
Modelling HIV/AIDS Epidemic in

Nigeria

Jude Ikechukwu Eze

A Dissertation Submitted to the

University of Glasgow

for the degree of

Doctor of Philosophy

Department of Statistics

March 2009

c© Jude Ikechukwu Eze, March 2009



Abstract

Nigeria is one of the countries most affected by the HIV/AIDS pandemic, third

only to India and South Africa. With about 10% of the global HIV/AIDS cases

estimated to be in the country, the public health and socio-economic implications

are enormous.

This thesis has two broad aims: the first is to develop statistical models

which adequately describe the spatial distribution of the Nigerian HIV/AIDS

epidemic and its associated ecological risk factors; the second, to develop models

that could reconstruct the HIV incidence curve, obtain an estimate of the hidden

HIV/AIDS population and a short term projection for AIDS incidence and a

measure of precision of the estimates.

To achieve these objectives, we first examined data from various sources and

selected three sets of data based on national coverage and minimal reporting

delay. The data sets are the outcome of the National HIV/AIDS Sentinel Sur-

veillance Survey conducted in 1999, 2001, 2003 and 2005 by the Federal Ministry

of Health; the outcome of the survey of 1057 health and laboratory facilities con-

ducted by the Nigerian Institute of Medical Research in 2000; and case by case

HIV screening data collected from an HIV/AIDS centre of excellence.

A thorough review of methods used by WHO/UNAIDS to produce estimates
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of the Nigerian HIV/AIDS scenario was carried out. The Estimation and Projec-

tion Package (EPP) currently being used for modelling the epidemic partitions

the population into at-risk, not-at-risk and infected sub-populations. It also re-

quires some parameter input representing the force of infection and behaviour

or high risk adjustment parameter. It may be difficult to precisely ascertain the

size of these population groups and parameters in countries as large and diverse

as Nigeria. Also, the accuracy of vital rates used in the EPP and Spectrum pro-

gram is doubtful. Literature on ordinary back-calculation, nonparametric back-

calculation, and modified back-calculation methods was reviewed in detail. Also,

an indepth review of disease mapping techniques including multilevel models and

geostatistical methods was conducted.

The existence of spatial clusters was investigated using cluster analysis and

some measure of spatial autocorrelation (Moran I and Geary c coefficients, semi-

variogram and kriging) applied to the National HIV/AIDS Surveillance data.

Results revealed the existence of spatial clusters with significant positive spatial

autocorrelation coefficients that tended to get stronger as the epidemic developed

through time. GAM and local regression fit on the data revealed spatial trends

on the north-south and east - west axis.

Analysis of hierarchical, spatial and ecological factor effects on the geograph-

ical variation of HIV prevalence using variance component and spatial multilevel

models was performed using restricted maximum likelihood implemented in R c©

and empirical and full Bayesian methods in WinBUGS c©. Results confirmed sig-

nificant spatial effects and some ecological factors were significant in explaining

the variation. Also, variation due to various levels of aggregation was prominent.

Estimates of cumulative HIV infection in Nigeria were obtained from both
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parametric and nonparametric back-calculation methods. Step and spline func-

tions were assumed for the HIV infection curve in the parametric case. Parameter

estimates obtained using 3-step and 4-step models were similar but the standard

errors of these parameters were higher in the 4-step model. Estimates obtained

using linear, quadratic, cubic and natural splines differed and also depended on

the number and positions of the knots. Cumulative HIV infection estimates ob-

tained using the step function models were comparable with those obtained using

nonparametric back-calculation methods. Estimates from nonparametric back-

calculation were obtained using the EMS algorithm. The modified nonparametric

back-calculation method makes use of HIV data instead of the AIDS incidence

data that are used in parametric and ordinary nonparametric back-calculation

methods. In this approach, the hazard of undergoing HIV test is different for

routine and symptom-related tests. The constant hazard of routine testing and

the proportionality coefficient of symptom-related tests were estimated from the

data and incorporated into the HIV induction distribution function. Estimates of

HIV prevalence differ widely (about three times higher) from those obtained using

parametric and ordinary nonparametric back-calculation methods. Nonparamet-

ric bootstrap procedure was used to obtain point-wise confidence interval and

the uncertainty in estimating or predicting precisely the most recent incidence of

AIDS or HIV infection was noticeable in the models but greater when AIDS data

was used in the back-projection model.

Analysis of case by case HIV screening data indicate that of 33349 patients

who attended the HIV laboratory of a centre of excellence for the treatment of

HIV/AIDS between October 2000 and August 2006, 7646 (23%) were HIV pos-

itive with females constituting about 61% of the positive cases. The bulk of

infection was found in patients aged 15-49 years, about 86 percent of infected
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females and 78 percent of males were in this age group. Attendance at the labo-

ratory and the proportion of HIV positive tests witnessed a remarkable increase

when screening became free of charge. Logistic regression analysis indicated a

3-way interaction between time period, age and sex. Removing the effect of time

by stratifying by time period left 2-way interactions between age and sex. A Cor-

rection factor for underreporting was ascertained by studying attendance at the

laboratory facility over two time periods defined by the cost of HIV screening.

Estimates of HIV prevalence obtained from corrected data using the modified

nonparametric back-calculation are comparable with UN estimates obtained by

a different method.

The Nigerian HIV/AIDS pandemic is made up of multiple epidemics spatially

located in different parts of the country with most of them having the potential

of being sustained into the future given information on some risk factors. It

is hoped that the findings of this research will be a ready tool in the hands of

policy makers in the formulation of policy and design of programs to combat the

epidemic in the country. Access to data on HIV/AIDS are highly restricted in

the country and this hampers more in-depth modelling of the epidemic. Subject

to data availability, we recommend that further work be done on the construction

of stratification models based on sex, age and the geopolitical zones in order to

estimate the infection intensity in each of the population groups. Uncertainties

surrounding assumptions of infection intensity and incubation distribution can

be minimized using Bayesian methods in back-projection.
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Chapter 1

Introduction

1.1 Background

The first case of AIDS was diagnosed in Nigeria in 1985 in a young female

teenager aged 13 years but was reported in 1986. This case was diagnosed in

Lagos, the former capital city and the most populous city in Nigeria (16)(152).

The Nigerian public received the news of the presence of AIDS in the country with

doubt and disbelief. AIDS was perceived as the disease of American homosexuals

- a disease of a distant land which had no place in Nigerian society. People,

especially youths, were very sceptical of the presence of HIV in their environment.

They saw the whole story as a hoax and a ploy by the Americans to discourage

sex. This sceptism was entrenched in the many acronyms developed for AIDS one

of which was ”American Idea for Discouraging Sex”. The government was then

more interested in a debate about the origin of the disease, even denying that the

disease was a threat to the Nigerian nation. This stance of the government and

the general public was based on the fact that the first HIV positive individual

identified in the country was a sex worker from one of the West African countries.

1
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This led to an erroneous belief that the disease was foreign and incapable of

affecting Nigerians (120). Consequently, the Nigerian public under-reacted to

the news of AIDS and the government did virtually nothing to curb the spread

of the disease (146), (152).

Due to the perception of the public about the disease together with the reli-

gious and cultural belief of most Nigerians, that death is pre-ordained and must

come when it is due, there was little or no behavioural change in matters of sex

and sexual practices (120) (162). Consequently, the AIDS virus spread silently

and unnoticed through the sexual networks in all social classes, professions, age

groups, genders, regions, zones, states, towns and villages in the country. The

HIV/AIDS epidemic in Nigeria grew rapidly into a generalized epidemic when it

was largely thought to be concentrated only within a few sub-populations (278).

Twenty-two years after the first case was reported, the disease has become a

massive epidemic which has become not only a health burden but also a socio-

economic problem. It has affected every facet of Nigerian society and has eaten

deep into the Nigerian nation.

Since 1991, the Nigerian government has conducted National Sentinel Surveys

in order to monitor the trend and extent of the epidemic. The prevalence rate

was 1.8% in 1991, rose to 5.8% in 2001 and declined slightly to 5.0% in 2003

and 4.4% in 2005 (93),(92), (90), (89). It appears from these estimates that the

epidemic has peaked and is on the decline.

In 2001, the UNAIDS/WHO introduced a new version of its epidemiological

model for all developing countries. The model known as Estimation and Projec-

tion Package (EPP) makes use of the surveillance data from each HIV sentinel

site in estimating HIV/AIDS prevalence rates. Also the Spectrum Program uti-

lizes the information on the birth rate, death rate and the output of EPP for the



CHAPTER 1. INTRODUCTION 3

Figure 1.1. National HIV prevalence rates estimated from sentinel survey data.
Source: Federal Ministry of Health

country in calculating the estimated number of people living with HIV, number

of new infections, number of AIDS cases, number of AIDS deaths, number of

orphans, etc(280).

These methods of estimating the national adult HIV/AIDS prevalence in Nige-

ria were based upon the outcomes of the Sentinel Surveys of pregnant women at-

tending 85 selected antenatal clinics (ANC). The extent to which this data source

is representative of the entire adult population of Nigeria is doubtful. This is be-

cause not all pregnant women attended antenatal clinics and not all women of

adult age were pregnant at the time of the surveys. Also the selection procedure

of the survey sites systematically excludes private clinics where many births oc-

cur. Therefore, national estimates based on these surveys rely on a fraction of

women who attended the selected antenatal clinics. Also the Spectrum Program

of UNAIDS and WHO makes use of vital rates which were obtained from a poor

vital registration system. Studies (98), (167), (292) in some countries indicate

that ANC estimates tend to overestimate the population based prevalence rates

of females. Unfortunately, there have been no such population-based survey in

Nigeria.
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Given the observed limitations in the current estimation procedures in Nigeria,

it is the intention of this research to examine other modelling approaches for

HIV/AIDS epidemic that could be more suitable and give more accurate estimates

for the Nigeria epidemic scenario.

1.2 The Country’s Profile

Nigeria is a country in the west of sub-Saharan Africa with a population of

about 140 million people (2), (192) and occupying a land area of 923,768 square

kilometers. There are 373 ethnic groups each with its own language. Among

these languages, Ibo, Yoruba and Hausa/Fulani are the major languages spoken

by about 40 percent of the Nigeria population. English is the official language.

The three main religions are Christianity, Islam and Traditional.

The country is divided into 36 states and a Federal Capital Territory (FTC).

These states are then subdivided into 774 local government areas. The country’s

system of government is a three-tier- structure presidential system: the Federal

Government, the State Governments and the Local Governments. The states are

further grouped into six geo-political zones as follows:

Zone States
North-East Borno, Yobe, Bauchi, Gombe, Taraba and Adamawa
North-West Sokoto, Kebbi, Zamfara, Kastina, Kano, Jigawa, and Kaduna

North-Central Plateau, Nassarawa, Niger, Kogi, Benue, Kwara, and FTC
South-East Anambra, Enugu, Ebonyi, Abia, and Imo
South-West Ogun, Osun, Ekiti, Ondo, Oyo, and Lagos
South-South Edo, Delta, Bayelsa, Rivers, Akwa Ibom and Cross Rivers

Table 1.1. The grouping of the Nigerian States into Zones

Nigeria is the world’s most populous black nation with an annual population

growth rate of 3.2% and a total fertility rate of 5.7. The infant and under five



CHAPTER 1. INTRODUCTION 5

mortality rates are 100 and 201 per 1000 live births respectively (193). The crude

birth and death rates are 41 births and 17 deaths per 1000 population per annum

respectively. The gross national income is $640 per capita and the gross domestic

product per capita growth rate is -3.1% (287).

Nigeria, formerly a British colony, got her political independence on 1st Oc-

tober 1960 and was subjected to military rule for about 30 years. However, since

1999, Nigeria has been under democratic rule. The country has abundant human

and natural resources. Despite this wealth of resources, most Nigerians live in

penury. The 2007/2008 Human Development Report (HDR) ranked Nigeria as

158th out of 177 countries with Human Development Index score of 0.47, life

expectancy index score of 0.359 and GDP index score of 0.404. Nigeria is about

the 25th poorest nation in the world (284).

1.3 The HIV/AIDS Situation

The first case of AIDS was reported in Nigeria in June 1986. By the end of

1986, only 2(two) cases were officially reported. In 1987, another 2(two) cases

were reported. 1988 saw 33 cases and ten years later, in 1998 alone 18,490

cases were reported, followed by 16,188 cases in 1999. 9715 and 3661 cases were

reported in 2000 and 2001 respectively (278).

Notwithstanding the fact that the reported cases of AIDS were beset with

incompleteness due to under diagnosis and underreporting, the data gives an

idea of the inception and trend of the epidemic in Nigeria especially from the

mid 1980’s till 1999. Data for 2000 and 2001 appear unrealistic and may not

represent the true situation of the disease at that time. The excitement of the
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Location Prevalence Group Time Period Source
(%)

Ibadan 21.3 Pregnant women attending May-Nov 2001 a
ANC in the inner city

Ibadan 34.3 Commercial Sex Workers 2002 a
Ondo State 12.8 Pregnant women attending 2001-2003 a

ANC in 9 towns
Jos 8.9 Pregnant women Oct. 2001-Jan.2003 a
Jos 39.2 Commercial sex Workers 1993-2002 a
Jos 11.7 Blood donors (males) Jan.-Mar. 2004 b
Jos 14.1 Pregnant women Jan.- Mar. 2004 b

attending ANC
Zamfara 35.4 All tests May 2003- Jan 2004 c
Zamfara 24.4 All tests Jan- Dec 2003 d
Zamfara 35.4 All tests May 2003 - Jan 2004 c

Table 1.2. HIV Prevalence Rates estimated from various sources. a: Various
Contributors to Regional and Global Conferences on HIV/AIDS: Compiled by the
Nigeria Institute of Medical Research and NACA. Sept. 2003; b: Jos: Our Lady
Apostolic Catholic Hospital; c: Zamfara: Duala Hospital, Gusau; d: Zamfara:
Royal Medical Laboratories. Source: UNDP (2004)

discovery and the reporting of the new disease seem to wane with time. Data

from the sentinel surveillance survey suggest higher figures for 2000 and 2001.

Estimates from the National HIV/Syphilis Sentinel Surveys give a better idea

of the extent of the epidemic in the country over the period. Figure 1.1 shows

the national prevalence rates from 1991 to 2005.

These estimates are the median of all the observed rates in the zones. This

means that the explosive rates in some zones are masked by these national median

rates. For instance in 2003, a site in Calabar had a prevalence of 12.7% but the

national prevalence for that year was 5.0%. Overall, these surveys indicate that

the trend of the epidemic peaked in 2001 and is on the decline in recent years.

Table 1.2 shows estimates of prevalence in some towns, indicating that the official

estimates from the sentinel surveys may not be very precise.
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Figure 1.2. Map of HIV prevalence in Nigeria by States (2001 and 2003).
Federal Ministry of Health

The spatial trend of the epidemic is more visible from the maps showing

the outcome of the national HIV/AIDS sentinel survey. The spatio-temporal

distribution of the disease indicates that at the earlier stage of the epidemic, more

states in the southern part of the country were affected than those in the northern

part. However, over the years, the epidemic appears to have concentrated in the

middle belt (north central zone) and the south-south zone of the country. see

Figure 1.2

Rather than decline as suggested by the data on reported AIDS cases and the

sentinel prevalence rates, the UNAIDS/WHO estimates and projections based on
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the surveillance data show that the number of persons infected is on the increase.

The estimates are represented in Figure 1.4 with the two scenarios representing

assumed levels infection intensity. Recent research evidence based on some factors

that fuel the epidemic suggests that the epidemic is still emerging and the worst

is yet to come.

According to USAID estimates in 2005, Nigeria ranks third amongst coun-

tries with the highest number of people infected with HIV and the number of

AIDS deaths (see Figure 1.3). Currently, Nigeria is responsible for 20 per cent

of Africa’s total AIDS figure and 10 per cent of the world’s, with an estimated

3.86 million people living with HIV/AIDS and 221,000 AIDS related deaths and

370,000 new HIV infections annually. About 540,000 patients are estimated to

require Antiretroviral treatment and by 2006 only about 81,000 patients were es-

timated to be receiving treatment (283),(191),(279) . The average life expectancy

declined from 53.8 years for women and 52.6 for men in 1991 to 46 and 47 years

for women and men respectively in 2007 (297),(287).

60 per cent of the total infected population are young people below 25 years

of age and about 61.5 per cent of all adult infections are women (279). About

1.3 million children are estimated to be living with HIV and AIDS which they

contracted from their mother through breastfeeding or during birth. National

survey indicated that by age 15, 25 per cent of young Nigerians had initiated sex

and by age 18, 50 per cent of them have had sex (283). Given the large proportion

of these youths (44 per cent of the total population), the low condom use and

other forms of high risk sex, the propensity or the potential for the epidemic to

grow higher than its present level is almost certainty unless honest efforts are

directed towards the curbing of the epidemic.
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Figure 1.3. The world’s most affected countries. Source: USAID, 2005

Figure 1.4. Predictions of HIV infection in Nigeria. Source: UNAIDS 2004
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1.4 Modes of HIV Transmission in Nigeria

About 80 percent of HIV transmissions is via heterosexual transmission with

blood transfusion accounting for 5 per cent of infections. Mother-to-child trans-

mission, needle sharing, scarification, etc share the remaining 15 percent (283).

However, recent findings reported that blood transfusion accounts for up to 10

per cent of new HIV infections in Nigeria (65) (29). This is due to the fact that

not all hospitals have the technology to effectively screen blood (3) and the im-

plementation of the blood policy guideline is restricted to only major Federal and

State institutions and a few select private hospitals. It is a well known fact that

a greater proportion of Nigerians patronize these private health facilities (152).

There is a high demand for blood because of blood loss from surgery, childbirth,

road traffic accident, anaemia and malaria in the country. Studies (76) (119)

which investigated blood transfusion related HIV/AIDS in children screened for

HIV between 1996 and 2001 at the University Teaching Hospital at Ile-Ife, and

between 1989 and 1996 in the University Teaching Hospital at Enugu, found that

about 66.7% and 68% respectively, of all children who were HIV positive were

infected through blood transfusion. Most of the transfusions were done in the

private hospitals and blood collected from private laboratories.

The predominance of heterosexual transmission in Nigeria was confirmed by

several studies that focused on some high-risk and vulnerable groups. A survey

conducted by the Federal Ministry of Health in 2003 and 2004 gave the informa-

tion in Table 1.3.
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Group Prevalence(%)
Sex Workers 35 - 66%

Long distance truck drivers 20 - 25%
Sexually Transmitted Disease Patients 11.5 -13%

TB Patients 17%
Injection drug users 8.9%

Table 1.3. Prevalence in Vulnerable Groups

1.5 Driving force of the epidemic

The major driving force of the epidemic is basically the behavioural attitude

of Nigerians in matters of sex. Some of the observed factors inducing the spread

of the pandemic are: rampantly high risk sex, low risk perception, high poverty

levels, harmful traditional practices, high stigma and discrimination of patients,

Low levels of education, high levels of sexually transmitted infections, mother to

child transmission and blood transfusion.

Of all these factors, poverty is the core causative factor. The booming com-

mercial sex trade, international human trafficking (especially of young girls and

women), the massive rural-urban migration with its social consequences and

some cultural practices like wife inheritance are fueled by poverty. According

to UNDP (283), poverty manifests itself in Nigeria in various ways, namely:-

human poverty, physiological deprivation, income poverty, poor macroeconomic

performance, negative impact of public expenditure and social exclusion. All of

these, combined with pandemic corruption and fiscal indiscipline, have compelled

certain risky behaviour on the citizenry as they struggle to survive. Hence, the

risk of HIV assumes a lower priority as people are more concerned about imme-

diate consequences of survival than the chances of contracting HIV where the

effects are not immediate. Therefore, poverty increases the vulnerability to HIV

infection and the speed and scale of the epidemic. Given the deteriorating health,
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education and social services, the curbing of the epidemic is impracticable. Mal-

nutrition and compromised immune systems due to exposure to other diseases

may make people more susceptible to HIV infection. Therefore, the relation-

ship between HIV/AIDS and poverty is ”bi-directional” (134), a relation which

Whiteside (22) aptly described as a poverty/epidemic circle: poverty increases

the spread of AIDS and AIDS increases poverty.

Poverty in Nigeria is worrisome and paradoxical. Nigeria has all the resources

to be one of the richest and most advanced, but sadly, it is among the poorest

25. It is the 6th largest producer of oil and yet it is the poorest OPEC country

(276). It is estimated that about two-third of Nigerians live below one dollar per

day and about 85 per cent of Nigerians are vulnerable to poverty. Also, there

appears to be a link between inequality and AIDS (22), (215).

The National HIV/AIDS and Reproductive Health survey (NARHS)(91) of

2003 indicate that about 9% of women aged 15-49 years and 18.4% of men aged

15-64 years engage in extra and premarital sexual activity. The survey also

revealed that youths are at greater risk as about 14% of female and 25% of male

youth respectively engage in non-marital sex. Also, only about 32% of women

and 50% men use condoms during risky sex.

Another factor that may fuel the epidemic in the country is the wide range

of traditional practices such as wife hospitality, spouse sharing (180) , polygamy,

wife inheritance and concubinage. Studies show that HIV prevalence is high

in communities (example Benue, Kogi, and Nsukka) where these practices are

common. Other cultural practices that may be privy to HIV transmission are

female genital cutting (25) and some traditional Healers’ practices (78)
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1.6 A description of available data on HIV/AIDS

in Nigeria

Below is a brief description of some available sources of HIV/AIDS data in

Nigeria. The list is however not exhaustive, the sources described here are the

major ones which have a national outlook except for some few localized surveys

on sexual networking.

1.6.1 National Sentinel Surveillance Data.

The most comprehensive national data on HIV/AIDS in Nigeria is the Sen-

tinel Surveillance data already mentioned above. This data is generated from a

population-based survey of the prevalence of HIV/AIDS in all the zones, states,

major towns and some rural areas in the country. The target population of the

study is pregnant women aged between 15-49 years attending antenatal clinics

(ANC) in selected health facilities in all the states in the country.

At least two sentinel sites are selected in each state and the selection of these

sites depends on their meeting some set criteria which include inter-alia, avail-

ability of functional antenatal clinic services with qualified and willing staff. The

number of sites selected per state is proportional to the population of the state.

The first HIV Sentinel Surveillance in Nigeria was conducted in 1991 in 9

states and covered 44 sites. The second was in 1993 which covered 17 states and

64 sites. 1995 and 1999 surveillances were in 21 states and 84 sites and 18 states

and 74 sites respectively. 2001, 2003 and 2005 sentinel surveys covered the entire

36 states with a total of 85 sites.
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Figure 1.5. Distribution of HIV Sentinel Survey Sites. Source: Federal Ministry
of Health
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The targeted sample size per site in the recent surveys was 300 and the sam-

pling procedure used was consecutive sampling whereby clients who met the el-

igibility criteria were selected one after the other until the desired sample size

is achieved. A woman is said to meet the eligibility criteria if she is aged 15-49

years, pregnant and is presenting herself for the first time for booking in the

antenatal clinic during the survey period.

The unlinked anonymous method of blood sample collection is usually adopted,

using syphilis screening as the entry point. Information on zone, state, site , age

and marital status of the patients are also collected.

Earlier surveys collected information on the HIV status of some population

subgroups like the commercial sex workers (CSW), STD clinic attendees, and

tuberculosis (TB) patients. These population subgroups were removed from the

sentinel exercise since 1999.

The data is tabulated by zone, state, site, rural/urban status, and age. Since

1991, the national prevalence rate is estimated from the information obtained

from these surveys. In a recent study of the quality of sero-surveillance in low

and middle-income countries (240), Nigeria’s surveillance system was adjudged as

fully functioning based on scores allocated to certain information on the survey

from 2001 through 2007.

Although the sentinel surveillance provides the bulk of the data upon which

national estimates are based, it is not without limitations. The extent to which

the sentinel population is representative of the entire population is questionable.

This is because not all women aged 15-49 were pregnant at the time of the survey

and not all of them who were pregnant attended antenatal clinics. The surveyed

sites were only public clinics and given the poor facility situation in these clinics,
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many who can afford it prefer private clinics, others may opt for the traditional

health practitioners.

1.6.2 Reported cases of AIDS

The Federal Ministry of Health publish data on the reported cases of AIDS.

This data is collected from various hospitals and published centrally. The data is

also published annually in the UNAIDS/WHO Epidemiological fact sheet. Sur-

prisingly, data from the two sources differ slightly.

AIDS case reporting in Nigeria is fraught with low reporting as not all cases

are diagnosed because of poor health facilities and many patients may not visit the

public health clinics throughout the time of their illness, either due to poverty or

preference for traditional or religious health outfits. Reporting delays is another

set back of the data. It takes a very long time for the Federal Ministry of Health

in Abuja to receive data on HIV/AIDS diagnosis from the States ministries.

A more comprehensive data on reported cases of HIV/AIDS in Nigeria is the

data published by the Nigerian Institute of Medical Research (NIMR), Federal

Ministry of Science and Technology (83). The institute surveyed 659 health fa-

cilities comprising of 289 public and 370 private hospitals and 398 laboratory

facilities made up of 181 public and 217 private laboratories in the six geopoliti-

cal zones of the country. The survey aimed at constructing a national HIV/AIDS

database by collating and articulating reliable qualitative and quantitative na-

tional data on HIV/AIDS by pooling together all existing epidemiological, clin-

ical, socio-economic data and scientific publications on various aspects of the

epidemic in the country. Data was therefore retrieved from the records of the

1057 health and laboratory facilities on all diagnosed HIV infections, AIDS cases
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and AIDS-related deaths between 1989 and 1999.

1.6.3 Data from HIV/AIDS centres of excellence

Some University Teaching Hospitals are designated centres of excellence for

research and treatment of HIV/AIDS. They publish data mostly on the number

screened and the number testing positive for HIV. The data is extracted from the

registers kept in the HIV laboratories. The register contains some demographic

information of the patients like name, sex, age, place of residence and occupation

which are usually not published. Other personalized information on the patients

can be obtained from the records of the patients in the HIV/AIDS clinic.

The data may not be very representative of the general population. The

number screened and the cases detected may only be a small proportion of the

individuals and total cases within the catchment area.

1.6.4 Other surveys in collaboration with some interna-

tional agencies

Some international organizations collaborate with governmental and non-

governmental structures in Nigeria in conducting surveys in some specific aspects

of HIV/AIDS. Some of such surveys are the National Demographic and Health

Survey (NDHS)(194), (193), the National HIV/AIDS and Reproductive Health

Survey (NARHS) (91) and the Behavioural Surveillance Survey (BSS)(88).

The NDHS was conducted in 1980, 1990 and 1999 and 2003. The survey was

not specifically designed to monitor sexual behavioural changes in HIV/AIDS

scenario but was designed to solicit information on the socioeconomic and health
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conditions of selected respondents throughout the nation. The BSS arose as a

result of the need to monitor changes in HIV risk behaviours among Nigerians

given the 5.4% prevalent rate recorded among pregnant women attending ante-

natal clinics in 1999 (47). BSS which was conducted in 2000, focused on high risk

and vulnerable groups like female sex workers, male truck drivers, male in-school

youth and female in-school youth (aged 18-19 years). However, similar informa-

tion were collected in the two surveys some of which were age at first intercourse,

knowledge about AIDS, condom use, STI, etc.

The National HIV/AIDS and Reproductive Health Survey (NARHS) is a

nationally representative survey conducted in 2003. 10,090 respondents were

surveyed of which 5,128 were women aged 15-49 years and 4,962 were men aged

between 15-64 years. The objectives of the survey was to provide information on

levels of HIV preventive knowledge and behaviour, sexually transmitted diseases,

stigma and discrimination against persons living with HIV/AIDS, etc. Data from

this survey, like those from NDHS and BSS, may assist in predicting behaviour

changes and provide ecological data for model construction.

1.6.5 Surveys on Sexual Networking

Some surveys on sexual networking were conducted in Lagos State (38), Ekiti

district (121), south-western Nigeria (67), Calabar (263) and within the Nigeria

Police Force (82) between 1990 and 1995. Data from these surveys may be

useful in estimating the level of concurrent partnership in the population and

in constructing network models. The problem with these data is that they were

conducted at different places at different times, hence, it may not be easy to

combine them for meaningful statistical modelling.
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1.7 The Scope of the Research

The research reported in this thesis focuses on developing models that could

describe or predict the HIV/AIDS epidemic in Nigeria. We shall however, first

review current methods adopted by the WHO/UNAIDS in estimating HIV/AIDS

epidemic in Nigeria.

Several attempts were made at obtaining more detailed data from various

sources but the establishments in charge of the data were unable to grant the

request.

The scope of the research depends largely on the nature of data available on

HIV/AIDS in Nigeria. Also, the nature of the data depends on the source from

which the data were collected. For this study, three sets of data are proposed:

• Reported cases of AIDS and HIV

• HIV screening results

• HIV Sentinel surveillance data

Each data set shall be used for the construction of suitable models that will

describe or predict the HIV/AIDS epidemic in the country.

We shall explore modelling procedures developed for other countries and ap-

ply it or a modified version to the Nigeria scenario, taking into account the

peculiarities of the country’s epidemic.

Data on reported cases of AIDS and HIV is published centrally by the National

Bureau of Statistics (NBS) and the Federal Ministry of Health (FMOH). Also,

the Nigerian Institute of Medical Research (NIMR) published HIV/AIDS data



CHAPTER 1. INTRODUCTION 20

collected from 1057 health and laboratory facilities on all cases of HIV/AIDS

diagnosed between 1989 and 1999 from selected public and private facilities. We

adjudge the NIMR data to be more comprehensive than that published centrally

by FMOH because most private health and laboratory facilities do not report

cases to the FMOH since they have no legal obligation to do so. The FMOH

data is not only beset with underreporting but also reporting-delays due to red

tape and bureaucratical bottle-necks associated with collating and publishing

official statistics in Nigeria. For instance, as of August 2008, reported cases

of HIV/AIDS for 2003 to 2007 were yet to be published and those published

for 2001 and 2002 were not only doubtful but misleading. Therefore, models

constructed using such data should be amenable to adjustment or correction

for these reporting errors. Another limitation is that the data is not classified

by age and sex and is published as annual totals. The use of the NIMR data

will, to some extent, solve the problem of reporting delays since the data were

collected retrospectively with the date of diagnosis. Specifically, we shall used

the NIMR data for the construction of back-projection models. We shall consider

two aspects of back-projection methods: the parametric and the nonparametric

back-projection. In doing this, we shall apply the data just as it is without

correcting for underreporting. The next step will be to examine appropriate ways

or methods for correcting for underreporting. In order to achieve this, we shall

study attendance to, and HIV screening test results from, the HIV laboratory of

a Centre of Excellence for the treatment of HIV/AIDS in the country over two

periods of time. Period one is the time when patients were required to pay for

testing and treatment and period two is the time when testing and treatment

were free. This will be serve as a surrogate measure of underreporting due to

poverty only.
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At the asymptomatic stage of HIV infection, the infected person may be

unaware of the infection and may spread the virus unknowingly within the pop-

ulation. These individuals who are not yet diagnosed could be described as

”hidden”. The determination of the size of this hidden population is of utmost

importance as it explains the quantum of HIV infection in the population within

a given period. We shall endeavour to estimate the size of the hidden population

of HIV positive individuals in Nigeria from estimates from the back-projection

models.

Data on results of HIV screening is individual level data which contain in-

formation on age, sex, date and result of the test. The age/sex distribution of

patients will form the basis for stratification and each stratum will be studied and

modelled separately. We shall employ the tool of logistic regression to compare

the distribution of the burden of HIV infection among the the various sub-groups

and also to study the effect of the interaction of some covariates on the spread

of the disease. Information obtained from this data will assist us in determining

the correcting factor for underreporting in the national data.

We shall study the spread of the epidemic among the six geo-political zones

in Nigeria and attempt to fit spatial models for comparison. In particular, we

shall study the tendency of the disease to cluster in geographic space. To achieve

this, we shall apply the tool of spatial autocorrelation analysis, variograms, and

kriging. The data proposed for this analysis are the outcome of the sentinel

surveillance conducted biannually from 1991 up to 2005. The data were collected

from pregnant women attending antenatal clinics in various sites in the 36 States

of the Federation and the Federal Capital Territory (FTC), Abuja. The States

are grouped into six geopolitical zones. Thus, the ANC data are hierarchically

structured. We shall explore this structure in the study of the variations in the
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intensity of the epidemic by employing the tools of multilevel analysis and spatial

multilevel models. In estimating the multilevel models, we shall seek to utilize

the restricted maximum likelihood, empirical and fully Bayesian approaches.



Chapter 2

Literature Review

A review of available literature reveals that not much work have been done on

building models for HIV/AIDS epidemic in Nigeria. However, the UNAIDS/WHO

over the years have developed some general models which are applied to various

countries depending on the nature of the epidemic.

2.1 UNAIDS/WHO methods

This section reviews all the methods used by UNAIDS/WHO (280), (282) in

obtaining and projecting estimates of HIV/AIDS prevalence in Nigeria.

HIV prevalence estimation

The HIV prevalence rate in Nigeria is estimated by applying a general for-

mula on data from the HIV Sentinel Surveys (HSS) of women aged 15-49 years

who attended antenatal clinics (ANC). The sample estimate of the prevalence

rate is obtained by dividing the number of positive cases found in the sample

23
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by the sample size. To estimate the HIV prevalence in the adult population

(15-49 years), the prevalence rate for sampled women is multiplied by the total

adult (15-49 years) population. This method was also used by UNAIDS/WHO

in estimating the seroprevalence rate in high-risk groups or any specific group

of interest. The method is based on the assumption that the HIV prevalence

obtained from the antenatal clinic attendees, with adjustment for the male to

female ratio, is a surrogate for HIV prevalence in the total population of aged

15-49years old. Recent studies (292), (98),(167) have confirmed that the ANC es-

timates generally overestimate the population-based survey prevalence, especially

for younger women and men. Gouws et al(98) found that the ANC overestimates

the population-based survey prevalence by about 20% and recommended that

HIV prevalence derived from the ANC surveillance data be multiplied by about

0.8 to adjust for overestimation in countries where population-based HIV surveys

have not been conducted.

Projection methods

The following methods were used by UNAIDS/WHO to project estimates of

HIV/AIDS in Nigeria.

Delphic survey method This method was used in early stage of the epi-

demic in the late 1980s to obtain projected estimates of the HIV/AIDS prevalence

rate in Nigeria. Opinions were obtained from knowledgeable experts in iterative

fashion. The average and range of their guesses were used as projections. While

this method has the advantage of speed of information gathering and low cost,

it is highly subjective and may produce estimates that are widely ranging. Also,

it may be difficult to find experts in quantitative epidemiology who are very fa-

miliar with the demographics of the country. However, this method was useful
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at the time when data on HIV/AIDS were scant in the country.

Mathematical and computer /simulation methods Used in the early

1990s for short and long term projections of HIV prevalence. The size of the risk

population, the number of their current partners, their partner exchange rate and

the rate of mixture between the risk population and the not-at-risk population

were used as input parameters. The general uncertainty surrounding accuracy of

these input parameters made estimation and projection of HIV/AIDS incidence

and prevalence by this approach very unreliable.

Scenario/modelling This approach was used for the short term estimation

and projection of AIDS cases and AIDS deaths. It was developed by the Sur-

veillance, Forecasting and Impact Assessment unit of the former WHO Global

Program on AIDS (GPA). A scenario is defined as an outline of any series of

events, real or imagined. The HIV/AIDS scenario can be constructed with or

without models to fit the observed HIV/AIDS data and trends. The procedure

as outlined in the WHO document (296) is as follows:

• Available HIV seroprevalence data are assembled and analyzed and used to

estimate the most recent pattern(s), prevalence and trends of HIV infection

for a specific population.

• Different HIV patterns and prevalence levels can be constructed with some

confidence based on these data and other epidemiological observations.

• Using an AIDS model, we can derive the annual and cummulative estimates

and projection of AIDS cases/deaths and other HIV-related conditions,

using the general HIV scenario(s) constructed above.

Epimodel This model was used to estimate past and current prevalence and



CHAPTER 2. LITERATURE REVIEW 26

make short-term predictions of AIDS cases and AIDS deaths. It was developed

particularly for countries where AIDS case reporting was incomplete and un-

reliable. It uses estimates of HIV prevalence at a selected point in time and

distributes this prevalence by annual HIV-infected cohorts back to the estimated

start of the epidemic along a selected epidemic curve. It then applies the annual

progression rates from HIV infection to the development of AIDS to each of the

annual HIV cohorts to calculate the annual number of adult AIDS cases and

deaths. The use of a single point prevalence and time may yield biased AIDS

estimates. High HIV prevalence estimates will produce high estimates of AIDS

cases. The stage of the HIV epidemic will also affect the HIV prevalence used.

Estimates of HIV prevalence at the increasing phase of the epidemic will be higher

than that at the declining stage of the epidemic.

Estimation and Projection Package (EPP) This method is currently

being used by UNAIDS/WHO (280), (296) (221) for the estimation and short-

term projection of HIV/AIDS estimates. It is designed for a generalized or con-

centrated epidemic where more data are available and uses yearly HIV prevalence

for at least five years for all population groups and some curve fitting parameters

as inputs. Developed in 2001, it tries to find the curve that best describes the

trend of national adult HIV prevalence over time. In a generalized heterosex-

ual epidemic like Nigeria, the model is fitted to urban and rural HIV prevalence

data of women attending ANC separately. The estimates are then combined to

produce a national estimate. Four major parameter inputs are

• t0 : the start year of the HIV/AIDS epidemic

• r : the force of infection. It is the summary of sexual contact and trans-

mission probability.
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• fo : the initial proportion of the adult population that is exposed to the

risk of infection

• φ : the behaviour or high risk adjustment parameter which determines the

extent to which susceptible people who die of AIDS are replaced by people

who were not at risk.

The population groups are

• X = not-at -risk population

• Z = at-risk population

• Y = infected population

• N = X+Y+Z = Total population

The change in these population group is given by the following differential equa-

tions

dZ

dt
= f(

X

N
)Et − (µ +

rY

N
+ ι)Z (2.1)

dX

dt
= 1− f(

X

N
)Et − µX (2.2)

dY

dt
= (

rY

N
+ ι)Z −

t∫

0

(
rYx

Nx

+ ιx)Zxg(t− x)dx (2.3)

where f(X
N

) is the fraction of those entering the adult population (Et) who enter
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the at risk group Z and is defined as

f(
X

N
) =

exp
[
φ(X

N
− (1− f0))

]

exp
[
φ(X

N
− (1− f0))

]
+ 1

f0
− 1

(2.4)

ι = 1 for the first year of the epidemic and 0 for another years f = proportion

of those entering the adult population who enter the At-Risk group. If φ > 0, the

proportion of people entering the at-risk group is increased. g = density function

describing the progression to AIDS death since HIV infection and is given as

g(x) = (
µ + αxα−1

β
)exp[−µx− (

x

β
)α] (2.5)

where α is the shape parameter of the Weibull distribution fitted to the HIV

survival times and β is the position parameter defined in terms of the median

survival time, m, as

β =
m

[ln(2)1/α]
(2.6)

It is recommended that α be predefined based on available empirical data and

that three values of m be used each corresponding to slow, medium and rapid

progression respectively. The fixed parameters of the model are

• crude adult (15+) death rate µ

• number entering the adult population at time t, Et

• force of mortality due to AIDS, x years after infection
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For a heterosexual epidemic like Nigeria, Et can be defined in terms of HIV

negative children

Et = B−
t−15l (2.7)

B−
t−15 = b[Xt−15 + Zt−15 + (1− ν)εYt−15] (2.8)

l is the cohort survival proportion to age 15, b is the birth rate and ν is the

probability of vertical transmission. ε is fertility reduction due to HIV infection.

It is assumed that HIV positive births do not survive to adulthood. However,

the projected number HIV positive births is given as

B+
t = νεYt (2.9)

In the implementation of the EPP model , it is assumed that the parameters

are fixed. EPP searches for the best values of To, fo, and r that best fit the

observed surveillance data. The best fit is obtained by minimizing the sum of

squared errors between the model curve and the surveillance estimates.

Spectrum This is a programme that uses the prevalence projection produced

by EPP to calculate other estimates like numbers of people infected, new infec-

tions, AIDS cases and AIDS deaths. These calculations are based on population

estimates provided by the UN population Division and model patterns.

The vital registration system in Nigeria is not yet efficient. Most vital events
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are not recorded. Therefore estates of birth rate and death rate used in this model

may be misleading. The estimates of other parameters such as φ and the size

of the at-risk population may not be reliable. The data used is the surveillance

data which may not be very representative of HIV prevalence in the entire adult

population.

Since 2001, the EPP and Spectrum has undergone several metamorphosis

(271) all aimed at overcoming some observed limitations. The most recent ver-

sion, EPP2007, incorporates uncertainty estimation(164) for generalized epidemic

using the technique of Bayesian Melding. Prior distribution for the model para-

meters are specified using expert knowledge. Other major improvement on the

program include changes in the urban-rural population ratio, calibration of HIV

prevalence measured at ANC in countries with generalized epidemics, based on

a comparison of HIV prevalence from ANC to national population-based sur-

veys, longer survival of HIV patients due to antiretroviral therapy(ART) and the

quantification of number of people eligible for ART (220),(282), (281).

2.2 Review of other methods

Given the limitations of the methods presently used for HIV/AIDS prevalence

estimates, we were compelled to review methods applied in other countries with

a view to checking their suitability to the Nigeria scenario. The following models

were reviewed.
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2.2.1 Extrapolation models

Under this method, AIDS incidence is modelled as a function of time. Time

may assume any mathematical form; linear, polynomial, log-linear function, etc

and extrapolated into the future (172), (173), (236). The problem with this model

is that the extrapolated estimates are greatly influenced by the mathematical

function chosen for time. Also, it is not possible to obtain projected estimates

for HIV prevalence or incidence. This method also assume that the trends will

remain unchanged which is unlikely.

2.2.2 Epidemic theory models

This model generally makes use of a partitioned population:–the susceptible,

infective and not-at-risk groups (125), (126). The deterministic approach could

be used to describe an epidemic in large populations with large number of peo-

ple infected. The problem with this method is that it is not easy to determine

precisely the proportions of individuals in each category, the extent of mixing

between the susceptible and the infective, the partner exchange rate, concur-

rent partners, behaviour change parameters, etc. Also, some of these models are

deterministic, they assume that once the initial conditions and parameters are

specified, the prevalence function and infection curves are uniquely determined

and can be found by recursive methods (230). The stochastic version of these

models may be useful in describing epidemic in limited geographic areas or sub-

groups. The models are usually complicated with so many unknown parameters

and involve assumptions that are often not verifiable. A detailed account of the

procedures for deterministic and stochastic modelling of AIDS/HIV epidemiology

can be found in Wai-yuan (304)
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2.3 Backcalculation models

First proposed by Brookmeyer and Gail (227), the backcalculation method is

used to reconstruct the historical infection rates that may have occurred and have

generated the observed pattern of AIDS diagnosis. That is, the historical pattern

of HIV infection curves or rates is reconstructed using information on observed

AIDS incidence and knowledge of the incubation period distribution. Incubation

period is defined as the duration between HIV infection and AIDS diagnosis.

The reconstruction of the infection curve and the estimation of the time since

infection, in turn, makes it possible to predict the future number of AIDS cases

(227), (229), (257).The back-projection equation is formulated based on the fact

that for an individual to be diagnosed with AIDS at time t, he must have been

infected with HIV at some time s in the past and hence the incubation period

is the time between s and t, that is (t − s). This technique is widely accepted

because of its efficient application and requires fewer assumptions and parameter

inputs when compared with other modelling approaches like the epidemic theory

models.

Generally, the back-projection model is given as

µt =
t∑

s=1

λsft−s,s (2.10)

µt is the mean AIDS incidence at time t, λs is the mean HIV incidence at

time s and ft−s,s is the probability density function for someone infected at time

s and diagnosed at time t. µt is known from the AIDS diagnosis and ft−s,s

is known from other epidemiological studies (231), (139). λs is then estimated

using a deconvolution process. However, the nature of each of these components
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of the back-projection model has a far reaching effect on the outcome of the back-

calculation procedure. We discuss below some of the effects for each component.

The infection curve (λ) The choice of the infection curve for λ may have

some consequences on projected estimates (69), (97), (288), (257). For instance,

DeGruttola and Lagakos (288) fit four different shapes of parametric infection

curve to the US AIDS incidence data for the period 1981-1987 and found that

the curves differ dramatically in the most recent years but give similar AIDS

incidence in the distance past. The reason for this is not far fetched; the use

of a strong parametric model, such as the exponential model, as the infection

curve will produce estimates that fit the distant past of the AIDS data very well

but will portray an exponential growth in the most recent portion even when the

AIDS incidence data suggest otherwise. To overcome this, Brookmeyer and Gail

(227) (229) Rosenberg and Gail (257) suggest the use of flexible models such as

step functions with about four or five steps. The justification of this is that these

models are sufficiently flexible so that later portions of the infection curve can

vary independently of early values of the curve. Rosenberg et al (258) investi-

gated the performance of step function models and found that they yielded the

smallest percentage root mean square error and bias in the short-term projec-

tion of AIDS incidence and estimating cumulative HIV infections. The estimates

of the cumulative HIV infections and the projection of the AIDS incidence are

based on the integrals of the estimated infection curve, and given the discontinu-

ities in step function models, the integral over the infection curve appear not to

be feasible. Consequently, Rosenberg and Gail (257) suggested the use of spline

functions for the infection curve

The incubation density (f(t)) Earlier work on HIV/AIDS backcalcula-

tion (227), (229), (257) assumed that the incubation distribution is stationary
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over the time period. Also, the incubation distribution adopted for any model

has an influence on the HIV incidence estimation (207), (6), (97), (256),(261). To

investigate this Baachetti et al (207) used four different incubation period distri-

butions to estimate HIV incidence through 1990 using AIDS diagnosis data and

found that the estimates vary substantially in the most recent past (1987-90).

According to Brookmeyer and Gail (103)(230), assuming a shorter incubation

distribution leads to lower estimates of cumulative number of infections and a

slow incubation distribution requires large values of infection curve to fit the

AIDS incidence series while fast incubation distribution require small values of

the infection curve. However, most authors (226), (229), (97) agree that use

of backcalculation for short-term projection of AIDS incidence and estimates of

AIDS incidence at the earlier part of the epidemic is very reliable and is relatively

insensitive to the choice of incubation distribution. This is because in the first

few years following infection, the estimated incubation distribution has increasing

hazard and flexible models of infection curve can adapt to a particular incubation

distribution to fit the AIDS incidence.

AIDS data series Since the AIDS incidence is an important component of

the backcalculation model, it is required to be reliable, up to date and accurate.

Unfortunately, the accuracy of the AIDS incidence series is affected by report-

ing delay and underreporting. Reporting delay is measured as the time between

AIDS diagnosis and time when report of such diagnosis is received by the AIDS

statistics coordinating agency. Often, this delay may range from few a months

to a year or more. In Nigeria, it takes quite a long time for the Federal Ministry

of Health to gather information on diagnosed cases of AIDS from the 36 states

and the Federal Capital Territory (FTC), Abuja. For instance, as at July 2008,

reported cases of AIDS for 2003 to 2007 were yet to be published partly because
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the data were not yet collected from the states. Therefore, the use of such data

in backcalculation calls for some form of adjustment on the data if backacalcu-

lated estimates and projections will be reliable. Some authors (73), (74), (49),

(226), (232),(254), (138) have suggested various adjustment procedures. These

adjustments are performed on the data before backcalculation is applied. Brook-

meyer and Damiano (226) suggested that data delayed for up to 7 to 9 months

be increased by 22% and those delayed for 16-24 months by 6%. The data pro-

posed for backcalculation in this research is free from the limitations of reporting

delay because they were extracted retrospectively from the records of health and

laboratory facilities in the country and grouped based on the dates of diagnosis.

What is of great concern in the data is underreporting. In the United States, it

is estimated that about 15% of AIDS cases are never reported and consequently,

the delay-adjusted AIDS data is further inflated by 1
0.85

(50). The proportion of

unreported cases in Nigeria is far more than that of the US due to the reasons

listed in the first and sixth chapter . We are not aware of any study that has

established the extent of underreporting in Nigeria. Therefore, we shall attempt

to obtain an approximate underreporting rate using data collected from one of

the centers of excellence for treatment of HIV/AIDS.

INCUBATION DISTRIBUTION.

The incubation distribution is a very important component of the backpro-

jection model. The uncertainty surrounding the choice of this distribution has

attracted the interest of very many statisticians. Various attempts have been

made to derive an appropriate distribution that could reflect the true incubation

distribution. The first of such attempts was made by Lui et al (139) who studied

100 transfusion-associated AIDS cases reported to the Centers for Disease Control
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(CDC) as at April 1, 1985. The dates of infection were assumed to be the dates of

transfusion with infected blood and they defined incubation period as the period

from transfusion to the diagnosis of the first opportunistic disease associated with

AIDS. Using a simple average, 2.6 years was estimated as the average incubation

period for transfusion-related AIDS cases. In order to correct for length-biased

sampling resulting from the fact that the sample does not include those exposed

persons who have long incubation periods and have not yet been diagnosed, the

authors assumed a family of probability densities to describe the incubation dis-

tribution and obtained a maximum likelihood estimate of mean incubation period

as 54 months with 90% confidence bound of (2.6 years, 14.2 years). This study

has the limitation that the dates of infection were determined retrospectively

and it is difficult to estimate the probability that a member of an infected cohort

would develop AIDS in a specified time period. Also, those with long incubation

period were selectively excluded from the study. These limitations in the work

of Lui et al (139) led to the need to follow up a cohort of individuals. Goedert et

al (135) studied a cohort of individuals who were already infected with HIV but

whose dates of seroconversion are not known and estimated that the cumulative

probability of developing AIDS within 3 years of follow up is 0.36 . This type of

study is widely known as a prevalent cohort study. Brookmeyer and Gail (228)

considered the bias inherent in such study and show that failure to adequately

adjust for duration of infection will under some conditions, bias relative risk es-

timates toward 1.0. Other improved studies that led to interval censoring in the

estimation of infection times are the hemophiliacs cohort who were regularly seen

at a treatment centre in Hershey, Pennsylvania and their serum samples stored

since the mid 1970s (71), (136) and the San Francisco City Clinic Cohort study

involving homosexual men enrolled in hepatitis B vaccine trial (187), (9). Most

of the derived estimates of the incubation distribution were obtained using the
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data from the three studies above.

The incubation period distribution F (t) is defined as the probability that an

HIV infected person develops AIDS within t years after infection. That is, if I is

the random variable representing the incubation period, then,

F (t) = P (I ≤ t)

and its probability density function is dF
dt

= F ′(t) = f(t) and survival function

S(t) = 1 − F (t). Its hazard function f(t)
S(t)

is the risk of developing AIDS at time

t after infection conditional on not having AIDS just before t. The hazard of

progression to AIDS increases with time. Below are some parametric distributions

that have been used to model the incubation distribution.

The Weibull Distribution Given the Weibull density function f(t) =

αλ(λt)α−1exp−(λt)α, where λ = 1
σ

> 0, α > 0, t > 0, the incubation period

distribution is given as

F (t) = 1− e−λtα (2.11)

and the hazard function is

λ(t) = λαtα−1

which is monotonically increasing if α > 1 and decreasing otherwise. This model

was used in deriving estimates of incubation periods among haemophiliacs (231),

(45), among homosexuals (140), and blood transfusion recipients (139), (61),(87).

See also Blythe and Anderso (209), Wilkie (63) and Boldson et al (85). The

limitation of the model is that it assumes that the hazard function increases
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indefinitely and is proportional to the power of time since infection which may

not be true in the long run.

The Gamma Distribution

The pdf is given as

f(t) =
λktk−1e−λt

Γ(k)

where k is the stages which infected individual must pass through before

developing AIDS and λ > 0 is a constant representing the hazard function of

transiting from one stage to the next. Many authors (85) (209) (212)(87) have

applied this model in estimating the incubation period.

Log-Logistic Distribution

Lui et al (140) and Lawless and Sun (138) considered the log-logistic distribu-

tion for the incubation distribution. The simple form of the distribution is given

as

F (t) = 1− (1 + (λt)β)−1 (2.12)

λ > 0, β > 0. If β > 1, the hazard function increases initially until it reaches

maximum and then decreases as t → ∞. This distribution has the same behav-

iour as the Lognormal distribution in that it assumes that the logarithm of the

incubation period follow a normal distribution. Rees (177) and Boldson et al (85)

assumed a Lognormal distribution for the incubation distribution.

The Gompertz Distribution Wilkie (63) and Lui (139) modelled the

incubation period distribution as Gompertz whose cumulative density function
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is given as

F (t) = 1− e−α(eβ(t−s)−1) for t ≥ s (2.13)

The Staging Models The progression from HIV infection to AIDS can

be divided into stages that are random and unequal in duration. The hazard

functions of transition may differ from one stage to the other this distinguish the

stage model from the gamma model where the transition rates are assumed equal

and constant. Brookmeyer and Liao (232) used the model as

F (t) =

t∫

0

λ1αsα−1e−λ1sα{1− e−λ2(t−s)}ds (2.14)

The equation models the depletion of CD4+ cell. The time from infection to

depletion of CD4+ to less than 200 CD4+ T cell is assumed to follow the Weibull

distribution with hazard function λ1αtα−1 and the time from less than 200 CD4+

to AIDS follow an exponential distribution with hazard function λ2, then the

incubation distribution is given as a convolution of the Weibull and exponential

distributions given above.

Mixture models This procedure partitions the infected individuals into

two groups and assign them different incubation distribution: α the proportion

with incubation distribution F1(t) and (1−α) with incubation distribution F2(t),

then the incubation distribution for the entire population of infected individuals
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as

F (t) = αF1(t) + (1− α)F2(t) (2.15)

Lui et al (140) used the mixture model to study incubation period among

homosexual men also, Auger et al (115) used a mixture of Weibull distributions

in a study of the incubation period among maternally infected newborns.

2.3.1 Criticism of Backcalculation

Most criticisms of backcalculation are based on the limitations or uncertainties

surrounding the components and assumptions of the model some of which we have

discussed in the previous section.

The incubation distribution is the most criticized. For instance, most esti-

mates of the incubation period were estimated from data obtained from the study

of a few cohorts who may not be representative of the general population in which

the distribution is applied. The transfusion-associated AIDS cases study (139),

the Multicenter AIDS Cohorts Study (MACS) (15), (169), the San Francisco

Men’s Health study (208) which provided data for the estimation of the incuba-

tion period may not adequately represent the entire population. The infection

times of the transfusion-associated AIDS cases were ascertained retrospectively

after AIDS had developed, thus leading to right truncation. Also, the periodic

testing of a cohort of hemophiliacs (136) and homosexual men in San Francisco

(9) until they test positive and the ascertainment of the date of seroconversion

from the interval defined by the latest screening test that was negative and the
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earliest screening that was positive, give rise to doubly censored data. This cen-

soring has been handled by imputing the seroconversion time as the midpoint of

the interval (140) (9), (131). It has been shown (290), (214) that the midpoint

approach will only be optimal if the seroconversion density is uniform over the

censoring interval, but the intervals are often sufficiently long to make this as-

sumption void. Other authors have used parametric (231) and nonparametric

(290)(208) modelling of both the seroconversion and incubation distribution.

Initial formulation of backcalculation assumes that the incubation distribution

is stationary through the period and that the probability of progression to AIDS is

the same for all infected individuals. Studies have shown that progression to AIDS

depends on age. Infants and the elderly have shorter incubation periods than

other infected individuals. Also the treatment of HIV infected individual may

lengthen the incubation period therefore faulting the stationarity assumption.

Recent developments have modified the incubation distribution to accommodate

changes in incubation period due to therapy.

The accuracy of AIDS incidence data is affected by underreporting and report-

ing delay. Delays in reporting affect the most recent AIDS data series. These two

sources of errors may undermine estimates obtained using backcalculation. To

overcome this limitations, some underreporting and reporting delay adjustments

have been proposed (50), (75), (138) (226).

The AIDS incidence data contain little information about the most recent

infections because of the long incubation period. The numbers of individuals

infected in the last one or two years are not reliably reflected in the AIDS incidence

data. This makes the model imprecise in estimating the recent infection rates .
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Backcalculation models do not give information about future rates and as-

sumes that there is no migration in the population.

2.3.2 Developments in Backcalculation Method

Advancements in backcalculation arise mainly in the attempt to overcome or

rectify the limitations or uncertainties in backcalculation methods as reviewed in

the previous section. The first issue of concern was the problem of data truncation

caused by reporting delays of AIDS incidence data. In an effort to compensate

for the effects of these delays, several authors(75) (254) (289)(206) (232) have

suggested various ways of correcting such truncation and incorporating report-

ing delay distribution in backcalculation methods. Also the concern of whether

the information contained in the AIDS incidence data is sufficient to reconstruct

the HIV incidence curve led researchers to seek other sources of information to

augment or substitute the AIDS data. Some authors have used a combination of

AIDS data and information on date of AIDS diagnosis (273), date of HIV diag-

nosis (199)(250). Mariotto and Verdecchia (35) substituted AIDS mortality data

for AIDS registered cases and Deuffic-Burban and Costagliola (44) considered the

use of pre-AIDS mortality data instead of AIDS data. Chau and colleagues (102)

(101) used data HIV positive test only in place of AIDS data. While Bellocco

and Marschner (224) analyzed jointly the HIV and AIDS surveillance data.

The introduction of effective therapy for the treatment of AIDS resulted in

the elongation of the AIDS incubation period distribution. This led to the adjust-

ment of the incubation distribution to accommodate changes in the distribution

due to treatment (259), (104), (260), (233). Therefore, rather than use a single

incubation distribution, a family of distributions indexed by the calendar year
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of infection such that F (t) becomes F (t|s). This gives the probability that an

individual infected with HIV at calendar time s develops AIDS within t year of

infection. Hence, incubation distribution can be obtained for different cohorts.

The recognition that the incubation period distribution may vary with dura-

tion of infection led to the development of the stage model which assumes that

HIV infected individuals pass through stages before developing AIDS. There could

be two stages (225), (232) or multiple stages defined by clinical criteria (171) or

by multiple CD4 levels (155). Assumptions are made to incorporate treatment

into the model which has the effect to reduce the hazard of transition from one

stage to the other.

The stage models do not incorporate the effect of changes in AIDS surveillance

definition in the hazard model. The time-since-infection (TSI) models (259)

incorporate both treatment and the effect of redefinition of AIDS through the

hazard model. Unlike the stage models, the TSI models do not assume reduced

hazard due to treatment effect until some time has elapsed since infection. Thus,

the efficacy function is assumed to vary with time since infection.

In a study to investigate the incubation period of AIDS in patients infected

via blood transfusion, Medley et al (87) found that mean incubation time for

children is much shorter than that of adult patients and the incubation period

for patients older than 59 years is less than that of younger adults. Also Goedert

and his colleagues (136) found that hemophiliacs over the age of 30 at infection

are at higher risk of progression to AIDS than individuals 19 -30 years old at

the time of infection. These findings led to the development of backcalculation

models whose incubation distributions depend on age (255). Others (196), (46),

(37) incorporated age as a covariate in backcalculation model because it carries

information about incubation period of the individual.
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Due to the lack of identifiability of HIV incidence curve Becker et al (197)

(196) adopted a nonparametric approach to backcalculation using the maximum

likelihood estimation procedure implemented in EM algorithm that incorporates

smoothing at each step of iteration. The advantage of this method is that it

gives the data greater power to determine the shape of the estimated infection

intensity and avoids the assumption of parametric distribution of infection curve.

Several authors (250), (102), (101) used this methods in conjunction with HIV

data in backcalculation method.

2.3.3 Parametric back-projection

We use the term parametric back-projection to represent all back-calculation

approaches where a particular functional form is assumed for the HIV incidence

curve or the AIDS incidence curve. This includes the use of step functions, splines

or any other form of parametric function. In particular, we shall review the works

of Brookmeyer and Gail (227)(229)and Rosenberg and Gail (257).

• Let T0, T1, T2, . . . , TJ be the time points ( for example month, quarter, year)

at which counts of AIDS cases are available.

• T0 is the start of the epidemic and TJ is the latest time at which AIDS data

are available.

• Partition the calender time into J+1 intervals as (T0, T1], (T1, T2], . . . , (Tj−1, Tj], (TJ , T∞].

Since there is no available data for the last interval (TJ , T∞], the total num-

ber of individuals infected is not known.

• Let Yj be the number of AIDS cases diagnosed in the jth interval (Tj −
Tj−1), j = 1, 2, 3, . . . , J and Y. =

J∑
j=1

Yj
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• Let YJ+1 be the unobserved counts for the last interval (TJ , T∞]

• The total number of individual infected with HIV as at TJ is N = Y. +YJ+1

Let ν(s) be the infection curve which specifies the expected number of individ-

uals infected with HIV in the time interval (s, s+δs). And let the general families

of all infection curves defined by a basis function G = {g1(s), g2(s), . . . , gI(s)} be

a basis set. Then ν(s) ∈ G if

ν(s) =
I∑

i=1

gi(s)βi (2.16)

The total number of persons infected in an interval (tj−1, tj] ⊂ (T0, TJ ] is

tj∫

tj−1

ν(s)ds =
I∑

i=1

{Gi(tj)−Gi(tj−1)}βi (2.17)

where

Gi(t) =

t∫

0

gi(s)ds

Hence the total number of individual infected before TJ is computed as

N =

TJ∫

0

ν(s)ds =
I∑

i=1

{Gi(TJ)}βi (2.18)

Given the incubation density f(t) and the incubation distribution F (t), we can

express the expected number of persons infected in the interval (Tj−1, Tj) as
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E(Yj) =

Tj∫

0

ν(s)f(t)dt

=

Tj∫

0

ν(s){F (Tj − s)− F (Tj−1 − s)}ds

=

Tj∫

0

I∑
i=1

gi(s)βi{F (Tj − s)− F (Tj−1 − s)}ds

=
I∑

i=1

βi

Tj∫

0

gi(s)βi{F (Tj − s)− F (Tj−1 − s)}ds

=
I∑

i=1

xjiβi (2.19)

= Xβ (2.20)

where

xji =

Tj∫

0

gi(s){F (Tj − s)− F (Tj−1 − s)}ds (2.21)

F (t) is the incubation distribution and for t < 0, F (t) = 0. This distribution

is assumed known from other studies. Also the general family of infection curve

G, is usually assumed to be either a step function (227) or spline function (257).

Having assumed the form of F(t) and G, xji is computed and βi is estimated

via regression methods. In particular, the multinomial maximum likelihood ,

the quasi-likelihood and the Poisson likelihood approach will be applied in the
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estimation of β.

Estimation when G is a basis of indicator function

Here the general family of infection curve G is defined by a set of basis func-

tions gi(s) = I{s ∈ (ti−1, ti]}, where I(A) is unity in the event of A and zero

elswhere. Hence ν(s) as defined in equation (2.10) is a step function.

Let µj = E(Yj) and X = [xji] be the J×I design matrix. µ′ = (µ1, µ2, . . . , µJ)

such that µ = Xβ. Let pj be the probability that an individual infected before

TJ is diagnosed in the jth interval and it is given as pj =
µj

N
and Np = µ

To accommodate those who were infected before TJ but not yet diagnosed,

we construct a (J + 1) × I augmented design matrix X∗ whose (J + 1)th row is

the vector x′J+1 = (xJ+1,1, xJ+1,2, . . . , xJ+1,I). Hence µ∗ = X∗β and p∗j = µ∗j/N

The Multinomial Maximum Likelihood Estimate

We assume that the infection times of the N individuals are independently

and identically distributed and that the number of diagnosis within the intervals

follow a multinomial distribution such that

Y ∗ = (y1, y2, . . . , yj, yj+1) ∼ Mult(N, p1, p2, . . . , pj, pj+1)

and the likelihood function is given as

L(N, θ, Y ) =
J+1∏
i=1

N !

y1!y2! . . . , yj!(N − y.)!
py1

1 py2

2 . . . pyJ

J p
yJ+1

J+1
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The log-likelihood is given as

ln L(N, θ, Y ) = log N !−
J∑

j=1

log yj!− log(N − y.)! +
J+1∑
j=1

y∗j log p∗j

= log N !−
J∑

j=1

log yj!− log(N − y.)! +
J+1∑
j=1

y∗j log(
µ∗j
N

)

= logN !−
J∑

j=1

log yj!− log(N − y.)! +
J+1∑
j=1

y∗j log µ∗j − (
J+1∑
j=1

y∗j ) log N

= logN !−
J∑

j=1

log yj!− log(N − y.)! +
J+1∑
j=1

y∗j log µ∗j −N log N

≈ logN !− log(N − y.)!−N log N +
J+1∑
j=1

y∗j log µ∗j (2.22)

We note that N is implicitly a linear function of β, N =
I∑

i=1

Gi((TJ)βi. Differ-

entiating the log-likelihood above with respect to β, Rosenberg and Gail (257)

obtained the following results;

∂lMULT

∂β
= (ln µJ+1−ln N+ψ(N)−ψ(N−y.)−1)∆+(N−y.)

xJ+1

µJ+1

+X ′{diag(µ)}−1y

(2.23)

Also, they derived the information matrix with respect to β as

IMULT (β) = { 1

N
− ψ′(N) + ψ′(µJ+1)}∆∆′ + X∗′{diag(µ∗)}−1X∗ (2.24)

Where ∂ ln N !/∂N = ψ(N) is the digamma function and ∂2 ln N !/∂N2 = ψ′(N)
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is the trigamma function (168). ∆ is given as

∆i =
J+1∑
j=1

xji

Using the score and the information given above, Rosenberg and Gail (257) ob-

tained the multinomial maximum likelihood estimate using the updating scheme

of the Fisher’s scoring algorithm;

β̂(n+1) = β̂(n) + IMULT (β̂(n))
−1∂lMULT

∂β
|β̂(n)

(2.25)

Quasi-likelihood Estimate

Using the iteratively reweighted least squares, the Quasi-likelihood is maxi-

mized by;

β̂(n+1) = β̂(n) + (X ′Σ̂−1X)−1X ′Σ̂−1(y − µ̂) (2.26)

Where

Σ̂ = diag(µ̂)− µ̂µ̂′

N

Poisson regression

Here the observed AIDS diagnosis are assumed to be independent Poisson
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variates with means µj = xjiβi. The Poisson likelihood function is given as

ln L =
J∑

j=1

yj ln
I∑

i=1

xjiβi −
J∑

j=1

I∑
i=1

xjiβi −
J∑

j=1

ln yj!

and the Poisson regression parameters are updated by

β̂(n+1) = β̂(n) + (X ′{diag(µ̂)}−1X)−1(X ′{diag(µ̂)}−1X) (2.27)

The incubation distribution

The distribution of the waiting time between HIV infection and AIDS diag-

nosis is assumed to follow the Weibull distribution (139) (231)(45) (140). That

is

F (t) = 1− e(−λtγ) (2.28)

Estimation when G is a spline function

The basis set is assumed to be a quadratic spline. According to Rosenberg

and Gail (257), the flexibility of the step function can greatly be enhanced by

using a spline function gi(s) with knots at tl, l = 1, 2, . . . , L as a basis for G

with the requirements that ν(s) be continuous at the knots or that ν(s) and its

derivative ν ′(s) be continuous. Using the ’+’ function notation, they defined ν(s)

as

ν(s) =
n∑

j=0

β0js
j +

L∑

l=1

βln(s− tl)
n
+. (2.29)
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Applying this to the US AIDS data, Rosenberg and Gail (257) assumed a single

knot in January 1982 and letting n = 2, then

ν(s) = β00 + β01s + β02s
2 + β12(s− t1)

2
+ (2.30)

Hence, g1(s) = 1, g2(s) = s, g3(s) = s2 and

g4(s) =





(s− tl) tl ≥ TL

0 otherwise

Hence,

xji =

Tj∫

0

gi(s){F (Tj − s)− F (Tj−1 − s)}ds, i = 1, 2, 3 (2.31)

integrating within the intervals of gi(s) and

xj4 =

Tj∫

tl

g4(s){F (Tj − s)− F (Tj−1 − s)}ds (2.32)

The estimate of the HIV population in the time interval i is given as

Ni =

∫

gi(s)

ν(s)ds

and the estimate of the HIV population through the years in which AIDS diag-

nosis data is available is

N =

τJ∫

0

ν(s)ds
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2.3.4 Non-parametric Back-projection

The ordinary back-calculation defines the yearly, quarterly, or monthly inci-

dence of AIDS as an expression in terms of the average incidence of HIV in the

corresponding time period. This is as given in equation 2.10

µt =
t∑

s=1

λsft−s,s

where µt is the mean AIDS incidence at time t, λs is the mean of HIV incidence

at time s and ft−s,s is the probability density function for someone infected at

time s and diagnosed at time t.

A major disadvantage of the parametric back-projection is the problem of

identifying the functional form of the HIV incidence curve because different forms

may be consistent with the observed AIDS incidence. In order to avoid this

limitation, Becker et al (197) proposed an imposition of a smoothness restriction

on a non-parametric form and estimates are obtained using the non-parametric

maximum likelihood approach implemented in the EM algorithm. This approach

has the following advantages:

• It avoids the assumptions of parametric distribution of the infection curve.

• It gives the data greater power to determine the shape of the estimated

intensity curve.

• It overcomes the problem of identifying the form of the infection (HIV

incidence) curve.

• It ensures that all estimated values of HIV incidence is non-negative.
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• The estimator of the HIV incidence has an explicit formular.

The EM algorithm

If we let At be the number of AIDS cases diagnosed at time t and at be the

observed diagnoses at time t such that E(At) = µt. Also if Nst is the number

of individuals infected with HIV at time s and diagnosed at time t and nst is its

realized but unknown value. Hence at is generated by nst as

t∑
s=1

nst = at

We assume that each infected person has an incubation duration independent

of the incubation duration of others and fd,t is the probability that the incubation

period is d given that the person was diagnosed at time t. Also the HIV incidence

N1, N2, . . . , Nτ are assumed to be independent Poisson variates and A1, A2, . . . , Aτ

be distributed independently as Poisson.

Also, the conditional distribution of Nst given At = at is binomial such that

E(Nst/At = at) =
atλsft−s

µt

The EM algorithm makes use of a more complete data set in maximum like-

lihood estimation. Here the HIV incidence data Nt is considered more complete

than the AIDS incidence data since the AIDS data set depend on the HIV data.
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Hence the maximum likelihood for the more complete set is given as

L(λ; n) =
τ∏

t=1

(λtfd,t)
nste−λtfd,t

nst!

ln L(λ; n) =
τ∑

t=1

t∑
s=1

{nst ln λtfd,t − λtfd,t} −
τ∑

t=1

ln nst!

≈
τ∑

t=1

t∑
s=1

{nst ln λtfd,t − λtfd,t}

The expectation stage, the E-step, is given as

τ∑
t=1

t∑
s=1

{
atλtfd,t

µt

ln λtfd,t − λtfd,t

}

=
τ∑

t=1

t∑
s=1





atλtfd,t

t∑
s=1

λtfd,t

ln λtfd,t − λtfd,t





Becker et al (197) obtained the M-step (the maximization stage) as

λ
′[L+1] =

λ
[L]
t

Fτ−t,t

τ−t∑

d=0

at+dfd,t

t+d∑
i=1

λ
[L]
t ft+d−i,i

(2.33)

Where d = t − s, is the time since infection, (t = 1, 2, 3, . . . , τ). at is the

observed AIDS incidence at time t. At time t < 1, it is assumed that the disease

has not yet emerged in the population and τ is the last time when reliable data
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can be obtained and

Fτ−t,t =
τ−t∑

d=0

fd,t

In order to obtain a smooth curve, smoothing step is attached to the EM algo-

rithm above to obtain λ[L+1] as

λ[L+1] =
k∑

i=0

wiλ
′[L+1]
t+i−k/2 (2.34)

wi is a symmetrical moving average weight and k is the window width. k is

an even integer and for our analysis we choose k = 2.

Convergence

It is expected that the likelihood will increase at each iteration. In order

to establish the maximum likelihood estimates, we incorporated a convergence

criterion in the EMS iteration. The following criteria which are based on the

parameter λ were used at various times.

τ∑
t=1

|λ[L+1]
t − λ

[L]
t | < ε (2.35)

τ∑
t=1

|λ[L+1]
t − λ

[L]
t |

λ
[L]
t

< ε (2.36)

|
τ∑

t=1

λ
[L+1]
t −

τ∑
t=1

λ
[L]
t |

τ∑
t=1

λ
[L]
t

< ε (2.37)
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The last two criteria were used in searching for the convergence in the EM

algorithm, while the first criterion was used in the EMS algorithm. In some cases,

because of the imprecision of the estimates near the most recent time τ , we used

τ ′ = τ − 1 as the upper limit in the convergence criteria above.

2.3.5 The modification of the non-parametric back-projection

The ordinary back-calculation method, as considered in the previous section,

makes use of diagnosed AIDS data in reconstructing the HIV infection curve.

This approach has the limitation of not predicting precisely the HIV incidence

in the recent past due to the long incubation period between HIV infection and

AIDS diagnosis. In order to overcome this limitation, Cui and Becker (250) and

Chau et al (102) suggested the use of HIV data in back-calculation for estimating

HIV incidence curve.

According to Chau et al (102), HIV data has the following advantages:

• It contains more information than the AIDS data set because not all HIV

infected individuals will develop AIDS by the time of analysis but some of

them may undergo an HIV test

• It is not affected by the redefinition of AIDS

• It is not affected by treatment effects as it is unlikely that individuals receive

treatment before HIV diagnosis

• The induction period between HIV infection and HIV diagnosis is shorter

than the incubation period which is the time between HIV infection and
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AIDS diagnosis. This short period implies that HIV data set contains more

information than the AIDS data set.

• HIV data are more available than the AIDS data.

The back-projection method as given in the last section is modified using HIV

diagnosis data instead of AIDS incidence data (250)(102). Hence the modified

back-projection is given as

µ′t =
t∑

s=1

λsf
′
t−s,s (2.38)

where µ′t is the mean number of HIV positive diagnosis at time t, λs is the mean

HIV incidence at time s and f ′t−s,s is the probability density function of the induc-

tion period for someone infected with HIV at time s and diagnosed with HIV at

time t. The induction period (D′) is defined as the period between HIV infection

and HIV diagnosis.

The induction probability density function can be derived from HIV diagnosis

hazard function which according to Cui and Becker (250), can be expressed as

an additive model through the natural hazard function for AIDS.
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The natural hazard function associated with the waiting time between HIV in-

fection and AIDS diagnosis (incubation period) is known and is given as

P (x/u) =
f(x/u)

1− F (x/u)
(2.39)

The hazard of an infected person taking a positive HIV test is assumed to arise

from two sources:

• Routine HIV testing: This refers to tests performed for reasons other than

illness. We assume that the hazard for this test is a constant ν.

• Symptom-related testing: Are tests performed because of illness and its

hazard is assumed to be proportional to AIDS natural hazard function.

Hence the hazard function for HIV diagnosisis is an additive hazard model given

by

p′(x/u) =





ν + γp(x/u) if x + u ≥ τ0

0 if x + u < τ0

(2.40)

where τ0 is the time when HIV diagnosis data became available and the unknown

parameter γ is the coefficient of proportionality.

In order to estimate the two parameters ν and γ, we need to obtain informa-

tion on HIV diagnosis. If we define D′ and D as the induction period for HIV
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and incubation period for AIDS respectively, then the probability that an HIV

infected individual may have HIV test before developing AIDS is given as

Pr(D′ < D/u) =

∞∫

0

f ′(x/u)[1− F (x/u)]dx = P

where

f ′(x) = {ν + γp(x)}e−
xR
0

{ν+γp(w)}dw
(2.41)

and

f(x) = p(x)e
−

xR
0

p(w)dw

Simplifying, we have that

Pr(D′ < D/u) =

∞∫

0

[ν + γp(x/u)]e
−

xR
0

[ν+(γ+1)p(w/u)dw
]dx = P (2.42)

Also let R be the waiting time from infection to HIV diagnosis if only routine

HIV tests were available and S is the waiting time from infection to HIV diagnosis

if only test were conducted when symptoms occur, then

fR(x) = νe−νx
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and

fS(x) = γp(x)e
−

xR
0

γp(w)dw

are the probability density function for the routine (R) and the Symptom (S)

testing respectively, and

p(x) =
α

β

(
x

β

)α−1

is the incubation period density.

Hence, the proportion of HIV positive tests from routine testing is given as

Pr(R < S) =

∞∫

0

fR(x)[1− FS(x)]dx

= ν

∞∫

0

e
−

xR
0

(ν+γp(w))dw
dx (2.43)

If we assume that HIV routine tests and HIV-related symptoms tests contribute

proportionately (say by P ∗ ) to make individuals go for HIV diagnostic test, then,

Pr(R < S/D′ < D) =
Pr(R < S

⋂
D′ < D)

Pr(D′ < D)
= P ∗

Pr(R < S
⋂

D′ < D) = Pr(R < S/D′ < D)Pr(D′ < D)

= P ∗P
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Also

Pr(R < D) =

∞∫

0

νe−νx[1− F (x)]

= ν

∞∫

0

e
−

xR
0

[ν+p(w/u)]dw
dx ≈ PP ∗ (2.44)

Therefore in estimating the two parameters ν and γ, we may solve equations 2.42

and 2.44 simultaneously (102) (250)

Since the induction period distribution is not affected by drug therapy, the

different drug regimes as defined for the AIDS incubation distribution function

does not apply here. Therefore, the induction distribution function is given as

F ′(x/u) =





1− e
−

x+0.5R
0

p′(w/u)dw
if x + u ≥ τ0,

0 otherwise

(2.45)

Hence the HIV incidence is updated as

λ
′[L+1] =

λ
[L]
t

F ′
τ−t,t

τ−t∑

d=0

ht+df
′
d,t

t+d∑
i=1

λ
[L]
t f ′t+d−i,i

(2.46)

where ht is the number of HIV diagnosis at time t and f ′ is as defined above
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2.4 Spatial Analysis

The main concern of spatial statistics is to account for observation correla-

tional effects arising from geographic configuration of data (60). The geographical

configuration of HIV prevalence rates is assessed with a view to investigating the

presence of spatial autocorrelation in the distribution of the data. Griffith and

Layne (7) assert that observations are correlated strictly due to their relative

locational positions resulting in spillover of information from one location to an-

other. Hence, spatial autocorrelation is defined as the relationship among a single

quantitative variable that results from the geographical patterning of the areas in

which the values occur. It is a measure of similarity of objects within an area, the

degree to which a spatial phenomenon is related to itself in space(57). Therefore,

the spatial distribution of HIV prevalence rates in Nigeria is determined by the

arrangement of the site prevalence rates in space and the geographic relationships

among them.

Spatial autocorrelation exist in two forms - positive or negative spatial auto-

correlation. If it is positive, the HIV prevalence rate at a given site tends to be

similar to the prevalence rate of a nearby site. Conversely, negative autocorrela-

tion among the site prevalence rates indicates that dissimilar rates are in nearby

or adjacent locations. We shall investigate whether there is this systematic spa-

tial variation in the distribution of HIV prevalence rates. To do this, we employed

the tools discussed below.
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2.4.1 Cluster Analysis

According to Jain et al (178), cluster analysis is the organization of a collection

of patterns (usually represented as a vector of measurements, or a point in a

multidimensional space) into clusters based on similarity. Such that the within

cluster variation is less than between cluster variation. Sites or States with similar

prevalence rates were grouped into clusters in order to investigate the spatial

structure of HIV prevalence rates in Nigeria. To achieve this, we used the model-

based hierarchical agglomerative clustering in S − plus c© using the ellipsiodal

distribution S∗ (86) as the clustering criterion because it easily adapts and is

robust to the choice of the size and shape of the cluster.

The clustering procedure entails the calculation of the intervariable similarities

or dissimilarities and the grouping of the variables according to their mutual

dissimilarities (20).An exaple of a measure of similarity between variables i and

j is given by
√

1− τ 2
ij where τ is the Pearson correlation coefficient. If d is the

dissimilarity coefficient, then d is symmetric if d(i, j) = d(j, i), non-negative and

d(i, i) is zero. d is metric if, d(i, k) ≤ d(i, j) + d(j, k) or ultrametric if d(i, k) ≤
max(d(i, k), d(j, k)) (189). Hierarchical clustering methods can be described as

approximating a dissimilarity by an ultametric dissimilarity

The distance measures used in computation of similaries or dissimilarities in-

clude Euclidean and the Mahalanobis distances. The Euclidean distance is the

most popular and is commonly used to evaluate the the proximity of values in two

or three-dimensional space. It however has the disadvantage of being influenced

by large-scale differences between variables. Also linear correlation among vari-

ables can affect the distance measure. The Mahalanobis distance measure offers

a solution to this problems by assigning different weights to different variables
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based on their variances and pairwise linear correlations.

The choice of the number of clusters can be obtained by a visual inspection of

the dendrogram for natural clusters in the data. This method is subjective and

may not yield the optimal number of clusters. A rule of the thumb for the choice

of an appropriate number of clusters k is given as

k ≈ (
n

2
)1/2 (2.47)

where n is the number of objects(159)

The plot of the agglomeration coefficient against number of clusters can be

used to choose the appropriate number of clusters. The appropriate number

of clusters is found at the elbow of the graph. Also, incremental changes in

the coefficient may be used as an indicator of the number of clusters. A large

increase means that dissimilar clusters have been merged, hence, the number of

clusters prior to the merger is the most appropriate (154). A measure of within-

cluster homogeneity relative to between-cluster heterogeneity known as the cubic

clustering criterion is a good indicator of the appropriate number of clusters. The

number of clusters is indicated at the peak of the cubic cluster criterion.

Other methods for determining the appropriate number of clusters are the

Akaike Information Criteria and the Bayesian Information Criteria when it is

possible to obtain a likelihood function of the clustering model, for instance using

the k-means model.
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2.4.2 Moran’s Index and Geary’s Ratio Statistics

The Moran’s I (217) and Geary’s c (235) are the most commonly used global

measures of spatial autocorrelation. They provide an indication of the nature

and extent of spatial autocorrelation present in the HIV prevalence data. Both

approaches require a measure of connectivity for all pairs of HIV sites or states.

In this research, we adopted the binary adjacency weights such that wij = 1 if

sites i and j are neighbours and zero otherwise. Other choices of weights can

however be adopted (62).

The Moran’s I statistic is given as

I =

N
∑
i

∑
j

wij(xi − x̄)(xj − x̄)

∑
i

∑
j

wij

∑
i

(xi − x̄)2
(2.48)

Under the null hypothesis, its expected value is given in equation 2.49 as

E(I) =
−1

N − 1
(2.49)

The test of significance is done using analytical expectation and variances based

on the neighbourhood structure assumed in the spatial weighting and are asymp-

totically normally distributed. Hence, the test statistic, Z is

Z =
I − E(I)

SE(I)

The Moran’s I is a spatial univariate extension of the Pearson correlation coeffi-

cient. It measures covariance between data pairs. Its value varies between -1 and

1, where values between 0 and 1 indicate a positive spatial correlation between

variables, values between -1 and 0 indicate negative association, and values equal
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to 0 means there are no spatial autocorrelation. Perfect correlations are indicated

by values equal to 1 or -1.

A Moran scatter plot gives a visualization of the type and strength of spatial

autocorrelation in a data series. It regresses a spatially lagged variable on the

original standardized variable (165). The steps for the construction of the scatter

plot is outlined in Griffith and Layne (7) as follows: (a) Center the variable X,

(X−1T X1/n). (b) Compute W (X−1T X1/n), where W is the adjacency matrix

of binary weight and 1 is a vector of 1’s. (c) plot (b) on the y-axis against (a)

in the x-axis. This gives the Moran scatter plot. (d) Regressing (b) on (a) using

a non-intercept regression model gives slope of the regression line for the scatter

plot. The Moran coefficient can be expressed a ratio of regression coefficients as

I =
β̂XCX

β̂1C1

where β̂XCX is the regression coefficient obtained in step (d) above and β̂1C1

is the regression coefficient obtained by regressing W1 on 1 using a non-intercept

model.

The Geary c statistic given in equation 2.50 is always positive and has values

ranging between 0 and 2. It emphasizes differences between pairs of observations,

rather than covariation between them as in Moran’s I. It is therefore more

sensitive to differences in small neighbourhoods. Squared differences between one

value and an outlier value will have a disproportionate effect on the coefficient.

The coefficient tends to over-emphasize areas with large number of neighbours

and underemphasize those with fewer number of neighbours. If the HIV sites are

spatially unrelated with one another,the expected value of the Geary coefficient
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will be 1. Values less than 1 entail positive autocorrelation, while values greater

than 1 indicate negative autocorrelation

c =

(N − 1)
∑
i

∑
j

wij(xi − xj)
2

2
∑
i

∑
j

wij

∑
i

(xi − x̄)2
(2.50)

2.4.3 Variogram

A Variogram provides a measure of spatial correlation by describing how sam-

ple data are related to distance and direction. The estimator of the semivariogram

function, denoted by γ(h), was originally defined by Matheron (96) as

γ̂(h) =
1

2|N(h)|
∑

N(h)

(Z(si)− Z(sj))
2 (2.51)

where N(h) is the set of all pairwise Euclidean distances si − sj = h, that is,

the lag (spatial distance) between site si and sj, |N(h)| is the number of distinct

pairs in N(h) and Z(si), Z(sj) are data values at spatial locations si and sj,

respectively. In our case, Z(si) is the observed number of positive HIV cases (or

its transformed form)in site (or state) si. Note that 2γ(h) is the variogram.

For the semivariogram or the variogram to be a valid parameter of the sto-

chastic process, Z(si) should be intrinsically stationary. If the spatial process is

intrinsically and second-order stationary, then the covariance function is given as

C(h) = Cov[Z(s), Z(s + h)]
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such that

C(0) = Cov[Z(s), Z(s + 0)] = V ar[Z(s)]

and E(Z(s)) = µ

Under this condition, it is possible to write the variogram in terms of the

covariance function as

Var[Z(s)- Z(s+h)] = Var(Z(s)) +Var(Z(s+h)) - 2Cov(Z(s), Z(s+h))

= 2[Var(Z(s) - C(h)]

= 2[C(0)− C(h)] = 2γ(h) (2.52)

where C(h) is estimated as

Ĉ(h) =
1

2|N(h)|
∑

N(h)

(Z(si)− Z̄)(Z(sj)− Z̄) (2.53)

and Z̄ =
n∑
i

Z(si)/n

If the process is intrinsic and not second-order stationary, the covariance func-

tion does not exist and therefore is not a parameter of the process. When this

happens, the semivariogram is adopted (204). A plot of C(h) against h is known

as covariogram. The autocorrelation function is given as

ρ(h) =
C(h)

C(0)
= 1− γ(h)

C(0)
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A plot of ρ(h) against lag h is called the correlogram. Both covariogram and

correlogram are used as indicators of spatial autocorrelation at different lags.

The parameters of an empirical variogram are the sill, range and Nugget

effect. The nugget is the value of the variogram at h = 0. That is, limh→0 γ(h) →
c0 > 0, then c0 is the nugget effect. It is the micro-scale variation causing

discontinuity at the origin (96). However Cressie (185) insists that this is not

mathematically feasible if we require that lim||h||→0 E(Y (s + h) − Y (s))2 → 0.

Hence, if continuity is expected at the micro-scale, the only possible reason for

c0 > 0 is measurement error, if number of measurements is fairly large. There

is a problem of determining c0 from data whose separations are too large to give

accurate micro-scale information. In practice, it is determined by extrapolating

variogram estimates from lags closest to zero.

Sites close to each other in geographic space are expected to have more similar

values than sites located farther apart, therefore, the variation between sites

increases as the lag h increases until it gets to a distance h where the correlation

between the sites is almost zero. At this point, the variogram levels-off or becomes

flat. This point is known as the sill or amplitude of the variogram. From equation

(2.52), if C(h) → 0 as h →∞, then 2γ(h) = 2C(0), the quantity C(0) is the sill

of the semivariogram. The partial sill is defined as the difference between the sill

and the nugget effect, (C(0)− c0). The range is the lag at which the variogram

reaches the sill. Beyond the point of the range, autocorrelation is zero.

If the covariance function or the semivariogram function depend solely on the

absolute distance between points h and do not depend on direction, the function

is termed isotropic. However, if it depends on both distance and direction, the

function is said to anisotropic.
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Robust Variogram Estimation

The variogram estimation as given in equation (2.51) has the disadvantage

of being negatively influenced by outliers. In order to alleviate this negative

impact of outliers, Cressie and Hawkins (186) suggested eliminating the squared

differences from the Matheron estimator (equation 2.51) and replacing it with

the fourth power of the square root of absolute differences and correcting for the

resulting bias. It is given as

γ̂(h) =

1
2
{ 1
|N(h)|

∑
N(h)

|Z(si)− Z(sj)|1/2}4

0.457 + 0.494
|N(h)|

(2.54)

The Variogram Clouds This is the distribution of the variance between

all pairs of points at all possible distance h. There are main variance functions

commonly used in the construction of variogram clouds. They are; the squared

difference cloud given as (Z(s+h)−Z(s))2/2 and the square root-difference cloud

expressed as
√

(|Z(s+h)−Z(s)|)/2. The variogram cloud is obtained by plotting

any of these functions against the spatial lag h. When plotted in conjunction with

box plots, it is a good diagnostic tool for detecting outliers, spatial trends and

variability with increasing distance (237).

2.4.4 Fitting the theoretical Semivariogram

Various functions can be fitted to a semivariogram plot in order to explicitly

specify the spatial similarity present the data. Models commonly used for this

purpose include linear, exponential, spherical, Gaussian, power, circular, Bessel,

rational quadratic, De Wijsian, and wave/hole (7). Most of these functions are
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bounded but the linear and power functions increase without bounds. The choice

of the model to be fitted depends on the shape of the empirical semivariogram and

the researcher’s belief as to the nature of the operating processes. Initial values of

the semivariogram parameters are obtained by inspecting the the semivariogram

plot. In this thesis, we adopted the spherical function for the semivariogram

model and it is given as

γ(h) =





0 if |h| = 0

C0 + C1[1.5(h
r
)− 0.5(h

r
)3] if 0 < |h| < r

C0 + C1 if |h| ≥ r

(2.55)

where C0 is the nugget, r is the range and C1 is the sill. These parameters

are estimated using either the maximum likelihood (ML), ordinary least squares

(OLS), generalized least squares (GLS) or the weighted least squares (WLS) ap-

proach. The maximum likelihood estimate relies on normality assumptions and

is affected by small sample sizes. The GLS has the advantage of making no as-

sumptions about the distribution of the data and is more robust than the ML

whenever the distribution of the attribute variable is misspecified (234). How-

ever, parameter estimation in the semivariogram requires the variance-covariance

matrix which is not easy in GLS (185). The weighted least squares (especially

the nonlinear) approach usually performs better than other methods (185), (64).

2.4.5 Kriging

The geostatistical method of kriging is used in this thesis for the purpose of

spatial estimation of HIV prevalence estimates in Nigeria and to interpolate these
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estimates onto a continuous surface of infection grid. Using the framework of

spatial linear models (185)(201), we propose to obtain smoothed HIV prevalence

estimates that can be represented on a map. The use of kriging is informed by the

presence of spatial correlation in the data as established in the previous sections.

The method is known to be useful in expressing properly the spatial correlation

and overcomes areal bias problems, thus giving rise to better disease maps (201)

(95) (262).

Different types of kriging methods are reviewed in Cressie (185), but the most

common types are simple, ordinary and universal kriging. The simple kriging as-

sumes that the spatial mean of the random field µ(s) is known, while ordinary

kriging assumes that µ(s) is unknown but constant across locations (204). Uni-

versal kringing is an adaptation of ordinary kriging that accommodates trend. It

can be used to obtain local estimates in the presence of trend and to estimate the

underlying trend (237). Hence, universal kriging requires knowledge of both the

trend model and a semivariogram or covariance function for the data. Usually,

a polynomial trend surface is used. A high polynomial degree (large number of

regression coefficients) is needed in order for the prediction to be locally adequate

everywhere and capture simple spatial variation.

However, the choice of the variogram or covariance function and the presence

or absence of a nugget effect have an impact on kriging. When the semivariogram

is modelled without a nugget effect, then kriging leads to direct interpolation at

the sampling sites and prediction equals the observation at the sampled sites.

Also, predicted residuals are equal to model residuals and predictions at any other

site have the tendency to shrink towards the value of the estimated trend surface

at that place. When semivariogram with a nugget is used,a smoother prediction

surface is obtained as predictions tend to be closer to the mean surface with less
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residuals (201).

Ordinary kriging makes use of models of spatial correlation to calculate a

weighted linear combination of observed data resulting in estimates of the ob-

served location or specified unobserved location. Weights are choosen so that the

average error for the model is zero and the modelled error variance is minimized(110).

Given the spatial data Z(s) such that

Z(s) = µ(s) + e(s)

e(s) ∼ (0, Σ)

E[Z(s)] = µ(s), V ar[Z(s)] = Σ

Cressie (185) obtained the kriging weights for ordinary kriging in terms of the

semivariogram as

λ′ =
(

γ(s0) + 1
1− 1’Γ−1γ(s0)

1’Γ−11

)′
Γ−1 (2.56)

and the optimal linear predictor of Z(so) was obtained as

pok(Z; s0) = λ′Z(s) (2.57)

with variance

σ2
ok(s0) = 2λ′γ(s0)− λ′Γλ
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where Γ = γ(h) and γ(s0) = γ(s0 − si), i = 1, 2, . . . , n

2.5 Disease Mapping

2.5.1 Introduction

The interest here is in investing the spatial and non-spatial variability of the

risk of HIV infection in Nigeria and to produce smoothed maps of prevalence

rates. The true underlying distribution of HIV prevalence rates will be estimated

and the spatial patterns displayed on the map. Thus, areas (sites and states)

with unusually high risk can stand out distinctively and this may prompt risk

assessment and resource allocation by the health policy makers (24). We shall also

seek to determine the ecological association between zone-level covariates and risk

of HIV infection using a model-based approach (48), (56),(130). Hence, it may be

possible to identify the socio-economic and cultural effects that contribute to the

variation in infection rates and also to improve the stability of estimates of the

risk of infection for each site and state by taking into account their geographical

locations in relation to other areas and the rate of infection in those areas (113).

The study of geographical correlation aims at exploring geographic variations

in exposure to some life-style or behavioural factors in order to understand the

HIV/AIDS aetiology in the country.

Several epidemiological measures can be displayed on a map - the crude rate,

standardized rate, statistical significance of local deviations of risk from the over-

all rates and other smooth version of the standardized rate derived using some

model approach. The Standardized Morbidity (or Mortality) Ratio (SMR) is the

common choice of epidemiologists.
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2.5.2 The Standardized Morbidity Ratio (SMR)

Let Oi denote the observed number of positive cases of HIV in the ith site or

state, Ei the expected number of HIV positive cases in the ith site or state which

is known and the relative risk of HIV infection in the ith site or state be denoted

by θi . The observed number of positive cases Oi is assumed to be distributed as

Poisson with mean Eiθi . Hence, the likelihood is given as

L(θ) =
n∏

i=1

exp(−Eiθi)

Oi

(Eiθi)
Oi ∝

n∏
i=1

θOi
i exp(−

n∑
i=1

Eiθi)

And

lnL(θ) =
n∑

i=1

Oilnθi −
n∑

i=1

Eiθi

Differentiating with respect to θ and solving, we have

θ̂i =
Oi

Ei

where,

Ei = Ni

n∑
i=1

Oi

n∑
i=1

Ni

Here, Ni is the number of women tested in each site or state within the period of

the survey.

Therefore, standardized morbidity ratio is defined as the ratio of observed

to expected counts of HIV positive cases in each site or state. The estimator
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is unbiased but because it is based on a sample of size one, it is a saturated

model estimate, as it leaves no degree of freedom for goodness of fit test. The

display of SMR on a map can be accomplished using the chloropleth method

(79) by classifying the SMR in to class intervals and assigning specific colours

to each class. The determination of the class size is often subjective. One way

of achieving this is to divide the SMR into equal range of classes. This method

of classification is good when the distribution of SMR is not skewed but may

be problematic when the data is highly skewed as most of the SMR may belong

to one or few classes. Hence such display on the map may distort the spatial

variation of the disease inherent in the population, as the majority of the areas

may look similar when they are not. The SMR can also be classified using its

percentiles but this method has the risk of classifying similar SMRs into different

classes such that some areas will appear very heterogeneous on the map when

indeed they are not. The search of a natural divisions in the distribution of SMRs

is another method of obtaining class intervals of SMRs. These natural groupings

or clusters do not assign SMRs arbitrarily into classes but may be determined

through the use of statistical methods that minimize within-class variation. See

Muechrcke and Muechrcke (219) for more details on the choice of class intervals.

The use of SMR as an epidemiological measure may be informative but has

some limitations. Clayton and Kaldor (54) and Lawson et al (24) outlined some

limitations of the use of SMR for disease mapping as follows:

• The variance of SMR is large in areas with small population and small in

areas with large population with few cases. These may form the extremes

of the map and may dominate its pattern because no account is taken of

the varying population size over the map.
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• It does not differentiate between regions where no event is observed.

• It does not reveal the underlying structure in the data and it is not parsi-

monious because of its saturated form.

The variance of the estimator of the relative risk is proportional to Ei, hence areas

with small population have very large relative risk as the number of expected cases

(Ei) in the denominator is small. Conversely, areas with large population have

high values of Ei and hence small relative risk if the number of cases is small.

The display of significance levels in place of the SMR on the map in order to

avoid the shortcomings of SMR tends to give more advantage to areas with large

populations since they are more likely to attain significance, even if excess risk is

small (54) (13) ,(48).

To overcome these limitations, various models have been proposed by different

authors. For instance Kelsall and Diggle (149), (150) proposed a non-parametric

approach for the estimation of spatial variation in relative risk and Marshall (?

) extended the linear Bayes methodology to disease mapping. Kafadar (158)

considered smoothing separately the numerator and denominator of the relative

risk taking into cognisance the assumed Poisson variation in the numerator and

the variation due to counting and recording errors of the population at risk in

the denominator. However it has been established by other authors, (150), that

a common smoothing constant is preferred over separate estimation of different

smoothing constants for the numerator and denominator. Downer (243) proposed

the smoothing of estimates of disease rates by penalizing the Poisson maximum

likelihood estimates using the inter-site distance penalty. MacNab and Dean

(308) proposed spatiotemporal models that use autoregressive local smoothing

across the spatial dimension and B-spline smoothing over the temporal dimension
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with the object of identifying temporal trends and the production a series of

smoothed maps. Recent advances in disease mapping have availed the Bayesian

methods in arriving at smooth disease rates.

2.5.3 Empirical Bayesian Approach

The need to identify extreme rates for areas with small population or rare

diseases led to the development of empirical Bayesian estimation in disease map-

ping. According to Marshal (244), Efron and Morris (30),(31), (32) appear to be

the first to suggest this approach for regional estimates of disease rates. Several

authors (246), (54), (130) and (211) have proposed modified models in which

observations at site level are mutually independent but are conditional on an un-

derlying spatial process. Tsutakawa et al (246) in particular, derived improved

estimates of cancer mortality rates using empirical Bayesian (EB) approach that

treats the true rates as samples from an unknown prior distribution that needs

estimation.

The Bayesian approaches combines two types of information: the information

provided by the observed number of HIV cases in each site or State described by

the Poisson likelihood L(θ/O) and prior information on the relative risks speci-

fying their variability in the overall map, summarized by their prior distribution

(13). The empirical Bayesian estimator assumes that the relative risks follow

some distribution f(θ) and Bayesian inference about the unknown relative risk θ

is based on the marginal posterior distribution

g(θ/O, γ) =

∫

i

g(O/θ)f(θ/γ)dθ

where O is the observed HIV counts and γ are the unknown hyper-parameters
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and the probability density function of the relative risk is given by f(θi) . The

likelihood function of the relative risks for the observed HIV counts is the product

of n independent Poisson distributions given as

g(O/θ) =
n∏
i

g(Oi/θi)

The prior distribution reflects prior beliefs about the relative risks and is

parameterized by the hyper-parameter γ give as f(θ/γ). The empirical Bayes

approach employs the estimates of the hyper-parameters which are obtained by

maximizing the marginal likelihood of O/γ

g(O/γ) =

∫

i

g(O/θ)f(θ/γ)dθ

That is, the estimates of the hyper-parameters are obtained from the data. If

the areas are independent, the marginal posterior distribution is also independent

and is given as

g(θi/Oi, γ) ∝ g(Oi/θi)f(θi/γ)

Hence, empirical Bayes estimate of the relative risk is the posterior mean or

median evaluated at the maximum likelihood estimate of the hyper-parameter.

The maximization of the likelihood can be achieved using EM-algorithm (27).

The posterior mode or the maximum a posteriori (MAP) obtained using penal-

ized likelihood maximization has been used as a measure of location in disease
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mapping (246),(166).

The penalized quasi-likelihood (PQL) method has been used in empirical

Bayesian disease mapping (184),(41) ,(307). The point estimates obtained through

this procedure are consistent and nearly unbiased for the relative risks but the

variability in these estimates is often underestimated because no allowance is

made for the uncertainty in the hyper-parameter. Hence the confidence inter-

vals for the relative risk based on the estimated variance of the posterior are

very narrow. Another disadvantage of empirical Bayesian estimation is that it

may not be able to provide an adequate description of the true dispersion in the

rates (13), (148). To overcome these limitations Devine and Louis (202) and

Devine et al (203) have suggested a constrained empirical Bayesian estimator,

and Macnab et al(310) proposed an EB bootstrap methodology using type III

parametric bootstrapping (198) and a sample reuse method (43). Other authors

have suggested the complementary use of empirical Bayesian and fully Bayesian

inferential techniques (306) and (8) proposed the use of product partition models

(PPM) approach.

2.5.4 Fully Bayesian Approach

The fully Bayesian (FB) approach assigns prior distribution to all parameters

and the parameters of these prior distribution are assigned hyperprior distribu-

tions to cope with their possible variability. Thus, it incorporates variability in

the hyper-parameters when specifying the hyperprior distribution. Inference on

the relative risks is based on estimated posterior distributions where uncertainties

associated with the estimates are taken care of by specifying vague hyperpriors.

The joint posterior distribution of the relative risks and the hyper-parameters
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given the data is

g(θ, γ/O) ∝ g(O/θ)f(θ/γ)f(γ)

And the marginal posterior distribution for the relative risk given the data is

g(θ/O) =

∫
g(θ, γ/O)dγ

Inference about the relative risk is based on this marginal posterior distrib-

ution. Working directly with this distribution requires analytic approximation

procedures to the integral such as Laplace method or numerical evaluation of the

integral (246). Estimation can also be done using the Markov Chain Monte Carlo

(MCMC) simulation methods which allow the samples to be drawn from the joint

posterior distribution and the marginal posteriors g(θ/O) and g(γ/O) (13). Also

see Gilks et al (301) and Brooks (269) for details of the MCMC computational

algorithm.

Lawson et al (24) gave a review of the fully Bayesian disease models and

Bernadinelli and Montomoli (166) compared comprehensively the empirical and

fully Bayesian methods. The authors judge the FB as the preferred method be-

cause it considers the uncertainty of the parameters of the model whereas the EB

conditions the estimation on the point estimates of the parameters. As a result,

the EB is less accurate. FB procedure is more computer intensive, EB is useful

for initial risk assessment and can serve as exploratory analysis, and if strong

variation in risk rates is established in the exploratory analysis, FB estimation

can be employed to detect clusters of disease. Best et al (183) give a summary

of the hierarchical Bayesian models that are used for disease mapping using fully

Bayesian estimation. They described a three-level hierarchical model as a natural
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model for disease mapping based on aggregation of underlying individual level

risks as Oi ∼ Poisson(θiEi), i = 1, 2, 3, . . . , n

β ∼ p(./λ)

λ ∼ π()

Where Oi is the observed HIV positive count in site i, Ei is the expected

number of cases in site i, βi is the log relative risks, p(./λ) is an appropriate

second stage prior distribution and λ is the hyper-parameter of this second stage

model with hyperprior distribution.

2.5.5 The Gamma-Poisson Model

Clayton and Kaldor (54) were the first to adopt a random-effect (or mixture)

model that assumes a parametric probability density function for the distribu-

tion of relative risks between areas. They suggested that the independently and

identically distributed relative risk θi follow a gamma distribution with scale pa-

rameter α and shape parameter ν - the hyper-parameters, that is with mean ν
α

and variance ν
α2 . Hence,

f(θi/γ) =
ανθν−1

i exp−αθi

Γ(ν)

Conditioned on θi ,Oi the observed HIV counts, are Poisson variates with

mean θiEi . It then implies that the marginal density of Oi has a closed form

negative binomial distribution with unconditional expectations

E(Oi) = Ei
ν
α

var(Oi) = Ei
ν
α

+ E2
i

ν
α2
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The scale and shape parameters of the negative binomial model are estimated

by maximizing the marginal likelihood. The empirical Bayesian estimate of the

posterior expectation is

E(θ̂i/Oi, α, ν) =
Oi + ν̂

Ei + α̂

This is a compromise between the observed relative risk Oi

Ei
and the mean ν

α

of the distribution of the relative risk.

The Gamma-Poisson model has the advantage of estimating the full posterior

which can be used to give confidence interval and hypothesis tests and its estimate

of mean and variance via maximum likelihood is superior to that obtained through

the methods of moments as in linear Bayesian methods (245).

This model can account for covariates by making the prior mean a function

of the covariates (161). Marshal (245) extended the gamma-Poisson model by

proposing a non-iterative distribution-free approach using weighted moments to

estimate a prior mean and variance and pointed out the difficulties arising in

iterative methods of estimation. Tsutakawa (247) developed the Gamma-Poisson

model further by letting the gamma scale parameter depend on a geographic

effect with an inverse gamma distribution. He then used the Poisson likelihood

and Gamma framework to estimate relative risks for geographic regions with

additional random effects component. See Lawson (23) for detailed definition

of random effects in disease mapping. Area-level or ecological covariates can be

included by modelling the logarithm of the relative risk as a linear function of

the covariates (54), (118), (112) as:

E[log(θi)] = xT
i β



CHAPTER 2. LITERATURE REVIEW 84

And

E(θi) =
ν

αi

= exp(xT
i β)

This model assumes that there is no extra-Poisson variation. eβ
i is the relative

risk due to risk factor i .

2.6 Multi-level Models

2.6.1 Variance Component models

In this section, we examine simultaneously the effects of individual-level and

group-level factors on risk of HIV infection. The data defines a multilevel structure:-

sites are within states and the states are grouped into zones. Information on HIV

positivity is collected from individuals in the sites. Hence, it is possible to have

a three-level (site, state and zone) model or a two-level (site/state or state/zone)

model as the data is also aggregated by state. Langford et al(112) extended the

multilevel models developed by Goldstein (105), (107) to disease mapping. The

simplest Poisson multilevel model is the one that incorporates a measure of the

extra-Poisson variation in the model as a high level variable. Given the covariates

xi, the logarithm of the mean of the relative risks is

log(µi) = log(Ei) + α + xT
i β + ui

where ui are the heterogeneity effects or extra-Poisson variation caused by
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variation among underlying populations at risk in the areas considered. log(Ei)

is the offset which accounts for the population at risk and α is the intercept.

ui ∼ N(0, σu)

and

log(θi) ∼ N(µi, σu)

where

µi = xT
i β

This model can be extended to a model with more than one higher level of

geographical aggregation (107) (118), (112). For a model consisting of two levels,

site i nested in the state j , then the observed HIV counts in site i becomes

Oij ∼ Poisson(θijEij)

And the log-linear model becomes

log(µij) = log(Eij) + α + xT
ijβ + uij + vj

uij ∼ N(0, σu), vj ∼ N(0, σv)
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And a three-level model comprising of site i nested in state j nested within

zone k we have that

Oijk ∼ Poisson(θijkEijk)

and

log(µijk) = log(Eijk) + α + xT
ijkβ + uijk + vjk + yk

uijk ∼ N(0, σu), vjk ∼ N(0, σv), yk ∼ N(0, σy)

where uijk are the random effects for the sites, vjk are the random effects for

the states and yk are the random effects for the zones.

Hence log(θ) ∼ MV N(µ, Σ). where Σ is a block diagonal comprising of the

variance of the three random effects due to site, state and zone respectively.

The models we have considered so far are the variance component models.

The effects of the spatial distribution of the sites and the states were not taken

into cognisance.

The variance component models can be fitted using the quasi-likelihood, iter-

ative generalized least squares (IGLS), Fisher scoring algorithm or the restricted

iterative generalized least squares (RIGLS). The detailed account of the algo-

rithm for the estimation procedure of the multilevel model is given in Goldstein

(105).
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Iterative Generalized Least Squares

This method is based on generalized least squares which gives the maximum

likelihood estimates for hierarchically structured data (105). A simple model of

fixed and random effects (107),(184) is given as,

Y = Xβ + Zθ (2.58)

where Xβ is the fixed part and Zθ is the random part. Y is the observed

vector of events being modelled by predictor variables X and the fixed parameters

β, and the predictor variable Z with random coefficients θ. The design matrices

X and Z need not be the same. Z may represent variables random at any level

in the model.

The procedure of the IGLS is a two-stage process for estimating the fixed

parameters and the variances and covariances of the random parameters in suc-

cessive iterations. The first stage is to estimate the fixed parameters using the

ordinary least squares regression and taking the higher level variances to be zero.

The vector of residuals from this initial model is then used to construct the initial

values for the dispersion matrix V . The dispersion matrix is then used in the

estimation of the fixed parameters using the generalized least squares estimation

procedure as

β̂ = (XT V −1X)−1XT V −1Y (2.59)
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again the vector of residuals are computed as

Ỹ = Y −Xβ̂ (2.60)

and we obtain the cross-product matrix of the residuals, Y ∗ = Ỹ Ỹ T such that

V = E(Y ∗) = E(Ỹ Ỹ T ) (2.61)

We then stack the columns of the cross-product matrix into a vector,

Y ∗∗ = vec(Ỹ Ỹ T ) = vec[(Y −Xβ̂)(Y −Xβ̂)T ] (2.62)

and Y ∗∗will then be used as the response variable in a regression equation to

estimate the random parameters. The covariance of the random coefficients θ is

estimated as

cov(θ̂) = (ZT V ∗−1Z)−1ZT V ∗−1Y ∗∗ (2.63)

where V ∗ is the Kronecker product of V , that is V ∗ = V
⊗

V . Assuming mul-

tivariate normality, the estimated covariance matrix for the fixed parameters is

cov(β) = (XT V −1X)−1 (2.64)
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Goldstein and Rabash (108) gave the estimate of the random parameters as

cov(θ̂) = 2(ZT V ∗−1Z)−1 (2.65)

Hence, the iterative procedure continues alternating between estimation of

the fixed and random parameter vectors until convergence is achieved.

Fisher Scoring algorithm

This iterative technique is used to obtain the maximum likelihood estimate of

the hyperparameters γ which are updated using estimates from the pth iteration

as

γ̂ = γ(p) + i(p)−1U (p)

where i(p) is the Fisher’s information matrix and U (p) is the score statistic

and both of them are evaluated at γ(p). See Breslow and Clayton (184)for more

details in this estimation procedure.

Penalized Quasi-likelihood (PQL)

Given that the observed number of cases (Oi) in each site follow the Poisson

distribution with mean µi and that

log(µi) = log(Ei) + α + xiβ + ui (2.66)
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this equation implies a nonlinear (logarithmic) relationship between the ob-

served number of cases Oi and the predictor part of the model. Hence, the normal

distribution approximation does not directly apply here. In order to estimate the

random parameters ûi from the model we use the penalized quasi-likelihood es-

timation procedure which involves the application of an approximate linearizing

technique at each iteration using a first and second order Taylor series approxi-

mation. If

µi = f(H)

where H = α+xiβ+ui and if Ht is the value of the linear predictor H at iteration

t, then f(Ht+1) is expressed as a function of Ht through a second-order Taylor

expansion about the current fixed and random part estimates as

f(Ht+1) = f(Ht) + xi(βt+1 − β̂t)f
′(Ht) + (ut+1,i − ût,i)f

′(Ht)

+(ut+1,i − ût,i)
2f ′′(Ht)/2 (2.67)

The first two terms on the right-hand side provide the updating function for

the fixed part of the model and the last two terms are for the estimation of the

random part. See Breslow and Clayton (184), Goldstein (107) and Goldstein and

Rasbash (109) for a full description of the linearizing procedure. For the Poisson

distribution

f(H) = f ′(H) = f ′′(H) = exp(Xiβ̂ti + ûi) (2.68)
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Langford et al. (1999) gave the extension of the PQL procedure to spatial

models as follows:

log(µi) = log(Ei) + α + xiβ + ui + vi (2.69)

The random parameters ûi and v̂i are estimated from the model using the pro-

cedure outlined above as

µi = f(H)

where H = α + xiβ + ui + vi and

f(Ht+1) = f(Ht) + (αt+1 − α̂t) + xi(βt+1 − β̂t)f
′(Ht) + (ut+1,i − ût,i)f

′(Ht)

+(vt+1,i− v̂t,i)f
′(Ht)+(ut+1,i− ût,i)

2f ′′(Ht)/2+(vt+1,i− v̂t,i)
2f ′′(Ht)/2 (2.70)

The first three terms on the right-hand side provide the updating function for

the fixed part of the model and the last four terms is for the estimation of the

random part.

Marginal Quasi-likelihood (MQL)

The linearizing procedure given equations (2.67) and (2.70) above can lead

to convergence problems or the model may fail if residuals are very large. To
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overcome this limitation the MQL procedure (184),(107) can be adopted whereby

the second-order terms in the equations (2.67) and (2.70 are omitted. In extreme

cases, estimates can be based only on the fixed part of the model such that

Ht = Xiβ̂t

This procedure has the disadvantage of producing biased estimates when the

sample size is small. However, it can be corrected using bootstrap procedures

(107). Generally, the PQL procedure gives better estimates than the MQL (107).

Restricted Iterative Generalized Least Squares

This is an extension of the IGLS. Like the maximum likelihood estimates, the

IGLS estimates are biased. Goldstein (106) shows that a slight modification of the

IGLS by restricting the model to take account of the sampling variations in the

parameters can lead to unbiased estimates of the fixed and random parameters.

Given the general model,

Y = Xβ + Zθ

such that E[(Zθ)(Zθ)T ] = V and cov(β̂) = (XT V −1X)−1 Then the

E[(Y −Xβ̂)(Y −Xβ̂)T ] = V −Xcov(β̂)XT = V −X(XT V −1X)−1XT

where X is the design matrix for the fixed effects in the model with full rank. V

is then updated at each iteration using its current value V̂ as

V = (Y −Xβ̂)(Y −Xβ̂)T + X(XT V̂ −1X)−1XT
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The last term X(XT V̂ −1X)−1XT can be regarded as a bias correction term.

Under the assumption of multivariate normality this procedure is equivalent to

restricted maximum likelihood.

2.6.2 Spatial Multilevel Models

The idea behind this section is that areas close to one another in geographical

space share the same environmental, socio-economic, cultural and demographic

factors that influence disease rates and are more likely to share similar relative

risks. Ignoring this dependence, where it exists, will result in the standard errors

of the ecological regression coefficients being too small if the dependence is posi-

tive or too large if the dependence is negative. Thus, we need to reflect this prior

knowledge in the model by incorporating a spatial component into the multilevel

models considered in the previous section. This can be achieved using the nearest

neighbour Markov random field models (127), (303), (13)

The introduction of the geographical structure of the relative risks into the

model results in a more complex prior model as it imposes conditional indepen-

dence structure on the relative risks such that each relative risk is conditionally

independent of all other relative risks, given a small set of geographically adja-

cent areas. Clayton and Kaldor (54) proposed the multivariate lognormal prior,

which have the capability of accommodating the spatial dependence of the rela-

tive risks. Supposing that the relative risks are correlated where the correlation

is dependent on geographical proximity and that the relative risk can be consid-

ered to be Gaussian, (127), (160), (94), (54) estimated the log relative risks using

conditional autoregressive (CAR) method given as
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E(βi/βj, j 6= i) = µi + ρ
∑

j

Wij(βj − µj)

var(βi/βj, j 6= i) = σ2

Where W is the adjacency matrix of the map defined as Wij = 1 if i and j are

adjacent sites or states and 0 otherwise. Also

E(β) = µ

cov(β) = Σ = σ(I − ρW )−1

This model was modified slightly in Yasui et al (303)as

E(βi/βj, j 6= i) = α +

ρ
∑
j∈δi

wij(βj − α)

∑
j∈δi

wij

var(βi/βj, j 6= i) =
σ2

∑
j∈δi

wij

E(βi) = α and σ2 is the scale parameter. ρ is the spatial dependent parameter,

δi is the set of neighbourhood sites for site i and wij are weights indicating the

proximity of each area to its neighbourhood areas. When ρ = 1, this model is

called Gaussian intrinsic autoregression model (238).

cov(β) = Σ = σ(I − ρMW )−1M
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Where I is an identity matrix, M is a diagonal matrix with

Mii =
1∑

j∈δi

wij

Besag et al (130) developed a simple spatial model for the distribution of

relative risks of a disease by considering β to be a sum of a Gaussian intrinsic

autoregression prior. This model is an extension of the convolution Gaussian

prior proposed by Besag (128) and Besag and Mollié (129) given as

Oi ∼ Poisson(µi)

log(µi) = log(Ei) + α + xiβ + ui + vi

where ui are residuals with no spatial structure; they are the heterogeneity

effects between sites or states which are independent of one another. Its variance

σ2
u is the non-spatial extra-Poisson variation which is assumed to be a Gaussian

homoscedastic white noise. vi are residuals with spatial structure. They are

spatially dependent random effects and may have any one of a number of struc-

tures describing adjacency or nearness in geographic space. They are spatially

structured and represent the spatial contribution of neighbouring areas. σ2
v is the

spatial extra-Poisson variation. If the variation in β is spatially structured, σ2
v

will dominate the total variation, if the variation of β is spatially unstructured,

σ2
u will dominate the total variance.

From Clayton and Bernadinelli (55), the logarithm of the relative risk can be
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expressed as

log(θi) = ui + vi

where ui are the unstructured heterogeneous effects and

ui ∼ N(0, σ2
u)

vi are the spatially structured effects through an intrinsic Gaussian autore-

gression

(vi|vj, j 6= i) ∼ N(v̄i, σ
2
vi
)

where v̄i is the mean of all the neighbours of site i

v̄i =

∑
j

wijvj

∑
j

wij

σ2
vi

=
σ2

v∑
j

wij

wij = 1 if i and j are contiguous and 0 otherwise. The structured and un-

structured effects are independent of one another. Also,

var[log(θi)/log(θj), j ∈ δi, σv, σu] =
σ2

v∑
j

wij

+ σ2
u

is the conditional variance of the log relative risk θi given all other θ′js. If
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σ2
v/σ

2
u is small, then unstructured heterogeneity dominates, whereas if σ2

v/σ
2
u is

large, the spatially structured variation dominates.

The multivariate representation of the model with spatial dependence is given

as

log(θ) = β ∼ MV N(µ, Σ)

where

β = {β1, β2, . . . , βn} = {log(θ1), log(θ2), . . . , log(θn)}

Σ = σ2Ω

and Ωij is the correlation between βi and βj. If Ωij = 0, then βi and βj are

marginally independent. Ω is usually specified as a parametric function of dis-

tance, dij, between the centroids of each pair of areas. The function chosen must

ensure that Σ be positive definite. To achieve this, exponential decay function is

adopted (36), (274) such that

Ωij = f(dij, φ) = exp(−φdij)

where φ > 0 controls the rate of decrease of correlation with distance, with

large values representing rapid decay. The disc model can also be used to deter-

mine the correlation between two points which is defined as proportional to the

intersection area of two discs of common radius φ centered on the points (252).



CHAPTER 2. LITERATURE REVIEW 98

For the independent normal or multivariate normal priors of the relative risks,

the hyperpriors for the inverse variances (σ2
v and σ2

u) are the conjugate gamma

distributions with specified parameters. When there is lack of information on the

strength of u and v, vague Gamma priors with means

2

var[log(θi)]

for σ−2
u and

2

w̄var[log(θi)]

for σ−2
v are assumed (166),(12), where w̄ =

P
ij

wij

n
, n is the number of sites.

Another form of Gaussian Markov Random Field (GMRF) prior specifica-

tion for the multivariate normal adopted by many authors (41), (307),(305) for

modeling random spatial effects is

v ∼ N{0, Σ(σ2, ρ)}

and

Σ(σ2, ρ) = σ2D−1

where

D = ρR + (1− ρ)IJ
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σ represents the spatial dispersion parameter and ρ,(0 ≤ ρ ≤ 1) is the spatial

autocorrelation parameter, R is a J × J neighbourhood matrix whose jth diag-

onal element is the number of neighbours of the corresponding site and the off

diagonal elements in each row is −1 if the corresponding areas are neighbours

and 0 otherwise. IJ is an identity matrix of order J. Hence the model depends on

the neighbourhood structure and not on distance between sites. The prior spec-

ification for v above also represents a conditional autoregressive (CAR) model

with conditional distribution of vj given as (305)

vj/vk 6=j ∼ N{ ρ

1− ρ + ρnj

∑

j∼k

bk,
σ2

1− ρ + ρnj

}, j = 1, . . . , J,

where nj is the number of neighbours for site j and j ∼ k means that site j is

a neighbour of site k. Note that when ρ = 0, the sites are independent and when

ρ = 1, we have Gaussian intrinsic autoregressive prior.

2.6.3 Multiple Membership Multiple Classification Mod-

els

This is an extension of the multilevel models which is applied on data where

the lowest level unit is a member of more than one higher classification unit.

The standard model fits mainly two classifications; the area (site) classification

that captures the non-spatial variation and the multiple membership neighbour

classification that adjusts for effects due to neighbouring areas. This model was

first applied by Hill and Goldstein (295) and was further developed by Rabash

and Browne (141). Browne et al (294) extended this to disease modelling by
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applying it to the analysis of Scottish lip cancer data set as follows:

Oi ∼ Poisson(λi),

log(λi) = log(Ei) + β0 + xiβi + u
(2)
site(i) +

∑

j∈Neighbour(i)

w
(3)
ij u

(3)
j

u
(2)
site(i) ∼ N(0, σ2

u(2)), uj ∼ N(0, σ2
u(3))

where wij = 1/ni and ni is the number of neighbours for site i. u
(2)
i and u

(3)
j

are the vectors of residuals for the random effects for site classification (2) and

neighbours classification (3) respectively. This model is similar to the condi-

tional autoregressive (CAR) model considered in the previous section. They

differ slightly in the manner in which spatial correlation is estimated. The CAR

model estimate the spatial correlation through the variance structure rather than

through the multiple membership relationship.

2.7 Monitoring Convergence

To effectively monitor convergence in any iterative simulation method like the

Gibbs sampler or Metropolis algorithm, Gelman and Rubin (4) recommended the

use of several independent sequences with starting points sampled from an over-

dispersed distribution. Earlier works (5) have confirmed that the use of a single

series from the Gibbs sampler provides a false sense of security. The use of

multiple sequence makes it possible to obtain a distributional estimate for each

estimand at each iterative simulation and an estimate of how much sharper the

distributional estimate might be if the simulations were continued indefinitely.

This investigation is accomplished using the components of variance from the
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multiple sequences. The detailed procedure could be found in Gelman and Rubin

(4).

The process entails running m ≥ 2 independent sequences, each of length

2n, with starting values drawn from an over-dispersed distribution. The first set

of n iterations is discarded to minimize the effect of the starting distribution.

Diagnosis is therefore based on the last set of n iterations. For each parameter of

interest, we obtain the following: The between sequence mean variance B given

as

B =
1

n

m∑
i=1

(x̄i. − x̄..)
2

m− 1

The average of the within-sequence variance

W =
1

m





mn∑
ij

(xij − x̄i.)
2

n− 1





The estimate of the target variance obtained as weighted average of W and B

σ̂2 =
n− 1

n
W +

B

n

Define the variance of the Student’s t distribution of the estimand x, as

V = σ̂2 +
B

mn
(2.71)

=
1

n

{
(n− 1)W +

m + 1

m
B

}
(2.72)
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Convergence is monitored by estimating the factor by which the scale of cur-

rent distribution for x might be reduced if the iteration is continued in the limit

as n →∞. This reduction factor is the ratio R of the current variance estimate,

v̂, to the within-sequence variance, W , with a factor to account for the extra

variance of the Student’s t distribution. R is estimated as

R̂ =
V̂

W
(

df

df − 2
) (2.73)

=
1

n

{
(n− 1) +

m + 1

m

B

W

}
df

df − 2
(2.74)

The scale reduction is estimated as
√

R̂. If the potential scale reduction

is high, further iterations are needed to improve inference about the targeted

distribution. If R̂ approaches 1, then convergence is reached.

Note as n →∞, R̂ ∝ V̂
W



Chapter 3

Spatial Analysis

3.1 Justification for Spatial Analysis

Nigeria is a multi-cultural, multi-ethnic and multi-lingual society which lies

between longitudes 3 and 14 and latitudes 4 and 14. At its widest, Nigeria

measures about 1200km from east to west and about 1050km from north to

south. About 374 pure ethnic groups make up the entity called Nigeria and

trado-cultural practices vary between these ethnic groups. However, some of the

ethnic groups share some cultural and religious affinity. Political boundaries were

designed to cluster communities based on these affinities and currently, there are

774 Local Government Areas (LGAs). These LGAs are in turn grouped under 36

States and a Federal Capital Territory (FTC), Abuja. The states are grouped into

six geopolitical zones namely, south-south, southeast, southwest, north central,

northeast and northwest. See Table 1.1

The December 2006 National Census gave the population count for the coun-

try as 140,003,542 people, obtained from 662,000 Enumeration Areas (EAs) (2).

103
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Figure 3.1. Time series plot of prevalence rates by zone

These individuals form human clusters that are distinguishable by their lan-

guages, traditions, socio-cultural practices, and religion. The human clusters

make up the hamlets, villages, and towns/communities spread across the land of

Nigeria.

Several studies (194), (193),(1), (88), (33) indicate that socio-cultural prac-

tices and behaviours that encourage the spread of HIV/AIDS vary widely among

the states and zones. Also, results from sentinel surveys indicate that the me-

dian HIV prevalence rate varies significantly across states, zones and by rural

and urban locations (93),(92), (90), (89). The graph in Figure 3.1 shows the

estimates of the median prevalence rates for each of the six geopolitical zones in

the years 1999, 2001, 2003 and 2005. Estimates were based on the results of the

HIV Sentinel Surveillance for these years and calculated as weighted averages of

the urban and rural prevalence rates using the rural and urban population as

weights. Variation between zones over the years is distinct in the graph with the

North-central and South-south zones in the lead.
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Independent studies on sexual networking in some parts of the country indi-

cate that there is a large network of premarital and extramarital sexual behaviour

within the surveyed subpopulations (121), (122), (263), (200) (277), (195). The

size and nature of the observed network vary from one subpopulation to the other.

The patterns of the networks appear to depend on some social and economic de-

terminants and on the cultural context within which the sexual behaviour takes

place ((33), (277),(195), (267)). One’s sex ideology seems to be a function of geo-

physical, socio-cultural and economic environment and personal risk orientation.

Most of these studies identified age of sexual debut, age of first marriage, rate of

partner exchange, rate of contact with sex workers, concurrent partnership and

level of education as factors affecting premarital and extramarital sex. These fac-

tors are known to vary by ethnic and religious groups in Nigeria and elsewhere.

For example, in a study of unmarried women in the US, it was found that having

multiple sexual partners is linked to age at first sex and birthplace (265).

Adherence to religious tenets in one’s behaviour may have an effect on health

and disease transmission (51). Religions place some constraints on sexuality and

studies have shown that religiosity and religious affiliation are negatively corre-

lated with sexually transmitted diseases (188), (218). The core Muslim states

in Nigeria are located in the northeast, northwest and north-central geopolitical

zones. According to Malamba et al (270), Muslims have lower risk for HIV in-

fection than non-Muslims, possibly due to the protective effect offered by male

circumcision. Specifically, Gray(218) tested the hypothesis that Islamic religious

affiliation negatively associates with HIV seropositivity and concluded that the

percentage of Muslims in the population negatively and significantly predicted

the prevalence of HIV among sub-Saharan African countries. Six out of seven

studies enabling within-population comparisons revealed lower HIV prevalence
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rates among Muslims. According to him, Muslims have lower alcohol consump-

tion as well as a higher rate of circumcision compared with non-Muslims. This

may not be the case with Nigeria. HIV prevalence is high in some core Muslim

states especially those in the north central and northeast zones. Although preva-

lence is low in the northwest zone, it is not the lowest among the zones and it

does appear from figure 3.2 to be on the increase. Also male circumcision is very

common among other religious and ethnic groups. While religious inclination

and belief may be a factor in explaining the spread of HIV/AIDS in Nigeria (as

it may impose restriction on certain behaviour), it does seem that other factors

may be more associated with the epidemic. Hence, we need to consider religion

alongside other factors.

The association between alcohol consumption and increased high-risk sexual

behaviour is documented in various studies ((145), (223), (153), (80) (81)). Asso-

ciation between a history of alcohol consumption and being HIV sero-positive has

been established by some of these authors. Alcohol diminishes personal control,

increases risk-taking, and reduces the ability to make informed choices around

safer sex (266). Alcohol impairs various aspects of the immune system and in-

creases the susceptibility to HIV infection (66). According to BBC News (2003),

a team of researchers led by Prof Bagby of Louisiana State University, found that

rhesus monkeys that were given regular doses of alcohol before being exposed to

SIV virus (a monkey equivalent of HIV in humans) had 64-fold increase of SIV

virus in their blood (one week after the exposure) than the control who were

given doses of sugar solution before the exposure. Hence alcohol consumption

may increase susceptibility to infection upon exposure to HIV.

The Muslims in Nigeria are located mainly in the north and partly in the

west of the country. Recently, the observed HIV prevalence rates in some core
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Muslim states are low. According to a study (28) conducted to determine risk

factors for HIV among pregnant women attending antenatal clinics in the city

of Jos located in the North-central zone, women of other faith were found to be

more likely to be infected with HIV than Muslim women. Feyisetan and Pebley

(33) confirmed that Muslims are less likely than other religious groups in Nigeria

to have had premarital sex due to the more conservative nature of Islamic culture

and the more protective attitude of Islam towards women. Other explanations

are the closed sexual networks - since Muslim men are legally allowed to have up

to four wives, the pressure for casual sex partners is appreciably reduced (266) -

and the ritual washing which could increase penile hygiene and reduce the risk

of sexually transmitted diseases. The sale of alcohol is prohibited in all core

Muslim communities in Nigeria thereby making access to alcohol very difficult

for the population.

The North Central geopolitical zone of Nigeria houses communities and towns

whose culture is mixed. The religion is mainly Islam, with their emirate admin-

istered from the far north, but they have socio-cultural affinity with the south.

Several studies have shown that the Okun tribe found mainly in Kogi state and

some part of Kwara and Ekiti states still practice the culture of spouse sharing.

In this culture, men do have and maintain sexual relationship with their kin’s

wife without any conflict. This is because family and clan members view them-

selves as one and consider what belongs to a kin as belonging to every member of

the clan including their wives (181). One study (179) reported that 65 per cent

of 1029 sexually active respondents were involved in this practice. Also, some

communities in Benue state were known for their culture of men offering their

wives, daughters or sisters as the highest gift of honour (”kola”) to their visiting

special friends. The woman is expected to sleep with the visitor throughout the
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visit or some days thereof. According to Mbiti (251), in some societies brothers

have sexual rights to the wives of their brothers (here, the word brother has wider

meaning such that a person has hundreds of brothers). Where the age group sys-

tem is taken seriously, as among the Maasai, members of one age group who were

initiated in the same batch are entitled to have sexual relationship with wives of

fellow members.

In the South-East geopolitical zone, cultural practices that encourage extra-

marital and premarital sex are common. If a man dies without having children

(male children) or if the man is impotent, the wife is encouraged to have sexual

relationships with men (often from the kin’s men) in order to raise children for

the husband. Also, a couple that do not have male children may encourage one of

their daughters to remain unmarried and raise male children for the perpetuation

of the family lineage (195). Temporary infertility can induce a woman to have

extramarital sexual relationships. A woman who fails to achieve pregnancy in the

first few years of marriage often considers her position as a wife threatened, and

in order to save her marriage and be free from societal pressure, especially from

her husband and his relatives, gets involved in extramarital sex. The majority of

the sex partners of this category of women are often those they approach for so-

lutions to their childlessness; medical practitioners, spiritualists and traditional

healers (267). In some parts of this zone, tradition permits an elderly woman

to marry a ”wife”. In this practice, if a woman is unable to achieve pregnancy

throughout her childbearing age, she may marry a wife and choose a man of her

choice (often her husband if still alive and they are in a good relationship) to raise

children in her name. Sometimes the wife is allowed to make her choice of men.

Procreation is the main reason for extramarital sex in traditional Igbo society.

High premium is placed on a male child and women will do anything to have one.
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In recent times, however, modernization, materialism and socioeconomic gains

lure more women into extramarital and premarital sex.

The Southwest geopolitical zone of Nigeria is not without some practices that

encourage extramarital and premarital sex. Several studies (121), (122); (200)

confirm the existence of sexual networks in some cities and towns in the zone.

Some authors have commented on the loose marriages among the Muslim women

in Ibadan- they frequently alternated between wifehood and prostitution.

In the South-South zone, widespread prostitution was known as far back as the

colonial era especially in the upper Cross River Basin. The practice of prostitution

as a profession in Nigeria began with the advent of British rule. The Britons

brought Cross River under their control between 1888 and 1909; by the 1920s,

prostitution had become a substantially developed trade in the area. By the

1930s it was reported that about 12 percent of the female population in the Nta

clan, 15 percent of the Uhumunu females and about 33 percent adult females in

the Nnam group had joined prostitution and migrated with the Europeans to

different parts of Nigeria and the west coast of Africa, Cameroon and Equatorial

Guinea (39). Many of these women abandoned their husband and children for

prostitution. The Calabar and Ogoja provinces (now Cross River and Akwa

Ibom states) were so bedevilled with prostitution that, up till today, prostitution

is known in many parts of Nigeria as ”Akunakuna” named after one of the village

groups in the then Obubura division. The carefree sexual behaviour of women

from this part of Nigeria is well known. The frequent divorce, remarriage and

loose parental supervision of adolescents, and the consequent early sexual debut

in these societies, were captured in a study by (263). Prostitution in this zone

has taken a more advanced form. International prostitution, which began in the

second half of the 1980s following the introduction of the structural adjustment
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program and its consequent economic crunch, is very popular among the Edos in

this zone. According to Aghatise (68), about 80 percent of Nigerian women and

girls trafficked into Europe came from the midsouth region and belong to the Edo

ethnic group and most of them are from polygamous homes. Aghatise (68) also

noted that most polygamous Edo men abdicate the caring for their children and

abandon the task to the women. According to him, most of the Nigerian women

trafficked to Italy in the 1980s were either married or separated.

Given these socio-cultural and behavioural scenarios, which may have direct

links with HIV transmission and spread within the communities, it is expected

that there should be variations in the rate and pattern of spread in the different

communities (or social and cultural clusters) in Nigeria. The two graphs in figure

3.2 show some variations in observed HIV prevalence among pregnant women

attending antenatal clinics in the surveyed sites (community or town) in the six

zones for 2001 and 2003. Starting from the far left (Umuahia), the first group

is the Southeast zone, followed by the South-south, Southwest, North-central,

Northeast and Northwest zone. The variation within and between zones is very

prominent and the patterns of spread appear similar and consistent when the two

years are compared, with slight decreases in some sites in 2003.

The spread of HIV/AIDS within and between these clusters depends on the

level of interactions between individuals with varying characteristics and behav-

iours. According to Schinazi (242), it is suspected that diseases like HIV can

only spread in populations where people are grouped in clusters in which in-

dividuals have repeated and sustained sexual contact. Hagenaars et al (275)

insist that the persistence of an infectious disease within a population depends

on both the disease’s transmission characteristics and the pattern of mixing be-

tween hosts. This mixing pattern is affected by spatial heterogeneity. Population
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Figure 3.2. Plot of site prevalence rates in women attending antenatal clinics
grouped by zones
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heterogeneity can be achieved by dividing the population into homogenous sub-

groups based on spatial location, sex, behaviour, genetics, or other factors (300).

In spatially heterogeneous sub-populations, an individual is more likely to con-

tact other individuals within the same spatially defined subpopulation than those

outside. Persistence of an epidemic between sub-populations is enhanced by res-

cue effects defined as transmissions between sub-populations that act to re-infect

sub-populations where the disease has gone extinct. Also rescue effects are most

effective if the coupling between sub-populations is sufficiently strong to gener-

ate frequent between-subpopulation transmissions but not so strong that spatial

heterogeneity is lost (34) (239). However, if the infection rate outside the sub-

population (or social cluster) is low, an epidemic is possible if the social cluster

and the within cluster infection rate are large enough (242).

All the papers on sexual networking, sexual behaviour and premarital and

extramarital sex in Nigeria reviewed in this chapter, reveal that these practices

are sufficient to sustain the spread of HIV/AIDS. Repeated and sustained sexual

contacts were established in most of the studies. In a study of sexual behaviour,

HIV related knowledge and condom use among commercial bus drivers and motor

park attendants in Lagos, Nigeria, (77), it was found that about 74.3 percent of

men had multiple sex partners and a strongly woven network of sexual relation-

ships which include their wives, regular sex partners, commercial sex workers,

young female hawkers, schoolgirls, and market women within and outside the

park. There was consistent and regular condom use at a rate of 11.6 percent

and knowledge of risk factors for STDs was poor. The spread of HIV in this

type of network, where high-risk sex and low condom use is predominant, is a

certainty. Over the years, the HIV/AIDS epidemic in Nigeria has been sustained
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as a result of these risky behaviours. Interactions between social clusters, repre-

sented by the individual communities, are mirrored by the sexual networks which

transcend geophysical community boundaries. Hence, the infection rates of HIV

are expected to vary by communities but communities close to each other may

show some similarities in the rates according to the persistence and rescue effect

theory. This is confirmed by the graphs in Figure 3.2.

3.2 HIV clusters in Nigeria

In this section, we examine whether there is any tendency of HIV cases to

cluster systematically in a particular area or whether the spread is random. That

is, the similarity or dissimilarity of the spatial distribution of HIV prevalence

among the Nigerian States. We start with a descriptive analysis of data pertaining

to the 36 states of the Federation and the Federal Capital Territory. Thereafter,

we shall consider observed values from individual sites. In doing this, we shall

make use of the data generated from the National HIV Sero-prevalence sentinel

Surveys conducted in 1999, 2001, 2003 and 2005 (93),(92), (90), (89). Data are

available for all the HIV sentinel surveillance sites in 2001 and 2003. We first

examined the data for symmetry and applied some transformation techniques

on the data. We compared four different methods namely; natural log, logit,

arcsine, Freedman- Turkey transformation methods. The natural log transform

of the prevalence rates seems to be more appropriate.

The graphs in Figure 3.3 show perspective plots of HIV prevalence rates at

the state level for 1999, 2001, 2003 and 2005 respectively. A close look at the

shape of the plots suggests some heaping of HIV positive cases in some locations

in the country. It is important to note that the change in the heaping over time is
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Figure 3.3. Perspective plot of the natural log transform of HIV prevalence rates

Figure 3.4. contour plot of the natural log transform of HIV prevalence rates

not appreciable. It does appear as though the states in the North central and the

South-south consistently bear heavier burdens of the HIV epidemic. This burden

is indicated by the heaping of cases in the plots in the locations of the two zones.

In order to see the concentration of HIV cases more clearly, the prevalence rates

were represented in contour plots.

The contour plots in Figure 3.4 indicate uneven rate of spread of HIV in the

country. This unevenness is implicated by the ”hills” and ”valleys” shown in the

contours, depicted by the degree of concentration of the lines.
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Figure 3.5. contour image of the natural log transform of HIV prevalence rates

A clearer picture of the concentration of the epidemic in Nigeria is shown in

figure 3.5. These are colour images of the contours given in Figure 3.4. The

blue and whitish patches indicate server or heavy concentration of cases, with

the blue patches being the most server. The epicenters of the epidemic over the

years has consistently been the North central and some part of the South-south

zone of the country. It appears as though the spread of the epidemic is facing

the direction of the Northeast and Southeast as it spreads from the North central

and South-south. The spread over time can be discerned from the plots. In 1999,

the epidemic was concentrated around the Cross River/Akwa Ibom axis, North

central and Kaduna/Kano areas. By 2003 and 2005, the virus had spread to

the Eastern half of the country and gradually advancing into the Northwest and

Southwest.

To further investigate the clustering of HIV cases in the country, we employed

the tools of cluster analysis
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Figure 3.6. State clustering using the natural log transform of HIV prevalence
rates

3.2.1 Cluster Analysis

From the analysis above, it does appear that there are some natural group-

ings of the States based on the level of HIV prevalence. This clustering tendency

among the 36 states and the Federal Capital Territory as observed in the previous

section is investigated in this section using the hierarchical agglomerative clus-

tering method. This analysis was performed on data obtained from the National

HIV Sentinel Survey conducted in 1999, 2001, 2003 and 2005. These data were

obtained by unlinked screening of blood samples collected from pregnant women

attending selected prenatal clinics within the period of the survey. See section

1.4.1 for detailed description of the data.
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The results of the analysis support the findings of the contour analysis. The

clusters show the groupings of nearby States with similar HIV prevalence rates.

Broadly, it seems that each geopolitical zone is a major cluster. The graph in

Figure 3.7 displays the spatial distribution of five major clusters obtained from

the cluster analysis for each year. The analysis for 1999 clearly distinguishes

the states in North central zone as a distinct cluster. But in 2001, this cluster

merged and became one cluster with the Northeastern states, only to appear

again as a separate cluster in 2003 and 2005. The behaviour of these clusters in

these years corresponds to what we observed in the image map (Figure 3.5). For

better appreciation of Figures 3.6 and 3.7, the numbers used in the clustering

corresponding to serial number assigned to each state is given in Table 3.1

SS SE SW NC NE NW
Cross Rivers 1 Anambra 7 Ondo 12 Kwara 18 Taraba 25 Jigawa 31
Akwa Ibom 2 Imo 8 Lagos 13 Niger 19 Adamawa 26 Kano 32
Rivers 3 Abia 9 Ogun 14 FTC 20 Borno 27 Kaduna 33
Bayelsa 4, Ebonyi 10 Oyo 15 Kogi 21 Yobe 28 Kastina 34
Delta 5 Enugu 11 Osun 16 Benue 22 Gombe 29 Zamfara 35
Edo 6 Ekiti 17 Nassarawa 23 Bauchi 30 Kebbi 36

Plateau 24 Sokoto 37

Table 3.1. The grouping of the Nigeria States into Zones

The plots in Figure 3.7 show the five major HIV clusters in the country over

the years. The plots are offshoots of the dendograms (Figure 3.6). The numbers in

the plots indicate the number assigned to the state positioned at the beginning of

each of the major clusters. For instance in 1999, 12 is Ondo state in the southwest

zone of the country, this number is used to represent all states in the same cluster

with Ondo state. And for 2005, 19 is Niger state in the north-central zone.
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Figure 3.7. Major HIV clusters in Nigeria

3.2.2 The Regression Tree

The search for possible structural patterns of the prevalence of HIV among

the neighbourhood groupings of the States led to the use of regression trees. The

resulting pruned regression trees and their corresponding partition plots obtained

using S–plus are shown in Figure 3.8. The tree groups local neighbourhoods

where estimated prevalence rates are similar. The resulting partitions show the

estimates of the average HIV prevalence rate for the group of States in each

leave or partition. The partitions follow the observed trend of the epidemic

observed in previous sections. However, the estimate of average prevalence rate

for the Northwest in 1999 and 2001 is a bit of a surprise as most of the states in

that partition are observed to have low prevalence rate. The trees for 2003 and

2005 appear to have more efficient partitions and estimates as expected given

the observed data. Their partitions are consistent with those of the contour

plots where the far North and the Southwest were distinguished for their low
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prevalence. In all the plots, the North-central zone stands out as the hot point of

HIV. The north-south or vertical clustering of the states in the early years of the

epidemic is visible from the vertical strips in the plots. The 2003 tree attempted

to group some states in the South-south with very high prevalence rates with

their counterparts in the North-central. This phenomenon was observed in the

hierarchical clustering where Akwa Ibom State in the South-south was clustered

with Benue State in the North-central. The vertical partitioning seem to give

way to horizontal strips in the 2005, this may suggest homogeneity of average

prevalence rates among immediate neighbouring states in the recent years.

3.3 The Search for Spatial Trends

In the last section, we examined the tendency of HIV cases to cluster in some

local neighbourhoods. In this section, we explore the spatial trend of the disease

through the States as we travel from the west to the east and from the north

to the south. To achieve this, we fit smooth functions of the prevalence rates

on the latitude and the longitude using GAM function in S+SpatialStats. The

local regression (loess) was used as the smooth function through the northing and

easting and the State prevalence rates for 1999, 2001, 2003 and 2005 were used as

the separate responses. The plots in Figure 3.9 show the results of the two-way

GAM fit- easting and northing. Each plot indicates a steep rise toward the centre

and sloping downward towards the west and far north. The north-south plots

(labeled as Northing in the x-axis) for 2001, 2003 and 2005 show high prevalence

of HIV in the south-south Nigeria. This is indicated by the rise in the lower part

of the graph. The east-west plots (labeled Easting) depict also that prevalence

is higher in the east than the west.
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Figure 3.8. Regression tree of HIV clusters in Nigeria
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Figure 3.9. Plots of spatial trend of the log prevalence obtained using a two-way
GAM
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Figure 3.10. Plots of surface trend of the natural log transform of HIV preva-
lence rates obtained using loess function

It is important to note that these plots allow us to view the trend only in

two directions because of its additive nature. In order to examine the entire

trend surface, we fit a loess function to the data, making prevalence a function

of the product of the two coordinates. A better view of the trend surface is

shown in the surface plot of the predictions. The plots are given Figure 3.10.

The individual plots represent predicted values of the levels of HIV prevalence

in the Nigerian States for the four years under consideration. For all the years,

the heavy concentration of HIV cases in the North central is very distinct. The

elevated points in the South-South correspond to the estimates for Cross Rivers

and Akwa Ibom States.

The protruding is more prominent when a nonparametric smoothing method

(293) is applied to the data as shown in the plots in Figure 3.11. The consistency

of high prevalence in the North central and South-south zones over the years is
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Figure 3.11. Plots of surface trend obtained using sm regression

clearly depicted in the plots.

3.4 Measures of Spatial Correlation

In this section, we examine how prevalence rates are related to each other

within a defined distance and direction. It is expected that sites or States that

are close neighbours will have similar rates than States or sites far apart given

the trado-cultural and socio-economic behaviours that may transcend political

boundaries.

3.4.1 Correlogram

The plots shown in Figure 3.12 are correlogram plots. Each point in the

graph is a measure of the relationship (represented by ρ) between the natural

log prevalence rates in states separated by a common Euclidean distance. The
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Figure 3.12. Correlogram plots of the natural log transform of HIV prevalence
rates

distance between any two State capitals is of interest here. It is clear from the

plots that relationship tends to diminish as distance increases. Note the high

positive correlation between states whose Euclidean distance is less than one unit

(about 100 miles). This may be interpreted to mean that HIV epidemic is similar

among states that are close neighbours.

The variation in time of the spatial autocorrelation is visible in the plots in

Figure 3.12. The correlation between close neighbours appears to increase with

years. If we perceive correlogram as a measure of similarity of HIV prevalence

among close neighbours, it may be right to say that the prevalence of HIV infec-

tion becomes more and more similar among States that are close neighbours as

the years go by. The absolute value of the slope of the plots seems to increase

with time. The covariogram for this data also show the same behaviour. We note

here that the distance between the centroids of the state capitals were calculated

from the data locations measured by their longitude and latitude. One unit in

x-axis is approximately 100 miles.
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Figure 3.13. MC scatter plots of the natural log transform of HIV prevalence
rates

3.4.2 The Moran I and Geary c Statistics

The Moran Coefficient (MC) is a covariance measure of spatial autocorrela-

tion. Its scatter plots shown in Figure 3.13 were obtained by plotting centred

value of the log prevalence rates weighted by the neighbourhood matrix against

the centred log prevalence rates (7). The graph can be described as plotting

the spatially adjusted rates against the rates corrected for mean. The plots in-

dicate positive autocorrelation that tends to increase with time. This suggests

that the number of States with similar prevalence rate clustering within a defined

geographic space increases with time.

MC is known to be the most powerful test for spatial autocorrelation (7),(111)

(62), (57). Table 3.2 shows the computed statistics for Moran (217) and Geary(235)

measures of spatial autocorrelation. The Moran coefficients were estimated using

the regression ratio approach and the Moran index, both methods gave identical

estimates. All the coefficients are significant at 5% level of significance considering
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Moran Geary
Year coef p-value coef p-value
1999 0.294 7.18E-4 0.706 0.021
2001 0.293 7.27E-4 0.611 0.0023
2003 0.423 2.09E-6 0.539 2.96E-4
2005 0.476 1.16E-7 0.485 5.31E-5

Table 3.2. Estimates of spatial autocorrelation using Moran and Geary statistics

the normal p-values and the permutation p-values of the estimates. Therefore,

there is a strong evidence against the null hypothesis of no spatial correlation

in the data sets. As seen in the scatter plots, these coefficients confirm positive

autocorrelation among the States over the four-time period. Hence, these tests

confirm our earlier finding that there exist different clusters of the epidemic in

the country. That is, there appear to be different forms of the epidemic in the

country. Nearby States on average, have similar prevalence rates and the number

of state forming these clusters appear to increase with time as depicted by the

increase in Moran coefficient over time.

The Geary coefficient (GC) is never negative and it is sensitive to particularly

large differences between the prevalence rates (62). The Geary Coefficients as

shown in Table 3.2 seems to suggest that the differences between the prevalence

rates declined over the years. This may explain the decreasing trend exhibited by

its coefficient over time. However, it is noteworthy that the difference between its

values and 1 (the mean of the null model) increased with time. This increasing

difference signify increasing strength of positive spatial correlation in the data

over the years. The further away the Geary coefficients are from 1, the stronger

the spatial correlation. Thus, it appears from the result that HIV prevalence rates

among the States become more and more similar with time and this is especially

so among States that are geographically close to each other. This finding is in

line with the result obtained using Moran I statistic.
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3.4.3 The Semivariogram Clouds

We employ the tool of variogram cloud in search of possible spatial structures

and potential spatial outliers inherent in the HIV prevalence data. Also, the

distribution of the variance between all possible pairs of States at some selected

Euclidean distances will be examined. We consider two types of variogram clouds-

the squared-differences and the square-root differences cloud.

The plots in Figure 3.14 are the squared-difference cloud for the four-time

periods - 1999, 2001, 2003, and 2005. The presence of spatial outliers is evident in

the four plots. The unusual values noticed in three of the four-time period are due

to the state numbered 22. This state is Benue state located in the North Central

geopolitical zone of Nigeria. The possible spatial outlier in 2003 is the state

numbered 1. This is Cross Rivers state located in the South-South geopolitical

zone of Nigeria. A closer look at the plots show that the state numbered 2

closely follows state number 22 in 1999, 2001 and 2005. State number 2 is Akwa

Ibom state in the South-South geopolitical zone of Nigeria. These three States

are known for their high HIV prevalence rates. It does appear from the graphs

that the number of points that constitute outliers tend to decrease with time,

leading us to suspect that other states are closing the gap with time. The spatial

structure of the HIV prevalence among the states appears to be approximately

the same in the four-time points.

The spatial variation with increasing distance is clearer when viewed from the

boxplots of the variogram cloud given Figure 3.15 below. The boxplots seem to

define a general pattern of low variation in the first 200 miles (southwest zone)

followed by high variance in the central and low variation in the far north. This

observed pattern is in line with the results obtained from the loess estimate. The
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Figure 3.14. Variogram cloud plots of the natural log transform of HIV preva-
lence rates

distance is estimated from the south-south to the far north using the longitudes

and the latitudes of the state capitals. The boxplot at the near zero distance

depict states with abnormal prevalence rate in the south-south zone (Cross Rivers

and Akwa Ibom) as identified in the preceding paragraph and in the North-South

GAM plot (Figure 3.9). The outliers are more distinct. However, the distribution

of the variogram cloud is skewed (185) (237), hence care should be taken in

labelling any observation as unusual or outlier based on the variogram clouds.

The plots in Figure 3.16 are intended to investigate what happens to the

spatial structure and the seeming outliers as the distance of the variogram cloud

is reduced from approximately 5 to 3units using the 2005 HIV prevalence.

This reduction in distance shows some form of spatial structure with the vari-

ance fluctuating with increasing distance. The elimination of the State number 22

(which was noted as an outlier) from the reduced distance semivariogram cloud

(second row of Figure 3.16) only slightly improved the variability structure as
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Figure 3.15. Variogram cloud box plots of the natural log transform of HIV
prevalence rates

Figure 3.16. Reduced distance Variogran cloud plots of the natural log transform
of HIV prevalence rates
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Figure 3.17. Square root semivariogram cloud plots of the natural log transform
of HIV prevalence rates

depicted by the boxplots but some outlying points are still visible. State number

2 (Akwa Ibom state in the south-south zone with a prevalence rate of 8%) is a

possible spatial outlier at very low distance. State number 17 (Ekiti state in the

southwest zone) with the least prevalence rate of 1.6% may be a possible outlier

at a distance of about 300miles. This goes to confirm that squared differences

semivariogram cloud may not be the best tool to investigate outlying points in

spatial analysis

The square-root differences cloud is considered in Figure 3.17. The symmetry

of the boxplots is improved and very few outliers are observed. The abnormal

boxplot at the near zero distance in all the four year period is outstanding. A

line joining the means (o’s in the box ) or the medians (dots in the box) gives

a fair idea of the pattern or trend of the variation in the HIV prevalence among

the states in Nigeria.
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3.4.4 The Semivariogram

In order to investigate further the spatial correlation observed in the cor-

relogram plots above, we use the semivariogram. The semivariogram will throw

more light on the nature, degree and extent of spatial correlation. The directional

variogram describes not only how data are related with distance but also with

direction. In order to obtain a better view of the nature of the spatial correlation,

we need to remove the spatial trend earlier observed in the data when we applied

the generalized additive model.

Omni directional semivariogram

The directional semivariograms for 1999 and 2005 (Figure 3.18) were obtained

using the residuals from the local regression models. It does appear that the

positive trend observed in the various directions has been removed and the shape

of the semivariogram appears to be the same for all directions. Therefore, it may

be right to say that spatial dependency of HIV prevalence is approximately the

same in all directions. This implies isotropy or absence of anisotropy.

Using the residuals obtained from the loess estimates, the isotropic empirical

spherical semivariograms in Figure 3.19 were obtained and the lines fitted using

the weighted nonlinear least squares. The close fitting of the empirical semivari-

ograms to the model suggests a good choice of model for the spatial dependence

structure of the model. There is a marked increase in the range of the semi-

variograms in 2001 indicating that the number of States in close geographical

space with similar prevalence could be more in 2001 than other years. The range

and the nugget effect are least in 2005 implying that spatial correlation is higher

among States separated by shorter distances in geographic space. The shallow
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Figure 3.18. Omnidirection semivariogram plots of the natural log transform of
HIV prevalence rates

slope of the semivariograms suggests the presence of positive spatial correlation.

It indicates less variability in the prevalence rates with increasing distance. Also,

since the sill is a measure of the overall spatial variability, the decrease over time

can be explained to mean that the variation in prevalence rates of HIV in the

States within the distance defined by the spatial lags decreases with time. This

suggests that as the years go by, the prevalence of HIV in States close to each

other becomes increasingly similar.

3.4.5 Kriging

Kriging estimates were obtained using universal kriging approach by fitting a

cubic polynomial to the residuals obtained from the loess estimates. The depen-

dence structure of the spatial distribution was modelled by the empirical spherical

semivariogram which was established in the previous section as being appropriate
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Figure 3.19. Spherical Variogram plots of the natural log transform of HIV
prevalence rates

for the model. Our choice of the universal approach is informed by the need to si-

multaneously model the spatial correlation and trend. The graphs in Figure 3.20

show the wireframe plots of the kriged estimates. The spatial patterning of HIV

prevalence rates is vivid in the plots. Going from west to east, the low prevalence

rates of the west and far north east and the outstanding high prevalence of north

central and the moderately high prevalence of the south-south is distinct. This

spatial structure defines the spatial trend adequately.

All the analyses in the sections above were done using HIV sentinel survey

data for the 36 States and the Federal capital Territory. Similar analyses were

also conducted using the data at site level. Results and interpretations obtained

are identical to those presented above.



CHAPTER 3. SPATIAL ANALYSIS 134

Figure 3.20. Plot of krige estimates of the natural log transform of HIV preva-
lence rates



Chapter 4

The multi-level models

4.1 The Variance Component model

Multilevel analysis allows the extra Poisson variation inherent in the HIV

positive counts to be modelled. Thus, it is possible to estimate the dependence

of HIV positivity on some ecological covariates simultaneously with a measure of

variation at the site, state and zone group levels. We shall estimate the variance

components in various models starting with the null model given in equation 4.1

as

Oi ∼ Poisson(µi)

log(µi) = log(Ei) + α + ui (4.1)

135
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where ui is the heterogeneity effect at the site level and ui ∼ N(0, σu). It is

assumed here that all the variation is at a single level that of sites, the lowest level

of aggregation. An extension of this model comprises of other possible sources of

variation as given in equation 4.2 where site i is nested in state j and zone k:

log(µijk) = log(Ei) + α + uijk + vjk + yk (4.2)

where

uijk ∼ N(0, σu), vjk ∼ N(0, σv), yk ∼ N(0, σy)

are respectively variance components at the levels of sites, states and geopolitical

zones. Log(Ei) is the logarithm of the expected number of cases which is an offset

that accounts for the different populations at risk of infection. α is the constant

term which is required if log(Ei) are centered, if the sum of the observed number

of cases is not equal to the sum of the expected number of cases or if the covariates

xi are not centered (113). In our case, the last condition holds.

Some zone-level variables such as condom use within a group, availability and

cost of treatment, norms, number of partners, and number of sexual contacts may

influence the risk of HIV infection in an individual within the zone. Therefore,

these zone-level factors have direct and indirect effects (72),(291),(157) on the

individual’s risk of infection. In this analysis, we have used some ecological factors

known to affect the variation in the distribution of number of HIV cases. Eight

risk factors at zonal level are considered: the median age at first sex (in years),

proportion of women engaging in risky sex, proportion in polygamous marriage,
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proportion using condoms, percentage literacy level, proportion who had sex at

least once in the last week preceding the survey, proportion using condoms in risky

sex and proportion who have a history of other sexually transmitted infections

(STIs). These covariates were obtained from the National Demographic and

Health Survey (NDHS)(193) conducted in 2003. These data pertain only to

women aged between 15-49 years and are only available at the zone or regional

level. We also note that the HIV data used in conjunction with these covariates

also pertain to women of the same age group. The HIV data were collected from

the National HIV Sentinel Surveillance (92) which surveyed pregnant women aged

15-49 years attending ante-natal clinics in the 85 selected survey sites in 2003.

See Chapter 1 for detailed discussion of data sources.

Hence a model with single (site) level and the covariates is given as

log(µi) = log(Ei) + α + Xβ + ui (4.3)

where X is the design matrix containing values of the ecological factors

ui ∼ N(0, σu)

A two-level (site and state) model is

log(µij) = log(Ei) + α + Xβ + uij + vj (4.4)



CHAPTER 4. THE MULTI-LEVEL MODELS 138

where site i is nested in state j and

uij ∼ N(0, σu), vj ∼ N(0, σv)

For three levels (site, state and zone), the equivalent model is given as

log(µijk) = log(Ei) + α + Xβ + uijk + vjk + yk (4.5)

where site i is nested in state j and zone k and

uijk ∼ N(0, σu), vjk ∼ N(0, σv), yk ∼ N(0, σy)

are variations due to sites, states and zone differences respectively.

The variance component models can be fitted using the quasi-likelihood, iter-

ative generalized least squares (IGLS), Fisher scoring algorithm or the restricted

iterative generalized least squares (RIGLS). The detailed account of the algo-

rithm for the estimation procedure of the multilevel model is given in Goldstein

(105).

The estimates of the fixed and random components of the model were obtained

using the restricted maximum likelihood (REML) method in R c© and the iterative

generalized least squares (IGLS) in MLWin c© . The full model using the eight
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covariates described above is given as

log(µijk) = log(Ei) + α +
8∑

i=1

xiβi + uijk + vjk + yk (4.6)

In the course of the iterative procedure in the estimation of parameters, it was

observed that some of the covariates were collinear as estimates obtained using

MLwiN c© in some cases were misleading or even meaningless and, in R c©, the

XT X matrix was not positive definite. To overcome this problem, we adopted

the forward-backward stepwise regression approach in order to select the best

subset of regressors that will be used in 4.6. The final estimates of the model

given in Table 4.1 and 4.2 were obtained in R c© using the Laplace method.

Predictor Model 1 Model 2 Model 3
Estimate (s.e) Estimate (s.e) Estimate (s.e)

Fixed Part
α -0.1265(0.063) -0.1379(0.078) -0.1325(0.134)

Random Part
σ2

u(site) 0.259(0.509) 0.138(0.372) 0.142(0.377)
σ2

v (state) 0.127(0.356) 0.041(0.202)
σ2

y (zone) 0.0844(0.290)

Extra-Poisson 0.999 0.998 0.990

Table 4.1. Estimates from the null model and the Variance Component models

Table 4.1 shows the results for the null and the variance component mod-

els. All the three models adequately accounted for the extra-Poisson variation

inherent in the HIV prevalence rates as indicated by the last row of Table 4.1.

Model 1 assumes that the variation in HIV infection in the country is due solely
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to differences between the sites. Comparing this with Model 3, the contribution

of the various hierarchies of aggregation of the population to the variation in HIV

infection is made more visible. The table shows that about 32% of the variation

in infection is due to the differences among the geopolitical zones. Differences

among the states accounted for about 15% of the total variation. However, there

is large variability among the sites. This may suggest the presence of spatial

clustering of the sites.

Table 4.2 shows the models with the selected regressors. Of the eight covari-

ates considered, three were found to be significant in explaining the variation in

HIV positivity especially among the zones. The covariates are; regular use of

condom, polygamy and involvement in risky sexual behaviours. The inclusion of

these social and behavioural variables in the model reduced the random variation

by almost 34%. It is worthy of note that variation at the zone level is completely

explained by these zone-level covariates, as shown under Model 3 in Table 4.2.

Also, there is a larger variability within the states (measured by the site variance

of 0.14525) than between the states (σ2
v = 0.02575). This suggests a need to

further investigate the spatial effects of the site locations.

As can be seen, polygamy and risky sexual behaviours are positively associated

with the risk of HIV infection in the country, while condom use is shown to be

negatively related to HIV positivity. Hence, any intervention programme targeted

towards reduction in the prevalence of polygamy and risk behaviours and increase

in the use of condoms could expected to be very effective in fighting the spread

and the scourge of HIV/AIDS epidemic in Nigeria. We need to state that the

parameter estimates in each of the models are log relative risks of being HIV

positive. Therefore, the relative risk for condom use as obtained in Model 3 is

exp(−0.02518) = 0.975135. It then means that for every 1 percent point increase
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Predictor Model 1 Model 2 Model 3
Estimate (s.e) Estimate (s.e) Estimate (s.e)

Fixed Effects
α 0.0155(0.504) -0.000425(0.538) 0.01437(0.538)

β1 (CondomUse) -2.4676(0.777) -2.5019(0.832) -2.5180(0.832)
β2 (Polygamy) 3.1494(1.053) 3.234(1.125) 3.2005(1.125)
β3 (Riskysex) 1.8706(0.521) 1.895(0.556) 1.89114(0.556)

Random Effects
σ2

u(site) 0.1715(0.414) 0.14537(0.381) 0.14525(0.381)
σ2

v (state) 0.0256(0.16) 0.02575(0.16)
σ2

y (zone) 5.00e− 10(2.2e-05)

Extra-Poisson 0.9866 0.9874 0.9874

Table 4.2. Estimates from the Variance component models after stepwise selec-
tion of covariates

in the use of condom at the zone level will reduce HIV infection in the zones by

2.49%. Similarly, 1 percent increase in polygamous and risky sexual practices is

associated with increase in the risk of HIV infection by an estimated 3.25 and

1.91% respectively.

Due to the multicolinearity experienced in the estimation of the model in

R c©, we explore, in the next section, the use of empirical Bayes procedure in the

derivation of estimates for the multilevel models.

4.1.1 Empirical Bayes Estimation

.

The estimates obtained using the empirical Bayes procedure implemented in

WinBUGS14 c© are shown in Tables 4.3, 4.4 and 4.5. Table 4.3 show estimates

from the full model while Table 4.5 show the estimates obtained from the best

regressors. Due to the problem of multicollinearity, some estimates from the
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full model are misleading. The sign of some of the estimates is contrary to

what is expected in real life situation. For instance, literacy and condom use

in risky sex are estimated as being positively associated with the risk of HIV

infection and risky sexual practices appear to be negatively associated with HIV

infection. Although these estimates are not statistically significant in explaining

variations in HIV infection, we expect that, at least, they should be meaningful

in real world situations. To obtain a better model, we adopted the backward

stepwise regression and Table 4.4 show more meaningful estimates when some of

the covariates were removed from the model. Table 4.5 contains the final model.

More variables were found to be significant in explaining variations in the

risk of HIV infection than were obtained using REML implemented in R c©. Sur-

prisingly, age at sex debut appear to be positively associated with risk of HIV

infection. The reason for this may be attributed to differences in culture among

the zones. Age at first sex is lower in the core Muslim states in the far North of

the country where HIV prevalence is also low and higher in the southern states

where HIV prevalence is relatively high. Also, this calls to mind the issue of

ecological bias where the group effect is at variance with (or not equal to) what

is expected at the individual level. That is, the group effect parameter is not

equal to individual-level parameter (144) (253). Polygamy and frequency of sex

are positively associated with the risk of HIV infection. Results from Table 4.5

indicate that a percentage increase in polygamous practices may likely trigger the

risk of HIV infection by an estimated 12.9% across the zones and a percentage

point increase in exposure to sexual contacts is estimated to increase the risk

of HIV infection by about 7.0%. However, the same unit increase in the use of

condom in each sexual contact is estimated to reduce the risk of infection by

3.4% in the zones. Also, it is interesting to note from Table 4.4 that increase in
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Parameters Estimate s.e 95%CI
Fixed Effects

α -9.269 2.794 (-14.34, -3.309)
Sexage 0.282 0.171 (-0.075, 0.556)
Risksex -3.518 6.076 (-15.71, 7.393)

Polygamy 10.8 4.519 (2.254, 19.92)
Literacy 3.224 3.817 (-3.459, 10.68)
Usecdmrs 1.262 1.728 (-2.338, 4.575)
Freqsex 3.376 1.421 (0.605, 6.253)

CondomUse -3.436 1.382 (-6.034 , -0.668)
STI 15.33 14.9 (-11.68, 44.07)

Random Effects
σ2

u(site) 0.211 0.0492 (0.131, 0.320)
σ2

v (state) 0.021 0.027 (6.5e-4, 0.095)
σ2

y (zone) 0.065 0.210 (6.7e-4, 0.450)

Table 4.3. Estimates from the full model of the Variance component model using
empirical Bayes method

literacy level is associated with a reduction in the risk of HIV infection by 1.3%.

Although the estimate of relative risk for literacy is not statistically significant,

it worthy of note that investment in education aimed at increasing literacy levels

across the zones has some positive contribution in the fight against HIV/AIDS.

Also a percentage point increase in risky sexual behaviours can enhance the risk

of HIV infection by as much as 3.06%.

Relating this result to the information from the covariates as shown in Table

4.6, polygamy is highest in the Northeast region and lowest in the Southeast

region of the country. It then means that a population where polygamous practice

is at the same proportion with Northeast zone has a risk of HIV infection that is

12.9% higher than a society where polygamy is at the same proportion with the

south east zone. Likewise, frequency of exposure to sex is lowest in the Southwest

region and highest in the Northwest region. Therefore, a society where exposure

to sex is as frequent as in the Northwest zone has the risk of HIV infection that

is 6.94% higher than a population where exposure is the same as the Southwest
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Parameters Estimate s.e 95%CI
Fixed Effects

α -10.91 4.956 (-24.29,-4.313)
Sexage 0.5172 0.2339 (0.1573,1.115)
Risksex 3.012 2.34 (-1.573,7.41)

Polygamy 7.236 3.608 (0.7879,14.66)
Literacy -1.274 1.967 (-5.169,2.241)
Freqsex 3.469 1.943 (0.2626, 8.378)

CondomUse -3.247 1.469 (-6.055 , -0.4358)
Random Effects

σ2
u(site) 0.2093 0.0482 (0.1308, 0.3155)

σ2
v (state) 0.02 0.0269 (0.01022, 0.0923)

σ2
y (zone) 0.06418 0.138 (0.0199, 0.3885)

Table 4.4. Estimates from the Variance component model using empirical Bayes
method

Figure 4.1. Plot of Relative risks from Models A, B, C, and D of the Variance
Component models
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Model A Model B Model C Model D

Parameters Est(s.e) Est(s.e) Est(s.e) Est(s.e)

95%CI 95%CI 95%CI 95%CI

Fixed Effects

α -0.137(0.069) -0.136(0.074) -0.148(0.182) -21.38(6.289)

(-0.274, -0.005) (-0.283, 0.008) (-0.555,0.216) (-32.7,-11.43)

Sexage 0.9765(0.2755)

(0.555,1.471)

Polygamy 12.1(3.373)

(5.505,18.35)

Freqsex 6.71(2.149)

(2.981,10.79)

CondomUse -3.474(0.868)

(-5.172,-1.762)

Random Effects

σ2
u(site) 0.317(0.063) 0.280(0.067) 0.2406(0.0537) 0.2072(0.047)

(0.211, 0.459) (0.166, 0.428) (0.153,0.3621) (0.1295,0.3134)

σ2
v (state) 0.0458(0.05) 0.0188(0.02592) 0.0184(0.02341)

(0.0009, 0.178) (0.0006,0.09234) (0.0006,0.0838)

σ2
y (zone) 0.1504(0.2254) 0.0353(0.1079)

(0.00979,0.6314) (0.0006,0.2110)

Table 4.5. Final models for the Variance component model using empirical Bayes
method
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zone. The data suggest that condom use is highest in the Southwest zone and

lowest in the Northeast and North-central zones. Hence, a population where

condom use is as regular as in the Southwest zone has a risk of infection that is

3.4% lower than a population whose condom use is at the same level as the North

central or North east zone.

Figure 4.1 shows the contour plots of the relative risk estimates from models

A, B, C and D. The plot for the models A and B are identical. The introduction

of the third hierarchy (the zone) in model C and the covariates in model D evened

out some areas in the far Northeast that were isolated in models A and B. The

low risk of infection in the Southwest and far North and the high risk of infection

in the North-central is evident in the plots. The plots suggest the need to study

the spatial clustering of HIV infection in Nigeria.

The large variability among the sites is very conspicuous from Table 4.5.

Using model C, differences among the sites accounted for about 58.7% of the

total variation. Differences among the zones make up about 36.7% and that of

the states accounted for about 4.6% of the total variation. This calls for a check

for the existence of spatial variation among the sites which may explain part of

the site variation. Interestingly, the introduction of the covariates into the model

reduced the total variation by 36%. Breaking down this explained proportion

of variation across the hierarchies, it shows that the covariates explained 13.9%

of the site differences, 2.2% of the state differences and 76.6% of the differences

among the zones. Hence, due to the large variation at the site level, we are

compelled to go a step further to investigate the spatial patterning of the risk

of HIV infection by applying the spatial multilevel analysis. Also, the empirical

Bayesian method has the limitation of not accounting for the variation in the

prior parameters. To overcome this limitation, the full Bayesian method is used
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Parameters Lowest Highest Relative Risk
Sexage Northwest Southwest 1.0098

Polygamy Southeast Northeast 1.1286
Freqsex Southwest Northwest 1.0694

CondomUse Northcentral Southwest 0.9659

Table 4.6. Estimates of the effects of the covariates

in obtaining estimates for the spatial multilevel models.

4.2 Spatial Multilevel models

The spatial variation of HIV prevalence rates in Nigeria as established in the

previous chapter may be more distinct if the multilevel structure of the data is

incorporated. Also the large variation at the site level may be indicative of the

spatial structuring of HIV prevalence in the country.

We shall seek to break down the influences on the distribution of HIV infection

into three separate categories: within area effects, hierarchical effects and neigh-

bourhood effects (112),(10). The geopolitical boundaries imposed on the states

and zones of Nigeria are artificial, individuals in sites close to each other tend to

share common socio-cultural, religious and behavioural factors that influence the

spread of HIV. Therefore spatial smoothing of the HIV relative risk distribution

might remove any variation imposed on the data as a result of the geopoliti-

cal groupings. Employing the techniques of multilevel modelling also makes it

possible to account for the interclass correlation (116),(272) effects between the

neighbourhood groupings.



CHAPTER 4. THE MULTI-LEVEL MODELS 148

The model incorporating the spatial effects is given as

Log(µi) = log(Ei) + α + Xβ + ui + vi (4.7)

where ui are the heterogeneity effects measuring differences between sites, and

vi =
∑

i 6=j

zijv
∗
j

are the spatial effects which are weighted sums of a set of independent random

effects v∗j . v∗j are independent residuals which are the effect of area j on other

areas, moderated by a measure of the proximity zij of each pair of areas (112).

zij =
wij

wi.

(4.8)

Here, wii = 0. If interest is to ensure that the variance contribution is the

same for all areas, wi. is chosen to be (
∑
j 6=i

wij)
0.5 or wi. =

∑
j 6=i

wij if interest is

to ensure that the variance of an area decreases as the number of neighbours

increases (112). Here, we adopt the last criterion and use the adjacency matrix

such that wij = 1 if site i and site j are neighbours and 0 otherwise.

Equation 4.7 can be written as

log(µi) = log(Ei) + α + Xβ + Zuθu + Z∗
vθ
∗
v (4.9)
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which in matrix notation is given as

log(µi) = {log(Ei) 1 X}




1

α

β




+ (Zu Z∗
v )




θu

θ∗v


 (4.10)

Zu is the identity matrix and Z∗
v = {zij} is the matrix of weights.

The variance covariance matrix of the random part is given as

Σθ = var








θu

θ∗v








=




σ2
uI σuvI

σuvI σ2
vI


 (4.11)

Hence

var








u

v∗








=




σ2
u σuv

σuv σ2
v


 (4.12)

The variance of the relative risk conditional on the fixed parameters is then,

var(log(µ)/Xβ) = ZΣθZ (4.13)

Given the spatial model in equation 4.10,

var(log(µ)/Xβ) = σ2
uZuZ

T
u + σuv(ZuZ

∗T
v + ZvZ

T
u ) + σ2

vZvZ
∗T
v (4.14)
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4.2.1 Fully Bayesian estimation

In estimation of the spatial multilevel model we adopted the fully Bayesian

approach. Under this method, the distribution of the hyper-prior is specified

instead of assigning values to it as we did in the empirical Bayes method. This

allows the variability of the hyperprior parameters among the sites to be taken

care of. Since sites close to one another share common culture and behavioural

practices that may affect the risk of HIV infection, it is expected that the preva-

lence of HIV infection may be similar among these sites. Hence, there may exist

a local spatially structured variation in the prevalence rates. The nearest neigh-

bour Markov random field (MRF) models or the conditional intrinsic Gaussian

autoregressive (CIGAR) model are usually used to express this prior knowledge

(182) (13). Under this prior model, the conditional distribution of the relative

risk in site i, given the relative risks in all other areas j 6= i, depends only on the

relative risks in the neighbouring areas of area i. The relative risks have a locally

dependent prior probability structure, the variance of this spatial structure is

often of interest.

The ordinary form of the conditional Gaussian autoregression (127) as used

by Clayton and Kaldor (54), assumes that the conditional variance is constant,

this is not very appropriate for irregular mapping where the number of neighbour

varies. Intrisic Gaussian autoregression (130) is more suitable for irregular maps

as the conditional variance of the log relative risk for site i given all other sites

j is inversely proportional to the number of neighbouring areas of area i defined

as wi. in equation 4.8. We adopted this later approach.
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Hyperpriors for the Fixed and Random Effects

The fixed parameters may assume any value on the real line. Therefore a flat

prior is assigned to them. This prior is the uniform prior defined within the open

interval (−∞,∞). For the random effect parameters, the multivariate Wishart

prior is adopted. The inverse variance matrix is distributed as

Σ−1 ∼ Wishart(2Σ̂, 2)

which is a Wishart distribution with precision matrix 2Σ̂ and 2 degrees of freedom.

The degree of freedom is the order of the matrix. Initial values of the precision

matrix were assumed and the model was fitted using WinBUGS14 c©.

Fitting the Spatial Models

Given that the observed number of HIV positive cases is Poisson with mean

µi, that is

Oi ∼ Poisson(µi),

and that the generalized mixed effect model for µ is given as

log(µi) = log(Ei) + α +
8∑

k=1

xkiβk + usite(i) +
∑

j∈Neighbour(i)

wijvj (4.15)

u
(2)
site(i) ∼ N(0, σ2

u), vj ∼ N(0, σ2
v)

We have thus assumed that variation is due to differences among the sites and

differences due to their neighbourhood patterning, hence it is possible to estimate
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Model E Model F
Parameters Est. s.e 95%CI Est. s.e 95%CI

Fixed Effects
α -0.128 0.095 (-0.31,0.062) -22.33 10.93 (-45.27,-8.03)

Sexage 1.003 0.48 (0.37,2.01)
Polygamy 13.21 4.75 (6.02,23.10)
Freqsex 6.812 3.71 (1.73, 14.42)

CondomUse -2.938 0.85 (-4.62 , -1.30)
Random Effects

σ2
u(site) 0.220 0.06 (0.08,0.35) 0.11 0.063 (0.01, 0.23)
σuv -0.137 0.05 (-0.26,-0.05) -0.09 0.046 (-0.20, -0.02)

σ2
v (spatial) 0.135 0.18 (0.02,0.69) 0.25 0.34 (0.01, 1.12)

Table 4.7. Estimates from the Spatial model

these two sources of variation with a measure of similarity of the prevalence rates

between sites which are geographically close to one another.

There is an appreciable increase in the parameter estimates and their standard

errors when a combination of the fully Bayes and spatial model is used. Age at

first sex, polygamy and frequent exposure to sex are positively associated with

the risk of HIV infection. While condom use is found to be negatively associated

with the risk of HIV risk.

The estimate for polygamy gave a relative risk of 1.1412, indicating that a

one percent increase in polygamous practices in the zones has the potential of

increasing the risk of HIV infection by at least 14.12% in the zones. Also, frequent

exposure to heterosexual practices is associated with an increase in the risk of

being infected. Age at first sex appear to have a significant positive association

with the risk of contracting HIV. The good news is that regular use of condom in

each sexual contact has the advantage of reducing the risk of HIV infection. The

practice of polygamy as a form of marriage is more rampart in the North East

zone, analysis suggest that a society that practices polygamy at the same level

with the North East zone has 14.12% higher risk of contracting HIV than a society
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Parameters Lowest Highest Relative Risk
Sexage Northwest Southwest 1.010

Polygamy Southeast Northeast 1.14
Freqsex Southwest Northwest 1.07

CondomUse Northcentral Southwest 0.97

Table 4.8. Relative Risks between areas of highest and lowest levels of the risk
factors

whose practice of polygamy is at the level of South East zone. A population where

exposure to sex of its members is as frequent as that of the North west zone is

1.0705 times more at risk of HIV infection than a population whose frequency of

exposure is the same with that of South west zone. Any society whose rate of

condom use is at the same level as the South west has about 3.25% lower risk of

HIV infection than a population whose rate of condom use is at the same level

as North central or North east zone.

Worthy of note is the random part of the model. Spatial effects are highly

significant in explaining variability in the risk of HIV infection. In Model F, the

spatial effect dominates the heterogeneity effect since σ2
v

σ2
u

> 1 (approximately 2).

Also, there is a negative autocorrelation among the sites. This suggests that

models that did not take this into account underestimated the variation in the

parameters. This is evident when we compare the estimates of the standard error

of the parameters in the spatial model with that of the previous model (see Table

4.5).

The plots of the estimates of the relative risks against the latitude are shown

in Figure 4.3. We have used the latitude instead of the longitude for better

positioning of the estimates along the horizontal axis, giving a picture of the

trend observed in section 3.4 of chapter three. Two things can be noted from the

plots; sites with relative risk greater than one could be identified, and the spatial

clustering of the relative risks among close neighbours. Sites in the same state or
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zone (represented with the same colour) share similar estimates of relative risk.

The South West (SW) zone has generally very low risk of HIV infection. This is

not surprising as condom use is highest and frequency of exposure to sex is lowest

in the zone. Also, the age at first sex is highest in the south west zone. The sites

in the North Central (NC) zone are hot spots of HIV. Many of them have relative

risks greater than one. A site in Benue state has an estimated relative risk of

5.5. This means that individuals within this catchment area are about 6 times

more at risk of HIV infection than their counterpart in the South west. Also, the

contour plots and the map of estimates of relative risks in Figures 4.3, 4.2 and

4.4 respectively, give credence to this spatial structuring of relative risks of HIV

infection.

The models considered in this section do not take into account other higher

levels of classification. The site are nested in the States and the States are in the

Zones. In the next section, we examine the random effects on the variation in

the relative risks due to States and Zones.

Figure 4.2. Plot of Relative risks from spatial models (Models E and F)

4.2.2 Incorporating Higher Levels into the Spatial model

It is possible to add higher hierarchical geographic levels to the spatial multi-

level model considered above. The HIV sentinel data, as was earlier stated, can

be described in three levels - site, state and zone. We have only considered the

sites and the effects of their neighbours on variation in HIV prevalence rates. In
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Figure 4.3. Plot of Relative risks from spatial model against latitude - States
and Zones identified

this section, we introduce estimates of variation in prevalence rates at the hier-

archy of the state and zone level into the model. Therefore, similarities of rates

within the same state or the same zone will be accounted for. Hence an extension

of model 4.15 is given as

log(µi) = log(Ei)+α+
8∑

k=1

xkiβk +usite(i) +
∑

j∈Neighbour(i)

wijvj + skl + zl (4.16)
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Figure 4.4. Map of Relative risks from spatial models (Models F). Light green
(0.4-1.0), Pink (1.0-1.5), dark pink (1.5-2.0), Red (2.0-3.0)

u
(2)
site(i) ∼ N(0, σ2

u), vj ∼ N(0, σ2
v), skl ∼ N(0, σ2

s), zl ∼ N(0, σ2
z)

where the additional random effects are that of the state skl and zone zl which

are assumed to be distributed as normal with mean zero and variance σ2
s and σ2

z

respectively.

We define the hyper-prior for the inverse variance terms Σ−1
s and Σ−1

z as

Gamma distributed. And using the fully Bayes procedure the results in table 4.9

were obtained.

The model estimates are shown in Table 4.9. Note that literacy and risky

sexual practices are not statistically significant. We adopted this model in pref-

erence to the model with only significant covariates based on a comparison of

their DIC. The difference between the DICs is less than 2. The estimates of the
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fixed parameters and their standard errors are similar to those obtained using the

model excluding the higher hierarchies. However, the inclusion of the two higher

levels has resulted to an increase in the estimate of variation due to spatial de-

pendence by more than 140% (comparing models E and G). The spatial effect is

made more distinct. Consequently, the spatial autocorrelation coefficient which

was hitherto statistically significant has become insignificant. The spatial auto-

correlation appear to have been completely explained by the spatial variation. It

does seem from this result that some of the sites within the same zone and state

are spatially dependent. The heterogeneity effect represented by σ2
site declined

by more than 42 per cent due to the incorporation of the higher levels into the

model.

Comparing models G and H, the inclusion of the covariates reduced the total

variation by about 39% and variation due to differences among the zones was

reduced by almost 60% and that due to spatial effects by more than 42%. There-

fore, it does mean that the covariates accounted for about 39% of the variation

in the risk of HIV infection.

Figure 4.5. Plot of Relative risks from spatial models incorporating higher levels
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Model G Model H
Parameters Estimate s.e 95% Estimate s.e 95%

Fixed Effects
α -0.127 0.178 (-0.48,0.23) -19.9 10.72 (-40.61, -3.82)

Sexage 0.914 0.496 (0.16, 1.87)
Riskysex 2.019 2.625 (-3.41, 6.93)
Polygamy 10.950 4.959 (2.22, 20.99)
literacy -0.985 2.067 (-4.85, 3.28)
Freqsex 6.335 3.521 (0.66, 13.17)
Usecdm -3.015 0.917 (-4.85, -1.23)

Random Effects
σ2

z (zone) 0.142 0.237 (0.006, 0.61) 0.058 0.256 (0.0007, 0.37)
σ2

s (state) 0.013 0.0217 (5.7E−4, 0.07) 0.017 0.030 (6.0E−4, 0.079)
σ2

u(site) 0.127 0.083 (0.003, 0.27) 0.111 0.059 (0.005, 0.22)
σuv -0.081 0.0536 (-0.197, 0.02) -0.071 0.045 (-0.17, 0.006)

σ2
v (spatial) 0.323 0.424 (0.006, 1.35) 0.186 0.289 (0.004, 1.01)

Table 4.9. Estimates from Spatial model incorporating higher levels

4.3 Multiple Membership Multiple Classifica-

tion Model

Parameter estimates obtained using the multiple membership multiple classi-

fication approach are fairly similar to that of the spatial model that incorporate

estimates of autocorrelation which we considered in the previous section. The

estimates of the standard errors are also quite similar indicating that the model

adequately capture the variation in the parameters. However, they differ in the

estimates of the random effects. Variation due to differences between sites or the

heterogeneity effect is larger than the effect due to spatial dependence.

The interpretation of the estimates (shown in Table 4.10 ) is similar to those

already considered. Age at first sex, polygamy and Frequency of exposure to

heterosexual contact are positively associated with HIV prevalence rate while

condom use is inversely associated with the prevalence of HIV infection. Highly
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Parameters Estimate s.e 95%
Fixed Effects

α -26.52 12.37 (-52.750,-4.754)
Sexage 1.197 0.5462 (0.236,2.341)

Polygamy 14.57 5.319 (5.032,25.570)
Freqsex 8.306 4.268 (0.695, 17.240)

CondomUse -3.457 1.02 (-5.475 , -1.493)
Random Effects

σ2
u(site) 0.197 0.0496 (0.114, 0.307)

σ2
v (spatial) 0.1394 0.1608 (0.00107, 0.562)

Table 4.10. Estimates from the MMMC model

Parameters Lowest Highest Relative Risk
Sexage Northwest Southwest 1.012

Polygamy Southeast Northeast 1.16
Freqsex Southwest Northwest 1.081

CondomUse Northcentral Southwest 0.966

Table 4.11. Estimates of covariate effect (MMMC model)

polygamous society like communities in the Northeast zone, has risk of HIV in-

fection that is about 16% higher than communities that are mainly monogamous-

like those in the southeast zone. Also, the more frequent a population is exposed

to heterosexual intercourse, the more the risk of HIV infection. This risk is about

8.07% higher in such society than a society with less frequent exposure. Popula-

tions prone to regular use of condom as in the Southwest zone has a risk of HIV

infection that is 3.4% lower than that of populations where condom use is as low

as in the North central zone (see Table 4.11)

The plot of the estimates of the relative risks against the latitude is shown

figure 4.6. The clustering of sites by zones is discernible. Most sites in the North

central and South-south have significantly high risk of HIV infection. The spatial

pattern is also evident in Figure 4.7

In this chapter we have investigated the contribution of the various hierar-

chical levels and some ecological factors to variations in the distribution of HIV
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Figure 4.6. Plot of Relative risks from Multiple Membership Multiple Classifi-
cation(MMMC) model against latitude

Figure 4.7. Contour plot of Relative risks from Multiple Membership Multiple
Classification model

prevalence in Nigeria. The use of the variance component models indicated large

variability among the sites followed by the zones and the least variation among

the states. However, the variance component model ignores the fact that sites

geographically close to one another might have similar prevalence rates due to

common socio-cultural, religious and behavioural factor shared by individuals

within the same neighbourhood which may influence the spread of HIV. To ac-

count for this possible clustering of prevalence rates, spatial models were applied

to the data. Estimates from this model show a significant negative autocorrela-

tion among the sites. Improved parameter estimates were obtained with slightly

larger standard error estimates. Indicating that the variance component models

underestimated variability associated with the parameters. Also, spatial effects
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were significant.

The standard spatial model which estimate the heterogeneity and spatial ef-

fects and a measure of a measure of similarity of prevalence rates tend to ignore

the fact that the sites are nested within other higher levels - states and zones. We

extended the spatial model by incorporating the two higher hierarchies into the

model. Estimates obtained from this model are an improvement on the standard

spatial models. The spatial effect is also more prominent.

The multiple membership multiple classification model assumes that random

variation in the prevalence of HIV can be explained only by the site heterogeneity

effect and the neighbourhood patterning. It therefore neglects the effects that

may be attributed to the hierarchies in which the lowest level might be nested.

4.4 Monitoring Convergence

To establish convergence when fitting, we used three different criteria; the his-

tory trace plots, Gelman-Rubin diagnostics (4) and the Monte Carlo error as a

percentage of the posterior standard deviation. To achieve this, we ran two paral-

lel chains using different starting values with the aim of obtaining an equilibrium

distribution of the Markov chain (301). From this point of equilibrium, the joint

distribution of the sample values is expected to converge to joint posterior distri-

bution. Further iteration from this stationary point produces dependent sample

assumed to have come from the posterior distribution. The period from the first

iteration till convergence to the posterior distribution is called the burn-in period.

This burn-in period is usually discarded and further iterations done in order to
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obtain samples from the joint posterior distribution for posterior inference. Mon-

itoring the convergence of every parameter in a multi-parameter model is not

practical, therefore we need to make a decision on the relevant parameters to

monitor.

Using the trace or time series plots to monitor convergence, the patterns

produced by the parallel chains were observed until they overlap and remain so

as the number of iterations increases. The stabilization of this overlap indicates

convergence.

The chain trace plot of some fixed and random terms in the variance compo-

nent model is shown in Figure 4.8. Two parallel chains (the red and the blue lines)

were run simultaneously for 900,000 iterations from different starting points. For

the fixed part, the beta parameters differ significantly in the convergence behav-

iour. While β[5] reached convergence at an early iterative stage, β[4] is yet to

reach convergence even after 600,000 iterations. This problem of convergence of

the parameters could be overcome by centering the parameters (142). Conver-

gence in the random part of the model was easier to achieve than that of the fixed

part. As can be see from the plots, the site, state and zone variances converged

at the early stage of the iteration and remained stable to the end.

We also monitored the convergence of the iterative sampling using the Gelman-

Rubin convergence test. The time series plot of the components of the test is

shown in Figure 4.8. The green line is the width of the central 80% interval

of the pooled runs. The blue line is the average width of the 80% within the

individual runs and the red line is the ratio (R) of the green and the blue (ratio

of the pooled and the within). If the starting values are suitably over-dispersed,

R would generally be greater than 1 (142),(11) and is expected to decline to 1

as n → ∞. Hence at convergence, R → 1 and both the green and the blue
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90,000 iterations 175,000 iterations
Parameters sd. MCE MCE % sd sd. MCE MCE % sd

Fixed Effects
α 8.677 0.3547 4.09 10.93 0.3765 3.44

Sexage 0.383 .0157 4.09 0.4802 0.01655 3.45
Polygamy 3.822 0.1524 3.99 4.749 0.1606 3.38
Freqsex 2.977 0.1207 4.05 3.712 0.1272 3.43

CondomUse 0.817 0.027 3.30 0.846 .0.0227 2.68
Random Effects

σ2
u(site) 0.0606 0.00204 3.37 0.0627 0.00178 2.85
σuv 0.0449 0.00115 2.55 0.04606 0.00091 1.98

σ2
v(spatial) 0.319 0.01178 3.69 0.3345 0.01022 3.06

Table 4.12. Convergence test using Monte Carlo error

line should consistently overlap and stabilize, possibly merging with the red line.

Figure 4.9 shows that most of the parameters reached convergence at the 5,000

iterations. However, 10,000 iterations was used as the burn-in period for this

model.

After convergence, we ran further iterations in order to improve the inference

on the posterior estimates. The length of this further iteration is determined

by monitoring the Monte Carlo error and the sample standard deviation. Using

the rule of the thumb as suggested by Spiegelhalter et al.(142), the iteration is

stopped when the Monte Carlo error of each parameter of interest is less than

5% of the sample standard deviation. An example is shown in Table 4.12 for the

estimates of the spatial model at 90,000 and 175,000 iterations after a burn-in

of 10,000. The longer the iteration, the better the convergence and hence better

improved posterior inference.
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Figure 4.8. Trace plots of some fixed and random terms in the variance compo-
nent model. The red and blue lines represent two parallel chains
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Figure 4.9. Gelman-Rubin convergence plot of some fixed terms in the spatial
model



Chapter 5

Back-projection Models

5.1 Introduction

In this chapter, we shall consider two aspects of back-projection: Parametric

and nonparametric back -projection methods. Generally, as discussed in chapter

2, the back-projection model is given as

µt =
t∑

s=1

λsft−s,s (5.1)

where µt is the mean AIDS incidence at time t, λs is the mean HIV incidence

at time s and ft−s,s is the probability density function for someone infected at

time s and diagnosed at time t. µt is known from the observed AIDS diagnosis.

So assuming ft−s,s is known from other studies, λs is then estimated.

166
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5.2 Parametric back-projection

We use the term parametric back-projection to represent all back-calculation

approaches where a particular functional form is assumed for the HIV incidence

curve or the AIDS incidence curve. In particular, we shall review the works of

Brookmeyer and Gail (227)(229) and Rosenberg and Gail (257). We shall then

reproduce the results of the later and apply the method to Nigeria AIDS data. We

shall also seek to apply this approach to other countries where different methods

were applied in order to compare the results.

5.3 Estimation when G is a basis of indicator

functions

5.3.1 Application to American AIDS diagnosis data

We first reproduce the results of Rosenberg and Gail (257) for American

AIDS diagnosis data adjusted for reporting delays. The incubation distribution is

assumed to be Weibull and the parameters of this distribution were estimated by

Brookmeyer and Goedert (231)) using data from the National Cancer Institute’s

multicentre haemophilia cohort. Parametric regression techniques were used to

obtain these parameters. The cumulative distribution is given as

F (t) =





1− e(−0.0021t2.516) t > 0

0 otherwise
(5.2)
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with a median incubation period of 10 years.

The data is quarterly data and spans the period January 1977 and March

1988. Applying the step function model such that gi(s) is an indicator function,

this period is partitioned into four intervals over which gi(s) is constant. The four

intervals are; January 1977–January 1981, January 1981–January 1983, January

1983–January 1985, January 1985–April 1988. T0 is regarded as 1st January 1977

and its value is 0 because it is assumed that there were no infections before that

time. T1 correspond to 1st January 1982.

We define gi(s) as a step function thus;

gi(s) =





1 ti−1 < s ≤ ti

0 otherwise
(5.3)

For the four steps given above, g1(s) ∈ [0, 4), g2(s) ∈ [4, 6), g3(s) ∈ [6, 8)& g4(s) ∈
(8, 11.25]

Recall that xji is computed as

xji =

Tj∫

0

gi(s){F (Tj − s)− F (Tj−1 − s)}ds

X∗ is the X matrix augmented by an additional row vector (XJ+1) containing

information on the unknown infections that may be diagnosed after time J (J =

26 corresponding to first quarter of 1988). XJ+1 is computed as
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xJ+1,i =

TJ+1∫

0

gi(s){F (TJ+1 − s)− F (TJ − s)}ds

=

∞∫

0

gi(s){F (∞− s)− F (11.25− s)}ds

=

∞∫

0

gi(s){1− F (11.25− s)}ds

=

∞∫

0

gi(s){e−0.0021(11.25−s)2.516}ds

For instance,

xJ+1,1 =

4∫

0

e−0.0021(11.25−s)2.516ds = 2.2682

Hence

XJ+1 = ( 2.2682 1.61566 1.84169 3.21278)

when this is added as the 27th row of matrix X we obtain the augumented

matrix X∗

∆i =
J+1∑
j=1

xji
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Hence,

∆ = ( 3.998861 2.000004 2.00004 3.250016)

Applying the methods of multinomial maximum likelihood, Poisson likelihood

and the Quasi-likelihood we obtained the following estimates shown in Table 5.1.

These exactly replicate the findings of Rosenberg and Gail (257) .

We note that the estimates of the number of AIDS diagnosis in each quar-

ter were the same irrespective of the method of estimation used. That is, the

multinomial likelihood, Quasi-likelihood and the Poisson likelihood gave the same

quarterly estimate of the AIDS incidence as shown in Table 5.1. Thus, each of

the methods gave a residual variation (measured by the χ2 in the last column of

Table 5.1) of 131.88.

The parameter estimates obtained using the three methods differ slightly. The

Quasi-likelihood and the Poisson likelihood gave estimates slightly different from

that obtained by the multinomial likelihood maximization as shown in Table 5.2.

The estimates of the number of individuals (N̂) previously infected with HIV

that gave rise to the observed number of AIDS cases are shown in Table 5.3. The

Multinomial estimate is slightly higher than that of Poisson and Quasi-likelihood

approach. In all, the models estimated a rising epidemic between 1977 and 1988.

A visual impression of the relationship between the observed and expected

AIDS count is shown in the graph in Figure 5.1. The model-based estimates are

in very good agreement with the observed data.



CHAPTER 5. BACK-PROJECTION MODELS 171

Quarter Observed (y) Expected(µ̂ ) y−µ̂√
µ̂

(y−µ̂)2

µ̂

1977:1-1981:4 374 413.49 -1.94 3.77
1982:1 185 141.03 3.70 13.71
1982:2 200 199.23 0.05 0.003
1982:3 293 273.7 1.17 1.36
1982:4 374 365.86 0.43 0.18
1983:1 554 476.89 3.53 12.47
1983:2 713 608.56 4.23 17.92
1983:3 763 762.33 0.02 0.0006
1983:4 857 936.66 -2.6 6.77
1984:1 1147 1141.42 0.17 0.03
1984:2 1369 1368.25 0.02 0.0004
1984:3 1563 1621.18 -1.4 2.1
1984:4 1726 1900.45 -4.0 16.0
1985:1 2142 2206.96 -1.4 1.9
1985:2 2525 2544 -0.4 0.14
1985:3 2951 2914.64 0.67 0.45
1985:4 3160 3321.37 -2.8 7.8
1986:1 3819 3765.48 0.9 0.8
1986:2 4321 4247.61 1.12 1.26
1986:3 4863 4769.38 1.36 1.83
1986:4 5192 5330.24 -1.9 3.59
1987:1 6155 5930.96 2.9 8.46
1987:2 6816 6571.42 3.0 9.1
1987:3 7491 7251.05 2.82 7.94
1987:4 7726 7969.68 -2.73 7.45
1988:1 8483 8726.59 -2.61 6.8

TOTAL 75762 75758.43 4.31 131.88

Table 5.1. Observed and expected AIDS counts for USA HIV/AIDS epidemic.
Source: Rosenberg and Gail (1991)

Time(Step) Multinomial QL Poison regression
Jan 1977–Jan 1981 2104.82 2105.61 2105.61
Jan 1981–Jan 1983 111579.89 111557.88 111557.88
Jan 1983–Jan 1985 131923.96 131982.41 131982.41

Jan 1985–April 1988 224202.42 224159.53 224159.53

Table 5.2. Parameter estimates(β̂) for American HIV/AIDS epidemic
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Time (Step) Multinomial QL/Poision
Jan 1977–Jan 1981 8419 8422
Jan 1981–Jan 1983 223160 223116
Jan 1983–Jan 1985 263848 263965
Jan 1985–April1988 728658 728518
Jan 1977–April 1988 1224083 1224021

Table 5.3. Estimates of the Numbers previously infected with HIV
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Figure 5.1. Observed and Expected number of AIDS diagnosis in the US (1977-
88). Infection curves are assumed to be step functions
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5.3.2 Application to the Nigerian AIDS data

The procedure as defined above was applied to the Nigerian AIDS data as

published by the Nigerian Institute of Medical Research. The data is the number

of AIDS diagnosis between January 1989 and December 1999. To determine the

number of steps in a step function model, we considered the fact that the first

cases of AIDS were reported in the country in 1986. It can be argued that the

HIV/AIDS epidemic started in the country sometime before 1986 since it takes

about 6 to 10 years before AIDS is diagnosed after HIV infection. In order to cover

this period, we extended the years for our estimation to 1980 with assumption

that the AIDS cases diagnosed in 1989 might have been infected with HIV within

the last 10 years.

The decision on the number steps was informed by the behaviour of the epi-

demic as depicted by the data. Based on this, three steps were identified. The

steps are 1st January 1980 – 1st January 1989, 1st January 1989 – 1st January

1993, 1st January 1993 – 31st December 1999. Hence T0 = 1980 but data as

published started from 1st January 1989, therefore, T1 = 1989.

However, we noticed a slight curve in the graph of the AIDS incidence data

between 1st January 1993 and 1st January 1995. We decided to view this period

as a separate step. Hence, we now have four steps instead of three by partitioning

the last step in the paragraph above accordingly. We shall compare results from

the two step function models.

Using the approach described above, we obtained the design matrix for the

3-step function as shown in Table 5.4:

To obtain the augmented matrix X∗, we compute the XJ+1 row vector given

as



CHAPTER 5. BACK-PROJECTION MODELS 174

G1 G2 G3

1.384214 0 0
0.497843 0.0006 0
0.577008 0.0062119 0
0.642123 0.021344 0
0.6875 0.048472 0
0.71015 0.088228 0.0006
0.709168 0.136257 0.0062119
0.685644 0.186993 0.021344
0.642409 0.235845 0.048472
0.583618 0.278629 0.088825
0.514226 0.31177 0.142469

Table 5.4. Design matrix X for the Nigerian AIDS incidence curve obtained by
assuming three steps for the infection curve

xJ+1,i =

TJ+1∫

0

gi(s){F (TJ+1 − s)− F (TJ − s)}ds

Hence, XJ+1 = (1.867 2.686 5.692)

Adding XJ+1 as the 12th row of the matrix in Table 5.4, we have the aug-

mented matrix X∗. The sum of the columns gives an estimate of time ∆i in each

step as given below.

∆ = Gi(TJ) = (10 3.9809 5.999948)

And using the multinomial, Quasi-likelihood and the Poisson likelihood esti-

mation methods, we obtained the same estimates of AIDS incidence as shown in

Table 5.5.

The methods estimated precisely the cumulative number of individuals di-

agnosed with AIDS between January 1980 and December 1999. As shown in

Table 5.5, a total of 12316 cases of AIDS were diagnosed within the period and
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Year Observed (y) Expected(µ̂ ) y−µ̂√
µ̂

(y−µ̂)2

µ̂

1980-1989 8 49 -5.8 34.0
1990 14 20 -1.3 1.7
1991 160 45 17.3 298.6
1992 102 106 -0.4 0.16
1993 198 216 -1.08 1.16
1994 327 383 -2.9 8.3
1995 625 697 -2.7 7.47
1996 1381 1234 4.18 17.47
1997 1940 2032 -2.04 4.18
1998 3219 3103 2.09 4.37
1999 4342 4444 -1.38 1.89
Total 12316 12316 5.9 379.34

Table 5.5. Observed and estimated AIDS cases for Nigeria
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Figure 5.2. Observed and estimated AIDS cases for Nigeria obtained using three
steps for the infection curve
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Time(Step) Multinomial QL Poison regression
Jan 1980–Jan 1989 35.1929(3.51) 35.1919(4.07) 35.1919(4.07)
Jan 1989–Jan 1993 3910.48(123.33) 3910.56(122.65) 3910.56(122.65)
Jan 1993–Dec 1999 22431.35(517.48) 22430.94(515.44) 22430.94(515.44)

Table 5.6. Parameter estimates(β̂) and their (standard error) for the Nigerian
HIV/AIDS epidemic obtained from the three steps model

the estimate predicted this accurately. However, when the annual estimates are

compared with the observed values for each year, some gaps are noticed. A mea-

sure of this deviation of the estimates from the observed counts is shown in the

last column of Table 5.5. The total residual variation is large at 379.34. One

explanation for the large residual variation, when compared with that obtained

using the US data, may be the structure of the Nigeria data. A closer scrutiny

of the residual variations indicates that 1991 contributed about 79 percent of

the total variation (298.6 out of 379.34). The models were unable to match the

sharp increase in the number of AIDS cases diagnosed in 1991 which increased

from just 14 cases in 1990 to 160 cases in 1991. Several attempts were made to

obtain better estimate of the number of AIDS diagnosis for 1991 by adjusting

the positions of the steps but all to no avail. It seems to suggest that a steeper

curve should be assumed for the infection intensity in order to capture the steep

rise in 1991.

As shown in Table 5.6 infection intensity shows an increasing trend from one

step (time interval) to the other. The three methods gave equivalent parameter

estimates. The standard errors indicate a greater uncertainty in estimating the

HIV positive population in the more recent years.

Estimates of the number of persons previously infected with HIV, part of

which were later diagnosed with AIDS, is shown in the Table 5.7. The table
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Time (Step) Multinomial QL/Poision
Jan 1980–Jan 1989 352 352
Jan 1989–Jan 1993 15017 15018
Jan 1993–Dec 1999 134588 134586

Total 150582 150580

Table 5.7. Estimates of the Numbers previously infected with HIV in Nigeria
obtained using the three steps model

gives an idea of what the population of people living with HIV was in Nigeria in

these time intervals. It suggests that, as at December 1999, 150,582 persons were

infected with the virus.

Data collected from the 1057 health and laboratory facilities show that about

63,387 HIV positive cases and 12,316 AIDS cases were diagnosed in Nigeria be-

tween January 1989 and December 1999. This means that a total of 75,703

HIV/AIDS cases were observed. The difference between this total and the esti-

mated cumulative HIV infection gives an idea of how large the hidden or undi-

agnosed cases could have been. It does seem from the estimate that about half

of the HIV population were not diagnosed.

The Four Steps Model

We also examined what the estimates would be if the number of steps were

extended to four. Doing this, we obtained the following:

XJ+1 = (1.867 2.686 1.769 3.923) and ∆ = (9.500903 4.000347 2.000294 3.999625)

Comparing Tables 5.6 and 5.9, the parameter estimates obtained from the

four-step model are not very different from the those obtained using three steps.

However, the standard error for each parameter estimate in the four-step model

is higher than that of the estimate in its corresponding position in the three-step

model. Consequently, it appears that the addition of the fourth step has not
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G1 G2 G3 G4

1.384214 0 0 0
0.497843 0.0006 0 0
0.577008 0.0062119 0 0
0.642123 0.021344 0 0
0.6875 0.048472 0 0
0.71015 0.088228 0.0006 0
0.709168 0.136257 0.0062119 0
0.685644 0.186993 0.020747 0.0005969
0.642409 0.235845 0.04226 0.006211936
0.583618 0.278629 0.067481 0.021344
0.514226 0.31177 0.093997 0.048472

Table 5.8. Design matrix obtained using four steps

Time(Step) Multinomial QL Poison regression
Jan 1980–Jan 1989 37.96(4.23) 37.9679(4.24) 37.9679(4.24)
Jan 1989–Jan 1993 3695.20(151.08) 3694.898(152.53) 3694.898(152.92)
Jan 1993 - Jan 1995 25623.13(1561.71) 25628.48(1621.51) 25628.48(1623.27)
Jan 1995–Dec 1999 16221.65(2980.64) 16209.74(3147.72) 16209.74(3148.08)

Table 5.9. Parameter estimates (β̂) and their standard error (four-step model)

significantly improved the estimates. Table 5.10 shows the estimates of the AIDS

incidence and their residual variation.

There is also no significant improvement in the standard error of the estimates.

1991 still contributed the most standard error. Comparing the total residual

variations obtained in the two models as measured by the chi square, the slight

decrease in the four-step model seem not enough to warrant the additional step.

Tables 5.3, 5.7 and 5.11 seem to suggest that the multinomial maximum

likelihood estimate consistently have higher estimate for the most recent infection

than the Poisson and Quasi-likelihood estimates.
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Year Observed (y) Expected(µ̂ ) y−µ̂√
µ̂

(y−µ̂)2

µ̂

1980-1989 8 53 -6.15 37.78
1990 14 21 -1.55 2.39
1991 160 45 17.19 295.52
1992 102 103 -0.12 0.015
1993 198 205 -0.5 0.25
1994 327 368 -2.15 4.62
1995 625 690 2.46 6.05
1996 1381 1258 3.46 11.96
1997 1940 2080 -3.06 9.37
1998 3219 3127 1.64 2.7
1999 4342 4366 -0.37 0.13
Total 12316 12315.99 5.938 370.8

Table 5.10. Observed and estimated AIDS cases in Nigeria and their (standard
errors) obtained using four-step model

Time (Step) Multinomial QL/Poision
Jan 1980–Jan 1989 380 380
Jan 1989–Jan 1993 14781 14780
Jan 1993–Jan 1995 51246 51257
Jan 1995- Dec 1999 64887 64839

Total 131293 131256

Table 5.11. Estimates of the Numbers previously infected with HIV obtained
using four-step model
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5.4 Estimation when G is a spline function

Here the basis set is assumed to be a spline. According to Rosenberg and

Gail (257), the flexibility of the step function can greatly be enhanced by using

a spline function gi(s) with knots at tl, l = 1, 2, . . . , L as a basis for G with the

requirements that ν(s) be continuous at the knots or that ν(s) and its derivative

ν ′(s) be continuous. Using the ’+’ function notation, they defined ν(s) as

ν(s) =
n∑

j=0

β0js
j +

L∑

l=1

βln(s− tl)
n
+. (5.4)

Applying this to the US AIDS data, Rosenberg and Gail (257) assumed a single

knot in January 1982 and letting n = 2, then

ν(s) = β00 + β01 + β02s + β12(s− t1)
2
+ (5.5)

Hence, g1(s) = 1, g2(s) = s, g3(s) = s2 and

g4(s) =





(s− tl) tl ≥ TL

0 otherwise

.

Hence,

xji =

Tj∫

0

gi(s){F (Tj − s)− F (Tj−1 − s)}ds, i = 1, 2, 3 (5.6)
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integrating within the intervals of gi(s) and

xj4 =

Tj∫

tl

g4(s){F (Tj − s)− F (Tj−1 − s)}ds (5.7)

The estimate of the HIV population in the time interval i is given as

Ni =

∫

gi(s)

ν(s)ds

and the estimate of the HIV population through the years in which AIDS diag-

nosis data is available is

N =

τJ∫

0

ν(s)ds

5.4.1 Application to American AIDS diagnosis data

Using equations 5.6 and 5.7 we obtained the design matrix X for the US data

and using the quasi-likelihood method, we obtained the estimates shown in Table

5.12.

This result is exactly the same as obtained by Rosenberg and Gail (257).

There is an improvement in the estimates as a result of the assumed spline in-

fection intensity curve. The residual variance as obtained here is lower than that

obtained when step function was assumed for the infection curve.

The estimates of the number of persons previously infected with HIV in the

time intervals is given in the Table 5.13.

This estimate of the HIV population obtained using the quadratic spline is
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Quarter Observed (y) Expected(µ̂ ) y−µ̂√
µ̂

(y−µ̂)2

µ̂

1977:1-1981:4 374 376.21 -0.11 0.01
1982:1 185 171.00 1.07 1.46
1982:2 200 228.00 -1.9 3.63
1982:3 293 300.00 -0.42 0.18
1982:4 374 387.47 -0.68 0.47
1983:1 554 492.12 2.79 7.78
1983:2 713 616.27 3.9 15.18
1983:3 763 761.86 0.04 0.002
1983:4 857 929.08 -2.36 5.59
1984:1 1147 1124.95 0.66 0.43
1984:2 1369 1346.09 0.62 0.39
1984:3 1563 1595.88 -0.82 0.68
1984:4 1726 1875.93 -3.46 11.98
1985:1 2142 2187.66 -0.98 0.95
1985:2 2525 2532.4 -0.15 0.02
1985:3 2951 2911.31 0.74 0.54
1985:4 3160 3325.33 -2.87 8.22
1986:1 3819 3776.14 0.70 0.49
1986:2 4321 4261.94 0.90 0.82
1986:3 4863 4785.49 1.12 1.26
1986:4 5192 5346.23 -2.11 4.45
1987:1 6155 5944.14 2.73 7.48
1987:2 6816 6578.96 2.92 8.54
1987:3 7491 7250.21 2.83 8.0
1987:4 7726 7957.25 -2.59 6.72
1988:1 8483 8698.93 -2.32 5.36

TOTAL 75762 75762.04 -0.04 100.32

Table 5.12. Estimates of AIDS cases in the USA obtained by assuming a spline
infection intensity and using the Quasi likelihood method

Time Spline estimates
Jan 1977–Jan 1981 41267
Jan 1981–Jan 1983 172867
Jan 1983–Jan 1985 316045

Jan 1985–April 1988 652311
Jan 1977–April 1988 1182490

Table 5.13. number of persons previously infected with HIV in the US
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slightly less than that obtained when the step function was used. The step func-

tion estimated that there 1,224,083 (multinomial) or 1,224,021 (quasi-likelihood

and Poison regression) HIV positive individuals in the United States between

January 1977 and April 1988. However, it is noted from the estimates that the

quadratic spline and the step function gave the same pattern of infection intensity

within the time intervals considered above.
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5.5 Application to Nigerian data

Applying the same technique to the Nigeria AIDS data, we applied various

forms of spline function. We obtained estimates using the linear spline, quadratic

spline, cubic spline and the natural cubic spline. Specifically, we considered the

following splines where t1, t2, and t3 are knot positions:

The linear splines

ν(s) = β00 + β01s

ν(s) = β00 + β01s + β11(s− t1)+

ν(s) = β00 + β01s + β11(s− t1)+ + β12(s− t2)+

ν(s) = β00 + β01s + β11(s− t1)+ + β12(s− t2)+ + β13(s− t3)+

The quadratic splines

ν(s) = β00 + β01s + β02s
2

ν(s) = β00 + β01s + β02s
2 + β11(s− t1)

2
+

ν(s) = β00 + β01s + β02s
2 + β11(s− t1)

2
+ + β12(s− t2)

2
+

ν(s) = β00 + β01s + β02s
2 + β11(s− t1)

2
+ + β12(s− t2)

2
+ + β13(s− t3)

2
+

The cubic splines

ν(s) = β00 + β01s + β02s
2 + β03s

3

ν(s) = β00 + β01s + β02s
2 + β03s

3 + β1l(s− tl)
3
+
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ν(s) = β00 + β01s + β02s
2 + β03s

3 + β11(s− t1)
3
+ + β12(s− t2)

3
+

The natural cubic splines

ν(s) = β00 + β01s

ν(s) = β00 + β01s + β11(s− t1)
3
+

ν(s) = β00 + β01s + β11(s− t1)
3
+ + β12(s− t2)

3
+

.

The selection of the positions of the knots was informed by the pattern of

the AIDS epidemic in Nigeria as depicted by the data used in this analysis. We

selected 1989, 1992 and 1995 for the first, second and third knot respectively.

We progressively increased the number of knots in each category of spline in

order to investigate the effects of the number of knots on the estimates. The

determination of the optimum number of knots was based on the precision of the

estimates as measured by the residual variance and ability of the estimates to

produce a positive and feasible value of the HIV population. We note that our

estimates agree with the findings of Stone (143) that the number of knots has

some effect on the estimates. However, we used single knot in different positions

and found that the estimates obtained differ. Analysis suggest that the precision

of a single knot spline depends on the order of the spline and the distance of the

knot from the origin of the data.

The further away the single knot is from the origin, the less precise the back-

calculation method is in estimating the HIV population. However, the cubic

spline appear to give better estimates of the AIDS diagnosis as the single knot

is moved further away from the origin but the estimate of the HIV population
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β Number of knots
1(1989) 1(1992) 1(1995) 2(1989,1992) 2(1989,1995) 3(89,92,95)

(a) (b) (c) (d) (e) (f)
β0 -105.85 -321.06 -564.0 -171.52 -129.04 -209.64
β1 54.90 155.36 270.37 85.09 65.37 103.04
β2 2771.11 9432.48 65016.81 1636.05 2479.17 719.54
β3 4255.28 12116.68 10680.77
β4 -33469.25

N̂ 146454 253038 558221 198156 230239 44514

Table 5.14. Parameter Estimates from the linear spline. Models (a), (b) and
(c) are single-knot splines with positions at 1989, 1992 and 1995. Models (d) and
(e) are two-knot splines with positions at the years indicated and model (f) is a
three-knot spline positioned in the years 89, 92 and 95 respective

progressively decreased as the distance from the origin increases. We assessed

the precision using the χ2 given as
∑ (y−µ̂)2

µ̂
where y is the observed value and µ̂

is the expected value obtained from the spline models.

The linear spline

The simple linear spline (with no knots) was unable to converge to a specific

solution. In fact, different number of iterations gave different estimates and even

numbers of iteration yielded negative estimates. The shifting of single knot to

different points improved the estimates with that nearest to the origin having

the least residual variance (see models (a), (b), and (c) in Tables 5.14, 5.15 and

5.16). Estimates obtained using two knots (models (d) and (e))were better than

those obtained using single knot judging by the residual variance. It seems that

linear splines with three or more knots over-fitted the model. While their residual

variances are smaller than that of two knots spline, their estimates of the HIV

population are unrealistic.
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Observed Number of knots
AIDS cases 1(1989) 1(1992) 1(1995) 2(1989,1992) 2(1989,1995) 3(89,92,95)

(a) (b) (c) (d) (e) (f)
8 11 5.97 4.25 8.32 9.58 7.8
14 28.48 69.78 119.05 40.40 32.44 47.87
160 54.26 119.26 204.71 72.38 60.62 82.96
102 113.11 183.13 315.43 128.77 119.88 134.85
198 235.18 262.80 451.49 227.97 237.24 212.87
327 455.49 381.25 612.06 401.11 443.97 352.43
625 810.69 608.04 795.32 701.30 772.73 642.38
1381 1335.84 1044.24 1007.30 1195.0 1256.37 1202.67
1940 2061.51 1807.99 1405.8 1953.77 1952.0 2093.21
3219 3011.17 3023.45 2477.53 3047.66 2971.74 3029.53
4342 4199.27 4810.09 4923.05 4539.30 4459.43 4329.43

12316 12316 12316 12316 12316 12316 12316

Table 5.15. Estimate of the diagnosed AIDS cases obtained using the linear
splines

It is worthy to note the behaviour of the parameter estimates as we shift

the single knot some distance away from the origin. The large variations in the

parameter estimates due to these shifts are also reflected in the N̂ since they

are estimated directly from these estimates. Even when two knots were used in

the model, the effect of the distance between the two knots is also felt both on

the parameter estimates and the estimate of the number of persons living with

HIV/AIDS.

It appears from the Table 5.16 and the graphs in Figure 5.3 that the linear

spline with three knots is a better model for predicting number of AIDS cases

diagnosed each year. However, our interest is not only on the ability of the model

to predict precisely the AIDS cases but also its ability to predict a feasible HIV

population – that is, the number of persons previously infected with HIV some

of which were later diagnosed as AIDS cases. Table 5.16 gives a summarized



CHAPTER 5. BACK-PROJECTION MODELS 188

2 4 6 8 10
0

10
00

30
00

Linear spline with a single knot at 1989

(a)

A
ID

S
di

ag
no

si
s Diagnosed 

Estimated 

2 4 6 8 10

0
10

00
30

00

Linear spline with a single knot at 1992

(b)

A
ID

S
di

ag
no

si
s Diagnosed 

Estimated 

2 4 6 8 10

0
10

00
30

00

Linear spline with a single knot at 1995

(c)

A
ID

S
di

ag
no

si
s Diagnosed 

Estimated 

2 4 6 8 10

0
10

00
30

00

Linear spline with two knots (1989,1992)

(d)

A
ID

S
di

ag
no

si
s Diagnosed  

Estimated  

2 4 6 8 10

0
10

00
30

00

Linear spline with two knots (1989,1995)

(e)

A
ID

S
di

ag
no

si
s Diagnosed 

Estimated 

2 4 6 8 10

0
10

00
30

00

Linear spline with three knots (89,92,95)

(f)

A
ID

S
di

ag
no

si
s Diagnosed 

Estimated 

Figure 5.3. Plot of observed ( dots) and Backcalculated AIDS estimates ( line)
when infection curve is linear spline function

information of the residual variance and estimate of the cumulative number of

HIV/AIDS infection.

A total of 75,703 cases of HIV and AIDS were recorded in the 1057 health and

laboratory facilities surveyed in the country between 1989 and 1999. Therefore,

we expect our model to give estimates of number of cases of HIV and AIDS (N̂)

greater than this observed cases. Using this criterion, we eliminate the model

with three knots and the model with the least residual variation may be selected.

Thus, model (d) is selected.
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Number of knots
1(1989) 1(1992) 1(1995) 2(1989,1992) 2(1989,1995) 3(89,92,95)

(a) (b) (c) (d) (e) (f)
0.82 0.69 3.44 0.01 0.26 0.005
7.36 44.59 92.70 17.25 10.48 23.96

206.16 13.92 9.76 106.03 162.92 71.54
1.09 35.94 144.41 5.57 2.67 8.0
5.88 15.97 142.31 3.94 6.49 1.04
36.24 7.72 132.76 13.69 30.82 1.83
42.53 0.47 36.47 8.30 28.24 0.47
1.53 108.61 138.64 28.95 12.36 26.44
7.16 9.64 202.99 0.09 0.07 11.21
14.34 12.65 221.91 9.63 20.57 0.03
4.85 45.55 68.58 8.58 3.09 0.04

χ2 327.87 295.75 1193.98 202.05 277.98 144.58

N̂ 146454 253038 558220 198157 230239 44514

Table 5.16. Estimates of residual variance and total number of persons infected
with HIV (linear spline)

5.5.1 The quadratic spline

The ordinary quadratic model (without knots) could not converge to a feasible

solution. Negative estimates were obtained in very large number of iterations.

The graphs in Figure 5.4 show the behavior of the quadratic spline model for

our data as the position of the single knot is varied. The estimates become less

precise as the distance between the origin and the knot increases. Hence graph

(a) appear better than (b) and (c). The graph number (d) and (e) are quadratic

splines with two and three knots respectively and they seem a better fit than (a).

The repositioning of the single knot changes the value of the beta estimates

drastically and consequently, the estimate of the cumulative number of those

infected with HIV, N̂ ,varied with the changing beta values. Table 5.17 indicate

that the farther away the single knot is from the origin, the estimated number

of persons living with HIV/AIDS increases. The results suggest that there is no

need for models with more than two knots if we base our judgement on the value
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Figure 5.4. Plot of observed (dots) and Backcalculated AIDS estimates (line)
when infection curve is a quadratic spline function

β Number of knots
1(1989) 1(1992) 1(1995) 2(1989,1992) 3(89,92,95)

(a) (b) (c) (d) (e)
β0 -53.87 424.27 650.44 -588.25 -561.69
β1 -17.67 -423.03 -607.32 435.38 412.29
β2 13.86 66.85 89.90 -45.26 -42.15
β3 579.72 1610.09 14604.10 1333.73 1273.09
β4 -2533.59 -2144.17
β5 -2626.35

N̂ 220713 268625 419823 118827 90562

Table 5.17. Parameter estimates obtained using the quadratic spline
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Observed Number of knots
AIDS cases 1(1989) 1(1992) 1(1995) 2(1989,1992) 3(89,92,95)

(a) (b) (c) (d) (e)
8 7.95 9.03 11.22 7.58 7.58
14 37.19 21.16 11.42 55.73 55.07
160 81.28 65.25 58.51 102.43 101.41
102 124.79 143.92 148.55 106.73 108.14
198 221.66 269.64 298.15 178.35 180.20
327 394.58 457.77 523.77 350.42 349.93
625 692.5 740.24 842.68 690.67 685.45
1381 1179.30 1178.38 1271.99 1254.74 1248.31
1940 1932 1857.04 1855.94 2070.88 2075.29
3219 3041.45 2956.76 2782.64 3128.45 3147.02
4342 4602.68 4616.83 4511.14 4370.02 4357.60

12316 12316

Table 5.18. Estimates of the diagnosed AIDS cases from the quadratic spline
model

of N̂ alone. Tables 5.18 and 5.19 compares the closeness of each model to the

observed data.

The estimates (a), (d) and (e) in the Table 5.18, are closer to the observed

values than estimates (b) and (c). To choose the best model of the three, we need

to consider the residual variances and parsimony.

Going by the principle of parsimony, model (d) is better than (e) since the

difference between their residual variances is negligible (see Table 5.19). Model

(a) has fewer parameters than model (d) and also higher residual variance than

model (d). Hence, model (d) is adopted.
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Number of knots
1(1989) 1(1992) 1(1995) 2(1989,1992) 3(89,92,95)

(a) (b) (c) (d) (e)
0.0 0.12 0.92 0.02 0.02

14.46 2.42 0.58 31.25 30.65
76.24 137.58 176.04 32.36 33.85
4.16 12.21 14.58 0.21 0.35
2.53 19.03 33.64 2.16 1.76
11.57 37.36 73.92 1.57 1.50
6.58 17.94 56.23 6.24 5.33
34.50 34.84 9.34 12.31 14.10
0.03 3.71 3.81 8.27 8.82
10.36 23.26 68.43 2.62 1.65
14.76 16.36 6.34 0.18 0.06

χ2 175.2 304.83 443.85 97.59 98.07

N̂ 220713 268625 419823 118827 90562

Table 5.19. Estimates of residual variance and total number of persons infected
with HIV (quadratic spline)

5.5.2 The cubic spline

Unlike the linear and the quadratic models, the cubic model converged to a

feasible solution. Also, as the distance between the single knot and the origin

increases, the cubic spline tend to produce better estimates (see the graphs in

Figure 5.5).

β Number of knots
0 1(1989) 1(1992) 1(1995) 2(1989,1992)

(a) (b) (c) (d) (e)
β0 -1198.58 -3069.14 -2388.68 -1911.79 2327.41
β1 1378.58 3542.57 2693.84 2152.96 -2982.57
β2 -338.90 -851.68 -633.73 -508.65 771.14
β3 23.59 55.33 40.67 33.16 -50.37
β4 -110.94 -358.60 -5559.14 519.89
β5 -1558.10

N̂ 219696 159220 101845 -86082 -7664

Table 5.20. Parameter estimates obtained using the cubic splines
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Figure 5.5. Plot of observed ( dots) and Backcalculated AIDS estimates ( line)
when infection curve is a cubic spline function

Table 5.20 shows that the increase in the number of parameters (knots) has

diminishing effect on the estimate of the total number of persons previously

infected with HIV (N̂). If it is possible to restrict the parameters to assume

only positive values, then it may be possible to obtain increasing values of N̂ but

this may also affect the estimates of AIDS diagnosis incidence in Table 5.21.

The estimates became better with the inclusion of a knot and as the knot

moves farther away from the origin. However, Table 5.22 is more revealing. The

residual variance, represented by the χ2, and the back-projected estimates of the

HIV population N̂ , indicate that models (a), (b) and (c) are better fits than

models (d) and (e). Considering the residual variances of these three, model (c)

may be chosen.
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Observed Number of knots
AIDS cases 0 1(1989) 1(1992) 1(1995) 2(1989,1992)

(a) (b) (c) (d) (e)
8 8.0 7.79 7.74 7.78 7.86
14 48.75 73.38 70.60 63.41 31.67
160 75.85 83.28 86.22 83.75 90.03
102 126.79 112.68 117.84 121.93 157.78
198 222.30 206.02 192.07 201.13 169.86
327 398.37 367.77 361.28 366.03 381.31
625 700.85 695.98 687.89 674.93 665.59
1381 1189.70 1229.13 1236.79 1206.10 1205.36
1940 1938.40 2014.23 2051.56 2046.78 2069.32
3219 3033.50 3082.83 3126.70 3200.81 3203.0
4342 4573.50 4442.91 4377.33 4343.35 4334.22

12316 12316 12316 12316 12316 12316

Table 5.21. Estimates of diagnosed AIDS cases; cubic spline models

Number of knots
0 1(1989) 1(1992) 1(1995) 2(1989,1992))

(a) (b) (c) (d) (e)
0 0.005 0.009 0.006 0.003

24.79 48.05 45.37 38.50 9.86
98.36 70.67 63.13 69.42 54.38
4.85 1.01 2.13 3.25 19.72
2.66 0.31 0.18 0.05 4.66
12.79 4.52 3.25 4.16 7.74
8.21 7.24 5.75 3.69 2.47
30.76 18.76 16.81 25.36 25.59
0.001 2.74 6.07 5.57 8.08
11.34 6.01 2.72 0.10 0.08
11.72 2.29 0.29 0.00 0.014

χ2 200.45 161.62 145.72 150.13 132.60

N̂ 219696 159220 101845 -86082 -7663.66

Table 5.22. Estimates of residual variance and total number of persons infected
with HIV (cubic spline)
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Figure 5.6. Plot of observed (dots) and Backcalculated AIDS estimates (line)
when infection curve is a natural spline function

5.5.3 The Natural spline

The natural spline gave good estimates of the AIDS incidence diagnosis and

these estimates improved as the number of knots increased. However, they per-

formed poorly in the back-projection estimates of the HIV population.

Due to the inability of all the natural spline models to give feasible estimates of

the number of persons previously infected with HIV and AIDS, we are unable to

select any of them for further consideration. Each of the models underestimated

the observed number of persons diagnosed for HIV or AIDS.

We now bring together the selected models from all the spline models in
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β Number of knots
1(1989) 2(1989,1992) 3(89,92,95)

(a) (b) (c)
β0 -300.05 -214.30 -216.20
β1 145.42 105.32 106.21
β2 118.47 221.71 216.06
β3 -849.40 -761.09
β4 -1368.55

N̂ 26471 59367 10785

Table 5.23. Parameter estimates from the Natural spline models

Observed Number of knots
AIDS cases 1(1989) 2(1989,1992) 3(89,92,95)

(a) (b) (c)
8 6.12 7.96 7.91
14 65.52 48.83 49.20
160 112.11 83.11 83.74
102 174.81 132.07 132.92
198 246.97 183.09 184.45
327 402.67 373.69 372.45
625 640.67 684.13 679.02
1381 1056.35 1228.06 1220.36
1940 1774.77 2059.77 2060.66
3219 2968.66 3155.89 3176.70
4342 4868.02 4359.39 4348.59

12316 12316

Table 5.24. Estimates of AIDS diagnosis from Natural spline
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Number of knots
1(1989) 2(1989,1992) 3(89,92,95)

(a) (b) (c)
0.52 0.00 0.001
40.49 24.84 25.18
20.46 71.14 69.45
30.33 6.85 7.19
9.71 1.21 1.0
4.22 5.83 5.55
0.35 5.11 4.30
99.78 19.05 21.15
15.38 6.96 7.07
21.11 1.26 0.56
56.84 0.07 0.01

χ2 309.19 142.33 141.45

N̂ 26471 59367 10785

Table 5.25. Estimates of residual variance and total number of persons infected
with HIV (Natural spline)

order to make a closer comparison and possibly select the most outstanding of

the models. Table 5.26 gives the model from each of the splines functions. It may

be inferred from the table that the estimate of the cumulative number of HIV

infected patients in Nigeria range from 101845 to 198157 depending on the form

of spline assumed for the infection curve. We recall that the estimate for this

population obtained from the step function model was 150582 and 150580 for the

multinomial and Poisson regression respectively. These step function estimates

are about the mid-point of the range of spline function estimates.

Given the size of the residual variance in each model in Table 5.26, the

quadratic spline model seems to be the better model. Thus, selecting this model,

the estimated cumulative number of HIV/AIDS cases is 118,827.
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Observed Linear Quadratic Cubic
AIDS cases 2(1989,1992) 2(1989,1992) 3(89,92,95)

(a) (b) (c)
8 8.32 7.58 7.74
14 40.40 55.73 70.60
160 72.38 102.43 86.22
102 128.77 106.73 117.84
198 227.97 178.35 192.07
327 401.11 350.42 361.28
625 701.30 690.67 681.89
1381 1195.00 1254.74 1236.79
1940 1953.77 2070.88 2051.56
3219 3047.66 3128.45 3126.70
4342 4539.30 4370.02 4377.33

χ2 202.05 97.69 145.72

N̂ 198157 118827 101845

Table 5.26. Estimates of HIV/AIDS from selected spline models

5.6 Non-parametric Back-projection

A major disadvantage of the parametric back-projection is the problem of

identifying the functional form of the HIV incidence curve as different forms may

be consistent with the observed AIDS incidence. In order to avoid this limitation,

Becker et al (197) proposed an imposition of a smoothness restriction on a non-

parametric form and estimates are obtained using the non-parametric maximum

likelihood approach implemented in the EM algorithm.
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5.7 Application to Hong Kong data

Becker et al(197) and Chau et al (102) applied the above method to Australia’s

and Hong Kong’s AIDS incidence data respectively. We reproduce the results of

Chau et al (102) for Hong Kong and extend the same technique to Nigerian AIDS

data.

Applying this technique to Hong Kong data, Chau et al (102) assumed that

the incubation period distribution is Weibull distribution as suggested by Brook-

meyer and Goedert (231). The scale parameter β for this distrbution was es-

timated based on a median incubation period of 10 years (133). For someone

infected with HIV at time u, the natural hazard function for AIDS diagnosis at

time x is given as

p(x/u) =
α

β

(
x

β

)α−1

(5.8)

Hence,

p(x/u) =
2.516

12.147

( x

12.147

)1.516

Recognizing the effect of different regimes of treatment on incubation distri-

bution, the approach of Muñoz and Hoover (14) was adopted and three different
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time (or treatment) regimes were recognized.

F (x/u) =





1− e
−

x+0.5R
0

p(w/u)dw
for 1979 ≤ u ≤ 1987

1− e
−

x+0.5R
0

{1−0.125(u−9)}p(w/u)dw
for 1988 ≤ u ≤ 1991

1− e
−

x+0.5R
0

0.5p(w/u)dw
for 1992 ≤ u ≤ 2000

(5.9)

and,

f(x/u) =





F (x/u) for x = 0

F (x/u)− F (x− 1/u) for x = 1, 2, . . .

The discrete time is adjusted by adding 0.5 units to the year x in deriving the

cumulative distribution.

Using the above information and equations 5.8 and 2.35, we obtained the

result in Figure 5.7 for Hong Kong

The graph in Figure 5.7 suggests that the HIV infection Hong Kong reached

its peak in 1991 and subsequently declined. However, it took some time (about

nine years), for the observed AIDS incidence to reach its peak in 1999 after which

the number of AIDS cases diagnosed diminished. In order to have a measure of

the extent of uncertainty in the estimates, we apply the nonparametric boot-

strap procedure to obtain point-wise confidence interval for the estimates of HIV

incidence.
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Figure 5.7. Observed AIDS cases(solid line), Estimated HIV infection(dotted
line)

5.7.1 Precision of the estimates

The bootstrap estimates of precision was used to obtain a 95 per cent confi-

dence interval for the estimates. The following steps were undergone

• Using the observed data, we obtained unsmooth estimate of the infection

curve by performing the EM algorithm

• We then substituted these unsmooth estimates into equation 5.1 to obtain

the mean AIDS diagnosis

• Using the mean estimates of AIDS diagnosis obtained above as the mean

of the Poisson process that brought about the observed AIDS incidence, we

generated for each estimate, 1000 Poisson random variables

• We then applied each of the 1000 rows (as values of observed AIDS) to the

EMS algorithm to obtain smooth estimates of the HIV infection curve
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Year Lower bound HIV estimates upper bound
1979 1 5 8
1980 1 5 9
1981 3 8 12
1982 8 12 25
1983 12 18 25
1984 17 25 35
1985 24 35 48
1986 36 49 65
1987 52 70 86
1988 69 100 114
1989 90 137 144
1990 106 172 174
1991 115 189 200
1992 117 180 220
1993 107 143 231
1994 81 96 243
1995 54 54 265
1996 21 26 327
1997 11 12 445
1998 6 6 633
1999 3 4 818
2000 2 4 822
Total 936 1345 4949

Table 5.27. Bootstrap confidence interval for HIV incidence estimates for Hong
Kong

• Each column resulting from the previous step is arranged in ascending order

of size.

• The upper bound is the 975th (or 950th) row and the lower bound is the

25th (or 50th) row. This gives the 95% (or 90%) confidence interval of the

estimates– which are point-wise confidence interval of the estimates

Doing this, we obtained the results displayed in Table 5.27

In Figure 5.8 solid lines represent the point-wise confidence intervals, the cross

line represent the estimates of the HIV infection curve and the triangular points

represent the observed HIV diagnosis. The imprecision of the back-projection
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Figure 5.8. Observed AIDS cases(triangular points), Estimated HIV infec-
tion(crossed line), 95% CI(solid lines)

model in estimating accurately the recent incidence of HIV is very clear in the

graph in Figure 5.8. As can be seen from the graph, the estimates obtained using

AIDS data underestimate the HIV incidence in the recent past as depicted by

the widths of the confidence interval at the most recent past.
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Figure 5.9. Observed HIV cases(solid line), Estimated HIV infection
curve(dotted line)

5.8 Application to Nigeria

Applying this same approach to Nigerian AIDS data as published by the

Nigeria Institute of Medical Research (83), we observe that antiretroviral ther-

apy (ART) was introduced in the country in mid 2001 and was available only for

10,000 patients out of an estimated 600,000 who needed the drug in the country as

at that time. Therefore, there were no effect of treatment therapy on incubation

distribution of AIDS in Nigeria as at the period being considered in this analysis.

Hence, we shall assume that the cumulative distribution of the incubation period

for the country is

F (x/u) =

{
1− e

−
x+0.5R

0

p(w/u)dw
for 1980 ≤ u ≤ 1999

and p(x/u) is as defined in equation 5.8. Using the above incubation distrib-

ution function, estimates obtained is represented in Figure 5.9,

Figure 5.9 shows the observed HIV diagnosis and the estimated HIV incidence
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Year Diagnosed HIV HIV estimates
1980 0 0
1981 0 0
1982 0 1
1983 0 6
1984 0 21
1985 0 62
1986 0 155
1987 0 331
1988 0 625
1989 87 1110
1990 198 1966
1991 993 3604
1992 1049 6635
1993 1676 11204
1994 2690 16595
1995 3932 21296
1996 5878 24227
1997 9531 25381
1998 16816 24844
1999 20537 24661
Total 63387 162724

Table 5.28. Diagnosed and Estimated HIV cases in Nigeria obtained using non-
parametric back-projection

obtained using AIDS diagnosis data. The distance between the two lines, at any

time point, gives a measure of the hidden HIV population. That is, those infected

with HIV in the population but not yet diagnosed. The graph also indicates that

the HIV incidence is on the increase and is yet to peak. The seeming decrease

at the top of the graph could be the effect of the back-calculation procedure as

it imprecisely estimate the most recent infections. Table 5.28 gives the observed

and expected HIV incidence.

The last column of the Table 5.28 shows the likely number of persons infected

with HIV in the country each year. It shows for instance that in 1983, about 6

persons already had the virus in the population none of which were diagnosed.

Also in 1989, it is estimated that about 1,110 persons were infected but only 87
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of them were diagnosed. Cumulatively, it is estimated that between 1980 and

1999, about 162,724 Nigerians were infected with the virus but only 75,703 cases

were diagnosed. The estimates in this table are point estimates, a measure of

the level of imprecision of these estimates are obtained using the nonparametric

bootstrap procedure in the next section.

5.8.1 Precision of the Estimates

The unsmooth EM algorithm could not converge for the Nigeria AIDS and

HIV data. This made it difficult obtaining the bootstrap confidence interval for

the estimates. A careful look at the estimates obtained at the end of each iteration

shows that as the number of iteration increase, the estimates for the last three

years rapidly tend towards zero. The entire estimates vanish to infinity whenever

the number of iterations goes beyond a certain point. Several attempts were

made at correcting this, including the elimination of the last three or two values

of the estimates when setting the criterion for convergence, but no meaningful

results were obtained. That is, the EM algorithm could not converge even with

this criterion. There were no problems of convergence with the EMS- that is, EM

algorithm with a smoothing step.

We tried to investigate the cause of this by using the Nigerian data with the

Hong Kong model and the Hong Kong data with the Nigerian model. We found

that the Hong Kong data converged in the Nigerian model but the Nigeria data

could not converge in the Hong Kong model. We then found that the algorithm

converged if we divided the Nigerian data consistently by 100. This suggests

that there is a relationship between the magnitude of the individual data and
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Year Lower bound HIV estimates upper bound
1980 0 0 20
1981 0 0 22
1982 0 1 40
1983 0 6 78
1984 0 21 150
1985 1 62 250
1986 1 155 442
1987 30 331 713
1988 142 625 1171
1989 401 1110 2016
1990 917 1966 3604
1991 1924 3604 6070
1992 3521 6635 9862
1993 6383 11204 15134
1994 10312 16595 21880
1995 11293 21296 31324
1996 8811 24227 45533
1997 5111 25381 68003
1998 2512 24844 98124
1999 2420 24661 101360
Total 53779 162724 405796

Table 5.29. Estimates of HIV incidence in Nigeria and Bootstrap confidence
interval

the convergence of the EM algorithm that has not been documented by other

researchers using this back-projection methods. We were unable to determine

the reason for this behaviour which was a continuing concern, but we proceeded

to carry out the analysis using scaled data. Dividing the AIDS data by 100

in order to run the algorithm, then multiplying up by 100 the end points of

the derived interval estimates, we obtained the 95 percent bootstrap confidence

interval as shown in Tables 5.29 and Figure 5.10

Figure 5.10 shows the HIV incidence estimates (cross points), their corre-

sponding 95 per cent point-wise bootstrap confidence intervals (solid lines) and

the observed HIV positive cases (triangular points). It is estimated that the

cumulative number of infected individuals in the country from 1980 to 1999 lie
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Figure 5.10. Bootstrap 95%CI (solid lines), Estimate of HIV incidence (cross
points), and Observed HIV cases (triangular points)

somewhere between 53,779 and 405,796 with the best estimate as 162,724.

The increased uncertainty in estimating the recent incidence of HIV infection

is depicted by the wide interval at the right end of the graph.

5.8.2 Projection

In order to project the estimated AIDS incidence to a near future (say 2001

), we took the following steps

• We extended the dimension of the incubation distribution matrix from

20x20 to 22x22

• Due to the imprecision of estimates of the most recent HIV infections, the

most recent diagnosis were not used in the projection. To correct for this

limitation, it is usually assumed that the infection intensity is constant for

some period of time. For instance, Chau and his colleagues (102) assumed
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that the incidence of HIV for the years after 1997 are at the same level as

in the year 1997. Also, average of the three most recent years can be used

as a constant infection intensity for projections.

• The observed data were extended by two years (up to 2001) using the

assumption that rate of diagnosis is the same as in 1999

• Using the expanded incubation distribution and the extended data, the

EM algorithm was performed to obtain estimates of HIV infection up to

the forecast years.

• Result from the last step was substituted into equation (5.1) to obtain the

estimated mean diagnosed AIDS cases. This gives the projected estimates

of AIDS diagnosis.

• In order to obtain the point-wise confidence interval for the projected esti-

mates, the mean AIDS diagnosis obtained in the step above is used as the

mean of a Poisson process assumed to have generated the observed diagno-

sis. With these means, 1000 Poisson random samples were generated.

• The 1000 Poisson random samples were then arranged in ascending order

and the 25th and 975th percentiles were obtained and plotted on the same

graph with the estimates of AIDS diagnosis. See Figure 5.11

In 2000 and 2001, it is predicted that 4404 and 4992 cases of AIDS respectively,

were diagnosed in Nigeria. Between 1989 and 2001, it is estimated that between

13,400 and 29,800 cases of AIDS were diagnosed with best estimate being 21,002

cases, of which only 12,316 cases were diagnosed.
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Figure 5.11. Estimates and projected number of AIDS cases in Nigeria (dotted
line and cross), observed cases of AIDS (triangular points)and the 95 per cent
confidence interval (thick lines)

Year Lower Observed AIDS Estimated Upper
bound cases cases bound

1989 0 8 2 0
1990 0 14 28 200
1991 0 160 76 300
1992 0 102 138 400
1993 0 198 211 500
1994 0 327 348 700
1995 300 625 740 1300
1996 700 1381 1362 2100
1997 1200 1940 2107 3100
1998 1900 3219 2904 4100
1999 2500 4342 3690 4900

subtotal 6600 12316 11606 17600
2000 3100 - 4404 5700
2001 3700 - 4992 6500

Total 13400 - 21002 29800

Table 5.30. Observed and estimated diagnosed number of AIDS cases in Nigeria
and the bootstrap CI
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5.9 The modification of the non-parametric back-

projection

The ordinary back-calculation method, as considered in the previous sections,

makes use of diagnosed AIDS data in reconstructing the HIV infection curve. The

approach has the limitation of not predicting precisely the HIV incidence in the

recent past due to the long incubation period between HIV infection and AIDS

diagnosis. In order to overcome this limitation, Cui and Becker (250) and Chau

et al (102) suggested the use of HIV data set in back-calculation for estimating

HIV incidence curve.

5.10 Application to Hong Kong data

Chau et al (102) applied the above techniques on the HIV/AIDS data for

Hong Kong. They identified the proportion of routine and symptom-related tests

as 0.20 and 0.26, equating these values to equations (2.41) and (2.42) respectively,

they obtained the parameters ν = 0.0306 (the constant hazard for routine testing)

and γ = 2.385 (the proportional coefficient of synptom related HIV testing).

Using the natural hazard function for the diagnosis of AIDS at time x given

HIV infection at time u as suggested by Brookmeyer and Goedert (231), we

reproduce the result obtained in Chau et al (102) as shown in Table 5.31
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Year HIV cases HIV estimate
1979 0 3
1980 0 3
1981 0 7
1982 0 21
1983 0 39
1984 2 54
1985 14 60
1986 10 63
1987 26 70
1988 26 85
1989 367 113
1990 29 151
1991 60 194
1992 70 231
1993 78 260
1994 103 275
1995 112 268
1996 134 242
1997 180 195
1998 189 139
1999 212 94
2000 183 85
Total 1394 2653

Table 5.31. Observed and estimated diagnosed number of HIV positive cases in
Hong Kong
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Figure 5.12. Observed (solid line) and estimated (dotted line) HIV diagnosis in
Honk Kong
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Year ν = 0.01 ν = 0.10 ν = 0.0306 ν = 0.0306 ν = 0.0306
γ = 2.385 γ = 2.385 γ = 0.5 γ = 1.5 γ = 3.0

1979 7 0.2 4 3 2
1980 8 0.2 4 4 2
1981 18 1 11 10 8
1982 32 6 27 24 20
1983 47 18 56 44 37
1984 55 37 94 65 50
1985 60 49 121 76 54
1986 66 52 136 81 56
1987 80 56 149 90 63
1988 104 61 163 105 78
1989 139 76 192 133 104
1990 181 104 240 173 141
1991 222 137 296 218 181
1992 254 165 342 256 217
1993 271 196 386 288 246
1994 268 230 422 306 261
1995 242 258 433 302 257
1996 197 275 412 276 232
1997 144 260 341 223 189
1998 95 209 233 155 137
1999 62 152 143 100 95
2000 58 137 126 89 87
Total 2610 2479 4331 3021 2517

Table 5.32. Sensitivity Analysis

5.10.1 Sensitivity analysis

Table 5.32 shows the sensitivity analysis for different values of the two pa-

rameters γ and ν. As can be seen, the estimates are insensitive to changes in

the parameters except for the third and fourth scenario where the value of γ is

0.5 and 1.5 respectively. It appears the estimates are more sensitive to changes

in γ (symptom related proportionality coefficient) than in ν. However, variation

in the parameters result in a shift in the estimated peak of the epidemic and

different values for the median incubation period.
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Year Lower bound Observed HIV cases Estimated HIV cases Upper bound
1979 1 0 3 5
1980 2 0 3 5
1981 5 0 9 13
1982 15 0 21 27
1983 30 0 39 46
1984 43 2 54 61
1985 48 14 60 70
1986 51 10 63 76
1987 58 26 70 86
1988 73 26 85 105
1989 98 36 113 133
1990 131 29 151 174
1991 167 60 194 218
1992 201 70 231 256
1993 223 78 260 284
1994 231 103 275 299
1995 221 122 268 299
1996 189 134 242 299
1997 142 180 195 275
1998 98 189 139 273
1999 66 212 94 287
2000 62 183 85 290

Table 5.33. Observed and estimated HIV positive cases and the bootstrap C I

5.10.2 Bootstrap Confidence Interval

The imprecision of the back-projection model in estimating accurately the re-

cent incidence of HIV is very clear in the two graphs in Figures 5.13 and 5.14. The

solid lines represent the point-wise confidence intervals, the cross points represent

the estimates of the HIV infection curve and the triangular points represent the

observed HIV diagnosis. As can be seen from the graphs, the estimates obtained

using HIV diagnosis data also underestimate the HIV incidence in the recent

past. This is worse when AIDS diagnosis data is used as seen in the previous

section.

The drop in the shape of the observed HIV incidence has an influence on
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Figure 5.13. 95% CI (solid line), Estimated (crossed dotted line) and Ob-
served(triangular) HIV diagnosis

the outcome of back-projection. In order to eliminate this effect, the data was

cut in the year where the drop is noticed (year 2000). The estimates plotted in

the graph in Figure 5.14 with the corresponding confidence interval was obtained

using the data without year 2000. It can be seen that the drop in the estimated

infection curve has been eliminated and instead the curve now levels up after the

peak. This may suggest that the HIV incidence is still on the increase beyond

1999.

5.10.3 Projection

In projecting future HIV incidence, the effect of the slight drop in 2000 is taken

into cognisance. Table 5.34 and Figure 5.15 show the fitted and projected value

of HIV incidence and the 95% point-wise confidence interval using data up to and

including year 2000. While Table 5.35 and Figure 5.16 show that obtained by

dropping year 2000 data. While both approach projected an increasing epidemic

for years 2001 and 2002, the elimination of year 2000 from the data series resulted
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Figure 5.14. 95% CI (solid line), Estimated (crossed dotted line) and Observed
(triangular) HIV diagnosis. Using data up to 1999

in moderately higher estimate for the projected years and also the estimate of

cumulative HIV infection up to 2000 is higher than the observed cumulative HIV

diagnosis. The graph in Figure 5.15 (obtained using the whole data) appears to

have peaked and almost stable at the peak while that of Figure 5.16 (obtained

using data up to 1999) seems to be on the increase.



CHAPTER 5. BACK-PROJECTION MODELS 217

Year Lower bound Observed HIV cases Estimated HIV cases Upper bound
1984 0 2 2 5
1985 2 14 6 11
1986 5 10 11 18
1987 10 26 17 26
1988 15 26 25 36
1989 23 36 34 46
1990 32 29 44 57
1991 42 60 56 71
1992 54 70 70 87
1993 68 78 87 105
1994 86 103 106 126
1995 105 122 128 147
1996 123 134 146 168
1997 140 180 165 191
1998 157 189 181 206
1999 167 212 194 220
2000 175 183 202 227

subtotal 1204 1474 1474 1747
2001 177 206 234
2002 180 207 236
Total 1561 1887 2217

Table 5.34. Fitted and projected HIV positive cases and the bootstrap C I using
data up to year 2000
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Figure 5.15. 95% CI (solid line), fitted and projected estimates(crossed dotted
line) and observed (triangular) HIV diagnosis. Using data up to 2000
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Year Lower bound Observed HIV cases Estimated HIV cases Upper bound
1984 0 2 2 4
1985 2 14 6 11
1986 5 10 11 18
1987 10 26 18 26
1988 16 26 25 36
1989 23 36 34 46
1990 32 29 44 58
1991 41 60 56 70
1992 53 70 70 87
1993 68 78 85 104
1994 84 103 104 124
1995 104 122 124 147
1996 123 134 146 171
1997 141 180 167 194
1998 161 189 187 213
1999 178 212 205 236
2000 191 183 219 249

subtotal 1232 1474 1503 1794
2001 202 230 261
2002 206 237 267
Total 1640 1970 2322

Table 5.35. Fitted and projected HIV positive cases and the bootstrap CI using
data up to year 1999

5 10 15

0
50

10
0

15
0

20
0

25
0

 Predicted HIV cases using HIV diagnosis up to 1999 and the 95% CI

year 1984−2002

E
st

im
at

ed
 a

nd
 p

re
di

ct
ed

 c
as

es

Estimate
95% CI

Figure 5.16. 95% CI (solid line), Fitted and projected estimates(crossed dotted
line) and observed (triangular) HIV diagnosis. Using data up to 1999
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5.11 Application to Nigerian data

This model approach may be said to be ideal for modeling the Nigerian

HIV/AIDS epidemic. This is because, the HIV test data is more readily available

than the AIDS diagnosis data. Underreporting is much higher with AIDS data

than HIV data. People undergo HIV tests for one reason or the other (routine,

mandatory or symptom related tests), once confirmed positive, many of them are

lost to traditional healers, prayer houses and the many self-acclaimed HIV/AIDS

doctors spread all over the country. Only a very small proportion of those who

tested positive to HIV make use of the orthodox medicine (hospital) when AIDS

symptoms develop. the majority of the persons recorded as AIDS cases were

individuals who were not aware of their HIV status until the symptoms of AIDS

manifest.

Therefore any model based on HIV data will provide better insight into the

epidemic situation in the country provided the data is fairly representative of the

entire population.

To obtain estimates of the HIV incidence curve for Nigeria, HIV data set

collected from 659 testing sites and published by the Nigeria Institute of Medical

Research (83) is used. The data indicate that of all the HIV positive cases

diagnosed between 1989 and 1999, 40.6 per cent were clinical AIDS diagnosis, 29.6

per cent were routine tests, and 29.8 per cent were blood donors and pretrans.

Using this information, we obtained the parameter estimates of the routine and

simultaneous reporting as ν = 0.0349 and γ = 0.851 respectively. Hence, the

hazard for HIV positive test in year x for someone infected in year u is

p′(x/u) = 0.0349 + 0.851

(
2.516

12.147

) ( x

12.147

)1.516
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Figure 5.17. Estimates of HIV diagnosis in Nigeria

Using the induction distribution in equation 2.45, the shape of the induction

density is given in Figure ??

The median induction period is computed to be 8.9 years. This indicates that

most of the patients underwent HIV tests at a later stage of the infection, may

be as a result of one sickness or the other. This information justifies our pushing

back the estimation to start from 1980.

Figure 5.17 shows the graph of the estimates of incidence of HIV positive

cases (broken lines) and the observed number of HIV positive tests (solid lines)

obtained using the modified back-projection (HIV data only). Estimates show a

rising trend of the epidemic. The seeming drop in the HIV incidence of the most

recent year (1999) can be attributed to the inability of the back-projection method

to accurately estimate the most recent past incidence of HIV infection. The

observed data show a continual increase in incidence over the years. Table 5.38

gives the observed and estimated number of HIV positive cases. The difference

between the two columns give the estimated number of infections yet unobserved.

The model estimated the cumulative number of HIV infections between 1980
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Year HIV cases HIV estimate
1980 0 0
1981 0 0
1982 0 0
1983 0 1
1984 0 8
1985 0 40
1986 0 167
1987 0 573
1988 0 1585
1989 87 3444
1990 6198 5889
1991 993 8227
1992 1049 11043
1993 1676 16598
1994 2690 26462
1995 3932 43297
1996 5878 69628
1997 9531 99112
1998 16816 109508
1999 20537 99861
Total 63387 495439

Table 5.36. Observed and estimated number of HIV infection in Nigeria
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and 1999 to be approximately 495,439 as against 75,703 cases diagnosed between

1989 and 1999. Comparing this estimate with that obtained using AIDS data

(see Table 5.28), an appreciable increase in the estimate is observed. The esti-

mate obtained using HIV data is more than 3 times that obtained using AIDS

incidence data. As earlier stated, the HIV data contain more information about

HIV infection than the AIDS data. Hence, it is expected that estimates obtained

using this approach should be more reliable than that obtained using AIDS data.

A measure of precision of this estimate is obtained by the bootstrap procedure.

5.11.1 Bootstrap Estimates of precision

As earlier pointed out, the EM algorithm was unable to converge for the

Nigeria AIDS and HIV data. Consequently, the HIV data was divided by 1000.

The bootstrap confidence interval was then obtained using the steps outlined in

the previous section.

It is estimated that the number of individuals infected with HIV in Nigeria

between 1989 and 1999 lie somewhere between 347,792 and 621,494 with the best

estimate being 495,439. Observe that the width of the interval gets larger as we

approach the recent years. However, when compared with that obtained using

the AIDS data, the precision of the estimates using this method seem better.

The graph in Figure 5.18 gives a pictorial view of the point-wise spread.
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Year Lower bound HIV cases HIV estimate Upper bound
1980 0 0 0 79
1981 0 0 0 82
1982 0 0 0 103
1983 0 0 1 155
1984 4 0 8 288
1985 22 0 40 536
1986 91 0 167 935
1987 304 0 573 1606
1988 794 0 1585 2752
1989 1775 87 3444 4533
1990 3419 198 5889 6992
1991 5779 993 8227 10799
1992 9279 1049 11043 16104
1993 14873 61676 16598 25098
1994 23267 2690 26462 37614
1995 36372 3932 43297 54322
1996 53504 5878 69628 77691
1997 66794 9531 99112 104184
1998 67599 1686 109508 133680
1999 63916 20537 99861 143941
Total 347792 63387 495439 621494

Table 5.37. Observed and estimates of number of HIV infection in Nigeria with
the 95% bootstrap CI
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Figure 5.18. The 95% point-wise bootstrap confidence interval (solid lines) for
estimates of HIV incidence (cross points) and observed HIV positive cases (tri-
angular points)
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Year Lower bound HIV cases HIV estimate Upper bound
1989 0 87 67 200
1990 0 198 278 600
1991 300 993 774 1400
1992 600 1049 1207 1900
1993 1000 1676 1733 2600
1994 1700 2690 2639 3700
1995 2900 3932 4126 5500
1996 4100 5878 5655 7100
1997 8200 9531 10140 12100
1998 13500 16816 15877 18200
1999 15900 20537 18607 21500

subtotal 48200 63387 61103 74800
2000 17800 20680 23500
2001 19800 22678 25900
Total 85800 104461 124200

Table 5.38. Observed, estimates and bootstrap CI for HIV positive cases

5.11.2 Projection

In order to obtain the estimates of the future number of HIV infections (say for

2000 and 2001), we followed the steps outlined in the previous section. Based on

the observed data, we obtained the fitted and projected number of HIV positive

cases and their 95 per cent point-wise confidence interval. It is projected that

there were 20,680 and 22,678 diagnosed HIV positive cases in 2000 and 2001

respectively.

Figure 5.19 gives an interesting picture of stages of the epidemic in Nigeria.

It seems to define three obvious stages approximately coinciding with the three

positions of the steps and knots used in the previous section. The shape of the

graph depicts a rising trend of the epidemic indicating that in the near future,

the number of infected individual will be on the increase if no pragmatic program

is adopted to curb the spread of the virus.
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Figure 5.19. 95% CI (solid line), fitted and projected estimates( crossed dotted
line) and Observed (triangular) HIV diagnosis in Nigeria

5.12 Comparison of the parametric and non-

parametric Back-projection

We refer to the parametric back-projection as all back-projection method

that assumes a form of parametric distribution for the infection intensity. Non-

parametric back-projection is the converse, no parametric distribution is assumed

for the infection curve. We have assumed two parametric forms for the infection

curve; the step function and the spline function and have obtained back-projected

estimates for different scenarios of HIV/AIDS epidemic using data from Nigeria,

America and Hong Kong. Estimates were also obtained from the same sets of

data using non-parametric back-projection.

In this section, we compare results obtained from the parametric back-projection

and that obtained from the non-parametric back-projection with a view of estab-

lishing the suitability of the methods in the different epidemic scenarios.
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Experience in this research shows that the parametric methods are flexible

and can yield infinitely many solutions depending on the number of steps (or

knots) and the positions of the steps (or knots). Results in Tables 5.6 and 5.9

give credence to this. The extension of the number of steps from three to four gave

different estimates of the infection intensity for HIV/AIDS epidemic in Nigeria.

Also it is possible to obtain negative estimates of the infection curve in some

time intervals which is unrealistic in real world situation. See Tables 5.14, 5.17,

5.20 and 5.23. However, this problem can be overcome by placing restrictions

on the parameters. The estimates shown in these tables indicate the effect of

the number and positioning of the knots on estimates of HIV infection intensity,

the repositioning of the single knot and the increase in the number of knots

resulted in large differences in the estimates of the cumulative HIV infection. It

is important also to point out that the different parametric forms assumed for the

HIV infection curve yielded different estimates of the cumulative HIV infection.

Table 5.40 gives a summary of estimates of cumulative HIV infection obtained

using the step function and spline for America and Nigeria. It seems from the

table that estimates obtained using the spline is slightly lower than that obtained

using the step functions. This depends however, on the choice of the position and

number of steps or knots. Another factor that may affect the estimate of the HIV

population is the choice of the type of spline function. Our analysis show that

different spline function gave different estimates of the HIV infection curve. See

Table 5.26.

Surprisingly, all these models (different splines and step functions) gave good

fit of the AIDS incidence data. Though slight variation is noticed in the value of

the AIDS incidence per time period, the cumulative number of AIDS diagnosis

is the same. See the third columns of Tables 5.5 and 5.10 and Tables 5.15, 5.18
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Year/quarter Observed Parametric Nonparametric
1977.1-81.4 374 413.49 249

1982.1 185 141.03 184
1982.2 200 199.23 256
1982.3 293 273.7 340
1982.4 374 365.86 434
1983.1 554 476.89 540
1983.2 713 608.56 658
1983.3 763 762.33 791
1983.4 857 936.66 941
1984.1 1147 1141.42 1114
1984.2 1369 1368.25 1313
1984.3 1563 1621.18 1543
1984.4 1726 1900.45 1809
1985.1 2142 2206.96 2116
1985.2 2525 2544 2466
1985.3 2951 2914.64 2861
1985.4 3160 3321.37 3300
1986.1 3819 3765.48 3782
1986.2 4321 4247.61 4303
1986.3 463 4769.38 4862
1986.4 5792 5330.24 5451
1987.1 6155 5930.96 6065
1987.2 6816 6571.42 6691
1987.3 7491 7251.05 7310
1987.4 7726 7969.68 7906
1988.1 8483 8726.59 8484

TOTAL 76362 75758.43 75770

Table 5.39. Estimates of AIDS cases in the US obtained using parametric and
non-parametric back-projection

Country Multinomial QL/Poission Spline
Nigeria 150582 150580 118827
America 1224083 1224021 1182490

Table 5.40. Estimates of the Numbers previously infected with HIV in Nigeria
and America
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Figure 5.20. Parametric and nonparametric estimates of AIDS incidence in
America

and 5.21 which show estimates of AIDS diagnosis incidence obtained from the 3

and 4-step function models and the various spline models.

Nonparametric back-projection has an explicit formulae for the generation

of estimates of the infection intensity and this formulae is easily implemented

using the EM algorithm. Under this method, the data is given greater power

to determine the shape of the infection intensity. Hence, assumptions about the

nature of HIV curve is not required. The method is a bit rigid but could be

affected by the choice of the smoothing parameters. Also, convergence could be

difficult for large values of AIDS or HIV counts.

Generally, estimates obtained using the parametric and nonparametric back-

projection methods differ. This difference is larger in the estimates of HIV popu-

lation. There are also differences in the estimates of the AIDS incidence as shown

in Tables 5.39, 5.41 and 5.42

It seems the two methods adequately predict the AIDS prevalence as indicated
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Year Observed Parametric Nonparametric
1984 0 1 0
1985 3 2 1
1986 0 3 3
1987 6 4 5
1988 6 6 7
1989 15 8 9
1990 10 11 11
1991 11 13 14
1992 14 18 19
1993 19 23 26
1994 34 31 34
1995 45 43 41
1996 68 55 49
1997 63 68 57
1998 62 71 63
1999 59 57 69
2000 66 66 73

TOTAL 480 480 484

Table 5.41. Estimates of AIDS cases in Hong Kong obtained using parametric
and non-parametric back-projection

by the totals in the three columns of Table 5.39 although little variations are

noticed in the estimate of the incidence of AIDS cases diagnosis. The identical

nature of the estimates obtained from the two methods are more prominent in

the US and Nigeria epidemic situations. The graphs of the the observed and

estimates of the AIDS incidence obtained using the two approaches indicate that

the two methods produced similar estimates especially for the US and Nigeria.

See Figures 5.12 and 5.22. However it appears that the parametric approach

produced better estimates of AIDS incidence for Honk Kong as depicted in Figure

5.21.
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Figure 5.21. Parametric and nonparametric estimates of AIDS diagnosis in
Hong Kong

Year Observed Parametric Nonparametric
1989 8 89 20
1990 14 32 29
1991 160 57 62
1992 102 45 123
1993 198 220 236
1994 327 385 435
1995 625 693 768
1996 1381 1220 1286
1997 1940 2018 2034
1998 3219 3113 3047
1999 4342 4443 4336

TOTAL 12316 12315 12376

N̂ 152608 162724

Table 5.42. Estimates of AIDS cases in Nigeria obtained using parametric and
non-parametric back-projection
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Figure 5.22. Parametric and nonparametric estimates of AIDS diagnosis in
Nigeria



Chapter 6

Analysis of the HIV Screening

Data

6.1 Descriptive Analysis

The data used in this chapter is HIV screening data collected from one of

the Nigerian centres of excellence for HIV/AIDS research and treatment. It is a

individual level data set comprising of all persons who presented themselves for

HIV screening between October 2000 and August 2006. Information collected

includes Date of screening, Result of the test(HIV positive or negative), Age, and

Sex of the patient. In all, 33349 patients attended the HIV laboratory within

the period under review. Of these, 7646 (about 23%) were confirmed positive for

HIV.

A look at Table 6.1 and Figure 6.1 indicates that there is a marked increase in

the number of patients screened from August 2005. The effect of policy change on

HIV/AIDS screening and treatment is very evident in the data. Prior to August

232
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MALE FEMALE
Oct 2000 Aug 2005 Oct 2000 Aug 2005

Age July 2005 Aug 2006 %change July 2005 Aug 2006 %change
Below 2yrs 3.0 30.2 893.7 1.9 21.0 1007.7

2-14yrs 8.8 35.8 309.3 5.8 39.5 575.2
15-24yrs 14.4 83.8 483.8 28.4 189.5 567.1
25-34yrs 31.0 166.8 438.6 40.1 303.8 658.3
35-49yrs 22.8 138.8 510.1 20.6 169.7 722.9

50yrs& above 12.4 57.2 362.3 8.6 78.2 808.4
Total 5350 6664 6114 10423

Table 6.1. Average number of persons screened per month

Figure 6.1. Number of patients screened and number who tested positive for
HIV by sex and age
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2005, patients paid a minimum fee of N10,000.00 (about £40) for a comprehensive

HIV test (26). There is no doubt that, given the level of poverty in Nigeria, many

patients would have been discouraged from presenting themselves for screening

because of their inability to pay the bill. Also, testing kits available then were

outdated and in most cases very slow such that, for some tests like CD4 count,

only about three or four counts could be done per day. However in 2003, an

international organization came to the aid of the Nigerian government, screening

and treatment of HIV/AIDS became free of charge and state of the art screening

equipment was installed in some selected centres of excellence. The surge in

the number of patients seeking HIV/AIDS services is an indication of the extent

to which poverty had hindered patients from utilizing hospital facilities. The

free Voluntary Counselling, Testing and Treatment (VCTT) as adopted by these

internationally sponsored centres, encouraged even the most poor and vulnerable

to volunteer for HIV tests.

As can be seen from the plots, the difference between the total numbers of

males and females screened prior to the intervention of the international organi-

zation is minimal. However, there is an outstanding difference between the two

sexes in the current period of free test with the females clearly outnumbering the

males. The burden of poverty falls more on females, it is therefore not surprising

that more females than males attended when services became free.

When the data is partitioned by time and by sex and age (Table 6.1), a clearer

picture of the effects of poverty on the sexes is presented. When the percentage

change in attendance for the two time periods is considered by sex and age, the

increase in average attendance per month for the males is between 300 to 900

percent, but for the females it ranges between 500 to 1007 percent. For all the

age groups, the percentage change in monthly average attendance for the females
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MALE FEMALE All
No. % No. % No. %

Time Age(yrs) +ve Total +ve +ve Total +ve +ve Total +ve
1 < 2 29 176 16.5 18 110 16.4 47 286 16.4
1 2-14 82 508 16.1 79 339 2.3 161 847 19.0
1 15-24 74 833 8.9 309 1648 18.7 383 2481 15.4
1 25-34 376 1796 20.9 635 2324 27.3 1011 4120 24.5
1 35-49 388 1320 29.4 259 1196 21.7 647 2516 25.7
1 ≥50 76 717 10.6 78 499 15.6 154 1216 12.7
2 < 2 99 392 25.3 98 273 35.9 197 665 29.6
2 2-14 107 466 23.0 84 513 16.4 191 979 19.5
2 15-24 165 1090 15.1 482 2464 19.6 647 3554 18.2
2 25-34 521 2168 24.0 1167 3950 29.5 1688 6118 27.6
2 35-49 514 1805 28.5 600 2206 27.2 1114 4011 27.8
2 ≥50 170 743 22.9 208 1016 20.5 378 1759 21.5

Table 6.2. Age/Sex distribution of HIV positive cases. Time period 1 = Oct
2000- July 2005, time period 2= Aug 2005-Aug 2006

is higher than for the males. Due to their higher financial status, men had been

more capable of paying the screening and prescription bills than the women. The

free screening and drugs made more women who hitherto could not afford the

cost of these services present themselves for screening. The same trend was also

noticed for the children aged below 2 years. In this part of the country, the male

child is highly valued and parents would give all for the health of the child. This

might explain why the proportion of the male children was higher than that of

the females at time 1 (when treatment was not free).

It is worthy of note also that the increase was not only in the number of

laboratory attendees. Table 6.2 shows that there is a noticeable increase in the

number and proportion of HIV positive test results in time 2 when compared with

time 1. This increase is greatest in the youngest and oldest age groups. Also the

average number of positive diagnoses per month was 59 cases for time 1 and 327

cases for time 2, thus giving a monthly average rate of increase of 5.6 times the

number of cases recorded per month in time period one. This gives an idea of
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the quantum of underreporting of HIV/AIDS cases in the country before 2005.

Overall, the proportion of female patients who were HIV positive was higher

than the males. For females, patients aged between 25-34 years were more affected

by the virus. For the males, the proportion of patients aged between 35-49

years was slightly higher than those aged 25-34 years. This combined age group

accounted for about 66 and 70 percent of all HIV positive results for the females

and males respectively.

It also seems from the data that young adolescent females are more affected

than their male counterparts. That is, the data suggest that more females were

infected at younger ages than the males. For instance, about 20 percent of in-

fected females were in age group 15-24 years but for the males, only 9 per cent

of them were in that age group. This is also true for age group 25-34 years, the

proportion of females infected is higher than the proportion of males infected.

However, at older ages (35- 49, 50 and above), the proportion of males infected

is higher. In all, the bulk of infection was found in patients aged between 15-49

years. For the females, about 86 per cent of the infected were in this age range

and for the males; about 78 per cent of those infected belong to this age range.

This age distribution of HIV positive patients has some policy implications in the

design of outreach programs to fight the spread of the virus. The focus or target

groups can be easily determined.

6.2 Formal Analysis - The Logistic Regression

In order to estimate the dependence of test outcome on the explanatory vari-

ables sex, age and time period of the test, logistic regression was applied to the
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coefficients Estimate Std Error z-value p-value
intercept -1.63 0.258 -6.33 2.45e-10
Time2 1.052 0.287 3.67 0.000248
Age2 0.44 0.288 1.529 0.126
Age3 0.165 0.265 0.622 0.534
Age4 0.65 0.262 2.49 0.0126
Age5 0.346 0.267 1.29 0.196
Age6 -0.055 0.286 -0.191 0.849
SexM 0.008 0.328 0.025 0.98

Time2*Age2 -1.49 0.336 -4.43 9.26e-06
Time2*Age3 -0.999 0.298 -3.351 0.000805
Time2*Age4 -0.943 0.293 -3.22 0.00128
Time2*Age5 -0.75 0.299 -2.507 0.0122
Time2*Age6 -0.723 0.322 -2.245 0.0247
Time2*SexM -0.513 0.370 -1.387 0.166
Age2*SexM -0.465 0.373 -1.248 0.212
Age3*SexM -0.87 0.356 -2.446 0.01446
Age4*SexM -0.3588 0.3365 -1.066 0.286
Age5*SexM 0.4013 0.341 1.177 0.239
Age6*SexM -0.455 0.371 -1.226 0.2204

Time2*age2*sexM 1.390 0.441 3.152 0.00162
Time2*age3*sexM 1.065 0.407 2.617 0.00887
Time2*age4*sexM 0.583 0.383 1.522 0.128
Time2*age5*sexM 0.168 0.388 0.432 0.666
Time2*age6*sexM 1.102 0.425 2.592 0.0095

Table 6.3. Parameter estimates for logistic regression model- all data

data using R c©. The full model is given in equation 6.1 where xi (i = 1, 2, 3) are

age, sex and time period respectively. The output shown in Table 6.3 was ob-

tained. The analysis show that the model is significant with a change in deviance

of 555 on 23 degrees of freedom and p < 0.001.

log(
pi

1− pi

) = β0+β1x1+β2x2+β3x3+β4x1x2+β5x1x3+β6x2x3+β7x1x2x3 (6.1)

Table 6.3 show that 3-way interactions are statistically significant, indicating

that differences in the proportion of HIV positive cases between age and sex is
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coefficients Estimate Std Error z-value p-value
intercept -1.63 0.258 -6.33 2.45e-10

Age2 0.44 0.288 1.529 0.126
Age3 0.165 0.265 0.622 0.534
Age4 0.65 0.262 2.49 0.0126
Age5 0.346 0.267 1.29 0.196
Age6 -0.055 0.286 -0.191 0.849
SexM 0.008 0.328 0.025 0.98

Age2*SexM -0.465 0.373 -1.248 0.212
Age3*SexM -0.87 0.356 -2.446 0.01446
Age4*SexM -0.3588 0.3365 -1.066 0.286
Age5*SexM 0.4013 0.341 1.177 0.239
Age6*SexM -0.455 0.371 -1.226 0.2204

Table 6.4. Parameter estimates for logistic regression model- Oct 2000 till July
2005 only

different in the two time periods. For parsimony, we tested the significance of

the 3-way interactions alone by fitting a model without a 3-way interactions and

comparing it with the full model. Result gave a change in deviance of 40.90

on 5 degrees of freedom with p < 0.0001, indicating that the model with 3-way

interaction is better than that with just 2-way interactions.

To further investigate the interaction between age and sex without the influ-

ence of time, we partitioned the data by time period. Table 6.4 and 6.5 show

results when the data was partitioned into the two time periods, representing the

period when screening was paid for (Time 1) and the period when it is free (Time

2). The result of the analysis is shown in Table 6.4. So the age/sex interaction

is significant even in the time when patients were expected to foot the medical

bills. Carrying out the equivalent test using data for Time period 2, we obtain

the result in Table 6.5.

The age/sex interaction model is a better fit to the data than the simple model

in the two time periods. It seems therefore, that the variations in the proportion

of patients diagnosed as being HIV positive is greatly influenced by the sex and
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coefficients Estimate Std Error z-value p-value
intercept -0.58 0.126 -4.596 4.31e-06

Age2 -1.0508 0.174 -6.051 1.44e-09
Age3 -0.834 0.136 -6.133 8.63e-10
Age4 -0.29 0.131 -2.213 0.0269
Age5 0.405 0.135 -3.0 0.0027
Age6 -0.777 0.148 -5.244 1.57e-07
SexM -0.505 0.172 -2.945 0.00323

Age2*SexM 0.925 0.236 3.917 8.95e-05
Age3*SexM 0.195 0.198 0.987 0.324
Age4*SexM 0.224 0.182 1.228 0.219
Age5*SexM 0.59 0.186 3.065 0.00218
Age6*SexM 0.6472 0.2076 3.117 0.00183

Table 6.5. Parameter estimates for logistic regression model- Aug 2005 till Aug
2006 only

age of the patients. Hence, differences between the proportion of HIV positive

males and that of females is different for each age group.

Conclusion

There is a marked increase in the number of persons seeking HIV advice and

services as a result of the free counseling, test and treatment introduced in the

hospital in 2005. This increase was more for women and children. Also, there

was a noticeable increase in the number and proportion of diagnosed HIV positive

cases. Some age groups had an increase of up to 10 times what it was at time

period 1. The effect of poverty on the diagnosis and treatment of HIV/AIDS in

the country is very clear in this data as depicted by the sharp increase in the

number of patients when treatment became free. It may not be out of place to

argue that any decision or estimation based on the information on HIV/AIDS

obtained prior to 2005 may be misleading. This is because the data on which

such decision or estimation was based is an under representation of what was

obtainable. Under diagnosis and underreporting of cases were very prominent at
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that time.

The data suggest that the proportion of females who tested positive for the

virus is higher than the males. The females constitute about 61 percent of the

total number of positive cases, the remaining 39 percent were males. Also the

females were infected more at younger ages than males. The bulk of infection

was found in patients aged 15-49 years. This age group accounted for about 86

percent of all cases in the females and about 78 percent of the males. For the

females, patients aged 25-34 years were more affected by the virus. While males

aged 35-49 years were slightly more affected than males aged 25-34. This seems

to imply that older males infect younger females.

A formal analysis of the data using the logistic regression model indicates that

there is a 3way interaction between time, age and sex. A search for a simpler,

less complex model was done but in all, it seems that the 3way interaction model

is the best. The data was further partitioned by time to remove the effect of time

and test the 2way interaction between sex and age for each time period. This

analysis confirmed that the 2way interaction in both time periods 1 and 2 was

significant. Hence, the probability of testing positive to HIV infection depends

on the sex and age of the patient.
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6.3 Correction for underreporting

It became clear from the review of available data on HIV/AIDS in Nigeria that

there were serious problems of underreporting of cases (especially AIDS cases).

Some of the factors identified as contributing to underreporting include:

• Many patients may prefer alternative medicine. Most patients see the dis-

ease as art of witchcraft, poison from an enemy, or work of evil spirits.

Hence they opt for traditional or spiritual healers

• Health practitioners may not record cases so as to protect patients from

stigma

• It is not mandatory for private laboratories/hospitals to report cases. Most

Nigerians prefer private health care for reasons ranging from efficiency to

prompt attention.

• No effective central statistical coordination of available data

• Lack of Education

• Poverty which makes it difficult or impossible for patients to seek medical

help

• Patients may die of other diseases before they are diagnosed of HIV/AIDS

Due to lack of information on the reporting delay and underreporting distrib-

ution of HIV/AIDS cases in Nigeria, it becomes impossible to apply the methods

proposed by (254) and (232) where stationary and non-stationary probabilities

of reporting delay were used to correct the data.
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We note that while most developed countries contend with the issue of re-

porting delay, the developing countries like Nigeria, are faced with the crises

of huge underreporting and underdiagnosis of cases, where a high proportion of

HIV/AIDS cases were never reported due to the reasons mentioned above.

In the previous chapter,we analyzed the data without correcting for underre-

porting. Estimates of the infection curve were obtained using the AIDS and HIV

diagnosis data as published by the Nigeria Institute of Medical Research. Based

on the knowledge gained from the cases-by-case data analysis above, it becomes

expedient that the data be adjusted for underreporting. In order to correct the

published data for underreporting, we need further information on the extent of

underreporting within each time period.

Analysis in the previous section gave us an insight into the extent of underre-

porting in Nigeria. This perceived rate of underreporting could be argued to be

solely due to poverty, as there was a drastic increase in the number of attendance

to the HIV laboratory when diagnosis and treatment became free in August 2005.

We are also aware that some individuals may not utilize the free services offered

by the hospital due to lack of information of its availability, lack of education,

lack of transport fare (as many have to travel long distances to access the facility)

and fear of being stigmatized. We are also aware that the surge in the number of

patients seeking HIV services in this laboratory could mean that patients outside

its catchment areas may be attracted by its free services. However, there are

little evidence to support this.

The ratio of the mean monthly diagnosis of HIV positive cases between the

two time periods was adopted as the correction factor based on assumptions that

the observed rate of underreporting is constant over the time periods and that

this rate of underreporting is the same for all geopolitical regions in the country.
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It may be right to argue that this correction factor only took care of under-

reporting due to poverty and not encompassing other factors which are known

to affect HIV/AIDS data reporting. Since it is not easy to quantify the extent

of the effects of these other factors on HIV/AIDS underreporting in Nigeria, it

becomes pertinent to rely on the only available information. We also note that

the information we have on underreporting in our data is on HIV diagnosis and

not purely on AIDS incidence, our first attraction was to apply this correction

factor only to HIV test data. However, since a large proportion of the tests were

symptom induced, we decided also to extend the correction fraction on AIDS

data. We believe that the underreporting of AIDS incidence is higher than that

of HIV in Nigeria but we shall use this correction factor as a proxy for the rate

of AIDS cases underreporting.

The mean number of HIV positive diagnosis for time periods 1 and 2 were

estimated to be 58.6 and 326.7 respectively, the average rate of increase per month

therefore is 5.575. Correcting the data by this rate, the new estimates of HIV

incidence were obtained using the original (when AIDS data is used) and the

modified (HIV data is used) back-projection models as shown in Tables 6.6 and

6.7 respectively.

With this correction, it is estimated that a cumulative number of about 907208

persons were infected with HIV in Nigeria as at December 1999. This point

estimate of the population number of HIV infected persons is expected to lie

somewhere between 261157 and 2566703. The width of this confidence interval

is a signal to the possible imprecision of predicting HIV prevalence using AIDS

diagnosis data in back-projection. Comparing these results with the uncorrected

estimates in Table ??, there is an appreciable difference in the two estimates.
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Year Lower Estimate Upper
1980 0 1 119
1981 0 2 134
1982 0 7 272
1983 0 32 539
1984 0 117 983
1985 3 348 1660
1986 20 867 2747
1987 119 1845 4484
1988 535 3487 6968
1989 1693 6186 11911
1990 4125 10958 19316
1991 9707 20091 33025
1992 19778 36989 56440
1993 32854 62462 86458
1994 49448 92520 124642
1995 56908 118732 174084
1996 40893 135072 263132
1997 23302 141501 437921
1998 11092 138505 654779
1999 10680 137486 687089
Total 261157 907208 2566703

Table 6.6. HIV incidence estimated original back-projection model (using AIDS
diagnosis) and the 90% confidence interval
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Figure 6.2. HIV incidence estimated using AIDS data
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Year Lower Estimate Upper
1980 0 0 92
1981 0 0 100
1982 0 1 244
1983 1 7 547
1984 8 43 1071
1985 52 221 2332
1986 276 928 4444
1987 1159 3192 8209
1988 3607 8837 14789
1989 8859 19198 25057
1990 17806 32831 41072
1991 31525 45863 62427
1992 50923 61564 94646
1993 80104 92532 142871
1994 127636 147525 212195
1995 197167 241386 306162
1996 293920 388182 441838
1997 366072 552564 596577
1998 362088 610522 762214
1999 337052 556738 810986
Total 187255 2762134 3527873

Table 6.7. HIV incidence estimated from the modified back-projection model
(using HIV diagnosis) and the 90% confidence interval
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Figure 6.3. HIV incidence estimated using HIV diagnosis

The HIV prevalence estimate obtained using HIV incidence data is far higher

than that obtained using AIDS data. Here, it is estimated that about 2762134

persons were living with HIV/AIDS. It is noteworthy that the 90 per cent confi-

dence interval obtained using the HIV data also encompass that obtained using

AIDS data.

This estimate closely approximate that obtained for Nigeria by the United Na-

tions Joint Action Committee on AIDS (UNAIDS) in 1999. UNAIDS estimated
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β 3 Steps 4 Steps
β0 196.50(9.61) 211.99(10.01)
β1 21798.09(289.62) 20594.66(361.08)
β2 125063.18(1217.08) 142906.92(3832.86)
β3 90345.04(7433.16)

Table 6.8. Parameter estimates and their standard error obtained using the
parametric (step function) back-projection

that as at December 1999, about 2700000 persons were living with HIV/AIDS in

Nigeria (Time magazine, Feb. 12, 2001). The method and data used by the UN

were quite different from the one used here.

Applying the corrected data in the parametric back-projection under the as-

sumption that the infection curves follow a step fuction (see section 5.3.2), it

still appears that the three-step model is more efficient than the four-step model

given the standard error of the estimates of the parameters as shown in Table 6.8.

The two models gave different estimates of the HIV/AIDS population. With the

three-step model, an estimate of 839536 was obtained and the four-step model

gave an estimate of 731692. See Table 6.10
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Year Observed 3 Steps 4 Steps
1989 45 272 293
1990 78 111 118
1991 892 249 250
1992 569 591 576
1993 1104 1192 1144
1994 1823 2137 2053
1995 3484 3886 3844
1996 7699 6880 7015
1997 10816 11329 11593
1998 17946 17297 17434
1999 24207 24718 24341
Total 68663 68663 68663

Table 6.9. AIDS incidence estimates obtained using the parametric (step func-
tion) back-projection

Time 3 Steps Time 4 Steps
Jan 1980-Jan 1989 1965 Jan 1980-Jan 1989 2120
Jan 1989-Jan 1993 87192 Jan 1989-Jan 1993 82379
Jan 1993-Dec 1999 750379 Jan 1993-Jan 1995 285814

Jan 1995-Dec 1999 361380
Total 839536 Total 731692

Table 6.10. Estimates of number of persons living with HIV/AIDS obtained
using the parametric (step function) back-projection



Chapter 7

Discussion and Conclusion

7.1 Summary

The aim of this thesis was to develop epidemic models that could describe

and predict the HIV/AIDS epidemic in Nigeria. To achieve this, we focused on

two broad approaches, namely, spatial epidemiology and backcalculation meth-

ods. The choice of these methods was informed by the nature of available data.

After a careful review of all available sources of data on HIV/AIDS, two sets

of data, collected from two different sources were adjudged better than others

based on the criteria of national coverage and minimum reporting delay. The

data adopted for this research were the outcome of the survey of 1057 health and

laboratory facilities (public and private) conducted by the Nigerian Institute of

Medical Research (NIMR) in 2000 and the outcome of the National HIV/AIDS

Sentinel Surveillance Survey conducted biannually by the Federal Ministry of

Health biannually between 1991 and 2005.

A review of the literature reveals that there exist wide spread networks of

249



CHAPTER 7. DISCUSSION AND CONCLUSION 250

premarital and extramarital and other risky sexual practices capable of sustain-

ing the HIV/AIDS epidemic in Nigeria. The nature and extent of these practices

vary across the six geopolitical zones of the country. Some communities have

socio-cultural and religious affinity which tend to have direct influence on their

sexual behaviours and, consequently, on the prevalence of HIV/AIDS in these

communities. Cluster analysis, using data from the HIV Sentinel Surveillance

which surveyed 85 selected sites (communities), reveal clustering or spatial pat-

terning of HIV prevalence rates among the sites and States. The nature of the

patterning seems to change with time which may reflect distinct phases of the

epidemic and a tendency for the prevalence rates to become increasingly similar

or dissimilar with time. Analysis suggests that the sites are broadly clustered

within their geopolitical zones such that each geopolitical zone appears to be a

distinct cluster.

The fit of two-way GAM and sm-regression models to the data identified

spatial trends in the east-west and north-south directions. The trends indicate

low prevalence in the west and far north, moderately high prevalence in the east

and south-south and very high prevalence in the centre (North-central). Some of

the towns in the North-central zone are known for the practice of spouse sharing

and the giving of wife or daughter to distinguished guests as a welcome gift.

Condom use is also lowest in this zone.

The correlograms depict the highest positive spatial autocorrelation among

sites and States geographically close (less than 100miles) to each other, suggesting

that the epidemic is similar among States or sites that are in close proximity. This

correlation also tends to increase with time. Thus, prevalence of HIV infection

gets more and more similar among States and sites that are close neighbours as

the years of the epidemic advanced. The Moran scatter plots, Moran and Geary
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coefficients corroborated these findings of significant positive autocorrelation that

tends to get stronger with time. Therefore, this confirms that nearby states or

sites, on average, have similar prevalence rates and the number of States or sites

forming these clusters appear to increase with time. The analysis of outliers

indicates that the number of outliers in the semivariogram cloud decreased with

time signifying increased similarity in the HIV prevalence levels among States

and sites. The semivariogram analysis supports this decline in the overall spatial

variation over time as indicated by the reduction in the size of the sill as the

epidemic advanced in years. The neighbourhood effects, among the States, varied

from 340miles in 1999, 580miles in 2001 and 279miles in 2005. Kriging estimates

clearly show these spatial patterning and trend with some local focal points found

in the south-south and north central zones.

A literature search implicated some ecological factors as being of importance

in explaining variation in HIV prevalence in Nigeria. Data on some of these risk

factors were obtained. However, these data were only available at the zone level

while the prevalence data were at the site level. The effect of the factors on the

geographical variation in the risk of HIV infection was established by fitting mul-

tilevel variance component models and examining the fixed parameter estimates.

Of the eight ecological factors for which data were available, four of them were

consistently found to be highly significant in explaining variation in the relative

risk of HIV infection. The factors are age at sex debut, polygamy, frequency of

sex and condom use. Polygamy, which may be seen as a proxy measure of con-

current multiple sex partnership, has the greatest effect on the risk of exposure to

HIV infection. The next in line is frequency of exposure to heterosexual contact.

Condom use is negatively associated with the risk of HIV infection. The spatial

effect on the distribution of the risk of HIV infection was studied by fitting spatial
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multilevel models and examining the random parameter estimates. Variations in

the risk of HIV infection within States and within zones was prominent in the

models. Accounting for the ecological and spatial effects, as previously discussed,

significantly reduced the random variability in HIV prevalence across the zones.

Thus, relative risk estimates obtained using these models are relatively precise

and are expected to give an accurate map of the distribution of HIV prevalence

in Nigeria.

In order to investigate the temporal development of the epidemic, various

forms of back-projection methods were applied to the Nigerian HIV/AIDS histor-

ical data. Broadly, the methods used can be grouped as parametric and nonpara-

metric. In order to apply the parametric methods, particular functional forms

had to be assumed for the HIV intensity curve. Specifically, we assumed that

the family of infection curves could be defined by a basis function which could

either be an indicator function or a spline function. Estimates were obtained

under each assumed intensity curve using three methods, namely multinomial

likelihood, Poisson regression and quasi-likelihood methods. Step function model

estimates of HIV infection intensity obtained using the Poisson regression and

quasi-likelihood methods are almost identical and differ only slightly from those

obtained using the multinomial likelihood method. Estimates of the AIDS in-

cidence obtained using different spline function models appear to be better fits

than those obtained using the step function models judging by their lower residual

variances measured by the chi squares. However, the estimates of the cumulative

HIV infection deffer substantially depending on the number and positions of the

steps and knots.

In order to avoid the problem of specifying the parametric form of the infection

curve, we adopted nonparametric back-projection methods. These allow the data
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more power to determine the shape of the estimated intensity curve. Two ap-

proaches were undertaken: a nonparametric method where AIDS incidence data

was used to reconstruct the HIV incidence curve and a modified nonparametric

form that made use of the HIV diagnosis data to reconstruct the HIV incidence

curve. The use of the latter method is informed by the fact that HIV incidence

data contains more information about the HIV incidence curve, has a shorter

incubation period and is not affected by the treatment regimes. Estimates of

the cumulative number of HIV infection differ widely in the two methods. This

estimate is about three times higher when HIV diagnosis data is used than when

AIDS incidence data is used. In both cases, a nonparametric bootstrap point-

wise confidence interval was constructed to quantify the precision of the estimates.

The imprecision of the back-projection methods for estimating or predicting the

most recent incidence of AIDS or HIV is clear in the two methods but greater

when AIDS data was used.

While data used for the back-projection models may be assumed to be free

from reporting delays, given the fact that they were collected retrospectively, it is

not free from underreporting. In order to study the extent of under reporting, we

collected case-by-case data from the HIV laboratory of a centre of excellence for

the treatment of HIV/AIDS. The data covered two time periods, a period when

HIV screening services were paid for by the patients followed by a period when

services were free. Analysis indicated sharp increases in the number of patients

seeking the laboratory services, and consequently in the number of diagnosed HIV

positive cases, once the services became free. More females than males turned up

for the free HIV services. Also, increase in attendance varied by age group. This

suggests that the most poor and vulnerable who hitherto could not afford the

bills, were given a life line by the free services. On average, the number of HIV
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positive diagnoses in the free-test period was more than five times greater than it

was when screening was paid for. Formal analysis of data using logistic regression

indicated that the probability of being diagnosed as HIV positive depends on main

effects and interactions between the patient’s age, sex and time period. Based

on some simplistic assumptions, the historical data used in the back-projection

models was corrected for underreporting using a correction factor estimated by

comparing the mean HIV diagnosis in the two time periods. The modified non-

parametric Back-projected estimate of cumulative number of HIV infections (N =

2,762,134) obtained using the corrected data are comparable with that obtained

by the UNAIDS for Nigeria in 1999 (N= 2,700,000) using other approaches.

7.2 Limitations of the research

Restricted availability of data on HIV/AIDS in Nigeria is a serious limitation

on this research. The nature of available data, to a great extent, tailored the

direction of this thesis. Data used in the construction of back-projection models

do not cover the period of the inception of the epidemic and the recent years.

The data were collected on all HIV/AIDS diagnosed between 1989 and 1999,

thus omitting the first reported cases in 1986 and data up to 1988. Also, there

was no information about the epidemic in the recent years (2000 - 2008). The

aggregation of the data at national level made it impossible to conduct more

detailed analysis. The study and modelling of the trend of the epidemic across

the various demographic strata of the Nigerian society was hindered by the non-

stratification of the data. It is strongly recommended that data be placed on

the public domain after striping all patient identities and made more accessible

to researchers. Aggregation of data should be avoided as much as possible, at
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the least, data should be published by sex and age for each of the 36 states and

Abuja.

The ecological covariates used in the construction of the multilevel models

were also aggregated at the zone level. This high level aggregation results not

only in loss of information but also, conclusions based on the data run the risk

of being affected by the ecological fallacy. It is important to note here that our

conclusions under the multilevel models relate only to populations at the zone

level. We strongly recommend that data arising from surveys should be published

at the level of Enumeration Areas or towns in which they were collected. At best,

they could be left at the individual level.

The back-projection models adopted an incubation period distribution esti-

mated from other studies. It is uncertain to what extent this distribution repre-

sents the Nigerian epidemic scenario. The estimates from the parametric back-

projection models depend on the positions and number of steps and knots. There-

fore, these methods are capable of generating infinitely many different estimates.

The methods can even yield negative estimates unless restrictions are placed on

the parameters. The choice of the smoothing constants in the non-parametric

back-projection also may affect the estimates. Due to the long incubation pe-

riod, the method lends itself to only short-term projection and predictions of even

the most recent infections is highly imprecise.

7.3 Further work

Subject to data availability, it may be worthwhile to construct and fit stratified

models describing the behaviour of the epidemic by gender and age. The reason
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behind this thinking is that the risk of HIV infection or the infection intensity

vary by sex and age as established in chapter six. Analysis suggests also that HIV

prevalence differs by State and geopolitical zone, therefore, models representing

the infection curve for each of the States or geopolitical zones can be revealing.

Ecological analysis may yield better results if information on the ecological

covariates were available at the lower levels of aggregation. This is because data

at individual level contain much more information than zone aggregated data.

Further research may seek to evaluate the model using data at lower hierarchical

levels. Also, it my be possible to study the changes in the trend of the epidemic

over time by fitting a spatiotemporal model that estimates the time effect on HIV

prevalence rates in different parts of the country.

The uncertainty surrounding the incubation period distribution, the infec-

tion curve, smoothing constants and data sources suggests the need to explore

methods that allow for additional information known about the epidemic to be

entered into the model. Bayesian approaches (58)(176)(216) might be helpful in

this regard as they allow for formal treatment of uncertainty and inclusion of

extra information.

Sexual networks models (59) (213) (170) (174) may be developed using some

survey outcomes for some towns in the country. To do this effectively, further

information on the size of each category of the infective, at-risk and not-at-risk

populations; the extent of mixing between the susceptible and the infective, the

partner exchange rate, concurrent partners, probability of infection per sexual

contact and other behaviour change parameters.
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