
 
 
 
 
 
Fearnside, Alastair T (2007) Bayesian analysis of finite mixture 
distributions using the allocation sampler. PhD thesis. 
 
 
 
 
http://theses.gla.ac.uk/555/
 
 
 
Copyright and moral rights for this thesis are retained by the author 
 
A copy can be downloaded for personal non-commercial research or 
study, without prior permission or charge 
 
This thesis cannot be reproduced or quoted extensively from without first 
obtaining permission in writing from the Author 
 
The content must not be changed in any way or sold commercially in any 
format or medium without the formal permission of the Author 
 
When referring to this work, full bibliographic details including the 
author, title, awarding institution and date of the thesis must be given 

 

Glasgow Theses Service 
http://theses.gla.ac.uk/ 

theses@gla.ac.uk 

http://theses.gla.ac.uk/555/


Bayesian analysis of finite mixture

distributions using the allocation

sampler

Alastair T Fearnside

A Dissertation Submitted to the

Faculty of Information and Mathematical Sciences

at the University of Glasgow

for the degree of

Doctor of Philosophy

Department of Statistics

July 2007



Abstract

Finite mixture distributions are receiving more and more attention from statisti-

cians in many different fields of research because they are a very flexible class of

models. They are typically used for density estimation or to model population

heterogeneity. One can think of a finite mixture distribution as grouping the

observations into components from which they are assumed to have arisen. In

certain settings these groups have a physical interpretation. The interest in these

distributions has been boosted recently because of the ever increasing computer

power available to researchers to carry out the computationally intensive tasks

required in their analysis.

In order to fit a finite mixture distribution taking a Bayesian approach a

posterior distribution has to be evaluated. When the number of components

in the model is assumed known this posterior distribution can be sampled from

using methods such as Data Augmentation or Gibbs sampling (Tanner and Wong

(1987) and Gelfand and Smith (1990)) and the Metropolis-Hastings algorithm

(Hastings (1970)). However, the number of components in the model can also be

considered an unknown and an object of inference. Richardson and Green (1997)

and Stephens (2000a) both describe Bayesian methods to sample across models

with different numbers of components. This enables an estimate of the posterior

i



distribution of the number of components to be evaluated. Richardson and Green

(1997) define a reversible jump Markov chain Monte Carlo (RJMCMC) sampler

while Stephens (2000a) uses a Markov birth-death process approach sample from

the posterior distribution. In this thesis a Markov chain Monte Carlo method,

named the allocation sampler. This sampler differs from the RJMCMC method

reported in Richardson and Green (1997) because the state space of the sampler

is simplified by the assumption that the components’ parameters and weights can

be analytically integrated out of the model. This in turn has the advantage that

only minimal changes are required to the sampler for mixtures of components

from other parametric families. This thesis illustrates the allocation sampler’s

performance on both simulated and real data sets.

Chapter 1 provides a background to finite mixture distributions and gives an

overview of some inferential techniques that have already been used to analyse

these distributions.

Chapter 2 sets out the Bayesian model framework that is used throughout this

thesis and defines all the required distributional results.

Chapter 3 describes the allocation sampler.

Chapter 4 tests the performance of the allocation sampler using simulated

datasets from a collection of 15 different known mixture distributions.

Chapter 5 illustrates the allocation sampler with real datasets from a number

of different research fields.

Chapter 6 summarises the research in the thesis and provides areas of possible

future research.

ii



Acknowledgements

I would like to take this opportunity to thank everyone who has helped me com-

plete this thesis. Firstly, to my supervisor, Dr Agostino Nobile, who contributed

his time and expertise to this thesis. I must also give thanks to him for passing

on his wealth of knowledge and giving me continued support and encouragement

when completing this work. I would also like to thank my second supervisor

Prof Mike Titterington for the helpful comments he has given on this work. My

Mum and her red pen also get a big thank you! Thanks must also go to all the

other members of the Statistics department who have helped make the last few

years a very enjoyable experience. I am very grateful for all the opportunities the

department gave me. Also, I must thank the Engineering and Physical Sciences

Research Council for funding me throughout this research.

I would also like to take this chance to thank the University of Glasgow Golf

Club for giving me an activity to take my mind off the sometimes stressful work.

I’m very grateful for the many opportunities to totally relax on some of the most

famous links in the world.

Finally, I would like to thank my family and friends for all that they have

done for me over these years. However, I must pay a special thanks to my Mum

and Dad for all their love and support.

iii



Contents

Abstract i

Acknowledgements iii

1 Introduction 1

2 Model 11

2.1 Definition of Allocation vector, g . . . . . . . . . . . . . . . . . . 12

2.2 Bayesian model specification . . . . . . . . . . . . . . . . . . . . . 13

2.3 Prior distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.1 Number of components, k . . . . . . . . . . . . . . . . . . 14

2.3.2 Mixture weights, λ . . . . . . . . . . . . . . . . . . . . . . 15

2.3.3 Allocation vector, g . . . . . . . . . . . . . . . . . . . . . . 16

2.3.4 Component parameters, θ . . . . . . . . . . . . . . . . . . 17

2.3.5 Hyperparameters, φ . . . . . . . . . . . . . . . . . . . . . . 18

2.3.6 Distribution of the data . . . . . . . . . . . . . . . . . . . 18

2.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4.1 Mixtures of univariate normals . . . . . . . . . . . . . . . 21

2.4.2 Mixtures of multivariate normals . . . . . . . . . . . . . . 21

iv



2.4.3 Mixtures of uniforms . . . . . . . . . . . . . . . . . . . . . 22

2.4.4 Mixtures of sign-shifted-exponentials . . . . . . . . . . . . 24

2.5 Posterior distributions . . . . . . . . . . . . . . . . . . . . . . . . 27

2.5.1 Posterior distribution of the number of components . . . . 28

2.5.2 Posterior distributions of component weights . . . . . . . . 29

2.5.3 Posterior distributions of component parameters . . . . . . 29

2.5.3.1 Mixtures of univariate normals . . . . . . . . . . 30

2.5.3.2 Mixtures of multivariate normals . . . . . . . . . 31

2.5.3.3 Mixtures of uniforms . . . . . . . . . . . . . . . . 31

2.5.3.4 Mixtures of sign-shifted exponentials . . . . . . . 32

2.5.4 Posterior distribution of allocation vector . . . . . . . . . . 35

2.5.5 Posterior predictive distribution . . . . . . . . . . . . . . . 36

2.5.5.1 Mixtures of univariate normals . . . . . . . . . . 38

2.5.5.2 Mixtures of multivariate normals . . . . . . . . . 38

2.5.5.3 Mixtures of uniforms . . . . . . . . . . . . . . . . 39

2.5.5.4 Mixtures of sign-shifted-exponentials . . . . . . . 39

3 The Allocation Sampler 40

3.1 Markov chain Monte Carlo . . . . . . . . . . . . . . . . . . . . . . 40

3.1.1 Gibbs Sampling . . . . . . . . . . . . . . . . . . . . . . . . 42

3.1.2 Metropolis-Hastings Algorithm . . . . . . . . . . . . . . . 44

3.1.3 Reversible Jump MCMC . . . . . . . . . . . . . . . . . . . 46

3.2 Allocation Sampler . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2.1 Moves that do not change the number of components . . . 49

3.2.1.1 Gibbs Move . . . . . . . . . . . . . . . . . . . . . 49

v



3.2.1.2 Metropolis-Hastings Move 1 . . . . . . . . . . . . 50

3.2.1.3 Metropolis-Hastings Move 2 . . . . . . . . . . . . 52

3.2.1.4 Metropolis-Hastings Move 3 . . . . . . . . . . . . 53

3.2.1.5 Metropolis-Hastings labels move . . . . . . . . . 57

3.2.2 Moves that change the number of components . . . . . . . 58

3.2.2.1 Asymmetric case . . . . . . . . . . . . . . . . . . 60

3.2.2.2 Symmetric case . . . . . . . . . . . . . . . . . . . 62

3.2.3 Ejecting Probability, pE . . . . . . . . . . . . . . . . . . . 63

3.2.4 Hyperparameters . . . . . . . . . . . . . . . . . . . . . . . 70

3.2.4.1 Mixtures of univariate normals . . . . . . . . . . 71

3.2.4.2 Mixtures of multivariate normals . . . . . . . . . 72

3.2.4.3 Mixtures of uniforms . . . . . . . . . . . . . . . . 73

3.2.4.4 Mixtures of sign-shifted exponentials . . . . . . . 73

3.2.4.5 Preliminary run settings . . . . . . . . . . . . . . 74

3.2.4.6 Metropolis-Hastings Hyperparameter moves . . . 78

3.2.5 Label switching problem . . . . . . . . . . . . . . . . . . . 81

3.2.5.1 Post-processing algorithm . . . . . . . . . . . . . 83

4 Simulation Study 89

4.1 Design of study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.1.1 Allocation Sampler procedure . . . . . . . . . . . . . . . . 90

4.2 Sampler Performance . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.2.1 Posterior of k . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.2.2 Posterior Predictive Distributions . . . . . . . . . . . . . . 95

4.2.3 Parametric Inference . . . . . . . . . . . . . . . . . . . . . 111

vi



4.2.4 Mixing and Convergence Properties . . . . . . . . . . . . . 119

5 Real Dataset Examples 123

5.1 Galaxy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.2 Acidity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.3 Enzyme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.4 Hidalgo Stamps . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.5 S&P 500 Returns . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.6 Iris . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

6 Conclusions & Future Research 144

A Integrating parameters from the model 148

A.1 Uniform Distribution . . . . . . . . . . . . . . . . . . . . . . . . . 148

A.2 Sign-Shifted-Exponential Distribution . . . . . . . . . . . . . . . . 152

B Calculation of effective sample size 160

C Allocation sampler Fortran code 162

vii



List of Figures

2.1 Directed acyclic graphs corresponding to the models (2.3) and (2.4) 20

2.2 Example of a Sign-Shifted-Exponential density. . . . . . . . . . . 25

3.1 Trace plots of k for the galaxy dataset corresponding to 3 different

ways of selecting the probability of ejection pE values. The value

of a in the top graph is not fixed and changes throughout the

simulation according to Equation (3.28). . . . . . . . . . . . . . . 66

3.2 Trace plots of k for the claw dataset corresponding to 3 different

ways of selecting the probability of ejection pE values. The value

of a in the top graph is not fixed and changes throughout the

simulation according to Equation (3.28). . . . . . . . . . . . . . . 67

3.3 Trace plots of k for the six component 10-dimensional multivariate

normal dataset corresponding to 3 different ways of selecting the

probability of ejection pE values. The value of a in the top graph

is not fixed and changes throughout the simulation according to

Equation (3.28). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.4 Trace plots for a preliminary run of the allocation sampler using

the galaxy dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . 76

viii



3.5 Boxplots of the hyperparameters conditional on k for a preliminary

run of the allocation sampler using the galaxy dataset. . . . . . . 77

3.6 Marginal posterior distributions of the component means for a mix-

ture of 3 normal components for the galaxy dataset. . . . . . . . . 84

4.1 Density functions of mixtures of univariate normal distributions

from Marron and Wand (1992). . . . . . . . . . . . . . . . . . . . 92

4.2 Plots of the posterior distribution of k and the posterior predictive

distribution for mixture (a) - Gaussian. . . . . . . . . . . . . . . . 96

4.3 Plots of the posterior distribution of k and the posterior predictive

distribution for mixture (b) - Skewed Unimodal. . . . . . . . . . . 97

4.4 Plots of the posterior distribution of k and the posterior predictive

distribution for mixture (c) - Strongly Skewed. . . . . . . . . . . . 98

4.5 Plots of the posterior distribution of k and the posterior predictive

distribution for mixture (d) - Kurtotic Unimodal. . . . . . . . . . 99

4.6 Plots of the posterior distribution of k and the posterior predictive

distribution for mixture (e) - Outlier. . . . . . . . . . . . . . . . . 100

4.7 Plots of the posterior distribution of k and the posterior predictive

distribution for mixture (f) - Bimodal. . . . . . . . . . . . . . . . 101

4.8 Plots of the posterior distribution of k and the posterior predictive

distribution for mixture (g) - Separated Bimodal. . . . . . . . . . 102

4.9 Plots of the posterior distribution of k and the posterior predictive

distribution for mixture (h) - Skewed Bimodal. . . . . . . . . . . . 103

4.10 Plots of the posterior distribution of k and the posterior predictive

distribution for mixture (i) - Trimodal. . . . . . . . . . . . . . . . 104

ix



4.11 Plots of the posterior distribution of k and the posterior predictive

distribution for mixture (j) - Claw. . . . . . . . . . . . . . . . . . 105

4.12 Plots of the posterior distribution of k and the posterior predictive

distribution for mixture (k) - Double Claw. . . . . . . . . . . . . . 106

4.13 Plots of the posterior distribution of k and the posterior predictive

distribution for mixture (l) - Asymmetric Claw. . . . . . . . . . . 107

4.14 Plots of the posterior distribution of k and the posterior predictive

distribution for mixture (m) - Asymmetric Double Claw. . . . . . 108

4.15 Plots of the posterior distribution of k and the posterior predictive

distribution for mixture (n) - Smooth Comb. . . . . . . . . . . . . 109

4.16 Plots of the posterior distribution of k and the posterior predictive

distribution for mixture (o) - Discrete Comb. . . . . . . . . . . . . 110

4.17 Plots of acceptance rates of the Absorption/Ejection move and the

three Metropolis-Hastings moves against sample size. . . . . . . . 121

4.18 Contd. Plots of acceptance rates of the Absorption/Ejection move

and the three Metropolis-Hastings moves against sample size. . . . 122

5.1 Histograms and posterior predictive densities for the galaxy dataset.126

5.2 Histogram and posterior predictive density for the acidity dataset. 129

5.3 Histogram and posterior predictive density for the enzyme dataset. 132

5.4 Histogram and posterior predictive density for the Hidalgo stamps

dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.5 Marginal parameter posterior density estimates for the S&P 500

Returns dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

x



5.6 Histogram and posterior predictive density for the S&P 500 Re-

turns dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

5.7 Posterior predictive densities for iris dataset. . . . . . . . . . . . . 142

5.8 Image plot of pairwise classification probabilities for the iris dataset.143

xi



List of Tables

3.1 Effective sample sizes for 3 different pE proability selection meth-

ods across 3 datasets. . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.1 Parameters for the 15 mixtures of univariate normal distributions

as displayed in Figure 4.1 . . . . . . . . . . . . . . . . . . . . . . 93

4.2 The number of allocation vectors used to calculate the parameter

estimates in Tables (4.3) - (4.11). . . . . . . . . . . . . . . . . . . 112

4.3 Estimates of the parameters in mixture (d) from Table (4.1). . . . 113

4.4 Estimates of the parameters in mixture (e) from Table (4.1). . . . 113

4.5 Estimates of the parameters in mixture (f) from Table (4.1). . . . 114

4.6 Estimates of the parameters in mixture (g) from Table (4.1). . . . 114

4.7 Estimates of the parameters in mixture (h) from Table (4.1). . . . 115

4.8 Estimates of the parameters in mixture (i) from Table (4.1). . . . 115

4.9 Estimates of the parameters in mixture (j) from Table (4.1). . . . 116

4.10 Estimates of the parameters in mixture (l) from Table (4.1). . . . 117

4.11 Estimates of the parameters in mixture (o) from Table (4.1). . . . 118

4.12 Median thinning values ∆ and median run times for the simulation

study. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

xii



5.1 Posterior distribution of k for the galaxy dataset using univariate

normal components. . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.2 Posterior distribution of k for the galaxy dataset using uniform

components. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.3 Estimates of the parameters in the 5-component mixture of nor-

mals for the galaxy dataset after post-processing. . . . . . . . . . 125

5.4 Posterior distribution of k for the acidity dataset. . . . . . . . . . 128

5.5 Estimates of the parameters in the 3-component mixture of nor-

mals for the acidity dataset after post-processing. . . . . . . . . . 128

5.6 Posterior distribution of k for the enzyme dataset. . . . . . . . . . 131

5.7 Estimates of the parameters in the 3-component mixture of nor-

mals for the enzyme dataset after post-processing. . . . . . . . . . 131

5.8 Posterior distribution of k for the stamps dataset. . . . . . . . . . 134

5.9 Estimates of the parameters in the 4-component mixture of nor-

mals for the Hidalgo stamps dataset after post-processing. . . . . 134

5.10 Posterior distribution of k for the S&P 500 returns dataset. . . . . 137

5.11 Estimates of the parameters in the 3-component mixture of sign-

shifted exponentials for the S&P 500 returns dataset after post-

processing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.12 Posterior distribution of k for the iris dataset. . . . . . . . . . . . 141

xiii



Chapter 1

Introduction

Analysis of finite mixture models can be dated back to the late 19th century

when the Pearson (1894) paper was published. It contained an analysis of a

mixture of two normal components on the well known crab data set. A finite

mixture density can be described as a convex combination of a finite number of

probability densities q(x|θ)

f(x) =
k∑

j=1

λjqj(x|θj), (1.1)

where the weights λj > 0 and
∑k

j=1 λj = 1. The term mixture component is used

for qj(x|θj), where this is a density that comes from a parametric family. The

other parameters that are in model (1.1) are the number of components k, the

mixture weights λ = (λ1, . . . , λk) and the parameters corresponding to each of

the components θ = (θ1, . . . , θk).

Due to their flexibility, mixtures can be used to model complex probability

distributions that are not easily described using standard models. In particular,

1



CHAPTER 1. INTRODUCTION 2

they can be used to model population heterogeneity. Furthermore, they can be

applied in many different ways, including density estimation, latent class analysis

and cluster analysis. Therefore, they are being used to model data arising in many

different fields of research, as diverse as astronomy, (e.g. velocities of galaxies), to

philately (e.g. the thickness of Mexican stamps). However, they were neglected

for a long while by statisticians because of the computationally expensive tasks

required in their analysis. For example, Pearson had to solve a nonic equation to

analyse just a mixture of two normal distributions. Mixture models have however

seen a real boost in popularity in recent years, due to the tremendous increase

in available computer power. This computer power is required to apply many of

the Markov chain Monte Carlo (MCMC) methods that are becoming available at

an ever increasing rate to fit the model using a Bayesian approach. There have

been a number of books and monographs published over the last thirty years

detailing the capabilities and analysis of mixture models, including Everitt and

Hand (1981), Titterington et al. (1985), MacLachlan and Basford (1987) and

MacLachlan and Peel (2000). A recent publication that summarises the most

popular methods available to analyse these models is Marin et al. (2005).

In Bayesian inference, Bayes’ theorem is used to convert prior beliefs about a

parameter θ, to posterior beliefs, when we observe some data x = (x1, . . . , xn):

f(θ|x) =
f(θ)L(θ; x)∫
f(θ)L(θ; x)dθ

(1.2)

where f(θ) is called the prior distribution, L(θ; x) is the likelihood function and

f(θ|x) is the posterior distribution. Note that the role of the denominator is to

make the posterior distribution integrate to 1. The prior distribution is the form



CHAPTER 1. INTRODUCTION 3

in which prior knowledge about the parameter of interest, θ, is incorporated into

the model. If there is no prior knowledge, then a non-informative prior may be

used, and thus the posterior will be strongly linked to the likelihood.

The Bayesian approach for parameter estimation hasn’t always had so much

interest. The first method used to estimate the parameters of a model of the

type defined in (1.1) was the method of moments. This was the method used in

Pearson (1894) and was the estimation tool of choice until Rao (1948) suggested

the use of maximum likelihood estimation. Then, to enhance the backing for

the use of maximum likelihood methods, the papers by Tan and Chang (1972)

and Fryer and Robertson (1972) both showed evidence that they lead to more

accurate results than those using the method of moments when estimating the

parameters for most mixtures of normals. A major breakthrough in the maximum

likelihood approach came with the publication of Dempster et al. (1977). This

paper defines a general method for computing maximum likelihood estimates for

missing data problems. They also define a finite mixture model as a missing

data problem, where the missing data are unobserved vectors that indicate from

which component each observation has arisen. This algorithm, known as the EM

algorithm, has very widespread applicability. It is an iterative procedure that

consists of two steps, the Expectation step and Maximisation step. It works in

the finite mixture framework by calculating the expectation of the complete-data

log-likelihood, conditional on the observed data and the current values for the

parameters. Then, this expectation is maximised with respect to the parameters

to give an improved set of parameters that are then used in the next iteration.

An important property of this algorithm is that, at every stage, the log-likelihood

corresponding to the observed data is improved. However, there are drawbacks



CHAPTER 1. INTRODUCTION 4

in that it converges slowly to a maximum, and also the maximum to which

it converges is not necessarily the global maximum. Therefore, there have been

attempts to advance the algorithm and variations are defined in numerous papers.

Meng and Rubin (1993), Liu and Rubin (1994), Meng and van Dyk (1997) and

Neal and Hinton (1998) define some variations to the standard EM algorithm

that increase the speed of convergence and try to reduce the complexity of the

sometimes complicated maximisation step. A comprehensive summary of the

EM algorithm and its extensions is given by MacLachlan and Krishnan (1997).

A final point to note is that special cases of this algorithm had been implemented

well before Dempster et al. (1977) was published.

The description of a finite mixture model as a missing data problem was car-

ried into the Bayesian literature. The amount of Bayesian analysis of mixtures

was accelerated after the very influential papers by Tanner and Wong (1987)

and Gelfand and Smith (1990). These two papers introduced into the statistical

field two MCMC algorithms known as Data Augmentation and Gibbs sampling.

The Gibbs algorithm is a special case of the more general Metropolis-Hastings

algorithm detailed in Hastings (1970). These publications introduce methods

that allow simulation from complex posterior distributions in a simple practical

manner. For more details of these algorithms, see Sections 3.1.1 and 3.1.2. Also,

Tierney (1994) and Gilks et al. (1996) provide a general background on the the-

ory of MCMC methods. These methods allow for the sometimes very complex

posterior distributions to be approximated adequately. A summary of some of

the approximate Bayesian techniques used before the use of MCMC methods

can be seen in Chapter 6 of Titterington et al. (1985). Two of the first papers

that used MCMC methods in a mixture context are Diebolt and Robert (1990,



CHAPTER 1. INTRODUCTION 5

1994). They both use the MCMC methods, in the form of Data Augmentation

and Gibbs Sampling, to estimate the posterior distributions for a k-component

mixture of normals. Another of the early papers dealing with MCMC estimation

techniques for mixture models is Escobar and West (1995). This paper is in a

different setting to that of this thesis, because it is concerned with the Dirichlet

Process Mixture Model. This model, detailed in Ferguson (1983) for the con-

text of mixtures of normals, uses a Dirichlet process prior on a countably infinite

set of mixture components. The analysis techniques used within this framework

have many overlaps to the model structure used in this thesis, especially in the

construction of the MCMC moves.

Most of the papers mentioned upon till now deal with the case of fitting the

model where the number of components k is assumed known. However, the ques-

tion, “How many components should be in the model?”, is a very important one

and, even though it has been researched for many years, a fully satisfactory solu-

tion is still to be found. Many different approaches have been proposed. An infor-

mal way of determining the number of components is through the use of graphical

techniques, and a summary of some of these is given in Chapter 5 of Everitt and

Hand (1981). The more formal hypothesis testing approach, of comparing two

competing models, using for example the generalised likelihood ratio test, is not

easily applied in the usual form because the standard regularity conditions for

tests of this form do not hold - see Chapter 6 of MacLachlan and Peel (2000) for

an example of how these regularity conditions break down. Other general model

selection methods have been implemented including using Information Criteria

such as Akaike’s Information Criterion AIC, the Bayesian Information Criterion



CHAPTER 1. INTRODUCTION 6

BIC (Schwarz (1978)) and the Deviance Information Criterion DIC (Spiegelhal-

ter et al. (2002)). The idea behind these is to fit the model that minimises the

chosen criterion. The DIC is used by McGrory (2005) in her variational Bayes

approximation framework. Her variational Bayes approximation method uses an

iterative scheme to fit the model by essentially trying to approximate the true

posterior density by a simpler density that is chosen to minimise the Kullback-

Liebler divergence between these densities. Her simulation starting point has a

high value of k and then elects to remove components throughout the simulation

while recording the DIC. The simulation is run until the scheme converges to

a particular value of k. The variational Bayes method has an advantage over

most MCMC schemes in that it is less computationally intensive. This idea of

using the Kullback-Liebler distance as a basis of testing between two competing

models was first proposed in Mengersen and Robert (1996). Sahu and Cheng

(2003) modifies the approach from Mengersen and Robert (1996) to help make

the method more generally applicable, faster and easier to use in practice. Most

of these papers do not use a prior on k to assess the number of components. Some

other papers that also do not impose a prior on k are Carlin and Chib (1995),

Chib (1995) and Raftery (1996). They all use a Bayes factor approach to test

between models with k and k + 1 components. The Bayes factor is the ratio of

the marginal likelihoods under the two different models being compared. Another

method of choosing the number of components is to construct the posterior of k.

A prior distribution is placed on k and then estimates of the marginal likelihoods

for each k are calculated. The posterior of k is then found by simple implemen-

tation of Bayes’ theorem. This is an approach that was taken in Nobile (1994)

and Roeder and Wasserman (1997). Nobile (2004) derives marginal likelihood



CHAPTER 1. INTRODUCTION 7

representations of these marginal likelihood terms required in the calculations.

A major development in this area of research came with the landmark paper

of Green (1995). This important paper derived an MCMC scheme known as Re-

versible Jump MCMC (RJMCMC). This scheme allowed the MCMC sampler to

jump between different models, meaning that in the case of finite mixture models

the sampler can jump between models with differing numbers of components.

This cross-model sampling method allows the sampler to sample from the joint

posterior distribution of all the parameters including the number of components.

The posterior distribution of k is then an easy quantity to calculate from the

resulting MCMC output. The application of RJMCMC to finite mixture models

was published in Richardson and Green (1997), where the authors detailed the

framework for mixtures of univariate normal components. They evaluated the

posterior distribution of k by calculating the relative frequency for each model

visited throughout the simulation. Their model set-up contained all the parame-

ters, namely the number of components, weights and component parameters, and

therefore the jumps between different models were jumps between models of dif-

ferent dimensions. These dimension-jumping moves are usually called split/merge

moves in the finite mixture context where a component is either split into two

components or two components are merged together to create a single compo-

nent. However, they are referred to as absorption/ejection type moves in the

allocation sampler, see Chapter 3. A simpler reference for the RJMCMC the-

ory contained in Green (1995) can be found in Chapter 6 of Green et al. (2003)

under the title of “Trans-dimensional Markov chain Monte Carlo”. For a more

detailed summary of the model used in Richardson and Green (1997) see section



CHAPTER 1. INTRODUCTION 8

3.1.3. In RJMCMC the posterior distribution of k is simply estimated by the rel-

ative frequency that the sampler visits each model throughout the simulation. In

RJMCMC the dimension-jumping moves become more computationally intensive

when more and more parameters are contained in the model. A way of coun-

teracting this significant increase in the number of parameters with an increase

of k is to integrate some of the parameters out of the model, for example the

component parameters and weights. This integration is computable in a closed

form if conjugate priors are used for the parameters, but there are also cases when

non-conjugate priors can be used, see Sections 2.4.3 and 2.4.4. Then the only

unknowns left in the model are the number of components k and the vector of

allocations conveying from which component each of the observations is coming.

Authors who have worked within this framework are Nobile (1994), Casella et al.

(2000), Steele et al. (2003), Fearnhead (2004) and Nobile and Fearnside (2007).

The first author used this framework in his calculation of marginal likelihoods to

construct the posterior of k. Casella et al. (2000) detail a partitioned importance

sampling technique for use after integrating out the parameters and Steele et al.

(2003) also propose an importance sampling technique to calculate what they

call integrated likelihoods. Fearnhead (2004) presents this in a Dirichlet process

model setting using particle filters, but integrating out only the component pa-

rameters. Nobile and Fearnside (2007) defines absorbtion/ejection moves for an

MCMC sampler, which has both the component parameters and weights inte-

grated out. They call this the allocation sampler. Full details of this method can

be found in Chapter 3 of this thesis. This approach of integrating out the param-

eters has the other benefit that the state space of the MCMC sampler does not

change with different component distributions or dimensions of the data. This



CHAPTER 1. INTRODUCTION 9

helps to make the analysis of multivariate data more practical. Analyses of mul-

tivariate data using RJMCMC for finite mixture models are few and far between

because of the significant increase in computational work required. There have

been some attempts though, including Zhang et al. (2004), Nobile and Fearnside

(2007) and Dellaportas and Papageorgiou (2006), who all deal with multivariate

normal components, and also Meligkotsidou (2007) using multivariate Poisson

components for analysing multivariate count data.

There have been other methods proposed to enable cross-model sampling as

alternatives to RJMCMC for Bayesian analysis of finite mixture models. Firstly,

there was a jump diffusion approach suggested by Phillips and Smith (1996)

which grew out of the methodology proposed by Grenander and Miller (1991,

1994). This paper defined a prior distribution over a set of models and their

parameters. Furthermore, they then defined jump moves in an iterative jump-

diffusion sampling scheme that allowed the sampler to jump between the models.

The jumps are made at random times throughout the simulation and the diffusion

moves sample the mixture parameters in between these jumps. They carefully

define this method for a mixture of univariate normal components. Another al-

ternative to the RJMCMC method is detailed in Stephens (1997a, 2000a). The

method is based on continuous-time Markov birth-death processes as defined by

Preston (1976). In this context, each mixture component is viewed as a point

in the parameter space and then a point process is used to simulate from the

posterior distribution. The birth-death aspect of the process allows jumps be-

tween mixture models of differing numbers of components by having births and

deaths of mixture components. This method was compared to RJMCMC in



CHAPTER 1. INTRODUCTION 10

Cappé et al. (1995) and also showed the similarites between the two methodolo-

gies. Stephens has also published work on another important consideration when

analysing mixtures, the label switching problem. This is a problem that arises

when there is weak prior information discriminating between components. Fur-

thermore, because the likelihood function of a finite mixture model of the form

1.1 is invariant with respect to a change in labels then there are essentially k!

modes in the posterior distribution. This obviously becomes a serious issue when

parameter estimates and cluster analysis are being determined because the labels

given to each component are not consistent throughout the simulation. This then

leads to the posterior distributions of the parameters being symmetric. Hence,

solutions to this problem have become a significant part of the research on finite

mixture models in order that meaningful parameter estimates can be reported.

Unfortunately, overcoming this label-switching problem can be a computation-

ally expensive task. For a fuller summary and explanation of the problem and

potential solutions to it see Section 3.2.5.

The next two chapters of this thesis set-up the finite mixture model and also

an MCMC sampler to analyse this model tackling the problems of cross-model

sampling, hyperparameter selection and label switching. This sampler is then

tested in Chapter 4 using artificial data and then further in Chapter 5 using real

datasets from analyses by previous authors.



Chapter 2

Model

This chapter introduces and defines the Bayesian finite mixture model that is

used throughout the thesis.

Suppose x = (x1, . . . , xn) is a set of random variables (possibly vectors) that

are independent and identically distributed and have a probability density func-

tion of the form

f(x|k, λ, θ) =
k∑

j=1

λjqj(x|θj), λj > 0,
k∑

j=1

λj = 1. (2.1)

where λ = (λ1, . . . , λk) is the set of mixture weights which denote the probability

that the random variable xi follows one of the k possible distributions qj(xi|θj).

These distributions are known as the mixture components. They belong to a

known parametric family of distributions that are characterized by a set of pa-

rameters θj. For example, if a component was a normal distribution, then θj

would contain the mean and variance. Furthermore, all the components are from

the same specified family, thus forcing them to have the same functional form.

11



CHAPTER 2. MODEL 12

It should be noted that the meaning of the parameters changes when the num-

ber of components in the mixture changes. For example, the weight of the 1st

component can obviously have a different meaning and possibly different value

as the number of components in the model increases. For ease of notation, this

explicit dependence of the parameters on the dimension of the model has been

be suppressed in the model notation.

2.1 Definition of Allocation vector, g

An analysis of the finite mixture model (2.1) can be interpreted as a missing-data

problem. The missing-data is an indicator vector that denotes the component

from which each observation has been generated. Let g = (g1, . . . , gn) be a latent

allocation vector which denotes to which component each of the observations

x = (x1, . . . .xn) is allocated. It will be called the allocation vector, although in

some literature it is known as the membership vector. Then, obviously a priori,

the xi’s arise from any of the k components qj(.) with probability λj.

Evaluation of the posterior distribution of g is a possible way of performing

a cluster analysis on the data. A simple method of partitioning the observa-

tions into clusters, for a given k, is to allocate an observation to the component

that has the highest estimated posterior probability. Binder (1978) reports on

a Bayesian cluster analysis procedure for multivariate normal components, de-

scribing a method of estimating the allocation vector g and applying it to two

examples. Multivariate normal mixtures are also used by Wruck et al. (2001)

as a method for classification and discrimination. Some clustering methods and

applications using mixtures models are given in MacLachlan and Basford (1987).



CHAPTER 2. MODEL 13

After tackling the label switching problem described in Section 3.2.5, one can

calculate the posterior probability of an observation being allocated to a certain

component, conditional on the number of components in the model. Also, one

would be able to compute the posterior probability that two observations are

allocated to the same component, See Section 2.5.4.

2.2 Bayesian model specification

The complete specification of the Bayesian model requires the bringing together of

a prior distribution and a likelihood function. The prior is required to encompass

all of the unknown variables (k, g, λ, θ). Thus, the full joint distribution of all the

parameters and the data is

f(x, k, g, λ, θ) = π(k)π(λ|k)f(g|k, λ)π(θ|k, g, λ)f(x|k, g, λ, θ). (2.2)

Imposing further conditional independencies the joint distribution collapses to

f(x, k, g, λ, θ) = π(k)π(λ|k)f(g|k, λ)π(θ|k)f(x|k, g, θ). (2.3)

Note that throughout this thesis a prior or posterior distribution will be de-

noted by π(.), a predictive distribution by p(.) and any other distribution by f(.).

Careful consideration is required when specifying the priors in equation (2.3), so

that the following assumption will hold.

An important characteristic of the approach to be discussed, is that the model

is simplified by integrating out the mixture weights and component parameters.



CHAPTER 2. MODEL 14

Assumption 2.1 (Model Assumption). Assume that

f(x, k, g) =

∫
f(x, k, g, λ, θ)dλdθ

= π(k)

∫
π(λ|k)f(g|k, λ)dλ

∫
π(θ|k)f(x|k, g, θ)dθ (2.4)

can be computed in closed form.

This assumption is used by both Nobile (1994) and Steele et al. (2003) as a way of

producing a method of analysis that changes little between different forms of the

components and dimensions of the data. This is in contrast to standard models

that leave the parameters in the model meaning that the complexity increases

rapidly with an increase in dimension or change in component form.

The posterior from which one wishes to sample is π(k, g|x) and is propor-

tional to the joint distribution f(x, k, g). Both the posterior on the number of

components k, π(k|x), and the posterior predictive distribution, p(xn+1|x), of a

future observation can be evaluated easily from this posterior, see Sections 2.5.1

and 2.5.5. Also, with some extra effort, posterior distributions for the mixture

weights (Section 2.5.2) and component parameters (Section 2.5.3) can be found,

even though they have been integrated out of the model.

2.3 Prior distribution

2.3.1 Number of components, k

The prior on k has to be proper and have a support on the set of positive integers.

It is critical that the prior is chosen wisely, because the posterior of k can be very



CHAPTER 2. MODEL 15

sensitive to the prior. One might first think of using a discrete uniform prior

over the range (1, . . . , kmax), where kmax is a computational upper bound on k.

However, Nobile (2005) gave an argument for employing a prior proportional to

a truncated Poi(1) distribution. He justified using this prior by acknowledging

the significant effect on the posterior distribution of k from models with empty

components. Therefore, the idea of using a Poisson prior is to reduce this effect.

The Poisson prior has been used by other authors, including Phillips and Smith

(1996) and Stephens (2000a). A Poisson prior with a rate parameter equal to 1

has been used here and is therefore defined as

k ∼ Poi(1) ⇔ π(k) ∝ 1
k!

k = 1, . . . , kmax. (2.5)

2.3.2 Mixture weights, λ

A popular choice for the prior on the mixture weights is the Dirichlet distribution,

Dir(α1, . . . , αk) with (αj > 0, j = 1, . . . , k):

π(λ|k) =
Γ(α0)

Γ(α1)···Γ(αk)
λα1−1

1 . . . λαk−1
k λj > 0,

k∑
j=1

λj = 1, (2.6)

where α0 =
k∑

j=1

αj. We have chosen to use a symmetric Dirichlet distribution

in this setting, where the hyperparameters are αj = α1 = 1. Consequently, the

prior can be thought of as a uniform distribution on the simplex of the weights.

This distribution is a conjugate prior for the mixture weight and is exactly the

same as that used in Richardson and Green (1997) and Stephens (2000a).



CHAPTER 2. MODEL 16

2.3.3 Allocation vector, g

Assume the gi’s are conditionally independent given k and λ and that

Pr[gi = j|k, λ] = λj. (2.7)

Following from the above assumptions

f(g|k, λ) =

k∏

j=1

λ
nj

j (2.8)

where nj is the number of observations allocated by g to component j: nj =

card{Aj} and Aj = {i : gi = j}. Furthermore, conditional on g, the density of xi

can be given as qgi
(.|θgi

) and

f(x|k, λ, θ, g) =

n∏

i=1

qgi
(xi|θgi

). (2.9)

Multiplying (2.9) together with (2.8), and integrating with respect to g, results

in an expression for f(x|k, λ, θ) that equates to the finite mixture model defined

in (2.1). For full details of this integration see page 23 of Nobile (1994).

For Assumption (2.1) to hold, the weights have to be integrated out of the

expression f(g|k, λ)f(λ|k). This produces

f(g|k) =

∫
f(g|k, λ)π(λ|k)dλ

=
Γ(α0)

Γ(α0 + n)

k∏

j=1

Γ(αj + nj)

Γ(αj)
. (2.10)

Consequently, Assumption (2.1) is reduced to simply being able to integrate out



CHAPTER 2. MODEL 17

the component parameters from the remaining distributions in (2.3).

2.3.4 Component parameters, θ

Independent priors, conditional only on k and the hyperparameters φ, are chosen

for θ,

π(θ|k, φ) =

k∏

j=1

π(θj|φj). (2.11)

This prior has to be selected so that the parameters can be integrated out of the

model. One way to ensure this, is to use a probability distribution from the expo-

nential family of distributions as the component density, qj(x|θj). Then, because

the component density is a member of the exponential family, there exists a prior

distribution conjugate to qj(x|θj) that guarantees the component parameters can

be integrated from the model. However, there are other probability distributions

that are not members of the exponential family, but a prior distribution can still

be defined in such a way that the component parameters can again be integrated

out in closed form. Examples of both these situations can be seen in Section 2.4.

These prior distributions have one assumption imposed on them.

Assumption 2.2. Assume that the prior on θj does not change with a change

in the number of components in the model.

To understand this assumption, let the jth component be a normal density, qj,

with a prior distribution on the mean and variance πj, that has hyperparameters

φj. Then, the jth component will have these quantities when the model has

k = j, . . . , kmax components in the model. A similar assumption is used in Nobile

(2004).



CHAPTER 2. MODEL 18

2.3.5 Hyperparameters, φ

From the specification of the hyperparameters in the prior, two different cases

arise for the model. Firstly, if all the component hyperparameters are assumed to

be equal for all values of k, (αj = α1, φj = φ1), j = 1, . . . , k, then the prior will be

symmetric with respect to a permutation of the labels. This will be referred to as

the symmetric case. If information distinguishing the components is known, then

it should always be incorporated into the prior distribution. This would result

in an asymmetric prior being defined and will therefore be calle dthe asymmetric

case. Differences in the asymmetric hyperparameters lie in the vector φ, as the

weight hyperparameters α are always all set equal to 1 in this framework, see

Section 2.3.2. In the implementation of certain procedures, slight differences arise

due to the symmetry or asymmetry of the prior distribution. These procedures

will be discussed in more detail in Chapter 3. One of these procedures is the

method of choosing the hyperparameter values, see Section 3.2.4.

2.3.6 Distribution of the data

Formally, we assume x = (x1, . . . , xn) is conditionally independent given the

parameters (k, g, θ). Then

f(x|k, g, θ) =

n∏

i=1

qgi
(xi|θj) (2.12)



CHAPTER 2. MODEL 19

and hence, with the prior on θ, (2.11), chosen to satisfy Assumption 2.1, it follows

that

f(x|k, g, φ) =

∫
f(x|k, g, θ)π(θ|k, φ)dθ

=

∫ n∏

i=1

qgi
(xi|θj)

k∏

j=1

π(θj|φj)dθ

=

k∏

j=1

∫ ∏

i∈Aj

qj(xi|θj)πj(θj|φj)dθj. (2.13)

Letting pj(x
j|φj) denote the marginal density of the observations xj = {xi : i ∈

Aj} allocated to component j, after integrating with respect to the prior of θj,

one has

pj(x
j|φj) =

∫ ∏

i∈Aj

qj(xi|θj)πj(θj|φj)dθj. (2.14)

Note that if Aj = ∅ then pj(x
j|φj) = 1. Therefore, substituting (2.14) into (2.13),

one has

f(x|k, g, φ) =

k∏

j=1

pj(x
j|φj). (2.15)

A full description of the Bayesian model (2.4) can be seen in Figure 2.1, com-

paring it to model (2.3), where the circles denote random parameters, and the

squares denote fixed constants. These fixed constants can theoretically become

random, if a hyperprior is put upon them. More comments on possible hyperpri-

ors on φ can be seen in Section 3.2.4.



CHAPTER 2. MODEL 20

Figure 2.1: (a) is a directed acyclic graph (DAG) corresponding to the model
(2.3) and (b) is a DAG corresponding to model (2.4) where the mixture weights

and component parameters have been integrated out.



CHAPTER 2. MODEL 21

2.4 Examples

2.4.1 Mixtures of univariate normals

For illustrative purposes, one firstly looks at the simple case of a mixture of

univariate normal components with unknown means and variances. Therefore,

qgi
(xi|θgi

) in (2.12) has the density N(xi|mgi
, r−1

gi
) of a normal distribution with

mean mgi
and variance r−1

gi
. The priors πj(θj|φj) in (2.11) are the usual conjugate

priors for (mj, rj):

rj ∼ Ga(γj, δj)

mj|rj ∼ N(µj, {τjrj}−1),
(2.16)

independently for each j, so that φj = (µj, τj, γj, δj). Given k and g, the marginal

distribution of the data allocated to the j-th component is given by

pj(x
j|φj) = π−nj/2

[
τj

τj + nj

]1/2
Γ(γj + {nj/2})

Γ(γj)
·

(2δj)
γj



2δj +

∑

i∈Aj

(xi − xj)
2 +

τjnj

τj + nj
(xj − µj)

2





−(γj+{nj/2})

,

where xj = (1/nj)
∑

i∈Aj
xi. See page 21 of Nobile (1994) for more details of this

result.

2.4.2 Mixtures of multivariate normals

Extending to the multivariate normal case with b-variate normal components

yields qgi
(xi|θgi

) = Nb(xi|mgi
, r−1

gi
), where mgi

is the mean vector, and rgi
the

precision matrix. The corresponding multivariate generalisations of the priors



CHAPTER 2. MODEL 22

used in the univariate case are

rj ∼ Wb(νj, ξj)

mj|rj ∼ Nb(µj, {τjrj}−1),
(2.17)

independently for each j, where Wb(νj, ξj) is a b-variate Wishart distribution with

νj degrees of freedom, and a precision matrix ξj. The remaining hyperparameters

µj and τj are a b-vector and a positive real number. Therefore φj = {µj, τj, νj, ξj}

are the hyperparameters for this distribution. The marginal density of the data

allocated to component j, given k and g, is

pj(x
j|φj) = π−bnj/2

[
τj

τj + nj

]b/2 b∏

s=1

Γ({νj + nj + 1 − s}/2)

Γ({νj + 1 − s}/2)
|ξj|νj/2 ·

∣∣∣∣∣∣
ξj +

∑

i∈Aj

(xi − xj)(xi − xj)
> +

τjnj

τj + nj
(xj − µj)(xj − µj)

>

∣∣∣∣∣∣

−(νj+nj)/2

where xj is the sample mean vector of the observations allocated to component

j. See page 42 of Nobile (1994) for more details of this result.

2.4.3 Mixtures of uniforms

Next, one looks at the case of the components following a uniform distribution.

An example of a mixture of uniforms is the simple graphical tool, the histogram.

This is a special case where all the distributions have equal length, and they also

do not overlap. Therefore, each component is a uniform distribution over a single

bin of the histogram. There is a significant drawback about the use of mixtures

of uniforms, in that they can only be used for density estimation because of their

lack of identifiability. This is noted on page 36 of Titterington et al. (1985), where



CHAPTER 2. MODEL 23

they state that a mixture of uniforms is not even identifiable up to a permutation

of the labels. Hence, no parametric inference is meaningful in this case. Another

problem that exists for the uniform distribution is that a conjugate prior is only

avaiable for the Unif(0, a) distribution. This conjugate prior distribution is the

Pareto distribution. Therefore, since a Unif(a, b) distribution is being used here

the prior chosen for the component parameters {a, b}, is not conjugate. However,

a prior can still be chosen in such a way that assumption 2.1 holds. Assume the

components have the form qgi
(xi|θgi

) = Unif(xi|agi
, bgi

), where (agi
, bgi

) are the

lower and upper bounds of the distribution. Then, let the parameters (aj, bj),

j = 1, . . . , k be independent a priori with density

πj(aj, bj|φj) = 1/(2φ2
j), −φj < aj < bj < φj (2.18)

where φj = φ is a positive constant. A point to note is that there should be no

duplicate values in the data. This is only possible due to rounding data values

because from simple measure theory no two data values will exactly coincide. The

parameters are integrated out, yielding the marginal density of the data allocated

to component j as

pj(x
j|φ) =





1
2φ2

»

(xj

(nj )
−xj

(1)
)−nj+2−(xj

(nj )
+φ)−nj+2−(φ−xj

(1)
)−nj+2+(2φ)−nj+2

–

(nj−1)(nj−2)
nj > 2

1
2φ2

[
log

(φ−xj

(1)
)(φ+xj

(2)
)

2φ(xj

(2)
−xj

(1)
)

]
nj = 2

1
2φ2

[
xj

(1) log
φ−xj

(1)

φ+xj

(1)

+ φ log (2φ)2

(φ−xj

(1)
)(φ+xj

(1)
)

]
nj = 1

(2.19)



CHAPTER 2. MODEL 24

where xj
(i) denotes the i-th order statistic of xj. For the full details of the deriva-

tion of (2.19), see Appendix (A.1).

2.4.4 Mixtures of sign-shifted-exponentials

Mixtures of exponential distributions have been analysed by Gruet et al. (1999)

using a RJMCMC scheme. However, to have a more general class of distributions,

the sign-shifted exponential distribution is defined here. This is a three-parameter

distribution. Firstly, there is the usual rate parameter, ω, for an exponential

distribution. Then, one also defines a shift parameter, a, to allow the distribution

to move along the x-axis and finally, a sign parameter to characterise the direction

of the exponential decay.

If one considers x to be an observation from a sign-shifted exponential distri-

bution, then x would have a density of the form

f(x|θ) =





ωe−ω(x−a)I(a,∞)(x), s = 1

ωeω(x−a)I(−∞,a)(x), s = −1
(2.20)

where s takes values from the set S = {−1, 1, }, a ∈ IR and ω > 0. Hence, for

this distribution the parameter θ = {s, a, ω}. For notation, SSExp(s, a, ω) will

be used to denote a sign-shifted exponential distribution.

Then, a sign-shifted exponential component qj containing nj observations, xj,

has a distribution given by

qj(x
j|θj) =





nj∏
i=1

[
ωje

−ωj(x
j
i−aj)I(aj ,∞)(x

j
i )
]
, sj = 1

nj∏
i=1

[
ωje

ωj(x
j
i−aj)I(−∞,aj)(x

j
i )
]
, sj = −1,

(2.21)



CHAPTER 2. MODEL 25

-10 -5 0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Figure 2.2: Example of a Sign-Shifted-Exponential density. Shown is a 3
component mixture of Sign-Shifted-Exponentials, where the parameters in the
model are as follows, λ = ( 3

5 , 3
10 , 1

10 ), s = (1,−1, 1), a = (7,−5, 0) and ω =
(1
2 , 4, 1).

where θj = (ωj, aj, sj). Here sj corresponds to the sign parameter, aj to the shift

parameter and ωj to the rate parameter of the jth component in the mixture.

The prior imposed on the rate parameter, ωj, is a Ga(κj, βj) where κj and βj are

known positive values:

π(ωj) =
β

κj

j ω
κj−1
j e−βjωj

Γ(κj)
, κj, βj > 0. (2.22)

The prior on the shift parameter aj, given the rate parameter ωj, is Laplace(0, γjωj):

π(aj|ωj) =
γjωj

2
e−γjωj |aj | (2.23)



CHAPTER 2. MODEL 26

Finally, let

π(sj) =





ρj, s = 1

(1 − ρj), s = −1
(2.24)

where ρj is 0 < ρj < 1. For this distribution, φj = (κj, βj, γj, ρj). The marginal

density of the data allocated to component j, given k and g, is given by

pj(x
j|φj) = ρjpj(x

j|sj = 1) + (1 − ρj)pj(−xj|sj = 1), (2.25)

which uses the fact that pj(−xj |sj = 1) = pj(x
j|sj = −1), see equation (A.20) in

Appendix A.2. There are two cases that arise when calculating the distribution

pj(x
j|sj = 1). Firstly, when nj 6= γj,

pj(x
j|sj = 1) =

γjβ
κj

j Γ(κj + nj)

2Γ(κj)
.

[(
nj + γj

)−1 (
βj +

∑
xj − (nj + γj) min(0, xj

(1))
)−(κj+nj)

+
(
nj − γj

)−1 (
βj +

∑
xj − (nj − γj) max(0, xj

(1))
)−(κj+nj)

−
(
nj − γj

)−1 (
βj +

∑
xj
)−(κj+nj)

]
, (2.26)



CHAPTER 2. MODEL 27

where xj
(i) denoting the i-th order statistic of xj and

∑
xj =

nj∑
i=1

xj
i . Then, sec-

ondly, the case where nj = γj,

pj(x
j|sj = 1) =

γjβ
κj

j

2Γ(κj)
.

[
Γ(κj + nj)

(
nj + γj

)−1 (
βj +

∑
xj − (nj + γj) min(0, xj

(1))
)−(κj+nj)

+ max(0, xj
(1))Γ(κj + nj + 1)

(
βj +

∑
xj
)−(κj+nj+1)

]

(2.27)

See Appendix (A.2) for the full details of the derivations of these two distributions.

2.5 Posterior distributions

Finite mixture models can be summarised by looking at the posterior distribu-

tions of all the parameters in the model. Even though the parameters λ and θ do

not explicitly appear in the sampling procedure, the posterior distributions can

be calculated using the MCMC output. This is in contrast to the usual RJM-

CMC scheme defined in Richardson and Green (1997), where all the parameters

explicitly appear in the MCMC sampling procedure.

There are five posterior distributions that may be of interest:

• Posterior distribution of the number of components, k

• Posterior distribution of the component weights, λ

• Posterior distribution of component parameters, θ

• Posterior distribution of allocation vector, g



CHAPTER 2. MODEL 28

• Posterior predictive distribution of a future observation, xn+1.

The posterior distributions for the weights, component parameters and the allo-

cation vector are all calculated conditional on the number of components in the

model. Summarising the features of a finite mixture model using their parame-

ters can be difficult. The main reason for this is that the number of parameters

in the mixture can be very large for even fairly simple mixture distributions.

However, they still play an important role as they are needed in order to evaulate

the posterior predictive distributions of future observables.

Note that when in the symmetric case, the problem of “label switching” should

be tackled first to obtain more meaningful posterior results, since attempting to

do parametric inference without this would cause the posteriors for all compo-

nents to be symmetric. For details on how this problem is overcome see Section

3.2.5.

2.5.1 Posterior distribution of the number of components

This is the simplest posterior to evaluate since it is a byproduct of the MCMC

sampler. A record of the changing states of k throughout the simulation is kept

in order to estimate this posterior. The posterior probability for having k com-

ponents in the model is found by looking at the frequency of the sampler being

in a state with k components. Thus, a Monte Carlo estimate of the posterior

probability of having k0 components in the model can be defined as

π̂(k0|x) =

∑N
m=1 I(k(m) = k0)

N
, (2.28)



CHAPTER 2. MODEL 29

where k(m) is the number of components in the mth simulation, N is the total

number of allocation vectors simulated by the MCMC sampler, and I is the

indicator function.

2.5.2 Posterior distributions of component weights

We obtain

λ|k, g, x ∼ Dir(α′
1, . . . , α

′
k). (2.29)

where α′
j = αj +nj. Therefore, the marginal posterior distribution of the weights

unconditional on g are found by averaging (2.29) over the posterior distribution

of g,

λ|k, x ∼
∑

g

π(g|k, x)Dir(α′
1, . . . , α

′
k) (2.30)

Note that it only makes sense to calculate the posterior distribution of the weights

given a certain value of k, because the meaning of the weight for component j

changes as k changes.

2.5.3 Posterior distributions of component parameters

For the component parameters, θ, one has

π(θ|k, g, x, φ) =
k∏

j=1

πj(θj|xj, φj), (2.31)



CHAPTER 2. MODEL 30

where πj(θj|xj, φj) denotes the posterior of θj given that g allocates xj to com-

ponent j. In general, this distribution can be written as

πj(θj|xj, φj) =
πj(θj|φj)

∏
i∈Aj

qj(xi|θj)

pj(xj|φj)
, (2.32)

where the normalizing constants pj(x
j|φj) were defined in (2.14). If conjugate

priors πj(θj|φj) are used, the factors in (2.31) take the simple form πj(θj|xj, φj) =

πj(θj|φ′
j), where φ′

j is the updated value of the hyperparameter, according to the

relevant rule for the family of distributions in question. Thus

π(θ|k, x, φ) =
∑

g

π(g|k, x)
k∏

j=1

πj(θj|xj, φj). (2.33)

2.5.3.1 Mixtures of univariate normals

For univariate normal components and the prior described in Section 2.4.1, the

posteriors πj(θj|xj, φj) in (2.31) are as follows: rj|g, x ∼ Ga(γ′
j, δ

′
j) and mj|rj, g, x ∼

N(µ′
j, {τ ′

jrj}−1), where the updated hyperparameter values are

γ′
j = γj +

nj

2
, δ′j = δj +

1

2

∑

i∈Aj

(xj
i − xj)

2 +
τjnj

2(τj + nj)
(xj − µj)

2,

τ ′
j = τj + nj, µ′

j =
τjµj + njxj

τj + nj
.

See page 169 of DeGroot (1970) for the derivation of these updated hyperparam-

eter values.



CHAPTER 2. MODEL 31

2.5.3.2 Mixtures of multivariate normals

For multivariate normal components with the prior discussed in Section 2.4.2, the

posteriors πj(θj|xj, φj) are rj|g, xj ∼ Wb(ν
′
j, ξ

′
j) and mj|rj, g, xj ∼ Nb(µ

′
j, {τ ′

jrj}−1),

where

ξ′j = ξj +
∑

i∈Aj

(xj
i − xj)(x

j
i − xj)

> +
τjnj

τj + nj
(µj − xj)(µj − xj)

>,

ν ′
j = νj + nj, τ ′

j = τj + nj, µ′
j =

τjµj + njxj

τj + nj
.

See page 178 of DeGroot (1970) for the derivation of these updated hyperparam-

eter values.

2.5.3.3 Mixtures of uniforms

The posterior distributions of the parameters for uniform components need to be

derived, even though, as discussed in Section 2.4.3, inference about the parame-

ters in this case is meaningless, due to the lack of identifiability feature of these

models. For uniform components with the prior discussed in Section 2.4.3, the

posteriors have the form

πj(θj|xj, φj) =
1

pj(xj|φ)

1

2φ2(bj − aj)nj
, −φ < aj < xj

(1), xj
(nj)

< bj < φ

(2.34)

where pj(x
j|φ) is given in equation (2.19).



CHAPTER 2. MODEL 32

2.5.3.4 Mixtures of sign-shifted exponentials

For sign-shifted exponential components the posterior density functions for the

shift and rate parameters are calculated conditional on the sign of the component.

Therefore, the first posterior density to be evaluated is for the sign parameter, s.

The posterior probability that sj = 1 is

pj(sj = 1|xj) =
ρjpj(x

j|sj = 1)

pj(xj|φj)
(2.35)

and for sj = −1

pj(sj = −1|xj) =
(1 − ρj)pj(x

j|sj = −1)

pj(xj|φj)
(2.36)

where pj(x
j|φj) is defined by (2.25). The quantities pj(x

j|sj = 1) and pj(x
j|sj =

−1) in (2.35) and (2.36) are both calculated from (2.26) and (2.27).

The posterior densities for the remaining parameters can be written as pro-

portionalities where the proportionality constant is simply pj(x
j|φj). Hence, the

posterior density for the rate parameter, ω, conditional on s = 1 has the following

form if nj 6= γj:

π(ωj|k, g, x, sj = 1) ∝
γjβ

κj

j

2Γ(κj)
ω

κj+nj

j exp
{
−ωj(βj +

∑
xj

i )
}
·

[
exp

{
ωj(nj + γj) min(0, x(1))

}

ωj(nj + γj)
+

exp
{
ωj(nj − γj) max(0, x(1))

}
− 1

ωj(nj − γj)

]
.

(2.37)



CHAPTER 2. MODEL 33

If nj = γj, one has

π(ωj|k, g, x, sj = 1) ∝
γjβ

κj

j

2Γ(κj)

[
1

nj + γj
ω

κj+nj−1
j exp

{
−ωj(βj +

∑
xj

i − (nj + γj) min(0, x(1))
}

+ max(0, x(1))ω
κj+nj exp

{
−ωj(βj +

∑
xj

i )
}]

.

(2.38)

These two results, (2.37) and (2.38), are a by-product of the derivation of pj(x
j|sj =

1), see Appendix A.2. The posterior densities for the rate parameter when s = −1

are of a similar form to (2.37) and (2.38). Hence, when nj 6= γj,

π(ωj|k, g, x, sj = −1) ∝
γjβ

κj

j

2Γ(κj)
ω

κj+nj

j exp
{
−ωj(βj −

∑
xj

i )
}
·

[
exp

{
ωj(nj + γj) min(0,−x(n))

}

ωj(nj + γj)
+

exp
{
ωj(nj − γj) max(0,−x(n))

}
− 1

ωj(nj − γj)

]
,

(2.39)

and if nj = γj

π(ωj|k, g, x, sj = −1) ∝
γjβ

κj

j

2Γ(κj)

[
1

nj + γj

ω
κj+nj−1
j exp

{
−ωj(βj −

∑
xj

i − (nj + γj) min(0,−x(n))
}

+ max(0,−x(n))ω
κj+nj exp

{
−ωj(βj −

∑
xj

i )
}]

.

(2.40)



CHAPTER 2. MODEL 34

The posterior densities for the shift parameters, conditional on s, are found by in-

tegrating the rate parameters out of pj(x
j|aj, ωj, sj = 1, φj) and pj(x

j|aj, ωj, sj =

−1, φj). The integral for s = 1 is defined as follows:

π(aj|k, g, x, φj, sj = 1)

∝
∞∫

0

ω
nj

j exp
{
−ωj

(∑
xj − njaj

)} γjβ
κj

j ω
κj

j exp{−ωj(βj + γj|aj|)}
2Γ(κj)

dωj

=
γjβ

κj

j

2Γ(κj)

∞∫

0

ω
κj+nj

j exp
{
−ωj

(
βj +

∑
xj − (nj − γj)aj

)}
dωj

+

∞∫

0

ω
κj+nj

j exp
{
−ωj

(
βj +

∑
xj − (nj + γj)aj

)}
dωj

=
γjβ

κj

j

2Γ(κj)

[
Γ(κj + nj + 1)

(βj +
∑

xj − (nj − γj)aj)
κj+nj+1 +

Γ(κj + nj + 1)

(βj +
∑

xj − (nj + γj)aj)
κj+nj+1

]
.

(2.41)

A similar integral is calculated for s = −1 resulting in a density of the same form

as (2.41):

π(aj|k, g, x, φj, sj = −1)

∝
γjβ

κj

j

2Γ(κj)

[
Γ(κj + nj + 1)

(βj −
∑

xj + (nj − γj)aj)
κj+nj+1 +

Γ(κj + nj + 1)

(βj −
∑

xj + (nj + γj)aj)
κj+nj+1

]
.

(2.42)



CHAPTER 2. MODEL 35

2.5.4 Posterior distribution of allocation vector

Analysing the posterior distribution of the allocation vector to find out what

observations can be grouped together gives a cluster analysis for the data. This

posterior distribution can be summarised in a number of different ways, two of

which are defined here. Firstly, a Monte Carlo estimate can be evaluated for the

posterior probability that an observation gi is allocated to a specific component,

after the label-switching problem has been overcome, conditional on a certain

value k, by

π̂(gi = j|k, x) =

N∑
m=1

I(g
(m)
i = j)

Nk
i = 1, · · · , n j = 1, · · · , k (2.43)

where g(m) is the mth allocation vector produced by the allocation sampler, N is

the total number of allocation vectors, N k is the number of allocation vectors with

k components and I is the usual indicator function. Secondly, another quantity

that might be of interest is a Monte Carlo estimate for the posterior probability

that two observations are allocated to the same component unconditional on

k. The probability that observation gi is allocated to the same component as

observation gj is calculated as follows from the N allocation vectors simulated

using the allocation sampler:

π̂(gi = gj|x) =

N∑
m=1

I(g
(m)
i = g

(m)
j )

N
i = 1, · · · , n j = 1, · · · , n. (2.44)



CHAPTER 2. MODEL 36

2.5.5 Posterior predictive distribution

The posterior predictive distribution is of great importance when using mixtures

as a density estimation tool. Assume that the future observation xn+1, conditional

on all the parameters (k, λ, g, θ), is independent of the previous data x. Then

xn+1 has a distribution of the same form as (2.1):

f(xn+1|k, λ, θ, g, x, φ) =

k∑

j=1

λjqj(xn+1|θj). (2.45)

A point to note is that this distribution is not conditional on gn+1, i.e. we do not

specify the component to which the new observation xn+1 belongs. Like (2.1),

(2.45) has to be integrated with respect to the joint distribution of λ and θ given

k, g and x as follows:

f(xn+1|k, g, x, φ) =

∫ ∫
f(xn+1|k, λ, θ)f(θ|k, λ, g, x, φ)f(λ|k, g, x)dθdλ

=

∫ [∫
f(xn+1|k, λ, θ)f(θ|k, λ, g, x, φ)dθ

]
f(λ|k, g, x)dλ,

where

∫
f(xn+1|k, λ, θ)f(θ|k, λ, g, x, φ)dθ =

∫ k∑

j=1

λjqj(xn+1|θj)πj(θj|xj, φj)dθj

=

k∑

j=1

λj

∫
qj(xn+1|θj)πj(θj|xj, φj)dθj

=

k∑

j=1

λjpj(xn+1|xj, φj) (2.46)



CHAPTER 2. MODEL 37

with pj(xn+1|xj, φj) being the posterior predictive density corresponding to com-

ponent j.

Thus, using (2.29), the posterior predictive distribution conditional on k and

g becomes

f(xn+1|k, g, x, φ) =

∫ k∑

j=1

λjpj(xn+1|xj, φj)f(λ|k, g, x)dλ

=

∫ k∑

j=1

pj(xn+1|xj, φj)
Γ(α′

0)

Γ(α′
1) . . .Γ(α′

k)
λ

α′

1−1
1 . . . λ

α′

k
−1

k λjdλ

=

k∑

j=1

pj(xn+1|xj, φj)
Γ(α′

0)

Γ(α′
1) . . .Γ(α′

k)

∫
λ

α′

1−1
1 . . . λ

α′

k
−1

k λjdλ

=

k∑

j=1

pj(xn+1|xj, φj)
Γ(α′

0)

Γ(α′
1) . . .Γ(α′

k)

Γ(α′
1) . . .Γ(α′

j + 1) . . .Γ(α′
k)

Γ(α′
0 + 1)

=

k∑

j=1

α′
j

α′
0

pj(xn+1|xj, φj). (2.47)

If (2.47) is averaged over the joint distribution of k and g, this produces a posterior

predictive distribution of the form

p(xn+1|x, φ) =
∑

k,g

f(k, g|x, φ)
k∑

j=1

α′
j

α′
0

pj(xn+1|xj, φj). (2.48)

Furthermore, it is easy to evaluate the posterior predictive conditioned on a

certain value of k, by only averaging over the g vectors corresponding to that k:

p(xn+1|k, x, φ) =
∑

g

f(g|k, x, φ)
k∑

j=1

α′
j

α′
0

pj(xn+1|xj, φj). (2.49)

Some simplifications are available for pj(xn+1|xj, φj)’s. Firstly, if the priors



CHAPTER 2. MODEL 38

on the component parameters are conjugate, as in the univariate or multivariate

normal component cases, then π(θj|xj, φj) in (2.46) can be written as π(θj|φ′
j),

where φ′
j contains the updated hyperparameter values. Also, the posterior pre-

dictive distributions pj(xn+1|xj, φj) can be simplified by substituting (2.32) into

their definition in equation (2.46):

pj(xn+1|xj, φj) =

∫
qj(xn+1|θj)πj(θj|xj, φj)dθj

=

∫
qj(xn+1|θj)

πj(θj|φj)
∏

i∈Aj
qj(xi|θj)

pj(xj|φj)
dθj

=
1

pj(xj|φj)

∫ ∏

i∈Aj∪{n+1}

qj(xi|θj)π(θj|φj)dθj

=
pj(x̃

j|φj)

pj(xj|φj)
(2.50)

where x̃j denotes the vector xj augmented with xn+1:{xi : i ∈ Aj ∪ {n + 1}}.

This version is used when calculating the posterior predictive distributions in

the no-conjugate cases of uniform or sign-shifted exponential components.

2.5.5.1 Mixtures of univariate normals

The posterior predictive density pj(xn+1|xj, φj) is the density of a univariate t

distribution with 2γ′
j degrees of freedom, location µ′

j and precision {γ′
j/δ

′
j}{τ ′

j/(1+

τ ′
j)}.

2.5.5.2 Mixtures of multivariate normals

The posterior predictives pj(xn+1|xj, φj) are b-variate t distributions with ν ′
j−b+1

degrees of freedom, location vectors µ′
j and precision matrix {τ ′

j/(1 + τ ′
j)}(ν ′

j −

b + 1)ξ′j
−1.



CHAPTER 2. MODEL 39

2.5.5.3 Mixtures of uniforms

The posterior predictives pj(xn+1|xj, φj) are found by using expression (2.50)

because the priors on the parameters are not conjugate. The expression (2.19) is

then used to calculate pj(x̃
j|φj) and pj(x

j|φj) as required in (2.50).

2.5.5.4 Mixtures of sign-shifted-exponentials

The posterior predictives pj(xn+1|xj, φj) are again found by using (2.50) because

of the lack of conjugacy in the choice of prior distribution. The expression (2.25)

is then used to calculate the relevant quantities in (2.50).



Chapter 3

The Allocation Sampler

This chapter introduces a Markov chain Monte Carlo (MCMC) sampler that

explores the joint posterior distribution of k and g,

π(k, g|x, φ) ∝ f(k, g, x|φ) = π(k)f(g|k)f(x|k, g, φ), (3.1)

where π(k), f(g|k) and f(x|k, g, φ) are given by expressions (2.5), (2.10) and

(2.15). This sampler is given the name the allocation sampler because the sampler

is essentially sampling allocation vectors, allowing the number of components in

the model to change.

3.1 Markov chain Monte Carlo

Markov chain Monte Carlo methods can be traced as far back as the papers

Metropolis et al. (1953) and Hastings (1970). However, it is only in the last

two decades that these methods have started to be used to their full potential in

statistics because of the large amount of computer power required to implement

40



CHAPTER 3. THE ALLOCATION SAMPLER 41

these algorithms. The idea of MCMC is to use Monte Carlo averages of a Markov

chain to approximate integrals that are essentially impossible to evaluate analyt-

ically. See Andrieu et al. (2003) for a simple introduction to MCMC methods

from which a short summary is now given.

Suppose we define a random variable X, at time t, as Xt, with a finite state

space S. Then a Markov chain (X0, . . . , Xn) can be defined as a sequence of

random variables generated by a Markov process in discrete time. This is a

process in which the transition probabilities between different points in the state

space S, are determined only by the random variable’s current state, and not

any previous state. These transition probabilities between states make up the

transition matrix. In MCMC the Markov chain is required to possess certain

properties, so that at equilibrium the observations from the chain are hopefully

realisations from a target distribution π, in our case a posterior distribution.

For the Markov chain, described by a particular transition matrix, to have a

stationary distribution, it is sufficient for the chain to be irreducible and aperiodic.

An irreducible chain is one in which all the possible states of the chain can

communicate with each other. A Markov chain is defined to be aperiodic if the

number of steps required to move between two states is not fixed to be a multiple

of some integer. Another condition, which is used to ensure that the Markov

chain has a stationary distribution πi, is that of detailed balance. This condition

can be defined as follows:

P (i → j)πi = P (j → i)πj, (3.2)

where P (i → j) is the probability of moving from state i to state j, and πj is the



CHAPTER 3. THE ALLOCATION SAMPLER 42

target distribution value at state j. If this condition holds, the Markov chain is

said to be reversible.

Extending this theory to cover continuous state spaces means the transition

matrix becomes a transition kernel. Then, the problem to be answered in MCMC

is how to define this so-called transition kernel, in such a way that the Markov

chain eventually produces samples from the desired stationary distribution. This

is a large area of research in statistics with new and modified algorithms for

producing transition kernels, and hence Markov chains with the relevant sta-

tionary distributions, are being published continually. If a suitable transition

kernel is found, then a Markov chain could be started from an initial value, say

X0. It would then be allowed to run according to the transition kernel for some

time, in order for the chain to converge to the target distribution. This is what

is termed a burn-in period B, and the sequence of the chain after the burn-in

(XB+1, . . . , XB+n) would be used for inference on the target distribution.

Two of the most popular algorithms used to create MCMC samplers are the

Metropolis-Hastings algorithm and the Gibbs sampler.

3.1.1 Gibbs Sampling

The Gibbs sampler was first introduced by that name in the paper by Geman and

Geman (1984) in the context of image analysis, but became more popular among

statisticians after the papers by Tanner and Wong (1987) and Gelfand and Smith

(1990). The main idea behind the sampler is to construct a Markov chain which

converges to the target distribution, by considering only univariate conditional

distributions. Obviously, sampling from univariate conditional distributions is



CHAPTER 3. THE ALLOCATION SAMPLER 43

much easier than trying to sample directly from the full joint distribution.

The easiest way to understand how this method works is to look at the sim-

ple case of a bivariate random variable, say (X, Y ). Now, suppose we wish to

make inference about the marginal distributions of this random variable, namely

f(X) and f(Y ). Then, the Gibbs sampler only requires knowing the conditional

distributions f(X|Y ) and f(Y |X). The algorithm would proceed as follows.

Specify an initial value X = X0

Generate Y0 from the conditional distribution f(Y |X = X0)

For i = 1, . . . , n

Generate Xi and Yi from

Xi ∼ f(X|Y = Yi−1)

Yi ∼ f(Y |X = Xi)

One iteration of all the conditional distributions is called a sweep of the Gibbs

sampler. As with most MCMC schemes a burn-in period is used. Thus, after the

burn-in period has been implemented, the random variates that remain should be

draws from the marginal distributions of X and Y . This scheme easily generalizes

to the case of more than two variables by progressing in a systematic manner,

taking each variable in turn and updating it according to its full conditional dis-

tribution. For a more in-depth explanation of the workings of the Gibbs sampler

see Casella and George (1992).

The Gibbs sampling method introduced above is a systematic Gibbs sampler

in that it systematically chooses the next random variate to be generated, i.e.

always X and then Y . This can easily be adapted to become a random sweep



CHAPTER 3. THE ALLOCATION SAMPLER 44

Gibbs sampler. This would mean that the order in which Xi and Yi are updated is

chosen at random. In the seminal paper by Geman and Geman (1984), a random

sweep sampler was defined. For more details on random sweep samplers and

methods of choosing the optimum selection probabilities see Levine and Casella

(2006).

3.1.2 Metropolis-Hastings Algorithm

The Metropolis algorithm was introduced in Metropolis et al. (1953), where it

was applied to the Boltzmann distribution. The method was then generalised

in Hastings (1970) with respect to the proposal distributions used to produce

candidate states for the chain to move to. Therefore, it became known as the

Metropolis-Hastings algorithm. It was extensively used in physics for a long time

before statisticians were alerted to its possibilities by Mueller (1991) and Tierney

(1994). This algorithm is a very general method which is able to make draws from

any probability distribution, assuming the target density can be calculated at a

specific value. In simple terms, the method uses a proposal density, sometimes

called the candidate generating density, to create a candidate state for the chain

to move to. The chain then moves to this new state according to some probabil-

ity, otherwise the chain stays at the current state. This method is easily shown

in algorithmic form, but first some notation is required. Let Xi be the state of

the chain at time i, X ′ be the candidate state, π(X) be the target distribution

of interest, and Q(X, X ′) be the proposal density.



CHAPTER 3. THE ALLOCATION SAMPLER 45

Specify an initial value X0.

For i = 0, 1, . . . , n.

Sample directly from Q(Xi, X
′
i) a candidate state X ′

i.

Generate a u from Unif(0, 1).

Accept X ′
i as Xi+1 if u ≤ α(Xi, X

′
i) = min

{
1,

π(X ′
i)Q(X ′

i, Xi)
π(Xi)Q(Xi, X

′
i)

}
;

otherwise let Xi+1 = Xi.

As is normal in MCMC, a burn-in period for the chain is required to en-

able the chain to reach its stationary distribution. A point to note about the

Metropolis-Hastings transition kernel is that it is constructed in such a way that

it is reversible. Some care has to be taken in defining the proposal density, so that

the chain moves about the state space efficiently. A small summary of different

types of proposal densities can be seen in Chib and Greenberg (1995). This paper

is also relevant for a deeper explanation of the Metropolis-Hastings algorithm. An

important point to note about the Metropolis-Hastings algorithm is that the pro-

posal density Q(X, X ′) satisfies detailed balance, see (3.2), by construction. This

condition is sometimes referred to as the reversibility condition, and it requires

the probability of a move from Xi to Xi+1 to be the same as for the reverse move.

Therefore, this is ensured in the algorithm with the introduction of α(Xi, X
′
i) to

counteract any bias towards either state.



CHAPTER 3. THE ALLOCATION SAMPLER 46

3.1.3 Reversible Jump MCMC

Following on from the Metropolis-Hastings and Gibbs schemes, there was a major

development in MCMC research with the publication of Green (1995). This

paper has somewhat revolutionised MCMC by defining an MCMC algorithm to

cope with the situation, where the number of unknowns is itself also unknown.

This new class of MCMC algorithms is commonly termed reversible jump Markov

chain Monte Carlo (RJMCMC) but is sometimes referred to as trans-dimensional

MCMC. It is essentially a Metropolis-Hastings algorithm for a much more general

state space than standard Metropolis-Hastings. The state space is a union of

subspaces, where the dimension of the subspaces may vary. It is easy to think of

a state space like this arising in a problem of model selection, where a change in

the model is a change in the subspace, and possibly a change of dimension. Most

RJMCMC is implemented as one possible move in a hybrid sampler, where there

are a number of different types of move allowed by the sampler at each iteration,

so that the whole state space is sampled. Standard MCMC methods deal with

the fixed-dimension sampling, but it is a RJMCMC move that allows the chain

to jump between the different dimensions. Richardson and Green (1997) applied

RJMCMC to finite mixture models with an unknown number of components.

This is not the only variable dimensionality MCMC method. Stephens (2000a)

defined a birth/death MCMC scheme as an alternative to RJMCMC also in a

mixture context.

A quick summary of how the RJMCMC moves in Richardson and Green

(1997) were developed is now given, because the ‘new’ moves to be defined later

are similar in design. The model used by these authors differs significantly from



CHAPTER 3. THE ALLOCATION SAMPLER 47

that given in section (2.2) by the fact that the component parameters and weight

parameters have not been integrated out from the model. The authors proposed a

move to split one component into two components, or conversely combine two into

one, in the context of a mixture of normal distributions. A combine proposal was

implemented by selecting two components j1 and j2 and bringing together their

observations into a new component j∗. The updating of the allocation variable

was taken care of straightforwardly, but the weight parameter and component

parameters for the new component had to be carefully constructed by moment

matching. The reverse move of splitting j∗ into j1 and j2 had to be designed

so that the reversibility condition held for the split/combine move. Let y be the

current state, let y′ be the candidate state and let x be the data. The resulting

acceptance probability for each of the moves has the form

min

{
1,

π(y′|x)P (y′ → y)

π(y|x)P (y → y′)
J(y, y′)

}
, (3.3)

where π(y|x) denotes the target density at state y and P (y → y ′) is the probability

of proposing a move to y′ from y. Finally, the term J(y, y′) is a Jacobian term

which arises from the change in variable of going from y to y ′.



CHAPTER 3. THE ALLOCATION SAMPLER 48

3.2 Allocation Sampler

The sampler presented here runs across both k and g only, and it can therefore

be thought of as a Reversible Jump sampler, since a change in k is essentially a

change in the dimension of the model. However, the state space in this setting is

all the possible allocation vectors, and thus, being a finite state space, is signifi-

cantly simpler than that used in Richardson and Green (1997). The state spaces

of the samplers reported in Richardson and Green (1997) and Stephens (2000a)

contain all the parameters. Therefore, a change in k in their state spaces also

means the number of parameters in the model changes which is not the case in

our situation of having integrated the component parameters and weights from

the model. Furthermore, the samplers defined in these two papers make use of

both fixed k moves and variable k moves in order to try and move around the

whole state space. This is the norm when developing an MCMC sampler for a

complicated setting like this. Only using one type of move to sample from a

distribution can lead to problems in being able to move around the whole state

space from which one is trying to sample. Therefore, a hybrid sampler approach

is used for the MCMC sampler in this thesis in order to try and maximise to

efficiency. The sampler defined in this thesis will be referred to as the allocation

sampler, because the allocation vectors play a very important role in the sampler

as will become clear. The allocation sampler when approximating the posterior

distribution (3.1) uses two types of move; moves that do not change the number of

components, and moves that do. The sampler starts a move by firstly randomly

selecting between these two types of move with equal probability. The first type

of move consists of (i) Gibbs sampling on the components of g, (ii) three different



CHAPTER 3. THE ALLOCATION SAMPLER 49

Metropolis-Hastings moves to simultaneously change several allocations and (iii)

a Metropolis-Hastings move on the component labels. This helps the allocation

sampler move more freely around the fixed k state space of allocation vectors.

The allocation sampler that is used throughout assigns equal weighting to the

two types of move.

3.2.1 Moves that do not change the number of compo-

nents

3.2.1.1 Gibbs Move

This move is the implementation of a standard systematic sweep Gibbs sam-

pling scheme that was introduced in Section 3.1.1. In this setting suppose the

Markov chain at time t has k components and an allocation vector defined by

g = (g
(t)
1 , . . . , g

(t)
n ). A systematic sweep Gibbs sampler on the components of g,

from g1 to gn proceeds as follows.

For i = 1, . . . , n.

Compute fj(k, g = (g
(t+1)
1 , . . . , gi = j, . . . , g

(t)
n ), x|φ) for j = 1, . . . , k.

Compute pj(gi = j|k, g−i, x, φ) =
fj

k∑
j=1

fj

for j = 1, . . . , k,

where g−i = (g
(t+1)
1 , . . . , g

(t+1)
i−1 , g

(t)
i+1, . . . , g

(t)
(n))

Sample g
(t+1)
i from the discrete distribution (p1, · · · , pk)

This Gibbs scheme move only changes one entry of g at a time, and thus one

would expect strong serial dependence on the sampled g’s, especially for moderate



CHAPTER 3. THE ALLOCATION SAMPLER 50

to large sample sizes n. To combat this problem with the Gibbs sampling, moves

in which more than one entry can be changed at once are proposed. The next

three moves that are defined are formulated in this way through the Metropolis-

Hastings algorithm.

3.2.1.2 Metropolis-Hastings Move 1

The first move that changes several allocations simultaneously is simple in its

design. Essentially, all that the move is doing is taking the observations from two

components and reallocating them to one of the two components with a given

probability. To define the move in its algorithmic form, let g be the current state

of the Markov chain and g′ be the proposed candidate state. Then a move of this

type proceeds as follows.

Randomly select 2 components j1 and j2 from the k available.

Make a draw p from the Beta(αj1 , αj2) distribution.

For i = 1, . . . , n

If gi ∈ {j1, j2} then

Allocate observation xi to component j1 with probability p

or to component j2 with probability (1 − p).

Accept candidate allocation vector g ′ with probability equal

to min{1, R} where

R =
f(k, g′, x|φ)

f(k, g, x|φ)

P (g′ → g)

P (g → g′)
. (3.4)

The Beta distribution Beta(αj1 , αj2) is used to select the probability p, because



CHAPTER 3. THE ALLOCATION SAMPLER 51

the parameters αj1 and αj2 are associated with the weight of the component. If

there is no difference between the weights of the components, then the expectation

of p is 0.5. Therefore, there is no bias towards any component, when the weights

have a symmetric prior distribution, which is the normal setting used here.

The probability of moving from g to g′, P (g → g′) can be used to simplify R

in the acceptance probability calculation. Since p is drawn from a Beta(αj1 , αj2)

distribution, integrating the following expression with respect to the distribution

of p, we obtain

P (g → g′) =

∫
Γ(αj1 + αj2)

Γ(αj1)Γ(αj2)
pαj1

−1(1 − p)αj2
−1pñj1 (1 − p)ñj2 dp

=
Γ(αj1 + αj2)

Γ(αj1)Γ(αj2)

∫
pαj1

+ñj1
−1(1 − p)αj2

+ñj2
−1dp

=
Γ(αj1 + αj2)

Γ(αj1)Γ(αj2)

Γ(αj1 + ñj1)Γ(αj2 + ñj2)

Γ(αj1 + αj2 + ñj1 + ñj2)

=
Γ(αj1 + αj2)

Γ(αj1)Γ(αj2)

Γ(αj1 + ñj1)Γ(αj2 + ñj2)

Γ(αj1 + αj2 + nj1 + nj2)
, (3.5)

where ñj1, ñj2 are the numbers of observations re-allocated to components j1,

and j2. Now, comparing this to expression (2.10) for f(g|k), it is evident that

P (g → g′) is essentially the contribution to f(g′|k) for the two components j1

and j2. Therefore, the ratio of probabilities in (3.4) becomes

P (g′ → g)

P (g → g′)
=

f(g|k)

f(g′|k)
. (3.6)

Then, using (3.6), R in (3.4) simplifies to

R =
f(x|k, g′, φ)

f(x|k, g, φ)
. (3.7)



CHAPTER 3. THE ALLOCATION SAMPLER 52

Consequently, as f(x|k, g, φ) is known at the current state, only f(x|k, g ′, φ) needs

to be evaluated. In order to compute f(x|k, g′, φ), only two terms in the product

(2.15) have to be updated.

3.2.1.3 Metropolis-Hastings Move 2

The second of the Metropolis-Hastings moves proposed is again concerned with

the observations of two randomly selected components. This move tries to move

a group of observations from one component to another. This type of move makes

sense, because, if the observations are already grouped into one component, then

they may be similar in nature and thus it may be possible to the move a group

of them as one to another component. The move proceeds in the following way.

Randomly select 2 components j1 and j2 from the k available.

If nj1 > 0 then

Make a draw m from a discrete uniform distribution over the

interval [1, nj1].

Randomly select m observations from the nj1 observations

currently allocated to component j1.

Move these m observations to component j2 to produce a candidate

allocation vector g′.

Accept g′ with probability min{1, R} where

R =
f(k, g′, x|φ)

f(k, g, x|φ)

P (g′ → g)

P (g → g′)
. (3.8)

In this case, the probability of proposing a transition from the current state g to



CHAPTER 3. THE ALLOCATION SAMPLER 53

the candidate state g′ is

P (g → g′) =
1

k

1

k − 1

1

nj1

(
nj1

m

)−1

(3.9)

=
m!(nj1 − m)!

k(k − 1)nj1nj1 !
. (3.10)

Furthermore, the probability of the associated reverse move is

P (g′ → g) =
1

k

1

k − 1

1

nj2 + m

(
nj2 + m

m

)−1

(3.11)

=
m!nj2 !

k(k − 1)(nj2 + m)(nj2 + m)!
. (3.12)

Hence, the proposal ratio in (3.8) reduces to

P (g′ → g)

P (g → g′)
=

nj1

nj2 + m

nj1 !nj2 !

(nj1 − m)!(nj2 + m)!
. (3.13)

In the computation of the term f(k, g′, x|φ) in (3.8), f(x|k, g′, φ) and f(g′|k)

require to be calculated from (2.10) and (2.15). These calculations only require

the terms to be changed which correspond to the two components taking part in

the move, thus reducing the computational work.

3.2.1.4 Metropolis-Hastings Move 3

Finally, the third Metropolis-Hastings move is similar to the first move, in that

two components are randomly selected, j1 and j2, and then the observations

from these components are re-allocated to either of the components with a given

probability. It is in the re-allocation probabilities that the two moves differ. The

first move uses a constant probability across all the observations, but, in the third



CHAPTER 3. THE ALLOCATION SAMPLER 54

move the probabilities of re-allocation change for each observation. Let p
(i)
j , j ∈

{j1, j2} denote the probability of re-allocating the i-th observation to component

j. The observations are processed for re-allocation in a random sequence, and

the probabilities p
(i)
j are calculated by defining them to be proportional to the

probabilities that observation xi is generated by component j, conditional on the

value of xi and on all previously newly re-allocated observations. To evaluate the

probability of allocating an observation xi to components j1 or j2, requires the

following two conditions to be satisfied:

p
(i)
j1

+ p
(i)
j2

= 1 (3.14)

and

p
(i)
j1

p
(i)
j2

=
f(g′

i = j1|g̃, xi, x̃, k, φ)

f(g′
i = j2|g̃, xi, x̃, k, φ)

=
f(g′

i = j1, g̃, xi, x̃|k, φ)

f(g′
i = j2, g̃, xi, x̃|k, φ)

=
f(g′

i = j1, g̃|k)

f(g′
i = j2, g̃|k)

f(xi, x̃|k, g′
i = j1, g̃, φ)

f(xi, x̃|k, g′
i = j2, g̃, φ)

, (3.15)

where g′ = (g′
1, . . . , g

′
n) is the candidate allocation vector being created by the

move, x̃ is the vector of observations not in components j1 and j2, and all pre-

viously processed observations from components j1 and j2. Also, g̃ is the vector

of allocations that corresponds to the observations contained in x̃. Now, using



CHAPTER 3. THE ALLOCATION SAMPLER 55

(2.10) the first ratio from (3.15) is

f(g′
i = j1, g̃|k)

f(g′
i = j2, g̃|k)

=

Γ(α0)
Γ(α0 + n)

∏
j∈A−

Γ(αj + nj)
Γ(αj)

Γ(αj1 + ñj1 + 1)Γ(αj2 + ñj2)
Γ(αj1)Γ(αj2)

Γ(α0)
Γ(α0 + n)

∏
j∈A−

Γ(αj + nj)
Γ(αj)

Γ(αj1 + ñj1)Γ(αj2 + ñj2 + 1)
Γ(αj1)Γ(αj2)

=
Γ(αj1 + ñj1 + 1)Γ(αj2 + ñj2)

Γ(αj1 + ñj1)Γ(αj2 + ñj2 + 1)

=
(αj1 + ñj1)Γ(αj1 + ñj1)Γ(αj1 + ñj2)

Γ(αj1 + ñj1)(αj2 + ñj2)Γ(αj1 + ñj2)

=
αj1 + ñj1

αj2 + ñj2

, (3.16)

where A− = {j = 1, . . . , k; j 6= j1, j2}. Also, the second ratio from (3.15) can be

rewritten using (2.15) as

f(xi, x̃|k, g′
i = j1, g̃, φ)

f(xi, x̃|k, g′
i = j2, g̃, φ)

=
pj1(xi, x̃

j1|φj1)pj2(x̃
j2 |φj2)

pj1(x̃
j1 |φj1)pj2(xi, x̃j2 |φj2)

. (3.17)

Now, substituting (3.16) and (3.17) into equation (3.15) one obtains

p
(i)
j1

1 − p
(i)
j1

=
αj1 + ñj1

αj2 + ñj2

pj1(xi, x̃
j1 |φj1)pj2(x̃

j2|φj2)

pj1(x̃
j1|φj1)pj2(xi, x̃j2|φj2)

. (3.18)

Therefore, the allocation probabilities of an observation xi are found by solv-

ing Equation (3.18) for p
(i)
j1

. After all the observations have been processed, a

candidate allocation g′ is accepted with the usual probability min{1, R}, where

R =
f(k, g′, x|φ)

f(k, g, x|φ)

P (g′ → g)

P (g → g′)
. (3.19)



CHAPTER 3. THE ALLOCATION SAMPLER 56

The ratio of the proposal probabilities in (3.19) can be written as

P (g′ → g)

P (g → g′)
=

1

k(k − 1)

∏

i∈A

p(i)
gi

1

k(k − 1)

∏

i∈A

p
(i)
g′i

=

∏
i∈A

p
(i)
gi

∏
i∈A

p
(i)
g′i

, (3.20)

where A = {i : gi = j1 ∪ gi = j2}. From (3.20) it is evident that the random

order in which the observations are processed does not impact on the proposal

ratio. The Metropolis-Hastings algorithm for this move can now be summarised

as follows.

Randomly select two components j1 and j2 from the k available.

Randomly assign the observations from components j1 and j2

into a sequence s = (s1, . . . , snj1
+nj2

) in which they are to be processed.

For m = 1, . . . , (nj1 + nj2),

Calculate p
(sm)
j , j ∈ {j1, j2} for observation sm by solving (3.18).

Make a draw of g′
sm

.

Update quantities g̃, x̃, ñj1 and ñj2.

Accept the candidate allocation vector g ′ with probability min{1, R}

where R is defined by (3.19).



CHAPTER 3. THE ALLOCATION SAMPLER 57

3.2.1.5 Metropolis-Hastings labels move

This move essentially proposes to swap the labels of two components. It is

an important move in the allocation sampler, because it allows the sampler to

move more quickly between differing assignments of the labels. The Gibbs and

Metropolis-Hastings moves defined in Sections 3.2.1.1 - 3.2.1.4 move relatively

slowly between different assignments of the labels. Suppose the Markov chain is

currently at the state {k, g}, with k̃ non-empty components in g. Then there are(
k

k̃

)
k̃! other possible allocation vectors that partition the data x in an identical

way to g. Therefore, if the state {k, g} has high posterior probability, then there

are k!/(k − k̃!) other allocation vectors that will also be similarly probable, and,

in the case of a symmetric prior, will be equally probable a posteriori. In the

asymmetric prior case, the current state of the chain may only be a local state

of high posterior probability. A state with higher posterior probability may exist

for the same partition of the data if the current assignment of the labels does not

best match the prior for the groups in the data. Thus, a move that can speed

up the movement of the sampler to these higher posterior probability states is

required. A Metropolis-Hastings move is used to propose a change in the assign-

ment of the labels of the allocation vector. The move proceeds in the following

way.

Randomly select two components j1 and j2 from the k available.

Generate a candidate allocation vector g ′ by swapping the labels

of components j1 and j2.

Accept a move to the new labeling with probability min{1, R}



CHAPTER 3. THE ALLOCATION SAMPLER 58

where

R =
f(k, g′, x|φ)

f(k, g, x|φ)

P (g′ → g)

P (g → g′)
. (3.21)

The proposal ratio P (g′ → g)/P (g → g′) = 1 in (3.21) because the proposal

probabilities are

P (g → g′) =
1

k

1

k − 1
= P (g′ → g).

In other words the proposal kernel is symmetric. Therefore, this means that (3.21)

reduces to the ratio of the target density values at the two different labellings g

and g′,

R =
f(k, g′, x|φ)

f(k, g, x|φ)
.

Furthermore, if this move was to be implemented in the symmetric case, it is

obvious to see that R = 1 always. Therefore, because this move does not impact

on the mixing on the chain in the symmetric case this move is only used in the

asymmetric case. However, a problem of fixing a constant labeling structure to

the components in the symmetric case arises, in order to carry out parametric

inference, see Section 3.2.5.

3.2.2 Moves that change the number of components

This type of move, where there is a change in the number of components, can

be thought of as a reversible jump move. In the finite mixture model (2.4), a

change in the number of components corresponds to a change in the cardinality

of the state space of the model. A model with k components has a cardinality

of nk elements. These moves have been designed using the Metropolis-Hastings

algorithm in such a way that they make a pair of reversible moves. This pair of



CHAPTER 3. THE ALLOCATION SAMPLER 59

moves is made up of an ejection and an absorption move. The ejection move is

used to increase the number of components, and the absorption move to reduce

the number of components. In other literature, the ejection/absorption terminol-

ogy is replaced by split/combine. The ejection/absorption terminology is used

here because it conveys better how the moves are constructed.

If the allocation sampler is implementing an ejection/absorption move, then

the first task is to choose between an ejection move and an absorption move.

The probability of an ejection move being proposed, when the current state of

the chain is {k, g}, is

pe
k =





0 k = kmax

1
2

k = 2, . . . , (kmax − 1)

1 k = 1

(3.22)

where kmax is the maximum number of components allowed in the model. This

quantity should be chosen large enough so as not to stop the allocation sampler

from moving to a number of components that possibly has a non-negligible prob-

ability. This bound is set to a default value of 50, but if the sampler nears this

bound then it should be increased and the sampler re-run. If an ejection move

is now attempted and a candidate state {k′, g′} is created, then the chain would

move to this state with the usual Metropolis-Hastings acceptance probability

form of min{1, R} where

R =
f(k′, g′, x|φ)

f(k, g, x|φ)

P ({k′, g′} → {k, g})
P ({k, g} → {k′, g′}) . (3.23)



CHAPTER 3. THE ALLOCATION SAMPLER 60

In the reverse move, a candidate state is accepted as the next state of the chain

according to the probability min{1, R−1}. The first point to notice for this accep-

tance probability of the reversible jump moves, is the lack of the Jacobian term

that is usually a part of a RJMCMC scheme. A Jacobian term appears in the

acceptance probability of a typical RJMCMC move because there is a change of

variable taking place, which is usually characterised by a change in k changing

the number of parameters in the model. However, in this case only the number of

elements contained in the state space changes with a change in k, not the number

of parameters, and therefore the Jacobian term is absent from (3.23).

These ejection/absorption moves have slightly different proposal schemes to

create g′, and thus proposal probabilities. The proposal schemes also depend on

whether there is information distinguishing between the components, the asym-

metric case, or there is no information, the symmetric case. As the asymmetric

proposal is marginally easier to understand, this will be defined first.

3.2.2.1 Asymmetric case

Let the current state of the sampler be {k, g}. Then an ejection move that in-

creases the number of components in the model by 1 proposes to move to a

candidate state {k′, g′}. The move proceeds as follows.

Randomly select an ‘‘ejecting component’’, j1, from k available.

Create a new component, j2, with label k + 1.

Draw a probability pE from a Beta(a, a) distribution.

With probability (1 − pE) re-allocate each of the nj1 observations

in component j1 to component j2 , otherwise leave in j1.



CHAPTER 3. THE ALLOCATION SAMPLER 61

Accept the candidate state {k′, g′} with probability min{1, R}

where R is defined by (3.23).

The justification for using a draw from a Beta(a, a) distribution as the prob-

ability of ejection pE and how to choose a are discussed in Section 3.2.3.

Let ñj1 and ñj2 be the numbers of observations allocated to the ejecting and

the ejected components. Then the probability P ({k, g} → {k′, g′}) of moving

from the current state to the candidate state, after integrating with respect to

the distribution of pE, is formulated as follows:

P ({k, g} → {k′, g′}) =

∫
pe

k

1

k

Γ(a + a)

Γ(a)Γ(a)
pa−1

E (1 − pE)a−1p
ñj1
E (1 − pE)ñj2dpE

= pe
k

1

k

Γ(2a)

Γ(a)Γ(a)

∫
p

a+ñj1
−1

E (1 − pE)a+ñj2
−1dpE

= pe
k

1

k

Γ(2a)

Γ(a)Γ(a)

Γ(a + ñj1) + Γ(a + ñj2)

Γ(2a + nj1)
. (3.24)

The proposal of the reverse absorption move is very simple in the asymmetric

case. Starting from the state {k′ = k + 1, g′}, the candidate state is generated

using the following scheme.

Set the ‘‘absorbed component’’, j2 = k′ = k + 1

Randomly select the ‘‘absorbing component’’ j1 from the k

available components.

Move all the nj2 observations from component j2 to component j1

to create a candidate state.

Accept the candidate state with probability min{1, R−1} where R



CHAPTER 3. THE ALLOCATION SAMPLER 62

is defined by (3.23).

The probability of proposing this move P ({k′, g′} → {k, g}) is clearly,

P ({k′, g′} → {k, g}) = (1 − pe
k)

1

k
. (3.25)

Therefore, the ratio of the proposal probabilities in (3.23) is

P ({k′, g′}→{k, g})
P ({k, g}→{k′, g′}) =

1 − pe
k

pe
k

Γ(a)Γ(a)

Γ(2a)

Γ(2a + nj1)

Γ(a + ñj1)Γ(a + ñj2)
. (3.26)

The computation of f(k′, g′, x|φ) in (3.23) requires only changing two terms in

(2.10) and (2.15) in a similar fashion to the second fixed-k Metropolis-Hastings

move.

3.2.2.2 Symmetric case

As stated above, the proposal scheme for the symmetric case differs slightly from

the asymmetric case. The symmetric case has the added feature that, in the

absorbing move, both the absorbing and absorbed components are selected ran-

domly. For detailed balance to still hold, a change is also required to the ejection

procedure. To keep the chain reversible, the ejection move is required to allow the

ejected component to be any of the k + 1 components available and is therefore

not forced to be the (k + 1)th component as in the symmetric case. This can be

achieved by including in the ejection move a swap between the label j2 = k+1 of

the ejected component and the label of a randomly selected component, includ-

ing the ejected component itself. This increased random aspect in the symmetric



CHAPTER 3. THE ALLOCATION SAMPLER 63

case proposal is implemented to enhance the mixing ability of the sampler. It

impacts on the proposal probabilities (3.24) and (3.25) by multiplying both of

these terms by (k+1) and therefore the ratio of these probabilities stays the same

as (3.26).

Some remarks are required on the actual implementation of this scheme for

the symmetric case. It is a possibility that, as a consequence of an absorption

move, a gap in the sequence of components arises. This problem could be easily

solved by either changing the label of the highest labelled component to that

of the missing label in the sequence, or by decreasing the labels by one of all

the components greater than the absorbed component. These methods would

not be removing an empty component from the model but only swapping the

labels. However, these solutions are not needed because in the symmetric case,

where all hyperparameters are equal, the labels of the components are just place-

holders and have no influence on the workings of the sampler. Computation

time can therefore be saved by thus allowing gaps to appear in the sequence of

components, but a vector storing the components which are in the mixture at

stage of the sampler is required.

3.2.3 Ejecting Probability, pE

The selection of the ejecting probability, pE, obviously has a bearing on the mixing

properties of the sampler. This probability, as seen in the above moves, is selected

using a random draw from a Beta(a, a) distribution. This procedure was decided

upon after some experimentation. Two of the other methods tested were (i) a

constant value of pE = 0.5, and (ii) a random draw from a Unif(0, 1) distribution.



CHAPTER 3. THE ALLOCATION SAMPLER 64

To illustrate why the Beta(a, a) method was chosen, a simple comparison of

the three methods was carried out. The allocation sampler was run using three

different datasets which highlighted problems emanating from the selection of pE.

The sampler was run implementing each different method of selecting pE for each

dataset using no burn-in and 500000 moves with a thinning parameter, ∆ = 10,

thus creating a sample of 50000. The three datasets used were (a) the galaxy

dataset, see Section (5.1) for more details on this dataset, (b) a random sample

of 2000 from the claw distribution described in Table (4.1) and (c) a random

sample of 200 from a six-component equally weighted mixture of 10-dimensional

multivariate normals. For mixture density (c) the components’ means were m1i =

m2i = m6i = 0, m3i = 2, m4i = −2, m5i = (−1)i, i = 1, . . . , 10. As for the

covariance matrices, we used r−1
1 = r−1

3 = r−1
4 = r−1

5 = I, r−1
2 = 0.25I and

(r−1
6 )ij = 0.9|i−j|, i, j = 1, . . . , 10, where I denotes the 10-dimensional identity

matrix. Figures (3.1) - (3.3) show trace plots of k for the sample of 50000 for

each dataset with the three different ways of selecting pE. For the galaxy dataset,

Figure(3.1) shows that all the methods do enable the Markov chain to make jumps

between dimensions, but Table 3.1 shows that the mixing of the chain is better

in the Beta(a, a) case because the effective sample size is considerably higher.

In the more complicated example of Figure (3.2), the Unif(0, 1) method finds it

extremely hard to move away from the starting position of 1 component. The

constant pE and Beta(a, a) methods both manage to reach equilibrium rather

quickly, but again the Beta(a, a) seems to mix better after that point. Finally,

Figure (3.3) highlights a problem situation for the constant pE. This time the

Unif(0, 1) and Beta(a, a) methods perform reasonably well compared with the

constant pE, being unable to move from the 1 component model for the sample



CHAPTER 3. THE ALLOCATION SAMPLER 65

of 50000. Therefore, from these examples the method of drawing pE from a

Beta(a, a) distribution is preferable, as it seems to reach equilibrium whatever

the structure of the data and, also, the Markov chain seems to mix to better,

using this method.

Dataset pE ∼ Beta(a, a) pE ∼ Unif(0, 1) pE = 1
2

Galaxy 1268 816 734
Claw 755 - 73
Six MVN 1153 483 -

Table 3.1: Comparison of effective sample size once equilibrium is reached
for 3 different pE probability selection methods across 3 datasets. Note that
equilibrium was not reached in two cases. See Appendix B for details of how

the effective sample size is calculated.

Some further remarks about the Beta(a, a) distribution are required. The

selection of the parameter a can have a significant effect on the performance of

the sampler. It was chosen to ensure that empty components were proposed rel-

atively often. This helps the allocation sampler to jump between models with

different numbers of components more easily. Therefore, with pE ∼ Beta(a, a), a

is selected according to Pr[ñj2] = p0

2
, where p0 is the probability of either ejecting

all the observations from the ejecting component, j1, into the new component j2,

or ejecting no observations into the new component. Recall that ñj2 is the number

of observations that are re-allocated to component j2. After some experimenta-

tion into a suitable value for p0, p0 = 0.2 was selected because it gave the most

satisfactory results. This means that the probability that the new ejected com-

ponent j2 is empty with probaility 0.1. Therefore, the allocation sampler allows

empty components to occur in the model. So, to find a the following equation



CHAPTER 3. THE ALLOCATION SAMPLER 66

0 10000 20000 30000 40000 50000

0
2

4
6

8
10

Prob. ejection drawn from Beta(a,a) distribution

N
o.

 o
f c

om
po

ne
nt

s

0 10000 20000 30000 40000 50000

0
2

4
6

8
10

Prob. ejection = 0.5

N
o.

 o
f c

om
po

ne
nt

s

0 10000 20000 30000 40000 50000

0
2

4
6

8
10

Prob. ejection drawn from Unif(0,1) distribution

N
o.

 o
f c

om
po

ne
nt

s

Figure 3.1: Trace plots of k for the galaxy dataset corresponding to 3 different
ways of selecting the probability of ejection pE values. The value of a in the
top graph is not fixed and changes throughout the simulation according to

Equation (3.28).



CHAPTER 3. THE ALLOCATION SAMPLER 67

0 10000 20000 30000 40000 50000

0
2

4
6

8
10

Prob. ejection drawn from Beta(a,a) distribution

N
o.

 o
f c

om
po

ne
nt

s

0 10000 20000 30000 40000 50000

0
2

4
6

8
10

Prob. ejection = 0.5

N
o.

 o
f c

om
po

ne
nt

s

0 10000 20000 30000 40000 50000

0
2

4
6

8
10

Prob. ejection drawn from Unif(0,1) distribution

N
o.

 o
f c

om
po

ne
nt

s

Figure 3.2: Trace plots of k for the claw dataset corresponding to 3 different
ways of selecting the probability of ejection pE values. The value of a in the
top graph is not fixed and changes throughout the simulation according to

Equation (3.28).



CHAPTER 3. THE ALLOCATION SAMPLER 68

0 10000 20000 30000 40000 50000

0
2

4
6

8
10

Prob. ejection drawn from Beta(a,a) distribution

N
o.

 o
f c

om
po

ne
nt

s

0 10000 20000 30000 40000 50000

0
2

4
6

8
10

Prob. ejection = 0.5

N
o.

 o
f c

om
po

ne
nt

s

0 10000 20000 30000 40000 50000

0
2

4
6

8
10

Prob. ejection drawn from Unif(0,1) distribution

N
o.

 o
f c

om
po

ne
nt

s

Figure 3.3: Trace plots of k for the six component 10-dimensional multivariate
normal dataset corresponding to 3 different ways of selecting the probability
of ejection pE values. The value of a in the top graph is not fixed and changes

throughout the simulation according to Equation (3.28).



CHAPTER 3. THE ALLOCATION SAMPLER 69

has to be solved for a:

p0

2
=

∫ 1

0

(1 − pE)nj1
Γ(2a)

Γ(a)Γ(a)
pa−1

E (1 − pE)a−1 dpE

=
Γ(2a)

Γ(a)Γ(a)

∫ 1

0

(1 − pE)nj1
+a−1pa−1

E dpE

=
Γ(2a)

Γ(a)Γ(a)

Γ(a)Γ(a + nj1)

Γ(2a + nj1)

=
Γ(2a)

Γ(a)

Γ(a + nj1)

Γ(2a + nj1)
. (3.27)

The right-hand side of Equation (3.27) can be re-written as

Γ(2a)

Γ(a)

Γ(a + nj1)

Γ(2a + nj1)
=

Γ(2a)

Γ(a)

(a + nj1 − 1)(a + nj1 − 2) . . . (a)Γ(a)

(2a + nj1 − 1)(2a + nj1 − 2) . . . (2a)Γ(2a)

=
1

2

(
a + nj1 − 1

2a + nj1 − 1

)(
a + nj1 − 2

2a + nj1 − 2

)
. . .

(
a + 1

2a + 1

)
.

(3.28)

It is evident from Equation (3.28) that the value of a will change throughtout

the simulation because it is dependent on nj1 . Furthermore, if the majority of

values of a are close to 1, which is the case in Figure 3.1, then the Beta(a, a)

method will perform similarly to the Unif(0, 1) method because the Unif(0, 1)

distribution corresponds to a Beta(1, 1) distribution. Equation (3.28) is a product

of (nj1 − 1) terms that have the form
a+nj1

−c

2a+nj1
−c

, where c = 1, . . . , (nj1 − 1). These

terms can be shown to be monotonically decreasing in a. It is simply shown by

differentiating each term with respect to a and noticing that each derivative is less

than zero. Therefore, this means that Equation (3.27) can be solved relatively

easily by a numerical method such as the bisection algorithm. However, this can



CHAPTER 3. THE ALLOCATION SAMPLER 70

be somewhat time-consuming, so, to reduce the calculation time, Equation (3.27)

was solved only for nj1 over a grid of values, equally spaced on a log-scale. These

solutions were then stored inside the simulation program. Hence, whenever a

pE probability is required, the simulation program finds the appropriate value of

log a for the current value of log nj1 , using linear interpolation of the solutions

for the nearest nj1’s in the grid.

3.2.4 Hyperparameters

Here the problem of selecting the component hyperparameter values for the sam-

pler is addressed. When there is some information about the components this

should be incorporated into the prior distributions. The hyperparameters should

then reflect this knowledge about the components. This would be an instance of

the asymmetric setting. However, in the symmetric case it can be more difficult

to set hyperparameter values, and therefore a general method is required for this

setting. The selection of these hyperparameters φ plays an important role in the

implementation of the allocation sampler because the hyperparameters can have

a significant effect on the posterior distributions. Richardson and Green (1997),

Nobile (2005) and Jasra et al. (2005) all illustrate the effect of the hyperparame-

ters on the posterior distribution of k for the galaxy dataset when using normal

components, through a sensitivity analysis. All of their analyses show how the

posterior distribution of k can change considerably with a change in the hyper-

parameter values. In Richardson and Green (1997) the authors chose to impose a

hyperprior on the hyperparameter β in their univariate normal mixture model in

order to try and reduce the effects of the hyperparameter values on the posterior



CHAPTER 3. THE ALLOCATION SAMPLER 71

distributions. The Bayesian finite mixture model used in Nobile (2005) is the

same as that used throughout this thesis and his approach is adopted and ex-

tended in this thesis. Nobile (2005) commented that the main reason for using his

method is that the marginal posterior distributions of the hyperparameters have

very long tails and therefore the approach of using random hyperparameter values

throughout the simulation has a large impact on the posterior distributions.

Every family of components has a slightly different method due to the dif-

ferent hyperparameters in the model. A method using a preliminary run of the

sampler, where some or all of the hyperparameters have a hyperprior placed on

them, is used in this thesis. The output from this preliminary run is then used

to fix the hyperparameters for subsequent runs. In the preliminary run of the

allocation sampler samples from the posterior distributions of certain hyperpa-

rameters are produced using Metropolis-Hastings moves. A move of this type

is proposed at every iteration of the allocation sampler. The hyperparameters

are then fixed, by looking at the sample made from the distribution of hyperpa-

rameters in the preliminary run. The hyperpriors used for each of the different

families of components are as follows.

3.2.4.1 Mixtures of univariate normals

In the case of univariate normal components, where the component hyperparam-

eters are φ = (µ, τ, γ, δ), hyperpriors are only placed upon two of these hyperpa-

rameters, namely τ and δ. The other two hyperparameters, µ and γ, are fixed

throughout the sampler. The sample mean x̄ is taken for µ and γ is set equal to

2. This value of γ has been chosen because the prior predictive distribution is



CHAPTER 3. THE ALLOCATION SAMPLER 72

a t distribution with 2γ degrees of freedom, and thus setting γ = 2 means that

the prior predictive has 4 degrees of freedom leading to relatively thick tails, but

finite second moments. Independent hyperpriors are imposed on τ and δ and

have the form

(1 + τ)−1 ∼ Unif(0, 1)

δ ∼ Unif(0, δU ),

where δU = (γ − 1)s2
x and s2

x is the sample variance. The starting values used for

τ and δ in the preliminary run are τ = 0.5 and δ = 0.5s2
x.

3.2.4.2 Mixtures of multivariate normals

A similar method is applied for the hyperparameters of multivariate normal com-

ponents, φ = (µ, τ, ν, ξ). Again, µ is fixed and is simply set as the sample mean

vector. The prior predictive distribution in this case is a multivariate t distri-

bution with ν − b + 3 degrees of freedom, which when set equal to 4, so that it

corresponds to the degrees of freedom in the univariate case, yields ν = b + 3,

where b is dimension of the data. The other two hyperparameters τ and ξ have

independent hyperpriors placed upon them in a similar way to the univariate

case. Firstly, τ uses the same (1 + τ)−1 ∼ Unif(0, 1) form. However, one as-

sumes that ξ is a diagonal matrix and each diagonal entry is dealt with in the

same way as δ in the univariate case.



CHAPTER 3. THE ALLOCATION SAMPLER 73

3.2.4.3 Mixtures of uniforms

For the setting of uniform components where there exists only the one hyperpa-

rameter φ, a hyperprior of the form

1

φ
∼ Unif(0, u)

is implemented, where u = 1
maxi |xi|

.

3.2.4.4 Mixtures of sign-shifted exponentials

Finally, for sign-shifted exponential components three out of the four hyperpa-

rameters use the hyperprior approach in the preliminary run. The independent

hyperpriors used for these hyperparameters are

log(β) ∼ Unif(−β̄, β̄)

log(γ) ∼ Unif(−γ̄, γ̄)

ρ ∼ Unif(0, 1), (3.29)

where β̄ and γ̄ are chosen to be reasonably large values; in most cases β̄ = γ̄ =

50 is sufficient. The choice of the hyperprior on ρ makes sense because ρ is

a probability. In addition, the other hyperparameter κ is fixed for all runs at

the value κ = 1, which means that the prior on ω reduces to an exponential

distribution.



CHAPTER 3. THE ALLOCATION SAMPLER 74

A graphical method is used to select the single hyperparameter value which

will be used in subsequent runs of the sampler. Firstly, a trace plot of k is

inspected and all the draws from the distributions of hyperparameters before

equilibrium is reached are removed for subsequent calculations. This is essentially

adjusting the burn-in period of the Markov chain. The hyperparameter value is

then chosen by producing boxplots of the marginal posterior distributions of

the draws of hyperparameter values from the preliminary run of the sampler

conditional on k. Estimates of the hyperparameters are then computed using

the medians of the posterior draws, utilizing only the draws that correspond to

values of k after a rough leveling off of the medians has occurred.

3.2.4.5 Preliminary run settings

The preliminary run settings used throughout produce a sample of 50000 draws

using a burn-in of 10000, and then a further 500000 draws are made with a

thinning parameter ∆ equal to 10. The idea of thinning the draws is to improve

the mixing of the Markov chain. Thus, in the preliminary run every tenth draw is

saved with the rest being discarded, to end up with a sample of size 50000. Any

preliminary run is carried out with these standard settings to produce samples

of size 50000 for respective hyperparameters.

To illustrate how the above procedure is implemented an example using the

galaxy dataset, see Section 5.1 for data description, is shown in Figures 3.4 and

3.5. Figure 3.4 provides evidence that there is correlation between the hyperpa-

rameters and the number of components in the model. Looking closely, it can be

seen that, for τ , the values increase for smaller values of k. This can be explained



CHAPTER 3. THE ALLOCATION SAMPLER 75

by the variance of the data being contained within the components, rather than

between the components for small values of k. Figure 3.5 is used to specify the

τ and δ values for subsequent runs of the sampler. In the top row one can see

that the medians of the boxplots level off with the number of components greater

than or equal to 3 giving an estimate for τ equal to 0.04. Also, in the bottom

row there is a rough leveling off after 6 components, which corresponds to an

estimate for δ equal to 2.

Also, the thinning parameter ∆ for the subsequent runs is chosen using the

output from the preliminary run. Its value is selected by aiming for a lag 1

autocorrelation of 0.7 in the sampled values of k. This thinning value would then

produce a lag-1 autocorrelation of similar size in the actual runs.



CHAPTER 3. THE ALLOCATION SAMPLER 76

0 10000 20000 30000 40000 50000

2
4

6
8

10

N
o.

 o
f C

om
po

ne
nt

s

0 10000 20000 30000 40000 50000

−
15

−
5

0
5

Figure 3.4: The top graph shows a trace of k for a preliminary run of the
allocation sampler using the galaxy dataset, and the lower graph displays a
trace of the hyperparameters τ and δ for the preliminary run. The red line

corresponds to the trace for δ and the black line for τ .



CHAPTER 3. THE ALLOCATION SAMPLER 77

2 3 4 5 6 7 8 9 10 11

−
10

−
5

0
5

No. of Components

Lo
g(

ta
u)

2 3 4 5 6 7 8 9 10 11

−
2

−
1

0
1

2
3

No. of Components

Lo
g(

de
lta

)

2 3 4 5 6 7 8 9 10 11

−
10

−
5

0
5

No. of Components

Lo
g(

ta
u)

2 3 4 5 6 7 8 9 10 11

−
2

−
1

0
1

2
3

No. of Components

Lo
g(

de
lta

)

Figure 3.5: The top row displays boxplots of draws from the posterior dis-
tribution, conditional on k, for τ where the left graph has the boxplot size
weighted according to the frequency of k. The bottom row shows the same

distributions for δ.



CHAPTER 3. THE ALLOCATION SAMPLER 78

3.2.4.6 Metropolis-Hastings Hyperparameter moves

The construction of these moves encounters some practical implementation prob-

lems that have to be addressed when calculating the Metropolis-Hastings ac-

ceptance probability. It should be noted that in some of the priors detailed in

Section 3.2.4 the prior is placed on a function of the hyperparameter and not on

the hyperparameter itself. It should be noted that these changes of variables do

not impact on the acceptance probability. If more than one hyperparameter is

being proposed to change, then the proposals are made independently. A move

of this type progresses in the following way.

Propose a new hyperparameter value for all required

hyperparameters to create a candidate state φ2.

Accept the move from the current state, φ1, to the candidate state

with probability min{1, R} where

R = min

{
1,

f(x, k, g, φ2)

f(x, k, g, φ1)

P (φ2 → φ1)

P (φ1 → φ2)

}

= min

{
1,

f(x|k, g, φ2)f(k, g)π(φ2)

f(x|k, g, φ1)f(k, g)π(φ1)

P (φ2 → φ1)

P (φ1 → φ2)

}

= min

{
1,

f(x|k, g, φ2)

f(x|k, g, φ1)

P (φ2 → φ1)

P (φ1 → φ2)

}
. (3.30)

A practical problem arises with the proposal distribution and hence the pro-

posal probabilities P (φ2 → φ1) and P (φ1 → φ2). Suppose a proposal of a can-

didate state is being made for an arbitrary hyperparameter $, that takes values

on an interval H. Then, as stated above, it is done using a random draw from



CHAPTER 3. THE ALLOCATION SAMPLER 79

a uniform distribution. The simplest case would use a distribution centred on

the current value $1, i.e. Unif($ − ε, $ + ε), where ε is chosen to be 1% of

the range of H. Then, since this proposal distribution is symmetric, the ratio of

proposal probabilities in (3.30) would simply equal 1. However, occasionally a

move will be rejected straight away due to the candidate state $2 lying outside

H. To overcome this problem of proposing unsuitable states, and to improve the

mixing of the Markov chain, a different distribution is used when the current or

candidate or both states are close to an endpoint of H. The proposal distribution

used in these cases can be summarised by a mixture of two uniform distributions.

Furthermore, the proposal distribution, used in any case, for a move from $1 to

$2 can be defined as

1

2
Unif(max(HL, $1 − ε), $1) +

1

2
Unif($1, min(HU , $1 + ε)), (3.31)

where HL and HU are the lower and upper limits of the range space H. This

modification to the simple proposal case is implemented because if $ gets close

to an endpoint it may get stuck there and find it hard to leave that vicinity.

The ratio of proposal probabilities in (3.30) is simply a product of the pro-

posal probability ratios for each hyperparameter. These ratios are dependent

on whether the proposed candidate state is in a positive or negative direction.

The direction of proposal is chosen with probability equal to 1
2
. For a move to a

candidate state in a positive direction the proposal probability is

P ($1 → $2) =
1

2

1

min(HU , $1 + ε) − $1
. (3.32)



CHAPTER 3. THE ALLOCATION SAMPLER 80

Therefore, the proposal probability of the corresponding reverse move from $2

to $1 is

P ($2 → $1) =
1

2

1

$2 − max(HL, $2 − ε)
. (3.33)

Thus, the proposal probability ratio for this type of move can be written as

P ($2 → $1)

P ($1 → $2)
=

min(HU , $1 + ε) − $1

$2 − max(HL, $2 − ε)
. (3.34)

Also, if the proposed candidate state is made in the negative direction then the

associated ratio of proposal probabilities is

P ($2 → $1)

P ($1 → $2)
=

$1 − max(HL, $1 − ε)

min(HU , $2 + ε) − $2

. (3.35)



CHAPTER 3. THE ALLOCATION SAMPLER 81

3.2.5 Label switching problem

Finite mixture distributions are not identifiable because the likelihood function

for a mixture model is invariant to a permutation of the labels of the components

in the model:

L(λ, θ; x) =
n∏

i=1

{λ1q(xi|θ1) + · · ·+ λkq(xi|θk)} (3.36)

For example, in a mixture of two components, whether the components are la-

beled {1, 2} or {2, 1} has no bearing on the likelihood value defined by (3.36).

This is what was defined as the label-switching problem in Redner and Walker

(1984). This lack of identifiability creates no problem for predictive inference

since the components’ labelling has no bearing on a predictive density, see (2.48)

and (2.49) for examples. However, if parameter estimation or classification is

of interest, then this problem has to be addressed. A solution to this problem

requires the mixture components to have an unequivocal assignment of the labels

in order to remove the highly symmetrical form of the posterior distributions. If

the prior distribution used is symmetric, then the resulting posterior distributions

will also have this complete symmetric feature. In the asymmetric case where

there is information distinguishing the components in the prior distribution, this

problem is taken care of by a Metropolis-Hastings move on the labels, see Section

3.2.1.5 for further details.

An example illustrating the symmetry in the posterior distributions can be

seen in Figure 3.6. This figure displays the marginal posterior distributions of

the means for the galaxy dataset, see Section 5.1 for data description, conditional



CHAPTER 3. THE ALLOCATION SAMPLER 82

on there being 3 univariate normal components. It is evident that all the dis-

tributions in the top row of plots are very similar. Each graph has three peaks

that correspond to the means of the three components in this model. This occurs

because during the running of the MCMC sampler the components are frequently

swapping labels. The top row of Figure (3.6) shows the effects of not tackling the

label-switching problem on the posterior distributions. The bottom row of the

figure shows how each component can be extracted if the label-switching problem

is addressed. See Section 3.2.5.1 for details of procedure used here.

There have been a number of different methods proposed to counteract the

problem of label switching. A common approach to the problem is to impose

identifiability constraints on the parameter space. These constraints could be

imposed on the component weights/means/variances, or a combination of these

parameters. For example, the component means could be ordered using the con-

straint, µ1 < µ2 < · · · < µk, which is exactly the constraint used in Richardson

and Green (1997). However, this method is not always effective in overcoming the

problem of removing the symmetry from the posterior distributions, see Stephens

(2000b) for evidence. Also, a further drawback is that the results can be depen-

dent on the constraint imposed, see Richardson and Green (1997). Therefore,

they recommend that the sampler output should be post-processed. Other refer-

ences that discuss the limits of identifiability constraints are Celeux et al. (2000)

and Jasra et al. (2005)

Most other strategies have the common goal of minimising a loss function

to find an effective labeling structure. These methods include those of Celeux

(1998), Stephens (1997b, 2000b), Celeux et al. (2000) and Hurn et al. (2003).



CHAPTER 3. THE ALLOCATION SAMPLER 83

The methods of Celeux (1998) and Stephens (1997b, 2000b) can be described

as relabelling algorithms. They both try to achieve an optimal labelling struc-

ture by minimising a pre-defined loss function after the MCMC sample has been

produced. Jasra et al. (2005) comments that these relabeling algorithms are es-

sentially imposing identifiability constraints with the only difference to the above

situation being that it is not done online. The other main approach, taken by

Celeux et al. (2000) and Hurn et al. (2003), uses what can described as label-

invariant loss functions. This method requires the estimation of the posterior

expected loss where every quantity of interest has an associated loss function

that has to be minimised. Examples of these loss functions can be seen in the

aforementioned papers. For a more comprehensive summary of details of these

techniques and the potential advantages/disadvantages for each see Chapter 4 in

MacLachlan and Peel (2000) and Jasra et al. (2005).

3.2.5.1 Post-processing algorithm

This post-processing algorithm is a relabeling method for the sample of N al-

location vectors from the allocation sampler. The method of Stephens (2000b)

proposes using a relabeling algorithm that attempts to minimise the posterior

expected loss under a class of loss functions to overcome the label-switching

problem. The post-processing method to be defined here fits into the general

framework of Stephens (2000b). Jasra et al. (2005) commented that the idea

of Stephens (2000b) is that one defines a loss function on an action space A,

and tries to minimise the loss by finding the most appropriate action a. The

allocation sampler produces a slightly different setting to that of these previous



CHAPTER 3. THE ALLOCATION SAMPLER 84

Velocity

D
en

si
ty

10 15 20 25 30 35

0.
0

0.
2

0.
4

0.
6

Velocity

D
en

si
ty

10 15 20 25 30 35

0.
0

0.
2

0.
4

0.
6

Velocity

D
en

si
ty

10 15 20 25 30 35

0.
0

0.
2

0.
4

0.
6

Velocity

D
en

si
ty

10 15 20 25 30 35

0.
0

0.
5

1.
0

1.
5

2.
0

Velocity

D
en

si
ty

10 15 20 25 30 35

0.
0

0.
5

1.
0

1.
5

2.
0

Velocity

D
en

si
ty

10 15 20 25 30 35

0.
0

0.
5

1.
0

1.
5

2.
0

Figure 3.6: Galaxy data, marginal posterior distributions of the component
means m1, m2 and m3 in the mixture of normals model, conditional on k = 3.
The top row of plots displays estimates of the posteriors based on the raw
sample of g vectors from the allocation sampler. Bottom row contains estimates

using the allocation vectors with re-assigned labels.

authors, because the parameters are no longer in the state space. However, the

label-switching problem is still present, as shown in Figure 3.6.

In this case, an action can be defined as a permutation of the component

labels σ: σg = (σg1, σg2 , . . . , σgn
). Furthermore, the loss function can be thought

of as a sum of the distances between all the allocation vectors,

Loss =

N−1∑

t=1

N∑

s=t+1

D(σ(t)g(t), σ(s)g(s)). (3.37)

This loss function would then have to be minimised with respect to the sequence of

permutations {σ(t), t = 1, . . . , N}. The distance measure between two allocation



CHAPTER 3. THE ALLOCATION SAMPLER 85

vectors g and g′ can be defined as the number of coordinates where they differ:

D(g, g′) =

n∑

i=1

I{gi 6= g′
i}. (3.38)

It can easily be shown that (3.38) defines a distance by satisfying the three

conditions required for a distance measure. An approximate solution for this

problem can be found by simplifying the problem into a sequence of optimization

problems that only involve one permutation σ(t). This results in having now

to solve a sequence of square assignment problems. The classic example of a

square assignment problem is trying to assign P machines to P jobs, where there

is an associated cost for each machine completing each job. This leads to the

construction of a P × P cost matrix. An assignment of machines to jobs that

minimises the total cost then has to be found. One algorithm used to solve

these type of problems is called the Hungarian method. The code of Carpaneto

and Toth (1980) uses the Hungarian method to solve the square assignment

problem. The Hungarian method is a combinatorial optimization algorithm. The

assignment problems that arise here are modelled by creating a cost matrix,

where each element represents the cost of assigning component i to label j. The

cost matrix is calculated by using the distances between the labellings of the

allocation vectors. The method then tries to minimise the total cost of the current

assignment of labels by finding an optimal permutation, σ(t).

Let S = {g(t), t = 1, . . . , N} be the sequence of all the sample allocation

vectors produced from the allocation sampler and let K = {k̃(t), t = 1, . . . , N} be

the sequence of the number of non-empty components contained in the vectors



CHAPTER 3. THE ALLOCATION SAMPLER 86

of S. The procedure starts by firstly dealing with the vectors where k̃(t) = 2 and

proceeds by increasing k̃(t). Suppose g(t) has k̃(t) = j. Then a cost matrix is

produced by comparing the component label of each observation of g(t) with all

the observations of all other allocation vectors where k̃(t) = j − 1 or previously

processed allocation vectors with k̃(t) = j. This creates a j × j cost matrix that

is minimised using the method of Carpaneto and Toth (1980) to yield a labelling

structure σ(t) for g(t) that aligns with it all the other allocation vectors. After all

allocation vectors with k̃(t) = j have been processed the procedure is repeated

again for these vectors but this time all the vectors with k̃(t) = j or j − 1 are

used in the construction of the cost matrix. The procedure could be implemented

using all the available allocation vectors S. However, restricting the comparison

of allocation vectors to vectors with the same number of non-empty components

j, or j − 1 components, is done to improve the speed of the algorithm with the

idea that the allocation vectors with j−1 components should already be alligned

the allocation vectors containing 2, · · · , j − 2 non-empty components. There is

little effect on the results of the relabelling algorithm with this restriction being

imposed. The reason for comparing each allocation vector to allocation vectors

with fewer components is so that the allignment of the labels is standard across

the whole set S and not conditional on k̃(t).



CHAPTER 3. THE ALLOCATION SAMPLER 87

A more formal definition of the algorithm is now given for processing vectors

with the number of non-empty components k̃(t) = j.

For m = 1, . . . , N

If k̃(m) = j then, let g = g(m)

Create cost matrix C of dimensions j × j that has elements

defined by

C(j1, j2) =
∑

g′∈B(t)

n∑

i=1

I{g′
i 6= j1, gi = j2}

where B(t) = {g(t) ∈ S : k̃(t) = j − 1∪ (k̃(t) = j ∩ t < m), t = 1, · · · , N},

j1 = 1, . . . , j and j2 = 1, . . . , j.

Minimise the total cost
k̃(t)∑
h=1

C(h, σ
(t)
h ) using the method of

Carpaneto and Toth (1980) and where= σ
(t)
h is the permutation of

label h on allocation vector t.

Reassign the labels of g according to the optimal permutation

of the j labels.

Repeat the above procedure replacing B(t) with

D(t) = {g(t) ∈ S, k̃(t) = k − 1 ∪ k̃(t) = k, t = 1, · · · , N}.

This algorithm is repeated for all values of k̃(t), to produce a new aligned set of

allocation vectors in an increasing order starting with allocation vectors with 2

non-empty components. Now, a simple example to show the algorithm in practice



CHAPTER 3. THE ALLOCATION SAMPLER 88

will be given for the following set of allocation vectors,

g1 = (1, 1, 1, 2, 2, 2)

g2 = (1, 1, 1, 3, 2, 2)

g3 = (1, 1, 2, 3, 4, 2)

g4 = (3, 3, 3, 2, 2, 1)

g5 = (2, 2, 3, 3, 1, 1)

g6 = (3, 3, 3, 2, 2, 1)

Now, suppose we are looking to find the optimal permutation of the labels for

g5. This requires the construction of a cost matrix by comparing g5 to all the

allocation vectors with 2 non-empty components, {g1}, and also any allocation

vectors with 3 non-empty components with an index less than 7, {g4}. The cost

matrix arising from the comparison of g5 to these other 3 allocation vectors is

C =




5 2 4

1 6 4

6 4 4




.

This cost matrix is then minimised using the method of Carpaneto and Toth

(1980) and yields a minimum cost of 7 with the labels of g5 being changed to

g5 = (1, 1, 3, 3, 2, 2). The procedure would then continue on to g6 and then return

to look at g4 before returning to g5. This second treatment of g5 would however

be slightly different to the first because the allocation vector g6 would be used

in the construction of the cost matrix. For details on the performance of this

procedure see Section 4.2.3.



Chapter 4

Simulation Study

In this chapter the allocation sampler introduced in Chapter 3 will be demon-

strated in a large scale simulation study using randomly generated data. The

main purpose of the simulation study is to test the allocation sampler in many

different situations. Another study of how the allocation sampler performs can

be found in Nobile and Fearnside (2007). In this paper a simulation study is

carried out on a set of eight mixture models. The samples used were not random

but were artificially produced representative samples for different sample sizes.

However, in the simulation study reported here the samples used are randomly

generated in order to mimick more realistic data situations.

4.1 Design of study

This simulation study has been designed so that a wide variety of features that

are observed in real life datasets are observed in the examples. This will enable

the study to examine where the allocation sampler performs best and also where

89



CHAPTER 4. SIMULATION STUDY 90

possible problems arise. The allocation sampler was applied to random samples

of sizes 50, 200, 500 and 2000 from the 15 mixtures of univariate normals that

appear in Marron and Wand (1992). For each of the 15 mixtures, 20 random

samples were generated for the 4 different sample sizes. Therefore a total of 1200

data sets were analyzed. For full mixture descriptions and graphical displays, see

Table 4.1 and Figure of the 15 mixtures. Marron and Wand (1992) also contains

full details as to why each of these mixtures was chosen and what type of data

they are supposed to represent.

The allocation sampler was coded in Fortran which produced output files that

could then be used by R to produce the posterior results. A computer cluster was

used to execute the allocation sampler for this study due to the high volume of

data sets. The computer cluster is composed of a headnode and 60 compute nodes

each consisting of 2 opteron 248 processors and 2GB RAM connected together

over a gigabit ethernet. An approximation for the total amount of processor time

required run the allocation sampler for this simulation study is 775 hours. This

was completed within 1 month with the help of the computer cluster.

4.1.1 Allocation Sampler procedure

The allocation sampler was implemented in the same way for each of the 1200

datasets. Firstly, a preliminary run was executed to calculate the hyperparameter

values τ and δ, and also to enable a thinning parameter, ∆, to be chosen. The

starting hyperparameter values for this run were α = 1, µ = x̄, τ = 0.5, γ = 2 and

δ = 0.5s2
x where x̄ is the sample mean and s2

x is the sample variance. The sampler

was started from k = 1 and had a burn-in of 10000 iterations preceding another



CHAPTER 4. SIMULATION STUDY 91

500000 iterations. A thinning parameter, ∆ = 10, was used to produce a sample

of 50000. The hyperparameters τ and δ were then estimated according to the

procedure in Section 3.2.4. The thinning parameter was then chosen by looking

at the autocorrelation of the sampled k’s from the preliminary run. It was chosen

so that the thinning value is likely to achieve a lag-1 autocorrelation of 0.7 in the

sampled k’s. Next, a run of the allocation sampler was performed comprising

10000∆ moves, plus 1000∆ moves of burn-in using fixed hyperparameters. This

run used, as a starting position, the final allocation vector g and k from the

preliminary run. This was done to help the convergence of the Markov chain.



CHAPTER 4. SIMULATION STUDY 92

-3 -2 -1 0 1 2 3

0.
0

0.
2

0.
4

(a)

-3 -2 -1 0 1 2 3

0.
0

0.
2

0.
4

(b)

-3 -2 -1 0 1 2 3

0.
0

0.
4

0.
8

1.
2

(c)

-3 -2 -1 0 1 2 3

0.
0

0.
5

1.
0

1.
5

(d)

-3 -2 -1 0 1 2 3

0
1

2
3

(e)

-3 -2 -1 0 1 2 3

0.
0

0.
10

0.
25

(f)

-3 -2 -1 0 1 2 3

0.
0

0.
2

0.
4

(g)

-3 -2 -1 0 1 2 3

0.
0

0.
2

0.
4

(h)

-3 -2 -1 0 1 2 3

0.
0

0.
10

0.
25

(i)

-3 -2 -1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

(j)

-3 -2 -1 0 1 2 3

0.
0

0.
2

0.
4

(k)

-3 -2 -1 0 1 2 3

0.
0

0.
2

0.
4

(l)

-3 -2 -1 0 1 2 3

0.
0

0.
2

0.
4

(m)

-3 -2 -1 0 1 2 3

0.
0

0.
2

0.
4

(n)

-3 -2 -1 0 1 2 3

0.
0

0.
2

0.
4

(o)

Figure 4.1: Density functions of mixtures of univariate normal distributions
from Marron and Wand (1992). See Table (4.1) for the parameters of these

models.



CHAPTER 4. SIMULATION STUDY 93

Name kTRUE Mixture Density

(a) Gaussian 1 N(0, 1)
(b) Skewed Unimodal 3 1

5N(0, 1) + 1
5N(1

2 , (2
3 )2) + 3

5N(13
12 , (5

9 )2)

(c) Strongly Skewed 8
7∑

l=0

1
8N(3{(2

3 )l − 1}, (2
3 )2l)

(d) Kurtotic Unimodal 2 2
3N(0, 1) + 1

3N(0, ( 1
10 )2)

(e) Outlier 2 1
10N(0, 1) + 9

10N(0, ( 1
10 )2)

(f) Bimodal 2 1
2N(−1, ( 2

3 )2) + 1
2N(1, (2

3 )2)
(g) Separated Bimodal 2 1

2N(−3
2 , (1

2 )2) + 1
2N(3

2 , (1
2 )2)

(h) Skewed Bimodal 2 3
4N(0, 1) + 1

4N(3
2 , (1

3 )2)
(i) Trimodal 3 9

20N(−6
5 , (3

5 )2) + 9
20N(6

5 , (3
5)2) + 1

10N(0, (1
4 )2)

(j) Claw 6 1
2N(0, 1) +

4∑
l=0

1
10N(l/2 − 1, ( 1

10 )2)

(k) Double Claw 9 49
100N(−1, ( 2

3 )2) + 49
100N(1, (2

3 )2)

+
6∑

l=0

1
350N((l − 3)/2, ( 1

100 )2)

(l) Asymmetric Claw 6 1
2N(0, 1) +

2∑
l=−2

(21−l/31)N(l + 1
2 , (2−l/10)2)

(m) Asymmetric Double Claw 8
1∑

l=0

46
100N(2l − 1, ( 2

3 )2)

+
3∑

l=1

1
300N(−l/2, ( 1

100 )2)

+
3∑

l=1

7
300N(l/2, ( 7

100 )2)

(n) Smooth Comb 6
5∑

l=0

(25−l/63)N({65 − 96( 1
2 )l}/2l, ( 32

63 )2/22l)

(o) Discrete Comb 6
2∑

l=0

2
7N((12l − 15)/7, ( 2

7 )2) +
10∑
l=8

1
21N(2l/7, ( 1

21 )2)

Table 4.1: Parameters for the 15 mixtures of univariate normal distributions
as displayed in Figure 4.1



CHAPTER 4. SIMULATION STUDY 94

4.2 Sampler Performance

4.2.1 Posterior of k

The question of interest about the posterior of k is whether the modal k from the

allocation sampler equals that of the true number of components in the model,

kTRUE , shown in Table 4.1. The posterior distribution of k is found by equation

(2.28). Box-plot summaries of the distribution of the estimated posterior prob-

abilities, Pr[K = k], over the 20 random samples for a given sample size are

displayed in Figures (4.2) - (4.16). It can be seen that in 10 out of the 15 models

the median of Pr[K = kTRUE ] is greater than 0.5 using a sample of 2000. Also,

in 6 out these 10 cases, {(a),(d),(e),(f),(g),(h)}, the allocation sampler is able to

produce a modal k equal to kTRUE from a sample of just 50. It is obvious from all

the plots that as the sample size increases the modal value π(k|x) tends towards

kTRUE . Also, one would expect that, if the components overlap each other, then

it will be more difficult for the sampler to extract the correct number of com-

ponents. This can certainly be seen in Figures (4.3), (4.4), (4.12) and (4.14).

The sampler has no problem picking the correct number of components when

the sample has come from a model where the components are well separated, for

example in model (g). However, in models {(b),(c),(k),(m)}, where there is sig-

nificant overlap of the components, the modal k never reaches kTRUE even with a

sample of 2000. Another problem for the allocation sampler, when estimating the

posterior of k, is that there are sometimes only relatively few observations arising

from a certain component. An example of this can be seen in model (k), where

the 7 spikes on the underlying bimodal distribution each have a weight of 1
350

.



CHAPTER 4. SIMULATION STUDY 95

Hence, the random samples may sometimes not even contain any observations

from some of these components, and this leads to the underestimation of k.

4.2.2 Posterior Predictive Distributions

This section discusses how well the posterior predictive distributions model the

the mixture distributions from Table 4.1 from the randomly generated samples.

The posterior predictive distributions are displayed in Figures (4.2) - (4.16).

These distributions were calculated by evaluating the mean of (2.48) for the

20 random samples over the range of values (−3, 3). The expression (2.48) is the

posterior predictive distribution averaged over both k and g. The figures show

that, as the sample size increases, the posterior predictive distributions move

closer to the true density. Furthermore, they indicate that the allocation sam-

pler manages to model all of the main features in 13 out of the 15 models when

using a sample size of 2000. The only 2 models where the main features are not

modeled are in models (k) and (m). These two models both have sharp spikes as

features that are never realised in the posterior predictive distributions for the

same reason that kTRUE was not found in these cases. When a sample of 50 is

used, the main features are only picked up in 3 cases, namely {(a),(b),(e)}. A

final point to note is that in Figures (4.3) and (4.4), for mixtures (b) and (c),

the posterior predictive models the mixture very well even though kTRUE is not

favoured by the allocation sampler.



CHAPTER 4. SIMULATION STUDY 96

1 2 3 4 5 6 7

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

50

No. of components (k)

P
r[

K
=

k]

1 2 3 4 5 6 7

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

200

No. of components (k)

P
r[

K
=

k]

1 2 3 4 5 6 7

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

500

No. of components (k)

P
r[

K
=

k]

1 2 3 4 5 6 7

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

2000

No. of components (k)

P
r[

K
=

k]

−3 −2 −1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

50

−3 −2 −1 0 1 2 3
0.

0
0.

1
0.

2
0.

3
0.

4

200

−3 −2 −1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

500

−3 −2 −1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

2000

Figure 4.2: (a) Gaussian, kTRUE = 1 : The left-hand column displays the
posterior of k by using boxplots of the posterior probabilities, Pr[K = k].
The whiskers of the plots stretch to the 5% and 95% quantiles. The right-
hand column of the plot displays the posterior predictive density calculated
by averaging over the 20 samples for each sample size. The full line shows
the true density, the dashed line shows the posterior predictive and the dotted

lines show 95% confidence bands for the posterior predictive density.



CHAPTER 4. SIMULATION STUDY 97

1 2 3 4 5 6 7

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

50

No. of components (k)

P
r[

K
=

k]

1 2 3 4 5 6 7

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

200

No. of components (k)

P
r[

K
=

k]

1 2 3 4 5 6 7

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

500

No. of components (k)

P
r[

K
=

k]

1 2 3 4 5 6 7

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

2000

No. of components (k)

P
r[

K
=

k]

−3 −2 −1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

50

−3 −2 −1 0 1 2 3
0.

0
0.

2
0.

4
0.

6

200

−3 −2 −1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

500

−3 −2 −1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

2000

Figure 4.3: (b) Skewed Unimodal, kTRUE = 3 : The left-hand column
displays the posterior of k by using boxplots of the posterior probabilities,
Pr[K = k]. The whiskers of the plots stretch to the 5% and 95% quantiles.
The right-hand column of the plot displays the posterior predictive density
calculated by averaging over the 20 samples for each sample size. The full line
shows the true density, the dashed line shows the posterior predictive and the
dotted lines show 95% confidence bands for the posterior predictive density.



CHAPTER 4. SIMULATION STUDY 98

1 2 3 4 5 6 7

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

50

No. of components (k)

P
r[

K
=

k]

1 2 3 4 5 6 7

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

200

No. of components (k)

P
r[

K
=

k]

1 2 3 4 5 6 7

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

500

No. of components (k)

P
r[

K
=

k]

1 2 3 4 5 6 7

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

2000

No. of components (k)

P
r[

K
=

k]

−3 −2 −1 0 1 2 3

0.
0

0.
4

0.
8

1.
2

50

−3 −2 −1 0 1 2 3
0.

0
0.

4
0.

8
1.

2

200

−3 −2 −1 0 1 2 3

0.
0

0.
4

0.
8

1.
2

500

−3 −2 −1 0 1 2 3

0.
0

0.
4

0.
8

1.
2

2000

Figure 4.4: (c) Strongly Skewed, kTRUE = 8 : The left-hand column displays
the posterior of k by using boxplots of the posterior probabilities, Pr[K = k].
The whiskers of the plots stretch to the 5% and 95% quantiles. The right-
hand column of the plot displays the posterior predictive density calculated
by averaging over the 20 samples for each sample size. The full line shows
the true density, the dashed line shows the posterior predictive and the dotted

lines show 95% confidence bands for the posterior predictive density.



CHAPTER 4. SIMULATION STUDY 99

1 2 3 4 5 6 7

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

50

No. of components (k)

P
r[

K
=

k]

1 2 3 4 5 6 7

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

200

No. of components (k)

P
r[

K
=

k]

1 2 3 4 5 6 7

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

500

No. of components (k)

P
r[

K
=

k]

1 2 3 4 5 6 7

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

2000

No. of components (k)

P
r[

K
=

k]

−3 −2 −1 0 1 2 3

0.
0

0.
5

1.
0

1.
5

50

−3 −2 −1 0 1 2 3
0.

0
0.

5
1.

0
1.

5

200

−3 −2 −1 0 1 2 3

0.
0

0.
5

1.
0

1.
5

500

−3 −2 −1 0 1 2 3

0.
0

0.
5

1.
0

1.
5

2000

Figure 4.5: (d) Kurtotic Unimodal, kTRUE = 2 : The left-hand column
displays the posterior of k by using boxplots of the posterior probabilities,
Pr[K = k]. The whiskers of the plots stretch to the 5% and 95% quantiles.
The right-hand column of the plot displays the posterior predictive density
calculated by averaging over the 20 samples for each sample size. The full line
shows the true density, the dashed line shows the posterior predictive and the
dotted lines show 95% confidence bands for the posterior predictive density.



CHAPTER 4. SIMULATION STUDY 100

1 2 3 4 5 6 7

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

50

No. of components (k)

P
r[

K
=

k]

1 2 3 4 5 6 7

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

200

No. of components (k)

P
r[

K
=

k]

1 2 3 4 5 6 7

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

500

No. of components (k)

P
r[

K
=

k]

1 2 3 4 5 6 7

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

2000

No. of components (k)

P
r[

K
=

k]

−3 −2 −1 0 1 2 3

0
1

2
3

4

50

−3 −2 −1 0 1 2 3
0

1
2

3
4

200

−3 −2 −1 0 1 2 3

0
1

2
3

4

500

−3 −2 −1 0 1 2 3

0
1

2
3

4

2000

Figure 4.6: (e) Outlier, kTRUE = 2 : The left-hand column displays the
posterior of k by using boxplots of the posterior probabilities, Pr[K = k].
The whiskers of the plots stretch to the 5% and 95% quantiles. The right-
hand column of the plot displays the posterior predictive density calculated
by averaging over the 20 samples for each sample size. The full line shows
the true density, the dashed line shows the posterior predictive and the dotted

lines show 95% confidence bands for the posterior predictive density.



CHAPTER 4. SIMULATION STUDY 101

1 2 3 4 5 6 7

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

50

No. of components (k)

P
r[

K
=

k]

1 2 3 4 5 6 7

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

200

No. of components (k)

P
r[

K
=

k]

1 2 3 4 5 6 7

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

500

No. of components (k)

P
r[

K
=

k]

1 2 3 4 5 6 7

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

2000

No. of components (k)

P
r[

K
=

k]

−3 −2 −1 0 1 2 3

0.
05

0.
15

0.
25

0.
35

50

−3 −2 −1 0 1 2 3
0.

05
0.

15
0.

25
0.

35

200

−3 −2 −1 0 1 2 3

0.
05

0.
15

0.
25

0.
35

500

−3 −2 −1 0 1 2 3

0.
05

0.
15

0.
25

0.
35

2000

Figure 4.7: (f) Bimodal, kTRUE = 2 : The left-hand column displays the
posterior of k by using boxplots of the posterior probabilities, Pr[K = k].
The whiskers of the plots stretch to the 5% and 95% quantiles. The right-
hand column of the plot displays the posterior predictive density calculated
by averaging over the 20 samples for each sample size. The full line shows
the true density, the dashed line shows the posterior predictive and the dotted

lines show 95% confidence bands for the posterior predictive density.



CHAPTER 4. SIMULATION STUDY 102

1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

50

No. of components (k)

P
r[

K
=

k]

1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

200

No. of components (k)

P
r[

K
=

k]

1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

500

No. of components (k)

P
r[

K
=

k]

1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

2000

No. of components (k)

P
r[

K
=

k]

−3 −2 −1 0 1 2 3

0.
1

0.
2

0.
3

0.
4

50

−3 −2 −1 0 1 2 3
0.

1
0.

2
0.

3
0.

4

200

−3 −2 −1 0 1 2 3

0.
1

0.
2

0.
3

0.
4

500

−3 −2 −1 0 1 2 3

0.
1

0.
2

0.
3

0.
4

2000

Figure 4.8: (g) Separated Bimodal, kTRUE = 2 : The left-hand column
displays the posterior of k by using boxplots of the posterior probabilities,
Pr[K = k]. The whiskers of the plots stretch to the 5% and 95% quantiles.
The right-hand column of the plot displays the posterior predictive density
calculated by averaging over the 20 samples for each sample size. The full line
shows the true density, the dashed line shows the posterior predictive and the
dotted lines show 95% confidence bands for the posterior predictive density.



CHAPTER 4. SIMULATION STUDY 103

1 2 3 4 5 6 7

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

50

No. of components (k)

P
r[

K
=

k]

1 2 3 4 5 6 7

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

200

No. of components (k)

P
r[

K
=

k]

1 2 3 4 5 6 7

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

500

No. of components (k)

P
r[

K
=

k]

1 2 3 4 5 6 7

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

2000

No. of components (k)

P
r[

K
=

k]

−3 −2 −1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

50

−3 −2 −1 0 1 2 3
0.

0
0.

1
0.

2
0.

3
0.

4

200

−3 −2 −1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

500

−3 −2 −1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

2000

Figure 4.9: (h) Skewed Bimodal, kTRUE = 2 : The left-hand column displays
the posterior of k by using boxplots of the posterior probabilities, Pr[K = k].
The whiskers of the plots stretch to the 5% and 95% quantiles. The right-
hand column of the plot displays the posterior predictive density calculated
by averaging over the 20 samples for each sample size. The full line shows
the true density, the dashed line shows the posterior predictive and the dotted

lines show 95% confidence bands for the posterior predictive density.



CHAPTER 4. SIMULATION STUDY 104

1 2 3 4 5 6 7

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

50

No. of components (k)

P
r[

K
=

k]

1 2 3 4 5 6 7

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

200

No. of components (k)

P
r[

K
=

k]

1 2 3 4 5 6 7

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

500

No. of components (k)

P
r[

K
=

k]

1 2 3 4 5 6 7

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

2000

No. of components (k)

P
r[

K
=

k]

−3 −2 −1 0 1 2 3

0.
05

0.
15

0.
25

50

−3 −2 −1 0 1 2 3
0.

05
0.

15
0.

25

200

−3 −2 −1 0 1 2 3

0.
05

0.
15

0.
25

500

−3 −2 −1 0 1 2 3

0.
05

0.
15

0.
25

2000

Figure 4.10: (i) Trimodal, kTRUE = 3 : The left-hand column displays the
posterior of k by using boxplots of the posterior probabilities, Pr[K = k].
The whiskers of the plots stretch to the 5% and 95% quantiles. The right-
hand column of the plot displays the posterior predictive density calculated
by averaging over the 20 samples for each sample size. The full line shows
the true density, the dashed line shows the posterior predictive and the dotted

lines show 95% confidence bands for the posterior predictive density.



CHAPTER 4. SIMULATION STUDY 105

1 2 3 4 5 6 7 8 9 10 11

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

50

No. of components (k)

P
r[

K
=

k]

1 2 3 4 5 6 7 8 9 10 11

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

200

No. of components (k)

P
r[

K
=

k]

1 2 3 4 5 6 7 8 9 10 11

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

500

No. of components (k)

P
r[

K
=

k]

1 2 3 4 5 6 7 8 9 10 11

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

2000

No. of components (k)

P
r[

K
=

k]

−3 −2 −1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

50

−3 −2 −1 0 1 2 3
0.

0
0.

2
0.

4
0.

6

200

−3 −2 −1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

500

−3 −2 −1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

2000

Figure 4.11: (j) Claw, kTRUE = 6 : The left-hand column displays the
posterior of k by using boxplots of the posterior probabilities, Pr[K = k].
The whiskers of the plots stretch to the 5% and 95% quantiles. The right-
hand column of the plot displays the posterior predictive density calculated
by averaging over the 20 samples for each sample size. The full line shows
the true density, the dashed line shows the posterior predictive and the dotted

lines show 95% confidence bands for the posterior predictive density.



CHAPTER 4. SIMULATION STUDY 106

1 2 3 4 5 6 7

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

50

No. of components (k)

P
r[

K
=

k]

1 2 3 4 5 6 7

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

200

No. of components (k)

P
r[

K
=

k]

1 2 3 4 5 6 7

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

500

No. of components (k)

P
r[

K
=

k]

1 2 3 4 5 6 7

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

2000

No. of components (k)

P
r[

K
=

k]

−3 −2 −1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

50

−3 −2 −1 0 1 2 3
0.

0
0.

1
0.

2
0.

3
0.

4

200

−3 −2 −1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

500

−3 −2 −1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

2000

Figure 4.12: (k) Double Claw, kTRUE = 9 : The left-hand column displays
the posterior of k by using boxplots of the posterior probabilities, Pr[K = k].
The whiskers of the plots stretch to the 5% and 95% quantiles. The right-
hand column of the plot displays the posterior predictive density calculated
by averaging over the 20 samples for each sample size. The full line shows
the true density, the dashed line shows the posterior predictive and the dotted

lines show 95% confidence bands for the posterior predictive density.



CHAPTER 4. SIMULATION STUDY 107

1 2 3 4 5 6 7 8 9 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

50

No. of components (k)

P
r[

K
=

k]

1 2 3 4 5 6 7 8 9 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

200

No. of components (k)

P
r[

K
=

k]

1 2 3 4 5 6 7 8 9 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

500

No. of components (k)

P
r[

K
=

k]

1 2 3 4 5 6 7 8 9 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

2000

No. of components (k)

P
r[

K
=

k]

−3 −2 −1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

50

−3 −2 −1 0 1 2 3
0.

0
0.

1
0.

2
0.

3
0.

4
0.

5

200

−3 −2 −1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

500

−3 −2 −1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

2000

Figure 4.13: (l) Asymmetric Claw, kTRUE = 6 : The left-hand column
displays the posterior of k by using boxplots of the posterior probabilities,
Pr[K = k]. The whiskers of the plots stretch to the 5% and 95% quantiles.
The right-hand column of the plot displays the posterior predictive density
calculated by averaging over the 20 samples for each sample size. The full line
shows the true density, the dashed line shows the posterior predictive and the
dotted lines show 95% confidence bands for the posterior predictive density.



CHAPTER 4. SIMULATION STUDY 108

1 2 3 4 5 6 7 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

50

No. of components (k)

P
r[

K
=

k]

1 2 3 4 5 6 7 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

200

No. of components (k)

P
r[

K
=

k]

1 2 3 4 5 6 7 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

500

No. of components (k)

P
r[

K
=

k]

1 2 3 4 5 6 7 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

2000

No. of components (k)

P
r[

K
=

k]

−3 −2 −1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

50

−3 −2 −1 0 1 2 3
0.

0
0.

1
0.

2
0.

3
0.

4

200

−3 −2 −1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

500

−3 −2 −1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

2000

Figure 4.14: (m) Asymmetric Double Claw, kTRUE = 8 : The left-hand col-
umn displays the posterior of k by using boxplots of the posterior probabilities,
Pr[K = k]. The whiskers of the plots stretch to the 5% and 95% quantiles.
The right-hand column of the plot displays the posterior predictive density
calculated by averaging over the 20 samples for each sample size. The full line
shows the true density, the dashed line shows the posterior predictive and the
dotted lines show 95% confidence bands for the posterior predictive density.



CHAPTER 4. SIMULATION STUDY 109

1 2 3 4 5 6 7 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

50

No. of components (k)

P
r[

K
=

k]

1 2 3 4 5 6 7 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

200

No. of components (k)

P
r[

K
=

k]

1 2 3 4 5 6 7 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

500

No. of components (k)

P
r[

K
=

k]

1 2 3 4 5 6 7 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

2000

No. of components (k)

P
r[

K
=

k]

−3 −2 −1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

50

−3 −2 −1 0 1 2 3
0.

0
0.

1
0.

2
0.

3
0.

4

200

−3 −2 −1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

500

−3 −2 −1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

2000

Figure 4.15: (n) Smooth Comb, kTRUE = 6 : The left-hand column displays
the posterior of k by using boxplots of the posterior probabilities, Pr[K = k].
The whiskers of the plots stretch to the 5% and 95% quantiles. The right-
hand column of the plot displays the posterior predictive density calculated
by averaging over the 20 samples for each sample size. The full line shows
the true density, the dashed line shows the posterior predictive and the dotted

lines show 95% confidence bands for the posterior predictive density.



CHAPTER 4. SIMULATION STUDY 110

1 2 3 4 5 6 7 8 9

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

50

No. of components (k)

P
r[

K
=

k]

1 2 3 4 5 6 7 8 9

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

200

No. of components (k)

P
r[

K
=

k]

1 2 3 4 5 6 7 8 9

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

500

No. of components (k)

P
r[

K
=

k]

1 2 3 4 5 6 7 8 9

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

2000

No. of components (k)

P
r[

K
=

k]

−3 −2 −1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

50

−3 −2 −1 0 1 2 3
0.

0
0.

1
0.

2
0.

3
0.

4

200

−3 −2 −1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

500

−3 −2 −1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

2000

Figure 4.16: (o) Discrete Comb, kTRUE = 6 : The left-hand column displays
the posterior of k by using boxplots of the posterior probabilities, Pr[K = k].
The whiskers of the plots stretch to the 5% and 95% quantiles. The right-
hand column of the plot displays the posterior predictive density calculated
by averaging over the 20 samples for each sample size. The full line shows
the true density, the dashed line shows the posterior predictive and the dotted

lines show 95% confidence bands for the posterior predictive density.



CHAPTER 4. SIMULATION STUDY 111

4.2.3 Parametric Inference

The aim of this section is to investigate whether the allocation sampler can re-

cover parameter estimates that are close to the real parameter values given in

Table 4.1. For parameter estimation to be possible, the label-switching problem

described in Section 3.2.5 has to be dealt with. The post-processing method de-

tailed in Section 3.2.5.1 was used here to try and remove the symmetry from the

posterior parameter densities. Thus, this section also helps give an indication

about how well the post-processing algorithm from Section 3.2.5.1 performs. The

results reported in Tables (4.3) - (4.11) are based on a single run of the allocation

sampler using a sample of size n = 2000. Only mixtures where the highest pos-

terior probability of k is equal to kTRUE are analysed, therefore allowing direct

comparison of the parameters in the model. The number of allocation vectors

used for each of the mixtures is given in Table (4.2). This was only carried out for

9 of the 15 mixtures of normals, see Figures (4.2) - (4.16). Note that the Gaussian

case (a) was also omitted because of its simplicity. Running this post-processing

algorithm, which was again coded in Fortran, required anything from 4 hours up

to 9 hours to complete. As would be expected the run times increase for models

with a higher number of components.

In each of Tables (4.3) - (4.11) the label-switching problem is evident if one

looks at the raw output. The estimates are essentially equal and also have fairly

high standard deviations. However, when the output has been post-processed

using the method detailed in Section 3.2.5.1, the estimates appear to be more

meaningful and the standard deviations of these estimates reduce dramatically

compared to the raw output. Therefore, the post-processing algorithm is working



CHAPTER 4. SIMULATION STUDY 112

effectively in reducing the symmetry of the posterior parameter densities. When

comparing the post-processed parameter estimates to the real values recorded

in Table (4.1), relatively few of the real values lie further than one standard

deviation from the estimate. In mixtures {(d),(e),(f)} the real values lie within

one standard deviation for all the parameters in the model. In the remaining

models all the real values of the mixture weights, means and standard deviations

are within two standard deviations of the estimates with two exceptions. They

are the standard deviations for component 6 in model (l) and component 4 in

model (o). Therefore, one is able to conclude that the allocation sampler performs

well in dealing with the label-switching problem and estimating the parameters

of the model.

Mixture (d) (e) (f) (g) (h) (i) (j) (l) (o)

No. of vectors 8016 5998 6850 8911 6779 6924 7958 9120 9271

Table 4.2: The number of allocation vectors used to calculate the parameter
estimates in Tables (4.3) - (4.11).



CHAPTER 4. SIMULATION STUDY 113

Parameters True Raw output Post-processed

λ1 0.67 0.50 ± 0.16 0.66 ± 0.01
λ2 0.33 0.50 ± 0.16 0.34 ± 0.01

m1 0 −0.02 ± 0.23 −0.03 ± 0.21
m2 0 0.04 ± 0.24 0.05 ± 0.27√
r1 1 5.68 ± 4.74 1.02 ± 0.02√
r2 10 5.83 ± 4.75 10.49 ± 0.51

Table 4.3: Estimates of the parameters in mixture (d) using a sample size of
n = 2000 and conditional on the true value of k as reported in Table (4.1).
The column “Raw output” contains means and standard deviations of the
marginal posteriors based on the sampler’s raw output. The same quantities,
after re-assigning the labels, are shown in column “Post-processed”. The true

parameter values are reported in column “True”.

Parameters True Raw output Post-processed

λ1 0.1 0.49 ± 0.40 0.10 ± 0.01
λ2 0.9 0.51 ± 0.40 0.90 ± 0.01

m1 0 −0.01 ± 0.11 0.00 ± 0.13
m2 0 0.00 ± 0.11 −0.01 ± 0.11√
r1 1 5.51 ± 4.59 1.02 ± 0.06√
r2 10 5.70 ± 4.59 10.19 ± 0.19

Table 4.4: Estimates of the parameters in mixture (e) using a sample size of
n = 2000 and conditional on the true value of k as reported in Table (4.1).
The column “Raw output” contains means and standard deviations of the
marginal posteriors based on the sampler’s raw output. The same quantities,
after re-assigning the labels, are shown in column “Post-processed”. The true

parameter values are reported in column “True”.



CHAPTER 4. SIMULATION STUDY 114

Parameters True Raw output Post-processed

λ1 0.5 0.50 ± 0.02 0.50 ± 0.02
λ2 0.5 0.50 ± 0.02 0.50 ± 0.02

m1 −1 0.03 ± 0.99 −0.96 ± 0.04
m2 1 0.02 ± 0.99 1.02 ± 0.04√
r1 1.5 1.50 ± 0.07 1.47 ± 0.06√
r2 1.5 1.50 ± 0.07 1.52 ± 0.06

Table 4.5: Estimates of the parameters in mixture (f) using a sample size of
n = 2000 and conditional on the true value of k as reported in Table (4.1).
The column “Raw output” contains means and standard deviations of the
marginal posteriors based on the sampler’s raw output. The same quantities,
after re-assigning the labels, are shown in column “Post-processed”. The true

parameter values are reported in column “True”.

Parameters True Raw output Post-processed

λ1 0.5 0.50 ± 0.01 0.51 ± 0.01
λ2 0.5 0.50 ± 0.01 0.49 ± 0.01

m1 −1.5 −0.09 ± 1.49 −1.48 ± 0.01
m2 1.5 0.11 ± 1.49 1.50 ± 0.01√
r1 2 2.01 ± 0.10 2.10 ± 0.05√
r2 2 2.01 ± 0.10 1.92 ± 0.05

Table 4.6: Estimates of the parameters in mixture (g) using a sample size of
n = 2000 and conditional on the true value of k as reported in Table (4.1).
The column “Raw output” contains means and standard deviations of the
marginal posteriors based on the sampler’s raw output. The same quantities,
after re-assigning the labels, are shown in column “Post-processed”. The true

parameter values are reported in column “True”.



CHAPTER 4. SIMULATION STUDY 115

Parameters True Raw output Post-processed

λ1 0.75 0.49 ± 0.24 0.74 ± 0.03
λ2 0.25 0.51 ± 0.24 0.26 ± 0.03

m1 0 0.74 ± 0.75 −0.02 ± 0.05
m2 1.5 0.70 ± 0.75 1.47 ± 0.02√
r1 1 1.91 ± 0.88 1.02 ± 0.03√
r2 3 1.87 ± 0.89 2.76 ± 0.23

Table 4.7: Estimates of the parameters in mixture (h) using a sample size of
n = 2000 and conditional on the true value of k as reported in Table (4.1).
The column “Raw output” contains means and standard deviations of the
marginal posteriors based on the sampler’s raw output. The same quantities,
after re-assigning the labels, are shown in column “Post-processed”. The true

parameter values are reported in column “True”.

Parameters True Raw output Post-processed

λ1 0.45 0.33 ± 0.15 0.45 ± 0.03
λ2 0.45 0.33 ± 0.15 0.42 ± 0.02
λ3 0.10 0.34 ± 0.15 0.12 ± 0.04

m1 −1.2 −0.12 ± 1.01 −1.26 ± 0.04
m2 1.2 0.02 ± 1.01 1.20 ± 0.04
m3 0 0.01 ± 1.01 −0.02 ± 0.06√
r1 1.67 2.27 ± 0.87 1.67 ± 0.08√
r2 1.67 2.28 ± 0.88 1.76 ± 0.09√
r3 4 2.25 ± 0.87 3.36 ± 0.68

Table 4.8: Estimates of the parameters in mixture (i) with a sample size of
n = 2000 and conditional on the true value of k as reported in Table (4.1).
The column “Raw output” contains means and standard deviations of the
marginal posteriors based on the sampler’s raw output. The same quantities,
after re-assigning the labels, are shown in column “Post-processed”. The true

parameter values are reported in column “True”.



CHAPTER 4. SIMULATION STUDY 116

Parameters True Raw output Post-processed

λ1 0.5 0.16 ± 0.11 0.43 ± 0.04
λ2 0.1 0.18 ± 0.13 0.11 ± 0.02
λ3 0.1 0.16 ± 0.11 0.12 ± 0.01
λ4 0.1 0.16 ± 0.11 0.11 ± 0.01
λ5 0.1 0.16 ± 0.11 0.12 ± 0.01
λ6 0.1 0.19 ± 0.11 0.13 ± 0.01

m1 0 0.07 ± 0.61 0.01 ± 0.01
m2 −1.0 −0.02 ± 0.63 −0.99 ± 0.01
m3 −0.5 0.03 ± 0.68 −0.48 ± 0.01
m4 0 −0.02 ± 0.63 0.06 ± 0.04
m5 0.5 −0.06 ± 0.60 0.51 ± 0.01
m6 1.0 0.09 ± 0.59 0.98 ± 0.01√
r1 1 8.14 ± 3.03 0.96 ± 0.04√
r2 10 7.71 ± 3.46 9.77 ± 0.97√
r3 10 8.01 ± 3.10 9.09 ± 0.92√
r4 10 8.11 ± 3.11 9.39 ± 0.99√
r5 10 7.91 ± 3.11 9.88 ± 0.95√
r6 10 7.32 ± 3.60 8.13 ± 0.76

Table 4.9: Estimates of the parameters in mixture (j) using a sample size of
n = 2000 and conditional on the true value of k as reported in Table (4.1).
The column “Raw output” contains means and standard deviations of the
marginal posteriors based on the sampler’s raw output. The same quantities,
after re-assigning the labels, are shown in column “Post-processed”. The true

parameter values are reported in column “True”.



CHAPTER 4. SIMULATION STUDY 117

Parameters True Raw output Post-processed

λ1 0.50 0.18 ± 0.17 0.49 ± 0.05
λ2 0.26 0.15 ± 0.17 0.22 ± 0.17
λ3 0.13 0.16 ± 0.17 0.17 ± 0.04
λ4 0.06 0.21 ± 0.17 0.06 ± 0.01
λ5 0.03 0.17 ± 0.17 0.04 ± 0.01
λ6 0.02 0.16 ± 0.17 0.01 ± 0.003

m1 0 −0.06 ± 1.04 −0.07 ± 0.07
m2 −1.5 0.41 ± 1.44 −1.52 ± 0.05
m3 −0.5 0.67 ± 1.39 −0.52 ± 0.04
m4 0.5 0.32 ± 1.34 0.49 ± 0.01
m5 1.5 0.41 ± 1.21 1.48 ± 0.01
m6 2.5 0.57 ± 1.31 2.49 ± 0.01√
r1 1 8.60 ± 6.96 0.97 ± 0.03√
r2 2.5 9.29 ± 7.26 2.78 ± 0.29√
r3 5 10.04 ± 7.33 4.14 ± 0.95√
r4 10 6.35 ± 5.52 10.69 ± 1.50√
r5 20 9.68 ± 7.22 20.21 ± 2.88√
r6 40 8.50 ± 6.73 13.69 ± 1.92

Table 4.10: Estimates of the parameters in mixture (l) using a sample size
of n = 2000 and conditional on the true value of k as reported in Table (4.1).
The column “Raw output” contains means and standard deviations of the
marginal posteriors based on the sampler’s raw output. The same quantities,
after re-assigning the labels, are shown in column “Post-processed”. The true

parameter values are reported in column “True”.



CHAPTER 4. SIMULATION STUDY 118

Parameters True Raw output Post-processed

λ1 0.29 0.17 ± 0.12 0.27 ± 0.01
λ2 0.29 0.17 ± 0.12 0.30 ± 0.01
λ3 0.29 0.18 ± 0.12 0.28 ± 0.01
λ4 0.05 0.16 ± 0.12 0.05 ± 0.005
λ5 0.05 0.17 ± 0.12 0.05 ± 0.005
λ6 0.05 0.15 ± 0.11 0.05 ± 0.005

m1 −2.14 0.97 ± 1.87 −2.14 ± 0.01
m2 −0.43 0.97 ± 1.77 −0.42 ± 0.01
m3 1.29 0.99 ± 1.87 1.28 ± 0.01
m4 2.29 1.20 ± 1.72 2.28 ± 0.005
m5 2.57 1.42 ± 1.62 2.57 ± 0.001
m6 2.86 1.11 ± 1.83 2.85 ± 0.005√
r1 3.5 11.85 ± 8.53 3.58 ± 0.12√
r2 3.5 11.26 ± 8.31 3.63 ± 0.11√
r3 3.5 10.87 ± 8.13 3.38 ± 0.11√
r4 21 11.84 ± 8.09 18.01 ± 1.35√
r5 21 11.45 ± 8.24 19.28 ± 1.42√
r6 21 12.45 ± 8.01 21.85 ± 1.64

Table 4.11: Estimates of the parameters of mixture (o) using a sample size
of n = 2000 and conditional on the true value of k as reported in Table (4.1).
The column “Raw output” contains means and standard deviations of the
marginal posteriors based on the sampler’s raw output. The same quantities,
after re-assigning the labels, are shown in column “Post-processed”. The true

parameter values are reported in column “True”.



CHAPTER 4. SIMULATION STUDY 119

4.2.4 Mixing and Convergence Properties

An important aspect of any MCMC sampler is that the Markov chain should mix

well, and it should also converge to the target distribution at some time-point

during the burn-in period. Firstly, if one is to assess the mixing properties of the

allocation sampler, then one requires to calculate the acceptance rates for each

of the moves that are proposed. However, note that the Gibbs move is always

accepted and therefore is improving the mixing of the chain when k is fixed.

The acceptance rates for all the Metropolis-Hastings moves have been calcu-

lated for every run of the allocation sampler and are summarised in Figures 4.17

and 4.18. These graphs show an overall general trend, with a few exceptions,

that, as the sample size increases, the acceptance rates of the moves decrease.

The acceptance rates start off at values of approximately 10% for a sample size

of 50, but, when the sample size increases to 2000, these rates fall to as low

as 0.01% in certain cases. This trend can be accounted for by the fact that as

the sample size increases the information about the underlying model becomes

stronger, and hence the allocation sampler finds it harder to move around the

state space. Furthermore, it can be noted that the acceptance rates for the third

fixed-k Metropolis-Hastings move is higher than for the other two moves in the

majority of cases. The acceptance rates of the absorption/ejection move follow

the same general trend as that for the fixed-k moves; i.e. as the sample size in-

creases the acceptance rate decreases. However, these moves seem to have slightly

higher acceptance rates on average than the fixed k moves.

Table 4.12 shows the median thinning parameters found from the preliminary

runs using the procedure from Section 3.2.4. These thinning parameters give an



CHAPTER 4. SIMULATION STUDY 120

indication of how well the allocation sampler is mixing. The higher the thinning

parameter used, the harder it is for the sampler to able to move around the state

space of {k, g}. This table shows similar trends to the acceptance probability

graphs in that as the sample size increases the thinning parameter also increases,

meaning that the sampler is finding it harder to mix efficiently. The table also

shows the median run times in seconds. It is obvious that as the sample size

increases the run time increases accordingly. Furthermore, this table shows a

general trend that the more complicated the model, the more thinning is required

and hence longer run time.

Sample Thinning ∆ Run Time
size 50 200 500 2000 50 200 500 2000

(a) 10 20 30 35 1 16 53 313
(b) 10 20 30 133 6 56 212 3845
(c) 20 50 115 440 14 170 1073 19452
(d) 10 10 20 30 8 27 127 753

M
(e) 10 20 20 40 8 53 140 1067

i
(f) 10 20 40 110 6 53 260 2780

x
(g) 10 20 30 40 7 50 182 939

t
(h) 10 30 60 190 6 80 392 4828

u
(i) 10 25 55 130 7 67 382 3823

r
(j) 10 20 110 140 5 30 704 6647

e
(k) 10 20 35 115 7 53 225 2929
(l) 10 30 125 180 5 75 1092 8220
(m) 10 20 40 105 15 54 257 2730
(n) 20 85 165 370 14 275 1478 15619
(o) 25 30 60 175 19 99 486 7549

Table 4.12: Median thinning values ∆ for the 20 runs of the sampler cor-
responding to the 20 different random samples for 4 different samples of the
fifteen mixtures of normals reported in Table 4.1. Also, the allocation sampler

median run times are reported for each mixture in seconds.



CHAPTER 4. SIMULATION STUDY 121

50 100 200 500 2000

1e
−

04
1e

−
03

1e
−

02
1e

−
01

A
cc

ep
ta

nc
e 

R
at

e

Sample Size

A
A

A
A

1
1

1
1

2

2

2

2

3

3

3

3

(a)

50 100 200 500 2000

1e
−

04
1e

−
03

1e
−

02
1e

−
01

A
cc

ep
ta

nc
e 

R
at

e

Sample Size

A

A
A

A

1

1

1

1

2

2

2

2

3
3 3 3

(c)

50 100 200 500 2000

1e
−

04
1e

−
03

1e
−

02
1e

−
01

A
cc

ep
ta

nc
e 

R
at

e

Sample Size

A A
A

A
1

1
1

1

2

2
2

2

3
3

3
3

(e)

50 100 200 500 2000

1e
−

04
1e

−
03

1e
−

02
1e

−
01

A
cc

ep
ta

nc
e 

R
at

e

Sample Size

A
A

A

A

1

1
1

1

2

2
2

2

3 3 3 3

(g)

50 100 200 500 2000

1e
−

04
1e

−
03

1e
−

02
1e

−
01

A
cc

ep
ta

nc
e 

R
at

e

Sample Size

A
A

A

A

1

1
1

1

2

2

2

2

3

3
3

3

(b)

50 100 200 500 2000

1e
−

04
1e

−
03

1e
−

02
1e

−
01

A
cc

ep
ta

nc
e 

R
at

e

Sample Size

A

A A
A

1

1 1
1

2

2
2

2

3
3 3

3

(d)

50 100 200 500 2000

1e
−

04
1e

−
03

1e
−

02
1e

−
01

A
cc

ep
ta

nc
e 

R
at

e

Sample Size

A
A

A

A

1

1
1

1

2

2
2

2

3
3

3

3

(f)

50 100 200 500 2000

1e
−

04
1e

−
03

1e
−

02
1e

−
01

A
cc

ep
ta

nc
e 

R
at

e

Sample Size

A

A
A

A

1

1

1

1

2

2

2

2

3

3

3

3

(h)

Figure 4.17: Plots of acceptance rates of the Absorption/Ejection move (la-
belled A) and the three Metropolis-Hastings moves (labelled 1, 2, 3) against
sample size, on a doubly logarithmic scale. Each plot shows the acceptance
rates averaged over the 20 runs of the allocation sampler for the mixture de-

tailed in Table 4.1.



CHAPTER 4. SIMULATION STUDY 122

50 100 200 500 2000

1e
−

04
1e

−
03

1e
−

02
1e

−
01

A
cc

ep
ta

nc
e 

R
at

e

Sample Size

A
A

A

A

1

1
1

1

2

2
2

2

3
3 3

3

(i)

50 100 200 500 2000

1e
−

04
1e

−
03

1e
−

02
1e

−
01

A
cc

ep
ta

nc
e 

R
at

e

Sample Size

A
A

A
A

1

1
1

1

2

2
2

2

3

3
3

3

(k)

50 100 200 500 2000

1e
−

04
1e

−
03

1e
−

02
1e

−
01

A
cc

ep
ta

nc
e 

R
at

e

Sample Size

A
A

A

A

1

1
1

1

2

2
2

2

3
3

3
3

(m)

50 100 200 500 2000

1e
−

04
1e

−
03

1e
−

02
1e

−
01

A
cc

ep
ta

nc
e 

R
at

e

Sample Size

A
A

A

A

1

1

1

1

2

2

2

2

3 3 3 3

(o)

50 100 200 500 2000

1e
−

04
1e

−
03

1e
−

02
1e

−
01

A
cc

ep
ta

nc
e 

R
at

e

Sample Size

A
A

A

A

1

1

1

1

2

2

2

2

3

3

3
3

(j)

50 100 200 500 2000

1e
−

04
1e

−
03

1e
−

02
1e

−
01

A
cc

ep
ta

nc
e 

R
at

e

Sample Size

A

A

A

A

1

1

1

1

2

2

2

2

3
3

3
3

(l)

50 100 200 500 2000

1e
−

04
1e

−
03

1e
−

02
1e

−
01

A
cc

ep
ta

nc
e 

R
at

e

Sample Size

A

A

A

A

1

1

1

1

2

2

2

2

3 3 3 3

(n)

Figure 4.18: Plots of acceptance rates of the Absorption/Ejection move (la-
belled A) and the three Metropolis-Hastings moves (labelled 1, 2, 3) against
sample size, on a doubly logarithmic scale. Each plot shows the acceptance
rates averaged over the 20 runs of the allocation sampler for the mixture de-

tailed in Table 4.1.



Chapter 5

Real Dataset Examples

In this chapter a selection of different datasets will be analysed using the alloca-

tion sampler. The results will be documented and compared to previous analyses

carried out by other authors. For each dataset a preliminary run was executed to

fix the hyperparameter and thinning values for five further runs of the sampler.

All the other settings for the allocation sampler were chosen in exactly the same

way as described for the simulation study in Chapter 4.

5.1 Galaxy

This dataset contains the velocities, in 103 km/sec, of 82 distant galaxies in the

Corona Borealis region of the universe that are diverging from our own galaxy.

These velocities are proportional to the distance between our galaxy and these

other 82 galaxies. A histogram of the data is shown in Figure 5.1. Astronomers

have postulated about the presence of clusters of galaxies and thus for this to

be true the velocities should follow a multimodal distribution, with every mode

123



CHAPTER 5. REAL DATASET EXAMPLES 124

corresponding to a different cluster. The original dataset, analysed in Postman

et al. (1986), actually had 83 data observations but an observation was dropped

in the analysis by Roeder (1990). It is these 82 observations that have been

analysed using mixture models by numerous other authors including Richardson

and Green (1997), Stephens (2000a), Nobile (1994) and McGrory (2005). This

dataset was modelled using a mixture of normals and also a mixture of uniforms.

The following parameter settings were set after a preliminary run of the allo-

cation sampler when fitting mixtures of normal components and uniform compo-

nents:

Normal : µ = 20.83, τ = 0.04, γ = 2, δ = 2, ∆ = 70,

Uniform : φ = 40, ∆ = 60.

The allocation sampler favours a mixture of between 4 and 6 normal components,

see Table 5.1 for the posterior of k, with the highest posterior probability being

assigned to a mixture of 5 components. The RJMCMC method of Richardson

and Green (1997) preferred a mixture of between 5 and 7 normal components with

6 having the highest probability. However, the analyses in Stephens (2000a) and

McGrory (2005) both selected a normal mixture of 3 components. Furthermore,

the likelihood ratio test approach to assessing the number of components from

MacLachlan (1997) selected 6 components. Therefore, the results of the allocation

sampler are not dissimilar to the results of these previous analyses. A summary

of five previous Bayesian analyses of this dataset is given in Aitkin (2001) that

give evidence for models between 3 and 9 components. The posterior predictive

density is shown in Figure 5.1 superimposed on a histogram of the data. This

dataset was also analysed using a mixture of uniform components. The posterior



CHAPTER 5. REAL DATASET EXAMPLES 125

of k is shown in Table 5.2 with the high posterior probabilities showing up for

mixtures of 2 and 3 components. The posterior predictive density is shown in

Figure 5.1. Comparing this distribution to that for the mixture of normals it is

of no surprise that the mixture of uniforms posterior predictive density is much

less smooth. Also, Table 5.3 reports the estimates of the parameters for the 5-

component mixture. This table shows that the middle section of the data from

the values around 15 to 28 is modelled by 3 components.

k 1 2 3 4 5 6 7 8 9 10

π(k|x) 0.000 0.000 0.090 0.289 0.337 0.200 0.067 0.015 0.002 0.000
s.d. 0.000 0.000 0.009 0.006 0.007 0.008 0.003 0.001 0.001 0.000

Table 5.1: Posterior distribution of k for the galaxy dataset using univariate
normal components. The probability π(k|x) is the average of five estimates
from independent runs of the allocation sampler; s.d. is the standard deviation

of the five estimates.

k 1 2 3 4 5 6 7

π(k|x) 0.000 0.527 0.402 0.065 0.005 0.000 0.000
s.d. 0.000 0.023 0.018 0.005 0.001 0.000 0.000

Table 5.2: Posterior distribution of k for the galaxy dataset using uniform
components. The probability π(k|x) is the average of five estimates from in-
dependent runs of the allocation sampler; s.d. is the standard deviation of the

five estimates.

Component 1 2 3 4 5

Weights 0.09 0.10 0.32 0.43 0.06
Means 9.78 19.75 19.88 22.64 31.86

St. Dev. 1.05 1.39 0.83 1.69 1.20

Table 5.3: Estimates of the parameters in the 5-component mixture of nor-
mals for the galaxy dataset after post-processing.



CHAPTER 5. REAL DATASET EXAMPLES 126

(a)

Velocity (10^3km/s)

D
en

si
ty

5 10 15 20 25 30 35

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

(b)

Velocity (10^3km/s)

D
en

si
ty

5 10 15 20 25 30 35

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Figure 5.1: Histograms and posterior predictive densities for the galaxy
dataset. Graph (a) corresponds to a mixture of normals and graph (b) to
a mixture of uniforms. The black line is the estimate of the posterior pre-
dictive density and the red lines show the 0.005 and 0.995 quantiles of the

simulated densities.



CHAPTER 5. REAL DATASET EXAMPLES 127

5.2 Acidity

This dataset consists of acid neutralising capacity index scores for a sample of 155

lakes in North-Central Wisconsin. These data were log-transformed and analysed

using a mixture of normal distributions by Crawford et al. (1992). The dataset

analysed here is also on a log-scale. Mixtures of normals were also fitted on this

log-scale dataset by Richardson and Green (1997) and McGrory (2005).

A preliminary run of the allocation sampler gave rise to the following param-

eter values for the further 5 runs:

µ = 5.11, τ = 0.2, γ = 2, δ = 0.27, ∆ = 30.

The posterior distribution of k reported in Table 5.4 shows that the models with

between 2 and 4 components account for approximately 93% of the distribution.

The 3-component model has the highest posterior probability. This result is sim-

ilar to the analysis of Richardson and Green (1997). They found support for

models of between 3 and 5 components, with the highest probability given to the

model of 3 components. Another analysis by McGrory (2005) using the varia-

tional Bayes technique fitted a 2-component model which again seems reasonable

when comparing the results found by the allocation sampler. Also, the likelihood

approach from MacLachlan (1997) found 3 components. Again, the allocation

sampler produces results that compare well to previous analyses. The parameter

estimates for the 3-component model can be found in Table 5.5. Comparing these

to the 2-component model of McGrory (2005) it appears that components 1 and

2 here are joined together to make the first component in McGrory (2005).



CHAPTER 5. REAL DATASET EXAMPLES 128

k 1 2 3 4 5 6 7 8

π(k|x) 0.000 0.209 0.476 0.236 0.064 0.013 0.002 0.000
s.d. 0.000 0.008 0.008 0.007 0.003 0.001 0.000 0.000

Table 5.4: Posterior distribution of k for the acidity dataset. The probability
π(k|x) is the average of five estimates from independent runs of the allocation

sampler; s.d. is the standard deviation of the five estimates.

Component 1 2 3

Weights 0.45 0.21 0.34
Means 4.28 4.91 6.35

St. Dev. 0.31 0.58 0.46

Table 5.5: Estimates of the parameters in the 3-component mixture of nor-
mals for the acidity dataset after post-processing.



CHAPTER 5. REAL DATASET EXAMPLES 129

D
en

si
ty

2 4 6 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 5.2: Histogram and posterior predictive density for the acidity dataset.
The black line is the estimate of the posterior predictive density and the red

lines show the 0.005 and 0.995 quantiles of the simulated densities.



CHAPTER 5. REAL DATASET EXAMPLES 130

5.3 Enzyme

This dataset arises from interest in enzymatic activity in the blood, for an enzyme

involved in the metabolism of the carcinogenic substances in order to identify

subgroups of slow or fast metabolisers. These subgroups can then be proposed as

markers of genetic polymorphism in the wider population. The dataset contains

measurements for a group of 245 unrelated individuals. Bechtel et al. (1993)

analysed the data by fitting a mixture of two skewed distributions using maximum

likelihood techniques.

The following parameter values were chosen from the usual preliminary run

of the allocation sampler:

µ = 0.62, τ = 0.069, γ = 2, δ = 0.024, ∆ = 70.

From Table 5.6 one can see that the allocation is favouring a model with 3−4 com-

ponents with the highest posterior probability on the 3-component model. This

agrees with the previous analyses of other authors. The methods of Richardson

and Green (1997) and McGrory (2005) both picked out a 4-component model.

The analysis by Richardson and Green (1997) assigned very similar posterior

probabilities to the 3-component and 4-component models, with a difference of

only 0.027. Comparing Table 5.7 to the component parameters calculated in Mc-

Grory (2005), the difference between the 3-component and 4-component models

seems to be due to the first component being either grouped as one or split into

two separate components.



CHAPTER 5. REAL DATASET EXAMPLES 131

k 1 2 3 4 5 6 7 8

π(k|x) 0.000 0.049 0.486 0.343 0.102 0.018 0.002 0.000
s.d. 0.000 0.005 0.018 0.011 0.004 0.001 0.000 0.000

Table 5.6: Posterior distribution of k for the enzyme dataset. The probability
π(k|x) is the average of five estimates from independent runs of the allocation

sampler; s.d. is the standard deviation of the five estimates.

Component 1 2 3

Weights 0.60 0.15 0.25
Means 0.19 1.08 1.46

St. Dev. 0.08 0.17 0.50

Table 5.7: Estimates of the parameters in the 3-component mixture of nor-
mals for the enzyme dataset after post-processing.



CHAPTER 5. REAL DATASET EXAMPLES 132

D
en

si
ty

−1 0 1 2 3 4

0
1

2
3

4

Figure 5.3: Histogram and posterior predictive density for the enzyme
dataset. The black line is the estimate of the posterior predictive density
and the red lines show the 0.005 and 0.995 quantiles of the simulated densities.



CHAPTER 5. REAL DATASET EXAMPLES 133

5.4 Hidalgo Stamps

This is a dataset concerned with the 1872 Hidalgo stamp issue in Mexico. The

dataset consists of the thicknesses, in (mm), of 485 unwatermarked, used, white

wove stamps. Furthermore, 289 had an 1872 overprint and 196 of the stamps had

an overprint from either 1873 or 1874. A more detailed description of the dataset

can found in Izenman and Sommer (1988).

From a preliminary run of the allocation sampler the following parameters

were selected and fixed for the 5 further runs:

µ = 0.086, τ = 0.027, γ = 2, δ = 0.000008, ∆ = 118.

The analysis in Izenman and Sommer (1988) used a likelihood approach to

fit a finite mixture model. They reported that they found a 7-component nor-

mal mixture using a non-parametric approach, but, by applying the test from

Wolfe (1971) as a parametric alternative, they found that a 3-component mixture

should be fitted. This conflict was further analysed by Basford et al. (1997) and

they argued that using a homoscedastic model is appropriate for the parametric

and non-parametric approaches of Izenman and Sommer (1988) to coincide. A

Bayesian approach using a Bayes factor method for finding the number of com-

ponents was taken by Ishwaran et al. (2001). These authors reported that an

8-component model describes the data in the best possible manner. The alloca-

tion sampler produced slightly different results from these methods. Table 5.8

shows the posterior of k giving significant support to a model of between 3 and 5

components. The 4 component model has the highest posterior probability but

note that the posterior of k assigns a probability of more than 2% to models of



CHAPTER 5. REAL DATASET EXAMPLES 134

between 3 and 9 components which is a large spread of plausible values. The

parameter estimates for the 4 component model are reported in Table 5.9.

k 1 2 3 4 5 6

π(k|x) 0.000 0.000 0.181 0.449 0.162 0.059
s.d. 0.000 0.000 0.009 0.006 0.007 0.008

k 7 8 9 10 11 12

π(k|x) 0.062 0.054 0.024 0.007 0.001 0.000
s.d. 0.003 0.001 0.001 0.000 0.000 0.000

Table 5.8: Posterior distribution of k for the stamps dataset. The probability
π(k|x) is the average of five estimates from independent runs of the allocation

sampler; s.d. is the standard deviation of the five estimates.

Component 1 2 3 4

Weights 0.18 0.13 0.26 0.43
Means 0.071 0.077 0.080 0.099

St. Dev. 0.001 0.002 0.002 0.014

Table 5.9: Estimates of the parameters in the 4-component mixture of nor-
mals for the Hidalgo stamps dataset after post-processing.



CHAPTER 5. REAL DATASET EXAMPLES 135

Stamp thickness (mm)

D
en

si
ty

0.04 0.06 0.08 0.10 0.12 0.14

0
20

40
60

80

Figure 5.4: Histogram and posterior predictive density for the Hidalgo stamps
dataset. The black line is the estimate of the posterior predictive density and
the red lines show the 0.005 and 0.995 quantiles of the simulated densities.



CHAPTER 5. REAL DATASET EXAMPLES 136

5.5 S&P 500 Returns

As an example of density estimation using a mixture of sign-shifted exponential

distributions a dataset from the Standard and Poors 500 (S&P 500) stock index

is considered. This dataset consists of 1700 observations of daily returns from the

1950s and was previously analysed by Rydén et al. (1998) using a hidden Markov

model where it is referred to as subseries E. Robert et al. (2000) also analysed

this dataset using hidden Markov models with zero-mean normal distributions

by implementing a reversible jump sampler. Their analysis found that there

were 2 or 3 components in the data. Here, any possible dependence between the

observations in the dataset is not accounted for.

The preliminary run of the allocation sampler gave rise to the following set-

tings for the next 5 runs:

κ = 1, β = 0.004, γ = 10, ρ = 0.5, ∆ = 1000.

Looking at a plot of the data, see Figure 5.6, these hyperparameter values seem

reasonable. The γ value is of particular interest in that the fairly large value of 10

restricts the shift parameter to be very close to zero. The allocation sampler found

that a 3-component mixture is best for modelling this S&P 500 data, see Table

5.10. Table 5.11 displays estimates of the mixture parameters for each component.

The Table shows that there are 2 components that decay in a positive direction

but only 1 component that decays in the negative direction. It would be sensible

to comment that the 2 components are required for the positive direction so as to

model the tails of the data. Also, the marginal posterior density estimates for the

shift and rate parameters, conditional on the sign parameter, are shown in Figure



CHAPTER 5. REAL DATASET EXAMPLES 137

5.5. Inspection of these plots along with the parameter estimates given in Table

5.11 show that all the shift parameters are very close to zero as would be expected.

However, the rate parameters seem to be fairly similar for all the components,

implying a fairly stable rate of decay in both directions. The posterior predictive

density shown in Figure 5.6 has one unusual feature in the model due to the

shift parameters not quite being equal. If one fixes the model to have the shift

parameter exactly equal to zero then a 2-component model is selected by the

allocation sampler, one component for each direction of decay.

k 1 2 3 4 5 6 7

π(k|x) 0.000 0.006 0.817 0.157 0.019 0.002 0.000
s.d. 0.000 0.001 0.023 0.019 0.003 0.001 0.000

Table 5.10: Posterior distribution of k for the S&P 500 returns dataset. The
probability π(k|x) is the average of five estimates from independent runs of

the allocation sampler; s.d. is the standard deviation of the five estimates.

Component 1 2 3

Weights 0.47 0.33 0.20
Signs -1 1 1
Rates 201 215 210
Shifts -0.0003 -0.0004 0.0003

Table 5.11: Estimates of the parameters in the 3-component mixture of sign-
shifted exponentials for the S&P 500 returns dataset after post-processing.



CHAPTER 5. REAL DATASET EXAMPLES 138

−0.03 −0.01 0.01 0.03

0
50

0
10

00
15

00

Component 1

Shift

D
en

si
ty

−0.03 −0.01 0.01 0.03

0
50

0
10

00
15

00

Component 2

Shift

D
en

si
ty

−0.03 −0.01 0.01 0.03

0
50

0
10

00
15

00

Component 3

Shift

D
en

si
ty

100 200 300 400 500

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

Component 1

Rate

D
en

si
ty

100 200 300 400 500

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

Component 2

Rate

D
en

si
ty

100 200 300 400 500

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

Component 3

Rate

D
en

si
ty

Figure 5.5: Marginal posterior density estimates for the shift and rate pa-
rameters, conditional on the sign parameter given in Table (5.11), in the 3-
component mixture of sign-shifted exponential distributions for the S&P 500

Returns dataset



CHAPTER 5. REAL DATASET EXAMPLES 139

Daily Returns

D
en

si
ty

−0.04 −0.02 0.00 0.02 0.04

0
20

40
60

80
10

0
12

0

Figure 5.6: Histogram and posterior predictive density for the S&P 500 Re-
turns dataset. The black line is the estimate of the posterior predictive density
for fixed k = 3 and the red lines show the 0.005 and 0.995 quantiles of the sim-

ulated densities.



CHAPTER 5. REAL DATASET EXAMPLES 140

5.6 Iris

This is the famous dataset sometimes referred to as the “Fisher Iris Data” even

though it was actually collected by Dr. Edgar Anderson. The data were published

in Fisher (1936) and contain 4 measurements, namely sepal length and width and

petal length and width, in centimetres for 50 plants for each of three different

species of iris: Iris setosa, Iris versicolor and Iris virginica. The author used

the data to illustrate the use of discriminant functions. The allocation sampler

was implemented using the data on the measurements to find the number of

species. Therefore, knowledge about the species was not used in the fitting of

the model. This dataset also allows an illustration of the clustering capabilities

of the allocation sampler.

The following parameter settings were used for 5 runs of the allocation sam-

pler:

ξ =




0.55 0 0 0

0 0.40 0 0

0 0 0.35 0

0 0 0 0.1




, µ =




5.84

3.06

3.76

1.20




, τ = 0.065, η = 7, ∆ = 360.

It is reassuring to see from Table 5.12 that the allocation sampler selects

a 3-component mixture model, to correspond to the 3 different species of iris,

with a posterior probability of 0.72. There is also a significant amount of mass,

0.27, on a 4-component mixture model. All the univariate and bivariate marginal

posterior predictive distributions are displayed in Figure 5.7. The bivariate plots

show that the Setosa species is easily separated from the Versicolor and Virginica



CHAPTER 5. REAL DATASET EXAMPLES 141

species. Furthermore, they show that there is some overlap between the Versicolor

and Virginica species. The univariate marginal distributions show that the petal

width variable is possibly the best predictor of species, due to its trimodality, and

sepal width the worst because of the unimodal nature of that posterior predictive

density. Figure 5.8 is displayed to show the ability of the allocation sampler

to separate the observations into clusters. This Figure is an image plot where

the value at the (i, j)th position is found using formula (2.44). It shows that

all the Setosa observations are always correctly grouped together. Also, the

allocation sampler groups the majority of Versicolor observations into the same

component, but, there are 5 observations that are sometimes placed in a group

with Virginica observations. Finally, only 1 Virginica observation seems to be

occasionally incorrectly assigned to the Versicolor group. These results compare

well to analyses by previous clustering methods such as the k-means clustering

algorithm (MacQueen (1967)), Ward’s algorithm (Ward (1963)) and the cluster-

function-based method (Li (2006)). Li (2006) presents results for all three of these

methods for this dataset. The results show that each method always classifies the

Setosa observations correctly but misclassfies some of the Virginica and Versicolor

observations in a similar fashion to the allocation sampler.

k 1 2 3 4 5 6

π(k|x) 0.000 0.002 0.718 0.267 0.013 0.000
s.d. 0.000 0.004 0.009 0.008 0.001 0.000

Table 5.12: Posterior distribution of k for the iris dataset. The probability
π(k|x) is the average of five estimates from independent runs of the allocation

sampler; s.d. is the standard deviation of the five estimates.



CHAPTER 5. REAL DATASET EXAMPLES 142

S
ep

al
 L

en
gt

h
0.

0
0.

1
0.

2
0.

3
0.

4
S

ep
al

 W
id

th
1

2
3

4
5

P
et

al
 L

en
gt

h
0

2
4

6

Sepal Length

P
et

al
 W

id
th

4 5 6 7 8

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Sepal Width
1 2 3 4 5

Petal Length
0 2 4 6

Petal Width
0.0 0.5 1.0 1.5 2.0 2.5 3.0

Figure 5.7: Posterior predictive distribution for the iris dataset. Univari-
ate marginal densities, located on the diagonal, and the bivariate marginal
densities, on the off-diagonal, of an estimate of the four-dimensional posterior
predictive density. In the bivariate plots, contour lines are drawn at levels
corresponding to 5%, 25%, 75% and 95% of the posterior probability of the
displayed region. Overlaid on the contour plots are bivariate scatterplots of

the data, using the symbols x = Setosa, + = Versicolor, o = Virginica.



CHAPTER 5. REAL DATASET EXAMPLES 143

20 40 60 80 100 120 140

20
40

60
80

10
0

12
0

14
0

Observation number

O
bs

er
va

tio
n 

nu
m

be
r

Figure 5.8: Image plot of pairwise classification probabilities for the iris
dataset. The observations are numbered so that the observations 1 to 50
are from the Setosa species, 51 to 100 from the Versicolor species and 101 to
150 from the Virginica species. The cream colour corresponds to a probability
of 1, the red colour to a probability of 0 and the various shades of yellow to

values between 0 and 1.



Chapter 6

Conclusions & Future Research

This chapter will state, summarise and discuss the conclusions that can be drawn

from the work presented in this thesis. Also, some possible extensions of this work

will be considered.

Chapter 1 reviewed the problem and theory of fitting a finite mixture distri-

bution. It was seen that there have been many attempts by numerous authors to

analyse these distributions in order to make use of their flexible properties. The

problem of finding the number of components required to fit the data has been

tackled in many different ways but a definitive solution has not been found. Cur-

rent methods available to attack this problem, include, among others, RJMCMC

and Birth-Death processes. The chapter also brought up the other problems that

arise when analysing mixture models, e.g. the label switching problem. This led

into Chapter 2 where a Bayesian model was defined, that is suitable for the new

approach of the allocation sampler. This Bayesian model makes the assumption

that the component parameters and weights can be integrated out of the model

144



CHAPTER 6. CONCLUSIONS & FUTURE RESEARCH 145

analytically in closed form. This assumption means that the state space for the

MCMC sampler is simply the set of all allocation vectors g, where g contains

the component to which each observation has been allocated, and the number

of these components k is allowed to vary. This is a reduction in the size and

complexity of the state space when compared to the model used by Richardson

and Green (1997) and by Stephens (2000a), which also includes the component

parameters and weights. Component parameters and weights can be integrated

out in the case where the component distributions are from an exponential family

with a conjugate prior on the parameters,see Sections 2.4.1 and 2.4.2. Moreover,

closed form integration is still possible for some other distributions which do not

admit conjugate priors, examples were provided in Sections 2.4.3 and 2.4.4.

A method for analysing the Bayesian model defined in Chapter 2 was then

described in Chapter 3. This model required the invention of a MCMC sam-

pler that could not not only move within models but also between models in

a reversible jump type manner. This was achieved with the definition of four

within model moves and one between model move. A big advantage of this al-

gorithm is that the moves do not depend on the distribution of the components

because the state space is always the same no matter the distributional form

of the components. Therefore, implementing the sampler for other distributions

requires only minimal changes if compared to standard RJMCMC. The design

stage of the allocation sampler brought forward further problems that had to

be solved, such as how to set hyperparameter values for the prior distributions

and how to counteract the problem of label-switching. All the posterior analysis

presented in this thesis is conditional on these hyperparameters so the selection



CHAPTER 6. CONCLUSIONS & FUTURE RESEARCH 146

of their values play a crucial role in the effectiveness of the allocation sampler.

The procedure used to select the hyperparameters produced satisfactory results,

however, trying to make it a less subjective method in the future would enhance

this approach. The label-switching problem had to be overcome to enable mean-

ingful parametric inference. A Metropolis-Hastings move on the labels was used

in the case where the prior distributions of the components were asymmetric.

However, a post-processing algorithm was implemented for the symmetric prior

case. The post-processing algorithm was shown in Chapter 4 to yield very good

results in removing from the posterior distributions of the parameters the symme-

try, typically induced by label-switching. Furthermore, the parameter estimates

calculated after the removal of the symmetry were extremely close to the true

values, where they were known. Within Chapters 4 and 5 the allocation sam-

pler was shown to obtain good posterior fits to the datasets whether they were

simulated or real in the majority of cases. The important problem of selecting

the true number of components, also gave very promising results. This was again

illustrated using both simulated and real data in Chapters 4 and 5.

In this thesis an example was given showing how the finite mixture model can

be used as a cluster analysis tool. Estimates of the posterior probabilities that

two observations are allocated to the same component were shown for the Iris

dataset in Figure 5.8. Further work could be done on looking at the possibility of

turning the allocation sampler’s output into a tool to perform meaningful cluster

analysis and a method for creating discriminant rules. This would require a more

in depth analysis of the posterior distribution of g.

There are some other possible areas in which the allocation sampler could



CHAPTER 6. CONCLUSIONS & FUTURE RESEARCH 147

progress. Firstly, a referee of Nobile and Fearnside (2007) suggested that this

framework might be applicable to the admixture model proposed in Pritchard

et al. (2000). This paper concerns genotype data and tries to ascertain a pop-

ulation structure and assign individuals to the populations. An obvious way of

improving the capabilities of the allocation sampler would be to include more

and more possible distributions for the components to take. In addition, another

extension could be to allow the distribution of a component to change throughout

the sampling process to enable mixtures of more than one type of distribution, e.g.

mixtures of normals and exponentials. To implement this a Metropolis-Hastings

move could be designed such that it proposes a change to the distribution of the

component. A RJMCMC sampler for hidden Markov models is defined in Robert

et al. (2000) where they try to find the number of components in the model and

estimate the parameters. Therefore, another way of enhancing the allocation

sampler would be to allow dependence between the observations therefore using

a hidden Markov model structure. However, this adaption of the model may

require the addition of new moves to the allocation sampler.



Appendix A

Integrating parameters from the

model

This appendix contains the details of the integral

p(x|φ) =

∫ ∏

i

q(xi|θ)π(θ|φ)dθ

which defines the marginal distribution of the data x where the prior on the

parameters π(θ|φ) is non-conjugate.

A.1 Uniform Distribution

Let x = (x1, . . . , xn) be i.i.d. ∼ Unif(a, b). Then

q(x|θ) =
1

(b − a)n
I(−∞,x(1))(a)I(x(n),∞)(b),

where θ = (a, b) and I is the indicator function.

148



APPENDIX A. INTEGRATING PARAMETERS FROM THE MODEL 149

Then

p(x|φ) =

∫
q(x|θ)π(θ|φ)dθ.

Suppose the prior on the parameters (a, b) is defined as

π(a, b) = 1
2φ2 , −φ < a < b < φ,

where φ is a known hyperparameter.

The marginal distribution of x, p(x|φ), can be calculated in closed form as follows:

p(x|φ) =

∫ ∫
q(x|a, b)π(a, b)dadb

=

∫ ∫
1

2φ2

1

(b − a)n
I(−∞,x(1))(a)I(x(n),∞)(b)dadb, −φ < a < b < φ.

A change of variable is required to progress, so let z = a and y = b − a. Thus

p(x|φ) becomes

p(x|φ) =

∫ ∫
1

2φ2

1

yn
I(−∞,x(1))(z)I(x(n),∞)(y + z)dzdy, −φ < z < (y + z) < φ

=
1

2φ2

∫ ∫
1

yn
I(−∞,x(1))(z)I(−φ,φ)(z)I(x(n)−z,∞)(y)I(0,φ−z)(y)dzdy

=
1

2φ2

∫ ∫
1

yn
I(−φ,x(1))(z)I(x(n)−z,φ−z)(y)dzdy

=
1

2φ2

∫
I(−φ,x(1))(z)

∫ φ−z

x(n)−z

1

yn
dydz. (A.1)

The integral with respect to y has two different cases which need to be examined



APPENDIX A. INTEGRATING PARAMETERS FROM THE MODEL 150

separately. Firstly, for the case n = 1 note that x(n) = x(1) and then

p(x|φ) =
1

2φ2

∫
I(−φ,x(1))(z)

∫ φ−z

x(1)−z

1

y
dydz

=
1

2φ2

∫
I(−φ,x(1))(z) [log(y)]φ−z

x(1)−z dz

=
1

2φ2

∫ x(1)

−φ

[
log(φ − z) − log(x(1) − z)

]
dz

=
1

2φ2

(∫ x(1)

−φ

log(φ − z)dz −
∫ x(1)

−φ

log(x(1) − z)dz

)
(A.2)

=
1

2φ2

([
(φ − z) log(φ − z) − (φ − z)

]−φ

x(1)

−
[
(x(1) − z) log(x(1) − z) − (x(1) − z)

]−φ

x(1)

)
(A.3)

=
1

2φ2

(
2φ log[2φ] − (φ − x(1)) log[φ − x(1)] − (φ + x(1)) log[φ + x(1)]

)

=
1

2φ2

(
x(1) log

[
φ − x(1)

φ + x(1)

]
+ φ log

[
(2φ)2

(φ + x(1))(φ − x(1))

])
. (A.4)

Note that in relation to (A.2) the indefinite integral of log(c − x) with respect

to x, where c is a constant, can be defined as −{(c − x) log(c − x) − (c − x)}.

Consequently, the limits swap order in (A.3).

Returning to the integral (A.1) for the case when n > 1, we have

p(x|φ) =
1

2φ2

∫
I(−φ,x(1))(z)

[
− 1

n − 1

1

yn−1

]φ−z

x(n)−z

dz

=
1

2φ2

∫
I(−φ,x(1))(z)

[
1

n − 1

(
1

(x(n) − z)n−1
− 1

(φ − z)n−1

)]
dz

=
1

2φ2

1

n − 1

[∫ x(1)

−φ

1

(x(n) − z)n−1
dz −

∫ x(1)

−φ

1

(φ − z)n−1
dz

]
. (A.5)



APPENDIX A. INTEGRATING PARAMETERS FROM THE MODEL 151

Again, these integrals also have two cases, n = 2 and n > 2. Firstly, for n = 2,

p(x|φ) =
1

2φ2

(∫ x(1)

−φ

(x(2) − z)−1dz −
∫ x(1)

−φ

(φ − z)−1dz

)

=
1

2φ2

(
log(x(2) + φ) − log(x(2) − x(1))

+ log(φ − x(1)) − log(2φ)

)

=
1

2φ2
log

[
(x(2) + φ)(φ − x(1))

(x(2) − x(1))2φ

]
. (A.6)

Next, for the case n > 2 (A.5) becomes

p(x|φ) =
1

2φ2

1

n − 1

(∫ x(1)

−φ

(x(n) − z)−n+1dz −
∫ x(1)

−φ

(φ − z)−n+1dz

)

=
1

2φ2

1

n − 1

( −1

n − 2

[
(x(n) + φ)−n+2 − (x(n) − x(1))

−n+2

+(φ − x(1))
−n+2 − (2φ)−n+2

])

=
1

2φ2(n − 1)(n − 2)

(
(x(n) − x(1))

−n+2 − (x(n) + φ)−n+2

−(φ − x(1))
−n+2 + (2φ)−n+2

)

=
(x(n) − x(1))

−n+2 − (x(n) + φ)−n+2 − (φ − x(1))
−n+2 + (2φ)−n+2

2φ2(n − 1)(n − 2)
.

(A.7)



APPENDIX A. INTEGRATING PARAMETERS FROM THE MODEL 152

Thus, collating (A.4), (A.6) and (A.7) produces

p(x|φ) =





1
2φ2

[(x(n)−x(1))
−n+2−(x(n)+φ)−n+2−(φ−x(1))

−n+2+(2φ)−n+2]
(n−1)(n−2)

n > 2

1
2φ2

[
log

(φ−x(1))(φ+x(2))

2φ(x(2)−x(1))

]
n = 2

1
2φ2

[
x(1) log

φ−x(1)

φ+x(1)
+ φ log (2φ)2

(φ−x(1))(φ+x(1))

]
n = 1,

which corresponds to (2.19).

A.2 Sign-Shifted-Exponential Distribution

Recall the definition of the sign-shifted exponential distribution in (2.4.4). Sup-

pose we have n i.i.d. observations x = (x1, . . . , xn) that have each arisen from

the SSExp distribution. Then x will have a distribution related to (2.20), of the

form

q(x|θ) =





n∏
i=1

[
ωe−ω(xi−a)I(a,∞)(xi)

]
s = 1

n∏
i=1

[
ωeω(xi−a)I(−∞,a)(xi)

]
s = −1,

(A.8)

where θ = (s, a, ω) and s takes values from the set S = {−1, 1}, a ∈ IR and

ω > 0.

Then, to find the marginal distribution, one requires to integrate out the param-

eters:

p(x|φ) =

∫
q(x|θ)π(θ|φ)dθ. (A.9)

Consequently, a prior has to be defined. Suppose the prior on the parameters



APPENDIX A. INTEGRATING PARAMETERS FROM THE MODEL 153

(s, a, ω) has the following form:

π(θ|φ) = π(s, a, ω|φ) = π(s|φ)π(a|ω, φ)π(ω|φ). (A.10)

Let ω have a Ga(κ, β) prior with κ and β known and both greater than 0, so that

π(ω|φ) =
βκωκ−1e−βω

Γ(κ)
. (A.11)

Let a have a Laplace(0, γω) prior, where 0 is the mean parameter and γω is the

scale parameter, and γ > 0:

π(a|ω, φ) =
γω

2
e−γω|a|. (A.12)

Hence,

π(a, ω|φ) = π(a|ω, φ)π(ω|φ) =
γβκωκe−ω(β+γ|a|)

2Γ(κ)
. (A.13)

Finally, we assume that s is a priori independent of a and ω,

π(s|a, ω, φ) =





ρ s = 1

(1 − ρ) s = −1,
(A.14)

where ρ is a hyperparameter which defines the probability of the sign parameter,

and therefore 0 ≤ ρ ≤ 1.

Now, since the prior has been defined the marginal distribution of the data

can be evaluated. This will be carried out in two stages. Firstly, the marginal

distribution of the data conditional on the sign parameter will be calculated, and



APPENDIX A. INTEGRATING PARAMETERS FROM THE MODEL 154

then these marginal distributions will be summed over the discrete distribution of

the sign parameter to produce the marginal distribution of the data as required:

p(x|φ) =
∑

S∈{−1,1}

p(x|s, φ)π(s, φ)

= ρp(x|s = 1, φ) + (1 − ρ)p(−x|s = 1, φ). (A.15)

The marginal distribution of x conditional on the sign parameter being equal

to 1 can be calculated in closed form as follows:

p(x|s = 1, φ) =

∫ ∫
p(x|s = 1, a, ω, φ)π(a, ω, φ)dadω, (A.16)

and fortunately p(x|s = −1, φ) can be found from p(x|s = 1, φ) because

p(x|s = −1, φ) =

∫ ∫
p(x|s = −1, a, ω)π(a, ω, φ)dadω (A.17)

=

∫ ∫
p(−x|s = 1,−a, ω)π(a, ω, φ)dadω (A.18)

=

∫ ∫
p(−x|s = 1, a, ω)π(a, ω, φ)dadω (A.19)

= p(−x|s = 1, φ). (A.20)

Note that to go from (A.17) to (A.18) one requires

p(x|s = −1, a, ω) = ωeω(x−a)I(−∞,a)(x)

= ωe−ω(−x+a)I(−a,∞)(−x)

= p(−x|s = 1,−a, ω).

The marginal distribution of the data conditional on s = 1 requires the use of



APPENDIX A. INTEGRATING PARAMETERS FROM THE MODEL 155

q(x|s = 1, a, ω) from (A.8) and π(a, ω|φ) from (A.13):

p(x|s = 1, φ) =

∫ ∫
q(x|s = 1, a, ω)π(a, ω, φ)dadω −∞ < a < ∞, ω > 0, x > a

=

∞∫

0

∞∫

−∞

n∏

i=1

[
ωe−ω(xi−a)I(a,∞)(xi)

] γβκωκe−ω(β+γ|a|)

2Γ(κ)
dadω (A.21)

=

∞∫

0

∞∫

−∞

ωne
−ω

„

n
P

i=1
xi−na

«

γβκωκe−ω(β+γ|a|)

2Γ(κ)

n∏

i=1

I(−∞,xi)(a)dadω (A.22)

=
γβκ

2Γ(κ)

∞∫

0

ωκ+n exp

{
−ω

(
β +

n∑

i=1

xi

)}
·

∞∫

−∞

exp {ω(na − γ|a|)} I(−∞,x(1))(a)dadω. (A.23)

Note that in going from (A.21) to (A.22) one has to realise that

n∏

i=1

I(a,∞)(xi) =
n∏

i=1

I(−∞,xi)(a).



APPENDIX A. INTEGRATING PARAMETERS FROM THE MODEL 156

Now, just consider the following integral from (A.23):

∞∫

−∞

exp {ω(na − γ|a|)} I(−∞,x(1))(a)da (A.24)

=





x(1)∫

0

exp {ω(n − γ)a}da +

0∫

−∞

exp {ω(n + γ)a}da x(1) > 0

x(1)∫

−∞

exp {ω(n + γ)a} da x(1) ≤ 0

=

min(0,x(1))∫

−∞

exp {ω(n + γ)a}da +

max(0,x(1))∫

0

exp {ω(n − γ)a}da

=





[
exp {ω(n + γ)a}

ω(n + γ)

]min(0,x(1))

−∞

+

[
exp {ω(n + γ)a}

ω(n − γ)

]max(0,x(1))

−∞

n 6= γ

[
exp {ω(n + γ)a}

ω(n + γ)

]min(0,x(1))

−∞

+ max(0, x(1)) n = γ

=





[
exp

{
ω(n + γ) min(0, x(1))

}

ω(n + γ)

]
+

[
exp

{
ω(n + γ) max(0, x(1))

}
− 1

ω(n − γ)

]
n 6= γ

[
exp

{
ω(n + γ) min(0, x(1))

}

ω(n + γ)

]
+ max(0, x(1)) n = γ.

(A.25)

Hence, substituting (A.25) into (A.23) produces two cases.



APPENDIX A. INTEGRATING PARAMETERS FROM THE MODEL 157

Let C = γβκ

2Γ(κ)
. Then, for the case n 6= γ,

p(x|s = 1, φ)

= C

∞∫

0

(
ωκ+n exp

{
−ω

(
β +

n∑

i=1

xi

)}
·

[
exp

{
ω(n + γ) min(0, x(1))

}

ω(n + γ)
+

exp
{
ω(n + γ) max(0, x(1))

}
− 1

ω(n − γ)

])
dω

= C




∞∫

0

ωκ+n exp

{
−ω(β +

n∑
i=1

xi)

}
exp

{
ω(n + γ) min(0, x(1))

}

ω(n + γ)
dω

+

∞∫

0

ωκ+n exp

{
−ω(β +

n∑
i=1

xi)

}(
exp

{
ω(n − γ) max(0, x(1))

}
− 1
)

ω(n − γ)
dω




= C


 1

n + γ

∞∫

0

ωκ+n−1 exp

{
−ω(β +

n∑

i=1

xi − (n + γ) min(0, x(1)))

}
dω

+
1

n − γ

∞∫

0

ωκ+n−1 exp

{
−ω(β +

n∑

i=1

xi − (n − γ) max(0, x(1)))

}
dω

− 1

n − γ

∞∫

0

ωκ+n−1 exp

{
−ω(β +

n∑

i=1

xi)

}
dω




= C




Γ(κ + n)

(n + γ)

[
β +

n∑
i=1

xi − (n + γ) min(0, x(1))

]κ+n

+
Γ(κ + n)

(n − γ)

[
β +

n∑
i=1

xi − (n − γ) max(0, x(1))

]κ+n

− Γ(κ + n)

(n − γ)

[
β +

n∑
i=1

xi

]κ+n


 . (A.26)



APPENDIX A. INTEGRATING PARAMETERS FROM THE MODEL 158

Note that
∞∫
0

xt−1e−uxdx = Γ(t)
ut iff t, u > 0, otherwise the integral diverges. Hence,

for the integral not to diverge we must have (κ + n) > 0, (β +
n∑

i=1

xi − (n +

γ) min(0, x(1)) > 0), and (β +
n∑

i=1

x − (n − γ) max(0, x(1)) > 0). All of these

inequalities can easily be shown to hold.

Next, for the case when n = γ, we have

p(x|s = 1, φ) = C


 1

n + γ

∞∫

0

ωκ+n−1 exp

{
−ω(β +

n∑

i=1

xi − (n + γ) min(0, x(1)))

}
dω

+max(0, x(1))

∞∫

0

ωκ+n exp

{
−ω(β +

n∑

i=1

xi)

}
dω


 (A.27)

= C




1

n + γ

Γ(κ + n)
[
β +

n∑
i=1

xi − (n + γ) min(0, x(1))

]κ+n

+max(0, x(1))
Γ(κ + n + 1)

[
β +

n∑
i=1

xi

]κ+n+1


 , (A.28)

where going from (A.27) to (A.28) follows directly from the results evaluated in

the previous case where n 6= γ.



APPENDIX A. INTEGRATING PARAMETERS FROM THE MODEL 159

Thus, bringing (A.26) and (A.28) together results in

p(x|s = 1, φ) =





γβκΓ(κ+n)
2Γ(κ)

(
1

(n+γ)(β+
n

P

i=1
xi−(n+γ) min(0,x(1)))κ+n

+ 1

(n−γ)(β+
n

P

i=1
xi−(n+γ) max(0,x(1)))κ+n

− 1

(n−γ)(β+
n

P

i=1
xi)κ+n

)

n 6= γ

γβκ

2Γ(κ)

(
Γ(κ+n)

(n+γ)(β+
n

P

i=1
xi−(n+γ) min(0,x(1)))κ+n

+
max(0,x(1))Γ(κ+n+1)

(β+
n

P

i=1
xi)κ+n+1

)

n = γ.

(A.29)

Therefore, using (A.29), p(x|s = −1, φ) is obtained from (A.20):

p(x|s = −1, φ) =





γβκΓ(κ+n)
2Γ(κ)

(
1

(n+γ)(β−
n

P

i=1
xi−(n+γ) min(0,−x(n)))κ+n

+ 1

(n−γ)(β−
n

P

i=1
xi−(n−γ) max(0,−x(n)))κ+n

− 1

(n−γ)(β−
n

P

i=1
xi)κ+n

)

n 6= γ

γβκ

2Γ(κ)

(
Γ(κ+n)

(n+γ)(β−
n

P

i=1
xi−(n+γ) min(0,−x(n)))κ+n

+
max(0,−x(n))Γ(κ+n+1)

(β−
n

P

i=1
xi)κ+n+1

)

n = γ.

(A.30)

Finally, the marginal distribution of the data can be calculated by inserting

(A.29) and (A.30) into (A.15).



Appendix B

Calculation of effective sample

size

This appendix contains the details of how the effective sample size, Neff , used

throughout the thesis is calculated.

From the allocation sampler comes a sample from the posterior distribution

of k, but this is not an independent sample. The states of the Markov chain

produced by the sampler are correlated because the next state of the chain is

calculated using the current state of the chain. The effective sample size Neff

is the number of independent samples required to produce an estimate with the

same precision as that given by N dependent samples. Then obviously Neff < N .

A way of estimating Neff is

Neff =
N

1 + 2
∞∑

j=1

ρj

. (B.1)

160



APPENDIX B. CALCULATION OF EFFECTIVE SAMPLE SIZE 161

The problem now is how to estimate the quantity
∞∑

j=1

ρj, which is the sum of the

autocorrelations. One can think of the Markov chain as a stationary time series

X = X1, . . . , XN with an autocorrelation function (acf) ρ(j). An estimate of the

sum of the acfs can be found by modelling the time series using an autoregressive

model of order p that has coefficients a(j):

Xt =

p∑

j=1

a(j)Xt−j + εt, (B.2)

where εt is a Gaussian white noise process with zero mean and variance σ2. The

order of the AR model B.2 can be estimated by a number of different techniques,

but the Akaike Information Criterion (AIC) method has been chosen here. Then,

using results from the time series literature, see pages 18-56 of Granger and

Newbold (1986) for details, one can state that

∞∑

i=−∞

ρ(i) =

1 −
p∑

j=1

a(j)ρ(j)

[
1 −

p∑
j=1

a(j)

]2 . (B.3)

Thus, replacing B.3 as the denominator of B.1 one can calculate the effective

sample size produced by the allocation sampler with respect to the number of

components. For more details about effective sample sizes and their calculation

see Geyer (1992).



Appendix C

Allocation sampler Fortran code

This appendix contains the full Fortran code required to produce the output

files from which the posterior densities and estimates can be calculated. Where

possible subroutines from the programs of Nobile (1994) were adapted. Only the

program for the case where the components have a univariate normal density is

presented. However, the majority of the subroutines given are also utilised when

a different distribution is used for the components which is an advantage of this

approach.

162



APPENDIX C. ALLOCATION SAMPLER FORTRAN CODE 163

PROGRAM AllocationSampler

input files : file.data, file.par, file.sim, file.init (optional)

output files: file.log, file.k, file.g, file.relg (optional)

implicit none

integer KMAX,NMAX,HYPMAX,XSMAX,SAMPMAX

parameter (NMAX=2000,KMAX=50,HYPMAX=4,XSMAX=5,SAMPMAX=10000)

integer n,nsamp,burnin,thin,indinit,indlab,indsym,indrand,k,idg

integer km,dhyp,dxsm

integer g(NMAX),nj(KMAX),seed(4)

integer pos(KMAX),invpos(KMAX),firstav

integer i,oulog,ouk,oug,ougr,ouhyp,nfilnam,nsout

integer indgibbs,indmetr1,indmetr2,indmetr3,indejtabs,indmetlab

integer mtrprop(6),mtraccp(6),checksumm

double precision fk(KMAX),lfk(KMAX)

double precision x(NMAX),alpha(KMAX),alpha0(KMAX)

double precision phi(HYPMAX,KMAX),xsumm(XSMAX,KMAX),const(KMAX)

double precision fggivkl,fxgivkgl,fglog

character fam

character*24 filename,filedat,filepar,filesim,fileinit

character*24 filelog,filek,fileg,filehyp

call filnams(filename,filedat,filepar,filesim,fileinit,filelog,

A filek,fileg,filehyp,nfilnam)

call readdata(NMAX,n,x,filedat)

call readsim(SAMPMAX,nsamp,seed,burnin,thin,indinit,indlab,

A indgibbs,indmetr1,indmetr2,indmetr3,indejtabs,

B indmetlab,checksumm,filesim)

call readpar(KMAX,HYPMAX,km,dhyp,dxsm,indrand,indsym,fk,lfk,

A alpha,alpha0,fam,phi,filepar)

call setseed(seed)

call getinit(KMAX,NMAX,indrand,indinit,k,km,n,g,indsym,fileinit,

A nfilnam)

call setpos(KMAX,k,km,pos,invpos,firstav)

oulog = 1

ouk = 4

oug = 5

ougr = 8

ouhyp = 9

open(oulog,file=filelog,access=’sequential’,status=’new’)

open(ouk,file=filek,access=’sequential’,status=’new’)

open(oug,file=fileg,access=’sequential’,status=’new’)

if(indrand.eq.1) then

open(ouhyp,file=filehyp,access=’sequential’,status=’new’)

endif

call writelogA(KMAX,NMAX,HYPMAX,k,km,n,g,dhyp,nsamp,seed,burnin,

A thin,indinit,indlab,indrand,indsym,indgibbs,

B indmetr1,indmetr2,indmetr3,indejtabs,indmetlab,

C checksumm,fk,alpha,fam,phi,oulog)

call getconst(KMAX,HYPMAX,fam,km,phi,const)

call fkgx(KMAX,NMAX,HYPMAX,XSMAX,km,k,fam,lfk,n,g,pos,invpos,x,

A alpha,alpha0,phi,nj,idg,xsumm,const,fggivkl,

B fxgivkgl,fglog)

nsout=0

do i=1,6

mtrprop(i)=0

mtraccp(i)=0

enddo

if(indsym.eq.1.and.indlab.eq.1.and.(nsamp/thin).gt.SAMPMAX) then

write(6,*) "Increase SAMPMAX in main program to", nsamp/thin

stop

endif

do i=-burnin,nsamp

if(indrand.eq.1) then

call metrohyp(KMAX,NMAX,HYPMAX,XSMAX,i,burnin,km,n,x,k,

A fam,invpos,nj,xsumm,const,phi,fxgivkgl,fglog)

endif

call allocsamp(KMAX,NMAX,HYPMAX,XSMAX,km,k,fam,lfk,n,dxsm,g,

A pos,invpos,firstav,x,alpha,alpha0,phi,nj,idg,

B xsumm,const,fggivkl,fxgivkgl,fglog,indsym,

C indgibbs,indmetr1,indmetr2,indmetr3,

D indejtabs,indmetlab,mtrprop,mtraccp)

if(checksumm.eq.1) then

call summrychk(KMAX,NMAX,XSMAX,km,n,dxsm,k,fam,g,pos,

A invpos,x,nj,idg,xsumm)

endif

if(i.gt.0.and.mod(i,thin).eq.0) then

if(indrand.eq.1) then

call writehyp(KMAX,HYPMAX,fam,phi,ouhyp)

endif

call writekgout(KMAX,NMAX,k,n,g,pos,nj,idg,indsym,ouk,oug)

nsout=nsout+1

endif

enddo

call writelogB(KMAX,NMAX,k,n,g,pos,nj,idg,indsym,nsout,oulog,

A mtrprop,mtraccp)

close(oulog,status=’keep’)

close(ouk,status=’keep’)

close(oug,status=’keep’)

if(indrand.eq.1) then

close(ouhyp,status=’keep’)

endif

if(indsym.eq.1.and.indlab.eq.1) then

call assign(NMAX,KMAX,SAMPMAX,km,n,nsout,ouk,oug,ougr,

A filek,fileg,nfilnam)

endif

stop

end

SUBROUTINE filnams(file1,filedat,filepar,filesim,fileinit,filelog,

A filek,fileg,filehyp,nfilnam)

implicit none

character*24 file1,filedat,filepar,filesim,fileinit,filelog

character*24 filek,fileg,filehyp

integer nfilnam

character*61 numb

logical filepres

integer i

data numb/"123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrst

A uvwxyz"/

call getarg(1,file1)

do nfilnam = 24,1,-1

if(file1(nfilnam:nfilnam).ne." ") go to 10

enddo

10 continue

filedat = file1(1:nfilnam)//".data"

filepar = file1(1:nfilnam)//".par"

filesim = file1(1:nfilnam)//".sim"

fileinit = file1(1:nfilnam)//".init"

inquire(file=filedat,exist=filepres)

if(.not.filepres) then

write(6,*) "Error: ", filedat(1:nfilnam+5), " does not exist"

stop

endif

inquire(file=filepar,exist=filepres)

if(.not.filepres) then

write(6,*) "Error: ", filepar(1:nfilnam+4), " does not exist"

stop

endif

inquire(file=filesim,exist=filepres)

if(.not.filepres) then

write(6,*) "Error: ", filesim(1:nfilnam+4), " does not exist"

stop



APPENDIX C. ALLOCATION SAMPLER FORTRAN CODE 164

endif

do i=1,61

filelog = file1(1:nfilnam)//"."//numb(i:i)//".log"

inquire(file=filelog,exist=filepres)

if(.not.filepres) then

filek = file1(1:nfilnam)//"."//numb(i:i)//".k"

fileg = file1(1:nfilnam)//"."//numb(i:i)//".g"

filehyp = file1(1:nfilnam)//"."//numb(i:i)//".hyp"

go to 20

endif

enddo

write(6,*) "Error: too many runs made for ", file1(1:nfilnam)

write(6,*) " Remove some of the .log, .k, .g, .hyp files"

stop

20 continue

return

end

SUBROUTINE readdata(NMAX,n,x,filedat)

implicit none

integer NMAX,n

double precision x(NMAX)

character*24 filedat

integer i

open(1,file=filedat,access=’sequential’,status=’old’)

read(1,*) n

read(1,*) (x(i),i=1,n)

close(1,status=’keep’)

return

end

SUBROUTINE findim(fam,dhyp,dxsm)

implicit none

character fam

integer dhyp,dxsm

if(fam.eq."N") then

dhyp = 4

dxsm = 2

return

endif

write(6,*) "Wrong family in Sub. findim"

stop

end

SUBROUTINE readsim(SAMPMAX,nsamp,seed,burnin,thin,indinit,

A indlab,indgibbs,indmetr1,indmetr2,indmetr3,

B indejtabs,indmetlab,checksumm,filesim)

implicit none

integer SAMPMAX

integer nsamp,burnin,thin,indinit,indlab,seed(4)

integer indgibbs,indmetr1,indmetr2,indmetr3,indejtabs,indmetlab

integer checksumm

character*24 filesim

integer h,nsout

open(1,file=filesim,access=’sequential’,status=’old’)

read(1,*) nsamp

read(1,*) (seed(h),h=1,4)

read(1,*) burnin

read(1,*) thin

read(1,*) indinit

read(1,*) indlab

read(1,*) indgibbs

read(1,*) indmetr1

read(1,*) indmetr2

read(1,*) indmetr3

read(1,*) indejtabs

read(1,*) indmetlab

read(1,*) checksumm

close(1,status=’keep’)

nsout = nsamp/thin

if(indlab.eq.1.and.SAMPMAX.lt.nsout) then

write(6,*) "SAMPMAX should be at least ", nsout

stop

endif

if(indgibbs.ne.1.and.indmetr1.ne.1.and.indmetr2.ne.1.and.

A indmetr3.ne.1.and.indejtabs.ne.1) then

write(6,*) "At least one of "

write(6,*) " indgibbs,indmetr1,indmetr2,indmetr3,indejtabs"

write(6,*) " should be equal to 1"

stop

endif

return

end

SUBROUTINE readpar(KMAX,HYPMAX,km,dhyp,dxsm,indrand,indsym,fk,

A lfk,alpha,alpha0,fam,phi,filepar)

implicit none

integer KMAX,HYPMAX

integer km,dhyp,dxsm,indrand,indsym

double precision fk(KMAX),lfk(KMAX),alpha(KMAX),alpha0(KMAX)

double precision phi(HYPMAX,KMAX)

character fam

character*24 filepar

integer i,j

double precision sumfk

open(1,file=filepar,access=’sequential’,status=’old’)

read(1,*) indrand

read(1,*) indsym

read(1,*) km

C Reads prior on k,then it normalizes to make them sum to 1

read(1,*) (fk(j),j=1,km)

sumfk = 0.0d-00

do j=1,km

sumfk = sumfk + fk(j)

enddo

do j=1,km

lfk(j) = dlog(fk(j) / sumfk)

enddo

read(1,1) fam

1 format(a1)

call findim(fam,dhyp,dxsm)

if (indsym.eq.0) then

read(1,*) (alpha(j),j=1,km)

alpha0(1)=alpha(1)

do j=2,km

alpha0(j)=alpha0(j-1)+alpha(j)

enddo

do j=1,km

do i=1,dhyp

read(1,*) phi(i,j)

enddo

enddo

else

read(1,*) alpha(1)

do i=1,dhyp

read(1,*) phi(i,1)

enddo

do j=1,km

alpha(j) = alpha(1)

do i=1,dhyp

phi(i,j) = phi(i,1)

enddo

enddo

alpha0(1)=alpha(1)

do j=2,km

alpha0(j)=alpha0(j-1)+alpha(j)

enddo

endif

close(1,status=’keep’)

return



APPENDIX C. ALLOCATION SAMPLER FORTRAN CODE 165

end

SUBROUTINE writelogA(KMAX,NMAX,HYPMAX,k,km,n,g,dhyp,nsamp,seed,

A burnin,thin,indinit,indlab,indrand,indsym,

B indgibbs,indmetr1,indmetr2,indmetr3,

C indejtabs,indmetlab,checksumm,fk,alpha,fam,

D phi,oulog)

C This routine produces a files .log with

C exactly the same format as the .sim and .par files

implicit none

integer KMAX,NMAX,HYPMAX

integer k,km,n,dhyp,nsamp,burnin,thin,indinit,indlab

integer indgibbs,indmetr1,indmetr2,indmetr3,indejtabs

integer indmetlab,indrand,indsym,seed(4),oulog,checksumm

integer g(NMAX)

double precision fk(KMAX),alpha(KMAX)

double precision phi(HYPMAX,KMAX)

character fam

integer i,j

write(oulog,*) nsamp, " nsamp"

write(oulog,*) (seed(i),i=1,4), " initseed"

write(oulog,*) burnin, " burnin"

write(oulog,*) thin, " thin"

write(oulog,*) indinit, " indinit"

write(oulog,*) indlab, " indlab"

write(oulog,*) indrand, " indrand"

write(oulog,*) indsym, " indsym"

write(oulog,*) indgibbs, " indgibbs"

write(oulog,*) indmetr1, " indmetr1"

write(oulog,*) indmetr2, " indmetr2"

write(oulog,*) indmetr3, " indmetr3"

write(oulog,*) indejtabs, " indejtabs"

write(oulog,*) indmetlab, " indmetlab"

write(oulog,*) checksumm, " checksumm"

write(oulog,*) km, " km"

write(oulog,*) (fk(j),j=1,km), " fk"

write(oulog,*) fam, " fam"

write(oulog,*) dhyp, " dhyp"

if (indsym.eq.0) then

write(oulog,*) (alpha(j),j=1,km), " alpha"

do j=1,km

do i=1,dhyp

write(oulog,*) phi(i,j), " phi"

enddo

enddo

else

write(oulog,*) alpha(1), " alpha"

do i=1,dhyp

write(oulog,*) phi(i,1), " phi"

enddo

endif

write(oulog,*) k, " k"

write(oulog,*) n, " n"

write(oulog,*) (g(i),i=1,n), " g"

return

end

SUBROUTINE writelogB(KMAX,NMAX,k,n,g,pos,nj,idg,indsym,nsout,

A oulog,mtrprop,mtraccp)

implicit none

integer KMAX,NMAX

integer k,n,g(NMAX),pos(KMAX),nj(KMAX),idg,indsym

integer nsout,oulog,mtrprop(6),mtraccp(6)

integer i,seed(4),outg(NMAX)

character gchar(NMAX)

write(oulog,*) nsout, " nsout"

write(oulog,*) mtrprop(1),mtraccp(1), " prpaccgibbs"

write(oulog,*) mtrprop(2),mtraccp(2), " prpaccmetr1"

write(oulog,*) mtrprop(3),mtraccp(3), " prpaccmetr2"

write(oulog,*) mtrprop(4),mtraccp(4), " prpaccmetr3"

write(oulog,*) mtrprop(5),mtraccp(5), " prpacceject"

write(oulog,*) mtrprop(6),mtraccp(6), " prpaccabsrb"

call getseed(seed)

write(oulog,*) (seed(i), i=1,4), " lastseed"

write(oulog,*) k, " lastk"

if(indsym.eq.1) then

call remgaps(KMAX,NMAX,k,n,g,pos,nj,idg,outg)

write(oulog,*) (outg(i),i=1,n), " lastg"

else

write(oulog,*) (g(i),i=1,n), " lastg"

endif

return

end

SUBROUTINE getinit(KMAX,NMAX,indrand,indinit,k,km,n,g,indsym,

A fileinit,nfilnam)

implicit none

integer KMAX,NMAX

integer indrand,indinit,k,km,n

integer g(NMAX),indsym,nfilnam

character*24 fileinit

integer i

double precision uni01kis

C If indrand = 1, forces initial k = km, g randomly generated

C otherwise, uses indinit to control starting values

C indinit = 1 sets k=1

C indinit = 2 random k, random g

C indinit = 3 reads k and g from .init file

if(indrand.eq.1) then

k = km

call randinit(KMAX,NMAX,k,km,n,g,indsym)

else

if(indinit.eq.1) then

k=1

do i=1,n

g(i) =1

enddo

endif

if(indinit.eq.2) then

k = int(km*UNI01KIS())+1

call randinit(KMAX,NMAX,k,km,n,g,indsym)

endif

if(indinit.eq.3) then

call readinit(KMAX,NMAX,k,km,n,g,indsym,fileinit,nfilnam)

endif

endif

return

end

SUBROUTINE randinit(KMAX,NMAX,k,km,n,g,indsym)

implicit none

integer KMAX,NMAX

integer k,km,n,indsym

integer g(NMAX)

C Randomly generates a g vector

call gunif(NMAX,k,n,g)

call relabgnat(KMAX,NMAX,k,n,g)

return

end

SUBROUTINE gunif(NMAX,k,n,g)

implicit none

integer NMAX,k,n

integer g(NMAX)

double precision uni01kis

C Generates a n-vector of membership g with uniform distribution



APPENDIX C. ALLOCATION SAMPLER FORTRAN CODE 166

C on the space of n-tuples consisting of elements of the set

C I={1,2,...,k}.

integer ind,i

do 10 i=1,n

ind=int(k*UNI01KIS())+1

g(i)=ind

10 continue

return

end

SUBROUTINE readinit(KMAX,NMAX,k,km,n,g,indsym,fileinit,nfilnam)

implicit none

integer KMAX,NMAX

integer k,km,n

integer g(NMAX),indsym,nfilnam

character*24 fileinit

integer i

logical filepres

inquire(file=fileinit,exist=filepres)

if(.not.filepres) then

write(6,*) "Error: ",fileinit(1:nfilnam+5)," does not exist"

stop

endif

open(1,file=fileinit,access=’sequential’,status=’old’)

read(1,*) k

read(1,*) (g(i),i=1,n)

close(1,status=’keep’)

if (k.gt.km) then

write(6,*) "Error: k is larger than km"

stop

endif

do i=1,n

if (g(i).gt.k) then

write(6,*) "Error: g vector has element > k"

stop

endif

enddo

if (indsym.eq.1) then

call relabgnat(KMAX,NMAX,k,n,g)

endif

return

end

SUBROUTINE setpos(KMAX,k,km,pos,invpos,firstav)

implicit none

integer KMAX

integer k,km,firstav

integer pos(KMAX),invpos(KMAX)

integer j

do j=1,k

pos(j) = j

invpos(j) = j

enddo

firstav = k+1

if(k.lt.km) then

do j=k+1,km

pos(j)=0

invpos(j)=0

enddo

endif

return

end

SUBROUTINE getconst(KMAX,HYPMAX,fam,km,phi,const)

implicit none

integer KMAX,HYPMAX

integer km

double precision phi(HYPMAX,KMAX)

double precision const(KMAX)

character fam

if(fam.eq."N") then

call getconstN(KMAX,HYPMAX,km,phi,const)

return

endif

write(6,*) "Wrong family in Sub. getconst"

stop

end

SUBROUTINE allocsamp(KMAX,NMAX,HYPMAX,XSMAX,km,k,fam,lfk,n,dxsm,g,

A pos,invpos,firstav,x,alpha,alpha0,phi,nj,idg,

B xsumm,const,fggivkl,fxgivkgl,fglog,indsym,

C indgibbs,indmetr1,indmetr2,indmetr3,

D indejtabs,indmetlab,mtrprop,mtraccp)

implicit none

integer KMAX,NMAX,HYPMAX,XSMAX

integer km,k,n,dxsm,firstav,idg,indsym

integer g(NMAX),nj(KMAX),pos(KMAX),invpos(KMAX)

integer indgibbs,indmetr1,indmetr2,indmetr3,indejtabs,indmetlab

integer mtrprop(6),mtraccp(6)

double precision x(NMAX),alpha(KMAX),alpha0(KMAX),lfk(KMAX)

double precision fggivkl,fxgivkgl,fglog

double precision xsumm(XSMAX,KMAX),const(KMAX),phi(HYPMAX,KMAX)

character fam

integer j,done,indgm

double precision uni01kis,runif,ejectp(KMAX)

ejectp(1) = 1.0d-00

ejectp(km) = 0.0d-00

do j=2,km-1

ejectp(j) = 0.5d-00

enddo

indgm = indgibbs + indmetr1 + indmetr2 + indmetr3

done = 0

10 continue

runif = UNI01KIS()

if(runif.lt.0.5d-00.and.indgm.gt.0) then

20 continue

runif = UNI01KIS()

if(runif.lt.0.25d-00) then

if(indgibbs.eq.1) then

call gibbs(KMAX,NMAX,HYPMAX,XSMAX,n,k,fam,lfk,dxsm,g,pos,

A invpos,x,nj,idg,fggivkl,fxgivkgl,fglog,xsumm,

B const,alpha,alpha0,phi,mtrprop,mtraccp)

done = 1

endif

else if(runif.lt.0.5d-00) then

if(indmetr1.eq.1) then

call metrstep1(KMAX,NMAX,HYPMAX,XSMAX,n,k,fam,lfk,dxsm,g,

A pos,invpos,x,nj,idg,fggivkl,fxgivkgl,

B fglog,xsumm,const,alpha,alpha0,phi,

C mtrprop,mtraccp)

done = 1

endif

else if(runif.lt.0.75d-00) then

if(indmetr2.eq.1) then

call metrstep2(KMAX,NMAX,HYPMAX,XSMAX,n,k,fam,lfk,dxsm,g,

A pos,invpos,x,nj,idg,fggivkl,fxgivkgl,

B fglog,xsumm,const,alpha,alpha0,phi,

C mtrprop,mtraccp)

done = 1

endif

else

if(indmetr3.eq.1) then

call metrstep3(KMAX,NMAX,HYPMAX,XSMAX,n,k,fam,lfk,dxsm,g,

A pos,invpos,x,nj,idg,fggivkl,fxgivkgl,

B fglog,xsumm,const,alpha,alpha0,phi,

C mtrprop,mtraccp)

done = 1

endif

endif



APPENDIX C. ALLOCATION SAMPLER FORTRAN CODE 167

if(done.eq.0) go to 20

else

if(indejtabs.eq.1) then

call ejtabs(KMAX,NMAX,HYPMAX,XSMAX,km,n,k,fam,lfk,dxsm,g,

A pos,invpos,firstav,x,nj,idg,fggivkl,fxgivkgl,

B fglog,xsumm,const,alpha,alpha0,phi,indsym,

C ejectp,mtrprop,mtraccp)

done = 1

endif

endif

if(done.eq.0) go to 10

if(indmetlab.eq.1) then

call metrolab(KMAX,NMAX,HYPMAX,XSMAX,n,k,fam,lfk,g,pos,

A invpos,nj,fggivkl,fxgivkgl,fglog,xsumm,

B const,alpha,phi,indsym)

endif

return

end

SUBROUTINE gibbs(KMAX,NMAX,HYPMAX,XSMAX,n,k,fam,lfk,dxsm,g,pos,

A invpos,x,nj,idg,fggivkl,fxgivkgl,fglog,xsumm,

B const,alpha,alpha0,phi,mtrprop,mtraccp)

implicit none

integer KMAX,NMAX,HYPMAX,XSMAX

integer n,k,dxsm

integer g(NMAX),idg,nj(KMAX),pos(KMAX),invpos(KMAX)

integer mtrprop(6),mtraccp(6)

double precision fglog,fggivkl,fxgivkgl

double precision x(NMAX),xsumm(XSMAX,KMAX),const(KMAX)

double precision alpha(KMAX)alpha0(KMAX)

double precision phi(HYPMAX,KMAX),lfk(KMAX)

character fam

C Selects a new value NEWGI, in place of the old OLDGI,

C for the component G_{I}.

integer j,idgn,nj1,nj2,p,h

integer i,oldgi,newgi

double precision lfxggivk(KMAX),prob(KMAX)

double precision xsumm1(XSMAX),xsumm2(XSMAX)

double precision fggivkln,fxgivkgn,fgnlog

if(k.gt.1) then

mtrprop(1) = mtrprop(1) + 1

mtraccp(1) = mtraccp(1) + 1

do i=1,n

C Computing f{X,G|K} (g_[1:i-1], j, g_[i+1:n])

oldgi=g(i)

do p=1,k

j=invpos(p)

if(j.eq.oldgi) then

lfxggivk(p)=fglog

else

call fkgx1(KMAX,NMAX,HYPMAX,XSMAX,n,k,fam,lfk,i,

A oldgi,j,pos,nj,x,g,xsumm,const,idg,idgn,

B nj1,nj2,xsumm1,xsumm2,alpha,phi,fggivkl,

C fggivkln,fxgivkgl,fxgivkgn,fgnlog)

lfxggivk(p)=fgnlog

endif

enddo

C Computing the probabilities of modifying g(i) to j

call comprob(KMAX,k,lfxggivk,prob)

C Selecting the component’s new value

call selecomp(KMAX,k,oldgi,newgi,pos,invpos,prob)

C Update g

if(oldgi.ne.newgi) then

call fkgx1(KMAX,NMAX,HYPMAX,XSMAX,n,k,fam,lfk,i,

A oldgi,newgi,pos,nj,x,g,xsumm,const,idg,idgn,

B nj1,nj2,xsumm1,xsumm2,alpha,phi,fggivkl,

C fggivkln,fxgivkgl,fxgivkgn,fgnlog)

call updateg(KMAX,NMAX,XSMAX,dxsm,i,oldgi,newgi,pos,

A g,nj,idg,idgn,nj1,nj2,xsumm,xsumm1,

B xsumm2,fggivkl,fxgivkgl,fglog,fggivkln,

C fxgivkgn,fgnlog)

endif

enddo

endif

return

end

SUBROUTINE comprob(KMAX,k,lfxggivk,prob)

implicit none

integer KMAX,k

double precision lfxggivk(KMAX),prob(KMAX)

integer p

double precision lmax

call maxvec(KMAX,k,lfxggivk,lmax)

do p=1,k

prob(p)=dexp(lfxggivk(p)-lmax)

enddo

C Cumulate and normalize

do p=2,k

prob(p)=prob(p-1)+prob(p)

enddo

do p=1,k

prob(p)=prob(p)/prob(k)

enddo

return

end

SUBROUTINE selecomp(KMAX,k,oldgi,newgi,pos,invpos,prob)

implicit none

integer KMAX,k,oldgi,newgi,pos(KMAX),invpos(KMAX)

double precision prob(KMAX)

integer p,pold,pnew

double precision prob1,runif

double precision uni01kis

pold=pos(oldgi)

if(pold.eq.1) then

prob1=0.0d-00

else

prob1=prob(pold-1)

endif

runif=UNI01KIS()

if(runif.gt.prob1.and.runif.le.prob(pold)) then

pnew=pold

else

if(pold.gt.1) then

pnew=1

do p=1,pold-1

if(runif.le.prob(p)) go to 10

pnew=pnew+1

enddo

endif

if(pold.lt.k) then

pnew=pold+1

do p=pold+1,k

if(runif.le.prob(p)) go to 10

pnew=pnew+1

enddo

endif

10 continue

endif

newgi=invpos(pnew)

return

end



APPENDIX C. ALLOCATION SAMPLER FORTRAN CODE 168

SUBROUTINE maxvec(KMAX,k,vec,maxv)

implicit none

integer KMAX,k

double precision vec(KMAX),maxv

integer i

maxv = vec(1)

do i=2,k

if (vec(i).gt.maxv) maxv = vec(i)

enddo

return

end

SUBROUTINE metrstep1(KMAX,NMAX,HYPMAX,XSMAX,n,k,fam,lfk,dxsm,

A g,pos,invpos,x,nj,idg,fggivkl,fxgivkgl,

B fglog,xsumm,const,alpha,alpha0,phi,mtrprop,

C mtraccp)

implicit none

integer NMAX,KMAX,HYPMAX,XSMAX

integer n,k,dxsm

integer g(NMAX),nj(KMAX),idg,pos(KMAX),invpos(KMAX)

integer mtrprop(6),mtraccp(6)

double precision x(NMAX),alpha(KMAX),alpha0(KMAX)

double precision fggivkl,fxgivkgl,fglog,lfk(KMAX)

double precision xsumm(XSMAX,KMAX),const(KMAX),phi(HYPMAX,KMAX)

character fam

integer p1,p2,j1,j2,nj1,nj2,i,j,g1(NMAX)

double precision uni01kis,gamdev,prob,lrn

double precision xsumm1(XSMAX),xsumm2(XSMAX)

double precision fggivkl1,fxgivkgl1,fg1log

if(k.eq.1) return

p1 = int(k*UNI01KIS()) + 1

10 continue

p2 = int(k*UNI01KIS()) + 1

if(p2.eq.p1) go to 10

if(nj(p1).eq.0.and.nj(p2).eq.0) return

mtrprop(2) = mtrprop(2) + 1

j1 = invpos(p1)

j2 = invpos(p2)

call zeromet(XSMAX,dxsm,nj1,nj2,xsumm1,xsumm2)

prob = 1.0d-00 / (1.0d-00+gamdev(alpha(j2))/gamdev(alpha(j1)))

do i=1,n

if(g(i).eq.j1.or.g(i).eq.j2) then

if(UNI01KIS().lt.prob) then

j=j1

else

j=j2

endif

g1(i) = j

call summetr(NMAX,XSMAX,fam,i,j,j1,nj1,nj2,x,xsumm1,

A xsumm2)

endif

enddo

call fxgivkg1(KMAX,HYPMAX,XSMAX,fam,nj,xsumm,const,phi,

A j1,j2,p1,p2,nj1,nj2,xsumm1,xsumm2,

B fxgivkgl,fxgivkgl1)

lrn=dlog(UNI01KIS())

if((fxgivkgl1 - fxgivkgl).gt.lrn) then

mtraccp(2) = mtraccp(2) + 1

call fggivkmet(KMAX,k,alpha,alpha0,j1,j2,p1,p2,nj1,nj2,n,n,

A nj,fggivkl,fggivkl1)

fg1log = lfk(k) + fggivkl1 + fxgivkgl1

call updatmet(NMAX,KMAX,XSMAX,dxsm,n,j1,j2,p1,p2,g,g1,nj,

A nj1,nj2,idg,xsumm,xsumm1,xsumm2,fggivkl,

B fxgivkgl,fglog,fggivkl1,fxgivkgl1,fg1log)

endif

return

end

SUBROUTINE zeromet(XSMAX,dxsm,nj1,nj2,xsumm1,xsumm2)

implicit none

integer XSMAX,dxsm,nj1,nj2

double precision xsumm1(XSMAX),xsumm2(XSMAX)

integer m

nj1 = 0

nj2 = 0

do m=1,dxsm

xsumm1(m) = 0.0d-00

xsumm2(m) = 0.0d-00

enddo

return

end

SUBROUTINE summetr(NMAX,XSMAX,fam,i,j,j1,nj1,nj2,x,xsumm1,xsumm2)

implicit none

integer NMAX,XSMAX,i,j,j1,nj1,nj2

double precision x(NMAX),xsumm1(XSMAX),xsumm2(XSMAX)

character fam

if(fam.eq."N") then

call summetrN(NMAX,XSMAX,i,j,j1,nj1,nj2,x,xsumm1,xsumm2)

return

endif

write(6,*) "Wrong family in Sub. summetr"

stop

end

SUBROUTINE fggivkmet(KMAX,k,alpha,alpha0,j1,j2,p1,p2,nj1,nj2,n,n1,

A nj,fggivkl,fggivkl1)

implicit none

integer KMAX,k,j1,j2,p1,p2,nj1,nj2,n,n1,nj(KMAX)

double precision alpha(KMAX),alpha0(KMAX),fggivkl,fggivkl1

double precision alph0n,alphj1,alphj2

double precision gam1,gam2,gam3,gam4,gam5,gam6

alph0n = alpha0(k) + n

call dlgama(alph0n,gam1)

alph0n = alpha0(k) + n1

call dlgama(alph0n,gam2)

alphj1 = alpha(j1) + dfloat(nj(p1))

alphj2 = alpha(j2) + dfloat(nj(p2))

call dlgama(alphj1,gam3)

call dlgama(alphj2,gam4)

alphj1 = alpha(j1) + dfloat(nj1)

alphj2 = alpha(j2) + dfloat(nj2)

call dlgama(alphj1,gam5)

call dlgama(alphj2,gam6)

fggivkl1 = fggivkl + gam1 - gam2 - gam3 - gam4 + gam5 + gam6

return

end

SUBROUTINE updatmet(NMAX,KMAX,XSMAX,dxsm,n,j1,j2,p1,p2,g,g1,nj,

A nj1,nj2,idg,xsumm,xsumm1,xsumm2,fggivkl,

B fxgivkgl,fglog,fggivkl1,fxgivkgl1,fg1log)

implicit none

integer NMAX,KMAX,XSMAX

integer dxsm,n,j1,j2,p1,p2,nj1,nj2,idg

integer g(NMAX),g1(NMAX),nj(KMAX)

double precision xsumm(XSMAX,KMAX),xsumm1(XSMAX),xsumm2(XSMAX)

double precision fggivkl,fxgivkgl,fglog,fggivkl1,fxgivkgl1,fg1log

integer i,m

do i=1,n

if(g(i).eq.j1.or.g(i).eq.j2) g(i) = g1(i)

enddo



APPENDIX C. ALLOCATION SAMPLER FORTRAN CODE 169

if(nj(p1).gt.0.and.nj1.eq.0) idg=idg-1

if(nj(p1).eq.0.and.nj1.gt.0) idg=idg+1

if(nj(p2).gt.0.and.nj2.eq.0) idg=idg-1

if(nj(p2).eq.0.and.nj2.gt.0) idg=idg+1

nj(p1) = nj1

nj(p2) = nj2

do m=1,dxsm

xsumm(m,p1) = xsumm1(m)

xsumm(m,p2) = xsumm2(m)

enddo

fggivkl = fggivkl1

fxgivkgl = fxgivkgl1

fglog = fg1log

return

end

SUBROUTINE fkgx(KMAX,NMAX,HYPMAX,XSMAX,km,k,fam,lfk,n,g,pos,

A invpos,x,alpha,alpha0,phi,nj,idg,xsumm,const,

B fggivkl,fxgivkgl,fglog)

implicit none

integer NMAX,KMAX,HYPMAX,XSMAX

integer km,k,n

integer g(NMAX),nj(KMAX),pos(KMAX),invpos(KMAX),idg

double precision x(NMAX),alpha(KMAX),alpha0(KMAX)

double precision xsumm(XSMAX,KMAX),lfk(KMAX)

double precision phi(HYPMAX,KMAX),const(KMAX)

double precision fggivkl,fxgivkgl,fglog

character fam

integer i

C Computes log f_{K,G,X} = log [f_{K} f_{G|K} f_{X|K,G} ]

call selecxg(KMAX,NMAX,XSMAX,km,n,k,fam,g,pos,x,nj,xsumm,idg)

call fggivk(KMAX,n,k,invpos,nj,alpha,alpha0,fggivkl)

call fxgivkg(KMAX,HYPMAX,XSMAX,n,k,fam,invpos,nj,xsumm,const,

A phi,fxgivkgl)

fglog=lfk(k)+fggivkl+fxgivkgl

return

end

SUBROUTINE selecxg(KMAX,NMAX,XSMAX,km,n,k,fam,g,pos,x,nj,

A xsumm,idg)

implicit none

integer KMAX,NMAX,XSMAX

integer km,k,n

integer g(NMAX),nj(KMAX),pos(KMAX),idg

double precision x(NMAX),xsumm(XSMAX,KMAX)

character fam

if(fam.eq."N") then

call selecxgN(KMAX,NMAX,XSMAX,km,n,k,g,pos,x,nj,xsumm,idg)

return

endif

write(6,*) "Wrong family in Sub. selecxg"

stop

end

SUBROUTINE fggivk(KMAX,n,k,invpos,nj,alpha,alpha0,fggivkl)

implicit none

integer KMAX,n,k

integer invpos(KMAX),nj(KMAX)

double precision alpha(KMAX),alpha0(KMAX),fggivkl

C Computes log f_(G|K)

integer j,p

double precision sumalph,sumalpn,gam1,gam2,alphaj,alphjn

sumalph=alpha0(k)

sumalpn=sumalph+dfloat(n)

call dlgama(sumalph,gam1)

call dlgama(sumalpn,gam2)

fggivkl=gam1-gam2

do p=1,k

j=invpos(p)

alphaj=alpha(j)

alphjn=alphaj+dfloat(nj(p))

call dlgama(alphjn,gam1)

call dlgama(alphaj,gam2)

fggivkl=fggivkl+gam1-gam2

enddo

return

end

SUBROUTINE fxgivkg(KMAX,HYPMAX,XSMAX,n,k,fam,invpos,nj,xsumm,

A const,phi,fxgivkgl)

implicit none

integer KMAX,HYPMAX,XSMAX

integer n,k

integer invpos(KMAX),nj(KMAX)

double precision xsumm(XSMAX,KMAX),fxgivkgl

double precision phi(HYPMAX,KMAX),const(KMAX)

character fam

if(fam.eq."N") then

call fxgivkgN(KMAX,HYPMAX,XSMAX,n,k,invpos,nj,xsumm,const,phi,

A fxgivkgl)

return

endif

write(6,*) "Wrong family in Sub. fxgivkg"

stop

end

SUBROUTINE metrohyp(KMAX,NMAX,HYPMAX,XSMAX,i,burnin,km,n,x,k,

A fam,invpos,nj,xsumm,const,phi,fxgivkgl,fglog)

implicit none

integer KMAX,NMAX,HYPMAX,XSMAX

integer i,burnin,km,n,k,invpos(KMAX),nj(KMAX)

double precision x(NMAX),xsumm(XSMAX,KMAX),const(KMAX)

double precision phi(HYPMAX,KMAX),fxgivkgl,fglog

character fam

if(fam.eq."N") then

call metrohypN(KMAX,NMAX,HYPMAX,XSMAX,i,burnin,km,n,x,k,

A invpos,nj,xsumm,const,phi,fxgivkgl,fglog)

return

endif

write(6,*) "Wrong family in Sub. metrohyp"

stop

end

SUBROUTINE fkgx1(KMAX,NMAX,HYPMAX,XSMAX,n,k,fam,lfk,igcomp,oldgi,

A newgi,pos,nj,x,g,xsumm,const,idg,idgn,nj1,nj2,

B xsumm1,xsumm2,alpha,phi,fggivkl,fggivkln,

C fxgivkgl,fxgivkgn,fgnlog)

implicit none

integer KMAX,NMAX,HYPMAX,XSMAX

integer n,k,igcomp,oldgi,newgi,pos(KMAX)

integer g(NMAX),nj(KMAX),idg,idgn,nj1,nj2

double precision x(NMAX),xsumm(XSMAX,KMAX),const(KMAX),lfk(KMAX)

double precision xsumm1(XSMAX),xsumm2(XSMAX),alpha(KMAX)

double precision phi(HYPMAX,KMAX)

double precision fggivkl,fggivkln,fxgivkgl,fxgivkgn,fgnlog

character fam

integer pold,pnew,h

pold = pos(oldgi)

pnew = pos(newgi)

call selecxg1(KMAX,NMAX,HYPMAX,XSMAX,fam,n,x,g,igcomp,oldgi,newgi,

A pold,pnew,nj,xsumm,idg,idgn,nj1,nj2,xsumm1,xsumm2)

call fggivk1(KMAX,alpha,oldgi,newgi,nj1,nj2,fggivkl,fggivkln)

call fxgivkg1(KMAX,HYPMAX,XSMAX,fam,nj,xsumm,const,phi,

A oldgi,newgi,pold,pnew,nj1,nj2,xsumm1,xsumm2,

B fxgivkgl,fxgivkgn)



APPENDIX C. ALLOCATION SAMPLER FORTRAN CODE 170

fgnlog=lfk(k)+fggivkln+fxgivkgn

return

end

SUBROUTINE selecxg1(KMAX,NMAX,HYPMAX,XSMAX,fam,n,x,g,igcomp,

A oldgi,newgi,pold,pnew,nj,xsumm,idg,idgn,

B nj1,nj2,xsumm1,xsumm2)

implicit none

integer KMAX,NMAX,HYPMAX,XSMAX

integer n,igcomp,oldgi,newgi,pold,pnew

integer g(NMAX),nj(KMAX),idg,idgn,nj1,nj2

double precision x(NMAX),xsumm(XSMAX,KMAX)

double precision xsumm1(XSMAX),xsumm2(XSMAX)

character fam

if(fam.eq."N") then

call selecxg1N(KMAX,NMAX,HYPMAX,XSMAX,x,igcomp,oldgi,newgi,

A pold,pnew,nj,xsumm,idg,idgn,nj1,nj2,xsumm1,

B xsumm2)

return

endif

write(6,*) "Wrong family in Sub. selecxg1"

stop

end

SUBROUTINE fggivk1(KMAX,alpha,oldgi,newgi,nj1,nj2,fggivkl,

A fggivkln)

implicit none

integer KMAX,oldgi,newgi,nj1,nj2

double precision alpha(KMAX),fggivkl,fggivkln

fggivkln=fggivkl+dlog(alpha(newgi)+dfloat(nj2-1))

1 -dlog(alpha(oldgi)+dfloat(nj1))

return

end

SUBROUTINE fxgivkg1(KMAX,HYPMAX,XSMAX,fam,nj,xsumm,const,phi,

A oldgi,newgi,pold,pnew,nj1,nj2,xsumm1,xsumm2,

B fxgivkgl,fxgivkgn)

implicit none

integer KMAX,HYPMAX,XSMAX

integer nj(KMAX),oldgi,newgi,nj1,nj2,pold,pnew

double precision xsumm(XSMAX,KMAX),const(KMAX),xsumm1(XSMAX)

double precision xsumm2(XSMAX),phi(HYPMAX,KMAX)

double precision fxgivkgl,fxgivkgn

character fam

if(fam.eq."N") then

call fxgivkg1N(KMAX,HYPMAX,XSMAX,nj,xsumm,const,phi,oldgi,

A newgi,pold,pnew,nj1,nj2,xsumm1,xsumm2,fxgivkgl,

B fxgivkgl,fxgivkgn)

return

endif

write(6,*) "Wrong family in Sub. fxgivkg1"

stop

end

SUBROUTINE updateg(KMAX,NMAX,XSMAX,dxsm,igcomp,oldgi,newgi,pos,

A g,nj,idg,idgn,nj1,nj2,xsumm,xsumm1,xsumm2,

B fggivkl,fxgivkgl,fglog,fggivkln,fxgivkgn,

C fgnlog)

implicit none

integer KMAX,NMAX,XSMAX

integer dxsm,igcomp,oldgi,newgi

integer g(NMAX),nj(KMAX),idg,idgn,nj1,nj2,pos(KMAX)

double precision xsumm(XSMAX,KMAX),xsumm1(XSMAX),xsumm2(XSMAX)

double precision fggivkl,fggivkln,fxgivkgl,fxgivkgn

double precision fglog,fgnlog

integer i,pold,pnew

pold=pos(oldgi)

pnew=pos(newgi)

g(igcomp)=newgi

idg=idgn

nj(pold)=nj1

nj(pnew)=nj2

do i=1,dxsm

xsumm(i,pold)=xsumm1(i)

xsumm(i,pnew)=xsumm2(i)

enddo

fggivkl=fggivkln

fxgivkgl=fxgivkgn

fglog=fgnlog

return

end

SUBROUTINE metrstep2(KMAX,NMAX,HYPMAX,XSMAX,n,k,fam,lfk,dxsm,g,

A pos,invpos,x,nj,idg,fggivkl,fxgivkgl,fglog,

B xsumm,const,alpha,alpha0,phi,mtrprop,mtraccp)

implicit none

integer KMAX,NMAX,HYPMAX,XSMAX

integer n,k,dxsm

integer g(NMAX),idg,nj(KMAX),pos(KMAX),invpos(KMAX)

integer mtrprop(6),mtraccp(6)

double precision fglog,fggivkl,fxgivkgl

double precision x(NMAX),xsumm(XSMAX,KMAX),const(KMAX),alpha(KMAX)

double precision alpha0(KMAX),phi(HYPMAX,KMAX),lfk(KMAX)

character fam

integer p,j,njmove,i,count,ind,njj,ij,pnew,jnew,idgn,nj1,nj2

integer index(NMAX), gmove(NMAX)

cdouble precision lfxggivk(KMAX),prob(KMAX)

double precision xsumm1(XSMAX),xsumm2(XSMAX)

double precision fggivkln,fxgivkgn,fgnlog

double precision dn,gam1,gam2,gam3,gam4,lograt

double precision uni01kis

if(k.eq.1) return

C Select component

p = int(k*UNI01KIS()) + 1

if(nj(p).eq.0) return

j = invpos(p)

C njmove: number of observations in component j that change

njmove = int(nj(p) * UNI01KIS()) + 1

do count=1,nj(p)

index(count) = 0

enddo

count = 0

10 continue

ind = int(nj(p) * UNI01KIS()) + 1

if(index(ind).eq.0) then

index(ind) = 1

count = count + 1

if(count.eq.njmove) go to 20

endif

go to 10

20 continue

count = 0

do i=1,nj(p)

if(index(i).eq.1) then

count = count + 1

index(count) = i

if(count.eq.njmove) go to 30

endif

enddo

30 continue

i = 0

njj = 0

do count=1,njmove

ij = index(count)

40 continue

i = i + 1



APPENDIX C. ALLOCATION SAMPLER FORTRAN CODE 171

if(g(i).eq.j) then

njj = njj + 1

if(ij.eq.njj) then

gmove(count) = i

go to 50

endif

endif

go to 40

50 continue

enddo

60 continue

pnew = int(k*UNI01KIS()) + 1

if(pnew.eq.p) go to 60

jnew=invpos(pnew)

call fkgx2(KMAX,NMAX,HYPMAX,XSMAX,k,n,fam,lfk,njmove,gmove,j,

A jnew,pos,nj,x,g,xsumm,const,idg,idgn,nj1,nj2,xsumm1,

B xsumm2,alpha,phi,fggivkl,fggivkln,fxgivkgl,fxgivkgn,

C fgnlog)

lograt = fgnlog - fglog

dn = dfloat(nj(p) + 1)

call dlgama(dn, gam1)

dn = dfloat(nj(p) - njmove + 1)

call dlgama(dn, gam2)

dn = dfloat(nj2 + 1)

call dlgama(dn, gam3)

dn = dfloat(nj2 - njmove)

call dlgama(dn, gam4)

lograt = lograt + gam1 - gam2 - gam3 + gam4

A + dlog(dfloat(nj(p))) - dlog(dfloat(nj2 - njmove))

if(lograt.gt.dlog(UNI01KIS())) then

mtraccp(3) = mtraccp(3) + 1

call updateg2(KMAX,NMAX,XSMAX,dxsm,njmove,gmove,j,jnew,pos,

A g,nj,idg,idgn,nj1,nj2,xsumm,xsumm1,xsumm2,

B fggivkl,fxgivkgl,fglog,fggivkln,fxgivkgn,

C fgnlog)

endif

return

end

SUBROUTINE fkgx2(KMAX,NMAX,HYPMAX,XSMAX,k,n,fam,lfk,njmove,

A gmove,jold,jnew,pos,nj,x,g,xsumm,const,idg,

B idgn,nj1,nj2,xsumm1,xsumm2,alpha,phi,fggivkl,

C fggivkln,fxgivkgl,fxgivkgn,fgnlog)

implicit none

integer KMAX,NMAX,HYPMAX,XSMAX

integer k,n,njmove,gmove(NMAX),jold,jnew,pos(KMAX)

integer g(NMAX),nj(KMAX),idg,idgn,nj1,nj2

double precision x(NMAX),xsumm(XSMAX,KMAX),const(KMAX),lfk(KMAX)

double precision xsumm1(XSMAX),xsumm2(XSMAX),alpha(KMAX)

double precision phi(HYPMAX,KMAX)

double precision fggivkl,fggivkln,fxgivkgl,fxgivkgn,fgnlog

character fam

integer pold,pnew

pold = pos(jold)

pnew = pos(jnew)

call selecxg2(KMAX,NMAX,HYPMAX,XSMAX,fam,n,x,g,njmove,gmove,

A jold,jnew,pold,pnew,nj,xsumm,idg,idgn,nj1,nj2,

B xsumm1,xsumm2)

call fggivk2(KMAX,alpha,jold,jnew,njmove,nj1,nj2,fggivkl,

A fggivkln)

call fxgivkg1(KMAX,HYPMAX,XSMAX,fam,nj,xsumm,const,phi,jold,

A jnew,pold,pnew,nj1,nj2,xsumm1,xsumm2,fxgivkgl,

B fxgivkgn)

fgnlog=lfk(k)+fggivkln+fxgivkgn

return

end

SUBROUTINE selecxg2(KMAX,NMAX,HYPMAX,XSMAX,fam,n,x,g,njmove,

A gmove,jold,jnew,pold,pnew,nj,xsumm,idg,idgn,

B nj1,nj2,xsumm1,xsumm2)

implicit none

integer KMAX,NMAX,HYPMAX,XSMAX

integer n,njmove,gmove(NMAX),jold,jnew,pold,pnew

integer g(NMAX),nj(KMAX),idg,idgn,nj1,nj2

double precision x(NMAX),xsumm(XSMAX,KMAX)

double precision xsumm1(XSMAX),xsumm2(XSMAX)

character fam

if(fam.eq."N") then

call selecxg2N(KMAX,NMAX,HYPMAX,XSMAX,x,njmove,gmove,jold,

A jnew,pold,pnew,nj,xsumm,idg,idgn,nj1,nj2,

B xsumm1,xsumm2)

return

endif

write(6,*) "Wrong family in Sub. selecxg2"

stop

end

SUBROUTINE fggivk2(KMAX,alpha,jold,jnew,njmove,nj1,nj2,fggivkl,

A fggivkln)

implicit none

integer KMAX,jold,jnew,njmove,nj1,nj2

double precision alpha(KMAX),fggivkl,fggivkln

double precision alphan,gam1,gam2,gam3,gam4

alphan = alpha(jold) + nj1

call dlgama(alphan, gam1)

alphan = alpha(jold) + nj1 + njmove

call dlgama(alphan, gam2)

alphan = alpha(jnew) + nj2

call dlgama(alphan, gam3)

alphan = alpha(jold) + nj2 - njmove

call dlgama(alphan, gam4)

fggivkln = fggivkl + gam1 - gam2 + gam3 - gam4

return

end

SUBROUTINE updateg2(KMAX,NMAX,XSMAX,dxsm,njmove,gmove,jold,jnew,

A pos,g,nj,idg,idgn,nj1,nj2,xsumm,xsumm1,xsumm2,

B fggivkl,fxgivkgl,fglog,fggivkln,fxgivkgn,

C fgnlog)

implicit none

integer KMAX,NMAX,XSMAX

integer dxsm,njmove,gmove(NMAX),jold,jnew

integer g(NMAX),nj(KMAX),idg,idgn,nj1,nj2,pos(KMAX)

double precision xsumm(XSMAX,KMAX),xsumm1(XSMAX),xsumm2(XSMAX)

double precision fggivkl,fggivkln,fxgivkgl,fxgivkgn,fglog,fgnlog

integer i,pold,pnew,count

pold=pos(jold)

pnew=pos(jnew)

do count=1,njmove

i = gmove(count)

g(i) = jnew

enddo

idg=idgn

nj(pold)=nj1

nj(pnew)=nj2

do i=1,dxsm

xsumm(i,pold)=xsumm1(i)

xsumm(i,pnew)=xsumm2(i)

enddo

fggivkl=fggivkln

fxgivkgl=fxgivkgn

fglog=fgnlog

return

end

SUBROUTINE metrstep3(KMAX,NMAX,HYPMAX,XSMAX,n,k,fam,lfk,dxsm,g,

A pos,invpos,x,nj,idg,fggivkl,fxgivkgl,fglog,

B xsumm,const,alpha,alpha0,phi,mtrprop,mtraccp)

implicit none

integer NMAX,KMAX,HYPMAX,XSMAX



APPENDIX C. ALLOCATION SAMPLER FORTRAN CODE 172

integer n,k,dxsm

integer g(NMAX),nj(KMAX),idg,pos(KMAX),invpos(KMAX)

integer mtrprop(6),mtraccp(6)

double precision x(NMAX),alpha(KMAX),alpha0(KMAX)

double precision fggivkl,fxgivkgl,fglog,lfk(KMAX)

double precision xsumm(XSMAX,KMAX),const(KMAX),phi(HYPMAX,KMAX)

character fam

integer p1,p2,n12,j,j1,j2,nj1,nj2,njA,njB,i,ii,indi

integer g1(NMAX),ind(NMAX)

double precision uni01kis

double precision lp1,lp2,lmax,lprcand,lprcurr,laccprb

double precision lprob1,lprob2,lprob12,fggivkl1,fxgivkgl1

double precision fg1log,fxgivkgl2,fxgivkglA,fxgivkglB

double precision xsumm1(XSMAX),xsumm2(XSMAX)

double precision xsummA(XSMAX),xsummB(XSMAX)

if(k.eq.1) return

p1 = int(k*UNI01KIS()) + 1

10 continue

p2 = int(k*UNI01KIS()) + 1

if(p2.eq.p1) go to 10

n12 = nj(p1) + nj(p2)

if(n12.eq.0) return

mtrprop(4) = mtrprop(4) + 1

j1 = invpos(p1)

j2 = invpos(p2)

call zeromet(XSMAX,dxsm,nj1,nj2,xsumm1,xsumm2)

C ind containes indexes of obs in components j1 and j2

ii=0

do i=1,n

if(g(i).eq.j1.or.g(i).eq.j2) then

ii = ii + 1

ind(ii) = i

endif

enddo

C Randomly permute the entries in ind

ii=n12

20 continue

i = int(ii * UNI01KIS()) + 1

indi = ind(i)

ind(i) = ind(ii)

ind(ii) = indi

ii = ii - 1

if(ii.gt.1) go to 20

lprcand = 0.0d-00

lprcurr = 0.0d-00

do ii=1,n12

i = ind(ii)

j=j1

call copysumm(XSMAX,dxsm,nj1,nj2,xsumm1,xsumm2,njA,njB,

A xsummA,xsummB)

call summetr(NMAX,XSMAX,fam,i,j,j1,njA,njB,x,xsummA,xsummB)

call fxgivkg1(KMAX,HYPMAX,XSMAX,fam,nj,xsumm,const,phi,

A j1,j2,p1,p2,njA,njB,xsummA,xsummB,

B fxgivkgl,fxgivkgl1)

j=j2

call copysumm(XSMAX,dxsm,nj1,nj2,xsumm1,xsumm2,njA,njB,

A xsummA,xsummB)

call summetr(NMAX,XSMAX,fam,i,j,j1,njA,njB,x,xsummA,xsummB)

call fxgivkg1(KMAX,HYPMAX,XSMAX,fam,nj,xsumm,const,phi,

A j1,j2,p1,p2,njA,njB,xsummA,xsummB,

B fxgivkgl,fxgivkgl2)

lp1 = dlog(alpha(j1) + dfloat(nj1)) + fxgivkgl1

lp2 = dlog(alpha(j2) + dfloat(nj2)) + fxgivkgl2

C lp1, lp2 are such that the prob that observation i is proposed

C to be allocated to comp j1 is 1 / [ 1 + exp(lp2 - lp1) ]

lmax = lp1

if(lmax.lt.lp2) lmax=lp2

lprob12 = dlog(dexp(lp1-lmax) + dexp(lp2-lmax))

lprob1 = lp1 - lmax - lprob12

lprob2 = lp2 - lmax - lprob12

if(g(i).eq.j1) then

lprcurr = lprcurr + lprob1

else

lprcurr = lprcurr + lprob2

endif

if(dlog(UNI01KIS()).lt.lprob1) then

j=j1

lprcand = lprcand + lprob1

else

j=j2

lprcand = lprcand + lprob2

endif

g1(i) = j

call summetr(NMAX,XSMAX,fam,i,j,j1,nj1,nj2,x,xsumm1,xsumm2)

enddo

call fggivkmet(KMAX,k,alpha,alpha0,j1,j2,p1,p2,nj1,nj2,n,n,

A nj,fggivkl,fggivkl1)

call fxgivkg1(KMAX,HYPMAX,XSMAX,fam,nj,xsumm,const,phi,

A j1,j2,p1,p2,nj1,nj2,xsumm1,xsumm2,

B fxgivkgl,fxgivkgl1)

laccprb = fxgivkgl1 - fxgivkgl + fggivkl1 - fggivkl

A + lprcurr - lprcand

if(dlog(UNI01KIS()).lt.laccprb) then

mtraccp(4) = mtraccp(4) + 1

fg1log = lfk(k) + fggivkl1 + fxgivkgl1

call updatmet(NMAX,KMAX,XSMAX,dxsm,n,j1,j2,p1,p2,g,g1,nj,

A nj1,nj2,idg,xsumm,xsumm1,xsumm2,fggivkl,

B fxgivkgl,fglog,fggivkl1,fxgivkgl1,fg1log)

endif

return

end

SUBROUTINE copysumm(XSMAX,dxsm,nj1,nj2,xsumm1,xsumm2,njA,njB,

A xsummA,xsummB)

implicit none

integer XSMAX

integer dxsm,nj1,nj2,njA,njB

double precision xsumm1(XSMAX),xsumm2(XSMAX)

double precision xsummA(XSMAX),xsummB(XSMAX)

integer m

njA = nj1

njB = nj2

do m=1,dxsm

xsummA(m) = xsumm1(m)

xsummB(m) = xsumm2(m)

enddo

return

end

SUBROUTINE ejtabs(KMAX,NMAX,HYPMAX,XSMAX,km,n,k,fam,lfk,dxsm,g,

A pos,invpos,firstav,x,nj,idg,fggivkl,fxgivkgl,

B fglog,xsumm,const,alpha,alpha0,phi,indsym,

C ejectp,mtrprop,mtraccp)

implicit none

integer NMAX,KMAX,HYPMAX,XSMAX

integer km,n,k,dxsm,idg,indsym

integer pos(KMAX),invpos(KMAX),firstav,g(NMAX),nj(KMAX)

integer mtrprop(6),mtraccp(6)

double precision x(NMAX),alpha(KMAX),alpha0(KMAX),lfk(KMAX)

double precision fggivkl,fxgivkgl,fglog

double precision xsumm(XSMAX,KMAX),const(KMAX)

double precision phi(HYPMAX,KMAX),ejectp(KMAX)

character fam

double precision p0

double precision uni01kis

p0 = 0.2d-00

if(UNI01KIS() .le. ejectp(k)) then

call eject(KMAX,NMAX,HYPMAX,XSMAX,km,n,k,fam,lfk,dxsm,g,pos,

A invpos,firstav,x,nj,idg,fggivkl,fxgivkgl,fglog,

B xsumm,const,alpha,alpha0,phi,ejectp,p0,indsym,

C mtrprop,mtraccp)

else



APPENDIX C. ALLOCATION SAMPLER FORTRAN CODE 173

call absorb(KMAX,NMAX,HYPMAX,XSMAX,km,n,k,fam,lfk,dxsm,g,pos,

A invpos,firstav,x,nj,idg,fggivkl,fxgivkgl,fglog,

B xsumm,const,alpha,alpha0,phi,ejectp,p0,indsym,

C mtrprop,mtraccp)

endif

return

end

SUBROUTINE getpejt(n, p0, pejt, a)

implicit none

integer n

double precision p0, pejt, a

integer nn,ind

double precision gamdev

double precision logn, rem

double precision a01(12), a02(12), a03(12), a04(12), a05(12)

data a01/58.25065d-00, 2.4572173d-00, 0.9690759d-00,

A 0.6354756d-00, 0.4816089d-00, 0.3908933d-00,

B 0.3302802d-00, 0.2865916d-00, 0.2534592d-00,

C 0.2273947d-00, 0.2063139d-00, 0.1888896d-00/

data a02/11.0258d-00, 1.2138196d-00, 0.6033860d-00,

A 0.4170041d-00, 0.3230759d-00, 0.2653151d-00,

B 0.2257773d-00, 0.1968376d-00, 0.1746576d-00,

C 0.1570764d-00, 0.1427763d-00, 0.1309047d-00/

data a03/8.922985d-00, 0.7612973d-00, 0.4211680d-00,

A 0.2999519d-00, 0.2355229d-00, 0.1948357d-00,

B 0.1665482d-00, 0.1456349d-00, 0.1294961d-00,

C 0.1166401d-00, 0.1061447d-00, 0.0974070d-00/

data a04/3.1721607d-00, 0.5153639d-00, 0.3048555d-00,

A 0.2217515d-00, 0.1758312d-00, 0.1462478d-00,

B 0.1254355d-00, 0.1099308d-00, 0.0979028d-00,

C 0.0882851d-00, 0.0804112d-00, 0.0738418d-00/

data a05/1.2920201d-00, 0.3572630d-00, 0.2216664d-00,

A 0.1638918d-00, 0.1309661d-00, 0.1094074d-00,

B 0.0940931d-00, 0.0826123d-00, 0.0736672d-00,

C 0.0664924d-00, 0.0606049d-00, 0.0556840d-00/

C a01(i) contains a corresponding to p0 = 0.1 for n=exp(i)

C similarly for a02, ..., a05

C computed from calls to the Splus function findabisct()

C log(a01(1)) was determined by linear extrapolation through

C the points (log(5), log(8.460785)) and (2, log(a01(2)))

C log(a02(1)) was determined by linear extrapolation through

C the points (log(4), log(4.701553)) and (2, log(a02(2)))

C log(a03(1)) was determined by linear extrapolation through

C the points (log(3), log(6.999999)) and (2, log(a03(2)))

if(n.lt.3) then

nn = 3

else

nn = n

endif

logn = dlog(dfloat(nn))

ind = int(logn)

rem = logn - dfloat(ind)

if(p0.eq.0.1d-00) then

if(ind.lt.12) then

a = dexp( dlog(a01(ind)) +

A rem * (dlog(a01(ind+1)) - log(a01(ind))) )

else

a = dexp( dlog(a01(12)) +

A (logn-12.d-00)*(dlog(a01(12))-log(a01(11))) )

endif

go to 10

endif

if(p0.eq.0.2d-00) then

if(ind.lt.12) then

a = dexp( dlog(a02(ind)) +

A rem * (dlog(a02(ind+1)) - log(a02(ind))) )

else

a = dexp( dlog(a02(12)) +

A (logn-12.d-00)*(dlog(a02(12))-log(a02(11))) )

endif

go to 10

endif

if(p0.eq.0.3d-00) then

if(ind.lt.12) then

a = dexp( dlog(a03(ind)) +

A rem * (dlog(a03(ind+1)) - log(a03(ind))) )

else

a = dexp( dlog(a03(12)) +

A (logn-12.d-00)*(dlog(a03(12))-log(a03(11))) )

endif

go to 10

endif

if(p0.eq.0.4d-00) then

if(ind.lt.12) then

a = dexp( dlog(a04(ind)) +

A rem * (dlog(a04(ind+1)) - log(a04(ind))) )

else

a = dexp( dlog(a04(12)) +

A (logn-12.d-00)*(dlog(a04(12))-log(a04(11))) )

endif

go to 10

endif

if(p0.eq.0.5d-00) then

if(ind.lt.12) then

a = dexp( dlog(a05(ind)) +

A rem * (dlog(a05(ind+1)) - log(a05(ind))) )

else

a = dexp( dlog(a05(12)) +

A (logn - 12.d-00) * (dlog(a05(12)) - log(a05(11))) )

endif

go to 10

endif

write(6,*) "wrong p0 input for getpejt"

stop

10 continue

pejt = 1.0d-00 / (1.0d-00 + gamdev(a)/gamdev(a))

return

end

SUBROUTINE eject(KMAX,NMAX,HYPMAX,XSMAX,km,n,k,fam,lfk,dxsm,g,pos,

A invpos,firstav,x,nj,idg,fggivkl,fxgivkgl,fglog,

B xsumm,const,alpha,alpha0,phi,ejectp,p0,indsym,

C mtrprop,mtraccp)

implicit none

integer NMAX,KMAX,HYPMAX,XSMAX

integer km,n,k,dxsm

integer pos(KMAX),invpos(KMAX),firstav,g(NMAX),nj(KMAX),idg,indsym

integer mtrprop(6),mtraccp(6)

double precision x(NMAX),alpha(KMAX),alpha0(KMAX),lfk(KMAX)

double precision fggivkl,fxgivkgl,fglog

double precision xsumm(XSMAX,KMAX),const(KMAX),phi(HYPMAX,KMAX)

double precision ejectp(KMAX),p0

character fam

integer ejectingc,ejectedc,ejectingp,ejectedp

integer i,idgn,njted,njting,igchng(NMAX)

double precision uni01kis

double precision xsumting(XSMAX),xsumted(XSMAX)

double precision fggivkl1,fxgivkgl1,fg1log

double precision lpalloc,laccprob,lfggivkrat,lfxgivkgrat

double precision pejt,a

mtrprop(5) = mtrprop(5) + 1

C Select ejecting component with prob 1/k

ejectingc = invpos(int(k*UNI01KIS())+1)

ejectingp = pos(ejectingc)

C Ejected component goes to position (k+1) in pos

ejectedc = firstav

if(indsym.eq.0) then

ejectedp = ejectedc

else

ejectedp = int((k+1)*UNI01KIS())+1

endif



APPENDIX C. ALLOCATION SAMPLER FORTRAN CODE 174

C Create igchng which holds indices of ejected comp

call getpejt(nj(ejectingp), p0, pejt, a)

njted = 0

do i=1,n

if(g(i).eq.ejectingc.and.UNI01KIS().lt.pejt) then

njted = njted + 1

igchng(njted) = i

endif

enddo

njting = nj(ejectingp) - njted

if(njted.ne.0.and.njting.ne.0) then

idgn = idg+1

else

idgn = idg

endif

C Update summaries xsumm

call summejt(KMAX,NMAX,XSMAX,fam,dxsm,n,x,g,igchng,njted,

A njting,ejectingc,ejectingp,xsumm,xsumting,xsumted)

C Accept/Reject

call fggivkejab(KMAX,n,k,alpha,alpha0,njting,njted,ejectingc,

A ejectedc,lfggivkrat)

call fxgivkgejt(KMAX,HYPMAX,XSMAX,fam,nj,xsumm,const,phi,

A ejectingc,ejectedc,ejectingp,njting,njted,

B xsumting,xsumted,lfxgivkgrat)

call comppalloc(njted, njting, a, lpalloc)

laccprob = lfk(k+1) - lfk(k) + lfggivkrat + lfxgivkgrat

A - lpalloc

B + dlog(1.0d-00 - ejectp(k+1)) - dlog(ejectp(k))

if(laccprob.gt.dlog(UNI01KIS())) then

fggivkl1 = fggivkl + lfggivkrat

fxgivkgl1 = fxgivkgl + lfxgivkgrat

fg1log = lfk(k+1) + fggivkl1 + fxgivkgl1

call updatejt(KMAX,NMAX,XSMAX,km,k,dxsm,g,igchng,pos,invpos,

A firstav,ejectingc,ejectedc,ejectedp,nj,njting,

B njted,idg,idgn,xsumm,xsumting,xsumted,fggivkl,

C fxgivkgl,fglog,fggivkl1,fxgivkgl1,fg1log)

mtraccp(5) = mtraccp(5) + 1

endif

return

end

SUBROUTINE summejt(KMAX,NMAX,XSMAX,fam,dxsm,n,x,g,igchng,

A njted,njting,ejectingc,ejectingp,xsumm,

B xsumting,xsumted)

implicit none

integer NMAX,KMAX,XSMAX

integer n,dxsm,njted,njting,ejectingc,ejectingp

integer g(NMAX),igchng(NMAX)

double precision x(NMAX),xsumm(XSMAX,KMAX)

double precision xsumting(XSMAX),xsumted(XSMAX)

character fam

if(fam.eq."N") then

call summejtN(KMAX,NMAX,XSMAX,dxsm,x,igchng,njted,

A ejectingp,xsumm,xsumting,xsumted)

return

endif

write(6,*) "Wrong family in Sub. summejt"

stop

end

SUBROUTINE fggivkejab(KMAX,n,k,alpha,alpha0,njting,njted,

A ejectingc,ejectedc,term)

implicit none

integer KMAX,n,k

integer njting,njted,ejectingc,ejectedc

double precision alpha(KMAX),alpha0(KMAX)

double precision term

double precision salphk,salphk1,salphkn,salphk1n

double precision alphnj,alphnjing,alphnjted,alphted

double precision gam1,gam2,gam3,gam4,gam5,gam6,gam7,gam8

salphk = alpha0(k)

salphk1 = alpha0(k+1)

salphkn = salphk + dfloat(n)

salphk1n = salphk1 + dfloat(n)

alphnj = alpha(ejectingc) + njting + njted

alphnjing = alphnj - njted

alphnjted = alpha(ejectedc) + njted

alphted = alpha(ejectedc)

call dlgama(salphk,gam1)

call dlgama(salphk1,gam2)

call dlgama(salphkn,gam3)

call dlgama(salphk1n,gam4)

call dlgama(alphnj,gam5)

call dlgama(alphnjing,gam6)

call dlgama(alphnjted,gam7)

call dlgama(alphted,gam8)

term = (gam2+gam3+gam6+gam7) - (gam1+gam4+gam5+gam8)

return

end

SUBROUTINE fxgivkgejt(KMAX,HYPMAX,XSMAX,fam,nj,xsumm,const,phi,

A ejectingc,ejectedc,ejectingp,njting,njted,

B xsumting,xsumted,lfxgivkgrat)

implicit none

integer KMAX,HYPMAX,XSMAX

integer nj(KMAX),njting,njted

integer ejectingc,ejectedc,ejectingp

double precision xsumm(XSMAX,KMAX),const(KMAX),xsumting(XSMAX)

double precision xsumted(XSMAX),phi(HYPMAX,KMAX)

double precision lfxgivkgrat

character fam

if(fam.eq."N") then

call fxgivkgejtN(KMAX,HYPMAX,XSMAX,nj,xsumm,const,phi,

A ejectingc,ejectedc,ejectingp,njting,njted,

B xsumting,xsumted,lfxgivkgrat)

return

endif

write(6,*) "Wrong family in Sub. fxgivkgejt"

stop

end

SUBROUTINE comppalloc(njted, njting, a, lpalloc)

implicit none

integer njted,njting

double precision a,lpalloc

double precision anjted,anjting,twoan,twoa

double precision gam1,gam2,gam3,gam4,gam5

anjted = a + dfloat(njted)

anjting = a + dfloat(njting)

twoan = anjted + anjting

twoa = 2.0d-00 * a

call dlgama(a, gam1)

call dlgama(twoa, gam2)

call dlgama(anjted, gam3)

call dlgama(anjting, gam4)

call dlgama(twoan, gam5)

lpalloc = gam2 + gam3 + gam4 - gam1 - gam1 - gam5

return

end

SUBROUTINE updatejt(KMAX,NMAX,XSMAX,km,k,dxsm,g,igchng,pos,invpos,

A firstav,ejectingc,ejectedc,ejectedp,nj,njting,



APPENDIX C. ALLOCATION SAMPLER FORTRAN CODE 175

B njted,idg,idgn,xsumm,xsumting,xsumted,fggivkl,

C fxgivkgl,fglog,fggivkl1,fxgivkgl1,fg1log)

implicit none

integer KMAX,NMAX,XSMAX

integer km,k,dxsm,idg,idgn

integer pos(KMAX),invpos(KMAX),firstav,g(NMAX),igchng(NMAX)

integer ejectingc,ejectedc,ejectedp,nj(KMAX),njting,njted

double precision xsumm(XSMAX,KMAX),xsumting(XSMAX)

double precision xsumted(XSMAX)

double precision fggivkl,fggivkl1,fxgivkgl,fxgivkgl1

double precision fglog,fg1log

integer i,m,newfirst

k = k+1

idg = idgn

do i=1,njted

g(igchng(i)) = ejectedc

enddo

if(ejectedp.eq.k) then

pos(ejectedc) = ejectedp

invpos(ejectedp) = ejectedc

else

pos(ejectedc) = ejectedp

pos(invpos(ejectedp)) = k

invpos(k) = invpos(ejectedp)

invpos(ejectedp) = ejectedc

endif

nj(k)=nj(pos(ejectedc))

nj(pos(ejectingc))=njting

nj(pos(ejectedc))=njted

do m=1,dxsm

xsumm(m,k)=xsumm(m,pos(ejectedc))

xsumm(m,pos(ejectingc))=xsumting(m)

xsumm(m,pos(ejectedc))=xsumted(m)

enddo

if(k.eq.km) then

firstav = 1000000

else

do i=firstav+1,km

if(pos(i).eq.0) then

newfirst=i

go to 10

endif

enddo

10 continue

firstav=newfirst

endif

fggivkl=fggivkl1

fxgivkgl=fxgivkgl1

fglog = fg1log

return

end

SUBROUTINE absorb(KMAX,NMAX,HYPMAX,XSMAX,km,n,k,fam,lfk,dxsm,g,

A pos,invpos,firstav,x,nj,idg,fggivkl,fxgivkgl,

B fglog,xsumm,const,alpha,alpha0,phi,ejectp,p0,

C indsym,mtrprop,mtraccp)

implicit none

integer NMAX,KMAX,HYPMAX,XSMAX

integer km,n,k,dxsm,indsym

integer pos(KMAX),invpos(KMAX),firstav,g(NMAX),nj(KMAX),idg

integer mtrprop(6),mtraccp(6)

double precision x(NMAX),alpha(KMAX),alpha0(KMAX),lfk(KMAX)

double precision fggivkl,fxgivkgl,fglog

double precision xsumm(XSMAX,KMAX),const(KMAX),phi(HYPMAX,KMAX)

double precision ejectp(KMAX),p0

character fam

integer absorbingc,absorbedc,absorbingp,absorbedp

integer njbing,njbed,njabs,idgn

double precision uni01kis

double precision fggivkl1,fxgivkgl1,fg1log,lpalloc,laccprob

double precision xsumabs(XSMAX)

double precision lfggivkrat,lfxgivkgrat

double precision pejt,a

mtrprop(6) = mtrprop(6) + 1

C Select absorbing and absorbed component

if(indsym.eq.0) then

absorbingc = invpos(int((k-1)*UNI01KIS())+1)

absorbedc = k

else

absorbingc = invpos(int(k*UNI01KIS())+1)

10 continue

absorbedc = invpos(int(k*UNI01KIS())+1)

if (absorbedc.eq.absorbingc) goto 10

endif

absorbingp = pos(absorbingc)

absorbedp = pos(absorbedc)

njbing = nj(absorbingp)

njbed = nj(absorbedp)

njabs = njbing + njbed

call getpejt(njabs, p0, pejt, a)

idgn = idg

if(nj(absorbingp).gt.0.and.nj(absorbedp).gt.0) idgn=idg-1

C Update summaries xsumm

call summabs(KMAX,NMAX,XSMAX,fam,absorbingp,absorbedp,njbing,

A njbed,xsumm,xsumabs)

C Accept/Reject

call fggivkejab(KMAX,n,k-1,alpha,alpha0,njbing,njbed,absorbingc,

A absorbedc,lfggivkrat)

call fxgivkgabs(KMAX,HYPMAX,XSMAX,fam,nj,xsumm,const,phi,

A absorbingc,absorbedc,absorbingp,absorbedp,

B njabs,xsumabs,lfxgivkgrat)

call comppalloc(njbed, njbing, a, lpalloc)

laccprob = lfk(k-1) - lfk(k) - lfggivkrat - lfxgivkgrat

A + lpalloc

B - dlog(1.0d-00 - ejectp(k)) + dlog(ejectp(k-1))

if(laccprob.gt.dlog(UNI01KIS())) then

fggivkl1 = fggivkl - lfggivkrat

fxgivkgl1 = fxgivkgl - lfxgivkgrat

fg1log = lfk(k-1) + fggivkl1 + fxgivkgl1

call updatabs(KMAX,NMAX,XSMAX,indsym,n,k,dxsm,g,pos,invpos,

A firstav,absorbingc,absorbedc,nj,njabs,idg,idgn,

B xsumm,xsumabs,fggivkl,fxgivkgl,fglog,fggivkl1,

C fxgivkgl1,fg1log,km)

mtraccp(6) = mtraccp(6) + 1

endif

return

end

SUBROUTINE summabs(KMAX,NMAX,XSMAX,fam,absorbingp,absorbedp,

A njbing,njbed,xsumm,xsumabs)

implicit none

integer NMAX,KMAX,XSMAX

integer absorbingp,absorbedp,njbing,njbed

double precision xsumm(XSMAX,KMAX),xsumabs(XSMAX)

character fam

if(fam.eq."N") then

call summabsN(KMAX,NMAX,XSMAX,absorbingp,absorbedp,xsumm,

A xsumabs)

return

endif

write(6,*) "Wrong family in Sub. summabs"

stop

end

SUBROUTINE fxgivkgabs(KMAX,HYPMAX,XSMAX,fam,nj,xsumm,const,phi,



APPENDIX C. ALLOCATION SAMPLER FORTRAN CODE 176

A absorbingc,absorbedc,absorbingp,absorbedp,

B njabs,xsumabs,lfxgivkgrat)

implicit none

integer KMAX,HYPMAX,XSMAX

integer nj(KMAX),njabs

integer absorbingc,absorbedc,absorbingp,absorbedp

double precision xsumm(XSMAX,KMAX),const(KMAX),xsumabs(XSMAX)

double precision phi(HYPMAX,KMAX)

double precision lfxgivkgrat

character fam

if(fam.eq."N") then

call fxgivkgabsN(KMAX,HYPMAX,XSMAX,nj,xsumm,const,phi,

A absorbingc,absorbedc,absorbingp,absorbedp,

B njabs,xsumabs,lfxgivkgrat)

return

endif

write(6,*) "Wrong family in Sub. fxgivkgabs"

stop

end

SUBROUTINE updatabs(KMAX,NMAX,XSMAX,indsym,n,k,dxsm,g,pos,

A invpos,firstav,absorbingc,absorbedc,nj,njabs,

B idg,idgn,xsumm,xsumabs,fggivkl,fxgivkgl,

C fglog,fggivkl1,fxgivkgl1,fg1log,km)

implicit none

integer KMAX,NMAX,XSMAX

integer indsym,n,k,dxsm,idg,idgn,km

integer pos(KMAX),invpos(KMAX),firstav,g(NMAX)

integer absorbingc,absorbedc,nj(KMAX),njabs

double precision xsumm(XSMAX,KMAX),xsumabs(XSMAX)

double precision fggivkl,fggivkl1,fxgivkgl,fxgivkgl1

double precision fglog,fg1log

integer i,m

k = k-1

idg = idgn

do i=1,n

if(g(i).eq.absorbedc) g(i) = absorbingc

enddo

nj(pos(absorbingc))=njabs

nj(pos(absorbedc))=nj(k+1)

nj(k+1)=0

do m=1,dxsm

xsumm(m,pos(absorbingc))=xsumabs(m)

xsumm(m,pos(absorbedc))=xsumm(m,k+1)

xsumm(m,k+1)=0.0d-00

enddo

pos(invpos(k+1)) = pos(absorbedc)

invpos(pos(absorbedc)) = invpos(k+1)

pos(absorbedc) = 0

invpos(k+1) = 0

if(absorbedc.lt.firstav) firstav=absorbedc

fggivkl=fggivkl1

fxgivkgl=fxgivkgl1

fglog = fg1log

return

end

SUBROUTINE metrolab(KMAX,NMAX,HYPMAX,XSMAX,n,k,fam,lfk,g,pos,

A invpos,nj,fggivkl,fxgivkgl,fglog,xsumm,

B const,alpha,phi,indsym)

implicit none

integer KMAX,NMAX,HYPMAX,XSMAX

integer n,k,indsym

integer g(NMAX),nj(KMAX),pos(KMAX),invpos(KMAX)

double precision fglog,fggivkl,fxgivkgl

double precision xsumm(XSMAX,KMAX),const(KMAX),alpha(KMAX)

double precision phi(HYPMAX,KMAX),lfk(KMAX)

character fam

integer i,p1,p2,j1,j2,nj1,nj2

double precision alphan,gam1,gam2,gam3,gam4

double precision laccprob,fgnlog,fggivkln,fxgivkgn,uni01kis

C Metropolis move on the labels

C Only attempted if indsym=0, i.e. asymmetric case

if(indsym.ne.0) return

if(k.eq.1) return

p1 = int(k*UNI01KIS()) + 1

10 continue

p2 = int(k*UNI01KIS()) + 1

if(p2.eq.p1) go to 10

j1 = invpos(p1)

j2 = invpos(p2)

nj1 = nj(p1)

nj2 = nj(p2)

alphan = alpha(j1) + nj1

call dlgama(alphan, gam1)

alphan = alpha(j2) + nj2

call dlgama(alphan, gam2)

alphan = alpha(j1) + nj2

call dlgama(alphan, gam3)

alphan = alpha(j2) + nj1

call dlgama(alphan, gam4)

fggivkln = fggivkl - gam1 - gam2 + gam3 + gam4

call fxgivkgmlab(KMAX,HYPMAX,XSMAX,fam,j1,j2,p1,p2,nj1,nj2,phi,

A xsumm,const,fxgivkgl,fxgivkgn)

fgnlog = lfk(k) + fggivkln + fxgivkgn

laccprob = fgnlog - fglog

if(laccprob.gt.dlog(UNI01KIS())) then

pos(j1) = p2

pos(j2) = p1

invpos(p1) = j2

invpos(p2) = j1

do i=1,n

if(g(i).eq.j1) then

g(i)=j2

else

if(g(i).eq.j2) g(i)=j1

endif

enddo

fggivkl = fggivkln

fxgivkgl = fxgivkgn

fglog = fgnlog

endif

return

end

SUBROUTINE fxgivkgmlab(KMAX,HYPMAX,XSMAX,fam,j1,j2,p1,p2,nj1,nj2,

A phi,xsumm,const,fxgivkgl,fxgivkgn)

implicit none

integer KMAX,HYPMAX,XSMAX

integer j1,j2,p1,p2,nj1,nj2

double precision phi(HYPMAX,KMAX),xsumm(XSMAX,KMAX)

double precision const(KMAX),fxgivkgl,fxgivkgn

character fam

if(fam.eq."N") then

call fxgivkgmlabN(KMAX,HYPMAX,XSMAX,j1,j2,p1,p2,nj1,nj2,

A phi,xsumm,const,fxgivkgl,fxgivkgn)

return

endif

write(6,*) "Wrong family in Sub. fxgivkgmlab"

stop

end

SUBROUTINE writekgout(KMAX,NMAX,k,n,g,pos,nj,idg,indsym,ouk,oug)

implicit none

integer KMAX,NMAX

integer k,n,g(NMAX),pos(KMAX),nj(KMAX),idg,indsym,ouk,oug



APPENDIX C. ALLOCATION SAMPLER FORTRAN CODE 177

integer i,outg(NMAX)

character gchar(NMAX)

write(ouk,1) k, idg

if(indsym.eq.1) then

call remgaps(KMAX,NMAX,k,n,g,pos,nj,idg,outg)

call gint2char(NMAX,n,outg,gchar)

else

call gint2char(NMAX,n,g,gchar)

endif

write(oug,2) (gchar(i),i=1,n)

1 format(2i3)

2 format(1000000a1)

return

end

SUBROUTINE remgaps(KMAX,NMAX,k,n,g,pos,nj,idg,outg)

implicit none

integer KMAX,NMAX

integer k,n,g(NMAX),pos(KMAX),nj(KMAX),idg,outg(NMAX)

integer i,j,nempt

do i=1,n

outg(i) = pos(g(i))

enddo

if(k.gt.idg) then

nempt=0

do j=1,k

if(nj(j).eq.0) then

nempt = nempt+1

else

do i=1,n

if(outg(i).eq.j) outg(i) = outg(i) - nempt

enddo

endif

enddo

endif

return

end

SUBROUTINE relabgnat(KMAX,NMAX,k,n,g)

implicit none

integer KMAX,NMAX

integer k,n,g(NMAX)

C Changes the labels in the vector G so that

C they are in the natural order

integer j,ind(KMAX),ngrp,i,ig

do 10 j=1,k

ind(j)=0

10 continue

ngrp = 0

do 20 i=1,n

ig=g(i)

if(ind(ig).eq.0) then

ngrp=ngrp+1

ind(ig)=ngrp

endif

20 continue

do 30 i=1,n

ig=g(i)

g(i)=ind(ig)

30 continue

return

end

SUBROUTINE writehyp(KMAX,HYPMAX,fam,phi,ouhyp)

implicit none

integer KMAX,HYPMAX

integer ouhyp

double precision phi(HYPMAX,KMAX)

character fam

if(fam.eq."N") then

call writehypN(KMAX,HYPMAX,phi,ouhyp)

return

endif

write(6,*) "Wrong family in Sub. writehyp"

stop

end

SUBROUTINE SUMMRYCHK(KMAX,NMAX,XSMAX,km,n,dxsm,k,fam,g,pos,

A invpos,x,nj,idg,xsumm)

implicit none

integer KMAX,NMAX,XSMAX

integer n,k,idg,km,dxsm

integer g(NMAX),nj(KMAX),pos(KMAX),invpos(KMAX)

double precision x(NMAX),xsumm(XSMAX,KMAX)

character fam

integer idgX,njX(KMAX),j,noteq,ii

double precision xsummX(XSMAX,KMAX),eps

parameter (eps=1.0d-07)

call selecxg(KMAX,NMAX,XSMAX,km,n,k,fam,g,pos,x,njX,xsummX,idgX)

noteq = 0

if(idg.ne.idgX) noteq = noteq + 1

do ii=1,k

if(nj(ii).ne.njX(ii)) noteq = noteq + 1

do j=1,dxsm

if(dabs(xsumm(j,ii)-xsummX(j,ii)).gt.eps) noteq = noteq +1

enddo

enddo

if(noteq.ne.0) then

write(6,*) "k=",k

write(6,*) "idg=",idg

write(6,*) "g=", (g(ii),ii=1,n)

write(6,*) "nj=", (nj(ii),ii=1,k)

write(6,*) "pos=", (pos(ii),ii=1,km)

write(6,*) "invpos=", (invpos(ii),ii=1,km)

do j=1,dxsm

write(6,*) "xsumm(",j,",)=", (xsumm(j,ii),ii=1,k)

enddo

write(6,*) "noteq=",noteq

write(6,*) "idgX=",idgX

write(6,*) "njX=", (njX(ii),ii=1,k)

do j=1,dxsm

write(6,*) "xsummX(",j,",)=", (xsummX(j,ii),ii=1,k)

enddo

stop

endif

return

end

SUBROUTINE metrohypN(KMAX,NMAX,HYPMAX,XSMAX,i,burnin,km,n,x,k,

A invpos,nj,xsumm,const,phi,fxgivkgl,fglog)

implicit none

integer KMAX,NMAX,HYPMAX,XSMAX

integer i,burnin,km,n,k,invpos(KMAX),nj(KMAX)

double precision x(NMAX),xsumm(XSMAX,KMAX),const(KMAX)

double precision phi(HYPMAX,KMAX),fxgivkgl,fglog

C Only for tau and delta (assumed the SAME for all components)

C priors: 1/(1+tau) ~ Un(0,1), delta ~ Un(0, ubvarwit) independently

C ubvarwit is equal to Var(data) * (gamma-1)

integer j

save ubvarwit

double precision uni01kis,varx,ubvarwit,reptau1,reptau1prp

double precision tauprp,deltaprp,savetau,savedelta,fxgivkgl1

double precision reptau1min,reptau1max,prpmax,prpmin

double precision deltamin,deltamax,proprat,logproprat



APPENDIX C. ALLOCATION SAMPLER FORTRAN CODE 178

double precision saveconst(KMAX)

double precision logtargrat

if(i.eq.-burnin) then

call compvarxN(NMAX,n,x,varx)

if(phi(3,1).ge.2.0d-00) then

ubvarwit = 1.d-00 * varx * (phi(3,1) - 1.0d-00)

else

ubvarwit = 1.d-00 * varx

endif

endif

reptau1 = 1.0d-00 / (1.0d-00 + phi(2,1))

reptau1min = max(reptau1 - 0.01d-00, 0.0d-00)

reptau1max = min(reptau1 + 0.01d-00, 1.0d-00)

if(UNI01KIS().lt.0.5d-00) then

reptau1prp = reptau1 - UNI01KIS() * (reptau1 - reptau1min)

prpmax = min(reptau1prp + 0.01d-00, 1.0d-00)

proprat = (reptau1 - reptau1min)/(prpmax - reptau1prp)

else

reptau1prp = reptau1 + UNI01KIS() * (reptau1max - reptau1)

prpmin = max(reptau1prp - 0.01d-00, 0.0d-00)

proprat = (reptau1max - reptau1)/(reptau1prp - prpmin)

endif

logproprat = dlog(proprat)

deltamin = max(phi(4,1) - ubvarwit * 0.01d-00, 0.0d-00)

deltamax = min(phi(4,1) + ubvarwit * 0.01d-00, ubvarwit)

if(UNI01KIS().lt.0.5d-00) then

deltaprp = phi(4,1) - UNI01KIS() * (phi(4,1) - deltamin)

prpmax = min(deltaprp + ubvarwit * 0.01d-00, ubvarwit)

proprat = (phi(4,1) - deltamin)/(prpmax - deltaprp)

else

deltaprp = phi(4,1) + UNI01KIS() * (deltamax - phi(4,1))

prpmin = max(deltaprp - ubvarwit * 0.01d-00, 0.0d-00)

proprat = (deltamax - phi(4,1))/(deltaprp - prpmin)

endif

logproprat = logproprat + dlog(proprat)

tauprp = (1.0d-00 / reptau1prp) - 1.0d-00

savetau = phi(2,1)

savedelta = phi(4,1)

do j=1,km

saveconst(j)=const(j)

enddo

do j=1,km

phi(2,j)=tauprp

phi(4,j)=deltaprp

enddo

call getconstN(KMAX,HYPMAX,km,phi,const)

call fxgivkgN(KMAX,HYPMAX,XSMAX,n,k,invpos,nj,xsumm,const,

A phi,fxgivkgl1)

logtargrat = fxgivkgl1 - fxgivkgl

if((logtargrat + logproprat) .gt. dlog(UNI01KIS())) then

fglog=fglog-fxgivkgl+fxgivkgl1

fxgivkgl=fxgivkgl1

else

do j=1,km

phi(2,j)=savetau

phi(4,j)=savedelta

const(j)=saveconst(j)

enddo

endif

10 continue

return

end

SUBROUTINE compvarxN(NMAX,n,x,varx)

implicit none

integer NMAX,n

double precision x(NMAX), varx

integer i

double precision meanx

meanx=0.0d-00

do i=1,n

meanx = meanx + x(i)

enddo

meanx = meanx / dfloat(n)

varx = 0.0d-00

do i=1,n

varx = varx + (x(i) - meanx)**2.0d-00

enddo

varx = varx / dfloat(n-1)

return

end

SUBROUTINE getconstN(KMAX,HYPMAX,km,phi,const)

implicit none

integer KMAX,HYPMAX

integer km

double precision phi(HYPMAX,KMAX)

double precision const(KMAX)

integer j

double precision gammaj,gam1

do j=1,km

gammaj = phi(3,j)

call dlgama(gammaj,gam1)

const(j)= -gam1

enddo

do j=1,km

const(j) = const(j) + phi(3,j)*dlog(2.0d-00*phi(4,j))

enddo

return

end

SUBROUTINE selecxgN(KMAX,NMAX,XSMAX,km,n,k,g,pos,x,nj,xsumm,idg)

implicit none

integer KMAX,NMAX,XSMAX

integer km,k,n

integer g(NMAX),nj(KMAX),pos(KMAX),idg

double precision x(NMAX),xsumm(XSMAX,KMAX)

C x is a n-vector of data, g is a n-vector of memberships

C pos is a vector giving the actual position of component j

C 3 k-vectors and a scalar are returned:

C nj: nj(p)=card{i|g(i)=j}

C xsumm(1,p): xsumm(1,p)=sum{ x(i), i in {i|g(i)=j} }

C xsumm(2,p): xsumm(2,p)=sum{(x(i))**2, i in {i|g(i)=j} }

C j=invpos(p), p=1,k

C idg: card{n(p) != 0, p=1,k}

integer ig,i,p

idg=0

do p=1,km

nj(p)=0

xsumm(1,p)=0.0d-00

xsumm(2,p)=0.0d-00

enddo

do i=1,n

ig=g(i)

p=pos(ig)

nj(p)=nj(p)+1

xsumm(1,p)=xsumm(1,p)+x(i)

xsumm(2,p)=xsumm(2,p)+x(i)**2

enddo

do p=1,k

if(nj(p).ne.0) idg=idg+1

enddo

return

end

SUBROUTINE fxgivkgN(KMAX,HYPMAX,XSMAX,n,k,invpos,nj,xsumm,const,

A phi,fxgivkgl)

implicit none

integer KMAX,HYPMAX,XSMAX

integer n,k



APPENDIX C. ALLOCATION SAMPLER FORTRAN CODE 179

integer invpos(KMAX),nj(KMAX)

double precision xsumm(XSMAX,KMAX),fxgivkgl

double precision phi(HYPMAX,KMAX),const(KMAX)

C Computes log f_(X|K,G)

double precision pi

parameter (pi=0.314159265359d+01)

integer j,p,njj

double precision term

fxgivkgl= -(dfloat(n)/2.0d-00)*dlog(pi)

do p=1,k

j=invpos(p)

njj=nj(p)

call comptermN(KMAX,HYPMAX,XSMAX,j,p,njj,phi,xsumm,const,

A term)

fxgivkgl = fxgivkgl + term

enddo

return

end

SUBROUTINE comptermN(KMAX,HYPMAX,XSMAX,j,p,njj,phi,xsumm,const,

A term)

implicit none

integer KMAX,HYPMAX,XSMAX

integer j,p,njj

double precision phi(HYPMAX,KMAX)

double precision xsumm(XSMAX,KMAX),const(KMAX),term

double precision gamnj2,taunj,gam2,quad

double precision xmean,x2mean

if(njj.gt.0) then

xmean = xsumm(1,p)/dfloat(njj)

x2mean = xsumm(2,p) - (xsumm(1,p) ** 2.0d-00) / dfloat(njj)

if(x2mean.lt.0.0d-00) x2mean = 0.0d-00

gamnj2=phi(3,j)+dfloat(njj)/2.0d-00

taunj=phi(2,j)+dfloat(njj)

call dlgama(gamnj2,gam2)

quad=x2mean+((xmean-phi(1,j))**2)*phi(2,j)*njj/taunj

term = gam2

A + const(j)

B + 0.5d-00*dlog(phi(2,j)/taunj)

C - gamnj2*dlog(2.0d-00*phi(4,j)+quad)

else

term=0.0d-00

endif

return

end

SUBROUTINE selecxg1N(KMAX,NMAX,HYPMAX,XSMAX,x,igcomp,oldgi,

A newgi,pold,pnew,nj,xsumm,idg,idgn,n1,n2,

B xsumm1,xsumm2)

implicit none

integer KMAX,NMAX,HYPMAX,XSMAX

integer igcomp,oldgi,newgi,pold,pnew

integer nj(KMAX),idg,idgn,n1,n2

double precision x(NMAX),xsumm(XSMAX,KMAX)

double precision xsumm1(XSMAX),xsumm2(XSMAX)

idgn=idg

if(nj(pold).eq.1) idgn=idgn-1

if(nj(pnew).eq.0) idgn=idgn+1

n1=nj(pold)-1

n2=nj(pnew)+1

if(n1.eq.0) then

xsumm1(1)=0.0d-00

xsumm1(2)=0.0d-00

else

xsumm1(1)=xsumm(1,pold) - x(igcomp)

xsumm1(2)=xsumm(2,pold) - x(igcomp)**2

endif

xsumm2(1)=xsumm(1,pnew) + x(igcomp)

xsumm2(2)=xsumm(2,pnew) + x(igcomp)**2

return

end

SUBROUTINE fxgivkg1N(KMAX,HYPMAX,XSMAX,nj,xsumm,const,phi,

A oldgi,newgi,pold,pnew,nj1,nj2,xsumm1,

B xsumm2,fxgivkgl,fxgivkgn)

implicit none

integer KMAX,HYPMAX,XSMAX

integer nj(KMAX),oldgi,newgi,nj1,nj2,pold,pnew

double precision xsumm(XSMAX,KMAX),const(KMAX),xsumm1(XSMAX)

double precision xsumm2(XSMAX),phi(HYPMAX,KMAX)

double precision fxgivkgl,fxgivkgn

integer njj

double precision term

fxgivkgn=fxgivkgl

njj = nj(pold)

call comptermN(KMAX,HYPMAX,XSMAX,oldgi,pold,njj,phi,xsumm,const,

A term)

fxgivkgn = fxgivkgn - term

njj = nj(pnew)

call comptermN(KMAX,HYPMAX,XSMAX,newgi,pnew,njj,phi,xsumm,const,

A term)

fxgivkgn = fxgivkgn - term

call compterm1N(KMAX,HYPMAX,XSMAX,oldgi,nj1,const,phi,xsumm1,term)

fxgivkgn = fxgivkgn + term

call compterm1N(KMAX,HYPMAX,XSMAX,newgi,nj2,const,phi,xsumm2,term)

fxgivkgn = fxgivkgn + term

return

end

SUBROUTINE compterm1N(KMAX,HYPMAX,XSMAX,j,njj,const,phi,xsummj,

A term)

implicit none

integer KMAX,HYPMAX,XSMAX

integer j,njj

double precision const(KMAX),phi(HYPMAX,KMAX)

double precision xsummj(XSMAX),term

double precision gamnj2,taunj,gam2,quad

double precision xmean,x2mean

if(njj.gt.0) then

xmean = xsummj(1)/dfloat(njj)

x2mean = xsummj(2) - (xsummj(1) ** 2.0d-00) / dfloat(njj)

if(x2mean.lt.0.0d-00) x2mean = 0.0d-00

gamnj2=phi(3,j)+dfloat(njj)/2.0d-00

taunj=phi(2,j)+dfloat(njj)

call dlgama(gamnj2,gam2)

quad=x2mean+((xmean-phi(1,j))**2)*phi(2,j)*njj/taunj

term = gam2

A + const(j)

B + 0.5d-00*dlog(phi(2,j)/taunj)

C - gamnj2*dlog(2.0d-00*phi(4,j)+quad)

else

term=0.0d-00

endif

return

end

SUBROUTINE summetrN(NMAX,XSMAX,i,j,j1,nj1,nj2,x,xsumm1,xsumm2)

implicit none

integer NMAX,XSMAX,i,j,j1,nj1,nj2

double precision x(NMAX),xsumm1(XSMAX),xsumm2(XSMAX)

if(j.eq.j1) then

nj1 = nj1 + 1

else

nj2 = nj2 + 1



APPENDIX C. ALLOCATION SAMPLER FORTRAN CODE 180

endif

if(j.eq.j1) then

xsumm1(1) = xsumm1(1) + x(i)

xsumm1(2) = xsumm1(2) + x(i)**2

else

xsumm2(1) = xsumm2(1) + x(i)

xsumm2(2) = xsumm2(2) + x(i)**2

endif

return

end

SUBROUTINE summejtN(KMAX,NMAX,XSMAX,dxsm,x,igchng,njted,

A ejectingp,xsumm,xsumting,xsumted)

implicit none

integer NMAX,KMAX,XSMAX

integer dxsm,njted,ejectingp,igchng(NMAX)

double precision x(NMAX),xsumm(XSMAX,KMAX)

double precision xsumting(XSMAX),xsumted(XSMAX)

integer i,m,h

do m=1,dxsm

xsumting(m) = xsumm(m,ejectingp)

xsumted(m) = 0.0d-00

enddo

do h=1,njted

i = igchng(h)

xsumting(1) = xsumting(1) - x(i)

xsumting(2) = xsumting(2) - x(i)**2

xsumted(1) = xsumted(1) + x(i)

xsumted(2) = xsumted(2) + x(i)**2

enddo

return

end

SUBROUTINE fxgivkgejtN(KMAX,HYPMAX,XSMAX,nj,xsumm,const,phi,

A ejectingc,ejectedc,ejectingp,njting,

B njted,xsumting,xsumted,lfxgivkgrat)

implicit none

integer KMAX,HYPMAX,XSMAX

integer nj(KMAX),njting,njted

integer ejectingc,ejectedc,ejectingp

double precision xsumm(XSMAX,KMAX),const(KMAX),xsumting(XSMAX)

double precision xsumted(XSMAX),phi(HYPMAX,KMAX)

double precision lfxgivkgrat

integer j,njj

double precision term

j = ejectingc

njj = nj(ejectingp)

call comptermN(KMAX,HYPMAX,XSMAX,j,ejectingp,njj,phi,xsumm,

A const,term)

lfxgivkgrat = -term

call compterm1N(KMAX,HYPMAX,XSMAX,j,njting,const,phi,xsumting,

A term)

lfxgivkgrat = lfxgivkgrat + term

call compterm1N(KMAX,HYPMAX,XSMAX,ejectedc,njted,const,phi,

A xsumted,term)

lfxgivkgrat = lfxgivkgrat + term

return

end

SUBROUTINE summabsN(KMAX,NMAX,XSMAX,absorbingp,absorbedp,xsumm,

A xsumabs)

implicit none

integer NMAX,KMAX,XSMAX

integer absorbingp,absorbedp

double precision xsumm(XSMAX,KMAX),xsumabs(XSMAX)

xsumabs(1) = xsumm(1,absorbingp) + xsumm(1,absorbedp)

xsumabs(2) = xsumm(2,absorbingp) + xsumm(2,absorbedp)

return

end

SUBROUTINE fxgivkgabsN(KMAX,HYPMAX,XSMAX,nj,xsumm,const,phi,

A absorbingc,absorbedc,absorbingp,absorbedp,

B njabs,xsumabs,lfxgivkgrat)

implicit none

integer KMAX,HYPMAX,XSMAX

integer nj(KMAX),njabs

integer absorbingc,absorbedc,absorbingp,absorbedp

double precision xsumm(XSMAX,KMAX),const(KMAX),xsumabs(XSMAX)

double precision phi(HYPMAX,KMAX)

double precision lfxgivkgrat

integer j,njj

double precision term

j = absorbedc

njj = nj(absorbedp)

call comptermN(KMAX,HYPMAX,XSMAX,j,absorbedp,njj,phi,xsumm,const,

A term)

lfxgivkgrat = term

j = absorbingc

njj = nj(absorbingp)

call comptermN(KMAX,HYPMAX,XSMAX,j,absorbingp,njj,phi,xsumm,const,

A term)

lfxgivkgrat = lfxgivkgrat + term

call compterm1N(KMAX,HYPMAX,XSMAX,j,njabs,const,phi,xsumabs,term)

lfxgivkgrat = lfxgivkgrat - term

return

end

SUBROUTINE selecxg2N(KMAX,NMAX,HYPMAX,XSMAX,x,njmove,

A gmove,jold,jnew,pold,pnew,nj,xsumm,idg,idgn,

B nj1,nj2,xsumm1,xsumm2)

implicit none

integer KMAX,NMAX,HYPMAX,XSMAX

integer njmove,gmove(NMAX),jold,jnew,pold,pnew

integer nj(KMAX),idg,idgn,nj1,nj2

double precision x(NMAX),xsumm(XSMAX,KMAX)

double precision xsumm1(XSMAX),xsumm2(XSMAX)

integer count,i

idgn=idg

if(nj(pold).eq.njmove) idgn=idgn-1

if(nj(pnew).eq.0) idgn=idgn+1

nj1 = nj(pold) - njmove

nj2 = nj(pnew) + njmove

do i=1,2

xsumm1(i) = xsumm(i,pold)

xsumm2(i) = xsumm(i,pnew)

enddo

do count=1,njmove

i = gmove(count)

xsumm1(1) = xsumm1(1) - x(i)

xsumm1(2) = xsumm1(2) - x(i)**2

xsumm2(1) = xsumm2(1) + x(i)

xsumm2(2) = xsumm2(2) + x(i)**2

enddo

return

end

SUBROUTINE fxgivkgmlabN(KMAX,HYPMAX,XSMAX,j1,j2,p1,p2,nj1,nj2,

A phi,xsumm,const,fxgivkgl,fxgivkgn)

implicit none

integer KMAX,HYPMAX,XSMAX

integer j1,j2,p1,p2,nj1,nj2



APPENDIX C. ALLOCATION SAMPLER FORTRAN CODE 181

double precision phi(HYPMAX,KMAX),xsumm(XSMAX,KMAX)

double precision const(KMAX),fxgivkgl,fxgivkgn

double precision term1,term2,term3,term4

call comptermN(KMAX,HYPMAX,XSMAX,j1,p1,nj1,phi,xsumm,const,term1)

call comptermN(KMAX,HYPMAX,XSMAX,j2,p2,nj2,phi,xsumm,const,term2)

call comptermN(KMAX,HYPMAX,XSMAX,j1,p2,nj2,phi,xsumm,const,term3)

call comptermN(KMAX,HYPMAX,XSMAX,j2,p1,nj1,phi,xsumm,const,term4)

fxgivkgn = fxgivkgl - term1 - term2 + term3 + term4

return

end

SUBROUTINE writehypN(KMAX,HYPMAX,phi,ouhyp)

implicit none

integer KMAX,HYPMAX

integer ouhyp

double precision phi(HYPMAX,KMAX)

write(ouhyp,*) phi(2,1), phi(4,1)

return

end

SUBROUTINE assign(NMAX,KMAX,SAMPMAX,km,n,nsout,ouk,oug,ougr,

A filek,fileg,nfilnam)

implicit none

integer NMAX,KMAX,SAMPMAX

integer km,n,nsout,ouk,oug,ougr,nfilnam

character*24 filek,fileg

integer k(SAMPMAX),knempt(SAMPMAX)

integer g1(NMAX),g2(NMAX),costmat(130,131),totcost,perm(KMAX)

integer i,j,j1,j2,i1,i2,m1,m2,gi,iter,lowerbnd

integer table(KMAX),prev(KMAX),m

character gcharmat(SAMPMAX,NMAX)

character gchar(NMAX)

character*24 filegrel

open(ouk,file=filek,access=’sequential’,status=’old’)

open(oug,file=fileg,access=’sequential’,status=’old’)

do j=1,nsout

read(ouk,1) k(j), knempt(j)

enddo

do j=1,nsout

read(oug,2) (gcharmat(j,i),i=1,n)

enddo

close(ouk,status=’keep’)

close(oug,status=’keep’)

filegrel = fileg(1:nfilnam+4)//"rel"

open(ougr,file=filegrel,access=’sequential’,status=’new’)

do m1=1,km

table(m1) = 0

prev(m1) = 0

enddo

do j=1,nsout

table(knempt(j)) = table(knempt(j)) + 1

enddo

do m=2,km

if(table(m-1).ne.0) then

prev(m) = m-1

else

prev(m) = prev(m-1)

endif

enddo

do m1=1,km

do iter=1,2

do j1=1,nsout

if(knempt(j1).eq.m1) then

do i1=1,km

do i2=1,km

costmat(i1,i2)=0

enddo

enddo

do i=1,n

gchar(i) = gcharmat(j1,i)

enddo

call gchar2int(NMAX,n,gchar,g1)

lowerbnd = 0

do j2=1,nsout

if((knempt(j2).eq.prev(m1)).or.

A (knempt(j2).eq.m1.and.

B (iter.ge.2.or.j2.lt.j1) ) ) then

do i=1,n

gchar(i) = gcharmat(j2,i)

enddo

call gchar2int(NMAX,n,gchar,g2)

do i=1,n

do m2=1,knempt(j2)

if(m2.eq.g2(i)) then

costmat(m2,g1(i)) = costmat(m2,g1(i))-1

lowerbnd = lowerbnd + 1

endif

enddo

enddo

endif

enddo

do i1=1,km

do i2=1,km

costmat(i1,i2) = costmat(i1,i2) + lowerbnd

enddo

enddo

call assct(m1,costmat,perm,totcost)

do i=1,n

call gchar2int(1,1,gcharmat(j1,i),gi)

call gint2char(1,1,perm(gi),gchar)

gcharmat(j1,i) = gchar(1)

enddo

endif

enddo

enddo

enddo

do j=1,nsout

write(ougr,2) (gcharmat(j,i),i=1,n)

enddo

close(ougr,status=’keep’)

1 format(2i3)

2 format(1000000a1)

stop

end

SUBROUTINE gchar2int(NMAX,n,gchar,g)

implicit none

integer NMAX

integer n,g(NMAX)

character gchar(NMAX)

C Changes char g to an integer vector g (inverse of gint2char)

integer i,j

character*89 numb

data numb/"123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ0abcdefghijklmnopqrs

1 tuvwxyz!%^&*()-_+={}[]~#@:;?><.,/|"/

do i=1,n

do j=1,89

if(numb(j:j).eq.gchar(i)) then

g(i)=j

go to 10

endif

enddo

10 continue

enddo

return

end

SUBROUTINE gint2char(NMAX,n,g,gchar)



APPENDIX C. ALLOCATION SAMPLER FORTRAN CODE 182

implicit none

integer NMAX

integer n,g(NMAX)

character gchar(NMAX)

C Changes labels in g from 1:km to alphanumeric values

integer i,ig

character*89 numb

data numb/"123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ0abcdefghijklmnopqrs

A tuvwxyz!%^&*()-_+={}[]~#@:;?><.,/|"/

do i=1,n

ig=g(i)

gchar(i) = numb(ig:ig)

enddo

return

end

SUBROUTINE setseed(seed)

implicit none

integer seed(4)

integer i, idum(4)

common /seedstor/ idum

do i=1,4

idum(i) = seed(i)

enddo

return

end



Bibliography

Aitkin, M. (2001). Likelihood and Bayesian analysis of mixtures. Statistical

Modelling, 1, 287–304.

Andrieu, C., N. De Freitas, A. Doucet, and M. I. Jordan (2003). An Introduction

to MCMC for Machine Learning. Machine Learning, 50, 5–43.

Basford, K. E., G. J. McLachlan, and M. G. York (1997). Modelling the distri-

bution of stamp thickness via finite normal mixtures: The 1872 Hidalgo stamp

issue of Mexico revisited. Journal of Applied Statistics, 24, 169–179.

Bechtel, Y. C., C. Bonäıti-Pellié, N. Poisson, J. Magnette, and P. R. Bechtel

(1993). A population and family study of N-acetyltransferase using caffeine

urinary metabolites. Clinical Pharmacology and Therapeutics, 54, 134–141.

Binder, D. A. (1978). Bayesian cluster analysis. Biometrika, 65, 31–38.

Cappé, O., C. P. Robert, and T. Rydén (1995). Bayesian model choice via Markov

chain Monte Carlo methods. Journal of Royal Statistical Society B, 57, 473–

484.

Carlin, B. P. and S. Chib (1995). Bayesian model choice via Markov chain Monte

Carlo methods. Journal of Royal Statistical Society B, 57, 473–484.

183



BIBLIOGRAPHY 184

Carpaneto, G. and P. Toth (1980). Algorithm 548: Solution of the assignment

problem [H]. ACM Transactions on Mathematical Software, 6, 104–111.

Casella, G. and E. I. George (1992). Explaining the Gibbs Sampler. The American

Statistician, 46, 167–174.

Casella, G., C. P. Robert, and M. T. Wells (2000). Mixture Models, Latent

Variables and Partitioned Importance Sampling. Technical Report 2000-03,

CREST, INSEE, Paris.

Celeux, G. (1998). Bayesian inference for mixtures: the label switching problem

in COMPSTAT 98 - Procedures in Computational Statistics (eds R.Payne and

P.J. Green). pp. 227-232, Heidelberg: Physica.

Celeux, G., M. Hurn, and C. P. Robert (2000). Computational and Inferential

Difficulties with Mixture Posterior Distributions. Journal of the American

Statistical Association, 95, 957–970.

Chib, S. (1995). Marginal Likelihood from the Gibbs Output. Journal of the

American Statistical Association, 90, 1313–1321.

Chib, S. and E. Greenberg (1995). Understanding the Metropolis-Hastings Algo-

rithm. The American Statistician, 49, 327–335.

Crawford, S. L., M. H. DeGroot, J. B. Kadane, and M. J. Small (1992). Modelling

lake chemistry distributions: approximate Bayesian methods for estimating a

finite-mixture model. Technometrics, 34, 441–453.

DeGroot, M. H. (1970). Optimal Statistical Decisions. USA: McGraw-Hill.



BIBLIOGRAPHY 185

Dellaportas, P. and I. Papageorgiou (2006). Multivariate mixtures of normals

with an unknown number of components. Statistics and Computing, 16, 57–

68.

Dempster, A. P., N. M. Laird, and D. B. Rubin (1977). Maximum Likelihood

from Incomplete Data via the EM Algorithm. Journal of Royal Statistical

Society B, 39, 1–38.

Diebolt, J. and C. P. Robert (1990). Bayesian estimation of finite mixture distri-

butions: part II, Sampling implementation. Technical Report 111, Laboratoire

de Statistique Théorique et Appliquée, Univerisité Paris VI, Paris.

Diebolt, J. and C. P. Robert (1994). Estimation of finite mixture distributions

through Bayesian sampling. Journal of Royal Statistical Society B, 56, 363–375.

Escobar, M. D. and M. West (1995). Bayesian density estimation and inference

using mixtures. Journal of the American Statistical Association, 90, 577–588.

Everitt, B. S. and D. J. Hand (1981). Finite Mixture Distributions. London, UK:

Chapman and Hall.

Fearnhead, P. (2004). Particle filters for mixture models with an unknown number

of components. Statistics and Computing, 14, 11–21.

Ferguson, T. S. (1983). Bayesian Density Estimation by Mixtures of Normal

Distributions. In Recent Advances in Statistics (eds H. Rizvi and J. Rustagi),

New York, USA: Academic Press, 287–302.

Fisher, R. A. (1936). The Use of Multiple Measurements in Axonomic Problems.

Annals of Eugenics, 7, 179–188.



BIBLIOGRAPHY 186

Fryer, J. G. and C. A. Robertson (1972). A comparison of some methods for

estimating mixed normal distributions. Biometrika, 59, 639–648.

Gelfand, A. E. and A. F. M. Smith (1990). Sampling-based approaches to calcu-

lating marginal densities. Journal of the American Statistical Association, 85,

972–985.

Geman, S. and D. Geman (1984). Stochastic relaxation, Gibbs distributions and

the Bayesian restoration of images. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 6, 721–741.

Geyer, C. J. (1992). Practical Markov chain Monte Carlo. Statistical Science, 7,

473–483.

Gilks, W. R., S. Richardson, and D. J. Spielgelhalter (1996). Markov Chain

Monte Carlo in Practice. London, UK: Chapman & Hall.

Granger, C. W. J. and N. Newbold (1986). Forecasting Economic Time Series.

London, UK: Academic Press Inc. (London) Ltd.

Green, P. J. (1995). Reversible jump Markov chain Monte Carlo computation

and Bayesian model determination. Biometrika, 82, 711–732.

Green, P. J., N. L. Hjort, and S. Richardson (2003). Highly Structured Stochastic

Systems. Oxford, UK: Oxford University Press.

Grenander, U. and M. I. Miller (1991). Jump-diffusion processes for abduction

and recognition of biological shapes. Technical report, Electronic Signals and

Systems Research Laboratory, Washington University.



BIBLIOGRAPHY 187

Grenander, U. and M. I. Miller (1994). Representations of knowledge in complex

systems. Journal of Royal Statistical Society B, 56, 549–603.

Gruet, M. A., A. Philippe, and C. P. Robert (1999). MCMC control spreadsheets

for exponential mixture estimation. Journal of Computational and Graphical

Statistics, 8, 298–317.

Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains

and their application. Biometrika, 57, 97–109.

Hurn, M., A. Justel, and C. P. Robert (2003). Estimating Mixtures of Regressions.

Journal of Computational and Graphical Statistics, 12, 55–79.

Ishwaran, H., L. F. James, and J. Sun (2001). Bayesian Model Selection in Finite

Mixtures by Marginal Density Decompositions. Journal of American Statistical

Association, 96, 1316–1332.

Izenman, A. J. and C. J. Sommer (1988). Philatelic Mixtures and Multimodal

Densities. Journal of American Statistical Association, 83, 941–953.

Jasra, A., C. C. Holmes, and D. A. Stephens (2005). Markov chain Monte Carlo

methods and the label switching problem in Bayesian mixture modelling. Sta-

tistical Science, 20, 50–67.

Levine, R. A. and G. Casella (2006). Optimizing Random Scan Gibbs Samplers.

Journal of Multivariate Analysis, 97, 2071–2100.

Li, B. (2006). A new approach to cluster analysis: the clustering-function-based

method. Journal of the Royal Statistical Society B, 68, 457–476.



BIBLIOGRAPHY 188

Liu, C. and D. B. Rubin (1994). The ECME algorithm: a simple extension of

EM and ECM with a faster montone convergence. Biometrika, 81, 633–648.

MacLachlan, G. and D. Peel (2000). Finite Mixture Models. New York, USA:

John Wiley & Sons.

MacLachlan, G. J. (1997). Discussion of “On Bayesian analysis of mixtures with

an unknown number of components” by S. Richardson and P.J. Green. Journal

of Royal Statistical Society B, 59, 779–780.

MacLachlan, G. J. and K. E. Basford (1987). Mixture Models. New York, USA:

Marcel Dekker, Inc.

MacLachlan, G. J. and T. Krishnan (1997). The EM Algorithm and Extensions.

New York, USA: Wiley.

MacQueen, J. B. (1967). Some methods for classification and analysis of mul-

tivariate observations. In: Proceedings of 5th Berkeley Symposium on Math-

ematical Statistics and Probability, Berkeley: University of California Press,

USA, 281–297.

Marin, J., K. Mengersen, and C. P. Robert (2005). Bayesian Modelling and

Inference on Mixtures of Distributions. In Handbook of Statistics: Volume 25

(eds D. Dey and C.R. Rao), North-Holland.

Marron, J. S. and M. P. Wand (1992). Exact Mean Integrated Squared Error.

The Annals of Statistics, 20, 712–736.

McGrory, C. A. (2005). Variational Approximations in Bayesian Model Selection.

Ph. D. thesis, Department of Statistics, University of Glasgow, Glasgow.



BIBLIOGRAPHY 189

Meligkotsidou, L. (2007). Bayesian multivariate Poisson mixtures with an un-

known number of components. Statistics and Computing, 17, 93–107.

Meng, X. L. and D. B. Rubin (1993). Maximisation likelihood estimation via the

ECM algorithm: A general framework. Biometrika, 80, 267–278.

Meng, X. L. and D. van Dyk (1997). The EM algorithm-an old folk song sung

to a fast new tune (with discussion). Journal of the Royal Statistical Society

B, 59, 511–567.

Mengersen, K. and C. P. Robert (1996). Testing for mixtures: A Bayesian En-

tropic Approach (with discussion). In Bayesian Statistics 5 (eds J.M. Bernado,

J.O. Berger, A.P. Dawid and A.F.M. Smith), Oxford: Oxford University Press,

225–276.

Metropolis, N., M. N. Rosenbluth, A. H. Teller, and E. Teller (1953). Equations

of state calculations by fast computing machines. The Journal of Chemical

Physics, 21, 1087–1092.

Mueller, P. (1991). A generic approach to posterior integration and Bayesian

sampling. Technical Report 91-09, Statistics Department, Purdue University.

Neal, R. M. and G. E. Hinton (1998). A view of the EM algorithm that justifies

incremental, sparse and other variants. In Learning in Graphical Models (ed

M.I. Jordan), Dordrecht: Kluwer, 355–368.

Nobile, A. (1994). Bayesian Analysis of Finite Mixture Distributions. Ph. D.

thesis, Department of Statistics, Carnegie Mellon University, Pittsburgh.



BIBLIOGRAPHY 190

Nobile, A. (2004). On the posterior distribution of the number of components in

a finite mixture. The Annals of Statistics, 32, 2044–2073.

Nobile, A. (2005). Bayesian finite mixtures: a note on prior specification and

posterior computation. Technical Report 05-03, Department of Statistics, Uni-

versity of Glasgow.

Nobile, A. and A. T. Fearnside (2007). Bayesian finite mixtures with an unknown

number of components: the allocation sampler. Statistics and Computing, 17,

147–162.

Pearson, K. (1894). Contribution to the mathematical theory of evolution. Philo-

sophical Transactions of Royal Society A, 185, 71–100.

Phillips, D. B. and A. F. M. Smith (1996). Bayesian model comparison via jump

diffusions. In Markov Chain Monte Carlo in Practice (eds W.R. Gilks, S.

Richardson and D.J. Spiegelhalter), Chapman & Hall, 215–239.

Postman, M., J. P. Huchra, and M. J. Geller (1986). Probes of large-scale struc-

ture in the Corona Borealis region. The Astronomical Journal, 92, 1238–1247.

Preston, C. J. (1976). Spatial birth-and-death processes. Bulletin of the Institute

of International Statistics, 46, 371–391.

Pritchard, J. K., M. Stephens, and P. Donnelly (2000). Inference of Population

Structure Using Multilocus Genotype Data. Genetics, 155, 945–959.

Raftery, A. E. (1996). Hypothesis testing and model selection. In Markov Chain

Monte Carlo in Practice (eds W.R. Gilks, S. Richardson and D.J. Spiegelhal-

ter), Chapman & Hall, 163–187.



BIBLIOGRAPHY 191

Rao, C. R. (1948). The utilization of multiple measurements in problems of

biological classification. Journal of Royal Statistical Society B, 10, 159–203.

Redner, R. A. and H. R. Walker (1984). Mixture densities, maximum likelihood

and the EM algorithm. Society for Industrial and Applied Mathemetics, 26,

195–239.

Richardson, S. and P. J. Green (1997). On Bayesian analysis of mixtures with an

unknown number of components. Journal of Royal Statistical Society B, 59,

731–792.

Robert, C. P., T. Rydén, and D. M. Titterington (2000). Bayesian Inference in

Hidden Markov Models through the Reversible Jump Markov Chain Monte

Carlo Method. Journal of Royal Statistical Society B, 62, 57–75.

Roeder, K. (1990). Density estimation with confidence sets exemplified by super-

clusters and voids in galaxies. Journal of American Statistical Association, 85,

617–624.

Roeder, K. and L. Wasserman (1997). Practical Bayesian density estimation

using mixtures of normals. Journal of American Statistical Association, 92,

894–902.

Rydén, T., T. Teräsvirta, and S. Åsbrink (1998). Stylized facts of daily return

series and the hidden markov model. Journal of Applied Econometrics, 13 (3),

217–244.

Sahu, S. K. and R. C. H. Cheng (2003). A fast distance based approach for



BIBLIOGRAPHY 192

determining the number of components in mixtures. The Canadian Journal of

Statistics, 31, 3–22.

Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statis-

tics, 6, 461–464.

Spiegelhalter, D. J., N. G. Best, B. P. Carlin, and A. Van der Linde (2002).

Bayesian measures of model complexity and fit (with discussion). Journal of

Royal Statistical Society B, 64, 583–639.

Steele, R. J., A. E. Raftery, and M. J. Edmond (2003). Computing Normaliz-

ing Constants for Finite Mixture Models via Incremental Mixture Importance

Sampling. Technical Report 436, Department of Statistics, University of Wash-

ington.

Stephens, M. (1997a). Bayesian methods for mixtures of normal distributions.

Ph. D. thesis, Department of Statistics, University of Oxford, Oxford.

Stephens, M. (1997b). Discussion of “On Bayesian analysis of mixtures with an

unknown number of components” by S. Richardson and P.J. Green. Journal

of Royal Statistical Society B, 59, 768–769.

Stephens, M. (2000a). Bayesian analysis of mixture models with an unknown

number of components - an alternative to reversible jump methods. The Annals

of Statistics, 28, 40–74.

Stephens, M. (2000b). Dealing with label switching in mixture models. Journal

of Royal Statistical Society B, 62, 795–809.



BIBLIOGRAPHY 193

Tan, W. Y. and W. C. Chang (1972). Some comparisons of the method of mo-

ments and the method of maximum likelihood in estimating parameters of a

mixture of two normal densities. Journal of the American Statistical Associa-

tion, 67, 702–708.

Tanner, M. A. and W. H. Wong (1987). The calculation of posterior distributions

by data augmentation. Journal of the American Statistical Society, 82, 528–

540.

Tierney, L. (1994). Markov Chains for Exploring Posterior Distributions. The

Annals of Statistics, 22, 1701–1728.

Titterington, D. M., A. F. M. Smith, and U. E. Makov (1985). Statistical Analysis

of Finite Mixture Distributions. Chichester, UK: John Wiley & Sons.

Ward, J. H. (1963). Hierarchial Grouping to optimize an objective function.

Journal of American Statistical Association, 58, 236–244.

Wolfe, J. H. (1971). A Monte Carlo study of the sampling distribution of the

likelihood ratio for mixtures of multinormal distributions. Technical Bulletin

STB 72-2 (San Diego, US Naval Personnel and Training Research Laboratory).

Wruck, E., J. Achar, and J. Mazucheli (2001). Classification and discrimination

for populations with mixture of multivariate normal distributions. Revista de

Matematica e Estatistica, 19, 383–396.

Zhang, Z., K. L. Chan, and C. Chen (2004). Learning a multivariate Gaus-

sian mixture model with the reversible jump MCMC algorithm. Statistics and

Computing, 14, 343–355.


