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Abstract

Air pollution has been an ongoing problem around the world for centuries. It was

brought to the public’s attention in the mid 1900s with the London Smog which

resulted in approximately 3000 excess deaths. Since then, there have been numer-

ous studies carried out to determine the extent to which air pollution is related

to human health. There are two main aims to this thesis, the first of which is

to investigate the effects of PM10 exposure on cardiovascular illness in Scotland,

focussing on the three largest cities, Glasgow, Edinburgh and Aberdeen. As this

study makes use of readily available data, the second aim is to determine whether

or not such data can be used to accurately estimate the effects of air pollution.

Chapter 1 provides a detailed discussion of air pollution, focussing on the his-

tory of air pollution and the change in pollutants over time, and cardiovascular

illnesses, giving a definition of cardiovascular disease, details of how they occur

and giving incidence rates in Scotland. This chapter also gives an overview of

the Information Services Division of the NHS (ISD), the Scottish Air Quality

Website and the British Atmospheric Data Centre (BADC).

Chapter 2 is a review of the relevant literature covering the standard modelling

approach used in air pollution and health studies and will also outline the data

used in these studies and the covariates involved. This chapter focusses exclu-

sively on the short-term effects of air pollution as this is the focus of this thesis.
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Chapter 3 uses Poisson generalised linear models to explore the relationship be-

tween exposure to air pollution and cardiovascular admissions to hospital in Scot-

land, focusing specifically on Glasgow, Edinburgh and Aberdeen.

Chapter 4 comprises a set of subanalyses of these data focusing on the effects

of air pollution on various subclasses of cardiovascular morbidity in Glasgow. All

analyses will be implemented using a generalised linear model, within the statis-

tical programming language R (R 2.2.0 - A Language and Environment (2005)).

Chapter 5 provides a summary of the results from the analyses. It also discusses

the limitations associated with the use of routinely collected data and describes

some of the dilemmas faced by researchers in this field.
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Chapter 1

Introduction

Air pollution has been an ongoing problem around the world for centuries and

was brought to the public’s attention in 1952, when abnormally high concentra-

tions resulted in a dense smog in London that lasted almost a week (5th - 9th

December). During that time, concentrations of particulate matter were between

5 and 19 times higher than current standards recommend, while sulpher dioxide

was between 12 and 23 times higher. A consequence of these abnormally high pol-

lution concentrations was a sudden increase in the number of deaths and hospital

admissions due to respiratory and cardiovascular diseases. In the weeks leading

up to the smog the average mortality rate in London was about 1570 deaths per

week, while the average rate of hospital admissions numbered approximately 750.

However for the week ending 13th December there were approximately 3000 extra

deaths, while hospital admissions increased by 48%.

In addition to the London smog, there were two other incidences that highlighted

the need for investigation into the health effects of air pollution exposure. The

first was in the Meuse Valley in Belgium in 1930, where there was a lethal smog

that lasted from the 1st to the 5th December, comprising a mixture of pollutants

including sulphur dioxide, sulphuric acid mists and fluoride gases. This resulted

in an increased level of ill health during the final two days of the smog, as the

mortality rate was over 10 times the norm. The second episode was in Donora,

1
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Pennsylvania, in October 1948. On the 30th and 31st October atmospheric con-

ditions in the town were so bad that 19 people died within a 24 hour period,

which was 6 times the normal death rate. In addition, approximately 500 people

became ill with symptoms of respiratory diseases. Prior to these episodes there

were no major studies linking mortality and morbidity with air pollution, and

the health impacts observed have resulted in a wealth of epidemiological studies

and government legislation.

One of the most immediate consequences was the UK Clean Air Act, which was

passed in 1956. It aimed to control sources of smoke pollution by introducing

smokefree zones, in which only smokeless fuels could be burnt. It also gave local

authorities the power to control emissions of dark smoke from industrial sites. It

was very successful, and UK black smoke concentrations fell from over 200 µg/m3

in the 1950s to 20 µg/m3 by 1980. A similar trend has also been observed in

other countries. However, a number of studies from America in the late 1980s

reported that even this comparatively low concentration of pollution may have a

substantial public health impact.

Since the 1950s the pollutant mix in the air has slowly evolved, with black smoke,

being the main form of air pollution. Although it is still prevalent (more com-

monly measured as particulate matter), there are additional pollutants such as

sulphur dioxide, carbon monoxide, ozone and nitrous oxides that are also com-

mon. These pollutants can be classified into two types, primary pollutants and

secondary pollutants, the former of which is emitted directly from a source, such

as sulphur dioxide or nitrous oxides, while a secondary pollutant is formed when

primary pollutants react in the atmosphere. An example of the latter is ozone,

which is formed when UV light reacts with nitrous oxides and hydrocarbons emit-

ted from vehicles.
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Although studies have shown that all the pollutants mentioned have been as-

sociated with adverse health, the effect of particles has recently become a major

issue. Particulate matter (PM) is created from a number of sources, including

both primary particles, such as particles from engine emissions, quarrying and

construction, and secondary particles formed from emissions of ammonia, sulphur

dioxide and oxides of nitrogen. However these particles vary widely in size, with

PM larger than 10µm in diameter generally not passing into the lungs. Therefore

for the purposes of health assessment it has become common to measure particles

with a diameter of 10µm or less, which is denoted by PM10.

The relationship between both long and short term exposure to PM10 and respi-

ratory mortality has long been recognised, with the World Health Organisation

stating that reducing PM10 concentrations in polluted cities could decrease deaths

by up to 15% (World Health Organisation (2006)). Although the effects on res-

piratory morbidity, such as admissions to hospital due to asthma, have not been

as well researched as those for mortality, there is compelling evidence to suggest

that both short term and long term exposures to PM10 have detrimental effects.

At present, a threshold level of PM10, below which no adverse effects on health

are observed, has not been established, although current legislation in the UK

aims to reduce the annual mean concentration to 40µg/m3 by 31st December

2010, while the daily mean should not exceed 50µg/m3 more than 35 times a

year. In Scotland the background concentrations of pollution are generally lower,

and the objective is to reduce the annual mean concentration to 18µg/m3, while

the daily mean should not exceed 50µg/m3 more than 7 times in a year.

In contrast with respiratory disease, the effects of air pollution exposure on car-

diovascular diseases are not well understood. Cardiovascular diseases refer to all

diseases of the heart and blood vessels including stroke. It is the number one

cause of death globally and accounts for approximately 40% of all deaths in the
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UK. Cardiovascular diseases generally occur in middle to old age, with compara-

tively few incidences in young people. The most common cardiovascular disease

in the UK is Coronary Artery Disease (CAD), which is also the most frequent

single cause of death (COMEAP (2006)). It is caused by a build-up of plaque in

the arteries, which is a mixture of fat, cholesterol, calcium, and other substances

found in the blood. This build-up narrows the arteries and reduces the flow of

blood to your heart. This can lead to either a complete blockage of the artery

(heart attack) or a rupture of the plaque, the latter of which leaves an ulcer on

the artery on which a blood clot can form. Either of these events can cause the

supply of blood to the heart to be seriously reduced, which in turn causes the

heart to stop functioning, thus leading to the death of the individual.

In the UK, cerebrovascular disease (stroke) is the second most common cause of

cardiovascular death, and the third most common cause of all deaths (COMEAP

(2006)). There are two main causes of stroke, the first of which occurs when there

is a blockage in the artery that carries blood to the brain. This may be caused

by a blood clot in the main artery leading to the brain, a blood clot elsewhere in

the body which is then carried in the bloodstream to the brain, or a blockage in

the blood vessels deep within the brain. The second cause of stroke occurs when

a blood vessel bursts and causes bleeding in the brain, which can happen either

in the brain or on the surface of the brain.

Up to 50% of deaths from cardiovascular diseases occur outside hospital, with

a significant proportion of these patients having no previous history of heart dis-

ease. This proportion is higher in the younger age groups and as age increases,

the proportion of cardiovascular deaths in people who have previous history of

such problems increases. However determining cause of death for these diseases

can be problematic, especially in older people. The coding rules for death certifi-

cates assign one primary cause of death in each case, and while this is more likely

to be correct in the younger age groups, older people may be suffering from more
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than one illness, and hence many cases of cardiovascular illnesses go unrecorded.

In this thesis we present a study that investigates the effects of exposure to PM10

on cardiovascular morbidity in Scotland, focusing on the three largest cities -

Glasgow, Edinburgh and Aberdeen. The study makes use of routinely available

data that are collected for other purposes, and one aim of this work is to deter-

mine whether such data are adequate for this purpose

1.1 Data Sources

The data used in this study are routinely available from various government

bodies and briefly summarised here.

1.1.1 Health Data

The health data available for this study were provided by the Information Ser-

vices Division (ISD) of the NHS in Scotland. They collect data on a variety of

health related topics including cardiovascular diseases, mental health and health

services costs. This data is used by ISD to advise a number of organisations in-

cluding local authorities, hospitals and general practitioners, on how to improve

current standards. Many of the statistics are publically available on ISD’s web-

site at www.isdscotland.org, and include mortality and incidence rates, survival

rates and waiting times.

An advisory group, comprising government officials and civil servants (known

as The Steering Group), was set up to identify priority areas of the NHS, and as

a result numerous programmes and projects have been implemented. This M.Sc

thesis is part of the ‘Linking Environment and Health Data’ programme, and as

a result ISD were able to provide the necessary health data. This came in the

form of daily counts of health events for a given population and covers the seven

year period from 2000 to 2006. Although the greater part of this thesis focuses
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on cardiovascular morbidity, cardiovascular mortality data and asthma data are

also available. The cardiovascular morbidity data consist of emergency admis-

sions to hospital, and are split up by age, sex, main diagnosis (CHD or stroke)

and whether or not it was a first incidence. The mortality data are split up by

age, sex, main cause of death and location of death (in or out of hospital). The

asthma data relate to daily counts of emergency admissions to hospital. These

sub-classifications of the data are analysed separately in Chapter 4.

1.1.2 Pollution Data

The pollution data used in this thesis were obtained from the Scottish Air Quality

website, www.scottishairquality.co.uk, which is funded by the Scottish Govern-

ment and set up to provide users with all possible information relating to pollution

in Scotland. The site describes various pollutants in Scotland, including fine par-

ticles (PM10, PM2.5 and PM1), sulphur dioxide and ozone. These descriptions

include how the pollutant is produced as well as its health impacts. The website

also gives a range of other details related to pollution, such as the impact on the

environment, the various methods of monitoring pollution, the set of locations

pollution is currently monitored at and the air quality standard for each pollutant.

This study focuses on the effects of PM10, as particles larger than this cannot

easily pass into the lungs and so are not considered to be as detrimental to hu-

man health. The effects of PM2.5 are also becoming a major public health issue,

as it is thought that particles of this size can penetrate further into the lungs.

However PM2.5 cannot be used for this study as there is not enough data avail-

able in Scotland. The pollution data used in this study spans seven years, from

2000 to 2006, and comprise 13 sites in total. In Glasgow there were six sites with

PM10 data, Glasgow centre, kerbside at Hope Street, Anderston, Byres Road,

Battlefield Road and Waulkmill Glen Reservoir, the last of which is a rural site

and so is not included in the analysis. Edinburgh has three sites that monitored

PM10 concentrations, Edinburgh Centre, St. Leonards and Roseburn. Finally,
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Aberdeen has data from four sites, Centre, Anderson Drive, Market Street and

Union Street. In Edinburgh there are approximately six months worth of missing

data between 2002 and 2003 and a further two months missing later in 2003.

Aberdeen has approximately two months of missing data in 2002, while Glasgow

has no missing data. For each city, average daily PM10 concentrations were cal-

culated by taking the average over the sites, which is a standard approach in the

air pollution and health literature (Lee et al. (2006)).

1.1.3 Temperature Data

Temperature data were available for this study, and were obtained from the

British Atmospheric Data Centre (BADC). The BADC helps researchers to ac-

quire and interpret atmospheric data, which include meteorological variables such

as temperature, barometric pressure and wind speed. However other atmospheric

conditions, such as pollution concentrations, are also available. While many of

the data sets are freely available, others, including those from the met office, are

restricted to authorised personnel. However as this study is for academic and not

profit making purposes, we obtained the required meteorology data.

The data take the form of daily minimum and maximum temperatures and spans

the period 2000 to 2006. These temperatures were available at three sites in Ed-

inburgh, Blackford Hill, Botanic Gardens and Gogarbank, two sites in Glasgow,

Pollock Country Park and Bishopton and only one site in Aberdeen, at the Man-

nofield Reservoir. In Edinburgh and Glasgow, an average maximum temperature

was found by taking a mean of the maximum temperature at each site, while

an average minimum temperature was found using an analogous method. These

spatial averages contain no missing values during the time period, whereas in

Aberdeen, there was no data available for the last two months of the study, as

well as a few missing values in 2005.
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1.2 Thesis Outline and Aims

The remainder of this thesis will be split into four chapters. The first of these is

a review of the relevant literature covering the standard modelling approach used

in air pollution and health studies and will also outline the covariates involved in

these studies. Chapter 3 is a time series study of the effects of air pollution ex-

posure on cardiovascular morbidity in Scotland, focusing on Glasgow, Edinburgh

and Aberdeen. Due to the lack of pollution or temperature data for Dundee it is

not possible to estimate the association between PM10 and cardiovascular health

for this city. Chapter 4 comprises a set of subanalyses of these data focusing

on the effects of air pollution on various subclasses of cardiovascular morbidity

in Glasgow. All analyses will be implemented using a generalised linear model,

within the statistical programming language R (R 2.2.0 - A Language and En-

vironment (2005)). Where necessary, the additional ‘Splines’ package (‘Splines’

2.2.0 (2005)) will be used. Finally, chapter 5 will contain a concluding discussion.

The study described in this thesis has two main aims, the first of which is to

investigate the effects of PM10 exposure on cardiovascular illness in Scotland,

focusing on the three largest cities, Glasgow, Edinburgh and Aberdeen. As pre-

viously mentioned, this study makes use of readily available data, and the second

aim is to determine whether or not such data can be used to accurately estimate

the effects of pollution.



Chapter 2

Literature Review

There is a wealth of statistical, environmental and public health literature that

describes the potential health effects of air pollution exposure, focusing on both

the long and short term effects. This chapter critiques some of the more recent

literature in this area, focusing exclusively on the short term effects because that

is the main aspect of this thesis. While the relationship between air pollution

and respiratory mortality and morbidity has been well researched, the effects on

cardiovascular illnesses are relatively unknown and are therefore the focus of this

thesis.

This chapter provides a critical review of short-term air pollution and health

studies, focusing on various aspects of both the data and modelling. Section 2.1

discusses the standard modelling approach used in these studies, while section 2.2

provides an outline of the data available for these studies. Sections 2.3 and 2.4

focus on how the pollution and covariate data are incorporated into the model,

while the final three sections discuss mortality displacement, multi-city studies

and meta analyses, and the ecological fallacy (Sections 2.5 to 2.7).

9
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2.1 Overall Modelling Approach

The modelling techniques for estimating the short-term association between pol-

lution exposure and ill health have been developed mainly over the last couple

of decades. Letting Yt denote the number of events on day t, zt denote a vector

of p covariates and α denote the associated regression parameters, early studies

such as Schwartz & Marcus (1990) used Normal linear regression models, which

have the general form

Yt ∼ N(µt, σ
2) for t = 1, ..., n

µt = zTt α+ xt−qγ (2.1)

where xt−q are the pollution concentrations and γ is the estimated effect of pol-

lution. This was used because it was easy to implement. However this model is

not appropriate because it assumes the count data come from a Normal distri-

bution whereas a Poisson assumption is more plausible. Therefore a generalised

linear model is more appropriate, and extends the linear model by replacing the

Normal assumption with a probability distribution from an exponential family.

In addition, it relates the response variable to the explanatory variables through

a non-linear function called the link function, g(µ), thus giving the model the

form

Y ∼ f(yt|µt)

g(µt) = zTt α+ xt−qγ (2.2)

where f is a probability density function of an exponential distribution, and g

is a link function. This link function differs according to the distribution the

response follows, with the Binomial distribution having a Logit function while

for Poisson data, the link function is Log.

In most short-term air pollution and health time series studies, the mortality
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or morbidity data are only available in the form of daily counts Y = (y1, ..., yn)

for the population rather than individual level outcomes. This means that the

standard modelling approach is based on Poisson generalised linear models, with

the random variable Yt denoting the number of deaths or admissions on day t,

while xt−q are the pollution concentrations. A general model is given by

Yt ∼ Poisson(µt) for t = 1, ..., n

ln(µt) = zTt α+ xt−qγ (2.3)

where zt = (zt1, ..., ztp) are a vector of p covariates for day t and α = (α1, ..., αp)

are the associated regression parameters. The pollution exposure is lagged by

q days and the parameter of primary interest in this model is γ, which is the

estimated effect of pollution. However results are often presented in the form of

a relative risk for a 10µg/m3 increase in the pollutant of interest. The relative

risk is the ratio of the expected number of hospital admissions given the current

pollution concentrations divided by the expected numbers if the concentrations

rose by 10µg/m3 and is calculated as shown below:

RR =
E[Number of deaths if x increased by 10µg/m3]

E[Number of deaths]

=
exp(zTt α̂+ (x+ 10)γ̂)

exp(zTt α̂+ xγ̂)

=
exp(zTt α̂+ xγ̂ + 10γ̂)

exp(zTt α̂+ xγ̂)
(2.4)

=
exp(zTt α̂+ xγ̂) exp(10γ̂)

exp(zTt α̂+ xγ̂)

= exp(10γ̂)

A relative risk of one implies that pollution has no effect on health, while a relative

risk less than one implies a negative effect (i.e. pollution is protective) and a

relative risk greater than one implies a positive effect (i.e. pollution is harmful).

A 95% confidence interval for the relative risk is typically also calculated, to
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determine whether or not the relative risk is significantly different from one. Its

general form is given by

exp(10γ̂ ± 1.96× Standard Error)

where the standard error is calculated during the model fitting stage (for details

see Dobson (1991)). If the interval contains one, the relative risk is nonsignifi-

cant, while a confidence interval that is completely greater than or less than one

implies the relative risk is significant.

However Model (2.3) may not be adequate because it makes a number of pos-

sibly unrealistic assumptions, one of which being that the response variable, in

this case admissions to hospital, follows a Poisson distribution. This enforces the

mean number of admissions (µt) to equal the variance, which is unlikely to be

the case. In addition, the number of admissions are assumed to be independent

for each day, which may be unlikely for time series data of this type. If the mean

is less than the variance, this leads to a phenomenon known as over-dispersion,

which can be corrected by multiplying the standard error by the square root of

the over-dispersion parameter,

φ =
1

n− p

n∑
t=1

(Yt − µt)2

µt
(2.5)

within a quasi-likelihood rather than Poisson linear model (Chardon et al. (2007)).

In this case the model is only specified by its first two moments, namely E(Yt) = µt

and Var(Yt) = φµt, where µt = exp(zTt α + xt−qγ). If φ equals one, this implies

there is no overdispersion and the poisson assumption is adequate. If φ is greater

than one, there is overdispersion in the model, while if φ is less than one, there is

underdispersion. The extension from a Poisson to a quasi-likelihood to incorpo-

rate over-dispersion has been used by many authors such as Carder et al. (2008)

and Samoli et al. (2007). A less common alternative to quasi-likelihood is to

model Yt as a Negative Binomial random variable (See for example Gwynn et al.
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(2000)), where Yt ∼ NB(µt, φ) and has mean µt and variance µt +
µ2

t

φ
.

In time series studies such as this, admissions to hospital or deaths on successive

days are likely to be correlated, which is due to unmeasured risk factors being

similar for days close together in time. Most studies attempt to remove this

correlation by the addition of covariates and a smooth time trend to the model,

although this approach is not always adequate. The presence of correlation can be

checked by examining the autocorrelation function of the standardised residuals

rt =
Yt − E(Yt)√

Var(Yt)
(2.6)

with high values indicating correlation is present. If correlation does occur, there

are two main approaches to removing it, parameter and observation driven mod-

els. Parameter driven models remove correlation by adding a correlated latent

process to Model (2.3), and was proposed by Zeger (1988) and West et al. (1985).

The latter was adapted by Chiogna & Gaetan (2002) and more recently by Lee

& Shaddick (2008) in air pollution and health studies, and their models had the

general form

ln(µt) = zTt α+ xt−qγ + βt (2.7)

where βt = 2βt−1 − βt−2 + εt

εt ∼ N(0, λ)

The second approach is the observation driven method, which uses past outcomes

as additional covariates, and was proposed by Zeger & Qaqish (1988b). This

approach was used in an air pollution context by Xu et al. (1995), who used a

model with the general form

Yt ∼ Poisson(µt) for t = 1, ..., n

ln(µt) = zTt α + xt−qγ +

p∑
j

gj(Dt)ψj (2.8)
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where ψj are unknown parameters, gj are known functions and Dt are the set

of past response outcomes. This is the approach used in this study when the

residuals displayed residual correlation, and we used a model of the form

ln(µt) = zTt α + βYt−1 + γXt−q (2.9)

A common problem in regression modelling arises when there are two or more

variables in the model that are highly correlated, as this can lead to a phe-

nomenon known as collinearity, which makes it difficult or impossible to estimate

the regression coefficients reliably (Dobson (1991)). In air pollution studies this

often happens when pollution concentrations on more than one day are added

to the model. The choice of lag to use is an outstanding one in air pollution

research, and is described in section 2.3.2. The solution used in this study is via

a distributed lag model (Zanobetti et al. (2000)) which has the general form

ln(µt) = zTt α +
n∑
q=0

zt−qγq (2.10)

where γq =

q∑
k=0

ηkq
k, q = 0, ..., n

This model includes multiple lags of exposure in the model but constrains the

coefficients to follow a polynomial of degree q in lag number, thus reducing the

effects of collinearity. When the polynomial constraint is taken to the power zero,

the relative risks at each lag are all equal, meaning that effectively only a single

parameter is being estimated, which removes any collinearity problems. At the

other extreme, setting the degree of the polynomial equal to the number of lags

results in no constraint, meaning that the estimates are the same as those in the

multiple lag model and again suffer from collinearity problems. Therefore we are

looking for a power that minimises collinearity but ensures the pattern of the

relative risks as the lag increases is biologically plausible. Further details of such

plausible relative risk versus lag shapes are described in section 2.5 in relation to

the mortality displacement hypothesis.
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After a model has been constructed it must be checked to determine whether

it adequately describes the variation in the data. This is achieved by examining

the standardised residuals rt, where, for the poisson model, rt = Yt−µt√
µt

. If the

model is a good fit,

• E(rt) = 0

• Var(rt) = 1

• There should be no obvious trend

• The residuals should be uncorrelated

These are checked by creating diagnostic plots and summaries of the residuals.

To check for any residual trend, plot the residuals against time, while a plot

of (µt, rt) will show up evidence of non-constant variance. For the residuals to

be considered acceptable, they should be evenly scattered about zero and have

a constant variance. Residual correlation is checked using the autocorrelation

function as previously mentioned, which is a plot of lag k against corr(rt, rt−k) for

k ≥ 0. From this plot, independence can be assumed if correlation at each lag is

within the given 95% confidence intervals.

When comparing two different models, it can often be difficult to decide which

model is the better fit of the data. A useful method for deciding between the two

is by using Akaike’s Information Criterion (AIC). This is defined as being

AIC = −2logLik + 2k (2.11)

where logLik is the log likelihood of the model and k is the number of parameters

fitted in the model. The lower the value of the AIC, the better the fit of the

model.
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2.2 Data Description

Data that are typically available for time series studies such as the one presented

in this thesis are measures of mortality and morbidity, ambient pollution concen-

trations and a number of covariates, all of which are described in detail in the

following sections.

2.2.1 Health Data

Data about mortality or morbidity events are typically only available as daily

counts, aggregated over the population living within the region of interest, such

as a city. Ideally, studies would be carried out using individual level data, but this

violates personal confidentiality, so such data are not available. In some studies,

the number of daily deaths or admissions to hospital for the population are small

(less than five), so they are aggregated to the weekly level (Bell & Davis (2001)),

which is also the case for some of the analyses in Chapters 3 and 4 in this thesis.

All health events are classified using the International Classification of Diseases

(ICD) with either the 9th revision (1977-2000) or the 10th revision (2000-Present)

being used, depending on the time period the data relate to. The data analysed

in this study are classified using the 10th revision (ICD-10) as they relate to the

period 2000 to 2006. A number of mortality and morbidity classifications have

been used in air pollution and health studies and a brief review is given below.

All Cause

The most general classification is all cause mortality or morbidity (ICD-9 <800)

which has been used by numerous authors including Schwartz (2004). In that

study the effects of particulate air pollution on daily deaths were investigated

and, for an increase of 10µg/m3 in PM10 concentrations, a relative risk of 1.0036,

with a 95% confidence interval of 1.0022 to 1.005 was reported. However such a

general classification also includes a large number of deaths that are not pollution

exposure related meaning that any estimated association may be biased by the
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potentially large proportion of deaths not related to air pollution. Subsequently,

the majority of studies focus on cause specific mortality and morbidity.

Respiratory Studies

The most commonly investigated health endpoint is respiratory disease, for which

consistent positive associations have been found. For example Tellez-Rojo et al.

(2000) studied the effects of PM10 on respiratory mortality (ICD-9 466, 480-487,

490-496), both in and outwith hospital, in Mexico city. Outwith hospital it was

found that for a 10µg/m3 increase in PM10 concentrations the relative risk of

dying was 1.024 at lag one with a 95% confidence interval of 1.004 to 1.045. At

lags of two, three, four and five days the relative risks were 1.027 (95% CI: 1.007,

1.047), 1.029 (95% CI: 1.009, 1.049), 1.026 (95% CI: 1.006, 1.045) and 1.02 (95%

CI: 1.006, 1.04) respectively, showing consistent evidence of a positive significant

association. In addition a cumulative five day exposure showed a relative risk

of 1.042 (95% CI: 1.017, 1.068). However within a medical unit, it was found

that effects of PM10 on respiratory disease were only significant after a five day

lag (RR: 1.024, 95% CI: 1.005, 1.042). A five day accumulated effect of PM10

exposure was also found, with a relative risk of 1.025 (95% CI: 1.001, 1.049).

In addition, this study found significant associations with subclassifications, such

as deaths from Chronic Obstructive Pulmonary Disease (COPD) with a relative

risk outwith hospital of 1.03 at a lag of one day, with a 95% confidence interval

of 1.01 to 1.059. Again a five day cumulative exposure to PM10 resulted in a sig-

nificant increase in mortality, with a relative risk of 1.061 (95% CI: 1.024, 1.099).

Within hospital, a significant effect was only found at lag five, with a relative risk

of 1.033 and a 95% confidence interval of 1.005 to 1.061.

Of increasing interest is the effect of various pollutants on admissions to hos-

pital. For example Atkinson et al. (2001) published results from the APHEA
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project, focusing on the effect of particulate air pollution on respiratory admis-

sions. They separated admissions into four groups: (i) Asthma (ICD-9 493) for

ages 0-14 years; (ii) asthma for people aged 15-64 years; (iii) COPD and asthma

(ICD-9 490-496) for people aged 65 and over; (iv) all respiratory disease admis-

sions (ICD-9 460-519) again for people aged 65+. Particulate air pollution was

separated into PM10/PM2.5 and black smoke. For asthma admissions aged 0-14

years, it was found that for a 10µg/m3 increase in PM10 the relative risk was

1.012, with a 95% confidence interval of 1.002 to 1.023. For black smoke the

relative risk was very similar at 1.013 (95% CI: 1.003, 1.024). For asthma ad-

missions aged 15-64, the effects of PM10 were similar to that for children, with a

relative risk of 1.011 (95% CI: 1.003, 1.018). In addition PM10 had a significant

effect on COPD and asthma admissions for the elderly, with a relative risk of

1.01 (95%: 1.004, 1.015). Finally, admissions for all respiratory diseases for those

aged 65 and over showed a relative risk of 1.009, with a 95% CI of 1.006 to 1.013.

Black smoke showed no statistically significant effects on asthma admissions for

those aged 15-64, admissions for COPD and asthma for the elderly or admissions

from all respiratory diseases for the elderly. Numerous other studies have been

conducted, (Chardon et al. (2007), Lee et al. (2006)) most of which have found

similar small associations between respiratory health and pollution exposure.

Cardiovascular Studies

While the effects of air pollution on respiratory mortality and morbidity are well

known, the effects on cardiovascular illnesses are less well documented. Recently,

Ballester et al. (2006) studied the effects of various air pollutants on cardiovas-

cular hospital admissions in Spain, focusing on all cardiovascular diseases (ICD-9

390-459) as well as heart diseases (ICD-9 410-414, 427, 428). The pollution data

available included particulate matter (black smoke, Total Suspended Particles

and PM10), sulphur dioxide, nitrogen dioxide, carbon monoxide and ozone. They

found that any significant effects of pollution occurred at lag zero to one, ex-

cept for ozone, whose effects were significant two to three days later. For all
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cardiovascular diseases, the effect of PM10 resulted in a relative risk of 1.0091

(95% CI: 1.0035, 1.015) whilst for heart diseases, the relative risk was 1.016 (95%

CI:1.0082, 1.023). Carbon monoxide had the greatest effect on both all cardio-

vascular diseases (RR: 1.021, 95% CI: 1.0065, 1.0348) and heart disease (RR:

1.0415, 95% CI: 1.0131, 1.0708), with sulphur dioxide having a relative risk of

1.0133 for all cardiovascular diseases (95% CI: 1.0021, 1.0246) and 1.0172 for

heart diseases (95% CI: 1.005, 1.0295). Nitrogen dioxide and ozone both had a

small but significant effect with relative risks of 1.0038 and 1.0069 respectively

for all cardiovascular diseases and 1.0086 and 1.0066 for heart diseases.

Touloumi et al. (2005) examined the effects of PM10 on cardiovascular mortal-

ity (ICD-9 390-459) in seven European cities, as part of the APHEA-2 project.

In particular, they investigated whether influenza epidemics have a confounding

effect in air pollution studies, and found that for a 10µg/m3 increase in PM10

concentrations, the relative risk of death from a cardiovascular disease was 1.0085

(95% CI: 1.0053, 1.0118) with no adjustment for influenza. They then used several

different methods of controlling for influenza outbreaks, which resulted in rela-

tive risks of between 1.0086 (95% CI:1.0053, 1.0119) and 1.0106 (95% CI:1.0074,

1.0139) showing that influenza had little confounding effect in their study.

Age Specific Studies

There have also been numerous studies that analyse health data relating to spe-

cific age groups, particularly those that are thought to be susceptible to air pol-

lution exposure. Hertz-Picciotto et al. (2007) studied the effects of Polycyclic

Aromatic Hydrocarbons (PAHs) and PM2.5 on respiratory illnesses in children,

focusing particularly on bronchitis (ICD-10 J20-21). They found that the relative

risks differed for various age groups, with children under the age of two having a

relative risk of 1.29 (95% CI: 1.07, 1.54), for an increase of 100ng/m3 (0.1µg/m3)

of PAHs. The relative risks for a 25µg/m3 increase in PM2.5 concentrations was

similar, at 1.3, with a 95% confidence interval of 1.08 to 1.58. For children aged
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two to four and a half years, the effect of PAHs was especially strong, with a

relative risk of 1.56 (95% CI: 1.22, 2.00).

A second sub-population that is often studied is the elderly. Stankovic et al.

(2007) studied the effects of black smoke and sulphur dioxide on cardiovascular

mortality (ICD-10 I00-I99) amongst the elderly in Nis, Serbia. They found that

a 10µg/m3 increase in sulphur dioxide concentrations resulted in a relative risk

of 1.025 in people aged 65 and over. However they also found that this result was

not statistically significant (95% CI: 0.99, 1.06). Similarly, an increase in black

smoke concentrations showed a relative risk of 1.013, with a 95% confidence in-

terval of 0.996 to 1.031. However this study only used pollution exposure on the

same day as the death (lag 0), so there may have been an effect from previous

days pollution or an accumulated effect of pollution over several days that this

study did not investigate. Also this study used two temperature variables in the

model, mean temperature at lag zero and mean temperature over lags zero to

three (an average of the temperature values from the same day and three days

previous) which are likely to be highly correlated, and therefore to be affected by

collinearity, which may bias the results.

Gender Specific Studies

There have also been a number of studies carried out to investigate the effects

of air pollution on males and females separately. Luginaah et al. (2005) studied

the effects of various pollutants on respiratory admissions (ICD-9 460-519) in

Windsor, Ontario. They found that only Coefficient of Haze had a significant

effect on females of all ages after two days (RR: 1.067, 95% CI: 1.004, 1.135),

with all other pollutant being unimportant. Conversely they found that there was

no effect of pollution on male health. Chen et al. (2005) studied the effects of

particulate pollution on cardiovascular mortality (ICD-9 410-414) and also found

different results for males and females. For females, a 10µg/m3 increase in PM2.5,

resulted in a relative risk of 1.42 (95% CI: 1.06, 1.90) while for PM10 it was 1.22
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(95% CI: 1.01, 1.47). In contrast, they also found no effect for males.

2.2.2 Air Pollution Data

Air pollution is a complex mixture of different types of pollutants, many of which

are known to be harmful to humans. They are measured by automatic moni-

toring equipment and other types of monitors, situated at various points across

the UK and Ireland. In this thesis we exclusively use data from the automatic

monitors, which are located in a number of local environments, each of which has

a different environmental objective. Table 2.1 gives a list of all the possible sites

and their descriptions.

The most common monitoring environments are Urban Background and Road-

side, with the former being distanced from pollution sources and so are generally

thought to be a good indicator of background pollution concentrations. Road-

side sites, however, are typically within 5m of the road, and are generally used to

assess worst case population exposure and evaluate the impacts of vehicle emis-

sions. Conversely, monitoring sites in a rural area are placed as far as possible

from roads and populated or industrial areas, and are used to analyse the impact

pollution has on the ecosystem. The monitors take hourly measurements through-

out the day, allowing various statistics to be calculated, such as daily maximum

and minimum measurements, daily mean, eight hour mean and annual mean.

Many pollutants are measured in this way, including particulate matter (PM),

sulphur dioxide, carbon monoxide, nitrous oxides and ozone.

Particulate matter is a mixture of primary and secondary pollutants, the former

of which consist of particles from engine emissions, quarrying and construction,

while the latter are formed from emissions of ammonia, sulphur dioxide and ni-

trous oxides. Recently, PM10 (which consists of particles that are less than 10µm

in diameter) and PM2.5 (particles less than 2.5µm in diameter) have become of

particular interest as it is thought they may be especially detrimental to health,
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because their small size means they are able to travel further into the lungs than

other pollutants.

Site Type Description
Urban Urban

Kerbside A site sampling within 1m
of the kerb of a busy road

Roadside Between 1m of the kerbside of a busy road and the
back of the pavement, typically within 5m of the road,

but could be up to 15m.
Suburban A location type situated in a residential area on

the outskirts of a town or city
Urban Background An urban location distanced from sources,

therefore broadly representative of city-wide
background conditions

Urban Centre An urban location representative of typical population
exposure in towns or city centres

Urban Industrial An area where industrial sources make an important
contribution to the total pollution burden

Intermediate 20-30m from the kerb of a busy road
Airport Monitoring within the boundary of an airport perimeter
Other Any special source-orientated or location category

covering monitoring undertaken in relation to specific
emission sources such as power stations, car parks

or tunnels
Rural An open countryside location, in an area of low

population density distanced as far as possible from
roads, populated and industrial areas

Table 2.1. Table of monitoring sites and their descriptions (taken from the
Scottish Air Quality website)

One concern in interpreting air pollution studies is that the reported association

may be confounded by other pollutants which may be highly correlated. To

this effect, a number of studies first look at the relationship between the various

pollutants to consider whether or not collinearity may be a problem. For example,

Cakmak et al. (2007) found a positive correlation between sulphur dioxide, carbon

monoxide and PM10, while ozone was negatively correlated with sulphur dioxide

and carbon monoxide. Ballester et al. (2006) found similar results with positive
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correlations between black smoke, PM10, sulphur dioxide, carbon monoxide and

nitrogen dioxide while ozone had a negative correlation with black smoke and

carbon monoxide.

2.2.3 Meteorology Data

Meteorological data, in particular temperature, has long been known to have a

confounding effect on epidemiological air pollution studies, especially when the

health endpoint is mortality, with a higher deathtoll in winter (Carder et al.

(2005)) and in summer during heatwaves (Huynen et al. (2001)) . Various differ-

ent temperature metrics have been used to model this phenomenon, with most

studies using daily mean values (Ballester et al. (2006)) rather than daily min-

imum (Prescott et al. (1998)) or maximum (Ye et al. (2001)). More than one

temperature variable is generally not used in the same analysis as they are likely

to be very highly correlated which would lead to collinearity. Interestingly, Carder

et al. (2008) used both ‘high’ and ‘low’ temperatures in their model, where they

defined ‘high’ temperatures as above 11◦C and ‘low’ temperatures below 11◦C.

This allowed them to replace the typical linear relationship with a double linear

extension, which they adopted because temperature is typically U-shaped, with

two separate linear relations over different parts of the temperature range. The

value of 11◦C was chosen as the best fitting value, which was based on the log

likelihoods of various models. Other meteorological covariates that are frequently

used in air pollution studies are humidity (Bogdanovic et al. (2006)), barometric

pressure (Stankovic et al. (2007)) and dew point temperature (Bell et al. (2004)).

2.2.4 Covariate Data

In addition to meteorological data, there are various other factors which may con-

found the results in any air pollution time series analysis. It is of vital importance

to remove the influence of any possible confounders because if not removed, the
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resulting association between air pollution and mortality or morbidity may be bi-

ased. Typical covariates that have been used are trend or seasonal variables, such

as functions of time (Lee et al. (2006)), an indicator variable for ‘day of the week’

(Roberts (2004a)) and an indicator variable for season (Bogdanovic et al. (2006)).

Other factors that have been controlled for include the existence of influenza out-

breaks (Goodman et al. (2004)) and the presence of holidays (Zanobetti et al.

(2003)). There have also been studies carried out which focused on whether or

not there were socioeconomic aspects to air pollution mortality and morbidity.

In particular Villeneuve et al. (2003) have found that there is a greater effect of

air pollution amongst the lower social classes.

2.3 Pollution Modelling

As mentioned in section 2.2.2, air pollution is a complex mixture of components,

many of which have been proved to be harmful to humans. Thus, in specifying

the air pollution component of the model a number of choices need to be made,

three of which are discussed below.

2.3.1 Pollutant

The first choice is the pollutant to use as the exposure, and there have been

numerous studies carried out on a range of pollutants, a few of which are outlined

below.

Ozone

Bell et al. (2004) studied the effects of a 10 parts per billion (ppb) volume increase

in ozone concentrations on short-term respiratory and cardiovascular mortality in

the United States from 1987 to 2000, using single lag models and both constrained

and unconstrained distributed lag models. All models showed a significant effect

of exposure, with the constrained distributed lag models showing a relative risk

of approximately 1.0052 (95% CI: 1.0027, 1.0077).
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Sulphur Dioxide

As part of the APHEA-II study (Air Pollution and Health: A European Ap-

proach), Sunyer et al. (2003a) studied the effects of daily sulphur dioxide concen-

trations on admissions to hospital with cardiovascular diseases. Cardiovascular

diseases were defined to be Ischemic Heart Disease (IHD) and stroke. Analyses

were carried out for IHD and stroke individually and together, and also for the

subpopulations over and under 65 years of age. They found that a 10µg/m3 in-

crease in sulphur dioxide concentrations resulted in a relative risk of 1.007 for all

cardiovascular admissions (95% CI: 1.003 to 1.011). For IHD admissions in the

under 65s, the relative risk was similar at 1.006 (95% CI: 1.002 to 1.011) while in

the over 65s, the effect of sulphur dioxide was much more obvious, with a relative

risk of 1.012 (95% CI: 1.008 to 1.016). However they reported a non-significant

relationship between admissions to hospital with stroke and exposure to sulphur

dioxide.

Nitrous Oxides

The APHEA-II project also considered the effect of nitrogen dioxide on mortality

as investigated by Samoli et al. (2006). The mortality data included daily counts

of all-cause mortality (ICD-9 <800), cardiovascular mortality (ICD-9 390-459)

and respiratory mortality (ICD-9 460-519). Maximum hourly concentrations of

nitrogen dioxide were used rather than daily means as the former were more

widely available. Concentrations of nitrogen dioxide varied from city to city,

ranging from 46-155µg/m3, and for a 10µg/m3 increase in nitrogen dioxide con-

centrations the pooled relative risk for total mortality was 1.003 with a 95% con-

fidence interval of 1.0022 to 1.0038. For cardiovascular mortality the associated

relative risk was 1.004 (95% CI: 1.0029 to 1.0052) and for respiratory mortality

the results were similar with a relative risk of 1.0038 (95% CI: 1.0017 to 1.0058).
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Carbon Monoxide

Samoli et al. (2007) investigated the short-term effects of carbon monoxide on

all-cause mortality (ICD-9 <800) and deaths from cardiovascular diseases (ICD-9

390-459). For a 1mg/m3 increase in carbon monoxide concentrations, a relative

risk of 1.012 was associated with all-cause mortality (95% CI: 1.0063 to 1.0177),

whilst for cardiovascular mortality the relative risk was 1.0125 (95% CI: 1.003 to

1.0221).

Particulate Matter

Particulate matter is made up of an accumulation of small particles, including

engine emissions and dust. There are a number of different measurements of

particulate matter that have shown a harmful effect on health, a few of which

are mentioned below.

PM10 is defined to be particulate matter of diameter 10µm or less and Lee et al.

(2006) investigated its effects on admissions to hospital with asthma amongst

children under the age of 18 in Hong Kong. Their data spanned six years, from

January 1997 to December 2002 during which time the mean PM10 concentration

was 56.1µg/m3 and the median was 51.1µg/m3. The study examined the effect of

PM10 concentrations on the same day of admission and the preceeding five days

and for a 10µg/m3 increase, they found a significant effect at each lag, with the

greatest increase in hospital admissions at lag four (RR: 1.0217, 95% CI: 1.0164

to 1.0271).

Ostro et al. (2006) studied the effects of PM2.5 (particulate matter of diame-

ter 2.5µm or less) on mortality in nine counties in the US, using a number of

mortality classifications, including total deaths minus accidents and homicides,

deaths from respiratory diseases (ICD-10 J00-J98) and deaths from cardiovascu-

lar diseases (ICD-10 I00-I99). Daily all-cause mortality was also calculated for
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those over the age of 65. When the results were pooled, an average PM2.5 concen-

tration from lags zero and one led to significant effects for each health outcome.

The results were especially strong for respiratory mortality, with a relative risk

of 1.022 (95% CI: 1.006 to 1.039). Within cardiovascular mortality, although the

pooled results were significant (RR of 1.006, 95% CI: 1.000 to 1.011), they were

not significant for any of the individual counties. This suggests that the pooled

effect may not be significant, and is actually a result of multiple testing.

Total Suspended Matter (TSM) is defined by the U.S. Environmental Protec-

tion Agency as “a method of monitoring airborne particulate matter by total

weight”. Goldberg et al. (2001b) investigate the effects of TSM on daily non-

accidental mortality and find a significant effect with a relative risk of 1.0065

(95% CI: 1.00 to 1.013), at a lag of zero, but did not find any significant effects

of exposure to TSM on any previous day.

Goldberg et al. (2003) define Coefficient of Haze (COH) as a measurement of

organic and inorganic carbon. They studied the effects of several pollutants,

including COH, on Congestive Heart Failure (CHF) in Montreal, Quebec, be-

tween 1984 and 1993. Separate analyses were carried for people who died of CHF

(ISD-9 428) and people who were diagnosed with CHF before dying from another

independent cause. Pollution concentrations on the day of death, the previous

day and an average over lags zero to two days were investigated. For deaths

from CHF, no significant effect of COH was found at any of the lags. However,

among persons diagnosed with CHF before death, results were significant at all

three exposure lag periods, and especially for the three-day mean, with a relative

risk of 1.0432 (95% CI: 1.0095 to 1.078). In the above study. relative risks were

calculated for an increase of 1.85 COH units.

Black smoke is a measure of the darkness of particles collected on a filter, with

smaller particles being darker. Black smoke particles are generally considered
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to be larger than PM10 but smaller than TSP (Dockery & Pope (1994)). Bog-

danovic et al. (2006) studied the effects of black smoke on all non-accidental

deaths (ICD-10 A00-R99), respiratory mortality (ICD-10, J00-J99) and cardio-

vascular mortality (ICD10, I00-I99). They lagged pollution for up to seven days

and included all lags in one model. Their results were most significant at lag

zero, where the relative risk for total mortality, given a 10µg/m3 increase in

black smoke concentrations, was 1.0113 (95% CI: 1.0008 to 1.0220). The relative

risk for cardiovascular mortality was slightly higher at 1.0125 (95% CI: 1.0053

to 1.0197) while the relative risk for respiratory mortality was not statistically

significant. However due to the inclusion of eight, potentially highly correlated,

pollution variables, collinearity may have been a problem.

Also of interest is the combined effect of pollutants on health, rather than in-

dividual pollutants. Yu et al. (2000) investigate the effects of particulate matter

and carbon monoxide on asthma symptoms. They calculate a relative risk for

a joint increase of 10µg/m3 in particulate matter concentrations and a 1ppm in

carbon monoxide concentrations. Their results showed that although the indi-

vidual relative risks are smaller, the joint effect of the pollutants is similar to

the effect they found in single pollutant models. In contrast, Hong et al. (1999)

introduced pollution indices, which are the sum of the individual pollutants, di-

vided by their means, which reflects the variations amongst the pollutants. They

reported larger relative risks from the multiple pollutant models than were found

from the single pollutant models.

2.3.2 Lag

The second choice to make when specifying the pollution exposure in these stud-

ies is the value of the lag to use. There has been some debate over which is

the most appropriate lag to use in these studies, with some studies investigating

the effects at a lag of zero, for example Schwartz (2004), while others use single

lags between one and five days (Kelsall et al. (1997)) However some more recent
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studies take into account the accumulated effect of several days pollution, with

Hertz-Picciotto et al. (2007) calculating the average exposure over lags zero to

two. Other authors use multiple lag models, with the choice of lags varying from

study to study. For example Cakmak et al. (2007) takes lags of up to five days,

while Goodman et al. (2004) took lags of up to 40 days.

Another area of discussion is whether to include multiple lags in one model

(Prescott et al. (1998)), or to run several models with different lags (Tellez-Rojo

et al. (2000)), although some authors such as Roberts (2004a) adopt both meth-

ods. A multiple lag model has the problem that the lags are going to be very

highly correlated, thus resulting in collinearity, which reduces the accuracy of the

estimates and inflates the standard errors. Zanobetti et al. (2000) proposed a

distributed lag model to overcome this problem, in which multiple lags are in-

cluded but the effect estimates are constrained to reduce collinearity. However

to date, no consensus has been reached as to the best approach for solving the

‘lag problem’.

2.3.3 Dose-response Shape

The third subject of consideration is the shape of the relationship between air

pollution and health. Most studies such as this one assume that the effect of

pollution increases linearly as suggested in Figure 2.1. This may be a plausible

theory as, to date, there has been no threshold concentration found below which

pollution does not adversely affect cardiovascular or respiratory health.
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Figure 2.2. Shape of effect of pollution from a given exceedence value
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Figure 2.2 shows the shape of the exposure response curve for concentrations

that exceed a given value. This shape is somewhat implausible as it suggests

that pollution has no adverse effect on health before this value, while after this

value the effect jumps to a higher, unknown, risk after which it stays constant.

This is unlikely as it implies the effect of pollution is discontinuous meaning that

for concentrations below the set limit, there is no effect of pollution, while above

this limit, there is an effect.

Recently Shaddick et al. (2008) proposed another possible shape of the dose-

response curve. They suggested that a linear relationship may not be appropriate

as there would eventually be an upper bound on the effect that air pollution has

on health. Instead they recommended a function g that satisfies the following re-

quirements: (i) boundedness; (ii) increasing monotonicity; (iii) smoothness; and

(iv) no effect with no exposure

The European Directive on Air Quality recommends that the annual mean con-

centration for PM10 should be no higher than 40µg/m3. In addition, the daily

mean concentration should exceed 50µg/m3 no more than 35 times a year, which

should have been achieved by 1st January 2005. According to Defra (2007), this

is also the concentrations that should have been achieved in the UK, except in

Scotland, where the overall pollution concentrations are lower. There the objec-

tive was to reduce the annual mean PM10 concentrations to 18µg/m3 and the

daily mean should exceed 50µg/m3 no more than seven times a year. However

there has been extensive research done that suggests that even at this compar-

atively low concentration, pollution does have an adverse effect on health. For

example Daniels et al. (2000) found that the relationship between PM10 and all

cause mortality and cardiorespiratory morality in the US was linear even at the

lowest concentrations, although for other causes, there was no noticeable effect
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until 50µg/m3. In a more recently study, Daniels et al. (2004) found that at con-

centrations as low as 10µg/m3 a relationship between PM10 and cardiovascular-

respiratory mortality could still be seen, thus implying there is no known con-

centration of PM10 which does not have an adverse effect on health.

2.4 Covariate Modelling

In addition to specifying the exposure, a number of confounding factors need

to be modelled. There are a number of covariates that are regularly used in

air pollution studies to remove potential confounding effects and so avoid biased

estimates. A brief description is given below.

2.4.1 Meteorological Variables

Of the many covariates used in time series studies, meteorological variables are the

most commonly used. These are usually measured by weather monitors situated

at various points around a city, in particular at airports. The weather variables

used most often in air pollution studies are described below.

Temperature

Temperature is recognised as having a confounding effect on air pollution and

health studies, as it is thought to have a U-shaped relationship with ill health,

with more people dying or becoming ill at extremely cold or hot temperatures.

Lee et al. (2006) added mean daily temperature to their model after investigating

its effect on mortality up to five days before admission to hospital. They even-

tually chose to add a smooth function of temperature on the day of admission,

based on the minimisation of Akaike’s Information Criteria (AIC). The mean

temperature during the time period studied was 23.7◦C.
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Relative Humidity

Relative humidity measures how humid the air is in comparison with how humid

it could be at that particular temperature, and is often added to air pollution

studies as higher levels of humidity have been known to aggravate certain ill-

nesses, including asthma. When Ostro et al. (2006) investigated the effects of

air pollution in nine counties in California, they added a number of covariates,

including a smooth function of average humidity, with three degrees of freedom,

lagged by one day. Mean daily relative humidity varied from county to county,

going from 55% in Fresno to 74% in San Diego.

Dew Point Temperature

Dew point temperature is often used as a replacement for relative humidity as

this also measures the amount of humidity in the air. Bell et al. (2004) included

dew point in their study of how ozone affects mortality in the US. They added

the dew point on the day of death and also the average of the previous three

days’ dew points.

Barometric Pressure

There have been some studies which suggested that extreme low or high pressure

can be related to stroke incidences although more research is still needed in this

field. Stankovic et al. (2007) added air pressure to their model when trying to

relate air pollution to cardiovascular mortality in Nis, Serbia. The mean pressure

between 2001 and 2005 was 993.8mBar. Air pressure on the same day of death

was added to their analysis as a natural cubic spline with three degrees of freedom.

2.4.2 Trend and Seasonal Variation

Mortality and morbidity are often seen to be highly seasonal, with more deaths

or admissions to hospital occurring in winter than in summer. Before trying

to model any relationship between mortality or morbidity and air pollution, this
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seasonality must be removed so as not to bias the parameter estimates. There are

numerous ways of removing seasonality that has not been removed by the addition

of meteorological variables. A commonly used method is adding sinusoidal curves

to the model, such as the terms sin(2π×Time/365.25) and cos(2π×Time/365.25)

which exhibit one peak a year. This method can be adapted by additionally in-

cluding sinusoidal terms with different numbers of peaks a year, although due to

the rigid nature of sinusoidal terms, they are not always suitable for removing sea-

sonality as they do not allow for much variation. Therefore natural cubic splines

are often used as an alternative. A natural cubic spline fits a number of polyno-

mial functions joined together at knots. These knots are typically placed evenly

throughout the variable of interest (e.g. time). The function is constrained to be

continuous and has two additional knots at each end of the data. The number of

knots determines how smooth the function will be.

To remove any overall trend in the data, a function of date is often added

to the model with most studies adding this trend as a smoothed function of

time. Various smoothing methods have been used, including natural cubic splines

(Stankovic et al. (2007)) and loess functions (Ballester et al. (2006)). When us-

ing natural cubic splines, the number of degrees of freedom varies from study to

study. In the study by Stankovic et al mentioned above, 30 degrees of freedom

are used over a five year period, while Ostro et al. (2006) used 28 degrees of

freedom (seven degrees of freedom per year of study).

2.4.3 Day of the Week Effect

A number of studies have recently established what is known as the ‘Monday

Effect’, which refers to the increased numbers of deaths or admissions to hospital

on a Monday. Evans et al. (2000) investigated cases of mortality from coronary

heart disease in Scotland, while Witte et al. (2005) did a meta-analysis of 27

studies which reported a weekly variation in cardiovascular mortality and mor-

bidity. Both studies found a marked increased incidence rate on Mondays. To
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remove this effect, an indicator variable for Day of the Week has often been used

(Samoli et al. (2007)).

2.5 Mortality Displacement

Although the detrimental effects of air pollution have become widely accepted,

there is still some controversy over how strong these effects are. The theory of

mortality displacement (also known as ‘harvesting’) suggests that it is mainly

the frail proportion of the population who are at risk, and as such their deaths

are brought forward by only a few days. If this is the case, the significance of

air pollution in terms of public health is reduced. Zanobetti et al. (2002) claim

that if the theory of mortality displacement is true, the correlation between air

pollution and mortality would be positive during and immediately after exposure

and would then be counterbalanced by a negative correlation at a later lag, as

seen in Figure 2.3. In their study they use distributed lags to examine the effects

of air pollution on 10 different European cities, and their results contradict the

mortality displacement hypothesis. However recently Roberts & Switzer (2004)

used simulations to investigate the properties of distributed lag models in the

context of mortality displacement. Their results implied that distributed lag

models are likely to give biased estimates and are thus likely to be misleading.

2.6 Meta Analyses and Multi-City Studies

There have been numerous air pollution studies carried out in cities around the

world which have varied widely in terms of the pollutant analysed and the results

obtained. Meta-analyses have often been used to combine and compare these

results (Stieb et al. (2002)). However these meta-analyses are usually carried out

on single-city analyses, and the quality of the individual studies varies widely,

thus affecting the results.
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Figure 2.3. Suggested lag structure corresponding the mortality displacement
effect (taken from Zanobetti et al. (2002))

An alternative approach is multi-city studies such as Air Pollution and Health: A

European Approach (APHEA, Katsouyanni et al. (1995)) which studied the ef-

fects of various pollutants in 10 European cities. This was followed by APHEA-2

(Sunyer et al. (2003a), Sunyer et al. (2003b)) which increased the number of cities

to 29 and the National Morbidity Mortality Air Pollution Study (NMMAPS, Do-

minici et al. (2000)) which examines 90 cities in America. These studies analyse

the effects of air pollution in a number of cities using a standard protocol thus al-

lowing the results to be compared directly. NMMAPS found that for a 10µg/m3

increase in PM10 concentrations there was on average, a relative risk of increased

mortality of 1.0048 in the US (95% CI: 1.0005, 1.0092). When adjusted for ozone,

this increased slightly to 1.0052 (95% CI: 1.0016, 1.0085). The APHEA 2 project

found a slightly higher estimated effect of PM10 in Europe. For a 10µg/m3 in-

crease, they found a relative risk of 1.009 (95% CI: 1.006, 1.013).

2.7 Ecological Fallacy

The Ecological Fallacy is defined by Delgado-Rodriguez & Llorca (2004) as being

“a bias produced when analyses realised in an ecological (group level) analysis
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are used to make inferences at the individual level”. This can have major conse-

quences in air pollution studies, where the effect of air pollution can be biased.

One of the main problems with air pollution studies is the fact that pollution

monitors are positioned at fixed points and so do not necessarily represent the

true extent of pollution inhaled. In recent years, there have been a number of

models proposed that try to overcome this problem, such as those by Lancaster

& Green (2002) and Wakefield & Shaddick (2005).



Chapter 3

Multi-City Study

3.1 Introduction

In this chapter, we present a new epidemiological study of air pollution and

health in urban Scotland, focusing on data from Aberdeen, Dundee, Edinburgh

and Glasgow during the period 2000 to 2006 inclusive. These four cities are the

largest in Scotland, with Glasgow being by far the largest with a population of

approximately 580 000. Edinburgh is the second largest city with an approximate

population of 475 000 people, while Aberdeen and Dundee are much smaller with

populations of 200 000 and 145 000 respectively.

The health data for this epidemiological study are provided by the Informa-

tion and Services Division (ISD) of the NHS, and comprise daily numbers of

both acute and repeat admissions to hospital from cardiovascular diseases for

Glasgow, Edinburgh, Aberdeen and Dundee from 2000 to 2006. Cardiovascular

diseases are defined as being Coronary Heart Disease (CHD) or stroke, and are

classified using the International Classification of Diseases 10th Revision (ICD-

10) with CHD being ICD-10 codes I20 to I25 and stroke being codes I61, I63

and I64. In 2000 the standardised incidence rate per 100 000 of the Scottish

population for CHD was 404.1, which fell to 307.5 in 2006. In comparison, the

standardised incidence rate per 100 000 of the population for stroke was 218.8 in

38
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2000, decreasing to 166 in 2006.

Data on several different pollutants were available to download from the Scot-

tish Air Quality website (http://www.scottishairquality.co.uk), including carbon

monoxide, nitrous oxides, particulate matter and ozone. However for this study,

we focus exclusively on PM10. Mean daily PM10 concentrations are available for

Glasgow, Edinburgh and Aberdeen over the time period 2000 to 2006 while data

for Dundee are only available from 2006 onwards. In Glasgow, PM10 concen-

trations were measured at six sites, Anderston, Battlefield Road, Byres Road,

Centre, Kerbside and Waulkmill Glen Reservoir. However data for the whole

period are only available from Glasgow Centre and Kerbside as the remainder

did not start recording PM10 concentrations until 2005. In Edinburgh PM10 con-

centrations are only measured at Haymarket, Roseburn and St. Leonards, while

in Aberdeen they were monitored at Aberdeen, Anderson Drive, Market Street

and Union Street. However in common with Glasgow, data for Aberdeen over

the whole period are only available from Aberdeen as the other sites did not have

data available until 2005. To obtain a single measure of daily PM10 for each city,

the values across the sites were averaged, an approach that is frequently adopted

in these studies (Chardon et al. (2007), Lee et al. (2006)).

The meteorology data available for this study were provided by the British At-

mospheric Data Centre (http://badc.nerc.ac.uk/home/index.html) and comprise

daily maximum and minimum temperatures for one site in Aberdeen, two sites

in Glasgow and three in Edinburgh for 2000 to 2006. There was, however, no

data available for Dundee. For each meteorological variable, the measurements

were averaged over all sites to produce a single daily measure for each city. The

Aberdeen site was at Mannofield, about two miles outside the city centre and pro-

vided no data from October 2006 onwards, meaning that no temperature data

are available for the last three months of the study in this city. The Glasgow sites

were at Pollock Country Park and Bishopton and while there are some missing
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data, there were no days where no data at all was collected. Finally the Edin-

burgh sites are at Blackford hill, the Botanic gardens and Gogarbank, and like

Glasgow there are no days without a single measurement. We should be aware

that the meteorological sites are far away from the pollution monitors, and thus

may not give an accurate representation of the temperature at the pollution mon-

itors.

As there was no pollution or temperature data available for Dundee, the analysis

for this city cannot be carried. Therefore this chapter will focus estimating the

association between PM10 and cardiovascular health in Glasgow, Edinburgh and

Aberdeen.

3.2 Modelling Structure

This section will give a brief overview of the modelling strategy adopted in this

thesis, which can be split into four parts, each of which are outlined below.

3.2.1 Exploratory Analysis

The first step is to produce numerical and graphical summaries of the data, which

will aid the modelling process. These summaries will include plots of the data

over time, comprising daily (or weekly) numbers of admissions to hospital, mean

daily (or weekly) PM10 concentrations and maximum daily temperature (or mean

weekly maximum temperature), which will aid in distinguishing any long term

trends. These variables will also be plotted against each other to determine their

inter-relationships.

3.2.2 Covariate Modelling

The second step is to model the prominent features in the health data, using any

available covariates as well as artificial variables to remove any trend or seasonal

structure. The response variable is admissions to hospital which come in the form
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of daily counts, meaning that a Poisson generalised linear model is appropriate

for these data. This model has the general form

Yt ∼ Poisson(µt)

ln(µt) = zTt α+ γPM10t−q (3.1)

where Yt are the number of admissions to hospital on day t, zt = (zt1, ..., ztp) are a

vector of p covariates for day t, α = (α1, ..., αp) are the associated regression pa-

rameters and γ is the estimated effect of PM10. In the model, pollution exposure

is related to health at a lag of q days, which ranges between zero (exposure on

the same day) and 14 (PM10 concentrations a fortnight before the health event)

days in each city.

There are a number of external risk factors which can affect the health data

in this study and may induce long-term trends and seasonal variation into these

daily time series. Therefore the effects of these factors must be removed before

adding PM10 to the model, otherwise its effect may be biased. Long-term time

trends can be removed either by adding a parametric function of time to the

model, such as a polynomial in t, or by using a flexible smooth function, such

as natural cubic splines. To remove the seasonal variation, temperature is often

added to the model as it has a well known seasonal shape (hotter in the summer

than the winter), and has been shown to have a significant effect on health in

numerous studies (Pauli & Rizzi (2006), Carder et al. (2005)). If temperature is

not sufficient to model the seasonal variation, then sinusoidal fucntions can be

added. However if this variation is not regular then flexible smooth functions

such as natural cubic splines or lowess can be used. Initially fixed functions of

time, such as linear and sinusoidal functions, will be used to model the data, and

if this is not appropriate we revert to a flexible formulation via natural cubic

splines.
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3.2.3 Model Checking

Once the variation in the data has been removed the model should be assessed

to determine whether it is an adequate description of the data. This is achieved

by assessing numerical and graphical summaries of the standardised residuals,

rt, where rt = Yt−µt√
µt

. If the model is a good fit to the data, E(rt) = 0, Var(rt)

= 1, they should contain no obvious trend, structure or relationship with any

covariates and should be uncorrelated. Residual correlation is checked using the

autocorrelation function (ACF), where particularly high values (except at lag

zero) suggest correlation is present. A further method of determining the fit of

the model is to look at Akaike’s Information Criterion (AIC) with lower values

indicating a better fit to the data. This is often used for comparing two possible

models and in this study it is used to determine the shape and smoothness of

the trend model, for example for selecting the degrees of freedom for the natural

cubic splines.

3.2.4 Pollution Modelling

Once a model has been constructed that appears to remove any trend, season-

ality or correlation, pollution will then be added. First we fit a series of single

lag models from zero to 14 days, to determine the latency with which pollution

may effect cardiovascular health. For these results and the rest in this thesis, we

present the associations between PM10 and health on the relative risk scale for

a 10µg/m3 increase in PM10 concentrations. However it seems unlikely that air

pollution exposure from only one day will affect admissions to hospital and it is

more likely there is an accumulated effect over a number of days. Therefore we

also fit a multiple lag model to the data containing PM10 concentrations from

the 14 days prior to admission. However this model has the problem that the

pollution concentrations on adjacent days are likely to be highly correlated, thus

resulting in collinearity. One method of overcoming collinearity is to use a dis-

tributed lag model, which constrains the effects of pollution at each lag to follow
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a polynomial. If the polynomial is of power zero, the relative risk at each lag will

be the same, essentially meaning that only one parameter is being estimated, thus

removing any problem of collinearity. At the other extreme, setting the power

equal to the number of lags results in no constraint, which means the relative

risks are the same as those from the multiple lag model and again suffer from

the problem of collinearity. Therefore the power of the polynomial is chosen to

minimise collinearity, whilst allowing the relative risks to exhibit a biologically

plausible shape over the 14 lags.

The modelling structure described above will be used in the analyses in both

this and the following chapter and we begin with daily admissions to hospital in

Glasgow.

3.3 Glasgow

3.3.1 Exploratory Analysis

We start by estimating the association between daily PM10 concentrations and

cardiovascular admissions to hospital, beginning with a series of descriptive plots

of the data.

Health

Figure 3.1 shows the number of daily hospital admissions in Glasgow due to

cardiovascular illness between 2000 and 2006, with a smoothed lowess line to

show the underlying trend in the data. The figure shows an approximately linear

decreasing trend in hospital admissions over the seven year period, with little

discernible seasonal variation. This latter observation is surprising, as previous

studies (Pauli & Rizzi (2006)) have found the admissions to hospital to be highly

seasonal, with more in the winter than in the summer.
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Figure 3.1. Daily hospital admissions in Glasgow from 2000 to 2006

Pollution

Figure 3.2 shows the daily PM10 concentrations for Glasgow from 2000 to 2006,

while Figure 3.3 depicts the relationship between PM10 concentrations and ad-

missions to hospital. Figure 3.2 shows that there were some unexpectedly high

PM10 concentrations in the winters of 2000 to 2003, although the overall trend

appears to stay fairly constant. From Figure 3.3 there appears to be a weakly

positive relationship between PM10 concentrations and admissions to hospital in

Glasgow, with admissions to hospital increasing as PM10 concentrations increase.
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Figure 3.2. PM10 concentrations in Glasgow between 2000 and 2006

Figure 3.3. Relationship between hospital admissions and daily mean PM10

concentrations
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Temperature

Figures 3.4, 3.5 and 3.6 are plots of the daily maximum temperatures over the

seven year period, the first of which is against time, the second against hospital

admissions and the third against PM10 concentrations. As expected, temperature

is very seasonal, with peaks in summer and troughs in winter. However this

seasonality was not observed in the admissions data (Figure 3.1) which is why

there does not appear to be any significant relationship between admissions to

hospital with cardiovascular diseases in Glasgow and temperature. Conversely

there appears to be a slight quadratic curve between PM10 concentrations and

temperature, with the former being higher for very low or high temperatures.

Figure 3.4. Maximum daily temperatures in Glasgow between 2000 and 2006
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Figure 3.5. Relationship between hospital admissions and daily maximum tem-
perature

Figure 3.6. Relationship between PM10 concentrations and daily maximum
temperature
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3.3.2 Covariate Modelling

The next step in the analysis is to produce an adequate model for the daily admis-

sions data, that has removed all trend, seasonal behaviour and other structure.

As discussed in Section 3.2.2, the admissions to hospital are a time series of daily

counts, meaning that a Poisson generalised linear model is appropriate (Model

(3.1)). The main feature of the admissions data is a linearly decreasing trend

(Figure 3.1), therefore as an initial model we include a linear time trend. Thus

Model (3.2) is of the form

ln(µt) = α0 + α1t (3.2)

with a summary of the model fit provided in Table 3.1

Coefficient Estimate Standard Error P-Value
Intercept 2.591 0.01151 <2 × 10−16

t -0.0001954 8.318 × 10−06 <2 × 10−16

AIC 13608

Table 3.1. Summary of Model (3.2)

The p-value for the linear time trend is very small (less than 0.05) meaning that

time is highly significant in the model. The next step is to check the residuals

rt, to see how well this model fits the data. Recall that if the model is a good

fit, E(rt) = 0, Var(rt) = 1, there should be no obvious pattern and the residuals

should be uncorrelated. The residuals are plotted against time in Figure 3.7

and we can see an obvious parallel line pattern. However according to Nelder

(1990) and Searle (1988), this is due to the fact that there is a limited number of

admissions in any one day, and is to be expected. There also appears to be some

signs of seasonality which suggests the initial model is not adequate.
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Figure 3.7. Residuals for Model (3.2)

Much of the literature available about short-term air pollution and health stud-

ies indicates that temperature has a seasonal effect on mortality and morbidity

(Carder et al. (2005), Pattenden et al. (2003)), although no clear association is

seen in Figure 3.5 Therefore to try and remove the small amount of seasonality

within the residuals, temperature will be included in the next model. The tem-

perature data available are maximum and minimum temperatures for two sites

in Glasgow. An average maximum temperature is obtained by taking the mean

of the maximum temperatures at each site and an average minimum temperature

is similarly obtained. The maximum and minimum values are highly correlated

as expected (0.86), meaning that only one is required. As the two temperatures

variables are so highly correlated, it seems unlikely that they would give signifi-

cantly different results. Therefore maximum temperature was chosen to be added
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to the model giving the model

ln(µt) = α0 + α1t+ α2Maxt (3.3)

which is summarised in Table 3.2.

Coefficient Estimate Standard Error P-Value
Intercept 2.621 0.01784 <2 × 10−16

t -0.000193 8.343 × 10−06 <2 × 10−16

Max -0.002679 0.001237 0.0304
AIC 13601

Table 3.2. Summary of Model (3.3)

Table 3.2 shows that maximum temperature is significant in the model, although

the p-value is much larger than that for the linear trend term. Also the AIC is

lower than the AIC for the previous model, suggesting this model is a better fit

of the data. However Figure 3.8 shows the residuals for this model, and suggests

that the model is still not a good fit to the data as there is still seasonality in the

residuals.
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Figure 3.8. Residuals for model (3.3)

One approach is to remove it by adding sine and cosine terms (Keatinge &

Donaldson (2001)), to the model. Such studies typically begin with the pair

of variables [sin(2π × Time/365.25), cos(2π × Time/365.25)] but as they exhibit

one peak a year, they are highly correlated with temperature (-0.81), and are

not required here. Instead we add the pair of terms [sin(4π × Time/365.25),

cos(4π×Time/365.25)] to the model to represent two peaks a year, as the resid-

uals seem to show peaks that occur more than once a year. This gives Model

(3.4):

ln(µt) = α0 + α1t+ α2Maxt + α3 sin(2ωt) + α4 cos(2ωt) (3.4)

where ω = 2π
365.25

. Table 3.3 summarises the fit of Model (3.4).
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Coefficient Estimate Standard Error P-Value
Intercept 2.62 0.01788 <2 × 10−16

t -0.0001944 8.359 × 10−06 <2 × 10−16

Max -0.002612 0.001243 0.0356
sin(2ωt) -0.004908 8.658e-03 0.5708
cos(2ωt) -0.01949 8.633e-03 0.0240
AIC 13600

Table 3.3. Summary of Model (3.4)

From Table 3.3 we see that the linear time trend, maximum temperature and the

cosine term are statistically significant in the model. The sine term is not sig-

nificant but because the cosine term is significant, it must be kept in the model.

This is due to the fact that having one sine or cosine term in the model forces the

troughs and peaks to stay in one position, whereas including both terms allows

for more flexibility, thus meaning the model should be a better fit to the data.

As with previous models, the residuals are displayed to check the fit of the model

(Figure 3.9). The pattern in the residuals may be caused by short range season-

ality or residual correlation, and a look at the autocorrelation function (Figure

3.10) should provide more insight.

From Figure 3.10, we can see that the residuals exhibit correlation at regular

seven day intervals, suggesting it may be necessary to add a ‘day of the week’

term to the model. This then gives Model (3.5) below

ln(µt) = α0 + α1t+ α2Maxt + α3 sin(2ωt) + α4 cos(2ωt)

+
6∑
j=1

αj+4DoW
(j)
t (3.5)
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Figure 3.9. Residuals for Model (3.4)

Figure 3.10. Autocorrelation function for residuals
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where as before ω = 2π
365.25

, and DoW
(j)
t is an indicator variable for the jth day

of the week, ranging from from Tuesday (j=1) to Sunday (j=6). The indicator

variables equal 1 if day t is the day of the week in question, or 0 otherwise. A

summary of Model (3.5) can be seen in Table 3.4 and again, the sine term is not

significant in the model, but the cosine term is, therefore both must be left in.

All other variables are significant in the model and Figures 3.11 and 3.12 suggest

that the residuals resemble independent white noise, meaning that the model

appears to be adequate. Also the AIC is much lower than the AIC in previous

models, suggesting this model is the best fitting model to date.

Coefficients Estimate Standard Error P-Value
Intercept 2.751 0.02258 <2 x 10−16

t -0.000194 8.361 x 10−06 <2 x 10−16

Max -0.002938 0.001243 0.0181
sin(2ω) -0.004792 0.008659 0.5800
cos(2ω) -0.01939 0.008633 0.0247
tues -0.08449 0.02190 0.0001
wed -0.04255 0.02164 0.0493
thurs -0.06566 0.02177 0.0026
fri -0.08410 0.02188 0.0001
sat -0.3479 0.02352 <2 x 10−16

sun -0.3232 0.02337 <2 x 10−16

AIC 13194

Table 3.4. Summary of Model (3.5)
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Figure 3.11. Residuals for Model (3.5)

Figure 3.12. Autocorrelation Function for residuals
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3.3.3 Pollution Modelling

The next step is now to add PM10 to the model, to estimate whether it is asso-

ciated with admissions to hospital. We begin with a series of single lag models

ranging from zero to 14 days, before examining a multiple lag approach. For a

given lag q, the single lag model is seen as

ln(µt) = α0 + α1t+ α2Maxt + α3 sin(2ωt) + α4 cos(2ωt)

+
6∑
j=1

αj+4DoW
(j)
t + γPM10t−q (3.6)

The associations between exposure to PM10 and health estimated in this thesis

are presented as relative risks for a 10µg/m3 increase in ambient concentrations.

The relative risk is the ratio of the expected number of hospital admissions given

the current pollution concentrations divided by the expected numbers if the PM10

concentrations rose by 10µg/m3 and is defined in Chapter 2, equation (2.4).

During the course of this study, it was discovered that removing the indicator vari-

ables for day of the week made a significant impact on the estimated relative risks,

which suggests there may be an interaction between pollution concentrations and

day of the week, making interpretation of the results less straight-forward. There-

fore Table 3.5 shows the relative risks and 95% confidence intervals for each single

lag model with and without the ‘day of the week’ covariates included. The table

shows that at each lag the relative risks for the model containing the ‘day of the

week terms’ are all very close to one and non-significant at the 5% level, meaning

that there does not appear to be any relationship between admissions to hospital

from cardiovascular diseases and exposure to PM10. Conversely, for the model

without the ‘day of the week’ terms a number of the relative risks are significant.

However the choice of lag is somewhat ad-hoc, and the effects of cumulative

exposure over a few days may be of greater interest. In addition it is unlikely that

the effect of air pollution on any one day is unrelated to pollution concentrations

on adjacent days meaning that the estimated associations could be caused by
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Including DoW Not Including DoW
Lag RR 95% CI RR 95% CI

0 1.0008 (0.9991, 1.0011) 1.0197 (1.0100, 1.0294)
1 1.0004 (0.9991, 1.0010) 0.9949 (0.9853, 1.0047)
2 0.9940 (0.9984, 1.0004) 0.9859 (0.9763, 0.9957)
3 0.9913 (0.9981, 1.0001) 0.9907 (0.9810, 1.0005)
4 0.9945 (0.9985, 1.0004) 1.0042 (0.9946, 1.0139)
5 0.9962 (0.9986, 1.0006) 1.0075 (0.9977, 1.0171)
6 0.9969 (0.9987, 1.0007) 1.0208 (1.0112, 1.0305)
7 0.9977 (0.9988, 1.0007) 1.0178 (1.0082, 1.0276)
8 0.9925 (0.9983, 1.0002) 0.9972 (0.9875, 1.0069)
9 0.9935 (0.9984, 1.0003) 0.9910 (0.9813, 1.0008)
10 0.9960 (0.9986, 1.0006) 0.9949 (0.9853, 1.0047)
11 0.9954 (0.9985, 1.0005) 0.9967 (0.9870, 1.0064)
12 0.9948 (0.9985, 1.0005) 1.0009 (0.9912, 1.0106)
13 0.9977 (0.9878, 1.0077) 1.0190 (1.0094, 1.0287)
14 0.9962 (0.9864, 1.0061) 1.0234 (1.0138, 1.0332)

Table 3.5. Table showing relative risks for single lag models, both including
(left) and excluding (right) the ‘day of the week’ covariates

confounding at a different lag. Therefore a multiple lag model containing the

PM10 concentrations from the previous 14 days would be a sensible next step.

Therefore Model (3.7) will be

ln(µt) = α0 + α1t+ α2Maxt + α3 sin(2ωt) + α4 cos(2ωt)

+
6∑
j=1

αj+4DoW
(j)
t +

14∑
q=0

γqPM10t−q (3.7)

the results from which (with and without the ‘day of the week’ variables) are pre-

sented in Table 3.6. We can see that the relative risks from the model containing

the ‘day of the week’ term are, again, all non-significant and very close to 1, al-

though the 95% confidence intervals are wider than in the single lag models. Most

of the relative risks from the model that does not contain the ‘day of the week’

term are also non-significant, although there are a few that are significant, again

with wider confidence intervals then in the single lag model. This phenomenon

is known as collinearity, which occurs when there is a strong correlation between
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DoW No DoW
Lag RR 95% CI RR 95% CI

0 1.0017 (0.9889, 1.0015) 1.0250 (1.0118, 1.0384)
1 1.0067 (0.9914, 1.0222) 0.9868 (0.9718, 1.0021)
2 0.9946 (0.9794, 1.0101) 0.9886 (0.9735, 1.0040)
3 0.9919 (0.9767, 1.0073) 0.9931 (0.9780, 1.0084)
4 1.0001 (0.9848, 1.0157) 1.0054 (0.9901, 1.0209)
5 1.0004 (0.9850, 1.0159) 0.9844 (0.9694, 0.9997)
6 0.9996 (0.9843, 1.0151) 1.0113 (0.9960, 1.0268)
7 1.0061 (0.9908, 1.0215) 1.0266 (1.0112, 1.0423)
8 0.9914 (0.9762, 1.0068) 0.9890 (0.9739, 1.0043)
9 0.9975 (0.9822, 1.0131) 0.9795 (0.9645, 0.9947)
10 1.0026 (0.9872, 1.0181) 0.9929 (0.9777, 1.0084)
11 0.9985 (0.9832, 1.0140) 0.9881 (0.9729, 1.0035)
12 0.9936 (0.9783, 1.0091) 0.9920 (0.9768, 1.0073)
13 1.0043 (0.9889, 1.0199) 1.0207 (1.0054, 1.0363)
14 1.0018 (0.9890, 1.0148) 1.0114 (0.9986, 1.0245)

Table 3.6. Table showing relative risks for the multiple lag models, both includ-
ing (left) and excluding (right) the ‘day of the week’ covariates

two or more variables, thus making it difficult or impossible to estimate their

individual regression coefficients reliably. One solution is to adopt a distributed

lag model, as described in Chapter 2, which has the form

ln(µt) = α0 + α1t+ α2Maxt + α3 sin(2ωt) + α4 cos(2ωt)

+
6∑
j=1

αj+4DoW
(j)
t +

14∑
q=0

γqPM10t−q (3.8)

where γq =

q∑
k=0

ηkq
k, q = 0, ..., 14

where collinearity is reduced by constraining the 15 parameters (γ0, ..., γ14) to

follow a polynomial of order q in lag order. The order of the polynomial is

unknown, but we are looking for an order that minimises collinearity but whose

relative risks give a biologically plausible shape of adjacent lags.
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For the model containing the ‘day of the week’ terms, the AIC ranges from 12016

to 12023 for powers of zero to four, while the model without the ‘day of the week’

terms has an AIC of 12325 at power four. These are all much lower than the

AICs from the single lag models (12963 to 13052) but higher than the AIC from

the multiple lag model (12025). However the multiple lag model has the problem

of collinearity, thus suggesting the distributed lag model is the best fit of the data.

Figures 3.13 and 3.14 show the shape of the constrained relative risks against

lag for orders zero to four, where Figure 3.13 presents the results for the models

including the ‘day of the week’ covariates while Figure 3.14 presents the results

for the models without. In both cases the solid horizontal line is the relative risk

at power zero which gives the overall estimate of the effect of PM10.

In Figure 3.13 we can see that at each power the points for the distributed lag

model are very close to the null value of one, thus giving the impression that the

relative risks are not high (or low) enough to be significant. Conversely, when

the ‘day of the week’ term has been left out of the model, PM10 does actually

have a significant effect on admissions to hospital.

Figure 3.14 shows shape of the constrained relative risks against lag for orders

zero to four for the model without the ‘day of the week’ term. At powers one,

two and three the relative risks are very close to one, except at lag 14, although

this is likely to be an effect of multiple testing rather than a significant result.

However we can see that at power four, the relative risk at lag zero is particularly

high. This reduces immediately and then starts to rise three days later.
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Figure 3.13. The solid line is the relative risk at power zero, the dashed line
represents the null risk of 1, the filled diamonds are the relative risks from the
unconstrained model and the unfilled diamonds are the relative risks from the
distributed lag model
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Figure 3.14. The solid line is the relative risk at power zero, the dashed line
represents the null risk of 1, the filled diamonds are the relative risks from the
unconstrained model and the unfilled diamonds are the relative risks from the
distributed lag model
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Figure 3.16 shows the relative risks from power four for a week. We can see that

this lag structure is very similar to the one suggested by Zanobetti et al. (2002)

when discussing the theory of mortality displacement (Figure 3.15), although the

relative risk reduces much sooner then Zanobetti suggests. If this lag structure

is correct, it could have important implications in Glasgow, as it suggests that

admissions to hospital only occur on the same day as exposure to pollution and

thus reducing the significance for public health. However Figure 3.14 shows a

decrease in relative risk followed by another increase. This may simply be due

to multiple testing, although a closer look at the relative risks in Tables 3.5 and

3.6 showed significant positive effects occurred approximately every seven days,

which points to the lack of the ‘day of the week term’ as being a possible reason

for the significant results, thus suggesting the theory of mortality displacement

does not hold here.

Figure 3.15. Suggested lag structure corresponding the mortality displacement
effect (taken from Zanobetti et al. (2002))
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Figure 3.16. Lag structure found when modelling daily admissions to hospital
in Glasgow, with no ‘day of the week’ term

3.3.4 Conclusions

There has been a steady decrease in cardiovascular admissions to hospital in

Glasgow between 2000 and 2006, although there does not appear to be much of

a seasonal element to the data. Also PM10 concentrations appear to have stayed

fairly constant over the seven year period, although there were some unusually

high concentrations. There does not appear to be any obvious relationship be-

tween PM10 concentrations and cardiovascular admissions to hospital although

there does seem to be a quadratic relationship with temperature. During the

analysis, it was discovered that when the ‘day of the week’ term is included in

the model, PM10 does not appear to have any significant effect on cardiovascular

admissions to hospital, although when it is omitted, PM10 becomes significant at

some lags. This suggests there an interaction between PM10 and day of the week
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that we do not yet understand.

Figure 3.17. Boxplots of mean daily PM10 concentrations for each day of the
week

Figure 3.17 shows boxplots of mean daily PM10 concentrations for each day of the

week. We can see that there does seem to be some kind of relationship between

PM10 concentrations and day of the week, with PM10 increasing from Monday

to Thursday. On Friday the PM10 concentrations appear to be similar to the

concentrations on Thursday, before decreasing over the weekend. This relation-

ship makes interpreting whether or not PM10 affects admissions to hospital with

cardiovascular diseases difficult. However, if PM10 does have an effect on cardio-

vascular admissions to hospital, it seems that only PM10 exposure on the day of

admission and lags of one and two weeks affects health, which suggests there is

no true effect of PM10.
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It could be argued that since the the numbers of admissions to hospital do not

peak at the same time each year, the method of adding sine and cosine terms

to the model is not appropriate for these data, as they are very rigid and do

not allow for variation in the location of the peaks. Therefore, to verify these

results, the analysis was redone using a different method of removing the trend

and seasonality, using natural cubic splines. Many air pollution-mortality studies

have used this approach including Dominici et al. (2003) who used seven degrees

of freedom per year. However their data are highly seasonal, and as the data

in this study have very little seasonality, it makes sense to use fewer degrees of

freedom. Therefore 22 degrees of freedom over the seven year period were used,

which was chosen by minimising the AIC. After removing the trend and season-

ality, PM10 was added to the model using the previous single lag and multiple

lag models. The results were very similar to those obtained in Tables 3.5 and 3.6,

with no significant effect of PM10 in the models that contained the ‘day of the

week’ term, and significant effects at lags zero, seven and 14 (with relative risks

of approximately 1.021) in the models without the ‘day of the week’ term. As

these results are very similar to those presented earlier, it suggests the estimates

are not being confounded by poor seasonality control.

However there are a limited number of admissions to hospital in any one day

(mean of 10.5) and so it is possible that any effect of PM10 is not being picked

up. Therefore the analysis will be re-done using weekly admissions to hospital

and mean weekly PM10 concentrations. This will also help to eliminate the debate

concerning the ‘day of the week’ term.

3.3.5 Exploratory Analysis - Weekly Admissions

This section aims to estimate the association between mean weekly PM10 concen-

trations and weekly cardiovascular admissions to hospital in Glasgow. We begin

with a series of descriptive plots of the data.
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Health

Figure 3.18 shows the weekly admissions to hospital due to cardiovascular illness

over the seven year period 2000 to 2006, with a smoothed lowess line running

through the data to show the underlying trend. We can see that there is a very

strong decreasing trend to the data, that appears to be broadly linear, and there

are also signs of seasonality.

Figure 3.18. Weekly admissions to hospital in Glasgow from 2000 to 2006

Pollution

Figure 3.19 shows the mean weekly PM10 concentrations over the seven year

period while Figure 3.20 illustrates the relationship between weekly admissions

to hospital and mean weekly PM10 concentrations.
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Figure 3.19. Mean weekly PM10 concentrations in Glasgow from 2000 to 2006

Figure 3.20. Relationship between weekly admissions to hospital and mean
weekly PM10 concentrations
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Figure 3.19 shows a steady decrease in PM10 concentrations from 2000 to 2005,

after which it starts to rise slightly again. There also appears to be some seasonal

variation, with peaks approximately every year. However from Figure 3.20, there

does not appear to be any obvious relationship between weekly admissions to

hospital and mean weekly PM10 concentrations.

Temperature

Figures 3.21, 3.22 and 3.23 below show the plots of mean weekly maximum tem-

perature from 2000 to 2007, weekly admissions to hospital by temperature and

mean weekly PM10 concentrations against temperature.

Figure 3.21. Mean weekly maximum temperature in Glasgow from 2000 to 2006
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Figure 3.22. Relationship between weekly admissions to hospital and mean
weekly maximum temperature

Figure 3.23. Relationship between mean weekly PM10 concentrations and mean
weekly maximum temperature
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Figure 3.21 shows peaks in temperature in summer and troughs in winter, as

we would expect. However there does not appear to be any obvious relationship

between admissions to hospital and maximum temperature. On the other hand,

there appears to be a slight quadratic curve with PM10 concentrations decreasing

as temperature increases and then decreasing again at higher temperatures.

3.3.6 Covariate Modelling

The next step in the analysis is to produce a model that adequately removes all

trends, seasonality and correlation. As weekly admissions to hospital come in the

form of counts the assumption of using a Poisson generalised linear model still

applies. After following the same method used to analyse daily admissions to

hospital, the final model we are left with is Model (3.9)

ln(µt) = α0 + α1t+ α2t
2 + α3Maxt + α4 sin(

ωt

2
) + α5 cos(

ωt

2
) (3.9)

where ω = 2π
365.25

as before. A summary of Model (3.9) can be seen in Table 3.7.

Coefficient Estimate Standard Error P-Value
t -3.503 x 10−04 2.360 x 10−04 0.1377
t2 -2.792 x 10−06 6.448 x 10−07 1.49 x 10−05

Max -0.005014 0.001331 0.0002
sin(ω

2
) 0.03249 0.009142 0.0004

cos(ω
2
) 0.02216 0.00858 0.0098

AIC 2671.5

Table 3.7. Summary of Model (3.9)

Adding the sine and cosine terms makes t insignificant, however as t2 is still

significant, t should be kept in the model. Figure 3.24 displays the residuals for

this model and Figure 3.25 shows the autocorrelation function for the residuals.

The residuals appear to be scattered evenly about zero with no obvious pattern

and within the autocorrelation function, most of the lags are within the 95%

confidence bands. Therefore we can assume that most of the correlation within
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Figure 3.24. Residuals for Model (3.9)

Figure 3.25. Autocorrelation function for the residuals
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the residuals has now been removed. Also the AIC is lower than the AIC from

the previous models, which ranged from 2687.1 to 2707.8, suggesting this is the

best fitting model to date and so we can now continue with the analysis.

3.3.7 Pollution Modelling

The next step is to add mean weekly PM10 concentrations to the model to esti-

mate its association with weekly admissions to hospital. This will be done using

two different models. The first will be a series of single lag models ranging from

zero to eight weeks before admission to hospital. For a given lag q, this model is

seen as

ln(µt) = α0 + α1t+ α2t
2 + α3Maxt + α4 sin(

ωt

2
) + α5 cos(

ωt

2
)

+ γPM10t−q (3.10)

The relative risks and 95% confidence intervals associated with this model will

be shown in Table 3.8. However there may be an accumulated effect of PM10

that is not being picked up by the single lag models. In addition, it is unlikely

that the effects of air pollution are unrelated to pollution concentrations on ad-

jacent weeks, meaning that the effects may be confounded by concentrations at a

different lag. These problems can be overcome using a multiple lag model which

includes PM10 at all the lags. This gives Model (3.11)

ln(µt) = α0 + α1t+ α2t
2 + α3Maxt + α4 sin(

ωt

2
) + α5 cos(

ωt

2
)

+
8∑
q=0

γqPM10t−q (3.11)

The relative risks and 95% confidence intervals associated with this model can

be seen in Table 3.9. In Table 3.8, the relative risks from the single lag models

are very close to one and non-significant at the 5% level meaning there does not

appear to be evidence of a significant relationship between weekly admissions

to hospital and mean weekly PM10 concentrations. Table 3.9 shows the relative
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Lag RR 95% CI
0 0.9990 (0.9855, 1.0129)
1 0.9877 (0.9741, 1.0016)
2 0.9957 (0.9820, 1.0095)
3 1.0014 (0.9877, 1.0153)
4 0.9990 (0.9853, 1.0128)
5 0.9975 (0.9838, 1.0113)
6 1.0054 (0.9918, 1.0193)
7 1.0019 (0.9882, 1.0159)
8 0.9967 (0.9830, 1.0106)

Table 3.8. Relative risks from the sin-
gle lag models

Lag RR 95% CI
0 1.0034 (0.9885, 1.0185)
1 0.9885 (0.9729, 1.0043)
2 0.9987 (0.9829, 1.0148)
3 1.0007 (0.9847, 1.0170)
4 1.0013 (0.9853, 1.0176)
5 0.9984 (0.9824, 1.0146)
6 1.0059 (0.9901, 1.0220)
7 0.9998 (0.9842, 1.0156)
8 0.9965 (0.9816, 1.0115)

Table 3.9. Relative risks from the
multiple lag model

risks from the multiple lag model. Again these relative risks are very close to

one and and are non-significant at the 5% level. However this model suffers from

the problem of collinearity. To overcome this problem, a distributed lag model

will be used to constrain the PM10 estimates to follow a polynomial. This gives

Model (3.12)

ln(µt) = β0 + β1t+ β2t
2 + β3Maxt + β4 sin(

ωt

2
) + β5 cos(

ωt

2
)

+
8∑
q=0

γqPM10t−q (3.12)

where γq =

q∑
k=0

ηkq
k, q = 0, ..., 8

The AICs for this model range from 2023.7 to 2030.0 which are much lower than

the AIC from the single lag models, which ranged from 2612.3 to 2673.5 and the

AIC from the multiple lag model which was 2608.4, which suggests the distributed

lag model is a better fit of the data. Figure 3.26 shows the shape of the relative

risks against lag for orders zero to four, where the solid horizontal line is the

relative risk at power zero, which gives the overall estimated effect of PM10.
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Figure 3.26. The solid line is the relative risk at power zero, the dashed line
represents the null risk of 1, the filled diamonds are the relative risks from the
unconstrained model and the unfilled diamonds are the relative risks from the
distributed lag model

We can see that at powers three and four the relative risk at lag zero is quite high

at approximately 1.02. However this reduces immediately and within two weeks

PM10 apparently has a positive effect on admissions to hospital. If this were

true, it would again suggest that the theory of mortality displacement is true.

However Table 3.10 refutes this belief as none of the p-values for the relative risk

coefficients are significant.



CHAPTER 3. MULTI-CITY STUDY 75

Coefficient Estimate Standard Error P-Value
Intercept 1.717 0.3265 1.45 x 10−07

t 0.04094 0.01206 0.0007
t2 -1.051 x 10−04 3.178 x 10−05 0.0009
Max 0.001638 0.006311 0.7952
sin(ω

2
) -3.3 1.041 0.0015

cos(ω
2
) 0.4796 0.2174 0.0273

η0 0.002125 0.001531 0.1652
η1 -0.002252 0.001931 0.2436
η2 5.968 x 10−04 5.887 x 10−04 0.3107
η3 -4.388 x 10−05 4.844 x 10−05 0.3650
AIC 2028.1

Table 3.10. Results from Model (3.12) using a power of three

3.3.8 Conclusions

In conclusion, weekly admissions to hospital have decreased sharply since 2000,

with some signs of seasonality. Mean weekly PM10 concentrations also decreased

between 2000 and 2005 before starting to rise again, but there does not appear to

be any obvious relationship between the two variables. After removing as much of

the trend and seasonality as possible, PM10 lagged between zero and eight weeks

was added to the model, initially using a series of single lag models. However as

there may have been an accumulated effect of PM10 that was not picked up by

these model, a multiple lag model was next produced. Unfortunately this model

has the problem of collinearity due to the PM10 concentrations being highly

correlated. Therefore a distributed lag model was used, which constrains the

PM10 estimates to follow a polynomial, thus reducing collinearity. The results

found here imply there is no significant relationship between air pollution and

weekly cardiovascular admissions to hospital in Glasgow. As this analysis was

performed on the weekly level, it also eliminated any concerns regarding the ‘day

of the week’ terms. However the pollution data used in this analysis was for

mean weekly PM10 concentrations and therefore it may be worth redoing this

analysis using maximum weekly PM10 values, rather than mean weekly values, as
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any effects of air pollution are more likely to be seen when the concentrations are

higher. After re-doing this analysis, there was still no significant effect of PM10

found. In the next section, the associations between PM10 concentrations and

admissions to hospital in Edinburgh will be discussed.

3.4 Edinburgh

3.4.1 Exploratory Analysis

The exploratory analysis will show plots of daily admissions to hospital, daily

mean PM10 concentrations and daily maximum temperatures.

Health

Figure 3.27 below shows the daily number of admissions to hospital for Edinburgh

between 2000 and 2006, with a smoothed lowess line running through the plot to

show the underlying trend of the data.

Figure 3.27. Daily hospital admissions in Edinburgh from 2000 to 2006



CHAPTER 3. MULTI-CITY STUDY 77

The figure shows an approximately linear decreasing trend in admissions to hos-

pital over the seven years with little sign of any seasonal variation.

Pollution

Figure 3.28 shows the plots of mean weekly PM10 concentrations between 2000

and 2006, while Figure 3.29 shows the relationship between weekly admissions

to hospital against mean weekly PM10 concentrations. In Figure 3.28, the first

thing we notice is the large amount of missing data in 2003, which will be ignored

in the meantime. The underlying trend appears to have decreased slightly over

time and there is one especially high value in 2005 with a few other high values

(concentrations of around 100 µg/m3) in 2000 and 2001.

Figure 3.28. Daily mean PM10 concentrations in Edinburgh from 2000 to 2006
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Figure 3.29. Relationship between daily admissions to hospital and mean daily
PM10 concentrations

There also seem to be some signs of seasonality. However from Figure 3.29 there

does not appear to be any relationship between PM10 concentrations and daily

admissions to hospital in Edinburgh.

Temperature

Figures 3.30, 3.31 and 3.32 show the plots of daily maximum temperature, the

first of which is over time, the second against admissions to hospital, and the

third against daily mean PM10 concentrations.



CHAPTER 3. MULTI-CITY STUDY 79

Figure 3.30. Daily maximum temperatures in Edinburgh between 2000 and
2006

Figure 3.31. Relationship between daily admissions to hospital and daily max-
imum temperature
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Figure 3.32. Relationship between daily mean PM10 concentrations and daily
maximum temperature

Figure 3.30 shows the seasonality that we would expect, with higher temperatures

in summer and lower temperatures in winter. From Figure 3.31, we can see that

there does not appear to be any relationship between temperature and admissions

to hospital in Edinburgh. In addition, from Figure 3.32 there does not appear to

be any relationship between PM10 concentrations and temperature.

3.4.2 Covariate Modelling

The next step is to produce a model that adequately removes any trend, seasonal

variation and correlation within the daily admissions. As admissions to hospital

come in the form of daily counts, models will use the Poisson generalised linear

model used in the previous section. The model produced was Model (3.13)

ln(µt) = α0 + α1t+
6∑
j=1

αj+1DoW
(j)
t (3.13)
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where DoW
(j)
t is an indicator variable for day of the week. A summary of Model

3.13 is shown in Table 3.11.

Coefficient Estimate Standard Error P Value
Intercept 2.110 0.02377 <2 x 10−16

t -0.0001452 1.081 x 10−05 <2 x 10−16

tues -0.05249 0.02857 0.0662
wed -0.06711 0.02868 0.0193
thurs -0.06995 0.02870 0.0148
fri -0.04163 0.02850 0.1440
sat -0.2897 0.030452 <2 x 10−16

sun -0.2727 0.03030 <2 x 10−16

AIC 11904

Table 3.11. Results from model 3.13

We can see that Saturday and Sunday are very significant in the model. Wednes-

day and Thursday are also significant, but Tuesday and Friday are not. However

all the ‘day of the week’ terms must be kept in the model. Figure 3.33 shows

the residuals for this model and Figure 3.34 displays the autocorrelation function

for the residuals. From Figure 3.33 we can see that the data does not appear to

have much seasonality left in the model and in Figure 3.34 most of the lags are

within the 95% confidence bands, suggesting that much of the correlation within

the residuals has now been removed and the model appears to be adequate. Also

the AIC is lower than the AIC for the model containing only a linear function of

time (12066), suggesting this is the best fitted model thus far.
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Figure 3.33. Plot of residuals for Model (3.13)

Figure 3.34. Autocorrelation function from the residuals
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3.4.3 Pollution Modelling

The next step is to add PM10 to the model to estimate its association with

admissions to hospital. We begin with a series of single lag models ranging from

zero to fourteen days (Model (3.14)).

ln(µt) = α0 + α1t+
6∑
j=1

αj+1DoW
(j)
t + γPM10t−q (3.14)

Table 3.12 shows the relative risks and associated 95% confidence interval at each

lag. However, as previously mentioned, there may be an accumulated effect of

PM10 that is not seen from a single lag model and it is unlikely that the the effect

of air pollution on any one day is unrelated to pollution concentrations from

adjacent days. Therefore a multiple lag model containing lags from the previous

14 days would be a sensible next step. This gives model 3.15.

ln(µt) = α0 + α1t+
6∑
j=1

αj+1DoW
(j)
t +

14∑
q=0

γqPM10t−q (3.15)

Table 3.13 shows the relative risks and the 95% confidence interval at each lag. In

Table 3.12, the relative risks are all very close to one and the confidence intervals

all contain one, meaning they are non-significant at the 5% level. Therefore,

there does not appear to be a relationship between PM10 concentrations and

cardiovascular admissions to hospital in Edinburgh. Table 3.13 shows the relative

risks from the multiple lag model. We see that the relative risks are again quite

close to one and all the confidence intervals contain one, again meaning they

are not significant at the 5% level, again suggesting there is no significant effect

of PM10 on cardiovascular admissions to hospital in Edinburgh. However these

intervals are wider than the confidence intervals from the single lag model, which

is most likely due to collinearity caused by the correlated pollution variables. To

try to remove this problem, the same distributed lag model as used previously in

the Glasgow analysis will be applied here, giving Model (3.16).
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Lag RR 95% CI
0 1.0026 (0.9859, 1.0197)
1 1.0077 (0.9910, 1.0247)
2 1.0075 (0.9907, 1.0246)
3 1.0053 (0.9885, 1.0224)
4 0.9918 (0.9749, 1.0090)
5 0.9891 (0.9722, 1.0063)
6 0.9944 (0.9774, 1.0116)
7 1.0021 (0.9853, 1.0192)
8 0.9980 (0.9811, 1.0151)
9 0.9901 (0.9732, 1.0074)
10 0.9844 (0.9674, 1.0016)
11 0.9954 (0.9785, 1.0126)
12 0.9924 (0.9756, 1.0096)
13 1.0053 (0.9884, 1.0224)
14 1.0105 (0.9938, 1.0276)

Table 3.12. Relative risks from the
single lag models

Lag RR 95% CI
0 0.9998 (0.9767, 1.0235)
1 0.9972 (0.9712, 1.0239)
2 1.0047 (0.9790, 1.0310)
3 1.0123 (0.9890, 1.0361)
4 0.9892 (0.9660, 1.0130)
5 0.9964 (0.9729, 1.0204)
6 0.9876 (0.9639, 1.0119)
7 1.0122 (0.9887, 1.0361)
8 0.9917 (0.9686, 1.0153)
9 0.9953 (0.9721, 1.0192)
10 0.9858 (0.9625, 1.0096)
11 0.9993 (0.9759, 1.0233)
12 0.9867 (0.9633, 1.0106)
13 1.0082 (0.9848, 1.0322)
14 1.0138 (0.9924, 1.0356)

Table 3.13. Relative risks from the
multiple lag model

ln(µt) = α0 + α1t+
6∑
j=1

αj+1DoW
(j)
t +

14∑
q=0

γqPM10t−q (3.16)

where γq =

q∑
k=0

ηkq
k, q = 0, ..., 14

The AICs from the above model are approximately 8446 for powers zero to four,

which is much lower than the AICs from the single lag models (10443 to 10494)

or the AIC from the multiple lag model (8487.7) thus suggesting the distributed

lag model is the best fitting. Again we are looking for a power that minimises

collinearity, but whose relative risks give a plausible representation of the lagged

effects of PM10. Figure 3.35 shows the shape of the constrained relative risks at

each lag for powers zero to four.
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Figure 3.35. The solid line is the relative risk at power zero, the dashed line
represents the null risk of 1, the filled diamonds are the relative risks from the
unconstrained model and the unfilled diamonds are the relative risks from the
distributed lag model

The solid horizontal line in the plots indicates the relative risk when the power

is zero, which gives the overall estimated effect of PM10 on cardiovascular admis-

sions to hospital. We can see that the the shape of the relative risks from the

distributed lag models are very different from those found for the Glasgow data.

In particular, at powers two and three the shapes are not biologically plausible.

It seems unlikely that admissions to hospital decrease for the first few days after
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exposure to PM10 and a week later increase again. We can see that the shape of

the relative risks are similar at powers two and three. Also, the relative risks are

always fairly close to one, thus implying there is no significant effect of exposure

to PM10 on admissions to hospital with cardiovascular diseases.

3.4.4 Conclusions

Daily admissions to hospital in Edinburgh have been decreasing approximately

linearly since 2000. PM10 concentrations also appear to have decreased although

it is difficult to tell. However there does not appear to be any obvious relationship

between admissions to hospital and PM10 concentrations. After removing as

much of the trend and cyclicity as possible, PM10 lagged between zero and 14

days was added to the model, initially using a series of single lag models, then a

multiple lag model. However as the multiple lag model suffers from collinearity,

a distributed lag model was also used. From this, there does not appear to

be any significant effect of exposure to PM10 on daily admissions to hospital in

Edinburgh with cardiovascular illnesses. However, it is possible that due to the

small number of admissions in any one day (mean of 6.2), a significant effect may

not have been detected. Therefore the next step is to repeat this analysis with

the admissions to hospital aggregated up to a weekly level and using mean weekly

PM10 concentrations.

3.4.5 Exploratory Analysis - Weekly Admissions

The first step is to produce descriptive plots of weekly data in Edinburgh. These

will include weekly admissions to hospital with cardiovascular illnesses, mean

weekly PM10 concentrations and mean weekly maximum temperatures.

Health

Figure 3.36 shows the numbers of weekly admissions to hospital with a cardiovas-

cular illness in Edinburgh between 2000 and 2006. We can see that between 2000
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and 2002, the number of admissions increased slightly before decreasing sharply

from 2002 onwards. There also appear to be some signs of seasonality, with peaks

every two years in 2002, 2004 and 2006.

Figure 3.36. Weekly hospital admissions in Edinburgh from 2000 to 2006

Pollution

Since the health data for Edinburgh needed to be aggregated up to weekly admis-

sions, it will also be necessary to aggregate up the mean daily PM10 concentrations

to mean weekly concentrations. Figures 3.37 and 3.38 below show plots of mean

weekly PM10 concentrations, the former over time and the latter against weekly

hospital admissions.
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Figure 3.37. Mean weekly PM10 concentrations in Edinburgh

Figure 3.38. Relationship between weekly admissions to hospital and mean
weekly PM10 concentrations
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Figure 3.37 shows the change in mean weekly PM10 concentrations between 2000

and 2006. Pollution levels increased slightly from 2000 to 2002 when they started

decreasing. However in 2005 the concentrations started rising again. There is

quite a lot of missing data in 2003 and during the winter of 2003/04 so at that

point it is difficult to interpret the graph. However the other years seem to

show signs of seasonality. From Figure 3.38, there does not appear to be any

relationship between mean weekly PM10 concentrations and weekly admissions

to hospital.

Temperature

Figures 3.39, 3.40 and 3.41 show plots of the mean weekly maximum temperatures

in Edinburgh, the first plot over time, the second against weekly admissions to

hospital and the last against mean weekly PM10 concentrations.

Figure 3.39. Mean weekly maximum temperature in Edinburgh from 2000 to
2006
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Figure 3.40. Relationship between weekly hospital admissions and mean weekly
maximum temperature

Figure 3.41. Relationship between mean weekly PM10 concentrations and mean
weekly maximum temperature
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From Figure 3.39, we can see that temperature is highly seasonal as expected,

with higher values in summer and lower values in winter. From Figure 3.40 there

does not appear to be any significant relationship between mean temperature

and admissions to hospital with a cardiovascular disease in Edinburgh while Fig-

ure 3.41 shows a slight quadratic curve, with PM10 concentrations increasing at

temperatures below approximately 10◦C and above approximately 15◦C.

3.4.6 Covariate Modelling

The next step is to adequately model the trend, seasonality and correlation in

the data. Once again, a Poisson generalised linear model will be used. From

the exploratory analysis, we saw that the smoothed line in the admissions to

hospital seemed to increase slightly for the first two years, before showing an

approximately linear decreasing trend. Therefore the usual parametric methods

cannot be used here. Also, the cyclicity that can be seen is not regular enough to

allow the use of sinusoidal curves. Instead natural cubic splines with 23 degrees

of freedom will be used to model the trend and any seasonal variation. This value

was chosen, as it minimised the AIC, thus giving Model (3.17)

ln(µt) = α0 + S1(t; 23) (3.17)

Figure 3.42 shows the residuals from Model (3.17) and Figure 3.43 shows the au-

tocorrelation function for the residuals. From Figure 3.42, there does not appear

to be any trend or seasonality left within the residuals and from Figure 3.43,

most of the lags in the autocorrelation function are within the 95% confidence

bands. Therefore it is feasible to suggest that the residuals now resemble white

noise and so we can now proceed with the analysis.
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Figure 3.42. Residuals for Model (3.17)

Figure 3.43. Autocorrelation function for the residuals
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3.4.7 Pollution Modelling

The next step is now to add PM10 to the model to estimate its associations with

admissions to hospital. First, a series of single lag models will be produced and

the results will be presented in Table 3.14 as relative risks for a 10µg/m3 increase

in PM10 concentrations. In addition, the 95% confidence intervals for each lag

will be included in the table. For any given lag q, the single lag model is given as

ln(µt) = α0 + S1(t; 23) + γPM10t−q (3.18)

However as previously mentioned, a single lag model may not be adequate to

model the associations between admissions to hospital and PM10 concentrations,

therefore a multiple lag model containing the PM10 concentrations from the pre-

vious eight weeks will also be produced (Model (3.19))

ln(µt) = α0 + S1(t; 23) +
8∑
q=0

γqPM10t−q (3.19)

The relative risks and 95% confidence intervals from this model are presented in

Table 3.15

Lag RR 95% CI
0 0.9888 (0.9621, 1.0162)
1 1.0057 (0.9787, 1.0334)
2 1.0243 (0.9970, 1.0525)
3 1.0059 (0.9787, 1.0339)
4 0.9993 (0.9721, 1.0273)
5 0.9978 (0.9706, 1.0257)
6 0.9982 (0.9710, 1.0260)
7 0.9979 (0.9706, 1.0260)
8 1.0199 (0.9923, 1.0483)

Table 3.14. Relative risks from single
lag models

Lag RR 95% CI
0 1.0094 (0.9787, 1.0410)
1 1.0074 (0.9769, 1.0388)
2 1.0300 (0.9992, 1.0617)
3 0.9987 (0.9686, 1.0297)
4 1.0109 (0.9810, 1.0418)
5 1.0108 (0.9808, 1.0417)
6 1.0036 (0.9738, 1.0344)
7 0.9789 (0.9496, 1.0090)
8 0.9947 (0.9663, 1.0239)

Table 3.15. Relative risks from multi-
ple lag model

In Table 3.14, we can see that most of the relative risks are fairly close to one with

confidence intervals that contain one, meaning the results are non-significant at

the 5% level. Similarly, in Table 3.15, the relative risks are all close to one and
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non-significant. However the second model suffers from the problem of collinear-

ity, and therefore a sensible next step is to adopt the same distributed lag model

that was used previously, thus giving Model (3.20)

ln(µt) = α0 + S1(t; 23) +
8∑
q=0

γqPM10t−q (3.20)

γq =

q∑
k=0

ηkq
k, q = 0, ..., 8

The AICs for the single lag models range from 2182.0 to 2238.5 and the AIC for

the multiple lag model is 2092.4. The AICs from the distributed lag model are

lower, ranging from 2076.0 to 2080.5, suggesting this is the best fitting model to

date. Figure 3.44 shows the shape of the relative risks at each lag for powers

zero to four. Power zero is represented by the solid horizontal line in each plot

and gives the overall estimated effect of PM10. The shape of the relative risks

at powers one and two are broadly linear while at powers three and four, the

shape is more cubic in nature. At powers three and four, the relative risks at

lags zero and eight are further from the null value of one than the other relative

risks are (approximately 0.985 and 1.02 respectively), but we can see from Table

3.16 that they are actually non-significant, as none of the p-values for the relative

risk coefficients are significant, thus suggesting there is no significant relationship

between weekly admissions to hospital with a cardiovascular illness and mean

weekly PM10 concentrations in Edinburgh.

Coefficient Estimate Standard Error P-Value
Intercept 3.729 0.1425 <2 × 10−16

η0 -0.001404 0.001409 0.3192
η1 0.002141 0.001582 0.1758
η2 -6.542 × 10−04 4.754 × 10−04 0.1688
η3 5.524 × 10−05 3.875 × 10−05 0.1540
AIC 2078.5

Table 3.16. Summary of Model (3.20) with a power of three
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Figure 3.44. The solid line is the relative risk at power zero, the dashed line
represents the null risk of 1, the filled diamonds are the relative risks from the
unconstrained model and the unfilled diamonds are the relative risks from the
distributed lag model

3.4.8 Conclusions

Weekly admissions to hospital increased slightly between 2000 and 2002 before

decreasing. PM10 concentrations also appear to have decreased over the seven

year period although initially there did not appear to be any relationship between
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the two variables. The next step was to use natural cubic splines to remove the

trend and variation. 23 degrees of freedom were chosen as this minimised the

AIC. At this stage, PM10 lagged between zero and eight weeks was added to the

model using a series of single lag models, a multiple lag model and a distributed

lag model. From the results of these models, there does not appear to be any

significant relationship between weekly admissions to hospital and exposure to

PM10. In the next section the relationship between PM10 concentrations and

admissions to hospital in Aberdeen will be considered.

3.5 Aberdeen

3.5.1 Exploratory Analysis

The first step is to produce a series of descriptive plots of the data in Aberdeen,

comprising admissions to hospital, PM10 concentrations and temperature.

Health

Figure 3.45 shows the daily admissions to hospital from cardiovascular illnesses

in Aberdeen between 2000 and 2006. The median number of admissions in any

one day over the seven years was three, with maximum and minimum numbers of

11 and zero respectively. However because the numbers are so low, it is difficult

to gain any useful knowledge. Therefore the admissions will be aggregated up

to weekly admissions. Figure 3.46 shows the weekly numbers of admissions to

hospital in Aberdeen.
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Figure 3.45. Daily admissions to hospital in Aberdeen between 2000 and 2006

Figure 3.46. Weekly admissions to hospital in Aberdeen between 2000 and 2006
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We now see an obvious downward trend to the data, apart from a period in 2002

where the admissions increase slightly. As with admissions to hospital in Glasgow

and Edinburgh, there is very little seasonal variation within the data.

Pollution

Below are plots of mean weekly PM10 concentrations over the seven year period

(Figure 3.47) and weekly admissions to hospital against mean weekly PM10 con-

centrations (Figure 3.48). From Figure 3.47 we can see that PM10 concentrations

seem to decrease until 2002 when they start increasing again, whilst from Fig-

ure 3.48 we can see that there does not appear to be any relationship between

weekly numbers of admissions to hospital and mean weekly PM10 concentrations

in Aberdeen.

Figure 3.47. Mean weekly PM10 concentrations in Aberdeen from 2000 to 2006
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Figure 3.48. Relationship between weekly admissions to hospital and mean
weekly PM10 concentrations

Temperature

Figures 3.49, 3.50 and 3.51 show plots of mean weekly maximum temperatures

in Aberdeen, the first plot over time, the second against weekly admissions to

hospital and the last against mean weekly PM10 concentrations. Figure 3.49

shows the seasonality we expect, with higher temperatures in summer and lower

temperatures in winter. From Figure 3.50, we can see that there does not appear

to be any significant relationship between weekly admissions to hospital and mean

weekly maximum temperature. Finally, Figure 3.51 shows there does not appear

to be any significant relationship between mean weekly PM10 concentrations and

mean weekly maximum temperatures in Aberdeen.
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Figure 3.49. Mean weekly maximum temperatures in Aberdeen from 2000 to
2006

Figure 3.50. Relationship between weekly admissions to hospital and mean
weekly maximum temperature
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Figure 3.51. Relationship between mean weekly PM10 concentrations and mean
weekly maximum temperature

3.5.2 Covariate Modelling

The next step is to produce a model that adequately removes any trend, season-

ality and correlation from the data. As admissions to hospital in Aberdeen show

a more subtle trend than either a linear or a quadratic trend the usual parametric

methods will not work here. Also, there is very little seasonality, and what vari-

ation there is, is not regular. Therefore sine and cosine terms are not useful in

this context. Instead, to remove the trend and seasonal variation, natural cubic

splines will be used. 20 degrees of freedom were chosen as this was the model

with the lowest AIC. Thus Model (3.21) will be

ln(µt) = α0 + S1(t; 20) (3.21)

Figure 3.52 shows the residuals from this model while Figure 3.53 shows the
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Figure 3.52. Plot of residuals from Model (3.21)

Figure 3.53. Autocorrelation function from the residuals
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autocorrelation function for the residuals. From Figure 3.52 we can see that the

residuals appear to be evenly scattered about zero with no trend or seasonality.

From Figure 3.53 we can see that there are more significant negative correlations

than there were for Glasgow and Edinburgh. However most of the lags are within

the 95% confidence bands, thus suggesting most of the correlation within the

residuals has been removed.

3.5.3 Pollution Modelling

The next step is to add PM10 to the model to estimate its association with

admissions to hospital. First a series of single lag models, ranging from lag zero

to lag eight, will be produced. At any given lag, the single lag models will be

given by

ln(µt) = α0 + S1(t; 20) + γPM10t−q (3.22)

Table 3.17 shows the relative risks from this model. In addition, the 95% con-

fidence intervals for the relative risks will be given for each lag. However, for

reasons previously outlined, single lag models may not be adequate to model the

effects of PM10. Therefore a multiple lag model, with lags ranging from zero to

eight, will also be produced, giving Model (3.23)

ln(µt) = α0 + S1(t; 20) +
8∑
q=0

γqPM10t−q (3.23)

The relative risks for this model are presented in Table 3.18 along with the 95%

confidence intervals at each lag.
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Lag RR 95% CI
0 1.0045 (0.9715, 1.0386)
1 1.0319 (0.9983, 1.0667)
2 1.0041 (0.9710, 1.0383)
3 0.9956 (0.9620, 1.0303)
4 0.9907 (0.9579, 1.0246)
5 1.0131 (0.9799, 1.0474)
6 1.0005 (0.9677, 1.0345)
7 0.9992 (0.9661, 1.0335)
8 0.9996 (0.9668, 1.0335)

Table 3.17. Relative risks from the
single lag models

Lag RR 95% CI
0 0.9971 (0.9612, 1.0344)
1 1.0403 (1.0023, 1.0798)
2 1.0018 (0.9646, 1.0404)
3 0.9949 (0.9577, 1.0335)
4 0.9834 (0.9474, 1.0208)
5 1.0130 (0.9762, 1.0512)
6 1.0038 (0.9670, 1.0421)
7 1.0077 (0.9707, 1.0460)
8 1.0029 (0.9675, 1.0396)

Table 3.18. Relative risks from the
multiple lag model

In Table 3.17, the relative risks are all close to one and non-significant at the 5%

level, meaning there does not appear to be any significant relationship between

exposure to PM10 and cardiovascular admissions to hospital in Aberdeen. Also,

most of the relative risks in Table 3.18 are all non-significant and close to one,

apart from the relative risk at lag 1 which is 1.04. However the second model

suffers from the problem of collinearity meaning the relative risks may not be

reliable. Therefore a distributed lag model will be produced to try to reduce this

problem. This gives Model (3.24)

ln(µt) = α0 + S1(t; 20) +
8∑
q=0

γqPM10t−q (3.24)

where γq =

q∑
k=0

ηkq
k, q = 0, ..., 8

As for the Glasgow and Edinburgh data, the AICs from the distributed lag model

(1895.4 to 1900.7) are lower than those for the single lag models (1970.2 to 2022.0)

or the multiple lag model (1906.3) thus suggesting the distributed lag model is the

best fitting. Figure 3.54 shows the shape of the relative risks for the distributed

lag model at powers zero to four at each lag. The dashed horizontal line is the

null value of one and the solid horizontal line gives the relative risks at power

zero, which is an overall estimate of the effect of PM10. The shape of the relative

risks from powers two and three are very similar, while the shape of the relative
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Figure 3.54. The solid line is the relative risk at power zero, the dashed line
represents the null risk of 1, the filled diamonds are the relative risks from the
unconstrained model and the unfilled diamonds are the relative risks from the
distributed lag model

risks from powers one and four are different. In particular the shape of the relative

risks at power four is biologically implausible as it is unlikely the relative risks

would fluctuate as widely as they do here. All the relative risks at powers one, two

and three are fairly close to one, thus implying there is no significant relationship

between cardiovascular admissions to hospital and exposure to PM10.
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3.5.4 Conclusion

As the number of daily admissions in Aberdeen are so small, the data needed to

be aggregated up to weekly levels. We could see an obvious decrease in weekly

admissions over the years, apart from a period in 2002 when admissions increased

slightly. Mean weekly PM10 concentrations initially decreased from 2000 to 2002,

after which they increased considerably. At first, there does not appear to be

any obvious relationship between admissions to hospital, PM10 concentrations

or temperature. The next step was to try to remove as much of the trend and

variation in the data as possible. This was done using natural cubic splines with

20 degrees of freedom, chosen to minimise the AIC. PM10 concentrations were

then added for lags of zero up to eight weeks, using single lag models, a multiple

lag model and a distributed lag model. The results from each model suggest

there does not appear to be any significant relationship between cardiovascular

admissions to hospital and exposure to PM10 in Aberdeen.

The next section will give a comparison of the three cities, comprising both the

data available for each city and the results from each city.

3.6 Comparison of the Three Cities

A direct comparison of Glasgow, Edinburgh and Aberdeen will be seen in this

section. Only Glasgow and Edinburgh were analysed using daily data, while all

three cities were studied using weekly data. Therefore the comparison will look

at weekly admissions to hospital and mean weekly PM10 concentrations.
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3.6.1 Comparison of Exploratory Plots

First the weekly admissions to hospital will be compared for the three cities,

followed by a comparison of the mean weekly PM10 concentrations.

Health

Figures 3.55, 3.56 and 3.57 show boxplots of weekly admissions to hospital per

100 000 population for each year in the three cities, Glasgow, Edinburgh and

Aberdeen.

Figure 3.55. Yearly hospital admissions per 100 000 population in Glasgow
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Figure 3.56. Yearly hospital admissions per 100 000 population in Edinburgh

Figure 3.57. Yearly hospital admissions per 100 000 population in Aberdeen
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We can see that in Glasgow the median number of admissions per 100 000 pop-

ulation in 2000 was approximately 15 with a maximum of 19 and minimum of

11. This reduces over the years to approximately 11 admissions in 2006 with a

maximum and minimum of 13 and seven respectively. In Edinburgh, the admis-

sions increased slightly from a median of 10 in 2000 (maximum and minimum

of 13 and seven) to 11 in 2001 (maximum and minimum of 14 and eight) before

decreasing again. By 2006 the median admissions per 100 000 had decreased

to approximately eight with a maximum of 10 and minimum of four. Aberdeen

shows a similar decrease in admissions to Glasgow with a median of 13 per 100

000 in 2000 decreasing to approximately nine in 2006. However Aberdeen also

shows a much wider range of admissions. In 2000, the maximum number of ad-

missions was approximately 17 and the minimum was seven, while in 2006 the

maximum and minimum admissions were approximately 13 and four respectively.

Figure 3.58 shows a smoothed lowess line for the number of admissions per 100

000 population over time in the three cities. The solid line represents Glasgow,

the dashed line is Edinburgh and the dotted line is for Aberdeen. We can see

that although cardiovascular admissions to hospital have decreased in all three

cities, Glasgow has the greatest number of admissions while Edinburgh has the

least. However Glasgow’s admissions have decreased more rapidly than either of

the other two cities, and by the end of 2006, had a similar number of admissions

to Aberdeen.
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Figure 3.58. Admissions per 100 000 population over time in the three cities.
The solid line represents Glasgow, the dashed line is Edinburgh and the dotted
line is for Aberdeen.

Pollution

Figure 3.59 shows boxplots of the overall mean PM10 concentrations in Glasgow,

Edinburgh and Aberdeen.
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Figure 3.59. Boxplot of PM10 concentrations in the 3 Cities

We can see that the PM10 concentrations are very similar for the three cities

although Glasgow is slightly higher than the other two cities. However these

boxplots show the median pollution concentrations over the seven years and do

not give any indication of the pollution levels in each individual year. Figures

3.60, 3.61 and 3.62 below show yearly boxplots of pollution concentrations for

each of the three cities.
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Figure 3.60. Yearly PM10 Concentrations in Glasgow

Figure 3.61. Yearly PM10 Concentrations in Edinburgh
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Figure 3.62. Yearly PM10 Concentrations in Aberdeen

We can see that PM10 concentrations do not appear to have changed much in

Glasgow over the seven year period. They decreased slightly until 2003, af-

ter which they appear to have remained fairly steady. In Edinburgh the PM10

increased slightly between 2000 and 2002 after which they decreased again, stay-

ing fairly steady for a while before increasing slighly in 2006 while in Aberdeen

the PM10 concentrations decreased between 2000 and 2001 when they remained

steady before increasing again in 2003. It is unknown why pollution levels sud-

denly increased they way they did and is an area for further research.
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3.6.2 Comparison of Results

This section compares the modelling process and the results for the three cities.

Before adding PM10 to any of my models, it was necessary to remove as much of

the seasonality and trend as possible so that any effect that could be seen would

be the effect of pollution. In order to do a direct comparison, the results from

the models using natural cubic splines in each city will be used. In Glasgow,

22 degrees of freedom were used to remove the trend and seasonality while in

Edinburgh 23 degrees of freedom were used and the Aberdeen model used 20

degrees of freedom. Tables 3.19, 3.20 and 3.21 show the relative risks and 95%

confidence intervals from the single lag models from each of the three cities.

Lag RR 95% CI
0 0.9977 (0.9832, 1.0123)
1 1.0145 (1.0000, 1.0292)
2 1.0027 (0.9882, 1.0173)
3 1.0051 (0.9906, 1.0198)
4 1.0008 (0.9863, 1.0155)
5 1.0132 (0.9986, 1.0279)
6 1.0203 (1.0057, 1.0351)
7 0.9978 (0.9832, 1.0125)
8 0.9895 (0.9750, 1.0042)

Table 3.19. Relative risks from the
single lag models for Glasgow

Lag RR 95% CI
0 0.9888 (0.9621, 1.0162)
1 1.0057 (0.9787, 1.0334)
2 1.0243 (0.9970, 1.0525)
3 1.0059 (0.9787, 1.0339)
4 0.9993 (0.9721, 1.0273)
5 0.9978 (0.9706, 1.0257)
6 0.9982 (0.9710, 1.0260)
7 0.9979 (0.9706, 1.0260)
8 1.0199 (0.9923, 1.0483)

Table 3.20. Relative risks from the
single lag models for Edinburgh

Lag RR 95% CI
0 1.0045 (0.9715, 1.0386)
1 1.0319 (0.9983, 1.0667)
2 1.0041 (0.9710, 1.0383)
3 0.9956 (0.9620, 1.0303)
4 0.9907 (0.9579, 1.0246)
5 1.0131 (0.9799, 1.0474)
6 1.0005 (0.9677, 1.0345)
7 0.9992 (0.9661, 1.0335)
8 0.9996 (0.9668, 1.0335)

Table 3.21. Relative risks from the single lag models for Aberdeen
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Glasgow is the only city to have any significant relative risks. Although Edin-

burgh and Aberdeen both have a particularly high relative risk at lags two and

one respectively, they are non significant at the 5% level. The other relative risks

are very close to one with narrow confidence intervals. The confidence intervals

for the relative risks from the Aberdeen data are wider than those for the Glasgow

or Edinburgh data, although this is likely due to the smaller numbers of admis-

sions in this city. However it is unlikely that PM10 on only one day will have a

significant effect on health so multiple lag models were produced, containing the

mean weekly PM10 concentrations from the previous eight weeks. Tables 3.22,

3.23 and 3.24 show the relative risks from the multiple lag model for each of the

three cities.

Lag RR 95% CI
0 0.9993 (0.9835, 1.0153)
1 1.0203 (1.0041, 1.0368)
2 0.9952 (0.9787, 1.0119)
3 1.0115 (0.9949, 1.0284)
4 1.0000 (0.9837, 1.0167)
5 1.0106 (0.9941, 1.0273)
6 1.0206 (1.0039, 1.0375)
7 0.9985 (0.9823, 1.0148)
8 0.9957 (0.9798, 1.0119)

Table 3.22. Relative risks from the
multiple lag model for Glasgow

Lag RR 95% CI
0 1.0094 (0.9787, 1.0410)
1 1.0074 (0.9769, 1.0388)
2 1.0300 (0.9992, 1.0617)
3 0.9987 (0.9686, 1.0297)
4 1.0109 (0.9810, 1.0418)
5 1.0108 (0.9808, 1.0417)
6 1.0036 (0.9738, 1.0344)
7 0.9789 (0.9496, 1.0090)
8 0.9947 (0.9663, 1.0239)

Table 3.23. Relative risks from the
multiple lag model for Edinburgh

Lag RR 95% CI
0 0.9971 (0.9612, 1.0344)
1 1.0403 (1.0023, 1.0798)
2 1.0018 (0.9646, 1.0404)
3 0.9949 (0.9577, 1.0335)
4 0.9834 (0.9474, 1.0208)
5 1.0130 (0.9762, 1.0512)
6 1.0038 (0.9670, 1.0421)
7 1.0077 (0.9707, 1.0460)
8 1.0029 (0.9675, 1.0396)

Table 3.24. Relative risks from the multiple lag model for Aberdeen
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Both Glasgow and Aberdeen have a significant relative risk at lag one, with Glas-

gow showing a 2% increase in cardiovascular admissions to hospital and Aberdeen

showing a 4% increase. Also Glasgow shows a significant relative risk at lag six,

which shows a 2% increase in admissions to hospital. Other than these, none of

the results are significant, thus suggesting the significant relative risks are simply

a result of multiple testing and are actually non-significant. It should be noted

that the confidence intervals are wider than those from the single lag models.

This is likely to be due to collinearity which was overcome using distributed lag

models. However the results from the distributed lag models also showed no sig-

nificant effect of exposure to PM10 on cardiovascular admissions to hospital.

In conclusion, after adding PM10 to the models, there was no significant effect

on admissions to hospital in any of the three cities. This could simply be due to

the fact that exposure to PM10 does not have any effect on admissions to hospi-

tal with cardiovascular diseases. However previous studies have found significant

effects which suggests that either there is a threshold concentration below which

PM10 does not have any significant effect on cardiovascular illnesses and PM10

concentrations in Glasgow, Edinburgh and Aberdeen and within this threshold,

or the data available were not suitable for this study.



Chapter 4

Glasgow Sub-Category Analyses

In the previous chapter we found that there was no significant effect of expo-

sure to PM10 on admissions to hospital with cardiovascular diseases in Glasgow,

Edinburgh or Aberdeen. These analyses were carried out for CHD and stroke

combined and it would be of interest to perform separate analyses for each of

these two conditions. However this will involve subsetting the admissions data,

and only Glasgow has a large enough number of admissions to give robust results.

Therefore this chapter focuses exclusively on Glasgow. There were 26 857 ad-

missions to hospital with a cardiovascular illness in Glasgow, between 2000 and

2006, of which 68.8% were from CHD and 31.2% were from stroke.

There have been a number of studies carried out assessing the effects of pol-

lution on males and females separately, many of which have found a significant

effect of air pollution in women, but not in men. Therefore in addition to a

CHD/stroke split, two subanalyses will be carried out on the Glasgow data to

investigate whether or not there is any evidence of a gender specific effect. The

proportion of men and women being admitted into hospital with cardiovascular

diseases between 2000 and 2006 was similar, with 52.6% of the total admissions

being men and 47.4% women.

A third split of the data we consider concerns age. Elderly people are more

117
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likely to be at risk of suffering from multiple illness, which makes it difficult to

diagnose a primary cause of death or admission. Therefore it may also be in-

sightful to analyse only data for the younger population. While many studies

consider this age group to be under 65, there are not enough daily admissions to

give robust results (40.7% of the total number of admissions). Therefore we will

investigate the effects of PM10 on the under 75s, which consists of 67.5% of the

available admissions.

Air pollution is commonly believed to aggravate symptoms in people who have

already had a cardiovascular or respiratory illness. However we are interested in

determining whether air pollution also has a negative effect on people who have

never been admitted to hospital with a cardiovascular illness. Therefore we also

focus on first time admissions only. Finally, although the majority of this thesis

looks at the effects of air pollution on cardiovascular morbidity, cardiovascular

mortality is also of interest. Therefore we investigate the effects of PM10 on mor-

tality due to CHD and stroke separately for all ages.

This chapter will be split into five sections, the first of which will focus on anal-

yses concerning admissions to hospital from both CHD and stroke, while Section

4.2 will investigate several analyses relating solely to CHD and Section 4.3 will

consider analyses related to admissions to hospital from stroke. Section 4.4 will

look at respiratory illnesses, in particular emergency admissions to hospital with

asthma while the final section focuses on the effectiveness of the current air pollu-

tion limit values. Many of the subgroups to be analysed do not have large enough

numbers of daily admissions to hospital. Therefore the analyses will be carried

out using weekly data.
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4.1 Breakdown of Cardiovascular Admissions

In this section, cardiovascular admissions to hospital will be broken down into

groups, the first of which will be admissions to hospital amongst the male popu-

lation while the second will investigate the relationship between PM10 and people

who are being admitted to hospital with a cardiovascular illness for the first time.

As the admissions to hospital come in the form of counts, the same Poisson gen-

eralised linear models will be used as in Chapter 3, for example equation (3.1).

4.1.1 Males

Exploratory Analysis

We start by producing a series of descriptive plots of the data for males. Figure

4.1 shows the weekly admissions to hospital among the male population between

2000 and 2006 with a smoothed lowess line to show the underlying trend in the

data, while Figures 4.2 and 4.3 show the relationship between cardiovascular ad-

missions to hospital among males and mean weekly PM10 concentrations and

mean weekly maximum temperature respectively.

From Figure 4.1 we can see that there is an approximately linear decreasing

trend in hospital admissions with little seasonal variation and Figures 4.2 and

4.3 show us that there does not appear to be any significant relationship between

admissions to hospital among males and either mean weekly PM10 concentrations

or mean weekly maximum temperature.
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Figure 4.1. Weekly admissions to hospital among males
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Figure 4.2. Relationship between weekly admissions to hospital among males
and mean weekly PM10 concentrations

Figure 4.3. Relationship between weekly admissions to hospital among males
and mean weekly maximum temperature

Covariate Modelling

The next stage is to remove the prominent trend in the data and initially a linear

function of time was included in the model. However this did not remove all the

underlying trend so instead natural cubic splines with 14 degrees of freedom were

used. The 14 degrees of freedom were chosen as this minimised the AIC. Mean

weekly maximum temperature was also added to the model as it was significantly

related to weekly admissions. A summary of this model can be seen in Table 4.1.
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Coefficient Estimate Standard Error P-Value
Intercept 3.683356 0.063013 <2 × 10−16

max -0.012542 0.004012 0.0018
AIC 2216.7

Table 4.1. Summary of the model for males

Figure 4.4 shows the residuals from this model, which appear to be evenly scat-

tered about zero with no obvious pattern. In addition Figure 4.5 shows the

autocorrelation function for the residuals in which most of the lags are within the

95% confidence bands, thus suggesting the model is adequate.

Pollution Modelling

The next step is to add mean weekly PM10 concentrations to the model. Previ-

ously, a series of single lag models were investigated followed by a multiple lag

model and finally a distributed lag model. However for brevity in these subanal-

yses, only the distributed lag model is used, details of which are given in Chapter

3, equation (3.8). Figure 4.6 shows the shape of the relative risks for powers zero

to four under the distributed lag model, where the solid horizontal line is the

relative risk at zero, which forces the risks at all lags to be equal.
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Figure 4.4. Residuals from the model of male admissions to hospital

Figure 4.5. Autocorrelation function for the residuals
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Figure 4.6. The solid line is the relative risk at power zero, the dashed line
represents the null risk of 1, the filled diamonds are the relative risks from the
unconstrained model and the unfilled diamonds are the relative risks from the
constricted distributed lag model

We can see that most of the relative risks are close to one, although for powers

three and four the relative risks are fairly high at about lags five and six, being

approximately 1.015 (Ballester et al. (2006) reported a relative risk of 1.009).

However none of the relative risk coefficients are significant, thus implying that

the high relative risks are non significant.



CHAPTER 4. GLASGOW SUB-CATEGORY ANALYSES 125

Conclusions

From this analysis we conclude that weekly admissions to hospital among males

have decreased between 2000 and 2006, but there does not appear to be any

obvious relationship between admissions to hospital and mean weekly PM10 con-

centrations. At powers three and four, the distributed lag model showed some

high relative risks at lags five and six although these results were non significant,

suggesting that there does not appear to be any relationship between exposure

to PM10 and hospital admissions due to cardiovascular diseases among males.

The relationship between exposure to PM10 and cardiovascular admissions to

hospital among females was also investigated and again, no significant relation-

ship was found. This analysis can be seen in Appendix A. The next section will

try to determine whether or not there is a relationship between exposure to PM10

and people who are being admitted to hospital with a cardiovascular illness for

the first time. This subgroup is restricted to people under 75 years of age, and

comprises 43.5% of the overall numbers of admissions to hospital in Glasgow.

4.1.2 1st Admissions

Exploratory Analysis

As before, the first stage of the analysis is producing descriptive plots of the

data. Figure 4.7 below shows the weekly numbers of patients who were admitted

to hospital with a cardiovascular illness for the first time. As with the male ad-

missions, the numbers have been decreasing approximately linearly from 2000 to

2006, with some discernable seasonality. Figures 4.8 and 4.9 show the relation-

ships between first admissions to hospital and mean weekly PM10 concentrations

and mean weekly maximum temperature respectively. We can see that there does

not appear to be any obvious relationship between the variables.
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Figure 4.7. Weekly numbers of patients being admitted to hospital with a
cardiovascular illness for the first time

Figure 4.8. Relationship between first admissions to hospital and mean weekly
PM10 concentrations
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Figure 4.9. Relationship between first admissions to hospital and mean weekly
maximum temperature

Covariate Modelling

The next step is to produce a model that removes the trend and seasonality in

the data. As a linear time trend was not suitable in this case, natural cubic

splines with 17 degrees of freedom were used to model the trend and seasonality.

17 degrees of freedom were chosen as this minimised the AIC. Figures 4.10 and

4.11 below show the plots of the residuals for this model and the autocorrelation

function for the residuals. We can see that the residuals appear to be scattered

evenly about zero with no obvious pattern, and within the autocorrelation func-

tion, most of the lags are within the 95% confidence bands, thus suggesting the

residuals now resemble white noise. Therefore we can continue with the modelling

process.
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Figure 4.10. Residuals from the model of first admissions to hospital

Figure 4.11. Autocorrelation function for the residuals
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Pollution Modelling

The next step is to add PM10 concentrations to the model using a distributed lag

model. Figure 4.12 shows the shape of the relative risks from the distributed lag

model at powers zero to four.

Figure 4.12. The solid line is the relative risk at power zero, the dashed line
represents the null risk of 1, the filled diamonds are the relative risks from the
unconstrained model and the unfilled diamonds are the relative risks from the
distributed lag model
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The solid horizontal line in each plot represents the relative risk at power zero,

which is the overall estimated effect of exposure to PM10. We can see that while

most of the relative risks are fairly near one, at power three the relative risk at lag

zero, and at power four the relative risk at lag 6 are comparatively high, being

approximately 1.01. However the results are actually non-significant, meaning

that there does not appear to be any significant relationship between exposure

to PM10 and people who are being admitted to hospital with a cardiovascular

illness for the first time.

Conclusions

In conclusion the weekly numbers of patients who have been admitted to hospital

with a cardiovascular illness for the first time decreased between 2000 and 2006

and showed some signs of seasonality, but they did not appear to have any obvious

relationship with mean weekly PM10 concentrations. After using natural cubic

splines to model the trend, PM10 was added to a distributed lag model. Most of

the relative risks from this model were close to one, although there were a couple

of comparatively high relative risks. However these were non-significant, meaning

that there does not appear to be any significant relationship between exposure

to PM10 and first admissions to hospital with a cardiovascular illness.

4.2 CHD Data

This section contains analyses relating only to CHD. Section 4.2.1 shows the

analysis for all admissions to hospital with CHD while Section 4.2.2 is related to

mortality from CHD. The analysis of admissions to hospital with CHD among

patients under 75 years of age is similar to the analysis of admissions to hospital

with CHD among patients of all ages, while the analysis for people who have been

admitted to hospital with CHD for the first time is similar to that of patients

who have been admitted to hospital with a cardiovascular illness for the first

time. Therefore these analyses will not be shown here, and can instead be seen
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in Appendix A.

4.2.1 All Ages

Exploratory Analysis

We begin by producing a series of exploratory plots relating to admissions to hos-

pital with CHD. Figure 4.13 shows the number of weekly admissions to hospital

over time, while Figures 4.14 and 4.15 show the relationship between admissions

to hospital and mean weekly PM10 concentrations and mean weekly maximum

temperature respectively.

Figure 4.13. Weekly admissions to hospital with CHD
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Figure 4.14. Relationship between weekly admissions to hospital with CHD
and mean weekly PM10 concentrations

Figure 4.15. Relationship between weekly admissions to hospital with CHD
and mean weekly maximum temperature
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From Figure 4.13, we can see that weekly admissions to hospital with CHD

decreased from 2000 to 2006, except for a period in 2001 where the number of

admissions appeared to stay steady. Also there does not appear to be much

seasonality in the plot. From Figures 4.14 and 4.15 we can see that there does

not appear to be any obvious relationship between admissions to hospital with

CHD and either mean weekly PM10 concentrations or mean weekly maximum

temperature.

Covariate Modelling

The next step is to produce a model that adequately removes the trend and

seasonality in the data. While there is a downward trend to the data, it is not

a linear trend and so a linear function of time cannot be used. Instead, natural

cubic splines with 16 degrees of freedom will be used to model this trend, with

the number of degrees of freedom chosen to minimise the AIC. Figures 4.16 and

4.17 show the residuals for this model and the autocorrelation function from

the residuals. PM10 to the model. From Figure 4.16 the residuals appear to

be well scattered about zero, with constant variance. Also there does not seem

to be any seasonality or trend. In Figure 4.17, most of the lags are within the

95% confidence band suggesting the correlation with the residuals has now been

remove, and therefore we can now continue the analysis by adding

Pollution Modelling

The next step is to add PM10 to the model. This will be done using a distributed

lag model to constrain the estimates and so reduce collinearity. Figure 4.18 shows

the shape of the relative risks from the distributed lag model at powers zero to

four, where the solid horizontal line in each plot is the relative risk at power

zero, which gives the overall estimate of the effect of PM10. At each power the

relative risks from the distributed lag model are quite close to one apart from at

lag eight for powers three and four, where the relative risks are approximately

0.985. However this is still fairly close to one and it seems unlikely that there
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Figure 4.16. Residuals from the model of admissions to hospital with CHD

Figure 4.17. Autocorrelation function for the residuals
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will be a strong effect of PM10 two months after exposure. Also, the relative risks

are non-significant, and so we can conclude there is no significant relationship

between exposure to PM10 and admissions to hospital with CHD.

Figure 4.18. The solid line is the relative risk at power zero, the dashed line
represents the null risk of 1, the filled diamonds are the relative risks from the
unconstrained model and the unfilled diamonds are the relative risks from the
distributed lag model
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Conclusions

To conclude, weekly admissions to hospital with CHD decreased between 2000

and 2006 apart from a period in 2001 where admissions stayed steady. During

the modelling process, natural cubic splines were used to remove the trend and

seasonality. After adding PM10 concentrations to the distributed lag model, we

saw that most of the relative risks were quite close to one, thus suggesting that

there does not appear to be any statistically significant effect of PM10 on admis-

sions to hospital with CHD in Glasgow. The next section will investigate the

relationship between exposure to PM10 and mortality from CHD.

4.2.2 Mortality

Exploratory Analysis

Once again, the first step in this analysis is to produce a set of exploratory plots

for mortality from CHD. Figure 4.19 shows the numbers of weekly deaths from

CHD between 2000 and 2006 while Figures 4.20 and 4.21 show the relationships

between weekly mortality from CHD and mean weekly PM10 concentrations and

mean weekly maximum temperatures respectively. From Figure 4.19 we can see

that mortality from CHD has decreased approximately linearly over the years and

is seasonal with more deaths in winter than summer. Figure 4.21 shows a slight

relationship between weekly mortality from CHD and mean weekly maximum

temperature, where the number of deaths decreases as temperature increases,

which could account for this seasonality. However Figure 4.20 shows no obvious

relationship between weekly deaths from CHD and mean weekly PM10 concen-

trations.
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Figure 4.19. Weekly numbers of deaths from CHD

Figure 4.20. Relationship between weekly deaths from CHD and mean weekly
PM10 concentrations
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Figure 4.21. Relationship between weekly deaths from CHD and mean weekly
maximum temperature

Covariate Modelling

Next we wish to produce a model that removes as much of the trend and sea-

sonality in the data as possible. Originally fixed functions were added to the

model, but this did not remove all of the seasonality and therefore natural cubic

splines with 19 degrees of freedom were used instead to remove the trend and

variation. Figure 4.22 shows the residuals from this model and Figure 4.23 shows

the autocorrelation function for the residuals. We can see that the residuals are

well scattered about zero, with constant variance and there does not appear to

be any seasonality or trend, while in the autocorrelation function most of the

lags are within the 95% confidence bands. This implies most of the correlation

within the residuals has been removed and suggests the residuals now resemble

white noise. Therefore we can continue with the modelling process.
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Figure 4.22. Residuals from the model of deaths from CHD

Figure 4.23. Autocorrelation function for the residuals



CHAPTER 4. GLASGOW SUB-CATEGORY ANALYSES 140

Pollution Modelling

The next step was to add PM10 to the model. As before, a distributed lag model

is used. Figure 4.24 shows the shape of the relative risks from the distributed lag

model at lags zero to eight, for powers zero to four. Power zero is represented

by the solid horizontal line in each of the plots and gives the estimated effect of

PM10.

Figure 4.24. The solid line is the relative risk at power zero, the dashed line
represents the null risk of 1, the filled diamonds are the relative risks from the
unconstrained model and the unfilled diamonds are the relative risks from the
distributed lag model
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Around lags zero, one and two, the relative risks are fairly low, especially at

power four, where they are approximately 0.99. However the relative risks are

not significant, meaning that there does not appear to be any relationship between

cardiovascular mortality and exposure to PM10.

Conclusions

To conclude, the weekly numbers of deaths from CHD has decreased since 2000

and we saw that it was quite seasonal, with more deaths in winter than in summer.

We also saw a slight relationship between weekly mortality from CHD and mean

weekly maximum temperature, with the number of deaths decreasing with the

higher temperatures. During the modelling process, natural cubic splines were

used to remove the trend and seasonality, after which PM10 was added to a

distributed lag model. The relative risks from the model shows some fairly low

values at lags zero, one and two, particularly for powers three and four. However

the overall effect of PM10 was fairly close to one, and the relative risks were non-

significant, implying that there is no statistically significant effect of exposure to

PM10 on mortality from CHD.

4.3 Stroke Data

This section covers analyses relating solely to admissions to hospital with stroke.

Unfortunately, mortality from stroke and first admissions to hospital with stroke

could not be analysed as the weekly numbers were too low. The median weekly

number of deaths from stroke was 7 and the maximum was 19, while the median

number of patients being admitted to hospital with stroke for the first time was

12 with a maximum of 23 per week. Therefore this section will only contain

the analysis for admissions to hospital among patients of all ages. The analysis

of admissions to hospital among patients under 75 years of age can be found in

Appendix A.
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4.3.1 All Ages

Exploratory Analysis

The first step is to produce a series of exploratory plots. Figure 4.25 shows the

weekly admissions over time while Figures 4.26 and 4.27 show the relationships

between weekly admissions to hospital and mean weekly PM10 concentrations

and mean weekly maximum temperatures respectively. From Figure 4.25 we

can see that admissions to hospital stayed steady until around 2004 after which

there was a slight decrease. Also the admissions appear to be very seasonal with

more admissions in the early part of the year. However from Figures 4.26 and

4.27 there does not appear to be any relationship between weekly admissions to

hospital with stroke and either mean weekly PM10 concentrations or mean weekly

maximum temperature.

Figure 4.25. Weekly admissions to hospital with stroke



CHAPTER 4. GLASGOW SUB-CATEGORY ANALYSES 143

Figure 4.26. Relationship between weekly admissions to hospital with stroke
and mean weekly PM10 concentrations

Figure 4.27. Relationship between weekly admissions to hospital with stroke
and mean weekly maximum temperatures
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Covariate Modelling

The next stage is to produce a model that adequately removes as much of the

trend and seasonality in the data as possible. Admissions to hospital with stroke

show a downward trend to the data, but it is not a linear trend and so a linear

function of time cannot be used. Instead, natural cubic splines with 17 degrees

of freedom will be used to model the trend and seasonality. The 17 degrees

of freedom were chosen to minimises the AIC. Figure 4.28 shows the residuals

from this model while Figure 4.29 shows the autocorrelation function for the

residuals. The residuals seem to be scattered evenly about zero with no obvious

pattern while most of the lags in the autocorrelation function are within the 95%

confidence lags. This suggests the model is adequate and we can now continue

with the modelling process.

Figure 4.28. Residuals from the model of admissions to hospital with stroke
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Figure 4.29. Autocorrelation function for the residuals

Pollution Modelling

The next step is to add PM10 to the model using a distributed lag model. Figure

4.30 shows the shape of the relative risks from the distributed lag model at

lags zero to eight for powers zero to four. The relative risks for power zero are

represented by the solid horizontal line in each plot and gives the estimated effect

of exposure to PM10. We can see that the relative risks from the distributed

lag model are all higher than one except at lag eight, which is much lower at

approximately 0.98. However the relative risk coefficients are non-significant

meaning that there is no significant effect of exposure to PM10 on admissions to

hospital with stroke.
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Figure 4.30. The solid line is the relative risk at power zero, the dashed line
represents the null risk of 1, the filled diamonds are the relative risks from the
unconstrained model and the unfilled diamonds are the relative risks from the
distributed lag model

Conclusions

In conclusion, the weekly number of admissions to hospital with stroke have

decreased over time and are very seasonal although there does not appear to be

any obvious relationship between weekly admissions to hospital with stroke and

mean weekly PM10 concentrations. After using natural cubic splines to remove
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the trend and seasonality, PM10 was added to the model using a distributed lag

model. The relative risks from this model were all greater than one, except at

lag eight. However the relative risk coefficients were non-significant meaning that

there was no statistically significant effect of PM10 on admissions to hospital with

stroke seen in Glasgow.

4.4 Respiratory Admissions

4.4.1 Asthma

The analysis in this section investigates the relationship between weekly num-

bers of emergency admissions to hospital with asthma and mean weekly PM10

concentrations.

Exploratory Analysis

The first step in this analysis is to produce exploratory plots of emergency asthma

admissions. Figure 4.31 below shows the number of weekly admissions between

2000 and 2006 while Figures 4.32 and 4.33 show the relationship between asthma

admissions and mean weekly PM10 concentrations and mean weekly maximum

temperature respectively. From Figure 4.31 the first thing we notice is that there

appears to be a curved trend to the data, with weekly admissions decreasing

until approximately 2003 and then increasing again. There also appears to be

some signs of seasonality with the number of admissions to hospital increases in

winter. However from Figures 4.32 and 4.33, there does not appear to be any

obvious relationship between asthma admissions and either mean weekly PM10

concentrations or mean weekly maximum temperature.
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Figure 4.31. Weekly numbers of emergency admissions to hospital with asthma
in Glasgow

Figure 4.32. Relationship between weekly emergency asthma admissions and
mean weekly PM10 concentrations
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Figure 4.33. Relationship between weekly emergency asthma admissions and
mean weekly maximum temperature

Covariate Modelling

The next step is to produce a model that removes the trend and seasonal variation.

As the trend is neither linear nor quadratic, natural cubic splines with 16 degrees

of freedom have been used. The number of degrees of freedom were chosen as this

minimised the AIC. Maximum temperature was also added as it was significantly

related to weekly admissions.
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Figure 4.34. Plot of residuals from the first model of admissions to hospital
with asthma in Glasgow

Figure 4.35. Autocorrelation function for the residuals
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Figures 4.34 and 4.35 show the residuals from the model and the autocorrelation

function for the residuals. The residuals appear to be evenly scattered about zero

with no obvious pattern. However the autocorrelation function shows that there is

still correlation in the residuals at lag one. There are several methods of removing

this correlation, which have been outlined in Chapter 2. The method used here

is the observation driven method, in which the previous week’s admissions will

be added as a covariate. The residuals for this model and the autocorrelation

function for the residuals can be seen below (Figures 4.36 and 4.37). We can see

that the residuals are still satisfactory and now the correlation at lag one has

also been removed, meaning the residuals now resemble white noise and so we

can continue with the analysis.

Figure 4.36. Plot of residuals from the second model of admissions to hospital
with asthma in Glasgow
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Figure 4.37. Autocorrelation function for the residuals

Pollution Modelling

The next step in the analysis is to add PM10 to the model using a distributed lag

model. Figure 4.38 shows the shape of the relative risks from the distributed lag

model at powers zero to four. The solid horizontal line in each plot represents

the relative risk at a power of zero, which gives an overall estimate of the effect of

PM10. The dashed horizontal line represents the null value of one. The majority

of relative risks are below one and are significant, suggesting that PM10 actually

has a beneficial effect on asthma admissions. The relative risk for power zero is

approximately 0.99, meaning that for a 10µg/m3 increase in PM10 concentrations,

admissions to hospital with asthma decrease by approximately 1%. One possible

reason for this decrease is that during particularly bad periods of air pollution,

asthmatics are more aware of the unhealthy climate and thus are more likely to

use inhalers or other medication. A consequence of this would be a reduction in
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the number of emergency admissions to hospital.

Figure 4.38. The solid line is the relative risk at power zero, the dashed line
represents the null risk of 1, the filled diamonds are the relative risks from the
unconstrained model and the unfilled diamonds are the relative risks from the
distributed lag model

Conclusion

Admissions to hospital with asthma showed a curved trend with a decrease in

admissions between 2000 and 2003 and an increase after this point. To remove

this trend, natural cubic splines with 16 degrees of freedom were added to the
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model. Also, mean weekly maximum temperature and was added as it was signif-

icantly related to the data. However this was not enough to remove the temporal

correlation within the residuals so the observations from the previous week were

also added to the model. This did remove the temporal correlation and so PM10

concentrations could be added, using a distributed lag model. The relative risks

from this model were mainly below one, with the relative risks for power zero

being approximately 0.99 meaning that for a 10µg/m3 increase in PM10 concen-

trations, admissions to hospital decrease by approximately 1%. Also, the relative

risks were significant in this model, suggesting that PM10 is, in fact, beneficial

to health. One possible reason for these results is that asthmatics may be more

sensitive to the variations in pollution concentrations and during periods of par-

ticularly high pollution concentrations, they are more likely to use medication,

thus reducing the numbers of admissions to hospital. There was a possibility

that adding the previous week’s observations to the model could amount to over

adjustment, thus masking any possible effects of air pollution. However the anal-

ysis was repeated without the observations and very similar relative risks were

found, thereby suggesting there was no problem with over adjustment.

4.5 Exceedences

One major area of concern is whether or not there is a threshold concentration,

above which PM10 has a significant effect on health. To this effect, legislation

has been put in place in Scotland that aims to reduce annual mean PM10 con-

centrations to 18µg/m3 and the daily mean should exceed 50µg/m3 no more

than seven times a year. This subanalysis aims to determine whether values that

exceed 50µg/m3 are related to cardiovascular admissions to hospital. For this

analysis, daily data will be used rather than weekly data.
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Exploratory Analysis

The plot of daily admissions to hospital between 2000 and 2006 in Glasgow can

be seen in the previous chapter. Figure 4.39 shows the daily PM10 concentrations

in Glasgow, with the horizontal line denoting the limit of 50µg/m3. From this

we can see that there were some especially high PM10 concentrations in 2002

and 2003, but the number of times the PM10 concentrations exceed 50µg/m3

decreases over time, with very few exceedences from 2004 onwards.

Figure 4.39. Daily mean PM10 concentrations in Glasgow where the horizontal
line denotes the limit of 50µg/m3

Covariate Modelling

The first step in the analysis is to produce a model that effectively removes as

much of the trend, seasonality and correlation as possible. As this is the same

data that was used in the analysis of daily admissions to hospital in Glasgow
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in Chapter 3, the summary of this model and the residuals and autocorrelation

function can be seen in that chapter (Model (3.5), Table 3.4 and Figures 3.11

and 3.12).

Pollution Modelling

As the model now adequately removes the trend and seasonality, the next step

is to add PM10 to the model using a distributed lag model with pollution being

added as an indicator variable, I(PM10t−q), which equals 1 if PM10 concentrations

are greater than or equal to 50 on day t and 0 otherwise. The relative risks for

this model are presented as the increased risk of being admitted to hospital if

PM10 concentrations cross the threshold value of 50µg/m3 and can be calculated

as exp(γ̂). Figure 4.40 shows the shape of the constrained relative risks against

lag for orders zero to four. The dashed horizontal line represents the baseline

value of one while the solid horizontal line is the relative risk at power zero which

gives the overall estimate of the effect of PM10 concentrations that are greater

than 50µg/m3. We can see that while most of the relative risks are fairly near

one, the relative risks at lags two and three for a power of 4 are particularly high,

at approximately 1.03, which could suggest a significant effect of excessively high

values of PM10. However, these results are non-significant thus suggesting that

PM10 concentrations greater than 50µg/m3 do not have a significant effect on

cardiovascular admissions to hospital.
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Figure 4.40. The solid line is the relative risk at power zero, the dashed line
represents the null risk of 1, the filled diamonds are the relative risks from the
unconstrained model and the unfilled diamonds are the relative risks from the
distributed lag model

Conclusion

Daily numbers of admissions to hospital with a cardiovascular illness have de-

creased between 2000 and 2006, as have the number of times PM10 exceeded

50µg/m3. During the modelling process, a linear function of time was added to

remove the time trend while maximum temperature and sinusoidal terms were
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added to remove the seasonality. Also indicator variables for ‘day of the week’

were added to remove the temporal correlation. PM10 was then added using a

distributed lag model. Most of the relative risks from this model were close to

one, although at lags two and three for a power of four, the relative risks were

higher. However the relative risks were all non-significant, meaning that there

does not appear to be any statistically significant effect of PM10 concentrations

over 50µg/m3 on admissions to hospital with cardiovascular illnesses in Glasgow.

4.6 Conclusions and Discussion

After completing the analysis of the effects of air pollution on cardiovascular

morbidity in Glasgow, Edinburgh and Aberdeen, a number of further subanaly-

ses were carried out. These could only be performed on the Glasgow data as it

involved splitting up the data, and only Glasgow had enough admissions for this

to be feasible. Even so, there were still two analyses that could not be carried

due to the small numbers. First admissions to hospital with stroke had a median

of seven admissions per week, with a maximum of 14, and mortality from stroke

also had a median of seven deaths a week, with a maximum of 19.

The first analysis carried out in this chapter was for admissions to hospital due

to cardiovascular illnesses among males. This was followed by the analysis relat-

ing to first admissions to hospital with a cardiovascular illness. Neither of these

analyses showed any significant effect of exposure to PM10. An analysis relating

to admissions to hospital with a cardiovascular illness among females was also

carried out and again no significant effect of exposure to PM10 was found. This

analysis can be seen in Appendix A. The next section contained the analyses

relating to admissions to hospital and mortality from CHD. The first of these

was admissions to hospital with CHD among patients of all ages, followed by the

analysis relating to mortality from CHD. Again, neither of these analyses showed

any significant effect of exposure to PM10. The analyses of admissions to hospital



CHAPTER 4. GLASGOW SUB-CATEGORY ANALYSES 159

with CHD among the under 75s and first admissions to hospital with CHD also

showed no effect of exposure to PM10 and can be found in Appendix A. Next,

the analysis of admissions to hospital with stroke among patients of all ages was

shown and again showed no significant effect of PM10. The analysis of admissions

to hospital with stroke among the under 75s also showed no effect of exposure to

PM10 and can be seen in Appendix A.

The next analysis was carried out on respiratory data, specifically emergency

admissions to hospital with asthma. After analysing these data, it was found

that PM10 actually has a negative effect, i.e. the higher the PM10 levels, the

fewer emergency admissions to hospital there would be. One suggestion as to

why this was found, is that asthmatics would notice the increased pollution and

use inhalers and other medication more often, thus reducing the number of emer-

gency admissions.

Recently a paper was published by Carder et al. (2008) which was also interested

in the relationship between air pollution and health in Scotland. Their data

spanned 21 years from 1981 to 2001. The health data related to all cause mor-

tality, respiratory mortality, cardiovascular mortality and non-cardiorespiratory

mortality while the pollution data related to mean daily black smoke concentra-

tions. The results found in this study are consistent with those found by Carder

et al. (2008). They also found no effect of PM10 on cardiovascular mortality.

However while they found a relationship between PM10 and respiratory mortal-

ity, they found a harmful effect on health. This discrepancy may be due to the

fact that their data related to mortality, while the data in this study related to

morbidity.

The final analysis carried out in this section was relating to PM10 concentra-

tions that exceeded 50µg/m3. This analysis used an indicator variable for PM10,

where it was equal to 1 if the PM10 concentration on day t was 50µg/m3 or more
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and 0 otherwise. The results showed no significant effect of exposure to particu-

larly high concentrations of PM10 on admissions to hospital with a cardiovascular

illness in Glasgow.



Chapter 5

Conclusions and Discussion

This thesis has two main aims the first of which is to investigate the effects of

PM10 exposure on cardiovascular illnesses in Scotland, focusing specifically on the

three largest cities, Glasgow, Edinburgh and Aberdeen in Chapter 3. This multi-

city study made use of data that are routinely available from various government

bodies including the Information Services Division of the NHS (ISD) and the Scot-

tish Air Quality website. The health data used in this project were provided by

ISD and took the form of daily counts of health events, over the seven year period

from 2000 to 2006 for each of Glasgow, Edinburgh and Aberdeen. Cardiovascu-

lar illnesses were considered to be either CHD (ICD-10 I20-I25) or stroke (ICD10

I61, I63, I64). The greater part of this thesis focused on admissions to hospital

due to cardiovascular morbidity, although cardiovascular mortality and asthma

data were also available. The pollution data were available from the Scottish Air

Quality website (http://www.scottishairquality.co.uk/) and comprise mean daily

PM10 concentrations from 2000 to 2006 for each city. PM10 was chosen as the

pollutant of interest as the effect of particles has become a major issue recently

due to their small size, which enables them to penetrate further into the lungs.

In addition, temperature data were provided by the British Atmospheric Data

Centre (http://badc.nerc.ac.uk/) and comprise daily maximum and minimum

temperatures for the seven year period for each of the three cities. The second

aim of the thesis is to determine whether routinely collected data are suitable for

161
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estimating the effects of pollution exposure on cardiovascular health.

The first two chapters in this thesis describe the background to this study as

well as air pollution and health studies in general. In particular Chapter 1 gives

details of the data while Chapter 2 critiques some of the more recent literature re-

lating to air pollution and health studies. Chapter 3 presents the multi-city study

for Glasgow, Edinburgh and Aberdeen, focusing on all cardiovascular morbidity.

In contrast Chapter 4 analyses sub-sets of these hospital admissions, including

splitting up the data by age, sex, main diagnosis (CHD or stroke) and whether

or not it was a first incidence. In addition, Chapter 4 also provides analyses for

subsets of the mortality data. The last analysis relating to the cardiovascular

data is concerned with the effects of particularly high concentrations of PM10.

Finally this chapter also investigates the effects of pollution on admissions to

hospital with asthma.

5.1 Overall Results

As previously mentioned, Chapter 3 describes the multi-city study into the ef-

fects of PM10 on cardiovascular health, which was implemented using Poisson

generalised linear models. The first part of the analysis was for Glasgow. After

constructing a model that contained a linear function of time, maximum daily

temperature, indicator variables for day of the week and sinusoidal curves, we

found that the relative risks from the single lag models ranged from 0.991 to

1.0008 while the relative risks from the multiple lag models ranged from 0.991 to

1.006. In all cases, the confidence intervals contained one, suggesting there is no

significant relationship between admissions to hospital and PM10 exposure.

During the course of the investigation, it was discovered that if the ‘day of the

week’ term was left out of the model, there were significant relative risks at lags

zero, seven and 13, with the relative risks being approximately 1.02. Also the
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relative risks for lags zero to seven exhibit a similar shape to that proposed by

Zanobetti et al. (2002) with regards the theory of mortality displacement (dis-

cussed further in Section 5.2). If this theory is valid, it means that the public

health impacts of air pollution are significantly lower. However a closer look at

the relative risks showed that the results were only significant approximately ev-

ery seven days, which points to the lack of the ‘day of the week’ term as being

the reason for the significant results. To overcome the ‘day of the week’ problem,

the admissions were aggregated up to weekly levels and the analysis was redone,

resulting in relative risks between 0.987 and 1.005, where the confidence intervals

again contained one, meaning no significant relationship between admissions to

hospital and PM10 exposure being found, which suggests there is no real effect of

exposure to PM10.

The next analysis to be carried out was for daily admissions to hospital in Ed-

inburgh. The relative risks found ranged from 0.984 to 1.013, although as the

confidence intervals all contained one, it suggests there is no significant relation-

ship between exposure to PM10 and admissions to hospital with cardiovascular

illnesses. However the numbers of admissions were lower than those for Glasgow

(mean daily admissions of 6.2 in Edinburgh as opposed to 10.5 in Glasgow), so

one possibility was that any effect of PM10 may not have been seen due to the

small numbers. Therefore, the data were aggregated up to weekly levels and the

analysis redone. The single lag models produced relative risks of between 0.988

and 1.024, while the relative risks from the multiple lag models were similar at

0.978 to 1.03. Again none of the confidence intervals were significant resulting in

no significant relationship between admissions to hospital and PM10 being found.

The final analysis carried out in this chapter focused on Aberdeen. After examin-

ing the data, it was immediately obvious the data would need to be aggregated to

weekly levels as the number of admissions in any one day was very low (mean of

3.2). This analysis was carried out using weekly admissions to hospital and mean
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weekly PM10 concentrations. The single lag models showed no significant effect

of PM10, with relative risks ranging from 0.99 to 1.03, with the confidence inter-

vals all containing one. The relative risks from the multiple lag models ranged

from 0.983 to 1.04 with a significant risk at lag one. However this was the only

significant relative risk and the multiple lag models were known to suffer from

collinearity, therefore it was assumed that this result was the effect of multiple

testing, and in fact there is no significant relationship between cardiovascular

admissions to hospital in Aberdeen and exposure to PM10.

Chapter 4 was split up into five sections, the first of which contained analy-

ses relating to admissions to hospital with both illnesses. The second section

was concerned with CHD and the third with stroke. Section 4.4 contained the

analysis of emergency admissions to hospital with asthma and the final section

was concerned with PM10 concentrations that exceeded 50µg/m3. This value was

chosen because the National Air Quality Strategy recommends reducing the daily

mean concentrations so that they exceed 50µg/m3 no more than seven times a

year. For brevity in these analyses, only the distributed lag models were pre-

sented in this thesis, as it was thought the single lag models would not show the

effect of cumulative exposure to air pollution and because it seems unlikely that

the effect of air pollution on any one day is unrelated to pollution concentrations

on adjacent days, while the multiple lag model had the problem of collinearity.

In section 4.1, the first of the subanalyses to be carried out related to admis-

sions to hospital among males, followed by admissions to hospital among females.

The next analysis to be carried out was for patients who were being admitted

to hospital with a cardiovascular illness for the first time. Again, no effect of

PM10 exposure was seen. In all these analyses, the relative risk at power zero

was approximately 1.005 and non-significant, suggesting there is no significant

effect of PM10.
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In section 4.2, the next analyses were for admissions to hospital with CHD among

patients of all ages, where the relative risks at power zero were extremely close to

one at 1.0003. This was followed by the analysis for admissions to hospital among

the under 75s which gave relative risks at power zero of 1.001. Neither of these

analyses showed any significant relationship between admissions to hospital and

exposure to PM10. These were followed by the analysis of patients being admitted

to hospital with CHD for the first time, where the relative risks at power zero

were also very close to one at 1.002 and also showed no significant effect of PM10.

The final analysis in this section was related to mortality from CHD. This gave

relative risks at power zero of 0.997 which were shown to be non-significant, again

meaning there was no significant effect of PM10. Section 4.3 contained the anal-

yses of admissions to hospital with stroke among all patients and among patients

aged 75 and under. Both of these analyses showed relative risks at power zero of

approximately 1.005 and were non-significant, meaning there does not appear to

be any significant relationship between admissions to hospital and exposure to

PM10.

Section 4.4 contained the analysis of emergency admissions to hospital with

asthma. After analysing these data, a significant effect of PM10 was found. How-

ever this effect was a negative one, with a relative risk of approximately 0.99,

suggesting that an increase of 10µg/m3 in PM10 concentrations results in a 1%

decrease in admissions to hospital. One possible reason for this is that asthmatics

may be more likely to use medication during periods of high pollution concentra-

tions, thus reducing the numbers of hospital admissions.

The final analysis carried out was to determine whether PM10 concentrations

higher than 50µg/m3 have a significant effect on cardiovascular admissions to

hospital. PM10 was transformed to an indicator variable, with concentrations of

50µg/m3 or higher coded as 1, while concentrations under 50µg/m3 were coded as

0. This analysis gave comparatively high relative risks at power zero of 1.008, but
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they were non-significant meaning there was no significant relationship between

PM10 concentrations and cardiovascular admissions to hospital. This model is

somewhat unrealistic as it suggests that if there is an effect of PM10 at higher

concentrations, then this effect is the same at all concentrations above 50µg/m3.

Also, it implies that the relationship between PM10 and cardiovascular admissions

to hospital is not continuous, with no effect at concentrations below 50µg/m3

while at concentrations above this threshold, there is a sudden effect.

There are a number of possible reasons for the lack of significant effects of PM10

the first of which is that there may be no relationship between exposure to PM10

and cardiovascular health in Glasgow, Edinburgh or Aberdeen. A second reason

is that there may be a threshold level below which PM10 does not affect the

cardiovascular system, and in Scotland PM10 concentrations are below this level.

However a third possibility is that the data available were not suitable for this

analysis. One major concern in this regard is that the pollution data available are

not representative of the pollution intake of the population as they are at fixed

points around the city while it is unlikely that anyone will remain in the vicinity

of a monitoring site throughout the day. Also this does not take into account

people who work in one city but live in another and so will be allocated the av-

erage pollution level in the city they live in, even if they spend more time in the

city they work in. Another area of concern is that these data do not account for

the time spent indoors, where the pollution levels may be different from external

pollution concentrations.

Many studies have shown a significant effect of PM10 on cardiovascular mor-

bidity and mortality. For a 10µg/m3 increase in PM10 concentrations Ballester

et al. (2006) found that admissions to hospital with CVD increased by 0.9% (RR:

1.009, 95% CI: 1.004, 1.015) while Touloumi et al. (2005) found that cardiovascu-

lar mortality increased by 0.48% (RR: 1.0048, 95% CI: 1.0027, 1.007). However

there have also been studies that have found no significant effect of PM10 on
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cardiovascular health. For example Carder et al. (2008) studied the effects of

black smoke on health in Scotland between 1981 and 2001 and found no signifi-

cant effect on cardiovascular mortality, which reinforces the results found in this

study. However the significant results found in many other studies suggest that

the lack of significant results in this study are due to either a threshold value

or unsuitable data. Recently Daniels et al. (2004) found that for concentrations

as low as 10µg/m3 there was still a significant effect of PM10 on cardiovascular-

respiratory mortality which suggests that the theory of a threshold concentration

below which PM10 does not affect cardiovascular health is unlikely to be true.

This then points to the data being unsuitable for this type of study. There

have been a number of recent studies carried out that address the problem of

estimating pollution exposure, using two main methods. The first is by trying to

simulate the actual pollution exposure of individuals during their day and esti-

mating their cumulative exposure, such as the study by Zidek et al. (2005). The

second method is to have certain individuals carry a pollution monitor with them

throughout the day, which measures their exact pollution exposure. However this

is very expensive and time consuming and so such studies are not usually carried

out, although Dominici et al. (2000b) used personal PM10 exposures from five

validation data sets to implement a multi-stage Poisson regression model.

Another issue to consider is the problem of the ecological fallacy which occurs

because our analyses are carried out at an ecological (group) level when the quan-

tity of interest, namely the effects of pollution on health, are at the individual

level. Therefore the estimated effect of air pollution at an ecological level will not

be equal to the estimated effect of air pollution at the individual level. Recently,

a number of models have been proposed that try to overcome this problem, such

as those by Lancaster & Green (2002) and Wakefield & Shaddick (2005).

When carrying out an investigation into the effects of air pollution on health, one
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important decision to make is which pollutant to use. This study was interested

in the effects of PM10 on cardiovascular health, but there are other pollutants

in the atmosphere, many of which have been known to have a detrimental effect

on human health. Samoli et al. (2007) investigated the effects of a 1 mg/m3

increase in carbon monoxide concentrations on mortality and found significant

associations with cardiovascular mortality (RR: 1.0125, 95% CI: 1.003, 1.0221)

while Elliott et al. (2007) studied the relationship between sulphur dioxide and

mortality in Great Britain and found that a 10ppb increase resulted in a relative

risk of mortality from a cardiovascular illness of 1.008 (95% CI: 1.006, 1.009).

Also of interest is the effect of nitrogen oxides on health. For a 10µg/m3 in-

crease in nitrogen dioxide, Samoli et al. (2006) found a significant increase in

cardiovascular mortality (RR: 1.004, 95% CI: 1.0029, 1.0052). Finally Ballester

et al. (2006) investigated the effects of several pollutants on cardiovascular ad-

missions to hospital, including ozone. They found a 10µg/m3 increase resulted in

a significant increase in the number of admissions to hospital with cardiovascular

illnesses (RR: 1.0069, 95% CI: 1.0034, 1.0103). Given the significant results in

these studies, it may be that there is a significant relationship between cardio-

vascular admissions to hospital in Glasgow, Edinburgh or Aberdeen and some

pollutant other than PM10.

5.2 Lag Problem

One area of discussion in time-series studies such as this one, is the issue of lags.

There has been some debate over which is the ‘best’ lag to use. Some authors used

single lag models, with lags ranging from zero (Schwartz (2004)) to five (Kelsall

et al. (1997)) while authors such as Hertz-Picciotto et al. (2007) take into account

the accumulated effect of pollution and use the average pollution concentrations

over a number of days. Other authors add pollution concentrations from several

days to one model; for example Cakmak et al. (2007) takes lags of up to five days,

while Goodman et al. (2004) took lags of up to 40 days.
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Another issue is whether or not to add multiple lags in one model (Prescott

et al. (1998)) or to run numerous models each with pollution concentrations from

a different lag (Tellez-Rojo et al. (2000)). A number of authors such as Roberts

(2004a) use both methods. However a multiple lag model has the problem that

the pollution concentrations from the lags are likely to be highly correlated, which

would result in collinearity, thus reducing the accuracy of the estimates and in-

flating the confidence intervals. To overcome this problem, Zanobetti et al. (2000)

proposed a distributed lag model in which the pollution estimates are constrained

to reduce collinearity. To date, no consensus has been reached as to the best ap-

proach for solving the problems surrounding lags, therefore this study made use

of several approaches. We first used single lag models, which was followed by

multiple lag models. However as the multiple lag models had the problem of

collinearity, distributed lag models were also used.

As mentioned in Section 5.1, the shape of the relative risks from the analysis

of the daily admissions to hospital in Glasgow appeared to follow the shape

suggested by Zanobetti et al. (2002) with regard to the theory of mortality dis-

placement. Mortality displacement suggests that it is mainly the frail proportion

of the population who are adversely affected by air pollution, and as such their

deaths are brought forward by only a few days. If this is the case, the public

health impact of air pollution is significantly reduced. However recently there

have been studies carried out, such as the study by Roberts & Switzer (2004),

which investigated the properties of distributed lag models in the context of mor-

tality displacement. They found that the estimates from distributed lag models

are likely to be biased.
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5.3 Shape of relationship

Many studies such as this one assume that the effects of air pollution on health

increase linearly. For cardiovascular and respiratory health this may be plausible,

as to date no threshold concentration below which air pollution does not affect

health has been found. However recently Shaddick et al. (2008) suggested that a

linear relationship may not be appropriate as there would eventually be an upper

bound on the effect that air pollution has on health. Instead they recommended

that the pollution-health relationship should satisfy the following requirements:

(i) boundedness; (ii) increasing monotonicity; (iii) smoothness; and (iv) no effect

with no exposure.

In contrast, studies that are interested in the effects of pollution concentrations

that exceed a given concentration follow a different shape. These studies assume

that there is no effect of pollution before this concentration yet when pollution

reaches this concentration, there is a sudden effect that then stays constant, an

example of which is presented in Figure 2.2.

The majority of the analyses in this thesis assume the shape of the effect of

pollution to be linear although the final analysis follows the exceedence shape.

5.4 Future Work

There is still a great deal of further research to be carried out in this field, in

particular relating to pollution exposure. One issue that is becoming more ap-

pealing to researchers is carrying out spatio-temporal studies, such as the study

by Shin et al. (2008), which investigate the effect of air pollution over 17 years

in 24 cities in Canada. Until recently, studies of this kind have been infeasible as

the computational power needed was extremely high. However with the advances

in technology, these have now become possible. Another area where further re-

search is needed is finding a pollution concentration that adequately models an
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individual’s exposure. To date, many studies use an average pollution concentra-

tion over the whole area of interest. However this is unlikely to be representative

of a person’s actual pollution exposure and so new methods of modelling the

pollution exposure are needed.



Appendix A

Additional Analyses

A.1 Females

A.1.1 Exploratory Analysis

The first step is to produce a series of exploratory plots. Figures A.1, A.2 and

A.3 are plots relating to cardiovascular admissions to hospital among females,

the first of which is over time, the second is against mean weekly PM10 concen-

trations and the last against mean weekly maximum temperatures. Admissions

to hospital showed a marked decrease between 2000 and 2006 which is similar to

the trend observed in males admissions where Figures A.2 and A.3 show no obvi-

ous relationship between weekly cardiovascular admissions to hospital and either

mean weekly PM10 concentrations or mean weekly maximum temperatures.

172
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Figure A.1. Admissions to hospital among females

Figure A.2. Relationship between weekly admissions to hospital among females
and mean weekly PM10 concentrations
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Figure A.3. Relationship between weekly admissions to hospital among females
and mean weekly maximum temperatures

A.1.2 Covariate Modelling

We attempt to remove the trend using fixed functions of time such as linear and

sinusoidal functions. A summary of the model can be seen in Table A.1.

Coefficient Estimate Standard Error P-Value
Intercept 3.537 0.01889 <2 × 10−16

t -0.001088 9.422 × 10−05 <2 × 10−16

sin(ωt) 0.04498 0.01401 0.00132
cos(ωt) -0.001515 0.01389 0.91312

Table A.1. Summary of model

Figures A.4 and A.5 respectively show the residuals for this model and the auto-

correlation function for the residuals.
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Figure A.4. Residuals from the model of admissions to hospital among females

Figure A.5. Autocorrelation function for the residuals
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From Figure A.4 we can see that the residuals appear to be evenly scattered

about zero with no obvious pattern or trend, while Figure A.5 shows us that

each of the lags are within the 95% confidence lags, thus suggesting the residuals

now resemble white noise, meaning that the model is adequate and we can now

continue the modelling.

A.1.3 Pollution Modelling

The next step is to add mean weekly PM10 concentrations to the model using a

distributed lag model. Figure A.6 shows the shape of the relative risks from the

distributed lag model at powers zero to four. The solid horizontal line in each

plot represents the relative risk at zero, which gives the overall estimated effect of

exposure to PM10. The relative risks are all very close to one, except at lag eight.

However the relative risks are non-significant, suggesting there does not appear

to be any significant effect of PM10 on admissions to hospital among females.

A.1.4 Conclusions

In conclusion, weekly admissions to hospital have decreased among women from

2000 to 2006 with some signs of seasonality. After using fixed functions of time

to remove the trend and seasonal variation, PM10 concentrations were added to

a distributed lag model. As with the male data, the relative risks from pollution

exposure are all very close to one, except at lag eight. However again the relative

risks are non-significant, therefore suggesting that this result is an effect of multi-

ple testing. In conclusion, there does not appear to be any significant relationship

between admissions to hospital among females and exposure to PM10.
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Figure A.6. The solid line is the relative risk at power zero, the dashed line
represents 1, the filled diamonds are the relative risks from the unconstrained
model and the unfilled diamonds are the relative risks from the distributed lag
model
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A.2 1st Admissions with CHD

A.2.1 Exploratory Analysis

The first stage in the analysis is producing a series of exploratory plots. Figures

A.7, A.8 and A.9 show plots relating to patients who have been admitted to

hospital with CHD for the first time. The first is over time, the second against

mean weekly PM10 concentrations, and the last against mean weekly maximum

temperature.

Figure A.7. First admissions to hospital with CHD
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Figure A.8. Relationship between first admissions to hospital with CHD and
mean weekly PM10 concentrations

Figure A.9. Relationship between first admissions to hospital with CHD and
mean weekly maximum temperatures
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From Figure A.7 we can see that the number of people being admitted to hos-

pital with CHD for the first time stayed approximately level between 2000 and

2003 after which the numbers rapidly decreased until 2005. From 2005 to 2006,

although the number of admissions were still decreasing, it was less rapidly than

before. Figures A.8 and A.9 show no obvious relationship between first admis-

sions to hospital with CHD and either mean weekly PM10 concentrations or mean

weekly maximum temperature.

A.2.2 Covariate Modelling

The next stage of the analysis is to produce a model that removes most of the

trend and variation with in the data. To do this, natural cubic splines with

11 degrees of freedom were used, with 11 degrees of freedom minimising the

AIC. Figure A.10 shows the residuals for the model and Figure A.11 shows the

autocorrelation function for the residuals.

Figure A.10. Residuals from the model of first admissions to hospital with CHD
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Figure A.11. Autocorrelation function for the residuals

From Figure A.10 we can see that the residuals appear to be evenly scattered

about zero and have no obvious trend or pattern while from Figure A.11 we see

that most of the lags are within the 95% confidence bands, thus suggesting that

the residuals now resemble white noise.

A.2.3 Pollution Modelling

The next step is to add PM10 to the model using a distributed lag model. Figure

A.12 shows the shape of the relative risks from the distributed lag model, for

powers zero to four. Power zero can be seen as the solid horizontal line in each

plot and gives the overall estimated effect of exposure to PM10. The relative risks

are all fairly close to one, although the relative risk at lag eight is lower than the

others. However the relative risks are non-significant and thus suggest there is

no significant relationship between first admissions to hospital with CHD and
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exposure to PM10.

Figure A.12. The solid line is the relative risk at power zero, the dashed line
represents 1, the filled diamonds are the relative risks from the unconstrained
model and the unfilled diamonds are the relative risks from the distributed lag
model.

A.2.4 Conclusions

In conclusion, admissions to hospital stayed steady between 2000 and 2003, before

decreasing sharply until 2005. After 2005, although the number of admissions
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were still decreasing, it was not as rapidly as before. Natural cubic splines were

used to remove the trend and seasonality before adding PM10 to the model, using

a distributed lag model. The relative risks from the model were all fairly close

to one but non-significant, suggesting there there is no statistically significant

relationship between first admissions to hospital with CHD and exposure to PM10.
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A.3 CHD Under 75s

A.3.1 Exploratory Analysis

The first stage of this analysis is to produce exploratory plots of admissions to

hospital with CHD among the under 75s. Figure A.13 is the plot of weekly ad-

missions to hospital over time while Figures A.14 and A.15 show the relationships

between admissions to hospital with CHD among the under 75s and mean weekly

PM10 concentrations and mean weekly maximum temperature respectively.

Figure A.13. Weekly admissions to hospital with CHD among the under 75s
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Figure A.14. Relationship between weekly admissions to hospital with CHD
among the under 75s and mean weekly PM10 concentrations

Figure A.15. Relationship between weekly admissions to hospital with CHD
among the under 75s and mean weekly maximum temperature
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The plot of admissions to hospital with CHD among the under 75s displays a

similar trend to the plot of admissions to hospital among all patients. Admissions

decreased between 2000 and 2006, with a period in 2001 where the numbers

stayed fairly constant. There was little evidence of seasonal variation and there

did not appear to be any obvious relationship between admissions to hospital

with CHD among the under 75s and either mean weekly PM10 concentrations or

mean weekly maximum temperature.

A.3.2 Covariate Modelling

The next step is to produce a model that adequately removes the trend and

variation within the data. As the time trend was not linear, a linear function of

time could not be used. Instead, natural cubic splines with 11 degrees of freedom

were used to remove the trend and seasonality. Figures A.16 and A.17 show the

residuals for this model and the autocorrelation function for the residuals. The

residuals appear to be evenly scattered around zero with a constant variance and

there does not appear to be any obvious pattern. In the autocorrelation function,

most of the lags are within the 95% confidence bands, suggesting that most of the

correlation within the residuals has been removed and therefore we can continue

with the analysis.
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Figure A.16. Residuals from the model of admissions to hospital among the
under 75s

Figure A.17. Autocorrelation function for the residuals
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A.3.3 Pollution Modelling

The next step in the analysis is to add PM10 to the model using a distributed lag

model. Figure A.18 shows the shape of the relative risks from the distributed lag

model at powers zero to four. Power zero is represented as the solid horizontal

line in each plot and gives the overall estimated effect of PM10.

Figure A.18. The solid line is the relative risk at power zero, the dashed line
represents 1, the filled diamonds are the relative risks from the unconstrained
model and the unfilled diamonds are the relative risks from the distributed lag
model
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We see a very similar pattern to that of admissions to hospital with CHD for all

ages. At each power, the points for the distributed lag model are close to one

apart from at lag eight for powers three and four, where the relative risks are

approximately 0.985, which is still quite close to one. Also, none of the relative

risk coefficients are significant, which suggests there is no significant relationship

between admissions to hosptial among patients under 75 years of age and exposure

to PM10 concentrations.

A.3.4 Conclusions

In conclusion, the analysis for admissions to hospital with CHD among the un-

der 75s was very similar to that for all admissions to hospital with CHD. The

admissions decreased from 2000 to 2006 with a period in 2001 where they stayed

steady. Natural cubic splines were used to model the data and then PM10 was

added using a distributed lag model. The relative risks from this model were

all quite close to one, except at lag eight for powers three and four. However

the relative risks were non-significant, meaning there does not appear to be any

statistically significant relationship between admissions to hospital with CHD

among the under 75s and exposure to PM10.
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A.4 Stroke Under 75s

A.4.1 Exploratory Analysis

First a set of exploratory plots relating to admissions to hospital among the

under 75s will be produced. Figures A.19 shows the weekly admissions to hospital

among stroke patients under the age of 75 over time, A.20 displays the relationship

between weekly admissions to hospital and mean weekly PM10 concentrations and

A.21 shows the relationship between weekly admissions to hospital and mean

weekly maximum temperatures.

Figure A.19. Weekly admissions to hospital with stroke among the under 75s
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Figure A.20. Relationship between weekly admissions to hospital among the
under 75s and mean weekly PM10 concentrations

Figure A.21. Relationship between weekly admissions to hospital among the
under 75s and mean weekly maximum temperature
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From Figure A.19 we can see that stroke admissions among the under 75s de-

creased slightly between 2000 and 2002 before levellilng out. From 2002 until

approximately 2005 the numbers stayed steady before decreasing again in 2005.

One point of interest is that the admissions are highly seasonal with more in

winter than in summer. However this does not appear to be due to temperature

as we can see from Figure A.21 that there does not appear to be any obvious

relationship between weekly admissions to hospital with stroke among the under

75s and mean weekly maximum temperature. There also does not appear to be

a relationship between stroke admissions and mean weekly PM10 concentrations.

A.4.2 Covariate Modelling

The next stage is to produce a model that removes as much of the variation in

the data as possible. Natural cubic splines with 17 degrees of freedom were used,

with the number of degrees of freedom chosen to minimised the AIC. Figure A.22

is a plot of the residuals for this model. We can see that the residuals appear to

be evenly scattered about zero with no apparent trend or pattern. Figure A.23

shows the autocorrelation function for the residuals, in which we can see that

most of the lags are within the 95% confidence intervals, implying that most of

the correlation in the residuals has been removed and the model is now adequate.
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Figure A.22. Residuals from the model of admissions to hospital with Stroke
among the under 75s

Figure A.23. Autocorrelation function for the residuals
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A.4.3 Pollution Modelling

The next step is to add PM10 to the model using a distributed lag model. Figure

A.24 shows the shape of the relative risks from the distributed lag model at

powers zero to four, where power zero is seen as the solid horizontal line in each

plot and gives the overall estimated effect of PM10.

Figure A.24. The solid line is the relative risk at power zero, the dashed line
represents 1, the filled diamonds are the relative risks from the unconstrained
model and the unfilled diamonds are the relative risks from the distributed lag
model
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The relative risks are, in most cases, fairly close to one although at powers three

and four, the relative risk at lag eight is is especially low. However the relative

risk coefficients are non-significant, meaning there does not appear to be any

significant relationship between admissions to hospital among patients aged under

75 years of age and exposure to PM10.

A.4.4 Conclusions

Admissions to hospital with stroke among the under 75s has decreased slightly

over the years. The main point of interest is the admissions are highly seasonal

with more admissions in winter than in summer, however this did not appear

to be due to temperature as there did not seem to be any obvious relationship

between the two variables. Natural cubic splines were used to remove the trend

and seasonality before adding PM10 concentrations to a distributed lag model.

Although some of the relative risks from this model were quite high, none of

them are statistically significant thus implying there does not appear to be any

significant relationship between exposure to PM10 and admissions to hospital

with Stroke among the under 75s.
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