely:

m
dv

dt
= Zev ×B(x) (3.1)

dx

dt
= v (3.2)

Here B(x) is the magnetic field at position vector x, v is the velocity of the parti-

cle, and there is no electric field E present. The CUEBIT code approximates these

equations via the finite difference system

m
vi+1 − vi

∆t
= Ze

(
vi+1 + vi

2

)
×B

(
xi+1 + xi

2

)
(3.3)

xi+1 − xi

∆t
=

vi+1 + vi

2
(3.4)

where superscripts i and i + 1 denote the values of x and v at successive time steps.

We can evaluate the order of accuracy of the algorithm by considering, for sim-

plicity, the one-dimensional equation

dx

dt
= v(t). (3.5)

By Taylor expanding x(t) about its value midway between the old timestep (i) and

the new timestep (i+1) we get

xi+1 = xi+1/2 +
∆t

2

dx

dt
|i+1/2 +

∆t2

8

d2x

dt2
|i+1/2 +O(∆t3) (3.6)

xi = xi+1/2 − ∆t

2

dx

dt
|i+1/2 +

∆t2

8

d2x

dt2
|i+1/2 +O(∆t3) (3.7)

where O(∆t3) represents terms in third order and above in ∆t. Subtracting Eq. 3.7

from 3.6 and dividing by ∆t we obtain

dx

dt
|i+1/2 =

xi+1 − xi

∆t
+O(∆t2). (3.8)
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Hence, if we evaluate v in Eq. 3.5 midway in time between the old and new timesteps,

the scheme is second order accurate. The same argument applies to all 6 components

of the Lorentz force equation and hence the algorithm employed by CUEBIT is second

order accurate. A Runge-Kutta approach would give a higher order of accuracy than

this relatively simple scheme, but the Runge-Kutta approach works most effectively

when the fields are smooth, which may not necessarily be the case in idealised

plasma physics models like MHD (e.g. current layers, shocks). The algorithm allows

the reproduction of essential features of charged particle orbits without having to

assume values of the timestep ∆t that are very small compared to the Larmor period

2πm/ZeB.

The scheme conserves energy exactly by approximating the velocity on the right

hand side of Eq. 3.3 by its average value at the time steps i and i + 1: this can be

seen by taking the scalar product of this equation with vi+1 + vi, which gives

m
(vi+1)

2 − (vi)
2

∆t
= 0 (3.9)

and hence

(vi+1)2 = (vi)2. (3.10)

This makes it possible to obtain accurate results with relatively long time steps. If

vi = (vi
x, v

i
y, v

i
z), and vi+1 = (vi+1

x , vi+1
y , vi+1

z ), then Eq. 3.3 can be written explicitly

in the form

A · vi+1 = B · vi (3.11)

where the matrices A and B are given by

A =




1 −αz αy

αz 1 −αx

−αy αx 1


 , (3.12)

B =




1 αz −αy

−αz 1 αx

αy −αx 1


 , (3.13)
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where αx = (ZeBx/2m)∆t, αx = (ZeBy/2m)∆t, and αz = (ZeBz/2m)∆t. The

solution of Eq. 3.11 for vi+1 in terms of vi is

vi+1 = A−1 ·B · vi. (3.14)

To find the inverse of A, A−1, we use the formula for the inverse of a general matrix

G

G =




a b c

d e f

g h i


 ,

which is

G−1 =
1

a(ei− fh)− b(di− fg) + c(dh− eg)




(ei− fh) (ch− bi) (bf − ce)

(fg − di) (ai− cg) (cd− af)

(dh− eg) (bg − ah) (ae− bd)


 .

Applying this formula to A results in

A−1 =
1

1 + α2
x + α2

y + α2
z




1 + α2
x αz + αxαy αxαz − αy

αxαy − αz 1 + α2
y αyαz + αx

αxαz + αy αyαz − αx 1 + α2
z


 , (3.15)

and hence

A−1·B =
1

1 + α2
x + α2

y + α2
z




1 + α2
x − α2

y − α2
z 2(αxαy + αz) 2(αzαx − αy)

2(αxαy − αz) 1− α2
x + α2

y − α2
z 2(αyαz + αx)

2(αzαx + αy) 2(αzαy − αx) 1− α2
x − α2

y + α2
z


 ,

(3.16)

using the standard rules for matrix multiplication.

The code makes a first approximation to the value of vi+1 by replacing (xi+1 +

xi)/2 with xi on the right hand side of Eq. 3.3. Having obtained this value, we can

enter it into Eq. 3.4, solve for a first estimate of xi+1, which is in turn substituted
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back into 3.3 for a more accurate estimation of vi+1 and so on - the estimates

converge with successive iterations, though in practice we find that 3 iterations are

sufficient to give an accurate solution.

3.3 Generating Maxwellian Test Particle Distrib-

utions

In gases and plasmas, the temperature is defined by the distribution of velocities of

the individual particles that make up the bulk material. The Maxwellian distribu-

tion is the velocity distribution function of a system in thermal equilibrium. The

distribution of speeds can be written as:

f(v) = 4π

(
m

2πkBT

)3/2

v2 exp

[
− mv2

2kBT

]
(3.17)

where T is temperature of the Maxwellian, kB is Boltzmann’s constant and m the

mass of the particle. As such, when studying test particles in a plasma in thermal

equilibrium, it is appropriate at t = 0 to assign them at random a velocity taken

from a Maxwellian distribution. This can be done in FORTRAN by using the NAG

(Numerical Algorithms Group) routine G05DDF, which returns a pseudo-random

real number taken from a Gaussian distribution [34] (other methods exist). This

function has two parameters: the mean of the distribution from which the random

number is selected, and the standard deviation, which is the square root of the

variance. By multiplying a random number from this distribution (with mean equal

to zero and variance σ = 1) with the root mean square velocity

〈
v2

〉1/2
=

√
kbT

m
(3.18)

the three velocity components of the particle can be generated. Producing sufficient

particle velocities this way can then be shown to form a Maxwellian distribution by

binning them in a histogram, as shown in Figures 3.1 and 3.2, where the component

of velocity in the x-direction is plotted for 104 and 105 particles respectively for a

distribution at a temperature of T=1MK. The size of the bins for both histograms
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is equivalent to 2000 ms−1. Obviously the more particles we have the less noisy the

distribution will be, although of course simulations with more particles take longer

to run.

Figure 3.1: Test particle vx velocity component generated by CUEBIT for 104 protons, at

a distribution temperature of T=1MK.

Figure 3.2: Test particle vx velocity component generated by CUEBIT for 105 protons, at

a distribution temperature of T=1MK.

3.4 Addition of Non-Magnetic Forces

The CUEBIT algorithm can be extended to include the effect of collisions by modifying

Eq. 3.1 as follows:
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m
dv

dt
= Ze(v ×B)− mv

τ
+ mr(t). (3.19)

Here τ is the collision time, which for simplicity is assumed to be independent

of velocity - this being appropriate when computing the trajectories of test ions

whose speeds are less than the bulk ion thermal speed, which is the case for massive

impurity ions with temperature comparable to that of the bulk ions (see Chapters 5

and 6). The function r(t) is a random force that represents the stochastic nature of

Coulomb collisions, in much the same way that Ermak and Buckholz [35] simulate

Brownian motion with a random force as included in the ordinary Langevin equation

of motion. The individual components of r(t), the numbers rx, ry and rz, are random

numbers that are chosen independently for each particle at each timestep, with zero

mean and variance

σ2 =
v2

i

τ∆t
(3.20)

where vi = (2T/m)1/2 is the thermal speed of the ions corresponding to a specified

temperature T , in energy units, and ∆t is the time step used in the code [35]:

choosing this value of the variance ensures that the test particles evolve from an

arbitrary initial state to a Maxwellian distribution at temperature T . This can be

shown by neglecting the Lorentz force term in Eq. 3.19 and considering just the

x-component, i.e.

dvx

dt
= −vx

τ
+ rx, (3.21)

which can be approximated by the finite difference equation

vn+1
x − vn

x

∆t
= −vn+1

x + vn
x

2τ
+ rx (3.22)

where n labels a particular timestep. Solving Eq. 3.18 for vn+1
x we obtain

vn+1
x =

(
1−∆t/2τ

1 + ∆t/2τ

)
vn

x +

(
∆t

1 + ∆t/2τ

)
rx. (3.23)

Taking the average of 3.23 over the test particle distribution
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〈
vn+1

x

〉
=

(
1−∆t/2τ

1 + ∆t/2τ

)
〈vn

x〉+

(
∆t

1 + ∆t/2τ

)
〈rx〉 (3.24)

and bearing in mind that 〈rx〉 = 0, then

〈
vn+1

x

〉
=

(
1−∆t/2τ

1 + ∆t/2τ

)
〈vn

x〉 . (3.25)

As
(

1−∆t/2τ
1+∆t/2τ

)
is less than 1, then any initial directed velocity will decay to zero on

timescales long compared to τ . Squaring both sides of Eq. 3.23 gives

(
vn+1

x

)2
=

(
1−∆t/2τ

1 + ∆t/2τ

)2

(vn
x)2+

(
1−∆t/2τ

1 + ∆t/2τ

)(
∆t

1 + ∆t/2τ

)
vn

xrx+

(
∆t

1 + ∆t/2τ

)2

r2
x.

(3.26)

Averaging over the distribution, and making use of the fact that 〈vn
xrx〉 = 0, then

this becomes

〈(
vn+1

x

)2
〉

=

(
1−∆t/2τ

1 + ∆t/2τ

)2 〈
(vn

x)2〉 +

(
∆t

1 + ∆t/2τ

)2 〈
r2
x

〉
. (3.27)

For times much longer than τ , it is expected that 〈v2
x〉 will relax to a constant value

given by

〈
v2

x

〉
=

1√
πvi

∫ ∞

−∞
v2

xe
−v2

x/v2
i dvx =

v2
i

2
=

T

m
. (3.28)

Setting both
〈
(v2

x)
2
〉

and
〈
(vn+1

x )
2
〉

equal to this value in Eq. 3.27 we obtain

〈
r2
x

〉
=

v2
i

τ∆t
. (3.29)

〈r2
x〉 can be identified as the variance of the distribution from which rx is selected,

and thus this result matches the result stated in Eq. 3.20.

Equation 3.19 can be approximated by the finite difference equation

A · vi+1 = B · vi + c (3.30)

where c is a vector representing the collisional forces and A,B are the same as

previously. When the non-magnetic force is of the form given by the second and

third terms on the right-hand side of Eq. 3.19, then we can write
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c = −∆t

τ
v̄ + ∆tr(t) (3.31)

where v̄ = (vi+1 + vi)/2.

Treating c explicitly, Eq. 3.30 has formal solution

vi+1 = A−1 ·B · vi + A−1 · c (3.32)

with A−1 as given before. Using this scheme we can incorporate collisions into our

simulations without too much difficulty, as we will see in Chapters 5 and 6.



“The way to do fieldwork is never

to come up for air until it is all

over”

Margaret Mead

Chapter 4

Fast Alfvén Wave Heating and

Acceleration of Ions in a

Non-Uniform Magnetoplasma

Note: The material in this chapter has been published in the Astrophysical Journal.

The reference is:

McKay R J, McClements K G, and Fletcher L: “Fast Alfvén Wave Heating and

Acceleration of Ions in a Nonuniform Magnetoplasma” ApJ. 658, 631 (2007)

4.1 Introduction: Our Work in Context

As we saw in Chapter 1, the origin of thermal plasma temperatures of the order

of 106K in the solar corona has been a major issue in solar physics for several

decades. Although the majority of spectral line diagnostics only provide information

on electron temperatures, Lyman α line width measurements indicate that coronal

protons have a similar temperature to the electrons (see e.g. the review by Noci [36]).

Even higher coronal electron temperatures, up to around 4 × 107K, are associated

with the gradual phase of solar flares [37]. Theoretical models of coronal heating,

involving either waves generated by bulk flows in the photosphere or in situ magnetic

69
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reconnection, have generally been based purely on MHD or two-fluid theory (e.g.

Stasiewicz [38]), although very recently particle-in-cell methods have also been used

(Tsiklauri et al. [39]). MHD waves have been widely considered as a possible

mechanism for coronal heating because of the large energy flux they can carry into

the corona from lower in the solar atmosphere, although there is disagreement on

exactly which MHD mode may be the most likely candidate. For example, Browning

[9] suggests that the slow magnetoacoustic wave does not actually contain sufficient

energy flux, and that as the fast mode is likely to be totally internally reflected

in the chromosphere (and hence evanescent there) the Alfvén wave is the most

likely candidate. However Porter and co-workers [40], whilst favouring the fast wave

(possibly generated during reconnection events in the corona), also suggest that the

energy flux from the slow mode in previous analyses of observational data may have

been underestimated by a factor of as much as 100. Regardless of which mode is

responsible, in all cases an important question concerns the mechanism upon which

the energy within the MHD mode is converted into kinetic energy in the plasma.

Porter discounted the Alfvén mode on the basis of the difficulty of dissipating it

due to its incompressibility, but it is largely the case that any MHD mode in a

plasma with coronal properties suffers from the same disinclination to dissipate

(due to the extremely low viscosity and resistivity) - and thus any wave heating

mechanism for the corona must include an effective damping mechanism. Several

different models have been proposed, such as phase mixing and resonant absorption,

and the role of MHD turbulence is also expected to be important in generating

wave cascades to increasingly small scales and speeding up damping. Additionally,

damping mechanisms generated for one wave mode may still be accessible by other

propagating modes via the process of mode conversion, discussed further below.

Observationally, the past decade has been extremely fruitful in terms of the

detection of coronal MHD waves, as both satellite and ground-based technology has

improved in its ability to resolve the spatial and temporal fluctuations that have been

observed for a significantly longer period of time. An example of which are quasi-

periodic pulsations (QPP’s), which have been observed over a wide frequency band

- from radio waves to hard X-rays - and generally have periods from a few tenths of
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a second to several minutes. QPP’s with periods greater than a few seconds are of

interest because they are associated with MHD oscillations of coronal loops - see, for

example, Nakariakov and Verwichte [41] for a recent review. Foullon and co-workers

[42] studied two sequences of QPP in the X-ray band for solar flare pulsations

observed on February 5 and 6, 2003, using data from the RHESSI satellite. The

modulation of this flaring emission causes periodic energisation of electrons in the

flaring loop, and was interpreted to be due to MHD oscillations with the phase speed

suggesting that fast magnetoacoustic kink modes were the most likely candidate for

this modulation. Nakariakov et al. proposed that fast magnetoacoustic waves in a

non-flaring loop could interact with a nearby flaring active region [43], to propose an

explanation to observations of the coupling of oscillations in nearby loops with QPP

of flaring energy release. These papers only added to the growing body of evidence

for the presence of propagating fast waves in the solar corona, after Verwichte and co-

workers observed propagating transverse waves in an open magnetic structure using

TRACE [44]. The supra-arcade (which resembles a fan of bright, hot rays) above

the post-flare loop arcade associated with a flare event on the 21st April 2002 was

analysed. Between the rays, dark sunward-moving structures or trails can be seen,

which are known as “tadpoles”. The tadpole-ray boundaries are seen to oscillate

transversely, and these oscillations were interpreted as being fast magnetoacoustic

kink wave trains guided by the vertical ray-tadpole structure.

We address the problem of coronal plasma heating using the alternative approach

of computing the orbits of test particles in the field of an ideal MHD wave prop-

agating in a non-uniform equilibrium magnetic field. Studying the plasma at the

test particle level is useful in helping to understand how the plasma is energised by

the wave. Specifically, we consider a fast Alfvén wave in a two-dimensional X-point

configuration (a fast Alfvén wave being a fast magnetoacoustic wave in the limit

where the plasma pressure becomes negligible [45]). Magnetic X-points have a long-

established role in theories of both solar flares and coronal heating because, as dis-

cussed in Chapter 1, they represent a paradigm for studying magnetic reconnection

and particle acceleration in a relatively simple analytical framework. For example,

Craig and McClymont [46] showed that the magnetic relaxation of a perturbed X-
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point dissipated energy on timescales that may account for thermal energy release

during the gradual phase of a solar flare, whilst Hassam and Lambert [47] illustrated

the role of X-points in the formation of current sheets, and pointed out the impli-

cations for solar coronal heating models. Additionally, the fact that the magnetic

field strength tends to zero at the null means that close to the null the Lorentz force

is very weak and thus particles in this region are effectively unmagnetised and can

be accelerated to high velocities if an electric field is present - for examples of stud-

ies of particle acceleration in X-point configurations see Hamilton and co-workers

[7,32]. Magnetic X-points are also of great interest to the laboratory plasma physics

community, since they occur frequently in magnetic confinement experiments (e.g.

Myra et al. [48]). Moreover, the properties of MHD modes in X-point equilibrium

fields have been studied by many authors, beginning with Bulanov & Syrovatskii

[49] who considered the case of wave propagation in a two-dimensional configura-

tion with zero equilibrium current and zero plasma pressure. In this scenario the

shear and fast Alfvén waves are decoupled, as in the case of a uniform equilibrium

plasma, provided that there are no variations in the longitudinal direction (normal

to the X-point plane). The modes become coupled [50], leading to the possibility of

shear waves being converted to fast waves, if the magnetic field has a longitudinal

component: this mode conversion process has recently been studied in detail [51].

It has been proposed that fast waves could also be generated from shear waves as a

result of refraction in coronal holes [52], and it has also been suggested recently that

the coronal heating requirements could be provided by fast waves resulting from the

propagation of shear waves in a plasma with a transverse density gradient [53]. The

possible role of the fast mode in coronal heating has been investigated in detail from

a purely fluid perspective [40].

At first sight it is not obvious that ideal MHD waves such as the fast mode should

play any significant role in particle acceleration, since the ideal form of Ohm’s law

introduced in Chapter 1

E + v ×B = 0, (4.1)

E and B being the electric and magnetic fields and v the plasma flow, precludes
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the possibility of a parallel electric field E‖ ≡ E · B/B, and perpendicular electric

fields generally produce only a cross-field drift in the particle motion. One could

invoke the presence of resistive and electron inertial terms in the generalized Ohm’s

law to argue that the E field associated with a fast wave can in general have a

parallel component, but the impact of this E‖ on particle acceleration is limited

by the fact that both the resistive length scale and the collisionless skin depth

in the solar corona are extremely small compared to observed macroscopic scale

lengths [54]. However, Miller et al. [55] proposed that a spectrum of fast waves

could nevertheless account for the production of energetic electrons in flares: in

this model acceleration occurs because electrons with finite magnetic moment µ are

subject to a force −µ∇‖B arising from the non-uniform magnetic field associated

with the waves. This phenomenon, referred to as transit-time damping or transit-

time magnetic pumping [56], has also been invoked to account for the acceleration of

energetic particles in the interplanetary medium [57] and has been observed directly

in tokamak experiments (e.g. Start et al. [58]). For the case of fast waves in a

low β plasma, transit-time damping is normally considered to be relevant only for

electrons, since ions cannot satisfy the condition for the transit time of a particle in

a single wavelength to equal the wave period:

ω ' kcA = k‖v‖, (4.2)

where ω is the wave frequency, k is the wavenumber, cA is the Alfvén speed, and

k‖, v‖ are the components of the wave vector and particle velocity parallel to B.

However, a change in v‖ can result from any spatial or temporal variation in the

direction of the magnetic field. Spatial variations could of course be present in the

equilibrium field as well as the wave field. We aim to quantify this process for the

case of ions (in particular protons) in an X-point magnetic equilibrium perturbed

by a fast wave.
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4.2 Model

The equilibrium field in our model BE has a two-dimensional X-point structure of

the form given by Eqs. 1.45 and 1.46 with ᾱ = 1, i.e.

BE =
B0

r0

(yx̂ + xŷ) , (4.3)

where x̂ and ŷ denote unit vectors in the x and y directions, and B0 is the field

magnitude at r = (x2+y2)1/2 = r0. The equilibrium current and the equilibrium flow

are both taken to be zero. Following authors such as Bulanov & Syrovatskii [49],

McClements and co-workers [54], Craig & Watson [59], and McLaughlin & Hood

[60], we seek fast wave solutions of the linearised, cold plasma ideal MHD equations

for this equilibrium. The waves, like the equilibrium, are assumed to be invariant

in the z-direction, and can be represented in terms of perturbations to a magnetic

flux function ψ(x, y) such that B = ∇ × (ψẑ) where ẑ is the unit vector in the z

direction, so that the field perturbation is confined to the (x, y) plane, and hence

ψ is equal to A given by Eq. 1.44 with ᾱ = 1. From Ampère’s law the perturbed

current j then lies in the ẑ direction, and the Lorentz force j × BE is in the (x, y)

plane, orthogonal to the equilibrium field.

4.2.1 Generalised fast wave solution

Following McClements et al. [61] we consider compressible perturbations of a two-

dimensional current-free magnetic X-point in the limit of low plasma β, in the ideal

MHD limit. Our starting point is the ideal Ohm’s Law (Eq. 4.1), along with the

momentum and induction equations. The momentum equation can be written as

∂v

∂t
+ (v · ∇)v =

1

ρ
j×B. (4.4)

If B = ∇×A where

A = ψẑ (4.5)

then the induction equation becomes
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∂A

∂t
= v × (∇×A). (4.6)

From vector calculus

v × (∇×A) = ∇(v ·A)− (v · ∇)A−A× (∇× v)− (A · ∇)v (4.7)

which simplifies to

v × (∇×A) = − (v · ∇)A (4.8)

if there are no variations in the z-direction and flows are in the (x, y) plane only.

Thus, from equations 4.5 and 4.8, we have

∂ψ

∂t
+ (v · ∇) ψ = 0. (4.9)

Combining Ampère’s law ∇×B = µ0j with Eq. 4.5 gives

j =
1

µ0

[∇× (∇× ψẑ)] (4.10)

which, assuming ψ is invariant in the z-direction, reduces to

j = − ẑ

µ0

∇2ψ (4.11)

and inserting into the momentum equation gives

∂v

∂t
+ (v · ∇)v = − 1

µ0ρ
∇2ψ (∇ψ) (4.12)

We linearise equations 4.9 and 4.12 by neglecting terms of second order in v and

setting ψ = ψE + ψ̃, where

ψE =
B0

2r0

(
y2 − x2

)
. (4.13)

In polar coordinates x = r cos ϕ, y = r sin ϕ, where ϕ denotes azimuthal angle, and

the trigonometric relation sin2 ϕ− cos2 ϕ = − cos 2ϕ means that Eq. 4.13 simplifies

to
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ψE = −B0r
2

2r0

cos 2ϕ. (4.14)

In this equation B0 is the unperturbed magnetic field in the (x, y) plane at radius

r = r0. If we assume that the perturbation ψ̃ is azimuthally symmetric and that∣∣∣∇ψ̃
∣∣∣ is much smaller than |∇ψE|, i.e. the magnetic field perturbation is small

compared to the local equilibrium field (an assumption we shall return to in Section

4.3.5), then Eqs. 4.9 and 4.12 become, respectively

∂ψ̃

∂t
+ (v · ∇) ψE = 0 (4.15)

and

∂v

∂t
= − 1

µ0ρ0

(
∇2ψ̃

)
(∇ψE) (4.16)

where ρ0 is the unperturbed, equilibrium density, which is assumed to be uniform.

These equations can be combined into a single equation for ψ̃: integrating 4.16 with

respect to time, i.e.

v = − 1

µ0ρ0

∇ψE

∫
∇2ψ̃dt =

B0r

µ0ρ0r0

(cos 2ϕ,− sin 2ϕ, 0)

∫
∇2ψ̃dt. (4.17)

Defining a function v(r, t) by writing

v =
B0r

µ0ρ0r0

∫
∇2ψ̃dt (4.18)

we obtain the scalar momentum equation

∂v

∂t
=

B0r

µ0ρ0r0

∇2ψ̃. (4.19)

In the cold plasma limit that we are assuming here, the MHD continuity and energy

equations are not required. The continuity equation is purely passive in the sense

that its solutions do not affect the variables that we are interested in, i.e. the flow

velocity and the perturbation to the magnetic field. The linearised induction and

momentum equations form a closed set of equations, in which the density appears
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only as an unperturbed quantity, and thus to close the system we require only the

linearised ideal MHD induction equation, which, from Eq. 4.15, becomes

∂ψ̃

∂t
=

vB0r

r0

(4.20)

since

(v · ∇) ψE = −
[
v(cos 2ϕ,− sin 2ϕ, 0) ·

(
∂

∂r
,
1

r

∂

∂ϕ
,

∂

∂Z

)]
B0r

2

2r0

cos 2ϕ = −vrB0

r0

.

(4.21)

Normalizing r to r0, t to the Alfvén time τA ≡ r0(µ0ρ0)
1/2/B0 and ψ̃ to B0r0 (hence-

forth we omit the tilde from this quantity), we can obtain, from equations 4.19 and

4.20 respectively,

∂ψ

∂t
= vr (4.22)

∂v

∂t
=

∂

∂r

(
r
∂ψ

∂r

)
(4.23)

and combining these two equations gives the second-order equation

∂2ψ

∂t2
= r

∂

∂r

(
r
∂ψ

∂r

)
. (4.24)

It is straightforward to verify that Eq. 4.24 has general solution

ψ = f(ln r + t) + g(ln r − t). (4.25)

Here the (arbitrary) functions f and g represent, respectively, inward- and outward-

propagating waves. In the next subsection we discuss particular choices of f and g

such that ∂ψ/∂r = 0 at r = 0: this boundary condition must be imposed to ensure

that the solutions are both mathematically regular and consistent with the linear

approximation [54,61].

We invoke two distinct types of fast wave perturbation to the MHD equations:

a global perturbation, with inward- and outward-propagating components and an

oscillatory longitudinal electric field; and a purely inward-propagating wave, initially
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localised at the system boundary, the electric field having a preferred sign in the

longitudinal direction.

4.2.2 Fast wave solutions: global perturbation

We consider first the case of a global perturbation, with ψ and v initially given by

∂ψ

∂r
= ξ sin(πr), v = 0, (4.26)

where ξ is a constant. The boundary conditions are the same as those used by

McClements and co-workers [61]. Setting ∂ψ/∂r = 0 for all time at r = 0 ensures

consistency with the linear approximation since the equilibrium field has a null at

the X-point, whilst the same requirement at r = 1 thereby ensures that there is

zero Poynting flux through this surface (note that Poynting flux is defined only

for electromagnetic waves, and therefore is not strictly defined in the context of

MHD plasmas, but is commonly used within MHD to represent the advection of

magnetic energy perturbations). Since we do not require that v = 0 at r = 1,

through the boundary there is a local mass flow. However the radial component

of the velocity vector has a cos 2θ dependence and thus the integrated mass flux

through the boundary is zero - after t = 0 there is no net flux of energy in or out of

the system. With these boundary conditions, the complete solution for ψ is [61]

ψ = − ξ

2π

[
cos(πret) + cos(πre−t)

]
, t < − ln r (4.27)

ψ = − ξ

2π

[
cos

(
πe−t

r

)
+ cos(πre−t)

]
, t > − ln r. (4.28)

To derive this, we integrate Eq. 4.26 with respect to r to give

ψ(r, t = 0) = − ξ

π
cos πr = − ξ

2π
(cos πr + cos πr) (4.29)

noting that the two terms in the brackets can be identified with snapshots at t = 0

of inward- and outward-propagating waves, and, rewriting Eq. 4.25 as

ψ = f
(
ret

)
+ g

(
re−t

)
(4.30)
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we immediately see that Eq. 4.27 is a solution. However it is not the complete solu-

tion, because we must satisfy the zero Poynting flux boundary condition ∂ψ/∂r = 0

ar r = 1 - differentiating Eq. 4.27 with respect to r, and inserting r = 1, gives

∂ψ

∂r
=

ξ

2

[
et sin

(
πet

)
+ e−t sin

(
πe−t

)]
, (4.31)

which does not satisfy the required condition for t 6= 0. However the solution 4.28

does satisfy this condition. It is of the form given by Eq. 4.30, and if we insert t =

− ln r into both solutions we see that they both reduce to −ξ/2π [cos(π) + cos(πr2)],

i.e. they match for r = e−t, so taking into account these points we can be confident

that equations 4.27 and 4.28 are the complete solution.

In general, in full electromagnetism the electric field is given by

E = −∇Φ− ∂A

∂t
(4.32)

where Φ is the electrostatic potential, if there is one. In our model, the electric

field must be consistent with that given by the ideal Ohm’s law. Since, in the fluid

solution, both v and B lie in the (x, y) plane, it follows from Ohm’s law that E lies in

the z-direction. Moreover, as invariance in the z-direction is assumed, ∂Φ/∂z = 0,

the electric field cannot have an electrostatic component and so Eq. 4.32 reduces to

E = −∂A

∂t
= −∂ψ

∂t
ẑ (4.33)

Evaluating Ez for the flux perturbation given by equations 4.27 and 4.28 we obtain

Ez =
rξ

2

[
e−tsin(πre−t)− et sin(πret)

]
, t < − ln r (4.34)

Ez =
rξe−t

2

[
1

r2
sin

(
πe−t

r

)
+ sin(πre−t)

]
, t > − ln r (4.35)

It is worth pointing out that the same result can be derived from considering Eq.

4.1 after linearisation, i.e. E = −v × BE, and using BE and v from equations 4.3

and 4.22 respectively. We can plot the field profiles of the perturbations ∂ψ/∂r and

−∂ψ/∂t for typical solar flare parameters of density and magnetic field, which we

take to be n = 1016 m−3 and B = 0.03T, in order to display how the magnetic and



4.2. Model 80

electric field perturbations evolve in time across the radial extent of the X-point

configuration. This is shown in Figures 4.1 and 4.2 respectively. Since both ψ and

∂ψ/∂r are continuous functions of r (in particular there is no discontinuity in either

ψ or ∂ψ)/∂r at t = − ln r) thus there are no sharp changes in the solution shape.

Additionally, the solutions for v and ∂v/∂r are also continuous. Since the induction

and momentum equations are first order, continuity of ∂ψ/∂r and ∂v/∂r ensures

validity of the linearisation process.

∂ψ
∂r

r

Figure 4.1: Time evolution of ∂ψ/∂r for a perturbation of the form given by Eqs. 4.27

and 4.28 with solar flare-like parameters: the curves correspond to t = 0 (solid line), t = 1

(dotted line), t = 2 (dashed line) and t = 3 (dashed-dotted line), where t is normalised

to the Alfvén time τA. The r scale is normalised to the radial size of the system r0. The

quantity ∂ψ/∂r is plotted in dimensionless units.

The electric field is initially zero throughout the domain and, at any given r, os-

cillates between positive and negative values. Due to the presence of et in Eq. 4.31

the azimuthal magnetic field perturbation Bϕ ≡ −∂ψ/∂r is unbounded. Thus, for

any specified initial perturbation amplitude, the linear approximation must even-

tually break down in some region of the domain. Both figures show how the field

energy becomes increasingly concentrated at the null, highlighting the well-known

ability of this configuration to focus and accrete electromagnetic energy at the X-

point: the exact rate and level of build-up depends on the specific values of density,

magnetic field strength, and perturbation amplitude that are chosen.
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-∂ψ
∂t

r

Figure 4.2: Time evolution of Ez = −∂ψ/∂t for a perturbation of the form given by

Eqs. 4.27 and 4.28 with solar flare-like parameters: the curves correspond to t = 0 (solid

line), t = 1 (dotted line), t = 2 (dashed line) and t = 3 (dashed-dotted line), where t

is normalised to the Alfvén time τA. The r scale is normalised to the radial size of the

system r0. The quantity −∂ψ/∂t is plotted in dimensionless units.

4.2.3 Fast wave solutions: localised perturbation

It is also of interest to consider a wave pulse that is localised at any instant to a

specific part of the domain and propagates in one radial direction only. Specifically,

we set g = 0 and consider a solution for the electric field of the form

∂ψ

∂t
= ξ exp

[
−(ln r + t)2

δu2
1

]
, t < − ln r (4.36)

∂ψ

∂t
= ξ exp

[
−(ln r + t)2

δu2
2

]
, t > − ln r (4.37)

where δu1 and δu2 are constants. It is apparent that this represents an inward-

propagating wave pulse, initially localised close to r = 1: if δu1 6= δu2 the pulse is

asymmetric. The gradient of the leading edge of the pulse is determined by δu1,

while that of the trailing edge is determined by δu2. For an inward-propagating

wave, ∂ψ/∂(ln r) is equal to ∂ψ/∂t, in which case the azimuthal magnetic field

perturbation is given by
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Bϕ = −∂ψ

∂r
= −ξ

r
exp

[
−(ln r + t)2

δu2
1

]
, t < − ln r (4.38)

Bϕ = −∂ψ

∂r
= −ξ

r
exp

[
−(ln r + t)2

δu2
2

]
, t > − ln r (4.39)

We can see that Bϕ → 0 as r → 0, as required by the fact that there is a null at

the X-point. At r = 0 we have ln r → −∞, hence (ln r)2 tending to +∞, and thus

the exponential factor exp[−(ln r)2] tends to zero, which happens faster than the

1/r term tends to infinity. The boundary between the two forms of the solution

propagates inwards as they are matched at earlier values of r as t increases. This is

consistent with the inward-propagating nature of the wave.

The flux function itself is given (modulo an arbitrary constant) by the expressions

ψ =

√
πδu1ξ

2

[
1− erf

(
− ln r + t

δu1

)]
, t < − ln r (4.40)

ψ =

√
πξ

2

[
δu1 + δu2erf

(
ln r + t

δu2

)]
, t > − ln r (4.41)

where erf is the error function

erf(z) =
2√
π

∫ z

0

e−t2dt (4.42)

- this can be seen by differentiating Eqs. 4.40 and 4.41 and making use of the fact

that

d

dx
[erf(x)] =

2√
π

(
e−x2

)
.

At any given instant ψ is a monotonic increasing function of r; the magnetic flux

perturbation thus has a shock-like radial profile, although it is not a true shock

solution since it was obtained from the linearised MHD equations. We can plot the

quantities ∂ψ/∂r and −∂ψ/∂t, as we did in Section 4.2.2, to see how the magnetic

and electric field perturbations vary with time across the radius of the system.

Figures 4.3 and 4.4 show ∂ψ/∂r and−∂ψ/∂t for an asymmetric wave pulse δu2 > δu1

with solar flare-like parameters of density and magnetic field as given previously.

Figure 4.5 shows ∂ψ/∂r for a symmetric wave pulse δu1 = δu2. We see that, as
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∂ψ
∂r

r

Figure 4.3: Time evolution of ∂ψ/∂r for a perturbation of the form given by Eqs. 4.38

and 4.39: the curves correspond to t = 0 (solid line), t = 1 (dotted line), t = 2 (dashed

line) and t = 3 (dashed-dotted line), where t is normalised to the Alfvén time τA. The r

scale is normalised to the radial size of the system r0. The quantity ∂ψ/∂r is plotted in

dimensionless units. In this pulse δu2 > δu1.

-∂ψ
∂t

r

Figure 4.4: Time evolution of Ez = −∂ψ/∂t for a perturbation of the form given by Eqs.

4.36 and 4.37, multiplied by −1: the curves correspond to t = 0 (solid line), t = 1 (dotted

line), t = 2 (dashed line) and t = 3 (dashed-dotted line), where t is normalised to the

Alfvén time τA. The r scale is normalised to the radial size of the system r0. The quantity

−∂ψ/∂t is plotted in dimensionless units. In this pulse δu2 > δu1.
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before, the wave profiles become increasingly concentrated as they approach the

null. We can also see the effect of decreasing δu2, in Figure 4.5, which decreases

the time taken for the fields of the trailing edge of the pulse to fall to zero. Again,

the exact values of the parameters chosen determine exactly how the perturbations

evolve, but in all cases the general trends are similar.

∂ψ
∂r

r

Figure 4.5: Time evolution of ∂ψ/∂r for a perturbation of the form given by Eqs. 4.40

and 4.41: the curves correspond to t = 0 (solid line), t = 1 (dotted line), t = 2 (dashed

line) and t = 3 (dashed-dotted line), where t is normalised to the Alfvén time τA. The r

scale is normalised to the radial size of the system r0. The quantity ∂ψ/∂r is plotted in

dimensionless units. In this pulse δu2 = δu1.

4.3 Test particle Simulations

4.3.1 Use of fast wave solution in CUEBIT

We use CUEBIT to study the acceleration of particles by the fast Alfvén wave pulses

introduced above. Since field and fluid variations in the z-direction are neglected,

the canonical momentum

pz ≡ mpvz + eψ, (4.43)
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where mp and e are particle mass and charge, is an exact invariant of the Lorentz

force equation, even in the presence of wave perturbations that violate particle

energy conservation. To see this, consider the fast wave perturbation described

previously: the z-component of the Lorentz force equation becomes

m
dvz

dt
= −q

∂ψ

∂t
− qvx

∂ψ

∂x
− qvy

∂ψ

∂y
(4.44)

where q is particle charge. We can rewrite Eq. 4.44 in the form

m
dvz

dt
= −q

{
∂ψ

∂t
+

dx

dt

∂ψ

∂x
+

dy

dt

∂ψ

∂y

}
. (4.45)

Now the rate of change of ψ along the trajectory of the particle is

dψ

dt
=

∂ψ

∂t
+ (v · ∇)ψ =

∂ψ

∂t
+

dx

dt

∂ψ

∂x
+

dy

dt

∂ψ

∂y
(4.46)

hence Eq. 4.45 reduces to

d

dt
(mvz + qψ) = 0 (4.47)

and we deduce that pz = mvz + qψ is a constant of the motion, as stated previously.

We can use this fact as a numerical check: whereas CUEBIT is designed to ensure

that kinetic energy is always conserved to machine accuracy in the absence of electric

fields, canonical momentum conservation is not explicitly part of the algorithm, and

thus plays an important role in benchmarking the code. We shall see that pz is only

well-conserved in the code if the time step ∆t is sufficiently short. This is a key

constraint on the numerical parameters used in our simulations.

4.3.2 Conditions for validity of fast wave solution

We have used ideal MHD to obtain the analytical fast wave solution, which means

that we are neglecting the displacement current in Ampère’s law. This is acceptable,

since the solution varies on the Alfvén timescale, and we are adopting parameters

such that the Alfvén speed is much smaller than the speed of light. We also require

that the single fluid momentum equation and Ohm’s law can be written in the form
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ρ
∂v

∂t
= j×B, (4.48)

E + v ×B = 0. (4.49)

Now, to justify the neglect of collisions in CUEBIT we should neglect collisions (and

dissipation generally) in the fluid model as well. The dissipationless momentum

equations for the ion and electron fluids can be written as

mene

(
∂ve

∂t
+ (ve · ∇)ve

)
= −∇pe − nee(E + ve ×B), (4.50)

mini

(
∂vi

∂t
+ (vi · ∇)vi

)
= −∇pi + nie(E + vi ×B), (4.51)

where subscripts e and i refer respectively to electrons and ions, and we have assumed

that the ions are singly charged. We can set ne = ni ≡ n provided that the

wavelength of the perturbation we are dealing with is large compared to the Debye

length. This condition is trivially satisfied: the initial wavelength is the system size

(∼ 106m) whereas λD ∼ 10−3m in the solar corona. Since our fluid model is strictly

linear, and we have no equilibrium flows, we can also drop the advective derivatives

in the momentum equations, which thus reduce to

men
∂ve

∂t
= −∇pe − ne(E + ve ×B), (4.52)

min
∂vi

∂t
= −∇pi + ne(E + vi ×B). (4.53)

With the single fluid density ρ = (mi+me)n and velocity v = (mivi + meve)/(mi + me),

then adding Eqs. 4.52 and 4.53, using j = ne(vi − ve) and p = pi + pe, we obtain

ρ
∂v

∂t
= j×B−∇p. (4.54)

Using Ampère’s law ∇×B = µ0j and the vector identity

(∇×B)×B = −1

2
∇B2 + (B · ∇)B, (4.55)

we can re-write Eq. 4.54 in the form

ρ
∂v

∂t
= −∇

(
B2

2µ0

+ p

)
+

1

µ0

(B · ∇)B. (4.56)
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With the momentum equation written in this form, it is clear that we may neglect

the pressure gradient term if the plasma beta β = 2µ0p/B
2 ¿ 1. This assumption

generally holds in the solar corona, except close to the null of a two-dimensional

magnetic X-point (or a 2.5D X-line with zero guide field). We thus recover the

momentum equation used in the fast wave solution.

We still have to consider Ohm’s law. The generalised form can be written as

E + v ×B = ηj +
me

ne2

∂j

∂t
+

1

ne
(j×B−∇pe) . (4.57)

We can neglect the resistivity term, since this arises from dissipation, and we can

also neglect the electron inertia term (∝ ∂j/∂t) provided that the typical length

scale is large compared to the electron skin depth, c/ωpe (where ωpe is the electron

plasma frequency), and so Ohm’s law reduces to

E + v ×B =
1

ne
(j×B−∇pe) . (4.58)

The ∇pe term in this equation can be omitted for the same reason as the ∇p term

in the single fluid momentum equation. We are thus left with an Ohm’s law which

differs from the ideal MHD form only through the presence of the Hall term, j×B/ne.

Since j = ne(vi − ve), the Hall term can be neglected if

|vi − ve|
v

¿ 1. (4.59)

In the fast wave solution both v and j are perturbations, so the perturbation am-

plitude is irrelevant as far as Eq. 4.59 is concerned. From the linearised single fluid

momentum equation (Eq. 4.19),

∂v

∂t
=

B0r

µ0ρ0r0

∇2ψ̃ (4.60)

and j = −(1/µ0)∇2ψ̃ we have

∣∣∣∣
∂v

∂t

∣∣∣∣ =
jB0r

ρ0r0

. (4.61)

Since v is changing on a timescale of order τA = r0/cA0 = r0(µ0min)1/2/B0, it follows

from Eq. 4.61 that
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|vi − ve|
|v| ∼ j/ne

jrµ
1/2
0 /ρ

1/2
0

=
(min)1/2

nerµ
1/2
0

=
(minc2ε0)

1/2

ner
(4.62)

since c2 = 1/ε0µ0, and thus

|vi − ve|
|v| ∼ c

rωpi

(4.63)

where ωpi = (ne2/miε0)
1/2 is the ion plasma frequency. The length scale c/ωpi is

referred to as the ion skin depth. Equations 4.59 and 4.63 indicate that the Hall

term should be taken into account, i.e. ideal MHD ceases to be strictly valid, inside

a circle of radius r = c/ωpi. We shall return to this in the next section in the context

of the parameters used in our simulations, but it is sufficient to say at the moment

that the use of ideal MHD is valid except in a region very close to the null, where

the neglect of plasma pressure also ceases to be valid.

4.3.3 Treatment of collisions

As discussed in Chapter 3, collisions can be readily included in CUEBIT, but are

neglected in this instance on the basis that our test particles interact with the

fast Alfvén wave pulses for a time that is less than one collision time (see below).

Specifically, a sufficient condition for the collisionless assumption to be valid is that

the particle collision time is longer than the time taken for a fast Alfvén pulse to

propagate across the system, since the particle can only undergo acceleration in the

presence of the wave. To quantify this, we note that the collision time for protons

with a Maxwellian distribution at temperature T is [45]

τi =
31/26πε2

0(kBT )3/2m
1/2
p

ne4 ln Λ
, (4.64)

where ε0 is the permittivity of free space, kB is Boltzmann’s constant, mp and e are

now specifically the proton mass and charge, n is the proton number density and

ln Λ is the Coulomb logarithm, given by [62]

ln Λ = 23− ln

[
ZZ ′(µ + µ′)
µTi′ + µ′Ti

(
niZ

2

Ti

+
ni′Z

′2

Ti′

)1/2
]
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for ion-ion collisions, where ni represents number density, Ti represents ion temper-

ature in eV, masses are given in units of the proton mass µ = mi/mp, Z is the ion

charge state and field particle species are delineated by a prime. The fast Alfvén

wave transit time is of the order of τA: requiring this to be shorter than τi leads to

the condition

kBTi >

[
r0µ

1/2
0 e4 ln Λ

31/26πε2
0B0

]2/3

n. (4.65)

In this chapter we examine the acceleration of test particle protons in two particular

solar scenarios of interest, namely those of quiet coronal heating and late-phase

flare heating. Typical parameter values for the quiet corona are n = 1014m−3,

T = 106K≡ 1MK and B = 0.001T, while (as mentioned previously) typical late-

phase flare values are n = 1016m−3, T = 10MK and B = 0.03T. A typical length

scale for a coronal magnetic structure is 107m, but for the majority of our simulations

we set r0 = 106m. A smaller system size means that we are not required to simulate

our particles for such a long period of time (and we shall show that our results are

essentially independent of the system size in any case). With these values, and taking

mi = mp, the proton mass, we find that c/ωpi ∼ 2×10−5r0 for the quiet corona case

and c/ωpi ∼ 2× 10−6r0 for the flare case. Thus, we reiterate our conclusion that the

use of ideal MHD is valid except in a region very close to the null.

In the simulations the protons initially have Maxwellian distributions with tem-

peratures that are less than the observed values, namely 105K for the quiet corona

and 106K for the flaring scenario, in order to determine the extent to which the

observed conditions can be realized in the model. To evaluate the right hand side

of Eq. 4.65 we identify B with B0 and use values of the Coulomb logarithm that

are appropriate for ion-ion collisions (for the quiet coronal heating case log Λ ' 17.6

and for the late-phase flare heating case log Λ ' 18.8), we find that, in both cases,

our artificially low initial temperatures lie close to the values given by the right hand

side of Eq. 4.65. In the quiet corona case, the value of the left hand side is 8.6 eV,

compared to the right hand side, 18.4 eV, and in the flare heating case, the left-hand

side kBTi = 86.3 eV compared to the right-hand side value of 199.3 eV. Although

the left hand side terms are slightly lower than the right hand side terms, they are
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of the same order, and so the regimes are only marginally collisional - thus is it le-

gitimate to simplify the problem by neglecting collisions. Additionally, we will show

that the fast Alfvén wave pulses invariably cause the effective proton temperature

to rise, so that the protons become more collisionless as each simulation progresses.

4.3.4 Testing the code

Before we start simulating protons moving in the perturbed magnetic X-point it

is important to check that the code is performing as we expect and require it to

- that is, that the quantities pz and (in the absence of the perturbation) energy

are conserved to high accuracy. We check this first for a proton travelling in an

unperturbed X-point field - the result of which is shown in Figure 4.6.

The proton is launched from coordinates x/r0 = 0.5, y/r0 = 0 with an energy

of 0.86 keV. The magnetic field at the boundary B0 = 0.03T and the scale size

of the system r0 = 106m. The particle is tracked for 107 timesteps where each

timestep is one-tenth of a Larmor period at the system boundary: this equates to

approximately 2.2 seconds in real time. We see that both pz and E are conserved to

high numerical accuracy, of order of approximately 1 part in 1012, over a significant

number of time steps of the code, which means that we can be confident that the

code itself is numerically robust. When a fast wave perturbation is applied to the

equilibrium field, there is a finite, non-potential electric field and so the total particle

energy is no longer conserved. However, pz is still well conserved in the presence of

a perturbation, as we shall see in Section 4.4.

4.3.5 Simulation details

For each simulation the code was used to compute the trajectories and energies of

10,000 protons with initial positions in the (x, y) plane chosen randomly from a

uniform spatial distribution. Only the trajectories of particles initially lying in an

annulus 0.2 ≤ r/r0 ≤ 0.8 were computed: the region r/r0 < 0.2 was excluded in

order to minimize the likelihood of particles encountering wave fields that violated

the linear approximation used in the fluid model; the region r/r0 > 0.8 was excluded
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Figure 4.6: Tracking the orbit of a proton in an unperturbed magnetic X-point with

parameters as described in the text: the top left plot is of the particle’s overall position

in the X-point with the magnetic field lines overlayed in dashed lines, the top right plot is

a zoomed-in view of the orbit, the bottom left plot is the fractional deviation in canonical

momentum pz and the bottom right plot shows the fractional deviation in energy E for

the duration of the simulation.

to ensure, in the case of the localised fast wave solution, that the particles initially

lay in a region undisturbed by the wave. As indicated previously, the initial proton

velocity distributions were Maxwellian, with zero net drift. This is consistent with

the two wave solutions discussed in the previous subsection, insofar as both are

characterized by the initial condition v = 0 in the domain in which the particles are

initialized. The duration of each simulation was determined by the time required

for the wave electric field to fall to a negligible value at the positions of the particles

simulated. In all the simulations, the orbit computation was stopped for a given
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particle if it crossed the surface r = r0; such particles were included in the final

energy distribution. If the linearisation condition was violated (i.e. if the wave

magnetic field ceased to be small compared to the equilibrium field at the position

of the particle: an expression for this will be derived in the next subsection), or

if pz ceased to be conserved to one part in 100, the particle orbit calculation was

immediately stopped and the particle was not included in the final distribution.

4.3.6 The linear approximation

The condition for neglecting nonlinear terms in the MHD equations for a finite

amplitude fast wave perturbation of a two-dimensional X-point equilibrium can be

derived as follows: the magnetic field can be written as B = ∇ψ × ẑ, where ψ is a

flux function and ẑ is the unit vector in the z-direction, as discussed in Section 4.2.

As we are considering only variations in the (x,y) plane, then ∇ψ is orthogonal to

ẑ and thus

B = |∇ψ| = |∇ψE +∇ψ̃| (4.66)

and therefore

B2 = (∇ψE)2 + 2∇ψE · ∇ψ̃ + (∇ψ̃)2. (4.67)

We can ignore the (∇ψ̃)2 term as being negligible, since it is 2nd order in the

perturbation amplitude. The condition for the linear approximation to be valid

thus becomes

|2∇ψE · ∇ψ̃|
(∇ψE)2 ¿ 1 (4.68)

Remembering that

ψE = −B0r
2

2r0

cos 2ϕ

from Eq. 4.14 previously, then

∇ψE =
B0r

r0

(− cos 2ϕ, sin 2ϕ, 0)
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and

(∇ψE)2 =
B2

0r
2

r2
0

.

Since ψ̃ depends only on r and t it follows that ∇ψ̃ = (∂ψ̃/∂r)r̂, and thus Eq. 4.68

reduces to

2r0

B0r
cos 2ϕ

∂ψ̃

∂r
¿ 1 (4.69)

so, provided that this inequality is true, the wave magnetic field is smaller than the

equilibrium field and the linearisation carried out in Section 4.2.1 can be justified.

4.4 Results: Global Perturbation

4.4.1 Individual particle orbits

With n, T , B0 and r0 specified previously for the two scenarios of interest, the

only remaining parameter left to be determined for the global perturbation case

is the initial perturbation amplitude, ξ. We set ξ = 0.1, so that the peak initial

magnetic field perturbation is 10% of the equilibrium magnetic field at r = r0

(although it could reasonably be argued that a perturbation any bigger than this

would no longer be truly linear). To demonstrate how the protons respond to the

fast wave perturbation, we plot the trajectory of a single specific particle, launched

from the same coordinates x/r0 = 0.5, y/r0 = 0, for the quiet corona scenario (whose

parameters are outlined previously). Additionally we plot the time evolution of the

electric field Ez and fractional deviation of pz from its initial value, shown in Figure

4.7, and the time evolution of the total energy of the particle, in Figure 4.8.

It is worth first pointing out that this particle meets all the criteria for inclusion

in our final results - the critical condition of Eq. 4.69 is met, and pz is still conserved

to good approximation in the presence of a perturbation (although it is not as well-

conserved as in the unperturbed case). The apparent anti-correlation between Ez

and pz is of no physical significance - it is purely numerical, since it was shown that pz

is conserved by the equations (see Eq. 4.47), and in any case the fractional deviation
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Figure 4.7: A proton in a magnetic X-point for the global perturbation case, using the

quiet corona parameters: the top left plot is of the particle’s overall position in the X-

point, the top right plot is a zoomed-in view of the orbit, and the bottom left and right

plots show the fractional deviation in canonical momentum pz and the value of the electric

field Ez for the duration of the simulation.

Figure 4.8: Time evolution of the energy of the particle whose trajectory is plotted in

Figure 4.7.
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of pz from its initial value is very small. Examining the plot of energy, we see that,

although the particle gains large amounts of energy as the wave perturbation passes

through the X-point, most of that energy is lost in the second half-wave cycle.

However, the particle still ends the simulation with more energy than it started

with: to be precise, the passage of the wave increases the energy of the particle by

4.5%. Some particles gain and keep large amounts of energy - Figure 4.9 displays

the important quantities for one such particle, which ends the simulation with an

increase in E of a factor of more than 200 - but we will see in Sections 4.4.2 and

4.5.2 that typically very few particles are accelerated by such significant amounts.

Most protons gain relatively small amounts of energy, and some lose energy.

4.4.2 Distribution of particles

Considering now a distribution of 104 particles in our simulations, Figure 4.10 shows

the proton energy distributions for both the quiet corona (left hand plot) and flaring

corona (right hand plot) scenarios outlined above, and Figure 4.11 shows the cor-

responding distributions of proton energy increments ∆E. In units of τA the total

simulation times are comparable: in both cases the electric field encountered by the

particles had decayed sufficiently by the end of the simulation that the energy distri-

bution had essentially relaxed to a steady state. The appearance of high energy tails

in these plots indicates that the final energy distributions are not strictly Maxwellian

(indeed, the final velocity distributions in the simulations are generally anisotropic:

we will discuss this point in Sect. 4.8). However, computing an equivalent temper-

ature Tf ≡ 2E/(3kB), where E is the mean energy of the particles at the end of the

simulation, we obtain Tf = 0.151MK for the quiet corona case and Tf = 1.550MK

for the flaring case, i.e. in both cases the effective temperature has increased by

about 50%. Repeating the simulations for two different sets of 104 particles for both

cases yields final temperatures of Tf = 0.149, 0.154MK for the quiet corona scenario

and Tf = 1.534, 1.568MK for the flaring case, giving standard deviations of 1.36%

and 0.90% respectively. Thus these figures are broadly consistent with the predicted

noise level expected in a simulation with 104 particles (less the number removed due

to breaking the linearisation condition or conservation of momentum, which is of
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Figure 4.9: A less “typical” proton for the global wave perturbation, quiet corona para-

meter case, launched from x = 0.13r0, y = 0.2r0: the top left plot displays the trajectory

of the particle, the top right figure shows evolution of the critical value (the quantity on

the left hand side of Eq. 4.69), the middle left and right plots show the fractional change

in pz and Ez respectively, and the bottom left plot illustrates the variation in energy with

time.
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Figure 4.10: Initial (solid curves) and final (dashed curves) proton energy distributions

for the case of a global field perturbation: the left hand plot corresponds to the quiet

corona scenario, with T = 0.1MK and total simulation time t = 2s (' 4.4τA); the right

hand plot corresponds to the flaring scenario with T = 1MK and t = 0.5s (' 3.3τA). In

both cases ξ = 0.1.

Figure 4.11: Distribution of changes in proton energy ∆E at t = 2s for the quiet corona

simulation (left) and t = 0.5s for the late-phase flare simulation (right).

the order of 400-500 particles in these simulations).

4.5 Results: Localised Perturbation

4.5.1 Individual Particle Orbits

For the localised perturbation we must specify the parameters δu1 and δu2, which

determine the gradients of the leading and trailing edges of the pulse respectively,
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in addition to the perturbation amplitude ξ. We consider two different cases, one in

which δu1, δu2=0.2 and one where δu1=0.2, δu2=2; in both cases we again set ξ=0.1.

Figure 4.12 shows the orbit of a particle for the former case, using the late-phase flare

scenario parameters of density and magnetic field and launched from coordinates

x = −0.25r0, y = 0.42r0, and Figure 4.13 shows the energy of this particle. This

perturbation passes through the system very quickly, and thus the period of time

when the particle is highly energised and moving rapidly is relatively short, so the

particle travels a much shorter distance within the X-point in comparison with the

global perturbation case. Figure 4.14 compares the wave propagation time for the

two different cases of δu2 as seen by this proton - increasing this value decreases

the gradient of the trailing edge of the pulse and it thus takes longer to propagate

through the system. Again, this proton exhibits very similar characteristics to the

protons in the previous section, in that it only gains a relatively small amount of

energy (about 11.2% in this particular case) though as we will see in the next section,

the localised perturbation is more efficient at accelerating particles.

Figure 4.12: Trajectory of a proton in a magnetic X-point for the localised pertur-

bation case, using the late-phase flare parameters with δu2=0.2 and launched from

x = −0.25r0, y = 0.42r0.
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Figure 4.13: The energy variation for the proton whose orbit is displayed in Fig. 4.12.

Figure 4.14: Comparison of electric field variation with time for the proton in Figure 4.12

for the two cases δu2=0.2 (left) and δu2=2 (right). The value of δu1 is 0.2 for both cases.

4.5.2 Particle Distributions

Again we consider the resultant energy distribution of 104 protons: examining the

quiet corona scenario first the results for the two cases of δu2 = 0.2, 2 are shown

in Figure 4.15. Computing an equivalent final proton temperature on the same

basis as before, we obtain 0.2MK for the left-hand plot and 2.5MK for the right-

hand plot. Thus, in both cases the local perturbation has a greater heating effect

than the global perturbation, dramatically so when the pulse is asymmetric, with

an extended trailing edge. However, it is evident that the final distributions are
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again nonthermal, with a high energy tail extending up to several keV in the case of

the asymmetric pulse. It is also instructive to compute the distributions of v‖ and

velocity component perpendicular to the local magnetic field v⊥ for the particles at

the beginning and end of the simulation; these are plotted in Figs. 4.16-4.19. The

significance of these results will be discussed in Section 4.8, but for the moment we

note that the v‖ distributions are broadened to a significantly greater extent than

the v⊥ distributions.
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Figure 4.15: Initial (solid curves) and final (dashed curves) proton energy distributions for

the case of a localised field perturbation with initial amplitude ξ = 0.1: the parameters are

those of the quiet corona scenario. The total simulation time is equal to 4.4 Alfvén times.

The left-hand plot corresponds to δu1 = 0.2, δu2 = 0.2; the right-hand plot corresponds

to δu1 = 0.2, δu2 = 2.
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Figure 4.16: Parallel proton velocity distributions at t = 0 (left) and t = 2s (right)

corresponding to the energy distributions shown in the left-hand plot of Fig. 4.15.
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Figure 4.17: Perpendicular proton velocity distributions at t = 0 (left) and t = 2s (right)

corresponding to the energy distributions shown in the left-hand plot of Fig. 4.15.
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Figure 4.18: Parallel proton velocity distributions at t = 0 (left) and t = 2s (right)

corresponding to the energy distributions shown in the right-hand plot of Fig. 4.15.
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Figure 4.19: Perpendicular proton velocity distributions at t = 0 (left) and t = 2s (right)

corresponding to the energy distributions shown in the right-hand plot of Fig. 4.15.



4.5. Results: Localised Perturbation 102

Figure 4.20 illustrates the proton energy distributions for the flare scenario,

again for the two cases of δu2 = 0.2 (left) and 2 (right), and Figure 4.21 shows

the corresponding distributions of proton energy increments ∆E (for reference, in

the δu2 = 0.2 simulation no particles went out of bounds, 1730 broke the lineari-

sation condition and 4 broke the momentum conservation condition while in the

δu2 = 2 simulation 732 particles went out of bounds, 2922 broke the linearisation

condition and 2 broke the momentum conservation condition). Interpreting the av-
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Figure 4.20: Initial (solid curves) and final (dashed curves) proton energy distributions

for the case of a localised field perturbation with initial amplitude ξ =0.1: the parameters

are those of the late-phase flare scenario. The left panel corresponds to δu1=0.2, δu2=0.2,

and has a total simulation time equal to 3.3 τA. The right panel corresponds to δu1=0.2,

δu2=2, and has a total simulation time equal to 6.6 τA.
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Figure 4.21: Distribution of changes in proton energy ∆E at t=0.5s (left) and t=1s

(right) for the late-phase flare simulations.
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erage energy of each distribution E in the same way as before, we infer equivalent

temperatures of 1.95MK for the left-hand plot and 9.42MK for the right-hand plot.

Thus, in both the flare and quiet corona scenarios the final effective temperature

rises rapidly with δu2, increasing by factors of about 2 for δu2 = 0.2 and between

approximately 10-20 for δu2 = 2. The plots of ∆E indicate that most of the protons

are accelerated (or decelerated in some cases) by relatively small amounts, up to

about 0.5keV and 3 keV for the two flare cases, although a few particles are invari-

ably accelerated to highly supra-thermal energies. This last point can be illustrated

by the following: for a Maxwellian distribution at 9.42MK, approximately 0.002%

of the particles would have energies greater than 10keV. However, we find that there

are 69 such particles out of a total of 10000 in this particular simulation, i.e. approx-

imately 0.69%. For a Maxwellian distribution at 9.42 MK, the probability of seeing

particles with energies greater than 20keV is so small as to be virtually negligible,

so the fact that approximately 0.05% of the particles have energies in this range,

although a small number, is still significant. The total number of particles used

in the simulation is sufficiently large that the excess number of particles in the tail

(compared to that expected on the basis of a Maxwellian distribution) is statistically

significant, and so the high energy tail in the left hand frame of Fig. 4.21 appears

to be real.

Figures 4.22-4.25 show the parallel and perpendicular velocity distributions of all

the protons within the simulation boundaries before and after the simulation for the

2 cases respectively (for the case with δu2 =2, the distributions are plotted at t = 0.5

seconds: technically the simulation is not complete but the velocity distributions do

not change dramatically over the remaining period of time, ' 0.3s, for which the

wave electric field is not negligible). Figure 4.26 displays the final parallel and

perpendicular velocity distributions for particles lying within a particular range of

values of r and ϕ. Comparing Figs. 4.24 and 4.26, we note that the v‖ distribution

is somewhat narrower at a given spatial location than it is for the entire domain:

we will return to this result in the next section.
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Figure 4.22: Parallel proton velocity distributions at t = 0 (left-hand panel) and t = 0.5s

(right-hand panel) corresponding to the energy distributions shown in the left hand panel

of Fig. 4.20.
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Figure 4.23: Perpendicular proton velocity distributions at t = 0 (left) and t = 0.5s

(right) corresponding to the energy distributions shown in the left panel of Fig. 4.20.
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Figure 4.24: Parallel proton velocity distributions at t = 0 (left) and t = 0.5s (right)

corresponding to the energy distributions shown in the right-hand panel of Fig. 4.20.
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Figure 4.25: Perpendicular proton velocity distributions at t = 0 (left) and t = 0.5s

(right) corresponding to the energy distributions shown in the right-hand panel of Fig.

4.20.
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Figure 4.26: Parallel (left) and perpendicular (right) velocity distributions of protons, at

t=0.5s, lying in the region defined by 0.8 ≤ r/r0 ≤ 1, 0 ≤ ϕ ≤ π for the flare simulation

with δu1 = 0.2, δu2 = 2.

We have also found that the results are similar, though not identical, if the parti-

cles are started from rest rather than a finite temperature, as illustrated in Figure

4.27: the final effective temperature of the proton distribution launched from rest is

8.78MK, compared to the 9.42MK of the distribution launched with a temperature

of 1MK.



4.6. Results: Two Wave Pulses 106

log
10

[E(keV)]

fr
eq

u
en

cy

Figure 4.27: Final distributions of proton energy E at t = 1s for the late-phase flare

simulation with δu2=2, starting the protons from rest (solid) and with T=1MK (dashed).

In summary, comparing the responses of the proton population to the various wave

perturbations discussed above, we see that the localised perturbation with δu1 =

δu2 = 0.2 produces an effective temperature increase which is about twice that

resulting from a global perturbation with the same initial amplitude, while the

localised perturbation with δu1 = 0.2, δu2 = 2 causes the effective temperature to

increase by about a factor of 10-20. We will discuss the heating and acceleration

mechanism, and the reasons for its sensitivity to the wave parameters, in Section

4.8.

4.6 Results: Two Wave Pulses

It is also instructive to investigate the response of the test particles to two successive

localised wave pulses. Specifically we consider two identical localised pulses with ini-

tial amplitude ξ = 0.06, profile parameters δu1 = 0.2, δu2 = 2, and peaks separated

in time by 1 s. As in previous sections we consider an individual particle first, in this

case launched from coordinates x = 0.4r0, y = 0.2r0: Figure 4.28 shows the usual

important quantities for this proton over the duration of the simulation, namely the
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trajectory within the X-point (plus a zoomed-in orbit plot), the fractional variation

in the canonical momentum pz, and the energy E in keV.

Figure 4.28: Simulation of proton launched from coordinates x = 0.4r0, y = 0.2r0 within

X-point configuration in which two localised wave pulses are launched, with initial per-

turbation amplitude ξ = 0.06, δu1=0.2, δu2=2 and the initial temperature is T = 1MK,

n = 1016m−3 and B0 = 0.03T. From top left to bottom right the figures are the trajectory

of the proton within the X-point, a zoomed-in display of this trajectory, the variation

in fractional deviation of canonical momentum pz with time and the variation of total

particle energy with time.

Figure 4.29 also illustrates the change in energy ∆E by showing the energy at

4 equally-spaced times throughout the simulation as each wave pulse propagates

through the X-point (this shows the long-term trend more clearly than plotting the

energy at every timestep), as well as illustrating the electric field Ez the particle

is subjected to. The resulting energy distributions of the 104 protons are then

plotted in Fig. 4.30. Using the average energies of these distributions to compute

effective temperatures as before, we find that after the first wave pulse the effective
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temperature is T = 3MK and after the second pulse T = 8.7MK. The average gain

in energy ∆E of the protons due to their interaction with the first wave pulse is

0.4keV; the corresponding figure for the second pulse is 0.58keV.

Figure 4.29: The change in energy ∆E with time, evaluated at four equally-spaced in-

tervals in time during the proton simulation in Figure 4.28, and the variation in electric

field Ez as seen by that particle.

We conclude that wave pulses of this type heat the protons to an even greater

effective temperature when the protons have already been energized by a previous

pulse; the pulses thus have a synergistic effect on the proton population. We can see

this in the change in energy of the single particle plotted previously: the first wave

pulse increases the particle’s energy by approximately 0.03 keV, whereas the second

increases the energy by about 0.13 keV. These values are considerably less than

those quoted above as the “average” gain in energy of a proton. We saw previously

in the plots of ∆E in Sections 4.5.2 and 4.6.2 that most particles overall gained only

a relatively small amount of energy from the passing of the wave pulse. This was

particularly true in the case of the global perturbation, where many particles gained

significant amounts of energy during the peak of the wave pulse, though most of this

energy was lost in the second-half of the wave cycle as Ez reversed in direction, and

only a relatively small number of protons that did not either break the linearisation

condition, exited the boundary of the system, or violated the requirement of pz

conservation, actually ended the simulation with a significant increase in energy.

Here, however, Figure 4.30 clearly shows a shift of the entire distribution, so, in this
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Figure 4.30: Proton energy distributions at t = 0 (solid curve), t ' 3.3τA (dashed curve)

and t ' 6.6τA (dashed-dotted curve), following the passage of two successive localised fast

wave pulses with initial perturbation amplitude ξ = 0.06, δu1=0.2, δu2=2. The initial

temperature is T = 1MK, the plasma density is n = 1016m−3 and the magnetic field at

the system boundary is B0 = 0.03T.

case, we are not dealing with a situation in which a small number of superthermal

particles out in the tail are skewing the results - instead the bulk of the protons are

being accelerated by significant amounts, particularly by the second wave pulse.

4.7 Interpretation

To understand the results presented above one must examine the behaviour of indi-

vidual particles in the assumed wave fields. We consider first of all the response of a

proton in a uniform, time-independent magnetic field B = Bẑ to a uniform electric

field E = E(t)x̂ that rises (t < 0) and then decays (t > 0) exponentially: this is a

simplified representation of the fields encountered by a test particle in the case of

the asymmetric localised wave pulse.
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Taking initially the case of a purely decaying electric field, the x and y components

of the Lorentz force equation become

v̇x = Ω
(
vy + vEe−γt

)
(4.70)

v̇y = −Ωvx (4.71)

where vE = E/B is the E × B drift speed at t = 0, Ω = qB/m is the cyclotron

velocity and γ is a constant that determines the rate of decay of the electric field.

Differentiating Eq. 4.71 with respect to time and eliminating v̇x using Eq. 4.70, we

obtain

v̈y + Ω2vy = −Ω2vEe−γt, (4.72)

which is the equation of a simple harmonic oscillator with an exponentially-decaying

drive. This equation can be solved exactly for arbitrary initial conditions by using

the standard technique of finding a particular integral and adding it to the comple-

mentary function. The complete solution is

vy = α cos Ωt + β sin Ωt− Ω2vEe−γt

γ2 + Ω2
(4.73)

where α and β are constants, determined by the initial conditions. With vx = −v̇y/Ω

from Eq. 4.71, we then have

vx = α sin Ωt− β cos Ωt− ΩγvEe−γt

γ2 + Ω2
. (4.74)

Imposing the initial conditions vx = vy = 0 at t = 0 gives

α =
Ω2vE

γ2 + Ω2
= vE (4.75)

β = − γΩvE

γ2 + Ω2
= −γvE

Ω
(4.76)

if γ2 ¿ Ω2. We can now crudely approximate the electric fields given by Eqs. 4.40

and 4.41 by an exponential rise (t < 0) followed by an exponential decay (t > 0),
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with different time constants 1/γ1 and 1/γ2 respectively. We do this by putting

γ = −γ1 in Eqs. 4.73 and 4.74, and requiring that vx, vy → 0 as t → −∞, which

gives α = β = 0 and hence the solution for t < 0 as

vx =
γ1ΩvEeγ1t

γ2
1 + Ω2

(4.77)

vy = −Ω2vEeγ1t

γ2
1 + Ω2

. (4.78)

The particle energy increases monotonically in this phase, irrespective of the values

of γ1 and Ω. Evaluating vx and vy for t = 0 from Eqs. 4.77 and 4.78 results in

vx = γ1ΩvE/(γ2
1 + Ω2) and vy = −Ω2vE/(γ2

1 + Ω2), and using these expressions to

define new initial conditions by inserting them into 4.73 and 4.74, we get

α = Ω2vE

(
1

γ2
2 + Ω2

− 1

γ2
1 + Ω2

)
, (4.79)

β = −ΩvE

(
γ1

γ2
1 + Ω2

+
γ2

γ2
2 + Ω2

)
. (4.80)

for t ≥ 0. Thus, in general there is a Larmor gyration in the particle motion at

t > 0. However, if both γ2
1 and γ2

2 are much smaller than Ω2, as in the case of MHD

waves of the type invoked in our test particle simulations, we find that

α ' γ2
1 − γ2

2

Ω2
vE, (4.81)

β ' −γ1 + γ2

Ω
vE. (4.82)

We thus have |α| ¿ vE, |β| ¿ vE, indicating that the amplitude of the Larmor

gyration is small compared to the peak E×B drift. Since the electric field decays

monotonically to zero, the net energy gained by the particle is very small.

We now consider in more detail the behaviour of a single proton in the actual

E and B fields used in the simulations. We have used CUEBIT to compute the orbit

of an initially stationary proton accelerated by a localised field perturbation with

ξ = 0.1, δu1 = 0.2 and δu2 = 2. The equilibrium plasma parameters were taken to

be B0 = 0.01T, r0 = 107m, n = 1014m−3. The temporal evolution of the particle
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energy is shown in Figure 4.31 and its trajectory is plotted in Figure 4.32: it can be

seen that the wave pulse causes the particle to acquire a net energy, of about 64keV,

which is comparable in magnitude to the peak energy (about 125keV).

Figure 4.31: Energy versus time of a proton initially at rest at r = 5 × 106m, ϕ = 40◦.

The perturbation is of the form given by Eqs. 4.40 and 4.41, with δu1 = 0.2, δu2 = 2. The

perturbation amplitude at t = 0 is 0.1. The equilibrium field parameters are B0 = 0.01T,

r0 = 107m, n = 1014m−3.

x/r0

y/r0

Figure 4.32: The solid curve shows the trajectory in the (x, y) plane of the particle whose

energy evolution is shown in Fig. 4.31; the particle is initially near the separatrix and

moves in the direction indicated by the arrow.
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Other single-particle runs of CUEBIT show that the net energy gain increases roughly

as δu2
2 : Fig. 4.33 shows the average net increase in energy of a simulated population

of 500 protons against increasing δu2
2. The above calculation cannot account for this

large energy increment: the rise and decay times of the electric field corresponding

to the assumed values of δu1 and δu2 are such that the net energy gain implied by

Eqs. 4.73 and 4.74 is negligibly small compared to that observed in the simulations.

δu
2

2

∆E(keV)

Figure 4.33: The average net gain in energy ∆E of 500 protons for the case of a localised

perturbation where δu1=0.2, for various values of δu2. The system size is r0 = 107m,

the value of the magnetic field at the system boundary B0 = 0.01T, the plasma density

n = 1014m−3, and the size of the perturbation ξ = 0.1. The total simulation time is 2

seconds.

We have examined the temporal behavior of v‖ and v⊥ for the initially-stationary

proton whose energy and trajectory are plotted in Figures 4.31 and 4.32. After a

period in which the dominant motion is an E × B drift, v⊥ becomes very small as

the electric field decays to zero, whereas |v‖| rises to a finite, slowly-varying value,

so that asymptotically we have |v‖| ' v. This can be understood as follows. Since

v‖ = v ·B/B we deduce that

v̇‖ =
1

B
v̇ ·B + v · d

dt

(
B

B

)
, (4.83)

where mpv̇ = e(E + v × B). The first term on the right hand side of Eq. 4.83

vanishes since B · (v×B) ≡ 0 and, in our particular problem, E is orthogonal to B.
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Since d/dt is the time derivative in a frame moving with the particle, the equation

reduces to

v̇‖ = v ·
[
∂b

∂t
+ (v · ∇)b

]
, (4.84)

where b = B/B is the unit vector in the direction of B. The proton is thus subject

to inertial forces in the parallel direction due to temporal and spatial variations in

b. Examination of individual particle orbits computed using CUEBIT shows that

the Larmor gyration component of v⊥ is generally small compared to the E × B

drift speed vE ' Ez/BE, as one might expect from the calculation for uniform fields

presented above. Before the particle has acquired a finite v‖, the velocity on the

right hand side of Eq. 4.84 is thus essentially equal to vE. Both of the terms on the

right-hand side can produce a change in v‖: the time-evolving part of b associated

with the wave is in general not parallel to b, and the fact that the field changes

direction in the frame of a particle moving across it ensures that the (v · ∇)b term

is also finite even when v is orthogonal to b. The acceleration is limited by the fact

that the E×B drift speed falls to zero, on a timescale determined by the value of δu2

in the case of the localised perturbation. If δu2 is increased, the particle has more

time to be accelerated parallel to the field, and so the asymptotic particle energy is

also increased.

It should be noted that the cold plasma fluid model used in the simulations

incorporates the E × B drift but does not allow the possibility of finite plasma

pressure. The distributions that we observe in the simulations cannot in fact be

characterized by a scalar pressure since they are highly anisotropic. This is entirely

consistent with the cold plasma fluid model provided that the components of the

pressure tensor remain small compared to the magnetic pressure throughout the

domain that is being simulated: this condition is invariably satisfied.

The interpretation proposed above leads to a number of easily-testable predic-

tions regarding the scaling of asymptotic particle energy with various parameters.

The maximum value of v⊥ is approximately equal to vE = Ez/BE ' ξr0/τA = ξcA,

and the magnitudes of both ∂b/∂t and (v · ∇)b are of the order of ξ/τA. Since the

right hand side of Eq. 4.84 has a large value for about an Alfvén time, we deduce
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that the change in v‖ is approximately

δv‖ = ξ2cA. (4.85)

It should be noted that δv‖ is independent of particle mass and charge, and therefore

the result is equally applicable to electrons and ions. However, since the electron

thermal speed is typically comparable to cA in the solar corona and δv‖ ¿ cA, we

would expect the direct effect of a single wave pulse on the electron population to

be negligible, and indeed running CUEBIT for electrons rather than protons we find

that this is the case. The predicted δv‖ is also independent of the system size, r0.

This is again borne out by numerical results obtained for a given initial value of r/r0

and a range of values of r0, although the system size becomes significant when r0

is so small that large numbers of particles escape before the electric field has fallen

to zero. Physically, the insensitivity of δv‖ to r0 is due to the fact that although

the parallel acceleration time is proportional to τA and hence r0, the strength of the

force causing the acceleration is inversely proportional to the magnetic field scale

length, which in this particular geometry is also of the order of r0. The two effects

cancel out, and the net change in v‖ is therefore independent of the system size.

For a particle starting from rest the asymptotic energy is given by

E ∼ 1

2
mpξ

4c2
A. (4.86)

Single particle runs confirm the scaling with parameters in Eq. 4.86 (see Figure

4.34) although the absolute value of the particle energy can be considerably less

than or greater than that given by the equation. In the case of pulse-like localised

perturbations, the time in which a particle is accelerated parallel to B can be shorter

or longer than τA, depending on the value chosen for δu2. In the case of the global

perturbation, the final energy appears to be limited by the fact that Ez can change

sign, thereby reducing the average v⊥ of a proton during the period in which it is

interacting with the wave. For a particle starting from rest at a given position, the

change in energy is of course unique. However, particles starting from a range of

initial positions can pass through a given region of space at a given time with a range

of values of v‖, i.e. it is possible for the wave pulse to produce a velocity distribution
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Figure 4.34: The asymptotic energy versus perturbation amplitude ξ (both in logarithms)

of a single proton launched from rest from coordinates x = 0.38r0, y = −0.14r0 in an

X-point equilibrium disturbed by the global wave perturbation, using the quiet corona

simulation parameters. The gradient of the line is approximately 3.9, leading to the

conclusion that asymptotic energy approximately scales with ξ4.

of finite width, even if all the particles start from rest. The v⊥ distributions generally

have a narrow width, determined by the specified initial ion temperature, whereas

the v‖ distributions are much broader, with a characteristic temperature of the order

of the energy given by Eq. 4.86. For the entire system the v⊥ distribution is still

narrow, whereas the v‖ distribution is even broader than that found in a specified

region (cf. Figs. 4.24 and 4.26). If E given by Eq. 4.86 is interpreted as a typical

thermal energy, the corresponding thermal plasma energy density is of the order of ξ2

times the wave energy density, and the final plasma beta β ∼ 2µ0nE/B2 = 2E/mpc
2
A

is of the order of ξ4. Since ξ must be less than unity for the fluid solution to be

valid, it follows that the condition for the cold plasma approximation to remain

valid throughout a simulation is automatically satisfied. Conversely, according to

this interpretation, the perturbation amplitude that would be required to produce

a plasma with a given beta is ξ ∼ β1/4. However, it should be noted that β is

not an input parameter of the model, and therefore the predicted heating efficiency
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is independent of this parameter. The model requires that β be negligibly small

throughout each simulation, otherwise the cold plasma fast Alfvén wave solution

would be inapplicable. The plasma beta is generally assumed to be low in the solar

corona: typically accepted values of this parameter lie in the range 0.01 → 0.1

[63,64]. In flares the plasma pressure is considerably greater than it is in the quiet

corona, but since the magnetic field in flaring regions is also believed to be relatively

high, the plasma beta is still likely to be less than unity [65].

4.8 Discussion and Conclusions

We have used a test particle full orbit code to investigate the collisionless response of

protons to cold plasma fast Alfvén waves propagating in a two-dimensional magnetic

X-point configuration, exploiting the fact that exact solutions of the linearised MHD

equations exist for this particular geometry. Two specific types of fast wave solution

have been invoked: a global perturbation, with inward- and outward-propagating

components; and a purely inward-propagating, pulse-like wave, initially localised at

a specified distance from the X-point null, the wave electric field having a preferred

sign in the longitudinal direction orthogonal to the plane of the magnetic field B.

We have shown that in both cases the protons are effectively heated in the direc-

tion parallel to B, although heating is more effective in the case of the pulse-like

wave, particularly when the pulse is asymmetric, and some protons are accelerated

to parallel velocities well in excess of the effective thermal speed. Acceleration can

occur along the magnetic field despite the absence of a parallel component in the

wave electric field E because the protons acquire a large E×B drift speed, and are

subject to an effective force in the direction parallel to B due to the combined effect

of a time-varying magnetic field associated with the wave and the spatial variation

of the equilibrium field. This process is somewhat similar to the transit-time damp-

ing proposed by Miller and co-workers [55] as a mechanism for the acceleration of

electrons in flares, but differs in that the perpendicular particle motion is primarily

due to the E×B drift rather than Larmor gyration and the magnetic field gradient

arises primarily from the equilibrium field rather than the wave field.
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Wave pulses have been shown to have a cumulative, synergistic effect on the

effective parallel proton temperature, indicating that high effective temperatures

could result from a succession of relatively low amplitude wave pulses. Since the

parallel acceleration is independent of particle mass and charge, particles of all

species acquire the same increment in v‖: the change in energy associated with this

parallel motion is consequently proportional to mass, and therefore the mechanism is

even more effective for heavy ions than it is for protons, but it has a negligible direct

effect on electrons. It is interesting to note in this context that in situ measurements

of heavy ions in the solar wind, carried out using the Ulysses spacecraft, have indeed

revealed a linear scaling of kinetic temperature with ion mass [66]. On the other

hand, one would expect both electrons and heavy ions to relax to a temperature

comparable to that of the protons in the more collisional environment of the low

corona.

The ξ4 scaling in Eq. 4.86 indicates that rather large perturbation amplitudes

would be required in order for a single wave pulse to have a significant effect. Ob-

servations of nonthermal line broadening suggest that the fluid velocity associated

with wave perturbations in the inner corona is no more than about 30 kms−1 [9];

assuming cA ∼ 2000 kms−1 (an appropriate figure for the quiet corona), this implies

ξ < 0.015. Under normal circumstances direct observational information on MHD

wave amplitudes in the solar corona is only available in the case of waves with pe-

riods of the order of several minutes, much longer than those of the waves in our

simulations [67]. However, oscillations with periods of a few seconds were detected

during the total eclipse of August 11 1999 [68]. Analysis of this eclipse data by

Cooper and co-workers [69] suggests that the waves were fast Alfvénic in character

with amplitudes of around 5%, comparable to the 6% initial amplitude assumed in

our two-pulse simulation. We have shown that successive wave pulses can have a

cumulative, synergistic effect on the proton population. Significant heating could

thus result from a train of relatively low amplitude pulses. Moreover, as we saw ear-

lier, the amplitude of a fast Alfvén wave pulse tends to increase as it approaches a

magnetic null, due to the steepening effect of the variation in cA (also compare with

Figures 1 and 2 in McClements et al. [54]). Our results indicate that the degree of
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effective heating is fairly sensitive to the pulse profile. There are few (if any) obser-

vational constraints on fast Alfvén wave pulse profiles in the solar corona. However,

all of the profiles we have invoked represent exact, physically-realizable solutions of

the cold plasma ideal MHD equations, which have a qualitatively-similar effect on

the proton population.

It is important to note that the essential elements of the proposed heating mecha-

nism, namely transient changes in the perpendicular velocity of ions and the presence

of a parallel force on those ions, are generic to all magnetoplasma configurations with

a perpendicular variation in field line direction that are perturbed by MHD waves.

The mechanism is thus not restricted to the case of a two-dimensional magnetic null.

Indeed, the interpretation presented indicates that the mechanism is ineffective close

to the null, since the local Alfvén speed vanishes at that point (cf. Eq. 4.86). It

is, however, convenient to use a two-dimensional X-point equilibrium since such a

configuration has the essential property of having magnetic field lines that change

direction in the frame of a particle moving across them while being sufficiently sim-

ple that exact analytical solutions of the linearised cold plasma MHD equations can

be found. Porter and co-workers [40] noted that the source of MHD waves in the

corona could lie either in the photosphere or the corona itself. In the particular

context of X-point geometry, one may conjecture that inward-propagating waves

could have originated from mode conversion of shear Alfvén waves driven by photo-

spheric convection, while outward-propagating waves could have been generated as

a result of non-steady magnetic reconnection in the vicinity of the null. However,

the propagation direction of the wave is essentially irrelevant in the model as far as

heating and particle acceleration are concerned: the process we have identified is

thus generic to both of the broad categories of coronal heating scenario that have

been discussed in the literature (namely, dissipation of remotely-generated waves

and local reconnection). The model is also applicable to late-phase heating in flares,

although in this case it is more probable that the fast wave in question would have

originated from local reconnection.



“With half the race gone, there is

still half the race left to go”

Murray Walker

Chapter 5

Test Particle Simulations of

Collisional Impurity Transport in

a Large Aspect Ratio Tokamak

Plasma

Note: Material in this (and the following) chapter has been published in the journal

Plasma Physics & Controlled Fusion. The reference is:

McKay R J, McClements K G, Thyagaraja A, and Fletcher L: “Test-particle Simu-

lations of Collisional Impurity Transport in Rotating Spherical Tokamak Plasmas”

Plasma Phys. Control. Fusion 50, 065017 (2008)

5.1 Introduction

In our fast wave proton simulations it was not neccessary to include the effects

of collisions, as discussed previously. However, our next aim is to model collisional

transport of impurity ions in a tokamak, and for this we need to introduce collisional

effects to the CUEBIT code, as discussed in Chapter 3. In this chapter we discuss this

and spend some time ensuring that the code functions as it is supposed to, and we
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make sure the code reproduces the effects of standard Coulomb collisions by bench-

marking it against an analytically-derived transport equation. In Chapter 6 radial

profiles of the bulk plasma density n and temperature T , upon which the collision

time τ depends, will be specified, but for now, for the purposes of benchmarking the

code, a single value for τ will be stipulated.

5.2 Conservation of pϕ in Collisionless Orbits

In Chapter 2 we showed that the quantity pϕ = mRvϕ + Zeψ is conserved in an

axisymmetric field in the absence of collisions - see Eq. 2.68. Additionally, in

Chapter 4 we discussed the conservation of longitudinal canonical momentum pz

in a perturbed two-dimensional X-point configuration, and how we tested CUEBIT

to ensure this was replicated in the test particle simulations. Similarly we can

test CUEBIT’s conservation of pϕ, in an axisymmetric field and in the absence of

collisions: like pz in the perturbed X-point configuration, this quantity is not quite

so well-conserved as energy is in CUEBIT, but, provided the timestep is sufficiently

short, we expect it to be conserved to an acceptable level of accuracy.

We check that CUEBIT is performing as we require it to by applying it to colli-

sionless test particles in the specific, simple case of a non-rotating, large aspect ratio

tokamak with circular flux surfaces. We must specify the major and minor radii,

R0 and a, as well as the toroidal field at the magnetic axis R = R0. We also need

to choose a function for the poloidal flux - for this purpose we use the following

expression:

ψ = ψ0

[
(R−R0)

2 + Z2
]
, (5.1)

where the plasma boundary lies at r = [(R − R0)
2 + Z2]1/2 = a. To determine

an appropriate value for ψ0 we need to consider the plasma safety factor, qs, as

introduced in Chapter 2. We simulate a fully-ionised carbon ion (Z = 6, A = 12,

where Z and A are the atomic number and mass number respectively) in a JET-like

plasma with R0 = 3m, a = 1m, B0 = 3T (where B0 is the toroidal magnetic field at

R = R0), and qs = B0/2ψ0 = 3. The carbon ion is launched at major radius R =
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3.5m in the midplane (Z = 0), with velocity components vR = vϕ = 2×106ms−1 (the

launch point and velocity components are chosen entirely arbitrarily). The particle

is simulated for 3×104 timesteps, where each timestep is taken to be one-tenth of the

Larmor period of the particle at the magnetic axis (this corresponds to a physical

time of approximately 0.13 milliseconds). Figure 5.1 shows the orbit projected onto

a poloidal cross-section of the plasma. Figures 5.2 and 5.3 plot the variation in

fractional deviation of energy, ∆E/E, and toroidal canonical momentum, ∆pϕ/pϕ

with time.

Figure 5.1: Orbit of C6+ impurity in plasma with JET-like parameters, launched from

R = 3.5m, Z = 0 with vR = vϕ = 2× 106ms−1, vZ = 0 and simulated for 30000 timesteps

where each timestep is one-tenth of a Larmor period.

We see that, as we saw in the previous Chapter, the energy is effectively conserved

to a very high level, with variations only of order of 1 part in 1014. We also see

that the canonical momentum is conserved, less well than the energy (about 8 or 9

orders of magnitude less) but still to a sufficient degree. This is as a result of this

conservation not being physically intrinsic in the code - the important point to note

is that pϕ is an exact invariant of the Lorentz force equation, but is not an exact

invariant of the finite difference approximation to the Lorentz force equation that

we are using. The pϕ component varies on two timescales, one very short (due to

the very short timescales associated with the Larmor orbits) and one longer (due
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Figure 5.2: Variation of fractional deviation in energy for the C6+ ion shown in Figure

5.1.

Figure 5.3: Fractional variation in toroidal canonical momentum pϕ for the C6+ ion whose

orbit is shown in Figure 5.1.

to the periodic nature of the particle moving from the stronger field inner region to

the weaker field outer region of the tokamak).

It is of interest to investigate how varying the size of the timestep ∆t affects

conservation of pϕ: Figures 5.4 and 5.5 show the result of increasing the timestep to

half a Larmor period and 1 Larmor period respectively (this has no effect on energy

conservation). In the latter figure we see that pϕ variance is beginning to reach

significant levels - which increase over time - and thus the output of the code may
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become increasingly unphysical. So although it may be tempting to increase the

timestep to simulate longer timescales (or alternatively simulate the same timescale

with fewer timesteps and decrease the computational resources needed), there is a

trade-off in the accuracy of the results obtained, which must always be borne in

mind. For this reason our simulations generally use a timestep ∆t of one-tenth of a

Larmor period.

Figure 5.4: Fractional variation in toroidal canonical momentum pϕ for the C6+ ion shown

in Figure 5.1, simulated with a timestep ∆t equal to half a Larmor period.

Figure 5.5: Fractional variation in toroidal canonical momentum pϕ for the C6+ ion shown

in Figure 5.1 simulated with a timestep ∆t equal to one Larmor period.
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5.3 Testing Thermalisation in Collisional Code

Before investigating the collisional transport of impurity ions in a rotating spherical

tokamak, we test the collisional version of CUEBIT by applying it to test particles

in the same plasma equilibrium as before, assuming a constant specified collision

time and E = 0, and comparing the output to a particular analytic solution of

the transport problem. For this purpose we use the expression for poloidal flux

introduced in the previous section, with

ψ0 =
µ0R0Ip

4πa2
(5.2)

where µ0 is the permeability of free space and Ip is the plasma current. We again

take RBϕ ≡ R0B0 to be a constant.

A test was performed using the same JET-like parameters as previously, with a

plasma current Ip = 3MA (giving a slightly lower value for the plasma safety factor,

qs = 1.67). An artificially low value was adopted for the collision time in order to

minimise the impact of modifications to purely classical transport arising from drift

orbit effects: τ was set equal to 10−6s . This is still much longer than the particle

cyclotron period (∼ 40ns). A total of 104 fully ionised carbon ions (C6+) were

launched from the magnetic axis at t = 0 with a Maxwellian velocity distribution at

T = 100 eV. The temperature specified in the variance of the noise terms (given by

Eq. 3.16) was 1 keV. The bulk ions were assumed to have zero net toroidal rotation,

i.e. vϕ equal to zero. The mean velocity components and temperatures of the C6+

distribution were computed after the simulation completed 50 collision times - the

results of this are shown in Table 5.1.

The mean velocity components are of the order of 1% of the thermal velocity,

and the fractional deviations of the temperature from the expected value are also

around 1% or less: this seems to be consistent with Poisson statistics for 104 particles

(
√

N/N=0.01), and so the first and second moments of the simulated distribution

appear to be consistent with relaxation to the expected Maxwellian - thus we con-

clude that our treatment of collisions produces thermalisation of test particles to

the expected distribution. We can check further that this is the case by computing
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Table 5.1: Flows and temperatures computed from first and second moments of C6+

velocity distribution after 50 collision times in JET-like plasma

Quantity Value Units

< vx > 575 ms−1

< vy > 787 ms−1

< vz > -158 ms−1

Tx 0.992 keV

Ty 1.002 keV

Tz 1.004 keV

the skewness and kurtosis statistics. If these are small compared to unity then the

distributions are close to being truly Maxwellian. We use the following expressions

for sample skewness g1 and kurtosis g2, respectively

g1 =
1
N

∑N
i=1 (vi − v̄)3

[
1
N

∑N
i=1 (vi − v̄)2

]3/2
(5.3)

g2 =
1
N

∑N
i=1 (vi − v̄)4

[
1
N

∑N
i=1 (vi − v̄)2

]2 − 3, (5.4)

where vi denotes a velocity component of the ith particle in the simulation and v̄

denotes the mean value of that velocity component, and display the results in Table

5.2.

Table 5.2: Skewness and kurtosis statistics of C6+ velocity distribution

vx vy vz

skewness -4.9×10−2 9.6×10−3 2.2×10−3

kurtosis -5.3×10−2 2.0×10−2 6.9×10−2

The fact that these values are much less than unity reinforces our confidence

that the collisional scheme we employ produces the desired results, at least as far

as the thermalisation of the impurity ions is concerned. We still need to benchmark

our scheme against the analytic solution of the transport equation, which will be

derived in Section 5.5.
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5.4 Particle Orbits in Presence of Collisions

To illustrate the effect of collisions on the impurity ions in the tokamak, we plot the

orbit of one of the particles simulated in the previous section, but for a longer time

(about 107 timesteps, which corresponds to approximately 40 milliseconds) in order

to show the ion migrating across the magnetic flux surfaces. Figures 5.6, 5.7 and 5.8

show the resulting trajectories when the collision time τ is set equal to 10−7, 10−6

and 10−5 seconds respectively. The bulk ion temperature is 1 keV as before. In each

case the initial velocity of the carbon impurity ion is the same: vR = 2.9×104 ms−1,

vϕ = 0, vZ = −1.5 × 105 ms−1. We see that the particle undergoes a random walk

in coordinate space, but the aggregate radial excursion from the initial position, r,

clearly diminishes as the collision time is increased, as seen in Figure 5.9, and as

expected from the classical diffusivity D⊥ ∝ τ−1 as discussed in Section 2.5.

Figure 5.6: Orbit of C6+ impurity ion in plasma with JET-like parameters, launched

from the magnetic axis R = R0, Z = 0 with an initial velocity as given in the text and

simulated for approximately 40 ms. The collision time τ is set equal to 10−7 seconds.
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Figure 5.7: Orbit of C6+ impurity in plasma with JET-like parameters, launched from

the magnetic axis R = R0, Z = 0 with an initial velocity as given in the text and simulated

for approximately 40 ms. The collision timescale τ is set equal to 10−6 seconds.

Figure 5.8: Orbit of C6+ impurity in plasma with JET-like parameters, launched from

the magnetic axis R = R0, Z = 0 with an initial velocity as given in the text and simulated

for approximately 40 ms. The collision timescale τ is set equal to 10−5 seconds.
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τ (secs)

r(m)

Figure 5.9: Aggregate radial excursion r from the magnetic axis of a C6+ impurity ion

versus collision time τ . The initial velocity of the particle is given in the text and the

simulation time is approximately 40 ms.

We can understand the migration of the particle by comparing the collision time

to that of the time taken to perform a passing orbit. For strongly-passing particles,

the frequency of poloidal rotation is given by (see Wesson [20]) ωp = (Bθ/B)v‖/r

and the time taken to complete a poloidal orbit of the tokamak in the absence of

collisions is of the order of τp = 2π/ωp. By calculating the value of τp for the particle

whose trajectory is plotted in Figure 5.8 and comparing it to the actual (prescribed)

collision time for that particle (10−5 seconds), as we see in Figure 5.10, then it is

clear that, although for large periods of the time the particle collides on a timescale

shorter than the passing orbit timescale, there are some periods when the converse

is true. During these intervals the ion remains close to a given flux surface. The

important thing to note is that whilst this is happening, the particle is not colliding

with the bulk ions and thus not migrating across the flux surfaces. If the collision

time τ is decreased to τ = 10−6s, the periods where the ion is travelling on a trapped

orbit are much shorter and much less frequent and thus the radial migration of the

particle is greatly accelerated (resulting in the type of trajectory seen in Figure 5.7).

Decreasing τ still further results in the particle not being in the regime τp < τ at

all, instead simply colliding continuously in the random walk we see in Figure 5.6.
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Figure 5.10: Comparison of the passing orbit timescale τp (solid line) against the pre-

scribed collision time τ = 10−5s (dashed line) for the C6+ impurity ion whose trajectory

is displayed in Figure 5.8.

5.5 Testing the Code Against Classical Transport

Theory

The problem of collisional test particle transport in a uniform large aspect ratio

tokamak plasma can be solved analytically as follows. In Chapter 2 we noted that

a simple random walk argument leads to the following expression for the diffusion

rate of charged particles across the magnetic field:

D⊥ ∼ r2
L

τ
(5.5)

where rL = (T/mZ)1/2mZ/ZeB is the typical ion Larmor radius. By definition, τ is

the time taken for a particle to be deflected by a large angle due to collisions: when

such a deflection occurs, it is evident that the particle’s guiding centre can move

across the magnetic field by a distance of order rL. In toroidal plasmas of finite

aspect ratio A = R0/a, the diffusivity is enhanced by neoclassical effects, but the

above equation is applicable to test particles undergoing purely collisional transport

in the limit A → ∞. Taking D⊥ to be constant, and neglecting sources and sinks,

the temporal evolution of the test particle density nZ is then given by a simple
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diffusion equation of the form

∂nZ

∂t
= ∇ · (D⊥∇nZ) =

D⊥
r

∂

∂r

(
r
∂nZ

∂r

)
, (5.6)

where r = [(R − R0)
2 + Z2]1/2 is minor radial distance from the magnetic axis at

R = R0, Z = 0. This equation has separable solutions of the form

nZ = n0 exp
(−γ2D⊥t/a2

)
J0(γr/a) (5.7)

where γ is an arbitrary constant, and J0 is the Bessel function of order zero. However,

this expression only gives the complete solution if we choose the initial profile to be of

the form nZ(0, r) ∝ J0(γr/a). For an arbitrary initial profile nZ(r), solutions of Eq.

5.7 satisfying the boundary condition nZ(a) = 0 can be expressed as Fourier-Bessel

series of the form [70]

nZ(r, t) =
∞∑
i=1

n0i exp
(−γ2

i D⊥t/a2
)
J0

(
γi

r

a

)
, (5.8)

where γi is the i-th positive zero of J0. If we set t = 0, and multiply by xJ0(γjx)

where x = r/a, this gives

nZ(r, 0)xJ0(γjx) =
∞∑
i=1

xn0iJ0(γix)J0(γjx). (5.9)

Now integrating with respect to x, and making use of the orthogonality relation [71]

∫ 1

0

xJα(xuα,m)Jα(xuα,n)dx =
δm,n

2
[Jα+1(uα,m)]2 , (5.10)

which holds if uα,n is the nth positive zero of Jα, results in

∫ 1

0

nZ(r, 0)xJ0(γjx) =
1

2
n0iJ

2
1 (γj)δij, (5.11)

where δij is the Kronecker delta symbol and J1 is the Bessel function of order 1.

Hence the coefficients in Eq. 5.11 are given by

n0i =
2

J2
1 (γi)

∫ 1

0

xJ0(γix)nZ(ax, 0)dx. (5.12)
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We can evaluate these coefficients for the case in which all the minority ions initially

lie at the magnetic axis r = 0, which we can represent by writing:

nZ(r, 0) = n0δ(r)/r. (5.13)

where δ is the Dirac delta function and n0 is a constant that determines the total

number of minority ions initially in the system, N0. By definition

N0 =

∫

V

nZ(r, 0)dV (5.14)

where, the volume element is, in the limit of very large aspect ratio R0/a,

dV = 2πR0 × 2πrdr = 4π2R0rdr (5.15)

and hence

N0 = 4π2R0

∫ a

0

rnZ(r, 0)dr (5.16)

Substituting Eq. 5.13 into 5.16 gives

N0 = 4π2R0n0

∫ a

0

δ(r)dr = 2π2R0n0 (5.17)

using the fact that

∫ a

0

δ(x)dx = 1/2, (5.18)

and hence

n0 =
N0

2π2R0

(5.19)

and thus

nZ(r, 0) =
N0δ(r)

2π2R0r
. (5.20)

Equation 5.8 then has the form

nZ(r, t) =
∞∑
i=1

J0(γir/a)

exp(γ2
i D⊥t/a2)

2

J2
1 (γi)

∫ 1

0

xJ0(γix)
N0δ(ax)

2π2R0ax
dx. (5.21)
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Making the dummy variable subsitution y = ax gives

nZ(r, t) =
∞∑
i=1

J0(γir/a)

exp(γ2
i D⊥t/a2)

1

J2
1 (γi)

∫ a

0

J0(γiy/a)
N0δ(y)

π2R0a2
dy. (5.22)

and, using Eq. 5.18 and J0(0) = 1, this reduces to

nZ(r, t) =
N0

2π2R0a2

∞∑
i=1

J0(γir/a)

J2
1 (γi) exp(γ2

i D⊥t/a2)
(5.23)

After a few collisional diffusion times only the J0(γ1r/a) term in this expansion will

contribute significantly, and nZ then decays in a purely exponential fashion, the

associated confinement time being τc = a2/γ2
1D⊥ ' 0.17(a2/r2

L)τ (since γ1 ' 2.41).

In setting nZ = 0 at r = a we have effectively assumed that the diffusion rate

outside this radius is infinite. This can be simulated in CUEBIT by removing a

particle permanently from the system as soon as it crosses the plasma boundary.

In order to compare the predictions of classical transport theory with results

from CUEBIT in a way that minimises statistical noise in the latter, we compute the

temporal evolution of the total number of particles remaining in the system, N(t):

N(t) = 4π2R0

∫ a

0

rnZ(r, t)dr. (5.24)

Substituting Eq. 5.23 into 5.24 results in

N(t) =
2N0

a2

∞∑
i=1

1

J2
1 (γi) exp(γ2

i D⊥t/a2)

∫ a

0

rJ0(γir/a)dr (5.25)

If we put x = γir/a then rdr = (a2/γ2
i )xdx and then the integral in Eq. 5.25

becomes

∫ a

0

rJ0(γir/a)dr =
a2

γ2
i

∫ γi

0

xJ0(x)dx (5.26)

and making use of the identity

d

dx
(xpJp(x)) = xpJp−1(x)

we see that
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a2

γ2
i

[xJ1(x)]γi

0 =
a2

γi

J1(γi) (5.27)

and hence

N(t) = 2N0

∞∑
i=1

exp[−γ2
i D⊥t/a2]

γiJ1(γi)
. (5.28)

The assumption of uniform D⊥ used to derive this result requires in general that T ,

B and τ do not vary across the plasma.

We can prescribe constant T and τ in the collisional terms, but spatial variations

in B are unavoidable in a tokamak of finite aspect ratio. To minimise these variations

we set a = 1m and R0 = 102m, giving an aspect ratio A = 102. The toroidal field

B0 was set equal to 3T, and the plasma current Ip = 30kA, giving a safety factor

at the plasma edge qs ' 2πa2B0/µ0R0Ip ' 5. As before, τ was set equal to 10−6s.

A total of 104 fully ionised carbon ions (C6+) were launched from the magnetic axis

at t = 0 with a Maxwellian velocity distribution at T = 1 keV. The dashed curve

in Figure 5.11 shows the temporal evolution of the number of simulated C6+ ions

remaining in the plasma. The solid curve in this figure shows N(t) computed using

Eq. 5.28. It can be seen that the theoretical prediction represented by this equation

is in excellent agreement with the particle simulation results: the two curves deviate

N(t)

t (s)

Figure 5.11: Computed N(t) obtained using CUEBIT (dashed curve) and Eq. 5.28 (solid

curve) for tokamak with aspect ratio R0/a = 102. The collision time was set equal to

τ = 10−6s and 104 particles were used in the simulation.
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from each other by around 1% at most, which is again consistent with the expected

level of statistical noise.

When the collision time is increased to 10−5s we find that the particle confine-

ment time inferred from CUEBIT is significantly shorter than the classical prediction

(see Fig. 5.12). The model used to derive Eq. 5.28 is based on the premise that

particles can only be transported across the magnetic field by collisions, whereas

particles simulated using CUEBIT undergo grad-B and curvature drifts in any toka-

mak equilibrium with finite aspect ratio, however large. The orbit widths of trapped

C6+ ions in the case of the results shown in Figure 5.11 are comparable to or greater

than the plasma minor radius, and therefore such ions can be advected out of the

plasma due to grad-B and curvature drifts (in the positive vertical direction). The

drift timescale in this case is comparable to the confinement time, whereas in the

case of the results shown in Figure 5.11 drift effects are negligible because the drift

timescale is much longer than the confinement time. This is reflected by the fact

that the poloidal distribution of C6+ ions at the end of the simulation with τ = 10−5s

exhibits a strong up/down asymmetry that is not observed in the simulation with

τ = 10−6s . Figure 5.12 indicates that drifts can cause the transport of test particles

to be enhanced above the classical level even when, as in this case, the particles

N(t)

t (s)

Figure 5.12: Computed N(t) obtained using CUEBIT (dashed curve) and Eq. 5.28 (solid

curve) for tokamak with aspect ratio R0/a = 102. The collision time was set equal to

τ = 10−5s and 103 particles were used in the simulation.
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lie well within the Pfirsch-Schlüter regime throughout the plasma and the tokamak

aspect ratio is much larger than unity.

We carried out a second set of simulations with aspect ratio A = 104 (R0 = 104m,

a = 1m) and very low current (Ip = 1A), thereby ensuring that the magnetic field

was very nearly straight and uniform throughout the plasma: the ratio of poloidal

to toroidal magnetic field was less than 10−7 and the fractional variation across the

plasma of the flux surface-averged toroidal field was of the order of 10−8. The other

parameters were identical to those used previously, with collision times of 10−5s and

10−4s. Results obtained with the shorter value of τ are shown in Figure 5.13; it is

clear that once again there is very good agreement between theory and simulation.

N(t)

t (s)

Figure 5.13: Computed N(t) obtained using CUEBIT (dashed curve) and Eq. 5.28 (solid

curve) for tokamak with aspect ratio R0/a = 104. The collision time was set equal to

τ = 10−5s and 103 particles were used in the simulation.

The difference between the two curves arising from statistical noise is somewhat

greater than that in Figure 5.11 due to the fact that fewer particles were used in the

simulation. A similar level of agreement was found in the simulation with τ = 10−4s.

We have thus demonstrated that the scheme used to represent collisions in CUEBIT

leads to classical test particle transport in the cylindrical limit, and can be applied

with confidence to realistic tokamak scenarios.
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It’s like your mind is on the blink

You sink deep and time just flew”

The Lightning Seeds

“Fishes On The Line”

Chapter 6

Test Particle Simulations of

Collisional Impurity Transport in

Rotating Spherical Tokamak

Plasmas

6.1 Introduction: Our Work in Context

The use of high power tangential neutral beam injection (NBI) to deliver heat and

angular momentum to plasmas in the MAST spherical tokamak has resulted in

toroidal rotation velocities in excess of the sound speed in the plasma core [72].

The beamline geometry in MAST is fixed, but the direction of the plasma cur-

rent Ip can be reversed so that the ions (deuterons) in a given beamline are born

with toroidal velocity components in the counter-Ip direction rather than the more

usual co-current direction. Despite the fact that a high proportion of beam ions

are promptly lost in such cases, the use of counter-current NBI in MAST has pro-

duced high performance discharges, with energy confinement times greater than

those achieved with co-current beam injection [72]. Bulk plasma toroidal rotation

velocities in counter-NBI MAST plasmas are typically higher than those in plasmas

137
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with co-current injection. Losses of counter-injected beam ions induce an inward-

directed radial bulk ion return current, and hence a torque in the counter-current

direction, which spins the plasma up to sonic Mach numbers M of order unity in

the plasma core [73,74,75]. There is evidence that the improvement in energy con-

finement brought about by reversing the beam injection direction in MAST can be

attributed to micro-turbulence suppression due to radial shear in the toroidal flow

[72]. Toroidal rotation in tokamaks can also be beneficial in terms of suppressing

MHD instabilities, including sawtooth oscillations [76], neoclassical tearing modes

[77], and resistive wall modes [78].

Although rotating plasmas have attractive features with regard to the possibility

of micro-turbulence suppression and MHD stability, the irreducible transport arising

from particle collisions (i.e. neoclassical transport) can be enhanced rather than

diminished by the presence of toroidal flow. For banana regime ions in a pure

large aspect ratio plasma, Hinton and Wong [79] showed that rotation increases

the neoclassical thermal conductivity by a factor 1 + O(M2). This analysis was

subsequently extended to the case of an impure large aspect ratio plasma by Wong

[80], who showed that the neoclassical transport coefficients of impurity ions are also

enhanced in the banana regime. In general, as noted at the end of Chapter 2, it is

desirable that impurity ions, specifically, are transported rapidly out of a burning

plasma, since they dilute the fusion fuel.

Helander [81] pointed out a hitherto-overlooked mechanism whereby rotation

could increase neoclassical banana regime transport, arising from the fact that the

centrifugal force in a spinning plasma causes heavy impurity ions to accumulate on

the low magnetic field side of each flux surface. At about the same time Romanelli

and Ottaviani investigated the consequences of this effect for Pfirsch-Schlüter regime

transport [82]. Low field side accumulation of impurity ions, observed experimen-

tally using soft X-ray tomography in ASDEX [83] and JET [84], and reconsidered

theoretically by Wesson [85], causes neoclassical particle diffusivities to be enhanced,

since they scale inversely with the square of the field. In the case of ASDEX the

measured impurity density also exhibited a substantial up/down asymmetry in the

grad-B and centrifugal drift directions [83]. Hsu and Sigmar [86] considered the
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Pfirsch-Schlüter regime in a strongly rotating plasma and showed that up/down im-

purity density asymmetry can be driven by parallel (to the magnetic field) friction

between bulk and impurity ions. Fülöp and Helander [87] examined neoclassical

transport in rotating impure plasmas with steep temperature and density profiles,

and found that the impurities can accumulate on the inboard (high field) side of a

flux surface if the gradients are sufficiently large. Recently, Newton and Helander

[88] have demonstrated that the poloidal redistribution of impurity ions in a rotating

plasma can increase significantly neoclassical momentum transport.

In view of the substantial body of literature on collisional transport in rotating

impure tokamak plasmas, it is worthwhile adopting a direct numerical approach to

this problem. To this end we use CUEBIT to study the transport of carbon impurity

ions in collisional MAST-like plasmas with and without toroidal flows. The Monte

Carlo test particle method provides an alternative to the usual approach based on the

drift kinetic equation: it does not yield analytical results, but it has the considerable

advantage of requiring no approximations to be made apart from the test particle

assumption. Thus, the collisionality regime of the trace minority ions, the profiles

of the bulk plasma particles with which they are colliding, and the equilibrium mag-

netic configuration, can all be prescribed arbitrarily. Like experiments, test particle

simulations can yield unanticipated results that stimulate further, analytical, in-

vestigation. Particle simulation techniques, generally based on the guiding-centre

approach, have previously been employed to study neoclassical transport in the core

[89,90], edge [91] and internal transport barrier [92] regions of tokamak plasmas.

Lin and co-workers [89] carried out gyrokinetic particle simulations of subsonically-

rotating large aspect ratio plasmas, finding approximate agreement with the toroidal

flow enhancement of neoclassical heat transport predicted by Hinton and Wong [79].

In this Chapter we use our full orbit code to investigate collisional transport in the

transonic, low aspect ratio regime.
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6.2 Model

6.2.1 Equilibrium

The presence of transonic toroidal flows means that the inertial and pressure gradi-

ent terms in the MHD momentum balance equation are necessarily of comparable

magnitude, and the Grad-Shafranov equation determining the equilibrium poloidal

flux ψ must be generalised to describe such flows [93]. Savenko et al. [94] solved this

generalised equation numerically for a set of MAST-like equilibria with essentially

identical boundaries and toroidal Mach numbers in the plasma core Mϕ ranging

from zero up to and exceeding unity. It was found that the rotation produced an

outward shift of the magnetic flux surfaces inside the plasma, although the shift was

small: less than 4cm (around 6% of the plasma minor radius) at the magnetic axis

for Mϕ = 1. For simplicity, we neglect the relatively small effect of transonic toroidal

flows on flux surfaces and use the same equilibrium for the stationary and rotating

cases. Specifically, we use the following solution of the Grad-Shafranov equation for

stationary plasma equilibria [21,22] introduced in Section 2.3 (Eq. 2.35):

ψ(R, Z) = ψ0

{
γ

8

[
(R2 −R2

0)
2 −R4

b

]
+

1− γ

2
R2Z2

}
, (6.1)

where the notation is identical to that introduced previously. The magnetic axis lies

at R = R0, Z = 0 and the inner and outer edges of the plasma in the midplane are

located at R = (R2
0 ± R2

b)
1/2. The parameter γ determines the plasma elongation,

with γ = 0.5 giving flux surfaces that are circular in the large aspect ratio limit and

γ → 1 giving flux surfaces that are highly elongated in the vertical direction [22].

The plasma boundary is defined by ψ = 0. If the plasma current is taken to be in

the negative ϕ direction then ψ0 is positive and ψ ≤ 0 throughout the plasma. As

we saw in Chapter 2, the poloidal flux ψ is defined such that

B = − 1

R

∂ψ

∂Z
eR + Bϕeϕ +

1

R

∂ψ

∂R
eZ , (6.2)

where Bϕ is the toroidal field and eR, eϕ, eZ are unit vectors in a right-handed

(R,ϕ,Z) coordinate system, with ϕ denoting toroidal angle. Equation 6.1 is a solu-
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tion of the Grad-Shafranov equation if RBϕ is constant, which we again assume, for

simplicity.

Although, as noted above, the effects of even transonic toroidal flows on flux

surfaces are fairly modest when the plasma boundary is held fixed, force balance

in the bulk ion and electron fluids requires the presence of an electric field which

must be taken into account when computing particle trajectories. Taking the limit

of vanishing electron mass, and assuming that electron temperature Te and ion

temperature Ti are both flux functions, Thyagaraja and McClements [95] showed

that the electrostatic potential associated with purely toroidal rotation in a two-fluid

plasma (i.e. a plasma with only trace quantities of impurity ions) is given by

Φ = Φ0(ψ) +
miTeΩ

2R2

2e(Te + Ti)
, (6.3)

where e is proton charge, Φ0 is a flux function, mi is bulk ion mass, and Ω is

the toroidal rotation rate. For simplicity we assume that the entire bulk plasma

is rotating as a single rigid body, so that Ω is a constant. For the case of purely

toroidal flows in the ideal MHD limit we have E + v ×B = 0 where

E = −∇Φ = −
(
eR

∂Φ

∂R
+ eϕ

1

R

∂Φ

∂ϕ
+ eZ

∂Φ

∂Z

)
(6.4)

is the electric field (in cylindrical coordinates) and v = ΩReϕ. In the axisymmetric

tokamak we are considering ∂Φ/∂ϕ is zero, and combining these equations with Eq.

6.2 gives

∂Φ

∂R
=

vϕ

R

∂ψ

∂R
, (6.5)

∂Φ

∂Z
=

vϕ

R

∂ψ

∂Z
, (6.6)

which, if vϕ/R = Ω is assumed to be uniform across the plasma, results in

Φ = Ωψ. (6.7)

Comparing Eqs. 6.3 and 6.7, we identify Φ0 with Ωψ. The second term on the

right hand side of Eq. 6.3, which can be regarded as a non-ideal correction term,
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is required in order to maintain quasi-neutrality when, as a consequence of the

centrifugal force associated with toroidal rotation, the electron and ion densities are

not constant on a given flux surface [85]. Despite the fact that this term is invariably

much smaller than the first term under tokamak conditions, it is essential to take it

into account since it is not a flux function; the electric field is therefore not purely

radial. The correction to the electric field produces a force in the inward major

radial direction, thereby reducing the effect of the centrifugal force. Indeed, since

the major radial component of the electric field is

ER = −∂Φ

∂R
= −ΩRBZ − Te

Ti + Te

miΩ
2R

e
, (6.8)

it follows that for the case of fully ionised impurities (Z/A ' 1/2 where Z, A

denote impurity ion charge state and mass number) in deuterium plasmas with

Ti ' Te, the electric force associated with the ideal MHD-violating part of Eq. 6.8

is approximately equal to one half of the centrifugal force mZΩ2R on co-rotating

impurity ions of mass mZ . Wesson [85] showed that for a trace impurity species

in a plasma with singly-charged bulk ions, the density distribution on a given flux

surface is of the form

nZ = nZ0 exp

[(
1− Te

Ti + Te

Z
mi

mZ

)
mZΩ2R2

2TZ

]
, (6.9)

where TZ is impurity ion temperature and nZ0 is a constant for the flux surface in

question; the impurity ion distribution across the entire plasma cross-section can be

modelled using this expression if nZ0 is taken to be a flux function.

For the purpose of computing impurity ion trajectories we also take into account

the presence of a toroidal electric field associated with the plasma loop voltage. This

field crosses on the poloidal magnetic field to give an inward-pointing E × B flow

that causes impurity accumulation in the plasma core even without rotation (the

Ware pinch effect, discussed in Chapter 2). It is sufficient for our purposes to include

a constant toroidal electric field directed in the plasma current direction, i.e. the

negative ϕ direction. Under steady-state conditions the loop voltage V in MAST is

typically a few volts [96]: we set Eϕ = V/2πR = 0.3Vm−1.
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6.2.2 Treatment of collisions

As we saw in Section 3.4, the CUEBIT code can be extended in a straightforward

way to include Coulomb collisions. We can extend to the case of a rotating plasma

by adding to the Lorentz force a drag term, resulting from collisions with bulk ions

whose average toroidal velocity vϕ = ΩR is nonzero, and a noise term that ensures

relaxation of the test particle population to a (co-rotating) Maxwellian distribution

whose temperature T is equal to that of the bulk ions. In the laboratory frame the

Lorentz force equation then takes the form

mZ
dv

dt
= Ze(E + v ×B)− mZ

τ
(v − vϕeϕ) + mZr(t). (6.10)

Here τ is the collision time (assumed to be velocity-independent) and r = (rx, ry, rz)

is a set of random numbers, chosen independently for each particle and at each time

step, with zero mean and variance

σ2 =
u2

i

τ∆t
, (6.11)

where ui = (2T/mZ)1/2 is the desired test particle thermal speed and ∆t is the time

step used in the code [35]. The presence of noise terms in the three components

of Eq. 6.10 ensures that collisional pitch angle scattering is taken into account.

For the case of counter-current rotation, produced in MAST by counter-current

neutral beam injection, vϕ > 0. The drag term on the right-hand side of Eq. 6.10

ensures that after a sufficiently long time the minority ions acquire the same mean

flow velocity as the bulk ions with which they are colliding, i.e. vϕeϕ. We neglect

collisions of the test particles with electrons and beam ions.

For the case of test particles interacting with a Maxwellian distribution of field

particles the collision time τ , often referred to as the slowing-down time, is given by

the expression [62]

1

τ
=

(
1 +

mZ

mi

)
Ψ(x)ν0, (6.12)

where x = miv
2/2T (with temperature T in units of keV), v being the test particle

speed in the mean rest frame of the field particles, the function Ψ is given by
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Ψ(x) =
2√
π

∫ x

0

t1/2e−tdt, (6.13)

and for singly-ionised field particles of density n

ν0 =
Z2e4n ln Λ

4πε2
0m

2
Zv3

, (6.14)

where ε0 is the permittivity of free space and ln Λ is the Coulomb logarithm. We

assume that the test particle mass mZ is large compared with the bulk ion mass mi;

if the test particles are Maxwellian-distributed with temperature T , we can then

take the limit x ¿ 1, in which case

Ψ ' 4

3
√

π

(mi

2T

)3/2

v3, (6.15)

and Eq. 6.12 reduces to

1

τ
=

m
1/2
i

mZ

Z2e4n ln Λ

6
√

2π3/2ε2
0T

3/2
. (6.16)

6.2.3 MAST simulation parameters

Unless otherwise specified, the parameters used in our MAST simulations are those

listed in Table 6.1. We computed the orbits of test particle carbon impurity ions for

three particular scenarios: Ω = 0, Ω = 2×105 rad s−1 (counter-current rotation) and

Ω = −2× 105 rad s−1 (co-current rotation). The bulk ion temperature and density

profiles used in the simulations are listed in Table 6.2, some of which are plotted

versus R in the midplane of the plasma in Figures 6.1 and 6.2. In each case n1 and

T1 are the edge bulk ion density and temperature respectively. The parameters n0

and T0 denote constants that, together with n1 and T1, determine the central bulk

ion density and temperature. The quantity ψ1 is the poloidal flux at the magnetic

axis. The exponential factor in the density profiles of models 4-6 is prompted by the

well-known result that the bulk ion density on a flux surface that is rotating rigidly

in the toroidal direction varies as [85]

ni ∼ exp

[
miΩ

2R2

2(Ti + Te)

]
. (6.17)
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Table 6.1: Basic parameters used in MAST simulations

Quantity Description Value Units

R0 major radius 0.964 m

ψ0 flux normalisation constant 0.9 Tm−2

γ plasma elongation constant 0.8 -

Rb positive constant 0.93 m

Z test particle charge state 6 -

∆t timestep normalised to Larmor period 0.1 -

log Λ Coulomb logarithm 15 -

n0 bulk ion density constant 5× 1019 m−3

n1 edge bulk ion density 1019 m−3

T0 bulk ion temperature constant 1 keV

T1 edge bulk ion temperature 0.1 keV

Table 6.2: MAST bulk ion temperature/density profiles

Model No. Temperature profile Density profile

1 T0 (ψ/ψ1) + T1 n0 (ψ/ψ1) + n1

2 T0 (ψ/ψ1) + T1 n0 (ψ/ψ1)
1/2 + n1

3 T0 (ψ/ψ1)
1/2 + T1 n0 (ψ/ψ1) + n1

4 T0 (ψ/ψ1) + T1 [n0 (ψ/ψ1) + n1] exp {miΩ
2(R2 −R2

0)/4T}

5 T0 (ψ/ψ1) + T1 [n0 (ψ/ψ1)
1/2 + n1] exp {miΩ

2(R2 −R2
0)/4T}

6 T0 (ψ/ψ1)
1/2 + T1 [n0 (ψ/ψ1)

1/2 + n1] exp {(miΩ
2(R2 −R2

0)/4T}
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Figure 6.1: Temperature profile T0(ψ/ψ1) + T1 (solid line) and T0(ψ/ψ1)1/2 + T1 (dashed

line) in the midplane of our MAST-like plasma.

Figure 6.2: Density profiles corresponding to models 1 (faint solid line), 2 (faint dashed

line), 4 (bold solid line) and 5 (bold dashed line) in the midplane of our MAST-like plasma.

We assume that Ti = Te ≡ T : in the density profiles of models 4-6, T is given

by the corresponding temperature profile in the second column of Table 6.2. The

chosen dependence on ψ of the model profiles in Table 6.2 is motivated primarily by

Thomson scattering measurements of electron temperature and density in MAST

plasmas with co-current and counter-current NBI (Akers et al. [72]). In discharges
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with co-current NBI, which have relatively low rotation rates, the density profile

is typically rather broad while the temperature profile is strongly peaked at the

magnetic axis. In contrast, discharges with counter-current NBI, and high (counter-

current) rotation rates, tend to have peaked density profiles and broader temperature

profiles. Although the various models listed in Table 6.2 are thus appropriate for

different rotation scenarios, we have carried out simulations for every combination

of profile model and rotation frequency, in order to separate effects arising purely

due to rotation from those associated with the choice of profile. It should be noted

that in models 4-6 the parameter n1 is only equal to the bulk ion edge density at

R = R0.

6.3 MAST Simulation Results

6.3.1 Confinement of C6+ ions

In each simulation the orbits of 104 impurity ions, initially at rest at the magnetic

axis (R = R0) were computed for at least one confinement time (determined by the

period taken for the number of confined ions to fall to 1/e of its initial value). Table

6.3 gives the confinement time obtained using CUEBIT for each model and rotation

scenario.

Table 6.3: Computed confinement time of trace C6+ ions in MAST (ms)

Model No. Stationary Counter-rotating Co-rotating

1 216.4 101.3 86.8

2 163.3 61.0 49.8

3 318.4 150.5 116.4

4 216.4 64.3 51.8

5 163.3 63.3 49.8

6 223.0 127.5 94.4

Before we discuss the results of Table 6.3, it is worth pointing out that, for the

counter-rotating and co-rotating scenarios with model 2 profiles, a total of four in-
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dependent simulations (each with 104 impurity ions) were carried out using different

random number seeds in order to quantify the accuracy of the figures - the results

of this are displayed in Table 6.4.

Table 6.4: Independent confinement times of C6+ ions for model 2 profile (ms)

Counter-rotating Co-rotating

60.96 49.97

60.87 50.50

61.30 49.59

60.77 48.94

The standard deviations of these values were computed, and found to be 0.33%

in the counter-rotation case and 1.15% in the co-rotation case. These figures are

again broadly consistent with the expected noise level in simulations with 104 parti-

cles. Having established that the results are statistically significant, we can discuss

their significance. Table 6.3 indicates that there is a strong dependence of confine-

ment time on the temperature and density profiles of the bulk plasma: broadening

the temperature profile for a given rotation scenario significantly increases the con-

finement time, while a broadening of the density profile generally degrades the con-

finement. Qualitatively, this trend is easily understood: since the central and edge

temperatures are fixed, a broadening of the temperature profile makes the plasma

on average less collisional, and hence increases the classical confinement time. A

broadening of the density profile has the opposite effect.

For every profile model, the impurity ions are optimally confined when the plasma

is non-rotating and least well-confined when it is co-rotating. The reduction in

confinement in the rotating cases could be due either to the deconfining effect of

centrifugal and E × B drifts, or an increase in neoclassical transport arising from

the fact that the ions are displaced outward by the centrifugal force, encounter

a lower magnetic field on average, and are thus subject to a higher neoclassical

diffusion rate since this scales as r2
L [81]. To determine which of these mechanisms

plays the dominant role, we plot in Figure 6.3 the positions of the ions inside the

plasma in (R,Z) space at the end of the simulation for the cases (a) Ω = 0, (b)
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Ω = 2 × 105 rad s−1 and (c) Ω = −2 × 105 rad s−1, using profile model number 1.

The black curves tracing out sectors of the plasma boundary indicate the poloidal

locations at which ions are lost from the system.

(a) (b) (c)

Figure 6.3: Distribution of final position of carbon impurity ions in (R,Z) plane for (a)

Ω = 0, (b) Ω = 2× 105 and (c) Ω = −2× 105 rad s−1.

Comparing these plots, it is clear that the ions are indeed strongly displaced

outboard by the net effect of the centrifugal force and the R-component of the

electric field (as discussed earlier, the latter offsets the former to some extent). This

suggests that our assumed profiles and parameters are such that the centrifugal

effect discussed by Wesson [85] is dominant over the effect discussed by Fülöp and

Helander [87] whereby steep density and temperature gradients can cause impurity

ions to accumulate on the inboard side. In the counter-rotating case all of the

impurity ion losses occur outboard of the magnetic axis; this is also true in the

co-rotating case, with the losses concentrated in an even narrower range of poloidal

angles. The fact that losses occur both above and below the midplane suggests that

the confinement degradation in the rotating cases is due mainly to an enhancement

in neoclassical transport, rather than being due to centrifugal and electric field

modifications to the drift velocity, although in all cases there is a significant up-

down asymmetry, suggesting that drifts are playing some role: most losses occur
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above the midplane, and all the vertical drifts (grad-B, curvature, centrifugal and

E × B) are in the positive Z-direction. Reversing the sign of Bϕ, we find in each

scenario that the poloidal distribution of losses is an almost exact reflection in the

midplane of that obtained in the Bϕ > 0 case.

Plotting similar figures to 6.3 for the other profile models in Table 6.2 gives

broadly similar results. The density profiles in the rotating cases look slightly odd

because of the presence of a density “spike” near the outboard edge, caused by the

fact that the temperature falls towards the outboard edge but the rotation rate does

not, resulting in the exponential factor becoming large. This rather highlights a

flaw with the rigid body rotation employed by our model and points to an area for

improvement in future work (and will be briefly discussed in Chapter 7.2). Given

that most of the particles are drifting in the vertical direction - either up or down,

but mostly up, most particles are being lost from the vessel at values of R further

inboard than where the density spike is located. However it is not the case for many

particles, and the increased density of the pedestal may be acting as a barrier to

particles escaping the plasma, resulting in the confinement times potentially being

slightly overestimated in the cases of models 4 and 5, though as we aim to investigate

the general trends and effects of varying the profiles, rather than trying to accurately

model confinement times, this does not overly concern us. This possible overestimate

of τc does not, however, change our belief that the centrifugal effect discussed by

Wesson is dominant over the effect discussed by Fülöp and Helander for the cases

of rotation given by profiles 4 and 5.

Another striking feature of the results listed in Table 6.3 is that confinement

invariably deteriorates when, everything else being equal, the sign of rotation is

changed from counter-current to co-current. This appears to be in qualitative agree-

ment with visible bremsstrahlung data from rotating MAST plasmas [72], showing

strong central peaking of effective charge (Zeff) in the counter-rotating case, and

also with much earlier experiments in the ORMAK [97] and PLT [98] tokamaks,

indicating that a reversal in the direction of beam injection from co-current to

counter-current, for a given level of beam power PNBI, produced a higher flux of

impurity radiation (because particles are not being lost so fast). Burrell et al. [99]
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proposed that this result can be explained by effects arising purely from rotation,

rather than the direct collisional interaction of impurity ions with the beam (we take

the former but not the latter into account in our simulations). Specifically, Burrell

et al. extended neoclassical theory to include the effects of inertial terms in the im-

purity ion momentum balance, which are important whenever the rotation velocity

is comparable to or greater than the minority ion thermal speed, and found that

co-rotation produces an outward radial particle flux while counter-rotation produces

an influx.

It should be noted that the absolute rotation rates of counter-injected NBI plas-

mas generally differ from those of co-injected plasmas with the same PNBI, and the

plasma profiles are also dissimilar. Moreover the impurity sources tend to be differ-

ent in the two injection scenarios, due to the fact that counter-injected ions are more

likely to be lost promptly and cause sputtering from plasma-facing components [72].

Particular care is therefore required when comparing theory with experiment in this

case. The results in Table 6.3 are consistent with the analysis in [99] insofar as

they show that impurity ions undergoing purely collisional transport in co-rotating

plasmas are significantly less well-confined than those in counter-rotating plasmas.

However, in deriving their result Burrell et al. assumed large aspect ratio, circu-

lar cross-section geometry, subsonic rotation, and high (Pfirsch-Schlüter) impurity

ion collisionality: none of these assumptions apply throughout the plasma in the

simulations in Table 6.3.

6.3.2 Effect of ion charge state

It is also of interest to examine the dependence of the confinement time on the impu-

rity ion charge state. The appearance of Z in the exponent on the right hand side of

Eq. 6.9 indicates that the inboard-outboard asymmetry in the minority ion density

is greatest for low charge states. In view of the transport enhancement mechanism

identified by Helander [81], this suggests that singly-ionised carbon ions are likely

to be less well-confined than C6+ ions in rotating plasmas. To test this hypothesis,

we ran simulations similar to those carried out previously, utilising the same den-

sity and temperature profiles, but for singly-ionised rather than fully-ionised carbon
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ions. We used two of the previously-introduced models for temperature and density,

namely models 1 and 5: the results are shown in Table 6.5. It can be seen that the

difference in confinement time between counter- and co-rotation is considerably more

pronounced for C+ ions than it is for fully-ionised carbon ions, with counter-rotation

confining the ions for a time approaching almost double that of the co-rotation case.

It is also interesting to note that changing the density/temperature profiles seems to

have much less of an effect on singly-ionised ions than fully-ionised ones, particularly

in the stationary and co-rotating cases.

Table 6.5: Confinement times of singly- and fully-ionised carbon ions (ms)

Model No. Z Stationary Counter-rotating Co-rotating

1 1 90.9 64.3 36.4

1 6 216.4 101.3 86.8

5 1 90.1 57.2 35.4

5 6 163.3 63.3 49.8

The reduction in confinement time brought about by changing Z from 6 to

1 is similar in the stationary and co-rotating cases, and greater than that found

in the counter-rotating scenario. This suggests that the Z-dependence of the in-

board/outboard impurity ion density asymmetry in a rotating plasma, given by Eq.

6.9, has little effect on confinement. Since both r2
L and τ scale as 1/Z2, the classical

particle diffusivity given by Eq. 5.5 is independent of Z. However, whereas fully-

ionised carbon ions are in the Pfirsch-Schlüter or plateau regimes across the greater

part of the plasma in our simulations, C+ ions are generally in the banana regime

since they have a much lower collision frequency. For these ions the neoclassical

enhancement of D⊥ above the classical value is much greater than it is for C6+ (see

Figure 2.13); this appears to account for the reduction in confinement times brought

about by replacing Z = 6 with Z = 1. Examining individual particle trajectories

helps make this point clearer. Figure 6.4 displays the full orbit of a C+ ion in a

co-rotating plasma with bulk ion profile model number 1. By plotting only every

tenth timestep, we can more clearly resolve the large scale motions of this ion, which

we show in Figure 6.5, along with the orbit of a fully-ionised carbon impurity ion in
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Figure 6.4: Fully resolved orbit of a C+ impurity ion in co-rotating plasma with bulk

ion profile number 1, launched from magnetic axis and simulated for approximately 1.8

milliseconds.

a co-rotating plasma in order to compare the two. We see that, once the C+ ion has

migrated out of the core of the plasma, it quickly begins to undergo wide banana

orbits which take it very close to the plasma edge. The C6+ impurity ion does not

execute wide banana orbits, but instead is slowly deflected by collisions across flux

surfaces. The simulation time of each carbon ion in Figure 6.5 is rather arbitrary,

and primarily designed to show how the C+ ion diffuses across the flux surfaces to

the outboard edge much quicker than the C6+ ion (although the actual confinement

times of both are comparable to those given in Table 6.5). Similar behaviour is also

observed in the counter-rotating case (Figure 6.6).
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Figure 6.5: Comparison of orbits of C+ (left) and C6+ (right) impurity ions in co-rotating

plasma with bulk ion profile number 1, launched from magnetic axis and simulated for

approximately 1.8 and 10 milliseconds respectively.

As we noted above the difference in confinement time τc between the 2 rotation

scenarios was more pronounced for singly-ionised ions. This may be because the less-

collisional C+ ions are more affected by the radial electric field, which is directed

inwards towards the plasma core in the counter-rotating case and outwards towards

the plasma edge in the co-rotating case, and so smaller banana orbit “arcs” are

produced in the co-rotating case. Comparing the orbits shown in the left-hand

panels of Figures 6.5 and 6.6 we see that the C+ ion in the co-rotating plasma is

initially more deeply trapped, i.e. it spends very little time inboard of the magnetic

axis, unlike the ion in Fig 6.6, the counter-rotating case, which clearly spends a

sizeable proportion of its lifetime on the inboard side of the tokamak (noting, of

course, that the timescales on both plots are not the same, but that the orbit of

the C+ ion in the co-rotating plasma does not exhibit any significantly different

behaviour in the remaining course of its orbit). However it should be noted that

this behaviour is not necessarily typical for C+ ions in a counter-rotating plasma, as
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Figure 6.6: Comparison of orbits of C+ (left) and C6+ (right) impurity ions in a counter-

rotating plasma with bulk ion profile number 1, launched from magnetic axis and simulated

for approximately 15.7 and 32.2 milliseconds respectively.

illustrated by Figure 6.7. The C+ ions travel down a potential well towards the edge

of the plasma in the co-rotating case and are lost much faster than ions of the same

species in the counter-rotating plasma. The C6+ ions are more collisional and this

additional effect is likely to be much less significant for them. In practice, given that

the ionisation potential of C+ is around 24 eV, and the collision timescale is short,

such ions are unlikely to exist in this ionisation state for long in MAST plasmas

with core temperatures of around 1 keV.

6.3.3 Effect of toroidal rotation velocity

So far we have considered only the case in which the toroidal rotation speed is

approximately equal to the local sound speed of the plasma, i.e. M ∼ O(1). It

is useful to consider also the case of subsonic rotation, so that the sensitivity of

the results to M can be assessed. Table 6.6 lists computed confinement times for
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Figure 6.7: Orbit of a second C+ ion in a counter-rotating plasma with bulk ion profile

number 1, launched from the magnetic axis and simulated for approximately 24 millisec-

onds. This impurity spends considerably less time inboard of the magnetic axis than the

ion in the left panel of Figure 6.6.

profile models 1 and 5 when the toroidal Mach number at the magnetic axis is 0.1;

for comparison, the corresponding results obtained for stationary plasmas are also

listed. As expected, reducing the toroidal rotation velocity of the plasma increases

the confinement time of the carbon impurity ions, as centrifugal effects become

less important. In this case the rotation causes only a very modest degradation in

confinement and there is no significant difference between the results for counter-

and co-rotation. This is to be expected if the dominant reason for the increase in

transport in the rotating case is that identified by Helander [81], namely the peaking

of impurity ion density on the low field side of the tokamak: for the case of fully

ionised carbon in a deuterium plasma with Te = Ti = TZ the argument of the

exponential factor producing the density peaking is equal to 3M2 [cf. Eq. 6.9].
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Table 6.6: Confinement times of C6+ ions in plasmas with M = 0.1 at R = R0 (ms)

Model no. Stationary Counter-rotating Co-rotating

1 216.4 211.1 212.1

5 163.3 161.6 158.4

6.3.4 Effect of ion mass

Having experimented with changing the charge state of the carbon impurity ions,

we now consider a much heavier impurity: although for fully-ionised ions the ratio

of mi/mZ is approximately constant with increasing Z, the extra factor of mZ in

the exponent on the right hand side of Eq. 6.9 indicates that the inboard-outboard

asymmetry in the minority ion density will be greater for heavier impurities, and

the mechanism proposed by Helander then suggests that heavier ions are likely to

be significantly less well-confined than lighter ions in rotating plasmas. Thus it is of

interest to perform similar simulations for an impurity such as fully-ionised tungsten

(W), with Z = 74, A = 184 (the most common isotope of tungsten), which as we

noted in Chapter 2 is intended for use in the divertor region of tokamak devices.

We simulate fully-ionised tungsten even though strictly speaking the temperatures

in our MAST-like simulations are far below those required to strip all the electrons

away from the nucleus: however, we can still learn some useful things by considering

this case. Table 6.7 shows the confinement times for tungsten ions launched from the

magnetic axis at rest in the usual cases of transonic rotation, using density profile

model number 1, and Figure 6.8 shows the spatial distribution of ions at the end of

the simulation.

Table 6.7: Confinement times of W74+ ions (ms)

Model no. Stationary Counter-rotating Co-rotating

1 321.6 5.8 5.2
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(a) (b) (c)

Figure 6.8: Distribution of tungsten impurity ions in (R,Z) plane for (a) Ω = 0, (b)

Ω = 2× 105 and (c) Ω = −2× 105 rad s−1.

We see that the heavier W ions are confined in rotating plasmas for a significantly

shorter period than the C ions. In the case of a stationary plasma, the confinement

times suggest the opposite is true: tungsten ions are more well-confined. Addi-

tionally, the difference between the confinement times for rotating and non-rotating

cases is much larger for tungsten than carbon. The difference in τc between the

cases of co- and counter-rotation appears to be reduced to virtually nothing: if the

ions are confined for such a short time, the centrifugal force dominates the radial

electric field terms (compare the orbits of two individual ions, as seen in Figure 6.9)

and hence there is little effect in changing the direction of the rotation. This is also

illustrated in the plots of poloidal losses - the 2 panels (b) and (c) in Figure 6.9 are

virtually identical. It is also interesting to note that the up-down asymmetry in the

losses appears to be much reduced (if not negligible) in comparison with the case of

carbon impurity ions.

These results can be understood as follows. Via collisions, the W 74+ ions in the

rotating plasmas are forced to co-rotate with the bulk plasma ions at a velocity vϕ

that is considerably larger than the thermal speed of tungsten. The ions are con-

fined to the outer midplane of MAST by an extreme version of the centrifugal effect
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Figure 6.9: Comparison of orbits of W74+ impurity in stationary plasma (left) and co-

rotating plasma (right), launched from magnetic axis and simulated for approximately 367

and 3.1 milliseconds respectively.

identifed by Wesson [85] (see Eq. 6.9). The particle diffusivity D⊥ appears to scale

approximately as the mass of the impurity mZ , and the confinement time is corre-

spondingly reduced. There are also indications that the diffusivity is independent

of the charge Z: simulating 104 W+ ions in a counter-rotating MAST-like plasma

for the same model of temperature and density profile as that used in the case of

fully-ionised tungsten (model number 1) gives a confinement time of 5.2ms, only

slightly lower than the figure obtained for fully-ionised tungsten. It is not entirely

clear why the diffusivity should scale with ion mass but, in view of the fact that

the tungsten ions are rotating hypersonically in this regime, one might reasonably

expect inertial forces (in particular the centrifugal force) to play an important role

in determining the confinement time.

This result has significant implications for fusion reactors, since, as discussed in

Chapter 2, tungsten has become the material of choice for the plasma divertor. Our

simulations indicate that rotating, tight aspect ratio plasmas such as MAST are
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highly efficient at expelling very high mass impurities, irrespective of whether the

rotation is co-current or counter-current. This is particularly noteworthy in terms

of maintaining the purity of a fusion plasma.

6.4 Discussion and Conclusions

We have employed a full orbit test particle code to investigate the collisional trans-

port of both carbon and tungsten impurity ions in ST (MAST-like) plasmas with

transonic and subsonic toroidal flows, both counter-current and co-current. We have

demonstrated that counter-current transonic rotation causes a substantial reduction

(by a factor of two or more) in the collisional confinement time of the carbon ions;

subsonic rotation has been shown to cause only a slight drop in the confinement

time. This behaviour can be attributed principally to the fact that the collisional

diffusivity of impurity ions exceeds its flux surface-averaged value, the reason for

this being that the ions are displaced outward from the tokamak symmetry axis by

the net effect of centrifugal and electric field forces [81]. For a range of tempera-

ture and density profile models, we have shown that, for carbon ions, reversing the

direction of rotation from counter-current to co-current causes a further significant

reduction in the confinement time. Reducing the charge state of the carbon ions

from 6 to 1 also causes a large drop in the confinement time, although this appears

to be due mainly to the relatively low collisionality of C+ ions rather than any effect

associated specifically with rotation. In the cases of carbon impurity ions that we

have studied, there is an up/down asymmetry in the losses that reflects the direction

of the net vertical drift of the impurity ions, though this asymmetry is not seen for

much heavier impurities. Increasing the mass of the impurity causes further signif-

icant drops in confinement time in rotating cases, though improves confinement in

non-rotating plasmas.

Our results indicate that the removal of impurity ions is favoured by the use of

co-current (rather than counter-current) NBI, as suggested by neoclassical theory

in the large aspect ratio, Pfirsch-Schlüter, subsonic limit [99] and by measurements

of impurity radiation from several past and present tokamaks [72,97,98]. However,
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although the diffusivity increases, the effect of reversing rotation direction decreases

with increasing impurity ion mass. We stress, though, that care should be taken to

avoid simplistic comparisons with experimental data. Apart from the differences,

noted previously, in the rotation rates, profiles and impurity sputtering rates of

plasmas heated by co-NBI and counter-NBI, there is the important caveat that,

except in the vicinity of transport barriers, impurity ions undergo turbulent as well

as collisional transport. Indeed, the fact that relatively long energy confinement

times have been achieved in MAST discharges with transonic counter-rotation [72]

despite a predicted enhancement in neoclassical transport [81] illustrates the im-

portance of non-collisional processes in determining tokamak plasma confinement.

Notwithstanding the difficulties of making contact with experimental data, our re-

sults show that test particle simulations have a useful role to play in illuminating

the physics of collisional transport in tokamak plasmas in regimes that are not easily

accessible to analytical description.



“Early to rise and early to bed

Makes a man wise but socially

dead”

The Animaniacs

Chapter 7

Future Work

The CUEBIT code is extremely versatile, as we have already demonstrated by study-

ing in detail a problem in solar astrophysics and another in fusion plasma physics.

There are several other potential applications of the code, both extensions of what

we have previously done and also new avenues of interest, that would be potentially

fruitful to investigate. In this chapter we briefly examine a few of these, laying the

possible groundwork for future research.

7.1 Fast Alfvén Wave Heating

7.1.1 Alternative wave profiles

In Chapter 4 we considered two perturbations: one with both inward- and outward-

propagating components and one with only inward-propagating waves. If instead we

had only outgoing waves (which might physically correspond to a situation in which

reconnection occurring close to the null is generating fast waves which propagate

out from that point) and if the initial perturbation consisted of a series of harmonics

∂ψ

∂r
=

∞∑
n=1

An sin(nπr), (7.1)

where, for example, the coefficients An could be chosen to have a power-law depen-
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dence on the integer n, i.e.

An = A0n
−α (7.2)

where An and α are constants, with α > 0 (this choice ensures that the series

converges), as opposed to having a single Fourier harmonic ∂ψ/∂r = sin(πr), then

the solution becomes

ψ = − 1

π

∞∑
n=1

An

n
cos

(
nπre−t

)
= − 1

π
cos

(
πre−t

)
(7.3)

if we take A1 = 1, and just keep the n = 1 term. Thus the corresponding electric

field term would be

Ez = −∂ψ

∂t
= re−t sin

(
πre−t

)
(7.4)

which means that the electric field is positive for all time t throughout the solution

domain (r ≤ 1), like the localised perturbation discussed in Chapter 4. Additionally,

the advantage of this type of solution is that, with no inward-propagating waves the

solution does not become steeper after t = 0 and thus the linearisation condition

will remain valid for all time provided that it is satisfied at t = 0.

As discussed in Chapter 4, Miller and co-workers [55] argued that particles can

be efficiently accelerated to high energies by a spectrum of fast waves with a range

of values of k‖/k where k‖ is the wave vector component parallel to the equilibrium

magnetic field. The general wave-particle resonance condition is

ω − k‖v‖ − lΩ/γ = 0, (7.5)

where ω is the wave frequency, Ω is the particle gyrofrequency, γ is the particle

Lorentz factor and l is an integer. Because we are considering Alfvénic waves at

frequencies well below the ion cyclotron frequency, the only resonance we are likely

to satisfy is l = 0, i.e.

v‖ =
k

k‖
cA (7.6)
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where cA is the local Alfvén speed. A spectrum of waves could allow a particle to

undergo a random walk in velocity space, resonating with different waves and, in

some cases, being accelerated to high velocities.

An alternative solution that is well-behaved in the limit r → 0 could be given by

ψ = r2e−2t, (7.7)

which is obtainable from the solution for outward radially-propagating wave (i.e.

Eq. 4.25 with f = 0) by imposing the initial condition ψ = r2. The electric field is

then given by

Ez = −∂ψ

∂t
= 2r2e−2t (7.8)

which is again positive definite for all t and thus could be expected to produce

effective acceleration. It would be of interest to model perturbations of this type

within CUEBIT.

Further, an oscillatory solution describing waves that propagate in different di-

rections at any given point in space could also be constructed. The global and

localised fast wave solutions we employed in Chapter 4 were based on the assump-

tion that the perturbation to ψ is azimuthally symmetric. However, if we relax that

assumption, while continuing to assume invariance in the longitudinal (z) direction,

the wave equation becomes

∂2ψ

∂t2
= r

∂

∂r

(
r
∂ψ

∂r

)
+

∂2ψ

∂ϕ2
=

∂2ψ

∂x2
+

∂2ψ

∂y2
(7.9)

where x = − ln r. We could seek solutions of this 2D wave equation satisfying both

a periodic boundary condition in ϕ

ψ(t, r, ϕ + 2π) = ψ(t, r, ϕ) (7.10)

as well as the condition

∂ψ

∂r
→ 0 (7.11)
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in the limit r → 0 (in order to guarantee that the linear approximation remains

valid, and that ψ is regular in this limit) and use CUEBIT to see how bulk protons

are energised by a non-azimuthally symmetric wave perturbation.

7.1.2 Inertial Alfvén wave acceleration of electrons

It has been proposed that electrons can be effectively accelerated in the Earth’s

auroral zones by inertial Alfvén waves (IAW’s) [100], as these waves have a com-

ponent of electric field that is parallel to the ambient magnetic field. IAW’s are

low-frequency (ω < Ω) dispersive Alfvén waves in a medium where the thermal ve-

locity of electrons is less than the Alfvén speed vA, and as such appear in low-beta

plasmas when β < me/mi (for a review of dispersive Alfvén waves see e.g. Stasiewicz

and co-workers [101]). In such a plasma the electron inertia becomes important in

driving the parallel electric field, which in turn can accelerate particles by a number

of different mechanisms such as bounce or Landau resonance.

Such waves have recently been considered in the context of solar flares, in order

to explain the observed electron acceleration there. For example, Fletcher and Hud-

son [102] propose that the large-scale motion of plasma due to reconnecting fields

relaxing to a state of lower magnetic stress will result in an amalgamation of many

propagating MHD wave modes carrying energy along the field lines. In their model

a reconfiguring coronal field launches a torsional Alfvén wave down towards the loop

footpoints and into the chromosphere, offering two possible acceleration mechanisms.

In the first instance the Alfvénic perturbation accelerates electrons by resonant in-

teractions (the wave, travelling downwards through the loop, accelerates electrons as

it propagates). The wave front, converging towards the chromosphere, may reflect

and accelerate electrons multiple times, in a first-order Fermi acceleration process,

up to energies estimated to be of the order of a few tens of keV. Additionally, when

the torsional mode reaches the chromosphere it is expected that some of the energy

will be transmitted and damped, leading to stochastic acceleration via a turbulent

cascade of fast-waves that were mode-converted in the chromosphere. Some of the

Alfvén wave energy would be expected to be reflected back up into the corona.

Bearing the above work in mind, it would be of interest to simulate electron
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acceleration by IAW’s in the solar corona by using the CUEBIT code, which is well-

suited to this type of problem. To do this would require the appropriate electric

and magnetic fields to be derived from Maxwell’s equations and the relevant fluid

equations, including the generalised Ohm’s law in the limit of zero pressure and

resistivity (i.e. Eq. 4.57 without the ∇pe and η terms).

7.2 Impurity Transport in Tokamaks

7.2.1 Impurity density radial profiles

It would be useful, as well as determining the confinement times of impurity ions

in tokamaks, to also determine the impurity density and the flux surface-averaged

effective charge state (Zeff) profiles across the radial extent of the plasma. In order

to do this, we need to compute the volume enclosed by a specified range of flux

surfaces in the Freidberg equilibrium that we employ in our model, given by Eq.

6.1.

Given a specified range of values of ψ, e.g. ψ1 → ψ1 + ∆ψ, we need to know the

corresponding volume V in real space. If we transform (x, y) to (R,ϕ) and invoke

toroidal symmetry by integrating over toroidal angle ϕ, formally we have

V = 2π

∫∫
RdRdZ (7.12)

To compute this double integral over the required region of (R, Z) space we transform

the integration variables from (R, Z) to (ψ, θ), where θ can be arbitrarily defined so

long as the Jacobian of the transformation (R,Z) → (ψ, θ) is finite on the integration

domain. An appropriate choice is θ = tan−1(Z/(R−R0)), allowing us to then write

V = 2π

∫ ψ1+∆ψ

ψ1

∫ 2π

0

R
∂(R, Z)

∂(ψ, θ)
dψdθ (7.13)

Evaluating ∂(ψ, θ)/∂(R, Z) we find that

R
∂(R, Z)

∂(ψ, θ)
=

2R[(R−R0)
2 + Z2]

ψ0 [γR(R−R0)2(R + R0) + 2(1− γ)R(2R−R0)Z2]
(7.14)
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The quantity on the right hand side of Eq. 7.14 is not uniquely defined at the

magnetic axis, R = R0, Z = 0. We can avoid this problem by simply excluding

from the ψ integration domain a small region close to the axis. Now we need to

express the integrand as a function of ψ and θ. To solve this problem, we note that

Z = (R−R0) tan θ, so that on a given flux surface ψ

g(R) ≡ ψ − ψ0

{
γ

8

[
(R2 −R2

0)
2 −R4

b

]
+

1− γ

2
R2(R−R0)

2 tan2 θ

}
= 0 (7.15)

where θ is to be regarded as having a specified value. Eq. 7.15 can be solved

numerically for R using Newton’s method: if Ri is an estimate of the required root,

an improved estimate Ri+1 is given by a first order Taylor expansion of the function

g about that point:

g(Ri+1) ' g(Ri) + (Ri+1 −Ri)g
′(Ri) ' 0 (7.16)

Thus

Ri+1 = Ri − g(Ri)

g′(Ri)
. (7.17)

The only remaining problem is to find a first estimate of the root R1. It is sufficient

for this purpose to take the large aspect ratio limit of Eq. 6.1, which means that we

make the approximation R ' R0 except in the factor R−R0. Thus, we have

ψ ' ψ0

2

{
γ

[
R2

0(R−R0)
2 − R4

b

4

]
+ (1− γ)R2

0(R−R0)
2 tan2 θ

}
= 0 (7.18)

This equation can be solved for R to give

R = R0 ±
(

2ψ/ψ0 + γR4
b/4

γR2
0 + (1− γ)R2

0 tan2 θ

)1/2

(7.19)

The choice of plus or minus in this equation depends on whether R lies outboard

(R > R0) or inboard (R < R0) of the magnetic axis, which in turn is determined

by whether θ lies in the range [−π/2, π/2] or [π/2, 3π/2]. Eq. 7.19 provides a

reasonably accurate first estimate of R; the iteration scheme represented by Eq.
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7.17 then provides rapid convergence to the exact root. Having determined R in

this way, we can then determine Z, and evaluate the integrand in the double integral

using Eq. 7.14.

To determine profiles, one can then calculate the number of impurity ions within

a set range of ψ to ψ + ∆ψ and convert this to give the impurity number density of

a given region in ψ. We then evaluate Zeff for a deuterium plasma containing only

carbon impurities, through the equation [20]

Zeff =

∑
j

njZ
2
j

∑
j

njZj

. (7.20)

Since
∑
j

njZj = nDZD + nCZC , where nD is the density of deuterium and nC the

density of carbon, and ZD = 1, ZC = 6 for a deuterium plasma in which the carbon

impurity ions are fully-ionised, then

Zeff =
1 + 36nC/nD

1 + 6nC/nD

(7.21)

Strictly speaking, the test particle assumption requires that ZnC ¿ nD, so that

the C6+ ions do not contribute significantly to the quasi-neutrality of the plasma.

It is of course necessary to scale up the number of particles in the simulation to

obtain a realistic impurity ion density. To do this, we infer the value of nC/nD

by using measured values of Zeff in MAST experiments, such as those described by

Akers et al. [72] (see Figure 3 of this paper). That paper shows the Zeff profile of

MAST counter-NBI shot no. 8322, in which the core density was measured to be

about 5× 1019 m−3. It is worth pointing out that values of Zeff ∼ 2− 3 are typical

for MAST counter-NBI heated discharges (though co-NBI discharges generally have

much lower values of Zeff ∼ 1). We can determine Zeff as a function of time and

space by running our simulation and normalising the results by setting Zeff equal

to a particular value at one time and one point in space. If we set Zeff = 3 at the

magnetic axis, then nC/nD ' 0.1, and the test particle assumption is no longer

strictly valid as ZnC ' nD, though it is informative to do so anyway as long as we

bear in mind the idealised nature of the calculation. This provides results that can be

compared directly with measured Zeff profiles obtained from visible bremsstrahlung
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data (see e.g. [103]). This process can be carried out at regular intervals throughout

a given simulation, to illustrate the temporal evolution of Zeff, or instantaneous

snapshots of the Zeff profiles can be plotted which may then be compared directly

with experimental data.

Figure 7.1 displays some plots of Zeff for C6+ ions in the counter-rotating scenario

with bulk ion density profile model 2, splitting the total simulation time into 10

evenly-spaced time bins, although we only plot 6 of them here. The 6 panels show

distributions corresponding to simulation times of t = 0 − 30 milliseconds at 6ms

intervals. The radial extent of the plasma has been arbitrarily divided up into 250

“bins” - more or less bins can be used depending on the statistics of the particle

distribution. The results are symmetric around the magnetic axis by design. These

plots do not closely resemble the Akers experimental data: this is to be expected as

they show the radial migration of a concentration of impurities from the magnetic

axis out towards the plasma edge. The t = 0 plot differs from the prescribed initial

delta-function only because of the finite size of the radial bins employed. It is worth

pointing out as well that, to maximise particle statistics we count all the particles

in a given shell of flux surfaces, whereas the Thomson scattering profiles typically

show profiles in the midplane, and that to generate profiles that could be compared

with experiment we would also need to include a continuous particle source and

perhaps ionisation/recombination effects. However, now that the means of doing this

have been established, incorporating more experimentally-relevant physics into the

CUEBIT code (as will be discussed in the next subsection) and analysing the results

this way would be a useful tool for studying test particle transport in tokamaks.
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Figure 7.1: Plots of Zeff for C6+ ions in counter-rotating case with bulk ion density profile

model 2, taken at different times (t = 0, 6, 12, 18, 24 and 30 milliseconds respectively)

throughout the simulation.

7.2.2 Improving the model

There are several extensions to our model that could be explored in conjunction with

the radial profiles discussed in the previous subsection. In Chapter 6 we examined

the simplest case of tokamak plasma rotation, namely rigid-body rotation of the
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entire plasma. This is fine for a first approximation but in general tokamak plasmas

do not rotate toroidally as a single rigid body: for example, Ghorannevis et al.

have presented evidence from the CT-6B tokamak of non-rigid toroidal rotation

of individual flux surfaces, a possibility that is implied by two-fluid analyses of

tokamak equilibria, even in the absence of poloidal flows [95]. Allowing flux surfaces

to rotate rigidly at different frequencies, with assumed rotation profiles modelled on

experimental measurements such as those shown in Ref. [76] (see e.g. Figure 4 in

this paper), would allow us to model more realistically the collisional transport of

trace impurity ions in rotating MAST plasmas.

We comment, finally, that, as briefly discussed in the final paragraph of Chapter

6, turbulence plays a key role in determining so-called “anomalous” transport in

tokamaks, with effects such as the formation of Internal Transport Barriers (ITB’s),

for example. ITB’s are regions of relatively good confinement: the transport is

thought to be locally reduced to roughly neoclassical levels in their immediate vicin-

ity (although this could cause thermalised fusion alpha-particles to accumulate in

the plasma core and dilute the fusion fuel). CUEBIT could potentially be used to

study trace impurity transport at transport barriers since the usual orderings of

neoclassical theory (in particular the assumption that particle orbit widths are small

compared to the density scale length) do not necessarily apply in such cases [92]. The

test particle simulation method could also be extended in a fairly straightforward

manner to study trace impurity transport in a plasma with a prescribed spectrum

of turbulence. This could be based either on experimental diagnostic information

[105] or nonlinear numerical simulations of global tokamak turbulence [106,107]. For

example, CUEBIT could be combined with the two-fluid global electromagnetic code

CUTIE [106], the latter providing turbulent fields as input to the former.
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