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Abstract 
 

Neisseria meningitidis is an important cause of meningitis and bacteraemia worldwide 

and is associated with high case-fatality rates. Meningococcal disease continues to 

remain a public health issue in Scotland and the rest of Europe. Typing methods are 

used for epidemiological purposes to investigate outbreaks and the spread of 

meningococci and to examine the population structure of the organism in order to 

better understand its variation and evolution. Reference institutes have employed such 

methods for a number of decades for the diagnosis and detection of meningococci. 

However, phenotypic methods for serogrouping, serotyping and serosubtyping 

meningococci, although providing good strain information, can lead to endemic 

strains appearing identical using these methods when they are in fact quite different. 

More recently methods have been developed to further characterise bacteria. These 

methods have included PCR for the detection of meningococcal disease within blood, 

serogrouping and sequencing of housekeeping genes (MLST) and antigen genes such 

as PorA. These molecular epidemiological methods were used for the retrospective 

typing of invasive meningococci in Scotland, 1972-1998, using a fully automated 

procedure. The results of these were then analysed using statistical packages to 

examine the population structure of the organism. 

 

In total there were 2517 invasive isolates, received by the Scottish Meningococcus 

and Pneumococcus Reference Laboratory (SMPRL) from the start of 1972 to the end 

of 1998. Serogroup distribution changed from year to year during the time period 

1972-1998 but serogroups B and C were dominant throughout this period. Serogroup 

B was the dominant serogroup throughout the seventies and early eighties until 

serogroup C became dominant during the mid 1980s.  
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This increase in dominance of serogroup C has been found in this study not to be 

associated with one particular sequence type (ST) but is associated with a number of 

STs, which include ST-8, ST-11, ST-206 and ST-334. This is in contrast to the 

increase in serogroup C disease in the 1990s that was due to the ST-11 clonal 

complex. While there was much diversity in the STs (309 different STs among the 

2517 isolates), only ten accounted for 1562 isolates (59.9%). These were ST-11, ST-8, 

ST-41, ST-153, ST-1, ST-32, ST-33, ST-269, ST-334 and ST-60. There were 177 

new STs found during the time period. The STs were further differentiated into 31 

clonal complexes, with 57 singleton types. As with the STs, although there was much 

diversity in the clonal complexes, only seven accounted for 1993 isolates. 

 

It was found that with PorA variable region (VR) types there were certain 

combinations significantly more common than others. There was a strong link with 

PorA type and ST and more so with clonal complex. This link was evident with the 

PorA type 5, 2-1, 36-2, which occured in 70 isolates representing the ST-11 complex 

and in all but two isolates representing ST-11. Similarly PorA type 18-3, 1, 35-1 was 

associated with 15 isolates belonging to the ST41-44 complex. However, this was not 

the case with all PorA combinations as the PorA type 19, 15, 36 was associated with 

10 different complexes. There was some association between serogroup and PorA VR 

types. There was strong evidence of certain VR1, 2 and 3 regions being associated 

with certain serogroups, although this was not definitive. For example, of 192 isolates 

with PorA type 19, 15, 36, 85.4% were associated with serogroup B.  Genosubtyping 

of the porA gene has been shown to increase the power of differentiation within clonal 

meningococcal populations. For, example, seven isolates that had the same serogroup, 

ST, VR1 and VR2 could be differentiated by their VR3 type.  
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Using cluster detection software SaTScan to analyse all isolates, it was found there 

were 29 clusters in Scotland, from 1972-1998. These clusters included 63 cases, 

which accounted for 2.5% of all cases. A range of different strains caused the clusters 

that were identified in this study, some caused by hypervirulent strains. These strain 

types were responsible for a number of cases throughout the world as well as in 

Scotland during the period of this study. However it was also shown that there were 

clusters identified in this study caused by lesser-known strain types that were not 

responsible for many cases and that appear to be unique to Scotland or the UK.  This 

study is the first to look at the detection of clusters over a time period of 26 years and 

to identify clusters that would have previously been unidentified due to lack of 

suitable characterisation techniques. 

 

The results in this study indicate that the multivalent preparation produced by the 

Netherlands Vaccine Institute (Nonavalent vaccine) had the potential, based on the 

PorA types that it contains, to prevent the majority of serogroup B infection that had 

occurred in Scotland, from 1972-1998. It also had the potential, although not to the 

same extent as serogroup B, to protect against other serogroups. For the age groups 

that would potentially have been the first to be immunised with any vaccine as part of 

the childhood vaccination programme, the 0-4 years old group, the potential coverage 

was over 92% which is comparable with the coverage seen with the serogroup C 

meningococcal conjugate (MCC) vaccine, of approximately 90%. 
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Chapter 1 

Introduction 

 

1.1          Meningococcal disease 
 

Neisseria meningitidis is a causative agent of septicaemia and meningitis. Meningitis 

is classically described as inflammation of the meninges (membranes covering the 

brain and spinal cord). The symptoms typically include a severe throbbing headache, 

photophobia, a stiff neck, fever and can lead to confusion and coma and may be 

rapidly fatal (Ferguson et al., 2002). Meningitis is notable for its rapid development 

and sometimes sporadic or epidemic presentation in both industrialised and 

developing countries. Meningococcal disease is associated with high case fatality 

rates (5%-15%) even when good medical treatment is available. Up to 20% of 

meningococcal meningitis survivors may have neurological sequelae including mental 

retardation and hearing loss. The risk of acquiring meningococcal disease has been 

shown to decrease with age. The natural habitat and reservoir of N. meningitidis is the 

upper respiratory nasopharyngeal mucosal membranes. Meningococci colonise the 

nasopharynx of 10-25% of the general population and this carriage may be 

intermediate or prolonged.  

 

The prevalence of carriage varies broadly and does not directly predict disease, 

although, without meningococcal carriage, there is no meningococcal disease. 

Transmission is by direct contact with or inhalation of meningococci in large droplet 

nuclei that are acquired through very close contact with respiratory secretions and 
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saliva. Close contact with a colonised individual can result in transmission of the 

organism to a susceptible individual and this may result in colonisation and lead to 

invasive disease. Meningococcal disease usually occurs 1–14 days after acquisition. 

Once meningococci reach human epithelial cells, a series of interactions occurs, 

leading to effacement of the epithelial surface, microcolony formation and/or 

epithelial cell invasion (Stephens & McGee, 1983). In humans, meningococcal 

carriage can be prolonged (months) in around 25% of individuals, be brief (days to 

several weeks) in about 33% of individuals, be temporary in around 30-40% of 

individuals, or not occur (Stephens, 1999). 

 

Meningococcal carriage increases in settings of closed populations, such as schools, 

universities, military establishments and Hajj pilgrims. Carriage is low in young 

children (Neisseria lactamica predominates) and highest in adolescents. Cofactors 

that are thought to increase the incidence of carriage and meningococcal disease 

include coinfections such as influenza and other respiratory viral infections, smoking, 

and environmental damage to the upper respiratory tract (Artenstein et al., 1967; 

Young et al., 1972; Moore et al., 1990). In a large UK study, social behaviour such as 

attendance at pubs/clubs, intimate kissing and cigarette smoke or exposure to passive 

smoke were most highly associated with the risk of meningococcal carriage but not 

age or sex (MacLennan et al., 2006). 

 

The unexpected appearance of meningococcal disease in previously healthy children 

and young adults has resulted in a great deal of public as well as medical attention. 

This has led to a large amount of research concerning diagnosis, characterisation, 

therapy and vaccine design (van der Ende et al., 1995; Richmond et al., 2001; Pollard 
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& Moxon, 2002; Riordan et al., 2002; Welch & Nadel, 2003). The development of 

bacteriology and science in general over the late 19th century culminated in 

microbiologists making repeated attempts to isolate organisms from patients who had 

died from suspected meningitis (Knapp, 1988). In the 1880s, in Vienna, Anton 

Weichselbaum made a breakthrough with the isolation of a coccoid bacterium from 

meningeal exudates. This coccoid bacterium was later termed Diplococcus 

intracellularis meningitides and then Neisseria meningitidis. Further investigations of 

small epidemics of meningitis were reported, with the same intracellular bacterium 

being isolated resembling the coccoid bacterium described by Weichselbaum. These 

investigations yielded chains of Gram-positive cocci similar to streptococci 

(Weichselbaum, 1887). Because of low discrimination techniques between cultures 

during this period there was confusion over what was isolated and this continued for 

some time. It was another eight years after these initial findings that meningococci 

were isolated from lumbar punctures for the first time from patients clinically 

confirmed with meningitis (Knapp, 1988). Isolation of N. meningitidis and the 

introduction of techniques to obtain suitable clinical samples, such as the lumbar 

puncture, became routine clinical procedures and led the way for intraspinal 

immunotherapy in the early 20th Century.   

 

1.2  Characteristics of Neisseria meningitidis  

 

Neisseria are Gram-negative, aerobic diplococci that have an oxidative metabolism, 

are susceptible to drying and their growth is inhibited by free fatty acids  

(Figure 1.1). Within the genus Neisseria there are the species: Neisseria meningitidis, 

Neisseria gonorrhoeae, Neisseria lactamica, Neisseria animalis, Neisseria 
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bacilliformis, Neisseria canis, Neisseria cinerea, Neisseria elongata, Neisseria 

dentrificans, Neisseria dentiae, Neisseria flava, Neisseria flavescens, Neisseria 

iguanae, Neisseria macacae, Neisseria mucosa, Neisseria perflava, Neisseria 

pharyngis, Neisseria polysaccharea, Neisseria sicca, Neisseria subflava and Neisseria 

weaveri.  Different species can be identified by the sets of sugars from which they 

will produce acid. For example, N. gonorrheae makes acid from glucose only whereas 

N. meningitidis produces acid from both glucose and maltose. 

 

Figure 1.1  N. meningitidis in cerebrospinal fluid stained using the Gram protocol. 

In this film, numerous polymorphonuclear leukocytes are evident. Within one, 

numerous diplococci with the characteristic appearance of bacteria of the genus 

Neisseria can be seen. 

 
Contributor: Microbiology at Leeds © University of Leeds image courtesy Centre for Bioscience, 

the Higher Education Academy, ImageBank 

http://www.bioscience.heacademy.ac.uk/imagebank/  
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Colonies of N. meningitidis are non-pigmented and smooth, and after 18-24 hours of 

incubation, are around 1-2mm in diameter (Figure 1.2).  

 

Figure 1.2  N. meningitidis growing on blood agar.  

 
 
 
Contributor: Microbiology at Leeds © University of Leeds  image courtesy Centre for Bioscience, 

the Higher Education Academy, ImageBank 

http://www.bioscience.heacademy.ac.uk/imagebank/ 

 

Encapsulated, piliated meningococci adhere selectively to the microvilli on non-

ciliated epithelial cells (Rayner et al., 1995).  To facilitate attachment to the epithelial 

cell layer, pathogenic meningococci possess class I and class II pili. Pili mediating 

attachment have been found among both the pathogenic strains of N. meningitidis as 

well as some of the non-pathogenic strains. Non-capsulated strains have a greater 

ability to adhere to these cell lines than capsulated strains (Rayner et al., 1995; Virji, 

1996). They also down-regulate the ciliary activity in the respiratory tract and one 
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possible reason for this is that local inflammatory response mediators such as tumor 

necrosis factor  (TNF-) and/or interleukin-1 (IL-1) could be responsible for 

some or all the effects caused by colonisation (Virji et al., 1996).  In general, the 

major attributes of pathogenic neisseriae for interaction with non-phagocytic cells are 

pilus-mediated adhesion factors, pilin antigenic variation and modulation of 

adhesiveness through the formation of bundles of pili for cell-binding specificity, 

opacity proteins, the capsule and lipo-oligosaccharide (LOS).       

  

1.2.1 Capsule synthesis 

Serogroups of the organism are defined by immunochemical differences among 

meningococcal capsules (Jarvis & Vedros, 1987). Thirteen serogroups based on 

different capsular polysaccharide structure are known but only six serogroups, A, B, 

C, Y, W135 and more recently X, are currently associated with significant disease 

potential (Rosenstein et al., 2001; Djibo et al., 2003; Apicella, 2005). There are five 

regions within the meningococcal capsule-synthesis (cps) gene cluster: region A 

consists of the genes that are required for polysaccharide synthesis (Edwards et al., 

1994; Swartley et al., 1998), region B consists of the genes responsible for lipid 

modification (Frosch & Muller, 1993), region C contains the ctr genes  required for 

polysaccharide transport (Frosch et al., 1991; Frosch et al., 1992), region D is 

involved in lipopolysaccharide synthesis (Hammerschmidt et al., 1994) and region E 

is of unknown function. Region A contains genes which are serogroup specific with 

variants of the siaD gene required for synthesis of the sialic-acid-containing capsules 

(B, C, Y and W-135) and the myn genes necessary for the expression of a serogroup A 

capsule (Claus et al., 1997; Swartley et al., 1997). Because of the role of capsule 

expression in invasive disease, the ctrA gene (region C) is conserved in most 
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meningococcal isolates from patients (Frosch et al., 1992) and is used as a target for 

the detection of meningococci in clinical specimens (Guiver et al., 2000). 

 

Serogroups B, C, Y, and W135 boast a polysaccharide capsule that is composed of 

polysialic acid and are biochemically very similar (Lewis et al., 2003).  The capsules 

of serogroups B and C contain α2-8 linked sialic acid and α2-9 linked sialic acid, 

respectively, whereas the capsules of serogroups Y and W135 contain N-

acetylneuraminic acid and D-glucose and N-acetylneuraminic acid and D-galactose, 

respectively.  The gene cassettes for all the capsules contain four open reading frames 

(ORFs), (siaA, siaB, siaC and siaD) which code for different sialytransferase genes.  

The siaD sequences (Borrow et al., 1997; Claus et al., 1997; Vogel et al., 1997; 

Borrow et al., 1998; Arreaza et al., 2001) of serogroups B and C are highly conserved 

but are less conserved among serogroups Y and W135 where there is a variable region 

towards the end of the first third of the gene in which abundant nucleotide differences 

occur (Borrow et al., 1997; Claus et al., 1997; Vogel et al., 1997; Borrow et al., 

1998).  

 

The capsules of members of N. meningitidis serogroup A differ from those of 

members of serogroups B, C, Y, and W135, the other disease-associated serogroups. 

The capsular polysaccharide of serogroup A isolates is composed of repeating units of 

(16)-linked-N-acetyl-D-mannosamine-1-phosphate (Swartley et al., 1998). In contrast, 

the capsular polysaccharides of isolates of serogroups B, C, Y, and W135 are all 

composed of, or contain, sialic acid (Claus et al., 1997). The capsular polysaccharide 

of N. meningitidis serogroup A is encoded by an operon of four genes, mynA, -B, -C, 

and -D (formerly known as open reading frames 1 to 4) (Swartley et al., 1998). 
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Confusingly, these are also known as sacA-D. However, this operon appears to be 

unique to members of N. meningitidis serogroup A. The mynA gene product is 

responsible for the first biosynthetic step in the production of the serogroup A capsule 

and is probably therefore the most conserved gene in the operon. 

 

1.2.2  Outer-membrane proteins 

The prominent outer-membrane proteins (OMP) of N. meningitidis have been 

designated class 1 through class 5 based on differences in molecular weight. Initial 

experiments revealed that the meningococcal class 1 porin protein (PorA) and class 2 

and 3 porin proteins (PorB) perform as selective channels, which permit the passage 

of cations and anions across the cell membrane.  The class 4 OMP is antigenically 

stable (Munkley et al., 1991) and appears to be the most highly conserved between 

meningococcal strains. Although cellular function is unknown, it shares sequence 

homology with Escherichia coli Omp A (Klugman et al., 1989). Antibodies directed 

against this protein are non-bactericidal and have the additional ability to block the 

lytic effect of antibodies directed against other outer surface antigens (Munkley et al., 

1991). In contrast to the other major OMPs, the heat modifiable class 5 opacity 

proteins, Opa and Opc are hypervariable (Stephens & McGee, 1983; Tinsley & 

Heckels, 1986) both in their qualitative and quantitative expression (Achtman et al., 

1991; Aho et al., 1991) but may induce bactericidal antibodies (Danelli et al., 1995). 

This group of proteins also elicits strong but strain-specific antibody responses and 

confers important interstrain antigenic differences, which may be detected by 

monoclonal antibodies (Mabs) (Zollinger et al., 1984). 
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1.2.2.1 PorA 

PorA is a class 1 outer membrane protein (OMP) that has been well studied and is 

used as a phenotypic marker in the characterisation of meningococci for the 

serosubtype. This protein is variable because it is an antigen exposed on the 

meningococcal cell surface and some regions of the protein are hypervariable. A two-

dimensional structural model has been predicted for the meningococcal PorA protein 

which consists of eight surface exposed loops (I-VIII) (van der Ley et al., 1991). Most 

variation occurs in variable regions 1 and 2 (VR1 and VR2) which correspond to 

loops I and IV, respectively  (Maiden et al., 1991; van der Ley et al., 1991; 

McGuinness et al., 1993). The two PorA variable regions VR1 and VR2 are 

especially important because they elicit bactericidal antibodies in humans. 

Consequently, a number of meningococcal vaccines under development contain the 

PorA protein as a major component. Point mutations in the coding region may result 

in meningococci without PorA expression (van der Ende et al., 2000). PorA 

expression may also be absent because of deletion of the complete porA gene (van der 

Ende et al., 1999) or insertion of an insertion sequence element in the porA coding 

region (Newcombe et al., 1998). 

 

Nucleotide sequence analyses of porA genes from a large collection of meningococcal 

isolates recognised that the panel of sero-subtyping Mabs was not comprehensive. 

Therefore, meningococci were frequently only partially serosubtyped or classified as 

non-serosubtypable because either PorA was not expressed or because a variant was 

not recognised by Mabs. Characterising the PorA VR1 and VR2 amino acid sequence 

from nucleotide sequence data has overcome this. To accommodate subtypes 

identified on the basis of sequence data alone, the scheme originally developed for 
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Mab reactivity data was modified so that VR families and variants were assigned on 

the basis of amino acid sequence relationships rather than reactivity with specific 

Mabs (Russell et al., 2004). VR amino acid sequences containing ≥80% identity to 

each other were grouped into VR families. The VR epitope recognised by an existing 

Mab raised against PorA or the first defined amino acids sequence of a VR family was 

subjectively designated as the prototype VR for that particular family (Russell et al., 

2004). The VR3 (loop V) has also been described as variable and a number of its 

genosubtypes have also been described (Riesbeck et al., 2000; Clarke et al., 2003). 

Therefore the VR3 region can also be sequenced along with VR1 and VR2 to allow 

for further characterisation that can aide in distinguishing between strains, especially 

in an outbreak situation. These regions of PorA are likely to be exposed to continual 

selection imposed by host immune responses, and VR families might evolve over time 

into different families. An example of this may be the similarity of the P1.2 and P1.10 

VR2 families, which is perhaps due to the relatively recent divergence of one VR 

family into two. 

 

1.2.2.2  PorB 

Meningococcal strains have the ability to possess either PorB2 (class 2) or PorB3 

(class 3) OMPs. These are predominant proteins of the outer membrane, which are 

expressed by alternative alleles (porB2 or porB3) at the porB locus (Hitchcock et al., 

1986; Derrick et al., 1999).  PorB topology models have been constructed on the basis 

of nucleotide sequence data (Maiden et al., 1991; van der Ley et al., 1991) and the 

structural similarity between previously described E. coli porins OmpF and PhoE, and 

Neisseria porins, have generated three dimensional homology models for these 

Neisserial porins.  From these predictions, eight surface exposed-loops combined with 
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conserved outer membrane-spanning domains have been postulated.  As would be 

expected, the antigenically variable epitopes targeted by the host immune response 

were found to reside in the most exposed loops (McGuinness et al., 1990; Maiden et 

al., 1991).    

 

1.2.2.3  FetA 

Meningococcal FetA, an iron-regulated outer-membrane protein and vaccine 

component, has been shown to be highly diverse (Thompson et al., 2003) and has 

been investigated as a vaccine candidate for both the meningococcus and gonococcus 

(Ala'Aldeen et al., 1994; Beucher & Sparling, 1995). The FetA protein is a component 

of some meningococcal vaccines which have undergone phase III trials and appears to 

elicit an immune response in vaccinees (Wedege et al., 1998). As with the PorA VRs, 

the sequences of the FetA VRs are highly divergent, and the peptide sequences can be 

resolved into distinct families. The FetA VR has been successfully used as a portable 

typing scheme for meningococcal disease surveillance in conjuction with serogroup, 

PorA VRs and MLST (Jolley et al., 2007). Perhaps a useful role for FetA is as a 

component of outer-membrane vesicle (OMV) vaccines, along with other antigens 

such as PorA (Urwin et al., 2004). These vaccines elicit bactericidal responses in 

people, including infants, but the immunity induced is strain-specific, probably as a 

consequence of antigenic diversity of their components (Martin et al., 2000). 

 

1.3  Detection of N. meningitidis 

 
Detection or suspicion of meningococcal disease in the clinical setting requires 

laboratory confirmation whenever possible as this information is critical for managing 

the individual patient, outbreak management, epidemiological purposes and for 
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vaccine evaluation. Providing the laboratory with appropriate information can aid the 

process, as information regarding which test is required and diagnostic questions can 

be crucial in directing the optimal handling and reporting of the specimens in the 

laboratory. The diagnosis of N. meningitidis has progressed within the last 15 years. 

However, culture still forms the backbone of diagnosis in spite of the major 

improvements in non-culture diagnosis. Culture is very important because the 

availability of an isolate growing in the laboratory will allow species designation, 

antibiotic susceptibility testing and characterisation of an isolate for public health and 

epidemiological purposes. An evident factor of importance is also that every 

microbiological laboratory can perform cultures for meningococci. A great number of 

blood-culture systems with different indicator systems are in everyday use, with most 

of them utilising bottles containing culture media into which the blood is inoculated 

(Weinstein, 1996; Mylotte & Tayara, 2000). In patients with signs or symptoms 

suggesting meningitis or meningoencephalitis, a lumbar puncture is usually performed 

(Stephenson, 1998). The best possible site from which to take a swab for culture of 

meningococci in patients and healthy carriers is not generally acknowledged. 

However, with good selective culture media it is clear that carriers with or without 

local symptoms carry meningococci on the tonsils more often than in the nasopharnyx 

(Olcen et al., 1979).  

 

In combination with biochemical characterisation, basic techniques are still used for 

diagnosis. Light microscopy of Gram-stained specimens identifies meningococci as 

pink-stained Gram-negative diplococci arranged in pairs. N.meningitidis utilises 

glucose and maltose, which is used as a standard biochemical identification of the 

bacterium.  The utilization of other sugars such as lactose and sucrose can identify 
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other Neisseria species such as Neisseria lactamica and Neisseria gonorrhoeae. False 

results can occur and commercially available tests such as API NH, which incorporate 

several specific biochemical reactions, can be used to speciate and sub-speciate, 

identifying to genus and species level. 

 

The further characterisation of organisms is vitally important for the development of 

improved therapies, vaccines, epidemiology and public health interventions. The main 

technique used for serological characterisation of meningococci over the decades has 

been based on the enzyme-linked immunosorbent assay (ELISA) (Eldridge et al., 

1978; Frasch et al., 1985). The ELISA technique has been preferentially chosen 

because it is safe, simple, sensitive, reproducible and specific. Meningococcal 

serology has been used in the field of vaccinology to evaluate candidate vaccines and 

quantify individuals’ immune responses. Attention has also been focused on the class 

of antibody responses to meningococcal polysaccharides. Certain studies have shown 

the presence of serogroup B IgM isotype antibodies in healthy individuals (Leinonen 

& Frasch, 1982; Devi et al., 1991) whereas other studies have shown these to be 

absent. Low levels of serogroup B polysaccharide-specific IgG have been detected in 

sera from healthy individuals (Leinonen & Frasch, 1982; Devi et al., 1991) but not in 

convalescent sera from patients recovering from serogroup B disease. Antibody 

isotype responses following serogroup B infection are largely of the IgM isotype 

(Leinonen & Frasch, 1982; Devi et al., 1991). For serogroup C, both IgG and IgM 

antibodies have been demonstrated following disease (Kayhty et al., 1981). Serogroup 

C specific antibodies are also induced following oropharyngeal carriage of serogroup 

C meningococci (Goldschneider et al., 1969) or following vaccination with serogroup 

C polysaccharide or conjugate (Balmer et al., 2002) vaccines. Serogroup A and C 
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specific antibodies may be quantified utilising a standard reference serum (Holder et 

al., 1995) but there is no such reference serum currently available for serogroup B 

specific antibodies. In-house assays are often used (Jones & Mallard, 1993) 

employing different criteria to differentiate serogroups B and C. 

 

Outer-membrane vesicle (OMV) based ELISAs have largely been utilised to evaluate 

meningococcal OMV based vaccines (Zollinger et al., 1979)  and have been 

employed by some workers to confirm meningococcal disease in the absence of a 

positive culture result (Jones & Mallard, 1993; Saunders et al., 1997). However, 

caution must be applied with interpretation of positives owing to the oropharyngeal 

carriage of meningococci or other Neisseria species (often commensal) including 

antibodies that may cross-react and may indeed be protective against meningococcal 

disease (Goldschneider et al., 1969). Meningococcal serology can be a useful addition 

for corroborative evidence but by its nature is a retrospective investigation. Ideally the 

serological tests should be performed on paired sera, one acute sample and one 

convalescent sample taken at least 10 days after onset. Serological evidence alone is 

not suitable to define cases of meningococcal disease without strong clinical evidence. 

 

Traditional phenotypic methods, such as latex agglutination, co-agglutination and 

ELISA (Eldridge et al., 1978; Frasch et al., 1985) have been successful over the years 

and have provided important information. More recently, molecular methods of 

characterisation have come to the fore. Recent developments in DNA analysis, 

together with the natural limitations of phenotypic methods, have resulted in a natural 

evolution towards genotypic procedures (Clarke, 2002). The polymerase chain 

reaction (PCR) method has been introduced into laboratory diagnostics where, in 
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general, PCR is performed in a commercial thermocycler followed by visualisation of 

PCR products on a gel-based system. PCR allows for the rapid detection of infection 

when cultures have not been grown. It also allows for the further characterisation of 

organisms, for example determination of serogroup.  

 

Non-culture diagnosis has become essential in maximising case ascertainment of 

disease due to N. meningitidis (Clarke et al., 2001b). Although sero-diagnosis is 

available for confirmation, results are often inconclusive (Borrow et al., 1997). 

Amplification of meningococcal DNA by polymerase chain reaction (PCR) provides a 

rapid, highly sensitive, and specific method for detecting meningococcal DNA from 

clinical samples. The first meningococcal PCR assay was based upon the insertion 

sequence element IS1106 (Ni et al., 1992). This PCR was designed specifically for 

the detection of meningococci within clinical samples. Insertion sequence elements 

were chosen as gene targets for non-culture diagnosis of bacterial infections owing to 

the presence of multiple copies within the bacterial genome, which it was hoped 

would increase sensitivity (Zhou et al., 1995). However, there was a problem with the 

inherent genetic mobility of these elements (Hernandez Perez et al., 1994) which 

means they can transfer among species and genera. Therefore, during an evaluation 

period of the IS1106 PCR ELISA, a number of false-positive results were caused by 

organisms other than N. meningitidis (Borrow et al., 1998). As a result of this the 

focus has switched to the ctrA gene (Frosch et al., 1992). The ctrA gene is an ideal 

target for detection of meningococci by PCR as it occurs exclusively in N.meningitidis 

and not in other pathogenic or nonpathogenic Neisseria species. Conserved regions of 

this gene have therefore been exploited, enabling the amplification of a product from 

all clinically significant serogroups, thereby providing an initial screening test for all 
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samples. Serogroup-specific sequences within the siaD gene have also been exploited 

in designing PCR tests for the identification and discrimination of operons encoding 

serogroups B, C, Y and W135 (Borrow et al., 1997; Borrow et al., 1998). Standard 

and fluorescence-based PCR assays have been developed for the identification of 

serogroup A meningococci by detection of the mynA gene (Diggle et al., 2003b). 

 

1.4  MLST 

 

There are a number of molecular techniques which are available for the 

characterisation of organisms, including pulsed-field gel electrophoresis (PFGE) 

(Bygraves & Maiden, 1992; Suzuki et al., 1993; Popovic et al., 2001), amplified 

fragment length polymorphism (AFLP) (Duim et al., 1999; van Eldere et al., 1999; 

Goulding et al., 2000), multi-locus enzyme electrophoresis (MLEE) (Caugant et al., 

1986a; Lefevre et al., 1993) and multi-locus sequence typing (MLST) (Maiden et al., 

1998). All of these have their own advantages and disadvantages but MLST has 

become the standard when characterising N. meningitidis. 

 

1.4.1  Development of MLST 

MLST was developed as an alternative to MLEE, which recognised relatively 

invariant genes by the electrophoretic mobilities of the enzymes they encode (Maiden 

et al., 1998). MLEE has its disadvantages as the technique indirectly measures genetic 

variation and is of relatively low-resolution, requiring large numbers of loci (up to 20) 

to be examined. The identification of allelic variants also required an extensive 

collection of reference isolates and the technique was relatively complex and time 

consuming, although high throughput could be achieved in laboratories with the 
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appropriate equipment. MLEE is also considered laborious and it can be difficult to 

compare results between laboratories. This was a major reason behind the 

development of MLST (Maiden et al., 1998; Maiden, 2006), which enables the 

transfer of digital data between laboratories and is an essential component of a 

successfully implemented worldwide typing system. 

 

With MLST, the number of alleles assigned per locus is much higher than in MLEE. 

This is due to the direct and unambiguous assignment of alleles based on nucleotide 

sequence determination of internal fragments from multiple housekeeping genes. This 

allows high levels of discrimination between isolates by using half the loci that are 

typically required for MLEE. The length of DNA fragment used in MLST was chosen 

as it can be sequenced accurately on both strands using a single pair of primers and, in 

most bacterial pathogens, it provides sufficient variation to identify many different 

alleles within the population (Maiden et al., 1998; Enright & Spratt, 1999). MLST 

was validated using Neisseria meningitidis (Maiden et al., 1998) because it is a 

species in which recombinational replacements are frequent (Feil et al., 1999; van der 

Ende et al., 1999). A collection of 107 meningococcal isolates from invasive disease 

and healthy carriers that had been previously characterised by MLEE were used. 

Initially 10 loci were chosen (Maiden et al., 1998) but a subset of seven was selected 

on the basis of its discriminatory power. Approximately 450-500 bp internal 

fragments of each gene were used, as they could be accurately sequenced on both 

strands using an automated DNA sequencer. For each housekeeping gene, the 

different sequences present within a bacterial species were assigned as distinct alleles 

and, for each isolate, the alleles at each of the loci define the allelic profile and 

sequence type (ST). Each isolate of a species is therefore unequivocally characterised 
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by a series of seven integers, which correspond to the alleles at the housekeeping loci. 

Housekeeping genes are used in MLST because they vary in nucleotide sequence 

slowly over time. For MLST, the number of nucleotide differences between alleles is 

generally ignored and sequences are given different allele numbers whether they 

differ at a single nucleotide site or at many sites. Most bacterial species have 

sufficient variation within housekeeping genes to provide many alleles per locus, 

allowing an almost infinite amount of distinct allelic profiles to be distinguished using 

the chosen housekeeping loci.  The sequence data obtained from MLST can then be 

analysed using the MLST database (http://pubmlst.org/neisseria/) (Jolley et al., 2004). 

 

1.4.2  Advantages and disadvantages of MLST 

The great advantage of MLST is that the sequence data are unambiguous and the 

allelic profiles of isolates can easily be compared to those in a large central database 

via the Internet. This is in contrast to most typing procedures which involve 

comparing DNA fragment sizes on gels. It is also possible to create your own internal 

database or intranet, which needs to be maintained by regularly updating, but allows a 

speedier and regularly accessible form of analysis than waiting for slow Internet 

access at peak times. A further advantage of MLST is that the allelic profiles of 

isolates can be obtained from clinical material by PCR amplification of the house-

keeping loci directly from cerebrospinal fluid (CSF) or blood (Enright et al., 2000; 

Clarke et al., 2001b; Diggle et al., 2003a).  Thus isolates can be precisely 

characterised even when they cannot be cultured from clinical material. It also means 

that laboratories do not need to obtain reference isolates of each of the important 

clones of a pathogen. A further advantage is that killed cell suspensions or purified 

DNA can be used for MLST, thus eliminating the need to transfer live bacterial 
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species, such as meningococci, between laboratories (Tzanakaki et al., 2001). MLST 

has been applied to a large number of human pathogens including N. meningitidis 

(Maiden et al., 1998), Streptococcus pneumoniae (Zhou et al., 2000), Staphylococcus 

aureus (van Belkum, 2000), Campylobacter jejuni (Dingle et al., 2001), 

Streptococcus pyogenes (Enright et al., 2001), Haemophilus influenzae (Meats et al., 

2003), Helicobacter pylori (Platonov et al., 2000) and Bordetella pertussis (van Loo 

et al., 2002). 

      

One of the biggest disadvantages of MLST, like other methods, is that it can be time 

consuming if performed manually. There is a limit on the number of samples that can 

be performed depending on whether the MLST is performed manually or automated 

and which type of DNA sequencer is available. The only realistic way to provide high 

throughput is for the system to be automated (Clarke et al., 2001a; Clarke et al., 

2001b; Clarke et al., 2001c). This allows a large volume of samples to be processed 

with the minimum of set-up. It also increases the reliability and reproducibility of 

results, as there is less scope for human error. In addition, it allows better time 

management as, during the automated stages, other work can be carried out by the 

user. 

 

1.4.3 Applications of MLST  

MLST can be used for epidemiological surveillance and adds greatly to our 

knowledge of the genetic variation that can occur within a species. The sequence data 

obtained from MLST can also be used to determine population structures by analysing 

the extent of linkage disequilibrium between alleles and to look for recombination by 

the non-congruence of gene trees (Boyd et al., 1996) and by the presence of 



 20

significant mosaic structure. For highly clonal species, the phylogenetic relationship 

between isolates can be inferred from the dendrogram derived from the pairwise 

differences between STs and independently from a consensus tree constructed from 

the gene sequences. In the case of weakly clonal species such as the meningococcus, 

MLST is very useful for the identification of the currently circulating hyper-virulent 

lineages because these are recognised as clusters of isolates with identical or very 

similar sequence types (Maiden et al., 1998). 

 

MLST is also an ideal method for performing population and evolutionary analysis in 

large-scale epidemiological studies. One such study where MLST has been used is in 

the carriage of meningococci in the Czech Republic. In this study, 218 meningococci 

isolated from healthy young adults during 1993 were analysed using MLST together 

with the characterisation of the siaD gene (Jolley et al., 2000). This study provided 

much needed information about meningococcal carriage and this would not have been 

possible without the various molecular techniques employed. This has not been the 

only large-scale epidemiological study that has used MLST. A UK study has looked 

at how meningococci have changed before, during and after the introduction of the 

Men C vaccine (Diggle & Clarke, 2005; Gray et al., 2006; Trotter et al., 2006). This 

study used a number of techniques to characterise the organisms found including 

MLST, PorA and siaD analyses. These examples illustrate the increasing role that 

MLST has had on better understanding the evolutionary biology of pathogenic 

bacteria and this role looks set to increase in the future. Such studies provide early 

information relating to public health practice and also help inform vaccine policy. 
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Although nucleotide differences between alleles are normally ignored in MLST, such 

differences can actually be used to determine the evolution of given alleles using 

appropriate analyses. To put this into a real life context, case clusters of 

meningococcal disease can be examined using MLST to determine whether they are 

caused by the same strain or caused by a different strain (Feavers et al., 1999; 

Gilmore et al., 1999; Clarke et al., 2002a). It can also be used to compare the 

differences between bacterial strains causing disease in different parts of the world or 

even whether there has been a shift in the common types of alleles found throughout 

the years (Jolley et al., 2000; Nicolas et al., 2000; Smith et al., 2000; Nicolas et al., 

2001), as well as providing obvious public health benefits.  

 

1.4.4   MLST analysis 

Most bacterial species have sufficient variation within housekeeping genes to provide 

many alleles per locus, allowing an almost infinite amount of distinct allelic profiles 

to be distinguished using the chosen housekeeping loci.  The analysis of data can be 

separated into different categories: lineage assignment, recombination tests and tests 

for selection.  

 

Lineage assignment is used as a way of displaying the relationships between closely 

related isolates of a bacterial species or population. It is used to provide a hypothesis 

about the way each clonal complex may have emerged and diversified. This is 

important as it allows for the comparison of different lineages to see how closely 

related they are. This can be useful for understanding the transmission and population 

dynamics within patients or in healthy carriers. For lineage assignment there are a 

number of different methods that are available. Distance-matrix methods such as 
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Neighbour-Joining or Unweighted Pair Group Method with Arithmetic Mean  

(UPGMA), which calculate genetic distance from multiple sequence alignments, are 

the simplest to put into practice, but do not invoke an evolutionary model.  

 

Neighbour-Joining is based on the topology that gives the least total branch length 

preferred at each step of the algorithm. Neighbour-Joining may not find the true tree 

topology with least total branch length because it is a demanding algorithm that 

constructs the tree in a step-wise fashion. However it has been extensively tested and 

usually finds a tree that is quite close to the optimal tree. Neighbour-Joining like most 

tree drawing algorithims only work when there is not much recombination disrupting 

the phylogeny. The main advantage of Neighbour-Joining is its efficiency. It is a 

polynomial-time algorithm that can be used on very large data sets for which other 

means of phylogenetic analysis (e.g. maximum likelihood) are computationally not 

viable. Unlike the UPGMA algorithm for phylogenetic tree reconstruction, 

Neighbour-Joining does not assume that all lineages evolve at the same rate (the tree 

does not assume an evolutionary clock) and produces an unrooted tree. Furthermore, 

Neighbour-Joining is statistically consistent under many models of evolution. Hence, 

given data of sufficient length, neighbor-joining will reconstruct the true tree with 

high probability.  

 

UPGMA (Unweighted Pair Group Method with Arithmetic Mean) (Sneath & Sokal, 

1973a) is a basic method of tree construction.  Its original purpose was to construct 

taxonomic phenograms, which are trees that reflect the phenotypic similarities 

between operational taxonomic units (OTUs). With this method it is important, 

therefore, not to draw phylogenetic inferences from the clustering pattern seen, 
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although it may prove useful as a rapid guide to identifying similar isolates. It is 

commonly not considered a good algorithm for construction of phylogenetic trees as it 

relies on the rates of evolution among different lineages to be approximately equal.  In 

the study of bacterial population biology this is likely not to be the case, so the 

method should not be relied upon to cluster strains without artefacts. BURST (Based 

Upon Related Sequence Types) is a web-implemented clustering algorithm, designed 

for use on MLST data sets. The approach explicitly examines the relationships 

between very closely related genotypes within clonal complexes where the 

relationships between different clonal complexes are ignored (Feil et al., 2001). This 

had its limitations in that it was unable to cope with very large data sets and the 

graphical outputs displayed were unsophisticated. This led to the introduction of 

eBURST (Feil et al., 2004), which differs from BURST slightly in the way the 

algorithms display the relationships between STs. BURST and eBURST are important 

as epidemiological tools as they are designed for examining clonal diversification 

over short evolutionary timescale. Therefore antibiotic-resistant strains provide a good 

sample case, as these are unlikely to predate the introduction of the antibiotics to 

which they show resistance and should have diversified little from their primary 

founder within this very short period of time. 

 
eBURST incorporates an uncomplicated model of bacterial evolution in which strains 

increasing in frequency diversify to form clusters of similar genotypes descended 

from the founding strain. MLST isolates of an expanding founding ST initially have 

the same allelic profile, but diversification results in the appearance of variants in 

which one of the MLST loci has changed (single locus variants; SLVs), either as the 

result of mutation or recombination. Further diversification generates double locus 

variants (DLVs) and then triple locus variants (TLVs) of the founding ST, to result in 
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a cluster of closely-related STs descended from the founding ST. The BURST 

algorithm identifies these clonal complexes within bacterial populations, deduces the 

founding ST of each clonal complex, and displays the probable pattern of recent 

evolutionary descent of all STs within the clonal complex from this predicted founder 

(Feil et al., 2004). Founder STs are assigned as the ST in an eBURST group that is 

linked to the greatest number of SLVs, with bootstrapping providing evaluated 

confidence in this assignment (Feil et al., 2004). The nature of the allelic change 

(mutation versus recombination) is unimportant for discerning patterns of descent 

among related STs within a clonal complex. Therefore, for exploring recent ancestry, 

eBURST is uninfluenced by recombination, in contrast to most methods that use the 

nucleotide sequences themselves (Feil et al., 2004). 

 
  
Split Decomposition (a technique for tree reconstruction) (Bandelt & Dress, 1992) is a 

non-approximative method that can detect groupings of species in the data that are 

caused by common ancestry, convergence, or systematic or random errors. 

Evolutionary data is most often presented as a phylogentic tree, the underlying 

assumption being that evolution is a branching process. The programme splitstree 

produces splits-graphs from distance matrices or sequence data. 

 
 
ClonalFrame is for the inference of bacterial microevolution using multilocus 

sequence data (Didelot & Falush, 2007). The ClonalFrame method estimates the 

clonal relationships between the members of a sample, while also estimating the 

chromosomal position of homologous recombination events that have disrupted the 

clonal inheritance. ClonalFrame takes account of both mutation and recombination 

events and weights these components accordingly in generating its tree. It is probably, 
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therefore, more robust in its lineage assignment than other methods which either 

assume bifurcating tree-like phylogeny (caused by mutation) or they ignore the 

differences between alleles, assuming that most change is through recombination. The 

main disadvantage is that it is computationally intensive and, because of its 

probabilistic nature, multiple runs should be performed and tested for convergence. 

 
 
Maximum likelihood attempts to estimate the actual amount of change according to 

the evolutionary model in place. Maximum likelihood works with a prior nucleotide 

substitution model to compute a likelihood score for each tree given the original data. 

Before beginning, either an evolutionary model must be specified that can account for 

the change of one sequence into another or parameters must be selected that can be 

estimated from the data. Then the maximum likelihood approach evaluates the 

probability that the selected evolutionary model will have generated the observed 

sequences. The trees yielding the highest likelihood are used to infer phylogeny. The 

substitution model should be optimised to fit the observed data as modifying the 

substitution parameters modifies the likelihood of the data being associated with 

particular trees.  

 

The Index of Association (IA) measures the extent of linkage equilibrium within a 

population by quantifying the amount of recombination among a set of sequences and 

detecting association between alleles at different loci (Maynard- Smith et al., 1993.). 

The Index of Association (IA) is calculated as follows: IA =V0/VE -1 if V0 is the 

observed variance of K and VE is the expected variance of K, where K is the number 

of loci at which two individuals differ.  If there is linkage equilibrium because of 
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frequent recombination events, the expected value of IA is zero. Clonal populations 

are identified by an IA value that differs significantly from zero.  

 

Selection is the process whereby the implementation of conditions allows them 

discriminate between specific isolates displaying a required phenotype/genotype.  

Nucleotide substitutions within these genes that encode for proteins can either be 

synonymous (do not change amino acid) or non-synonymous (changes amino acid).  

Investigating the number of synonymous and non-synonymous substitutions that may 

occur within these genes can provide information relating to the degree of selection 

operating on such a system. Usually, most non-synonymous changes are expected to 

be eliminated by purifying selection but, under certain conditions, Darwinian 

selection may lead to their retention.  Investigating the number of synonymous and 

non-synonymous substitutions may therefore provide information about the degree of 

selection operating on a system. Tests for selection include dS/dN ratios. 

 

1.5 Global epidemiology and surveillance 

 

The documentation of meningococcal disease has highlighted major global outbreaks 

at the time of both World War I and II. Since World War II, the largest epidemics of 

meningococcal disease have affected mainly sub-Saharan countries and periodically 

the disease has devastated some of these countries. More than 340,000 cases and more 

than 53,000 deaths were reported during the period 1951-1960 from this part of the 

world where the total population was 35 million. However, epidemic meningococcal 

disease is a worldwide problem and can affect any country regardless of variations in 

climate. Whereas, in the 1960s, meningococcal disease was considered to be a large 
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health problem in some tropical countries and no longer a serious health problem in 

North American and European countries, this opinion changed in the 1970s (WHO, 

1998). 

 

During this time, meningococcal disease epidemics occurred all over the world and 

the disease incidence increased in a number of countries of the Americas, Asia and 

Europe showing an epidemiological pattern characterised by recurrent epidemics and 

persistent endemic disease with sporadic cases. Outbreaks of meningococcal 

meningitis were reported from Finland, Mongolia and the USSR (1973/1974), 

Norway (from 1975 throughout the 1980s), Algeria and Chile (1979), Vietnam and 

Rwanda (1977/1978) (WHO, 1998). In the 1980s, an epidemic wave of 

meningococcal disease spread over territories in Asia; India with 6,133 cases in 1985 

and Nepal Katmandu Valley in 1982-1984 with 103 cases per 100,000 population 

(WHO, 1998). Group B meningococcal disease epidemics were reported from Cuba in 

1982-1984 and from Chile in 1986 and 1993 (WHO, 1998).  

 

Epidemics of meningococcal disease occur in the same period of the year as the 

seasonal upsurge observed in endemic conditions: in winter/spring in temperate zones, 

and in the dry season in tropical countries. The temporal distribution of meningococci 

has been shown in the increased number of cases observed over the winter period in 

developed countries such as the UK (Wylie et al., 1997; Clarke et al., 2002b).  

Climatic factors seem to play an important role in the occurrence of meningococcal 

disease.  In tropical and temperate regions such as South America and central regions 

of Africa the transition from rainy to dry seasons are thought to be influential. This 

has been observed with an increase in incidence in the early dry season, when the 
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climate is hot, dry and dusty.  The incidence of meningococcal disease peaks at the 

end of the dry season and virtually disappears at the start of the rainy season 

(Achtman, 1995; Riedo et al., 1995). Since the 1980s, no evident periodicity has been 

observed; intervals between epidemics became more irregular, maybe as a result of 

extensive traffic and mixing of populations (WHO, 1998). 

 

Worldwide, patterns of meningococcal disease vary considerably. There are areas of 

lower endemicity, for example the industrially developed countries with an annual 

attack rate of 1 to 12 per 100,000 (Pollard & Frasch, 2001). This pattern contrasts 

strongly with annual attack rates as high as 25 per 100,000 seen in parts of the 

developing world (Tikhomirov, 1987). In large areas of Africa, meningococcal 

meningitis is a highly endemic disease. In a region extending from Gambia in the west 

to Sudan in the east, and from the Sahara in the north to the tropical rain forests of 

Central Africa in the south, the incidence of meningitis has been so high that this part 

of Africa has been dubbed 'the Meningitis Belt’ (Moore et al., 1989). Major epidemics 

arise very rapidly, peaking within a few weeks. Incidence rates often remain elevated 

for 1 to 2 years after the appearance of an epidemic. During an epidemic, the age 

distribution shifts from young children to teenage children and young adults. 

Wherever this disease is endemic, there is a risk of periodic epidemics. During those 

epidemics, attack rates can reach 1,000 per 100,000 (Greenwood, 1984). The 

serogroups responsible can also shift. Although serogroup A is the main cause of 

epidemics, other serogroups, such as C, W135 and Y, can cause infection in highly 

endemic regions (Griffiss & Brandt, 1979; Greenwood, 1984) 

 

A combination of risk factors must exist for an epidemic to occur. In the Meningitis 
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Belt, meningococcal outbreaks tend to be seasonal and it has been suggested that one 

such risk factor may be low humidity, which alters the pharyngeal mucosal barrier, 

resulting in invasive disease (Moore et al., 1989). Socio-economic factors appear to 

be significant, with higher rates of infection occurring among the lower socio-

economic groups. For example, in recent epidemics in the US, the poorest minorities 

were most affected irrespective of racial origin. Contact with cases is a significant 

factor in disease transmission. Crowded conditions also predispose towards infection 

and household clustering of cases is frequent. During an epidemic in northern Nigeria, 

10% of patients gave a history of close contact with an infected person (Moore et al., 

1989). Household contacts may be expected to exhibit a disease incidence that is 100 

to several thousand times that of the general population (Broome, 1986; Cooke et al., 

1989; Stuart et al., 1989). 

 

One reason suggested for the periodicity of meningococcal epidemics in sub-Saharan 

Africa is waning herd immunity. If non-capsular antigens are important in creating 

natural immunity against meningococci, introduction of a new serogroup, such as 

serogroup A with different OMP antigens, may place a previously resistant population 

at risk of an epidemic, as shown by the outbreaks of serogroup A meningococcal 

disease in the Meningitis Belt (Moore et al., 1989). The World Health Organisation 

has estimated that in the two decades following World War II, the average incidence 

of meningococcal infection in the Meningitis Belt was about 70 cases per 100,000. 

 

Major epidemics have occurred in the Meningitis Belt every 5 to 10 years since the 

beginning of the century, with three such waves in the last 30 years (Crowe et al., 

1987). Large outbreaks have also occurred recently in East African countries that are 
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becoming popular holiday destinations. Over several years, bacterial studies showed 

serogroup A as the predominant cause of large epidemics in Africa (Peltola, 1983). In 

the 1970s, however, several outbreaks were reported citing other serogroups. One 

study in Zaire, Nigeria, reported that, of those patients studied, 63% had a serogroup 

C infection compared with 36% with serogroup A. It was also reported that serogroup 

C infection was more severe than serogroup A infection, resulting in higher overall 

mortality (Evans-Jones et al., 1977). Epidemics due to serogroup B meningococci 

occurred in Brazil (1971/72), Cuba (1982-84), Chile (1986), and an epidemic due to 

serogroup A in Brazil (1974). In Cuba due to the high incidence of meningococcal 

disease and the large epidemic between 1982-1984, mainly caused by serogroup B, a 

bivalent B/C vaccine was developed by Finlay, including OMPs from a B4: P1.15 

strain (predominant in Cuba) and serogroup C capsule polysaccharide (Sierra et al., 

1991). This vaccine is now implemented into the routine immunisation schedule for 

children. 

 

Parts of the Middle East are considered highly endemic for meningococcal meningitis. 

One outbreak in the Middle East occurred in August 1987 during the annual 

pilgrimage (Hajj) to Mecca, Saudi Arabia, and was caused by a single meningococcal 

serogroup A clone designated AIII-I. Epidemiological investigations and enzyme 

typing indicated that this clone was carried to Saudi Arabia by pilgrims from South 

Asia (Moore et al., 1989). Subsequently, pilgrims who became carriers returned to 

their homes and serogroup A meningococcal disease was later reported in 

neighbouring Gulf States, Saudi Arabia, Egypt, Sudan, in sub-Saharan Africa, in the 

US and in Europe among the pilgrims and their contacts (Moore et al., 1988; Jones & 

Sutcliffe, 1990). In Yemen and Sudan, epidemic spread occurred following 
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importation. Since then, some countries such as Egypt, Saudi Arabia and Sudan 

immunise high risk groups, and the health authorities of Saudi Arabia request health 

certificates showing a valid immunisation against meningococcal disease from all 

pilgrims (Geneva, 1998). Following the Hajj in 2000, meningococcal disease mainly 

due to serogroups A and W-135 was reported in pilgrims returning to other parts of 

the world including Europe, (Anon, 2000; Taha et al., 2000; Hahne et al., 2002; Gold, 

2003; Khan, 2003). 

 

1.6        European epidemiology and surveillance 

Although meningococcal infection is endemic in most western European countries, in 

such communities the attack rates are usually low or moderate and only modest 

variations in incidence are observed from year to year. However, the high case fatality 

rate, even in countries with a well developed health service of about 10% for 

meningitis and up to 50% for septicaemia, as well as persistent sequelae following 

acute meningitis (about 20%), is of concern for the public and the health authorities. 

In many countries, clusters of meningococcal disease have been reported. However, 

large epidemics of meningococcal disease are now unusual although they have 

occurred in the past. Serogroup A epidemics were recorded during the war years 

1914-1918 and 1939-1945, which were times of great social disturbance, crowding 

and extensive transfer of military personnel into high endemicity areas (Peltola, 

1983). In the 1970s and 1980s, epidemics were reported from northern European 

countries. A surveillance system to assess the impact and changing epidemiology of 

invasive meningococcal disease in Europe was set up in 1987. Since about 1991, 

contributors from national reference laboratories, national communicable disease 

surveillance centres and institutes of public health in 35 European countries (as well 
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as from Australia and New Zealand) provided information on reported cases of 

meningococcal disease in their country (Connolly & Noah, 1999). In 2002 the 

incidence of culture-confirmed meningococcal disease in Europe varied between 0.3 

and 4.7 per 100,000.  Meningococcal disease was highest in young children, although 

there was a secondary peak in incidence observed in teenagers. Serogroup B is the 

most common cause of invasive meningococcal disease, followed by serogroup C. 

Serogroup C incidence can vary quite considerably between countries in Europe and 

there has been a reduction in serogroup C disease in those countries which have 

implemented the serogroup C conjugate vaccine. Case fatality rate is on average 7-8% 

although this varies by age and serogroup. The incidence of serogroup B in Europe is 

highest in children under one year old, with a small secondary peak in 15-19 year 

olds. However, serogroup B disease remains low in older ages. The incidence of 

serogroup C in Europe is also highest in children under one year old, with a small 

secondary peak in 15-19 year olds. Amongst the other serogroups that cause invasive 

disease serogroup W135 is the most common followed by serogroup Y. 

 

There are differences in major serotypes of serogroup C and serogroup B within 

Europe. There has been an increase in serogroup C serotype 2a infection in many 

countries that have not implemented the serogroup C conjugate vaccine. This raises 

concerns, in view of the association of this serotype and strains of the hypervirulent 

ST-11 complex (Claus et al., 2005). Variation in serogroup B strains is seen across the 

whole of Europe with no one dominant strain. 
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1.7 Meningococcal epidemiology and surveillance in the UK 

In the UK, as in most European countries, meningococcal disease due to serogroup B 

and C infection has a seasonal peak with most cases occurring in the first quarter of 

the year (Jones & Mallard, 1993). The incidence of infection is greatest in infants and 

pre-school children and more cases are observed in males (Jones & Mallard, 1993). 

Epidemics of meningococcal disease occurred during the first and second world wars 

with annual totals of notified cases reaching 3500 in 1915 and 12,775 in 1940. Since 

then, two periods of increased case reports have been observed, but annual numbers of 

notified cases remained well below the totals observed in the wartime epidemics. The 

first of these hyperendemic periods occurred between 1972 and 1975 and was 

associated with a short-lived increase in infections with a specific serogroup B strain 

(Jones & Kaczmarski, 1995). The second period began in 1985 and several serotypes 

have been implicated (Jones & Kaczmarski, 1995). During late 1995 and 1996 a large 

number of clusters of serogroup C infections were reported (Kaczmarski & 

Cartwright, 1995) and led to polysaccharide meningococcal AC vaccine being given 

to pupils at several schools and within the local communities. A similar increase in 

reported cases had previously been observed in 1989/1990 in England and Wales, and 

this was in association with an epidemic of influenza (Cartwright, 1995). Studies have 

suggested that influenza may predispose to meningococcal infection (Cartwright et 

al., 1991), but in late 1995 the increase in meningococcal disease preceded the rise in 

influenza activity. Similar increases in meningococcal disease, with a shift to more 

serogroup C infection and to older age groups, have been observed in recent years in 

Scotland (Fallon, 1988), Canada (Whalen et al., 1995), and the United States (Jackson 

et al., 1995). The increase in Canada was attributed by electrophoretic typing to a new 
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clone of serogroup C N. meningitidis ET-15, which became prevalent in the 

community (Kertesz et al., 1998). 

 

1.7.1 Scottish epidemiology and surveillance 

Meningococcal disease trends within Scotland are similar to those experienced by 

England and Wales (Fallon et al., 1984; Fallon, 1988; Clarke et al., 2002b; Kyaw et 

al., 2002). Meningococcal infections in Scotland have been under detailed 

bacteriological surveillance since 1970. The increased prevalence of infection in 1974 

was shown by the number of cultures received. As in the rest of the UK, the highest 

number of notifications is usually in the first quarter of the year and is a useful 

indicator of how the pattern is likely to develop for the rest of the year. Hence the 

increasing level of infection seen in 1985 and 1986 was heralded by the highest 

numbers in the first quarters of those years than in the same periods in the previous 

years. The increase in prevalence of disease in Scotland during the mid-eighties was 

first noticed in Lanarkshire in 1984. The increased prevalence of infection in 1974-76 

was mainly due to serogroup B that predominated in succeeding years. However, 

although serogroup B infection was prevalent in the latter part of 1984, serogroup C 

strains had increased in prevalence since that time and began to dominate for a few 

years. This was the first time that this had been seen in Scotland since the laboratory 

surveillance of infection had begun. This pattern occurred again in the late nineties 

when the incidence of disease had increased in many parts of Europe (Connolly & 

Noah, 1999) and, in Scotland, much of this increase resulted from the emergence of 

serogroup C strains after the decline in serogroup B disease in the early 1990s (Clarke, 

1999; Smart, 1999). Many of the serogroup C strains that occurred in Scotland 

belonged to the ET-37/ST-11 clonal complex, (Wang et al., 1993; Clarke, 1999) 
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which was often associated with clusters or outbreaks (Vogel et al., 2000), although 

the incidence of serogroup C disease has decreased in individuals from those age 

groups that have received immunisation with serogroup C meningococcal conjugate 

(MenC) vaccine. A study looked at the relationship between meningococcal genotype 

and capsular polysaccharide by investigating carried meningococci isolated from 8000 

children and young adults in Bavaria, Germany (Claus et al., 2005). It found that the 

rate of capsule gene expression did not vary with age of carrier or meningococcal 

genotype, except for serogroup C, for which increased expression was associated with 

the ST-11 complex (Claus et al., 2005). Therefore, it was concluded that serogroup C 

capsule expression during carriage may contribute to the invasive character of the  

ST-11 complex and to the high efficacy of serogroup C meningococcal conjugate 

(MenC) vaccine (Claus et al., 2005). Since the introduction of the MenC vaccines, 

laboratory confirmation and serogroup determination of the infecting organism has 

become more important (Maiden & Spratt, 1999). 

 

1.8  Spatio-temporal analysis of meningococcal isolates 

 

In the developed world most cases of invasive meningococcal disease (IMD) are 

sporadic but when outbreaks of IMD occur it becomes a public health emergency 

because of the disease's unpredictability, serious symptoms and sudden mortality. A 

cluster is defined as two or more cases of meningococcal disease occurring in the 

same preschool group, school, or college/university within a four-week period (Stuart, 

2006). In most instances over the years, and during the period of 1972-1998, detection 

of increases in cases that were closely grouped within space and time relied on the 

alertness of public health officials due to the lack of more objective methods. 
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Many methods of computer-assisted cluster analysis have been developed (Kulldorff, 

1997; Hoebe et al., 2004; Ranta et al., 2004) and have helped to identify and 

statistically evaluate increases in the incidence of IMD, thus providing valuable 

information for public health investigation and intervention. A stochastic model (a 

tool for estimating probability distributions of potential outcomes by allowing for 

random variation in one or more inputs over time) has been applied to predict 

outbreaks of meningococcal disease in closed communities such as military cohorts 

(Ranta et al., 2004). Clusters of IMD in the Netherlands were evaluated statistically 

using space-time nearest neighbour analysis (Hoebe et al., 2004). In Germany there 

have also been studies of clusters of meningococci that have used SaTScan (Elias et 

al., 2006a; Elias et al., 2006b). SaTScan (Kulldorff, 1997) is software that analyses 

spatial, temporal and space-time data using the spatial, temporal, or space-time scan 

statistics. SaTScan can also be used to test whether a disease is randomly distributed 

over space, over time or over space and time. It can also evaluate the statistical 

significance of disease cluster alarms and perform repeated time-periodic disease 

surveillance for early detection of disease outbreaks. The programme works by 

applying a likelihood function to circular windows (the program draws circles with 

variable size to define the potential cluster area) originating at defined locations of 

increasing size and compares observed and expected case numbers inside and outside 

the scan window to detect clusters that are least likely to have occurred by chance. 

Monte Carlo hypothesis testing is used to obtain the statistical significance for each 

cluster, i.e., results of the likelihood function are compared for a large number of 

random replications of the dataset generated under the null hypothesis.  
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1.9         Vaccines 

 

The problems faced by vaccine developers are designing meningococcal vaccines that 

are safe, comprehensive and effective in the age groups most susceptible to disease. 

Meningococcal disease surveillance data show that, in principle, the development and 

implementation of vaccines against the meningococcus should be relatively 

straightforward. Possession of one of the six disease-associated capsules (A, B, C, Y, 

W135 and X) is an absolute requirement for pathogenesis. Evidence of the importance 

of horizontal genetic exchange in the generation of meningococcal antigenic diversity 

is provided by the mosaic structure of the genes and operons that encode major cell 

surface structure (Pollard & Maiden, 2001). This has major implications for both the 

development and the evaluation of vaccine candidates, as well as for the 

implementation of vaccination programmes, as it provides a mechanism for the 

reassortment of antigen-encoding genes among meningococcal clones and increases 

the prospect of meningococci evading host immunity. In addition the expression of 

many antigen genes is tightly regulated so that critical antigens are not continuously 

expressed in vivo. Meningococci can be considered as commensals that rarely cause 

disease rather than a strict pathogen as carriage occurs a great deal more than disease.  

 

Meningococcal disease has always been a particular problem in the young. This poses 

a problem for vaccine developers as carbohydrate antigens such as capsular 

polysaccharides or lipopolysaccharides (LPS) are poorly immunogenic in the very 

young and frequently mimic host cell structures. Therefore, the question arises as to 

whether it is possible to enhance immunity to a carbohydrate in infants and would a 

vaccine elicit an autoimmune response. Protein vaccines are generally considered 
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better immunogens than carbohydrates but they have other problems associated with 

them. The more immunogenic meningococcal surface protein antigens suffer from the 

disadvantage that they are also antigenically highly variable.  

 

1.9.1   Polysaccharide vaccines  

Meningococcal vaccine development began in the 1930s with killed whole-cell and 

exotoxin vaccines, and it was established in the late 1960s that vaccines against 

meningococcal capsules can protect against infection (Gotschlich et al., 1969). These 

vaccines are very safe and systemic reactions have been extremely rare. The most 

common adverse reactions are erythema and slight pain for one or two days at the site 

of injection. The recognised short-term efficacy levels of both serogroup A and 

serogroup C polysaccharides are 85%–100% in older children or in adults. In infants 

of three months, neither of the polysaccharide vaccines reliably elicits protective 

antibodies. Serogroup C polysaccharide vaccines given to children below two years of 

age are not reliably immunogenic and may lead to tolerance to serogroup C antigen in 

later years. In children aged two years and above serogroup Y and W135 

polysaccharides have been proved to be safe and immunogenic.  

 

The greatest challenge for vaccine developers is an effective serogroup B vaccine. 

Meningococcal polysaccharide antigens of serogroups A, C, Y and W135 do not 

provide any protection against serogroup B meningococci, which in some countries 

are the leading cause of endemic meningococcal disease. The use of capsular 

polysaccharide as the basis of a vaccine for prevention of serogroup B diseases has 

had problems associated with it. Serogroup B polysaccharide is poorly immunogenic, 

even when conjugated to a protein carrier. This has been attributed to the similarity of 
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the serogroup B polysaccharide to antigens of the central nervous system. The 

serogroup B capsular polysaccharide is identical to a widely distributed human 

carbohydrate [(238)N-acetyl neuraminic acid or polysialic acid], which, being a self-

antigen, is a poor immunogen in humans. Furthermore, use of this polysaccharide in a 

vaccine may elicit auto-antibodies (Hayrinen et al., 1989).  

 

1.9.2  Conjugate vaccines  

Conjugate vaccines are produced by covalently attaching a poor antigen to a carrier 

protein. Human immune systems respond much more strongly to proteins than to 

sugars, so conjugate vaccines trigger a long-lasting immune response and are effective 

in babies as young as two months of age. For this reason, the meningococcal 

serogroup C conjugate vaccine is a big improvement over the previous polysaccharide 

vaccine, which provided protection only for about three years and did not provide 

protection in children under two years old. Through conjugation of serogroup C-

specific meningococcal polysaccharide to a protein carrier, a thymus-dependent 

immune response is achieved. Internationally there are three serogroup C 

meningococcal conjugate (MCC) vaccines currently licensed. In some vaccines the 

polysaccharide is linked to a non-toxic mutant of diphtheria toxin (CRM 197) whereas 

in one vaccine, tetanus toxoid is used as the carrier protein. The conjugate vaccines 

induce enhanced levels of IgG anti-capsular antibodies and memory B-cells. In 1999, 

in the United Kingdom, immunisation against serogroup C meningococcal disease 

using MCC vaccines became part of the national childhood immunisation programme. 

The incidence of meningococcal serogroup C disease at that time was approximately 

2 per 100 000 population. Infants were vaccinated at two, three and four months of 

age and children aged 4–13 months and children under the age of 18 years offered 



 40

‘catch-up’ vaccination. Afterwards, several countries introduced national mass MCC 

vaccination campaigns. These included Ireland, Spain, the Netherlands and Iceland. 

Large-scale studies in the UK showed that, 16 months after vaccination with one 

single dose of the MCC vaccine, 88% of children aged one to two years still had 

protective antibody levels whereas among adolescents of 15–17 years 96% had 

protective levels (WHO, 2002). Surveillance has so far shown no evidence of changes 

of the prevalent serogroups and serotypes among invasive meningococcal isolates 

since the MCC program was launched in the United Kingdom. A major protective 

effect of the C conjugate vaccines is by herd immunity (Ramsay et al., 2003). The 

United Kingdom experience confirms that the current MCC vaccine’s safety profile is 

excellent.  

 

A serogroup A, C, Y and W-135 polysaccharide-protein conjugate meningococcal 

vaccine was recently introduced into the US for adolescents (Bilukha et al., 2007). 

The control of major serogroup A and serogroup C epidemics throughout the world 

has been achieved by the implementation of mass immunisation campaigns. In 

addition to their use in emergency mass campaigns, meningococcal vaccines are also 

recommended for groups in which a particularly high risk of disease has been 

documented. These include those attending army units, training camps, or boarding 

schools, travellers to epidemic areas, and persons with immunological predisposition 

to meningococcal disease (such as asplenia and inherited immunological 

deficiencies). 
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1.9.3 Vaccine development 

The implementation of effective vaccination programmes is seen as the solution to 

controlling meningococcal disease. One such method is to develop a conjugate 

vaccine. Conjugate vaccines induce immune memory and are immunogenic in 

children aged under 2 years in contrast with polysaccharide vaccines. Conjugate 

vaccines were first developed for Haemophilus influenzae type b (Hib). The success 

of the Hib conjugate vaccination programme (Peltola, 2000) influenced the use of the 

same approach for meningococcal vaccines, which led to the development and 

implementation of the aforementioned MCC vaccines. Since September 2006, a 

combination MCC–Hib vaccine (conjugated to tetanus toxoid) has also been available 

in the UK, as a booster at 12 months of age (Chief Medical Officer, 2006). 

 

Protection against serogroups A, C, W135 and Y can be provided by quadrivalent 

conjugate vaccines (MCV-4), which have recently been recommended for use in 

adolescents in the USA (Centers for Disease Control and Prevention (CDC), 2005). 

This is because of an increase in the USA of serogroup Y meningococcal disease 

which has been on the increase in the USA over the last decade (Rosenstein et al., 

1999; Kimmel, 2005). As previously mentioned,  serogroup A has caused few cases 

of disease in Scotland over the past twenty years but epidemic serogroup A disease is 

still common in other parts of the world, particularly sub-Saharan Africa. Serogroup 

W135 has emerged as an important cause of disease in Africa (Mueller et al., 2006).  

 

Unfortunately, as previously mentioned, there is currently no generally effective 

vaccine against the most common serogroup, serogroup B. A vaccine based on the 

serogroup B polysaccharide has not been developed because the serogroup B 
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polysaccharide is poorly immunogenic. Therefore, conjugate serogroup B vaccines 

could not be introduced because overcoming the apparent immune tolerance to this 

self-antigen carries the hypothetical risk of inducing autoimmunity (Finne et al., 

1983). However, there have been no reported severe adverse effects to natural or 

vaccine-induced anti-B capsular polysaccharide antibody (Stein et al., 2006). 

Therefore, other methods have had to been employed to develop other vaccine targets. 

The focus for vaccines against serogroup B has therefore moved to non-capsular 

antigens. Vaccines based on outer-membrane vesicles (OMVs) from single strains of 

serogroup B meningococci have been developed for use in Cuba, Norway, and New 

Zealand (Oster et al., 2005). These vaccines have been shown both to elicit serum 

bactericidal antibody responses and to protect against developing meningococcal 

disease in clinical trials (de Moraes et al., 1992b). 

 

PorA, as previously mentioned, is an OMP that is expressed by almost all 

meningococci and has been identified as a major inducer of, and target for, serum 

bactericidal antibodies. However, eliciting an immune response against one PorA 

antigen does not offer protection against strain types with different PorA antigens, as 

there are a large number of PorA proteins with different antigenic specificities. Thus, 

OMV vaccines are strain-specific vaccines that can be used against clonal disease 

outbreaks but are not beneficial for prevention of sporadic disease caused by diverse 

strains. Two of the most extensively studied OMV vaccines are from Norway 

(MenBvac™) (Rosenqvist et al., 1995) and Cuba (VA-MENGOC-BC®) (Sierra et al., 

1991) and were produced in response to national outbreaks. The Cuban 

meningococcal vaccine against serogroups B and C (VA-MENGOC-BC®) was 

developed and it is manufactured by Finlay Institute. VA-MENGOC-BC® is a 
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bivalent vaccine of capsular polysaccharide of N. meningitidis serogroup C, and outer 

membrane vesicles of serogroup B meningococccus that includes PorA, PorB, Opa, 

Opc, Tbp, NspA, high molecular weight proteins and other proteins (Uli et al., 2006). 

This vaccine was licensed in 1989, and successfully used for epidemic control in 

Cuba, Brazil, Colombia and Uruguay (Azeredo et al., 1994; Rodriguez et al., 1999; 

Pirez et al., 2004). Since 1991 VA-MENGOC-BC® has formed part of the Cuban 

infant vaccination schedule and after mass vaccination campaigns, there was a swift 

fall in the incidence of meningococcal disease in all age groups. The incidence rate of 

this disease in Cuba remains at 0.3 per 100,000 inhabitants during the last 4 years, 

lower than the pre-epidemic period (Dominguez et al., 2006). Although there have 

been outbreaks of meningococcal disease in the areas where this vaccine has been 

administered, some outbreaks were caused by different strains. But this vaccine has 

also shown the potential to provide protection against some serogroup B 

meningococcal strains other than the vaccine type-strain (de Moraes et al., 1992a). 

 

The Norwegian vaccine (MenBvac) is an OMV vaccine, based on a serogroup B 

strain (B: 15:P1.7, 16) representative of the epidemic that started in Norway in 1974 

and was developed in collaboration between the Norway Institute of Public Health 

and Chiron. A combination of the Norwegian OMV MenBvac vaccine with a 

conjugate MenC vaccine was studied in adult volunteers and shown to be 

immunogenic with regard to both serogroup B and C meningococci (Aaberge et al., 

2005). 

 

Novartis scientists have used "reverse vaccinology" to develop the Novartis MenB 

vaccine. Reverse vaccinology uses bioinformatic approaches to screen the entire 



 44

genome to find genes. The genes are then filtered for desirable attributes that would 

make good vaccine targets, such as outer membrane proteins (Rappuoli, 2000). The 

major advantage for reverse vaccinology is finding vaccine targets quickly and 

efficiently. The disadvantage is that only proteins can be targeted using this process. 

Normal vaccinology approaches can find other biomolecular targets such as 

polysaccharides.  

 

By first decoding the entire genetic makeup of a pathogenic meningococcal serogroup 

B strain, Novartis discovered 580 vaccine candidate antigens. Reproduced through 

genetic engineering for further investigation, antigens were selected that had the 

ability to stimulate the immune system to kill bacteria from a panel of strains of 

meningococcal serogroup B representative of global and temporal diversity. New data 

show that the Novartis Meningitis B vaccine may be the first to protect infants six 

months and older against multiple strains of meningococcal serogroup B. In a recent 

study, more than 95% of infants aged six to 12 months generated a protective immune 

response as early as one month post-second dose against strains representing multiple 

antigens included in the vaccine (Snape, 2008). Novartis MenB vaccine is the first 

potentially broad coverage meningitis B vaccine to reach phase III clinical testing, 

which began in the first quarter of 2008 (Snape, 2008). 

 

In New Zealand the epidemic of systemic serogroup B meningococcal disease was 

dominated by a single subtype and therefore, the best option for its control was the 

use of a strain-specific vaccine (Oster et al., 2005). A PorA vaccine was developed by 

the Norwegian NPHI and Chiron, in partnership with the New Zealand Ministry of 

Health and the University of Auckland. The resulting tailor-made vaccine, MeNZB™, 



 45

is a meningococcal serogroup B outer membrane vesicle vaccine for intramuscular 

injection in a three-dose regimen, intended to provide immunity against serious 

systemic disease caused by N. meningitidis serogroup B subtype P1.7b, 4 (Martin et 

al., 1998; Sexton et al., 2004). This subtype accounted for 86% of all group B 

meningococci isolated from cases of disease, from 1990 to 2003 in New Zealand 

(Martin & McDowell, 2004). The seed stock for this tailor-made vaccine, MeNZB™, 

is derived from strain NZ98/254, which was chosen as representative of the New 

Zealand epidemic. This strain was isolated from a 15-year-old boy from New Zealand 

diagnosed with meningitis in October 1998. 

 

A recombinant hexavalent PorA OMV vaccine (HexaMen) was developed at the 

National Institute for Public Health and the Environment (RIVM), Netherlands. The 

vaccine formulation contains two OMVs, each expressing three different PorAs (P1.7, 

16; P1.5-1, 2-2; P1.19, 15-1; P1.5-2, 10; P1.12-1, 13; P1.7-2, 4) (van der Ley et al., 

1995; Claassen et al., 1996). This hexavalent OMV vaccine formulation was safe, 

well tolerated and immunogenic in infants, toddlers and schoolchildren (Cartwright et 

al., 1999; de Kleijn et al., 2000). The vaccine research activities of the RIVM on 

PorA-based meningococcal B vaccines are now in the Netherlands Vaccine Institute 

(NVI). The NVI is a public institute of the Ministry of Health devoted to the vaccines 

for the Netherlands Vaccination Programme. In order to provide an even broader 

protection, the hexavalent vaccine developed by RIVM has now been extended to a 

nonavalent PorA OMV vaccine (NonaMen) vaccine, which contain three additional 

PorA OMPs, P1.22, 14; P1.7-1, 1; P1.18-1, 3, 6. Adding a third trivalent OMV to 

cover the nine most frequently occurring subtypes in the developed countries has 
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achieved this. The third trivalent OMV is called HP1416 and expresses P1.22, 14; 

P1.7-1, 1 and P1.18-1, 3,6 (Van den Dobbelsteen et al., 2004). 

 

The main problem with targeting non-capsular antigens, such as PorA, is that they are 

antigenically diverse and exhibit geographical and temporal variability. Sequence 

variation could also affect effectiveness of a multivalent OMV vaccine (Findlow et 

al., 2005). Multivalent OMV vaccines are being developed (Borrow et al., 2006), 

which target the most common OMPs associated with serogroup B, with the benefit 

that the efficacy will not be restricted to serogroup B strains, as sub-capsular antigens 

are targeted. The potential benefit from OMP vaccines depends on the main strains 

causing disease in a particular country. 

 

1.10  Project background 

 

Due to the high prevalence of serogroup C in Scotland and the availability of a 

serogroup C polysaccharide conjugate meningococcal (MenC) vaccine, MenC 

vaccination was implemented in 1999. The vaccine was highly effective in reducing 

the incidence of serogroup C meningococcal disease and associated mortality, with no 

adverse effects on other serogroups (Mooney et al., 2004; Diggle & Clarke, 2005). 

However, the long-term effectiveness of the vaccine remains unknown. It is therefore 

vital that the surveillance of meningococcal disease is continued. In order to improve 

our understanding of the current situation, long-term retrospective data is also 

essential as the current information is post implementation of MenC vaccines. 

Although data were available on meningococcal serogroups dating back to the 1970s, 

and serogroup and serotype data were available from the 1990s, there was little 
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molecular data on meningococci circulating from the 1970s to present. Although 

sequence type data were available in Scotland (Diggle & Clarke, 2005), this only 

includes strains from 1999 onwards and therefore there is only one year of data prior 

to the implementation of MenC vaccines. There was a need to perform retrospective 

analysis on meningococcal isolates using MLST and porA gene sequencing. This was 

only possible because SMPRL were in a unique position in having a large collection 

of disease-associated meningococci isolated within Scotland since 1972, which 

accounted for all known invasive cases.  

 

In total there were 2607 invasive isolates, i.e. isolates from blood and CSF that had 

caused meningitis and septicaemia, received by the SMPRL from the start of 1972 to 

the end of 1998. All the samples originated in Scotland covering all regions and they 

were initially identified as N. meningitidis and then serogrouped. In the early 1980s 

other tests were introduced namely antibiotic resistance tests and sero-subtyping. 

Once all tests were complete the isolates were freeze-dried in order to preserve them. 

This freeze-dried method was replaced in 1996 when the samples were stored in 

Protect beads and 20% glycerol. However, not all of these isolates have survived and 

2517 isolates were available for further characterisation. 
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1.11 Aims of the project 

 

 Molecular epidemiology and analysis of 2517 isolates of invasive Neisseria 

meningitidis isolated in Scotland, 1972-1998. To characterise and analyse 

isolates at seven housekeeping loci (abcZ, adk, aroE, fumC, gdh, pdhC, pgm) 

by multilocus sequence typing (MLST) and at the porA locus, which encodes a 

major surface antigen and vaccine candidate.  

 

 To determine the clusters of disease that occurred in Scotland, 1972-1998, 

using SaTScan software and to investigate where these clusters occurred 

geographically, the strains responsible and the patients involved.  

 

 To use data generated by this study, on isolates from the period 1972-1998, to 

estimate the potential coverage, within Scotland, of possible serogroup B 

meningococcal OMV vaccines: Cuba (VA-MENGOC-BC®), Norway 

(MenBvac™), New Zealand (MeNZB™), hexavalent (HexaMen) and 

nonavalent (NonaMen). Also to determine if there are other variants which 

might be included in these types of vaccine.  
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Chapter 2 

Materials and Methods 

 

2.1  Health and safety 

 
N. meningitidis has been reported as a laboratory-acquired infection (Sejvar et al., 

2005) therefore all procedures were performed with the necessary precautions 

according to health and safety guidelines. As the specific risk factors for laboratory-

acquired infection are likely associated with exposure to droplets or aerosols 

containing N. meningitidis (Sejvar et al., 2005) appropriate safety wear and class II 

biological safety cabinets were used when appropriate. All chemicals were handled 

with care and the required precautions taken in accordance to health and safety 

guidelines such as guidance notes for the Control of Substances Hazardous to Health 

(COSHH), Clinical Pathology Accreditation (UK) Ltd (CPA) and the Advisory 

Committee on Dangerous Pathogens (ACDP). All chemicals and materials were 

disposed off in the appropriate containers.  

 

2.2 Bacterial strains   

 

In total there were 2607 invasive isolates, i.e. isolates from blood and CSF that had 

caused meningitis and septicaemia, received by the SMPRL from the start of 1972 to 

the end of 1998 (Table 2.1). All the samples originated in Scotland covering all 

regions and they were identified initially as N. meningitidis and then serogrouped. In 

the early 1980s other tests were introduced, namely antibiotic resistance tests and 

sero-subtyping. Once all tests were complete the isolates were freeze-dried in order to 
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preserve them. This freeze-dried method was then replaced in 1996 when the samples 

were stored in Protect beads and 20% glycerol. However, due to the ravages of time, 

not all of these isolates survived with 2517 isolates available for further 

characterisation. 

 

Table 2.1  Serogroup and time period of the 2607 invasive isolates 

 Time period 
Serogroup 1972-1979 1980-1989 1990-1998 

A 119 25 3 
B 348 448 650 
C 59 350 403 
Y 7 10 20 

W135 40 12 15 
X 3 1 6 
Z 0 2 3 

29e 2 3 1 
Non-groupable 6 5 8 

Unknown 33 10 15 
 

2.3  Growth conditions 

 
N. meningitidis isolates were cultured on Columbia horse blood agar (contains 5% 

horse blood) (Oxoid, Basingstoke, UK) and incubated overnight at 37°C in an 

atmosphere of 5% CO2. Freeze-dried meningococci, stored within glass vials, were 

resuscitated. A diamond was used to score a line around the glass vial, which allowed 

for the vial to be easily snapped in half. Drops of Mueller Hinton broth were added to 

rehydrate the freeze-dried culture and then transferred to a Columbia horse blood agar 

plate. The plate was streaked out and incubated overnight at 37°C in an atmosphere of 

5% CO2. 
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2.4  Storage of bacterial strains 

 
From an overnight culture on a Columbia horse blood agar plate a heavy scraping of  

N. meningitidis was suspended in the support medium in Protect beads (Technical 

Service Consultants Ltd, Heywood, Lancashire, UK).  The vial was gently mixed to 

coat the beads and the liquid removed. The protect beads were marked with the 

appropriate strain designation and then stored at -700C. Bacterial strains were 

recovered by taking a sterile loop containing a single bead, plating it onto a Columbia 

horse blood agar plate and incubating as described in section 2.3.   

 

2.5  Sterilisation 

 
All buffers, media, solutions and equipment requiring sterilisation were autoclaved at 

121°C for 15 mins or washed with 70% alcohol or 1% Virkon solution (Antec 

International Limited, Sudbury, UK). 

  

2.6  Miscellaneous Reagents  

 

2.6.1  Agarose gel 
 
For 1.5% agarose gel, 0.75g of hi-pure low electroendosmosis (EEO) agarose 

(BioGene, Kimbolton, Cambridgeshire, UK) was added to 50ml of 1 x electrophoresis 

(ELFO) buffer in a glass bottle. This was heated until the solution was completely 

dissolved. To this solution, 2l of 1mg/ml ethidium bromide (SIGMA, Gillingham, 

Dorset, UK) was added and the gel was poured into the gel mould. After use, the gels 

were discarded in plastic drums designed for disposal of toxic ethidium bromide. 
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2.6.2 Production of 5% carbon dioxide atmosphere   

Approximately 10ml of 15% hydrochloric acid was dispensed into a Universal.  The 

Universal was placed in the plastic holder inside a gas jar.  One sodium bicarbonate 

tablet was added to the acid in the Universal, and the lid was quickly place on the jar.  

The cultures were incubated within this environment overnight at 37oC. 

  

2.6.3  ELFO buffer x10 
 
Into a 2 litre conical flask, 9.3g of EDTA, 27.5g of boric acid (SIGMA, Gillingham, 

Dorset, UK) and 162g of Trizma base were placed. One litre of 18M distilled water 

was then added to the flask, which was placed on a heated plate with a magnetic 

stirrer and mixed at 560C until dissolved. The pH was adjusted to pH 7.2 and the 

solution was transferred into two 500ml Duran bottles and stored at 40C. 

 

2.6.4  Ethidium bromide 

A 10mg/ml solution of ethidium bromide was prepared by adding 1g of ethidium 

bromide powder to 100ml of de-ionised water and mixing to ensure that the powder 

had dissolved completely.  The container was wrapped with aluminium foil to keep 

out light and stored at 4oC. 

 

2.6.5 20% Glycerol 

Twenty millilitres of glycerol (SIGMA, Gillingham, Dorset, UK) were added to 80ml 

of 18m distilled water and mixed. 
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2.6.6 15% Hydrochloric acid  
 
Hydrochloric acid (HCl) (810ml) was slowly added to 1,190ml of de-ionised water 

and mixed gently. The mixture was then allowed to cool.  This was transferred to a 5 

litre plastic container. This procedure was carried out in a fume hood.   

 

2.6.7 Mueller-Hinton broth 

Twenty one grams of Mueller-Hinton broth (Oxoid, Basingstoke, Hampshire, UK) 

were suspended in 1 litre of de-ionised water and mixed to dissolve. Two millilitre 

aliquots were distributed into bijoux bottles and sterilised at 1210C for 15 min. 

 

2.6.8 MegaBace LPA buffer x1 

Fifty millilitres of 10x MegaBace linear polyacrylamide (LPA) buffer (Amersham 

Biosciences, Little Chalfont, UK) was diluted by adding 450ml of deionised water. 

This was then stored at 4C for use with MegaBace sequencing runs. 

 

2.6.9  Orange G 

A 0.1% solution of orange G in distilled water was prepared.   

   

2.6.10 TBE long read run buffer (x10) 

Trizma base (126g), boric acid (27.5g) and EDTA (9.3g) were added to a two litre 

conical flask. One litre of deionised water was then added. The solution was heated to 

50C until dissolved and the pH adjusted to 8.3. This was then stored at 4C. 

.  
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2.6.11 TRIS buffer x50 
 
Two hundred and forty-two grams of Trizma base (SIGMA, Gillingham, Dorset, UK) 

and 18.61g of EDTA (ethylenediaminetetraacetic acid di-sodium salt) (SIGMA, 

Gillingham, Dorset, UK) were dissolved in 900ml of deionised water.  The pH was 

adjusted to 7.7 with approximately 50ml of glacial acetic acid (BDH lab supplies, 

Poole, UK) and the solution made up to a final volume of 1 litre with deionised water. 

 

2.6.12 2% Virkon   

Two grams of Virkon powder (Antee International, Sudbury, Suffolk, UK) was added 

to 100ml of distilled water in a sterilised bottle and mixed until dissolved.  

 
 
2.7  DNA preparation 

 
From overnight cultures, 5-10 single colonies were resuspended into 0.5 ml of 18 M 

distilled water and heated to 100°C for 15 min. The suspension was centrifuged at 

15000 g for 2 min and the supernatant was used as a DNA source for subsequent PCR 

amplifications. 

 

2.8  Phenotypic characterisation 

 
There was a number of biochemical methods required for the characterisation of      N. 

meningitidis, which were used by the SMPRL to perform tests previous to this study.  

These included acid production, antimicrobial susceptibility testing (E-Test), 

serogrouping by latex agglutination, serogrouping by co-agglutination and whole cell 

enzyme-linked immunosorbent assay (ELISA) (Eldridge et al., 1978; Frasch et al., 
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1985)  for typing and, in cases where identification was not conclusive, confirmation 

by API NH was carried out (BioMérieux UK Ltd Basingstoke). 

 

 
2.9  Determination of capsular serogroups by PCR 

 
All previous non-groupable isolates were characterised again using genotypic 

methods. A representative number of isolates were taken from the dataset to analyse 

the accuracy of previous serogrouping methods.  

 
 
2.9.1 SiaD (Serogroups B, C, Y and W135) 

Each PCR reaction was performed in a final volume of 25l using 1.1x Reddymix 

PCR master mix (ABgene, Epsom, UK). Each reaction mix consisted of 20l of PCR 

master, 1l of forward and reverse primer for each serogroup (B, C, Y and W135) 

(MWG Biotech, Milton Keynes, UK) (Table 2.2), at a working concentration of 

50pmol, and 3l of sample DNA from each isolate. Three microlitres of the positive 

controls (laboratory reference strains) and negative controls (deionised water) for each 

of the serogroups were also added.  PCR reactions were carried out in a thermocycler 

(MWG Biotech, Milton Keynes, UK). The PCR conditions were 95°C for 10 min, 60 

cycles of 95°C for 15 s, 60°C for 1 min and 75°C for 5 min (Lewis & Clarke, 2003; 

Lewis et al., 2003). Twenty microlitres of the samples were then loaded on a 1.5% 

agarose gel for serogroup determination. The electrophoresis conditions were 50 volts 

for 15-20 min.  The gel was removed from the electrophoresis tank and placed under 

UV light to examine the products. 
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Table 2.2  Primers used for the determination of sergroups B, C, Y and W135 

Primer Name Primer Sequence 

B Forward 5’-TGCATGTCCCCTTTCCTGA-3 

B Reverse 5’-AATGGGGTAGCGTTGACTAACAA-3’ 

C Forward 5’-GATAAATTTGATATTTTGCATGTAGCTTC-3’ 

C Reverse 5’-TGAGATAGCGGTATTTGTCTTGAAT-3’ 

Y/W135Forward 5’-GGTGAATCTTCCGAGCAGGA-3’ 

Y Reverse 5’-GGGATATCGTACACCATACCCTCTAG-3’ 

W135 Reverse 5’-GAATATCATACACCATGCCTTCCATA-3’ 

 

2.9.2 MynA  (Serogroup A) 

Each PCR reaction was performed in a final volume of 25l using 1.1x Reddymix 

PCR master mix (ABgene, Epsom, UK). Each reaction mix consisted of 20l of PCR 

master, 1l each of forward and reverse mynA primer (MWG Biotech, Milton Keynes, 

UK) (Table 2.3), containing 50pmol, and 3l of sample DNA from each isolate. Three 

microlitres of the positive controls (laboratory reference strains) and negative controls 

(deionised water) for each of the serogroups were also added.  PCR reactions were 

carried out in a thermocycler (MWG Biotech, Milton Keynes, UK). The PCR 

conditions were 95°C for 2 min, 50 cycles of 95°C for 1 min, 53°C for 1 min 30 s 

72°C for 30 s and 72°C for 2 min (Clarke et al., 2003). Twenty microlitres of the 
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samples were then loaded on a 3% agarose gel. The electrophoresis conditions were 

50 volts for 15-20 min.  The gel was removed from the electrophoresis tank and 

placed under UV light to examine the products. 

 

Table 2.3 Primers used for determination of serogroup A 

Primer Name Primer Sequence 

mynA Forward 5’-AACCCAACCAGAGCCTACAAG-3’ 

mynA Reverse 5’- CTGTTGGCCACATTGAAGCAG-3’ 

 

2.9.3 Capsule null locus (cnl)  

Each PCR reaction was performed in a final volume of 25l using 1.1x Reddymix 

PCR master mix (ABgene, Epsom, UK). Each reaction mix consisted of 20l of PCR 

master, 1l of each forward and reverse cnl primer (MWG Biotech, Milton Keynes, 

UK) (Table 2.4), containing 50pmol, and 3l of sample DNA from each isolate. Three 

microlitres of the positive controls (laboratory reference strains) and negative controls 

(deionised water) for each of the serogroups were also added.  PCR reactions were 

carried out in a thermocycler (MWG Biotech, Milton Keynes, UK). The PCR 

conditions were; 95°C for 2 minutes, 45 cycles of 95°C for 25 s, 56°C for 20 s 72°C 

for 30 s and 72°C for 5 min (Claus et al., 2002). Twenty microlitres of the samples 

were then loaded on a 1.5% agarose gel. The electrophoresis conditions were 50 volts 

for 15-20 min.  The gel was removed from the electrophoresis tank and placed under 

UV light to examine the products. 
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Table 2.4 Primers used for determination of capsule null locus 

Primer Name Primer Sequence 

cnl Forward 5’-CGCGCCATTTCTGCC-3’ 

cnl Reverse  5’-GGTCGTCTGAAAGCTTGCCTTGCT C-3’ 

 

 

2.10       MLST and antigen gene sequencing 

 
MLST and antigen gene sequencing utilised two robotic liquid handling systems, the 

RoboSEQ 4200 SE (MWG Biotech, Milton Keynes, UK) and THEONYX (MWG 

Biotech, Milton Keynes, UK) and an automated capillary system DNA sequencer, the 

MegaBACE 1000 (Amersham Biosciences, Little Chalfont UK). This project 

developed a procedure for MLST using a third generation liquid handling robot 

(THEONYX) (Sullivan et al., 2006). This allowed for the automation of all the 

procedures required for DNA amplification and sequencing. For each semi-automated 

procedure one batch constituted 24 samples. Each sample had eight genes sequenced, 

seven housekeeping (abcZ, adk, aroE, fumC, gdh, pdhC, pgm) and one antigen gene 

(porA). A flow diagram showing the stages involved in MLST is shown in Figure 2.1 

(Sullivan et al., 2005). Another DNA sequencer the LI-COR L4200-L2 was also used 

for sequencing smaller numbers of samples.  
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Figure 2.1 Flow diagram of the stages involved in MLST Analysis 
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2.10.1 PCR amplification 

This was based on a procedure described by Clarke et al. (Clarke et al., 2001a) and 

Sullivan et al. (Sullivan et al., 2006).  The RoboSEQ 4200 SE and THEONYX liquid 

handling systems were programmed according to the manufacturer’s specifications 

(MWG Biotech, Milton Keynes, UK). All PCR reagents were maintained at 4°C on 

the platform within the specified reagent rack. For the THEONYX liquid handling 

system all procedures in the automated procedure used washable tips. For the 

RoboSEQ 4200 SE, disposable or washable tips were used depending on the 

procedure. Each PCR reaction was performed in a final volume of 25l using 1.1x 

Reddymix PCR master mix, containing 1.25U of TAQ DNA polymerase  

(ABgene, Epsom, UK), 75mM Tris-HCl (pH 8.8 at 25°C), 20mM (NH4)2, 1.5mM 

MgCl2, 0.01% (V/V) Tween 20, 0.2mM each of dATP, dCTP, dGTP and dTTP and 

red dye for gel electrophoresis (ABgene, Epsom, UK). For a 25l reaction, 20l of 

PCR master mix and 1l of each forward and reverse primer (for each housekeeping 

or antigen gene) (MWG Biotech, Milton Keynes, UK) (Table 2.5), containing 

50pmol, were added to produce a master mix of 22l, for each gene. These pre-

prepared master mixes were placed on the refrigerated reagent rack. DNA extracted 

samples were placed within a separate 96-well thermosprint plate (Web Scientific, 

Crewe, UK) and placed upon another refrigerated platform. 22l of master mix was 

automatically added to the appropriate wells within a refrigerated 96-well 

thermosprint plate. Advanced pipetting parameters for the RoboSEQ 4200 SE were 

using a disposable tip prefill with 21l master mix at a speed of 50l per second. A 

further 1l of master mix was added at 50l/s. This 22l volume was dispensed into 

the appropriate well at a speed of 100l/s. During the transfer a transport airgap of 2l  
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Table 2.5 Amplification primers for housekeeping genes and porA 

Primer Name Primer Sequence 

abcZ Forward 5’-AATCGTTTATGTACCGCAGG-3’ 

abcZ Reverse 5’-GTTGATTTCTGCCTGTTCGG-3’ 

adk Forward 5’-ATGGCAGTTTGTGCAGTTGG-3’ 

adk Reverse 5’-GATTTAAACAGCGATTGCCC-3’ 

aroE Forward 5’-ACGCATTTGCGCCGACATC-3’ 

aroE Reverse 5’-ATCAGGGCTTTTTTCAGGTT-3’ 

fumC Forward 
 

5’-CACCGAACACGACACGATGG-3’ 

fumC Reverse 5’-ACGACCAGTTCGTCAAACTC-3’ 

gdh Forward 5’-ATCAATACCGATGTGGCGCGT-3’ 

gdh Reverse 5’-GGTTTTCATCTGCGTATAGAG-3’ 

pdhC Forward 5’-GGTTTCCAACGTATCGGCGAC-3’ 

pdhC Reverse 5’-ATCGGCTTTGATGCCGTATTT-3’ 

pgm Forward 5’-CTTCAAAGCCTACGACATCCG-3’ 

pgm Reverse 5’-CGGATTGCTTTCGATGACGGC-3’ 

porA Forward 5’-ATGCGAAAAAAACTTACCGCCCTC-3’ 

porA Reverse 5’-AATGAAGGCAAGCCGTCAAAAACA-3’ 

 

was maintained. Advanced pipetting parameters for THEONYX were using washable 

tips for each of the genes the tips were washed before first step, aspiration of 22l 

master mix at a speed of 250l/s and dispension into the appropriate well at a speed of 

400l/s. During the transfer a transport airgap of 2l was maintained. After PCR 

master mix distribution, 3l of DNA from each sample were added to each of the 

wells. Advanced pipetting parameters for the RoboSEQ 4200 SE were using a 
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disposable tip aspirated at a speed of 100l/s with liquid mixing repeated three times 

and DNA dispense at 200l/s with liquid mixing repeated twice. Advanced pipetting 

parameters for THEONYX were the tips were washed before each step, aspirated at a 

speed of 250l/s with liquid mixing repeated three times and DNA dispensed at  

400l/s with liquid mixing repeated twice. During the transfer, a transport airgap of  

2l was maintained. The final reaction volume was 25l. To perform more than 

twelve samples an additional plate was used. This was transferred from the 

refrigerated stacker onto an available 96 well-refrigerated position. The initial plate 

was then transferred from the platform into the refrigerated stacker and maintained at 

4°C. These plates were placed into MWGBiotech thermocyclers. The PCR conditions 

were modified from Clarke et al. (Clarke et al., 2001a). The step-down PCR 

conditions were 94°C for 2 min, 3 cycles at 94°C for 1 min, 60°C for 1 min and 72°C 

for 2 min followed by 3 cycles at 94°C for 1 min, 58°C for 1 min and 72°C for 2 min 

followed by 3 cycles at 94°C for 1 min, 56°C for 1 min and 72°C for 2 min followed 

by 20 cycles at 94°C for 1 min, 54°C for 1 min and 72°C for 2 min followed by and 

finally 72°C for 10 min.  

 

2.10.2 PCR product purification for sequencing on MegaBace 1000 

For the RoboSEQ 4200 SE, disposable tip units were removed and replaced with 

washable tips before the procedure continued. For THEONYX washable tips were 

used throughout. The total reaction volume of 25l was transferred from each well 

into a Multiscreen 384-PCR plate (Millipore,Hertfordshire,UK) situated on the 

vacuum manifold. Advanced pipetting parameters for the RoboSEQ 4200 SE were;  

25l/s aspiration and 200l/s dispension. Advanced pipetting parameters for 

THEONYX were; wash tips before each step, 250l/s aspiration and 400l/s 
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dispension. During the transfer, a transport airgap of 2l was maintained. Washable 

tips for the RoboSEQ 4200 SE were removed and replaced with disposable tips before 

the next procedure.  A vacuum was applied at a pressure of 450mbar for 20 min. The 

sequence setup was then performed with a sequence reaction of 10l, this consists of 

3l of sequence mix (DYEnamic ET Terminator sequence premix, Amersham 

Biosciences, Little Chalfont, UK) and 1l of each MLST or antigen gene primer 

(5pmol/l) (MWG Biotech, Milton Keynes, UK) (Table 2.6) added to produce a 

master mix volume of 4l. These pre-prepared master mixes were placed on the 

refrigerated reagent rack. The 96-well thermosprint plates were then transferred from 

the cool stacker to the refrigerated positions for the sequence mix distribution where 4

l of the mixes were aliquoted into the appropriate wells. Advanced pipetting 

parameters for RoboSEQ 4200 SE were prefill of 2l at 50l/s, aspiration of 1l at 50

l/s with one mix of 4l and final dispension of 400l/s. Advanced pipetting 

parameters for THEONYX were; for each gene wash tips before first step aspiration 

of 4l at 250l/s with one mix of 4l and final dispension of 200l/s. During the 

transfer a transport airgap of 2l was maintained. 
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Table 2.6 Sequencing primers for housekeeping genes and porA 
 
 

Primer Name 
 

Primer Sequence 

abcZ Forward 
 

5’-AATCGTTTATGTACCGCAGG-3’ 

abcZ Reverse 
 

5’-GAGAACGAGCCGGGATAGGA-3’ 

adk Forward 
 

5’-AGGCTGGCACGCCCTTGG-3’ 

adk Reverse 
 

5’-CAATACTTCGGCTTTCACGG-3’ 

aroE Forward 
 

5’-GCGGTCAACYTACGCTGATT-3’ 

aroE Reverse 
 

5’-ATGATGTTGCCGTACACATA-3’ 

fumC Forward 
 

5’-TCGGCACGGGTTTGAACAGC-3’ 

fumC Reverse 
 

5’-CAACGGCGGTTTCGCGCAAC-3’ 

gdh Forward 
 

5’-CCTTGGCAAAGAAAGCCTGC-3’ 

gdh Reverse 
 

5’-GCGCACGGATTCATATGG-3’ 

pdhC Forward 
 

5’-TCTACTACATCACCCTGATG-3’ 

pdhC Reverse 
 

5’-ATCGGCTTTGATGCCGTATTT-3’ 

pgm Forward 
 

5’-CGGCGATGCCGACCGCTTGG-3’ 

pgm Reverse 
 

5’-GGTGATGATTTCGGTTGCGCC-3’ 
 

porA Forward 
 

5’-AACGGATACGTCTTGCTC-3’ 

porA Reverse 
 

5’-TCCGTACGCTACGATTCTCC-3 

 

 

2.10.3 PCR re-elution for sequencing on MegaBace 1000  

Washable tips for the RoboSEQ 4200 SE were removed and replaced with disposable 

tips before the next procedure.  For the RoboSEQ 4200 SE, each well of the 

Multiscreen 384-PCR plate was re-eluted 50 times with 40l of 18M water 

contained on the reagent rack. Advanced parameters were: prefill 10l at 100l/s, 
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aspiration 30l at 50l/s, dispension at 100l/s followed by 50 repeat mixes of 20l/s. 

For THEONYX, 50l of 18 M deionised water were transferred to each well of the 

Multiscreen 384-PCR plate with advanced pipetting parameters of: wash tips before 

each step, 250l/s aspiration and 400l/s dispension. Then, for the re-elution stage,  

20l were transferred in and out of the same wells in order to perform re-elution. The 

advanced parameters were: wash tips before each step, aspiration at 250l/s then 20 

repeat mixes of 20l at 250l/s for aspiration and dispension, followed by a final 

dispension at 400l/s. During the transfer, a transport airgap of 2l was maintained. 

After re-elution, 6l of the clean DNA were transferred into the appropriate wells in a 

96-well thermosprint plate containing sequence mix. Advanced pipetting parameters 

for RoboSEQ 4200 SE were: aspiration 6l at 50l/s, dispension 50l/s of 5l. 

Advanced pipetting parameters for THEONYX were: wash tips before each step, 

aspiration 6l at 250l/s, dispension at 400l/s with two 5l mixes at 100l/s. During 

the transfer, a transport airgap of 2l was maintained. 

 

2.10.4 Sequence reaction for sequencing on MegaBace 1000 

After the sequence reaction setup, the 96-well thermosprint plates were placed into the 

MWG thermocyclers for the sequencing reaction. The sequence cycle conditions were 

95°C for 2 min, 30 cycles of 95°C for 20s, 50°C for 15s and 60°C for 1 min. 

 

2.10.5 Sequence clean up for sequencing on MegaBace 1000 

The used Multiscreen 384-PCR plate was replaced on the vacuum manifold with a 

Multiscreen 384-SEQ plate (Millipore, Hertfordshire,UK). The total sequence 

reaction volumes were transferred to the Multiscreen 384-SEQ plate. Advanced 
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pipetting parameters for the RoboSEQ 4200 SE were: aspiration 25l at 50l/s, 

dispension 200l/s. Advanced pipetting parameters for THEONYX were: wash tips 

before each step, aspiration 25l at 250l/s, dispension 400l/s. During the transfer, a 

transport airgap of 2l was maintained. The vacuum was automatically switched on 

for 20 min at 250mbar. Twenty microlitres of 18M deionised water were then added 

to each well of the Multiscreen 384-SEQ plate, and the vacuum was applied for a 

further 20 min, to wash the sequence products. Advanced pipetting parameters for the 

RoboSEQ 4200 SE were: aspiration 10l at 50l/s, dispension 200l/s. Advanced 

pipetting parameters for THEONYX were: wash tips before each step, aspiration 20l 

at 250l/s, dispension 400l/s. During the transfer transport airgap of 2l was 

maintained. For the RoboSEQ 4200 SE, each well of the Multiscreen 384-SEQ was 

re-eluted 50 times with 50l of 18M deionised water. Advanced pipetting 

parameters prefill 40l/ at 100l/s, aspiration 10l at 50l/s and dispension 100l/s 

with 50 repeat mixes of 40l. For THEONYX, 60l of 18M deionised water was 

transferred into each well of the Multiscreen 384-SEQ plate with advanced pipetting 

parameters of 250l/s aspiration and 400l/s dispension. During the transfer, a 

transport airgap of 2l was maintained. Then, for the re-elution stage, 20l was 

transferred in and out of the same wells in order to perform re-elution. The advanced 

parameters were: wash tips before each step, aspiration at 250l/s then 15 repeat 

mixes of 20l at 250l/s for aspiration and dispension, followed by a final dispension 

at  400l/s.  Twenty microlitres of the re-eluted sequence product was then transferred 

into a 96-well skirted plate on a refrigerated 96-well position. The plate had 

previously been stored in the refrigerated stacker. Advanced pipetting parameters for 

the RoboSEQ 4200 SE were: aspiration 20l at 50l/s, dispension 100l/s. Advanced 
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pipetting parameters for THEONYX were: wash tips before each step, aspiration 20l 

at 250l/s, dispension 400l/s. During the transfer, a transport airgap of 2l was 

maintained. Once complete it was returned to the refrigerated stacker ready for 

loading on the DNA sequencer. For 24 samples, four 96-well plates were generated. 

 

2.10.6 DNA sequencing on MegaBace 1000 

Sequencing was performed using the automated MegaBace 1000 96-capillary 

sequencer according to the manufacturer’s instructions. The skirted 96-well plate, 

which contained the cleaned sequence products, was loaded into the sequencer and the 

samples injected at a voltage of 3kV for 40s. A run voltage of 9kV for 120min was 

applied. This separates the dye-labeled DNA fragments generated in the sequence 

reaction. 

 

2.10.7 Sequence interpretation of housekeeping gene fragments 

The MegaBace sequence software using the integrated Cimaron v1.53 Slim Phredify 

base caller automatically reads the sequence data. The raw data for each sequence 

were viewed as an electropherogram (example shown in figure 2.2) and converted to 

FASTA (text) format using the MegaBace sequence analyser software. The FASTA 

files were downloaded into a local database of meningococcal MLST alleles (Diggle 

& Clarke, 2002) (Figure 2.3) in which each sequence was automatically compared 

against all other similar alleles to produce an allele number. After sequence 

comparisons of all 7 MLST genes, the alleles were entered into the MLST website 

http://pubmlst.org/neisseria/ to produce a sequence type (ST). When sequence data 

resulted in a new allele or ST, the information was sent to the curator of the MLST 

database who assigns the appropriate allele number or numbers and then a new ST. 
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Figure 2.2:  Part of a DNA sequence displayed as an electropherogram 

 

 
 

Figure 2.3  Internal databases developed for nucleotide sequence analysis. 
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2.10.8 Sequence interpretation of antigen gene fragments 

The MegaBace sequence software automatically generated the sequence data. 

Meningococcal isolates have the porA gene, which has hypervariable regions, three of 

which (VRs 1, 2 and 3) were analysed to provide genosubtype information. The raw 

data were viewed for each sequence as an electropherogram and converted to FASTA 

(text) format using the MegaBace sequence analyser software. After sequence 

confirmation, the sequence was copied onto the TRANSLATE nucleotide website 

(http://au.expasy.org/tools/dna.html) and the nucleotide sequence was converted into 

an amino acid sequence. The correct variant types were assigned for VR1 (Appendix 

A1) and VR2 (Appendix A2) using the porA variable region database 

(http://neisseria.org/nm/typing/pora/). To assign the variant type for VR3 (Appendix 

A3) the SMPRL website (http://www.show.scot.nhs.uk/smprl/) was used. 

 

2.10.9 Liquid phase PCR purification for sequencing on LI-COR L4200-L2  

From the PCR purification onwards the procedures for sequencing on LI-COR L4200-

L2 were different to those for the MegaBace 1000. After amplification, 5l of PCR 

product was added to 2l of Exosapit (Amersham Biosciences, Little Chalfont, UK) 

and placed in the thermocycler. Conditions were 37°C for 15min and 80°C for 15min. 

 

2.10.10 PCR sequence labeling for sequencing on LI-COR L4200-L2 

A three-microlitre aliquot of each purified PCR product was transferred into a 96-well 

skirted plate. A pre-dilution was performed by adding 24l of 18M deionised water 

and 1.5 l of both forward and reverse sequencing primers specific for each PCR 

product (MWG Biotech, Milton Keynes, UK) (Table 2.7). All forward sequencing 

primers were tagged with 700-nm infrared dye, and all reverse sequencing primers 
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were tagged with 800-nm infrared dye. Four microlitre of each prediluted sequence 

mix was distributed into appropriate wells of another 96-well skirted plate, containing 

1l (each) of A and C and 2l (each) G and T from a Thermo Sequenase 

fluorescence-labeled primer cycle sequencing (Amersham Biosciences, Little 

Chalfont, Buckinghamshire, UK). 

 

Table 2.7  Sequencing primers for LI-COR L4200-L2 

 

  

 

Primer Name Primer Sequence 

abcZ Forward   
 

5’-GAGAACGAGCCGGGATAGGA-3’ 

abcZ Reverse   
 

5’-GAGAACGAGCCGGGATAGGA-3’ 

adk Forward       
 

5’-AGGCTGGCACGCCCTTGG-3’ 

adk Reverse   
 

5’-CAATACTTCGGCTTTCACGG-3’ 

aroE Forward   
 

5’-GCGGTCAACYTACGCTGATT-3’ 

aroE Reverse   
 

5’-ATGATGTTGCCGTACACATA-3’ 

fumC Forward   
 

5’-TCGGCACGGGTTTGAACAGC-3’ 

fumC Reverse   
 

5’-CAACGGCGGTTTCGCGCAAC-3’ 

gdh Forward   5’-CCTTGGCAAAGAAAGCCTGC-3’ 

gdh Reverse   
 

5’-GCGCACGGATTCATATGG-3’ 

pdhC Forward   
 

5’-TCTACTACATCACCCTGATG-3’ 

pdhC Reverse   
 

5’-ATCGGCTTTGATGCCGTATTT-3’ 

pgm Forward   
 

5’-CGGCGATGCCGACCGCTTGG-3’ 

pgm Reverse   
 

5’-GGTGATGATTTCGGTTGCGCC-3’ 

porA Forward  
 

5’-AACGGATACGTCTTGCTC-3’ 

porA Reverse 
 

5’-TCCGTACGCTACGATTCTCC-3’ 
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Finally, one drop of Chill-out 14 liquid wax (Genetic Research Instruments, Braintree, 

Essex, UK) was added to each well. The plate was placed into the thermocycler. The 

sequence cycle conditions were 96°C for 2 min, 30 cycles of 96°C for 30s, 50°C for 

30s and 70°C for 1 min. Afterwards the plate was removed from the thermocycler and 

placed on a refrigerated block. A 4l aliquot of formamide loading dye-stop solution 

(Amersham Biosciences, Little Chalfont, Buckinghamshire, UK) was added to all 96 

wells of the plate and then the plate was placed into a thermocycler at 65°C for 10 

min.  

 

2.10.11 DNA sequencing on LI-COR L4200-L2  

A 0.2mm thick sequencing gel was cast using two 41cm plates separated by two 

0.2mm strips. The gel matrix contained 7.5ml of RapidGelXL (40% concentrate) 

(USB Corporation, Cleveland, Ohio, US), 4ml of formamide (SIGMA, Gillingham, 

Dorset, UK), 21g of urea (SIGMA, Gillingham, Dorset, UK), 5ml of X10 Tris buffer 

and 28ml of 18M deionised water and these were added to a 100ml glass duran 

bottle. The contents were then mixed until dissolved using a magnetic stirrer. During 

this time 1.5ml of 18M deionised water was added to a serum tube along with the 

contents of an ammonium persulphate (APS) capsule (SIGMA, Gillingham, Dorset, 

UK) to make 10 % APS solution. Seventy-five microlitres of TEMED and 350l of 

APS were added to the gel mixture. Thirty millilitres of the gel mixture was taken up 

into a plastic syringe and used for the pouring of the gel. The gel mixture was injected 

slowly between the glass plates from the top. Careful attention had to be taken so that 

there were no bubbles formed within the gel. This was done by repeatedly tapping the 

glass as the gel passed between the plates. Once the gel mixture had reached the 

bottom the plates were placed on a level surface and a comb was inserted. A further 
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75l of TEMED (SIGMA, Gillingham, Dorset, UK) and 350l of APS were added to 

the gel mixture still remaining in the syringe and this was then added to the area 

surrounding the comb to seal the gel. The gel was then allowed to set for at least two 

hours at room temperature. The prepared gel plate was then loaded vertically into the 

sequencer and the top buffer tank, filled with one litre X1 Tris buffer inserted. The 

pre-run protocol was performed following the displayed commands. After the pre-run 

protocol was complete one microlitre of each sample was added to the wells and then 

the sequence run was started. 

 

2.10.12   Sequence interpretation using LI-COR L4200-L2 

The sequence data were automatically read from the LI-COR sequencer using the 

integrated image analysis and data collection software. The data were then analysed as 

previously described (2.10.7 and 2.10.8). 

 

2.11 Data analysis 

After sequence comparisons the alleles that have been assigned, as previously 

described, were entered into the MLST website http://pubmlst.org/neisseria/ to 

produce a sequence type (ST). STs were also grouped into clonal complexes by their 

similarity to a central allelic profile (genotype). The START (sequence type analysis 

and recombinational tests) package was used as it brings together many of the 

preliminary analyses that can be performed on MLST data (Jolley et al., 2001). This 

package is separated into four main categories: the summary of data, lineage 

assignment, recombination tests and tests for selection.  
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2.11.1 Summary of data - allele frequencies 

Allele frequencies show how common an allele was within a dataset. Allele frequency 

analysis was performed once the N. meningitidis allelic profiles had been entered. A 

table was displayed showing the frequencies of each allele at each locus.  

 

2.11.2 Summary of data - Profile Frequencies 

 Profile frequencies show how common an ST was within a dataset. Once the allelic 

profiles were entered, profile frequency analysis was performed. A table was 

displayed showing the frequencies of each profile ST in the dataset in frequency 

order.   

 

2.11.3  Summary of data - Polymorphism Frequencies 

 Polymorphism frequencies show the different nucleotide changes present within a 

dataset. To determine polymorphism frequencies, both the allelic profiles and the 

allele sequences were loaded into the software. The allele sequences were obtained 

from the MLST website. First a sequence map, showing the positions and identities of 

all polymorphic sites at each locus were displayed.  Below this was a table that 

displayed the number of alleles in the dataset that had a particular nucleotide at each 

polymorphic site. 

2.11.4 Lineage assignment – eBURST  (Based Upon Related Sequence Types) 

This was used to specifically examine the relationships within clonal complexes while 

the relationships between different clonal complexes were ignored.  eBURST is a 

web-implemented clustering algorithm and is designed for use on MLST data sets 

from bacterial pathogens. The website to access the software is http://eburst.mlst.net/.  
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2.11.5  Lineage assignment – UPGMA   

UPGMA (Unweighted Pair Group Method with Arithmetic Mean) (Sneath & Sokal, 

1973b) is a straightforward method of tree construction.  The algorithm used utilised a 

distance matrix constructed from allelic profile data only.  Allele sequences were not 

used, so each allele number difference was treated identically.  This is because in 

systems involving recombination, a single genetic event, i.e. recombination, may 

result in a large number of altered sites. This analysis required only the allelic profiles.  

The analysis was performed using the START program.  Output displays were in the 

form of a tree.  Allelic profiles were displayed along with the isolate numbers.   

2.11.6  Tests for recombination - Index of Association 

Index of Association (IA) measures the extent of linkage equilibrium within a 

population by quantifying the amount of recombination among a set of sequences and 

detecting association between alleles at different loci (Maynard-Smith et al., 1993). 

The Index of Association (IA) was calculated as follows: IA =VO/VE –1 if VO was the 

observed variance of K and VE was the expected variance of K, where K is the 

number of loci at which two individuals differ.  If there was linkage equilibrium 

because of frequent recombination events, the expected value of IA was zero.  Clonal 

populations were identified by an IA value that differs significantly from zero.  This 

analysis required only the allelic profiles.   

 

2.11.7  Tests for selection - dS/dN ratio  

Nucleotide substitutions in genes encoding for proteins can be either synonymous (do 

not change amino acid), alternatively called silent substitutions, or non-synonymous 

(changes amino acid).  Usually, most non-synonymous changes are expected to be 

eliminated by purifying selection but, under certain conditions, Darwinian selection 
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may lead to their retention.  Investigating the number of synonymous and non-

synonymous substitutions may therefore provide information about the degree of 

selection operating on a system.  This analysis required both allelic profiles and the 

allele sequences to be loaded. An output result would include the mean number of 

synonymous and non-synonymous sites together with the number of coding sites 

analysed, number of pairwise comparisions made, the mean synonymous substitutions 

per synonymous sites, the standard deviation and confidence intervals, mean non-

synonymous substitutions per non-synonymous sites with standard deviations and 

confidence intervals and, finally, the dN/dS value. 

 

2.12 Analysis of molecular variance (AMOVA) 

Significant genetic differentiation among groups of isolates was assessed by AMOVA 

(Excoffier et al., 1992) as implemented in Arlequin software (version 2.0) (Schneider 

et al., 2000). This program computed an F statistic (FSTs) (Wright, 1943; Wright, 

1951) by applying a permutation test to assess statistical significance. AMOVAs were 

performed on the data as grouped by health board regions. FSTs for the allelic profiles, 

porA and concatenated locus sequences were performed. 

 

2.13  Spatio-temporal analysis  

Analysis was performed using SaTScan version 5.1.1 software, which is available at 

http://www.satscan.org. The programme applies a likelihood function to circular 

windows originating at defined locations of increasing size and compares observed 

and expected case numbers inside and outside the scan window to detect clusters that 

are least likely to have occurred by chance. The statistical significance for each cluster 

is obtained through Monte Carlo hypothesis testing, i.e., results of the likelihood 
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function are compared for a large number of random replications of the dataset 

generated under the null hypothesis. In this study, cases were assumed to be Poisson 

distributed in each location and the programme's space-time scan statistic was applied. 

The date of specimen sampling was defined as time of illness and the county of 

residence, derived from the postcode, was used as place. Spatio-temporal scanning 

was initiated within the 15 health boards. The temporal settings were defined as a 

maximal temporal window of 30 days as this should detect most of the existing 

clusters. Each strain present more than once within the dataset was individually 

entered into the SaTScan program to identify clustering of IMD. Strains were defined 

by serogroup, MLST and porA.  
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Chapter 3 

Results 

 
3.1 Source of isolates 

 
With regard to the patient’s age, as with most studies of meningococcal disease it was 

found that disease was most common amongst infants under 4 years of age (Figure 

3.1) accounting for 46.9% of all isolates.  When these data were analysed for different 

time periods i.e. 1970s, 1980s and 1990s, there was little change in percentages for 

the age groups (data not shown). 

 

Figure 3.1 The percentage of invasive isolates associated with each age group, 

Scotland 1972-98.  

 

There was not much difference between the sexes over the time period with males 

accounting for 47% of isolates, females 41% and 12% unknown. The sites for the 

isolates were 913 blood isolates (35%), 1434 CSF isolates (55%) and 260 from other 
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invasive sites (10%). The geographical spread of isolates will be discussed in greater 

detail within the next chapter. 

 

3.1.1  Serogroup characterisation 

All isolates had been previously characterised for serogroup. However, some isolates 

were non-groupable so these isolates were characterised using genotypic methods. A 

representative number of isolates was taken from the total number of isolates to 

analyse the accuracy of previous serogrouping methods. From these results there were 

no discrepancies between previously serogrouped isolates and with those repeated. 

Serogroup distribution included 147 serogroup A isolates  (5.6%), 1446 serogroup B 

isolates (55.5%), 812 serogroup C isolates (31.1%), 37 serogroup Y isolates (1.4%), 

67 W135 isolates (2.6%), 10 serogroup X isolates (0.4%), 5 serogroup Z isolates 

(0.2%) and 6 serogroup 29e isolates (0.2%) (Figure 3.2).  

 

Figure 3.2  The percentage of invasive isolates associated with each serogroup, 

Scotland 1972-98. 
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There were also 19 isolates which remained non-groupable (0.7%) and 58 isolates 

(2.2%) were not available to perform any characterisation including serogrouping, 

MLST or porA sequencing. There had been 82 non-groupable isolates using latex 

agglutination but PCR based techniques reduced that number to 19.  

 

Serogroup distribution changed from year to year during the time period 1972-1998. 

However, serogroups B and C were evidently the dominant serogroups over this 

period (Figure 3.3). Serogroup B was the dominant serogroup throughout the 1970s 

and early 1980s but, during the early to mid 1980s, there was an increase in serogroup 

C disease. For example during 1984, 16 of 52 isolates were serogroup C (30.8%), an 

increase of 11% on the previous year whereas, in 1985, 30 of 52 isolates were 

serogroup C (57.7%), an increase of 26.9% on the previous year, making serogroup C 

the dominant serogroup. This change in serogroup distribution also coincided with the 

emergence of the ST-11 strain. Serogroup C remained dominant over the next three 

years, 1986 (53.8%), 1987 (52.6%) and 1988 (51.1%) until 1989 when there was a 

decrease to 38.6% of isolates. At this time serogroup B had become the dominant 

serogroup again with a total of 73 of 132 isolates (55.3%), an increase of 11.5% on 

the previous year.  

 

The number of serogroup C isolates fluctuated during the 1990s, with a low of 16 of 

132 isolates (13.8%) in 1992. Subsequently, the numbers of serogroup C isolates 

increased over the next six years 1993 (26.7%), 1994 (27.4%), 1995 (29.0%), 1996 

(41.8%) 1997 (41.0%) and 1998 (51.5%). This was prior to the introduction of the 

MenC vaccine. Serogroup A was the second most common serogroup during the 

1970s, but numbers began to decline into the 1980s. Serogroups Y, WI35, X, Z and 
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Figure 3.3  Distribution of invasive isolates according to serogroup, Scotland from 1972-98. 
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29E were also present in Scotland over this time period but in significantly smaller 

numbers. Together these serogroups represented only 4.8% of isolates 

 

3.2  MLST analysis 

 

All isolates were characterised at seven housekeeping loci by multilocus sequence 

typing (MLST) (Maiden et al., 1998). There were 309 different sequence types (STs) 

among the 2607 isolates. While there was much diversity in the STs (309 types), only 

ten accounted for 1562 isolates (59.9%). These were ST-11 (374 isolates, 14.3%), ST-

8 (369 isolates, 14.2%), ST-41 (210 isolates, 8.1%), ST-153 (141 isolates, 5.4%), ST-

1 (128 isolates, 4.9%), ST-32 (102 isolates, 3.9%), ST-33 (75 isolates, 2.9%), ST-269 

(64 isolates, 2.5%), ST-334 (50 isolates, 1.9%) and ST-60 (49 isolates, 1.9%). Using 

BURST analysis the STs were further differentiated into 31 distinct lineages, with 67 

singleton types. There were 177 new STs found which accounted for 253 samples or 

9.7% of the total number of isolates (Appendix A4). As with the STs although there 

was much diversity in clonal complexes, only seven accounted for 1993 isolates 

(76.4%) (Table 3.1, Figure 3.4). The ST-8 complex was the most prevalent with 567 

isolates (21.7%) and these were divided into 21 different STs, 369 were ST-8 

(65.1%), 141 were ST-153 (24.9%) a gdh locus variant of ST-8, 18 were ST-66 

(3.2%) a fumC locus variant of ST-8 and the remaining STs were present in single 

figures with 9 represented by a single isolate.  
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Table 3.1 Association of STs with predominant clonal complexes from Scotland 1972-98. 

 

Clonal 
complexes 

Number of 
isolates 

Number of 
different STs 

STs present in double figures within clonal complex and the percentage with which 
they occurred 

ST-8 567 21 ST-8 (65.1%) ST-153 (24.9%) ST-66 (3.2%)   

ST-41/ST-44 422 51 ST-41 (49.7%) ST-206 (12.1%) ST-180 (6.4%) ST-43 (5.2%) ST-1362 (4.7%) 

ST-11 393 12 ST-11 (95.1%)     

ST-32 239 21 ST-32 (42.7%) ST-33 (31.4%) ST-259 (8.0%) ST-343 (6.3%)  

ST-1 133 5 ST-1 (96.2%)     

ST-269 132 26 ST-269 (48.5%) ST-275 (24.2%)    

ST-334 107 23 ST-334 (49.5%) ST-189 (14.0%) ST-415 (12.1%)   
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Figure 3.4  Clonal complexes of invasive meningococcal isolates from Scotland 1972-98. 
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There were 7 new STs present within the ST-8 complex. The ST-41/44 complex 

accounted for 422 isolates (16.2%) and included 51 different STs, ST-41 (49.7%), ST-

206 (12.1%), ST-180 (6.4%), ST-43 (5.2%), and ST-1362 (4.7%). The remaining STs 

were present in single figures with 31 represented by a single isolate. There were 29 

new STs present within the ST-41/44 complex.  The ST-11 complex accounted for 

393 isolates (15.1%) and included 12 different STs. The most common ST was ST-11 

(95.1%). The remaining STs were present in single figures with 6 represented by a 

single isolate. There were 7 new STs present within the ST-11 complex. The ST-32 

complex accounted for 239 isolates (9.2%) and these included 21 different STs. The 

most common were ST-32 (42.7%), ST-33 (31.4%, an abcZ locus variant of ST-32), 

ST-259 (8.0%, a fumC locus variant of ST-32), ST-343 (6.3% a pgm locus variant of 

ST-32). The remaining STs were present in single figures with 10 represented by a 

single isolate. There were 11 new STs present within the ST-32 complex. The ST-1 

complex accounted for 133 isolates (5.1%) and these included five different STs. The 

most common was ST-1 (96.2%). The remaining STs were present in single figures 

with three represented by a single isolate. There were 4 new STs present within the 

ST-1 complex, ST-2512 a pgm locus variant of ST-1, ST-2517 an abcZ locus variant 

of ST-1, ST-4570 a gdh locus variant of ST-1 and ST-4570 a fumC locus variant of 

ST-1. The ST-269 complex accounted for 132 isolates (5.1%) and these included 26 

different STs. The most common were ST-269 (48.5%) and ST-275 (24.2%). The 

remaining STs were present in single figures with 18 represented by a single isolate. 

There were 16 new STs present within the ST-269 complex. The ST-334 complex 

accounted for 107 isolates (4.1%) and these included 23 different STs. The most 

common were ST-334 (49.5%), ST-189 (14.0%, a pgm locus variant of ST-334) and 

ST-415 (12.1%). The remaining STs were present in single figures with 13
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represented by a single isolate. The clonal complexes varied in their genetic diversity. 

The ST1/Subgroup I/II, ST23/Cluster A3 and ST-364 complexes were the most 

conserved, with each containing only one major ST, with ST-1 and ST-23 having the 

central ST of the clonal complex. However, the majority of complexes were more 

diverse containing multiple STs, in particular ST41-44/Lineage 3 complex.  

 

From Figure 3.4 it can be observed that the distribution of clonal complexes has 

changed from year to year. These changes were also observed with STs. The P-value 

for STs was calculated for year on year changes (Table 3.2). A significant difference 

was noted in 7 of 26 years (P < 0.05). The results for this show the highest P-value 

(0.991) for the years 1990-1991 and the lowest P-value (0.001) for the years 1988-

1989. The years 1990-1991 corresponds to the period where ST-8, predominant 

during the 1980s, was replaced by similar strains of the same complex. 

 

Table 3.2 Calculated P-values to determine how similar the ST distribution is 
between periods. 

 

Year P-value Year P-value 
1972-1973 0.608 1985-1986 0.774 
1973-1974 0.622 1986-1987 0.078 
1974-1975 0.830 1987-1988 0.376 
1975-1976 0.213 1988-1989 0.001 
1976-1977 0.021 1989-1990 0.024 
1977-1978 0.004 1990-1991 0.991 
1978-1979 0.236 1991-1992 0.880 
1979-1980 0.810 1992-1993 0.208 
1980-1981 0.142 1993-1994 0.002 
1981-1982 0.516 1994-1995 0.020 
1982-1983 0.503 1995-1996 0.657 
1983-1984 0.801 1996-1997 0.154 
1984-1985 0.352 1997-1998 0.045 
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3.2.1 Diversity of housekeeping genes and sequence types 

Analysis of allele frequency from 1972 to 1998 showed that the number of alleles 

present at each locus varied between 16 for adk (adenylate kinase) and 44 for pdhC 

(pyruvate dehydrogenase) (Table 3.3). 

 Table 3.3  Genetic diversity in meningococci between 1972 and 1998 

Locus Length 
(bp) 

No. alleles No. 
polymorphic 

sites 

dN/dS
 Note 

abcZ 432 31 88 0.0504 
adk 465 16 31 0.0176 

aroE 489 37 174 0.2858 
fumC 465 39 39 0.0209 
gdh 501 36 42 0.0481 

pdhC 480 44 86 0.0671 
pgm 450 26 79 0.1101 

 

Note A dN/dS ratio of <1 indicates that nonsynonymous nucleotide sequence changes 
are deleterious and are selected out of the population. A dN/dS ratio of 1 implies that 
sequences are evolving neutrally. A dN/dS ratio of >1 indicates that the gene is under 
diversifying selection, with nonsynonymous changes being selected. 
 

This mirrors the data present on the MLST website which shows that adk has the least 

number of alleles present.  The number of polymorphic sites present at each locus for 

each year ranged between 31 for adk and 174 for aroE. The dN/dS ratios ranged from 

0.0176-0.2858 for adk and aroE respectively. All dN/dS ratios are less than one 

suggesting that the genes are subject to selective constraint. However, because these 

ratios are averaged across the sequence, any positive selection occurring at a 

particular site, might be offset by surrounding highly constrained regions. The dN/dS 

ratios for each allele were comparable throughout the 28-year period (results not 

shown). These data were comparable to invasive meningococci contained within the 

global data set found on the MLST website.  
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To determine what changes occurred to N.meningitidis in Scotland over time, analysis 

was performed on the data, which was split into the following time periods 1972-

1979, 1980-1989 and 1990-1998. From 1972 to 1979 there were 616 isolates and 

these accounted for 54 STs (Figure 3.5). There were 20 different clonal complexes 

and 5 singletons. The largest complex was ST-8, which had 146 isolates, and divided 

into two different STs, 144 were ST-8 (98.6%) and two were ST-2174 (1.4%). 

Analysis of allele frequency from 1972 to 1979 showed that the number of alleles 

present at each locus varied between 7 for adk and 18 for pdhC.  The number of 

polymorphic sites present at each locus for each year ranged between 15 (3.2% of 

sites for adk) and 122 (24.9% of sites for aroE).   

 

From 1980 to 1989 there were 845 isolates and these accounted for 182 STs (Figure 

3.6). There were 25 different clonal complexes and 39 singletons. The largest 

complex was ST-8, which had 192 isolates, and consists of 14 different STs. 135 were 

ST-8 (70.1%), 37 were ST-153 (19.3%), five were ST-9 (2.6%), three were ST-1380 

(1.6%), three were ST-4609 (1.6%), two were ST-4612 (1.0%), two were ST-4819 

(1.0%) and the rest all had only one isolate associated with them. The most varied 

complex was the ST-41-44 complex, which had 126 isolates spread amongst 30 STs. 

Analysis of allele frequency from 1980 to 1989 showed that the number of alleles 

present at each locus varied between 16 for adk and 34 for pdhC.  The number of 

polymorphic sites present at each locus for each year ranged between 38 (8.1% of 

sites for adk and fumC) and 171 (34.9% of sites for aroE). 
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Figure 3.5  UPGMA tree of N meningitidis STs and clonal complexes present in 
Scotland 1972-1979 

 

 
 

 

 



 89

Figure 3.6  UPGMA tree of N meningitidis STs and clonal complexes present in Scotland 1980-1989. 
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From 1990 to 1998 there were 1146 isolates and these accounted for 160 STs (Figure 

3.7). There were 27 different clonal complexes and 31 singletons. The largest 

complex was ST-11, which had 254 isolates representing 6 STs. The majority of 

isolates were ST-11 (97.2%). The most varied complex was the ST-41-44 complex, 

which had 222 isolates and 33 STs. Analysis of allele frequency from 1990 to 1998 

showed that the number of alleles present at each locus varied between 13 for adk and 

34 for pdhC.  The number of polymorphic sites present at each locus for each year 

ranged between 30 (6.5% of sites for adk and fumC) and 136 (27.8% of sites for 

aroE). 

 

There were differences in the STs and complexes circulating during the 1970s, 1980s 

and 1990s. While there are similar patterns between the 1980s and 1990s i.e. at least 

25 complexes that included a number of different STs and at least 30 singletons, the 

similarities to the 1970s are less apparent. In the 1970s there was not the same 

diversity of STs causing disease. There were fewer clonal complexes present 

compared to the other decades and these complexes consisted only of one or two 

major STs accounting for the majority of the samples within the complex and one or 

two minor STs.  

 

As mentioned previously, there were 177 new STs found in this study, which 

accounted for 253 isolates. These STs were spread over the whole time period from 

1973 to 1998. Using BURST analysis they were further differentiated into nineteen 

distinct lineages, with 50 singleton types (Figure 3.8). The ST-41/44 complex 

accounted for the majority of the new STs with 38 isolates. These were divided into 

27 STs, five were ST-231, four were ST-2523, three were ST-2516, two 
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Figure 3.7  UPGMA tree of N meningitidis STs and clonal complexes present in Scotland 1990-1998 
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Figure 3.8  Distribution of clonal complexes, per year for new STs, Scotland 1972-98. 
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were ST-2543, two were ST-2731 and the remaining STs were represented by a single 

isolate. Serogroups B and C were associated with the majority of new STs (Figure 

3.9). The significance of these new STs is that they have occurred in the past (i.e. 

1972-1998) and have caused disease but have not been present in recent years. 

Therefore it is possible that they could occur again. 

 

3.2.2 MLST analysis within serogroup 

Certain STs showed association with certain serogroups although this was not 

definitive. For example ST-8 included 206 serogroup C (55.8%) and 160 serogroup B 

(43.4%) isolates whereas ST-33 and ST-41 were entirely serogroup B.  

 

Serogroup B isolates could be differentiated into 218 different STs. Using BURST 

analyses they were further differentiated into twenty distinct lineages, with 54 

singleton types. However, three lineages accounted for 888 isolates. The ST-41/44 

complex had the largest number of isolates (333, 23.0%) and these were divided into 

42 different STs, 208 were ST-41 (62.5%), 22 were ST-43 (6.6%), 21 were ST-180 

(6.3%) and the remaining STs were present in single figures with 25 represented by a 

single isolate. The ST-8 complex accounted for 321 isolates (22.2%) and they were 

divided into 15 different STs, 160 were ST-8 (49.8%), 130 were ST-153 (40.5%) and 

the remaining STs were present in single figures with 5 represented by a single 

isolate. The ST-32 complex accounted for 234 isolates and they were divided into 20 

different STs, 102 were ST-32 (43.6%), 74 were ST-33 (31.6%), 19 were ST-259 

(8.1%), 15 were ST-343 (6.4%) and the remaining STs were present in single figures 

with 10 represented by a single isolate.  
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Serogroup C isolates could be differentiated into 84 different STs. Using BURST 

analyses they were further differentiated into thirteen distinct lineages, with 11 

singleton types. However three lineages accounted for 664 isolates. The ST-11 

complex accounted for the majority of isolates  (328, 40.4%), these were divided into 

8 STs, 314 were ST-11 (95.7%), 3 were ST-2510, 3 were ST-4644, 2 were ST-3298 

and ST-67, ST-2942, ST-3455 and ST-4677 were represented by a single isolate. The 

ST-8 complex accounted for 243 isolates (29.9%) and they were divided into 9 

different STs, 208 were ST-8 (85.6%), 15 were ST-66 (6.2%), 13 were ST-153 (5.3%) 

and the remaining STs were present in single figures with 4 represented by a single 

isolate. ST-41/44 complex accounted for 93 isolates (11.5%) and these were divided 

into 14 different STs, 45 were ST-206 (48.4%), 16 were ST-1362 (17.2%), 6 were 

ST-180 (6.5%), 5 were ST-41 (5.4%) and the remaining STs were present in single 

figures with 9 represented by a single isolate. 

 

Serogroup A isolates could be differentiated into 9 different STs. Using BURST 

analyses they were further differentiated into three distinct lineages, with two 

singleton types. ST-1 complex accounted for the majority with 132 isolates, these 

were divided into 4 STs, 127 were ST-1 (97.7%) and ST-2517, ST-4570 and ST-4671 

were represented by a single isolate. The ST-5 complex accounted for 8 isolates, all 

were ST-5. There was also one isolate associated with ST-8 complex, which was ST-

2174.
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Figure 3.9  Distribution of serogroups amongst new STs, Scotland 1972-98. 
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Serogroup Y isolates could be differentiated into 10 different STs. Using BURST 

analyses they were further differentiated into three distinct lineages, with four 

singleton types. ST-23 complex accounted for the majority with 19 (51.4%) of all the 

isolates, these were divided into four STs, 16 were ST-23 (84.2%) and ST-1062, ST-

1389 and ST-1716 were represented by a single isolate. ST-766 and ST-167 belonged 

to no complex although they only differed by the gdh allele. Invasive serogroup Y 

meningococcal disease was associated mostly with the young or old. Although 

serogroup Y meningococcal disease was uncommon and a rare cause of invasive 

disease in Scotland between 1972 and 1998 it is essential that microbiologists are 

aware of its potential for increasing in incidence due to the introduction of the MenC 

vaccine, and its increased incidence in the USA (Pollard & Scheifele, 2001). 

 

Serogroup W135 isolates could be differentiated into 11 different STs. Using BURST 

analyses they were further differentiated into four distinct lineages, with two singleton 

types. ST-11 complex accounted for the majority with 42 isolates, these were divided 

into two STs, 41 were ST-11 (97.6%) and ST-473 represented by a single isolate. 

 

3.2.3  Disappearance of serogroup A  

Serogroup A meningococci caused 143 cases of invasive disease in Scotland between 

1972 and 1998. Of these 134 isolates (94%) occurred between 1973-1982, thereafter 

there were three cases in 1986, two cases in 1987, one case in 1989, one case in 1992 

and two cases in 1995. There were 9 STs associated with serogroup A meningococci 

(ST-1, ST-5, ST-60, ST-2002, ST-2174, ST-2152, ST-2517, ST-4570 and ST-4571). 

However, 88.7% of isolates were of ST-1. The only other ST that occurred more than 

once was ST-5 with 5.67%. The STs belonged to three complexes the ST-1/Subgroup 
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I/II, ST-5/Subgroup III and ST-8/Cluster A4 (Figure 3.10). There were also two STs 

that did not belong to a complex. Serogroup A was therefore shown to be highly 

clonal with only 9 different STs present, the most common being ST-1 which has 

been responsible for epidemics and sporadic cases in Africa since the 1960s.  

 

Figure 3.10  Distribution of clonal complexes amongst serogroup A isolates, 

Scotland 1972-98. 
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Of all the isolates, 91.5% belonged to the ST-1/Subgroup I/II complex. There were 

three new STs found within Scotland that belonged to serogroup A: ST-2517, ST-

4570 and ST-4571 which all belonged to the ST-1/Subgroup I/II complex. The ST-

1/Subgroup I/II and ST-5/Subgroup III complexes are almost exclusively associated 

with serogroup A throughout the world. Of the STs found amongst serogroup A only 

ST-60 has been present within Scotland in the last five years and has been associated 

with both serogroup A and serogroup B. 
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3.2.4  Emergence of serogroup C ST-11 meningococci 

The data have shown the emergence of serogroup C ST-11 meningococci during the 

1980s within Scotland. This is important as this strain has a worldwide distribution 

and is classed as a hypervirulent strain. From retrospective analysis, the first recorded 

example of serogroup C ST-11 was in 1976 in Brazil and became prominent in 

Canada and Europe during the 1990s. In Scotland, the rate of serogroup C 

meningococcal disease decreased during the early 1990s and then increased slowly 

through the second half of the 1990s due to an increase in ST-11. Although this 

endemic strain is associated with serogroup C disease, there have been 26 examples 

among the total number of isolates where the ST-11 were serogroup B, 41 that were 

serogroup W135, 1 that was serogroup X and one that was serogroup 29e. These ST-

11 strains with serogroups other than serogroup C had also been present during the 

1970s. This may suggest evidence of capsular switching as the porA data for 

serogroup W135 ST-11 strains from the 1970s had the combinations of 5, 2, 36-2 or 

5-1, 10-4, 36-2 and these combinations have been commonly found within serogroup 

C ST-11s. ST distribution amongst serogroups B and C showed an interesting pattern. 

Serogroup B isolates could be differentiated into a large number of STs (216 different 

STs) whereas serogroup C isolates did not show nearly the same diversity (84 

different STs) and with the majority of strains representing the aforementioned ST-11 

and ST-8. 

 

The ST-11 strain could represent the ET-37 or ET-15 variant (that emerged in 

Canada, Greece and the Czech Republic in the late 1980s/early 1990s). The ET-15 

variant is associated with a higher case: fatality rate.  The two can be differentiated by 
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a mutation in the fumC gene that falls outside of the locus used for MLST and by 

insertion sequence IS1301 (Elias & Vogel, 2007). Unfortunately the analysis to 

determine which variant the ST-11 strains in Scotland belonged to was not performed. 

When examining the PorA variants VR1 and VR2, 62% of the ST-11 strains were 5,2. 

This combination has been found in both the ET-37 and ET-15 variants. However, 

there were also 14 cases of PorA variants VR1 and VR2 5-1,10-8 which is the 

genosubtype shown by the hypervirulent ET-15 variant of the ST-11/ET-37 complex, 

which has affected a region of Spain (Perez-Trallero et al., 2002). Interestingly, of 

these 14 cases, one occurred in 1997 and the other 13 in 1998. There was also one 

case of PorA variants VR1 and VR2 7,1 in 1993 and the strain has been identified as 

an ET-15 variant that has been linked to an outbreak in Quebec, Canada (Tsang et al., 

2004). However, these strains of meningococci were not isolated in Canada in large 

numbers prior to 2001 (Tsang et al., 2004). 

 

3.2.5  Genetic changes within the meningococcal ST-8 complex/cluster A4 

strains 

It was also found that meningococci of ST-8, which were predominant during the 

1980s, were replaced by similar strains of the same complex in the early 1990s. These 

clones included ST-153, ST-1349 and ST-66. ST-153 differed from ST-8 by one 

nucleotide in the gdh gene and ST-66 differed from ST-8 by five nucleotides in the 

fumC gene. The nucleotide differences between ST-8 and ST-153 and between ST-8 

and ST-66 were all at synonymous sites and did not result in protein changes. 

However, ST-1349 differed from the ST-8 at three loci, fumC 29, gdh 834 and 

pgm 28. These nucleotide differences result in amino acid substitution. The pgm 

change is at 22 nucleotides and when analysed using the Max Chi Squared Test there 



 100

is a significant mosaic in the pgm at position 159 with a Max Chi Squared value of 

36.5916 (p=0.005). This is strong evidence that these changes came about by a 

recombination event. 

 

3.2.6 Recombination 

In a regularly recombining organism there is no single phylogenetic tree for a 

collection of isolates. Recombination leads to different phylogenies at different 

positions in the genome. The frequency of recombination determines the extent to 

which these trees are correlated. Therefore, the degree of incongruence between 

phylogenetic trees at distinct loci is a way to quantify the extent of recombination in a 

population.  To quantify the effect of recombination on phylogenetic congruence, a 

subset of 30 out of a global sample of 107 predominantly disease-causing 

meningococci (Maiden et al., 1998) were analysed (Holmes et al., 1999; Feil et al., 

2001). Under the null hypothesis of complete linkage in the absence of recombination, 

all loci share the same phylogenetic tree topology. For each MLST locus a maximum 

likelihood (ML) tree was estimated. To test for congruence between the ML tree 

topology at each locus and all the others, the difference in log likelihood was 

calculated, having re-optimised the branch lengths for the other trees. A null 

distribution for the difference in log likelihood was produced using 200 bifurcating 

topologies simulated uniformly at random. The results demonstrated that the extent of 

recombination in N. meningitidis is therefore sufficient to create phylogenetically 

incongruent trees within a 450bp sequence (Feil et al., 2001). 

 
The thirty most diverse strains observed in the MLST analysis were chosen as 

representative of the phylogenetic history of N. meningitidis in Scotland. The 

UPGMA generated from the STs of the 30 more distantly related members of the 
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strain collection is shown in Figure 3.11 combined with a table showing the alleles for 

each locus. The index of association test for linkage disequilibrium was performed on 

the 7 loci for all isolates (IA=0.978) and the 30-strain subset (IA=0.303) showing 

evidence for linkage in the former but not the latter. It can be shown that, for each 

locus, identical alleles were distributed among distantly related isolates. Examples 

included abcZ allele 2, which occurred in six isolates, adk allele 5, present in nine 

isolates and pgm allele 2, found in five isolates at various locations on the 

dendrogram. 

 

The ML phylogenetic trees for the seven loci are presented in Figure 3.12. All 

phylogenetic trees used in the congruence analysis were reconstructed by using the 

maximum likelihood (ML) method available in the PAUP* package (version 4). The 

HKY85 model of DNA substitution was used with the optimal ratio of transitions to 

transversions (Ts/Tv) and the α parameter, which describes the extent of rate variation 

among nucleotide sites assuming a discrete gamma distribution with eight categories, 

both estimated from the empirical data during tree reconstruction. 

 

First, for each gene, the differences in log likelihood (-ln L) were computed between 

the ML tree for that gene and the ML trees constructed on the other genes, but with 

branch lengths optimised to maximize the likelihood of this topology on the reference 

data. Values for Ts/Tv and α were also reoptimised. To determine whether these 

differences in log likelihood are significantly different (they will not be if the gene 

trees are congruent), 200 random trees were created for each gene. The likelihoods of 

these trees were then estimated, again by optimizing branch lengths and Ts/Tv and α 

values, and the differences in log likelihood between these random trees and the ML 
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tree for each gene were computed. These can then be considered as a null distribution 

of -ln L values, as would be obtained when there is no more similarity in topology 

among gene trees than expected by chance. If the -ln L values for the comparisons 

among the different ML trees fall within the 99th percentile of this null distribution, 

then we may say that they are significantly different and hence incongruent. The 

results of the maximum likelihood analysis of congruence are presented in Table 3.4. 

 

This shows that there is a lack of congruence with only a small number of gene tree 

comparisons showing levels of topological similarity greater than the random 

expectation, and even in these cases the trees were very dissimilar, with likelihood 

differences falling only marginally outside the 99th percentile of the random 

distribution (Figure 3.12). The lack of congruence among gene trees can be explained 

as the consequence of a legacy of relatively frequent recombinational exchanges that 

over time have almost eliminated the phylogenetic signal in each tree. High rates of 

recombination have been shown previously from estimates of linkage disequilibrium 

(Smith et al., 1993), the presence of frequent mosaic structure in housekeeping genes 

(Zhou et al., 1997) and the lack of congruence between gene trees (Feil et al., 1996; 

Holmes et al., 1999; Feil et al., 2001). 
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Figure 3.11 Alleles present at each locus and the relationship of isolates by UPGMA analysis drawn on the basis of the alleles present at each 

of the 7 loci in the subset of the 30 most diverse meningococcal isolates. A UPGMA dendrogram together with the alleles present at each locus 

for each isolate is shown. 
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Table 3.4  Maximum likelihood analysis of congruence between seven                
                                    housekeeping genes.     
      
 
 

Gene bp -ln L of ML 
tree 

-ln L of ML 
trees from other 

gene 

99th percentile 
in -ln L in 

random trees 

Loci outside 
99th percentile 

of random 
trees 

abcZ 433 1251.638 566.278-682.457 571.681 fumC, gdh 

adk 465 844.767 211.291-245.980 195.601 __ 

aroE 490 1798.894 1163.242-
1472.311 1153.215 __ 

fumC 465 968.303 170.153-225.727 187.726 abcZ 

gdh 501 993.788 270.244-331.562 268.147 __ 

pdhC 480 1592.003 799.284-960.181 835.687 __ 

pgm 450 1235.102 440.650-542.987 414.564 __ 
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Figure 3.12  Maximum likelihood analysis of congruence amongst MLST loci for 

the 30 most diverse N. meningitidis isolates within Scotland. The ML tree of each 

locus is compared with the ML trees from the other six loci. The differences in 

likelihood (- In L) are shown between loci (coloured squares) and between each 

locus and 200 trees of random topology (diamonds). The 99th percentile of the 

likelihood differences between the ML tree for each gene and the 200 random tree 

topologies is indicated by the dotted line. 
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3.2.7  Analysis of molecular variance (AMOVA) 

Assessing the genetic structure of the population and ascertaining whether distinct 

subpopulations occur in specific areas can be performed using the analysis of MLST 

allelic profile and sequence data. Population subdivision can be  measured using the 

F-statistic (FST). Wright's F-statistic (Wright, 1943; Wright, 1951) measures the 

extent and/or presence of genetic variation and subdivision by comparing alleles 

within subpopulations (e.g., health board regions) and alleles within the total 

population. If there is a high rate of gene flow in the total population and no 

subdivision is apparent then FST is zero. However, if there is subdivision within the 

population, then FST is greater than zero. In the Scottish disease isolates, calculations 

of FSTs for the allelic profiles, porA and concatenated locus sequences were carried 

out using AMOVA (Excoffier et al., 1992) as implemented in Arlequin software 

(version 2.0) (Schneider et al., 2000).  The results (Table 3.5) show the presence of 

gene flow between certain neighbouring health board regions. For example, between 

AC (Argyll and Clyde) and AA (Ayrshire and Arran) with a FST value of  0.00072 

and between FF (Fife) and FV (Forth Valley) with a FST value of  0.00006.  

 

The results for the health board regions of Shetland (SH), Western Isles (WI) and 

Borders (BR) do show higher FST values than average, which could suggest the 

presence of structure among certain health board regions. However, these regions 

have low number of isolates associated with them (SH has one isolate, WI has five 

isolates and BR has 25 isolates), which may skew results. 



 107 

Table 3.5 FST values of pair-wise comparisons for the allelic profiles, porA and concatenated locus sequences of the 15 different health 
boards within Scotland. FST Measures the extent of structuring in a population by comparing the alleles within sub population and alleles within 
the total population. An FST value of 0 indicates no subdivision and therefore high gene flow in the population. A value greater than 0 indicates 
the presence of structure. 
 
 

           AA          AC          BR             DG          FF             FV          GG           GR         HG           LN            LO          SH           TY  

           

 AC   0.00072    

 BR   0.02584   0.01818    

 DG   0.00496   0.00934   0.03007    

 FF    0.00953   0.00976   0.00026   0.00291    

 FV   0.00715   0.00460   0.01271   0.00176   0.00006    

GG   0.00010   0.00098   0.01604   0.00795   0.00836   0.00476    

GR    0.00131   0.00410   0.01299   0.00158   0.00216   0.00123   0.00258    

HG   0.00380   0.00141   0.02355   0.01010   0.01321   0.00746   0.00219   0.00407    

LN   0.00983   0.00754   0.02012   0.01355   0.01155   0.00656   0.00751   0.00902   0.00961    

LO   0.00350   0.00368   0.00476   0.00447   0.00054   0.00207   0.00264   0.00108   0.00618   0.00807    

SH   0.08559   0.06599    0.07667   0.10020   0.07221   0.07248   0.06797   0.06792   0.05165   0.06577   0.06221    

TY   0.00080   0.00187   0.01356   0.00418   0.00467   0.00521   0.00023   0.00006   0.00248   0.00699   0.00073   0.07158    

WI   0.09090   0.06717   0.05583   0.10012   0.06561   0.07551   0.07319   0.06991    0.05611   0.07106   0.06862   0.10000   0.07744  
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3.3  PorA analysis 

 

All isolates were characterised at the porA locus, which encodes a major surface 

antigen and vaccine candidate PorA (Russell et al., 2004). The first variable region 

(VR1) was represented by 34 different variable types, within nine distinct families (5, 

7, 12, 17, 18, 19, 20, 21 and 22). The first variable region was represented in the 

majority from the P1.5 family (1299 isolates).  Within this family to date there are 27 

different variants associated with the original representative amino acid sequence.  

The subsequent variants range between one and three amino acids either by 

substitution, insertion or mutation from the original twelve amino acid sequence. The 

four VR1 types represented in Scotland were 5 (572 isolates), 5-1 (394 isolates), 5-2 

(330 isolates) and 5-3 (three isolates).  

 

The second variable region (VR2) was represented by 44 different variable types 

within 15 distinct families (1, 2, 3, 4, 9, 10, 13, 14, 15, 16, 23, 25, 26, 28 and 30) with 

33.7% of isolates characterised as having variable regions 2, 2-1 and 2-2. This 

variable region contains more variant types in comparison to the other two.  For 

example, within the type 2-family there are, to date, 59 different variants.   This 

family has variants of from one to six amino acids either by substitution, insertion or 

mutation from the original fifteen amino acid sequence. The six VR2 types 

represented in Scotland were 2 (515 isolates), 2-1 (77 isolates), 2-2 (287 isolates), 2-4 

(one isolate), 2-12 (one isolate) and 2-16 (one isolate).  

 

The third variable region (VR3) was represented by nine different variable types 

within four distinct families (35, 36, 37, and 38) with 38.6% of isolates characterised 
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as having variable region 36-2. Within the type 36-family there are to date three 

different variants.  The three VR3 types represented in Scotland were 36 (319 

isolates), 36-1 (8 isolates) and 36-2 (1007 isolates). No new variable types were found 

within any of the variable regions. 

 

Certain combinations of VRs were more common than others. The combination 5, 2, 

36-2 occurred 466 times (17.9%) and 19, 15, 36 occurred 192 times (7.4%). Figures 

3.13-3.15 shows the different combinations of variable region 1 and variable region 2 

present within the three most common variable region 1s (which accounts for 83.5% 

of all isolates) present within Scotland 1972-1998. There was a link between porA and 

ST and also clonal complex. This is evident with the combination 5, 2-1, 36-2, which 

occurs 70 times all belonging to the ST-11 complex and all but two isolates were ST-

11. Also 15 isolates that were 18-3, 1, 35-1 all belonged to the ST41-44/Lineage 3 

complex. However, this was not the case with all porA combinations as the 

combination 19, 15, 36 had 10 different complexes associated with it and 41 different 

STs.  

 

As previously mentioned, before genotyping, the phenotypic methods most frequently 

employed to identify subtypes consisted of using panels of monoclonal antibodies 

(Abdillahi & Poolman, 1988). Complete serosubtyping of meningococci can rarely be 

performed and strains that cannot be serosubtyped or only partially serosubtyped are 
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Figures 3.13  The different combinations of variable region 1 and variable region 2 present within the P1.5 family, Scotland 1972-1998. 
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Figures 3.14  The different combinations of variable region 1 and variable region 2 present within the P1.7 family, Scotland 1972-1998. 
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Figures 3.15   The different combinations of variable regions 1 and 2 present within the P1.19 family, Scotland 1972-1998. 
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frequently found. This limitation is attributed to the use of incomplete sets of 

monoclonal antibodies, a lack of PorA expression and the absence of reactivity of the 

monoclonal antibodies used with some of the numerous VR1 and VR2 variants of the 

prototype strains (Sacchi et al., 2000; Vogel & Claus, 2003). Genotypic techniques 

that analyse the VR1 and VR2 sequences of the porA gene overcome these limitations 

and allow complete identification (Feavers et al., 1992; Sacchi et al., 1998; Diggle & 

Clarke, 2003). Isolates from the 1990s were previously serosubtyped using panels of 

monoclonal antibodies. A comparison of strains with over 50 samples from the 1990s 

and their resulting genotyping are shown in Table 3.6.  

 
 
Table 3.6  Distribution of genosubtypes and serosubtypes for genosubtypes with  

>50 isolates during the 1990s. 
 
 
 

VR1 VR2 VR3 No of samples (% ) Subtype No of samples 
5 2 36-2 288 (25.1%) NST* 87 (7.6%) 
    P1.2 123 (10.7%) 
    P1.2, P1.5 61 (5.3%) 
    P1.5 17 (1.5%) 

7-2 4 37 153 (13.3%) NST 78 (6.8%) 
    P1.4 61 (5.3%) 
    P1.7 14 (1.2%) 

5-2 10 37-1 119 (10.4%) NST 27 (2.4%) 
    P1.10 91 (7.9%) 
    P1.5 1 (0.1%) 

19 15 36 66 (5.8%) NST 12 (1.1%) 
    P1.15 54 (4.7%) 

21 16 37-1 55 (4.8%) NST 11 (1.0%) 
    P1.16 44 (3.8%) 

 

*NST = Non-subtypeable  
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Of the 681 isolates from Table 3.6, 215 isolates (31.5%) could not be identified by 

serosubtyping. Genosubtyping identified the VR1 type of 589 strains that could not be 

identified by serosubtyping. Moreover, genosubtyping identified the VR2 type of 353 

strains that could not be identified by serosubtyping. The results of the present study, 

like those of previous studies (Sacchi et al., 2000; Clarke et al., 2003), demonstrate the 

advantages of genosubtyping over serosubtyping. Genosubtyping achieves complete 

identification of both VR1 and VR2 and discriminates the variants among strains 

(Feavers et al., 1992; McGuinness et al., 1993). 

 

Certain VR1, 2 and 3 regions were associated with certain serogroups, although this 

was not definitive, examples included the porA combination 5, 2, 36-2 which had 354 

isolates (76.0%) associated with serogroup C, although this is not surprising as the 

porA combination is highly associated with ST-8 and ST-11. Of the 192 isolates with 

porA combination 19, 15, 36, 85.4% were associated with serogroup B. When 

serogroup and the porA variable regions 1, 2 and 3 were compared, there did seem to 

be a pattern of certain variable regions being associated with certain serogroups. 

However, there were also some VRs that have been observed in all serogroups. 

 
3.3.1 Serogroup C isolates 

The first variable region was represented by 22 different variable types, within eight 

distinct families (5, 7, 12, 17, 18, 19, 21 and 22). The P1.5 family contained the 

largest number of isolates, 449 isolates were 5, 136 isolates were 5-1, 29 isolates were 

5-2 and two isolates were 5-3. The second variable region was represented by 31 

variable types within 13 families, namely  1, 2, 3, 4, 9, 10, 13, 14, 15, 16, 25, 26 and 

28. 46.5% were allocated to variable region 2. The third variable region was 
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represented by nine different variable types within four distinct families (35, 36, 37 

and 38). 70.2% were allocated to variable region 36-2.   

 

3.3.2 Serogroup B isolates 

The first variable region was represented by 26 different variable types, within eight 

distinct families (5, 7, 12, 17, 18, 19, 21 and 22). However, two families (5 and 7) 

were associated with 69% of serogroup B isolates. The P1.7 family contained the 

largest number of isolates, 93 isolates were 7, 74 isolates were 5-1, and 302 isolates 

were 7-2. This was closely followed by the P1.5 family where 75 isolates were 5, 206 

isolates were 5-1, 160 isolates were 5-2 and one isolate was 5-3. The second variable 

region was represented by 31 variable types. These were contained within 13 families 

(1, 2, 3, 4, 9, 10, 13, 14, 15, 16, 25, 26 and 28). 46.5% were allocated to variable 

region 2. The third variable region was represented by nine different variable types 

within four distinct families, namely 35, 36, 37 and 38, with 70.2% allocated to 

variable region 36-2.   

 

3.3.3 Serogroup A isolates 

Six different variable types, within four distinct families (5, 18, 20 and 21) 

represented the first variable region, however 5-2 was responsible for 89.9% of 

serogroup A isolates. The other variable types present were one isolate was 5, two 

isolates were 5-1, one isolate was 18-1, nine isolates were 20 and two isolates were 

21. The second variable region was represented by six variable types; these were 

contained within 5 families, namely 2, 3, 9, 10 and 16. However, variable type 10 was 

responsible for 90% of serogroup A isolates and all but one of these also had 5-2 for 

its first variable region. The third variable region was represented by four different 
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variable types 35-1 (9 isolates), 36-2 (three isolates), 37-1 (136 isolates) and 38 (one 

isolate). All but one of the isolates with third variable region 37-1 had 5-2 for its first 

variable region and all but two of the isolates with third variable region 37-1 had 10 

for its second variable region. 

 

3.3.4 Serogroup Y isolates 

Four different variable types, within two distinct families (5 and 7) represented the 

first variable region. However, 5-1 was responsible for 81.1% of serogroup Y isolates. 

The other variable types present were: one isolate was 5, three isolates were 5-2 and 

one isolate was 7-1. The second variable region was represented by seven variable 

types; these were contained within three families (2, 10 and 16). However, variable 

type 10 was responsible for 72.2% of serogroup Y isolates. The third variable region 

was represented by three different variable types, namely 35 (one isolate), 36-1 (one 

isolates) and 36-2 (33 isolates). 

 
 

3.3.5 Serogroup W135 isolates 

Six different variable types, within four distinct families (5, 12, 18 and 22) 

represented the first variable region. The variable type 5 was responsible for 43 of 

serogroup W135 isolates. The other variable types present were: five isolates were  

5-1, one isolate was 5-2, one isolate was 12-1, 15 isolates was 18-1 and one isolate 

was 22-1. The second variable region was represented by nine variable types within 

five families (2, 3, 10, 13 and 14). However, 2 was responsible for 41 isolates. The 

third variable region was represented by four different variable types 35 (one isolate), 

36-2 (46 isolates), 37-1 (one isolate), and 38 (16 isolates). The most common profile 

within the W135 isolates was 5, 2, 36-2 and this occurred 41 times (61.2%). All of 
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these isolates with this profile belonged to the ST-11 complex and, apart from one 

isolate from 1995, all occurred before 1983. This porA profile and ST-11 complex is 

more commonly associated with serogroup C. However, the complex worldwide has 

more recently been associated with serogroup W135 outbreaks in Africa and also with 

those returning from the Hajj pilgrimage. 

 

3.3.6  Serogroup X isolates  

Four different variable types, within four distinct families: 5 (one isolate), 19 (one 

isolate), 21 (four isolates) and 22 (one isolate), represented the first variable region. 

The second variable region was represented by four variable types within four 

families and these were, 2-1 (one isolate), 9 (one isolate), 15 (one isolate) and 16  (14 

isolates). The third variable region was represented by four different variable types 

35-1 (one isolate), 36 (one isolate), 36-2 (one isolate), and 37-1 (four isolates). 

 

3.3.7 Miscellaneous serogroup isolates 

These included serogroups Z (five isolates) and 29e (6 isolates).  At this stage these 

isolates could represent future dominant strain characteristics.  Therefore, although 

they were statistically insignificant, they could be important markers to monitor and 

analyse. Unfortunately, of these isolates, only one serogroup Z isolate and two 

serogroup 29e isolates were available for porA sequencing. The serogroup Z isolate 

had variable regions 7-4, 1 and 35-1 and this profile was not present within any other 

isolate in Scotland. Variable regions 5, 2 and 36-2 and 21, 16 and 37-1 were present in 

the two serogroup 29e isolates.   
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3.3.8 PorA types present in N. meningitidis strains 1972-1979 
 

The first variable region (VR1) was represented by 14 different variable types, within 

eight distinct families (5, 7, 12, 18, 19, 20, 21 and 22). The first variable region which 

had the largest number associated with it was the P1.5 family (356 isolates). The three 

variants of the P1.5 family represented in Scotland during the 1970s were: 5 (50 

isolates, 14.1%), 5-1 (180 isolates, 50.6%) and 5-2 (126 isolates, 35.4%). The second 

largest was the P1.7 family (131 isolates). The three variants of the P1.7 family 

represented in Scotland during the 1970s were: 7 (34 isolates, 26.0%), 7-1 (18 

isolates, 13.7%) and 7-2 (79 isolates, 60.3%). The third largest was the P1.19 family 

(28 isolates). The second variable region (VR2) was represented by 17 different 

variable types within 10 distinct families (1, 2, 3, 4, 9, 10, 13, 15, 16, and 26). The 

second variable region which had the largest number associated with it was variable 

regions 2 (55 isolates) and 2-2 (179 isolates). The second largest was the variable 

region 10 (123 isolates). The three variants represented in Scotland during the 1970s 

were: 10 (115 isolates, 93.5%), 10-1 (two isolates, 1.6%) and 10-4 (6 isolates, 4.9%). 

The third variable region was represented by seven different variable types 35 (43 

isolates, 7.0%), 35 (49 isolates, 8.0%), 36 (32 isolates, 5.2%), 36-2 (229 isolates, 

37.2%), 37 (59 isolates, 9.6%), 37-1 (141 isolates, 22.9%) and 38 (two isolates, 

0.3%). Figure 3.16 shows the different combinations of VR1 and VR2 present in 

N. meningitidis isolates in Scotland 1972-1979. 
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Figure 3.16  The different combinations of variable region 1 and variable region 2 present in Scotland 1972-1979
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3.3.9 PorA types present in N. meningitidis strains 1980-1989 

The first variable region was represented by 27 different variable types, within nine 

distinct families (5, 7, 12, 17, 18, 19, 20, 21 and 22). As with the previous decade the 

first variable region, which had the largest number, associated with it was the P1.5 

family (372 isolates). Variable types within this family were 5 (196 isolates, 52.7%), 

5-1 (100 isolates, 26.9%) 5-2 (72 isolates, 19.3%) and 5-3 (four isolates, 1.1%). 

Compared to the previous decade though there was a much higher percentage of 

variable type 5 during the 1980s. However, this is no surprise when the MLST data is 

also analysed as there was an increase in both ST-11 and ST-8 isolates which both are 

often associated with this variable type. The second largest was the P1.7 family (146 

isolates). The four variants of the P1.7 family represented in Scotland during the 

1980s were: 7 (37 isolates, 25.3%), 7-1 (41 isolates, 28.1%), 7-2 (67 isolates, 45.9%) 

and 7-4 (one isolate, 0.7%). The third largest was the P1.19 family (145 isolates). The 

three variants of the P1.19 family represented in Scotland during the 1980s were: 19 

(136 isolates, 93.8%), 19-1 (8 isolates, 5.5%) and 19-3 (one isolate, 0.7%). 

 

The second variable region was represented by 38 different variable types within 14 

distinct families (1, 2, 3, 4, 9, 10, 13, 14, 15, 16, 25, 26, 28 and 30). The second 

variable region which had the largest number associated with it was variable region 2 

(288 isolates).  The five variants represented in Scotland during the 1980s were: 2 

(156 isolates, 54.2%), 2-1 (49 isolates, 17.0%), 2-2 (81 isolates, 28.1%), 2-4 (one 

isolate 0.35%) and 2-16 (one isolate, 0.35%). The second largest was the variable 

regions 15 (140 isolates). The three variants represented in Scotland during the 1980s 

were: 15 (116 isolates, 82.9%), 15-1 (16 isolates, 11.4%) and 15-11 (8 isolates, 5.7%). 
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In the previous decade the variable region 15 was only present 28 times (4.6%). The 

third largest was the variable region 10 (123 isolates). The three variants represented 

in Scotland during the 1970s were: 10 (115 isolates, 93.5%), 10-1 (two isolates, 1.6%) 

and 10-4 (6 isolates, 4.9%). The third variable region was represented by nine 

different variable types: 35 (40 isolates, 4.7%), 35-1 (125isolates, 14.8%), 36 (128 

isolates, 15.1%), 36-1 (two isolates, 0.2%), 36-2 (331 isolates, 39.2%), 37 (35 

isolates, 4.1%), 37-1 (108 isolates, 12.8%), 38 (44 isolates, 5.2%) and 38-1 (7 isolates, 

0.8%). Figure 3.17 shows the different combinations of VR1 and VR2 present in  

N. meningitidis isolates in Scotland 1980-1989. 

 

3.3.10 PorA types present in N. meningitidis strains 1990-1998 

The first variable region was represented by 29 different variable types, within nine 

distinct families (5, variants of the P1.7 family 7, 12, 17, 18, 19, 20, 21 and 22). As 

with the previous two decades, the P1.5 family had the largest number of isolates 

within the first variable region (530 isolates). Variable types within this family were: 

5 (306 isolates, 57.7%), 5-1 (100 isolates, 18.9%) and 5-2 (124 isolates, 23.4%). The 

second largest was the P1.7 family (259 isolates). The four variants of the P1.7 family 

represented in Scotland during the 1990s were: 7 (54 isolates, 20.8%), 7-1 (27 

isolates, 10.4%), 7-2 (176 isolates, 68.0%) and 7-4 (two isolates, 0.8%). The third 

largest was the P1.19 family (134 isolates). The three variants of the P1.19 family 

represented in Scotland during the 1990s were: 19 (77 isolates, 57.5%), 19-1 (51 

isolates, 38.1%) and 19-3 (6 isolates, 4.4%). The second variable region was 

represented by 31 different variable types within 14 distinct families (1, 2, 3, 4, 9, 10, 

13, 14, 15, 16, 25, 26, 28 and 30). The second variable region which had the largest 

number associated with it was variable region 2 (328 isolates).  The three variants 
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represented in Scotland during the 1980s were: 2 (288 isolates, 87.8%), 2-1 (22 

isolates, 6.7%) and 2-2 (18 isolates, 5.5%). The second largest was the variable 

regions 10 (205 isolates). The six variants represented in Scotland during the 1990s 

were 10 (120 isolates, 58.5%), 10-1 (17 isolates, 8.3%), 10-2 (one isolate, 0.5%), 10-4 

(45 isolates, 22.0%), 10-7 (one isolate, 0.5%) and 10-8 (21 isolates, 10.2%). The third 

variable region was represented by nine different variable types: 35 (51 isolates, 

4.5%), 35-1 (118 isolates, 10.3%), 36 (145 isolates, 12.7%), 36-1 (6 isolates, 0.5%), 

36-2 (417 isolates, 36.4%), 37 (149 isolates, 13.0%), 37-1 (179 isolates, 15.6%), 38 

(33 isolates, 2.9%) and 38-1 (one isolates, 0.1%). Figure 3.18 shows the different 

combinations of VR1 and VR2 present in N. meningitidis isolates in Scotland 1990-

1998. 
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Figure 3.17  The different combinations of variable region 1 and variable region 2 present in Scotland 1980-1989 
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Figure 3.18 The different combinations of variable region 1 and variable region 2 present in Scotland 1990-1998 
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3.3.11  Comparison of phylogenies obtained from antigen and housekeeping 
genes 
 
A maximum–likelihood (ML) method was used to construct phylogenetic trees. A 

total of 159 isolates, representative of the seven most prevalent clonal complexes 

present in Scotland 1972-1998 were chosen for this analysis. These included five 

isolates from the ST-1 complex, 21 isolates from the ST-8 complex, 12 isolates from 

the ST-11 complex, 21 isolates from the ST-32 complex, 51 isolates from the ST-

41/44 complex, 26 isolates from the ST-269 complex and 19 isolates from the ST-334 

complex. The first tree was constructed with concatenated housekeeping genes and 

clustered the isolates by clonal complex (Figure 3.19). As expected, the isolates 

formed clusters related with their clonal complex.  The second tree was constructed 

from the concatenated sequences of the antigen gene porA (Figure 3.20). This tree did 

not show the same clustering affect as the previous tree. There was the serogroup A 

cluster that was present in the previous tree and there were some clustering of clonal 

complexes, most notably ST-8 and ST-11 clonal complexes. However, the majority of 

isolates did not show the same pattern of clustering by clonal complex. Instead there 

were clusters with different clonal complexes but with the same serogroup. A similar 

analysis had been performed previously by Urwin et al. (Urwin et al., 2004). 

However they were able to perform a more extensive examination with regards to the 

tree constructed from the concatenated sequences of the antigen gene porA as they 

were also able to include two other antigen genes fetA and porB. Unfortunately, the 

data for fetA and porB was not available for use in this study. The results from Urwin 

et al. (Urwin et al., 2004) showed that similar clusters of isolates were observed in 

both the ML tree constructed from the concatenated sequences of the three antigen 

genes and the ML tree constructed from the concatenated housekeeping genes.  
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Figure 3.19  Phylogenetic analysis of 159 invasive meningococci isolates, 

representative of the seven most prevalent clonal complexes present in Scotland 1972-

1998 by using seven housekeeping gene sequences. Each isolate is colour coded 

according to clonal complex, as defined by MLST. 
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Figure 3.20  Phylogenetic analysis of 159 invasive meningococci isolates, 
representative of the seven most prevalent clonal complexes present in Scotland 1972-
1998 from the concatenated sequences of the antigen gene porA. Each isolate is 
colour coded according to clonal complex, as defined by MLST. 
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3.4 Geographical distribution of isolates 

 

Between 1972-1998 Scotland contained 15 NHS health boards (NHS Argyll and 

Clyde is now defunct. Its responsibilities were transferred to NHS Highland and NHS 

Greater Glasgow on 1 April 2006).  These NHS boards differ in both geographical 

size and population size (Figure 3.21 and Table 3.7).  Geographically, the largest land 

area is Highland but it is only tenth in terms of size of population. The estimated 

population in Scotland under surveillance was just under 5.1 million. It is important to 

state that rates of incidence for individual NHS boards may be based on small 

numbers, and can vary substantially from year to year. The overall average rate of 

incidence for Scotland between 1972-1998 (1.8 cases per year per 100,000 

population) gives a more accurate and consistent view of meningococcal disease  

activity. 

 

The number of cases per 100,000 population differed markedly between NHS health 

boards between 1972 and 1998. The Orkney NHS Board had no reported cases of 

IMD between 1972 and 1998. The Greater Glasgow NHS Board had the highest 

average prevalence of IMD with 2.8 cases per year per 100,000 population, followed 

by Tayside with 2.2 cases per year per 100,000 population (Table 3.7, Figure 3.22). 
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Figure 3.21  Map showing the 15 different health boards within Scotland. Key 

contains the name of the health board and its corresponding colour.  

 
Key: 

 Argyll and Clyde   Ayrshire and Arran   Borders   

 Dumfries and Galloway  Fife     Forth Valley 

 Grampian    Greater Glasgow   Highland   

 Lanarkshire    Lothian    Orkney 

 Shetlands    Tayside   Western Isles  
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Table 3.7 Number of cases of IMD and the number of cases per year per 100,000 

population in NHS Health Boards in Scotland between 1972-1998. 

Health 

Boards 

Population 

Size 

Number 

of cases 

Number of 

cases/100,000 

1972 to 1979 

Number of 

cases/100,000 

1980 to 1989 

Number of 

cases/100,000 

1990 to 1998 

Number of 

cases/100,000 

1972 to 1998 

Argyll & 
Clyde (AC) 

415,658 146 2.3 1.4 2.4 2.0 

Ayrshire & 
Arran (AA) 

367,590 226 1.0 1.3 2.1 1.5 

Borders 
(BR) 

109,270 25 0.2 0.4 1.9 0.8 

Dumfries 
& 

Galloway 
(DG) 

147,930 64 1.3 1.7 1.9 1.6 

Fife (FF) 
354,519 109 0.4 1.0 1.9 1.1 

Forth 
Valley 
(FV) 

281,764 101 0.5 1.1 2.3 1.3 

Grampian 
(GR) 

524,020 185 0.8 1 2.1 1.3 

Greater 
Glasgow 

(GG) 

867,083 665 2.8 2.8 3.0 2.8 

Highland 
(HG) 

211,340 121 1.9 1.9 2.5 2.1 

Lanarkshir
e (LN) 

556,114 297 0.8 2.1 2.9 2.0 

Lothian 
(LO) 

787,504 337 1 1.1 2.6 1.6 

Orkney 
(OR) 

19,500 0 0 0 0 0 

Shetland 
(SH) 

21,940 1 0 0 0.5 0.2 

Tayside 
(TY) 

387,908 235 1.8 2 3.0 2.2 

Western 
Isles (WI) 

26,260 5 0 0 2.1 0.7 

Total 
population 

Size 

Total 
number 
of cases 

Average 
number of 

cases/100,000 
1972 to 1979 

Average 
number of 

cases/100,000 
1980 to 1989 

Average 
number of 
cases/100,000 
1990 to 1998 

Average 
number of 
cases/100,000 
1972 to 1980 

 
5,078,400 2517 1.0 1.2 2.1 1.4 
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Figure 3.22 Number of cases per year per 100,000 population in NHS Health 
Boards in Scotland between 1972-1998 (95% confidence intervals 
included in graphs). 
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The number of cases per year per 100,000 population could also fluctuate from 

decade to decade as well as from year on year within the same health board. An 

example of this is Lanarkshire, which had an average of 0.8 cases per 100,000 

population from 1972 to 1979 which increased to 2.9 cases per 100,000 population in 

the 1990 to 1998 period. However, the incidence in Greater Glasgow remained fairly 

constant during the three decades at 2.8 to 3.0 cases per 100,000 population. All NHS 

boards showed their highest average prevalence during the 1990 to 1998 period.  

 

The highest prevalence per 100,000 population recorded in a single year was within 

the Highlands in 1974 with 6.6 cases per 100,000 population. This was a huge 

increase on the previous year within the Highlands where, in 1973, there was only 1.0 

case per 100,000 population. In 1975 the prevalence dropped to 2.8 cases per 100,000 

population. The average prevalence within the Highlands during the 1970s was 1.9 

cases per 100,000 population and between 1972 and 1998 was 2.1 cases per 100,000 

population. The next highest prevalence per 100,000 population recorded in a single 

year was within Forth Valley in 1992 with 6.1 cases per 100,000 population. This was 

an increase on the previous year within Forth Valley where, in 1991, there were only 

1.1 cases per 100,000 population. In 1993 the prevalence dropped to 2.1 cases per 

100,000 population. The average prevalence within Forth Valley during the 1990s 

was 2.3 cases per 100,000 population and between 1972 and 1998 was 1.3 cases per 

100,000 population. The next highest prevalence per 100,000 population recorded in a 

single year was within Greater Glasgow in 1990 with 5.9 cases per 100,000 

population. This was an increase on the previous year within Greater Glasgow where, 

in 1989, there were 4.5 cases per 100,000 population. In 1991 the prevalence dropped 

to 3.8 cases per 100,000 population. After 1991 for the remaining years up to 1998, 
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except for 1993 (3.2 cases per 100,000 population), the prevalence was below 2.8 

cases per 100,000 population. The average prevalence for Greater Glasgow remained 

constant between the different decades with 2.8 cases per 100,000 population during 

1972 to 1980 and 1980 to 1990 with just a small increase to 3.0 cases per 100,000 

population during 1990 to 1998 due to the aforementioned high prevalence in 1990. 

 

3.5  Spatio-temporal analysis of meningococcal isolates within Scotland 1972-

1998 

 

This study retrospectively calculated the number of IMD cases that occurred in 

clusters in Scotland from 1972-1988. Analysis was performed using SaTScan (version 

5.1.1 software), which is available at http://www.satscan.org. SaTScan was selected, 

in the present study, as it is the most comprehensively evaluated software for 

detecting spatio-temporal clusters of infectious diseases. SaTScan has been used in 

spatio-temporal analyses of methicillin-resistant Staphylococcus aureus infection 

(Tirabassi et al., 2005), listeriosis (Sauders et al., 2003), gonorrhoea (Jennings et al., 

2005) and pediatric pneumonia (Andrade et al., 2004). It has also been used for 

national bioterrorism syndromic surveillance (Yih et al., 2004). The date of specimen 

sampling was defined as the time of illness and the county of residence, derived from 

the postcode, was used as the place of origin. Spatio-temporal scanning was initiated 

within the 15 health boards. These vary in size and population (19,500 to 867,083 

inhabitants/region). The temporal settings were defined based on work carried out by 

earlier retrospective cluster studies. A study in Germany calculated a maximal 

temporal window of 30 days, which was able to detect most existing clusters (Elias et 

al., 2006b). This was based on a number of different previous studies, including one 
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from England and Wales, which estimated the median intervals between the index 

case and the second case to be 1.5, 5, or 23 days, depending on the setting of the 

cluster (Hastings et al., 1997), a French study which found 72% of secondary cases 

occurred in the first week after the first case (Olivares & Hubert, 1992), and an 

American study which found that 73% of secondary cases appeared <14 days after the 

index case (Zangwill et al., 1997). Therefore, a maximal temporal window of 30 days 

was used, as this should detect most of the existing clusters, although the time 

between the first and the second case may infrequently exceed this temporal limit. 

Each strain type present more than once within the dataset was individually entered 

into the SaTScan program to identify clustering of IMD. Strain types were defined by 

serogroup, ST and porA. Clusters were considered significant for P-values ≤0.05. Due 

to constant interaction with host immunity, there are temporal and spatial changes to 

the different porA types of meningococci (Harrison et al., 2006). PorA types are 

expected to fluctuate to a greater degree over time, compared with STs. The 

application of porA for cluster analysis is justified because of its stability within 

clusters that appear for days or weeks (Elias et al., 2006b).  

 

3.5.1  Spatio-temporal analysis  

Twenty-nine clusters were found to have occurred within Scotland from 1972-1998 

and there included 63 cases (2.5% of all cases) (Table 4.2, Figure 3.23). The 

maximum number of patients per cluster was four. The median duration of the 

clusters was 8 days with the duration ranging from 1 to 27 days. In 86.2% of the 

clusters there were only two cases assigned to each cluster. The health board that had 

the highest number of clusters was Greater Glasgow with five different clusters. This 

is not surprising as this health board has the greatest population of all health boards. 
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Not all health boards were represented, with Borders, Highlands, Orkney, Shetland 

and the Western Isles not having any clusters associated with them, which is not 

surprising, as these areas are not densely populated with a low ratio of person to 

square mile. Spatio-temporal proximity could be shown for up to four patients (cluster 

29, Table 3.8). However, similar to findings of other studies (Hastings et al., 1997; 

Elias et al., 2006b) most clusters had only two patients. 

 

There were only two serogroups associated with the clusters identified within 

Scotland, namely serogroups B and C. Serogroup B was associated with 21 clusters 

(containing 44 cases) and serogroup C with 8 clusters (containing 19 cases). A 

serogroup C ST-11 strain was responsible for 5 different clusters within the 1990s. 

The age breakdown for these clusters showed that 11 of the 13 cases were from 

patients under the age of fifteen. Four of these strain types had the porA variable types 

5, 2, 36-2 and these accounted for 11 cases and one had the porA variable types 5, 2-

1, 36-2 and this accounted for two cases. These clusters occurred in different regions. 

A serogroup B strain type (ST-153, 5-2, 10, 37-1) was also associated with five 

different clusters that contained 11 cases from 1987 to 1996. In all but one case the 

patients were under the age of four years old. These clusters also occurred in different 

regions. The strain type B ST-41, 7-2, 4, 37 was responsible for four clusters that 

accounted for 8 cases. The strain type B, ST-457, 19, 15, 36 was responsible for two 

clusters that accounted for two cases each. The clusters occurred in separate regions.  

 

Of the clusters that were identified in this study, some had been identified previously 

when the samples first had been characterised. However when the SaTScan analysis 

was performed, these previously identified clusters were still included in the scan to 
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act as a control. The clusters that had not been identified before included the clusters 

from the 1970s and early eighties, which could not have been assessed as a cluster at 

the time with any certainty due to the fact that only serogrouping was performed on 

the sample. Some of the clusters, however, might have been suspected due to 

proximity or case association, although from the data available this was not the case. 

Clusters were also found amongst family members as well as amongst neighbours. 



 137

Table 3.8 Clusters of IMD detected by SaTScan analysis in Scotland 1972-1998 
 

Cluster Strain types Cases Health 
boards 

Population Year Duration p 
value 

1 B, ST-415, 7, 1, 35-1 2 Greater 
Glasgow 

867,083 1974 1 day 0.008 

2 B, ST-60, 5, 2, 36-2 2 Tayside 387,908 1974 16 days 0.027 
3 B, ST-1162, 5-1, 2-2, 36-

2 
2 Greater 

Glasgow 
867,083 1976 1 day 0.008 

4 B, ST-1162, 5-1, 2-2, 36-
2 

2 Fife 354,519 1976 19 days 0.007 

5 B, ST-41, 7-2, 4, 37 2 Argyll & 
Clyde 

415,658 1976-
1977 

7 days 0.009 

6 B, ST-457, 19, 15, 36 2 Argyll & 
Clyde 

415,658 1977 27 days 0.041 

7 B, ST-3010, 5-1, 2-2, 36-
2 

2 Lanarkshire 556,114 1981 1 day 0.017 

8 B, ST-343, 7, 16-2, 35 2 Dumfries & 
Galloway 

147,930 1985 4 days 0.010 

9 B, ST-457, 19, 15, 36 2 Greater 
Glasgow 

867,083 1986 1 day 0.009 

10 C, ST-206, 18-3, 1, 35-1 2 Argyll & 
Clyde 

415,658 1986 6 days 0.031 

11 C, ST-8, 5, 2, 36-2 2 Argyll & 
Clyde 

415,658 1986 6 days 0.034 

12 B, ST-153, 5-2, 10, 37-1 3 Lothian 787,504 1987 12 days 0.006 
13 B, ST-32, 7-1, 16, 35-1 3 Greater 

Glasgow 
867,083 1987 19 days 0.007 

14 B, ST-153, 5-2, 10, 37-1 2 Fife 354,519 1989 13 days 0.034 
15 C, ST-11, 5, 2-1, 36-2 2 Lothian 787,504 1991 7 days 0.045 
16 B, ST-41, 7-2, 4, 37 2 Ayrshire & 

Arran 
367,590 1992 1 day 0.009 

17 C, ST-11, 5, 2, 36-2 2 Forth Valley 281,764 1992 5 days 0.008 
18 C, ST-66, 5, 2, 36-2 2 Lothian 787,504 1992 1 day 0.023 
19 B, ST-275, 22, 9, 35-1 2 Grampian 524,020 1993 10 days 0.005 
20 B, ST-153, 5-2, 10, 37-1 2 Grampian 524,020 1993 1 day 0.012 
21 B, ST-153, 5-2, 10, 37-1 2 Tayside 387,908 1993 1 day 0.006 
22 B, ST-33, 19, 15, 36 2 Greater 

Glasgow 
867,083 1993 1 day 0.005 

23 C, ST-11, 5, 2, 36-2 2 Fife 354,519 1993 22 days 0.007 
24 B, ST-41, 7-2, 4, 37 2 Forth Valley 281,764 1994 7 days 0.009 
25 B, ST-41, 7-2, 4, 37 2 Grampian 524,020 1994 1 day 0.009 
26 B, ST-269, 19-1, 15-11, 

36 
2 Greater 

Glasgow 
867,083 1994 22 days 0.028 

27 B, ST-153, 5-2, 10, 37-1 2 Lanarkshire 556,114 1996 1 day 0.006 
28 C, ST-11, 5, 2, 36-2 3 Ayrshire & 

Arran 
367,590 1997 2 days 0.009 

29 C, ST-11, 5, 2, 36-2 4 Grampian 524,020 1998 7 days 0.017 
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Figure 3.23 Map of clusters of IMD detected by SaTScan analysis in Scotland 
1972-1998 
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Tables 3.9 and 3.10 shows information on the age groups and sex of the patients 

involved in the clusters, details on the number of cases relating to the strain type that 

caused the cluster and whether it was responsible for any other cluster.  

 

There is also some additional information relating to certain clusters of interest. The 

first cluster involved the strain type B, ST-415, 7, 1, 35-1. This strain type was 

responsible only for this cluster with only ten other cases of this strain type present 

within the dataset. These cases all occurred between 1972-1974 with 70% of cases 

occurring in the Greater Glasgow area and all of these cases occurring in patients ages 

0-4 years old. This is an example of a strain type that has seemed to disappear in 

Scotland with no cases since 1974. The second cluster involved the strain type B, ST-

60, 5, 2, 36-2. This strain type was not responsible for any other clusters and in 

addition there were only two other cases of this strain type within the dataset. These 

cases occurred in 1994 and 1995 in the Ayrshire and Arran and Greater Glasgow 

areas, respectively, with both patients under the age of one year old. Although there 

were only two other cases of this particular strain type there were 32 cases of a strain 

type that only differed in its PorA, B, ST-60, 21, 16, 37-1. This strain type occurred 

from 1974-1997.  

 

The fifth cluster involved the strain B, ST-41, 7-2, 4, 37. This strain type was 

responsible for three other clusters, cluster 16, cluster 24, and cluster 25. In total there 

were 202 cases of this strain type and these were spread throughout the 26-year period 

and the geographical areas. 
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Table 3.9 Information relating to clusters 1-15 of IMD detected by SaTScan analysis in Scotland 1972-1998 

Clusters 1-15 Strain types Age groups of cases Sex of patients Number of other 
cases involving 

strain type 

Other clusters involving 
strain type 

1 B, ST-415, 7, 1, 35-1 >1 year , >1 year Male, Female 10 No other cluster 
2 B, ST-60, 5, 2, 36-2 1-4 years,  1-4 years Male, Male 2 No other cluster 
3 B, ST-1162, 5-1, 2-2, 36-

2 
1-4 years, Unknown Female, Male 18 Cluster 4 

4 B, ST-1162, 5-1, 2-2, 36-
2 

1-4 years, 1-4 years Male, Female 18 Cluster 3 

5 B, ST-41, 7-2, 4, 37 10-14 years, 5-9 years Male, Male 202 Clusters 16, 24, 25 
6 B, ST-457, 19, 15, 36 1-4 years, 5-9 years Male, Male 23 Cluster 9 
7 B, ST-3010, 5-1, 2-2, 36-

2 
Unknown, Unknown Male, Female 1 No other cluster 

8 B, ST-343, 7, 16-2, 35 Unknown, Unknown Unknown, Unknown 13 No other cluster 
9 B, ST-457, 19, 15, 36 >1 year , >1 year Female, Female 23 Cluster 6 
10 C, ST-206, 18-3, 1, 35-1 >1 year, 5-9 years Female, Male 12 No other cluster 
11 C, ST-8, 5, 2, 36-2 5-9 years ,1-4 years Male, Female 146 No other cluster 
12 B, ST-153, 5-2, 10, 37-1 1-4 years , 1-4 years, 75-84 

years 
Male, Male, Female 125 Clusters 14, 20, 21, 27 

13 B, ST-32, 7-1, 16, 35-1 1-4 years , 1-4 years , 1-4 
years 

Male, Male, Male 46 No other cluster 

14 B, ST-153, 5-2, 10, 37-1 1-4 years, Unknown Male, Female 125 Clusters 12, 20, 21, 27 
15 C, ST-11, 5, 2-1, 36-2 1-4 years, >1 year Female, Male 66 No other cluster 
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The sixth cluster involved the strain type B, ST-457, 19, 15, 36. This strain type was 

responsible for one other cluster, cluster 9, and in total was responsible for 23 cases 

spanning 1975-1994 and covering ten of the different health board regions. ST-457 is 

part of the ST-35 complex. The seventh cluster involved the strain type B, ST-3010, 

5-1, 2-2, 36-2. There was only one more case of this strain type within the dataset in 

1993 in the Forth Valley area and there was only one other case on the MLST website 

again in Scotland in 2003. Therefore, this strain type appears to be unique to Scotland 

and this ST is not associated with any clonal complex. 

 

The twelfth cluster involved the strain type B, ST-153, 5-2, 10, 37-1. This cluster had 

been identified previously as there had been known contact between the patients. The 

strain type involved was also the cause of four other clusters, cluster 14, cluster 20, 

cluster 21 and cluster 27. In total it was responsible for 125 cases from 1986-1997 

within 12 different regions. The fifteenth cluster involved the strain type C, ST-11, 5, 

2-1, 36-2, which was the first time ST-11 was involved in a cluster. This was the only 

cluster that involved this particular strain type, although ST-11 was involved in other 

clusters, the PorA for this strain type differed to the other clusters. However, the strain 

type did cause a total of 66 cases from 1985-1998 within 11 different regions.
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Table 3.10 Information relating to clusters 16-29 of IMD detected by SaTScan analysis in Scotland 1972-1998 
 
 

Clusters 
16-29 

Strain types Age groups of cases Sex of patients Number of other cases 
involving strain type 

Other clusters involving 
strain type 

16 B, ST-41, 7-2, 4, 37 >1 year , >1 year Male, Male 202 Clusters 5, 24, 25 
17 C, ST-11, 5, 2, 36-2 1-4 years , 1-4 years Female Female 185 Clusters 23, 28, 29 
18 C, ST-66, 5, 2, 36-2 1-4 years , 1-4 years Male, Male 12 No other cluster 
19 B, ST-275, 22, 9, 35-1 1-4 years , 1-4 years Female, Female 28 No other cluster 
20 B, ST-153, 5-2, 10, 37-1 1-4 years , 1-4 years Male, Female 125 Clusters 12, 14, 21, 27 
21 B, ST-153, 5-2, 10, 37-1 >1 year , >1 year Male, Male 125 Clusters 12, 14, 20, 27 
22 B, ST-33, 19, 15, 36 >1 year , 1-4 years 

 
Male, Female 67 No other cluster 

23 C, ST-11, 5, 2, 36-2 15-19 years, 15-19 years Male, Male 185 Clusters 17, 28, 29 
24 B, ST-41, 7-2, 4, 37 >1 year, 75-84 years Male, Male 202 Clusters 5, 16, 25 

 
25 B, ST-41, 7-2, 4, 37 1-4 years , 1-4 years Male, Female 202 Cluster 5, 16, 24 
26 B, ST-269, 19-1, 15-11, 36 >1 year , >1 year Male, Female 45 No other cluster 
27 B, ST-153, 5-2, 10, 37-1 1-4 years,  >1 year  Male, Female 125 Clusters 12, 14, 20, 21 
28 C, ST-11, 5, 2, 36-2 35-44 years, 20-24 years, 20-24 

years 
Female, Female, 

Male 
185 Clusters 17, 23, 29 

 
29 C, ST-11, 5, 2, 36-2 5-9 years, 35-44 years, 5-9 years, 

1-4 years 
Female, Female, 

Male, Male 
185 Clusters 17, 23, 28 
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The seventeenth cluster involved the strain type C, ST-11, 5, 2, 36-2. In total, this 

strain type was responsible for 185 cases between 1983-1998 and it was responsible 

for three more clusters, cluster 23, cluster 28 and cluster 29. The eighteenth cluster 

involved the strain type C, ST-66, 5, 2, 36-2. ST-66 is part of the ST-8 complex and 

only differs from the ST-8 by five nucleotides in the fumC housekeeping gene and this 

resulted in a synonymous change but no protein change. The twenty-seventh cluster 

involved the strain type B, ST-153, 5-2, 10, 37-1. There were two patients involved in 

this cluster, a sister and brother aged less than one year old and two years old, 

respectively. The sister was admitted to hospital one day before her brother and both 

had septicaemia. 

 

3.5.2  Seasonal distribution 

In terms of seasonal distribution of IMD in Scotland between 1972-1998, the patterns 

that were observed matched the trends normally associated with the disease.  These 

are a higher number of cases in the winter months with a decrease in the number of 

cases during summer. From the data here, these trends were observed during the 

1970s, 1980s and 1990s (Figure 3.24).  For all three time periods the month that had 

the most number of cases was January. The least number of cases for the 1980s and 

1990s occurred in September and for the 1970s in August. This pattern was repeated 

with the number of cases of serogroups B and C (Figure 3.25). Both serogroup B and 

C had the most number of cases in January and the least number of cases in 

September. When examining the average temperature for these months (Figure 3.24) 

January is the coldest month of the year in all three time periods and September is the 

month of the year where summer turns into autumn and the temperature is fairly mild. 

The three other main serogroups A, Y and W135 show different patterns to 
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serogroups B and C (Figure 3.25).  Serogroup A had the maximum number of cases in 

March and the least in October. There was also an unexplained increase in the month 

of November, which was not linked to any cluster or outbreak of disease and was not 

due to a high prevalence in a particular year. Serogroup Y, like serogroup A had the 

maximum number of cases in March but the least number of cases occurred in July 

when there was not a single case. Serogroup W135 showed its highest number of 

cases in December and the least number of cases in April.  This pattern of the major 

number of cases in winter was repeated with the three most common clonal 

complexes (Figure 3.26). For the three most common clonal complexes the maximum 

number of cases occurred in January and the least in July for the ST-11 and ST-44 

complex and September for the ST-8 complex. 
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Figure 3.24 Average number of IMD cases per month and average temperatures in Scotland 1972-1998. The average number of cases and 

average temperatures for each month for 1972-1979, 1980-1989 and 1990-1998 were calculated.  
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Figure 3.25 Average number of IMD cases per serogroup, per month, in Scotland 1972-1998. The 
average number of cases for each month for 1972-1998 were calculated. 
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Figure 3.26 Average number of IMD cases for the 3 most common clonal complexes, per month, present in Scotland 1972-1998. The average 
number of cases for each month for 1972-1979, 1980-1989 and 1990-1998 were calculated. 
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3.6  Potential coverage of meningococcal vaccines 

 

Using data generated by this study from the time period 1972-1998 the potential 

coverage has been estimated, within Scotland, of the major OMV vaccines described: 

Cuba (VA-MENGOC-BC®), Norway (MenBvac™), New Zealand (MeNZB™), 

hexavalent (HexaMen) and nonavalent (NonaMen) (Jodar et al., 2002; Oster et al., 

2005; Borrow et al., 2006). This will provide useful information to determine what 

affect these vaccines would have had on the meningococcal population in Scotland. 

 

3.6.1 Potential vaccine coverage 

Potential coverage was estimated for five vaccines based on OMVs developed to help 

protect against serogroup B. These were the Cuban vaccine (P1.15), Norwegian (P1.7, 

16), New Zealand (P1.7, 4), Hexavalent (P1.7, 16; P1.5-1, 2-2; P1.19, 15-1; P1.5-2, 

10; P1.12-1, 13; P1.7-2, 4) and Nonavalent (P1.7, 16; P1.5-1, 2-2; P1.19, 15-1; P1.5-

2, 10; P1.12-1, 13; P1.7-2, 4; P1.22, 14; P1.7-1, 1; P1.18-1, 3, 6) (Borrow et al., 

2006). Using PorA information for all isolates from 1972-1998 the potential coverage 

was estimated (Figure 3.27). This indicates that the Cuban (P1.15) vaccine would 

have had a coverage of less than 10%. This was followed by the Norwegian (P1.7, 16) 

and New Zealand (P1.7, 4) vaccines with 9.7% and 15.1% coverage respectively. The 

vaccines with the most coverage were the vaccines produced by the Netherlands 

Vaccine institute (Hexavalent and Nonavalent vaccines). The Hexavalent vaccine 

would have had 60.8% coverage and the Nonavalent vaccine probably would have 

prevented 65% of meningococcal infection in Scotland.  
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The potential coverage, of all the vaccines, for the three decades 1970s, 1980s and 

1990s were also estimated to see how the coverage would have changed over the 

years (Figures 3.28). The Cuban (P1.15) vaccine for two of the three time periods was 

below 10% coverage. It was only during the 1980s that the coverage rose to 14%. The 

Norwegian (P1.7, 16) vaccine’s coverage remained constant during the 1970s, 1980s 

and 1990s. The New Zealand (P1.7, 4) vaccine showed a different pattern to the 

Cuban (P1.15) vaccine in that its coverage was lowest during the 1980s. At 8.4% it 

was half the value of 16.9% that it had during the 1970s.  

 

The two vaccines with the best potential coverage were the Hexavalent and 

Nonavalent vaccines. However, in both cases coverage would have reduced through 

the decades, this was particularly the case for the Hexavalent vaccine. From coverage 

of 88.6% in the 1970s the Hexavalent vaccine coverage was reduced to 62.0% in the 

1980s and then to 56.0% in the 1990s. So in a 26-year period the coverage of the 

Hexavalent vaccine reduced by 32%. The Nonavalent vaccine showed a similar 

pattern to the Hexavalent vaccine, with coverage of 95.2% in the 1970s reduced to 

76.3% in the 1980s and then to 68.7% in the 1990s. The three additional PorA OMPs 

(P1.22, 14; P1.7-1, 1; P1.18-1, 3, 6) present in the Nonavalent vaccine occurred in 

different numbers over the three decades. In total, they occurred three times in the 

1970s, 52 times in the 1980s and 51 times in the 1990s. This could account for the 

reduced coverage for the Hexavalent vaccine (which does not contain these three 

additional PorA OMPs) in the 1980s and 1990s. 
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Figure 3.27 Potential coverage of candidate outer membrane vesicle vaccines, for all isolates from Scotland 1972-1998. 
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Figure 3.28 Potential coverage of candidate outer membrane vesicle vaccines, for all isolates from Scotland 1972-1979, 1980-1989 and 1990-

1998.  
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However, this does not explain the reduction in coverage in the Nonavalent vaccine. 

These data would suggest that the potential coverage reduced over the decades due to 

the increase in different PorA types not covered in the vaccine and that this decrease 

could continue, further decreasing the usefulness of the vaccine. There were a number 

of different PorA types present in small numbers that were found in the 1980s and 

1990s but that had not occurred in the 1970s, but one particular PorA type, 5, 2, 

increased from 245 isolates in the 1980s to 290 isolates in the 1970s and 341 isolates 

in the 1990s. This PorA type is associated with serogroup C, which also increased in 

number over the decades. Therefore, to answer the question ‘Why was there a 

decrease in the coverage over the decades?’, it is important to look at how potentially 

effective these vaccines would have been against the different serogroups.  

 

As mentioned previously these vaccines have been designed specifically to protect 

against the serogroup B strain but they do also protect against other serogroups 

containing the same PorA types. Figure 3.29 shows that, for the five main serogroups, 

over the 26-year period, there were different levels of coverage. For the main purpose 

of the vaccines, to protect against serogroup B, the coverage was high for both the 

Hexavalent (80.2%) and Nonavalent (94.8%) vaccines. Figure 3.30 shows that 

between the three decades there was little fluctuation between the coverage for 

serogroup B for the Hexavalent and Nonavalent vaccines. For serogroup A the 

coverage was also high and showed little difference in values between Hexavalent 

(93.8%) and Nonavalent (94.6%) vaccines. For serogroup Y the coverage was also 

high for both Hexavalent (94.0%) and Nonavalent (97.0%) vaccines. However, with 

serogroup C and serogroup W135, the vaccine did not show the same high levels of 

coverage as with the other serogroups. For serogroup C the coverage was 39.8% for 
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the Hexavalent vaccine and 46.0% for the Nonavalent vaccine. For serogroup W135 

the coverage was lower than serogroup C with 11.7% for the Hexavalent vaccine and 

38.3% for the Nonavalent vaccine. 

 

The three other vaccines did not offer coverage for all of the five main serogroups. 

The Cuban (P1.15) vaccine only showed coverage for serogroup B (11.6%) and 

serogroup C (5.1%) and showed no coverage for serogroups A, Y and W135. The 

Norwegian (P1.7, 16) vaccine did not show coverage for serogroup W135 but did 

show coverage for the other four serogroups. The New Zealand (P1.7, 4) vaccine, like 

the Cuban (P1.15) vaccine, only showed coverage for serogroup B (23.6%) and 

serogroup C (4.8%) and showed no coverage for serogroups A, Y and W135. 

 

These results help to explain the reasons for the decrease in potential coverage 

mentioned earlier between the decades. As mentioned in previous chapters, serogroup 

C was not around in such high numbers during the 1970s as in the 1980s and 

particularly the 1990s. So, the increase in number of serogroups C isolates during this 

time period in combination with the fact the main PorA types associated with 

serogroup C were not included in the vaccines resulted in an overall decrease in the 

potential coverage by the vaccine.  
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Figure 3.29 Potential coverage of vaccines by serogroup, Scotland 1972-1998. 
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Figure 3.30 Potential coverage of candidate outer membrane vesicle vaccines, for all serogroup B isolates from Scotland 1972-1979, 1980-

1989 and 1990-1998. 
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3.6.2  Potential vaccine coverage within age groups 

It was also important to look at what the potential coverage of these vaccines would 

have been within different age groups, as age is a risk factor for meningococcal 

disease. If it was the case, for example, that < 1yrs showed low coverage by the 

vaccines then this would greatly affect the suitability of the vaccine as a viable 

protection option.  From the data (Figure 3.31), there were fluctuations in the 

coverage between the age groups for all the vaccines. For the Cuban (P1.15) vaccine 

the largest coverage was observed within the 10-14 years age group (13.7%) and the 

smallest was within the 65-74 years age group (0%). For the age groups of <1 years 

and 1-4 years, an important age group because any vaccine against serogroup B would 

hopefully be included as part of the childhood vaccination programme, the coverage 

was 6.7% and 6.8% respectively. For the Norwegian (P1.7, 16) vaccine the largest 

coverage was observed within the 25-34 years age group (17.1%) and the smallest 

was within the >75 years age group (6.8%). Unlike the Cuban (P1.15) vaccine the 

Norwegian (P1.7, 16) vaccine showed coverage for all age groups. For the age groups 

of <1 years and 1-4 years the coverage was 13% and 9.6% respectively. For the New 

Zealand (P1.7, 4) vaccine the largest coverage was observed within the 55-64 years 

age group (19.1%) and the smallest within the 45-54 years age group (4.6%). For the 

age groups of <1 years and 1-4 years the coverage was 18.3% and 16.1%, 

respectively. For the Hexavalent vaccine the largest coverage was for the 20-24 years 

age group with 71.6% and the smallest was 53.1% for the 25-34 years age group. For 

the age groups of <1 years and 1-4 years the coverage was 67.4% and 66% 

respectively. For the Nonavalent vaccine the highest coverage was for the 35-44 years 
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with 90.2% and the lowest was the 45-54 years age groups with 66.2%. For the age 

groups of <1 years and 1-4 years the coverage was 81.8% and 76.8% respectively.  

 

The above coverage values are for protection against all serogroups. It is important to 

see what the values are for serogroup B, as this is the serogroup that the vaccines have 

been developed to combat (Figure 3.32). For the Cuban (P1.15) vaccine the largest 

coverage was observed within the 10-14 years age group (28.6%) and the smallest 

was within the 65-74 years age group (0%). For the age groups of <1 years and 1-4 

years the coverage was 7.4% and 8% respectively. For the Norwegian (P1.7, 16) 

vaccine the largest coverage was observed within the 25-34 years age group (26.1%) 

and the smallest was within the >75 years age group (0%). This value for the >75 

years age group shows that the coverage estimated from Figure 3.31 was for 

serogroups other than serogroup B. For the age groups of <1 years and 1-4 years the 

coverage was 15% and 11.5% respectively. For the New Zealand (P1.7, 4) vaccine the 

largest coverage was observed within the 55-64 years age group (47.1%) and the 

smallest was within the 45-54 years age group (4.4%). For the age groups of <1 years 

and 1-4 years the coverage was 24.5% and 24.3% respectively. For the Hexavalent 

vaccine the largest coverage was for the >75 years with 88.9% and the smallest was 

56.5% for the 45-54 years age group. For the age groups of <1 years and 1-4 years the 

coverage was 77% and 79.5% respectively. For the Nonavalent vaccine the highest 

coverage was for the 20-24 years with 97.6% and the lowest was the 65-74 years with 

60%. For the age groups of <1 years and 1-4 years the coverage was 95.7% and 

92.5% respectively. The coverage though remains high for the Nonavalent vaccine 

with 9 of the 12 age groups having a value greater the 88%. 
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Figure 3.31 Potential coverage of vaccines in terms of age groups, for all isolates from Scotland 1972-1998. 
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Figure 3.32 Potential coverage of vaccines amongst serogroup B and in terms of age groups, Scotland 1972-1998. 
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Chapter 4 

Discussion 
 
4.1 Introduction  

 

For over 100 years, N. meningitidis has been acknowledged as a cause of meningitis 

and septicaemia and as a cause of disease of rapid onset with high mortality and 

morbidity if not treated. Even with all the developments in diagnosis, vaccination and 

treatment this statement is still true today. For understanding bacterial pathogens that 

colonise and infect only humans, Neisseria meningitidis has become a model 

organism (Stephens et al., 2007).  With advances in molecular techniques, analysis 

systems and decades of research, N. meningitidis has become better understood. 

Further investigations of the genetics and pathogenicity of this organism will help our 

understanding about how the meningococcus evolved, causes disease and spreads. 

 

This study aimed to further our understanding of N. meningitidis by examining how it 

has evolved and changed in one country over a thirty-year period. This was only 

possible due to the development of a high-throughput automated nucleotide 

sequencing system that performed MLST and porA sequencing from extracted DNA 

(Sullivan et al., 2006). This allowed the genotypic analysis of 2517 meningococcal 

isolates recovered in Scotland from 1972-1998. Detailed analyses were performed to 

characterise and compare a large number of nucleotide sequences from disease 

isolates.  This would ultimately highlight a realistic picture of the dynamics of 

pathogenic meningococci within the human population during these years. This 

involved the development and optimisation of automated liquid handling robots to 

achieve high-throughput MLST and porA sequencing.   
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4.2 Semi-automation: a requirement for large-scale genotypic analysis  

 

Over the last two decades there has been a change in emphasis in meningococcal 

typing, with phenotypic approaches being increasingly replaced by molecular 

techniques aimed at determining genotypes (Maiden & Frosch, 2001). These new 

methods, in particular MLST, provide much greater information for bacterial 

identification and discrimination. As time has progressed, MLST has become widely 

implemented globally and the cost of analysing bacteria to a DNA level has 

decreased. Therefore, high-throughput typing has become more standardised, 

reproducible, and available. The portability of the techniques and availability of 

information has been greatly enhanced by curated databases via the Internet. 

 

Semi-automation of MLST has been highly successful and essential where high 

numbers of isolates are analysed. As a consequence, it has enabled reproducibility and 

reduced the costs.  There are many advantages in using a sequence-based system for 

typing organisms such as N. meningitidis (Maiden et al., 1998; Enright & Spratt, 

1999; Maiden & Frosch, 2001). MLST has provided a very dependable means of 

identifying hyperinvasive meningococci (Brehony et al., 2007; Buckee et al., 2008), 

but does not necessarily provide sufficient discrimination for the unambiguous 

identification of disease clusters representing outbreaks (Bygraves et al., 1999; 

Feavers et al., 1999). The addition of PorA and FetA VRs enables further 

discrimination (Jolley et al., 2007) and these have been employed in the identification 

of outbreak clusters in Germany (Elias et al., 2006b). The use of MLST and antigen 

gene sequencing with a semi-automated procedure enables quick, reliable and 

reproducible production of results (Clarke, 2002; Sullivan et al., 2006). The data 
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generated enable epidemiological analysis at local, national and global levels and 

academic and applied research into the biology and control of this globally important 

pathogen. The continuing use of these systems will enable the scientific community to 

monitor the detailed genetic profiles of the meningococcal population.   

This project developed a procedure for MLST using a third generation liquid handling 

robot (THEONYX) (Sullivan et al., 2006). The success of this procedure has been 

shown by the quality of the results analysed. As a result, the vast majority of samples 

were assigned MLST types. Manual set-up is considered quite time consuming, 

monotonous and laborious and must be performed during normal working hours. 

Automation of MLST provides an accurate, efficient, reproducible and faster method 

than its manual equivalent. Without this automated procedure it would have been 

impossible to perform MLST on such a large number of samples, in an efficient, 

effective manner. Consequently, this allowed additional time for detailed analysis of 

the vast amount of sequence data, time which would have normally been spent on the 

manual set-up. This automated process can be adapted for a number of different 

organisms providing an MLST procedure has been developed. Although DNA 

sequencing and therefore MLST is considered relatively expensive, the cost of 

equipment and materials has significantly reduced over the last few years. However, if 

an institution had only a few samples requiring characterisation then it would be more 

cost effective to give them to a laboratory with a sequencing service. 
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4.3 Genotypic characterisation 

 
A number of studies have been performed with collections of meningococci (Maiden 

et al., 1998; Feil et al., 1999; Jolley et al., 2000; Tzanakaki et al., 2001; Diggle & 

Clarke, 2005; Ferreira et al., 2006; Brehony et al., 2007; Trotter et al., 2007). The 

work carried out by these authors showed similar patterns to those seen in this study. 

In Scotland, 432 N. meningitidis isolates recovered from patients (between 1999 and 

2002) with invasive meningococcal disease were analysed by MLST (Diggle & 

Clarke, 2005). It was found that the genetic diversity of disease-causing meningococci 

significantly increased after the introduction of the MenC vaccine and that this 

increase reflected a significant decrease in serogroup C ET-37/ST-11 meningococci. 

This has not been accompanied by an increase in serogroup B meningococci of the 

same clonal complex (Diggle & Clarke, 2005). The diversity of the current disease-

causing meningococcal population is due, however, to the presence of new 

combinations of alleles arising from recombination, thus pertaining to new ST 

profiles. It has been reported that the increase in recombination between 1999 and 

2002 may have been due to natural selection and the increased ability of non-ST-11 

meningococci to fill the position left by ST-11 (Diggle & Clarke, 2005). There was no 

hyperendemic clone present in the United Kingdom that had directly replaced the ST-

11 clone. However, some clones, such as the ST-269 clone, must be monitored 

closely, as they have increased year by year since 1999. Of the ST-269 isolates that 

occurred between 1972 and 1998, 74% of the isolates occurred after 1990.  

 

A study on carriage of meningococci in the Czech Republic analysed 218 isolates 

from healthy young adults during 1993 (Jolley et al., 2000) and showed that the 

bacterial population was highly diverse, comprising 71 different sequence types 
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(STs), which were assigned to 34 distinct complexes. Three previously identified 

hyperinvasive lineages were present, namely the ST-41, ST-11, and ST-32 complexes. 

The data were consistent with the view that most nucleotide sequence diversity 

resulted from the reassortment of alleles by horizontal genetic exchange (Jolley et al., 

2000). One of the most recent published studies was the EU-MenNet project 

(Brehony et al., 2007; Trotter et al., 2007; Trotter & Ramsay, 2007). Over 4000 

European disease isolates were analysed from the 18 countries involved in the project 

for the 3 years 2000–2002. Its findings were similar to this study. There was much 

diversity in the STs ( 1000 types), although only ten accounted for half of the 

isolates. The STs resolved into 31 distinct clonal complexes, the most prevalent being 

the ST-41/44 complex (1014 isolates, 25%), ST-11 complex (901 isolates, 22%), ST-

32 complex (706 isolates, 17%), ST-8 complex (273 isolates, 7%) and ST-269 

complex (256 isolates, 6%). These major disease-associated complexes which were 

highlighted as the complexes associated with the majority of disease in Scotland 

1972-1998, have also been found world-wide and have occurred over a number of 

years. The ST-11 complex was the predominant complex found in the EU-MenNet 

project and it accounted for most serogroup C disease. As previously stated it has also 

been associated with outbreaks of disease in Europe, Australia, the USA and Canada. 

The complex worldwide has more recently also been associated with serogroup W135 

outbreaks in Africa and also with those returning from the Hajj pilgrimage.  

 

Prior to the 1970s, the ST-32 complex (which is mainly linked with serogroup B) was 

rarely associated with epidemic disease. Since then, however, it has spread world- 
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wide to cause raised levels of disease in Europe, South Africa, South America and the 

USA. Apart from in European countries, the ST-41/44 complex has been found to 

cause disease in various countries such as the USA and New Zealand where it has 

been responsible for an epidemic since 1991 (Oster et al., 2005). The ST-8 complex is 

associated with serogroups B and C and has been known to have caused cases of 

disease world-wide since the 1970s. Although there have been few cases of the ST-8 

complex in Scotland and also the rest of the UK from the late 1990s onwards it still 

remains a problem in some countries in the world including Portugal, Spain and 

Germany. The range of prevalence of the ST-8 complex varied from 0% (Czech 

Republic, Iceland, Sweden, Finland) to 39% (Portugal) (Brehony et al., 2007). The 

ST-269 complex associated with serogroup B disease has recently emerged in 

Quebec, Canada (Law et al., 2006). 

 

Overall the EU-MenNet project found there were no major changes in the distribution 

of types over the 3 year study period; however, there was a decrease in the ST-8 

complex from 9% to 5% of isolates over this period. In Spain there was a sizeable 

decrease in ST-8 complex from 27% to 7% over the 3 years. At the individual country 

level, the ST-11 complex increased in some countries (Germany, Netherlands, 

France), while it declined in prevalence in others, particularly those that had 

implemented MCC vaccination programmes during this time (UK, Republic of 

Ireland, Belgium).  

 

Other areas where the findings from the EU-MenNet study compare with this project 

include diversity within clonal complexes. In both this project and the EU-MenNet 

study some complexes were more diverse than others in terms of the number of 
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different STs observed. In the EU-MenNet study, the ST-11 complex was the least 

diverse with the central genotype accounting for 90% of isolates. The other major 

hyperinvasive complexes, i.e., ST-41/44, ST-32, ST-8 and ST-269, were much more 

diverse in comparison. Both this project and the EU-MenNet study also show a link 

between clonal complex and serogroup. For example in the EU-MenNet study, the 

ST-32, ST-41/44 and ST-269 complexes were associated with serogroup B and this 

was mostly true for Scottish isolates. In the EU-MenNet study the ST-11 and ST-8 

complexes were mainly associated with serogroup C. ST-11 showed similar results in 

Scotland but ST-8 in Scotland did have a large number of serogroup B isolates.  

 

In both this project and the EU-MenNet study there was also some association 

between genotype and the antigenic gene porA variable region (VR) types. In the EU-

MenNet study there were strong relationships between the ST-11 complex with 5,2 

and ST-8 complex with 5,2 (80%) and this was mirrorred with Scottish isolates. The 

EU-MenNet project showed the emergence of the ST-213 clonal complex, which was 

localized mainly in the UK, especially in Scotland, in 2000-2002. In Scotland the ST-

213 complex was present at a higher prevalence (10%) than in most other countries. 

This typically has a phenotype of B: P1.22, 14.  This clonal complex was also found 

during the present study and occurred eight times, all during the 1990s. The first case 

was in 1992, followed by a case in 1994, one case in 1996, two cases in 1997 and 

three cases in 1998. All cases were strain B: ST-213: 22,14,36, except the last strain 

in 1998 which was B: ST-213: 22-3,14,36-2. ST213 was the only ST belonging to the 

ST-213 clonal complex that was present within this study. The present study has 

examined 2517 invasive isolates over a 26-year period within a single country and the 
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data were consistent with previous studies that have indicated dynamic behaviour in 

meningococcal populations (Yazdankhah et al., 2004; Harrison et al., 2006). 

Serogroup distribution changed from year to year in Scotland during the time period 

1972-1998, but serogroups B and C were the dominant serogroups over this period. 

Serogroup B was the dominant serogroup throughout the seventies and early eighties 

until serogroup C became dominant during the mid 1980s. This increase in dominance 

of serogroup C was not found to be associated with one particular ST. Thus, 

serogroup C was associated with ST-8, ST-11, ST-206 and ST-334. This is in contrast 

to the increase in serogroup C disease in the 1990s that was due to a single complex, 

the ST-11 genetic complex. Serogroup C ST-11 meningococci emerged during the 

1980s within Scotland and were a major contributing factor for the increase in 

serogroup C at the time. ST-11 strains with serogroups other than serogroup C had 

also been present during the 1970s. This may suggest evidence of a capsular switch as 

the PorA data for serogroup W135 ST-11 strains from the 1970s had the same 

combinations of PorA VRs that have been commonly found within serogroup C ST-

11s. However to confirm the hypothesis of capsule switch a more complete antigen 

repertoire (e.g. PorB, FetA.) would have to be tested for theses isolates which was not 

possible due to financial restraints.  

Although the exact mechanism of capsular switching is not yet known, it is thought to 

involve some recombination event(s) within the meningococcal cps locus (Tyler & 

Tsang, 2004). The process of capsule switching may arise spontaneously (Frosch & 

Meyer, 1992) or as a result of some selective advantage conferred on the organisms 

that have their capsules replaced (Alcala et al., 2002; Perez-Trallero et al., 2002; 

Stefanelli et al., 2003). With increasingly widespread use of both the A, C, Y, W135 
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polysaccharide vaccine and the conjugate meningococcal C vaccine in many 

countries, one of the continuing epidemiological concerns is the effect of vaccination 

on serogroup replacement in N. meningitidis. The new progeny organisms always 

bear some resemblance to their parent strains (eg, the same serotype and/or 

serosubtype antigens, identical or similar ST type and PFGE profile (Alcala et al., 

2002; Perez-Trallero et al., 2002; Stefanelli et al., 2003). 

The emergence of serogroup C ST-11 meningococci coincided with a reduction in the 

number of ST-8 strains, which were predominant during the 1980s. The ST-8 strains 

were replaced by strains of the same complex in the early 1990s. These clones 

included the ST-153, ST-1349 and ST-66. Isolates of the ST-8 complex were reduced 

from 52 isolates in 1990 to one isolate by 1998. Over the same period the ST-11 

complex increased from 21 isolates in 1990 to 66 isolates in 1998. 

 

Although there was significant diversity in the STs (309 types) of the 2517 isolates 

recovered from 1972-1998, ten of these STs accounted for 1562 isolates (59.9%). 

There is extensive evidence for the persistence of particular multilocus genotypes 

among meningococcal disease isolates (Caugant et al., 1986b; Caugant, 1998). 

Similar observations have been made with other bacteria (Feil et al., 2001; Enright et 

al., 2002). In this present study, clonal complexes associated with seven lineages 

accounted for 1993 isolates (76.4%). Thus, although there were cases associated with 

novel STs, the majority of disease was associated with the same predominant disease-

associated complexes that have been found world wide and over a number of years 

(Achtman, 1995; Brehony et al., 2007). The common disease-associated complexes 

found in this study included the ST-8, ST-41/44, ST-11, ST-32, ST-1 and ST-269 

complexes. One hundred and seventy seven new STs were found and these accounted 
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for 9.7% of the total number of isolates. Although these STs are defined as new in 

terms of the fact that they have not been described before they are actually STs that 

occurred a number of years ago. These new STs occurred throughout the time period 

from 1974 to 1998 with some occurring only once but others occurring more than 

once and with many years apart. This indicates that these strains have been present in 

the population but have rarely caused disease. In any large study, new STs will be 

found.  These are often found at low frequency and do not spread geographically, 

probably because they are less robust than the central genotypes that they have 

emerged from. 

The general consensus is that populations of carried meningococci comprise numerous 

lineages (or clonal complexes), whereas collections of meningococcal isolates from 

cases of invasive disease typically contain a limited subset of lineages (Yazdankhah et 

al., 2004; Jolley et al., 2005). The clonal complex information allowed for the 

identification of hyperinvasive lineages. This enables the monitoring of trends in 

meningococcal disease over time and comparison with other datasets (Brehony et al., 

2007). These hyperinvasive lineages are known to be persistent, having spread 

worldwide over many decades (Caugant, 1998). The incidence of disease rises and 

falls with the presence of hyperinvasive lineages in the carried population of 

meningococci. The antigens associated with particular clonal complexes consequently 

rise and fall over time, as predicted by models of pathogen strain structuring by 

immunological selection (Gupta & Maiden, 2001), although there appear to be 

differences in the stability of the lineages with regard to different antigens. For 

example, the ST-1 clonal complex is very strongly associated with particular antigenic 

variants, including capsule and subcapsular antigens (Suker et al., 1994; Urwin et al., 

2004) and serogroup A. 
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Serogroup A had been shown in this study to be present within the 1970s and early 

1980s. Serogroup A caused 134 cases of IMD between 1973-1982, thereafter there 

were three cases in 1986, two cases in 1987, one case in 1989, one case in 1992 and 

two cases in 1995. 89% of serogroup A isolates were of ST-1. Only one other ST 

occurred more than once (ST-5 with 5.67%). Serogroup A in Scotland was highly 

clonal as it was represented by only 9 different STs. Despite a small number of cases 

since the 1970s and early 1980s (e.g. ST-5 complex meningococci in the 1990s) 

serogroup A meningococci have, to date, not re-established themselves as a cause of 

disease in the UK (Jones & Sutcliffe, 1990).  

 

In terms of PorA VR types it was found that there were certain combinations of VR 

types that were significantly more common than others. The first variable region was 

represented in the majority from the type 5-family or the P1.5 family (1299 isolates). 

The second variable region had over 33.7% characterised as variable regions 2, 2-1 

and 2-2. The third variable region had over 38.6% allocated to variable region 36-2. 

The combination 5, 2, 36-2 occurred 466 times (17.9%) and 19, 15, 36 occurred 192 

times (7.4%). There was a strong link with porA and ST and more so with clonal 

complex. This association has been observed in other meningococcal populations 

(Bygraves et al., 1999; Urwin et al., 2004). This link is evident with the PorA type 5, 

2-1, 36-2, which occured in 70 isolates representing the ST-11 complex and in all but 

two isolates representing ST-11. Similarly PorA type 18-3, 1, 35-1 was associated 

with 15 isolates belonging to the ST41-44/lineage 3 complex. However, this was not 

the case with all PorA combinations as the PorA type 19, 15, 36 was associated with 

10 different complexes. There was some association between serogroup and PorA VR 

types. There was strong evidence of certain VR1, 2 and 3 regions being associated 
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with certain serogroups, although this was not definitive. For example, PorA type 5, 2, 

36-2 occurred in 354 serogroup C isolates (76.0%), although this is not surprising as 

the PorA combination is strongly associated with ST-8 and ST-11. Similarly, of 192 

isolates with PorA type 19, 15, 36, 85.4% were associated with serogroup B.  

Genosubtyping of the porA gene has been shown to increase the power of 

differentiation within clonal meningococcal populations. For, example, seven isolates 

that had the same serogroup, ST, VR1 and VR2 could be differentiated by their VR3 

type. Although this is of note retrospectively, this could be useful when looking at an 

outbreak in a real-time situation. 

 

  

4.4  Spatio-temporal analysis 

 

Using the cluster detection software SaTScan, 29 clusters were identified in Scotland 

from 1972-1998; these included 63 cases and comprised 2.5% of all cases. A range of 

different strain types was associated with clusters identified in this study. Predictably, 

there were clusters caused by strain types that are known to be hypervirulent, i.e. 

strain types which were responsible for a number of cases throughout the world as 

well as in Scotland (e.g. strain types of serogroup C, ST-11, 5, 2, 36-2). However, 

clusters were also identified in this study that were caused by lesser-known strain 

types that were not responsible for many cases. These include strain types B, ST-

3010, 5-1, 2-2, 36-2, and B, ST-343, 7, 16-2, 35. This shows again that although a few 

strain types are associated with the majority of disease, other less common strain 

types are capable of causing disease and clusters of disease under appropriate 

circumstance. 
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The results of this analysis on meningococcal clusters compares with the findings of 

other studies. Hoebe et al. (2004) found statistical evidence for clustering in 6 of 25 

clusters reported by the Dutch Inspectorate of Health Care by applying a global 

clustering test (space-time nearest-neighbour analysis) to different serosubtypes of 

meningococci. However this approach was different from the present study as only 

phenotypic typing was performed and therefore analysis was limited by a number of 

non-typeable isolates. In Germany, 26 clusters were detected in 42 months from 

December 2001 to June 2005 with the proportion of patients involved in clusters 

being 4.2% (Elias et al., 2006b). In France, 28 clusters were identified in 1987 and 

1988, and this accounted for 8% of total cases (Olivares & Hubert, 1992). This 

compares with the findings in the present study, where 29 clusters were found to have 

occurred within Scotland from 1972-1998. These clusters included 63 cases, which 

accounted for 2.5% of all cases. In England and Wales, a total of 114 clusters were 

reported in preschool and school settings in England and Wales between 1 April 1995 

and 31 March 2001 or approximately 20 clusters per year (Davison et al., 2004). The 

majority (86%) of these clusters had only two cases, which was the same as our 

findings. This study is the first to look at the detection of clusters over a time period 

of 26 years and to identify clusters that previously would have been unidentified due 

to lack of suitable characterisation techniques. 

 

This comprehensive investigation was only feasible due to highly discriminatory 

characterisation techniques for N. meningitidis, availability of data regarding time and 

place of occurrence of IMD and free availability of the cluster detection software 

SaTScan. However there were limitations of the SaTScan software (Kulldorff, 1997). 
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These include the assumption that the clusters are cylindrically shaped and the 

constraints that are attributable to centroids and the edge effects of the scan method. 

There is also no direct link with geographic information system software, which 

would help with capturing, storing, analyzing, managing and presenting data that is 

spatially referenced. One limitation of performing cluster analyses using the patient's 

residence as the source of acquisition of IMD is that this may not always reflect the 

area where acquisition occurred. With the amount of travelling people do in their 

everyday lives infection might be contracted at locations other than the one suggested 

by where they live, e.g., at gatherings outside the county of residence. Thus, a few 

clusters out with places of residence might have been missed by this approach but 

there would be no way to detect these anyway unless you knew all movement and 

contacts of the patients. 

The health board area which had the highest number of clusters associated with it was 

Greater Glasgow with five different clusters; this area has the greatest population size. 

Not all areas were represented, since five regions did not have any clusters. Most 

clusters were associated with only two patients which was similar to the findings of 

other studies (Hastings et al., 1997; Elias et al., 2006b). The maximum number of 

patients per cluster was four, but this occurred only once. Two serogroups were 

responsible for all the clusters identified within Scotland, namely serogroups B and C. 

This again highlights the dominance of these two serogroups in causing disease within 

Scotland over the 26-year period. This study is the first to look at the detection of 

clusters within one country over a time period of 26 years and to identify clusters that 

would have previously been unidentified due to lack of suitable characterisation 

techniques. The temporal distribution of meningococci has been shown in the 

increased number of cases observed over the winter period in developed countries 
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such as the UK (Wylie et al., 1997; Clarke et al., 2002b). This study found the same 

pattern with the highest number of cases in the winter months and the lowest number 

of cases during summer. 

 

4.5  Vaccine coverage 

 

In cases of invasive meningococci, a limited repertoire of antigen variants is persistent 

over time and these tend to be associated with particular invasive lineages (Russell et 

al., 2008). Combinations of subcapsular antigens reappear over time, sometimes 

associated with different lineages, perhaps in response to increases and decreases of 

herd immunity against particular strain types (Russell et al., 2008). This leads to the 

possibility that appropriately composed component vaccines may be able to protect 

human populations from meningococcal disease over periods of time sufficient to 

warrant their development and implementation (Russell et al., 2008). Current 

approaches in the development of a comprehensive meningococcal vaccine can be 

separated into two distinctive strategies: vaccines to enhance the immune response to 

conserved antigens, and vaccines based on highly immunogenic yet variable antigens. 

While not excluding the effectiveness of vaccines based on conserved antigens, the 

results from this study support the development of multivalent vaccines consisting of 

variable antigens. This is also consistent with clinical studies of OMV vaccines, which 

have repeatedly highlighted the importance of PorA for vaccine-induced immunity. In 

terms of clinical development, the most advanced multivalent vaccines consist of 

OMVs produced from genetically-modified strains expressing multiple variants of 

PorA (van den Dobbelsteen et al., 2007). The results in the present study indicate that 

the multivalent preparations produced by the Netherlands Vaccine Institute 
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(Nonavalent vaccine) have the potential to prevent the majority of serogroup B 

infections in Scotland as well as having the potential, although not to the same extent 

as with serogroup B, to protect against other serogroups. The data also show that the 

potential coverage against serogroup B did not fluctuate greatly over a thirty-year 

period, even after the introduction of the MCC vaccine. Although there was a 

reduction in the potential coverage over the three decades, this was not due to any 

particular PorA type being present in large numbers but instead was due to a number 

of different PorA types present in small numbers. Therefore there was no candidate 

for an additional PorA type that could be added to any potential vaccine that could 

greatly improve coverage. It was also shown that, for the age groups that would 

potentially be the age group that would be the first to be immunised with any vaccine 

as part of the childhood vaccination programme (the 0-4 years old group) the potential 

coverage was over 92%. This is comparable with the coverage seen with the MCC 

vaccine, of approximately 90%. These data have therefore provided important 

information for informing vaccine development, providing a rational approach for 

deciding which variants should be included in this type of vaccine. In the Netherlands, 

the potential cost-effectiveness of a vaccine containing nine OMVs plus 

pneumococcal conjugate has been assessed (Bos et al., 2006) and it was concluded 

that this combined vaccine was likely to be cost-effective in that setting and could 

prevent 201 cases of meningococcal B meningitis per year. Similar conclusions have 

also been reached in another study from England and Wales, which also examined 

FetA VRs (Russell et al., 2008). 
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4.6 Further work 

 

With reference to this study, there are options available for further work to be 

performed. Little information was available pertaining to patient outcome after 

disease. These data are collected by a different organisation and, when combined with 

the data from this study, could be used to look at the trends involved in case mortality. 

Previous studies have shown that the outcome of meningococcal disease is associated 

with the phenotype, age and clinical presentation with the clonal complex also 

appearing to be an indicator of virulence (Spanjaard et al., 1987; Scholten et al., 1994; 

Iversen & Aavitsland, 1996; Trotter et al., 2002; Jensen et al., 2003; Gottfredsson et 

al., 2006). Therefore, analysis of case fatality and its association with clonal 

complexes, age and geographical location and estimating the chances of death by 

clonal complexes could be examined. Another aspect that could be examined is a 

more through investigation of how the data have changed over time. This would 

require some specialist statistical analysis such as logistic regression. There was also 

very little data regarding antibiotic resistance due to the fact this was not performed 

regularly until the 1990s. These data could have been used to look at the extent of 

antibiotic resistance in Scotland 1972-1998, as well as its association with particular 

lineages, ages and geographical areas. 

 

In order to improve our understanding of the population structure of N. meningitidis, 

it is important to examine carriage. Previous studies using MLST analysis have shown 

the widespread diversity of the carried meningococci, but have also provided 

indications that meningococcal populations from healthy carriers comprise a number 
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of successful clones that are geographically prevalent (Maiden & Stuart, 2002; 

Yazdankhah & Caugant, 2004; Caugant et al., 2007). It has also been shown that 

hypervirulent STs and complexes are rare among strains from carriers (Yazdankhah & 

Caugant, 2004; Caugant et al., 2007). The hypervirulent clones have been shown to 

vary greatly in their capability to establish a commensal relationship with their host. 

For example, the ST-11 complex has been described as being a poor coloniser but the 

ST-23 complex appear to be tailored to a commensal relationship with the host 

(Caugant et al., 2007). There was a national multi-centre carriage study to assess the 

effect of the introduction of the MCC vaccine in the United Kingdom on those under 

19 years of age (Maiden et al., 2008). The impact of this intervention on 

asymptomatic carriage of meningococci was investigated to establish whether 

serogroup replacement or protection by herd immunity occurred. Multicenter surveys 

of carriage were conducted throughout the UK, including Scotland, during vaccine 

introduction and on two successive years. A reduction in serogroup C carriage was 

observed that lasted at least two years with no evidence of serogroup replacement. 

Vaccination had a disproportionate impact on the carriage of the ST-11 complex 

serogroup C meningococci. The high impact on the carriage of ST-11 complex 

serogroup C could be attributed to high levels of capsule expression. The impact of 

vaccination with MCC vaccine on the prevalence of carriage of serogroup C 

meningococci was consistent with herd immunity (Maiden et al., 2008). 

 

Surveillance is an area, which has seen developments over the last few years but there 

are still opportunities for improvement. Data gathered from numerous countries can 

help monitor and identify emerging problems faster than surveillance from one 

country. These data can also be used to inform the impact of mass vaccination and 
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show the differences between countries, providing data for future vaccine 

programmes and strategies. This has already been shown to be a success with a 

surveillance network for meningococcal disease in Europe. Beginning in 1999, the 

European Union Invasive Bacterial Infection Surveillance Network (EU-IBIS) has 27 

European countries involved submitting case reports of meningococcal disease with 

the data added to the EU-IBIS database  

(http://www.euibis.org/meningo/meningo_statistics.htm). 

 

The publication of complete genomes of a number of different N. meningitidis isolates 

(Rappuoli, 2000) has provided a broad profile of the genetic complement of this 

important organism. However, the genome sequences highlight inadequacies in our 

understanding of meningococcal pathogenesis, as it is not known which genes are 

involved in the disease process.  Therefore, with the increased accessibility of genome 

sequencing methods of high-throughput analysis of gene function are needed to take 

advantage of the vast amount of information being generated.  Molecular typing 

techniques, such as MLST, only allow the examination of a limited number of loci, 

giving no information either of genome-wide variation or of the full impact of 

horizontal gene transfer (Ochman et al., 2000). The introduction of high-throughput 

sequencing and the associated development of analytical tools have considerably 

changed the field. This has lead to the development of DNA-array technology (DNA 

microarrays) (Joyce et al., 2003; Bryant et al., 2004), which can transform our 

understanding of meningococcal population genetics on a genome-wide scale. DNA 

microarrays enable a ‘bird’s-eye view’ of all the genes absent or present in a given 

genome compared with the reference genome on the microarray (Claus et al., 2007). 

Neisseria research has been in a fortunate position in that a variety of genomes have 
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been publicly available since the year 2000, (Parkhill et al., 2000; Tettelin et al., 

2000). Thus there has been a number of Neisseria microarray studies (Grifantini et al., 

2002; Grifantini et al., 2004; Snyder et al., 2004; Ducey et al., 2005; Stabler et al., 

2005; Bartolini et al., 2006). DNA microarray technology has already made very 

useful contributions to the understanding of meningococcal genome diversity, 

population genetics and pathogenesis. 

  

The limitations of such new technology include cost and the practicality within 

laboratories with limited resources and technical support. The results are highly 

dependent on the set-up, where a number of different variables are present, like chip 

design, hybridisation conditions, the choice of strains, and appropriate data analysis. 

Another major limitation of the technology is that only the distribution of already 

known genes can be assessed. Although laborious and time-consuming, and therefore 

not appropriate to larger strain collections, genome comparison by representational 

difference analysis might still be an alternative approach that enables the 

identification of novel sequences of DNA (Tinsley & Nassif, 1996; Claus et al., 

2007). In the end, it is only by whole-genome sequencing of as many pathogenic as 

well as non-pathogenic strains as possible that we might be able to have a true insight 

into the as yet unknown virulence-associated genes that might contribute to the 

meningococcal gene pool (Maiden et al., 1996). 
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4.7  Conclusions 
 

This study has provided a unique insight into the molecular epidemiology of 

meningococci causing invasive disease within Scotland in the period 1972-1998. This 

long-term, nation-wide study looked at evolutionary trends of invasive meningococcal 

isolates in a well-defined setting. It has shown that serogroup distribution changed 

from year to year during the time period 1972-1998. However, serogroups B and C 

were evidently the dominant serogroups over this period. The increase in serogroup C 

disease in the 1990s was due to the ET-37/ST-11 clonal complex. The mid-1980s saw 

the emergence of ST-11, which is strongly associated with serogroup C disease. 

Although there were not a huge number of cases, over the next decade the number of 

strains of ST-11 did increase to such an extent that it became the dominant 

hypervirulent ST causing disease. This also coincided with a dramatic decrease in 

strains of ST-8, which are now rarely seen. ST-8 had caused a large incidence of 

invasive disease during the early 1980s. ST-8 strain was associated with serogroups B 

and C. Serogroup A was present within the 1970s and early 1980s before 

disappearing. 

 

While there was much diversity in the STs (309 types), only ten accounted for 1562 

isolates (59.9%). Only seven lineages accounted for 1993 isolates (76.4%). There 

were certain combinations of porA VR types which were significantly more common 

than others and there was some association between genotype and porA VR type 
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The results of analysis on meningococcal clusters compares with the findings of other 

studies. Twenty-nine clusters were found to have occurred within Scotland from 

1972-1998. These clusters included 63 cases, which accounted for 2.5% of all cases.  

 

This study is the first to look at the detection of clusters over a time period of 26 years 

and to identify clusters that would have previously been unidentified due to lack of 

suitable characterisation techniques. 

 

Multivalent vaccines have the potential to prevent the strains of the disease not 

covered by other vaccines i.e. serogroup B disease. The results in this study indicate 

that the multivalent preparation produced by the Netherlands Vaccine Institute 

(Nonavalent vaccine) had the potential to prevent the majority of serogroup B 

infection in Scotland and has the potential to do so in the future. The data have also 

shown that the vaccine had the potential to protect against other serogroups although 

not to the same extent as serogroup B. 
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Appendix 
Appendix Table A.1:  PorA Variable Region 1 peptide sequences 
 

Variant Peptide sequence 
 

P1.5 family  
5 PLQNIQPQVTKR 

5-1 PLQNIQQPQVTKR 
5-2 PLPNIQPQVTKR 
5-3 PLQNIKQPQVTKR 
5-4 PLQNIQKPQVTKR 
5-5 PLQNIQPSVTKR 
5-6 LLQNIQQPQVTKR 
5-7 PLSNIQPQVTKR 
5-8 PIQNIQQPQVTKR 
5-9 PLLNIQPQVTKR 

5-10 PFQNIQPQVTKR 
5-11 NIQQPQVTKR 
5-12 PLPKIQPQVTKR 
5-13 PLQNIIQQPQVTKR 

P1.7 family  
7 AQAANGGASGQVKVTKVTKA 

7-1 AQAANGGAGASGQVKVTKVTKA 
7-2 AQAANGGASGQVKVTKA 
7-3 AQAANGGARASGQVKVTKVTKA 
7-4 AQAANGGAGASGQVKVTKA 
7-5 AQAANGGAVASGQVKVTKVTKA 
7-6 AQAANGGASDQVKVTKA 
7-7 AQSANGGASGQVKVTKVTKA 
7-8 AQAANGGAGASGQVKVTKVTKVTKA 
7-9 AQAANGGASGANGGASGQVKVTKA 

7-10 AQAANGGVSGQVKVTKVTKA 
7-11 AQAANGGASGQVKVTKVTKVTKA 
7-12 AQAANGGARGQVKVTKVTKA 
7-13 AQAANGGARGQVKVTKVTKVTKA 
7-14 AQAVNGGASGQVKVTKA 
7-15 AQAANGGAGASGQVKVTKVTKV 
7-16 AQAANDGASGQVKVTKVTKA 
7-17 AQAANGGVSGQVKVTKA 
7-18 AQATNGGASGQVKVTKA 
7-19 AQAANGRASGQVKVTKVTKA 

P1.12 family  
12 KLSSTNAKTGNKVEVTKA 

12-1 KPSSTNAKTGNKVEVTKA 
12-2 KPSSTKAKTGNKVEVTKA 
12-3 KPSSTNAKTGNKVKVTKA 
12-4 KSSNTNAKTSNKVEVTKA 
12-5 KPSSTNPKTGNKVEVTKA 
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12-6 QPSNTNGKTGNKVEVTKA 
12-7 KPSSTNANSSTNAKTGNKVEVTKA 
12-8 KPSSTNAKTSNEVEVTKA 
12-9 KPSSTNATTGNKVEVTKA 
12-10 KPSSTNAKTDNKVEVTKA 
12-11 KPSSTNAKPGNKVEVTKA 
12-12 QPSNTNGKTSNKVEVTKA 

P1.17 family  
17 PPQKNQSQPVVTKA 

17-1 PPPKNQSQPVVTKA 
17-2 PPQKNQSQPLVTKA 

P1.18 family  
18 PPSKGQTGNKVTKG 

18-1 PPSQGQTGNKVTKG 
18-2 PPSKSQTGNKVTKG 
18-3 PPSKGQTGNKVTKA 
18-4 PPSKGQTGNKVIKG 
18-5 PPSKGQVGNKVTKG 
18-6 QLSKGQVGNKVTKG 
18-7 QPSKGQVGNKVTKG 
18-8 PPSKGQTGNKVTNG 
18-9 PPPKDQTGNKVTKG 
18-10 PPSEGQTGNTVTKA 
18-11 PPSQGQTGNKVTKA 
18-12 PPSKGQTGNKVTKR 
18-13 PPLQGQTGNKVTKG 
18-14 PPSKAQTGNKVTKG 

P1.19 family  
19 PPSKSQPQVKVTKA 

19-1 PPSKSQSQVKVTKA 
19-2 PPSKSQLQVKVTKA 
19-3 PRSKSQPQVKVTKA 
19-4 PPSNSQPQVKVTKA 
19-5 PLSKSQPQVKVTKA 
19-6 PPLKSQPQVKVTKA 
19-7 PSSKSQPQVKVTKA 
19-8 PPPKSQPQVKVTKA 
19-9 PPSKSQPQVKVTQVKVTKA 
19-10 PHSKSQPQVKVTKA 
19-11 PPSRSQPQVKVTKA 
19-12 PSSKSQSQVKVTKA 
19-13 PPSKSQTQVKVTKA 
19-14 PPSKSQHQVKVTKA 
19-15 PPSESQPQVKVTKA 
19-16 PLSKSQSQVKVTKA 
19-17 PLSKSQHQVKVTKA 
19-18 PPSKSQPQVKKSQPQVKVTKA 
19-19 PSSKSQLQVKVTKA 
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19-20 PPSKSQSKVKVTKA 
P1.20 family  

20 QPQTANTQQGGKVKVTKA 
20-1 QPQIANTQQGGKVKVTKA 
20-2 QPQTANTQQGRKVKVTKA 
20-3 QPQAANTQQGGKVKVTKA 

P1.21 family  
21 QPQVTNGVQGNQVKVTKA 

21-1 QPNGVQGNQVKVTKA 
21-2 QPQATNGVQGGQQGNQVKVTKA 
21-3 QPQVTKGVQGNQVKVTKA 
21-4 QPQVPNGVQGNQVKVTKA 
21-5 QPQVPNSVQGNQVKVTKA 
21-6 QPQATNGVQGGRQGNQVTVTKA 
21-7 QLQVTNGVQGNQVKVTKA 
21-8 QPQVTTGVQGNQVKVTKA 
21-9 QPQVTNGAQGNQVKVTKA 

P1.22 family  
22 QPSKAQGQTNNQVKVTKA 

22-1 QPSRTQGQTSNQVKVTKA 
22-2 QPSRTQAQTSNQVKVTKA 
22-3 QPSKAKGQTNNQVKVTKA 
22-4 QLSKAQGQTNNQVKVTKA 
22-5 QPSKAQGQTNNQVKVTKR 
22-6 QPSRTQGQTRNQVKVTKA 
22-7 QPSKAQGQTNNQVEVTKA 
22-8 QPSKDQGQTNNQVKVTKA 
22-9 WPSKAQGQTNNQVKVTKA 
22-10 QPSSTQGQTSNQVKVTKV 
22-11 QPSSTQGQTSNQVKVTKA 

P1.31 family  
31 PPSSNQGKNQAQTGNTVTKA 
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Appendix Table A.2:  PorA Variable Region 2 peptide sequences 
 

Variant Peptide sequence 

P1.1 family  
1 YVAVENGVAKKVA 
1-1 YVAVENGATKKVA 
1-2 YVAVENGVVKKVA 
1-3 YVAVENGVAKKVT 
1-4 YVAVENGVTKKVA 
P1.2 family  
2 HFVQQTPKSQPTLVP 
2-1 HFVQQPPKSQPTLVP 
2-2 HFVQQTPQSQPTLVP 
2-3 HFVQQPPKSQLTLVP 
2-4 HFVQQTPQSRPTLVP 
2-5 HFVQQIPQSQPTLVP 
2-6 HFVQQTPTLVP 
2-7 HFVQQTSKSQPTLVP 
2-8 HFVQQTTKSQPTLVP 
2-9 HFVQQTPQSKPTLVP 
2-10 HFVQQAPQSQSTLVP 
2-11 HFVLQTPQSQPTLVP 
2-12 HFVQQIPKSQPTLVP 
2-13 YFVQQTPQSQPTLVP 
2-14 HFVQQKLASKPTLVP 
2-15 HFVQQKSTSKPTLVP 
2-16 HFVQQKPTSKPTLVP 
2-17 HFVQQQPTSEPTLVP 
2-18 HFVQQIPKSQPILVP 
2-19 HFVQQTSQSQPTLVP 
2-20 HFVQQTPIVQQTPKSQPTLVP 
2-21 HFVQQTHQSQPTLVP 
2-22 HSVQQTPKSQPTLVP 
2-23 HFVQQTPKSQPPLVP 
2-24 HFVQQTPTHFVQQTPKSQPTLVP 
2-25 HFVQQTPKSVP 
2-26 HFVQQTPQRQPTLVP 
2-27 HFVQQTPNSQPTLVP 
2-28 PQSQPTLVP (missing HFVQQ motif) 
2-29 HFVQQTPQSQTPQSQPTLVP 
2-30 HLVQQTPQSQPTLVP 
2-31 HFVKSQPTLVP 
2-32 HFVQQTPKSQPTPKSQPTLVP 
2-33 HFVQQASQSQPTLVP 
2-34 HFVQQTPQSQPKSQPTLVP 
2-35 HFVQQTPKSQPILVP 
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2-36 HFVQQTPQIQPTLVP 
2-37 HFVQQKPTSNPTLVP 
2-38 HFVQQTPKRQPTLVP 
2-39 HFVQQTPQGQPTLVP 
2-40 HFVQQISKSQSTLVP 
P1.3 family  
3 TLANGANNTIIRVP 
3-1 TVANGANNTIIRVP 
3-2 TLANGANDTIIRVP 
3-3 TLANGADNTIIRVP 
3-4 TPANGANNTIIRVP 
3-5 TLAKGANNTIIRVP 
3-6 TLANGATNTIIRVP 
3-7 TLATLANGANNTIIRVP 
3-8 TLANNTIIRVP 
3-9 TLANGANNTP (missing IIRVP motif) 
P1.4 family  
4 HVVVNNKVATHVP 
4-1 HVVVNNNVATHVP 
4-2 HVVVNNKVATHVPAKVATHVP 
4-3 HVVVNNKVTTHVP 
4-4 HVVVNNKVATPHVP 
4-5 HVVVNNKV (missing THVP motif) 
4-6 HVVVNNRVATHVP 
4-7 HVVVKVATHVP 
4-8 HVVVNNQVATHVP 
4-9 VNNKVATHVP 
4-10 HVVNNKVATHVP 
4-11 HVVVNNKVAPHVP 
4-12 HVHVVVNNKVATHVP 
4-13 HVVVNNKVA (missing THVP motif) 
4-14 HFVVNNKVATHVP 
4-15 HVVVNNEVATHVP 
4-16 HVVVNNVVVNNKVATHVP 
4-17 SVVVNNKVATHVP 
4-18 HVVVNNKVAT (missing HVP motif) 
P1.9 family  
9 YVDEQSKYHA 
9-1 YVDSKYHA 
9-2 YVGEQSKYHA 
9-3 YVDEQSKDHA 
9-4 YVDKQSKYHA 
9-5 YVDEQSEYHA 
9-6 YVDEQSQYHA 
9-7 YVDEQRKYHA 
P1.10 family  
10 HFVQNKQNQRPTLVP 
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10-1 HFVQNKQNQPPTLVP 
10-2 HFVQDKKGQPPTLVP 
10-3 HFVQNKQNQQPTLVP 
10-4 HFVQNKQNKQNQPPTLVP 
10-5 HFVQNKQSQRPTLVP 
10-6 HFVQNKQNQQNQQNQPPTLVP 
10-7 HFVQNKQNKPPTLVP 
10-8 HFVQNKQNQQNQPPTLVP 
10-9 HFVQNKQNKQNQLPTLVP 
10-10 HFVQNKQNKQNKQNQPPTLVP 
10-11 HFVQNKQNQRSTLVP 
10-12 HFVQNKQNQLPTLVP 
10-13 HFVQNKQNKKNQPPTLVP 
10-14 HFVQNKQHQPPTLVP 
10-15 HFVQNKQNQPSTLVP 
10-16 HFVQNKQNQWSTLVP 
10-17 HFVQNKQNQTPTLVP 
10-18 HFVQNKQSQPPTLVP 
10-19 HFVQNKQNKQKQPPTLVP 
10-20 HFVQNKQNQWLTLVP 
10-21 HFVPDKKGQPPTLVP 
10-22 HFVQNKQNKQNQQNQPPTLVP 
10-23 HFVQNKQNQWPTLVP 
10-24 HFVKNKQNQRPTLVP 
10-25 HFVQDKKGQP (missing PTLVP motif) 
10-26 HFVQNKQNKPNQPPTLVP 
10-27 HFVRNKQNQRPTLVP 
10-28 HFVQNQNKQNQPPTLVP 
10-29 HFVQNKQNQSPTLVP 
10-30 HFVQNKQNQRPTLV (missing P from end motif) 
10-31 HFVPNKQNQRPTLVP 
10-32 HFVQNKQDQRPTLVP 
10-33 HFVQNKQNKQPTLVP 
10-34 YFVQNKQNKQNQPPTLVP 
10-35 HFVQNKQNQQNQQPTLVP 
10-36 HFVQDKKGQLPTLVP 
10-37 HFVQNKQNQPLTLVP 
10-38 HFVQDKQDQLPTLVP 
10-39 HFVQNKQNPPPTLVP 
10-40 HFVQNKQKQPPTLVP 
10-41 HFVQNKQNQRLTLVP 
10-42 HFVQNKQNQQNQPSTLVP 
10-43 HFVQNKQNKLPTLVP 
10-44 HFVQDKKGQSPTLVP 
10-45 HFVQNKQNQRP (missing TLVP end motif) 
10-46 HFVQNKQNKQNKPPTLVP 
10-47 HFVQNKQSQQPTLVP 
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10-48 HFVQNKPTLVP 
10-49 HFVQNKQDQPPTLVP 
10-50 HFVRNKQNQQSTLVP 
10-51 HFVQNKQNVQNKQNQPPTLVP 
10-52 HFVQNKQNKQNKQNKQNQPPTLVP 
10-53 HFVQNKQNQQNQQNQSPTLVP 
10-54 HFVQNKQSQLPTLVP 
P1.13 family  
13 YWTTVNTGSATTTTTFVP 
13-1 YWTTVNTGSATTTTFVP 
13-2 YWTTVNTGSATTTFVP 
13-3 YWTTVNTGSATITTFVP 
13-4 YYTTVTQGSATTTTFVP 
13-5 YWTTVNTGSATTTTTTTTTFVP 
13-6 YWTTVNTGSATTTTTTTTFVP 
13-7 YWTTVNTGSATTTTTTFVP 
13-9 YWTTVNTGSATTFVP 
13-8 YWITVNTGSATTTTFVP 
13-10 YWTTVNTGSVTTTTFVP 
13-11 YWTTVNTGSAATTTTFVP 
13-12 YWTAVNAGSATTTFVP 
13-13 YWTTVNNGNATTTTFVP 
13-14 YWTTVNTSSATTTTTFVP 
13-15 YWTTVNTGSATTTTTTTFVP 
13-16 VNTGSATTTFVP (missing YWT motif) 
13-17 YWTTVNTGNATTTTFVP 
13-18 YWTTVNTSSATTTTFVP 
13-19 YWTTVNTGSATTPFVP 
13-20 YYTTVTKGNATTTTFVP 
13-21 YWTTVNTGSAT (missing TTTTFVP motif) 
13-22 YWTTVNNGNATTTFVP 
P1.14 family  
14 YVDEKKMVHA 
14-1 YVDEKKKMVHA 
14-2 YVDEKKKVHA 
14-3 YVDEKNMVHA 
14-4 YVDENKMVHA 
14-5 YVDKEQVSHA 
14-6 YVDEKQVSHA 
14-7 YVDETKMVHA 
14-8 YVDEKRMVHA 
14-9 YVDAKKMVHA 
14-10 YVDEKGMVHA 
14-11 YVDEKRVSH 
14-12 YVNEKKMVHA 
14-13 YVDEEQVSHA 
14-14 YVDERKMVHA 
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P1.15 family  
15 HYTRQNNADVFVP 
15-1 HYTRQNNTDVFVP 
15-2 HYTRQNNNNTDVFVP 
15-3 HYTRPNNTDVFVP 
15-4 HYNTRQNNADVFVP 
15-5 HYTRQNSADVFVP 
15-6 HYTRQNYADVFVP 
15-7 HYTRQNNANVFVP 
15-8 HYTRQNNAGVFVP 
15-9 HYTRQNNTRQNNADVFVP 
15-10 HYTGQNNADVFVP 
15-11 HYTRQNNIDVFVP 
15-12 HYNTRQNNIDVFVP 
15-13 HYTRQNNQNNIDVFVP 
15-14 HYTNTRQNNIDVFVP 
15-15 HYTRQSNTDVFVP 
15-16 HYTRQNNADFVP 
15-17 HYTRQNNAYVFVP 
15-18 HYTRQNNDTRQNNADVFVP 
15-19 HTRQNNIDVFVP 
15-20 HYTRQNNAAVFVP 
15-21 HYTRQNDADVFVP 
15-22 HYTRQNNYTRQNNIDVFVP 
15-23 HYTSQNNADVFVP 
15-24 HYTRQNDTDVFVP 
15-25 HYTKQNNTDVFVP 
15-26 HYTGQNYIDVFVP 
15-27 HYTRKNNADVFVP 
15-28 HTRQNNADVFVP 
P1.16 family  
16 YYTKDTNNNLTLVP 
16-1 YYTKGKNNALTLVP 
16-2 YYTKNTNNNLTLVP 
16-3 YYTKDKNDNLTLVP 
16-4 YYTKDKNDKLTLVP 
16-5 YYTKDTNNNNNLTLVP 
16-6 YYTKHTNNNLTLVP 
16-7 YYTKDTNTKDTNNNLTLVP 
16-8 YYTKDKNNALTLVP 
16-9 YYTKDTNDLTLVP 
16-10 YYTNNNLTLVP 
16-11 YYTTDTNNNLTLVP 
16-12 YYTKDTNDNLTLVP 
16-13 YYTEDTNNNLTLVP 
16-14 YYTKDTNTNLTLVP 
16-15 YYNTKDTNNNLTLVP 
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16-16 YYTKDTNNNPTLVP 
16-17 YYTKDTNNTNNNLTLVP 
16-18 YYTKDTNTNNNLTLVP 
16-19 YYTKDTNNNLTHTKDTNNNLTLVP 
16-20 KDTNNNLTLVP (missing YYTK motif) 
16-21 YYTKDTKNNLTLVP 
16-22 YYTKDTNNILTLVP 
16-23 YYTKDNKNDNLTLVP 
16-24 YYTKVENDNLTLVP 
16-25 YYTKDTNNNLNLTLVP 
16-26 YYTNTNNNLTLVP 
16-27 YYTKDTNNNLTLVS 
16-28 YYTKVKNDNLTLVP 
16-29 YYTKGTNNDLTLVP 
16-30 YYTKDKNDNRTLVP 
16-31 YYTKHTNNNPTLVP 
16-32 YYTKVTNNNLTLVP 
16-33 YYTNTKDTNNNLTLVP 
16-34 YYTKDTNNNLKDTNNNLTLVP 
16-35 YYTKHANNNLTLVP 
16-36 YYTKGTNNNPTLVP 
16-37 YYTKVTDNNLTLVP 
16-38 YYTKDTNNNLPLVP 
16-39 YYTKDTTNNNLTLVP 
16-40 YYNTKDTKNNLTLVP 
16-41 YYTKDTNNKLTLVP 
16-42 YYTKDTNYTKDTNNNLTLVP 
16-43 YYTKDTNNNLTNNNLTLVP 
16-44 YYTNTNDNLTLVP 
16-45 YYTNYTKDTNNNLTLVP 
16-46 YYTKDTKDTNNNLTLVP 
16-47 YYTKDTSNNLTLVP 
16-48 YYTKDRNNNLTLVP 
16-49 YYTKDKNDDLTLVP 
16-50 YYTKDTNNNL (missing TLVP motif) 
16-51 YYKDTNNNLTLVP 
16-52 YYTKDKNDALTLVP 
16-53 YTNTNNNLTLVP (missing first Y) 
16-54 YYTKVINNNRTLVP 
16-55 YYTKDTNNNLNNLTLVP 
16-56 YYTKDTNNNLTHNLTLVP 
16-57 YYTKDKDTNNNLTLVP 
16-58 YYTKDTDNNLTLVP 
16-59 YYTKGTNNNLTLVP 
16-60 YYTKDKNDNLTPVP 
16-61 YYTKKDKNDNLTLVP 
16-62 YYTKDINNNLTLVP 
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16-63 YYTKNTNNKNTNNNLTLVP 
16-64 YYTKDTNNPLVP 
16-65 YYTKYTNNNLTLVP 
16-66 YTKDTNNNLTLVP (missing first Y) 
16-67 YYTKDKTDNLTLVP 
16-68 YYTNTNNNL (missing TLVP motif) 
16-69 YYTKDTNNNTKDTNNNLTLVP 
P1.23 family  
23 HWNTVYNTNGTTTTFVP 
23-1 HWNTVYNTNGTTTTTTTFVP 
23-2 HWNTVYNTNGTTTTTFVP 
23-3 HWNTVYNTNGTTTTTTFVP 
23-4 HWTTVYNTNGTTTFVP 
23-5 HWTTVYNTNGTTATFVP 
23-6 HWNTVYNTNGTTTFVP 
23-7 HWNTVYNTNGTTTTTTTTFVP 
23-8 HWTTVYNTNGTTTTTFVP 
23-9 HWNTVYNTNGTTTTTTTTTFVP 
P1.25 family  
25 TYTVDSSGVVTPVP 
25-1 TYTVDSSGVFTPVP 
25-2 TYTEGSSGVFTPVP 
25-3 TYTVDSSGVVTPLP 
25-4 TYTVGSRDVVTPVP 
25-5 TYTVDSSNVVTPVP 
25-6 TYTVDSGVVTPVP 
25-7 YTVDSSGVVTPVP 
25-8 TYTVDSSGVP 
25-9 TYTVDNSSVVTPVP 
25-10 TYTVDSSRVVTPVP 
25-11 TYTVDSSDVVTPVP 
25-12 TYTVDSSSVVTVPV 
25-13 TYTVDSMDSSGVVTPVP 
25-14 TYTVNSSSVVTPVP 
25-15 TYTVDSSSVVTPVP 
25-16 SSGVFTPVP (missing TYTVDS motif) 
25-17 TYVDSSGVVTPVP 
P1.26 family  
26 HFVADSQGKITRVP 
26-1 HFVADSQGEITRVP 
26-2 YFTADPNDQNKITRVP 
26-3 HFVADSQDKITRVP 
P1.28 family  
28 YYYTTATNSSTSTTFVP 
28-1 YYYTTATNSSTSTTATNSSTSTTFVP 
P1.30 family  
30 HYTTVYNATTTTTTFVP 
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30-1 HYTTVYNATTTTTFVP 
30-2 HYTTVYNATTTTTTTFVP 
30-3 HYTTVYNATTTTTTTTFVP 
30-4 HYTTVYNATTTTTTTTTFVP 
30-5 HYTTVYNATTTTTTTTTTFVP 
30-6 HYTTVYNATTTTTTTTTTTFVP 
30-7 HYTTVYNATTTTTTTTTTTTTFVP 
30-8 HYTTVYNATTTTFVP 
30-9 HYTTVYNATTTTTTTTTTTTFVP 
P1.34 family  
34 YVDDQGKVKGP 
34-1 YVDDQKVKGP 
34-2 YVDDQGKVKG 
P1.42 family  
42 HLVLDGQGKITQVP 
42-1 HLVSDGQGKITQVP 
42-2 DGQGKITQVP (missing HLV[X] motif) 
42-3 HLVSDGQGEITQVP 
P1.43 family  
43 TFTLESNQMKPVP 
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Appendix Table A.3:  PorA Variable Region 3 peptide sequences 
 

Variant 
 

Peptide Sequence 
 

35 LIGSGSDQ 
35-1 LLGSGSDQ 
36 LLGSTSDE 

36-1 LLGSTSDQ 
36-2 LLGSGSDE 
36-3 LLGSASDE 
37 LIGSATSDQ 

37-1 LIGSATSDE 
38 LLGRIGDDDE 

38-1 LLGRIGEDDE 
39 LLGSGSDG 
40 LLGRSGDDDE 
41 LLGRGSDE 
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Appendix Table A.4:  New Sequence Types first identified during this 

study and deposited on the MLST database. 

 
 
ST Serogroup Profile ST Serogroup Profile 

2147 B 13,5,4,40,59,8,18 4605 B 17,6,9,2,26,6,2 
2155 C 17,6,19,17,3,26,2, 4606 C 17,5,19,2,3,26,2 
2174 B 2,3,7,2,8,15,2 4607 W135 2,7,6,26,9,18,8 
2253 B 2,6,9,5,9,6,9 4608 C 2,6,9,2,9,6,9 
2307 B 4,5,2,5,38,11,9 4609 C 2,3,175,2,8,160,2 
2314 B 3,6,9,5,9,6,2 4610 B 2,3,7,4,34,5,2 
2510 C 9,3,4,3,8,4,6 4611 C 2,3,7,17,8,5,2 
2511 B 8,30,6,16,3,17,2 4612 B, C 2,3,34,13,8,11,2 
2512 A 1,3,1,1,1,1,9 4613 C 2,3,34,13,9,11,2 
2516 B 9,6,9,56,9,6,2 4614 C 2,16,12,11,3,60,30 
2517 A 12,3,1,1,1,1,3 4615 C 3,5,18,17,5,24,16 
2518 B 9, 26,46,9,9,20,17 4616 B 4,2,11,5,58,10,21 
2519 B 4,10,5,4,13,3,8 4617 C 4,10,15,2,8,11,18 
2522 C 14,5,6,9,11,6,16 4618 B 4,10,5,4,8,4,2 
2523 B 1,6,46,9,9,6,9 4619 B 4,5,2,5,38,11,15 
2524 B 20,5,18,17,5,24,16 4620 B 4,10,15,9,43,11,9 
2525 B 4,10,2,17,16,6,20 4621 B 4,3,11,55,6,10,12 
2531 B 4,5,6,40,3,8,18 4622 B 4,29,135,9,8,11,9 
2532 B 1,6,9,9,9,6,9 4623 B 43,3,133,13,8,19,15 
2534 B 13,3,7,13,21,11,13 4624 B 43,5,9,13,6,19,15 
2535 B 4,5,9,9,21,11,20 4625 B 7,4,10,116,10,15,20 
2536 B 13,19,6,40,59,8,18 4626 B 8,10,5,4,6,3,7 
2538 B 43,5,4,7,16,20,15 4627 B 8,16,12,17,43,39,7 
2541 B 6,3,2,12,6,24,14, 4628 B 8,5,6,5,26,78,2 
2542 B 2,6,12,11,26,14,7 4629 B 8,10,9,9,70,6,9 
2543 B 9,6,9,10,9,6,9 4630 B 8,10,6,5,58,86,12 
2544 B 8,26,5,4,6,3,8 4631 B 8,10,5,4,6,3,17 
2546 B 2,5,1,37,16,6,17 4632 B 9,6,25,8,58,6,9 
2548 B 111,5,4,40,3,8,2 4634 B 8,5,15,6,1,44,2 
2552 B 13,5,6,40,5,8,18 4635 B 1,3,4,3,8,4,6 
2553 B 14,10,11,9,6,10,2 4637 B 8,5,4,5,1,78,2 
2554 B 4,29,11,17,5,10,62 4638 B 4,2,4,5,8,11,9 
2555 NG 8,2,46,15,26,20,17 4639 B 4,6,7,9,8,11,20 
2802 B 4,10,15,55,8,11,18 4641 B 4,10,5,4,6,3,11 
2803 B 4,10,15,59,8,11,9 4642 B 4,10,15,7,8,11,2 
2804 NG 110,2,9,5,26,120,46 4643 B 6,5,6,17,26,68,2 
2805 B 100 ,4,7,11,77,26,13 4644 C 2,3,4,3,43,4,6 
2806 B 10,6,9,5,9,18,9 4646 B 4,6,2,1,8,124,20 
2807 B 3,6,52,9,3,8,18 4647 C 4,10,15,9,21,11,16 
2808 NG 8,4,6,17,5,18,6 4648 B 9,26,46,37,9,20,18 
2809 NG 2,16,12,11,3,14,7 4649 B 43,5,9,76,215,11,21 



 219

ST Serogroup Profile ST Serogroup Profile 
3010 B 15,3,133,13,8,6,15 4650 B 13,3,7,13,21,11,2 
3286 B 4,10,6,5,8,11,9 4651 B 2,3,7,2,34,4,2 
3288 B 11,5,185,35,5,171,129 4652 B, C 2,6,4,85,26,6,9 
3289 X 25,10,18,9,8,13,9 4653 B 15,3,133,13,8,16,15 
3290 B 20,5,124,9,3,20,18 4654 B 6,5,19,17,3,26,2 
3291 B 9,6,4,32,9,6,9 4655 B 2,3,7,3,34,5,8 
3292 C 2,6,9,17,9,6,16 4656 C 2,3,7,2,46,5,2 
3297 C 9,5,19,17,3,26,2 4657 B 8,6,12,11,3,22,7 
3298 C 2,3,4,3,8,4,9 4658 C 2,5,12,143,29,285,7 
3464 C 13,5,62,9,9,8,18 4659 B 4,10,15,9,8,6,16 
4570 A 1,3,1,1,13,1,3 4660 C 12,5,9,17,9,6,9 
4571 A 1,3,1,9,1,1,3 4661 B 4,10,15,9,21,11,6 
4586 B 3,5,9,5,11,6,9 4662 C 26,6,9,17,9,6,9 
4587 B 1,6,13,53,26,223,3 4663 B 3,5,9,5,10,6,9 
4588 B 10,5,18,17,5,24,16 4664 B 4,10,5,40,6,3,2 
4589 B 11,5,18,17,5,24,19 4665 B 37,2,53,259,259,116,2 
4590 B 12,5,4,85,13,9,53 4666 B 6,5,6,9,3,21,2 
4591 C 12,6,9,2,9,6,9 4667 B 9,26,46,37,9,20,17 
4592 C 12,5,4,40,59,8,18 4668 B, C 8,5,6,17,26,78,2 
4593 C 13,5,6,9,9,9,18 4670 B 2,3,7,17,34,5,2 
4594 B 13,5,4,40,3,8,16 4671 C 4,10,15,5,8,6,9 
4595 C 13,5,87,9,9,8,18 4672 B 6,6,9,60,9,6,9 
4596 B 13,3,52,9,3,11,9 4673 B 14,6,46,24,118,20,18 
4597 B 13,5,4,40,26,8,18 4674 Y 2,16,6,17,9,18,9 
4598 B 13,141,6,40,3,8,18 4675 B 8,10,5,4,1,3,8 
4599 C 13,5,15,6,3,8,15 4676 C 2,10,12,11,8,39,7 
4600 B 15,3,133,21,8,19,15 4677 C 2,3,4,11,8,4,6 
4601 B, C 15,10,5,4,6,3,2 4678 B 6,6,9,5,10,6,9 
4602 B 15,3,133,13,8,18,15 4679 B 43,5,274,7,215,20,15 
4603 C 15,3,133,13,11,19,15    
4604 B 17,5,19,17,13,26,2    
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