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Abstract 

 
Streptococcus pneumoniae, also known as the pneumococcus, is an important 

human pathogen, with high burdens of disease and mortality worldwide. There 

are over 90 serotypes of this pathogen, demonstrating the vast amounts of 

diversity present. Currently, there are two pneumococcal vaccines, both 

targeting the polysaccharide capsule. However, one vaccine is ineffective in the 

paediatric population, whilst the other only targets a minority of disease-causing 

serotypes, and has increased disease caused by serotypes not present in the 

vaccine. One solution is a new pneumococcal vaccine targeting a protein 

virulence factor possessed by all pneumococci, which would afford cross-

serotype protection. As a result, it is important to assess the diversity of 

pneumococcal virulence factors in order to determine their potential as vaccine 

candidates, as excess diversity present may prevent full serotype-independent 

protection of a vaccine. Furthermore, diversity studies offer important insight on 

pneumococcal biology, epidemiology and pathogenesis.  

The diversity in the toxin pneumolysin (Ply) was greater than previously thought, 

with 14 protein alleles discovered. However, diversity remained significantly 

lower than surface-exposed virulence factors, indicating this toxin may be more 

suitable as a vaccine candidate. Furthermore, all 14 alleles were recognised by 

polyclonal antibodies, showing the potential cross-serotype protection of a 

vaccine targeting this toxin. A novel non-haemolytic Ply allele was associated 

with clones recently expanding in the pneumococcal population, as well as 

serotypes associated with outbreaks of pneumococcal disease. The non-

haemolytic toxin may therefore play a role in driving clonal expansion in certain 

genetic backgrounds, or be involved in establishing outbreaks of pneumococcal 

disease.  

The diversity in the neuraminidase A (NanA) enzyme was significantly higher 

than in Ply, with many point mutations, mosaic blocks and insertions regions 

present in 18 divergent alleles. This level of diversity should not be prohibitive 

to the use of this protein as a vaccine candidate, as polyclonal antibodies 

recognised 4 NanA alleles of significant diversity, indicating the possibility of 

cross-serotype protection. The role of NanA in pathogenesis of pneumococcal 
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haemolytic uraemic syndrome (p-HUS) was investigated, although there was no 

correlation between p-HUS and NanA allele or activity.  

The novel discovery that pneumococcal NanA was inhibited by viral 

neuraminidase inhibitors of influenza allowed insight into the synergistic 

relationship between these two deadly pathogens, and showed for the first time 

that treatment with these drugs acts on both the primary and secondary 

pathogen. One of these inhibitors, Oseltamivir, was found to have potential in 

treating secondary pneumococcal pneumonia, which may help decrease the 

significant burden of this disease, as well as reducing the over-reliance on 

antibiotics for treating pneumococcal diseases.  

Homologues of Ply and NanA were identified and characterised in the related 

species Streptococcus mitis and Streptococcus pseudopneumoniae, giving insight 

into the evolutionary relationships between these species. Furthermore, the 

presence of these homologues in related species gives rise to the possibility of 

pneumococci acquiring altered genes through horizontal gene transfer. The 

selective pressure of a vaccine targeting these proteins may give evolutionary 

advantage to these pneumococci, resulting in evasion of a vaccine.  

Microarray studies have been used to assess pneumococcal diversity at a 

genome-wide level. Gene expression studies identified candidate genes which 

may play a role in p-HUS pathogenesis. Further studies into this area will 

improve the diagnosis and treatment of this disease. Furthermore, a large 

number of established pneumococcal virulence factors, many of which are 

vaccine candidates, were found to have homologues in closely related 

commensal species. These results must be taken into consideration for future 

protein-based pneumococcal vaccine design. 
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1.1 Streptococcus pneumoniae 

Streptococcus pneumoniae, otherwise known as the pneumococcus, is a Gram-

positive facultative anaerobe, and an important human pathogen. It causes a 

variety of diseases ranging from fatal meningitis and pneumonia to the relatively 

benign otitis media (Cartwright et al., 2002). Diseases are caused primarily in 

children and the elderly, as well as immuno-compromised patients. The 

bacterium was identified by both Louis Pasteur in France and George Sternberg 

in America in 1881 (Pasteur, 1881, Sternberg, 1881). There are currently 91 

different pneumococcal serotypes identified, which are characterised by 

polysaccharide immunochemistry (Henrichsen, 1995; Park et al., 2007). Initially, 

serotypes were numbered chronologically by order of discovery (Dochez and 

Gillespie, 1913), although cross-reaction of a number of these has resulted in 

reclassification of serotype nomenclature to incorporate serogrouping of closely 

related serotypes (Smart, 1986). Serotypes can be identified by the Quellung 

reaction, which allows determination of pneumococcal capsule identity by 

reaction with antibodies to homologous capsule polysaccharides. This technique 

is still employed in laboratories today, although it is hindered by cross-reactivity 

of a number of serotypes resulting in mistyping, as well as non-expression of 

capsule genes resulting in non-typable isolates. Recent studies have 

concentrated on developing more sensitive methods of pneumococcal 

serotyping, with reduced expense (Batt et al., 2005; Pai et al., 2005a). 

Furthermore, a method of multiplex PCR has recently been shown to 

differentiate between pneumococcal serotypes (Pai et al., 2006). 

Multi-locus sequence typing (MLST) is a method of further pneumococcal 

classification pioneered by Enright and Spratt (Enright and Spratt, 1998). This 

method allows genetic characterisation of pneumococcal isolates by comparing 

the sequences of seven housekeeping genes (aroE, gdh, gki, recP, spi, xpt and 

ddl), with each allele assigned a different number after comparison with 

sequences in the MLST database (www.mlst.net). This results in a “barcode” of 

seven allele numbers for each isolate, and this sequence of numbers is compared 

to barcodes for other isolates present in the database. From this, each isolate is 

assigned a Sequence Type (ST), one number to represent the barcode of seven 

allele numbers produced. Therefore, isolates with identical alleles of these 7 

housekeeping genes share the same ST. MLST is a powerful tool for molecular 
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characterisation, as it provides a portable, electronic method of comparing 

relatedness of species, allowing comparison of isolates between laboratories. 

Results of MLST have shown that a large variety of STs are present in each 

serotype, as well as STs being present in more than one serotype, showing that 

pneumococcal isolates have the ability to switch their polysaccharide capsule 

(Coffey et al., 1999; Coffey et al., 1998a; Coffey et al., 1998b; Jefferies et al., 

2003). This has most recently been observed in relation to serotype replacement 

due to vaccine pressure (Brueggemann et al., 2007; Pai et al., 2005b). More 

accurate comparison of pneumococcal isolates can be determined by use of 

microarray technology and full genome sequencing. Indeed, use of microarrays 

has recently identified genetic differences between isolates considered identical 

by serotype and MLST (Silva et al., 2006), indicating that even serotype and 

MLST are not robust enough methods of pneumococcal classification. Sequencing 

of entire pneumococcal genomes obviously has the most merit in terms of 

pneumococcal classification, and previous sequencing projects have returned 

valuable information on the pneumococcus (Hiller et al., 2007; Hoskins et al., 

2001; Lanie et al., 2007; Tettelin et al., 2001). Furthermore, this technique is 

becoming more affordable, and our laboratory is currently sequencing ~25 

pneumococcal genomes of various serotypes and ST. However, these techniques 

are not affordable or time-efficient for use in a reference laboratory. Therefore, 

it has been proposed that sequencing of essential pneumococcal virulence 

factors, along with house-keeping genes, may increase the distinguishing 

potential of MLST (Hanage et al., 2005). 

1.2 Carriage of S. pneumoniae 

S. pneumoniae is carried asymptomatically in the upper respiratory tract of up 

to 30% of the human population, particularly in children (Tuomanen et al., 

2006). The nasopharynx is a highly competitive environment, colonised by other 

species including Neisseria meningitidis, Haemophilus influenzae, 

Staphylococcus aureus and other Streptococcal species (Bogaert et al., 2004). 

The pneumococcus produces H2O2, which has been shown to inhibit or kill other 

nasopharyngeal microflora (Pericone et al., 2000). Furthermore, the NanA 

enzyme of S. pneumoniae has been shown to desialiate the lipopolysaccharide of 

N. meningitidis and H. influenzae, exposing them to the host immune system. 

This confers a competitive advantage to the pneumococcus (Shakhnovich et al., 
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2002). These facets of the pneumococcus offer a competitive advantage over 

other colonisers. The nasopharynx is where the pneumococcus comes into close 

contact with related members of the viridans group streptococci such as 

Streptococcus mitis and Streptococcus oralis. As these species are naturally 

transformable, and can uptake DNA from their environment, exchange of genetic 

information between species can occur. This can have important consequences 

for treatment of pneumococcal diseases, as has been demonstrated by the 

transfer of penicillin resistance from S. mitis and S. oralis to S. pneumoniae via 

the pbp2b gene (Coffey et al., 1993; Dowson et al., 1993). It has also been 

demonstrated that regions of variation within the pneumococcal virulence 

factors NanA and immunoglobulin A protease are a result of homologous 

recombination with S. oralis (King et al., 2005; Poulsen et al., 1998). Exchange 

of genetic material can therefore occur between these species, although it is 

unclear in which direction the flow of genetic material generally occurs.  

Pneumococcal carriage is thought to be required for progression to 

pneumococcal disease. There are a number of risk factors that have been shown 

to affect colonisation levels, including antibiotic use, smoking, asthma, ethnicity 

and overcrowding (Cardozo et al., 2008; DeMaria et al., 1980; Obaro, 2000). 

Carriage studies are important in order to establish epidemiological information 

for comparison with studies of invasive pneumococcal disease. Although 

extensive pneumococcal carriage studies are rare, a review showed that the 

serotypes most commonly isolated from carriage in Europe included 6A, 6B, 9V, 

14, 18C, 19F and 23F (Bogaert et al., 2004), and a recent study showed that 

particular clones of pneumococci have higher propensities for transmission and 

persistence in the setting of a day care centre (Sa-Leao et al., 2008).  

1.3 Diseases caused by S. pneumoniae 

The pneumococcus can cause a wide range of diseases, ranging from the 

relatively benign in otitis media and sinusitis to the severe and potentially fatal 

in meningitis, pneumonia and bacteraemia (Cartwright et al., 2002). Other 

complications of pneumococcal disease include empyema and haemolytic 

uraemic syndrome. Although there is not an exclusive relationship, some 

serotypes are more frequently isolated from invasive pneumococcal disease (IPD) 

than others, whilst others appear to be more frequently isolated from carriage. 
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Brueggemann et al. (2003) employed a method allowing comparison of 

“invasiveness” of particular clones or serotypes by comparing numbers found in 

carriage to those found in IPD in children <5 in Oxford, UK, allowing comparison 

of odds ratios. The results showed that serotypes 1, 4, 14 and 18C were highly 

invasive, whilst 6B, 9V, 19F and 23F were more likely to be associated with 

carriage (Brueggemann et al., 2003). Meanwhile, a study in Sweden compared 

odds ratios of invasive isolates, describing serotype 1 and 7F isolates as “primary 

pathogens” as they primarily infect healthy individuals, are rarely carried, and 

cause less severe IPD. Other serotypes were described as opportunistic 

pathogens, causing more severe diseases in immuno-compromised patients 

(Sjostrom et al., 2006). These studies show that there are major differences 

observed in invasive potential of different pneumococcal serotypes and clones. 

The transition from carriage to invasive disease is poorly understood, although it 

has been shown that IPD results from a pneumococcal serotype already 

colonising the host (Lloyd-Evans et al., 1996). This implies that isolates of 

serotypes such as serotype 1, which are very rarely found in carriage, may be 

only carried for a shrot period of time before causing IPD, whilst other serotypes 

may establish themselves in the host nasopharynx before progressing to IPD, 

possibly as a result of increased risk factors such as immuno-suppression or 

predisposing diseases. Much work has been done into such risk factors 

predisposing to pneumococcal disease. Clearly, the vast majority of IPD occurs in 

children, the elderly and immuno-compromised patients, and so falling into 

these categories can be considered a major risk factor for IPD (Tuomanen et al., 

2006). The immuno-suppression associated with the HIV virus has been shown to 

predispose to pneumococcal bacteraemia, with differences in serotype and 

antibiotic susceptibilities also noted (Jones et al., 1998). Further studies noted 

differences in clinical presentation of pneumococcal diseases in HIV-infected 

patients. Infection with Influenza has been shown to predispose to 

pneumococcal disease, with the pneumococcus being the leading cause of 

secondary bacterial pneumonia after influenza infection (McCullers and Rehg, 

2002). This lethal synergism is discussed further in Section 1.9.  

1.3.1 Pneumonia and bacteraemia 

Pneumococcal pneumonia is characterised by build-up of fluid in the lungs, 

which prevents optimum transfer of oxygen to the bloodstream by restricting 
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access to the alveoli. Pneumonia is responsible for around 20% of all childhood 

deaths, mainly in developing countries (Black et al., 2003; Mulholland, 1999). 

The pneumococcus accounts for a large proportion of this, with an estimated 1-4 

million cases of pneumococcal pneumonia every year in Africa alone (Scott, 

2007) and 1 million deaths from pneumococcal pneumonia annually, mostly in 

children in developing countries. In developed countries, the pneumococcus is 

the most common cause of community-acquired pneumonia, and has a 10-20% 

mortality rate (www.who.int/vaccine_research/diseases/ari/en/index5.html). 

This mortality rate increased in high-risk groups such as paediatric and geriatric 

populations, as well as HIV-infected individuals (Amdahl et al., 1995; Johnston, 

1991). The roles of many pneumococcal virulence factors have been investigated 

in pneumococcal pneumonia, with Ply, autolysin and pneumococcal surface 

protein C shown to be essential for progression of pneumococcal pneumonia 

(Canvin et al., 1995; Jounblat et al., 2003; Rubins et al., 1996). Pneumococcal 

bacteraemia often occurs after the onset of pneumococcal pneumonia, and is 

characterised by circulation of pneumococci in the bloodstream. It is thought 

that access to the bloodstream is gained through the alveoli in the lungs. A 

recent study reported that bacteraemia was the most common type of IPD 

reported in children under 3 in Switzerland, representing 50% of cases (Myers 

and Gervaix, 2007), with similar results reported in the USA (Kaplan et al., 

1998).  

1.3.2 Meningitis 

Pneumococcal meningitis is characterised by inflammation of the protective 

membranes covering the brain and spinal cord, known as the meninges. 

Symptoms range from headaches and a stiff neck to hearing loss, seizures and 

coma. Mortality from pneumococcal meningitis ranges from 16-37%, with 

neurological damage in 32-50% (Kastenbauer and Pfister, 2003; Ostergaard et 

al., 2005). The World Health Organisation reported that in developing countries, 

40-75% of cases of pneumococcal meningitis result in mortality or disability 

(www.who.int/mediacentre/factsheets/fs289/en/). Disabilities and neurological 

damage can include sequelae in the brain, resulting in mental retardation or 

learning difficulties, as well as permanent hearing loss (Bohr et al., 1985; Keane 

et al., 1979). Pneumococcal meningitis may also be recurring in particularly at-

risk patients, demonstrated recently in a patient with a mild head injury, who 



Chapter 1   Introduction 

  25 

suffered 12 recurrences of bacterial meningitis, with the pneumococcus the 

main protagonist (Paudyal, 2007). Meningitis occurs after initial pneumococcal 

infection of the host, with 30% of cases being preceded by acute otitis media, 

and 18% with pneumonia (Ostergaard et al., 2005). Furthermore, bacteraemia 

has been associated with poorer outcome of pneumococcal meningitis (Brandt et 

al., 2008; Carrol et al., 2008). Despite the apparent need for an initial 

pneumococcal infection to establish meningitis, it has been shown that 

pneumococci can invade the central nervous system directly via the olfactory 

neurones. This should allow pneumococci to penetrate the blood-brain barrier 

(BBB), and colonise the cerebro-spinal fluid (CSF) (van Ginkel et al., 2003). This 

results in a large immune response in the host, resulting in inflammation and 

leukocyte recruitment, and occasionally brain injury (Hirst et al., 2004a). A 

number of pneumococcal virulence factors have been shown to play a role in 

pneumococcal meningitis. These include Ply and autolysin, as knock-outs of 

these virulence factors displayed reduced virulence in a murine meningitis model 

(Hirst et al., 2004a; Hirst et al., 2008). However, isolates deficient in NanA or 

NanB or hyaluronidase displayed no reduction in virulence in the murine 

meningitis model, implying these proteins are not important in meningitis 

(Wellmer et al., 2002). 

1.3.3 Acute otitis media (AOM) 

The most common infection caused by S. pneumoniae is the relatively benign 

AOM, which is common in children and characterised by growth of pneumococci 

in the host middle ear. The pneumococcus is one of the major causes of this 

infection, with 30-50% of cases attributed to this pathogen, and 7 million cases 

reported every year in the USA alone (Luotonen et al., 1981; Prellner et al., 

1999) (www.who.int/vaccine/en/pneumococcus.shtml). An even higher rate of 

infection is observed in aboriginals, with most children having AOM at least 

once, although symptoms were found to be mild (Gibney et al., 2005; Morris et 

al., 2005). Infections are thought to occur via the nasopharynx in individuals 

colonised by pneumococci. Despite the comparatively mild symptoms of this 

infection, the sheer volumes of this infection exert great burdens on healthcare 

systems worldwide, and prevention by vaccination could have a significant socio-

economic benefit. Indeed, in the USA alone, the economic cost AOM is estimated 

at $5 billion per year (Bondy et al., 2000). Several serotypes have been 
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associated with AOM, such as 3, 19F and 23F, although this may be partly due to 

increased carriage rates of these serotypes (Hanage et al., 2004; Hausdorff et 

al., 2000a). NanA is thought to play an important role in AOM, as a knock-out 

strain was cleared from the middle ear in a chinchilla model, and immunization 

with recombinant NanA afforded protection against otitis media in the same 

model (Tong et al., 2000; Tong et al., 2005). 

1.3.4 Complications of IPD 

Further pneumococcal diseases becoming more prominent recently include 

empyema and haemolytic uraemic syndrome (HUS), with cases of these 

complications increasing rapidly in the UK recently (Byington et al., 2006; 

Waters et al., 2007). Empyema is characterised by a three-stage progression 

from pneumococcal pneumonia. Firstly, fluid accumulates in the pleural cavity, 

followed by the accumulation of pus and fibrin deposition in the pleural cavity, 

resulting in full empyema (Light, 1995). In the USA, S. pneumoniae is the 

primary cause of empyema, with serotype 1 accounting for 24-50% of cases 

between 1993 and 2000 (Byington et al., 2002). In contrast, serotype 14 isolates 

are historically associated with empyema in the UK (Miller et al., 2000). 

However, a recent study showed that a recent increase in serotype 1-related 

empyema mirrors the results found in the USA, with serotype 1 isolates 

accounting for the majority of empyema cases (Eastham et al., 2004). A full 

review of HUS can be found in Section 1.4. 

1.4 Pneumococcal HUS 

HUS is characterised by a triad of microangiopathic haemolytic anaemia, 

thrombocytopenia and acute renal failure (Kaplan et al., 1990). These symptoms 

translate to decreased red blood cell and platelet counts, with kidney failure. 

HUS is more commonly associated (>90% cases) with diarrhoea following 

infection with verocytotoxin producing bacteria, such as Eschericia coli O157:H7 

and Shigella dysenteriae, with the causative agent being the bacteriophage-

associated Shiga toxin (O'Brien et al., 1984). The non-diarrhoeal/atypical form of 

HUS (aHUS) is rare, affecting 10% of all HUS in children in the UK (Neuhaus et 

al., 1997). The aHUS variant has a poorer prognosis, (25%) compared to typical 

HUS caused by verocyto-toxin producing E. coli (Fitzpatrick et al., 1993). More 

recently, aHUS has been shown to be a disease of complement dysregulation, 
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endothelial cell injury and activation which may be familial. Interestingly, 

pneumococcal infection has been reported to predispose to the development of 

aHUS. S. pneumoniae is responsible for almost 40% of all aHUS cases, and the 

incidence of aHUS following invasive pneumococcal disease has been reported as 

0.4-0.6% (Arditi et al., 1998; Cabrera et al., 1998). aHUS as a result of 

pneumococcal infection has been termed pneumococcal HUS (p-HUS) to 

distinguish from other forms of aHUS (Copelovitch and Kaplan, 2007). 

Worryingly, the incidence of p-HUS has greatly increased in the UK. In a recent 

study, pneumococci were identified as causative agents in 34 of 43 cases, with 

empyema present in 23 of 35 pneumonia cases (Waters et al., 2007). Although a 

number of pneumococcal serotypes have been implicated in p-HUS (Vanderkooi 

et al., 2003; Waters et al., 2007), it has been noted recently that serotype 19A 

isolates are an emerging cause of p-HUS (Waters et al., 2007). Indeed, Waters 

and colleagues noted that whilst sequence types (STs) in isolates causing p-HUS 

were generally diverse, almost half of the isolates in their study were serotype 

19A, ST199.  

Little is known about the progression of invasive disease to p-HUS, although a 

model for the mechanism of pathogenesis has been suggested, wth 

neuraminidase activity central to pathogenesis (Klein et al., 1977). The 

Thomsen-Friedrich antigen (T Antigen) is a surface molecule present on 

erythrocytes and renal capillary endothelial cells, although it is obscured by 

neuraminic acid (Klein et al., 1977; Seger et al., 1980). The neuraminidase 

enzymes produced by S. pneumoniae (Berry et al., 1988; Camara et al., 1991) 

are able to cleave the neuraminic acid from host cells, exposing the T Antigen 

on the cell surface. This in turn binds naturally occurring T antigen-specific 

immunoglobulin M (IgM), which is present in the plasma of all adults, and 

accelerates agglutination and haemolysis of erythrocytes, platelet agglutination 

and glomerular capillary damage, causing the symptoms seen in HUS (Kim et al., 

1979; Klein et al., 1977; Novak et al., 1983; Seger et al., 1980). It is therefore 

possible that pneumococci possessing over-expressed or over-active 

neuraminidases may be more likely to cause p-HUS (Copelovitch and Kaplan, 

2007), and it has been suggested that risk of developing p-HUS is increased by a 

heavy bacterial load, based on the relatively high numbers of patients 

developing p-HUS after empyema-associated pneumonia (Brandt et al., 2002). 
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Indeed, although more historic cases of p-HUS were associated with 

pneumococcal pneumonia and meningitis (Alon et al., 1984; Begue et al., 1991; 

Cabrera et al., 1998; Constantinescu et al., 2004; Feld et al., 1987; Huang and 

Lin, 1998; Martinot et al., 1989), a number of recent cases have been associated 

with empyema (Huang et al., 2006; Lee et al., 2006; Vanderkooi et al., 2003). 

This implies an association between clones causing empyema and p-HUS. 

However, the predominance of serotype 1 isolates in empyema has yet to be 

observed in p-HUS.  

1.5 Pneumococcal virulence factors 

1.5.1 Overview 

The pneumococcus possesses many virulence factors which allow it to colonise a 

host and go on to cause invasive pneumococcal disease. Well-characterised 

virulence factors include the polysaccharide capsule, against which current 

pneumococcal vaccines are targeted, and the toxin Ply. Molecular techniques 

such as signature-tagged mutagenesis (Hava and Camilli, 2002; Lau et al., 2001; 

Polissi et al., 1998) and lambda-display libraries (Beghetto et al., 2006), along 

with full genome sequencing (Hiller et al., 2007; Tettelin et al., 2001), have 

allowed identification of new putative pneumococcal virulence factors. Indeed, 

a signature-tagged mutagenesis study identified 337 genes essential for 

pneumococcal virulence in a murine pneumonia model (Hava and Camilli, 2002). 

However, many of these putative virulence factors remain as hypothetical 

proteins with unknown functions, demonstrating that a large amount of research 

remains required in this area. Some of the best characterised pneumococcal 

virulence factors, along with their location and role in pathogenesis, if known, 

can be found in Table 1.1. Furthermore, the functions of the pneumococcal 

capsule, the cholesterol-dependent cytolysin Ply and the sialidase enzyme NanA 

are discussed in greater detail in sections 1.5.2, 1.6 and 1.7 respectively.   
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Virulence 
factor 

Location Role in pathogenesis 

Capsule Covering 
pneumococci 

Protects pneumococci from phagocytosis 
(Austrian, 1981). 
 
Shields surface proteins from IgG and 
complement (Musher, 1992; Winkelstein, 
1981). 
 
Protects from neutrophil extracellular 
traps (Wartha et al., 2007). 

Pneumolsyin 
(Ply) 

Cytoplasm Highly active cytolytic toxin 
Inhibits ciliary beating of respiratory 
epithelia (Feldman et al., 1990). 
 
Induces brain cell apoptosis during 
meningitis (Braun et al., 2002). 
 
Crucial for pathogenesis in pneumonia 
(Rubins et al., 1996) and meningitis 
(Winter et al., 1997). 
 
Essential for survival in both upper and 
lower RT (Kadioglu et al., 2002; Orihuela 
et al., 2004). 

Neuraminidase 
A (NanA) 

Surface-exposed 
and secreted 

Cleaves terminal sialic acid residues from 
host glycoproteins, glycolipids and cell-
surface oligosaccharides, revealing host 
receptors for pneumococcal adherence 
(Tong et al., 1999; Tong et al., 2000). 
 
Removes sialic acid from host proteins 
such as lactoferrin and IgA2 (King et al., 
2004), and competitor species 
(Shakhnovich et al., 2002).  
  
Important for pneumococcal survival in RT 
and blood (Manco et al., 2006) as well as 
for colonization and acute otitis media 
(Tong et al., 2000). 
 
Not important in meningitis (Winter et al., 
1997). 

Hyaluronidase 
(Hyl) 

Surface-exposed 
and secreted 

Degrades hyaluronic acid in host 
connective tissue and may promote 
dissemination (Paton et al., 1993). 

Autolysin A 
(LytA) 

Cell wall Degrades pneumococcal peptidoglycan 
(Howard and Gooder, 1974) resulting in 
pneumococcal lysis and release of Ply 
toxin. 
 
Has a role in pneumonia and bacteraemia 
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in murine models (Berry et al., 1989a; 
Berry and Paton, 2000; Canvin et al., 
1995). 
 
Involved in pneumococcal transition from 
nasopharynx to lower RT (Orihuela et al., 
2004). 
 
Related enzymes LytB and LytC involved in 
pneumococcal colonisation (Gosink et al., 
2000). 

Cell wall Beneath capsule Provides base for attachment of surface-
exposed proteins. 
 
Inflammatory effect when degraded and 
released by autolysin. 
 
Responsible for sepsis-associated neuronal 
damage, usually prevented by interactions 
by TLR2 and Nod2 (Orihuela et al., 2006). 

Pneumococcal 
surface protein 
C (PspC, CbpA, 
SpsA) 

Attached to cell 
wall 

Involved in pneumococcal colonization 
(Rosenow et al., 1997). 
 
Mutants show reduced virulence in 
pneumonia and sepsis (Iannelli et al., 
2004; Kerr et al., 2006). 
 
Protects against pneumococcal 
opsonization by binding host factor H, and 
binds secretory IgA (Dave et al., 2004). 

Pneumococcal 
surface protein 
A (PspA) 

Surface-exposed Inhibits complement binding (Jedrzejas, 
2001) and activiation (Ren et al., 2004). 
 
Protects from bactericidal effect of 
apolactoferrin (Shaper et al., 2004). 
 
May play a role in colonization 
(LeMessurier et al., 2006). 

Pneumococcal 
surface antigen 
A (PsaA) 

Surface-exposed Essential for colonization, bacteraemia 
and pneumonia (Berry and Paton, 1996; 
Johnson et al., 2002; Marra et al., 2002). 
 
Metal-binding part of manganese ABC 
transporter (Dintilhac et al., 1997). 
 
May play a role in protection from 
oxidative stress (Tseng et al., 2002). 

Pili Attached to cell 
wall 

Involved in adhesion and important for 
invasion of host (Barocchi et al., 2006; 
Nelson et al., 2007). 
 
Present in small subset of serotypes, 
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therefore not essential for virulence 
(Aguiar et al., 2008; Basset et al., 2007). 
 
May be associated with penicillin-resistant 
isolates (Sjostrom et al., 2007). 
 
A second pilus recently identified also 
plays a role in adhesion (Bagnoli et al., 
2008).  

IgA1 protease Cytoplasm Fights host immunity by cleaving host IgA1 
(Poulsen et al., 1996). 
 
May play a role in allowing pneumococcal 
adhesion and persistence on mucosal 
surfaces (Weiser et al., 2003). 

Caseinolytic 
protease C 
(ClpC) 

Cytoplasm Strain dependent role in virulence.  
 
Appears to be required for growth in lungs 
and blood in a mouse model (Ibrahim et 
al., 2005). 

Hydrogen 
peroxide (H2O2) 

Produced during 
aerobic growth 

Involved in early stages of meningitis, 
mediating brain cell apoptosis (Braun et 
al., 2002; Hoffmann et al., 2007). 
 
Bactericidal towards Staphylococcus 
aureus and other nasopharyngeal 
competitor species (Pericone et al., 2000; 
Regev-Yochay et al., 2006). 

Zinc 
metalloprotease 
(ZmpB) 

Surface exposed Induces production of TNF-α in the lower 
RT, resulting in inflammation (Blue et al., 
2003). 

Table 1.1: Pneumococcal virulence factors 

Pneumococcal virulence factors, their location in t he pneumococcal cell, and roles in 
pathogenesis as described by previous research. RT = respiratory tract, IgA/G = 
Immunoglobulin A/G, ABC transporter = ATP-binding c assette transporter, TNF- α = Tumor 
necrosis factor alpha.  
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1.5.2 Capsule 

The pneumococcal capsule is a layer of polysaccharide covering the bacteria. 

This is a major virulence factor of the organism, and enables resistance to 

phagocytosis (Jonsson et al., 1985). The capsule is also thought to be essential 

for pneumococcal survival in blood, and although un-encapsulated strains do 

exist, these are generally thought to be avirulent. However, there have been 

exceptions, with un-encapsulated strains isolated from invasive disease in 

immuno-compromised patients, and commonly responsible for conjunctivitis, an 

eye infection (Buck et al., 2006; Muller-Graf et al., 1999; Porat et al., 2006). 

There are 91 identified pneumococcal serotypes (Henrichsen, 1995; Park et al., 

2007), and recent sequencing of the capsular genes of 90 serotypes has shown 

the high levels of diversity present between the loci, with total genetic content 

of variants in this loci being almost equivalent to the total genetic content of a 

single pneumococcal isolate (Bentley et al., 2006). The pneumococcal 

polysaccharide capsule is the target for current pneumococcal vaccines, with a 

polysaccharide vaccine targeting 23 serotypes, and a conjugate polysaccharide 

vaccine targeting 7 serotypes. These vaccines are described in greater detail in 

Sections 1.6.2 and 1.6.3 respectively. One of the main roles of the 

pneumococcal capsule is to protect pneumococci from phagocytosis (Austrian, 

1981), and it has also been shown to prevent interaction of the Fc part of IgG or 

the complement component C3b with receptors on the pneumococcal cell wall 

(Musher, 1992; Winkelstein, 1981). Furthermore, the capsule has been shown to 

reduce overall levels of complement attached to the pneumococcal cell (Abeyta 

et al., 2003), as well as reducing trapping in neutrophil extracellular traps 

(Wartha et al., 2007). The opaque and transparent phenotypes of pneumococci 

result in changes in expression levels of the pneumococcal capsule, with the 

transparent phenotype expressing less capsule and adapted to colonization, and 

the opaque phenotype expressing higher levels of capsule and adapted to 

survival in blood (Weiser et al., 1994). The transition between these phenotypes 

is thought to play a role in progression from carriage to invasive disease 

(Hammerschmidt et al., 2005; Tuomanen, 1999). However, it has been shown 

that different serotypes vary greatly in their ability to cause disease, which is 

presumably related to differences in the ability to resist host defences. This is 

supported by the observation that despite the presence of 91 serotypes, the 
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majority of disease is caused by less than 20% of these serotypes (Hausdorff et 

al., 2000b). 

1.6 Ply 

S. pneumoniae possesses a pore-forming toxin called Ply (Walker et al., 1987). 

Ply is an important virulence factor for the pneumococcus, is present in all 

disease-causing isolates (Kalin et al., 1987), and has many important roles in 

pneumococcal pathogenesis (Mitchell and Andrew, 1997). This toxin has been 

shown to have two main roles in pneumococcal pathogenesis: it forms pores in 

host cell membranes, causing lysis of host cells (Boulnois et al., 1991), and has 

the ability to activate complement in the host (Paton et al., 1984). To date, Ply 

has been shown to be cytotoxic to all known eukaryotic cells due to the 

presence of cholesterol in the membranes of these cells. These include cells at 

important sites of human contact with S. pneumoniae such as pulmonary 

epithelial and endothelial cells (Feldman et al., 1990; Steinfort et al., 1989), 

ciliated brain ependymal cells (Mohammed et al., 1999) and cerebral endothelial 

cells (Zysk et al., 2001). Further to this work, a study using microarrays showed 

that many host cell genes are differentially regulated upon exposure to Ply, 

showing the major effect of this toxin on the host cell (Rogers et al., 2003). 

Interestingly, despite the defined role of Ply in pneumococcal diseases, a study 

showed there was no significant difference in expression of Ply between S. 

pneumoniae in the nasopharynx, lung or blood. The authors hypothesise that 

production of Ply may be controlled by an environmental factor, or that levels of 

the toxin released differ in different niches (LeMessurier et al., 2006). 

Established roles of Ply in colonization and disease are discussed in sections 

1.6.4 and 1.6.5. 

The effect of Ply on a variety of host cells has been determined in many studies 

since the identification of this toxin. Low concentrations of Ply were shown to 

promote migration and lysosomal enzyme secretion by neutrophils, as well as 

inhibiting their ability to migrate, and to kill opsonized pneumococci (Johnson et 

al., 1981; Paton and Ferrante, 1983). Furthermore, Ply induces necrosis of 

neutrophils, showing that as well as reducing their ability to kill pneumococci, 

Ply actively targets these cells (Zysk et al., 2000). Ply was shown to inhibit the 

ciliary beat of respiratory epithelial cells (Feldman et al., 1990; Steinfort et al., 
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1989), as well as being toxic to pulmonary epithelial cells (Rubins et al., 1993), 

showing that the toxin has a role in allowing pneumococcal survival and 

dissemination in the lungs. Furthermore, Ply was shown to disrupt the integrity 

of these cells, thought to facilitate dissemination of pneumococci from lungs to 

blood (Rubins et al., 1992). Monocytes are also affected by Ply, which inhibits 

phagocytosis and stimulates release of TNF-α and IL-1β (Houldsworth et al., 

1994; Nandoskar et al., 1986), thought to prevent pneumococcal clearance by 

the host. Furthermore, Ply was shown to up-regulate ICAM-1 in monocytes, 

which facilitates migration of neutrophils, although the benefit of this to 

pneumococci remains unclear (Thornton and McDaniel, 2005). Ply has also been 

shown to subvert the immune system in a number of ways, including inhibition of 

antibody production, induction of apoptosis in dendritic cells and preventing 

proliferation of lymphocytes (Colino and Snapper, 2003; Ferrante et al., 1984). 

The Ply toxin is thought to be well conserved (Mitchell et al., 1990) due to the 

cytoplasmic nature of the protein affording it protection from the selective 

pressure exerted on surface-exposed proteins by the immune system. However, 

diversity has been observed previously (See section 1.6.2) (Kirkham et al., 

2006a; Lock et al., 1996). Despite this, Ply is a pneumococcal vaccine candidate 

for future protein-based vaccines (Tai, 2006), and studies have shown Ply affords 

protection against pneumonia and bacteraemia in a murine model (Ogunniyi et 

al., 2001; Paton et al., 1983). A Ply toxoid also afforded protection against 

challenge with 9 different pneumococcal serotypes, displaying its potential as a 

cross-serotype vaccine candidate (Alexander et al., 1994). Furthermore, 

research from our laboratory has recently shown that a non-toxic Ply mutant 

retained immunogenicity comparable to wild-type, and that vaccination with 

this mutant protects from S. pneumoniae challenge in a murine model (Kirkham 

et al., 2006b). Another study showed that a stronger immune response was 

elicited to the pneumococcal capsule when Ply rather than a Tetanus toxoid was 

used as a carrier (Michon et al., 1998). In a similar vain, recent research in our 

laboratory has also indicated potential use of Ply as an adjuvant, as 

immunization with a fusion of PsaA to Ply increased antibody titres to PsaA 

compared to immunization with both individual proteins (Unpublished results). 
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1.6.1 Cholesterol-dependent cytolysins 

Ply belongs to the cholesterol-dependent cytolysins (CDCs), a family of toxins 

widely present in several genera of Gram-positive bacteria, particularly 

streptococci, bacilli and clostridia. A list of the toxins in this family can be 

found in Table 1.2. These toxins form pores in membranes possessing 

cholesterol, and as a result are toxic to all mammalian cells (Palmer, 2001). It 

has been shown that cholesterol or a related sterol is essential for membrane 

binding of these toxins (Ohno-Iwashita et al., 1992). CDCs have been shown to 

bind cholesterol in membranes in a perpendicular manner (Ramachandran et al., 

2005), followed by oligomerization of up to 50 monomers, resulting in the 

formation of large pores of up to 30nm in diameter (Morgan et al., 1995) and 

subsequent lysis of the target cell. With one known exception, all CDCs possess a 

secretion signal, and as a result are secreted. The exception to this is Ply, which 

does not possess a secretion signal and is thought to rely on pneumococcal 

autolysis by the virulence factor LytA to allow escape from the cytoplasm 

(Walker et al., 1987). However, it has been shown that Ply may be secreted in a 

LytA-independent manner (Balachandran et al., 2001). 
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Species CDC Identity 

Arcanobacterium pyogenes Pyolysin 
Bacillus anthracis  Anthrolysin O  
B. cereus Cereolysin 
B. thuringiensis Thuringiolysin O 
Brevibacillus laterosporous Laterosporolysin 
Clostridium perfringens Perfringolysin O  
C. bifermentas Bifermentolysin 
C. botulinum Botulinolysin 
C. chauvoei Chauveolysin 
C. histolyticum Histolyticolysin 
C. septicum Septicolysin 
C. tetani Tetanolysin 
C. novyi Novyilisin 
Listeria ivanovii Ivanolysin O 
L. monocytogenes  Listeriolysin O 
L. seeligeri Seeligeriolysin O 
Paenibacillus alvei Alveolysin  
Streptococcus canis Streptolysin O 
S. equisimilis Streptolysin O 
S. intermedius  Intermedilysin  
S. pneumoniae Ply 
S. pyogenes  Streptolysin O 
S. suis  Suilysin  

Table 1.2: Cholesterol-dependent cytolysins 

Cholesterol-dependent cytolysins produced by Gram-p ositive bacterial species (Billington  
et al., 2000; Shannon  et al., 2003). 
 

The structures of two CDCs have been solved, namely perfringolysin O (Rossjohn 

et al., 1997) and intermedilysin (Polekhina et al., 2005), and structure/function 

studies of Ply have employed a homology model of perfringolysin O, as shown in 

Figure 1.1. CDCs are composed of 4 domains designated 1-4, each with a 

different function. Domain 4 has been shown to be involved in host cell binding, 

whilst domain 3 is responsible for oligomerization and pore formation.  Domain 3 

of perfringolysin O inserts into the host cell membrane after initial toxin binding 

(Heuck et al., 2003). A conserved 11 amino acid region of domain 4 

(ECTGLAWEWWR) is responsible for host cell binding (Jacobs et al., 1999), and 

thought to form the “receptor” region of the toxin for cholesterol recognition 

and subsequent binding of eukaryotic cells (Alouf, 2000; Tweten et al., 2001). 

Furthermore, recombinant domain 4 was shown to inhibit haemolytic activity of 

full-length Ply, streptolysin O, and listeriolysin O by competitive binding to 

cholesterol (Baba et al., 2001; Kohda et al., 2002; Weis and Palmer, 2001). 
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Despite the conserved nature of this region, diversity has been observed 

(Billington et al., 2000) with the variations observed in this region of 

intermedilysin resulting in a specificity towards human cells (Nagamune et al., 

2004). The receptor for binding of intermedilysin has been show to be CD59, a 

membrane protein involved in inhibition of complement (Giddings et al., 2004). 

                                     

Figure 1.1: Structural model of perfringolysin O  

Structure of the CDC perfringolysin O from Ramachan dran et al. 2002. Domains represented 
by D1-4, and transmembrane helices highlighted in r ed and green. Domain 4, responsible 
for host cell-binding, highlighted in blue. 
 

The oligomerization and insertion of CDCs into host membranes has been studied 

in detail. It has been shown that domain 2 is situated on the outside of the 

oligomers, with domains 3 and 4 on the inside, in both Ply and perfringolysin O 

(Dang et al., 2005; Gilbert et al., 1999a). Two mechanisms for the 

oligomerization and pore-formation in the CDCs have been suggested. The first 

proposed that CDC monomers bind and insert into membranes individually, and 

are able to move within the lipid bilayers, allowing oligomerization and 

formation of a pore which grows progressively in size (Figure 1.2B) (Palmer et 

al., 1998; Weis and Palmer, 2001). This mechanism was proposed in streptolysin 

O, and accounts for the arc-like structures, essentially incomplete pores, 

observed on host cells. The second hypothesis, which has been more readily 

accepted, proposed that toxin monomers insert partially into the host 

membrane, and that this is followed by addition of further monomers, producing 

an oligomer as they insert (Figure 1.2A) (Gilbert et al., 1999b; Shepard et al., 

2000). This mechanism, developed with perfringolysin O by the Tweten lab, is 
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known as the “prepore” theory, and has been strengthened by further study 

from their laboratory showing that formation of a prepore is the limiting step in 

pore formation (Hotze et al., 2001) and that interactions between individual 

monomers drive the transition from prepore to pore (Hotze et al., 2002). 

Another study showed that neither perfringolysin O nor streptolysin O formed 

small pores during oligomerization (Heuck et al., 2003), with further research 

supporting the prepore hypothesis (Dang et al., 2005; Ramachandran et al., 

2005). These studies were carried out on the toxins perfringolysin O and 

streptolysin O, and a recent study has shown that the prepore mechanism of 

pore formation is also employed by Ply (Tilley et al., 2005). However, this 

theory does not account for the presence of arcs in membranes, and despite 

presence of arcs in figures from prepore studies, they are not mentioned in the 

research (Czajkowsky et al., 2004). 

 

Figure 1.2: Two models of pore formation by CDCs  

A: Prepore model suggested, where a complete oligom er is formed before insertion into the 
membrane (Shepard et al., 2000). B: Model suggested  where the pore gradually increases in 
size through-out oligomerization (Palmer et al., 19 98). Figure from (Heuck et al., 2003). 
 

1.6.2  Ply diversity 

Ply is a cytoplasmic protein thought to be released upon lysis of the 

pneumococcal cell by the autolytic enzyme LytA. As a result, Ply is thought to be 

highly conserved, (Mitchell et al., 1990) as it is shielded from the selective 

pressure of the host immune response. However, a number of studies have 

previously demonstrated variation within the Ply protein. Lock and colleagues 



Chapter 1   Introduction 

  39 

(1996) explored the production of Ply by 30 pneumococcal isolates. They noted 

that whilst all isolates produced Ply, serotype 7F and 8 isolates produced Ply 

with reduced mobility on SDS-PAGE gel, and reduced haemolytic activity. The 

sequences of these toxin variants showed 3-4 amino acid substitutions and the 

deletion of valine and lysine residues at positions 270-271. Further study 

identified substitution of a threonine residue at position 172 with an isoleucine 

as responsible for reduction in both haemolytic activity and electrophoretic 

mobility (Lock et al., 1996). Recent research from our laboratory has discovered 

a non-haemolytic Ply variant associated with serotype 1, ST306 pneumococci, 

with the mutations responsible present in the pore-forming region of the toxin. 

Epidemiological data also showed that the ST306 clone possessing the non-

haemolytic toxin has undergone clonal expansion in the serotype 1 IPD 

population in Scotland since the year 2000. Interestingly, these variants were 

harboured by isolates causing IPD, and authors hypothesised that in some genetic 

backgrounds, the pneumococcus does not require the haemolytic activity of the 

toxin to progress to IPD (Kirkham et al., 2006a). Furthermore, this study showed 

that whilst serotype 1 isolates possessing the wild-type toxin formed pores as 

described with the wild-type toxin (Tilley et al., 2005), the non-haemolytic 

variant, although able to bind to the membrane, was not able to form pores and 

lyse erythrocytes, although formation of arcs was observed. This agreed with 

their findings that mutations in this toxin were present in the pore-forming 

domain, with the toxin retaining the ability to bind, but not form pores (Kirkham 

et al., 2006a). An interesting subset of pneumococcal isolates were found to 

cause pneumonia in horses. These isolates possessed a genetic deletion causing a 

fusion between Ply and LytA, resulting in abrogation of the both protein 

activities (Whatmore et al. 1999c).  

1.6.3  Effect of defined mutations on Ply activities 

A number of Ply mutants have been constructed in order to determine amino 

acids essential to certain functions of the toxin. Mutation of amino acids at 

positions 428 or 433, part of an 11-amino acid conserved region of the toxin, as 

well as 387, was found to have a drastic effect on haemolytic activity of the 

toxin (Boulnois et al., 1991; Saunders et al., 1989). Meanwhile, mutation of 

amino acid 385 abolished the ability of Ply to activate the complement pathway 

(Mitchell et al., 1991). A random mutagenesis study also identified the 
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tryptophan residue 433 as having importance in haemolytic activity, as well as 

the histidine residue 156 (Hill et al., 1994). Further study of a mutant 

replacement of the tryptophan residue at position 433 with a phenalalanine 

showed that this residue was important in channel formation prior to 

oligomerization of Ply during pore formation (Korchev et al., 1998). An in vivo 

study showed that mutation of amino acids 387 and 433, or 428 and 433 had a 

significant attenautive effect on pneumococci. Meanwhile addition of mutation 

at position 385, whilst abolishing complement activation, had no increase in 

attenuation, implying that the haemolytic activity of the toxin was more 

important than complement activation in systemic infection. The mutant with 

both haemolytic and complement activating ability abolished was termed PdT 

(Berry et al., 1995). A second in vivo study showed that whilst the virulence of 

pneumococci was decreased when possessing the PdT toxoid, a significantly 

greater decrease was observed in a complete Ply knock-out, showing that Ply 

possesses another role in pathogenesis (Berry et al., 1999). A recent study in our 

laboratory involved deletion of amino acids from a region involved in 

oligomerization (AA134-151) (Garcia-Suarez Mdel et al., 2004), identifying a 

number of non-haemolytic mutants with deletions in this region. The Ply mutant 

∆6, with deletion of amino acids 146-147, was recognised by a Ply antibody and 

retained immunogenicity comparable to wild-type Ply. This toxoid was suggested 

for use in future pneumococcal vaccines (Kirkham et al., 2006b). 

1.6.4  Role of Ply in pneumococcal colonization 

The role of Ply in establishment of pneumococcal colonization is unclear, with 

several contrasting results uncovered. A Ply knock-out was shown to display 

reduced adherence and damage to respiratory epithelial cells in vitro, although 

colonization comparable to or exceeding wild-type isolates was observed with 

knock-outs in vivo (Rayner et al., 1995; Rubins et al., 1998). A different study 

noted that in a serotype 2 isolate, Ply was required for survival and proliferation 

in the nasopharynx, implying a role for Ply in colonization and carriage. 

However, a recent study identified Ply as being the causative agent of enhanced 

localised inflammatory responses resulting in clearance of colonizing 

pneumococci (van Rossum et al., 2005) agreeing with the findings of Rubins et al 

(1998). Despite this, a Ply knock-out strain showed slightly reduced ability to 

colonize the nasopharynx in a murine model, although authors suggest Ply plays 
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a relatively minor role in colonization compared to PspC and PspA (Ogunniyi et 

al., 2007a; Ogunniyi et al., 2007b). Meanwhile, Malley and colleagues showed 

that the recognition of Ply by Toll-like receptor 4 (TLR4) was central to the 

innate immune response against the pneumococcus, and that mice lacking TLR4 

were more susceptible to colonization by pneumococci possessing Ply (Malley et 

al., 2003). A related study showed that the Ply-induced apoptosis of 

macrophages was dependent on TLR4, implying that apoptosis is involved in the 

interaction between Ply and TLR4 (Srivastava et al., 2005). Authors suggest that 

Ply-induced apoptosis and interaction with TLR4 is an innate immune mechanism 

of fighting pneumococcal infection. These results support that hypothesis that 

Ply enhances the immune response to the pneumococcus upon colonization.  

1.6.5  Role of Ply in pneumococcal diseases 

Despite a proposed role in pneumococcal colonization, the main role of Ply 

appears to be as a virulence factor allowing the pneumococcus to cause IPD. 

Many studies have demonstrated the roles of Ply in pneumococcal pneumonia. A 

pair of studies in a rat model of pneumonia showed that whilst administration of 

Ply resulted in similar symptoms to pneumococcal pneumonia, immunization 

with Ply and Freunds adjuvant afforded protection (Feldman et al., 1991; 

Roberts et al., 1992). A mouse model of pneumonia was used to show that Ply 

was required for successful pneumococcal replication within alveoli as well as 

penetration of the bacteria into the interstitium of the lung (Rubins et al., 

1995), whilst both the haemolytic and complement-activating activities of Ply 

were shown to play distinct roles in progression of pneumonia (Rubins et al., 

1996). These roles have been determined, with the cytolytic activity of the toxin 

promoting neutrophil recruitment into lung tissue, whilst complement activation 

by Ply results in accumulation of T cells (Jounblat et al., 2003). Despite this, the 

role of the cytolytic activity of Ply appears not necessary for certain clones 

pneumococci to cause pneumonia, since clones harbouring a recently discovered 

non-haemolytic toxin were isolated from cases of pneumonia (Kirkham et al., 

2006a). This finding is supported by recent data suggesting that lung injury in 

pneumonia is mediated by the pro-apoptotic and pro-inflammatory activities of 

Ply rather than the cytolytic activity, as Ply was present in the lungs at sublytic 

concentrations in vivo, and induced apoptosis and inflammation (Garcia-Suarez 

Mdel et al., 2007). However, a clone producing no recogniseable Ply, due to 
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insertion of the mobile genetic element IS1515, has recently been identified in 

patients with pneumonia, showing that some pneumococcal clones can cause 

pneumonia without producing a fully functional Ply protein (Garnier et al., 

2007). A number of animal studies have shown that mutants of Ply have reduced 

virulence in in vivo pneumonia models (Berry and Paton, 2000; Ogunniyi et al., 

2000; Ogunniyi et al., 2007a), whilst further studies have confirmed that 

immunization with Ply or monoclonal anti-Ply antibodies protect mice from 

pneumonia (Briles et al., 2003; Garcia-Suarez Mdel et al., 2004). These studies 

together offer clear indication of the role and importance of Ply in causing 

pneumococcal pneumonia. 

Bacteraemia commonly results from progression of pneumococcal pneumonia, 

and Ply also plays an important role in this transition. Early studies showed that 

both cytolytic and complement-activating functions of Ply facilitated the 

transition to bacteraemia in mice (Rubins et al., 1995), although another study 

reported different findings dependent on the strain of mouse used (Benton et 

al., 1995), and both functions have been reported to affect the timing of 

bacteraemia progression (Jounblat et al., 2003). Similar studies in a rat model 

showed that Ply contributes to bacteraemia by inhibiting pneumococcal 

clearance from the bloodstream and reducing the opsonising activity of serum 

(Alcantara et al., 1999; Alcantara et al., 2001). Furthermore, Ply has recently 

been demonstrated to play a role in evasion of the early innate immune 

response, as a knock-out displayed higher levels of C3 deposition than wild-type 

in a murine model (Quin et al., 2007). Finally, a study by Musher and colleagues 

showed that hospitalised patients with pneumococcal pneumonia had higher 

levels of anti-Ply IgG than those with both pneumonia and bacteraemia. Authors 

hypothesised that higher IgG levels may neutralise Ply in the lungs and prevent 

or delay development of bacteraemia. Anti-Ply human IgG was also shown to 

offer protection against bacteraemic pneumococcal infection in a murine model, 

adding to the body of evidence that the toxin plays an important role in 

bacteraemia (Musher et al., 2001). 

Ply has been reported as one of the most important factors in the progression of 

pneumococcal meningitis (Kostyukova et al., 1995). The role of Ply in the 

pathogenesis of pneumococcal meningitis has been explored using in vivo 

meningitis models. Studies in a rabbit model reported no difference in brain 
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inflammation in animals infected with Ply knock-out pneumococci compared to 

wild-type (Friedland et al., 1995). However, a number of more recent studies 

have reported contrasting evidence. Virulence of pneumococci injected directly  

into murine brains was attenuated in a Ply-deficient strain (Wellmer et al., 

2002), whilst apoptosis of brain cells was shown to occur in a Ply-dependent 

manner (Braun et al., 2002). These results imply a significant role for Ply in 

pneumococcal meningitis, and are congruent with studies in a rat model by Hirst 

and colleagues, who have demonstrated that Ply inhibits the ciliay beat of brain 

ependymal cells, as well as the attenuation of this inhibition by anti-Ply 

antibodies (Hirst et al., 2000; Hirst et al., 2004b). Furthermore, the authors 

have recently used the same model to show that a Ply mutant was almost 

avirulent in a meningitis model, and did not cause disruption to the brain 

ependyma, which was observed with the wild-type parent strain (Hirst et al., 

2008). Furthermore, Ply has also been shown to be the cause of hearing loss 

associated with pneumococcal meningitis (Winter et al., 1997), and these data 

taken together show that Ply plays a number of important roles in the 

progression of pneumococcal meningitis.  

The study of the importance of Ply in AOM has been less substantial, and indeed 

the toxin is thought to play a less significant role in this infection, with cell wall 

teichoic acids released by LytA thought to be more important for the 

inflammation observed. Firstly, Ply was shown to have cytotoxic effects on hair 

cells of guinea pig cochlea, and authors hypothesised that the toxin may play a 

role in deafness caused by acute otitis media, a result supported by further 

study (Comis et al., 1993; Skinner et al., 2004). The related toxin streptolysin O 

was also shown to be responsible for hearing loss in otitis media, related to 

changes in permeability of the round window membrane (Engel et al., 1995). 

Furthermore, the presence of anti-Ply IgA antibodies was detected in the 

nasopharynx, middle ear fluid and serum of children with otitis media, showing 

that the host produced a response to this toxin upon progression of otitis media 

(Virolainen et al., 1995a; Virolainen et al., 1995b; Virolainen et al., 1996). The 

development of an in vivo chinchilla otitis media model allowed further study 

into the role of Ply in acute otitis media (Giebink, 1999). As a result, Ply was 

shown to play a less significant role than LytA in otitis media pathogenesis in a 

serotype 3 isolate of pneumococci (Sato et al., 1996).  
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Ply has also been shown to have a role in pneumococcal eye infections such as 

conjunctivitis and endophthalmitis, with an early study showing that Ply was 

responsible for the corneal damage opbserved upon intra-corneal injecton of 

crude pneumococcal lysate in a rabbit model (Johnson and Allen, 1975). Another 

study implicated Ply as a virulence factor in endophthalmitis by showing that 

injected Ply reproduced the main symptoms of this infection (Ng et al., 1997; Ng 

et al., 2002).  

1.7 NanA 

NanA is the main sialidase enzyme produced by the pneumococcus. The 

pneumococcus was first reported to possess neuraminidase activity in 1959, and 

the enzyme responsible was shown to be secreted soon after (Laurell, 1959; Lee 

and Howe, 1966). However, pneumococcal neuraminidase was not purified and 

characterised until much later, with reports of numerous neuraminidases of 

differing sizes attributed to degradation (Berry et al., 1988; Lock et al., 1988b; 

Scanlon et al., 1989). However, this theory was disproved when a second 

pneumococcal neuraminidase was characterised. This neuraminidase enzyme, 

now known as NanB, was shown to be distinct from the main pneumococcal 

neuraminidase, known as NanA (Camara et al., 1991). Sequencing of the nanA 

gene showed that this enzyme had all the characteristics of a neuraminidase 

gene, with 4 copies of the SXDXGXTW motif present in all bacterial 

neuraminidases (Camara et al., 1994; Roggentin et al., 1989). Furthermore, the 

protein was found to possess a putative signal sequence relating to export across 

the cellular membrane, and a C-terminal LPXTG motif implying that NanA may 

be anchored to the cell wall as well as secreted (Camara et al., 1994).  

The function of NanA is based on the cleaving of terminal sialic acid from host 

cell glycans such as glycolipids, glycoproteins and mucin. This function has 

resulted in the demonstration of numerous roles for NanA in pneumococcal 

pathogenesis. The main role of NanA is thought to be to expose receptors on the 

host cell surface, allowing pneumococcal adhesion, the first stage in 

colonization (Tong et al., 1999; Tong et al., 2000). Furthermore, NanA has been 

implicated in desialiation of molecules involved in bacterial clearance from 

blood, and interspecies competition (King et al., 2004; Shakhnovich et al., 

2002). As a result, NanA has been implicated as playing an important role in 
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pneumococcal colonization as well as acute otitis media (Tong et al., 2000; Tong 

et al., 2002). The roles and importance of this enzyme in colonization and 

disease are described in more detail in Sections 1.7.2 and 1.7.3 respectively. 

NanA was found to be present in all pneumococci, whilst related enzyme NanB 

was present in 96% of isolates, and the poorly characterised homologue NanC in 

51% (Pettigrew et al., 2006).  

A number of amino acids have been identified as important for the enzyme 

activity of NanA. Replacement of a glutamic acid residue with a glutamine at 

position 647 (E647Q) or of tyrosine with phenalalanine at position 752 (Y752F) 

resulted in complete abrogation of enzymatic activity, whilst an R633H mutation 

resulted in a 98% reduction in activity. This demonstrated the importance of 

these residues towards enzymatic activity of the protein (Yesilkaya et al., 2006). 

A study of diversity present in the NanA gene reported overall amino acid 

diversity estimated at 14.8% (King et al., 2005). However, this study did not 

cover the full NanA gene, suggesting this may be an underestimate of diversity. 

Four large mosaic blocks were identified in the gene, with one sharing homology 

with a sialidase gene from S. oralis, implying homologous recombination 

between these species. However, despite the high levels of variation, no 

differences were observed in the essential aspartic boxes or predicted active 

site, demonstrating the important of these regions to the activity of the protein 

(King et al., 2005).  

1.7.1 Role of sortase A in NanA surface exposure 

Analysis of the NanA sequence has revealed an LPXTG motif at the C-terminal of 

the protein. This motif is absent from NanB, which is as a result presumed to be 

absent from the pneumococcal cell surface. Proteins possessing a C-terminal 

LPXTG motif have been shown to be covalently attached to the cell wall 

peptidoglycan of Gram-positive bacteria, resulting in surface-exposure on the 

bacteria. These include many virulence factors including the M proteins of 

Streptococcus pyogenes, and protein A of Staphylococcus aureus (Navarre and 

Schneewind, 1999). A number of pneumococcal virulence factors possess this 

motif, including NanA and hyaluronidase, another surface-exposed enzyme 

(Berry et al., 1994; Camara et al., 1994). The anchoring of these proteins to the 

cell wall in the pneumococcus is carried out by a sortase enzyme, known as 



Chapter 1   Introduction 

  46 

sortase A, and it has been shown that inactivation of this enzyme affects the 

localization of NanA, as well as decreasing adhesion of S. pneumoniae to human 

pharyngeal cells (Kharat and Tomasz, 2003). Furthermore, sortase A has a role in 

the pathogenesis of pneumococcal pneumonia and bacteraemia, as well as 

colonization, most likely due to sortase A-deficiency resulting in differences in 

presentation of virulence factors, including NanA, on the bacterial surface (Chen 

et al., 2005; Paterson and Mitchell, 2006). 

1.7.2 Role of NanA in pneumococcal colonization 

The sialidase activity of NanA has implicated it strongly as having a role in 

pneumococcal colonization. It is thought that cleavage of sialic acid from host 

glycans modifies the cell surface of host cells and exposes receptors for 

interaction with the pneumococcus, possibly allowing pneumococcal adherence 

(Tong et al., 1999). This hypothesis was supported by further data showing 

decreased ability of a NanA-deficient mutant to colonize and persist in the 

chinchilla nasopharynx, whilst immunization with recombinant NanA afforded 

protection against challenge in a chinchilla colonization model (Tong et al., 

2000; Tong et al., 2005). The authors also showed that NanA was responsible for 

alteration of carbohydrates in the tracheal epithelium, corroborating the 

previous studies (Tong et al., 2002). This hypothesis was initially disputed by 

King and colleagues, who observed no decrease in pneumococcal adherence to 

human epithelial cells or colonization in a rat model (King et al., 2004). 

However, further study by this group showed that NanA works synergistically 

with β–galactosidase and β-N-acetylglucosaminidase to expose mannose 

receptors in the host nasopharynx, and that these three enzymes play a role in 

pneumococcal colonization (King et al., 2006). Furthermore, both NanA and 

NanB were shown to have an important role in establishment of colonization in a 

murine model (Manco et al., 2006; Orihuela et al., 2004).  

Microarray studies showed that NanA was up-regulated in pneumococci isolated 

from the nasopharynx compared to blood isolates, further implicating the 

enzyme in colonization (King et al., 2004). The NanA enzyme of S. pneumoniae 

is also involved in interspecies competition with Neisseria meningitis and 

Haemophilus influenzae. Both of these bacteria employ sialic acid on their cell 

surfaces as a mechanism of molecular mimicry of host cells, to protect 
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themselves from opsonization by host complement. The pneumococcus utilises 

NanA to degrade this sialic acid, thus exposing the competing bacteria to the 

host immune system and conferring a competitive advantage to the 

pneumococcus during colonization (Shakhnovich et al., 2002). Furthermore, the 

sialidase activity of NanA has also been shown to cleave human proteins 

including lactoferrin and IgA2, which are involved in clearance of pneumococci 

from the nasopharynx and blood (King et al., 2004). The pneumococcus has also 

been shown to utilise mucin, which is plentiful in the nasopharynx, as an energy 

source (Yesilkaya et al., 2008). NanA activity plays a role in this, as NanA 

transcription was increased in presence of mucin, whilst a NanA-deficient 

mutant was unable to utilise mucin as a sole energy source (Yesilkaya et al., 

2008). 

1.7.3  Role of NanA in pneumococcal diseases 

The roles of NanA in IPD have not been studied in as great detail as in Ply. 

However, a number of potential roles have been defined. An important role in 

pathogenesis of acute otitis media has been attributed to NanA, with the initial 

observation of destruction of chinchilla middle ear membrane cells (LaMarco et 

al., 1986). Subsequent studies showed reduced colonization and persistence of a 

NanA-deficient mutant in the middle ear, whilst immunization with native or 

recombinant NanA afforded protection against acute otitis media in chinchillas 

(Long et al., 2004; Tong et al., 2000). Although NanA does not appear to be 

important in pneumococcal pneumonia, with no reduction in virulence of a 

NanA-deficient strain observed in a murine pneumonia model, it may play a role 

in the transition from nasopharynx to lung prior to establishment of pneumonia 

(Berry and Paton, 2000; Orihuela et al., 2004).  

The importance of NanA in pneumococcal bacteraemia is unclear. Whilst one 

study reported mutants deficient in NanA or NanB with an inability to persist in 

murine blood after intravenous injection (Manco et al., 2006), two other studies 

showed no reduction of survival in blood of a NanA-deficient mutant after 

intravenous and intraperitoneal injection respectively (Grewal et al., 2008; 

Orihuela et al., 2004). It appears that NanA plays no role in pneumococcal 

meningitis. Early studies in an in vitro canine model found no role for NanA in 

neuronal damage involved in meningitis (Carruthers and Kanokvechayant, 1973). 
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Similarly, no role for NanA was found in relation to the hearing loss and cochlear 

damage associated with pneumococcal meningitis, and no decrease in virulence 

was observed with a NanA-deficient mutant in two separate studies in murine 

meningitis models (Orihuela et al., 2004; Wellmer et al., 2002; Winter et al., 

1997).  

NanA has recently been implicated in the pathogenesis of conjunctivitis, as 

microarray analysis of conjunctivitis isolates showed up-regulation of 

neuraminidase genes, and exogenous neuraminidase increased adherence of 

pneumococci to human conjunctival epithelia in vitro (Williamson et al., 2008). 

Furthermore, NanA appears to play a role in progression of p-HUS, a 

complication of IPD (Klein et al., 1977). This hypothesis is discussed in detail in 

Section 1.4. Finally, neuraminidase activity has been implicated as important in 

the lethal synergism observed between the pneumococcus and Influenza virus 

(Peltola and McCullers, 2004; Peltola et al., 2005), and this relationship, along 

with the potential role of neuraminidases, is discussed in Section 1.9. 

1.7.4 NanA as a vaccine candidate 

Due to its role in pneumococcal colonization and importance in several 

pneumococcal diseases, NanA is being considered as a pneumococcal vaccine 

candidate for future protein-based vaccines (Tai, 2006). An early study using 

formaldehyde-treated NanA to immunize mice before intranasal challenge 

showed only small levels of protection (Lock et al., 1988a). However, recent 

studies in the chinchilla model have shown that immunization with NanA affords 

protection against pneumococcal colonization and otitis media, whilst 

immunization of mice with NanA toxoids significantly delayed the onset of 

pneumococcal pneumonia (Long et al., 2004; Tong et al., 2005; Yesilkaya et al., 

2006). However, these studies challenged chinchillas with pneumococci 

possessing either identical or similar NanA proteins to those used for 

immunization. This does not take into account the high levels of diversity in the 

NanA enzyme, which may restrict its use in a species-wide vaccine due to the 

high levels of diversity present across different serotypes (King et al., 2005).  
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1.8 Pneumococcal vaccines 

1.8.1 History 

The first pneumococcal vaccine consisted of killed whole pneumococci, and 

success was reported in preventing pneumococcal pneumonia and death in South 

African miners (Wright et al., 1914). Further research in the 1930s and 40s, 

based on the recognition of multiple pneumococcal serotypes, showed that anti-

capsular polysaccharide antibodies played a central role in protection against 

the pneumococcus (Finland and Sutliff, 1932; Francis and Tillett, 1930), and 

demonstrated the importance of incorporating multiple serotypes into a vaccine 

(McLeod et al., 1947). After further study in South Africa (Austrian et al., 1976; 

Smit et al., 1977), the first pneumococcal polysaccharide vaccine (PPV), a 14-

valent vaccine, was licensed for use in the USA, and subsequently Europe in 

1977. In the 1980s, the valency of this vaccine was increased to cover 23 

serotypes, which remains the valency of this vaccine today (French, 2003). 

Further to this, and due to limitations of the 23-valent PPV, a 7-valent conjugate 

polysaccharide vaccine was developed by Wyeth, and licensed in the USA in 

2000. In 2006, this vaccine was introduced into the UK vaccination schedule. In 

the near future, a number of increased-valency conjugate polysaccharide 

vaccines will become available. These are an 11-valent vaccine developed by 

GlaxoSmithKline, and a 13-valent vaccine developed by Wyeth. In the future, it 

is expected that protein-based vaccines will be licensed to protect against the 

pneumococcus. These are likely to include a number of protein virulence factors 

in order to afford cross-serotype protection (Ogunniyi et al., 2000; Ogunniyi et 

al., 2007a). 

1.8.2 Polysaccharide vaccines 

The first pneumococcal polysaccharide vaccine was a vaccine targeting the 

capsule of the 14 serotypes most commonly isolated from IPD. The next 

generation of this vaccine, a 23-valent PPV called PneumoVax, was launched by 

Merck. This vaccine was effective against 23 pneumococcal serotypes (1, 2, 3, 4, 

5, 6B, 7F, 8, 9N, 9V, 10A, 11A, 12F, 14, 15B, 17F, 18C, 19A, 19F, 20, 22F, 23F, 

33F), which caused 90% of IPD in the USA, and included the six serotypes most 

commonly causing invasive antibiotic resistant pneumococcal infections in the 

USA (Robbins and Schneerson, 1983). The 23-valent PPV vaccine is generally 
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administered to elderly patients, and patients with underlying predispositions 

such as sickle cell disease, HIV, or immuno-compromised patients where there is 

an increased risk of IPD (Gebo et al., 1996; Pebody et al., 2005). The efficacy of 

this vaccine has been researched in a number of studies. One study showed that 

HIV-infected children developed a significant immune response to the 23-valent 

PPV (Tangsinmankong et al., 2004), whilst another study showed that the 23-

valent PPV was ineffective in Ugandan HIV-infected adults, and noted increased 

rates of IPD in vaccine recipients (French et al., 2000). Furthermore, although 

this vaccine protects immuno-competent adults from IPD, there have been 

differing conclusions on efficacy in the elderly population. The vaccine was 

initially shown to be inefficacious in the elderly population (Ortqvist et al., 

1998), although efficacy has since been observed (Melegaro and Edmunds, 2004).  

One of the main drawbacks of the 23-valent PPV is that it is ineffective in 

children <2 years old. Use of this vaccine has been shown to produce anti-

capsular polysaccharide antibodies by stimulating clonal expansion of B-cells, 

resulting in maturation of B-cells into plasma cells, which produce antibody. This 

is in a T-cell independent manner, and these cells have a short lifespan, with no 

immune memory established. The reason for the lack of efficacy in children is 

thought to be the poor expression of CD21, a complement receptor which acts to 

improve B-cell response (Weintraub, 2003). Since the infant population is one of 

the main risk groups for IPD, a new vaccine was developed. 

1.8.3 Polysaccharide conjugate vaccines 

The conjugation of capsular polysaccharides to selected proteins has been shown 

to increase their immunogenicity as well as being efficacious in infants. The 

pneumococcal polysaccharide conjugate vaccine (PCV7) was developed after the 

outstanding success of the Haemophilus influenzae serotype b conjugate 

vaccine, with dramatic decline in invasive disease (Obaro and Adegbola, 2002). 

Indeed, vaccination has resulted in a 90-100% decrease in serotype b H. 

influenzae invasive disease. This vaccine had such a high level of success as 

serotype b clones are almost exclusively responsible for invasive disease cases 

(Kelly et al., 2004). The problem with the pneumococcus is that whilst 6 

serotypes of H. influenzae exist, with one causing almost all invasive disease, 

high levels of diversity in the pneumococcus result in over 90 pneumococcal 
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serotypes, with many responsible for IPD. Due to the complexity and cost of the 

conjugation process, only a limited number of serotypes could be included in the 

vaccine. In 2000, Prevnar (PCV7), a heptavalent pneumococcal polysaccharide 

conjugate vaccine was launched. This vaccine targeted the serotypes 4, 6B, 9V, 

14, 18C, 19F, and 23F based on epidemiological data from the USA, which 

showed these to be responsible for 78% of IPD in children (Butler et al., 1995). 

The protein component of this vaccine was the Diphtheria toxoid CRM197, which 

increased the immunogenicity of the capsular polysaccharides in infants (Black 

et al., 2000). However, the coverage of this vaccine varies globally, ranging 

from 70-88% in Europe and Africa, to <65% in Latin America and Asia, were 

serotypes 1 and 5 cause most IPD (Hausdorff et al., 2000b; Lloyd-Evans et al., 

1996; Obaro and Adegbola, 2002). This represents very low coverage, and 

demonstrates the need for either geographically tailored vaccines or non-

serotype-specific vaccines.  

The efficacy of this vaccine has been tested in several studies. The efficacy 

against invasive disease was tested by Black et al, who showed a 97.4% efficacy 

against vaccine serotypes causing invasive disease. Acceptable levels of efficacy 

were also observed for otitis media. However, results on the impact on 

pneumonia were inconclusive due to difficulties with diagnosis (Black et al., 

2000). Further to this study, it was concluded that the PCV7 vaccine was safe 

and efficacious for use in the general population, with particular efficacy in <5 

year child populations in comparison to PPV (Black and Shinefield, 2002). 

However, this vaccine has been shown to be less efficacious in elderly 

populations, where the 23-valent PPV remains useful (Briles, 2004).  

Since its introduction into the vaccination schedule in 2000, Prevnar has had a 

drastic effect on IPD in the USA. In particular, IPD has decreased in children, 

although decreases have also been observed in older groups, mostly attributed 

to herd immunity. However, whilst there has been a decrease of 75% in vaccine 

serotypes in the >65 age group, there has also been a significant 14% increase in 

non-vaccine serotypes (Lexau et al., 2005). The success of the PCV7 vaccine in 

the USA has been so great that the coverage of this vaccine had decreased to 

20% by 2005, due to replacement by non-vaccine serotypes (Whitney, 2005). This 

is the largest problem created by vaccinating against a sub-population of 

serotypes of this pathogen, which is evasion of the vaccine. This phenomenon 
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has been termed serotype replacement, and many studies have shown the 

replacement of vaccine serotypes by non-vaccine serotypes both in carriage and 

IPD in vaccinated individuals. Studies in the USA have shown that carriage of 

vaccine serotypes has decreased by 98% since the introduction of Prevnar, whilst 

vaccine-related serotypes have decreased by 79%. Conversely, non-vaccine 

serotypes have increased by 45% (Pai et al., 2005b). In particular, the non-

vaccine serotype 19A has increased 148%, and is the most significant of the 

replacement serotypes observed in the USA. Increases in this serotype have 

resulted in increase in penicillin non-susceptibility in the overall pneumococcal 

population due to over-representation of a serotype 19A, ST199 clone. 

Furthermore, several clones from vaccine serotypes have been discovered in the 

serotype 19A population, demonstrating their ability to switch capsule and evade 

the vaccine, and resulting in diversification of the serotype 19A population and 

emergence of this serotype as the predominant cause of IPD in the USA (Moore 

et al., 2008; Pai et al., 2005b). Similarly, a separate study demonstrated a 

reduction in IPD in HIV infected individuals, separated into a 62% decrease in IPD 

caused by vaccine serotypes, and a 44% increase in IPD caused by non-vaccine 

serotypes (Flannery et al., 2006). Similar results have been observed in most 

studies (Frazao et al., 2005; McEllistrem et al., 2003), and recent studies have 

indicated that such changes in circulating clones may have an effect on disease 

presentation in populations including HIV-infected patients and Alaskan natives 

(Lexau, 2008). Another drawback has been the emergence of a multi-drug 

resistant 19A clone causing acute otitis media, which is resistant to all approved 

methods of treatment, demonstrates the risk of vaccination targeting a subset of 

the pneumococcal population (Pichichero and Casey, 2007). 

Serotype replacement represents one of the major shortcomings of the PCV7 

vaccine. This has resulted in development of polysaccharide conjugate vaccines 

with increased valency. In the near future, an 11-valent vaccine will be launched 

by GlaxoSmithKline, covering further serotypes 1, 3, 5 and 7F, and has been 

shown to increase coverage of IPD-causing serotypes (Nurkka et al., 2004). 

Furthermore, 13-valent vaccine will be launched by Wyeth, covering further 

serotypes 1, 3, 5, 6A, 7F and 19A, which will further increase coverage. These 

vaccines will afford greater coverage of serotypes, and target the problematic 

serotypes, such as 19A and 1, which were absent from PCV7. However, the 
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serotype replacement observed upon the introduction of PCV7 in the USA has 

shown that this may not be the answer. Although these vaccines will increase 

coverage, there is an associated increase in cost, which will make these even 

more prohibitive for use in developing countries. Therefore, research into future 

pneumococcal vaccines is focussing on alternatives to serotype-specific vaccines, 

with the hope of producing a serotype-independent pneumococcal vaccine. This 

research has so far focussed on protein virulence factors shared by all 

pneumococci (Briles et al., 2000a; Ogunniyi et al., 2007a; Tai, 2006).   

1.8.4 Protein-based vaccines 

Many pneumococcal virulence factors have been studied as potential vaccine 

candidates for a protein-based pneumococcal vaccine. The benefits of such a 

vaccine would be to provide protection against all pneumococci irrespective of 

serotype, as well as being cheaper than the prohibitively expensive conjugate 

vaccines, thus becoming globally accessible. The ideal protein vaccine candidate 

would be highly conserved across all pneumococci and illicit a strong immune 

response. Surface-exposed pneumococcal virulence factors such as the sialidase 

enzyme NanA (Berry et al., 1988) should promote a strong immune response, 

however, these proteins are exposed to a greater selective pressure from the 

host immune system, and therefore tend to display a greater level of diversity, 

which may prevent full coverage of a vaccine. Cytoplasmic proteins such as the 

cholesterol-dependent cytolysin Ply (Walker et al., 1987) are highly conserved 

across pneumococci, due to their protection from the host immune system. 

Advances in technology, in particular those allowing rapid genome sequencing of 

the pneumococcus, have allowed identification of virulence factors with 

potential as pneumococcal protein vaccine candidates (Hava and Camilli, 2002; 

Hiller et al., 2007; Tettelin et al., 2001; Wizemann et al., 2001). Indeed, over 

30 pneumococcal genomes from a variety of serotypes will soon be publicly 

available, allowing for much more pertinent, cross-genome analysis of potential 

candidate proteins. The proteins that are being considered as vaccine candidates 

can be found in Table 1.3, along with information about their diversity across 

pneumococcal serotypes, and protection elicited in previous studies. Two of the 

most promising vaccine candidates are Ply and PsaA, since they have been shown 

to be highly conserved across all pneumococci, and have shown promising levels 

of protection in animal models (Briles et al., 2000b; Briles et al., 2003; Ogunniyi 
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et al., 2001; Talkington et al., 1996). Furthermore, serum antibodies to these 

proteins were found in children, associated with carriage or infection, implying 

that these proteins are targeted by the host immune response to pneumococci 

(Rapola et al., 2000). A further protein, PspA, was shown to be highly 

immunogenic and protect against both IPD and carriage (Briles et al., 2003). This 

was despite high levels of diversity demonstrated in this pneumococcal protein 

(Hollingshead et al., 2000). However, this protein was found to share 27% 

sequence identity with human cardiac myosin upon Phase I clinical trials, and 

research into its potential as a vaccine candidate has since ceased.  
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Protein Diversity Immunogenicity Studies 

Ply Thought to be highly conserved (Lock 
et al., 1996; Mitchell et al., 1990) 
although recent studies in our lab 
have shown diversity between and 
within serotypes (Kirkham et al., 
2006a). 

Protects against pneumonia 
and bacteraemia (Ogunniyi et 
al., 2001; Paton et al., 1983). 
 
Toxoid offers protection to 9 
pneumococcal serotypes 
(Alexander et al., 1994). 
 
Shown to increase efficacy of 
CPS vaccines when used as a 
carrier protein (Lee et al., 
2001). 
 
A non-toxic mutant retains high 
levels of immunogenicity 
(Kirkham et al., 2006b). 

PsaA High levels of variation between 2 
isolates reported (Berry and Paton, 
1996), however, larger study 
reported relative conservation 
(Sampson et al., 1997). 

Protects against pneumococcal 
colonisation and sepsis in a 
mouse model (Briles et al., 
2000b; Talkington et al., 1996).  
 

PspA Diverse, with highly mosaic structure 
indicating many recombination 
events and resulting in >20% diversity 
between alleles. Split into distinct 
clades (Hollingshead et al., 2000). 

Intranasal immunization 
protects mice from carriage, 
pulmonary infection and sepsis 
(Wu et al., 1997). 
 
Protects against sepsis in 
murine model (Swiatlo et al., 
2003). 
 
In humans, antibodies against 
PspA protect from carriage and 
invasive disease (Palaniappan 
et al., 2005). 

PiaA & 
PiuA 

PuiA conserved within pneumococci, 
and related species. PiaA 100% 
conserved in pneumococci, and 
absent from related species (Whalan 
et al., 2006). 

Immunization with both or 
either protects mice from 
bacteraemia (Brown et al., 
2001). 
 
Antibodies promote 
pneumococcal 
opsonophagocytosis (Jomaa et 
al., 2005a; Jomaa et al., 
2005b). 

PspC 
(CbpA, 
SpsA) 

Present in 75% of pneumococcal 
strains. Similar to PspA, and split into 
2 distinct clades. One clades has a 
domain shared by PspA, the other 
clade lacks this domain (Brooks-
Walter et al., 1999). 

Protects against pneumococcal 
bacteraemia (Brooks-Walter et 
al., 1999), but no effect on 
virulence seen when deleted 
(Berry and Paton, 2000). 

ClpP Undetermined. Protects from systemic 
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challenge. Mutant shows 
reduced colonisation and 
virulence levels (Kwon et al., 
2004). 

LytA Highly conserved, showing less than 
3% amino acid diversity (Whatmore 
and Dowson, 1999). 

Immunization significantly 
increases survival of challenged 
mice (Lock et al., 1992). 
 
Partially effective as carrier 
protein for CPS (Lee and Li, 
2001). 

NanA Study showed high levels of diversity, 
although did not sequence full gene 
(King et al., 2005). 

Immunization confers slight 
increase in survival time of 
challenged mice (Lock et al., 
1988a). 
 
Immunization reduces 
colonisation and otitis media in 
chinchillas (Long et al., 2004; 
Tong et al., 2005). 

PhtA-E Antigenically conserved (Tai, 2006). Protect mice against 
pneumococcal sepsis (Adamou 
et al., 2001). 
 
PhtB and PhtE protect against 
pneumonia in mice (Hamel et 
al., 2004; Zhang et al., 2001). 

PpmA Relatively conserved, with most 
mutations discovered synonymous 
(Overweg et al., 2000). 

Elicits species-specific, cross-
reactive antibodies, and a 
knock-out mutant shown 
reduces virulence in mouse 
pneumonia model (Overweg et 
al., 2000). 

PppA Antigenically conserved across 
serotypes, although nothing 
mentioned regarding amino acid 
similarity (Green et al., 2005). 

Elicits cross-reactive antibodies 
and reduces colonisation in a 
murine model (Green et al., 
2005). 
 
Nasal immunization with 
Lactococcus lactis expressing 
PppA shown to elicit cross-
protective immunity against 
both respiratory and systemic 
challenges (Medina et al., 
2008). 

Table 1.3: Pneumococcal protein vaccine candidates  

A list of pneumococcal protein vaccine candidates, diversity present and immunization 
studies. Ply = pneumolysin, PsaA = Pneumococcal sur face antigen A, PspA = 
pneumococcal surface protein A, PiaA = pneumococcal  iron acquisition protein A, PiuA = 
pneumococcal iron uptake protein A, PspC = pneumoco ccal surface protein C, ClpP = 
caseinolytic protease P, LytA = autolysin, NanA = n euraminidase A, PhtA-E = pneumococcal 
histidine triad proteins A-E, PpmA = proteinse matu ration protein A, PppA = pneumococcal 
protective protein A.  
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The most successful pneumococcal vaccine may turn out to be a combination of 

pneumococcal proteins, and recently, a number of studies have investigated this 

area. In 2000, it was shown that while mutants deficient in Hyl or PspC had no 

effect on virulence, significant additive attenuation was observed in double 

mutants of each of these proteins with Ply (Berry and Paton, 2000). 

Furthermore, investigation of additive immunization with PspA, PspC and ClpP or 

their polyclonal antibodies showed that survival increased significantly in mice 

immunized with all three proteins compared to single or double combinations 

(Cao et al., 2007). Similarly, another study showed that immunization with the 

Ply toxoid PbB, PspA and PspC together significantly increased survival times in 

mice compared to any other combination of proteins, showing that immunization 

with several pneumococcal proteins may have more success in protecting against 

pneumococcal disease (Ogunniyi et al., 2007a).  

1.9 The relationship between Influenza and the 

pneumococcus 

There is an important relationship between Influenza infections and secondary 

pneumonia caused by bacterial pathogens, resulting in increased mortality 

during Influenza epidemics and pandemics (Brundage and Shanks, 2008; Glezen, 

1982; Simonsen, 1999). The main bacterial pathogen involved in this is the 

pneumococcus, and together influenza and S. pneumoniae are responsible for 

most deaths from infectious diseases worldwide (World Health Organization, 

www.who.int). An example of the catastrophic cooperative interaction between 

these pathogens can be found in the 1918 influenza pandemic, where 40-50 

million people are reported to have lost their lives, mostly to secondary 

pneumococcal pneumonia (Brundage and Shanks, 2008). However, the 

mechanisms behind the relationship between these organisms are poorly 

understood. It has been hypothesised that destruction or alteration of the human 

respiratory epithelium or inhibition of phagocytosis by the Influenza virus may 

predispose the host to pneumococcal colonization, leading to IPD (Abramson et 

al., 1982; Plotkowski et al., 1986). Indeed, whilst one of these studies showed 

that adherence of pneumococci to murine tracheal epithelium was increased 

following inoculation of influenza, another showed that neutrophil dysfunction 

caused by influenza resulted in increased levels of pneumococcal otitis media 

(Abramson et al., 1982; Plotkowski et al., 1986). The cytokine response to this 
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virus may also play a role in exposing pneumococcal adherence receptors and 

promoting invasion, and although the PAF-receptor was implicated, studies in 

mice did not confirm this hypothesis (McCullers et al., 2008). Another factor 

recently implicated has been the viral accessory protein PB1-F2, with studies 

showing that a mutant possessing the variant of PB1-F2 present in the 1918 

pandemic strain was more virulent than its parent strain, with an increase in 

secondary pneumococcal pneumonia noted. Authors report this result may 

explain the virulence of the 1918 strain as well as the high mortality levels as a 

result of pneumococcal pneumonia in this time (McAuley et al., 2007). 

Furthermore, a study of cytokine expression in mice with secondary 

pneumococcal pneumonia showed high levels of both pro- and anti-inflammatory 

cytokines in the blood and lungs, with elevated neutrophil influx also noted. 

Detailed study of these cytokines and their roles in this synergistic infection may 

improve understanding of the pathogenic methods employed (Smith et al., 

2007).  

Neuraminidase activity has been strongly implicated as being important in the 

synergism between these pathogens, with both possessing active neuraminidase 

enzymes, and several studies providing strong evidence for this hypothesis 

(Peltola and McCullers, 2004; Peltola et al., 2005). Historically, in a chinchilla 

otitis media model, co-infection of Influenza with the pneumococcus caused 

significantly greater levels of disease than infection with either pathogen alone, 

confirming the synergistic relationship between pathogens (Giebink et al., 

1980). In retrospect, since neuraminidase activity has been suggested as 

important in this synergism, and NanA is important in otitis media, these studies 

agree with this hypothesis. More recently, a robust model of secondary 

pneumococcal pneumonia after influenza infection was developed by the group 

of Jonathan McCullers, allowing further research into the relationship between 

influenza and S. pneumoniae, as well as the role of neuraminidases in this 

relationship. Initial studies showed that infection with influenza followed by the 

pneumococcus resulted in 100% mortality from pneumococcal pneumonia 

(McCullers and Rehg, 2002). Further to this, specific inhibitors of influenza 

neuraminidase (NA) became available for clinical use, including Zanamivir and 

oseltamivir, facilitating studies in this area (Hayden et al., 1999a; Hayden et al., 

1999b). Studies using this model showed that inhibition of influenza NA using 
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oseltamivir resulted in reduced mortality from secondary pneumonia, as well as 

showing that whilst pre-incubation with influenza increased pneumococcal 

adherence to human lung epithelial cells, inhibition of influenza neuraminidase 

activity by oseltamivir prevented this increase. The authors suggest that viral NA 

plays an important role in the synergism between these organisms, possibly by 

exposing pneumococcal adherence receptors, due to the reduced virulence 

observed when specifically inhibiting the viral NA. However, they state that 

oseltamivir does not have an effect on pneumococcal NanA (McCullers and 

Bartmess, 2003). The importance of NA activity ahead of other influenzal 

virulence factors was further strengthened by the finding that whilst treatment 

with oseltamivir increased survival after secondary pneumococcal pneumonia 

from 0% to 75%, whilst other antiviral drugs had no effect, and infection with an 

influenza strain deficient in NA produced a similar increase in survival 

(McCullers, 2004). Furthermore, Peltola and colleagues used recombinant NA 

from pandemic strains to show that the levels of neuraminidase activity in these 

strains correlated with their ability to promote secondary bacterial pneumonia, 

further strengthening the hypothesis that the activity of viral NA predisposes 

infected hosts to pneumococcal colonization and resulting pneumococcal 

pneumonia (Peltola et al., 2005). However, all of these studies have focussed on 

the role of influenza NA in this relationship, without studying the possible role of 

pneumococcal NanA, or the effect that inhibitors may have on this enzyme.  

1.10 Related viridans group streptococci 

Members of the streptococcus genus are Gram-positive cocci, consisting of both 

commensal and pathogenic species. The earliest attempt at classification of 

streptococci was by Schottmuller in Germany in 1903, when bacteria were split 

into beta-haemolytic and non-beta-haemolytic groups. Since then, many 

methods of classification have been developed including differences in 

phenotypic traits such as fermentation and pH tolerance and characterisation of 

carbohydrate antigens (Lancefield, 1933). However, classification was hampered 

by inaccuracies in phenotypic tests, resulting in species classifications qualified 

by several exceptions. The advent of gene sequencing allowed further 

exploration of species classification, with differences in the 16S rRNA gene 

allowing production of a genetic tree to show the relatedness of streptococcal 

species (Facklam, 2002). S. pneumoniae belongs to the viridans streptococci, 
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which is split into 5 main groups, namely the mutans, salivarius, mitis, anginosus 

and sanguinis groups (Bruckner and Colonna, 1997). S. pneumoniae is a member 

of the mitis group, which includes other species such as Streptococcus mitis, 

Streptococcus oralis (Kilpper-Balz et al., 1985), Streptococcus cristatus (Handley 

et al., 1991) and Streptococcus infantis (Kawamura et al., 1998). This group 

contains non-beta-haemolytic streptococci, which are mostly associated with 

commensal carriage in the human nasopharynx and oral cavity. S. pneumoniae is 

the notable exception to this rule, being a debilitating human pathogen. 

However, this species is closely related to other members of the mitis group, 

and indeed shares >99% sequence identity with its closest relations S. oralis and 

S. mitis by 16S rRNA analysis, which identifies 12 member species in this group 

(Figure 1.3) (Facklam, 2002; Kawamura et al., 1995). Despite their normally 

commensal nature, S. mitis and S. oralis are able to cause opportunistic 

infections, particularly endocarditis in patients with replacement heart valves 

(Douglas et al., 1993). Furthermore, these organisms can cause infections in 

immuno-compromised patients, particularly after transplants or in cancer 

patients (Beighton et al., 1994; Lucas et al., 1997). A number of diagnostic kits 

exist to distinguish the pneumococcus from related species, including the Rapid 

ID 32 STREP (Biomerieux, France) and the STREPTOGRAM (Wako Pure Chemicals, 

Japan). However, success of these kits has been shown to be as low as 50% in 

correct identification of species (Hoshino et al., 2005). 

                          

Figure 1.3: Relationship between S. pneumoniae and closest relatives 

Part of a genetic tree of relatedness between streptococci based on 16S rRNA analysis 
taken from a previous study (Facklam, 2002). S. pneumoniae and two closest relations 
circled in red.  
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S. pneumoniae can be distinguished from related species by a number of 

phenotypic and genotypic tests including tests of bile solubility, optochin 

resistance and agglutination with specific pneumococcal anti-capsular 

antibodies. However, the classification of these species is blurred, and there are 

many exceptions when using these classification techniques, with resulting 

isolates termed “atypical” pneumococci, which may be bile insoluble or 

optochin resistant (Diaz et al., 1992; Fenoll et al., 1990; Kontiainen and 

Sivonen, 1987; Munoz et al., 1990; Phillips et al., 1988). A study of the house-

keeping genes of these “atypical” isolates uncovered a group of isolates distinct 

from both S. pneumoniae and S. mitis (Whatmore et al., 2000). It is likely that 

these isolates belonged to the species S. pseudopneumoniae, characterized in 

2004. This species was similar to S. mitis by phenotypic tests, but was not 

distinguishable from S. pneumoniae by genotypic tests such as ply or lytA PCR 

(Arbique et al., 2004). More recently, phylogenetic analysis of 4 housekeeping 

genes was shown to allow definitive classification of mitis group streptococci. 

However, comparison of results for individual housekeeping genes showed that 

analysis of the sodA gene of isolates was highly discriminatory and allowed 

species differentiation. Authors noted than the exceptions to this were some S. 

sanguinis isolates which failed to PCR for sodA, and an inability to distinguish 

between S. pneumoniae and S. pseudopneumoniae isolates (Hoshino et al., 

2005).  

S. pneumoniae, S. mitis and S. oralis are naturally transformable bacteria, 

meaning they can take up DNA from their environment and insert it into their 

genome by homologous recombination (Havarstein et al., 1996; Morrison, 1997). 

The fact that these 3 organisms share a niche in the human nasopharynx suggests 

the possibility that they may share genetic material, with the ability to pass 

genes between species. Indeed, a number of studies have shown that regions of 

diversity identified in pneumococcal genes have resulted from homologous 

recombination with related species. This was initially demonstrated in penicillin-

biding protein PBP2B, which was identical between species, and thought to be 

transferred between S. pneumoniae and S. mitis, S. sanguinis and S. oralis 

(Dowson et al., 1989; Dowson et al., 1993; Dowson et al., 1994). A similar 

mechanism was suggested for the PBP2X gene, and study has shown that 

evolution of penicillin resistance by this gene originated in S. oralis, before 



Chapter 1   Introduction 

  62 

horizontal gene transfer to S. pneumoniae (Chi et al., 2007; Laible et al., 1991; 

Sibold et al., 1994). These results demonstrated the presence of a “pool” of 

genes for penicillin resistance shared between these species (Reichmann et al., 

1997). The transfer of IgA protease genes between S. pneumoniae, S. mitis and 

S. oralis has also been demonstrated, as was homologous recombination in the 

nanA gene between S. pneumoniae and S. oralis (King et al., 2005; Poulsen et 

al., 1998). Other genetic regions of S. pneumoniae which have been shown to 

possess mosaic blocks, a sign of homologous recombination between species, 

include the competence regulation operon (Havarstein et al., 1997; Whatmore 

et al., 1999), fluoroquinolone resistance genes (Ip et al., 2007; Janoir et al., 

1999) and topoisomerase IV (Balsalobre et al., 2003). Furthermore, a number of 

studies have demonstrated that isolates characterized as S. mitis or S. oralis can 

possess homologues of other pneumococcal virulence genes, or homologues of 

these genes. This was demonstrated for the lytA and ply genes, as well as nanA 

(King et al., 2005; Neeleman et al., 2004; Obregon et al., 2002; Whatmore et 

al., 2000). Taken together, these results imply that the definition between the 

pathogenic organism S. pneumoniae and normally commensal relatives S. mitis 

and S. oralis is not simple. Indeed, research into the relationship described a 

“smooth transition” between species due to the overlap in genetic information 

observed between species (Hakenbeck et al., 2001). However, a recent study 

has offered greater insight into the evolution of and relationships between these 

species. The results showed that S. oralis and S. infantis isolates cluster 

distinctly from S. pneumoniae, which forms a large cluster with S. mitis and S. 

pseudopneumoniae. This cluster was found to represent many evolutionary 

lineages claimed to represent individual species by taxonomy, with particular 

diversity observed in the S. mitis isolates. Authors suggest that the S. mitis 

“species” is evolving from a pneumococcus-like pathogenic ancestor towards 

commensality, with pneumococcal virulence genes being lost over time, which 

would account for their seemingly random distribution in S. mitis isolates (Kilian 

et al., 2008). However, the possibility of evolution occurring in the other 

direction, with the pneumococcus evolving towards pathogenicity from a 

commensal ancestor, with S. mitis and S. pseudopneumoniae in the process of 

this evolution by acquisition of virulence genes, is not addressed by authors 

despite the plausibility of this hypothesis as an alternative.  
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1.11 Aims of the project 

The aims of this project were to assess the diversity of two of the main virulence 

factors of the pneumococcus, and determine the importance of this diversity on 

virulence of pneumococcal clones. The two virulence factors examined were the 

cytolytic toxin Ply and the sialidase enzyme NanA. Furthermore, the distribution 

and diversity of homologues of these virulence factors in related commensal 

streptococci was investigated. Study of the diversity present in these virulence 

factors will not only further our understanding of pneumococcal pathogenesis, 

but also give insight into their suitability for use in future protein-based 

pneumococcal vaccines. Finally, pneumococcal diversity was explored at a more 

global level by use of pneumococcal microarrays, in order to allow relation of 

clonal differences to invasive pneumococcal disease, and identification of 

differences between this debilitating human pathogen and commensal relatives.  
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2.1 Bacterial strains, growth conditions and storag e 

S. pneumoniae strains were initially grown on BAB (Blood agar base, Oxoid, UK) 

supplemented with 5% horse blood (E&O Laboratories, Scotland), and single 

colonies inoculated into BHI (Brain heart infusion broth, Oxoid, UK) and grown 

statically at 37oC until mid-log growth phase (OD600nm 0.6) was reached. These 

cultures were then stored in 1ml aliquots at -80oC with 10% glycerol (Riedel-de 

Häen, Germany). Strain purity and optochin sensitivity was tested prior to strain 

freezing by streaking on BAB + 5% horse blood, with optochin disc (Mast 

diagnostics, UK). E. coli strains were grown from single colonies in LB (Luria 

broth, Sigma-Aldrich, UK) supplemented with appropriate antibiotics, and stored 

in 1ml volumes with 10% glycerol.  

2.2 Preparation of genomic DNA from S. pneumoniae 

Strains were grown at 37ºC overnight in 20ml BHI, and then a BAB plate was 

aseptically streaked with culture to check purity, and identity using an optochin 

disc. The remaining culture was centrifuged at 3,500g at 4ºC for 15 minutes to 

pellet the cells, before the removal of the supernatant. The pellet was 

subsequently resuspended in 1ml lysis buffer (10mM Tris, 100mM EDTA, 0.5% 

SDS) before incubation at 37ºC for 1 hour. Proteinase K (Invitrogen, Scotland) 

was then added to the sample to a final concentration of 20µg/ml, before 

incubation at 50ºC for 3 hours. After this, RNase A (Invitrogen, Scotland) was 

added to each sample, to a final concentration of 20µg/ml, and the samples 

were incubated at 37ºC for 30 min, before addition of an equal volume of 

phenol:chloroform:isoamyl alcohol (25:24:1) (Sigma-Aldrich, UK). The tubes 

were then inverted sharply several times to mix the samples, and centrifuged at 

12,000g for 3 min. The upper phase of the solution was then removed and placed 

into a fresh 1.5ml tube, before addition of 0.2 volumes of 10M ammonium 

acetate (Sigma-Aldrich, UK) and ~600µl absolute ethanol (Fisher Scientific, UK, 

analytical reagent grade). The tubes were then gently inverted, and centrifuged 

at 12,000g for 30 min in a benchtop centrifuge (Centrifuge 5417C, Eppendorf, 

UK) to pellet the DNA, before careful removal of the supernatant. The pellets 

were then air dried for 15-20 minutes to remove any remaining ethanol, before 

being resuspended in ~200µl TE buffer (10mM Tris, 1mM EDTA) and incubated at 
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65ºC, with intermittent mixing, to resuspend the DNA fully. The samples were 

then stored at 4ºC until required. 

2.3 Serotyping, Multi Locus Sequence Typing (MLST) and 

eBURST 

Serotyping and MLST was carried out at the Scottish Meningococcal and 

Pneumococcal Reference Laboratory (SMPRL). Serotyping was done using an 

agglutination reaction. MLST was done using pre-defined primers (Enright and 

Spratt, 1998) using a semi-automated technique (Jefferies et al., 2003). This 

involved DNA sequencing of 7 highly conserved housekeeping genes (aroE, gdh, 

gki, recP, spi, xpt and ddl) from genomic DNA of pneumococcal isolates. Each 

allele was assigned a number in reference to the MLST website 

(http://www.mlst.net) depending on sequence, which results in a seven-digit 

“barcode” for each particular isolate. This barcode can then be used to 

determine the ST of the isolate by comparison the isolates present in MLST 

database, resulting either in isolates being assigned an ST matching other 

isolates in the database, or an isolate being assigned a new, novel ST. The main 

advantage of this is the portability of the system, with global surveillance and 

comparison of isolates at a genetic level possible. E-Burst 2 

(http://www.mlst.net) was used to construct eBURST diagrams illustrating 

relationships between isolates listed in the pneumococcal MLST database. These 

diagrams allow comparison of strains from a particular population (eg. All 

pneumoccocal isolates from a particular serotype, geographical location or time 

period present in the database) and relates the MLST profiles of these clones by 

linking single locus variants (clones sharing 6/7 housekeeping alleles) into clonal 

complexes. STs in clonal complexes which are blue are the predicted founders of 

those complexes, as predicted by the fact that they have the higher number of 

single locus variants. The size of the point for each ST represents the number of 

isolates from that ST present in the MLST database.  

2.4 PCR and gene sequencing 

Pneumococcal gene ply was amplified with external primers 27R and S for gene 

sequencing, giving a PCR product of 2411bp. The nanA gene was amplified with 
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external primers 31R and S for gene sequencing, giving a PCR product of 4847bp. 

A 440bp fragment of the streptococcal gene sodA was amplified using internal 

primers previously designed (Hoshino et al., 2005). In each case, a Phusion High 

fidelity polymerase enzyme (New England Biosciences, UK) was used. In all 

cases, the following PCR conditions were used, with extension times noted: 

PCR reaction conditions 

• 98ºC for 30s 

• 30x 

o 98ºC for 10s 

o 55ºC for 30s 

o 72ºC for 30s (sodA), 60s (ply) or 140s (nanA)  

• 72ºC for 5 min 

• Stored at 4ºC 

Genes amplified, primers used for amplification and PCR product sizes can be 

found in Table 2.1.  

PCR products were diluted 3:1 in DNA loading buffer (0.25% bromophenol blue, 

40% (w/v) sucrose in dH2O), run in 0.7% agarose (Roche, UK) with 0.1% SYBRSAFE 

(Invitrogen, UK) and viewed under ultraviolet light in a UVIpro Gold Gel-doc 

system (UVItec, UK) to confirm successful PCR. PCR products were sent for 

sequencing at the Molecular Biology Sequencing Unit at the University of 

Glasgow, where they were cleaned using the AMPure® PCR purification method 

(Agencourt Bioscience Corporation, Beverly, MA, USA).  DNA sequencing was 

performed using Big Dye Terminator cycle sequencing reagents version 1.1 

(Applied Biosystems, UK) and a MegaBace 1000 DNA sequencer (Amersham 

Biosciences, UK). Primers used for gene sequencing can be found in Table 2.1. 

Resulting sequence data were assembled aligned and translated using Vector NTI 

software (Invitrogen, Scotland). Minimum evolution trees showing relationships 

between nucleotide sequences were constructed using MEGA4 software 

(Molecular Evolutionary Genetics Analysis, www.megasoftware.net). 
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Primer Name DNA sequence 5'-3' Use 

sodA    
39I sodA 

forward 
TRCAYCATGAYAARCACCAT PCR amplification and 

sequencing of sodA gene 
fragment 

39J sodA reverse ARRTARTAMGCRTGYTCCCA
RACRTC 

PCR amplification and 
sequencing of sodA gene 
fragment 

ply    
4T ply internal 

forward  
GTTGATCGTGCTCCGATGAC Sequencing of ply gene 

4V ply internal 
forward  

CAATACAGAAGTGAAGGCGG Sequencing of ply gene 

4W ply internal 
forward  

GATCATCAAGGTAAGGAAGT
C 

Sequencing of ply gene 

9Y ply internal 
forward  

CGGGATCCGGCAAATAAAGC
AGTAAATGACTTT 

Sequencing of ply gene 

27R ply external 
forward  

CTTGGCTACGATATTGGC PCR amplification and 
sequencing of ply gene 

27S ply external 
reverse 

TACTTAGTCCAACCACGG PCR amplification and 
sequencing of ply gene 

27T ply internal 
reverse 

ATAAGTCATCGGAGCACG Sequencing of ply gene 

nanA    
22X nanA 

internal 
forward  

GAGGAACAGTATGAATCGGA
GTG 

Sequencing of nanA gene 

31R nanA 
external 
forward  

TAACAGTACACCTTGACTGC PCR amplification of 
nanA gene 

31S nanA 
external 
reverse 

GTGTTCGATAAGGATTGAGC PCR amplification of 
nanA gene 

35E nanA 
internal 
forward  

TGACCGCTTCTCCAGCATGC Sequencing of nanA gene 

35F nanA 
internal 
reverse 

GAAACCAATGCTTCAAATGG Sequencing of nanA gene 

38P nanA 
internal 
forward  

TCCTCAGTAATGCAGGTGGA
C 

Sequencing of nanA gene 

38Q nanA 
internal 
reverse 

TGGAGCCTTGTTGACCAATA
C 

Sequencing of nanA gene 

62F nanA 
internal 
forward  

CCAGAAGAGGTACAAAAACG
TAGTCAAC 

Sequencing of nanA gene 

62G nanA 
internal 
forward  

AGGGTGATCTATACAAGGGT
GACCA 

Sequencing of nanA gene 



Chapter 2  Materials and Methods 

  69 

62H nanA 
external 
reverse 

TGCCTTTGGTTTTCGGAACT
TT 

Sequencing of nanA gene 

62I nanA 
internal 
reverse 

CCCCTTCTTGAGCTAAAACA
GGAGA 

Sequencing of nanA gene 

62J nanA 
internal 
forward  

AATCTTTACAAAGGTCAGGA
ATTGATT 

Sequencing of nanA gene 

62K nanA 
internal 
forward  

GCCGTCTTCATTCTAGTGAC
TGGGG 

Sequencing of nanA gene 

62L nanA 
internal 
forward  

CAACAAACCAAATAAAGATG
GAAT 

Sequencing of nanA gene 

64I nanA 
internal 
forward  

GAATAAATGTCTTATTTCAGA
AATC 

Sequencing of nanA gene 

64J nanA 
internal 
reverse 

TTATTGTTCTCTTTTTTCCCT
AGC 

Sequencing of nanA gene 

Table 2.1: Primers used for PCR amplification and s equencing of pneumococcal genes 
 

2.5 Testing production and activity of virulence fa ctors 

2.5.1 Preparation of samples 

Isolates were grown statically at 37oC, in 20ml BHI until mid-log phase (OD600nm 

0.6), spun for 15 minutes at 3,500g, 4oC in a 4K15 centrifuge (Sigma-Aldrich, 

UK). When required, induction of neuraminidase activity was accomplished by 

addition of 50µg/ml N-acetylneuraminic acid (Neu5ac) to growth medium. 

Pellets were resuspended in 1ml PBS (Phosphate-buffered saline) with protease 

inhibitor cocktail (Roche, UK). Samples were sonicated at 10 microns for eight 

repeats of 30 seconds with 30 seconds rest using a Soniprep 150 sonicator (MSE, 

UK). Supernatants, where required, were concentrated 20x to a final volume of 

1ml, using an Amicon centrifugal concentrator with cut-off 30kDa (Millipore, 

UK). All samples were stored on ice until use.  

2.5.2 SDS-PAGE and Western blotting 

Samples were diluted 3:1 in NuPAGE sample buffer (Invitrogen, Scotland) and 

heated to 70oC for 10 minutes before loading onto gel. Gels used were 10% 
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polyacrylamide gels throughout (Invitrogen, Scotland). Markers used were either 

Kaleidoscope protein markers (Bio-rad, UK) or SeeBlue +2 pre-stained markers 

(Invitrogen, Scotland). A sample volume of 20µl was loaded in each well, and run 

at 100V for 60-80 minutes. SDS-PAGE gels were stained overnight in Coomassie 

stain (500ml dH2O, 400ml methanol, 100ml acetic acid, 0.5g Coomassie blue 

R250), and destained with destain solution (500ml dH2O, 400ml methanol, 100ml 

acetic acid) until clear.  

For Western blot, the proteins were transferred to Hybond-C nitrocellulose 

membrane (Amersham Biosciences, UK) by blotting at 100V for 1 hour. The 

membrane was the shaken at 37ºC for 2-3h in 3% skimmed milk (Marvel, UK) in 

Tris NaCl, pH 7.4 (10mM Tris, 150mM NaCl, 8mM HCl),  with a 1/1000 dilution of 

primary antibody before washing x 4 in 40ml Tris NaCl pH7.4 for 5 minutes. The 

membrane was then transferred to 3% skimmed milk in Tris-NaCl pH 7.4 with 

1/1000 dilution of HRP-labelled secondary antibody (α-rabbit IgG antibody raised 

in donkey, Amersham Biosciences, UK), and shaken for 1 h at 37ºC, before 

washing x 4 as described, incubated with developer (40ml Tris NaCl, pH7.4, 10ml 

Methanol, 30µl Hydrogen peroxide (30% w/v) and 30mg 4-chloro-1-naphthol, 

prepared just before use) at room temperature in the dark and stopped with 

dH2O. 

2.5.3 Haemolytic assay 

The haemolytic activity of Ply in culture lysates was measured using a 

haemolytic assay previously described (Walker et al., 1987), with modifications. 

Briefly, doubling dilutions of 50µl culture lysates, starting at a 1/5 dilution were 

made in PBS in duplicate in a round-bottomed 96-well plate (Costar, UK). A 

control double dilution of a 1/1000 dilution of purified Ply (0.7mg/ml) (Mitchell 

et al., 1989) was included in duplicate. PBS was included as a negative control. 

50µl of 10µM dithiothreitol (DTT) (Sigma-Aldrich, UK) was added to each well, to 

act as a reducing agent for any Ply oxidised in the lysate. The plate was then 

incubated at 37ºC for 15 min with a lid to prevent evaporation.  

A 2% (vol/vol) solution of either sheep erythrocytes (E & O Laboratories, 

Scotland) or human erythrocytes was prepared and 50µl was added to each well. 

Unless stated, the assay was run with sheep erythrocytes. The plate was then 
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incubated at 37oC for 30 min before addition of a further 50µl PBS, and 

centrifugation at 500g for 1 minute in a 4K15 centrifuge (Sigma-Aldrich, UK) to 

pellet the intact cells. A volume of 100µl of supernatant was removed from each 

well and added to the corresponding well of a fresh flat-bottomed 96-well plate 

(Costar, UK), and a spectrophotometer reading at 540nm taken in a FLUOstar 

Optima plate-reader (BMG Labtech, UK) to measure the levels of haemoglobin 

released in each well. From this result, the percentage (%) lysis in each well was 

calculated using the mean negative control value as the 0% lysis value, and the 

mean value from the wells where 100% haemolysis has occurred as the 100% 

value. A curve of % lysis against well number was plotted for each strain, giving 

a typically sigmoid curve, using GraphPad Prism 4 software (GraphPad software, 

USA). 

2.5.4 Ply sandwich ELISA 

Ply expression levels in culture lysates were quantified using a Ply sandwich 

ELISA described previously (Cima-Cabal et al., 2003) with modifications. 

Maxisorp 96-well plates (NUNC, UK) were coated with 100µl 2.5µg/ml mAb PLY-7 

(de los Toyos et al., 1996) in coating buffer (carbonate/bicarbonate buffer, 

0.05M, pH9.6) by incubation at 4ºC overnight. Plates were blocked with blocking 

buffer (10% foetal calf serum [Invitrogen, Scotland] in PBS) and washes were 

made with PBS + 0.05% Tween20 (Sigma-Aldrich, UK). Blocking buffer with 0.05% 

Tween20 (assay buffer) was used to dilute samples. Cell extracts were diluted 

1:7500 and 100µl added to wells in duplicate. A standard curve of purified Ply 

(2000pg/ml to 31.25pg/ml) was used to quantify Ply levels. A 1:2000 dilution of 

polyclonal α–Ply antibody (Mitchell et al., 1989) in assay buffer was added to 

each well at a volume of 100µl, and plates were shaken at 37oC for 30 min. After 

4 washes, 100µl of biotinylated α-rabbit IgG antibody (Amersham Biosciences, 

UK) diluted 1:500 in assay buffer was added to each well and plates were shaken 

at 37oC for 30 min. After a further 4 washes, 100µl streptavidin HRP (KPL, 

Maryland, USA) diluted 1:2000 in assay buffer was added to each well, and plates 

were incubated at room temperature for 30 min before being developed with 

with 3, 3′, 5, 5′-tetramethylbenzidine (TMB) substrate (KPL, Maryland, USA) 

according to the manufacturers instructions. 50µl of stop solution (10% H2SO4) 

was then added and the plate read at 450nm to allow construction of standard 

curve and calculation of unknown Ply concentrations. 



Chapter 2  Materials and Methods 

  72 

2.5.5 Calculation of Ply specific activity 

From the results of the haemolytic assay and Ply sandwich ELISA on culture 

lysates, the specific activity of Ply present was calculated. The Ply 

concentration in the cell lysates was calculated from the ELISA results, and from 

this, the concentration of Ply present in each well of the haemolytic assay was 

calculated for each cell lysate tested. From this, the concentration of Ply 

required to lyse 50% of erythrocytes in the assay was calculated, and reciprocal 

of this value gave the specific activity of the Ply in the sample, in haemolytic 

units/mg (HU/mg). 

2.5.6 Neuraminidase activity 

The neuraminidase activity present in culture lysates and concentrated 

supernatants was measured using a modified version of a previously described 

assay (Manco et al., 2006). Total protein concentrations were calculated using a 

Bradford’s assay as previously described (Bradford, 1976) and concentrations 

were standardized. In a round-bottomed 96-well plate, 25µl of each sample was 

added to 25 µl of 0.3mM pNP-NANA (2-O-(p-nitrophenyl)-α-D-N-acetylneuraminic 

acid (Sigma-Aldrich, UK) prepared in 50mM Sodium citrate pH6.0) in triplicate. 

25µl of 40mM Tris-HCl (pH 7.6) was added as a negative control. Samples were 

incubated at 37ºC for 30min, and 100µl 0.5M ice cold Na2CO3 was added to each 

well. The plate was read at 405nm to measure the release of p-nitrophenol 

(pNP) from the substrate. For strain lysates, this was compared to a standard 

curve of pure pNP (Sigma-Aldrich, UK) to determine neuraminidase activity in 

the sample, with the units in nM pNP released/mg total protein/hour. The 

results for sonicate and supernate were averaged and combined for each isolate 

to determine overall neuraminidase activity. For purified NanA proteins, % 

release of pNP from the pNP-NAN substrate was plotted against protein 

concentration, and specific activity in enzymatic units/mg calculated by taking 

the reciprocal of the NanA concentration required to cause 50% pNP release in 

the assay. Statistical analyses of results were performed using GraphPad InStat 3 

(Graphpad Software,) 
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2.6 Construction of S. pneumoniae Ply knockout strain 

2.6.1 Rationale of Janus technique 

A strain of wild-type D39 S. pneumoniae expressing no Ply (D39 ∆Ply stop) was 

constructed using the Janus technique (Sung et al., 2001). This method allowed 

production of unmarked mutations in S. pneumoniae by employing a method of 

negative selection. Firstly, D39 was transformed with a gene to confer 

streptomycin resistance (rpsL-). Secondly, the Janus cassette, conferring both 

kanamycin resistance and dominant streptomycin sensitivity (rpsL+), was 

inserted into the S. pneumoniae genome in position of the ply gene by 

homologues recombination, resulting in clones with kanamycin 

resistant/streptomycin sensitive phenotype. A ply gene with the desired 

mutation was then transferred into these clones by homologues recombination, 

replacing the Janus cassette and rendering the clones kanamycin 

sensitive/streptomycin resistant. The result of this was a S. pneumoniae D39 

isolate with the desired mutation but no antibiotic resistance cassette inserted 

into the mutated gene, as shown in Figure 2.1.  
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Figure 2.1: Rationale of the Janus technique  

The process involved in replacing the ply gene with a mutated variant, using the Janus 
technique. Firstly, a streptomycin resistant wild-t ype D39 isolate is transformed with the 
Janus cassette with ligated ply flanks, which replaces the ply gene, and gives the 
transformants a kanamycin R/streptomycin S phenotype (2.1A). Then the resulting 
transformant is then transformed with the ply gene with flanking DNA and the desired 
mutation inserted, resulting in loss of the Janus c assette and a kanamycin S/streptomcin R 
phenotype (2.1B-C). The result is a mutant with the  desired mutation in ply, and no 
resistance marker inserted in the gene. 

 

2.6.2 Transformation of S. pneumoniae 

This method involved three transformation steps. Firstly, the rpsL- gene from R6 

CP1200 S. pneumoniae (Sung et al., 2001) was transformed into D39. Secondly, 

the Janus cassette with ply flanking DNA (Provided by Dr Gavin Paterson) was 

transformed into the D39 Smr strain in place of the ply gene. Finally, the 

mutated ply gene, with a stop codon inserted at the beginning of the gene 

(Figure 2.2, provided by Dr Lea-Ann Kirkham), was transformed into the clones 

to replace the Janus cassette. The transformation method employed in all three 

cases was as follows. D39 pneumococci (and clones from various stages of the 

process) were grown in 10ml BHI with 1mM CaCl2 until an OD600nm of 0.1 was 

reached. Aliquots of 1ml of the culture were prepared, and 100ng/ml 

competence stimulating peptide 1 (CSP-1, Sigma-Aldrich, UK) was added to 

induce uptake of extracellular DNA. Samples were then incubated at 37oC for 15 

min before addition of 100ng test DNA (PCR products of either rpsL- gene, Janus 

cassette with ply flanks, or mutated ply gene with ply flanks) and a further 

incubation at 37oC for 75 min.  
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Figure 2.2: Sequence of D39 ∆Ply stop mutant  

Diagramatic representation of mutation inserted int o D39 ∆Ply stop using the Janus 
technique. Insertion of an extra T base after base 6, highlighted in red, results in a 
frameshift and, the presence of 2 TAA codons, under lined, at the start of the gene. When 
translated, this results in 2 stop codons after ami no acid 2 in the ply gene, represented by 
asterisks. The result of this is the loss of Ply pr otein production by the mutant.  
 

Samples were then plated on BAB with 5% horse blood and either 300µg/ml 

streptomycin in the first and third transformations, or 200µg/ml kanamycin in 

the second transformation. Plates were incubated for 9h at 37°C under 

anaerobic conditions using GasPak Pouches (Becton Dickenson, Oxford, UK).  

This short anaerobic incubation time minimised the chance of streptomycin 

resistant revertants occurring which do not have the desired phenotype. 

Successful transformants in the second and third transformation were then 

inoculated onto both streptomycin and kanamycin selective plates to confirm 

the correct resistance phenotype in each case.  

2.7 Characterisation of D39 ∆Ply stop 

2.7.1 Confirmation of successful mutation 

The successful mutation of the ply gene in D39 ∆Ply stop, resulting in no 

expression of the ply protein, was confirmed by sequencing, haemolytic assay 

and Western blot as described previously.  

2.7.2 Animal studies using D39 ∆Ply stop 

The effect of the loss of Ply on virulence of the S. pneumoniae strain D39 was 

investigated by studies in mice. Three strains were included in the study, namely 

D39, D39 ∆Ply stop, and D39 ∆6, a Ply mutant with amino acids 146-147 deleted, 

created by Dr. Lea-Ann Kirkham. This mutant produces Ply protein, but has no 

haemolytic activity. These strains were passaged through three female MF1 mice 
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(Harlan, UK), and standard inoculums prepared for further infection. Ten 6 week 

old female MF1 mice per strain were inoculated intranasally with 1x106 colony 

forming units (cfu) of the appropriate bacteria, and viable counts in blood were 

measured after 24 and 48h periods. Furthermore, the survival of the mice was 

monitored for a period of 2 weeks. Animal studies were conducted by Dr Gill 

Douce and Kirsty Ross. Results were analysed by Mann-Whitney U test using 

GraphPad InStat software (GraphPad software, UK). 

2.7.3 Determination of viable counts 

The method used to determine viable counts in a sample was based on the 

original method of viable counting (Miles and Misra, 1938). At 24 and 48h time 

points, ~50µl of blood was removed from mice using an insulin syringe. Viable 

counts of S. pneumoniae were calculated by addition of 20µl blood to 180µl PBS, 

followed by six 1:10 dilutions. Three 20µl samples from each dilution were 

plated out on BAB plates with 5% horse blood and incubated overnight at 37oC. 

The number of viable S. pneumoniae in the blood, in cfu/ml, was then 

determined by averaging the number of colonies from a chosen dilution, 

multiplying by the dilution factor, and multiplying by a factor of 50 to account 

for the 20µl sample tested.  

2.8 Cloning, expression and purification of NanA 

fragments 

2.8.1 Cloning method 

PyMol software (DeLano Scientific, USA) was used to map mutations onto a 

structural model of a NanA fragment (AA318-792). This allowed selection of 

NanA alleles for further study. The method used for cloning NanA active 

fragments (AA318-792) was based on the high-throughput method developed 

previously (Berrow et al., 2007) using In-Fusion cloning technology (Zhu et al., 

2007), with a number of modifications. The vector used was pOPINF, based on 

the three-promoter vector pTriEx2. The cloning method involves amplification of 

a target sequence with primers possessing overlaps matched to regions of the 

pOPINF vector, and cloning with this cut vector to insert the target sequence 
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into the vector in E. coli (Figure 2.3). The NanA fragment can then be purified 

from the E. coli cells, possessing a C-terminal His tag and a C3 protease site 

allowing purification. 

 

Figure 2.3: In-Fusion cloning technology 

The method used to clone NanA fragments into E. coli cells. Firstly, the desired DNA was 
amplified using primers with overlap regions to the  plasmid pOPINF (2.3A). The resulting 
PCR product was then mixed with the linearised pOPI NF plasmid and the In-Fusion mix 
(2.3B), producing the pOPINF plasmid with the desir ed DNA inserted into the correct 
position to allow expression (2.3C). Transformation  of this plasmid into E. coli cells (2.3D) 
results in clones of E. coli with the plasmid and associated antibiotic resistan ce (2.3E). 
 

2.8.2 Primer design and PCR 

Primers were designed to amplify the selected 1425bp region from different 

alleles of the nanA gene (AA318-792). Primers included overlap regions for the 

pOPINF vector, and can be found in Table 2.2. 1425bp fragments from NanA 

alleles 12, 16 and 18 were amplified by PCR using primers detailed in Table 2.2 

and Phusion high fidelity DNA polymerase enzyme. 

 



Chapter 2  Materials and Methods 

  78 

Primer  DNA sequence 5’-3’ Use 

64U AAGTTCTGTTTCAGGGCCCGCCTGAAGGAGCGG
TTTTAACAGAGAAA 

PCR of nanA alleles 
12 and 16 

64V AAGTTCTGTTTCAGGGCCCGCCAGAAGGTGCGA
AAATCTCAGAGAAA 

PCR of nanA allele 18 

64W ATGGTCTAGAAAGCTTTAATCTTTGCTCAAAAAG
TCCCAATTAAA 

PCR of nanA allele 12 

64X ATGGTCTAGAAAGCTTTAATTTTTGCTCAAAAAG
TCCCAATTAAA 

PCR of nanA allele 16 

64Y ATGGTCTAGAAAGCTTTAATTTTTGCTCAAAAAT
TCCCAATTAAA 

PCR of nanA allele 18 

Table 2.2: In-Fusion cloning primers 

Primers used for PCR of nanA fragments for In-Fusion cloning into pOPINF vector . Bases in 
red represent those from nanA alleles, whilst bases in blue are from pOPINF vect or and in 
black are inserted stop codons.  
 

2.8.3 Cloning 

100ng PCR product and 100ng linearised and purified vector pOPINF were diluted 

in nucleotide-free water (Sigma-Aldrich, UK) to a final volume of 10µl. This was 

added to resuspended In-Fusion dry-down mix and incubated at 42oC for 30 min. 

The mix was immediately diluted in 40µl TE buffer (10mM Tris, 1mM EDTA), 2µl 

added to 50µl E. coli DH5α cells, and incubated on ice for 30 min. The cells were 

then heat-shocked at 42oC for 30s and incubated on ice for 2 min. 450µl GS96 

medium with 1% glycerol was added, and samples incubated for 1h at 37oC. 

Varying volumes of culture were then plated on LB agar with 1µM Isopropyl β-D-

1-thiogalactopyranoside (IPTG, Melford Laboratories, UK), 50µg/ml ampicillin 

and 20µg/ml 5-Bromo-4-chloro-3-indolyl β-D-galactopyranoside (X-GAL, Sigma-

Aldrich, UK), and plates incubated at 37oC overnight. White colonies were 

selected as successful tranformants, and plasmids purified using a Miniprep spin 

kit (QIAGEN, UK) as per manufacturer’s instructions. Plasmids were then 

sequenced to confirm success of cloning reaction.  

2.8.4 Transformation of pOPINF plasmid into E. coli 

100ng of expression vector pOPINF was added to 50µl E. coli cells (either B834 or 

Rosetta, Invitrogen, Scotland) and incubated on ice for 30 min. The cells were 

then heat-shocked at 42oC for 30s and incubated on ice for 2 min. 450µl GS96 

medium (Qbiogene, UK) with 1% glycerol was added, and samples incubated for 

1h at 37oC. Varying volumes of culture were then plated on LB agar with 1% 
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glucose and either 54ug/ml carbenicillin (Sigma-Aldrich, UK) or 34ug/ml 

chloramphenicol (Sigma-Aldrich, UK) and 54ug/ml carbenicillin for B834 and 

Rosetta cells respectively. Colonies were picked and plasmids purified and 

tested for successful transformation as described previously. 

2.8.5 Expression and purification of NanA fragments 

A colony of Rosetta cells containing pOPINF plasmid with nanA allele fragment 

was inoculated into 100ml LB with 34µg/ml chloramphenicol and 54µg/ml 

carbenicillin and incubated at 37oC overnight, with shaking. A volume of 5ml 

overnight culture was inoculated into 500ml TB overnight expression medium 

(Novagen, UK) and incubated shaking for 4h at 37ºC, followed by 20h at 25ºC. 

The resulting culture was centrifuged at 3,500g for 30 min at 4ºC in a J-B6 

centrifuge (Beckman, UK), and the pellet resuspended in 30ml lysis buffer. A 

protease inhibitor tablet (Roche, UK), 400 Kunitz units DNase I (Invitrogen, UK) 

and 1µM MgCl2 were added to the sample, which was sonicated at 8µm for 10 x 

15s with 45s rest. The sample was then centrifuged at 6000g for 20 min (4K15, 

Sigma-Aldrigh, UK), supernatant removed and centrifuged at 15,000g for 30 min 

(Allegra™ 64R, Beckman, UK) and supernatant collected. A 1ml Histrap HP 

column (GE Healthcare, UK) was stripped with 5 column volumes (cv) of 500mM 

EDTA, primed with 5 cv Nickel sulphate (NiSO4), 5 cv elution buffer (50mM Tris 

pH 7.5, 500mM NaCl, 500mM imidazole) was passed through,  and the column 

was washed with 10 cv wash buffer (50mM Tris pH 7.5, 500mM NaCl, 20mM 

imidazole) using a peristaltic pump. The protein sample was passed through the 

nickel column, where the His-tagged protein bound the column and the rest of 

the proteins present passed through. The column was then washed with 10 cv 

wash buffer to remove residual contaminants, and 10 cv elution buffer to elute 

the bound protein.  

2.8.6 C3 protease cleavage of purified protein 

To remove residual contaminants from the purified NanA sample, the His tag was 

removed from the protein by cleavage at the C3 site by C3 protease (provided by 

Dr. Alan Riboldi-Tunnicliffe). 5µl C3 protease was added to the sample, along 

with 1.5mg EDTA and 1mg DTT, before incubation at 4oC for 2h. The sample was 

then passed through the nickel column again, and whilst the purified NanA 
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fragment, with the His tag removed, passed through the column, previous 

contaminants remained bound to the column. Protein samples were run on SDS-

PAGE gels and coomassie stains as described to confirm purification. 

2.8.7 Gel filtration of purified protein 

When necessary, proteins were further purified by gel filtration using an 

AKTAprime plus (GE Healthcare) with Superdex 75 300ml column (GE Healthcare, 

UK). A 2 ml volume of wash buffer was passed through the column to clean, 

before 10ml sample was added. After this, 450ml gel filtration buffer (50mM Tris 

pH 7.5, 500mM NaCl) was passed through the column with a flow rate of 

0.2ml/min and collected in 5ml fractions. The fractions were tested for 

presence of NanA fragment by SDS-PAGE and coomassie stain as described, and 

fractions containing pure protein were pooled.  

2.8.8 Dialysis and concentration of purified NanA fragments 

Dialysis tubing with a molecular weight cut off point of 14,000Da (Medicell 

International Ltd, UK) was previously boiled in 2% sodium bicarbonate solution 

with 1mM EDTA for 10 min. The sample was sealed in a 20cm length of the pre-

boiled dialysis membrane and dialysed overnight at 4oC in 1L wash buffer (50mM 

Tris pH 7.5, 500mM NaCl, 20mM imidazole) to remove high concentrations of 

imidazole from the sample. The protein was then concentrated to a volume of 

~1ml by centrifugation in an Amicon centrifugal filter (30kDA cut-off, Millipore, 

UK) at 4,100g, 4oC. The absorbance at 280nm (A280) of a 1:50 dilution of the 

protein sample was measured in a spectrophotometer, and extinction coefficient 

(ε) calculated using protparam software (www.expasy.ch/tools/protparam). The 

protein concentration in mg/ml was calculated by the formula ((A280/ε) x 

dilution factor).  



Chapter 2  Materials and Methods 

  81 

2.9 Study of effects of viral neuraminidase inhibit ors on 

NanA in vitro and in vivo 

2.9.1 Inhibition of purified NanA fragments by viral neuraminidase 

inhibitors in vitro 

The inhibition of purified active NanA fragments (AA318-792) with inhibitors of 

Influenza neuraminidase (NA) was investigated. Three inhibitors were tested, 

namely Oseltamivir carboxylate (OC, the active form of Oseltamivir phosphate, 

marketed as Tamiflu, Roche, UK), Zanamivir (marketed as Relenza, 

GlaxoSmithKline, UK) and the competitive inhibitor 2,3-dideoxy-2,3-didehydro- N 

-acetyl-neuraminic acid (DANA, Sigma-Aldrich, UK). The inhibitory effect of 

these compounds was tested by preparing a round-bottomed 96-well plate with a 

concentration of NanA that conferred 100% activity in the NanA activity 

described, and adding doubling dilutions of inhibitor, starting from 3.15mg/ml, 

35mg/ml and 8.75mg/ml respectively. Plates were then incubated at 37oC for 15 

min before addition of pNP as described, and continuation of NanA assay. Curves 

of inhibition and concentrations required to inhibit 50% of activity (IC50) were 

calculated using GraphPad Prism 4 (GraphPad software, USA). 

2.10 Microarray analysis  

2.10.1 S. pneumoniae microarray 

Microarray technology involves attachment of genetic probes onto slides for 

hybridization with test genomic DNA or RNA, allowing the presence or expression 

of genes to be determined, respectively. The microarray slides used were 

prepared by the Bacterial Microarray Group at St. Georges Hospital, London 

(BµG@S). The probes on the array represent all the genes of reference isolate 

TIGR4 (2240 genes) as well as unique genes present in R6 (117 genes). DNA or 

RNA from a test isolate is labeled with either Cy3 or Cy5 fluorescent dye (GE 

Healthcare, UK), with the reference isolate TIGR4 labeled with the opposite dye. 

Competitive hybridization to the probes on the microarray slide then occurs 

between the two labeled samples, allowing determination of genes present or 
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absent in test gDNA and up- or down-regulated in test RNA, all in comparison to 

the reference isolate TIGR4. A schematic of microarray technology is shown in 

Figure 2.4. 

 

Figure 2.4: The basic methodology involved in micro array technology   

Test gDNA and control gDNA were labelled with eithe r Cy3 or Cy5 fluorescent dye, 
combined, and pipetted onto the microarray slide. T he hybridization reaction then ran for 
20h at 65ºC, after which the microarray slide was s canned, and the results interpreted. Each 
spot on the slide contained a probe complementary t o DNA from a particular gene of the 
reference isolate, and a yellow spot on the slide i ndicated competitive hybridization, where 
the gene was present in both test and control isola tes. Green and red spots represent non-
competitive hybridization where one isolate possess ed the gene whilst the other lacked it.   
 

2.10.2 Preparation of genomic DNA and RNA for microarrays 

Pneumococcal genomic DNA for use in microarrays was prepared as previously 

described (Section 1.2). Genomic DNA from other viridans streptococci was 

prepared using a DNeasy blood and tissue kit (QIAGEN, UK), as per 

manufacturer’s instructions for purification of Gram positive gDNA.  

Pneumococcal RNA was prepared by growing strains in 10ml BHI until mid-log 

phase (OD600nm 0.6). The culture was then pelleted by centrifugation at 4,100g 

for 5 minutes (4K15 centrifuge, Sigma-Aldrich), supernatants discarded and 

pellets immediately frozen in liquid nitrogen. Pellets were then resuspended in 
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200µl lysozyme TE buffer (10mM Tris, 1mM EDTA, 15mg/ml lysozyme), vortexed 

and incubated at room temperature (RT) with vortexing every 2 min. A RNeasy 

mini kit (QIAGEN, UK) was used to purify RNA, using the following protocol. 

700µl RTL buffer was added, and the sample was vortexed to 10s. The sample 

was then transferred to fresh 1.5ml centrifuge tube (Eppendorf, UK) containing 

50mg 100µm glass beads (Sigma, UK), and cells disrupted using a ribolyser 

(Hybaid, UK) at speed 4 for 4 x 20s. The samples were then centrifuged at 

12,000g for 10s (1K15 centrifuge, Sigma-Aldrich, UK), the supernatant 

transferred to a fresh tube and mixed with 500µl absolute ethanol (Fisher 

Scientific, UK, analytical reagent grade). 700 µl of this solution was applied to a 

RNeasy Mini column (QIAGEN, UK) and centrifuged at 12,000g for 30s. The flow-

through was discarded, and the remaining 700µl added to the column before re-

centrifugation, and flow-through was again discarded. 350µl of RW1 buffer was 

added, and the column was centrifuged at 12,000g for 5 min. A volume of 80µl 

DNase 1 (28 Kunitz units) (QIAGEN, UK, not in kit) was added to the column, and 

column was incubated at RT for 15 min. 350 µl Buffer RW1 was pipetted into the 

column, before centrifugation for 30s at 12,000g. The flow-through was 

discarded, and 700µl RW1 buffer was added before centrifugation at 12,000g for 

30s. The flow-through was again discarded, and 500µl RPE buffer was added. The 

column was centrifuged at 12,000g for 30s, then the flow-through was discarded 

and an additional 500µl RPE buffer was added, and the column was centrifuged 

at 12,000g for 2 min to dry the membrane. The column was transferred to a 

fresh 1.5ml tube, and 50µl nuclease-free water was added directly onto the 

membrane to elute the RNA. The column was then left to stand for 1 min, before 

centrifugation at 12,000g for 1 min. RNA was stored at -80oC until required. 

2.10.3 Analysis of DNA and RNA samples for microarray 

The concentration of DNA or RNA was measured using a nanodrop ND 1000 

(Thermo Scientific, UK). The purity of RNA in the samples was confirmed by use 

of a Bioanalyser 2100 (Agilent, UK). Using this technique, the output shows that 

two clear peaks are present in the sample, representing 16S and 23S RNA, when 

RNA has been successfully purified (Figure 2.5). Presence of gDNA in desired 

samples was confirmed by PCR for either the ply or sodA genes as described. 
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Figure 2.5: Sample result of RNA purity confirmatio n  

Purity confirmation carried out using Bioanalyser 2 100. The result showed that two clear 
peaks were present in the plot, representing 16S an d 23S RNA. The lack of other peaks 
confirmed the purity of the sample, with no DNA con tamination present. A gel of the two 
pure peaks can also be seen on the right hand side.  
 

2.10.4 DNAvsDNA microarray hybridization 

The hybridization reaction was carried out as per manufacturer’s instructions. 

Briefly, 5µg test gDNA was mixed with 1µl random primers (Invitrogen, Scotland) 

and made up to 41.5µl with nuclease-free water. The samples were incubated at 

95oC for 5 min, before snap cooling, and addition of 1µl Klenow polymerase 

(Invitrogen, Scotland), 5µl 10x REact buffer, 1µl dNTPs (5mM dA/G/TTP, 2mM 

dCTP, Invitrogen, Scotland) and 1.5µl Cy3/Cy5 dye (GE Healthcare, UK). The 

samples were incubated in the dark at 37oC for 90 min.  

The microarray slides were prepared for the hybridization by incubation with 

pre-hybridization solution (3.5xSCC buffer (Ambion, UK), 0.1% SDS, 10mg/ml 

BSA) for 20 min, before washing in dH2O for 1 min and isopropanol (Fisher 

Scientific, UK) for 1 min. The slides were then centrifuged in a 4K15 centrifuge 

(Sigma-Aldrich, UK) at 800g for 5 min to dry them, and stored in a dark, dust-

free box until required.  
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The Cy3/Cy5-labelled test DNA was then mixed with TIGR4 DNA labeled with the 

opposite dye, and the resulting sample purified using a MinElute purification kit 

(QIAGEN, UK) as per manufacturer’s instructions, with the final elution being in 

15.9µl nuclease-free water (Ambion, UK). 14.9µl of sample was mixed with 4.6µl 

filtered 20xSCC buffer (Ambion, UK) and 3.5µl filtered 2% sodium dodecyl 

sulphate (SDS, Sigma-Aldrich, UK). The sample was heated to 95oC for 2 min, and 

allowed to cool, and briefly centrifuged. A lifter slip (Erie Scientific Company, 

Portsmouth, NH, USA) was then placed on the microarray slide, to cover the 

probes, and the sample pipetted under the lifter slip. The slides were carefully 

placed into a microarray hybridization cassette, which was sealed, submerged in 

water and incubated at 65oC for 16-20h.  

The slides were washed in Wash A buffer (1xSCC buffer, 0.05% SDS, pre-heated 

to 65oC) for 2 min to remove the cover slip and wash the slide, followed by 

washing in Wash B buffer (0.06xSCC buffer) for 4 min. The slides were then 

centrifuged at 800g for 5 min before scanning. 

2.10.5 RNAvsRNA microarray hybridization 

The RNAvsRNA hybridizations were carried out as per manufacturer’s 

instructions. These were identical to the DNAvsDNA hybridization method, with 

the following exceptions. 10µg RNA was initially added to 1µl random primers, 

and made up to 11µl in nuclease-free water. After incubation, 2.5µl Superscript 

II (Invitrogen, Scotland), 5µl 5x First strand buffer, 2.5µl 100mM DTT, 2.3µl 

dNTPs and 1.7µl Cy3/Cy5 dye was added, before incubation at 25oC in the dark 

for 10 min, followed by 42oC for 90 min.  

2.10.6 Microarray normalization and analysis 

Microarray slides were scanned using ScanArray Express™ (Packard Biosciences 

Biochip Technologies, Perkin Elmer), and resulting TIF images were entered into 

Bluefuse (BlueGnome Ltd, Cambridge, UK) for Microarrays 3.5 © BlueGnome Ltd 

with the Cy3 labeled image in Channel 1 and the Cy5 labeled image in Channel 

2. The array gridmap files utilised were provided by the Bacterial Microarray 

Group at St George’s (BµG@S). The post processing protocol was comprised of 

initial exclusion of unreliable results due to poor quality hybridizations with a 

confidence estimate of less than 0.1. Controls spots on the array were identified 
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using an array gridmap GAL file (SPv1_1_0_CGH_Gridmap.bcf) and data from 

control spot hybridizations was automatically removed from the analysis. To 

correct for spatial, intensity and dye related effects, normalization was 

performed using the option “Global Lowess excluding all with text.” Confidence 

flags were set at default settings. Replicates of each dye swap were combined 

by fusion. 

Comparative genomic hybridization was performed in Bluefuse through the 

identification of a normal distribution of experimental variability and by 

identifying variability which was two standard deviations from the median of this 

normal distribution of all results for the TIGR4 and R6 genes represented on the 

microarray. Automated classification of regions of variability was performed by 

setting a ratio threshold for amplification as 1.0 and ratio threshold for deletion 

at -1.0 with the minimum number of clones included in the region in order for it 

to be classified as an amplification or a deletion set at 1. Dye swap processing 

was enabled. 

After normalisation in Bluefuse, output_fused_CGH files were imported into 

Genespring GX 7.3.1 (Agilent Technologies, USA) and further normalization was 

performed after data transformation to account for dye swaps. This 

normalization was performed using the “Per spot and divided by control 

channel” protocol with a cross gene error model using the error model for one-

colour data. The error model was based on deviation from 1. The generation of 

gene lists using Genespring GX 7.3.1 was accomplished by importing the Bluefuse 

generated output_fused.xls files to create an experiment whereby the 

microarray dye swaps for each strain could be analysed using the “Filter on data 

file” option. To generate a gene list a search was performed using the “Type” 

column employing search criteria, “Column values must be not equal to NO 

CHANGE,” and “Value must appear in at least 1 of the selected columns.” The 

resulting gene list could be saved or exported into Microsoft Excel for 

comparison with further strains. 

For RNA expression experiments, normalization was performed as above by 

importing the output_fused.xls files into Genespring GX 7.3.1 for the 3 biological 

replicates of each isolate. However, no dye swap procedure was used for RNA 

expression experiments. Statistical analysis of RNA expression data generated by 
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Genespring GX 7.3.1 was performed using the statistical analysis (ANOVA) tool. 

This performs a 1-way parametric test without assuming variances are equal. 

The false discovery rate was set at 0.05 resulting in a false discovery rate of 

about 5% of genes. Multiple testing correction was performed using a Benjamini 

and Hochberg False Discovery Rate. No post hoc tests were used. Gene lists 

produced were then imported into Microsoft Excel for comparison to lists for 

other tested isolates. 

2.10.7 Validation of microarray results 

2.10.7.1 DNA microarray validation 

Results of DNA microarrays were validated where required by PCR using primers 

used to design the probes of specific genes on the microarray slide. Genomic 

DNA from selected isolates was tested along with a positive control of TIGR4 

gDNA to confirm the hybridization result generated by the DNA microarray. 

Genes validated and primers used can be found in Table 2.3. Phusion High 

fidelity polymerase enzyme (New England Biosciences, UK) was used in all cases, 

the following PCR conditions were used for every reaction: 

PCR reaction conditions 

o 98ºC for 30s 

o 30x 

o 98ºC for 10s 

o 50ºC for 30s 

o 72ºC for 30s  

o 72ºC for 5 min 

o Stored at 4ºC 
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Gene number Primer name DNA sequence 5’-3’ 

SpTIGR4-0268 SpTIGR4-0268_f GATGCCCATAAAGTGGCTAAAG 
SpTIGR4-0268 SpTIGR4-0268_r GCATAGGTTCTCCAACCTTCAC 
SpTIGR4-0314 SpTIGR4-0314_f TGAAACAGCACCAAATCGATAC 
SpTIGR4-0314 SpTIGR4-0314_r CCCAAACTCCTTGTTTAGCATC 
SpTIGR4-0377 SpTIGR4-0377_f TATGCTGTAAAGACAGGCTGGA 
SpTIGR4-0377 SpTIGR4-0377_r CTGTAACCATTGCTCCATTTGA 
SpTIGR4-0461 SpTIGR4-0461_f AATTTCCACTTGAGTTCCCTGA 
SpTIGR4-0461 SpTIGR4-0461_r AAGGCAATCGTCAAAAAGTGAT 
SpTIGR4-0463 SpTIGR4-0463_f AGAATGACTGAAGGTTTGGCAT 
SpTIGR4-0463 SpTIGR4-0463_r ATTACAAATTCTGCCCCAGCTA 
SpTIGR4-0468 SpTIGR4-0468_f CGGAGGGATATGAGGTCAATTA 
SpTIGR4-0468 SpTIGR4-0468_r TAAACGTGCTAGCTTCCACAAA 
SpTIGR4-0530 SpTIGR4-0530_f TGGCACAAAACCCTAATCTCTT 
SpTIGR4-0530 SpTIGR4-0530_r ATTAATATGACGGCGCAAGACT 
SpTIGR4-0966 SpTIGR4-0966_f AATCCTGCAAACCCAAGAACTA 
SpTIGR4-0966 SpTIGR4-0966_r TGTTTGAATCAATTCTTCACGG 
SpTIGR4-0978 SpTIGR4-0978_f ATGTTTGTTGCGAGAGATGCTA 
SpTIGR4-0978 SpTIGR4-0978_r GGTCGAATTTGTGGATACCATT 
SpTIGR4-1154 SpTIGR4-1154_f GCGTGATATTCGGAAACAATTT 
SpTIGR4-1154 SpTIGR4-1154_r CACGAAATTCTTTACTGAGGGG 
SpTIGR4-1396 SpTIGR4-1396_f TGGTTTTCCAACAACCTAATCC 
SpTIGR4-1396 SpTIGR4-1396_r AATTTTACCAGCTGAAATCGGA 
SpTIGR4-1770 SpTIGR4-1770_f TATTGCGTCAGAGTGGTTTTTG 
SpTIGR4-1770 SpTIGR4-1770_r CATGCTCCATCTCACAACTAGC 
SpTIGR4-1771 SpTIGR4-1771_f TTATGTGACCTTTGTGGACTCG 
SpTIGR4-1771 SpTIGR4-1771_r AATCCATTCATTTGGAAAATCG 
SpTIGR4-1772 SpTIGR4-1772_f CCTCAGCAAGTACAAGTGCATC 
SpTIGR4-1772 SpTIGR4-1772_r TAGCAGCGTAAGGGGTAAATGT 
SpTIGR4-2190 SpTIGR4-2190_f AGTCAGGCAGAACAAGGAGAAC 
SpTIGR4-2190 SpTIGR4-2190_r TGGAAGAGTCTGAACTTGACGA 

Table 2.3: DNA microarray validation primers 

Primers used to validate DNA microarray hybridizati ons by PCR. Gene numbers equate to 
the position of the gene in the annotated TIGR4 ref erence genome used in the arrays.   
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2.10.7.2  RNA microarray validation 

Results of RNA microarrays were validated where required by real-time RT-PCR 

to confirm differences in gene expression levels between selected isolates. 

Firstly, cDNA was synthesised from the purified RNA as follows. Any residual DNA 

contamination was removed by incubation of sample with Turbo DNA-free™ 

(Ambion, UK) as per manufacturer’s instructions. 2µg of RNA, 2µl random 

hexamers (Invitrogen, Scotland) and 1µl RNase OUT (Invitrogen, Scotland) were 

then mixed with RNase-free water to a final volume of 17.5µl before 

denaturation at 70oC for 10 min in a heat block and storage on ice. A 12.5µl 

mixture containing 6µl 5x first strand buffer, 3µl 0.1M DTT,  1.5µl 10mM dNTP 

and 2µl Superscript III reverse transcriptase (Invitrogen, Scotland) was added 

before incubation at 42oC for 16h. The reaction was then inactivated by 

denaturation at 70oC for 15 min before addition of 1µl E. coli RNase H 

(Invitrogen, Scotland) and a further incubation at 37oC for 20 min to remove 

residual RNA from the sample. The cDNA concentration was then measured using 

a nanodrop ND 1000 (Thermo Scientific, UK)  

Real-time PCR was then carried out using SYBR green (Roche, UK) according to 

manufacturer’s instructions in a LightCycler® 480 System (Roche, UK). Primers 

used to validate gene expression levels can be found in Table 4. Results were 

analysed using a previously described method (Muller et al., 2002), and using 

Qgene 4.0 (Qgene, USA). The control gene, to which expression of test genes 

was compared, was gyrA, a pneumococcal house-keeping gene (Enright and 

Spratt, 1998).  

Gene Gene number Primers DNA sequence 5’-3’ 

gyrA SpTIGR4-1219 SpTIGR4-1219_f CAAGGTGCATGAGCATATTGTT 
gyrA SpTIGR4-1219 SpTIGR4-1219_r GATCCAAACGCTTAATGTAGCC 
gdhA SpTIGR4-1306 SpTIGR4-1306_f GGTATCGACTTCGATCTTTTGG 
gdhA SpTIGR4-1306 SpTIGR4-1306_r TCATGGCATTTGCTACATTTTC 
guaA SpTIGR4-2072 SpTIGR4-2072_f TCATTCCTGTTGGTGATGAGTC 
guaA SpTIGR4-2072 SpTIGR4-2072_r TTAATGCTTTGACGATGGACTG 

Table 2.4: RNA microarray validation primers 

Primers used to validate RNA microarray hybridizati ons by real-time RT-PCR . Gene 
numbers equate to the position of the gene in the a nnotated TIGR4 reference genome used 
in the arrays.  
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2.10.8 Growth curves of S. pneumoniae in ammonium. 

The growth of S. pneumoniae isolates in differing concentrations of ammonium 

(NH4Cl2, Sigma-Alrdich, UK) was investigated. BHI with ammonium 

concentrations ranging from 1-1000µg/ml (0, 1, 10, 50, 200, 500, 1000) was 

prepared in a 96-well plate (Costar, USA), and seeded with 2µl of overnight 

culture. Growth of bacteria was monitored by reading OD600 every 1800s for 24 

reads in a FLUOstar Optima plate reader (BMG Labtech, UK), allowing plotting of 

growth curves in GraphPad Prism 4 (GraphPad Software, USA). 
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3.1 Summary 

Ply has long been known to be an important virulence factor of the pathogen S. 

pneumoniae, and is being considered as a potential component of next-

generation protein vaccines. The aim of this chapter was to assess the diversity 

present in the Ply protein, and relate the uncovered differences to the ability of 

clones to cause invasive pneumococcal disease. Furthermore, the importance of 

Ply in invasive pneumococcal disease was explored. This study of diversity 

present in the Ply toxin will uncover important information in the context of 

vaccine design as well as giving insights into pneumococcal biology and 

pathogenesis.  

Ply is a cytoplasmic toxin, thought to be released upon autolysis of the 

pneumococcal cell. As such, it was thought to be a highly conserved protein 

(Mitchell et al., 1990), although a number of variants have previously been 

identified (Kirkham et al., 2006a; Lock et al., 1996; Tettelin et al., 2001; Walker 

et al., 1987). This work reports the presence of a further nine Ply protein alleles 

after a large-scale screen of clinical isolates. These Ply alleles display varying 

levels of haemolytic activity as a result of mutations present within the ply 

gene. Interestingly, a fully non-haemolytic variant first identified by Kirkham et 

al. (Kirkham et al., 2006a) (allele 5) was found to be widespread within serotype 

1 and serotype 8 clones, present in the founder clones of two main clonal 

complexes. These two clones, ST306 and ST53, were shown to be either the 

established dominant clone (ST53) or undergoing stark clonal expansion (ST306) 

(Kirkham et al., 2006a) in the Scottish IPD population. Since these clones are 

unrelated, and both appear to be dominant within their serotypes, it was 

hypothesised that the presence of this non-haemolytic Ply variant, in certain 

genetic backgrounds, may play a role in driving expansion of these clones. 

Further identification of a clinical isolate possessing an insertion sequence in the 

ply gene, resulting in no Ply functional activity, shows for the first time that 

pneumococci can cause IPD without expressing a functional Ply protein. This, 

together with the discovery of the non-haemolytic allele, implies that the 

haemolytic properties of Ply may be less important in establishing IPD in certain 

genetic backgrounds. 
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An unmarked Ply knock-out was created in a D39 background using the Janus 

technique (Sung et al., 2001). The advantage of this technique is that the 

mutations are made without insertion of an antibiotic cassette into the target 

gene. Initial results show that this mutant is less virulent than the wild-type 

parent strain, in agreement with previous data (Berry et al., 1989b; Wellmer et 

al., 2002; Winter et al., 1997), although further studies are required. 

Furthermore, this knock-out is a useful tool for further study, and is now 

routinely used by our laboratory in Ply studies. 
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3.2 Diversity of Ply in S. pneumoniae clinical isolates 

3.2.1 Screen of S. pneumoniae clinical isolates for Ply diversity  

The pneumococcal toxin Ply is an important virulence factor, and is being 

considered as a vaccine candidate for next generation protein vaccines. 

Uncovering the distribution and diversity of alleles of this toxin within the 

pneumococcal population can not only further understanding of pneumococcal 

biology and the relationships between clones, but also give insight into the 

suitability of this protein as a vaccine candidate. The ply gene from 121 clinical 

isolates was sequenced (work partly done by Dr Johanna Jefferies [~50%]) and 

aligned to the sequences from readily available sequenced S. pneumoniae 

genomes using Vector NTI™ software (See Appendix I). The wild-type ply gene 

was taken from the strain D39 (Walker et al., 1987). From this alignment, 22 

isolates were selected for further study, possessing protein alleles differing from 

the wild-type D39 sequence. The information on these strains can be found in 

Table 3.1. Variation in the DNA sequence occurred at 37 positions in the ply 

gene of these isolates. The DNA sequences were translated into amino acid 

sequence, and aligned using Vector NTI™ software. This showed that these 37 

mutations resulted in 15 amino acid changes across the ply gene, indicating that 

a number of synonymous mutations were present. Furthermore, a number of 

alleles possessed a double amino acid deletion at position 270-271, whilst 2 Ply 

alleles possessed regions of insertion. A summary of mutations present in these 

alleles can be found in Figure 3.1. Five of the Ply alleles discovered had been 

documented previously, namely alleles 1, 2, 3, 4, and 5 (Kirkham et al., 2006a; 

Lock et al., 1996; Tettelin et al., 2001; Walker et al., 1987). Another allele, 

termed Ply7 by authors, was found previously in serotype 7F isolates but was not 

seen in this study (Lock et al., 1996). The Ply assay developed was used to 

calculate the specific activity of the Ply proteins where possible. The plots of 

mean haemolytic activity produced can be found in Figure 3.2, with specific 

activities calculated from these plots noted in Figure 3.1.  
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Strain Serotype Sequence 
Type (ST) 

Ply amino 
acid allele 

Source 

D39 2 128 1 (Walker et al., 1987) 
TIGR4 4 205 2 (Tettelin et al., 2001) 

01-2696 1 227 2 (Kirkham et al., 2006a) 
2PN00495 8 404 3 HPA 

H040920498 8 944 3 HPA 
00-3645 1 227 4 (Kirkham et al., 2006a) 
01-2884 8 53 5 SMPRL 
01-1204 8 578 5 SMPRL 
01-1956 1 306 5 SMPRL 
01-1199 NT 577 5 SMPRL 
04-2055 1 228 5 SMPRL 
96-5878 2 74 6 SMPRL 
02-3013 NT 448 7 SMPRL 
01-2866 23F 40 8 SMPRL 
00-1153 9V 156 9 SMPRL 
01-3862 7F 191 10 SMPRL 
02-2744 7F 191 10 SMPRL 
01-4296 27 571 10 SMPRL 
01-2914 20 591 11 SMPRL 
01-2513 18C 818 12 SMPRL 
00-2328 6A 813 13 SMPRL 
S1-11 1 228 14 (Brueggemann and Spratt, 

2003) 

Table 3.1: Ply diversity study isolates 

Isolates selected for further study of Ply diversit y after initial sequencing study, with 
serotype, sequence type and Ply amino acid allele n oted. HPA = Health Protection Agency, 
Colindale, London. SMPRL = Scottish Meningococcal a nd Pneumococcal Reference 
Laboratory, Stobhill Hospital, Glasgow.



   

       

Amino acid position
14 136 142 150 154 167 172 224 260 265 267 270 271 273 380 402 415

Strain no. Serotype ST Allele Specific activty N Q Y T S T K E A I V K A D Q
D39 2 128 1 4.13x105

TIGR4 4 205 2 4.74x105 N
01-2696 1 227 2 4.20x105 N

2PN00495 8 404 3 6.50x103 I R S DEL DEL
H040920498 8 944 3 7.43x103 I R S DEL DEL

00-3645 1 227 4  -------- N INS
01-2884 8 53 5 0 H I R S DEL DEL
01-1204 8 578 5 0 H I R S DEL DEL
01-1956 1 306 5 0 H I R S DEL DEL
01-1199 NT 577 5 0 H I R S DEL DEL
04-2055 1 228 5 0 H I R S DEL DEL
96-5878 2 74 6 3.72x103 F I R S DEL DEL
02-3013 NT 448 7 2.95x105 D R
01-2866 23F 40 8 9.09x104 D
00-1153 9V 156 9 3.14x105 M
01-3862 7F 191 10 1.01x105 M S DEL DEL N
02-2744 7F 191 10 9.77x104 M S DEL DEL N
01-4296 27 571 10 1.36x105 M S DEL DEL N
01-2914 20 591 11 5.95x105 K N
01-2513 18C 818 12  -------- N E
00-2328 6A 813 13 3.09x105 D N
S1-11 1 228 14  -------- INS N  

Figure 3.1: Ply amino acid alleles 

Ply amino acid alleles determined by sequencing of ply genes from 22 isolates. The numbers in row 1 re fer to wild-type amino acid positions, with the 
identity of the wild-type amino acid shown in row 2 . The mutated amino acids present in specific strai ns are highlighted in colour below the 
corresponding wild-type amino acid. Strains highlig hted in green are non-haemolytic and as such have a  specific activity of 0. Insertion regions (INS) 
are highlighted in gray. Deletion of an amino acid is represented by the abbreviation DEL. Specific ac tivity is shown in haemolytic units per milligram, 
as calculated using the Ply assay described. The ly sate of strain 01-2513 (allele 12) was haemolytic b ut was not recognized by the monoclonal 
antibody PLY-7; therefore, no specific activity cou ld be determined. The lysate of strain 00-3645 (all ele 4) was haemolytic but at a level that did not 
allow calculation of specific activity. The lysate of strain S1-11 was non-haemolytic, due to the pres ence of an insertion sequence (IS1515) in the ply 
gene. No haemolytic activity was therefore calculat ed. These strains are highlighted in yellow. ST = s equence type.
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Figure 3.2: Plot of haemolytic activity of Ply amin o acid alleles   

Plot represents percentage haemolysis of sheep eryt hrocytes against log Ply concentration 
(mg/ml) in tested lysates. Percentage haemolysis wa s calculated from the haemolytic assay, 
whilst Ply concentration was measured by the Ply sa ndwich ELISA. Specific activities of Ply 
alleles were calculated from these curves. Purified  Ply allele 1 was included as a control 
(black solid line). In the brackets, Ply amino acid  allele and line colour are denoted. Test 
lysates are represented by the following lines: D39  (1 - red solid), TIGR4 (2 - blue solid), 01-
2696 (2 - yellow solid), 2PN00495 (3 - green solid) , H040920498 (3 - purple solid), 01-2884 (5 - 
pink solid), 01-1204 (5 - black dashed), 01-1956 (5  - red dashed), 01-1199 (5 - blue dashed), 
04-2055 (5 - yellow dashed), 96-5878 (6 - green das hed), 02-3013 (7 - pink dashed), 01-2688 (8 
- purple dashed), 00-1153 (9 - brown solid), 01-386 2 (10 - brown dashed), 02-2744 (10 - dark 
green solid), 01-4296 (10 - dark green dashed), 01- 2914 (11 - light blue solid), 00-2328 (13 - 
light blue dashed). 

  

3.2.2 Comparing sequence and activity of Ply alleles 

Ply amino acid alleles were aligned and numbered, with the wild-type allele (to 

which all others were compared) being allele 1 (Figure 3.1). This allele was 

expressed by the strain D39, and was encoded by the first ply gene to be fully 

sequenced (Walker et al., 1987). This allele displayed a specific activity of 

4.13x105 HU/mg.  

Allele 2, which was present in reference isolate TIGR4 (Tettelin et al., 2001), 

possessed only one amino acid mutation in comparison to the wild-type allele – 

the substitution of an aspartic acid (D) residue with an asparagine (N) at position 

380, represented by D380N. Further mutations were given the same 

nomenclature. An isolate of serotype 1, ST227 was also found to possess this 

allele. Allele 2 displayed similar specific activity to wild-type allele 1. These 

were by far the most predominant alleles uncovered in the initial screen, with 

23/121 isolates possessed allele 1, and 69/121 allele 2.  
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Allele 3 was discovered in two serotype 8 isolates, and was identical to the Ply8 

allele found previously in this serotype (Lock et al., 1996). This allele had three 

amino acid substitutions (T172I, K224R, A265S) and a two amino acid deletion 

(270-271) in comparison to the wild-type (Figure 3.1), and showed a significant 

reduction in specific activity (~60-fold). 

Allele 4, which contains an 8 amino acid insertion/duplication, has been 

previously reported (Kirkham et al., 2006a). This allele was found in a single 

serotype 1, ST227 isolate, and displayed very low levels of haemolytic activity 

when tested, making accurate calculation of specific activity impossible.  

Allele 5 was initially identified from research done in our laboratory in a number 

of serotype 1, ST306 isolates (Kirkham et al., 2006a). This allele is similar to 

allele 3, with an extra mutation, Y150H. However, unlike allele 3, this allele 

produces a non-haemolytic variant of the Ply toxin. In this initial study, allele 5 

was found in two serotype 1 isolates of ST306 and ST228, and two serotype 8 

isolates of ST53 and ST578, as well as a non-typable ST577 isolate. This is the 

first demonstration of this non-haemolytic toxin in clones other than ST306, 

showing it to be more widespread than previously thought.  

Allele 6, found in a serotype 2, ST74 isolate, also had similar mutations to those 

seen in allele 3, but had a further S167F mutation. This allele also had reduced 

haemolytic activity, resulting in a specific activity comparable to allele 3. 

Allele 7, present in a non-typable isolate of ST448, possessed 2 mutations in 

comparison to wild-type allele 1, namely N14D and K224R, and had a specific 

activity of similar level to the wild-type allele.  

Allele 8, present in a serotype 23F, ST40 isolate, had only a single mutation 

(A273D), and displayed slightly reduced haemolytic activity, resulting in a ~5-

fold reduction in specific activity. 

Allele 9, which was found in a serotype 9V, ST156 isolate, also had only a single 

mutation (I267M). However, this mutation had no effect on the specific activity 

of the Ply protein.  
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Allele 10 possessed 3 amino acid substitutions (T154M, A265S, D380N) and 2 

amino acid deletions (270-271), and showed reduced haemolytic activity, 

resulting in a ~5-fold reduction in specific activity.  

Allele 11 was found in an isolate of serotype 20, ST591, and although it 

possessed the amino acid mutations Q136K and D380N, had a specific activity 

comparable to the wild-type allele.  

Allele 12, discovered in a serotype 18C, ST8181 isolate, had 2 mutations in 

comparison to the wild-type allele 1. These mutations were D380N, as in allele 

2, and Q402E. Although this allele was haemolytic, it was not possible to 

calculate the specific activity of the Ply as the protein was not recognised by the 

monoclonal antibody PLY-7 (mAbPLY-7) (de los Toyos et al., 1996), which was 

used in the sandwich ELISA, and recognises AA401-407 of the Ply protein. 

Production of recogniseable Ply was confirmed by Western blot using either 

mAbPLY-7 or polyclonal α–Ply antibody raised in rabbit as the primary antibody 

(Figure 3.3). This result showed that although a functional Ply protein is 

produced and recognised by the polyclonal antibody, it is not recognised by the 

PLY-7 monoclonal antibody. 
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Figure 3.3: Western blot – anti-Ply – isolate 01-25 13 

Poly and monoclonal α-Ply Western blots of lysate from isolate 01-2513, possessing Ply 
allele 12. Blot A is probed with mAbPLY-7 was a pri mary antibody, and blot B is probed with 
polyclonal α–Ply antibody raised in rabbit as a primary antibod y. In lane 1 of each blot is the 
Kaleidoscope protein marker, with the band correspo nding to 53kDa highlighted. In lane 2 is 
the lysate of wild-type strain D39. In lane 3 is th e lysate of 01-2513.  
 

Allele 13, present in a serotype 6A, ST813 isolate, possessed the D380N mutation 

as in allele 2, as well as an E260D mutation. These mutations had no effect on 

the specific activity in comparison to wild-type. 

Allele 14, present in a serotype 1 isolate of ST228, was found to be non-

haemolytic. PCR amplification of the gene using primers 27R and 27S showed a 

PCR product of 3282bp in size, substantially larger than the wild-type gene from 

D39 (2411bp) (Figure 3.4). Sequencing of this PCR product revealed an insertion 

of 871bp at amino acid 142 in the ply gene, which was found to represent the 

mobile genetic element IS1515 (Munoz et al., 1998). IS1515 was able to insert 

into the ply gene due to the presence of a recognition site within the gene, with 

the IS inserting in the orientation shown in Figure 3.5, and the underlying Ply 

being allele 2. Furthermore, the IS was found to have produced a 3bp repeat 

upon insertion, as expected (Munoz et al., 1998). Although IS1515 is inserted in 

the opposite orientation to the ply gene, the full sequence is present, and 

therefore the insertion element should in theory be able to excise from the ply 

gene. Western blots with mAbPLY-7 and polyclonal α–Ply antibody raised in 

rabbit confirmed that no recognisable Ply protein was produced by this isolate, 
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due to the disruption of the ply gene (Figure 3.6). This is the first demonstration 

of a clinical isolate of S. pneumoniae expressing no recogniseable Ply protein.  

                

Figure 3.4: PCR of ply gene of isolate S1-11  

Gel shows gDNA of wild-type strain D39 and serotype  1, ST228 strain S1-11. Samples are as 
follows: 1 – 1kb+ DNA ladder; 2 - D39 (2411bp); 3 –  S1-11 (3282bp); 4 – S1-11 (3282bp); 5 – 
negative control (no gDNA).   
  

 

Figure 3.5: IS1515 in ply gene of S1-11 

Schematic of IS1515 inserted into the p ly gene sequence from the isolate S1-11. The 871bp 
insertion in the ply gene is in the opposite orientation. Figure constr ucted using Vector 
NTI™ software (Invitrogen, Scotland). 
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Figure 3.6: Western blot – anti-Ply – isolate S1-11  

Poly- and monoclonal α-Ply Western blots of lysates from isolate S1-11 to test  for 
expression of recogniseable Ply protein. The primar y antibody in blot A was polyclonal α–
Ply antibody raised in rabbit, whilst in blot B it was mAbPLY-7. In both blots, lane 1 was a 
kaleidoscope protein marker, lane 2 was the lysate from wild-type D39, lane 3 was S1-11 
lysate, and lane 4 was the lysate from a knockout o f Ply in a D39 background (D39 ∆Ply stop 
– see 3.5). 

 

3.2.3 Western blot analysis of 14 Ply alleles 

One representative from each of the 14 Ply alleles was selected for comparison 

using a Western blot probed with the polyclonal α–Ply antibody. The results, 

displayed in Figure 3.7, showed that most protein alleles were expressed and a 

toxin of the correct size was produced. However, a number of interesting results 

were observed. Firstly, alleles 3, 5 and 10 showed reduced mobility when run on 

the SDS-PAGE gel. This resulted in the Ply protein on the Western blot appearing 

slightly larger in these isolates than in the other isolates, circled in red in Figure 

3.7. This result agreed with previous findings where a similar phenomenon was 

observed with allele 3 (Ply8 in their paper) (Lock et al., 1996). Secondly, the 

lysate of the S1-11 isolate, which had the IS1515 insertion in it, appeared to 

express some recognisable protein of the correct size (circled in green). This 

may represent excision of the IS1515 insertion element from the ply gene at 

some point during growth of the bacteria. The weaker bands on the blot, at 

different sizes, were a result of over-exposure of the blot, and can be ignored.  
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Figure 3.7: Western blot – polyclonal anti-Ply - 14  Ply alleles 

Polyclonal anti-Ply Western blot of lysates possess ing 14 different Ply alleles . Primary 
antibody used in the Western blot was polyclonal α–Ply antibody raised in rabbit. The lanes 
in the blots represent the following: lane 1 – Kale idoscope protein marker; lane 2 – allele 1; 
lane 3 – allele 2; lane 4 – allele 3; lane 5 – alle le 4; lane 6 – allele 5; lane 7 – allele 6; lane 8 – 
allele 7; lane 9 – kaleidoscope protein marker; lan e 10 – allele 8; lane 11 – allele 9; lane 12 – 
allele 10; lane 13 – allele 11; lane 14 – allele 12 ; lane 15 – allele 13; lane 16 – allele 14.  
 

3.2.4 Variation in CDCs at mutated positions in Ply protein 

An alignment of the amino acid sequences of all known CDCs was created by Dr 

Graeme Cowan. The alignment included the ply allele 1 from D39 as a S. 

pneumoniae representative. From this alignment, values of variability were 

calculated for each amino acid position, using the Kabat method (Wu et al., 

1975), where a value of 1 showed that the amino acid was fully conserved across 

the CDCs, whilst a value of 2-5 indicated the amino acid was highly conserved, 5-

10 equated to weakly conserved and >10 to highly variable. The variability 

values for each mutated amino acid position found in the study of Ply alleles 

were determined (Table 3.2). The results showed that a wide range of variability 

is present in these positions. Only one of these amino acids was fully conserved 

across all CDCs in the alignment, the tyrosine residue at position 150 (in red). In 

Ply, mutation of this amino acid to a histidine is unique to allele 5, which 

displays no haemolytic activity. Furthermore, the presence of this mutation is 

the only difference between alleles 3 and 5, implying that although allele 3 

shows reduced haemolytic activity, the Y150H mutation is responsible for the 

full abrogation of haemolytic activity in allele 5. 
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Mutation Alleles with mutation Variability value 

N14D 7 28 
Q136K 11 12 
Y150H 5 1 
T154M 10 3.6 
S167F 6 14.4 
T172I 3, 5, 6 8 
K224R 3, 5, 6, 7 15 
E260D 3, 5, 6 5.14 
A265S 3, 5, 6, 10 5.3 
I267M 9 12 

V270DEL 3, 5, 6, 10 28 
K271DEL 3, 5, 6, 10 9.6 
A273D 8 15 
D380N 2, 4, 10, 11, 12, 13, 14 2.4 
Q402E 12 15 

Table 3.2: Variability of mutations in the Ply amin o acid sequence 

Mutations discovered in Ply protein, alleles that p ossess these mutations, and the variability 
present at the amino acid positions as calculated b y Kabat method. A variability value of 1 
indicated 100% conservation of an amino acid at a c ertain position. 2-5 = highly conserved, 
5-10 = weakly conserved, >10 = highly variable. Hig hlighted in red is Y150H, a mutation at a 
position fully conserved across all CDCs.  
 

3.3 Distribution of non-haemolytic Ply allele 5 in the 

pneumococcal population 

3.3.1 eBURST analysis of S. pneumoniae serotype 1 and 8 

populations 

As the non-haemolytic Ply allele 5 was discovered in isolates of both serotypes 1 

and 8, it was of interest to determine the distribution of this mutant toxin in the 

populations of serotype 1 and 8 isolates present in the MLST database. In order 

to initially assess the overall clonal diversity present in each of these serotypes, 

eBURST diagrams representing all serotype 1 and 8 isolates in the MLST database 

were constructed.  

A search of the MLST database for serotype 1 pneumococci showed 51 different 

STs possessing this serotype. eBURST revealed the presence of 4 major clusters 

(Figure 3.8), representing the 3 major geographical lineages described previously 

(Brueggemann and Spratt, 2003). Lineage A, representing serotype 1 

pneumococci from Europe and North America, is split into 2 clonal groups by 

eBURST. The predicted founders of these complexes were ST306 and ST305, 
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represented by blue dots in Figure 3.8. ST217 was the predicted founder of 

Lineage B, representing serotype 1 pneumococci from Africa and Israel, and was 

also the predicted founder of the overall serotype 1 pneumococcal population, 

as it possessed the highest number of single locus variants (SLVs). ST2296 was 

the predicted founder of Lineage C. At the time of the study by Brueggemann et 

al., isolates from this lineage were predominantly from Chile (Brueggemann and 

Spratt, 2003). However, this lineage now contains isolates from a wide range of 

geographical locations.  

 

Figure 3.8: eBURST diagram of serotype 1 pneumococc al isolates  
 

A search of the MLST database revealed 43 different STs present in the serotype 

8 pneumococcal population. eBURST showed that there was one major clonal 

complex present with predicted founder ST53, two smaller complexes with 

predicted founders ST944 and ST404, and a large number of singletons (Figure 

3.9).  
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Figure 3.9: eBURST diagram of serotype 8 pneumococc al isolates   
 

3.3.2 Distribution of Ply alleles within serotype 1 and 8 

pneumococcal populations, distinguished by ST 

With the diversity of pneumococci present in these populations uncovered, it 

was possible to determine the distribution of the non-haemolytic Ply allele 5 

within these populations. 31 serotype 1 isolates were collected from a number of 

studies (Brueggemann and Spratt, 2003; Kirkham et al., 2006a; Leimkugel et al., 

2005) representing 24 of the 51 serotype 1 STs in the database. Fewer serotype 8 

isolates were available, but 7 isolates were collected and the Ply allele present 

in each isolate determined (Table 3.3).  
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Strain Serotype ST Ply amino 
acid allele 

Source 

S1-46 1 217 1 (Brueggemann and Spratt, 2003) 
P1041 1 217 2 (Leimkugel et al., 2005) 

01-2696 1 227 2 (Kirkham et al., 2006a) 
S1-2 1 227 2 (Brueggemann and Spratt, 2003) 

00-3645 1 227 4 (Kirkham et al., 2006a) 
04-2055 1 228 5 SMPRL 
S1-11 1 228 14 (Brueggemann and Spratt, 2003) 

INV1871 1 300 2 (Brueggemann and Spratt, 2003) 
P1039 1 303 1 (Leimkugel et al., 2005) 
S1-8 1 303 2 (Brueggemann and Spratt, 2003) 
S1-4 1 304 2 (Brueggemann and Spratt, 2003) 
S1-30 1 305 2 (Brueggemann and Spratt, 2003) 
S1-3 1 306 5 (Brueggemann and Spratt, 2003) 

01-1956 1 306 5 (Kirkham et al., 2006a) 
S1-71 1 611 2 (Brueggemann and Spratt, 2003) 
S1-45 1 612 2 (Brueggemann and Spratt, 2003) 
P1021 1 612 2 (Leimkugel et al., 2005) 
S1-125 1 613 1 (Brueggemann and Spratt, 2003) 
S1-126 1 614 1 (Brueggemann and Spratt, 2003) 

NCTC7465 1 615 2 (Brueggemann and Spratt, 2003) 
S1-102 1 616 2 (Brueggemann and Spratt, 2003) 
S1-38 1 617 5 (Brueggemann and Spratt, 2003) 
S1-99 1 618 2 (Brueggemann and Spratt, 2003) 

03-5343 1 1239 5a SMPRL 
03-5340 1 1310 5a SMPRL 
04-1259 1 1311 5a SMPRL 
04-1837 1 1346 5a SMPRL 
04-2889 1 1597 5a SMPRL 
05-1635 1 1809 5a SMPRL 
05-1934 1 1882 5a SMPRL 
01-2117 1 2126 5a SMPRL 
01-2884 8 53 5 SMPRL 

2PN00495 8 404 3 HPA 
01-1204 8 578 5 SMPRL 
03-2331 8 835 5a SMPRL 

H040920498 8 944 3 HPA 
03-2620 8 1110 5a SMPRL 

H043900039 8 1722 5a HPA 

Table 3.3: Isolates used in serotype 1 & 8 Ply stud y 

Serotype, ST, and ply allele were included, as well as the source of eac h isolate used. 
SMPRL = Scottish Meningococcal and Pneumococcal Ref erence Laboratory, Stobhill 
Hospital, Glasgow, HPA = Health Protection Agency, Colindale, London. a ply gene partially 
sequenced to confirm presence of ply allele 5. 
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These results allowed the mapping of Ply alleles onto the eBURST diagrams for 

each population set, giving insights into the distribution of Ply alleles within 

these populations. When Ply allele identity was mapped onto the serotype 1 

eBURST diagram, it was found that wild-type allele 1 was associated with 4 STs 

and allele 2 was associated with 12 STs (Figure 3.10). Interestingly, allele 5 was 

associated with 9 STs, all of which were either single- or double-locus variants 

(SLV/DLV) of ST306. Indeed, all tested SLVs of ST306 were found to possess this 

non-haemolytic toxin. This is the first demonstration of allele 5 in serotype 1 

isolates other than ST306 where it was discovered. The results also showed that 

ST217, the predicted founder of Lineage B, was associated with alleles 1 and 2. 

Similarly, in Lineage A, ST228 was associated with 2 Ply alleles (5 and 14), as 

was ST227 (2 and 4). This is the first demonstration of intra-ST amino acid 

variation within Ply. Results of haemolytic assays performed on these isolates 

were in agreement with the haemolytic profiles previously determined for these 

alleles (data not shown). 

 

Figure 3.10: Ply amino acid allele identity of sero type 1 clones 

Ply amino acid allele identity mapped onto serotype  1 eBURST diagram. Each allele or 
combination of alleles is represented by a differen t shape, as detailed in the key. 
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When Ply amino acid allele identity was mapped onto the serotype 8 eBURST 

diagram (Figure 3.11), all SLVs of ST53 tested possessed allele 5, whilst 

predicted founders of the two smaller clonal complexes had allele 3. This 

implies that allele 5 is only harboured by isolates in the ST53 clonal complex in 

this population.  

 

Figure 3.11: Ply amino acid allele identity of sero type 8 clones 

Ply amino acid allele identity mapped onto serotype  8 eBURST diagram . Each allele or 
combination of alleles is represented by a differen t shape, as detailed in the key.  
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3.3.3 Prevalence of serotype 8-related IPD in Scotland 

The ST306 clone possessing the non-haemolytic Ply allele 5 was shown to be 

undergoing clonal expansion in the Scottish IPD population (Kirkham et al., 

2006a). Information from SMPRL was used to determine the prevalence of 

serotype 8-related IPD in Scotland covering the years 2002-2005. The prevalence 

of the ST53 clone within serotype 8-related IPD was also investigated. Serotype 8 

was not found to be an increasing cause of IPD in Scotland, having caused ~5% of 

the IPD in Scotland between 2002 and 2005 (Figure 3.12A). However, the 

prevalence data showed that ST53 was already the dominant clone within the 

serotype 8 IPD-causing population, representing >80% of serotype 8 isolates 

within this time period (Figure 3.12B). This implies that the ST53 clone has 

undergone previous clonal expansion within the serotype 8 IPD population. 
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Figure 3.12: ST53 prevalence data in Scotland   

A - Prevalence of serotype 8-related IPD in Scotlan d, in comparison to other serotypes, 
between 2002-2005. B - Prevalence of ST53-related I PD in Scotland, in comparison to other 
STs of serotype 8, between  2002-2005. 
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3.4 Construction and characterization of a Ply knoc k-out 

strain 

3.4.1 Construction of D39 ∆Ply stop mutant 

It was of interest to investigate the role played by the toxin Ply in virulence of S. 

pneumoniae. One way to determine this is to disrupt the ply gene resulting in an 

isolate producing no Ply protein. This has been done previously (Berry et al., 

1989b; Friedland et al., 1995; Wellmer et al., 2002; Winter et al., 1997), 

however mutation techniques used, involving insertion of antibiotic resistance 

cassettes, may have produced polar effects other than just disrupting the ply 

gene. In order to produce an unmarked mutation, a mutant expressing no Ply 

protein (D39 ∆Ply stop) was created in a D39 background using the Janus 

technique described previously (Sung et al., 2001). The advantage of using this 

technique is that it allows production of mutations without the insertion of 

antibiotic resistance cassette into the gene of interest, essentially producing 

unmarked mutations. This mutant had an insertion of 1 T base after base 6 in 

the D39 open reading frame, which resulted in a premature stop codon (TAA) 

after the second amino acid of the translated gene. This mutant was constructed 

as described in Chapter 2.6, by three transformation steps, and successful clones 

at each stage were confirmed by sequencing and antibiotic resistance profiles as 

described.  

3.4.2  Confirmation of successful D39 ∆Ply stop mutation 

The success of the mutation produced in two separate clones was confirmed by 

haemolytic assay and Western blot using the polyclonal α–Ply antibody. The 

haemolytic assay result confirmed that although the wild-type D39 parent strain 

displayed haemolytic activity, neither D39 ∆Ply stop clone had any haemolytic 

activity (Figure 3.13). Similarly, the results of the Western blot show that whilst 

the wild-type D39 parent strain and purified Ply allele 1 produced bands of the 

correct size on the blot, neither D39 ∆Ply stop clone produced any recognisable 

Ply (Figure 3.14).  
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Figure 3.13: Haemolytic assay of D39 ∆Ply stop 

Haemolytic assay of D39 ∆Ply stop  clones to confirm the successful production of muta nts 
producing no Ply. Lanes 1-2 – D39 ∆Ply stop clone 1; lanes 3-4 – D39 ∆Ply stop clone 2; 
lanes 5-6 – D39 wild-type parent strain; lanes 7-8 – purified Ply allele 1, 1/100 starting 
dilution. Doubling dilutions were carried out acros s the plate for each sample.  
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Figure 3.14: Western blot of D39 ∆Ply stop 

Western blot of D39 ∆Ply stop clones to confirm the successful construct ion of mutants 
producing no Ply protein. Probed with polyclonal α-Ply antibodies. Lane 1 – SeeBlue +2 
protein marker; lane 2 – D39 parent strain; lane 3 - purified Ply allele 1, 1/100 starting 
dilution; lane 4 - D39 ∆Ply stop clone 1; lane 5 - D39 ∆Ply stop clone 2; lane 6 – negative 
control – dH2O. 
 

3.4.3  Animal studies 

In order to test the effect of knocking out the Ply gene on pneumococcal 

virulence, studies in MF1 mice were carried out by Dr. Gill Douce, using 3 

pneumococcal strains. The virulence of wild-type parent strains D39, the knock-

out strain D39 ∆Ply stop clone 1 (referred to from now as D39 ∆Ply stop), and a 

third strain, D39 ∆6, (provided by Dr. Lea-Ann Kirkham, deletion of 2 amino 

acids (∆A146R147) that abrogates the haemolytic activity of the toxin although a 

protein is still expressed) was tested. Result showed that at 24h and 48h, there 

was no statistical difference between viable counts of the three strains in blood 

(Figure 3.15A, 3.15B). However, when survival was monitored for a period of ten 

days following challenge, there was a significant difference between the mean 

survival times of D39 and D39 ∆6 (p = 0.0399), as well as D39 and D39 ∆Ply stop 

(p = 0.0144) (Figure 3.15C, 3.15D). However, there was no significant difference 

in survival times between D39 ∆6 and D39 ∆Ply stop (p=0.4484). This implies that 



Chapter 3  Pneumolysin diversity  

  115  

the haemolytic activity of the toxin is important in pneumonia, whilst other 

toxin activities play a lesser role.  

 

Figure 3.15: Animal studies with D39 ∆Ply stop   

A – viable counts of S. pneumoniae present in the blood 24h post-infection (p.i.). B – viable 
counts of S. pneumoniae present in the blood 48h p.i. C – plot of survival  data monitored for 
a period of ten days for mice infected with each is olate. D – mean survival time for mice 
infected with each isolate, showing significant dif ferences between the sample sets. 
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3.5 Discussion 

Ply is a cytoplasmic toxin, and was considered to be well-conserved (Mitchell et 

al., 1990). However, 6 Ply proteins had been identified before this study 

(Kirkham et al., 2006a; Lock et al., 1996; Tettelin et al., 2001; Walker et al., 

1987). Nine more novel Ply amino acid alleles were uncovered here, making a 

total of at least 15 Ply amino acid alleles, and showing that the variation present 

in Ply, at the amino acid level, is greater than previously thought. Ply shows an 

amino acid sequence variation of 3.3%, which is slightly higher than the variation 

seen in the house-keeping genes (1-2%) (Enright and Spratt, 1998), but 

substantially lower than variation observed in pneumococcal surface proteins 

such as  NanA (King et al., 2005) and PspC (Iannelli et al., 2002), or antibiotic 

resistance genes such as the penicillin-binding proteins (Dowson et al., 1994). 

Variation in these proteins is thought to be due to the evolutionary pressure 

exerted by the host immune system or exposure to antibiotics respectively. 

However, the selective evolutionary pressure exerted on the Ply protein, which 

is cytoplasmic, is unknown. Observation of a higher level of variation in the ply 

gene than previously thought should not prevent the use of this toxin as a 

protein component in future pneumococcal conjugate vaccines, as polyclonal 

antibodies raised against wild-type Ply were able to recognise all alleles of Ply 

expressed, and the levels of variation are far lower than those of other surface-

exposed protein vaccine candidates.  

The allelic variation observed resulted in discovery of alleles with a number of 

different characteristics. Alleles 1 and 2 were possessed by most isolates in the 

initial screen, with 92/121 isolates possessing either of these alleles. This result 

shows that although 15 alleles were identified, the majority of isolates possess a 

wild-type Ply with normal haemolytic activity. However, a number of the other 

alleles discovered had reductions in haemolytic activity as a result of mutations 

present in the protein. The most drastic example of this was allele 5, originally 

identified in a serotype 1, ST306 isolate and lacking any haemolytic activity 

(Kirkham et al., 2006a). In this study, allele 5 was shown to be harboured by a 

number of serotype 1 and 8 isolates, as well as a non-typable ST577 isolate. At 

the protein level, allele 5 was identical between serotype 1 and 8 isolates. 

However, at the DNA level, there was a single nucleotide polymorphism (SNP) 

which was found consistently in all alleles from serotype 8 isolates when 
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compared to serotype 1 isolates (C>T at nucleotide position 1113). This mutation 

was synonymous. The non-typable isolate possessing allele 5 shared the DNA 

allele present in serotype 8 isolates. Furthermore, the clone ST577 was found to 

be a SLV of the serotype 8 clonal complex founder ST53. Therefore, as the non-

typable isolate shared Ply allele and housekeeping genes with serotype 8 

pneumococci, it is possible that this isolate has serotype 8 capsular genes but 

does not express the capsule, or there may have been partial or full deletion of 

capsular genes. Further to this, it is interesting to note that this isolate was 

isolated from the blood of a bacteraemic patient. Although this seems to 

contradict data showing the pneumococcal capsule to be essential for 

colonisation (Magee and Yother, 2001) and survival in blood, it is not possible to 

confirm that this isolate was not expressing capsule whilst in the host.  

Ply allele 12 was not recognised by the monoclonal antibody PLY-7. This 

antibody recognises an epitope GQDLTAH within the Ply amino acid sequence, 

relating to AA401-407 in the Ply protein (de los Toyos et al., 1996). Allele 12 has 

a mutation in this region, Q402E, which is the likely cause of this non-

recognition. mAbPLY-7 is currently used in an ELISA in many laboratories 

worldwide to determine presence or absence of Ply (Cima-Cabal et al., 2001), 

and by association S. pneumoniae. However, the identification of an allele of Ply 

that was not recognised by this antibody indicated that there may be instances 

of false negative results when using this antibody. Therefore, care should be 

taken when interpreting results obtained using this antibody as a diagnostic or 

therapeutic tool. Allele 12 was identified in a single 18C, ST818 isolate, which 

was the only representative of this ST in the MLST database. When eBURST was 

used to analyse all strains of serogroup 18/18C, ST818 was not part of the main 

serotype 18C clonal complex. Furthermore, 6 other serogroup 18 isolates were 

present in the initial screen, and all possessed allele 2. Therefore, allele 12 

appears to be confined to ST818 in the serogroup 8 population, of which there is 

only 1 representative in the MLST database. 

Isolate S1-11 had allele 14, and was shown to express no recognisable Ply due to 

the presence of an 871bp insertion sequence. This finding was of interest as the 

isolate was isolated from a patient with pneumonia in Spain (Brueggemann and 

Spratt, 2003), implying this isolate possesses disease-causing ability without 

recogniseable Ply. S1-11 represents the first demonstration of a clinical isolate 
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of S. pneumoniae that does not produce functional Ply. The 871bp insertion 

sequence encodes IS1515, a characterized, functional insertion sequence found 

predominantly in serotype 1 pneumococci (Munoz et al., 1998). Because IS1515 

contains internal promoter regions, expression and therefore excision of the 

insertion sequence may still be possible. This hypothesis is supported by the 

Western blot result in Figure 3.7, which showed a weak band for Ply with this 

isolate at the correct size, implying that excision may have occurred during 

growth of the isolate. In hindsight, testing the lysate used for this Western blot 

would have allowed confirmation of this hypothesis, and further study would be 

required to allow confirmation. This could include passage of the S1-11 strain 

through an animal model, as the selective pressure on the strain from the host 

immune system may select for isolates producing Ply as a result of the excision 

of the insertion sequence.  

S1-11 was isolated from the blood of the patient, displaying the ability to 

progress from the lungs of the infected patient to the blood. IS1515 is an active 

element capable of excision and insertion elsewhere in the pneumococcal 

genome, and it was therefore possible that this isolate produced a functional Ply 

toxin at the time when disease was established, and the insertion element 

inserted into the ply gene at some point after isolation. However, recent 

identification of this insertion in the ply gene of another serotype 1, ST228 clone 

isolated from a pneumonia patient in France (Garnier et al., 2007) shows that 

this is unlikely to be the case, and that indeed a serotype 1, ST228 clone 

expressing no Ply is circulating and causing invasive disease in mainland Europe. 

The fact that this clone causes IPD without producing Ply means that any vaccine 

targeting Ply may select for this clone, resulting in clonal expansion. 

Interestingly, although the underlying Ply allele in these isolates was allele 2, 

the ST228 isolate from Scotland possessed non-haemolytic allele 5, 

demonstrating that the ply gene of pneumococcal clones of identical ST can vary 

markedly according to geographic location. 

Distribution of allele 5 was not confined to ST306 in the serotype 1 

pneumococcal population, although it was found only in the ST306 clonal 

complex. There appears to be a split in lineage A, with allele 2 being found 

predominantly in 1 branch and allele 5 predominating in the other. The two 

branches of Lineage A are linked as the predicted founders are triple-locus 
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variants (TLV) of each other. It is possible that a clone exists that would link 

these two branches to form 1 complex on the eBURST diagram. This clone may 

have yet to be isolated or entered into the MLST database, or it may have 

existed and been out-competed. This theoretical clone would be predicted to 

have Ply allele 2. The two ply DNA alleles in this lineage are unrelated, varying 

at 17 nucleotide positions, resulting in 7 amino acid changes, including a 2 amino 

acid deletion.  

Allele 5 was also discovered in serotype 8 pneumococci. This allele was found 

only in clones of the main clonal complex, with ST53 as predicted founder. In 

contrast to the SLVs of ST306 found in the MLST database, which were solely 

Scottish isolates, SLVs of ST53 were present from a variety of geographical 

locations, including Spain, Norway, the Netherlands and the USA. It is therefore 

possible that serotype 8 clones possessing allele 5 are more internationally 

disseminated than serotype 1 clones. The Scottish prevalence data showed that 

ST53 is already the dominant clone in serotype 8-related IPD. This is in contrast 

to published data on ST306 prevalence in serotype 1-related IPD, which shows 

ongoing clonal expansion of this clone to become the dominant clone of this 

serotype (Kirkham et al., 2006a). Taken together, these two findings imply that 

allele 5 may have been present in serotype 8, ST53 clones prior to acquisition by 

serotype 1 isolates, presumably starting with an ST306 isolate. The presence of 

allele 5 may then be responsible for driving the clonal expansion of these two 

unrelated clones. However, it is important to appreciate that the nature of the 

MLST database means that internationally disseminated clones of the ST306 

clonal complex may exist. This is supported by published data showing that an 

increase in serotype 1 IPD in Sweden from 1992-1997 was as a direct result of 

ST306 emergence (Henriques Normark et al., 2001), although none of the SLV 

STs from ST306 were observed, and the identity of the Ply protein in these 

clones was not established. Furthermore, it is possible that other genetic 

differences between these clones and closely related relatives account for this 

phenomenon. One way to test this would be to sequence and compare the 

genomes of these clones, for example genomic comparison of an ST306 clone 

and an ST227 clone would allow discovery of other genetic differences which 

may play a role. Although ST227 and ST306 genomes are becoming available, it 
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was not possible to perform this full genome analysis under the remit of this 

project. 

The clones ST53 and ST306 are unrelated, sharing only 1 housekeeping allele 

(spi). Furthermore, the sequences of the remaining 6 housekeeping alleles were 

no more similar than those of 2 random clones (data not shown). This result 

clearly shows that there is no obvious relation between the 2 founders of the 

clonal complexes associated with Ply allele 5. With few exceptions, Ply allele 

was found to generally correlate with the ST of a pneumococcal isolate. 

Therefore, it was hypothesised that the pressure to maintain alternative Ply 

alleles may stem from the pneumococcal genome itself, suggesting that certain 

Ply alleles will be maintained only when present alongside a certain set of other 

pneumococcal proteins and that all of the proteins present in the set are 

required to work in concert to ensure the survival of the clone. This would lead 

to the hypothesis that although ST53 and ST306 isolates are unrelated by 

sequence type, they share some unknown factor that allows the non-haemolytic 

allele to be maintained whilst still allowing the clones to cause invasive 

pneumococcal disease.  

These results suggest that Ply, and potentially further virulence factors, may 

have varying levels of importance in clones of different genetic backgrounds. 

This hypothesis was investigated during this study, by attempting to produce 

mutants of serotype 1 clones using the Janus technique (Sung et al., 2001). The 

plan was to “swap” the Ply genes between a haemolytic ST227 isolate, 

possessing allele 2, and a non-haemolytic ST306 isolate possessing allele 5. 

Animal studies of these clones would allow great insight into the role and 

importance of the non-haemolytic toxin in the serotype 1 clones. However, 

despite numerous attempts, the serotype 1 clones displayed levels of 

transformation that did not allow the gene swap to occur, and the clones could 

not be created. Despite this, the clones were transformable using the replicative 

plasmid PVA838, showing that these isolates do maintain low levels of 

competence, and further work may allow these clones to be created. 

Continuation of this work would offer novel insight into the role of the non-

haemolytic toxin, as well as the possibility of virulence factors having differing 

levels of importance in pathogenesis of distinct pneumococcal clones.  
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The mutation Y150H was unique to allele 5.The tyrosine residue at this position 

was fully conserved across all known CDCs, whilst other positions of mutation 

within Ply were shown to vary among the other CDCs. This suggests an 

importance of this residue in the haemolytic activity of these toxins, as only 

allele 5, possessing this mutation, displayed fully abrogated haemolytic activity. 

However, purified toxin possessing only the Y150H mutation (purified by Kirsty 

Ross) had a specific activity of 478 HU/mg. This represents a drastic reduction 

(~1000-fold) in comparison to wild-type, but also shows this mutation is not 

solely responsible for abrogation of haemolytic activity. This implies that the 

presence of the other mutations in this allele is required to fully abolish 

haemolytic activity. This hypothesis is supported by the fact that allele 3, which 

lacks Y150H but has all other mutations present in allele 5, had a ~60-fold 

reduction in specific activity. Indeed one of these mutations, T172I has been 

shown to reduce haemolytic activity of Ply previously (Lock et al., 1996). 

However, purified allele 5 (purified by Paul Hughes, supervised project student) 

displayed a haemolytic activity comparable to the toxin possessing only the 

Y150H mutation. This result is in agreement with previous findings in Ply and 

PFO, which showed that a Y181A PFO mutant (equivalent to Y150A in Ply) had 

haemolytic activity <1% of wild type (Hotze et al., 2001), and a Y150A mutant in 

Ply displayed similar activity (Kirkham et al., 2006a).  This leads to the 

conclusion that although these toxins display low levels of haemolytic activity at 

high concentration, these concentrations are not present during in vitro growth 

of the isolates, and therefore unlikely to be present in vivo. This hypothesis is 

supported by the findings of Kirkham et al. (2006) who demonstrated that crude 

lysates of isolates with allele 5 showed reduced binding ability to erythrocytes, 

and were unable to form pores and lyse the cells (Kirkham et al., 2006a). 

There was a relationship between the mutations carried by alleles 3, 5 and 10 

and reduced mobility of these proteins in SDS-PAGE. This was in agreement with 

previous findings (Lock et al., 1996), and results in an apparent increase in 

molecular weight. Lock et al. attributed the difference in electrophoretic 

mobility as seen in their Ply8 (allele 3) solely to the T172I mutation. However, 

whilst alleles 3 and 5 possess this mutation, allele 10 does not, and still has 

clearly reduced mobility. Interestingly, these alleles share the mutation A265S 

and the deletion of amino acids at positions 270 and 271. These may play a role 
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in the reduced mobility observed; however, allele 6 also possessed these 

mutations and showed no reduction in mobility, although a further S167F 

mutation was also present, which may have had further effects on 

electrophoretic mobility.  

Unlike pneumococci of most other serotypes, serotype 1 pneumococci are known 

to be associated with outbreaks of pneumococcal disease (Dagan et al., 2000; 

Gratten et al., 1993; Leimkugel et al., 2005; Mercat et al., 1991; Proulx et al., 

2002). Serotype 8 pneumococci have also been responsible for such outbreaks 

(Berk et al., 1985; Birtles et al., 2005). In the study of 121 pneumococcal 

isolates, the non-haemolytic allele 5 was observed only in isolates of serotypes 

associated with invasive disease. There is therefore an association between this 

non-haemolytic variant of the toxin and serotypes with the ability to cause 

outbreaks of IPD. Although haemolytic activity is not required for these clones to 

cause IPD, other activities of Ply such as complement activation (Mitchell et al., 

1991; Paton et al., 1984) and inflammation via interaction with TLR-4 (Malley et 

al., 2003) may contribute to the pathogenesis of infection. However, there is no 

data presented in these papers on the STs of these outbreak clones, which would 

allow further insight. Whether there is a causal link between production of a 

non-haemolytic toxin variant and outbreaks of IPD would require a much larger 

study comparing outbreak and non-outbreak isolates. Given that outbreaks of 

pneumococcal disease remain rare, such a study may prove difficult.  

The construction of a Ply knock-out without a selective marker has allowed 

initial studies into the importance of Ply to S. pneumoniae. Many studies have 

been done previously in different animal models, with differing results. A 

number of studies have shown that Ply is not essential for pneumococcus-

induced inflammation during meningitis (Friedland et al., 1995; Wellmer et al., 

2002; Winter et al., 1997). Another study showed that pneumococci with the ply 

gene caused acute sepsis, whilst those without caused chronic bacteraemia 

(Benton et al., 1995). The initial data reported here showed that the Ply knock-

out had no reduction in bacterial counts in blood compared to wild-type and a 

non-haemolytic mutant. However, mice infected with either the knock-out or 

the non-haemolytic mutant showed a significant increase in survival compared to 

the wild-type. This implies that although these bacteria can cause bacteraemia 

at a similar level to wild-type, there is decreased virulence. Furthermore, 
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results show that in this model, the haemolytic property of the toxin is of more 

importance than other properties, as there is no significant difference between 

the knock-out and the non-haemolytic mutant. However, this study was 

preliminary and further studies are required with this mutant to fuller determine 

its effect on virulence. This unmarked knock-out is a valuable resource, is 

routinely used as a negative control in many Ply studies in our laboratory, and is 

currently being used by colleagues on a number of further projects.  

In conclusion, Ply has a level of variation higher than previously thought, and the 

haemolytic activity of the toxin is not always required for IPD. Furthermore, an 

insertion sequence in the ply gene of one isolate means no functional Ply is 

produced. These findings imply that the roles played by Ply may vary in 

pneumococci of different genetic backgrounds. The non-haemolytic allele 

appears to be confined to unrelated clonal complexes that have undergone 

expansion. Furthermore, this toxin is harboured in unrelated serotypes 

frequently associated with disease outbreaks. Therefore, this property of Ply, in 

certain genetic backgrounds, may play a role in driving clonal expansion and may 

also have an involvement in outbreaks of pneumococcal disease.  
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4.1 Summary 

NanA is an important pneumococcal virulence factor, which has been studied as 

a pneumococcal vaccine candidate (Tai, 2006), and implicated as important in 

pathogenesis of pneumococcal diseases including p-HUS (Klein et al., 1977; 

Seger et al., 1980). Results of diversity studies can give insight into the 

importance of NanA to the pneumococcus as well as informing on the potential 

of this virulence factor as a vaccine candidate. The aim of this chapter was to 

assess the diversity present in the NanA protein, relate these results to the 

protein structure, and investigate the importance of NanA in p-HUS 

pathogenesis. The diversity present in the pneumococcal virulence factor NanA 

was investigated and results showed that the protein had levels of diversity 

significantly higher than Ply, with mutations present at 13.7% of the amino acids 

of the wild-type protein. In total, 18 protein alleles were identified from 33 

isolates (full DNA alignment in Appendix I). Three regions of diversity, two 

insertion regions and one region of 20AA repeats were identified, and had been 

previously reported (King et al., 2005). Furthermore, a large number of point 

mutations were identified along the length of the protein. Despite this, all 

residues previously identified as essential to the neuraminidase activity of the 

protein were fully conserved. The diverse nature of this protein was expected 

due to its surface-exposed nature (Camara et al., 1994), however, the diversity 

present should not reduce the potential of NanA as a vaccine candidate, as 

polyclonal antibodies display ability to recognise significantly divergent NanA 

alleles.  

The structure of the enzymatic site of the NanA protein was solved by 

collaborators, and allowed mapping of mutations present in each allele onto the 

structural model of the active site. From this result, three alleles were chosen 

for purification, with activities varying by up to 7-fold from wild-type. 

Furthermore, a region of diversity termed mosaic block C mapped to a small 

region inserted into the active site domain, with two distinct variants of this 

region identified, sharing only 57% sequence identity. Although the function of 

this region was unknown, the surface shape and electrostatic potential of the 

two variants was shown to differ markedly, implying they may play different 

roles in different clones.  
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Pneumococcal NanA has been implicated as important for the progression of 

HUS, a complication of IPD. The incidence of HUS following on from invasive 

pneumococcal disease (p-HUS) has been increasing. This form of the disease has 

higher levels of mortality than normal, verotoxin-associated HUS (Fitzpatrick et 

al., 1993). Very little is known about the pathogenesis of p-HUS, although a 

model for the mechanism of pathogenesis has been suggested, implicating the 

action of pneumococcal neuraminidase (Klein et al., 1977; Seger et al., 1980). 

This study attempted to correlate NanA activity to p-HUS by determining 

sequence and activity of NanA in these clones. In this study of 9 p-HUS isolates 

and 6 matched controls, no correlation was found between p-HUS and NanA 

protein allele, or overall neuraminidase activity. These results show that 

although an active neuraminidase enzyme may be required to cause p-HUS, no 

particular NanA allele is associated with p-HUS isolates, and other genetic 

factors may dictate which pneumococcal clones are able to cause p-HUS.  
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4.2 Diversity of NanA in S. pneumoniae clinical isolates 

NanA is an important virulence factor of the human pathogen S. pneumoniae. 

Like Ply, it is being considered as a vaccine candidate for next-generation 

pneumococcal protein vaccines (Tai, 2006). It is therefore of importance to 

determine the diversity present in this virulence factor in the pneumococcal 

population, as variation uncovered may give insight into suitability of NanA as a 

pneumococcal vaccine candidate. The nanA genes of 18 clinical isolates were 

sequenced and analysed. These isolates were either isolated from p-HUS, or 

were matched control isolates (see section 4.6). Furthermore, the nanA genes 

from 15 sequenced pneumococcal genomes were analysed (Dopazo et al., 2001; 

Hiller et al., 2007; Lanie et al., 2007; Tettelin et al., 2001). All isolates tested 

can be found in Table 4.1. These genes were aligned to wild-type D39 using 

Vector NTI™ software, resulting in mutations at 457 positions in the DNA 

sequence, representing 34.9% of the wild-type sequence, with 3 regions of 

insertion or repeat also present. Translation and alignment of these resulted in 

mutations at 142 amino acid positions along the protein. This represented 13.7% 

of the amino acids in the wild-type protein, which is significantly higher than the 

diversity observed in Ply. The mutations were clustered into several groups, with 

the presence of three regions of diversity, two insertions of 16 and 5 amino 

acids, a frameshift mutation resulting in a stop codon, and a region of 20 amino 

acid repeats occurring from 0-3 times (Figure 4.1). The presence of these 

insertion and repeat regions increased the diversity present in the NanA protein 

compared to Ply. The frameshift mutation resulted in a premature stop codon at 

AA801, and was only present in TIGR4. The 16AA insertion (EEGENITLPAEHVESV) 

was present after amino acid 84 in the protein, whilst the 5AA insertion observed 

(EMGKG) was found to be an insertion-duplication of AA822-826. Region of 

diversity I (RDI) ran from AA163-337, whilst RDII ran from AA393-568, and RDIII 

from AA837-891. Interestingly, when comparing the diversity present in each 

region of diversity, two distinct variants appear present in each region (Figure 

4.2). All of these features of NanA diversity have been previously reported in a 

partial study of the nanA gene (King et al., 2005). The regions of diversity 

correspond to mosaic blocks A, C and D from this study respectively, and will be 

described as such from now on. Mosaic block B was not observed in this study. 

Further to these mutations, a large number of point mutations were present 

within the alleles. The aligned NanA proteins were assigned an allele number 



Chapter 4  Neuraminidase A diversity  

  128  

based on alignment to the wild-type D39 protein, termed allele 1. 18 protein 

alleles were discovered, with one representative of each shown in Figure 4.2. 

The alleles were further separated into 7 allele groups, determined by the 

presence of diversity features as shown in Table 4.2. A number of amino acids 

essential to the activity of the NanA protein have been identified, including four 

Aspartic boxes conserved across all sialidase enzymes (SXDXGXTW motifs) 

(Camara et al., 1994) 3 arginine-triad residues (R347, R663, R721) and other 

essential residues Y752, E647 (Yesilkaya et al., 2006) and D372 (Chong et al., 

1992). Despite the high levels of variation present, these amino acids are fully 

conserved across all protein alleles identified. Indeed, although one aspartic box 

is present within a mosaic block region, it remains conserved in both variants of 

the block. Neuraminidase activity was compared for available isolates, and there 

was no significant difference in activity associated with particular protein alleles 

(See section 4.6). 
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Strain Serotype ST NanA 
allele 

NanA allele 
group 

Source 

D39 2 125 1 1 (Walker et al., 1987) 

OXC141 3 180 1 1 
(Brueggemann et al., 

2003) 
02-1198 3 180 1 1 SMPRL 

H050600025 3 180 1 1 
HPA, (Waters et al., 

2007) 
SP3-BS71 3 180 1 1 (Hiller et al., 2007) 
05_1308 19A 199 2 2 SMPRL 
05_2084 19A 199 2 2 SMPRL 

H051740086 19A 199 2 2 
HPA, (Waters et al., 

2007) 

H052300328 19A 199 2 2 
HPA, (Waters et al., 

2007) 
TIGR4 4 205 3 3 (Tettelin et al., 2001) 

SP6-BS73 6 460 4 4 (Hiller et al., 2007) 
SP11-BS70 11 62 5 4 (Hiller et al., 2007) 
SP14-BS69 14 124 6 4 (Hiller et al., 2007) 

G54 19F n/a 7 4 (Dopazo et al., 2001) 
INV104B 1 227 8 4 Sanger 

SP18-BS74 6 n/a 9 4 (Hiller et al., 2007) 
Spain 23F-1 23F 81 10 4 Sanger 
SP9-BS68 9 1269 11 4 (Hiller et al., 2007) 
SP19-BS75 19 485 12 5 (Hiller et al., 2007) 
06_1011 14 9 12 5 SMPRL 

H053940080 14 9 12 5 
HPA, (Waters et al., 

2007) 

H053940083 14 9 12 5 
HPA, (Waters et al., 

2007) 
INV200 14 9 12 5 Sanger 

SP23-BS72 23 37 13 5 (Hiller et al., 2007) 
05_2426 19A 1201 14 5 SMPRL 

H050940049 19A 1201 14 5 
HPA, (Waters et al., 

2007) 
A66.1 Xen 3 180 15 5 Xenogen 

H060160064 19A 199 16 6 
HPA, (Waters et al., 

2007) 

H040400333 19A 199 16 6 
HPA, (Waters et al., 

2007) 
1427 15B/C 199 16 6 SMPRL 
2028 15B/C 199 16 6 SMPRL 

06_2715 6A 65 17 7 SMPRL 

H043640049 6A 65 18 7 
HPA, (Waters et al., 

2007) 

Table 4.1: Strains from NanA diversity study 

Strains used in the study of NanA diversity, with s erotype and ST included. Also included 
are NanA amino acid allele, allele group and source  of each isolate. SMPRL = Scottish 
Meningococcal and Pneumococcal Reference Laboratory , HPA = Health Protection Agency. 
STs noted as n/a were undefined.  
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Amino acid 
allele group 

Regions of diversity present Amino acid alleles in 
group 

1 Wild-type – Three 20AA repeats 1 
2 Two 20AA repeats 2 
3 Frameshift mutation 3 
4 5AA insertion, mosaic block D, no 

20AA repeats 
4, 5, 6, 7, 8, 9, 10, 11 

5 5AA insertion, mosaic blocks C & D, 
no 20AA repeats 

12, 13, 14, 15 

6 16AA and 5AA insertions, mosaic 
blocks C & D, no 20AA repeats 

16 

7 16AA and 5AA insertions, mosaic 
blocks A & D, no 20AA repeats 

17, 18 

Table 4.2: NanA amino acid allele groups 

NanA allele groups determined by presence or absenc e of 7 diversity markers present in 
NanA protein. Alleles present in each group also in cluded. 
 

 

Figure 4.1: Diagram of NanA diversity 

Schematic showing regions of diversity present in N anA protein alleles . Three main regions 
of diversity were identified, in blue, along with t wo insertion regions, in green, and one 
repeat region in red. Regions of diversity I-III co rrespond to previously identified mosaic 
blocks A, C and D (King et al., 2005).  



   

          

Amino acid position
7 14 71 85 93 134 163 166 176 179 180 186 188 189 193 194 199 200

Strain Serotype ST Allele Group R N E  ---- K G K A A K D A Y N T L S D
D39 2 125 1 1

05_1308 19A 199 2 2 I G
TIGR4 4 205 3 3 I

SP6-BS73 6 460 4 4 I
SP11-BS70 11 62 5 4 I
SP14-BS69 14 124 6 4 I D

G54 19F 63 7 4 I D
INV104B 1 227 8 4 I

SP18-BS74 6 n/a 9 4 I
Spain 23F-1 23F 81 10 4 I
SP9-BS68 9 1269 11 4 I N S R D E
06_1011 14 9 12 5 I

SP23-BS72 23 37 13 5 I
05_2426 19A 1201 14 5 I

A66.1 Xen 3 180 15 5 I G
H060160064 19A 199 16 6 I G INS

06_2715 6A 65 17 7 Q I D INS A S R D E N S L D L I A N
H043640049 6A 65 18 7 Q I D INS S R D E N S L D L I A N



   

          

Amino acid position
202 206 207 209 216 229 232 236 253 265 266 267 269 275 277 286 293 297

Strain Serotype ST Allele Group K N N N K K A K R T H V I A N I N T
D39 2 125 1 1

05_1308 19A 199 2 2
TIGR4 4 205 3 3

SP6-BS73 6 460 4 4
SP11-BS70 11 62 5 4 N K
SP14-BS69 14 124 6 4 N K

G54 19F 63 7 4 N K
INV104B 1 227 8 4 N K

SP18-BS74 6 n/a 9 4 G P K
Spain 23F-1 23F 81 10 4 G P K
SP9-BS68 9 1269 11 4
06_1011 14 9 12 5 Q G K

SP23-BS72 23 37 13 5 N K
05_2426 19A 1201 14 5 N K

A66.1 Xen 3 180 15 5
H060160064 19A 199 16 6 Q G K

06_2715 6A 65 17 7 E D K T R Q H K N Q A L G K V D S
H043640049 6A 65 18 7 E D K T R Q H K N Q A L G K V D S



   

          

Amino acid position
303 309 311 322 323 324 327 329 332 334 336 337 392 393 395 397 404 406

Strain Serotype ST Allele Group K K S A L T T I S R G K D R T T K S
D39 2 125 1 1

05_1308 19A 199 2 2 T
TIGR4 4 205 3 3 N

SP6-BS73 6 460 4 4
SP11-BS70 11 62 5 4
SP14-BS69 14 124 6 4

G54 19F 63 7 4
INV104B 1 227 8 4 N

SP18-BS74 6 n/a 9 4 V
Spain 23F-1 23F 81 10 4 V F
SP9-BS68 9 1269 11 4 N
06_1011 14 9 12 5 V K V S E K

SP23-BS72 23 37 13 5 K V S E K
05_2426 19A 1201 14 5 V K V S E K

A66.1 Xen 3 180 15 5 N K V S E K
H060160064 19A 199 16 6 V K V S E K

06_2715 6A 65 17 7 T E G K I S E V G M N
H043640049 6A 65 18 7 T E G K I S E V G M N



   

          

Amino acid position
409 410 411 414 425 440 441 442 446 447 448 449 451 454 455 457 458 460

Strain Serotype ST Allele Group S I G V E K G I S S Q K E K K D G T
D39 2 125 1 1

05_1308 19A 199 2 2 E
TIGR4 4 205 3 3

SP6-BS73 6 460 4 4 E
SP11-BS70 11 62 5 4 E
SP14-BS69 14 124 6 4 E

G54 19F 63 7 4 E I
INV104B 1 227 8 4

SP18-BS74 6 n/a 9 4
Spain 23F-1 23F 81 10 4
SP9-BS68 9 1269 11 4
06_1011 14 9 12 5 A A P L T R A V P K T P K E G D

SP23-BS72 23 37 13 5 A A P L T R A V P K T P K E G D
05_2426 19A 1201 14 5 A A P L T R A V P K T P K E G D

A66.1 Xen 3 180 15 5 A A P L T R A V P K T P K E G D
H060160064 19A 199 16 6 A A P L T R A V P K T P K E G D

06_2715 6A 65 17 7 E
H043640049 6A 65 18 7 E



   

          

Amino acid position
466 467 470 471 472 475 480 483 484 485 486 487 488 496 498 499 501 503

Strain Serotype ST Allele Group R E K G A I T T P D G K A D V K A S
D39 2 125 1 1

05_1308 19A 199 2 2 E
TIGR4 4 205 3 3

SP6-BS73 6 460 4 4 E
SP11-BS70 11 62 5 4 E
SP14-BS69 14 124 6 4 E

G54 19F 63 7 4 E
INV104B 1 227 8 4

SP18-BS74 6 n/a 9 4
Spain 23F-1 23F 81 10 4
SP9-BS68 9 1269 11 4
06_1011 14 9 12 5 K Q S H V E N A Q N Q K N T E G R

SP23-BS72 23 37 13 5 K Q S H V E N A Q N Q K N T E G R
05_2426 19A 1201 14 5 K Q S H V E N A Q N Q K N T E G R

A66.1 Xen 3 180 15 5 K Q S H V E N A Q N Q K N T E G R
H060160064 19A 199 16 6 K Q S H V E N A Q N Q K N T E G R

06_2715 6A 65 17 7
H043640049 6A 65 18 7



   

          

Amino acid position
507 512 513 515 521 522 523 524 525 526 530 532 533 552 557 558 559 560

Strain Serotype ST Allele Group D N Q L T T N K T S I K D Q M V K A
D39 2 125 1 1

05_1308 19A 199 2 2 D
TIGR4 4 205 3 3 D

SP6-BS73 6 460 4 4 D
SP11-BS70 11 62 5 4 D
SP14-BS69 14 124 6 4 D

G54 19F 63 7 4 D
INV104B 1 227 8 4

SP18-BS74 6 n/a 9 4 D
Spain 23F-1 23F 81 10 4
SP9-BS68 9 1269 11 4 D
06_1011 14 9 12 5 N Q E I A H S T K N V N T R G L R K

SP23-BS72 23 37 13 5 N Q E I A H S T K N V N T R G L R K
05_2426 19A 1201 14 5 N Q E I A H S T K N V N T R G L R K

A66.1 Xen 3 180 15 5 N Q E I A H S T K N V N T R G L R K
H060160064 19A 199 16 6 N Q E I A H S T K N V N T R G L R K

06_2715 6A 65 17 7 D
H043640049 6A 65 18 7 D



   

          

Amino acid position
568 599 606 641 706 720 787 792 795 800 801 811 837 839 844 850 853 856

Strain Serotype ST Allele Group V N I R E K D D S K V  ---- R M T T S M
D39 2 125 1 1

05_1308 19A 199 2 2 D V
TIGR4 4 205 3 3 D V E N N *

SP6-BS73 6 460 4 4 D V E N INS T L S A K I
SP11-BS70 11 62 5 4 V K N INS T L S A K I
SP14-BS69 14 124 6 4 V N N E F INS T L S A K I

G54 19F 63 7 4 V N INS T L S A K I
INV104B 1 227 8 4 V N E INS T L S A K I

SP18-BS74 6 n/a 9 4 D V K E N INS T L S A K I
Spain 23F-1 23F 81 10 4 V K N E INS T L S A K I
SP9-BS68 9 1269 11 4 V K E INS T L S A K I
06_1011 14 9 12 5 T V E INS T L S A K I

SP23-BS72 23 37 13 5 T V E INS T L S A K I
05_2426 19A 1201 14 5 T V E INS T L S A K I

A66.1 Xen 3 180 15 5 T V K INS T L S A K I
H060160064 19A 199 16 6 T D V N INS T L S A K I

06_2715 6A 65 17 7 V E N INS T L S A K I
H043640049 6A 65 18 7 V E N INS T L S A K I



   

          

Amino acid position
859 860 861 863 865 867 877 878 881 882 883 884 885 887 891 898 912 967 1020

Strain Serotype ST Allele Group K V T L E A S V T K L S N M E 3 G T L
D39 2 125 1 1 3

05_1308 19A 199 2 2 2
TIGR4 4 205 3 3  ----

SP6-BS73 6 460 4 4 E I I I K S N L A R V P G V K 0
SP11-BS70 11 62 5 4 E I I I K S N L A R V P G V K 0 I
SP14-BS69 14 124 6 4 E I I I K S N L A R V P G V K 0

G54 19F 63 7 4 E I I I K S N L A R V P G V K 0
INV104B 1 227 8 4 E I I I K S N L A R V P G V K 0

SP18-BS74 6 n/a 9 4 E I I I K S N L A R V P G V K 0
Spain 23F-1 23F 81 10 4 E I I I K S N L A R V P G V K 0
SP9-BS68 9 1269 11 4 E I I I K S N L A R V P G V K 0
06_1011 14 9 12 5 E I I I K S N L A R V P G V K 0

SP23-BS72 23 37 13 5 E I I I K S N L A R V P G V K 0
05_2426 19A 1201 14 5 E I I I K S N L A R V P G V K 0

A66.1 Xen 3 180 15 5 I I I K S N L A R V P G V K 0 R
H060160064 19A 199 16 6 E I I I K S N L A R V P G V K 0 I

06_2715 6A 65 17 7 E I I I K S N L A R V P G V K 0 P
H043640049 6A 65 18 7 E I I I K S N L A R V P G V K 0 P  

Figure 4.2: Mutations in NanA amino acid alleles 

Mutations present in 18 amino acid alleles of NanA discovered in diversity screen. Numbers in row 1 re present amino acid numbers in wild-type allele 1, 
with row 2 showing amino acids present at these pos itions in the wild-type genes. Mutated amino acids are shown below these in their respective alleles. 
STs noted as n/a were undefined. Abbreviation INS i ndicated region of insertion. At amino acid positio n 898, the number represents the number of 20AA 
repeats present in the allele.



Chapter 4  Neuraminidase A diversity  

139 
  

 

4.3 NanA alleles mapped onto structural model 

The structure of a NanA fragment (AA318-792) from TIGR4 (allele 3) was solved 

by collaborators (Drs. Heinz Gut and Martin Walsh, MRC France, Grenoble, 

France). This represented the neuraminidase enzymatic 6-bladed β-propeller, 

circled in red, as well as an insertion region of unknown origin, circled in green 

(Figure 4.3). This fragment contained the enzymatically active part of the 

protein, and allowed the mapping of mutations present in discovered NanA 

protein alleles onto a structural model. Results gave insight into the positions of 

mutations on the NanA structure, allowing predictions regarding mutations which 

may affect the activity of the enzyme. The mutations present in alleles 1-18 

were mapped onto the structural model using PyMol software (DeLano Scienfitic, 

USA), and results can be found in Figure 4.4. Mutations were in comparison to 

D39 and not TIGR4, due to the frameshift mutation present later in the gene. As 

the solved region only represents amino acids 318-792, the mutations outside 

this region were not mapped.  

 

Figure 4.3: Model of NanA crystal structure 

NanA protein fragment structure model, with enzymat ic 6-bladed β-propeller circled in red 
and insertion region circled in green.  
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Figure 4.4: NanA mutations mapped onto crystal stru cture 

NanA mutations mapped onto structural model of enzy matic region of the protein (318-792). 
Regions highlighted in red represent amino acid pos itions that are altered in a particular 
allele compared to D39. Circled in green is amino a cid position 641, circled in blue is the 
end of mosaic block A, circled in yellow is the dis tinct variant of mosaic block C, the 
inserted region.   
 

Results showed that a variety of point mutations were present within this region 

(Figure 4.4). In particular, a mutation discovered at amino acid 641 was 

hypothesised to affect the activity of the enzyme due to proximity to the 

entrance of the active β-propeller potentially affecting substrate recognition 

(Figure 4.4, circled in green). Mutation at this amino acid position occurred in 

8/18 NanA alleles, where an arginine residue was substituted with either a lysine 

or glutamic acid residue. A small section of mosaic block A was present at the 

start of the fragment in 2/18 alleles, circled in blue in Figure 4.4. Interestingly, 

mosaic block C mapped to the region inserted into the β-propeller, and is circled 

in yellow in 5/18 alleles in Figure 4.4. Although point mutations existed in this 

region in some alleles, there were two distinct variants of this region present. 

These two variants varied markedly from each other, sharing only 57% sequence 

identity. The mosaic C block variant region was BLASTed against the nucleotide 



Chapter 4  Neuraminidase A diversity  

  142  

database (http://blast.ncbi.nlm.nih.gov/Blast) to discover sequences related to 

this variant of unknown origin, as previous work had failed to determine 

homologues to this sequence (King et al., 2005). The version of the region not 

present in the wild-type allele was found to share most sequence identity (66%) 

with a sialidase gene from S. agalactiae. 

In order to determine the effect of this stark difference on electrostatic 

potential of this region, a homology model was constructed.  The model, 

constructed using PyMol software (DeLano Scientific, USA), compared alleles 1 

and 16, as each possessed a different variant of this region. The colours in the 

diagram represented electrostatic potentials, so regions sharing red colour had 

similar negative charges, and regions sharing blue colours shared positive 

charge. Comparison of electrostatic potentials of insert regions of alleles 1 and 

16 can be seen in Figure 4.5A and B, with 90º right rotations of the respective 

regions in Figure 4.5C and D. Results showed that major differences in 

electrostatic potential, viewed as colour differences, existed between the two 

variants of mosaic block C, the inserted region (circled in green). Furthermore, 

Figure 4.5 showed that the structural shape of the region was significantly 

altered by the amino acid differences observed between these variants. 
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Figure 4.5: Homology model of NanA insertion region  

Homology model of region of unknown function insert ed in enzymatic β–propeller of NanA,  
showing shape and electrostatic potential of two di stinct variants of the region inserted into 
the NanA β-propeller. Figure 4.5A represents the region in al lele 1, with the same model at 
90º rotation to the right in Figure 4.5C. Similarly , Figure 4.5B represents the region in allele 
16, with the same model at 90º rotation to the righ t in Figure 4.5D. 
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4.4 NanA activity of purified NanA active fragments  of 

different sizes 

The NanA protein possesses a lectin-binding domain located before the enzyme 

region in the amino acid sequence. In order to assess the effect of the lectin-

binding domain at the start of the NanA protein on overall neuraminidase 

activity, the activity of the NanA allele 3 purified fragment (AA318-792) was 

compared to a larger fragment of the same allele (AA65-792, created by Dr. 

Heinz Gut), which included the lectin-binding domain of the NanA protein. The 

plot from the neuraminidase assay (Figure 4.6) was used to calculate specific 

activity for the two enzyme fragments. To adjust for the different molecular 

weights, concentrations were calculated in mM. NanA 318-792 had specific 

activity of 3.43x102 enzymatic units/mM (EU/mM), whilst NanA 65-792 had 

specific activity of 2.47x102 EU/mM. The similarity of these results implied that 

the lectin-binding domain of the NanA protein had no effect on neuraminidase 

activity. Furthermore, this result showed that identical fragments of region 318-

792 purified from further NanA alleles should have activities comparable to their 

full-length proteins and allow comparison between activity of NanA alleles.  
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Figure 4.6: Effect of lectin domain on NanA activit y 

NanA activity curves of 2 purified fragments of dif ferent sizes, one with the lectin domain, 
one without. The two fragments represent NanA AA318 -792 (red) and NanA AA65-792 (blue). 
Specific enzymatic activity was calculated from plo ts, in enzymatic units/mM. 
 

4.5 Studies of purified fragments of NanA alleles 

4.5.1 Cloning, expression and purification 

NanA alleles 12, 16 and 18 were chosen for cloning, expression and purification 

of the enzymatic fragment (AA318-792) in order to compare activity directly to 

wild-type TIGR4 allele 3 activity. The alleles purified were from isolates 

H053940080, 1427 and H043640049 respectively. These alleles were selected due 

to major amino acid differences present in comparison to the wild-type protein. 

Allele 12 possessed the highly divergent variant of the mosaic block C, as well as 

a mutation of residue R641E, and A322V and I606V mutations. Allele 16 had the 

variant of the mosaic block C, as well as A322V, N599D, I606V and D792N 

mutations, but lacked the R641E mutation. Allele 18 had the last 8 mutations 

from mosaic block A as well as K455E, N512D I606V, D787E and D792N mutations. 

Comparison of the activities of these alleles should allow determination of the 

effect of the variant mosaic block C and block A regions and the R641E mutation 

on NanA activity. 

Protein fragments were cloned and expressed in both B834 and Rosetta 

expressing cell lines. Crude lysates of clones were run on SDS-PAGE gel after 
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small-scale overnight expression to confirm successful production of NanA 

protein fragment. Results showed that whilst Rosetta cells produced a large 

band at the correct size (55kDa, circled in red), no band was observed with B834 

cells (Figure 4.7). Rosetta cells were therefore used for purification of NanA 

fragments.  

 

Figure 4.7: Expression of NanA fragments 

SDS-PAGE gel of crude lysates from NanA-expressing clones. Gel layout: lane 1 – SeeBlue 
+2 prestained marker; lane 2 – NanA allele 12 in B8 34; lane 3 – NanA allele 16 in B834; lane 4 
– NanA allele 18 in B834; Lane 5 – blank; lane 6 – NanA allele 12 in Rosetta; lane 7 – NanA 
allele 16 in Rosetta; lane 8 – NanA allele 18 in Ro setta; lane 9 – SeeBlue +2 prestained 
marker. Expressed NanA fragment circled in red. 
 

Samples from all stages of purification were collected and tested for presence 

and purity of NanA fragment by SDS-PAGE. Results of purification of allele 12 

show that C3 cleavage and gel filtration steps were required to produce purified 

NanA at a concentration of 3.06mg/ml (Figure 4.8). In comparison, only C3 

cleavage was required to purify NanA allele 16 at a concentration of 16.42mg/ml 

(Figure 4.9). C3 cleavage and gel filtration steps were required to produce 

purified NanA allele 18 at a concentration of 2.95mg/ml (Figure 4.10).   
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Figure 4.8: NanA allele 12 fragment 

Purification of NanA allele 12 fragment AA318-792. SDS-PAGE gels of samples collected 
during purification. Gel A shows samples from initi al column purification and C3 cleavage. 
Gel B shows fractions 34-37 collected from gel filt ration. Gel A layout: Lane 1 – SeeBlue +2 
prestained marker; lane 2 – crude lysate; lane 3 – spin 1 supernatant; lane 4 – spin 1 pellet; 
lane 5 – spin 2 supernatant; lane 6 – spin 2 pellet ; lane 7 – column flow-through; lane 8 – 
column elution fraction; lane 9 – C3 cleaved flow-t hrough; lane 10 – C3-cleaved elution 
fraction. Gel B Layout: lane 1 - SeeBlue +2 prestai ned marker; lane 2 – fraction 34; lane 3 – 
fraction 35; lane 4 – fraction 36; lane 5 – fractio n 37. 
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Figure 4.9: NanA allele 16 fragment 

Purification of NanA allele 16 fragment AA318-792. SDS-PAGE gels of samples collected 
during purification. Gel A shows samples from initi al column purification. Gel B shows 
samples from second column purification after C3 pr otease cleavage. Gel A layout: Lane 1 – 
SeeBlue +2 prestained marker; lane 2 – crude lysate ; lane 3 – spin 1 supernatant; lane 4 – 
spin 1 pellet; lane 5 – spin 2 supernatant; lane 6 – spin 2 pellet; lane 7 – column flow-
through; lane 8 – column elution fraction; lane 9 –  SeeBlue +2 prestained marker. Gel B 
layout: lane 1 – SeeBlue +2 prestained marker; lane  2 – as gel A, lane 7; lane 3 – as gel A, 
lane 8; lane 4 – blank; lane 5 – column elution fra ction; lane 6 – column flow-through – 
shows purified NanA fragment.  
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Figure 4.10: NanA allele 18 fragment 

Purification of NanA allele 18 fragment AA318-792. SDS-PAGE gels of samples collected 
during purification. Gel A shows samples from initi al column purification. Gel B shows 
samples from second column purification after C3 pr otease cleavage. Gel C shows fractions 
36-40 collected after gel filtration. Gel A layout:  Lane 1 – SeeBlue +2 prestained marker; lane 
2 – crude lysate; lane 3 – spin 1 supernatant; lane  4 – spin 1 pellet; lane 5 – spin 2 
supernatant; lane 6 – spin 2 pellet; lane 7 – colum n flow-through; lane 8 – blank; lane 9 – 
column elution fraction; lane 10 – blank. Gel B lay out: lane 1 – SeeBlue +2 prestained 
marker; lane 2 – as gel A, lane 7; lane 3 – as gel A, lane 9; lane 4 – blank; lane 5 – column 
elution fraction; lane 6 – column flow-through – sh ows NanA fragment. Gel C layout: lane 1 
– SeeBlue +2 prestained marker; lane 2 – fraction 3 6; lane 3 – fraction 37; lane 4 – fraction 
38; lane 5 – fraction 39; lane 6 – fraction 40; lan e 7 – blank.  
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4.5.2 Neuraminidase activity of purified NanA fragments 

The neuraminidase activity of the purified NanA allele fragments was measured 

using the neuraminidase assay, and compared to the wild-type TIGR4 purified 

fragment by creating plots of activity (Figure 4.11). Specific activities were 

calculated from the plots, and results showed that alleles had activities varying 

from 5.29x103 to 4.03x104 enzymatic units/mg (Table 4.3). The most active NanA 

allele was allele 18, which showed activity 7.62-fold higher than TIGR4. 

Fragments of alleles 12, 16 and 18 all had activity higher than the TIGR4 allele 3 

fragment, and therefore differences were observed in NanA activity between 

alleles. 

 

Figure 4.11: NanA activity plots of purified fragme nts  

Plots represent concentration of purified NanA alle le fragments against percentage of pNP 
released during assay at t=30 min. Specific activit y of enzyme fragments were calculated by 
taking the reciprocal of the concentration required  to release 50% of pNP from the assay. 
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Strain NanA allele Allele group Specific activity Ratio 

TIGR4 3 3 5.29E+03 1 
H053940080 12 5 1.35E+04 2.55 

1427 16 6 6.40E+03 1.21 
H043640049 18 7 4.03E+04 7.62 

Table 4.3: Specific activity of NanA alleles 

Specific activities of NanA allele fragments calcul ated in pNP neuraminidase assay, and 
measured in enzymatic units/mg purified protein. Ra tios show the fold-increase in activity 
compared to the TIGR4 purified fragment.   
 

4.5.3 Recognition of NanA alleles by polyclonal antibodies 

One method of assessing the potential cross-serotype protection afforded by a 

protein vaccine targeting NanA is to assess the recognition of different NanA 

alleles by polyclonal antibodies raised against wild-type NanA allele 1. In order 

to do this, a Western blot was carried out with the 4 purified NanA fragments, 

representing alleles 3, 13, 16 and 18, and probed with α-NanA polyclonal 

antibodies raised in rabbit against NanA allele 1. Results show that all NanA 

alleles are recognised by these polyclonal antibodies (Figure 4.12). This result 

has important implications as it shows that the high levels of diversity observed 

in the NanA protein may not act as a barrier for cross-serotype protection of a 

vaccine targeting this virulence factor. An interesting observation is that alleles 

12 and 16 appear to have increase elctrophoretic mobility compared to alleles 3 

and 18. Interestingly, both of these alleles possess the variant version of mosaic 

block C, and this divergent sequence may result in a difference in 

electrophoretic mobility similar to that seen in Ply alleles 3, 5 and 10.  
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Figure 4.12: Recognition of NanA proteins by polycl onal antibodies 

SDS-PAGE (A) and Western blot (B) of 4 purified Nan A allele fragments. In both the gel and 
the membrane, identity of lanes are as follows: lan e 1 – SeeBlue +2 protein marker; lane 2 – 
NanA allele 3; lane 3 – NanA allele 12; lane 4 – Na nA allele 16; lane 5 – NanA allele 18; lane 6 
- SeeBlue +2 protein marker. 
 

4.6 Exploring the importance of NanA in progression  of 

p-HUS 

4.6.1 Comparison of NanA protein alleles in p-HUS isolates and 

matched controls 

The pneumococcus is increasing as a cause of HUS, associated with high levels of 

mortality (Fitzpatrick et al., 1993). Neuraminidase activity has been implicated 

as important in progression of p-HUS (Klein et al., 1977; Seger et al., 1980). The 

NanA protein alleles from 9 p-HUS isolates (Waters et al., 2007) and 6 controls, 

sharing serotype and ST but not causing p-HUS were aligned and compared. This 

was to determine whether a particular NanA allele was associated with isolates 

able to cause p-HUS. Results show that NanA alleleswere generally associated 

with STs, and therefore no particular NanA allele was shared by the isolates 

causing p-HUS (Table 4.5). 
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Strain Serotype ST Disease NanA allele 

02_1198 3 180 Neonatal death 1 
H050600025 3 180 p-HUS 1 

05_1308 19A 199 Pneumonia 2 
05_2084 19A 199 Pneumonia 2 

H051740086 19A 199 p-HUS 2 
H052300328 19A 199 p-HUS 2 

06_1011 14 9 Pneumonia 12 

H053940080 14 9 p-HUS 12 
H053940083 14 9 p-HUS 12 

05_2426 19A 1201 Pneumonia 14 
H050940049 19A 1201 p-HUS 14 
H060160064 19A 199 p-HUS 16 

H040400333 19A 199 p-HUS 16 
06_2715 6A 65 Pneumonia 17 

H043640049 6A 65 p-HUS 18 

Table 4.4: NanA identitiy of p-HUS isolates 

NanA alleles assigned to p-HUS isolates and matched  controls. For full alignment of NanA 
alleles, see Chapter 4. Clinical records showed tha t control isolates did not cause p-HUS.  
 

4.6.2 Comparison of NanA activity in p-HUS isolates and matched 

controls 

Since no particular NanA allele was associated with isolates causing p-HUS, it 

was hypothesised that p-HUS isolates may display higher levels of neuraminidase 

activity as a result of over-expression of the protein. Overall neuraminidase 

activity was measured in p-HUS isolates and matched controls. Isolates were 

either grown un-induced or induced by the substrate N-acetlyneuraminic acid 

(Neu5ac). Results were separated into secreted and cell-wall associated 

neuraminidase activity, and showed that neuraminidase activity was consistently 

higher in the secreted fraction, implying that more NanA is secreted by the 

pneumococcus than is attached to the cell wall. A knock-out of NanA was 

included in the assay to determine the neuraminidase activity of related 

enzymes NanB and NanC in the assay, and results showed that knocking out NanA 

had a significant decrease on overall neuraminidase activity (p=0.0022), and 

therefore these enzymes have minimal activity in comparison to NanA in this 

assay. When looking at individual isolates, although differences were present in 

neuraminidase activity, these did not correlate with p-HUS causing ability, 

whether induced or un-induced (Figure 4.13). These results also showed that 

after induction of neuraminidase activity during growth, the amount of NanA 
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secreted increased significantly (p<0.0001), whilst the neuraminidase attached 

to the cell wall showed a smaller increase, which was still significant (p=0.0013). 

When comparing these expression differences, the increase in secreted NanA 

was over 12-fold larger than the increase in cell wall-associated NanA, 

representing a statistically significant difference (p=0.0019). However, when 

overall neuraminidase activity was calculated, there was no significant 

difference in overall activity between p-HUS isolates and controls when induced 

(p=0.7756) or un-induced (p=0.9546). Taken together, these results show that 

there is no over-expression of NanA enzyme in p-HUS isolates, and that these 

isolates do not have an increased ability to be induced by presence of a 

substrate.  
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Figure 4.13: Neuraminidase activity of p-HUS isolat es 

Results of neuraminidase assay of isolates from p-H US study, either un-induced (A) or 
induced with the substrate Neu5ac (B). 15 Test isol ates were included in the assay as well 
as positive control D39, and NanA knock-out strain D39 ∆NanA. Results were separated into 
neuraminidase activity from cell-wall associated en zyme (green) or secreted enzyme (red). 
Results are calculated from triplicate repeats in e ach isolate.   
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4.6.3 The effect of NanA on the cytotoxicity of Ply 

NanA has been shown to cleave sialic acid from a variety of host cells, including 

erythrocytes. It was hypothesised that the action of NanA may increase the 

susceptibility of erythrocytes to the pneumococcal toxin Ply, possibly resulting in 

the haemolytic anaemia observed in p-HUS. However, results showed that there 

was no difference in haemolytic activity of wild-type allele 1 Ply when 

erythrocytes were incubated with PBS, 6.38µg/ml or 63.8µg/ml NanA allele 3 

(Figure 4.14). Therefore, the cleaving of sialic acid from glycolipids on the 

surface of erythrocytes has no effect on the haemolytic activity of the toxin Ply, 

and a synergism between these two virulence factors is not involved in the 

haemolytic anaemia observed in p-HUS patients.  

 

Figure 4.14: Effect of NanA on cytotoxic activity o f Ply  

Plot shows curves of % lysis of erythrocytes by Ply  after pre-incubation of erythrocytes with 
differing concentrations of NanA. 
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4.7 Discussion 

An analysis of diversity present in the NanA gene of S. pneumoniae revealed high 

levels of sequence diversity. Mutations are present at 142 amino acid positions, 

representing 13.7% of the amino acids in the wild type protein. This was a 

similar level of diversity as found in a previous study of the nanA gene (King et 

al., 2005). Furthermore, diversity was increased by the presence of regions of 

insertion and repeat across the protein. In comparison to Ply, where 3.3% 

sequence diversity was present at the amino acid level, this represents a 

significantly higher level of variation. This was expected due to the surface-

exposed nature of the NanA protein (Camara et al., 1994), presumably resulting 

in selective pressure exerted by exposure to the host immune system. Despite 

the high levels of diversity present, all residues previously identified as essential 

(Camara et al., 1994; Chong et al., 1992; Yesilkaya et al., 2006) were fully 

conserved across all protein alleles. However, the high levels of variation 

present within the NanA protein raise questions regarding use of this protein in a 

potential vaccine, as protection elicited by a vaccine targeting one NanA allele 

may not kill pneumococci possessing other alleles. Despite this, previous studies 

have shown that immunization with NanA protects against nasopharyngeal 

colonisation (Tong et al., 2005) and otitis media (Long et al., 2004) in a 

chinchilla model. Crucially, however, animals in the study were challenged with 

the same strains of S. pneumoniae from which the NanA was purified for 

immunization. Therefore, these results do not take into account the effect the 

diversity present in the NanA protein would have on immunogenicity and 

coverage of a NanA-based protein vaccine. One method for evaluating the 

potential protection elicited to NanA alleles is to determine whether polyclonal 

antibodies rasied against one NanA allele are capable of recognising other NanA 

alleles possesing significant diversity. This would determine whether antibodies 

raised by a vaccine targeting one particular NanA allele would recognise other 

NanA alleles, and thus potentially afford cross-serotype protection. The results 

of this study show for the first time that polyclonal antibodies raised against 

NanA allele 1 are capable of recognising the purified fragments of 4 significantly 

divergent alleles (Figure 4.12). This result shows that the high levels of diversity 

observed within the NanA protein should not act as a barrier to the goal of cross-

serotype protection when targeting this virulence factor with a protein-based 

pneumococcal vaccine.  
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The structure of the enzymatic 6-barrel β-propeller of NanA (Figure 4.3), solved 

by collaborators, allowed further study into the positioning of mosaic blocks and 

point mutations on the protein, and effects this may have on the activity of the 

NanA enzyme. Mutations were compared to D39 NanA despite the purified 

fragment being from TIGR4. This was to be concurrent with the full allele 

mutation analysis, as the NanA from TIGR4 possesses a frameshift inducing a stop 

mutation at AA801. Mapping of the mutations present in each protein allele onto 

the structural model showed that a number of mutations were positioned close 

to the active site (Figure 4.4). Of most interest was a mutation at amino acid 

position 641, which mapped to the entrance of the active site of the enzyme. In 

comparison to wild-type, alleles possessed substitutions of an arginine residue 

with either lysine or glutamic acid. Whilst arginine and lysine were both 

positively charged, glutamic acid displayed negative charge, and may therefore 

be more likely to have an effect on substrate binding. However, alleles with this 

mutation showed no reduction in neuraminidase activity, implying that the 

mutations at this position do not affect the ability of the enzyme to bind to the 

substrate (Table 4.3).  

A novel region inserted into the enzymatic β-propeller was identified (Figure 

4.3). Interestingly, mosaic block C mapped to this region, and two distinct 

variants were present in this region. This inserted region has an unknown 

function, and was found to be absent from Influenza neuraminidase, showing it 

is not a region conserved across all neuraminidase proteins. Therefore, it is 

unlikely that this region affects the neuraminidase activity of the protein, a 

hypothesis supported by the finding that alleles possessing either variant in this 

region show little difference in activity (Table 4.3). However, it is likely that this 

region plays some role in pneumococcal pathogenesis, as it appears present in 

all alleles of this virulence factor (Figure 4.4). Preliminary studies by 

collaborators (Prof. Nizet, La Jolla, California) using knock-outs of this region 

have identified a potential role for this region in allowing the pneumococcus to 

cross the blood-brain barrier during the progression of meningitis. Intriguingly, 

the shape and electrostatic potential of this region were found to differ 

markedly between variants (Figure 4.5). These observed physical differences, 

along with the low levels of sequence identity (57%) between the variants, imply 

that they may play different roles. The observation that the divergent variant in 
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this region shared most sequence identity (66%) with a sialidase gene from S. 

agalactiae implies that the exchange of genetic information between these 

species may occur at some level. Furthermore, a related domain, attached to 

the β-propeller in a similar way, is found in the 3D-structure of Macrobdella 

decora NanL and is also predicted to be present in S. pneumoniae NanB, 

Clostridium perfringens NanI (Newstead et al., 2008) and Clostridium tertium 

NanH proteins (Luo et al., 1998). 

The NanA protein possesses a candidate lectin-binding domain at its N-terminus. 

The role of this domain is thought to be to bind to host lectins, allowing 

cleavage of terminal sialic acids to occur via neuraminidase activity. There was 

no difference in neuraminidase activity when comparing TIGR4 NanA protein 

fragment possessing the lectin-binding and neuraminidase domains (AA65-792) 

and one possessing only the neuraminidase domain (AA318-792, Figure 4.6). This 

showed that the lectin-binding domain does not affect the neuraminidase 

activity of the NanA protein in this background.  

The TIGR4 purified NanA fragment (AA318-792) differed from wild-type D39 

NanA at 6 amino acid positions (K337N, N512D, N599D, I606V, D787E, D792N). 

None of these mutations were found to be near the neuraminidase active site 

(Figure 4.4-3), and it was therefore likely that this fragment purified from TIGR4 

produced neuraminidase activity comparable to wild-type D39. When comparing 

activity of the three purified allele fragments (alleles 12, 16 and 18), it was 

found that alleles 12 and 16 did not differ significantly in activity from TIGR4. 

However, allele 18 was found to have neuraminidase activity >7-fold greater. 

Compared to wild-type, this allele had the last 8 amino acids of mosaic block A, 

as well as K455E, N512D I606V, D787E and D792N mutations. Since 4 of these 

mutations are also present in TIGR4, only the region of mosaic block A or amino 

acid mutation K455E, absent from the other 3 tested alleles, could have an 

affect on the neuraminidase activity of this allele. However, as none of these 

amino acids are positioned near the active site (Figure 4.4-18), there is no 

obvious structural reason for this increased activity.  

Neuraminidase activity has been suggested as important in pathogenesis of p-

HUS (Klein et al., 1977; Seger et al., 1980). This complication of IPD is 

increasing, and has higher mortality levels in comparison to typical, shiga-toxin 
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related HUS (Fitzpatrick et al., 1993). However, very little is known about the 

pathogenesis of this disease and the virulence factors involved. Establishment of 

a concrete role for NanA may improve understanding of this complication, and 

assist in treatment and prevention of this fatal disease. It has been hypothesised 

that neuraminidase activity may play a role by cleaving neuraminic acid from 

host cells and exposing T Antigen (Klein et al., 1977), leading to the symptoms 

of p-HUS. The results presented here showed that no particular NanA allele was 

harboured in isolates causing HUS. Furthermore, there was no significant 

difference in NanA activity between p-HUS isolates and matched controls. 

Furthermore, a knock-out of NanA showed that neither of the related enzymes 

NanB or NanC display significant levels of activity in comparison to NanA. This 

implies that although an active neuraminidase enzyme may be required for 

progression to p-HUS, other genetic factors may play a more significant role in 

allowing particular clones to cause this disease. 

The results from the neuraminidase assay gave a number of further insights into 

pneumococcal NanA. Firstly, in all isolates tested, the majority of neuraminidase 

activity was detected in the supernatant, showing that the pneumococcus 

secretes more NanA into the environment than it attaches to the cell wall 

(Figure 5.13A). Furthermore, growth in the presence of the substrate can induce 

an increase in NanA expression by the bacteria (Figure 5.13B). Upon the 

induction of expression, there is a greater increase in secreted NanA than in cell 

surface-associated enzyme. These results imply that the pneumococcus may 

sense an increase in substrate in the environment and over-express and over-

secrete NanA to compensate for this. This hypothesis makes biological sense 

when relating to the role of NanA, cleaving sialic acid from glycolipids of host 

cells, exposing surface receptors to allow pneumococcal adherence (Tong et al., 

1999). The pneumococcus would therefore benefit from increasing expression 

and secretion of NanA in response to increased substrate concentrations, as it 

would have an increased possibility of exposing host receptors, allowing 

attachment, leading to colonisation and possibly IPD. Finally, the results of the 

assay on the NanA knock-out in a D39 background showed that NanB and NanC 

display very small levels of activity in comparison to NanA, due to a significant 

decrease in activity compared to wild-type. 
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In conclusion, the diversity present in the NanA protein is significantly larger 

than that seen in Ply, with a number of mosaic blocks, insertions and point 

mutations present in 18 protein alleles. However, this level of variation should 

not reduce the potential of NanA as a cross-serotype protein-based vaccine 

candidate, since divergent alleles were recognised by polyclonal antibodies. 

Mapping of mutations uncovered onto the structural model of the NanA 

enzymatic fragment allowed identification of an insertion region, with two 

variants present, relating to mosaic block C. These two variants were found to 

differ significantly in surface shape and electrostatic potential, although the role 

of this insertion remains unknown. Finally, attempting to relate differences in 

NanA to disease showed that there was no difference in sequence or activity of 

NanA between p-HUS isolates and matched controls. This implies that although 

neuraminidase activity may be involved in p-HUS pathogenesis, other bacterial 

factors may play a role, whilst host genetics and environmental factors may also 

be important. 
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5.1 Summary 

The presence of homologues of pneumococcal virulence factors in related VGS 

species has been reported previously. Most notably, homologues of Ply, LytA and 

NanA have been observed in species of S. mitis, S. oralis and S. 

pseudopneumoniae (Balsalobre et al., 2006; King et al., 2005; Neeleman et al., 

2004; Obregon et al., 2002; Whatmore et al., 2000). However, these homologues 

remain poorly characterised, and study into this area will further our 

understanding of the relationships between these species, as well as offering 

insight as to the suitability of pneumococcal virulence factors as vaccine 

candidates. The aim of this study was therefore to further characterise 

homologues of Ply and NanA present in related VGS isolates.  

A new CDC was identified and characterised in a subset of isolates of S. mitis, a 

commensal organism closely related to S. pneumoniae (Facklam, 2002). This 

work was carried out in collaboration with Dr. Johanna Jefferies and Leena 

Nieminen. The toxin was termed mitilysin (Mly). This toxin was shown to be 

genetically distinct from Ply, and actively secreted by a number of S. mitis 

isolates by an unknown mechanism. Furthermore, another homologue of Ply was 

identified in isolates of recently identified species S. pseudopneumoniae, and 

called pseudopneumolysin (pPly). This toxin was much more closely related to 

Mly than Ply.  

For the first time, a NanA homologue was identified in S. mitis and S. 

pseudopneumoniae isolates. This enzyme was very closely related between all 

three species, in contrast to homologues of Ply. This may imply that it plays a 

more significant role in the commensal VGS species, which is supported by the 

defined role of NanA and not Ply in colonization. The presence of these 

homologues in related species, paired with the pneumococcus’ ability to acquire 

altered genes by horizontal gene transfer (Chi et al., 2007; King et al., 2005; 

Poulsen et al., 1998; Sibold et al., 1994) gives rise to the possibility of evasion of 

a pneumococcal vaccine targeting these virulence factors. This may occur as 

selective pressure induced by the pneumococcal vaccine gives an evolutionary 

advantage to pneumococci with altered genes and thus evading the scope of a 

vaccine. Therefore, these findings should be considered when selecting vaccine 

candidates for future protein-based pneumococcal vaccines. 
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5.2 Ply homologues in related VGS species 

5.2.1 Identification and characterization of a new CDC, Mly 

Homologues of a number of pneumococcal genes in related VGS species have 

been discovered previously (King et al., 2005; Neeleman et al., 2004; Poulsen et 

al., 1998; Sibold et al., 1994; Whatmore et al., 2000), although few are well 

characterized. Identification and characterization of homologues is important to 

develop understanding of the relationships between these species, and also in 

the context of pneumococcal vaccine candidates, such as Ply, with homologues 

present in the commensal streptococcal species. A novel CDC, given the name 

Mly was discovered, in collaboration with colleagues, in a subset of S. mitis 

isolates. This toxin was shown to be fully haemolytic, and secreted 

extracellularly by some isolates, by an unknown mechanism. It was also 

demonstrated that a number of alleles of the toxin were not recognised by the 

monoclonal antibody PLY-7, and based on ELISA results, the presence of a 

further haemolytic toxin in a number of isolates was suggested.  

The sequence of 7 mly genes was determined by PCR and sequencing as 

described for ply. Results show that across the 7 genes, mutations in the DNA 

sequence occur at 98 positions when compared to wild-type ply DNA allele 1. 

This number is much higher than in the Ply screen, where 37 mutated base 

positions were discovered from a much larger sample set, and gives nucleotide 

sequence diversity of 6.9% compared to D39 (See Appendix I). Alignment of 

translated sequences resulted in mutations at 13 amino acid positions, giving 7 

Mly alleles, with each isolate possessing a unique allele (Figure 5.1). Of the 13 

amino acid mutations present, two were also present in the Ply alleles, namely 

N14D and K224R, with a resulting protein sequence diversity of 2.7%. This is 

remarkably low, due to the low numbers in the sample set, and the large 

number of synonymous mutations present in the protein. If a larger sample set of 

S. mitis isolates were studied, it is likely that Mly would display greater 

sequence diversity than Ply.



   

        

Amino acid position
2 14 116 222 224 231 246 378 386 396 398 423 443

Strain Identification Origin Isolation site Mly allele A N E D K E V T H A D V T
R75 I S. mitis UK NPA 1 D R Y
R77 S. mitis UK NPA 2 T D R D

COL15 S. mitis UK Sputum 3 T D R I Y I
990123 S. mitis UK Dental abscess 4 T D G R D A Y S N
QH17 S. mitis UK Blood 5 D K R A Y S N I
R75 II S. mitis UK NPA 6 D R D Y N N
R76 S. mitis UK NPA 7 T D R D Y N I  

Figure 5.1: Mly amino acid alleles 

Amino acid sequences of Mly alleles aligned to Ply allele 1 from D39. Identification of species was do ne by sodA gene sequencing and alignment as 
described. Row 1 represents the amino acid position , whilst row 2 represents the amino acid present in  wild-type Ply allele 1.
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5.2.2 A Ply homologue in S. pseudopneumoniae isolates 

A sample set of 13 isolates of the newly classified species S. pseudopneumoniae 

(Arbique et al., 2004) were supplied by Dr. Ralf Reinert (National Reference 

Centre for streptococci, Aachen, Germany). These isolates have been shown to 

possess genotypic and phenotypic traits of both S. pneumoniae and S. mitis, 

without fitting into the brackets of either species (Arbique et al., 2004). These 

isolates also possessed ply gene homologues (Franken et al. poster presentation, 

Europneumo 7). It was of interest to determine the sequence of the Ply 

homologues present in these isolates, as well as their haemolytic abilities. The 

ply gene was amplified from gDNA using primers 27R and 27S as described. 

Results showed that a ply gene homologue was amplified from all isolates except 

PS866 (Figure 5.2). Interestingly the PCR products differed in size in a number of 

isolates compared to the amplified product from D39 gDNA. Alignment of 3 

sequenced ply homologues (circled in white) from S. pseudopneumoniae isolates 

to Ply allele 1 uncovered mutations at 74 base positions (see Appendix 1). 

Alignment of translated sequences showed these equating to 7 amino acid 

mutations, resulting in 3 unique alleles in these isolates (Figure 5.3). Of the 7 

amino acid mutations present, 2 were shared with both Ply and Mly alleles (N14D 

and K224R), whilst a further 4 were shared only with Mly (A2T, H386Y, D398N, 

V423I). The toxin was termed pPly. Although the pply genes sequenced were 

from isolates with PCR products differing in size from ply, no size difference was 

observed in the gene. The observed size differences were likely to be due to 

differences in flanking DNA, as primers used for PCR amplification were external 

to the ply gene. The pPly proteins in these isolates possessed haemolytic activity 

similar to wild-type Ply (data not shown). 
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Figure 5.2: PCR of ply homologues in S. pseudopneumoniae  

Agarose gel with products of PCR with 27R and S pri mers on S. pseudopneumoniae gDNA, 
viewed under UV light. Circled in white are the iso lates for which the pply gene was 
sequenced. A number of the PCR products differ mark edly in size from the S. pneumoniae 
wild-type control ply from D39. The identity of samples in the lanes was  as follows: 1 – 1Kb+ 
DNA ladder; 2 – D39; 3 - RRR468; 4 – RRR472; 5 – CC UG49455; 6 – RRR474; 7 – RRR473; 8 – 
PW2108; 9 – RRR471; 10 – PW2113; 11 – CCUG48465; 12  – RRR475; 13 – PS866; 14 – A76; 
15 – RKI1158; 16 – negative control (no gDNA). 

Amino acid position
2 14 224 323 386 398 423

Strain pPly allele A N K D H D V
RRR468 1 T D R Y I
RRR471 2 R N
RRR472 3 T D R Y N I  

Figure 5.3: pPly amino acid alleles 

Amino acid sequences of pPly alleles aligned to Ply  allele 1 from D39. Row 1 represents the 
amino acid position, whilst row 2 represents the am ino acid present in wild-type Ply allele 1.  
 

5.2.3 Genetic relationship between ply, mly and pply 

The genetic relatedness of the three CDCs ply, mly and pply was explored using 

MEGA4 software to construct a minimum evolution tree to show the relationships 

between the toxin genes at the DNA level (Figure 5.4). Results showed that 

whilst the ply alleles all cluster together, the mly and pply alleles are part of 

the same branch of the tree. This implied that in terms of genetic relationships, 

the mly and pply genes are more similar to each other than either is to ply. 

When looking solely at the Ply branch of the tree, the isolates were shown to 

cluster by Ply allele, although there was mixed clustering between isolates 

possessing alleles 1 and 2.  
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Figure 5.4: Relatedness of ply gene homologues 

Minimum evolution tree of ply genes and homologues in related streptococcal speci es. Tree 
was drawn using MEGA4 software, and demonstrates th e relatedness of these toxins at the 
DNA level. The units at the bottom of the tree indi cate distance between sequence pairs. 
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5.3 NanA homologues in related VGS species 

5.3.1 NanA alleles present in related VGS isolates 

A screen of 29 VGS isolates resulted in discovery of a nanA homologue gene in a 

number of isolates. A homologue of NanA was discovered for the first time in all 

five S. pseudopneumoniae isolates tested, as well as in five S. mitis isolates. The 

sequence of the nanA gene from four S. pseudopneumoniae and one S. mitis 

isolates allowed translation into protein, and alignment and comparison with the 

NanA alleles discovered in S. pneumoniae. Results showed that whilst high levels 

of variation were present within these alleles, they displayed striking similarities 

with the NanA alleles of S. pneumoniae. From the five sequences, there were 4 

VGS NanA alleles identified. The information on these alleles can be found in 

Figure 4.5. VGS NanA alleles 1-3, present in S. pseudopneumoniae and S. mitis 

isolates, shared 99.7%, 99.6% and 99.4% sequence identity with pneumococcal 

NanA allele 14 respectively, and were aligned to this allele in Figure 4.5. 

However, VGS NanA allele 4, present in 2 S. pseudopneumoniae isolates, shared 

94.9% sequence identity with pneumococcal NanA allele 7, and was aligned to 

this allele. Results showed that all alleles possessed the same diversity features 

as the pneumococcal NanA alleles, with only 5 amino acid mutations present in 

the VGS alleles but absent from the pneumococcal alleles. Furthermore, both 

variants of mosaic block C were present in the related VGS population, whilst 

only one variant of mosaic blocks A and D was present in these isolates. The 5AA 

insertion-duplication was present in all isolates, whilst none possessed the 16AA 

insertion found in several pneumococcal alleles. Therefore, in contrast to Ply, 

there was very little difference between the NanA proteins found in the 

pneumococcus and those found in related species S. mitis and S. 

pseudopneumoniae.   

 

 

 

 



 

       

Amino acid position
VGS Compared to pneumococcal 44 134 253 322 442 460 471 488 599 641 641 721 787 792 990

 NanA allele Species Present in  NanA allele V D K V D I E E N E R K D D E
1 S. pseudopneumoniae R82 E6 14 A
2 S. mitis R83 E2 14 A V K
3 S. pseudopneumoniae R98 A5 14 A D K E N K
4 S. pseudopneumoniae R89 G3, R89 G5 7 M G R T G K N

 

Figure 5.5: Amino acid sequence comparison of NanA homologues  

Amino acid alleles of NanA in species of VGS relate d to S. pneumoniae. Alleles were similar to different pneumococcal Na nA alleles, and were compared 
to their most closely related counterparts. The ami no acids in the 3rd row represent those present in either pneumococcal NanA allele 7 or 14 depending 
on which was used for comparison.
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5.3.2 NanA activity of related VGS species 

The NanA activity of the four S. pseudopneumoniae and one S. mitis isolates was 

measured using the neuraminidase assay as described previously. The results 

showed that whilst all five isolates displayed activity, there were significant 

differences between them (Figure 5.6). Whilst the S. pseudopneumoniae isolates 

R89 G3 and R89 G5 had activities very similar to the S. pneumoniae isolate D39, 

the S. mitis isolate R83 E2 and S. pseudopneumoniae R98 A5 showed reduced 

activity in comparison. Interestingly, almost all of the activity detected in S. 

pseudopneumoniae isolate R82 E6 was in the secreted fraction, a similar 

phenomenon to that observed in TIGR4. However, unlike TIGR4, this isolate did 

not possess the frameshift mutation which resulted in a premature stop codon in 

the protein, and loss of the LPXTG motif.  

             

Figure 5.6: Neuraminidase activity of NanA homologu es 

Neuraminidase activity of cell wall-associated and secreted NanA from related VGS species . 
The activity of the cell wall associated NanA is in  green, whilst the secreted NanA is in red. 
S. pneumoniae isolates D39 and NanA knock-out strai n ∆NanA were included as +ve and –
ve controls respectively. NanA activity was measure d in nM pNP released/mg total cell 
protein/hour. 
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5.3.3 Genetic relationship between pneumococcal and VGS nanA 

alleles 

The genetic relatedness of the nanA alleles from the pneumococcus and related 

VGS species was explored using MEGA4 software to construct a minimum 

evolution tree to show the relationships between the nanA genes at the DNA 

level (Figure 5.7). Results showed that the pneumococcal isolates cluster by 

allele in the tree. However, the nanA sequences from S. mitis and S. 

pseudopneumoniae are not separated from the pneumococcal sequences, and 

are closely linked to their nearest pneumococcal relatives. Therefore, unlike 

ply, no evolutionary distinction between these species was observed when 

looking at the NanA enzyme. However, the greater diversity observed in the 

nanA gene in comparison to ply is reflected in the large separations between 

pneumococcal nanA alleles in the tree. 
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Figure 5.7: Relatedness of pneumococcal nanA gene homologues 

Minimum evolution tree of nanA genes and homologues in related streptococcal speci es. 
Tree was drawn using MEGA4 software, and demonstrat es the relatedness of these 
enzymes at the DNA level. The units at the bottom o f the tree indicate distance between 
sequence pairs.  
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5.4 Discussion 

Although the presence of a ply homologue in S. mitis isolates has been 

documented previously (Neeleman et al., 2004; Whatmore et al., 2000), this 

work has for the first time characterized the toxin and coined the name Mly. mly 

genes display higher levels of sequence variation than ply. This is in agreement 

with published findings which analysed the sequence variation in a ply gene 

fragment from pneumococcal and non-typable, non-pneumococcal isolates, and 

found that non-pneumococcal isolates were much more diverse when the mean 

genetic difference between the two groups was compared (Hanage et al., 2005). 

This result implies that there is less selective pressure for the mly gene to be 

conserved by S. mitis species, possibly due to the mostly commensal nature of 

this species, meaning the toxin is not as essential as in the pathogen S. 

pneumoniae, where it is a virulence factor important in a plethora of diseases as 

discussed in Section 1.6.  

A number of the S. mitis isolates were found to actively secrete Mly, which is in 

contrast to the proposed mechanism of Ply release from S. pneumoniae by 

autolysis, and in agreement with previous findings (Whatmore et al., 2000). A 

previous study found that release of Ply in S. pneumoniae serotype 3 isolate WU2 

was not dependent on autolysin or choline, thus excluding all pneumococcal lytic 

enzymes as mechanisms for release of Ply. The authors conclude that Ply release 

in WU2 is due to a non-type II, non-type III mechanism (Balachandran et al., 

2001), although there is some debate as to whether this isolate may possess a 

bacteriophage, with the lytic activity of this phage accounting for Ply release. 

Therefore, it is possible a similar mechanism to that observed in WU2, be it 

phage-related or not, accounts for secretion of Mly. Furthermore, a number of 

Mly alleles were recognised by the monoclonal antibody PLY-7, which is used 

diagnostically in laboratories (Cima-Cabal et al., 2001). This raises the possibility 

of false positive results when using this antibody. Therefore, when coupled with 

the non-recognition of Ply allele 12 by this antibody, both false positive and 

false negative results are possible. This highlights the need for care to be taken 

when using antibodies either diagnostically or therapeutically to combat 

pneumococcal infection.  
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The discovery of Mly in S. mitis isolates was not unexpected as S. mitis, along 

with S. oralis, was the closest relation to S. pneumoniae, determined by 16S 

rRNA analysis (Facklam, 2002). More recently, a species termed S. 

pseudopneumoniae was identified as distinct from both S. pneumoniae and S. 

mitis, and was shown to be even more closely related to S. pneumoniae (Arbique 

et al., 2004). This work has identified and begun to characterize a further Ply 

homologue in S. pseudopneumoniae isolates, pPly, which was shown to be much 

more closely related to mly than ply in a minimum evolution tree. Indeed whilst 

the variations in the ply gene separated most ply alleles on the tree, the mly 

and pply sequences were mixed together as part of the same branch of the tree. 

This result implies that S. pseudopneumoniae isolates are more closely related 

to S. mitis than to S. pneumoniae, at least in terms of this toxin. This was due to 

the fact that in comparison to ply, both mly and pply share many synonymous 

mutations. This segregation is in agreement with phenotypic traits such as bile 

solubility, lack of capsule and optochin resistance, which all link S. 

pseudopneumoniae to S. mitis (Arbique et al., 2004). However, genotypic tests 

such as sodA sequencing, ply PCR or commercial kits, which generally distinguish 

S. mitis and S. pneumoniae, do not distinguish between S. pseudopneumoniae 

and S. pneumoniae (Arbique et al., 2004). Furthermore, when comparing the 

sequences of nanA gene homologues identified in S. mitis and S. 

pseudopneumoniae isolates to pneumococcal nanA alleles, there was no 

segregation of the isolates into different species in a minimum evolution tree. 

These two results, showing the differences between ply, mly and pply genes, 

and the lack of difference between nanA genes, gives further evidence to the 

argument that a smooth continuum may exist between these species, with 

pneumococcal genes and homologues randomly dispersed in isolates identified as 

S. mitis or S. pseudopneumoniae (Hakenbeck et al., 2001). These results also 

seem to agree with the recent hypothesis that species such as S. mitis and S. 

pseudopneumoniae are in the process evolving towards commensality from a 

pneumococcus-like virulent ancestor, a theory which seems to sit together with 

the idea of a continuum between species, and also allows for the seeming 

random spread of homologues to important pneumococcal virulence factors 

(Kilian et al., 2008). However, this theory is not fully accepted, as it is also 

possible that evolution is occurring in the other direction, with acquisition of 

virulence genes allowing the pneumococcus to evolve away from a commensal 
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state. The results found here could in theory also support this hypothesis, and 

therefore further study is required to untangle the evolutionary relationships 

between these species. 

This study also represents the first demonstration of a NanA homologue in a 

subset of S. mitis and S. pseudopneumoniae isolates. Sialidase genes have 

previously been found in other related VGS species however, in particular in S. 

oralis, a close relation of the pneumococcus (Byers et al., 2000; King et al., 

2005). The sequences of the protein alleles discovered here were very similar to 

pneumococcal NanA, which is in contrast to the finding for Ply homologues, 

where many synonymous and a number of non-synonymous mutations were 

present. This may indicate that NanA is of more importance to these commensal 

species than Mly. The presence of this pneumococcal virulence factor in 

commensal relatives is less of a surprise than Ply, as NanA has a highly defined 

role in pneumococcal colonization (Manco et al., 2006; Tong et al., 1999; Tong 

et al., 2000), and although it has been implicated as important in a number of 

pneumococcal diseases, particularly otitis media (Long et al., 2004; Tong et al., 

2000), the enzyme is most important for pneumococcal colonization. In contrast, 

Ply has a much less defined role in pneumococcal colonization, but well-defined 

roles in fatal diseases such as pneumonia and meningitis (Hirst et al., 2008; 

Jounblat et al., 2003; Rubins et al., 1995; Wellmer et al., 2002). Therefore, it 

may be expected that NanA would also be important for the colonization of 

commensal organisms, whereas the benefit of possessing a cytolytic toxin, and a 

possible role for the toxin in colonization and pathogenesis of this subset of S. 

mitis isolates remains unclear. This potential difference in importance to the 

commensal organisms may be reflected in the apparent conservation of NanA 

when compared to the pneumococcal NanA protein. In comparison, Mly and pPly 

appear less conserved compared to Ply, possibly due to the fact that they are 

less important to the organisms.  

The presence of homologues of Ply and NanA in these closely related species 

raises issues when discussing these virulence factors as protein vaccine 

candidate. Results show that a number of the Mly alleles were not recognised by 

monoclonal antibody PLY-7, presumably due to variation within the alleles, 

showing that small alterations in the protein can have significant effects. 

Furthermore, these streptococcal species are able to co-inhabit the same niche, 
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in the nasopharynx of the host, and have been shown to exchange genetic 

material (Chi et al., 2007; King et al., 2005; Poulsen et al., 1998; Sibold et al., 

1994). Indeed, homologous recombination in the nanA gene has already been 

shown to occur between S. pneumoniae and S. oralis, whilst the increase of 

penicillin resistance in pneumococci was shown to be as a result of horizontal 

gene transfer of the pbp2x gene from S. mitis (King et al., 2004; Sibold et al., 

1994). These results together give rise to the possibility that a vaccine targeting 

Ply or NanA will give a selective advantage to pneumococci acquiring altered 

variants of these genes. When these homologues are present in related species, 

it is possible that pneumococci could acquire such altered genes by horizontal 

gene transfer, and thus evade the scope of a vaccine targeting them. This is one 

reason why a multi-factorial protein vaccine is likely to be more successful than 

a vaccine targeting a single pneumococcal protein (Ogunniyi et al., 2000; 

Ogunniyi et al., 2007a).  

In conclusion, this study has characterized and named a new CDC, Mly, present 

in a subset of S. mitis isolates. Further homologues of Ply and NanA have been 

identified in S. mitis and S. pseudopneumoniae species, although further 

characterization of these is required. Presence of gene homologues in closely 

related commensal species not only informs further on the relationships between 

these Streptococci, but further blurs the lines between these species, one a 

debilitating pathogen, the others generally commensal organisms, and brings 

into question the importance of Ply and NanA in pneumococcal virulence. The 

presence of these homologues also gives rise to the possibility of pneumococci 

evading a Ply-targeted vaccine by acquisition of gene variants through horizontal 

gene transfer. Further study and characterization of these homologues is 

required to fully understand their roles in these species, and the potential 

importance they may play pneumococcal vaccine strategies.  
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6 Inhibition studies of NanA with viral 

neuraminidase inhibitors 
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6.1 Summary 

The aim of this chapter was to investigate the effects of inhibitors of influenza 

NA on pneumococcal NanA, as well as determining the effects of this inhibition 

in vivo. This work demonstrated for the first time that specific inhibitors of 

influenza NA were able to inhibit purified pneumococcal NanA in vitro. In 

particular, oseltamivir carboxylate (OC, the active form of Tamiflu, Roche) 

showed high potency when inhibiting wild-type NanA (IC50=1.608µM), although 

studies of inhibition potency with other NanA alleles require further work. This 

inhibitor was also shown to inhibit NanB, but with a potency ~350–fold lower 

than NanA. Studies of NanA inhibition with competitive inhibitor DANA and 

antiviral Zanamivir resulted in IC50s ~19- and ~9400-fold higher than with OC, 

respectively. These results suggest that OC may have potential as a treatment of 

secondary pneumococcal pneumonia following influenza infection. Furthermore, 

results suggest the influenza NA may essentially play the same role as NanA, 

uncovering pneumococcal adherence receptors in vivo, and priming the host for 

pneumococcal colonisation. This finding may help explain the high levels of 

secondary pneumococcal pneumonia following influenza infection, and agrees 

with a previously presented hypothesis (McCullers and Bartmess, 2003).  

Animal studies in a pneumonia model showed that pre-treatment of mice with 

purified NanA before intranasal challenge with S. pneumoniae increased the 

severity of symptoms compared to PBS controls, as well as producing 

significantly increased bacterial counts in the lungs and blood at 72h post-

infection. Conversely, pre-treatment of mice with OC before intranasal 

challenge with S. pneumoniae decreased the severity of symptoms, and 

significantly reduced the bacterial counts in the lungs at 72h post-infection. 

These two results, taken together, show that the neuraminidase activity of NanA 

plays an important role in pneumococcal pneumonia. Furthermore, they confirm 

that OC, or derivatives, have potential for treatment of secondary pneumococcal 

infection, either replacing or in conjunction with antibiotics, although further 

studies are required. As well as acting therapeutically, this could have the 

benefit of helping tackle the over-reliance on antibiotics for treating 

pneumococcal diseases.   
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6.2 Inhibition of purified NanA by viral inhibitors  of 

Influenza 

6.2.1 Comparison of inhibition of wild-type NanA fragment by 

viral neuraminidase inhibitors 

The solved structure of the NanA active site has allowed new insight into the 

activity of the protein as well as similarity with other sialidase enzymes. For 

example, whilst the protein sequences of pneumococcal NanA and 

neuraminidase (NA) from Influenza shared <10% sequence identity, the 

enzymatic 6-bladed β–propeller was highly conserved between these proteins, 

(Figure 6.1, circled in red) along with six catalytic residues. However, the 

insertion region present in pneumococcal NanA, circled in green, is not present 

in the Influenza NA (Figure 6.1). 

                  

Figure 6.1: Structural comparison of pneumococcal N anA and Influenza NA 

Overlay of crystal structures of pneumococcal NanA and influenzal NA enzymes. NanA is in 
blue whilst NA is in yellow. The 6-bladed β-propeller, active site circled in red, is highly 
conserved in both of these enzymes. The mosaic bloc k C insertion region in pneumococcal 
NanA, absent from Influenza NA, is circled in green . 
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The inhibitory effect of inhibitors of influenza NA on pneumococcal NanA was 

investigated. The inhibitors tested were the competitive inhibitor DANA, 

Oseltamivir carboxylate (OC, active form of Tamiflu, Roche) and Zanamivir 

(marketed as Relenza, GSK). The inhibition of purified NanB (created by Dr. 

Heinz Gut) with OC was also investigated. Results showed that all three viral 

inhibitors also had an inhibitory effect on pneumococcal NanA, and whilst OC 

had an inhibitory effect on NanB, this was significantly lower than that seen with 

NanA (Figure 6.2). From these plots of inhibition, the concentration of inhibitors 

required to inhibit 50% of the enzyme activity (IC50 values) were calculated for 

each inhibitor with NanA, and with OC for NanB (Table 6.1). This is the first 

demonstration of viral neuraminidase inhibitors having a direct effect on the 

pneumococcal enzymes NanA and NanB. Comparison of the IC50 values for each 

inhibitor showed that OC inhibited NanA with the greatest affinity, whilst DANA 

inhibited NanA with 18.8-fold less affinity, and Zanamivir had a very low 

inhibition, with an IC50 value 9392-fold greater than OC. Comparing OC inhibition 

of NanA and NanB showed that the inhibitor had a much greater affinity for 

NanA, inhibiting with an IC50 345.5-fold lower than with NanB. 

 

Figure 6.2: Inhibition of pneumococcal neuraminidas es 

Inhibition curves for viral neuraminidase inhibitor s with pneumococcal neuraminidase 
enzymes. Curves were drawn from triplicate repeats for each inhibitor. IC 50 values were 
calculated for each inhibitor from these curves.   
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Neuraminidase Inhibitor IC50 (µM) Ratio 

NanA Oseltamivir carboxylate 1.608 1 
NanB Oseltamivir carboxylate 555.60 345.5 
NanA DANA 30.27 18.8 
NanA Zanamivir 15102 9392 

Table 6.1: IC 50 values of selected inhibitors 

IC50 values of viral NA inhibitors inhibiting pneumococ cal neuraminidases, along with ratios 
of inhibition for comparison.  
 

6.2.2 Comparison of Oseltamivir carboxylate inhibition of purified 

NanA protein fragments of varying amino acid sequence 

OC was found to inhibit NanA with the greatest affinity. It was therefore of 

interest to determine whether the mutations present in the purified fragments 

of NanA alleles 12, 16 and 18 had an effect of inhibition by OC. The inhibition 

assays were repeated with these allele fragments, and results showed that the 

alleles were inhibited with differing levels of affinity by OC (Figure 6.3). 

Calculation of IC50 values showed that the mutations present in alleles 12, 16 

and 18 appeared to lower the affinity of OC towards the NanA active site (Table 

6.2). Indeed, allele 18 showed a 100-fold reduction in IC50 compared to allele 3. 

However, there was a correlation between the activity of the alleles and their 

inhibition with OC; the inhibitor had lower affinity to alleles with higher activity. 

This may have skewed the results (see Section 6.4, Discussion). 
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Figure 6.3: Inhibition of NanA amino acid alleles b y OC 

Inhibition curves of OC with purified NanA amino ac id allele fragments 3, 12, 16 and 18. 
Curves were drawn from triplicate repeats for each inhibitor. IC 50 values for OC with each 
allele were calculated from these curves.  
 

NanA amino acid allele OC IC50 (µM) Ratio 

3 1.608 1 
12 37.16 23.1 
16 18.53 11.5 
18 160.44 99.8 

Table 6.2: IC 50 values of OC with NanA amino acid alleles 

IC50 values of viral NA inhibitor OC with NanA amino ac id alleles, along with ratios of 
inhibition for comparison.  
  

6.3 Studies of effect of Oseltamivir carboxylate inhibi tion 

of NanA and NanB on S. pneumoniae in vivo 

NanA and NanB have been shown to be involved in the virulence of the 

pneumococcus (Manco et al., 2006; Tong et al., 2000). The novel discovery that 

inhibitors of influenza NA were able to inhibit pneumococcal neuraminidases in 

vitro led to a study of OC as an inhibitor of pneumococcal virulence in vivo. The 

S. pneumoniae isolate used in in vivo studies was the bioluminescent strain 

A66.1 (Xenogen, USA), allowing imaging of bacterial infection in real-time using 

IVIS CCD Camera (Xenogen, USA). This isolate possessed allele 15, which had the 

divergent version of mosaic block C. In vivo studies were carried out by Kirsty 

Ross, and will be presented fully in her thesis. However, in vitro and in vivo 
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studies were carried out in parallel, and in vivo results strengthen the hypothesis 

presented, and offer further insight into the relationship between influenza and 

the pneumococcus. These results will therefore be briefly discussed. 

6.3.1 Effect of pre-treatment with neuraminidase A on 

pneumococcal pneumonia 

In order to explore the importance of NanA in progression of pneumococcal 

pneumonia, mice were pre-treated with the purified NanA allele 3 enzymatic 

fragment before challenge with S. pneumoniae in a pneumonia model. Results 

showed that pre-treatment with NanA caused significant weight loss compared 

to controls (14%, p<0.001), an indicator of pneumococcal infection. 

Furthermore, imaging at 72h post-infection revealed infection in the ventral 

thoracic cavity of 7/10 mice pre-treated with NanA, and only 4/10 in the control 

mice, with one death in each group. The results assume a positive signal was 

present in mice that died before imaging. Surviving mice were culled at 72h 

post-infection, and bacterial counts from selected organs measured. Pre-

treatment with NanA caused a significant increase in bacterial counts in lungs 

(p=0.0188) and blood (p=0.0142), whilst a trend towards increased bacterial 

counts was present in the spleen and liver. A similar, although less significant 

result was observed upon pre-treatment of mice with influenza NA, thus 

mimicking the real-life interaction between pathogens.  

6.3.2 Effect of pre-treatment with Oseltamivir carboxylate on 

pneumococcal pneumonia 

To determine the potential protective effect of OC against S. pneumoniae 

infection, OC-treated mice were challenged with S. pneumoniae. There was no 

significant difference in survival time between OC-treated and control mice, 

with median survival times of 65h and 94h respectively, although a trend 

towards significance is observed. However, it appeared that mice pre-treated 

with OC developed disease symptoms, determined by pain score, at a slower 

rate than control mice, implying a protective effect of OC. Imaging of mice at 

48h and 72h allowed the tracking of pneumococcal pneumonia progression. A 

signal from the ventral thoracic cavity was detected in 3/19 OC-treated mice at 

48h post-infection, compared to 8/20 control mice. Similarly, a signal was 

detected from 5/19 OC-treated mice at 72h post-infection, compared to 11/20 
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controls. There was a significant decrease (p=0.009) in bacterial lung counts in 

the OC-treated group after 72h, supporting the imaging data. Furthermore, 

trends towards lower bacterial counts were observed in the spleen, liver and 

blood of the OC-treated group. These results imply that OC, presumably by 

directly inhibiting the activity of NanA and possibly NanB, decreases the 

virulence of S. pneumoniae in this murine pneumonia model. 
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6.4 Discussion  

This study has demonstrated for the first time the inhibition of pneumococcal 

NanA activity by inhibitors specifically targeting the NA enzyme of influenza. 

Results showed that OC inhibited NanA with a 20-fold greater potency than the 

competitive inhibitor DANA (Table 4.4), whilst in influenza, studies have shown 

OC to inhibit with 1000-fold greater potency than DANA (Klumpp and Graves, 

2006). Furthermore, OC was shown to inhibit NanA with ~350-fold greater 

potency than NanB, implying that the active site of NanA shares more structural 

homology with influenza NA than that of NanB does. These results offer insight 

not only into potential treatments of pneumococcal disease, but into the 

relationships between the pathogens S. pneumoniae and influenza. A large 

amount of work has explored the relationship between these organisms, as the 

pneumococcus has been shown as the major cause of secondary bacterial 

pneumonia following influenza infection, greatly increasing mortality, 

particularly during Influenza pandemics (Abrahams et al., 1919; McCullers, 2006; 

Morens and Fauci, 2007; Stone and Swift, 1919). A number of recent studies have 

explored the possible mechanisms of this interaction. Studies in a mouse model 

have shown that pneumococcal adherence in the lungs is increased by presence 

of influenza NA (McCullers and Bartmess, 2003) and that influenza NA activity 

correlated with ability of a viral infection to predispose to secondary bacterial 

pneumonia (Peltola et al., 2005). The findings presented here are concurrent 

with the hypothesis suggested by Peltola and colleagues (2005) that infection 

with influenza predisposes to subsequent pneumococcal infection due to the 

action of the viral NA. The authors suggested that this enzyme exposes receptors 

for pneumococcal adherence, increasing the chance of pneumococcal 

colonization and pneumonia (Peltola et al., 2005). This implies that viral NA and 

pneumococcal NanA have similar roles and substrates, a hypothesis supported by 

our data showing the similarity of the active site of these enzymes (Figure 6.1), 

as well as the inhibition of NanA with viral NA inhibitors (Table 1.). Furthermore, 

in a mouse model of secondary pneumococcal pneumonia, treatment with a 

selection of classes of antivirals showed that the NA inhibitor, OC, increased 

survival, from 0% to 75%, whilst other antivirals had no effect. This was reported 

to be due to effective treatment of the predisposing viral infection (McCullers, 

2004). However, the data presented here suggest that this result may in part be 

due to the inhibitory effect of OC directly on S. pneumoniae. Indeed, treatment 
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of mice with OC was shown to significantly reduce pneumococcal counts in the 

lungs and blood, showing that in the previous study, the OC would have had an 

inhibitory effect on both primary and secondary pathogens in the model.  

When comparing the inhibition of different NanA alleles by OC, large differences 

in inhibition were observed in the assay used. The most active allele was 

inhibited with ~100–fold less potency in comparison to TIGR4 allele 3 (Table 6.2). 

However, the nature of the assay means the results may be misleading. In the 

inhibition assay, a concentration of NanA sufficient to cause 100% release of pNP 

from the substrate by the least active allele was used. This produces problems 

when attempting to compare inhibition of alleles with different activities, as 

since one allele has ~7-fold increased activity, if these alleles are inhibited to 

the same degree by OC, a 7-fold increase in OC would be required to inhibit the 

more active allele to the same degree, resulting in an apparent difference in IC50 

where there may be no difference. This is due to the difference in activity 

between alleles, where the same molar concentration, and therefore the same 

number of NanA active sites is 7 times more active in one allele than the other. 

Conversely, if a concentration of NanA sufficient to cause 100% release of pNP 

from the substrate had been calculated individually for each allele, the molar 

concentrations, and therefore the number of active sites, would have been 

reduced ~7-fold in the most active allele, resulting in further inaccuracies in the 

comparison of IC50s for OC with each allele. Therefore, although a large 

difference in potency of OC towards different NanA alleles was shown, these 

results should be regarded as preliminary. The reason this method was selected 

was due to the restricted availability of the active OC compound. Further studies 

of Michealis-Menten enzyme kinetics and interactions between enzyme, 

substrate and inhibitor would allow accurate comparison of IC50s between alleles 

of differing NanA activity.  

Taken together, the in vivo studies with NanA and OC showed that the enzymatic 

activity of NanA plays an important role in progression from colonization to 

pneumococcal pneumonia in a mouse model, agreeing with previous findings 

(Berry and Paton, 2000; Orihuela et al., 2004). Pre-treatment of the respiratory 

tract with purified NanA was shown to enhance infection, and may partly reflect 

the mechanism by which a preceding influenza infection enhances susceptibility 

to the pneumococcus. This hypothesis was supported by the observation that a 
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similar trend is observed when mice are treated with purified viral NA prior to 

pneumococcal challenge, mimicking the interaction between pathogens in vivo. 

Furthermore, treatment of mice with OC was shown to decrease the severity of 

pneumococcal infection, demonstrating that when neuraminidase activity is 

inhibited, progression of pneumococcal pneumonia is impaired. This agrees with 

previous results showing that NanA is important in colonization and virulence of 

S. pneumoniae (Manco et al., 2006). These findings suggest that inhibition of 

NanA, potentially by OC or other derivatives, could play a role in decreasing the 

burden of secondary bacterial infection complications after viral infection. 

Therefore this treatment may have benefit in replacement or complementation 

of current antibiotics used to treat such complications. This could be important 

not only in reducing the burden of secondary bacterial infection caused by S. 

pneumoniae, but also potentially in reducing the global spread of antibiotic 

resistance in pathogenic strains of S. pneumoniae by tackling the misuse and 

over-reliance on antibiotics for treatment of pneumococcal infections.  

A further potential use of these compounds is to treat or prevent pneumococcal 

diseases in which neuraminidase activity plays an important role, such as p-HUS. 

Although in the case of p-HUS, OC would have no therapeutic potential once the 

disease is established, it may be of use in preempting the onset orf p-HUS. For 

example, if a paediatric patient presented with IPD caused by a pneumococcal 

clone known to be associated with p-HUS, such as serotype 19A, ST199, then co-

treatment of this infection with both antibiotics and OC would not only treat the 

infection but also inhibit the neuraminidase activity of the pathogen, reducing 

the likelihood of p-HUS occurring.  

In conclusion, this study has demonstrated the in vitro inhibition of NanA by 

inhibitors of influenza NA for the first time. This novel discovery, coupled with 

in vivo studies, demonstrated the role of neuraminidase activity in pneumonia, 

as well as giving further insight into the well-studied relationship between 

influenza and subsequent pneumococcal infections. Furthermore, this study has 

established the potential benefit of using OC as a replacement for antibiotics to 

treat secondary pneumococcal infection. Further study in this area may lead to 

development of inhibitors that are able to prevent both primary and secondary 

infections, thus lowering the burden of disease and mortality caused by the 

synergism between these two debilitating pathogens. Finally, OC may be of use 
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to treat or prevent pneumococcal diseases where neuraminidase activity it 

actively involved in pathogenesis, such as p-HUS.
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7.1 Summary 

The research presented in this project has so far focussed on investigation of 

diversity within individual genes and proteins. However, recent advances in 

technology have led to usability and affordability of genome-wide genetic 

comparison tools in the research lab. One of these tools is microarray analysis, 

which has recently been used by our lab to show genetic diversity between 

isolates identical by serotype and ST (Silva et al., 2006). This chapter reports on 

results of using microarray analysis to explore differences in genetic content and 

gene expression between isolates. Specifically, this chapter will attempt to link 

genetic differences to p-HUS pathogenesis, as well as exploring differences 

between S. pneumoniae and related species.  

The genetic differences between p-HUS isolates and matched controls were 

investigated, by comparative genomic hybridization, in an attempt to identify 

genes important in p-HUS progression. Results show that although differences 

exist in genetic content between these isolates, none correlate with ability to 

cause p-HUS. Furthermore, the isolates tested were relatively clonal, sharing 

large regions of diversity when compared to the reference isolate TIGR4. 

Differential gene expression between p-HUS isolates and matched controls was 

investigated, using RNA microarrays, as differences in gene expression may be 

important in p-HUS. A total of 12 genes were identified as being differentially 

regulated in p-HUS isolates compared to controls. These may be of importance in 

p-HUS pathogenesis. Two of the genes, ghdA and guaA, were involved in the 

glutamate metabolism pathway, and regulation of these resulted in increased 

glutamate metabolism. It was hypothesised that this may be in response to high 

circulating ammonia or ammonium concentrations in p-HUS patients, and 

preliminary results implied that p-HUS isolates have higher tolerance to 

ammonium in growth medium than controls.  

Microarray technology is limited to informing on genes present in the reference 

isolate. This may ignore genetic information carried by bacteriophages or mobile 

genetic elements. The presence of lysogenic bacteriophages in the p-HUS 

isolates was determined. Two isolates were found to harbour phages, although 

their presence did not correlate with p-HUS-causing ability. However, although 



Chapter 7  Microarray studies 

  192  

further study is required, use of this technology has identified several candidate 

genes with potential roles in p-HUS pathogenesis. Understanding the pathogenic 

methods employed by the pneumococcus will allow more effective diagnosis and 

treatment of p-HUS, and reduce the levels of mortality observed. 

The pneumococcus is known to exchange genetic information with related 

species such as S. mitis and S. oralis. Indeed, diversity in pneumococcal 

virulence factors has been shown to result from homologous recombination with 

these species, with homologues of a number of pneumococcal virulence factors 

identified (King et al., 2005; Poulsen et al., 1998; Sibold et al., 1994; Whatmore 

et al., 2000). These homologues can be important in diagnosis and treatment of 

pneumococcal disease, as homologues in related species may allow acquisition of 

altered virulence factors by the pneumococcus upon selective pressure from a 

vaccine targeting a particular virulence factor. This may allow pneumococci to 

escape the scope of vaccines targeting virulence factors with homologues in 

these related species. In this study, gDNA from related VGS species was 

hybridised to a microarray of genes from a pneumococcal reference to 

determine the presence of homologues to pneumococcal genes in these related 

species.  

Results showed that when comparing the genes present in S. mitis and S. oralis 

isolates, homologues to 72-84% of genes were present. 25 genes essential to 

pneumococcal virulence (Hava and Camilli, 2002) were found to be absent from 

all of these isolates. These included genes from islets shown to be involved in 

pneumococcal virulence, such as the pilus islet RlrA, or the PsrP islet. Essential 

genes in these regions may make interesting pneumococcal vaccine candidates. 

312 genes deemed essential to pneumococcal virulence (Hava and Camilli, 2002) 

were found to have homologues in the related VGS population. These included 

virulence factors with defined roles in pneumococcal virulence, many of which 

were also vaccine candidates.  

Microarray results from a S. pseudopneumoniae isolate showed a higher level of 

homology with S. pneumoniae, implying that this species is more closely related 

to S. pneumoniae than either S. mitis or S. oralis, agreeing with previous 

findings (Arbique et al., 2004). Furthermore, the finding that pneumococcal 

virulence genes are distributed within the S. mitis population, present in some 
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isolates but not others, agrees with the hypothesis that this isolate may be 

evolving from a pneumococcus-like ancestor into a commensal state by loss of 

virulence factors (Kilian et al., 2008). However, it is also possible that evolution 

is occurring in the opposite direction, with the pneumococcus evolving away 

from a commensal ancestor, and these results would also support this 

hypothesis. Further studies are therefore required to unravel the evolutionary 

relationships between these species. 
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7.2 Microarray analysis of p-HUS isolates and match ed 

controls 

7.2.1 Rationale for microarray analysis and strain selection 

There appears no difference, in terms of sequence or expression, between the 

NanA proteins of p-HUS isolates and matched controls. Therefore, DNA and RNA 

microarrays were employed to determine genetic differences between p-HUS 

isolates and controls. Comparative genomic hybridization using DNA microarrays 

was used to detect presence or absence of genes, whilst the analysis of gene 

expression using RNA microarrays was used to detect differential expression of 

genes, both compared to the reference isolate TIGR4. These analyses allowed 

identification of genes encoding factors that may play a role in progression to p-

HUS. Six serotype 19A, ST199 isolates (4-p-HUS isolates (Waters et al., 2007) and 

2 matched controls) were chosen for the microarray study, as differences 

identified between these clones were more likely to be related to p-HUS causing 

ability. These isolates are found in Table 1. Had isolates with varying serotypes 

or STs been selected, it would have been impossible to determine whether 

observed differences were linked to p-HUS or simply differences related to 

serotype or ST.  

Strain Serotype ST Disease 

05-1308 19A 199 Pneumonia 
05-2084 19A 199 Pneumonia 

H040400333 19A 199 p-HUS 
H051740086 19A 199 p-HUS 
H052300328 19A 199 p-HUS 
H060160064 19A 199 p-HUS 

Table 7.1: Isolates used for microarray study of p- HUS isolates  

All isolates were serotype 19A, ST199. 4 isolates c aused p-HUS whilst 2 matched controls 
caused pneumonia without p-HUS. 
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7.2.2 Analysis of genetic content of p-HUS isolates and matched 

controls 

The results of the DNA microarray study showed that the 6 test isolates shared 

large regions of diversity in comparison to the reference isolate TIGR4. 12 of 

these regions, representing genes missing or too diverse for hybridization in the 

test isolates when compared to the reference, were present and varied in size 

from 2-22 genes (Full alignment found in Appendix II). These regions included, as 

expected, the capsule locus, as reference isolate TIGR4 was a serotype 4 isolate. 

Other regions included the pilus locus, ABC transporters and regions of 

hypothetical proteins. However, although the 6 isolates tested shared the same 

serotype and ST, there were also differences in the genetic content of these 

isolates. These were represented by regions of diversity present in some test 

isolates but not others, or by single genes not hybridized to the array in certain 

test isolates. When the association with p-HUS was explored, only two genes 

were identified as present in all p-HUS isolates and absent from controls. These 

were the putative transcriptional regulator SpTIGR4-0306 and hypothetical 

protein SpTIGR4-0309. However, these genes were present in a region of varying 

results in different test isolates (Figure 7.1), and PCR validation of the 

microarray results showed these two genes to be present in all isolates. 

Conversely, no genes were found to be absent from p-HUS isolates and present 

in control isolates. Therefore, none of the differences in genetic content 

identified between these isolates correlated to p-HUS causing ability.  

Isolate 05_1308 05_2084 H060160064 H052300328 H051740086 H040400333
SpTIGR4-0301 
SpTIGR4-0302 
SpTIGR4-0303 
SpTIGR4-0304 
SpTIGR4-0305 
SpTIGR4-0306 
SpTIGR4-0307 
SpTIGR4-0308 
SpTIGR4-0309 
SpTIGR4-0310 
SpTIGR4-0311 
SpTIGR4-0312  

Figure 7.1: Diversity present between p-HUS isolate s 

Region of diversity after comparative genomic hybri dization, where two genes were found 
to be present in all p-HUS isolates and absent from  controls (SpTIGR4-0306 and SpTIGR4-
0309). Blue represents presence of gene in both tes t and reference isolates. Red represents 
presence of gene in reference isolate and absence f rom test isolate.   



Chapter 7  Microarray studies 

  196  

7.2.3 Analysis of gene expression of p-HUS isolates and matched 

controls 

7.2.3.1  RNAvsRNA Microarrays 

Comparison of gene expression between the HUS isolates and matched controls 

identified twelve genes differentially expressed in isolates causing p-HUS. These 

can be found in Table 7.2. Of these, nine were down-regulated in p-HUS isolates 

and three up-regulated. Interestingly, two of the genes, NADP-specific 

glutamate dehydrogenase (gdhA) and glutamine amidotransferase (guaA), were 

found to be involved in the glutamate metabolism pathway, and while gdhA is 

up-regulated and guaA is down-regulated, both contribute to increased cellular 

levels of glutamine and glutamate in isolates causing HUS. Other genes down-

regulated encode the phosphomevalonate kinase mvaK2, which is involved in the 

biosynthesis of steroids, a gene encoding a NifU family protein and another 

encoding competence-inducable protein CinA. Other up-regulated genes 

encoded for a RecF protein and ABC-N/P, the ATP-binding permease protein of 

an ABC transporter.  

Gene Gene name Abbrev. Fold change 

SpTIGR4-0098 Hypothetical protein  1.73 
SpTIGR4-0383 Phosphomevalonate kinase mvaK2 1.33 
SpTIGR4-0409 Conserved hypothetical protein mip 4.1 
SpTIGR4-0716 Transcriptional regulator, putative  8.6 
SpTIGR4-0738 Conserved domain protein  1.57 
SpTIGR4-0870 NifU family protein nifU 3.19 

SpTIGR4-1306 
NADP-specific glutamate 

dehydrogenase gdhA 1.53 

SpTIGR4-1434 
ABC transporter, ATP-

binding/premease protein ABC-N/P 2.5 
SpTIGR4-1732 Serine/threonine protein kinase pkn2 1.31 

SpTIGR4-1941 
Competence/damage inducible 

protein CinA cinA 1.27 
SpTIGR4-2072 Glutamine amidotransferase guaA 5.47 
SpTIGR4-2227 RecF protein recF 2.11 

Table 7.2: Differential gene expression in p-HUS is olates 

Genes differentially expressed in HUS isolates comp ared to matched controls. Fold change 
represents the change in gene expression in HUS iso lates compared to controls. Changes 
highlighted in red were up-regulated in HUS isolate s while those highlighted in blue were 
down-regulated. Abbrev = abbreviation of gene.  
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When comparing the expression of the nanA gene between HUS isolates and 

matched controls, there was no significant difference between expression levels 

(p=0.2496), which agreed with the findings of NanA activity in these isolates in 

Chapter 4. Furthermore, when comparing these levels of nanA gene expression 

to the reference isolate TIGR4, there was a significant decrease in expression in 

the tested isolates (p=0.0007). There was also a significant decrease in nanB 

expression when the test isolates and controls were compared to TIGR4 

(p=0.0002). Interestingly, the nanC gene was only found in 1 isolate, the p-HUS 

isolate H040400333, and in this isolate, expression was increased 21.8-fold 

compared to TIGR4, implying that it may be important in this particular clone. 

7.2.3.2  Validation of microarray results by RT-PCR  

Two genes, SpTIGR4-1306 and SpTIGR4-2072, were selected for analysis by RT-

PCR. These gene numbers represented gdhA and guaA respectively, and were 

found to be differentially regulated in p-HUS isolates compared to controls by 

RNA microarray. The expression of these two genes was explored in one p-HUS 

isolate (H060160064) and one control (05-1308). The results of RT-PCR show that 

the guaA gene was down-regulated 28.3-fold in the p-HUS isolate compared to 

the control (Figure 7.2A). Conversely, the gdhA gene was up-regulated 5.38-fold 

in the p-HUS isolate (Figure 7.2B). These ratios, although slightly higher, were in 

agreement with the findings of RNA microarray analysis for these genes, and 

validated the RNA microarray results obtained for other genes. 

 

Figure 7.2: RT-PCR validation of RNA microarray 

RT-PCR results. Mean normalised expression levels o f guaA and gdhA genes in p-HUS 
isolate (H060160064) and control (05-1308), as meas ured by RT-PCR. 
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7.2.3.3  Growth of p-HUS isolates in differing ammo nium 

concentrations 

The effect of differing ammonium concentration on growth of p-HUS isolates and 

controls was investigated. Two isolates were compared in the study, namely the 

p-HUS isolate H060160064 and control 05-1308, as in the RT-PCR study. 

Preliminary results showed that the control isolate was highly sensitive to 

concentrations of ammonium, as low as 1µg/ml, whereas growth of the p-HUS 

isolate was only affected at concentrations as high as 500µg/ml (Figure 7.3). 

However, the same phenomenon was not observed upon repeat of the 

experiment, and further study is therefore required to confirm the observed 

difference. Despite this, this is an example of using the results generated from 

microarray studies to begin to elucidate the involvement of certain genes in 

pathogenesis. 

 

Figure 7.3: Ammonium growth curves  

Growth curves of control isolate (05-1308, plot A) and p-HUS isolate (H060160064, plot B), in 
differing concentrations of ammonium. Concentration s of ammonium are shown on right 
had side, in µg/ml.   
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7.3 Analysis of lysogenic bacteriophage presence in  p-

HUS isolates and matched controls 

The six serotype 19A, ST199 isolates were tested for the presence of lysogenic 

bacteriophages. Phages were identified in two of the six isolates tested, namely 

H040400333 and H051740086 (Figure 7.4). The bacteriophage possessed by 

H04040033 was found to be a type 1 pneumococcal phage by phage-specific PCR, 

whilst PCR failed to identify a phage type in H051740086 (Bacteriophage identity 

determined by Dr. Patricia Romero, Romero et al. 2008, manuscript in 

preparation). However, the two other p-HUS isolates did not possess lysogenic 

bacteriophages, showing that the presence of these phages was not required for 

the isolates to cause p-HUS. Therefore, genes important for progression of p-HUS 

were not carried on lysogenic bacteriophages.  
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Figure 7.4: Presence of bacteriophage in p-HUS isol ates  

Results of mitomycin C test for presence of tempera te bacteriophage in p-HUS isolates and 
controls. Test and negative control growth curves w ere measured in triplicate. Possession 
of a phage is shown by a clear decrease in OD600 af ter introduction of mitomycin C. This 
can be seen for isolates H040400333 and H051740086,  circled in green.  
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7.4 Microarray study of pneumococcal gene homologue s 

in related VGS species 

7.4.1  Study plan and selection of isolates 

The presence of homologues of pneumococcal virulence genes in the related VGS 

population has been previously documented (King et al., 2005; Poulsen et al., 

1998; Sibold et al., 1994; Whatmore et al., 2000). These homologues may allow 

alteration of their pneumococcal counterparts by homologous recombination, 

which has implications in treatment of pneumococcal diseases and vaccine 

design. This study aimed to take a global approach to homologue identification 

by hybridizing gDNA from related VGS species to a pneumococcal DNA 

microarray. This allowed genome-wide identification of homologues of 

pneumococcal genes, and in particular virulence factors, present in the VGS 

population. To study the presence of homologues in S. pseudopneumoniae, S. 

mitis and S. oralis isolates, 7 isolates were selected from a variety of isolation 

sites (Table 7.3). As well as looking at overall presence of gene homologues, this 

allowed stratification of results into commensal or opportunistically virulent 

strains, and comparison of virulence genes present. The species of each isolate 

was determined by sodA sequencing and alignment to reference isolates as 

previously described (Hoshino et al., 2005), and minimum evolution tree showing 

the results can be found in Figure 7.5. S. pneumoniae and S. pseudopneumoniae 

are indistinguishable by this method, and optochin resistance was used to 

confirm these species where necessary. 

Strain Species Isolation site Disease 

NCTC12261 S. mitis Reference isolate NCTC 
R75 A1 S. mitis Nasopharynx Commensal 
R77 C4 S. mitis Nasopharynx Commensal 

Col S. mitis Blood Endocarditis 
990123 S. mitis Pus Dental abscess 
Sv29 S. oralis Nasopharynx Commensal 

R98 A5 S. pseudopneumoniae Nasopharynx Commensal 

Table 7.3: VGS isolates in microarray study 

Isolates used for study of homologues of pneumococc al genes in related VGS species. 
Isolation site and disease caused are also listed. Species identification was by sodA 
sequencing and alignment.  
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Figure 7.5: Species identification by sodA comparison 

Minimum evolution tree drawn from alignment of  sodA sequences from isolates for VGS 
microarray study to sodA sequences from reference isolates. Tree drawn usin g MEGA4 
software. Highlighted with open brackets are the sp ecies S. pneumoniae/S. 
pseudopneumoniae, S. mitis and  S. oralis. Test isolates are highlighted in green ( S. 
pseudopneumoniae), red (S. mitis) and blue ( S. oralis). The units at the bottom of the tree 
indicate distance between sequence pairs.  
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7.4.2 Microarray study of S. mitis and S. oralis isolates 

7.4.2.1  Microarray results 

The results of the DNA microarrays for each S. mitis or S. oralis isolate were 

aligned (full alignment in Appendix II). A high number of homologues of 

pneumococcal genes were present, with homologues to between 72 and 84% of 

pneumococcal gene identified. This high level of hybridization was expected due 

to the close relationship between the species. The alignment allowed the 

identification of 143 pneumococcal genes absent or non-hybridized from all of 

these isolates. Of these genes, 25 have been reported as essential for 

pneumococcal pneumonia in a mouse model (Table 6.2) (Hava and Camilli, 

2002), and were therefore thought of as pneumococcal virulence factors.  
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Gene number Gene details 

 Cell envelope 

SpTIGR4-0136 "glycosyl transferase, family 2" 
SpTIGR4-1770 "glycosyl transferase, family 8" 
SpTIGR4-1771 "glycosyl transferase, family 2/glycosyl transferase family 8" 
SpTIGR4-2017 membrane protein 

 Cellular processes 

SpTIGR4-0071 immunoglobulin A1 protease 
SpTIGR4-0314 hyaluronidase 
SpTIGR4-1154 immunoglobulin A1 protease 

 DNA metabolism 

SpTIGR4-1040 site-specific recombinase, resolvase family 
SpTIGR4-1431 type II DNA modification methyltransferase, putative 

 Energy metabolism 

SpTIGR4-2167 L-fuculose kinase fucK, putative 
 Hypothetical proteins 

SpTIGR4-1143 conserved hypothetical protein 
SpTIGR4-1344 conserved hypothetical protein 
SpTIGR4-1760 conserved domain protein 
SpTIGR4-1952 hypothetical protein 
SpTIGR4-2159 fucolectin-related protein 

 Protein fate 

SpTIGR4-1343 prolyl oligopeptidase family protein 
 Regulatory functions 

SpTIGR4-0246 transcriptional regulator, DeoR family 
SpTIGR4-0461 transcriptional regulator, putative 
SpTIGR4-1433 transcriptional regulator, araC family 

 Signal transduction 

SpTIGR4-0396 PTS system, mannitol-specific IIA component 
SpTIGR4-0474 PTS system, cellobiose-specific IIC component 
SpTIGR4-2162 PTS system, IIC component 
SpTIGR4-2164 PTS system, IIA component 

 Transport and binding proteins 

SpTIGR4-1321 v-type sodium ATP synthase, subunit K 
SpTIGR4-1328 sodium:solute symporter family protein 
SpTIGR4-1434 ABC transporter, ATP-binding/permease protein 
SpTIGR4-2086 phosphate ABC transporter, permease protein 

 Unknown function 

SpTIGR4-0320 oxidoreductase, short chain dehydrogenase/reductase family 

Table 7.4: Essential pneumococcal genes absent from  related species 

Genes essential for pneumococcal pneumonia in a mou se model (Hava and Camilli, 2002) 
and absent from all S. mitis and S. oralis isolates tested by microarray hybridization. Bold 
titles in second column represent the functional gr oups of each gene, as reported 
previously (Hava and Camilli, 2002).  
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These genes included a trio of genes, two glycosyl transferases (SpTIGR4-1770 

and 1771) and the cell wall surface anchor protein PsrP (SpTIGR4-1772), present 

in a pathogenicity island shown to be important for pneumococcal virulence 

(Obert et al., 2006). Indeed most of the remaining genes in this 19 gene islet 

were also absent from the VGS species tested, indicating that the majority of 

this pathogenicity island may be absent from VGS species. Also absent was the 

transcriptional activator rlrA, shown to regulate expression of the pneumococcal 

pilus (Barocchi et al., 2006). The RlrA islet, encoding the pneumococcal pilus, 

was fully absent from the VGS isolates tested, with the exception of the S. oralis 

isolate, which hybridized to 3 of the 8 genes in the islet. Other regions absent 

from all isolates included a PTS system encoded by the genes SpTIGR4-1615-

1621, a phosphate ABC transporter encoded by genes SpTIGR4-2084-87, of which 

one gene, SpTIGR4-2086, was essential for pneumococcal virulence, and a PTS 

system and fucose operon encoded by genes SpTIGR4-2158-68, of which 4 were 

essential. However, when separating the isolates into commensal and 

pathogenic/ opportunistic isolates, there was no obvious difference in genetic 

content relating to ability to cause disease.  

Further to this, many regions of diversity were observed in some isolates and not 

others, representing a number of ABC transporters, PTS systems, and the 

pneumococcal capsular genes. Interestingly, a number of pneumococcal capsular 

genes were found in two of the isolates, namely Sv29 and R77 C4. This is in 

agreement with previous findings that the isolate Sv29 possessed the 

pneumococcal capsular gene cpsA, although the isolate was negative for the 

presence of capsular polysaccharide by the Quellung reaction.  

Since 25 genes identified as essential to pneumococcal pneumonia were absent 

from all isolates tested, a remaining 312 essential genes were found to have 

homologues in these VGS isolates. These included a large number of 

pneumococcal virulence genes, with well-defined roles in pneumococcal 

pathogenesis, many of which are also protein pneumococcal vaccine candidates 

(Table 7.5) (Tai, 2006).  
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Virulence factor encoding 
gene 

Presence 
in VGS 

Role in virulence 

Ply ply 3/6 Cytotoxicity and complement 
activation. 

NanA nanA 2/6 Exposure of host receptors for 
adhesion. 

Pneumococcal 
surface protein A 

pspA 5/6 Choline-binding protein – evasion 
of host immune system (Ren et 
al. 2004) and lactoferrin binding 
(Shaper et al. 2004). 

Pneumococcal 
surface antigen A 

psaA 6/6 Mn2+ transport (Novak et al. 
1998) and adhesion (Briles et al. 
2000). 

Pneumococcal 
surface protein C 

pspC 
(cbpA) 

3/6 Choline-binding protein – 
adhesion to host cells (Rosenow 
et al. 1997). 

Pneumococcal 
histidine triad 

proteins 

phtA, B, D, 
E 

3/6, 4/6, 
6/6, 1/6 

Unknown, possibly metal and 
nucleose binding (Adamou et al. 
2001). 

Autolysin lytA 3/6 Peptidoglycan degradation/cell 
lysis (Berry et al. 1989). 

Table 7.5: Homologues of pneumococcal vaccine candi dates 

Pneumococcal virulence factors with homologues pres ent in the related VGS population, 
genes encoding these factors, and roles played in p neumococcal virulence. These virulence 
factors are well-established pneumococcal vaccine c andidates.  
 

7.4.2.2  PCR validation 

The microarray results were validated by PCR for 15 genes (Figure 7.6). The 

results showed that genes that had no positive hits for homologues by microarray  

had the same result by PCR validation (Table 7.6). However, where genes had 

homologues in many of the isolates tested by microarray, consistently fewer 

homologues were identified by PCR validation (Table 7.6). This implied that the 

PCR method, used to validate the microarray results of pneumococcal isolates, 

was less sensitive when used to validate results from related species. This was 

most likely due to the increased level of variation present in the genome of 

these species compared to the primers that were designed against the TIGR4 

pneumococcal genome. As a result, the microarray results were found to be 

more informative on presence of gene homologues than those of the PCR 

validation method in this case.  
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Figure 7.6: PCR validation of DNA microarray 

PCR validation results for 15 genes listed in Table  6.4. Layout of gels: lane A – 1Kb+ DNA 
ladder; lane 2 – TIGR4; lane 3 – Col; lane 4 – Sv29 ; lane 5 – R75 A1; lane 6 – R77 C4; lane 7 – 
NCTC12261; lane 8 – 990123; lane 9 – negative contr ol – no gDNA. The numbers on the gel 
represent the gene numbers assigned in Table 7.6.  
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No. Gene 
number 

gene details microarray 
result 

PCR 
result 

1 
SpTIGR4-0268 

alkaline amylopullulanase, 
putative 6/6 4/6 

2 SpTIGR4-0314 hyaluronidase* 0/6 2/6 
3 SpTIGR4-0377 choline binding protein C 5/6 0/6 
4 

SpTIGR4-0461 
transcriptional regulator, 

putative - RlrA* 0/6 0/6 
5 

SpTIGR4-0463 
cell wall surface anchor 
protein - Pilus protein 0/6 0/6 

6 
SpTIGR4-0468 

sortase, putative - Pilus 
sortase* 1/6 0/6 

7 
SpTIGR4-0530 

BlpC ABC transporter, ATP-
binding protein 4/6 4/6 

8 
SpTIGR4-0966 

adherence and virulence 
protein A 6/6 2/6 

9 SpTIGR4-0978 competence protein CoiA* 6/6 5/6 
10 

SpTIGR4-1154 
immunoglobulin A1 

protease* 0/6 0/6 
11 

SpTIGR4-1396 

phosphate ABC 
transporter, ATP-binding 

protein 6/6 0/6 
12 

SpTIGR4-1770 
glycosyl transferase, 

family 8* 0/6 0/6 
13 

SpTIGR4-1771 

glycosyl 
transferase/glycosyl 

transferase* 0/6 0/6 
14 

SpTIGR4-1772 
cell wall surface anchor 

family protein 2/6 0/6 
15 SpTIGR4-2190 choline binding protein A* 4/6 0/6 

Table 7.6: Comparison of microarray and PCR results  

List of genes selected for PCR validation of DNA mi croarray results with VGS isolates. Both 
results from microarray and PCR are included to all ow comparison. Genes with an * have 
been shown to be essential for pneumococcal lung in fection (Hava and Camilli, 2002). No. 
represents number of gel in Figure 7.6. 
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7.4.3 Microarray study of S. pseudopneumoniae isolate 

One S. pseudopneumoniae isolate, R98 A5, was hybridized to the pneumococcal 

DNA microarray to explore the presence of pneumococcal gene homologues in 

this species. Results showed that 91.4% of the 2240 pneumococcal TIGR4 genes 

present on the microarray were present in this isolate by hybridization. This 

represented a larger percentage than observed with the S. mitis and S. oralis 

isolates, where 84% was the highest level observed. This implied that there was 

less divergence between this species and S. pneumoniae than between S. 

pneumoniae and S. mitis or S. oralis. This result was supported when the 

percentage gene hybridization to the probes for the TIGR4 reference isolate in 

these species was compared by species. Results showed that, unsurprisingly, S. 

pneumoniae isolates had the highest levels of hybridization (results from Section 

7.2.2). After this, S. pseudopneumoniae had significantly higher levels of 

hybridization that either S. mitis or S. oralis (Figure 7.7).  

 

Figure 7.7: Comparison of hybridizations in microar ray studies 

Mean percentage of genes on DNA microarray which hy bridised for each separate species . 
S. pneumoniae n=6, S. pseudopneumoniae n=1, S. oralis n=1, S. mitis n=5. 
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However, when looking at the presence or absence of virulence factors, a similar 

picture to that seen with S. mitis and S. oralis isolates was observed. The largest 

regions that appeared absent from the S. pseudopneumoniae isolate were 

predominantly the same as those absent from the other VGS isolates (Table 7.7). 

The full alignment can be found in Appendix II. 

Region Virulence factors Presence in other VGS 

SpTIGR4-0067-0074 IgA1 protease 6/6 isolates 
SpTIGR4-0163-0169 PlcR transcriptional regulator 2/6 isolates 
SpTIGR4-0348-0360 Capsule 2/6 isoaltes 
SpTIGR4-0460-0468 RlrA islet - pilus Partially, in S. oralis 
SpTIGR4-1054-1064 ABC transporter 0/6 isolates 
SpTIGR4-1129-1146 Hypothetical proteins Partially, in 1 S. mitis 

isolate 
SpTIGR4-1314-1336 Sodium ATP synthase, NanC,  Partially, in 2 isolates 
SpTIGR4-1338-1351 ABC transporter Partially, in 3 isolates 
SpTIGR4-1432-1438 AraC regulator, ABC 

transporter 
0/6 isolates 

SpTIGR4-1615-1622 PTS system 0/6 isolates 
SpTIGR4-1755-1773 PsrP islet Partially, in 6/6 isolates 
SpTIGR4-1948-1955 Bacteriocin Partially, in S. oralis 

Table 7.7: S. pseudopneumoniae microarray results 

Main regions of diversity absent or variable in S. pseudopneumoniae, with associated 
encoded factors, and presence of these in 6 VGS iso lates previously tested.  
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7.5 Discussion 

These genomic studies have allowed further insight into pneumococcal virulence 

and pathogenesis, exploring genetic differences at a genome-wide level rather 

than focussing on individual virulence genes. The studies have allowed 

identification of factors with possible roles in pathogenesis of pneumococcal p-

HUS as well as further exploration into the relationship between the 

pneumococcus and related pathogenic species. Two genes important in the 

glutamate metabolism pathway were differentially regulated in p-HUS isolates 

compared to controls. The NADP-specific glutamate dehyrdogenase gene (gdhA), 

involved in metabolism, was up-regulated, whilst a glutamine amidotransferase 

gene (guaA), involved in catabolism, was down-regulated. These expression 

changes resulted in increased cellular levels of both glutamate and glutamine, 

which are the main pneumococcal nitrogen donors (Kloosterman et al., 2006), in 

p-HUS isolates. gdhA, which is also involved in nitrogen metabolism, is 

independently repressed by both the nitrogen regulatory protein GlnR and the 

pleiotropic regulator CodY, which seems to play a more important role 

(Kloosterman et al., 2006). In B. subtilus, CodY is responsible for regulation of 

cellular nutritional and energy status (Kim et al., 2003; Shivers and Sonenshein, 

2005), and therefore gdhA has been suggested as an important control point for 

nutritional and energy regulation in the pneumococcal cell (Kloosterman et al., 

2006). The up-regulation of this gene in p-HUS isolates may represent an 

increased energy requirement in these isolates in the environment generated by 

p-HUS symptoms. Studies have shown that a deletion mutant of gdhA had 

significantly reduced adherence to Detroit cells (20% of WT). GdhA may 

therefore have an indirect role in pneumococcal adhesion. An interesting study 

would be to knock this gene out in p-HUS isolates and controls and observe the 

difference in adhesion, as the product of this gene appears to be important in 

penumococcal adhesion, which may be linked to p-HUS pathogenesis. However, 

the gdhA knock-out showed no significant difference in virulence when 

compared to the wild-type strain D39 in colonisation, pneumonia or bacteraemia 

models in vivo (Hendriksen et al., 2008). The repressor GlnR is up-regulated by 

the presence of high levels of glutamate and glutamine, as well as high ammonia 

and ammonium concentrations (Hendriksen et al., 2008). Due to the symptom of 

kidney dysfunction, p-HUS patients are likely to have high levels of circulating 

ammonia and ammonium (Nath et al., 1991). These high levels should in theory 
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result in repression of gdhA by GlnR, however, gdhA was found to be 

significantly up-regulated in p-HUS isolates and there was no difference in 

expression of the glnR gene between p-HUS isolates and controls. This was also 

the case for the codY gene, which also represses gdhA. This implies that another 

factor or environmental stimulus may be involved in regulation of glutamate 

metabolism and nitrogen metabolism via up-regulation of gdhA. It is possible 

that this unknown factor also acts on guaA, but has the opposite effect, 

resulting in a net increase in glutamate metabolism. This altered gene 

expression may be involved in ability to cause p-HUS or survive in the altered 

environment of a host with p-HUS symptoms.  

Preliminary results indicated that p-HUS isolates may survive better in high 

ammonium concentrations, which are present in p-HUS patients. However, the 

differences observed between the p-HUS isolate and the control, when grown in 

varying concentrations of ammonium, require further study. Whilst a large 

difference was observed between the isolates, this result was not observed upon 

repeat. However, it is likely that some phenotypic differences exist between the 

isolates, possibly as a result of altered gene expression, as such a stark 

difference in susceptibility to ammonium was observed. Further study is required 

to validate this hypothesis. This, however, would not represent a mechanism of 

pathogenesis employed by these isolates to cause p-HUS, but rather a reaction 

to the symptoms caused in the host. However, it may be that due to unknown 

genetic factors, not all pneumococcal isolates are able to adapt and survive in 

this environment.  

Of the other genes differentially regulated in p-HUS isolates compared to 

controls, none play specific roles with obvious links to p-HUS-causing ability. As 

a result, it is difficult to draw conclusions on the importance of their up- or 

down-regulation in the p-HUS isolates. Two of the twelve differentially regulated 

genes, namely CinA and ABC-N/P, have previously been identified as essential 

for pneumococcal virulence in a mouse model (Hava and Camilli, 2002). Whilst 

expression of CinA is down-regulated in p-HUS isolates, ABC-N/P expression is 

up-regulated. However, since these genes are present in both p-HUS isolates and 

controls, and simply differentially regulated, it is unlikely that their essentiality 

has any effect on the isolates. One drawback of the expression microarray study 

was the inability to recreate the in vivo growth conditions to which the 
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pneumococci are exposed when causing p-HUS, since so little is known about 

disease progression. If this had been possible, it may have resulted in clearer 

patterns of gene expression in the p-HUS isolates compared to the controls. 

However, these results show that despite this, differences in gene expression 

levels correlating to p-HUS can be observed in these isolates.  

One of the main criticisms of microarray studies is that only genetic differences 

in genes present in the reference strain, in this case TIGR4, are detectable. It is 

therefore possible that genes important in p-HUS are present in these p-HUS 

isolates and absent from the controls, but also absent from the reference strain. 

In this case, these genetic differences would be overlooked by the microarray 

analyses. Similarly, differential expression of these genes may give insight into 

their involvement in p-HUS, but is not detectable using this technology. 

Furthermore, mutations in genes may go undetected as the genes may be 

detectable by DNA microarray, and have regular levels of expression, so 

mutations would also go unnoticed by the RNA microarray. However, as 

described with Ply allele 5 (see Chapter 3), mutations can have drastic effects 

on the activities of virulence factors. This is a further drawback of microarray 

technology, as mutations may be undetected, whilst clearly having a major 

impact on virulence factor activity and consequently pneumococcal virulence. A 

method that would overcome all of these problems is full-genome sequencing of 

the pneumococcal genome. Full pneumococcal genome sequencing projects have 

resulted in large advances in understanding of pneumococcal biology, as well as 

identification of vaccine candidates (Hiller et al., 2007; Hoskins et al., 2001; 

Lanie et al., 2007; Tettelin et al., 2001). Furthermore, this is becoming 

increasingly affordable, and our laboratory will shortly be able to sequence 

pneumococcal genomes at a relatively high-throughput level. It would be of 

obvious interest to sequence the genomes of these isolates in order to identify 

true differences in genetic content, and mutations, as this should offer more 

definitive insight into genes involved in p-HUS. When this technique becomes 

routine, it is likely that microarray technology will become obsolete the purpose 

of full genome analysis, although it may still have uses as a diagnostic tool, 

where probes for a number of pathogenic bacteria are present. Furthermore, a 

microarray for use in determining pneumococcal serotype is in development by 
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the Bacterial Microarray Group at St. Georges Hospital, London, and may replace 

the techniques currently in use, although cost is currently prohibitive. 

Taking into consideration the fact that the isolates may differ in genetic content 

not present on the array, it was of interest to determine if virulence factors 

present on mobile genetic elements were associated with isolates causing p-HUS. 

Bacteriophages have been shown to harbour important virulence factors in a 

number of pathogenic species including cholera toxin in Vibrio cholerae (Waldor 

and Mekalanos, 1996) and Shiga-like toxin in enterohaemorrhagic E. coli (EHEC) 

(O'Brien et al., 1984). Indeed the Shiga-like toxin that allows EHEC to cause 

typical HUS is encoded on a phage inserted in the E. coli genome (O'Brien et al., 

1984). It was hypothesised that the genetic information possessed on mobile 

lysogenic bacteriophages in the pneumococcus may be associated with isolates 

causing p-HUS. However, although two isolates tested possessed lysogenic 

phages, there was no correlation between possession of lysogenic bacteriophages 

and p-HUS. This result shows that unlike EHEC, where the bacteriophage-

encoded Shiga-like toxin mediates HUS (Banatvala et al., 2001), virulence 

factors carried on lysogenic bacteriophages are not required to cause p-HUS. 

Studies have shown that particular serotypes and sequence types (STs) are more 

commonly isolated from p-HUS patients (Vanderkooi et al., 2003; Waters et al., 

2007). This implies that there are genetic differences between these and other 

serotypes and STs that increase their ability to cause p-HUS. Although there 

were differences in genetic content and gene expression between the p-HUS 

isolates tested and matched controls, the isolates, which were all serotype 19A, 

ST199, were relatively clonal, and shared large regions of diversity in 

comparison to the reference isolate TIGR4. The 6 isolates (4 HUS and 2 controls) 

shared 12 regions of gene absence or diversity in comparison to TIGR4. These 

varied in size from 2 genes to 22 genes. In contrast to these major differences 

from the reference isolate TIGR4, relatively few differences were observed 

between the isolates. This shows that the isolates are fairly clonal. It is 

therefore possible that although the controls used in this study did not cause p-

HUS, they possess the genetic factors that allow them to do so, in common with 

the p-HUS isolates tested. If this is the case, it suggests that although bacterial 

genetics may play a role, other factors such as host genetics or environmental 

factors may have a more significant influence on which cases of invasive 
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pneumococcal disease progress to cause p-HUS. Although this study is merely a 

starting point, further understanding of the bacterial methods of pathogenesis 

employed may improve diagnosis and treatment of p-HUS, and reduce the 

mortality levels observed. 

The presence of homologues of pneumococcal virulence genes in related VGS 

species has been demonstrated previously, including NanA (King et al., 2005), 

penicillin binding protein 2x (Sibold et al., 1994), IgA proteases (Poulsen et al., 

1998), autolysin A (Obregon et al., 2002; Whatmore et al., 2000) and Ply 

(Neeleman et al., 2004; Whatmore et al., 2000). The results presented here 

show that homologues of a large proportion of pneumococcal genes are present 

in species of S. mitis, S. oralis or S. pseudopneumoniae. This was not entirely 

unexpected, as these species are known to be the closest relations to S. 

pneumoniae (Arbique et al., 2004; Facklam, 2002). Generally, however, S. mitis 

and S. oralis are commensal organisms, residing asymptomatically in the host 

nasopharynx and oral cavity. This contrasts strikingly with the role of S. 

pneumoniae as a major human pathogen causing a plethora of lethal diseases. 

Therefore, although these species are relatively closely related, and share many 

homologues, it was hypothesised that the differences observed between the 

species would lie in the presence of virulence factors with known roles in 

pneumococcal pathogenesis. However, the results presented here show that this 

is not the case, with many important pneumococcal virulence factors having 

homologues in the related VGS species (Table 7.5). Many of the virulence factors 

present in the S. mitis population are currently being considered as 

pneumococcal protein vaccine candidates, and the presence of homologues in 

related species is of detriment to their potential as vaccine candidates, since 

selective pressure from a vaccine may allow acquisition of altered variants of 

these factors by pneumococci, and evasion of vaccines targeting them. A similar 

phenomenon has been observed in the transfer of penicillin resistance gene 

pbp2x from S. mitis to S. pneumoniae, upon exposure to penicillin, resulting in 

penicillin resistant pneumococci (Chi et al., 2007).  

This work discovered a number of pneumococcal islets, with factors shown to be 

essential to pneumococcal virulence, which were absent from the related VGS 

isolates tested. Targeting the essential factors in these regions may be of 

benefit as the possibility of vaccine evasion by acquisition of altered genes 
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would be negated. However, although two islets, the RlrA islet and the PsrP 

islet, have been shown to be involved in pneumococcal virulence (Barocchi et 

al., 2006; Obert et al., 2006), they are not universally present in the 

pneumococcal population. Indeed, the RlrA islet was shown to be present in only 

27-30.6% of pneumococci (Aguiar et al., 2008; Moschioni et al., 2008), whilst the 

PsrP islet was also shown to be variably present in S. pneumoniae isolates (Dr. 

Donald Inverarity, personal communication). It is therefore unsurprising that 

these regions were also absent from related VGS species. As a result of this, 

potential targeting of these regions would require to be as part of a 

multifactorial protein vaccine targeting various pneumococcal virulence factors 

to ensure full coverage. This possibility has been described previously as having 

the most potential for creating a successful protein vaccine (Ogunniyi et al., 

2000; Ogunniyi et al., 2007a). A number of other regions were identified to be 

fully absent from tested isolates, and although less is known about the roles of 

these regions, a number of essential virulence genes were located within them 

(Hava and Camilli, 2002). However, many of the proteins in these regions remain 

hypothetical, and further study may uncover genes in these regions that may be 

of interest as pneumococcal vaccine candidates if they are found to be absent 

from all related VGS isolates. 

A recent study showed that whilst the house-keeping genes in the pneumococcus 

are fairly conserved, shared alleles of 4 house keeping genes (ddl, gdh, rpoB and 

sodA) in S. mitis, S. oralis or S. infantis species were almost non-existent (Kilian 

et al., 2008). This implied that a much larger level of variation was present 

within these species that in the pneumococcus. Furthermore, by normal 

taxonomic methods, the authors demonstrated that many S. mitis isolates did 

not share enough homology to belong to the same species. These results, 

coupled with the observation that pneumococcal genomes were on average 

0.3Mb larger than S. mitis genomes, allowed them to hypothesise that these 

species shared a common, pneumococcus-like ancestor, and that S. mitis, as a 

species, has been evolving towards a fully commensal lifestyle by loss of 

virulence genes (Kilian et al., 2008). The results of the microarray study, with 

large levels of variation present between S. mitis isolates, and pneumococcal 

virulence factors variably distributed within the S. mitis population, appear to 

support with this hypothesis (See appendix II). However, it also seems possible 
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that evolution is occurring in the opposite direction, with the pneumococcus 

evolving away from a commensal ancestor, with S. mitis and S. 

pseudopneumoniae isolates in the process of the same evolution. Although 

results may be used to support either hypothesis, the authors do not address the 

possibility. As a result, further studies are required to determine the 

evolutionary relationships between these species.  

The picture of S. pneumoniae as a human pathogen and related species as 

commensals is blurred by their potential to cause opportunistic diseases 

including endocarditis (Hsu and Lin, 2006), dental abscesses (Wickremesinghe 

and Russell, 1976) and bacteraemia (Han et al., 2006; Hoshino et al., 2005; 

Smith et al., 2004). Furthermore, a number of S. mitis isolates have been 

isolated from the CSF of patients with meningitis, implying that this species may 

also cause opportunistic meningitis (Echeverria et al., 1998; Kutlu et al., 2008). 

This shows that although these species are generally commensal, they possess 

virulence factors that allow them to cause opportunistic disease in certain 

environments, or in hosts with compromising factors. This is supported by results 

which showed no clear difference in virulence factor homologues in VGS isolated 

from disease compared to commensal VGS. This implied that although the 

commensal isolates were not causing opportunistic disease when isolated, they 

may possess the virulence factors to do so under the correct conditions. 

However, recent findings showed that the S. mitis species consisted of many 

different, loosely related lineages (Kilian et al., 2008). It is therefore possible 

that whilst some of these lineages may be able to cause opportunistic disease, 

other lineages have evolved to such an extent as to be fully commensal. By the 

taxonomic methods used, these would all fall under the bracket of S. mitis.  

The PCR validation of 15 genes in S. mitis and S. oralis showed that the 

hybridization reaction was more sensitive with these species. In almost all cases, 

when positive results were obtained, there were fewer positives in the PCR 

validation than the initial hybridization (Table 7.6). This was the opposite to 

what was seen when validating results of pneumococcal hybridizations (Section 

7.2.2, Dr. Donald Inverarity, personal communication). A possible reason for this 

was the level of diversity, which was obviously increased in these isolates when 

compared to the pneumococcus (Figure 7.7). Furthermore, the probes were 

designed against the sequenced genome of the reference pneumococcal isolate 
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TIGR4 (Tettelin et al., 2001), and therefore were not optimised for hybridization 

with related VGS species. Therefore, since the hybridization relied only on one 

probe for a positive result, whilst the PCR required recognition of two primers 

for successful amplification, it was likely that the hybridization reaction would 

be more successful than PCR, as a result of increased diversity in these isolates. 

This, however, does not rule out the use of PCR as a screen for penumococcal 

homologoues, it simply shows that care must be taken to design PCR primers in 

regions with as little variation as possible, to prevent failure of the PCR due to 

high diversity levels.  

As described previously, microarray technology, when used for genome-wide 

analysis, has a number of drawbacks. In this case, as in the HUS study, full 

genome sequencing of a number of isolates from each species would allow a 

much more robust and informative comparison between species. For example, 

whilst homologues of many pneumococcal virulence factors have been identified 

in this study, the level of diversity present in these is not known. Furthermore, 

non-hybridization to the microarray may be as a result of increased diversity in 

the probed region, rather than absence of a homologue. It is known that the 

level of diversity can act as a barrier to homologous recombination in 

pneumococci (Mortier-Barriere et al., 1997). Therefore, although homologues 

are present to pneumococcal genes, the genetic divergence between the 

homologues may be such that homologous recombination between the species is 

not possible. Full genome sequencing would not only allow confirmation of 

homologue presence in these related species, but also determination of the 

diversity present, and likelihood of homologous recombination allowing vaccine 

escape.  

The comparison between hybridized genes in S. pneumoniae, S. 

pseudopneumoniae, S. mitis and S. oralis implied that there was less diversity 

between S. pneumoniae and S. pseudopneumoniae than S. pneumoniae and S. 

mitis or S. oralis (Figure 6.2). These results give support to the hypothesis that 

S. pseudopneumoniae is an independent species, distinct from both S. 

pneumoniae and S. mitis (Arbique et al. 2004, Kilian et al. 2008). However, only 

one S. pseudopneumoniae isolate was tested in this study, and study of further 

isolates would confirm this hypothesis.  
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In conclusion, this study has shown that despite a number of limitations, the use 

of microarray technology can give important insight into the genetic differences 

between isolates of S. pneumoniae. This study identified a number of genes 

differentially regulated in p-HUS isolates, which may play a role in pathogenesis. 

However, the relative clonality of the p-HUS and control isolates, implies that 

although bacterial genetics may be important, other factors such as host 

genetics or environmental factors may play a more significant role in 

pathogenesis of p-HUS. Furthermore, this study shows for the first time that 

pneumococcal microarrays may be used to assess presence of virulence gene 

homologues in related species. A large number of homologues were identified, 

allowing novel insight into the evolutionary relationship between these species 

and the genetic diversity that results in stark differences in pathogenic 

potential. Furthermore, these results should be taken into consideration when 

studying virulence factors as candidates for future protein-based pneumococcal 

vaccines. 
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8.1 Final Discussion 

The initial aim of this project was to explore the diversity present in 

pneumococcal virulence factors, and relate differences to pneumococcal 

disease. The diversity present in the pneumococcal virulence factor Ply was 

found to be greater than expected for a cytoplasmic protein, with the 14 protein 

alleles discovered in this study showing a diversity of 3.3%. This is higher than 

pneumococcal house-keeping genes, where 1-2% variation is observed (Enright 

and Spratt, 1998). However, this level of diversity is significantly lower than in 

surface-exposed pneumococcal virulence factors such as PspA, NanA and PspC 

(Hollingshead et al., 2000; Iannelli et al., 2002; King et al., 2005). The diversity 

present resulted in Ply alleles with varying haemolytic activity, with allele 5 

completely non-haemolytic. We are the first to report a pneumococcal clinical 

isolate producing no recogniseable Ply, due to interruption of the ply gene by 

the insertion sequence IS1515. Furthermore, in Ply allele 12, a point mutation 

resulted in non-recognition by a diagnostic monoclonal antibody, giving rise to 

the possibility of false-negative diagnosis of pneumococcal disease. However, 

the diversity present in the Ply protein should not prevent its use in future 

protein-based pneumococcal vaccines, as all alleles identified were recognised 

by polyclonal antibodies and diversity remains lower than in many other surface-

exposed vaccine candidates.  

The non-haemolytic allele 5 has been documented in serotype 1 isolates by our 

lab previously (Kirkham et al., 2006a). The toxin mutant was shown to be 

harboured by the ST306 clone, which had undergone recent expansion in the 

Scottish serotype 1 IPD population. This study has reported the presence of this 

non-haemolytic variant in a further 8 serotype 1 clones, all closely related to 

ST306, demonstrating that this mutant is wide-spread in the serotype 1 IPD 

population. Furthermore, allele 5 was identified for the first time in the 

dominant clone of serotype 8 pneumococci, as well as related clones. This 

mutant may therefore play a role in driving expansion of these unrelated clones 

within the pneumococcal IPD population. Furthermore, these two serotypes have 

both been associated with rare outbreaks of pneumococcal disease, and the non-

haemolytic toxin harboured by these clones may play a role in this association.  
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The reasons for these associations remain unclear, although results of other 

studies have shown that serotype 1 clones generally cause mild disease 

(Sjostrom et al., 2006), which may be as a result of loss of haemolytic activity in 

certain clones. This loss of severity, and associated patient survival, may 

increase the potential of transmission of these clones, resulting in an apparent 

expansion within the population, as well as tendency to cause outbreaks of IPD. 

It is unclear if a similar phenomenon occurs in serotype 8 clones, but this 

observation may link the non-haemolytic allele to the clonal expansion observed, 

although further study would be required to confirm this. The full sequenced 

genomes of ST306 and related clone ST227 are now available, and comparison of 

these would allow further insight into the genomic differences between them, 

and possibly identify other genetic differences involved in driving the observed 

clonal expansion. 

Construction of an unmarked Ply knock-out in a D39 background allowed 

preliminary study into the importance of Ply in pneumococcal pneumonia. 

Results showed that this mutant was less virulent that wild-type, implicating Ply 

as important in pneumonia, and agreeing with previous studies (Wellmer et al., 

2002; Winter et al., 1997). Furthermore, comparison with a non-haemolytic 

isolate showed no difference in virulence, implying that the haemolytic property 

of the toxin, in this background and disease model, is the most important 

property of Ply. However, further study including in vivo imaging studies, would 

allow greater insight into the differences in pathogencity of these mutants, and 

elucidate further the roles of Ply in virulence. In addition, this unmarked Ply 

mutant is now used routinely in our laboratory for a variety of Ply studies. 

A previous study reported high levels of diversity within the NanA protein (King 

et al., 2005). This study confirms these high levels of diversity, with diversity at 

13.7% of amino acid positions, mosaic blocks and insertions identified. From 33 

isolates, 18 protein alleles identified. It was thought that this high level of 

diversity may restrict the use of NanA in pneumococcal vaccines, as it may not 

afford full cross-serotype protection. However, antibodies raised against wild-

type NanA recognised 4 highly divergent alleles, implying that the diversity 

present in the NanA protein should not restrict the use of this virulence factor as 

a vaccine candidate with the potential of cross-serotype protection. Mapping of 

mutations onto the solved structure of the enzymatic domain of NanA allowed 
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identification of mutations in this region, and purification of alleles showed up 

to 7-fold differences in activity between different alleles. Furthermore, a novel 

insertion region within the NanA active site was identified, and mosaic block C 

was found to map to this region. Two distinct variants of the region were 

discovered, with striking differences in surface shape and electrostatic 

potential, although the role of this region in pneumococcal pathogenesis remains 

unknown.  

The activity of pneumococcal neuraminidases has been implicated as important 

in pathogenesis of p-HUS, which displays high mortality rates compared to 

typical HUS (Klein et al., 1977; Vanderkooi et al., 2003). In order to explore this 

hypothesis further, and attempt to link specific NanA amino acid alleles to 

pneumococcal disease, the importance of NanA in the progression of p-HUS was 

investigated. However, results showed there was no correlation between NanA 

amino acid allele or activity and ability to cause p-HUS. Therefore, although 

neuraminidase activity may be required for pneumococci to cause p-HUS, these 

results imply that other bacterial factors, host genetics or environmental factors 

may play a more important role.  

Homologues of Ply and NanA have been reported in related VGS species 

previously, although these are not well characterised (Byers et al., 2000; King et 

al., 2005; Neeleman et al., 2004; Whatmore et al., 2000). This study has named 

and characterised a new CDC in a subset of S. mitis isolates, called Mly. This 

novel toxin was shown to be genetically distinct from Ply, whilst actively 

secreted in a number of isolates. Furthermore, this study began characterization 

of a toxin in S. pseudopneumoniae, termed pPly. This toxin was more closely 

linked to Mly than Ply. A NanA homologue was also identified for the first time in 

isolates of S. mitis and S. pseudopneumoniae, although the NanA proteins in 

these species were very closely related to pneumococcal NanA. The roles of 

these homologues in these commensal species remains unknown, however, the 

relative conservation of NanA homologues compared to Ply homologues implies it 

may play a more significant role in these commensal species. This may be due to 

the importance of NanA in adherence and colonisation of the bacteria, whilst Ply 

is more important in disease. Furthermore, the presence of these homologues in 

commensal Streptococci, coupled with the ability of the pneumococcus to alter 

its genetic information by horizontal gene transfer, gives rise to the possibility of 
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evasion of pneumococcal vaccines targeting these virulence factors. This is a 

concrete threat, with evasion of PCV7 by capsular switch between pneumococci 

already a major problem in the USA (Brueggemann et al., 2007; Pai et al., 

2005b), and an increase in penicillin resistance in pneumococci due to 

interspecies recombination (Chi et al., 2007). These findings demonstrate that 

the evasion of a vaccine targeting a virulence factor with high levels of diversity, 

or homologues in related species is possibly due to the remarkable plasticity of 

the pneumococcal genome. 

Structural studies of the pneumococcal enzyme NanA showed that despite <10% 

sequence similarity, the enzymatic β–propeller of pneumococcal NanA shared 

striking structural homology with influenza NA. This study presents the novel 

discovery that pneumococcal NanA is inhibited in vitro by specific viral NA 

inhibitors. In particular, OC showed high potency in inhibiting wild type NanA, 

with an IC50 of 1.608µM. However, further studies are required to determine 

accurate levels of inhibition of other pneumococcal NanA alleles with this 

inhibitor. This novel discovery was further investigated in an in vivo model of 

pneumococcal pneumonia, with pre-treatment with OC delaying the onset of 

pneumonia and reducing severity of symptoms. Conversely, pre-treatment with 

purified NanA increased severity of symptoms. These findings offer further 

insight into the synergistic relationship between influenza and the 

pneumococcus, as the similarity between these enzymes adds weight to the 

hypothesis that influenza NA may expose host receptors, priming the host for 

pneumococcal infection (McCullers and Bartmess, 2003). Furthermore, although 

further studies are required, these results confirm that OC has potential for 

treatment of secondary pneumococcal pneumonia, and for the first time 

demonstrate that this inhibitor has inhibitory effects on the secondary as well as 

primary pathogen in this lethal synergism. Finally, optimization of this drug to 

pneumococcal NanA may increase its potential as a pneumocidal drug, and 

derivatives may also have a role in preventing other pneumococcal diseases, 

such as p-HUS, where NanA is thought to play an important role.  

Further to these studies exploring diversity within individual virulence factors, 

microarray technology was used to explore genetic diversity at a full genome 

level. Although no differences in genetic content were observed between p-HUS 
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isolates and matched controls, a number of differences in gene expression were 

observed. These may play a role in allowing certain clones to cause p-HUS. Two 

of these genes, ghdA and guaA play roles in glutamate and glutamine 

metabolism, and differential regulation resulted in increased metabolism in p-

HUS isolates. Expression of gdhA is repressed by high concentrations of 

ammonium, circulating in p-HUS patients. Nevertheless, this gene is up-

regulated in p-HUS isolates, implying control by another factor. Although further 

study is required to unravel the pathogenesis of p-HUS, this study has highlighted 

several candidate genes with potential roles in p-HUS pathogenesis and provided 

a baseline for further study to elucidate the mechanisms of p-HUS pathogenesis. 

Understanding the pathogenic methods employed by the pneumococcus will 

allow more effective diagnosis and treatment of p-HUS. 

Microarray studies of related VGS species with pneumococcal microarrays gave 

novel insight into the relationship between these species. Species of S. mitis and 

S. oralis were shown to possess homologues to 72-84% of pneumococcal genes, 

whilst S. pseudopneumoniae possessed 91.4%. This result supported previous 

findings that S. pseudopneumoniae is a species distinct from both S. pneumoniae 

and S. mitis (Arbique et al., 2004). Furthermore, this study reports the presence 

of many pneumococcal virulence factors in these commensal relatives. The 

scattered distribution of these virulence factors in commensal species supports 

the hypothesis that these species are evolving towards commensality from a 

pathogenic ancestor (Kilian et al., 2008), although evolution in the other 

direction is also a possibility. Furthermore, these results can inform on the 

potential of vaccine escape by horizontal gene transfer, and should be 

considered when evaluating the potential of specific pneumococcal virulence 

factors as vaccine candidates. 

To conclude, this study has offered numerous novel insights into the biology and 

pathogenesis of the pneumococcus. Distribution and diversity studies of Ply and 

NanA presented here contribute significantly to the body of knowledge on these 

important virulence factors, as well as offering insight for pneumococcal vaccine 

design. Notably, the diversity present in both Ply and NanA should not restrict 

their use as pneumococcal vaccine candidates. Identification of pneumococcal 

homologues in related commensal species has furthered understanding of the 

relationships between these species, whilst also adding to our understanding of 
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S. mitis biology, and furthering knowledge for pneumococcal vaccine design. 

Furthermore, this work has begun to unravel the pathogenesis of p-HUS, 

furthered our understanding of the lethal synergism between the pneumococcus 

and influenza, and identified potential inhibitors to co-treat these infections.  
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Appendices 

 

• Appendices can be found on CD at the back of this thesis. The contents of 

the Appendices are as follows: 

 

• Appendix I – Sequence alignments and sequence information. 

1. Full spreadsheet of Ply protein alleles discovered in large-scale 

screen (Chapter 3). 

2. DNA alignment of ply alleles of all isolates fully sequenced during 

study, with the exception of S1-11, possessing the insertion 

sequence IS1515 (47 isolates) (Chapter 3). 

3. Full DNA alignment of nanA sequences (Chapter 4). 

4. mly alleles from S. mitis aligned to ply allele 1 from S. pneumoniae 

D39 (Chapter 5). 

5. pply alleles from S. pseudopneumoniae aligned to ply allele 1 from 

S. pneumoniae D39 (Chapter 5). 

• Appendix II – Microarray alignments. 

1. General layout of spreadsheets - Genes aligned in order of presence 

in reference TIGR4 genome, with those highlighted in blue present 

in the test isolate, and those in red absent. Genes highlighted in 

colour are essential for pneumococcal pneumonia in a mouse model 

(Hava and Camilli, 2002). 

2. Full alignment of comparative genomic hybridization results from 6 

serotype 19A, ST199 isolates in p-HUS study (4 p-HUS isolates and 2 

controls, Chapter 7). 

3. Full alignment of comparative genomic hybridization results from 5 

S. mitis and 1 S. oralis isolates (Chapter 7) 

4. Full alignment of comparative genomic hybridization results from 1 

S. pseudopneumoniae isolate (Chapter 7) 

• PDF copies of full thesis and associated publications (see next page) are 

also included. 
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