
 
 
 

The A2A Adenosine Receptor:  its role in 
suppressing vascular inflammation and its 

regulation by phosphorylation 
 
 

Gillian Ruth Milne M.Res. 
 
 

Thesis submitted for the Degree of Doctor of Philosophy 
 

September 2008 
 
 
 
 
 

 
 
 
 
 
 

Division of Biochemistry & Molecular Biology 
Faculty of Biomedical & Life Sciences 

University of Glasgow 
 

 



2 

Abstract 
 
Endothelial inflammation leading to vascular dysfunction is a major contributor to the 

development of atherosclerosis.  The release of adenosine at sites of inflammation 

represents an endogenous mechanism for limiting excessive inflammation and tissue 

damage. The majority of the anti-inflammatory effects of adenosine are mediated by 

signalling through the A2AAR and activation of the A2AAR has been shown to be 

protective in numerous models of inflammatory disease.  Little is known about the 

molecular mechanisms behind these effects.  However, in vitro studies using cultured 

endothelial cells indicate that signalling through the A2AAR can suppress activation of the 

NFκB and JAK/STAT proinflammatory signalling pathways.  NFκB appears to be primed 

for activation in atherosclerosis-prone regions of the aorta indicating that suppression of 

NFκB signalling may protect against the development of atherosclerosis.  In this study, the 

role of the A2AAR in regulating NFκB and JAK/STAT signalling pathway activation in the 

aorta was studied using A2AAR-deficient mice subjected to an LPS-induced model of 

septic shock.  In response to LPS treatment, these mice displayed markedly elevated 

plasma levels of the pro-inflammatory cytokines TNFα, IL-6, IL-1β and GMCSF 

compared to wild-type mice.  Consistent with this finding, heightened activation of the 

NFκB and JAK/STAT pathways was detected in aortic protein samples from A2AAR-

deficient mice as demonstrated by increased levels of the phosphorylated forms of IκBα 

and STAT1.  However, expression of the NFκB and STAT1-regulated genes ICAM-1, 

VCAM-1 and TAP-1 was unaffected indicating the involvement of compensatory negative 

feedback mechanisms.  These findings confirm a role for the A2AAR in regulation of pro-

inflammatory signalling in the aorta.  Further analysis of mechanisms which mediate this 

response may reveal new targets for therapeutic intervention to suppress inflammation in 

inflammatory disorders such as atherosclerosis. 

While the wide range of anti-inflammatory and tissue-protective responses elicited by the 

A2AAR have been well documented, the molecular regulation of the A2AAR has been less 

well studied.  The presence of several serine and threonine residues in the extended C-

terminal tail of the A2AAR suggests that it may be regulated by phosphorylation events 

occurring in this region.  Indeed, the canine A2AAR is phosphorylated in response to PKC 

activation.  Interestingly, several proteins have recently been identified as being able to 

interact with the C-terminal tail of the A2AAR.  However, how these interactions are 

regulated is not known.  One of the aims of this study was to characterise phosphorylation 
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of the human A2AAR and to determine whether this could provide a means for regulating 

the binding of C-terminal interacting proteins.  This was examined using human umbilical 

vein endothelial cells infected with recombinant adenovirus encoding the human A2AAR.  

It was found that phosphorylation of the human A2AAR could be induced in HUVECs by 

treatment with PMA or by stimulation of endogenous histamine H1 receptors.  This was 

due to activation of PKC, as phosphorylation was inhibited by the PKC inhibitor 

GF109203X and by depletion of PKC following chronic treatment with PMA.  Treatment 

of cells with the calcium-chelating agent BAPTA/AM did not inhibit PMA-induced 

phosphorylation indicating that a calcium-insensitive isoform of PKC was responsible.  

Meanwhile an siRNA-mediated gene silencing approach confirmed that PKCε was not 

responsible indicating the involvement of either PKCδ or PKCθ.  Previously reported 

interactions between the A2AAR and TRAX and 14-3-3τ were confirmed in vitro by GST 

pull-down assay.  Binding of 14-3-3τ to the A2AAR appeared to be unaffected by treatment 

of HUVECs with PMA.  However, A2AAR complex formation with TRAX was 

significantly reduced in samples from PMA-stimulated cells.  These findings indicate that 

PKC-mediated phosphorylation may represent a means of regulating which proteins can 

interact with the C-terminal tail of the A2AAR.  This may allow the A2AAR to initiate 

distinct signalling pathways depending on the cellular context in order to achieve the 

appropriate response. 
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1 Introduction 

1.1 Vascular inflammation 

1.1.1 Inflammation 

The process of inflammation is the immediate response of tissues to cellular injury or 

infection and is essential for the maintenance of tissue homeostasis and mediation of 

immune responses.  Clinically, inflammation is characterised by heat, pain, swelling and 

redness, symptoms caused by increased blood flow to the affected area, leakage of fluid 

into tissues and the accumulation of activated leukocytes.  The actions of cytotoxic 

lymphocytes and inflammatory mediators serve to remove pathogens and damaged tissues, 

clearing the way for healing and restoration of function (Murphy et al., 2008). 

Inflammation is initiated on activation of the innate immune system by microbes or 

damaged cells.  Macrophages and neutrophils have germline-encoded cell surface 

receptors that recognise patterns of molecules that are common to many pathogens and the 

products released from damaged or dying cells.  Receptor ligation triggers phagocytosis 

and induces changes in gene expression such as an increase in production of cytokines and 

other inflammatory mediators which recruit and activate neutrophils and other 

lymphocytes (Han and Ulevitch, 2005).  Inflammation can also be triggered through 

activation of the complement cascade as the first component, C1q, can interact directly 

with the surface of certain pathogens.  Complement is a series of proteases which act 

sequentially to produce fragments that are involved in clearing pathogens either through 

opsonisation or by direct lysis.  The cleavage events also produce fragments including C3a, 

C4a and C5a which are inflammatory mediators (Tomlinson, 1993). 

1.1.2 The role of the vascular endothelium 

A crucial site in the development of the inflammatory response is the vascular 

endothelium, a single-celled layer that forms the lining of all blood vessels (Hurairah and 

Ferro, 2004; Michiels, 2003).  In one capacity the vascular endothelium acts as a barrier 

between blood and neighbouring tissues, allowing the exchange of nutrients while in 

normal conditions, limiting the passage of blood cells and plasma proteins.  In addition, the 

endothelium plays a critical regulatory role in many processes required for vascular 
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homeostasis including maintenance of vascular tone, humoral coagulation, angiogenesis 

and inflammation (Hurairah and Ferro, 2004; Michiels, 2003). 

Endothelial cells of the microvasculature are the site of some of the first events in the 

inflammatory response (Muller, 2003).  On activation by pathogens or damaged cells in 

tissues, mast cells, macrophages and neutrophils produce cytokines such as interleukin (IL) 

-1, IL-6 and tumour necrosis factor-α (TNFα) and other inflammatory mediators such as 

histamine and bradykinin which act on local blood vessels to stimulate vasodilatation, 

increase vessel wall permeability and activate the endothelium to express cell adhesion 

molecules.  These bind reciprocal molecules on circulating lymphocytes, causing them to 

adhere to the endothelium before migrating to the site of injury attracted by an increasing 

concentration gradient of chemotactic cytokines such as macrophage chemotactic protein 

(MCP-1;McEver, 2001).  As well as these local effects, cytokines produced by 

macrophages and neutrophils stimulate endothelial and fibroblast cells to trigger a 

secondary wave of cytokine secretion.  These act systemically to activate the “acute phase 

response” with results such as induction of fever and changes in levels of proteins secreted 

by the liver such as C-reactive protein (CRP), complement proteins and fibrinogen which 

contribute to non-specific defences (Baumann and Gauldie, 1994). 

1.1.3 Activation of the endothelium and leukocyte recruitment 

The migration of leukocytes from the vascular system to a site of injury or infection is a 

key event in the process of inflammation.  Inflammatory mediators including the cytokines, 

IL-1, IL-6 and tumour necrosis factor-α, play a central role in recruiting large numbers of 

neutrophils and monocytes to sites of infection and initiating innate and adaptive immune 

responses (Murphy et al., 2008).  The process of leukocyte recruitment follows a series of 

well-characterised steps which result in their adhesion to the endothelium, extravasation 

and migration into tissues.  In response to inflammatory mediators, local small blood 

vessels become dilated which increases blood flow and slows the course of circulating 

lymphocytes, allowing them to make contacts with vascular endothelial cells before 

adhering to and crossing the endothelium (Muller, 2003; figure 1.1). 

The endothelium is not normally adhesive and so for interactions between cells to occur, it 

must be activated to express adhesion molecules.  The first to appear are the selectins  
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Figure 1.1 Recruitment of leukocytes to sites of inflammation 

The process of leukocyte recruitment follows a series of well-characterised steps which 

result in their adhesion to the endothelium, extravasation and migration.  Initially, 

leukocytes roll along the endothelium as a result of weak and reversible interactions 

between P-selectin and E-selectin on endothelium and sulphated sialyl-Lewisx moieties 

of leukocyte glycoproteins such as P-selectin glycoprotein-1 (PSGL-1).  Chemokines 

such as macrophage chemotactic protein-1 (MCP-1) and IL-8 then activate β-integrins 

including leukocyte function associated antigen (LFA-1) and Mac-1 on leukocytes, 

which allows them to make firmer contacts with receptors such as intracellular adhesion 

molecule-1 (ICAM-1) on the endothelium.  Following adhesion, leukocytes transmigrate 

out of the blood vessel between or through endothelial cells with the help of other 

molecules such as platelet-endothelial-cell adhesion molecule-1 (PECAM-1) and CD99.  

In order to cross the basement membrane, leukocytes secrete matrix metalloproteinase 

enzymes and migrate following an increasing gradient of chemokines secreted by cells 

at the site of infection.  (Figure from Muller, 2002) 
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(Carlos and Harlan, 1994).  In response to mediators such as histamine (Geng et al., 1990), 

P-selectin is rapidly translocated from intracellular Weibel-Palade bodies to the cell 

membrane while stimuli such as lipopolysaccahride (LPS), IL-1 and TNF-α subsequently 

induce the expression of E-selectin with maximal effect after 3-4 hours (Bevilacqua et al., 

1987).  Selectins interact with sulphated sialyl-Lewisx moieties of certain leukocyte 

glycoproteins, the major ligand for P- and L-selectin being P-selectin glycoprotein-1 

(PSGL-1; McEver, 2001).  This interaction is weak and reversible and so leukocytes 

appear to roll along the endothelium, pulled by the shearing force of the blood.  This 

increases their probability of coming into contact with chemokines immobilised on the 

endothelial cell surface (Jung et al., 1998).  Leukocytes express β-integrins, for example, 

leukocyte function associated antigen (LFA-1) and Mac-1, which in response to 

chemokines such as IL-8 and macrophage chemotactic protein-1 (MCP-1), undergo a 

conformational change which increases their affinity for receptors such as intercellular 

adhesion molecule-1 (ICAM-1) on the endothelium (Harris et al., 2000).  Rolling is 

arrested and leukocytes are able to transmigrate out of the blood vessel between or through 

endothelial cells with the help of other molecules such as platelet endothelial cell adhesion 

molecule-1 (PECAM-1) and CD99 (Muller, 2003).  In order to cross the basement 

membrane, leukocytes secrete matrix metalloproteinase enzymes and migrate following an 

increasing gradient of chemokines secreted by cells at the site of infection (McIntyre et al., 

2003). 

1.2 The vascular endothelium and disease 

Under normal conditions, the endothelium exhibits an anti-inflammatory, anti-coagulatory, 

anti-thrombotic state (Hurairah and Ferro, 2004; Michiels, 2003).  This ensures that 

inflammatory responses are short-lived, resulting in the containment of infection and 

elimination of pathogens followed by reversion of the endothelium back to its resting 

phenotype.  However, in certain circumstances, the endothelium becomes dysfunctional 

and the balance between the potentially damaging effects of the inflammatory response and 

the protective mechanisms exhibited by the endothelium is lost.  In this way, endothelial 

inflammation contributes to the progression of numerous diseases including atherosclerosis 

(Anderson et al., 1995), sepsis (Zimmerman et al., 1999) and systemic lupus 

erythematosus (D’Cruz, 1998). 
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1.2.1 Vascular dysfunction 

The normal, healthy endothelium regulates vascular homeostasis through maintenance of 

vascular tone and control of humoral coagulation, platelet function, smooth muscle growth 

and leukocyte invasion (Trepels et al., 2006).  Maintenance of vascular tone is achieved 

through synthesis and release of a balance of vasodilatory substances, such as nitric oxide 

(NO) and  prostacyclin, and vasoconstrictory substances such as endothelin-1 (ET-1) and 

angiotensin II (ATII; Hurairah and Ferro, 2004).  In addition to their roles in controlling 

vascular tone, many of the vasodilators produced also play protective roles while the 

vasoconstrictors often promote inflammatory and atherogenic responses.  Therefore, any 

damage to the endothelium which alters the balance of these mediators results in vascular 

dysfunction.  Vascular dysfunction is clinically defined as impairment of endothelium-

dependent vasodilation but is also characterised by conversion of the endothelium to an 

“activated” phenotype associated with increased endothelial permeability and leukocyte 

adhesion and production of pro-inflammatory cytokines (Davignon and Ganz, 2004; 

Anderson, 1999).  Many of these effects are due to the loss of NO activity.  NO is the 

major vasodilatory substance in the endothelium.  However, it also has other protective 

roles in inhibiting inflammatory responses.  For example, NO opposes the actions of ATII 

to suppress adhesion molecule expression and inhibit leukocyte adhesion (Nabah et al., 

2005).  In addition, NO works synergistically with prostacyclin to inhibit platelet 

aggregation (de Graaf et al., 1992) and suppresses proliferation of smooth muscle cells 

(Garg and Hassid, 1989).  Vascular dysfunction leads to the development of a pro-

inflammatory, pro-thrombotic environment within the vascular system.  Therefore, it is 

perhaps not surprising that vascular dysfunction is strongly implicated in the development 

of vascular diseases and in particular, atherosclerosis (Davignon and Ganz, 2004; 

Landemesser et al., 2004; Anderson, 1999). 

1.2.2 Atherosclerosis 

Atherosclerosis can be considered to be a chronic inflammatory disease, characterised by 

the accumulation of macrophages, smooth muscle cells and lymphocytes in the arterial 

wall in response to pro-inflammatory stimuli.  This process leads to the development of 

lipid-rich lesions known as atherosclerotic plaques.  Over time, these plaques may evolve 

to occlude the artery lumen or alternatively they may rupture, triggering thrombosis which 

is often followed by myocardial infarction or stroke (Langheinrich and Bohle, 2005; Glass 

and Witzum, 2001). 
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Vascular dysfunction is generally accepted as the main predisposing factor towards 

atherosclerosis and is detected prior to the appearance of clinical symptoms (Anderson, 

1999).  Numerous different stimuli may activate the endothelium during the early stages of 

vascular dysfunction including modified low-density lipoproteins (mLDL), viruses, 

bacterial pathogens and free radicals.  Initiation of atherosclerotic plaque formation is 

characterised by the infiltration of LDL into the artery wall and its modification through 

oxidation or enzymatic attack (Stoll and Bendszus, 2006).  Macrophages recruited to the 

activated endothelium take up mLDL via toll-like receptors (TLRs) and scavenger 

receptors (Stoll and Bendszus, 2006).  This initially serves a protective role.  However, 

with continued accumulation of LDL, macrophages develop into lipid-lain foam cells and 

contribute to the formation of fatty streaks in the vessel wall which precede the 

development of atherosclerotic plaques (Stary et al., 1994).  The progression to a mature 

plaque occurs as a result of the immigration of smooth muscle cells into the subendothelial 

space.  Here, smooth muscle cells may proliferate and take up modified lipoproteins to 

contribute to foam cell formation while they also secrete extracellular matrix proteins 

which leads to the production of a fibrous cap over the lesion (Hansson, 2005; Glass and 

Witzum, 2001). 

Inflammatory processes are intricately involved at every stage of plaque development.  

This is perhaps not surprising as, of the numerous stimuli which may activate the 

endothelium in the early stages of vascular dysfunction, many have the capacity to activate 

the nuclear factor κB (NFκB) pathway which is the major signalling pathway involved in 

transcriptional control of inflammatory genes (de Winther et al., 2005).  In addition, the 

activated endothelium produces pro-inflammatory cytokines such as TNFα, IL-1 and IL-6.  

These are all NFκB-regulated gene products while TNFα and IL-1 also activate the NFκB 

pathway, thereby amplifying the inflammatory response.  Another example of an NFκB-

regulated gene is vascular cell adhesion molecule-1 (VCAM-1) which is believed to be the 

major adhesion molecule responsible for adhesion of monocytes to the endothelium during 

the early stages of lesion formation.  In mouse models of atherosclerosis, VCAM-1 

expression is upregulated specifically in areas prone to lesion formation (Cybulsky and 

Gimbrone, 1991).  Furthermore, atherosclerosis-prone mice deficient in VCAM-1 

expression have been found to display reduced lesion formation compared to mice 

expressing normal levels of VCAM-1 (Cybulsky et al., 2001).  Similarly, the adhesion 

molecules P-selectin and ICAM-1 have been shown to be important in mouse models of 

atherosclerosis at later stages of monocyte recruitment (Collins et al., 2000; Cybulsky et 
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al., 2001).  Following attachment to the endothelium, monocytes exit the vessel lumen by 

diapedesis, attracted by chemokines such as MCP-1, which is detected at elevated levels in 

both human and animal atherosclerotic lesions (Yla-Herttuala et al., 1991).  This is a 

crucial step in the development of atherosclerosis.  Once resident in the vessel wall, 

monocytes are induced to differentiate to macrophages by macrophage colony-stimulating 

factor (MCSF) and granulocyte macrophage colony-stimulating factor (GMCSF).  The 

roles of these cytokines in atherosclerosis progression is complex as demonstrated by the 

fact that administration and deficiency have been found to have similar effects in different 

studies (Hamilton, 2008).  This is perhaps due to the nature of the macrophage-mediated 

response in that clearance of lipids by activated macrophages is initially protective but at 

the same time leads to foam cell formation, thereby promoting lesion formation.  Activated 

macrophages also release pro-inflammatory cytokines that amplify local inflammation in 

the lesion.  In addition to macrophages, other immune cells such as mast cells, dendritic 

cells and T cells are involved in the development of the mature plaque and interactions 

between all of these cell types contribute to the development of a chronic inflammatory 

state (Hansson, 2005; Glass and Witzum, 2001).  T cells found in atherosclerotic plaques 

are generally CD4+ T cells which are activated by antigens including mLDL presented by 

antigen presenting cells such as macrophages and dendritic cells.   Cytokines expressed 

within the lesion, for example IL-12, promote differentiation into Th1 cells which produce 

the macrophage-activating cytokine IFNγ (Hansson, 2005). 

As discussed above, many of the inflammatory mediators and adhesion molecules involved 

in development of atherosclerosis are regulated by signalling through the NFκB pathway 

which is activated either by exogenous stimuli or by the pro-inflammatory cytokines IL-1 

and TNFα.  However, many are also targets of the Janus kinase/signal transducer and 

activator of transcription (JAK/STAT) pathway.  The majority of cytokines signal through 

the JAK/STAT pathway to mediate effects on gene transcription that can be either pro- or 

anti-inflammatory.  In the context of atherosclerosis, the pro-inflammatory role of IL-6 has 

been most extensively studied due to substantial evidence indicating its involvement in the 

disease process.  For example, elevated levels of IL-6 and one of its target gene products, 

C-reactive protein (CRP), are associated with the increased risk of cardiovascular disease 

and events such as myocardial infarction (Tzoulaki et al., 2005; Ridker et al., 2000).  In 

addition, both IL-6 and CRP have been detected in atherosclerotic lesions in humans and in 

animal models (Torzewski et al., 2000; Sukovich et al., 1998; Ikeda et al., 1992).  IL-6 is 

released by macrophages in the first steps of acute inflammation (Naka et al., 2002) and at 

later stages of atherosclerotic plaque development by endothelial cells and smooth muscle 
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cells (Hansson, 2005).  The endothelium is largely unresponsive to IL-6 in normal 

circumstances because it only expresses the gp130 subunit of the IL-6 receptor whilst 

initiation of IL-6 signalling requires the presence of both gp130 and an additional 

component termed the IL-6 α receptor (IL-6Rα; Kallen, 2002).  However, a soluble form 

of the IL-6Rα, shed by neighbouring monocytes or macrophages, can bind IL-6 and form a 

complex with gp130 on endothelial cells to allow them to respond (Marin et al., 2001).  By 

similar means, cultured endothelial cells have been found to respond to a combination of 

IL-6 and sIL-6Rα resulting in the upregulation of VCAM-1, ICAM-1 and E-selectin and 

release of the chemokines MCP-1 and IL-8, indicating a potential role for IL-6 in 

promoting leukocyte recruitment during atherogenesis (Modur et al., 1997; Romano et al., 

1997).  IL-6 also has effects on monocytes and macrophages, which express both gp130 

and the IL-6Rα, including stimulating their differentiation from monocytes to 

macrophages (Chomarat et al., 2000).  In addition, IL-6 stimulates smooth muscle cells 

both directly and by upregulating gp130 expression, thereby increasing their 

responsiveness to IL-6 (Klouche et al., 1999).  This induces smooth muscle cell 

proliferation, upregulates expression of ICAM-1 and MCP-1 and promotes foam cell 

formation (Klouche et al., 1999), providing further evidence of the pro-atherogenic 

properties of IL-6. 

1.3 Pro-inflammatory signalling 

The process of atherogenesis is a complex multi-step process involving many different cell 

types which, directed by numerous pro-inflammatory mediators, contribute to the 

progression of disease.  Traditionally, therapies for atherosclerosis have targeted 

hypercholesterolaemia owing to the central role of mLDL in initiating lesion formation.  

However, the recognition of atherosclerosis as an inflammatory disease indicates that 

modulation of inflammatory processes may provide a more useful means of limiting 

disease progression.  As described above, many key molecules involved in the critical 

steps of lesion formation are regulated by two major pro-inflammatory signalling 

pathways: the NFκB pathway and the JAK/STAT pathway.  Therefore, studying these 

signalling pathways and the mechanisms which regulate them will provide insights into the 

specific effector mechanisms which contribute to the development of atherosclerosis and 

allow identification of potential targets for novel therapies. 
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1.3.1 The NFκκκκB pathway 

NFκB is the collective name for a family of inducible, dimeric transcription factors found 

in the cytoplasm of most cell types.  In resting cells, NFκB is retained in an inactive state 

through association with a family of inhibitory proteins known as IκBs which prevent its 

translocation to the nucleus (figure 1.2).  NFκB activation occurs in response to a wide 

variety of stimuli including pro-inflammatory cytokines such as TNFα and IL-1, bacterial 

antigens such as LPS, viral proteins, double-stranded RNA and physical and chemical 

stresses (Karin and Ben-Neriah, 2000).  These stimuli ligate a variety of receptors to 

initiate signalling pathways which converge on the IκB kinase complex (IKK).  On 

activation, IKK phosphorylates IκB on two specific serine residues.  Phosphorylated IκB is 

then recognised and ubiquitinated by members of the Skp1-Cullin-F-box (SCF) family of 

E3 ubiquitin ligases and targeted for degradation by the proteasome.  This frees NFκB to 

enter the nucleus and bind to the promoter or enhancer regions of specific target genes 

(Hayden and Ghosh, 2004; Karin and Ben-Neriah, 2000). 

1.3.1.1 NFκκκκB 

NFκB represents a family of structurally-related proteins which exist in resting cells as 

homo- or heterodimers bound to the inhibitory protein IκB.  There are five members of this 

family in mammals: RelA (p65), RelB, NFκB1 (p50 and its precursor p105), NFκB2 (p52 

and its precursor p100) and c-Rel.  All of these proteins share an N-terminal 300 amino 

acid conserved region known as the Rel homology domain (RHD) which mediates their 

DNA-binding, dimerisation and interaction with IκB.  A nuclear localisation sequence 

(NLS) is also contained within the RHD (Ghosh et al., 1998; Verma et al., 1995).  

Dimerisation is required for DNA binding and numerous combinations of Rel proteins 

have been described.  These exert different effects on transcription of target genes by 

binding to κB sites with the consensus sequence GGGRNNYYCC (where R is purine and 

Y is pyrimidine) with different affinities (Ghosh et al., 1998; Verma et al., 1995).  

p65/RelA, RelB and c-Rel have transcriptional activation domains (TAD) which are 

required for transcriptional activity (Blair et al., 1994; Rysek et al., 1992; Schmitz et al., 

1994).  However, dimers consisting only of Rel proteins that lack TADs may act to 

suppress transcription.   For example, p50/p50 homodimers have been found to suppress 

expression of NFκB-regulated genes in unstimulated cells by binding histone deacetylase 

complexes which silence transcription (Zhong et al., 2002).  The most abundant and the  



Gillian R Milne, 2008  Chapter 1, 28 

IκBα
p

Ub
Ub

Ub

IκBα

p65p50

Inducing stimulus 
e.g. TNFα, LPS

IκB kinase

IκBα
p

p65p50

p65p50

p65p50

Ubiquitination

Degradation by 
proteasome

MCP-1 
VCAM-1 
E-selctin

Nucleus

Cytosol

IκBα
p

Ub
Ub

Ub

IκBα

p65p50 p65p50

Inducing stimulus 
e.g. TNFα, LPS

IκB kinase

IκBα
p

p65p50 p65p50

p65p50 p65p50

p65p50 p65p50

Ubiquitination

Degradation by 
proteasome

MCP-1 
VCAM-1 
E-selctin

Nucleus

Cytosol

Figure 1.2 Schematic model of NFκκκκB activation 

In resting cells, NFκB is retained in an inactive state through association with IκBα.   

NFκB activation occurs in response to a wide variety of stimuli including pro-

inflammatory cytokines such as TNFα and IL-1 which initiate signalling pathways that 

converge on the IκB kinase complex (IKK).  On activation, IKK phosphorylates IκB on 

two specific serine residues (Ser32 and Ser36).  Phosphorylated IκB is then recognised and 

ubiquitinated by members of the Skp1-Cullin-F-box (SCF) family of E3 ubiquitin ligases.  

Ubiquitinated IκBα is recognised by the 26S proteasome and degraded.  This frees NFκB 

to enter the nucleus and bind to the promoter or enhancer regions of specific target genes.
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best well characterised NFκB dimer is p65/p50.  The term NFκB is therefore often used 

synonymously with p65/p50 and so far, mechanisms of regulation appear to be common to 

different complexes.  However, dimers may show distinct preferences for binding 

particular IκBs (Karin and Ben-Neria, 2000; Ghosh et al., 1998). 

1.3.1.2 Regulation of NFκκκκB by IκκκκB 

NFκB activity is regulated by its inhibitory protein IκB, which binds to NFκB and masks 

its nuclear localisation sequence (NLS) thereby inhibiting its translocation to the nucleus. 

The IκB family includes IκBα, IκBβ, IκBγ, IκBε, Bcl-3 and IκBζ in higher vertebrates 

and the Drosophila protein Cactus (Yamazaki et al., 2001; Ghosh et al., 1998).  Two 

additional members are formed from the processing of the NFκB precursor proteins p105 

and p100 (Rothwarf and Karin, 1999).  IκB family members are characterised by the 

presence of either six or seven ankyrin repeats within their sequences.  These are stretches 

of a 30-34 amino acids which form stacked helix-loop-helix structures, representing one of 

the most common protein-protein interaction domains in nature (Li et al., 2006).  Specific 

interactions occur between the ankyrin repeats of IκB proteins and the RHDs in NFκB, 

resulting in the masking of the NLS in NFκB. 

Only IκBα, IκBβ and IκBε have N-term regulatory regions which are required for stimuli-

induced degradation (Karin and Ben-Neriah, 2000).  IκBα has been most well 

characterised.  It shares a common domain structure with IκBβ consisting of an N-terminal 

regulatory region, which is phosphorylated in response to stimuli, a central ankyrin repeat 

domain and a C-terminal PEST sequence which is involved in regulation of protein 

turnover (Ghosh et al., 1998; Verma et al., 1995).  In addition, IκBα also contains leucine-

rich nuclear export sequences (NES) which interact with the nuclear export receptor CRM1 

(Huang et al., 2000; Johnson et al., 1999).  Originally, masking of the NFκB NLS by IκBα 

was thought to be solely responsible for its cytoplasmic localisation.  However, 

crystallographic structures of NFκB in complex with IκBα show that IκBα only masks the 

NLS of p65 while the p50 NLS remains exposed (Malek et al., 2003; Huxford et al., 

1998).  A role for an NES was revealed by the finding that NFκB/IκBα complexes are 

almost completely redistributed to the nucleus following inhibition of CRM1 (Huang et al., 

2000) or deletion of an N-terminal NES in IκBα (Johnson et al., 1999).  The presence of 

both the NLS on p50 and the NES on IκBα results in constant shuttling of the complex 

between the nucleus and cytoplasm although a dominant effect of the NES favours 
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cytoplasmic localisation (Huang et al., 2000; Johnson et al., 1999).  The ability of IκBα to 

shuttle between the cytoplasm and the nucleus allows it to play a critical role in 

terminating NFκB activity.  Unlike other members of the IκB family, IκBα expression is 

induced by NFκB as part of an autoregulatory feedback loop (de Martin et al., 1993; Le 

Bail et al., 1993).  Newly synthesised IκBα enters the nucleus, removes NFκB from DNA 

and transports it back into the cytoplasm thereby terminating its activity (Rodriguez et al., 

1999; Arenzana-Seisdedos et al., 1997). 

1.3.1.2.1 Stimulus-induced degradation of IκκκκB 
The defining event in NFκB activation is stimulus-induced degradation of IκB.  This is a 

multi-step process requiring the phosphorylation, polyubiquitination and 26S proteasome-

mediated degradation of IκBα (Hayden and Ghosh, 2004; Karin and Ben-Neriah, 2000).  

Protein modification by ubiquitination involves the formation of an isopeptide linkage 

between the C-terminal Gly76 of ubiquitin and ε-amino groups on lysine residues in the 

substrate protein.  Similar linkages between lysine residues in ubiquitin molecules can 

allow formation of polyubiquitin chains which have different effects on the fate of the 

substrate protein depending on the particular lysine residue utilised.  For example, Lys48-

linked chains target proteins for degradation by the 26S proteasome while Lys63-linked 

chains mediate protein-protein interactions and have been shown to have various effects 

including activation of protein kinases such as the transforming growth factor β activated 

kinase-1 (TAK1) complex which phosphorylates and activates IKK (Fang and Weissman, 

2004).  The process of ubiquitination requires the sequential action of three enzymes: E1, a 

ubiquitin activating enzyme, E2, a ubiquitin-conjugating enzyme and E3, a ubiquitin 

ligase.  The E3 component confers specificity on the system as it interacts directly and 

specifically with the substrate protein to bring it together with ubiquitin-loaded E2 (Liu, 

2004).  The E3 for IκBα belongs to the Skp1-Cullin-F-box (SCF) family of E3 ubiquitin 

ligases which generally recognise phosphorylated target proteins (Karin and Ben-Neriah, 

2000; Hatakeyama et al., 1999; Yaron et al., 1998).   

In response to NFκB-inducing stimuli, IκBα is phosphorylated by IKK on the N-terminal 

residues Ser32 and Ser36 which triggers its ubiquitination and degradation (Chen et al., 

1995, Brockman et al., 1995; Brown et al., 1995).  The βTrCP receptor subunit of the SCF 

family binds specifically to the phosphorylated form of IκB via the E3 recognition 

sequence (DpSGXXpS) which incorporates Ser32 and Ser36 in IκBα (Yaron et al., 1998; 
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Yaron et al., 1997).  This leads to its polyubiquitination on Lys21 and Lys22 and targets 

IκBα for degradation by the 26S proteasome (Di Donato et al., 1996; Chen et al., 1995; 

Scherer et al., 1995). 

1.3.1.3  IκκκκB kinases 

The IKK complex comprises three subunits: IKKα, IKKβ and IKKγ (also known as NFκB 

essential modifier (NEMO)).  IKKα and IKKβ are highly homologous proteins sharing 50 

% amino acid identity (Karin and Ben-Neriah, 2000).  These are the catalytic subunits of 

the complex and have similar functional domains including an N-terminal catalytic 

domain, a central leucine zipper motif and a C-terminal helix-loop-helix domain 

(Yamamoto and Gaynor, 2004).  IKKγ has no catalytic activity but is essential for IKK 

activity as demonstrated by the fact that TNFα, IL-1 or LPS fail to induce NFκB activation 

in IKK γ-deficient fibroblasts (Rudolph et al., 2000).  IKKγ has two coiled coli domains, a 

leucine zipper domain and a zinc finger motif which are known to mediate protein-protein 

interactions.  The leucine zipper domain and a novel ubiquitin-binding domain have been 

found to be important for mediating interactions between the IKK complex and upstream 

signalling proteins that are essential for its activation (Ea et al., 2006; Devin et al., 2001).  

1.3.1.3.1 Activation by TNFαααα 
TNFα activates NFκB signalling through ligation of the TNF receptor, TNFR1 (figure 

1.3).  TNFα exists as a trimer and binding of the cytokine to its receptor results in receptor 

aggregation which also induces dissociation of the endogenous TNFR inhibitory protein, 

silencer of death domain (SODD).  This exposes an intracellular domain of the receptor 

called the death domain (DD) which is recognised by the adaptor protein TNFR-associated 

death domain (TRADD).  TRADD then recruits additional adaptor proteins such as 

members of the TNFR-associated factor (TRAF) family and the serine/threonine kinase 

receptor interacting protein (RIP1; Hayden and Ghosh, 2004; Chen and Goeddel, 2002).  

TRAF2 and TRAF5 are RING domain proteins and are thought to act as ubiquitin ligases, 

mediating the Lys63-polyubiquitination of RIP1 (Ea et al., 2006).  The IKK complex has 

been reported to be recruited to the receptor complex by two different mechanisms.  One 

study showed that IKK recruitment is dependent on an interaction between the RING 

domain of TRAF2 and the leucine zipper motif in either IKKα or IKKβ (Devin et al., 

2001).  However, another group identified an interaction between IKKγ and Lys63-

polyubiquitin chains on RIP1 as being necessary for IKK recruitment and NFκB activation  
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Figure 1.3 TNFR1 and TLR4 signalling to IKK 

Activation of the TNFR1 induces association with the adaptor protein TNFR-associated 

death domain (TRADD).  TRADD then recruits additional adaptor proteins such as 

members of the TNFR-associated factor (TRAF) family and the serine/threonine kinase 

receptor interacting protein, RIP1.  TRAF2 and TRAF5 are ubiquitin ligases which 

mediate Lys63-polyubiquitination of RIP1.  IKK and the TAK1 complex are recruited to 

the signalling complex via interactions with Lys63 polyubiquitin chains on RIP1.  TAK1 is 

thus activated and phosphorylates IKK either directly or via MEKK.  Activation of TLR4 

by LPS results in recruitment of TIR domain-containing adaptor proteins such as myeloid 

differentiation gene 88 (MyD88), TIR-containing adaptor inducing IFNβ (TRIF) and 

TRIF-related adaptor molecule (TRAM).  MyD88 interacts with members of the IL-1R-

associated kinase (IRAK) family.  Following interaction with MyD88, IRAKs are 

phosphorylated which leads to the dissociation of IRAK-1 from MyD88 and its interaction 

with TRAF6.  TRAF6 Lys63-linked polyubiquitinates several target proteins including 

TRAF6 itself and the IKK complex. The TAK1 complex binds to TRAF6 via its Lys63 

polyubiquitin chains and is activated which allows it to phosphorylate IKKβ.  

Deubiquitinating enzymes such as A20 and CYLD regulate NFκB pathway activation by 

removing Lys63 polyubiquitin chains from TRAFs, RIP1 and IKK.  (Figure from 

Silverman and Fitzgerald, 2004) 
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Figure 1.3 TNFR1 and TLR4 signalling to IKK 
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in response to TNFα (Ea et al., 2006).  RIP1 has also been found to interact with a protein 

complex involving TAK1, which is a member of the MAP3K family, and its regulatory 

subunits TAB2 and TAB3.  This depends on an interaction between a highly conserved 

zinc finger domain in TAB2 and TAB3 and the polyubiquitin chains of RIP1 (Kanayama et 

al., 2004; Ea et al., 2006).  This results in activation of TAK1 which then phosphorylates 

and activates IKK either directly or via another MAP3K, MEKK (Kovalenko and Wallach, 

2006). 

1.3.1.3.2 Activation by LPS/IL-1 
Pathogen-associated molecules such as bacterial LPS are recognised by TLRs which are 

expressed on various immune cells such as macrophages, dendritic cells and neutrophils as 

well as non-immune cells such as fibroblasts and epithelial cells (Kawai and Akira, 2007). 

TLRs and IL-1Rs share many of the same signalling components owing to the presence of 

a conserved Toll/IL-1R (TIR) motif within their intracellular domains which mediates 

oligomerisation with downstream signalling molecules which also express TIR domains 

(Martin and Wesche, 2002).  Activation of TLR4 by LPS results in recruitment of TIR 

domain-containing adaptor proteins such as myeloid differentiation gene 88 (MyD88), 

TIR-containing adaptor protein (TIRAP), TIR-containing adaptor inducing IFNβ (TRIF) 

and TRIF-related adaptor molecule (TRAM; figure 1.3).  MyD88 was the first TIR 

domain-containing protein to be characterised and has been shown to be necessary for 

normal activation of NFκB by IL-1 and LPS (Kawai et al., 1999).  MyD88 contains an N-

terminal DD which allows it to interact with the DDs of members of the IL-1R-associated 

kinase (IRAK) family including IRAK-1, IRAK-2, IRAK-4 and IRAK-M.  Following 

interaction with MyD88, IRAK-4 and IRAK-1 are sequentially phosphorylated which 

leads to the dissociation of IRAK-1 from MyD88 and its interaction with TRAF6 (Kawai 

and Akira, 2007).  TRAF6 is a RING domain ubiquitin ligase which facilitates Lys63-

linked polyubiquitination of target proteins including TRAF6 itself and the IKKγ subunit 

of the IKK complex (Chen et al., 2006).  TAB2 or TAB3 can then recruit the TAK1 

complex to TRAF6 by interacting with its Lys63 polyubiquitin chains (Kanayama et al., 

2004).  Activated TAK1 has been reported to phosphorylate and activate IKKβ (Wang et 

al., 2001; Deng et al. 2000). 
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1.3.1.4 Downregulation of NFκκκκB signalling 

IKK activation represents a crucial step in the pathway leading to activation of NFκB by 

practically all stimuli and therefore represents a key point for regulation.  IKK is activated 

following a complex series of protein-protein interactions and activation steps, many of 

which depend upon Lys63-linked polyubiquitination of NFκB signalling proteins as 

described above (Kawai and Akira, 2007; Hayden and Ghosh, 2004).  As ubiquitin ligases, 

TRAFs are key mediators of this process and their substrates include TRAFs themselves, 

IKK γ and the TAB2 and TAB3 components of the TAK1 complex (Adhikari and Chen, 

2007).  Therefore, regulation of the ubiquitination status of these proteins represents an 

important means of controlling NFκB activity.  This is mediated by specific 

deubiquitinating enzymes (DUBs).  Two of the best studied DUBs involved in regulating 

NFκB activity are A20 and CYLD.  These proteins are encoded by NFκB-regulated genes 

and so induction of A20 and CYLD expression provides a negative feedback loop to 

suppress NFκB activity (Sun, 2008). 

CYLD is a member of the ubiquitin-specific protease (USP) family of deubiquitinating 

enzymes (Sun, 2008).  It is proposed that CYLD suppresses NFκB activity by binding to 

signalling components upstream of IKK and de-conjugating Lys63 ubiquitin chains via a 

ubiquitin-carboxy-terminal-hydrolase domain (UCH) present in its C-terminal region 

(Adhikari and Chen, 2007).  In support of this, CYLD has been found to bind to several 

upstream mediators of IKK activation including NEMO, TRAF2 and TRAF6 

(Brummelkamp et al., 2003; Kovalenko et al., 2003 Trompouki et al., 2003).  Furthermore, 

while polyubiquitination of IKKγ, TRAF2 and TRAF6 has been observed when these 

proteins are overexpressed in conjunction with HA-ubiquitin, co-transfection with CYLD 

prevented detection of the polyubiquitinated forms.   In contrast, co-transfection with 

catalytically inactive CYLD had no effect on the ubiquitin status of these proteins 

indicating that wild-type CYLD actively deubiquitinates IKKγ, TRAF2 and TRAF6 

(Brummelkamp et al., 2003).  The role of CYLD in regulating NFκB activity has been 

demonstrated in several ways.  For example, suppression of CYLD expression using short 

hairpin RNAs has been shown to lead to increased activation of IKK in response to TNFα 

treatment (Brummelkamp et al., 2003).  A similar effect was achieved by transfecting cells 

with a catalytically inactive CYLD mutant lacking the active site cysteine residue 

indicating that this was due to the loss of the deubiquitinating activity of CYLD 

(Brummelkamp et al., 2003).  In agreement with this finding, overexpression of CYLD has 
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been found to inhibit activation of NFκB in response to a wide variety of stimuli indicating 

that it may represent a general mechanism for regulating the NFκB pathway (Kovalenko et 

al., 2003). 

A20 is another DUB which has been shown to potently inhibit NFκB activity (Wertz et al., 

2004; Boone et al., 2004).  The critical nature of A20 in regulating NFκB activation is 

clear from studies using A20 knock-out mice (Lee et al., 2000).  These mice suffered 

severe inflammation and increased sensitivity to TNFα and LPS.  Examination of this 

effect in A20-deficient fibroblasts revealed that this was due to persistent activation of the 

NFκB pathway as demonstrated by rapid degradation of IκBα and a failure to 

reaccumulate newly synthesised IκBα following stimulation with TNFα (Lee et al., 2000).  

A20 contains an N-terminal ovarian tumour (OTU) - type domain which has DUB activity 

and seven C-terminal zinc finger domains which are reported to have E3 ligase activity 

(Wertz et al., 2006; Evans et al. 2004).  Therefore, A20 has the unique ability to act as 

both a DUB and an E3 ligase.  A20 has been found to act as a DUB, removing Lys63-

linked ubiquitin chains from several NFκB signalling proteins including TRAF6, RIP1 and 

IKK γ (Boone et al., 2004, Wertz et al., 2004; Mauro et al., 2006).  In addition, A20 has 

been reported to mediate a second level of regulation by catalysing the Lys48-linked 

ubiquitination of RIP1 and targeting it for degradation (Wertz et al., 2004). 

1.3.2 The JAK/STAT Pathway 

In general, cytokines mediate their effects through the Janus kinase (JAK)/signal 

transducer and activator of transcription (STAT) signalling pathway (figure 1.4).  This 

pathway is initiated on binding of a cytokine to its receptor, which results in either receptor 

multimerisation or stabilisation of preformed dimers.  Activation of the receptor induces a 

conformational change which allows auto- and trans-phosphorylation of constitutively 

associated JAKs.  The active JAKs are then able to phosphorylate key tyrosine residues on 

the receptor, which then act as docking sites for the Src homology 2 (SH2) domains of 

STATs and other signalling proteins.  STATs are then themselves phosphorylated which 

enables them to dimerise and translocate to the nucleus where they modulate transcription 

of specific STAT-responsive genes (Rawlings et al., 2004; O’Shea et al., 2002, Kisseleva 

et al., 2002). 
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Figure 1.4 Activation of the JAK/STAT pathway by IL-6 

The IL-6 receptor is composed of two different subunits, an 80 kDa IL-6-binding protein 

(IL-6Rα) and a 130 kDa signal-transducing subunit (gp130)  Binding of IL-6 to IL-6Rα 

induces dimerisation of the gp130 subunit and the receptor undergoes a conformational 

change which allows auto- and trans-phosphoryhlation of constitutively associated Janus 

kinases (JAK1, JAK2 and Tyk2).  JAKs phosphorylate gp130 on specific tyrosine residues 

which then act as docking sites for the SH2 domain-containing proteins, signal transducer 

and activator of transcription 1 (STAT1) and STAT3.  STAT1 and STAT3 are then 

themselves phosphorylated, following which they form homo- or heterodimers and are 

translocated to the nucleus where they can modulate transcription of specific STAT-

responsive genes.  Activation of the IL-6 receptor also leads to activation of the ERK 

pathway via the SH2 domain-containing tyrosine phosphatase, SHP2 which binds to pTyr759 

on gp130 and is activated by phosphorylation by JAK1.  Activated SHP2 interacts with the 

growth-factor-receptor-bound protein 2 (Grb2) which is constitutively associated with the 

Ras-GTP-exchange factor, Son of Sevenless (SOS). 
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1.3.2.1 JAKs 

In mammals, four different members of the JAK family have been identified: JAK1, JAK2, 

JAK3 and Tyk2.  JAK1, JAK2 and Tyk2 are ubiquitously expressed while JAK3 is present 

only in myeloid and lymphoid cells (Kisseleva et al., 2002).  JAKs associate with the 

membrane-proximal region of cytokine receptors.  In the case of many cytokine receptors, 

this region contains two conserved sequence elements termed box 1 and box 2.  Box 1 is 

proline-rich and has been found to be required for the binding of JAKs to receptors for IL-

2 (Howard et al., 1995) and the IL-6 family of cytokines (Radtke et al., 2002; Murakami et 

al., 1991).  Box 2 is rich in hydrophobic amino acids and is important for JAK association 

with only certain receptors (Heinrich et al., 1998).  Receptor ligation triggers a 

conformational change in receptor dimers that brings associated JAKs into close proximity, 

permitting autophosphorylation (Remy et al., 1999). 

JAKs are composed of seven conserved JAK homology domains (JH1-7; Kisseleva et al, 

2002).  JH1 at the carboxyl terminus is the kinase domain and has considerable homology 

to other kinases, displaying features such as an activation loop identified as being 

important in regulating activity (Hubbard and Till, 2000).  Mutational analysis has 

identified tyrosine residues in JAK2, JAK3 and Tyk2 which are critical components of this 

activation loop; Y1007/Y1008 in JAK2 (Feng et al., 1997), Y980/Y981 in JAK3 (Zhou et 

al., 1997) and Y1054/Y1055 in Tyk2 (Gauzzi et al., 1996).  JAK1 also has two conserved 

tyrosine residues, Y1022/Y1023, which are important for activation (Leonard and O’Shea, 

1998).  JH2 is termed the kinase-like domain, which although catalytically inactive, has a 

regulatory function.  Natural mutations in this region of JAK3 result in an inactive enzyme 

and severe combined immunodeficiency (SCID; Chen et al., 2000).  Conversely, 

experimentally-induced mutations in the kinase-like domain of the Drosophila JAK 

homologue, hopscotch, results in a constitutively active enzyme and causes leukaemia 

(Luo et al., 1997).  The JAK carboxyl terminus (JH3-JH7) contains an SH2-like domain 

and a Band-4.1 ezrin, radixin, moesin (FERM) homology domain that is involved in 

receptor association.  For example, binding of JAK2 to IFNγ receptor 2 which has no box 

1/box 2 motif is mediated by the JH6 and JH7 domains (Kohlhuber et al., 1997).  These 

regions are also important for binding of JAK3 to the γ chain of the IL-2 receptor (Chen et 

al., 1997).  The FERM domain has also been found to associate with the kinase domain to 

enhance activity (Zhou et al., 2001). 
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1.3.2.2 STATs 

There are seven mammalian STAT family members designated STAT1, 2, 3, 4, 5a, 5b and 

6 (Kisseleva et al., 2002).  They are ubiquitously expressed with the exception of STAT4 

which is mainly found in the testis, thymus and spleen (Zhong et al., 1994).  STATs are 

composed of several structurally and functionally conserved domains including an amino-

terminal oligomerisation domain, a coiled-coil domain, a DNA binding domain, a linker 

region, an SH2 domain and a carboxyl-terminal transactivation domain (Becker et al., 

1998; Chen et al., 1998; Vinkemeier et al., 1998). 

1.3.2.2.1 The SH2 domain 
The SH2 domain is highly conserved and is involved in the recruitment of STATs to 

activated cytokine receptors (Heim et al., 1995; Stahl et al., 1995; Greenlund et al., 1994) 

and the formation of STAT dimers (Shuai et al., 1994) through recognition of specific 

phosphorylated tyrosine motifs.  Different receptor motifs determine which STATs are 

recruited, for example, STAT3 will bind to phospho (p)YXXQ (Stahl et al., 1995) while 

STAT1 will only bind to pYXPQ (Gerhartz et al., 1996).  This difference has been shown 

to be due to the SH2 domain through the creation of a chimaeric STAT3 molecule.  

Hemmann and co-workers (1996) found that substituting the SH2 domain of STAT3 with a 

STAT1 SH2 domain resulted in a molecule that showed the receptor motif binding 

preference of STAT1.  On recruitment to an activated cytokine receptor, STATs are 

phosphorylated by JAKs on a single tyrosine residue at the carboxyl end of the SH2 

domain (Tyr701 in STAT1 (Shuai et al., 1994) and Tyr705 in STAT3 (Kaptein et al., 1996)).  

This enables them to form dimers through an interaction of the phosphorylated tyrosine on 

one STAT with the SH2 domain of another. 

1.3.2.2.2 Gene Regulation 
STAT dimers translocate to the nucleus and bind DNA motifs known as GAS (γ activated 

sequence) elements (TTN5-6AA) except in the case of the IFNα/β response, where 

complexes formed between STAT1, STAT2 and IRF9 (interferon regulatory factor 9) bind 

to the IFNα/β-response element (ISRE), AGTTN3TTTC (O’Shea et al., 2002).  The STAT 

transcriptional activation domain (TAD) is proposed to participate in modulation of 

transcription through interaction with additional transcription factors and co-activators 

such as c-Jun, BRCA1 and the cAMP-response-element-binding (CREB)-binding protein 

(CBP)/p300 family of histone acetyltransferases (Horvath, 2000).  Phosphorylation of a 
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conserved serine residue within the TAD (Ser727 in STAT1, STAT3 and STAT4) is 

believed to regulate these interactions to provide full transcriptional activity (Horvath, 

2000). 

1.3.2.3 IL-6 signalling 

The IL-6 receptor is composed of two different subunits, an 80 kDa IL-6-binding protein 

(IL-6Rα) and a 130 kDa signal-transducing subunit (gp130), which is shared by all IL-6-

type cytokines (Heinrich et al., 2003).  The gp130 subunit is ubiquitously expressed while 

IL-6Rα expression is restricted to hepatocytes, monocytes, neutrophils and some B and T 

cells (Kallen, 2002).  However, IL-6 can also bind to a soluble form of the receptor (sIL-

6Rα) which is either shed from cell membranes (Mullberg et al., 1993) or created by 

alternative splicing of mRNA (Lust et al., 1992).  This complex can associate with gp130 

on cells that do not express the membrane-bound IL-6R thereby widening the spectrum of 

IL-6-responsive cells.  For example, vascular endothelial cells which express only the 

gp130 subunit of the IL-6 receptor become responsive to IL-6 in the presence of sIL-6Rα 

shed from the membranes of activated neutrophils (Marin et al., 2001). 

Binding of IL-6 to IL-6Rα induces dimerisation of the gp130 subunit and formation of a 

fully functional receptor complex (Murakami et al., 1993; figure 1.4).  JAK1, JAK2 and 

Tyk2 are activated upon receptor stimulation (Stahl et al., 1994; Narazaki et al., 1994) and 

phosphorylate gp130 on tyrosine residues 683, 759, 767, 814, 905 and 915 (Stahl et al., 

1994; Hirano et al., 1997).   Studies using mutant cell lines lacking JAK1, JAK2 or Tyk2 

have revealed that signalling absolutely depends on the presence of JAK1 whereas JAK2 

and Tyk2 may be interchangeable (Guschin et al., 1995).  Phosphorylation of gp130 was 

greatly reduced in the absence of JAK1 but was unimpaired in the absence of JAK2 or 

Tyk2. 

STAT1 and STAT3 are recruited to the phosphorylated receptor through recognition of 

consensus sequences pY905LPQ and pY915MPQ.  In addition, STAT3 also recognises 

pY767RHQ and pY814FKQ, (Stahl et al., 1995; Gerhartz et al., 1996).  These sites are not 

equivalent, as has been demonstrated by Schmitz et al. (2000a) using mutant gp130 

constructs lacking each of the cytoplasmic tyrosine residues present in wild-type gp130.  

Tyr905 and Tyr915 were found to be more potent than Y767 and Y814 in terms of their ability 

to activate STATs and STAT-mediated transcription.  Upon binding to the receptor, 



Gillian R Milne, 2008  Chapter 1, 41 

STAT1 and STAT3 are phosphorylated, following which they form homo- or heterodimers 

and are translocated to the nucleus to modulate transcription.   

STATs are not the only proteins that are recruited to the activated IL-6 receptor.  The SH2-

domain-containing tyrosine phosphatase, SHP2 binds to pTyr759 on gp130 and is 

phosphorylated by JAK1 (Schaper et al., 1998).  Activated SHP2 can then activate the 

extracellular signal-regulated kinase (ERK) pathway through interaction with the growth 

factor receptor-bound protein 2 (Grb2) which is constitutively associated with the Ras-

GTP-exchange factor, Son of Sevenless (SOS) (Li et al., 1994). 

1.3.2.4 IFNγγγγ signalling 

The functional IFNγ receptor (IFNGR) comprises two 90 kDa IFNGR1 and two 62 kDa 

IFNGR2 chains.  IFNGR1 is involved in ligand binding and signal transduction while 

IFNGR2 plays only a small role in ligand binding but is essential for signalling (Stark et 

al., 1998).  Originally, these subunits were not thought to interact in unstimulated cells 

(Bach et al., 1996) but advances in spectroscopic techniques using intact cells have shown 

that the receptor is preassembled and ligand binding results in a conformational change to 

allow signalling to occur (Krause et al., 2002).  IFNGR1 and IFNGR2 have binding motifs 

for JAK1 and JAK2 respectively.  JAK1 binds to a membrane proximal sequence, LPKS at 

residues 266-269 on IFNGR1 (Kaplan et al., 1996) while JAK2 binds a proline-rich non-

contiguous motif, 263PPSIP267 followed by 270IEEYL274 on IFNGR2 (Bach et al., 1996).  

On activation of the receptor, JAK2 autophosphorylates and is then able to phosphorylate 

JAK1 (Briscoe et al., 1996).  The activated JAKs phosphorylate each IFNGR1 chain on 

tyrosine residue 440 in the sequence 440YDKPH444 and this creates a pair of docking sites 

for STAT1 molecules.  STAT1 is thus phosphorylated and dissociates from the receptor, 

forms homodimers and is translocated to the nucleus. 

Activation of the phosphatidylinositol 3-kinase (PI3K) pathway also appears to play a role 

in IFNγ-induced STAT1-mediated transcriptional regulation.  Inhibition of PI3K or one of 

its downstream effectors, protein kinase C δ (PKCδ), blocks phosphorylation of STAT1 on 

Ser727 and reduces its transcriptional activity.  IFNγ has been shown to activate PKCδ in a 

PI3K dependent manner and so it is proposed that PKCδ is a serine kinase for STAT1 

(Nguyen et al., 2001; Deb et al., 2003).  
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1.3.2.5 Regulation of the JAK/STAT pathway 

JAK/STAT signalling is central to many biological processes and so numerous 

mechanisms exist to modulate the pathway at different stages. 

1.3.2.5.1 Protein tyrosine phosphatases 
Tyrosine phosphorylation by kinases is a key event in the JAK/STAT pathway.  For 

controlled signalling, it is clear that this rapid, reversible process must be balanced by the 

action of protein tyrosine phosphatases (PTPs).  Several PTPs have been implicated in the 

regulation of JAK/STAT signalling, for example, SHP1, SHP2, and PTPε (Shuai and Lui, 

2003).  SHP1 is a non-transmembrane phosphatase expressed mainly in haematopoietic 

cells.  Its role in regulation of JAK/STAT signalling is apparent on consideration of the 

naturally occurring motheaten mouse strain which lacks SHP1 activity.  Bone-marrow 

derived macrophages from these mice show dramatically increased levels of JAK1 and 

STAT1 phosphorylation following stimulation with IFNα (David et al., 1995).  SHP1 has 

been shown to bind to receptors for erythropoietin (Epo; Klingmuller et al., 1995) and IL-3 

(Wheadon et al., 2002) to suppress phosphorylation of JAKs and receptors respectively. 

SHP2 is highly homologous to SHP1 but is ubiquitously expressed. It is involved in both 

positive and negative regulation of signalling for a variety of cytokines including IL-6 and 

IFNγ (Qu, 2002).  SHP2 is rapidly recruited to Tyr759 in gp130 following IL-6 stimulation 

(Stahl et al., 1995).  It has a positive role in activating the ERK pathway but an inhibitory 

effect on JAK/STAT signalling.  Mutation of Tyr759 in gp130 impairs SHP-2 recruitment 

and phosphorylation (Stahl et al., 1995) and leads to enhanced JAK/STAT signalling but 

reduced ERK activation (Schaper et al., 1998).  In addition, it has been found that 

overexpression of dominant negative SHP-2 mutants leads to increased phosphorylation of 

receptors, JAKs and STATs in murine fibroblasts stimulated with IL-6 (Lehmann et al., 

2003).  SHP2 is constitutively associated with the IFNα/β and IFNγ receptors (David et al., 

1996).  The relevance of this is apparent in SHP2-/- mouse fibroblasts.  These cells show 

increased STAT1 and STAT2 activity as measured by DNA binding in response to IFNα 

and IFNγ which is diminished on reintroduction of SHP2 (You et al., 1999).  Furthermore, 

SHP2 has been described as a dual-specificity phosphatase that dephosphorylates STAT1 

at both Tyr701 and Ser727 (Wu et al., 2002). 

A cytoplasmic form of transmembrane PTPε (PTPε C) is involved in regulation of IL-6 

signalling.  Tanuma et al. (2000) found that overexpression of PTPε C inhibited 
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phosphorylation of gp130, JAK1, Tyk2, and STAT3 while overexpression of a dominant 

negative form potentiated the IL-6 response.  This inhibitory effect is thought to be specific 

to certain cytokines as PTPε C does not affect IFNγ-induced STAT1 phosphorylation 

(Tanuma et al., 2001).  A phosphatase that does appear to regulate STAT1 activation in 

response to IFNγ is a nuclear form of the T cell PTP, PTP TC45 (ten Hoeve et al., 2002).  

Murine embryonic fibroblasts and primary thymocytes expressing defective PTP TC45 fail 

to dephosphorylate STAT1 in the nucleus following IFNγ stimulation. 

1.3.2.5.2 Protein inhibitors activated STATs 
The protein inhibitors of activated STATs (PIAS) are a family of constitutively expressed 

transcriptional regulators (Chen et al., 2004).  PIAS1 was identified as a STAT-interacting 

protein in a yeast two-hybrid screen and subsequently, four other members of the family, 

PIAS3, PIASy, PIASxα and PIASxβ were recognised based on their high sequence 

homology to PIAS1 (Liu et al., 1998).  Following IFNγ stimulation, PIAS1 binds to 

activated STAT1, inhibiting DNA binding and therefore gene activation (Liu et al., 1998).  

PIAS3 on the other hand, shows specificity for STAT3 and suppresses IL-6 induced gene 

expression (Chung et al., 1997). 

The effect of PIAS on STAT-mediated transcription cannot be fully explained by 

suppression of STAT DNA-binding activity as PIASy, which also inhibits STAT1-

dependent gene induction, does not prevent STAT-DNA interactions (Liu et al., 2001).  An 

alternative method of regulation that has been suggested is PIAS-directed sumoylation of 

STATs.  SUMO is a small ubiquitin-like protein modifier which has roles in the regulation 

of protein-protein interactions and protein stability, localisation and activation (Schmidt 

and Muller, 2002; Kotaja et al., 2002).  PIAS family members all have SUMO ligase 

activity (Wormald and Hilton, 2004) and both PIAS1 and PIASxα have been found to 

promote sumoylation of STAT1 on lysine residue 703 following stimulation of fibroblasts 

with IFNγ (Rogers et al., 2003).  However, the functional relevance of this is unclear as 

there have been conflicting reports on the effect of mutating Lys703 on the expression of 

IFNγ-induced genes (Rogers et al., 2003; Ungureanu et al., 2003).  Ungureanu et al. (2003) 

found that this potentiated transcription of a GAS-luciferase reporter gene while Rogers et 

al. (2003) reported no effect.  More recent studies indicate that sumoylation has a selective 

inhibitory effect on STAT1-mediated transcription.  Using quantitative PCR, Ungureanu et 

al. (2005) showed that mutation of alternative STAT1 residues that are also required for 

sumoylation (Ile702 and Glu705) resulted in increased transcription of some but not all IFNγ 
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target genes tested.  How sumoylation inhibits STAT1 activity is unclear but it has been 

suggested that it may act as a targeting signal (Wormald and Hilton, 2004), a theory 

supported by the fact that  STAT1 mutants which cannot be sumoylated show prolonged 

nuclear localisation (Ungureanu et al., 2005). 

1.3.2.5.3 Suppressors of cytokine signalling 
SOCS (suppressors of cytokine signalling) are a family of inducible inhibitors of cytokine 

signalling (Starr et al., 1997).  The expression of several SOCS proteins is induced by 

activation of the JAK/STAT pathway by cytokines such as IL-6, IFNγ, granulocyte colony-

stimulating factor and IL-11.  They act as classical negative feedback inhibitors by 

inhibiting the phosphorylation of JAKs, which in turn prevents STAT activation (Chen et 

al., 2004).  There are eight SOCS family members (CIS (cytokine-inducible SH2 protein) 

and SOCS1-7).  Genetic studies have revealed that SOCS1 is particularly important in 

IFNγ signalling while SOCS3 has specificity for IL-6 signalling.  Generation of mice with 

a conditional deletion of SOCS3 in hepatocytes or macrophages has revealed the 

importance of SOCS3 in the IL-6 response.  These mice exhibit hyperresponsiveness to IL-

6 as shown by sustained activation of STAT1 and STAT3 and an increase in the number of 

IL-6-responsive genes while IFNγ responses are normal (Croker et al., 2003; Lang et al., 

2003).  SOCS1-deficient mice in contrast, show prolonged IFNγ-induced STAT1 

activation but normal STAT activation in response to IL-6 (Croker et al., 2003).  

SOCS proteins are characterised by a central SH2 domain and a carboxyl-terminal motif 

termed the SOCS box (Starr et al., 1997) but their inhibitory effects are mediated by 

several different mechanisms.  SOCS1 has been found to bind directly to the kinase 

domain of JAK2 via its SH2 domain (Endo et al., 1997).  Inhibition is thought to be 

mediated by a second SOCS1 domain, the kinase inhibitory region (KIR), which binds to 

and blocks the substrate-binding site of the JAK kinase domain (Yasukawa et al., 1999).  

However, this model is further complicated by the recent finding that in the case of IFNγ 

signalling, SOCS1 appears to interact directly with a phosphorylated Tyr441 in subunit 1 of 

the IFNγ receptor before binding to JAK2 (Qing et al., 2005).   Inhibition of IL-6 

signalling by SOCS3, like SHP-2, is dependent upon interaction with phosphorylated 

Tyr759 on activated gp130 (Schmitz et al., 2000b; Nicholson et al., 2000).  However, 

SOCS3 can also bind to JAKs and has a KIR motif which may contribute to inhibition 

(Sasaki et al., 1999). 
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Another aspect of negative regulation by SOCS may involve the SOCS box motif.  Zhang 

and co-workers (1999) found that the SOCS box binds to elongins B and C which are 

known to participate in the targeting of proteins to the proteasome for degradation.  By this 

means, excess SOCS proteins and their binding partners could be removed from the 

signalling system. 

1.3.2.5.4 Targeted degradation of STATs 
Ubiquitin-proteasome-dependent degradation has also been suggested to regulate cellular 

levels of STATs.  Kim and Maniatis (1996) found that inhibition of the proteasome led to 

accumulation of ubiquitinated STAT1 molecules in HeLa cells stimulated with IFNγ and 

that this effect was dependent on STAT phosphorylation.  Haspel et al. (1996) also 

observed sustained levels of STAT1 in response to IFNγ when Bud-8 fibroblasts were pre-

incubated with proteasome inhibitors.  However, this was determined to be due to reduced 

receptor turnover and preservation of the signal rather than STAT levels as the effect was 

lost in the presence of a kinase inhibitor.  It is possible that more than one mechanism of 

STAT regulation exists.  In a later study, it was found that proteasome inhibitors prevented 

downregulation of phosphorylated STAT4, STAT5 and STAT6 but not phosphorylated 

STAT1, STAT2 or STAT3 in several cell lines (Wang et al., 2000).  This effect was 

maintained in the presence of a kinase inhibitor.  This group also identified the carboxyl-

terminal transcriptional activation domain of STAT5 as the region involved in regulation 

by the proteasome. 

Certain viruses evade the antiviral activities of interferons by targeting STATs for 

degradation through the ubiquitin-proteasome pathway.  Paramyoxaviruses of the 

Rubulavirus genus express “V” proteins which co-ordinate the assembly of STAT-

ubiquitinating enzyme complexes.  Viral V proteins are E3 ligases with high species-

dependent specificity for different STATs, for example, simian virus 5 targets STAT1 for 

degradation (Didcock et al., 1999) while type II human parainfluenza virus targets STAT2 

(Parisien et al., 2001) and mumps virus targets STAT1 and STAT3 (Ulane et al., 2003). 

New evidence for the role of STAT degradation in regulation of cytokine signalling comes 

from the identification of a mammalian STAT-specific E3 ligase.  STAT-interacting LIM 

protein (SLIM) was identified in a yeast two-hybrid screen and subsequently was found to 

bind phosphorylated STAT1 and STAT4 in the nucleus and to inhibit their transcriptional 

activity (Tanaka et al., 2005).  SLIM has a LIM domain which forms a Zn finger structure 

that resembles RING and PHD structures found in E3 ligases (Capili et al., 2001; Liu, 
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2004).  This suggested a role for SLIM in ubiquitination which was confirmed using 

transfection studies where the presence of SLIM promoted ubiquitination and degradation 

of STAT1 and STAT4 (Tanaka et al., 2005). 

1.4 Adenosine 

The production of adenosine represents a means of limiting inflammation and tissue 

damage that is in addition to the many specific mechanisms that have evolved to control 

cytokine signalling.  Adenosine is a ubiquitous purine nucleoside that accumulates in many 

tissues in response to metabolic stress such as hypoxia during inflammation (Sitkovsky et 

al., 2004). 

1.4.1 Production 

Under normal conditions, adenosine is continuously produced by cells through the 

dephosphorylation of AMP by cytosolic 5’-nucleotidases or through hydrolysis of S-

adenosyl-homocysteine.  In hypoxic conditions, ATP synthesis is inhibited and AMP 

levels rise which causes a large increase in adenosine production.  Substantial amounts of 

adenosine are also produced by the hydrolysis of adenine nucleotides released from the 

granules of neutrophils, mast cells and endothelial cells as a result of cellular damage 

(Sitkovsky et al., 2004; Ramkumar et al., 2001; Linden, 2001).  Ecto-apyrases such as 

CD39 hydrolyse ATP or ADP to AMP which is then converted to adenosine by the 

extracellular 5’-ectonucleotidase CD73 (Zimmermann, 2000).  Both of these enzymes are 

induced during hypoxia to enhance adenosine production.  In addition, CD73 expression 

on endothelial cells can be upregulated by IFNα (Niemela et al., 2004) and adenosine itself 

(Narravula et al., 2000).  Extracellular accumulation of adenosine is further enhanced 

during hypoxia by inhibition of the enzyme adenosine kinase which converts excess 

adenosine back into AMP (Sitkovsky et al., 2004). 

1.4.2 Anti-inflammatory effects of the A2A adenosine receptor 

Adenosine exerts its effects through four different G-protein coupled receptor subtypes 

termed A1, A2A, A2B and A3 (Fredholm et al., 2007).  These differ in their distribution 

patterns and the type of G-protein with which they associate but all have been ascribed 

roles in tissue protection (Linden, 2001).  The A2A adenosine receptor (A2AAR) is coupled 

to Gs which stimulates adenylyl cyclase to raise intracellular levels of cAMP.  However, 
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A2AAR stimulation also results in activation of the ERK pathway and in addition, some G 

protein-independent effects have been reported (Fredholm et al., 2007).  The A2AAR is 

expressed on many lymphoid cells including neutrophils, monocytes, macrophages, T cells 

and natural killer (NK) cells and its activation by adenosine or adenosine analogues results 

in a wide range of anti-inflammatory responses (Haskó et al., 2008; Palmer and 

Trevethick; 2008).  Activation of the A2AAR on neutrophils has long been know to have 

suppressive effects on their cytotoxic functions by inhibiting phagocytosis (Salmon and 

Cronstein, 1990) and production of reactive oxygen metabolites (Cronstein et al., 1992).  

In addition, A2AAR activation results in reduced neutrophil recruitment to inflammatory 

sites by downregulating expression of the neutrophil adhesion molecule, very late antigen 

4 (VLA–4) which is required for adherence to the endothelium (Sullivan et al., 2004; Zhao 

et al., 1996).  The A2AAR plays a more general role in suppressing inflammation by 

regulating cytokine production by macrophages.  For example, adenosine inhibits release 

of TNFα and IL-12 from macrophages predominantly through activation of A2AARs 

(Kreckler et al., 2006; Haskó et al., 2000).  In addition to suppressing pro-inflammatory 

cytokine production, adenosine and the A2AAR-selective agonist CGS21680 have been 

found to potentiate production of the anti-inflammatory cytokine, IL-10 (Haskó et al., 

2000).  This effect has been confirmed using macrophages from A2AAR-deficient mice 

which fail to produce IL-10 in response to treatment with E. coli and adenosine while the 

same treatment induces a dramatic increase in IL-10 production by wild-type macrophages 

(Csóka et al., 2007).  A2AAR-selective agonists have also been found to produce effects 

which may limit the course of inflammation through ligation of A2AARs expressed by the 

endothelium.  For example, ATL-146E inhibits neutrophil and macrophage adhesion to the 

endothelium through down-regulation of VCAM-1, ICAM-1 and P-selectin on the 

activated endothelium (McPherson et al., 2001).  The anti-inflammatory effects of A2AAR 

stimulation on endothelial cells are discussed further in chapter 3. 

In addition to these effects on cells of the innate immune system, the A2AAR also plays key 

roles in regulating T lymphocyte function.  For example, the A2AAR-selective agonist 

ATL313 has been shown to suppress proliferation of naïve CD4+ T cells by inhibiting 

production of IL-2 and expression of the IL-2 receptor, CD25 (Sevigny et al., 2007).  In 

this study, ATL313 also reduced expression of the co-stimulatory molecule CD40L 

(Sevigny et al., 2007) which binds to CD40 on macrophages and in conjunction with IFNγ, 

induces their activation (Stout et al., 1996).  In addition, stimulation of the A2AAR in 

activated CD4+ T cells inhibits IL-4 and IFNγ production (Naganuma et al., 2006; Lappas 

et al., 2006).  Another small subset of T cells more recently recognised to be regulated by 



Gillian R Milne, 2008  Chapter 1, 48 

the A2AAR is formed by the invariant NK (iNKT) cells, so called because they express an 

invariant form of the T cell receptor alongside NK cell markers such as NK1.1 (Haskó et 

al., 2008, Kronenberg, 2005).  Unlike conventional T cells, iNKT cells can be rapidly 

activated early in inflammatory responses and produce copious amounts of cytokines 

shortly after TCR engagement.  iNKT cells function in innate immunity by recognising self 

or foreign lipid antigens presented by APCs via an MHC1-related molecule called CD1d 

(Kronenberg, 2005).    iNKT cells also express the A2AAR and activation has been shown 

to suppress iNKT production of IFNγ induced by the marine sponge glycolipid α-

galactoceramide (Lappas et al., 2006). 

The role of the A2AAR in regulating inflammatory responses has been demonstrated in 

several in vivo models of inflammation and tissue injury and has been particularly well 

studied in ischaemia reperfusion injury (IRI).  For example, in rats subjected to IRI, the 

A2AAR agonist DWH-146e causes a dramatic reduction in tissue injury that is associated 

with reduced neutrophil accumulation and adhesion molecule expression (Okusa et al., 

2000).  Similarly, Day et al. (2004) found that ischaemic liver injury and chemokine 

production were suppressed in mice treated with ATL-146E.  Meanwhile, A2AAR-deficient 

mice failed to respond to ATL-146E and liver injury was exacerbated compared with wild-

type mice indicating that endogenously produced adenosine had a protective role (Day et 

al., 2004).  More recently, A2AAR activation has been shown to be beneficial in protecting 

against hepatic IRI due to effects on iNKT cells.  Lappas et al. (2006) found that treatment 

with ATL146e immediately after reperfusion resulted in reduced injury compared to 

untreated mice.  A similar reduced response was observed in RAG-1-deficient mice which 

lack mature lymphocytes and in mice treated with antibodies against either NK1.1 to 

deplete NK cells or CD1d to block iNKT cell activation.  Meanwhile, liver injury in RAG-

1-deficient mice following IRI could be reconstituted to wild-type levels by adoptive 

transfer of NK1.1+ cells from wild-type mice.  These findings suggested that iNKT cells 

play a critical role in mediating IRI.  Adoptive transfer of NK cells from A2A-deficient 

mice was also able to reconstitute liver injury in RAG-1-deficient mice but IRI could not 

be attenuated by ATL146e indicating that ATL146e exerts its effects by activating 

receptors on NKT cells.  Similarly, NK1.1+ cells from IFNγ-deficient mice could not 

reconstitute the response showing that injury was dependent on production of IFNγ by 

NKT cells.  Taken together, these finding indicate that hepatic IRI is initiated by activation 

of iNKT cells and that activation of the A2AAR inhibits this response (Lappas et al., 2006). 
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1.5 G protein-coupled receptors 

G protein-coupled receptors (GPCRs) constitute the largest single family of signalling 

receptors, estimated to represent 1 % of the human genome (Takeda et al., 2002; Bockaert 

and Pin, 1999).  GPCRs are extremely diverse in their functions, transducing signals from 

a vast array of extracellular stimuli including photons of light, ions, odorants, amino acids, 

nucleotides, peptides and phospholipids (Kristiansen, 2004).  GPCRs signal predominantly 

via interaction with and activation of heterotrimeric G-proteins which in turn modulate the 

activity of numerous effector proteins resulting in a wide range of physiological responses.  

The significance of GPCRs is further demonstrated by the fact that GPCRs represent over 

25 % of current drug targets (Overington et al., 2006).   

Phylogenetic analysis has revealed that GPCRs can be divided into five main families, 

termed Glutamate, Rhodopsin, Adhesion, Frizzled/Taste2 and Secretin (Fredriksson et al., 

2003).  The Rhodopsin family is by far the largest family comprising approximately 670 

receptors which bind a vast array of ligands including odorants and small endogenous 

agonists like adenosine, histamine and adrenaline (Fredriksson et al., 2003; Kristiansen, 

2004).  While overall sequence homology is low between members of this family, they do 

share several conserved sequence motifs.  The Secretin family is a small family (15 

members) that in contrast to the Rhodopsin family, has significant sequence identity (21 – 

67%) between members.  These receptors bind peptide hormones such as secretin, 

glucagon and vasoactive intestinal peptide.  With 33 members, the Adhesion family is the 

second largest family of GPCRs.   These share some sequence similarities with Secretin 

receptors but bind extracellular matrix molecules such as glycosaminoglycan chondroitin 

sulphate via their long, diverse N-terminal regions (Lagerström and Schiöth, 2008; 

Fredriksson et al., 2003).  The Glutamate family consists of 22 members made up of 

metabotropic glutamate receptors, γ-aminobutyric acid receptors, calcium-sensing and taste 

receptors (Fredriksson et al., 2003).  Meanwhile, the Frizzled/Taste2 family comprises 10 

frizzled receptors, one smoothened receptor and 25 taste2 receptors.  There is not much 

overall similarity between the frizzled/smooth receptors and the taste2 receptors.  

However, they do share certain sequence motifs that are not found in other GPCR families.  

Frizzled/smoothened receptors bind Wnt glycoproteins and so participate in regulation of 

cell fate and proliferation during development while taste2 receptors are less well 

characterised but appear to act as bitter taste receptors (Lagerström and Schiöth, 2008; 

Fredriksson et al., 2003). 
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1.5.1 Structure 

There is no overall sequence similarity between GPCRs from different families.  However, 

they do all share one common feature which is the presence of seven stretches of 25-35 

amino acids that are mostly hydrophobic in nature.  These regions are predicted to form 

alpha helices in the plasma membrane to give GPCRs their characteristic seven-

transmembrane configuration (Ulloa-Aguirre et al., 1999).  Of the five families described 

above, GPCRs of the Rhodopsin family have been most well studied.  Until recently, the 

only crystal structure information available for any GPCR came from studies on rhodopsin 

and this was used to predict a general structural model for other GPCRs (Gether, 2000; 

Baldwin, 1993).  However, rhodopsin is unique among GPCRs in that it constitutively 

binds its ligand, 11-cis-retinal, via a covalent interaction which maintains the receptor in a 

stable conformation (Filipek et al., 2003).  All other GPCRs bind diffusible ligands and 

exist in much more flexible conformations.  Therefore, the recent solving of structures for 

the β2 adrenergic receptor (β2AR) has been an important step in allowing more detailed 

analysis of structural features that may be conserved amongst GPCRs in general (Cherezov 

et al., 2007; Rosenbaum et al., 2007; Rasmussen et al., 2007). 

All GPCR structures obtained so far conform to a general model where the seven 

hydrophobic regions identified by sequence analysis form seven α-helical transmembrane 

domains (TM I-VII; figure 1.5).  These are linked by alternating intracellular and 

extracellular loops of varying lengths which extend on either side of the membrane 

(Bockaert and Pin, 1999).  The transmembrane domains form a barrel shape orientated 

perpendicular to the membrane with the helices tightly packed on the intracellular side but 

more openly arranged on the extracellular side to form a binding pocket (Unger et al., 

1997).  The barrel conformation is stabilised by numerous hydrogen bonds and 

hydrophobic interactions, mostly between residues which are highly conserved between 

GPCRs.  The majority of Rhodopsin family receptors (72 %) have an E/DRY triplet 

sequence within TM III (Kobilka and Deupi, 2007).  In rhodopsin, Glu134 and Arg135 on 

TM III interact via a salt bridge while Arg135 also interacts with Thr251 and Glu247 on 

TM VI.  This is thought to stabilise rhodopsin in an inactive conformation and prevent 

constitutive activity in the absence of light, which is essential for vision (Palczewski et al., 

2000).  In the β2AR, although the corresponding residues (Asp130-Arg131-Tyr132) are 

present, they do not form the same electrostatic interactions in the crystal structure and the 

transmembrane helices are arranged in a more open conformation (Rosenbaum et al., 2007;  
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Figure 1.5 Schematic representation of a family A G protein-coupled 

receptor 

Seven transmembrane domains form a barrel shape in the plasma membrane.  These 

domains are linked by alternating intracellular and extracellular loops.  The N-terminus is 

on the extracellular side of the membrane and typically contains sites for N-linked 

glycosylation.  Meanwhile the C-terminus is intracellular and usually contains several 

serine and threonine residues representing sites for phosphorylation by kinases involved in 

desensitisation.  This region is also the site of interactions between GPCRs and an 

increasing number of proteins reported to modulate GPCR signalling.  (Figure from 

Kristiansen, 2004) 
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Rasmussen et al., 2007; Cherezov et al., 2007).  This is proposed to reflect the ability of 

the β2AR to isomerise between active and inactive conformations leading to constitutive 

activity in the absence of agonist (Audet and Bouvier, 2008; Rosenbaum et al., 2007).  

Another difference between the crystal structures of rhodopsin and the β2AR lies in the 

second extracellular loop.  In rhodopsin, this loop folds deep into the rhodopsin molecule 

in contact with 11-cis-retinal and restricts access to the binding pocket from the 

extracellular side (Filipek et al., 2003).  However, in the β2AR, the loop forms an α-helix 

on the periphery of the receptor which appears to be stabilised by disulphide bonds 

therefore leaving the binding pocket exposed and accessible to diffusible ligands 

(Cherezov et al., 2007).  The N- and C- terminal domains of GPCRs vary considerably in 

size and sequence.  Most GPCRs contain consensus sites for N-linked glycosylation (N-X-

S/T) in their extracellular N-terminal regions.  The role of glycosylation is unclear but may 

be important for correct folding and trafficking as prevention of glycosylation has been 

found to reduce cell-surface expression of some GPCRs (Ulloa-Aguirre et al., 1999).  The 

C-terminus is intracellular and alongside the other intracellular portions of GPCRs is 

important for G protein recognition and activation.  The C-terminal tails of most GPCRs 

contain several Ser/Thr residues representing potential sites for phosphorylation by kinases 

involved in desensitisation but this region is also the site of interactions between GPCRs 

and an increasing number of proteins reported to modulate GPCR signalling (Kristiansen, 

2004; Hall and Lefkowitz, 2002). 

1.5.2 Receptor activation 

Activation of GPCRs is a dynamic process.  In a simplified model, receptors exist in 

equilibrium between an inactive state and an active state that differ in their ability to 

activate G proteins (Samama et al., 1993).  In the absence of agonist, the receptor is 

maintained mostly in the inactive state by intramolecular interactions between the 

transmembrane domains.  Agonist binding stabilises the active state in which the receptor 

is able to interact with G proteins and initiate downstream signalling (Maudsley et al., 

2005).  However, it is now known that GPCRs can exist in multiple conformations and 

distinct states of activation that are influenced by the binding of ligands with different 

efficacies (Kobilka and Deupi, 2007). 

Activation of the receptor initiates a change in conformation resulting from disruption of 

interhelical interactions including those mediated by the E/DRY motif.  This causes TM III 

and TM VI to move apart and exposes key sites in intracellular loops 2 and 3 that allow the 
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receptor to interact with G proteins (Wess, 1997; Ulloa-Aguirre et al., 1999; Bhattacharya 

et al., 2008).  The activated receptor acts as a guanine nucleotide exchange factor for the 

associated G protein, catalysing the exchange of GDP for GTP.  The activated 

heterotrimeric G protein dissociates into an α subunit and a βγ dimer which independently 

activate downstream effector proteins (Ulloa-Aguirre et al., 1999; figure 1.6). 

1.5.3 G proteins 

G-proteins are composed of three subunits termed α, β and γ.  The alpha subunit contains 

two domains, a GTPase domain which binds and hydrolyses GTP to GDP, and a helical 

domain that buries GTP within the core of the protein (Noel et al., 1993).  The βγ subunits 

form a single functional unit which associates with a hydrophobic pocket in the GDP-

bound form of the α subunit.  On GTP binding, the hydrophobic pocket is lost and βγ 

dissociates (Lambright et al., 1996). 

G proteins can be divided into four groups based on sequence similarities between their α 

subunits and the distinct sets of downstream effector proteins with which they interact 

(Cabrera-Vera et al., 2003, Neves et al., 2002).  Active Gαs subunits classically stimulate, 

while Gαi/o subunits inhibit, adenylyl cyclase (AC) activity, thereby altering intracellular 

levels of cAMP.  Elevation of intracellular levels of cAMP results in activation of 

downstream effector proteins such as PKA, exchange proteins directly activated by cAMP 

(Epacs) and cyclic nucleotide-gated ion channels (Beavo and Brunton, 2002; figure 1.6).  

Gαq/11 subunits activate different PLCβ isoforms leading to the generation of the second 

messengers inositol-1,4,5-trisphosphate (IP3) and sn1,2-diacylglycerol (DAG; Neves et al., 

2002; Wess, 1998).  The Gα12/13 subunits have been found to interact with a number of 

effector proteins, the most well-characterised being guanine nucleotide exchange factors 

for the RhoA family of monomeric small G proteins (Kelly et al., 2007). 

Free βγ subunits generated on dissociation of the active α subunit also have important roles 

in downstream signalling with the ability to interact with a large number of effectors 

including PLCβ, AC, G protein-coupled receptor kinase (GRK) 2, components of MAPK 

pathways and Ca2+ and K+ channels (Cabrera-Vera et al., 2003).  Some of these targets are 

shared by α subunits and βγ subunits can have effects that are either synergistic or 

opposing to the activity of the α subunit (Wess, 1998).  Free α subunits also have the 

ability to modulate βγ activity.  This is because the structure of the βγ subunit is not altered  
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Figure 1.6 Classical G-protein-dependent signalling 

Agonist binding to the receptor initiates a conformational change that allows the receptor 

to interact with G proteins.  The activated receptor acts as a guanine nucleotide exchange 

factor for the associated G protein, catalysing the exchange of GDP for GTP.  The 

activated heterotrimeric G protein dissociates into an α subunit and a βγ dimer which 

independently activate downstream effector proteins.  Gαs activates adenylyl cyclase (AC) 

resulting in an elevation in the intracellular levels of cAMP which then activates 

downstream effectors PKA, exchange proteins directly activated by cAMP (Epacs) and 

cyclic nucleotide-gated ion channels.  Meanwhile, free βγ subunits have the ability to 

interact with a large number of effectors including PLCβ, AC and components of MAPK 

pathways.  (Adapted from Pierce et al., 2002) 
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on dissociation from active GTP-bound α meaning that following GTP hydrolysis, free 

GDP-bound α subunits can bind and reform the original inactive trimeric G protein 

(Cabrera-Vera et al., 2003; Wess, 1998).  Hydrolysis of GTP to GDP by the α subunit 

marks termination of the GPCR activation cycle and is regulated by regulator of G-protein 

signalling (RGS) proteins.  These proteins act as GTPase activating proteins for the α 

subunit promoting the hydrolysis of GTP and accelerating the deactivation of the pathway 

(De Vries et al., 2000). 

1.5.4 Regulation 

Many mechanisms have evolved to regulate GPCR signalling.  One of the best-studied is 

the phenomenon of receptor desensitisation which is crucial in protecting the cell from 

over-stimulation.  The process of desensitisation results in the dampening of receptor 

responsiveness despite the continued presence of agonist.  Desensitisation is mediated by 

several different mechanisms including phosphorylation of receptors resulting in 

uncoupling from G proteins, sequestration of receptors by internalisation, receptor 

degradation and downregulation of receptor gene expression (Kristiansen, 2004; Ferguson, 

2001).  The importance of this process is demonstrated in diseases involving mutations in 

genes encoding proteins which regulate desensitisation.  For example, patients with 

Oguchi’s disease suffer night blindness and retinal degeneration as a result of over-

stimulation of rhodopsin (Métayé et al., 2005).  Desensitisation may be described as 

homologous or heterologous.  Homologous desensitisation is initiated on binding of 

agonist to a receptor and results in dampening of signalling from the same receptor.  

Meanwhile during heterologous desensitisation, agonist activation of one receptor leads to 

dampening of signalling from other unrelated receptors even if they are not occupied by 

agonist (Kelly et al., 2008; Pierce et al., 2002). 

1.5.4.1 Phosphorylation 

Typically, agonist stimulation leads to rapid desensitisation (seconds to minutes) as a result 

of receptor phosphorylation.  This is mediated by both second messenger-dependent 

kinases, such as PKC and PKA, and a distinct family of seven G protein-coupled receptor 

kinases (GRKs).  Phosphorylation mediated by PKC or PKA results in the direct 

uncoupling of receptors from their respective G protein.  Meanwhile, GRK 

phosphorylation promotes the binding of cytosolic inhibitory proteins called arrestins, 

which sterically inhibit further interactions between the receptor and the G protein and 
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therefore terminate downstream signalling (Kristiansen, 2004; Krupnick and Benovic, 

1998; figure 1.7). 

1.5.4.1.1 G protein-coupled receptor kinases (GRKs) 
GRKs mediate a very general mechanism of desensitisation that is homologous in nature 

owing to the fact that GRKs selectively phosphorylate agonist-occupied receptors.  There 

are seven GRK family members, termed GRK1-7.  GRK1 and 7 are primarily expressed in 

the retina where they regulate the opsin light receptors while GRK4 is mainly found in the 

testis.  GRKs 2, 3, 5 and 6 however, are widely expressed and phosphorylate a wide range 

of receptors with overlapping preferences (Premont and Gainetdinov, 2007).  GRK family 

members share a common functional domain structure with an N-terminal substrate 

recognition domain, a central catalytic domain, and a C-terminal domain that is involved in 

membrane targeting (Ferguson, 2001).  Following receptor stimulation, GRKs 1, 2 and 3 

are translocated to the plasma membrane while GRKs 4, 5 and 6 are found primarily at the 

membrane even in the absence of agonist.  GRKs bind to activated receptors and 

phosphorylate specific serine and threonine residues in their cytoplasmic regions (Premont 

et al., 1995).  In the case of the β2AR, GRK1, GRK2 and GRK5 phosphorylate sites in the 

C-terminal tail of the receptor (Premont et al., 1994) while the M2 muscarinic receptor, 

which has a short C-terminal tail, is phosphorylated on residues in its third intracellular 

loop (Nakata et al., 1994).  A specific consensus sequence for phosphorylation by GRKs 

has not been defined.  However, in studies using synthetic peptides, GRK1, GRK2 and by 

extension GRK3 have been found to preferentially phosphorylate serine and threonine 

residues present in an acidic environment (Onorato et al., 1991; Benovic et al., 1990). 

GRK-mediated phosphorylation in itself has little effect on receptor function but it triggers 

the desensitisation process by increasing the affinity of the receptor for arrestin proteins.  

There are four arrestin family members.  Visual and cone arrestin are expressed 

exclusively in the retina while β-arrestin 1 and β-arrestin 2 are ubiquitously expressed 

(Luttrell and Lefokowitz, 2002).  Arrestins bind to regions of GRK-phosphorylated 

receptors involved in G-protein coupling thereby mediating desensitisation by sterically 

blocking interactions with G proteins.  In addition, the β-arrestins further contribute to 

desensitisation by facilitating agonist-induced internalisation as described below (Luttrell 

and Lefokowitz, 2002). 
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Figure 1.7 The role of GRKs and ββββ-arrestin in desensitisation and 

internalisation 

Following agonist-stimulation, GPCRs undergo a conformational change which allows 

them to act as a guanine nucleotide exchange factor for G proteins.  The activated GPCR 

is recognised by members of the G protein-coupled receptor kinase (GRK) family which 

phosphorylate the receptor at specific sites on the intracellular loops and C-terminal tail.  

GRK phosphorylation promotes the binding of cytosolic inhibitory proteins called 

arrestins, which sterically inhibit further interactions between the receptor and the G 

protein and therefore terminate downstream signalling.  β-arrestins also mediate 

internalisation of the receptor by interacting with components of the endocytic machinery 

required for formation of clathrin-coated pits, including the heavy chain of clathrin itself 

and the clathrin adapter protein AP-2.  Newly formed vesicles are pinched off from the 

plasma membrane by the GTPase dynamin to form endosomes.  Receptors may be 

dephosphorylated by phosphatases present in endosomes and recycled back to the cell 

surface or they may be targeted to lysosomes for degradation.  (Figure from Pierce et al., 

2002) 
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1.5.4.1.2 2nd messenger dependent kinases 
GPCR stimulation results in elevation of cellular levels of second messengers such as 

cAMP and DAG which activate the second messenger-dependent kinases PKA and PKC 

respectively.  PKA and PKC have the potential to phosphorylate a multitude of 

downstream targets but they can also feedback and phosphorylate GPCRs to regulate their 

activity in either a homologous or heterologous manner.  For example, in response to 

agonist treatment, the β2AR is phosphorylated by PKA on serine262 within the PKA 

consensus sequence RRSSK263 (Yuan et al., 1994; Clark et al., 1989).  This sequence is in 

the third intracellular loop of the receptor adjacent to sites required for coupling to Gs 

(O’Dowd et al., 1988; Strader et al., 1987) and so it is likely that desensitisation occurs as 

a result of phosphorylation inhibiting the receptor/G protein interaction.  Phosphorylation 

of the β2AR by PKA appears to occur independently of GRK-mediated phosphorylation 

(Vaughan et al., 2006) and is believed to be an important mechanism of desensitisation at 

low agonist concentrations when GRK activity is low.  Phosphorylation at the PKA site 

occurs at low agonist concentrations (EC50 = 20-40 pM epinephrine) because only small 

changes in cAMP are required to activate PKA while phosphorylation by GRKs requires 

higher concentrations (EC50 = 200 nM epinephrine) as receptors must be occupied (Tran et 

al., 2004).  Interestingly, phosphorylation by PKA not only results in desensitisation by 

uncoupling the receptor from Gs, it also increases receptor affinity for Gi, thereby 

converting the stimulatory effect on AC to an inhibitory one.  In addition, coupling to Gi 

allows activation of the ERK pathway that does not occur through Gs, indicating a role for 

receptor phosphorylation in initiating new signalling events (Daaka et al., 1997).  Several 

other receptors have been reported to undergo desensitisation in response to 

phosphorylation by PKC.  For example, desensitisation of the α2AAR is regulated by 

phosphorylation by PKC on serine 360 in the third intracellular loop of the receptor (Liang 

et al., 2002) while in the case of the α1BAR (Diviani et al., 1997) and the type 1A 

angiotensin II receptor (Tang et al., 1998), phosphorylation of serine residues in the C-

terminal tail is required for PKC-mediated desensitisation. 

Other serine/threonine kinases implicated in the regulation of GPCR activity are casein 

kinase 1α (CK1α) and casein kinase 2 (CK2).  Agonist mediated phosphorylation of the 

third intracellular loop of the Gq coupled muscarinic M3 acetylcholine receptor is at least in 

part mediated by CK1α (Budd et al., 2001, Tobin et al., 1997).  The functional 

significance of CK1α-mediated phosphorylation on receptor activity has been 
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demonstrated.  M3 activation of the ERK pathway is compromised in CHO cells expressing 

either a mutant M3 receptor lacking the third intracellular loop or a dominant negative 

mutant of CK1α (Budd et al., 2001).  CK1α phosphorylates serine residues within 

consensus sequences commonly found in GPCRs indicating potential for regulating 

phosphorylation of GPCRs in general (Tobin, 2002).  CK2 has also been shown to 

phosphorylate the M3 receptor.  This has no effect on internalisation of the receptor or 

agonist-mediated ERK activation but does affect Jun kinase MAPK activation 

demonstrating that phosphorylation by different kinases can modulate receptor signalling 

in different cell types (Torrecilla et al., 2007). 

1.5.4.2 Internalisation 

Following agonist-stimulation, many receptors undergo internalisation into endocytic 

vesicles.  This contributes to desensitisation by sequestering receptors away from the cell 

surface but also promotes receptor resensitisation through dephosphorylation and recycling 

to the plasma membrane (Ferguson, 2001).  The best well characterised mechanism of 

internalisation involves β-arrestin-mediated targeting of receptors to clathrin-coated pits 

(Luttrell and Lefkowitz, 2002, Ferguson, 2001; figure 1.7).  This is facilitated by the ability 

of β-arrestins to interact with components of the endocytic machinery required for 

formation of clathrin-coated pits, including the heavy chain of clathrin itself and the 

clathrin adapter protein AP-2 (Luttrell and Lefkowitz, 2002; Claing et al., 2002).   Newly 

formed vesicles are pinched off from the plasma membrane by the GTPase dynamin to 

form endosomes.  Receptors may be dephosphorylated by phosphatases present in 

endosomes and recycled back to the cell surface or they may be targeted to lysosomes and 

degraded (Luttrell and Lefkowitz, 2002; Claing et al., 2002). 

An alternative mechanism for receptor internalisation appears to involve cholesterol-rich 

plasma membrane structures called caveolae (Claing et al. 2002).  It is not entirely clear 

how receptors are targeted for internalisation by caveolae but numerous GPCRs, probably 

due to their palmitoylated nature, have been found to be localised to caveolae including the 

M2 muscarinic receptor (Feron et al., 1997), the β2-adrenergic receptor (Dupree et al., 

1993) and the endothelin ETB receptor (Teixeira et al., 1999).  Furthermore, agents which 

disrupt the structure of caveolae have been shown to inhibit internalisation of receptors 

such as the ETB endothelin receptor (Okamoto et al., 2000). 
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1.5.5 GPCR-interacting proteins 

Classically, signalling by GPCRs relies on their ability to interact with heterotrimeric G 

proteins.  However, this is a very simplistic model as GPCRs are able to interact with a 

large number of proteins other than G proteins and the kinases and arrestins which mediate 

desensitisation and internalisation (Bockaert et al., 2004; Heuss and Gerber, 2000).  Many 

GPCRs have specific sequence motifs in their C-terminal tails or in their third intracellular 

loop which enable interactions with proteins which have particular protein-protein 

interaction domains within their structures (Kristiansen, 2004; Heuss and Gerber, 2000).  

For example, PDZ domains (named after their discovery in postsynaptic density protein 

(PSD) 95, the Drosophila septate junction protein Discs-large, and the epithelial tight 

junction protein ZO-1) which bind specifically to short sequences at the very C-terminus of 

target proteins (Sheng and Sala, 2001).  Other proteins interact via Src homology 2 (SH2), 

SH3 or enabled Vasp homology domains (EVD) or are recruited by arrestins.  Proteins 

recruited to the GPCR in this manner may directly initiate alternative signalling pathways 

independently of G proteins and/or may act as adaptor or scaffold proteins which allow 

recruitment and spatial organisation of additional signalling components to improve the 

specificity and efficiency of downstream signalling (Bockaert et al., 2004; Hall and 

Lefkowitz, 2002; Heuss and Gerber, 2000). 

1.5.5.1 PDZ 

A clear example of a GPCR-binding protein which promotes efficient signalling through 

scaffolding interactions is the large cytoplasmic protein INAD which interacts with 

Drosophila rhodopsin (Xu et al., 1998; Chevesich et al., 1997).  INAD has five PDZ 

domains, two of which mediate binding to rhodopsin while the other three are involved in 

interactions with a number of proteins required for visual signalling in Drosphila (Xu et 

al., 1998).  Light activation of rhodopsin results in Gq-mediated stimulation of PLCβ 

which results in elevation of intracellular calcium levels, activation of PKC and opening of 

calcium-regulated transient receptor potential (TRP) channels (Tsunoda and Zuker, 1999).  

INAD has been found to interact with most of the components of this signalling pathway 

including PLCβ, PKC and TRP thereby creating a highly organised “transducisome” to 

allow extremely rapid signalling (Tsunoda et al., 1997).  The importance of these 

interactions has been demonstrated using Drosophila mutants lacking functional INAD.  In 

INAD-null cells, TRP, PLCβ and PKC are mislocalised and photoreceptors have profound 

signalling defects, only responding to the highest level of stimuli (Tsunoda et al., 1997). 
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In addition to scaffolding roles, the association of some PDZ-containing proteins with 

GPCRs has been shown to regulate the nature of downstream signalling events.  For 

example, agonist-induced association of the β2AR with the Na+/H+ exchanger regulatory 

factor (NHERF) 1 confers the ability to positively regulate renal Na+/H+ exchange by 

Na+/H+ exchanger 3 (NHE3; Hall et al., 1998).  Normally, activation of a Gs coupled 

receptor such as the β2AR would not be expected to have this effect as increasing cAMP 

usually leads to PKA-mediated association of NHERF1 with NHE3 which inhibits its 

activity (Weinman and Shenolikar, 1993).  The stimulatory effect of the β2AR on NHE3 

function can be blocked by mutating the final residue in the receptor so that it cannot bind 

NHERF1.  Therefore, it is proposed that the agonist-induced association of NHERF1 with 

β2AR displaces NHERF1 from NHE3 and removes its inhibitory effect leading to an 

increase in NHE3 activity (Hall et al., 1998). 

The closely-related NHERF2 has been found to modulate downstream signalling from the 

parathyroid hormone (PTH1) receptor.  NHERF2 interacts simultaneously with the 

parathyroid hormone 1 (PTH1) receptor and PLCβ through two separate PDZ domains 

(Mahon et al., 2002).  The PTH1 receptor can couple to Gs, Gq and Gi although in most 

cells, signalling occurs predominantly through activation of AC (Abou-Samra et al., 1992).  

When the PTH1 receptor is expressed in cells lacking NHERF, signalling occurs almost 

exclusively through AC (Mahon et al., 2002).  However, when wild-type PTH1 and 

NHERF are coexpressed, only small increases in cAMP are observed following receptor 

stimulation and signalling occurs predominantly through activation of PLC.  This response 

can be reversed and AC signalling partially restored by treatment with pertussis toxin 

indicating that NHERF binding acts like a molecular switch to promote PTH1 receptor 

signalling through Gi rather than Gs (Mahon et al., 2002; Weinman et al., 2006).  NHERF2 

also plays a scaffolding role not dissimilar to INAD by bringing the PTH1 receptor and 

PLCβ into close proximity thereby promoting more efficient signalling through Gi (Mahon 

et al., 2002). 

1.5.5.2 Non-PDZ 

While PDZ-containing proteins bind predominantly to the sequences at the very C-

terminus of GPCRs, other proteins bind to sequences in other regions of the receptor tail.  

Certain proteins have been found to bind via their SH2 domains to phosphorylated tyrosine 

residues in the tail of GPCRs to enable organisation of signalling complexes in a manner 

similar to that seen for growth factor receptors (Hall et al., 1999).  This is believed to be 



Gillian R Milne, 2008  Chapter 1, 62 

the underlying mechanism by which stimulation of the angiotensin II AT1A receptor results 

in activation of the JAK/STAT pathway which is otherwise generally regarded as a 

cytokine/growth factor-regulated pathway (Godeny et al., 2007; Marrero et al., 1998).  

JAK2 associates with the AT1A receptor via a specific phosphorylated YIPP motif in the C-

terminal tail of the receptor (Ali et al., 1997) but since JAK2 does not contain an SH2 

domain, it was not clear initially how this was achieved.  It is now apparent that this 

association depends upon the SH2 domain-containing protein SHP2 which appears to act 

as an adaptor for JAK2 (Godeny et al. 2007, Marrero et al., 1998).  JAK2 then recruits and 

phosphorylates STAT1 leading to activation of the JAK/STAT pathway (Ali et al., 2000). 

Another class of proteins which interacts with phosphorylated motifs in target proteins is 

the 14-3-3 family which comprises seven isoforms termed β, ε, γ, η, σ, τ and ζ (Fu et al., 

2000).  Numerous biological activities have been attributed to 14-3-3 proteins including 

cell signalling, regulation of cell cycle progression, intracellular trafficking and 

transcription (Aitken, 2006).  Many of these functions involve the regulation of 

interactions between proteins with 14-3-3 proteins often acting as scaffold or adapter 

proteins (Tzivion et al., 2001).  This is facilitated by the fact that 14-3-3 proteins exist as 

dimers and so can bind to two interaction partners simultaneously (Jones et al., 1995).  14-

3-3 proteins bind to proteins containing phosphorylated serine residues within either R-S-

X-pS-X-P or R-X-φ-X-pS-X-P motifs (Yaffe et al., 1997; Muslin et al., 1996) although 

some interacting proteins do not contain these sequences indicating that other modes of 

binding do occur (Aitken et al., 2006).  There are several reports of 14-3-3 proteins 

interacting with GPCRs with varying functional consequences.  For example, 14-3-3ε 

interacts with the β1AR with effects on regulation of cardiac repolarisation by the voltage-

gated potassium channel Kv11.1 (Tutor et al., 2006).  This was found to occur in a PKA-

dependent manner and required the presence of two PKA phosphorylation motifs in the 

third intracellular loop and tail of the receptor, suggesting that 14-3-3ε binds at these sites.  

The functional effects of this interaction were demonstrated by co-transfecting Kv11.1 and 

14-3-3ε in the presence or absence of the β1AR.  It was found that in cells lacking the 

β1AR, Kv11.1 bound to 14-3-3ε, an interaction which enhances Kv11.1 activity (Kagan et 

al., 2002), while coexpression of the β1AR disrupted this interaction.  It was therefore 

proposed that β1AR competing for 14-3-3ε binding represents a novel mechanism by 

which the β1AR regulates the Kv11.1 channel (Tutor et al., 2006).  In further examples of 

14-3-3 proteins interacting with GPCRs, 14-3-3ζ is reported to bind to the α2A, α2B and 

α2C ARs (Prezeau et al., 1999) and to the thromboxane TPα and TPβ receptors (Yan et al., 
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2006).  This is proposed to facilitate Ras-mediated activation of the ERK pathway owing 

to the ability of 14-3-3 proteins to bind and aid in the activation of Raf (Tzivion et al., 

1998; Luo et al., 1996).  This is discussed further in Section 3.3. 

1.5.5.3 Arrestins 

More generalised scaffold formation is mediated by arrestins which do not require specific 

motifs in order to interact with GPCRs.  Following agonist activation, most GPCRs are 

phosphorylated by GRKs which leads to receptor association with β arrestins and 

uncoupling from G proteins (Ferguson, 2001).  In addition to interactions with proteins 

involved in receptor endocytosis during desensitisation, β arrestins also bind a variety of 

other proteins such as Src family tyrosine kinases and components of MAPK pathways and 

recruit them to agonist-occupied receptors (Luttrell and Lefkowitz, 2002).  For example, 

agonist stimulation of the β2AR promotes its association with Src via β-arrestin 1.  As a 

consequence of binding to β-arrestin 1, Src is activated resulting in Ras-dependent ERK 

signalling (Luttrell et al., 1999).  β-arrestins further influence MAPK signalling by 

scaffolding together the appropriate kinases of the ERK and JNK MAPK pathways to 

allow specificity in signalling (Reiter and Lefkowitz, 2006). 

β-arrestins have also been found to bind to members of the phosphodiesterase (PDE) 

family which degrade cAMP (Perry et al., 2002).  Following agonist stimulation of the 

β2AR, the PDE isoform PDE4D5 is translocated to the receptor concomitantly with β-

arrestin 1 or β-arrestin 2.  By this means, arrestins not only dampen signalling from the 

receptor to AC, they also increase the rate of cAMP degradation, thereby reducing 

activation of PKA at the plasma membrane (Perry et al., 2002).  Phosphorylation of the 

β2AR by membrane-localised PKA switches G protein coupling of the receptor from Gs to 

Gi leading to activation of the ERK pathway (Daaka et al., 1997).  The importance of β-

arrestin-mediated recruitment of PDE4D5 to the receptor in regulating this switch has been 

demonstrated using a dominant negative form of PDE4D5 which cannot bind β-arrestins.  

Overexpression of this construct in HEK 293 cells resulted in enhanced agonist-induced 

phosphorylation of the β2AR and a marked potentiation in ERK activation (Baillie et al., 

2003). 

Other important binding partners of arrestins are the ubiquitin E3 ligases Mdm2 and 

Nedd4, which have been shown to have distinct roles in regulating intracellular trafficking 
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of the β2AR.  β-arrestin 2 is ubiquitinated by Mdm2 and this modification is required for 

rapid agonist-induced internalisation of the β2AR (Shenoy et al., 2001).  Meanwhile, 

recruitment of Nedd4 to the β2AR via β-arrestin 2 facilitates ubiquitination of the receptor 

and is required for targeting receptors to lysosomes for degradation following long-term 

stimulation (Shenoy et al., 2008). 

1.6 The A2AAR 

In common with the other AR subtypes, the A2AAR assumes a protein structure typical of 

GPCRs with TM5, 6 and 7 forming a hydrophobic pocket where adenosine binds (Kim et 

al., 1995).  The recent solving of the crystal structure of the A2AAR in complex with high 

affinity anatagonist ZM241385 has revealed that the extracellular loops of the receptor are 

arranged in a different manner to those of the previously characterised β1AR, β2AR and 

rhodopsin (Jaakola et al., 2008).  In particular, a network of disulphide bridges contributes 

to the formation of a rigid open structure that exposes the ligand-binding cavity to solvent.  

ZM241385 binds within this cavity in an extendend conformation perpendicular to the 

membrane in quite a different manner to ligands of the βARs and rhodopsin (Jaakola et al., 

2008).  Another finding from this study was that an eighth helical segment known as helix 

8 which is found in the cytoplasmic tail of the receptor is stabilised by interactions with 

helix 1.  Many GPCRs are palmitoylated in this region (Kristiansen, 2004) and in 

rhodopsin, helix 8 is stabilised via interactions with the plasma membrane (Moench et al., 

1994).  However, this cannot occur in the case of the A2AAR as it does not contain sites for 

palmitoylation (Palmer and Stiles, 1995). 

In common with other GPCRs, the A2AAR has the conserved DRY sequence which is 

believed to be important for G protein activation present in its second intracellular loop 

(Palmer and Stiles, 1995).  Two N-linked glycosylation consensus sequences are present in 

the second extracellular loop of all adenosine receptors (Palmer and Stiles, 1995).  In the 

case of the A2AAR, immunoblotting analysis suggests that only one of these sites is used 

(Palmer et al., 1992).  The significance of this modification is unclear but it does not 

appear to be important for ligand binding as inhibition of N-linked glycosylation has been 

shown to have no effect on the agonist binding characteristics of the A2AAR (Piersen et al., 

1994).  Structurally, the A2AAR differs most noticeably from other adenosine receptors in 

its size.  While the genes for human A1, A2B and A3 receptors encode proteins of 326 

(Libert et al., 1992), 328 (Pierce et al., 1992) and 318 residues respectively (Salvatore et 
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al., 1993), the A2AAR is 412 amino acids long, the additional 84-94 amino acids of its 

sequence constituting an extended C-terminal tail (Furlong et al., 1992; figure 1.8, figure 

1.9). 

The A2AAR, like many GPCRs can form dimeric or possibly oligomeric complexes and 

studies using cell-surface biotinylation and of proteins and fluorescence resonance energy 

transfer (FRET) have indicated that homodimers may be the predominant form on the cell 

surface (Canals et al., 2004).  In addition, the A2AAR has also been found to form 

heterodimers with the A1AR and the dopamine D2 receptor in striatal tissues (Fredholm et 

al., 2007).  The interaction of the A2AAR with the A1AR is thought to allow different 

signalling responses depending on the concentration of adenosine present.  At low 

concentrations, the high-affinity A1AR is activated preferentially leading to decreases in 

levels of cAMP while at higher concentrations, the A2AAR is activated and levels of cAMP 

rise (Schiffmann et al., 2007).  Meanwhile, the interaction of the A2AAR with the 

dopamine D2 receptor is antagonistic with A2AAR agonists such as CGS21680 reducing the 

affinity of the D2 receptor binding site (Fuxe et al., 2005). 

1.6.1.1 G protein coupling 

The region of the A2AAR responsible for G protein coupling has not been fully described.  

Studies in other GPCRs indicate that several different regions may be important for 

interactions with G proteins, particularly regions in intracellular loops 2 and 3 and the 

membrane proximal portion of the C-terminal tail (Wess, 1997; Ulloa-Aguirre et al., 

1999).  The importance of the third intracellular loop of the A2AAR in mediating coupling 

to Gs has been shown in a study using a series of chimaeric A1/A2A receptors.  Olah (1997) 

found that replacement of the third intracellular loop of the canine A2AAR with 

corresponding sequences from the human A1AR drastically reduced agonist-stimulated 

activation of AC.  Through the use of more restricted chimaeras, a stretch of 15 amino 

acids in the N-terminal portion of intracellular loop 3 and in particular Lys219 and Glu212 

were identified as being important for coupling to Gs (Figure 1.8).  Similar examination of 

the second intracellular loop revealed that Gly118 and Thr119 at the junction of this loop 

and TMIV were required for Gs coupling.  However, since individual substitutions or 

substitution with alanine residues had no effect on AC activation, it was suggested that 

these residues play a role in directing protein conformation to allow interaction with G 

proteins rather than directly activating Gs.    Importantly, none of the more restricted 

chimaeras or individual mutations used in this study fully mimicked the effect of  
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Figure 1.8 Schematic representation of the membrane topology of the 

canine A2AAR 

The A2AAR has an extended C-terminal tail.  Serine and threonine residues representing 

potential phosphorylation sites are marked by asterisks.  The last ~100 amino acids of the 

receptor appear to be dispensable for agonist binding, G protein coupling and agonist-

induced desensitisation.  However, several proteins are reported to interact with the 

A2AAR in this region.  (Figure adapted from Palmer and Stiles, 1997) 
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                                                  ICL1 
A2AAR_HUMAN     MPIMGSSVYITVELAIAVLAILGNVLVCWAVWLNSNLQNVTNYFVVSLAA 50 
A2AR_CAN        MSTMGSWVYITVELAIAVLAILGNVLVCWAVWLNSNLQNVTNYFVVSLAA 50 
                *. *** ******************************************* 
 
A2AR_HUMAN      ADIAVGVLAIPFAITISTGFCAACHGCLFIACFVLVLTQSSIFSLLAIAI 100 
A2AR_CAN        ADIAVGVLAIPFAITISTGFCAACHNCLFFACFVLVLTQSSIFSLLAIAI 100 
                *************************.***:******************** 
 
                           ICL2 
A2AR_HUMAN      DRYIAIRIPLRYNGLVTGTRAKGIIAICWVLSFAIGLTPMLGWNNCGQPK 150 
A2AR_CAN        DRYIAIRIPLRYNGLVTGTRAKGIIAVCWVLSFAIGLTPMLGWNNCSQPK 150 
                **************************:*******************.*** 
 
A2AR_HUMAN      EGKNHSQGCGEGQVACLFEDVVPMNYMVYFNFFACVLVPLLLMLGVYLRI 200 
A2AR_CAN        EGRNYSQGCGEGQVACLFEDVVPMNYMVYYNFFAFVLVPLLLMLGVYLRI 200 
                **:*:************************:**** *************** 
 
                            ICL3 
A2AR_HUMAN      FLAARRQLKQMESQPLPGERARSTLQKEVHAAKSLAIIVGLFALCWLPLH 250 
A2AR_CAN        FLAARRQLKQMESQPLPGERARSTLQKEVHAAKSLAIIVGLFALCWLPLH 250 
                ************************************************** 
 
A2AR_HUMAN      IINCFTFFCPDCSHAPLWLMYLAIVLSHTNSVVNPFIYAYRIREFRQTFR 300 
A2AR_CAN        IINCFTFFCPECSHAPLWLMYLTIVLSHTNSVVNPFIYAYRIREFRQTFR 300 
                **********:***********:*************************** 
 
A2AR_HUMAN      KIIRSHVLRQQEPFKAAGTSARVLAAHGSDGEQVSLRLNGHPPGVWANGS 350 
A2AR_CAN        KIIRSHVLRRREPFKAGGTSARALAAHGSDGEQISLRLNGHPPGVWANGS 350 
                *********::*****.*****.**********:**************** 
 
A2AR_HUMAN      APHPERRPNGYALGLVSGGSAQESQGNTGLPDVELLSHELKGVCPEPPGL 400 
A2AR_CAN        APHPERRPNGYTLGLVSGGIAPESHGDMGLPDVELLSHELKGACPESPGL 400 
                ***********:******* * **:*: **************.***.*** 
 
A2AR_HUMAN      DDPLAQDGAGVS 412 
A2AR_CAN        EGPLAQDGAGVS 412 
                :.********** 

Figure 1.9 Sequence alignment of human and canine A2AARs 

Sequences defining intracellular loop 1 (ICL1; Leu33-Val40), ICL2 (Ile108-Gly118) 

and ICL3 (Leu208-Ala221) as identified in the crystal structure of the human A2AAR 

(Jaakola et al., 2008) are shown in blue.  The C-terminal tail of the receptor is shown in 

green.  Identical residues are marked with an asterisk while (:) denotes a conserved 

substitution and (.) denotes a semi-conserved substitution.  Residues with no similarity 

are unmarked. 
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substituting larger portions of the receptor suggesting that multiple amino acids are likely 

to be involved in selective coupling of the A2AAR to Gs (Olah, 1997). 

1.6.1.2 A2AAR signalling 

Classically, signalling through the A2AAR relies on its coupling to Gs and stimulation of 

AC (Linden, 2001).  This results in elevation of intracellular levels of cAMP which then 

activate downstream effectors including PKA, cyclic nucleotide-gated ion channels and 

exchange proteins directly activated by cAMP (Epacs; Beavo and Brunton, 2002).  

Stimulation of the A2AAR also results in activation of the ERK signalling cascade.  This 

can occur via Gs-dependent or Gs-independent mechanisms.  For example, in CHO cells 

heterologously expressing the A2AAR and in PC12 cells, Gs stimulation of AC has been 

shown to result in PKA-mediated activation of ERK via Src kinases (Klinger et al., 2002a).  

Meanwhile, in endothelial cells, ERK can be activated independently of cAMP elevation 

and requires Ras (Sexl et al., 1997). 

1.6.1.3 Regulation of the A2AAR 

1.6.1.3.1 Desensitisation 
The A2AAR has been shown to undergo rapid functional desensitisation after short-term 

agonist treatment in a variety of cell types which express endogenous receptors including 

rat aortic vascular smooth muscle cells (Anand-Srivastava et al., 1989), NG108-15 

neuroblastoma × glioma hybrid cells (Mundell and Kelly, 1998), hamster smooth muscle 

DDT1 MF-2 cells (Ramkumar et al., 1991) and the PC12 rat adrenal tumour cell line 

(Chern et al., 1993). 

This effect and the various mechanisms responsible have been further characterised using 

CHO cells stably expressing the canine A2AAR.  In these cells, short-term exposure to 

agonist (30 minutes) resulted in a rapid reduction in subsequent agonist-induced AC 

activation (Palmer et al., 1994).  This was associated with receptor phosphorylation and 

reduced coupling to Gs.  However, this effect could not be mimicked by treatment with 

forskolin or PMA indicating that phosphorylation by PKA or PKC was not responsible.  

Long-term agonist treatment (24 hours) produced a comparable reduction in AC activity 

but much slower recovery and this was associated with receptor downregulation (Palmer et 

al., 1994).  The structural requirements for desensitisation of the A2AAR have been 

examined using mutated forms of the canine A2AAR expressed in CHO cells (Palmer and 
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Stiles, 1997).  Palmer and Stiles (1997) found that truncation of the receptor removing 95 

amino acids from the C-terminal tail did not inhibit desensitisation.  In fact the mutant 

receptor desensitised faster than the wild-type form (T. Palmer; personal communication).  

This was surprising as numerous serine and threonine residues are present in this region 

representing potential sites for phosphorylation by regulatory kinases.  Truncation of other 

GPCRs such as the α1BAR (Lattion et al., 1994) and the β2AR (Bouvier et al., 1988) which 

have relatively long C-terminal tails rich in serine and threonine residues abolishes agonist-

induced receptor phosphorylation and desensitisation.  However, an A2AAR mutant in 

which two residues in the membrane proximal region of the C-terminal tail (Thr298 and 

Ser305) were replaced with alanine residues failed to exhibit any significant desensitisation 

response (Palmer and Stiles, 1997, figure 1.8).  Generation of receptors with single 

mutations at these residues revealed that short-term desensitisation of the A2AAR relies on 

the presence of the threonine residue at position 298.  The mutant receptor lacking Thr298 

also failed to undergo agonist-induced phosphorylation suggesting that phosphorylation of 

this single residue may be required for short-term desensitisation of the A2AAR (Palmer et 

al., 1997). 

Because elevation of cAMP through stimulation of AC with forskolin does not induce 

desensitisation of the A2AAR (Palmer et al., 1994), it is unlikely that PKA is responsible 

for agonist-induced phosphorylation and desensitisation of the receptor.  This indicates the 

involvement of a GRK, a theory which has been investigated further using NG108-15 cells 

which express endogenous A2AARs and GRK2 (Mundell et al., 1997).  Following short-

term agonist treatment, the A2AAR desensitised in these cells in a similar manner to that 

observed in CHO cells.  However, on introduction of a mutant GRK2 (Lys220Arg) which 

lacks kinase activity, this response was significantly reduced.  In a subsequent study, 

suppression of GRK2 expression using anti-sense cDNA revealed that this effect was due 

specifically to loss of GRK2 activity rather than effects on other GRKs present in these 

cells, indicating that GRK2 is at least partly responsible for mediating short-term 

desensitisation of natively expressed A2AARs (Mundell et al., 1999). 

1.6.1.3.2 Role of the C-terminal tail 
In comparison to other adenosine receptors and to GPCRs in general, the A2AAR has an 

unusually long C-terminal tail (Zezula and Freissmuth, 2008).  However, the functional 

significance of this is not clear.  As discussed above, truncation of the tail has no effect on 

agonist-induced phosphorylation and desensitisation of the receptor.  Similarly, it has been 
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found that the agonist-binding properties of a mutant canine A2AAR in which the last 102 

residues have been replaced with a hexahistidine sequence are comparable to those of the 

wild-type receptor (Piersen et al., 1994).  The C-terminal tail also appears to be 

dispensable for G protein coupling and stimulation of AC (Palmer and Stiles, 1997).  

However, it does appear to be important for constitutive receptor signalling as truncated 

forms exhibit a reduced ability to activate AC in the absence of agonist (Klinger et al., 

2002b).  The difference in AC activation between wild-type and truncated receptors only 

occurred in intact cells and so it was proposed that the higher levels of constitutive activity 

observed for the wild-type receptor were dependent on an additional as yet unidentified 

factor which bound to the receptor tail (Klinger et al., 2002b). 

The presence of 12 serine and threonine residues within the C-terminal tail of the A2AAR 

suggests that phosphorylation in this region may be important for regulation of receptor 

activity (figure 1.8).  Agonist-induced phosphorylation of the A2AAR is associated with its 

desensitisation (Palmer et al., 1994).  However, the canine A2AAR has also been shown to 

undergo PKC-mediated phosphorylation in response to PMA treatment or following 

stimulation of endogenous receptors which activate PKC (Palmer and Stiles, 1999).  The 

canine A2AAR contains three consensus PKC phosphorylation sequences within the C-

terminal tail (Thr298, Ser320 and Ser335, figure 1.8).  However, a mutant receptor in 

which these sites were disrupted displayed levels of basal and PMA-induced 

phosphorylation comparable with the wild-type receptor, indicating that although PKC 

regulates phosphorylation of the A2AAR, it does not occur at these PKC consensus sites.  

Furthermore, PKC-mediated phosphorylation did not induce desensitisation as no 

significant changes in the signalling capacity or cell surface expression of the receptor 

were observed following PMA treatment (Palmer and Stiles, 1999).  Thus, the role of 

PKC-mediated phosphorylation of the C-terminal tail of the A2AAR remains undetermined.  

One possibility is that phosphorylation regulates the ability of the receptor to bind C-

terminal interacting proteins.  Several proteins have been reported to bind to the C-terminal 

tail of the A2AAR as listed in Table 1.  These interactions are discussed further in Chapter 

4. 
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Interacting protein Interaction site on A2AAR Reference 

ARNO 291-312 Gsandtner et al., 2005 

α-actinin 293-321 Burgueño et al., 2003 

Ubiquitin-specific protease 4 

(USP4) 

385-412 Milojević et al., 2006 

TRAX Not determined Sun et al., 2006 

14-3-3τ Not determined M. Freissmuth, personal 

communication 

D2-dopamine receptor Not determined Fuxe et al., 2005 

 

 

 

 

 

  

Table 1: C-terminal interaction partners of the A2AAR 

ARNO, α-actinin, USP4 and TRAX have been identified as C-terminal interaction partners 

of the A2AAR based on evidence from yeast two-hybrid screens and from co-

immunoprecipitation and GST pull-down assays.  The A2AAR has been found to interact 

with the D2-dopamine receptor through the use of co-immunoprecipitation and FRET 

analysis, confirming an association that has long been predicted to exist on the basis of 

physiological evidence. 
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Aims 

The finding that levels of inflammatory cytokines and components of the NFκB signalling 

pathway are upregulated in A2AAR-deficient mice suggest that one way in which the 

A2AAR may limit inflammation is through suppression of pro-inflammatory signalling 

pathways.  One of the aims of this study was to determine whether modulation of the 

NFκB and JAK/STAT pro-inflammatory signalling pathways by the A2AAR plays a 

significant role in suppressing endothelial inflammation in vivo by examining the levels 

and activation status of components of these pathways in the aortae of A2AAR-deficient 

mice. 

A second aim of this study was to determine whether the human A2AAR is regulated by 

phosphorylation as has been shown previously for the canine receptor.  This was to be 

achieved by identifying stimuli which induce phosphorylation of the A2AAR and the kinase 

responsible.  In addition, it was of interest to determine whether stimuli-induced 

phosphorylation of the A2AAR could have consequences for regulating interactions 

between the A2AAR and 14-3-3τ and TRAX, two proteins which have been identified as 

interaction partners of the C-terminal tail of the receptor. 
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2 Materials and methods 

2.1 Materials 

American Radiolabeled Chemicals, St Louis, MO, USA 

3H-ZM241385 (20 Ci/mmol) 

Bio-rad Laboratories Ltd, Hemel Hempstead, Hertfordshire, UK 

Precision Plus Protein Kaleidoscope Standards 

Brandel Inc, Gaithersberg, MD, USA 

Glass fibre filters 

Cambridge Bioscience Ltd, Cambridge, UK 

Cell Biolabs Inc QuickTitre Addenovirus Immunoassay Kit 

GE Healthcare Life Sciences, Amersham, Buckinghamshire, UK 

Glutathione-Sepharose, protein G-Sepharose, [32P] orthophosphate (8500-9120 Ci/mmol) 

Inverclyde Biologicals, Bellshill, Lanarkshire, UK 

Whatman Protran nitrocellulose membrane 

Invitrogen, Paisley, UK 

BioSource Mouse Inflammatory Four-Plex kit, Opti-mem, Lipofectamine, Oligofectamine, 

Gibco low-phosphate Dulbecco’s modified Eagle’s medium (DMEM) with GlutaMax 

Lonza, Cambridge, UK 

Endothelial basal medium (EBM) plus supplements, DMEM, Ham’s F-12 medium 

May and Baker Ltd, London, UK 

Sagatal 
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Merck Chemicals Ltd, Nottingham, UK 

Novagen GeneJuice 

Perkin-Elmer Life Sciences, Waltham, MA, USA 

Western Lightning Plus Enhanced chemiluminescence (ECL) substrate 

Promega UK Ltd, Southampton, UK 

XbaI and HindIII restriction enzymes, 1 kb DNA markers 

Promocell, Heidelberg, Germany 

Human umbilical vein endothelial cells (HUVECs) 

Qiagen, Crawley, West Sussex, UK 

Proteinase K, Taq DNA polymerase, dNTPs, PCR buffer, Q-solution, Plasmid Maxi Kit 

Santa Cruz Biotechnology Inc, Santa cruz, CA, USA 

Horseradish peroxidise (HRP)-conjugated bovine anti-goat IgG, short interfering RNA 

(siRNA) 

Sigma-Aldrich, Poole, Dorset, UK 

Lipopolysaccharide (LPS) from Escherichia coli O111:B4, endotoxin-free phosphate-

buffered saline (PBS), fetal bovine serum (FBS), L-glutamine, penicillin/streptomycin 

solution, trypsin-EDTA solution, trypsin-EDTA for endothelial cells, IgG-free bovine 

serum albumin (BSA), 30% acrylamide/bis-acrylamide solution, HRP-conjugated goat 

anti-mouse IgG, HRP-conjugated goat anti-rabbit IgG 
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2.2 Methods 

2.2.1 Characterisation of A2AAR-deficient mice 

2.2.1.1 Breeding of A2AAR-deficient mice 

All animal experiments, genotyping and cytokine assays were carried out by Dr Claire 

Rutherford (IBLS, University of Glasgow, UK) under the Home Office project license PPL 

60/3119. 

CD-1 mice heterozygous for an inactive allele of the A2AAR were produced as described 

by Ledent et al. (1997) and were supplied alongside wild-type CD-1 mice by Charles River 

Laboratories, Margate, Kent, UK.  Briefly, the wild-type murine A2AAR was cloned and 

the coding sequence interrupted by insertion of the neomycin gene under control of the 

phosphoglycerine kinase promoter in the first exon, thereby replacing the first 102 codons 

of the A2AAR gene which encode transmembrane segments 1 to 3.  The resulting construct 

was introduced into R1 embryonic stem (ES) cells to allow homologous recombination.  

Clones carrying the recombinant A2AAR were selected for by resistance to G418 and 

screened by Southern blotting after digestion with DraI using a 2 800-bp EcoRI fragment 

complementary to a region spanning the site of insertion.  Clumps of recombinant ES cells 

were allowed to aggregate with single CD-1 eight-cell stage embryos from which the zona 

pellucida had been removed and the resulting embryos were transferred into the uteri of 

pseudopregnant recipients to generate chimaeric mice.  Chimaeras, when mated with wild-

type CD-1 mice, produced animals heterozygous for the inactive A2AAR gene (A2AAR-/+).  

On arrival, A2AAR-/+ mice were bred for several generations to generate homozygous 

animals which were then selected for further breeding to create a colony of A2AAR-

deficient (A2AAR -/-) mice. 

2.2.1.2 Genotyping of A2AAR-deficient mice 

2.2.1.2.1 Extraction of DNA from tail-snips 
Mice were confirmed as carriers of the mutant allele of the A2AAR using polymerase chain 

reaction (PCR) analysis of DNA extracted from tail-snips.  A 0.3 cm tail-snip was removed 

from each animal at the time of death and stored at – 80 °C for future processing.  Each 

tail-snip was digested by incubation with 300 µl TNES buffer (100 mM Tris, pH 7.5, 200 
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mM NaCl, 5mM EDTA, 0.2 % (w/v) sodium dodecyl sulphate (SDS)) and 40 µg 

proteinase K at 55 °C overnight.  Once all tissue was digested, 100 µl saturated 

(approximately 6 M) NaCl was added and the mixture was vortexed for 15 seconds.  

Insoluble debris was pelleted by centrifugation (16 000 g, 5 mins, room temperature (RT)) 

and the supernatant removed to a fresh microfuge tube.  DNA was precipitated by addition 

of 300 µl room temperature isopropanol.  The mixture was centrifuged again (16 000 g, 5 

mins, RT) and the isopropanol supernatant removed.  The DNA pellet was washed with 

300 µl room temperature 70 % (v/v) ethanol and centrifuged once more.  The ethanol was 

decanted and the pellet allowed to dry at room temperature before resuspension in 60 µl 

TE buffer (10 mM Tris, pH 7.5, 1 mM EDTA). 

2.2.1.2.2 Polymerase chain reaction (PCR) 
DNA from tail-snips was screened for the presence of the wild-type and mutant alleles of 

the A2AAR in a single PCR assay using the following primers: 

A2R3: 5’ – CTC CAC CAT GAT GTA CAC CG – 3’ 

Neo R3: 5’ – AGG GAA GGG TGA GAA CAG AG – 3’ 

A2D3: 5’ – CAT GGT TTC GGG AGA TGC AG – 3’ 

Primers were designed by Catherine Ledent (Institut de Recherche Interdisciplinaire, 

Universite de Bruxelles, Brussels, Belgium) and synthesised by Thermo Electron 

Corporation, Ulm, Germany.  A2R3 and A2D3 amplified a 229 bp sequence from the wild-

type A2AAR while Neo R3 and A2D3 amplified a 570 bp sequence from the mutant allele.  

Reactions were carried out using the Qiagen Taq DNA polymerase system in a total 

volume of 26 µl containing 1 µg of DNA extracted from tail-snips, 5 pmol of each primer, 

0.2 mM each of dATP, dCTP, dGTP and dTTP, 1 mM MgCl2, 1.5 U Taq DNA polymerase 

plus Qiagen PCR buffer and Q-solution as recommended by the manufacturer.  PCR was 

performed using a Progene Techne thermal cycler programmed to give an initial 

denaturation step of 94 °C for 2 minutes followed by 30 cycles of denaturation at 94 °C for 

30 seconds, annealing at 56 °C for 1 minute and elongation at 72°C for 30 seconds and 

finishing with a final elongation at 72 °C for 10 minutes. 

PCR products were viewed using agarose gel electrophoresis (1.2 % (w/v) agarose) as 

described in Section 2.2.6.7. 
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2.2.1.3 Bacterial endotoxin-induced septic shock 

Endotoxic shock was induced in equal numbers of male and female wild-type and A2AAR-/- 

mice by intraperitoneal injection of 400 µl (200 µg) lipopolysaccharide (LPS) in order to 

produce an acute vascular inflammatory response.  A similar group of mice were injected 

with an equal volume (400 µl) of phosphate-buffered saline (PBS) to give four 

experimental groups in total: (i) Wild-type mice + PBS, (ii) Wild-type mice + LPS, (iii) 

A2AAR-/- mice + PBS, (iv) A2AAR-/- mice + LPS.  Animals were then returned to their 

cages and observed closely.  After 4 hours, mice were euthanised by anaesthetic overdose 

via intraperitoneal injection of 0.3 ml Sagatal.  Following confirmation of death, a small 

blood sample (approximately 0.5 ml) was taken for measurement of cytokine levels and 

animals were then perfused with PBS through a needle inserted into the left ventricle.  

Aortas were dissected out, snap-frozen by immersion in liquid nitrogen and stored at – 80 

°C until required for preparation of protein samples. 

2.2.1.4 Measurement of proinflammatory cytokines in serum 

Blood collected at time of death was allowed to clot around a cocktail stick by incubating 

at room temperature for 1 hour and then at 4° C overnight.  The following day, the clot was 

discarded and the remaining serum was transferred to a microfuge tube.  Samples were 

centrifuged (16 000 g, 13 mins, 4°C) and the clear supernatant was collected for 

measurement of cytokine levels. 

Levels of the proinflammatory cytokines TNFα, IL-6, IL-1β and GMCSF in serum 

samples were measured using the BioSource Mouse Inflammatory Four-Plex fluorescent 

immunoassay kit according to the manufacturer’s instructions.  This assay relies on 

specific interactions between antibodies conjugated to polystyrene beads and a particular 

cytokine in the serum sample.  Four different cytokines can be measured simultaneously by 

mixing four populations of beads, each displaying different antibodies.  Each population of 

beads is internally dyed with fluorophores to give individual spectral properties allowing 

them to be distinguished from one another during the detection process. 

Serum samples and standards of known concentration were incubated with beads in a 

filter-bottom microplate for 2 hours at room temperature to allow TNFα, IL-6, IL-1β and 

GMCSF to bind to the antibodies on the beads.  The beads are light sensitive and so all 

incubations were carried out in the dark.  After washing, biotinylated detector antibodies 
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which recognise epitopes on the bound cytokines were added and incubated for a further 

hour at room temperature.  Excess biotinylated antibody was washed away and streptavidin 

conjugated to the fluorescent protein, R-phycoerythrin (streptavidin-RPE) was added to the 

beads and incubated at room temperature for 30 minutes.  Streptavidin-RPE binds to the 

biotinylated antibody which is associated with the cytokine-antibody complex on the bead.  

After washing, the beads were loaded into a BioSource Luminex 100 instrument for 

analysis.  The Luminex 100 monitors both the spectral properties of the beads and the level 

of fluorescence associated with RPE to generate a standard curve allowing calculation of 

the concentration of each cytokine in the sample. 

2.2.2 Cell culture and transfections 

2.2.2.1 Cell maintenance 

Human umbilical vein endothelial cells (HUVECs) were cultured in 150 cm2 flasks in 

endothelial basal media (EBM) supplemented with 2 % (w/v) fetal bovine serum, 0.04 % 

(v/v) hydrocortisone, 0.1 % (v/v) ascorbate and recombinant growth factors as 

recommended by the supplier.  Cells were passaged on reaching 70 to 80 % confluence 

(approximately once a week).  Because HUVECs are particularly sensitive to trypsin, a 

non-standard method of subculturing was employed.  Cell monolayers were washed twice 

with 5 ml warm PBS before addition of endothelial grade trypsin-EDTA solution (5 

units/ml porcine trypsin, 1.8 % (w/v) EDTA).  Cells were then incubated at room 

temperature for 5 minutes and adherent cells dislodged from flasks by gentle tapping.  

Trypsin was neutralised by addition of fresh media and cells were pelleted by 

centrifugation (200 g, 5 mins, RT).  Cell pellets were resuspended in a volume of media 

determined to give a suitable cell density for counting using a cytometer (typically 5 ml per 

150 cm2 flask). 

HUVECs were used for experiments between passages 2 and 5.  Beyond passage 5, 

HUVECs have been found to express altered levels of cell adhesion molecules in response 

to proinflammatory stimuli such as TNFα and LPS (Muller et al., 2002).  This suggests 

that in later passages HUVECs may begin to lose their suitability as a model for the 

endothelium in vivo.  Cells were therefore discarded at this stage. 

Human embryonic kidney 293 (HEK 293) cells were maintained in Dulbecco’s modified 

Eagles’s medium (DMEM) and Chinese hamster ovary (CHO) and C6 rat glioma cells 
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were maintained in Ham’s F-12 medium, each supplemented with 10 % (v/v) FBS, 1 % 

(v/v) L-glutamine, 100 units/ml penicillin and 100 µg/ml streptomycin.  Cells were 

passaged when approximately 80 % confluent using buffered trypsin (0.5% (w/v) porcine 

trypsin, 0.2 % (w/v) EDTA). 

All cells were grown at 37°C in a humidified atmosphere containing 5 % (v/v) CO2. 

2.2.2.2 Transient transfection of HEK 293 and CHO cells 

HEK 293 or CHO cells were plated in 10 cm dishes at a density of 8 × 105 cells dish and 

cultured overnight in complete DMEM or Ham’s F-12, respectively.  The following day, 

cells were transfected with plasmids encoding either wild-type or truncated forms of the 

human A2AAR.  For each dish, 12 µg DNA and 400 µl Opti-mem serum-free medium were 

mixed in a sterile microfuge tube.  In a separate tube, 18 µl of the transfection reagent 

Lipofectamine were added directly to 400 µl Opti-mem and mixed thoroughly.  The 

Lipofectamine/Opti-mem mix was then transferred to the tube containing the DNA, mixed 

thoroughly and incubated at room temperature in the dark for 20 minutes.  During the 

incubation, cells were washed once with 5 ml Opti-mem which was then replaced with 5.2 

ml fresh Opti-mem.  The Lipofectamine/DNA mix was then added dropwise over the 

surface of the cells and the plate was rocked gently to ensure even distribution.  Cells were 

incubated for 3 hours at 37 °C.  The transfection medium was then replaced with normal 

complete medium.  Transfection efficiency was assessed by examining cells transfected in 

tandem with a plasmid encoding GFP.  First, the total number of cells per field was 

estimated by counting 5 fields in bright-field using a 10 × objective lens and calculating 

the mean.  Fluorescent GFP-expressing cells were then counted using fluorescent 

microscopy and the numbers compared to estimate the percentage of transfected cells.  

Transfection was deemed to be successful if the percentage of fluorescing cells exceeded 

50 %. 

2.2.2.3 Transient transfection of C6 cells 

C6 cells were plated in 6-well dishes at a density of 3×105 cells/well and cultured 

overnight in complete Ham’s F-12 medium.  The following day, cells were fed with fresh 

medium 1 hour prior to transfection using the transfection reagent, GeneJuice.  200 µl/well 

of Opti-mem and 1 µg DNA was placed in a sterile microfuge tube and mixed gently.  

GeneJuice (7.5 µl/well) was added directly to the medium in the tube, mixed thoroughly 
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and incubated at room temperature for 20 minutes.  The appropriate volume of 

GeneJuice/DNA mixture was then added dropwise over the surface of cells in complete 

medium and plates were rocked gently to ensure even distribution.  Cells were incubated 

for 24 hours at 37°C.  The transfection mixture was then removed and replaced with fresh 

complete medium. 

2.2.2.4 Transfection of HUVECs with short interfering RNA 

Target-specific short interfering RNAs (siRNAs) designed to knock down PKCα and 

PKCε and non-targeting control siRNA were introduced into HUVECs using the 

transfection reagent Oligofectamine.  HUVECs were plated in 6cm dishes and grown until 

70 % confluent.  For each dish, 50 pmol siRNA was mixed with 240 µl Optimem in a 

sterile microfuge tube.  In a separate tube, 4.5 µl Oligofectamine was mixed with 18 µl 

Opti-mem.  Following a 5 minute incubation, the Oligofectamine mixture was added to the 

tube containing the siRNA and incubated for 20 minutes at room temperature.  Meanwhile, 

cells were washed twice with 2 ml Optimem which was then replaced with 1.5 ml fresh 

Optimem.  The siRNA/Oligofectamine mix was added dropwise over the surface of the 

cells and the dishes were agitated gently to ensure even distribution.  Cells were incubated 

for 5 hours at 37 °C and then the serum-free transfection medium was supplemented with 

an equal volume of fresh complete medium.  The transfection was repeated the following 

day and cells were used in experiments one day later.  Efficiency of knock-down by siRNA 

was assessed by immunoblotting as described in Section 2.2.5. 

2.2.3 Generation and maintenance of recombinant adenovirus 

2.2.3.1 Generation of myc-tagged human A2AAR-expressing adenovirus 

Recombinant adenovirus encoding the myc-tagged human A2AAR (myc-hA2AAR) was 

generated by Dr William Sands (University of Glasgow, Glasgow, UK) using the 

“AdEasy” system (He et al., 1997) and has been described previously (Sands et al., 2004).  

In brief, the myc-humA2AAR was first cloned into the shuttle vector, pAdTrackCMV.  The 

resultant construct was then linearised by digestion with PmeI and co-transformed into E. 

coli BJ5183 cells with the adenoviral backbone plasmid, pAdEasy1.  Successful 

recombination of pAdEasy1/myc-hA2AAR was confirmed by PmeI digestion and PCR 

using myc-hA2AAR-specific primers.  Recombinants were expanded in E. coli XL1 Blue 
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cells and linearised plasmids were transfected into HEK 293 cells which acted as a 

packaging cell line to allow viral production. 

The pAdEasy1 plasmid contains an open reading frame encoding GFP which is maintained 

in the recombinant adenovirus and so viral infection of HEK 293 cells can be detected by 

fluorescence microscopy.  Six days post-infection, HEK 293 cells were harvested and 

disrupted by freeze-thawing to release adenovirus particles.  Cleared lysate was used to 

infect two 150 cm2 tissue culture flasks of 70 % confluent HEK 293 cells.  Following 

successful infection, cells were harvested and viral particles collected as before in order to 

infect twenty 150 cm2 flasks for a large scale preparation. 

Recombinant adenovirus encoding GFP alone was kindly donated by Professor Robert 

White (Beatson Institute for Cancer Research, Glasgow, UK). 

2.2.3.2 Large scale preparation of recombinant adenoviruses 

Pure high titre stocks of recombinant adenovirus were obtained by amplification and 

purification with reference to the method described by Nicklin and Baker (1999).  

Confluent 150 cm2 flasks of low-passage HEK 293 cells were infected with either crude 

viral extract from previously infected HEK 293 cells or with plaque-purified recombinant 

adenovirus at an MOI of 0.1-10 per flask and incubated for 2-6 days at 37 °C, 5 % (v/v) 

CO2.  Once the cytopathic effect of the virus had caused the cells to detach from the flasks, 

cells were harvested and pelleted by centrifugation (250 g, 10 mins, RT).  Pellets were 

stored at - 80° C, ready for viral harvesting and purification. 

Cell pellets from twenty 150 cm2 flasks were defrosted at room temperature and pooled by 

resuspension in a total volume of 10 ml room temperature PBS followed by centrifugation 

(250 g, 10 mins, RT).  The resultant single pellet was resuspended in 5 ml PBS and cells 

were lysed by 5 cycles of freeze/thawing in a dry ice/methanol bath followed by incubation 

with agitation in a 37 °C water bath.  The cell suspension was vortexed vigorously for 30 

seconds between cycles to encourage cell breakage.  The lysate was cleared by 

centrifugation (7000 g, 10 mins, 4 °C) and the supernatant containing the adenovirus was 

collected for further purification. 

Adenovirus obtained by the freeze/thawing method is contaminated with cellular protein 

and viral debris which may be cytotoxic when used in vitro.  To obtain a pure preparation, 
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the supernatant from the previous step was separated on a discontinuous CsCl density 

gradient.  The CsCl gradient was created by underlying 3 ml of 1.2 g/ml CsCl solution with 

1.5 ml of 1.4 g/ml CsCl solution in a 14 × 95 mm Ultra-Clear centrifuge tube (Beckman).  

The crude adenovirus extract was applied to the top of the gradient and centrifuged (90 000 

g, 1.5 h, 8 °C) with zero deceleration to produce a translucent white band between the two 

layers of CsCl, representing pure adenovirus.  Zero deceleration was selected during the 

centrifugation step to prevent disruption of the delicate band by turbulence during braking.  

The adenovirus band was extracted using a syringe and a 21-gauge needle to puncture the 

side of the centrifuge tube and then transferred to a 3 ml Slide-A-Lyser dialysis cassette 

(Pierce).  The extract was dialysed overnight at 4 °C in 600 ml TE buffer (10 mM Tris, pH 

7.4, 1 mM EDTA, pH 8.0) with three changes.  The following day, the purified adenovirus 

was diluted in an equal volume of sterile storage buffer (10 mM Tris, pH 8.0, 100 mM 

NaCl, 0.1 % (w/v) BSA, 50 % (v/v) glycerol) and stored at – 80 °C in 10 µl aliquots. 

2.2.3.3 Titration of adenoviruses 

Purified adenovirus was titred using a Cell Biolabs Inc QuickTitre Adenovirus 

Immunoassay Kit according to the manufacturer’s instructions.  HEK 293 cells were 

seeded in poly-D-lysine-coated 24-well tissue culture plates and incubated for 1 hour at 37 

°C, 5 % (v/v) CO2.  A series of 10-fold dilutions of the CsCl-purified adenovirus 

preparation was prepared and used to infect the HEK 293 cells in duplicate.  Forty-eight 

hours later, cells were fixed using ice-cold methanol and then immunostained using a 

primary antibody directed against the adenoviral capsid protein, hexon (supplied) and a 

secondary horseradish peroxidise (HRP)-conjugated antibody which recognises the anti-

hexon antibody (supplied).  Binding of the HRP-conjugated antibody was detected by 

incubation with a solution of the HRP substrate, diaminobenzidine (DAB; supplied).  DAB 

undergoes oxidative polymerisation in the presence of HRP to produce a dark brown 

precipitate.  Adenovirus-infected cells stained rapidly and were clearly visible under light 

microscopy as discrete brown patches in the cell monolayer.  Positively stained cells were 

counted in ten fields at a virus dilution that gave 5-50 positive cells/field when viewed 

using a 10 × objective.  The mean result was determined and used to calculate the number 

of infected cells per ml of the original adenovirus preparation to give a titre value in 

infectious units/ml (ifu/ml). 



Gillian R Milne, 2008  Chapter 2, 83 

2.2.3.4 Infection of HUVECs with recombinant adenoviruses 

HUVECs were seeded in tissue culture dishes at a density that would produce 70 % 

confluence on the following day.  This equated to 3 × 105 cells/well in 6-well plates, 6 × 

105 cells in 6 cm dishes or 8 × 105 cells in 10 cm dishes.  The next day, cells were infected 

with adenovirus encoding either the human A2AAR (adA2AAR) or GFP alone (adGFP) at a 

level of 30 ifu/cell or as described in figure legends.  Cells were incubated for 24 hours and 

then infective media was replaced with fresh media.  Experiments were performed 24 

hours later. 

2.2.4 Preparation of protein samples for immunoblotting 

2.2.4.1 Preparation of aortic extracts 

For each snap-frozen aorta to be crushed, 250 µl 2 % SDS sample buffer (2 % (w/v) SDS, 

50 mM Tris, pH 7.5, 10 % (v/v) glycerol, 0.1 mM PMSF, 10 µg/ml soybean trypsin 

inhibitor, 10 µg/ml benzamidine, 5 mg/ml complete EDTA-free protease inhibitor cocktail 

tablet) was crushed to a fine powder using a liquid nitrogen-cooled mortar and pestle 

resting on dry ice.  The aorta was added to the mortar and crushed together with the 2 % 

SDS sample buffer to produce a fine frozen powder.  The crushed tissue extract was then 

transferred to a chilled microfuge tube, allowed to thaw and then sonicated to disperse 

aggregated material.  Extracts were centrifuged (16 000 g, 15 mins, 4 °C) to separate 

soluble protein from cellular lipids and insoluble debris.  The soluble supernatant was 

transferred to a fresh tube and the centrifugation process was repeated twice more to obtain 

a homogenous protein sample which was then frozen at – 80 °C for analysis by SDS-

polyacrylamide gel electrophoresis (SDS-PAGE). 

2.2.4.2 Preparation of extracts from cultured cells 

Protein extracts for SDS-PAGE and immunoblotting were prepared from confluent cells 

grown in 6-well plates.  Cells were first treated as described in figure legends.  Reactions 

were terminated by placing dishes on ice and washing cells three times in 1 ml ice-cold 

PBS prior to solubilisation in 100 µl RIPA buffer (50 mM HEPES, pH 7.5, 150 mM NaCl, 

1 % (v/v) Triton X-100, 0.5 % (w/v) sodium deoxycholate, 0.1 % (w/v) SDS, 10 mM 

sodium fluoride, 5 mM EDTA, 10 mM sodium phosphate, 0.1 mM phenylmethylsulfonyl 

fluoride, 10 µg/ml benzamidine, 10 µg/ml soybean trypsin inhibitor, 5 mg/ml complete 
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EDTA-free protease inhibitor cocktail tablet).  For HUVEC samples, the volume of RIPA 

buffer was reduced to 50 µl per well to compensate for the low protein content of these 

cells.  Samples were incubated on ice for 30 minutes to aid solubilisation before 

centrifugation (10 000 g, 15 mins, 4 °C) to pellet insoluble debris.  Protein concentration of 

supernatants was measured using a bicinchoninic acid (BCA)-based method as described 

below. 

2.2.4.3 Determination of protein concentration using the bicinchoninic acid 

(BCA) assay 

For each experiment, 10 µl aliquots of bovine serum albumin (BSA) of known 

concentration (ranging from 0 to 2 mg/ml) dissolved in the appropriate lysis buffer, and 10 

µl of each protein sample were added in duplicate to a 96-well plate.  100 µl of BCA 

reagent (1 % (w/v) 4,4 dicarboxy-2,2 biquinoline disodium salt, 2% (w/v) sodium 

carbonate, 0.16 % (w/v) sodium potassium tartrate, 0.4 % (w/v) sodium hydroxide, 0.95 % 

(w/v) sodium hydrogen carbonate, 0.08 % (w/v) copper (II) sulphate) was added to each 

well and the plate was incubated at room temperature for 10 minutes before measuring 

absorbance at 490 nm using a Dynex MRX-TC Revelation microplate reader.  Upon 

mixing with protein, Cu2+ ions in the BCA reagent are reduced to Cu+ which then reacts 

with BCA to produce a colour change from blue to purple which is detectable at 490 nm.   

The extent of the colour change is directly proportional to the amount of protein in a 

sample.  The absorbance measurements obtained for the BSA standards were used to 

derive a straight line graph from which the concentrations of the protein samples were 

calculated using Dynex Revelation software. 

2.2.5 SDS-PAGE and immunoblotting 

Equal quantities of protein (30 - 60 µg per sample, diluted to a final volume of 15 µl) were 

denatured in an equal volume of 12 % (w/v) SDS sample buffer (12 % (w/v) SDS, 50 mM 

Tris, pH 6.8, 10 % (v/v) glycerol, 10 mM dithiothreitol (DTT), bromophenol blue).  Of 

this, 25 µl samples were fractionated by SDS-PAGE on 10 % (w/v) acrylamide resolving 

gels (10 % (w/v) acrylamide, 375 mM Tris, pH 8.8, 0.1 % (w/v) SDS) with 4 % (w/v) 

acrylamide stacking gels (4 % (w/v) acrylamide, 125 mM Tris, pH 6.8, 0.1 % (w/v) SDS).  

To allow size estimation of immunoreactive protein bands, Biorad Rainbow molecular 

weight markers were fractionated alongside protein samples.  Electrophoresis was 

performed in 1 % (w/v) SDS running buffer (0.1 % (w/v) SDS, 192 mM glycine, 25 mM 
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Tris, pH 8.3) at a constant voltage of 180 V for approximately 1.5 hours until the dye front 

reached the bottom of the gel. 

Proteins were electrotransferred from the gel on to a Protran nitrocellulose membrane (0.2 

µm pore size) for 45 min at a constant current of 400 mA in a transfer buffer containing 

192 mM glycine, 25 mM Tris, pH 8.3 and 20 % (v/v) methanol.  Membranes were then 

blocked for at least 1 hour at room temperature in immunoblotting buffer (20 mM Tris, pH 

7.4, 140 mM NaCl, 0.1 % (v/v) Tween 20, 5 % (w/v) milk proteins) prior to incubation 

with rotation with primary antibody for either 1 hour at room temperature or overnight at 

4°C.  Antibodies used during this study are listed in Table 1.  Antibodies were diluted in 

either immunoblotting buffer or 5 % (w/v) BSA in Tris-buffered saline/1 % (v/v) Tween 

20 (TBST; 20 mM Tris, pH 7.4, 140 mM NaCl, 1 % (v/v) Tween 20).  After 3 × 5 minute 

washes in TBST, membranes were exposed to the appropriate horseradish peroxidise-

conjugated secondary antibody diluted 1/1000 in immunoblotting buffer for 1 hour at room 

temperature.  Membranes were then washed 5 × 5 minutes in TBST.  Immunoreactive 

proteins were visualised using Perkin-Elmer enhanced chemiluminescence (ECL) detection 

reagents, according to the manufacturer’s instructions. 
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Antibody reactivity Supplier Catalogue 

Number 

Dilution 

Phospho-IκBα (Ser 32/36) (5A5) Cell Signalling 

Technology 

9246 1:1000 

IκBα (C-21) Santa Cruz 

Biotechnology, Inc. 

Sc -371 1:1000 

NFκB p65 (A) Santa Cruz 

Biotechnology, Inc. 

Sc -109 1:400 

VCAM-1 R & D Systems AF643 1:1000 

ICAM-1 R & D Systems AF796 1:500 

Phospho-STAT1 (Tyr701) Cell Signalling 

Technology 

9171 1:1000 

STAT1 Cell Signalling 

Technology 

9172 1:1000 

Phospho-STAT3 (Tyr705) (D3A7) Cell Signalling 

Technology 

9145 1:1000 

STAT3 Cell Signalling 

Technology 

9132 1:1000 

TAP-1 (M-18) Santa Cruz 

Biotechnology, Inc. 

Sc-11465 1:500 

Glyceraldehyde-3-phosphate 

dehydrogenase 

abcam ab9484 1:20 000 

Phospho-p44/42 MAPK 

(Thr202/Tyr204) (E10) 

Cell Signalling 

Technology 

9106 1:1000 

c-myc (9E10) Eurogentec Ascites fluid 1:1000 

A2A Adenosine Receptor Cambridge Bioscience PA1-042 1:1000 

PKC (A-9) Santa Cruz 

Biotechnology, Inc. 

Sc-17804 1:500 

PKCε (22B10) Cell Signalling 

Technology 

2683 1:250 

PKCα Cell Signalling 

Technology 

2056 1:250 

Table 2: Antibodies used for immunoblotting 
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2.2.6 Molecular Biology 

2.2.6.1 Plasmid DNA constructs 

Plasmids encoding the wild-type human A2AAR (pcDNA3.1/mycHis-hum A2AAR) and the 

carboxyl terminus-truncated mutant receptors (pcDNA3.1/mycHis-hum A2AAR 1-311 and 

pcDNA3.1/mycHis-hum A2AAR 1-360) were constructed by Dr Tim Palmer (Institute of 

Biomedical and Life Sciences, University of Glasgow, Glasgow, UK).  Briefly, a myc 

epitope (EQKLISEEDL) and His6 sequences were added to the carboxyl terminus of the 

human A2AAR by PCR using pCMV5/human A2AAR as a template.  Primers were 

designed to amplify the A2A region while removing the stop codon and introducing an XbaI 

site.  The resultant PCR product was digested with HindIII and XbaI and ligated into 

similarly digested pcDNA3.1/mycHisA in-frame and upstream of the myc and His 

sequences.  Plasmids encoding truncated human A2AAR mutants were created in the same 

way but using different antisense primers designed to remove either 101 or 52 amino acids 

from the carboxyl terminus to generate pcDNA3.1/mycHis-hum A2AAR 1-311 and 

pcDNA3.1/mycHis-hum A2AAR 1-360 respectively. 

pGEX-TRAX (Sun et al., 2006) was kindly donated by Dr Yijuang Chern (Institute of 

Biomedical Sciences, Academia Sinica, Taipei, Taiwan). 

pGEX-14-3-3τ (Ward and Milligan, 2005) was a gift from Professor Graeme Milligan 

(Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow, UK). 

2.2.6.2 Bacterial Strains and Media 

E. coli XL1 Blue cells were used for the propagation of plasmid vectors while recombinant 

proteins were expressed in E. coli BL21 cells.  E. coli were grown in sterile Luria-Bertani 

broth (LB; 10 g/l bacto-tryptone, 10 g/l NaCl, 5 g/l, pH 7.5) supplemented with ampicillin 

(50 µg/ml) where necessary (LBAmp).  LBAmp plates were made by inclusion of 1.5 % (w/v) 

agar and stored at 4 °C until required. 

2.2.6.3 Transformation of competent E. coli 

Aliquots of E. coli XL1 Blue or BL21 competent bacteria were thawed on ice and 40 µl 

per transformation were immediately transferred to chilled microfuge tubes containing 30-
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50 ng DNA.  Cells were incubated on ice for 15 minutes before heat shocking at 42 °C for 

45 seconds.  The tubes were immediately returned to ice for 2 minutes.  LB (1 ml) was 

then added and the cells were incubated with shaking at 37 °C for 1 hour.  200 µl of this 

mix was plated out on LBAmp plates and grown overnight at 37 °C to allow growth of 

bacterial colonies. 

2.2.6.4 Preparation of plasmid DNA 

DNA was purified from bacterial cultures using the Qiagen Plasmid Maxi kit as 

recommended by the manufacturer.  An isolated colony from an agar plate was used to 

inoculate 5 ml LBAmp and grown for eight hours at 37 °C with shaking at 200 rpm.  This 

culture was used to inoculate 250 ml LBAmp which was grown for a further 16 hours in the 

same conditions.  Typically, 5 ml of culture was reserved for preparation of glycerol 

stocks.  Bacteria were harvested from the remaining culture by centrifugation (6 000g, 15 

mins, 4°C) and then resuspended in 10 ml Buffer P1 (50 mM Tris, pH 8.0, 10 mM EDTA, 

100 µg/ml RNase A).  Cells were lysed by addition of 10 ml Buffer P2 (200 mM NaOH, 1 

% (w/v) SDS) and incubation at room temperature for 5 minutes.  The lysates were 

neutralised by addition of Buffer P3 (3 M potassium acetate, pH 5.5), mixed by inversion 

and incubated on ice to facilitate precipitation of potassium dodecyl sulphate, SDS-

denatured proteins, genomic DNA and cellular debris.  The lysate was then cleared by 

centrifugation (20 000 g, 10 mins, 4 °C).  The supernatant containing soluble plasmid 

DNA was applied to a Qiagen-tip 500, pre-equilibrated with 10 ml Buffer QBT (750 mM 

NaCl, 50 mM MOPS, pH 7.0, 15 % (v/v) isopropanol, 0.15 % (v/v) Triton X-100) and 

allowed to enter the resin within the tip by gravity flow.  The tip was then washed twice 

with 30 ml Buffer QC (1 M NaCl, 50 mM MOPS, pH 7.0, 15 % (v/v) isopropanol) and 

DNA was eluted using 15 ml Buffer QF (1.25 M NaCl, 50 mM Tris, pH 8.5, 15 % (v/v) 

isopropanol).  DNA was precipitated by addition of 10.5 ml room temperature isopropanol 

and incubation at room temperature for 30 minutes before being pelleted by centrifugation 

(15 000 g, 30 mins, 4 °C).  The DNA pellet was washed with 5 ml room temperature 

ethanol, centrifuged once more and allowed to air-dry for 10 minutes before resuspension 

in 500 µl sterile TE buffer.  DNA concentration was determined by diluting the preparation 

1 in 500 in distilled water and measuring absorbance at 260 nm (A260), assuming that a 50 

µg/ml solution of double-stranded DNA has an A260 of 1 unit.  Absorbance at 280 nm 

(A280) was also measured and used to determine DNA purity assuming that pure DNA has 

an A260/A280 ratio of 1.8. 
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2.2.6.5 Preparation of glycerol stocks 

Glycerol stocks were prepared for long-term storage of plasmid DNA.  For each glycerol 

stock, 0.7 ml overnight culture was added to 0.3 ml sterile 50 % (v/v) glycerol in a sterile 

cryovial.  Vials were vortexed vigorously to ensure even dispersal of glycerol, frozen 

rapidly on dry ice and stored at – 80 °C. 

2.2.6.6 Restriction digestion of plasmid DNA 

Plasmids encoding wild-type and truncated forms of myc-hA2AAR were digested using 

HindIII and XbaI.  DNA (1µg) was digested in a reaction mixture containing 5 U each of 

HindIII and XbaI, 3 µl of Promega Buffer E (6mM Tris, pH 7.5, 6 mM MgCl2, 100 mM 

NaCl, 1 mM DTT, pH 7.5) and nuclease-free water to a total volume of 10 µl.  Reactions 

were allowed to proceed for 1.5-3 hours and fragments were analysed by agarose gel 

electrophoresis using 1 % (w/v) agarose gels as described below. 

2.2.6.7 Agarose gel electrophoresis 

Plasmid DNA and PCR products were analysed by agarose gel electrophoresis using 1 % 

(w/v) and 1.2 % (w/v) gels respectively.  Gels were prepared by dissolving 0.4 or 0.48 g of 

agarose in 40 ml TAE buffer (40 mM Tris, 1 mM EDTA, 40 mM glacial acetic acid) with 

heating.  Gels were cooled to hand-warm and 4 µl of 10 mg/ml ethidium bromide solution 

was added in order to stain DNA bands for visualisation under UV light.  Before loading, 2 

µl DNA loading Buffer (0.25 % (w/v) bromophenol blue, 40 % (w/v) sucrose in TAE 

buffer) was added to samples to be analysed.  Samples were run alongside 1 kb step ladder 

markers at 100 V/ 250 mA in TAE buffer for approximately 1 hour until the dye front 

reached the end of the gel.  Bands were detected by ethidium bromide staining and viewed 

using a UV transilluminator. 

2.2.6.8 Preparation of GST fusion proteins 

A scraping from a glycerol stock of E. coli BL21 cells transformed with pGEX plasmid 

DNA encoding either GST-14-3-3τ, GST-TRAX or GST alone was used to inoculate 10 

ml LBAmp.  Cells were cultured for 8 hours (GST-TRAX) or overnight (GST and GST-14-

3-3τ), at 37 °C with shaking at 200 rpm.  This culture was used to inoculate 300 ml LBAmp 

and cells were then grown for approximately 2 hours until an OD600 of 0.3 was reached, 
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indicating that bacteria were growing exponentially.  Isopropyl β-thiogalalactopyranoside 

(IPTG) (0.2 - 1 mM) was then added to induce expression of recombinant protein and 

bacteria were grown for a further 4 hours at 37°C (GST and GST-14-3-3τ) or overnight at 

25 ° C (GST-TRAX).  Bacteria were harvested by centrifugation (6700 g, 15 mins, 4 °C) 

and pellets were stored at – 80 °C for protein purification the following day. 

Pellets containing GST-tagged proteins were defrosted at room temperature and 

resuspended in 20 ml lysis buffer (50 mM HEPES, pH 7.4, 150 mM NaCl, 5 mM EDTA, 1 

% (v/v) Triton X-100).  Samples were probe sonicated on ice for 6 × 20 seconds with 20 

second intervals to prevent build-up of heat and centrifuged (27 000 g, 30 mins, 4 °C) to 

pellet insoluble material.  The cleared lysate was mixed with 0.3 ml of a 50 % (v/v) 

glutathione Sepharose bead suspension in lysis buffer and incubated for 1 hour at 4 °C with 

rotation in order to immobilise GST-tagged proteins on the beads.  The beads were pelleted 

by gentle centrifugation (335 g, 1 min, 4 °C), washed twice in 10 ml PBS and then 

transferred to a microfuge tube for a final wash in 1 ml PBS.  PBS was aspirated from 

tubes and beads were resuspended in 0.3 ml 50 % (v/v) glycerol in PBS supplemented with 

protease inhibitors (0.1 mM PMSF, 10 µg/ml soybean trypsin inhibitor, 10 µg/ml 

benzamidine) and stored at – 20 °C. 

Concentration of GST-tagged proteins was determined by SDS-PAGE on 10 % (w/v) 

polyacrylamide resolving gels as described in Section 2.2.5.  Proteins were eluted from 

beads following a brief spin to allow removal of the glycerol/PBS storage solution.  Beads 

were resuspended in 20 µl 12 % (w/v) SDS sample buffer and incubated at 65 °C for 1 

hour with occasional vortexing.  Eluted samples were transferred to fresh microfuge tubes 

using a Hamilton syringe and then run on gels in parallel with known quantities of BSA 

ranging between 0.2 and 2 µg.  To view bands, gels were stained in 0.25 % (w/v) 

Coomassie brilliant blue, 10 % (v/v) acetic acid, 45 % (v/v) methanol for 1 hour and 

destained in 10 % (v/v) acetic acid, 10 % (v/v) methanol.  Gels were scanned and the 

densities of bands produced by the BSA standards and the GST-tagged proteins were 

quantitated by densitometry using Non-linear Dynamics TotalLab software.  Results from 

the BSA standards were then used to generate a straight line graph from which the 

concentration of the eluted GST-tagged proteins could be calculated. 

To track expression and recovery of fusion proteins, 100 µl samples were reserved at 

different stages of the procedure as described in figure legends and mixed with an equal 
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volume of 12 % (w/v) SDS sample buffer for analysis by SDS-PAGE and Coomassie 

staining as described above. 

2.2.7 GST pull-down assay 

HUVECs were seeded in 10 cm dishes and infected with adA2AAR at 30 ifu/cell as 

described in Section 2.2.3.4.  Cells were treated as described in figure legends and 

reactions were terminated by placing dishes on ice and washing twice with 5 ml ice-cold 

PBS.  Cells were harvested by scraping into 750 µl pull-down lysis buffer (50 mM HEPES, 

pH 7.4, 150 mM NaCl, 5 mM EDTA, 1 % (v/v) Triton X-100) supplemented with protease 

inhibitors (0.1 mM PMSF, 10 µg/ml soybean trypsin inhibitor, 10 µg/ml benzamidine, 5 

mg/ml complete EDTA-free protease inhibitor cocktail tablet, 100 µM sodium 

orthovanadate) and incubated for 1 hour with rotation at 4 °C to aid solubilisation.  

Samples were then centrifuged (20 000 g, 15 mins, 4 °C) to pellet insoluble material and 

assessed for protein concentration using a BCA assay as described in Section 2.2.4.3.  

Extracts containing equivalent amounts of protein in a volume of 680 µl were added to 

microfuge tubes containing the appropriate volume of GST-fusion protein glutathione 

Sepharose beads to give 20 µg of either GST, GST-14-3-3τ or GST-TRAX.  Samples were 

then incubated overnight at 4 °C with rotation to allow protein complexes to form.  The 

following day, beads and any associated protein complexes were pelleted by gentle 

centrifugation (600 g, 1 min, 4 °C) and then washed 3 times in 1 ml ice-cold pull-down 

lysis buffer.  Bound proteins were eluted by adding 40 µl 12 % (w/v) SDS sample buffer 

and incubating at 65 °C for 30 minutes, vortexing every 10 minutes.  Samples were 

transferred to fresh microfuge tubes using a Hamilton syringe and analysed by SDS-PAGE 

and immunoblotting as described in Section 2.2.5. 

2.2.8 Intact cell receptor phosphorylation assay 

For characterisation of wild-type A2AAR phosphorylation, HUVECs were grown in 6-well 

dishes and infected with 30 ifu/cell adA2AAR or adGFP as described in Section 2.2.3.4.  

Forty-eight hours post-infection, cells were washed twice with 2 ml/well low-phosphate 

DMEM and incubated for 90 min at 37° C, 5 % CO2 in 0.75 ml of the same media 

supplemented with 0.8 mCi/ml [32P] orthophosphate in order to label the intracellular pool 

of ATP.  Cells were then treated as described in figure legends.  Reactions were terminated 

by placing dishes on ice and washing twice in ice-cold PBS.  Cells were solubilised by 
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scraping into 250 µl RIPA buffer supplemented with 100 µM sodium orthovanadate 

followed by rotation at 4 ° C for 1 hour.  Samples were cleared of cellular debris by 

centrifugation (10 000 g, 15 mins, 4 °C) and 10 µl portions of undiluted supernatants were 

assayed for protein content as described in Section 2.2.4.3.  For immunoprecipitation of 

phosphorylated receptors, extracts containing equivalent amounts of protein in a volume of 

180 µl were added to microfuge tubes containing 30 µl of a 50 % suspension of protein G-

sepharose beads, 5 µl 9E10 ascites fluid and 100 µl 0.2 % (w/v) IgG-free BSA.  Extracts 

were incubated with beads on a rotating wheel for 90 minutes at 4° C.  Immune complexes 

conjugated to beads were then recovered by brief centrifugation (10 000 g, 15 secs, 4 °C) 

and washed 3 times in 1 ml ice-cold RIPA buffer.  Pelleted beads were resuspended in 

12% (w/v) SDS sample buffer and complexes were eluted by vortexing and incubation at 

room temperature overnight.  The following day, beads were pelleted by brief 

centrifugation (10 000 g, 15 secs, RT) and supernatants were transferred to fresh microfuge 

tubes using a Hamilton syringe.  Samples were boiled at 95° C for 5 minutes to denature 

antibody heavy and light chains prior to loading on to 10 % (w/v) polyacrylamide gels for 

analysis by SDS-PAGE and autoradiography.  Gels were dried under vacuum with heat for 

2 hours and exposed to film between 2 intensifying screens for 2-7 days at -80 ° C. 

For analysis of phosphorylation of truncated A2A adenosine receptors, HEK 293, C6 

glioma or CHO cells were plated in 10 cm dishes.  On reaching 70 % confluence, cells 

were transfected with constructs encoding wild-type or truncated forms of the A2AAR as 

described in Sections 2.2.2.2 and 2.2.2.3.  The following day, each 10 cm dish was split 

into 6-well plates in order to minimise variation in transfection efficiency between wells.  

Intact cell phosphorylation assays were carried out as described above with minor 

alterations depending on the efficiency of recovery of protein from different cell types.  

HEK 293, CHO and C6 glioma cells were labelled with 0.4 mCi/ml [32P] orthophosphate 

rather than 0.8 mCi/ml and were solubilised in 500 µl RIPA buffer rather than 250 µl 

allowing 430 µl of each sample to be used in the immunoprecipitation step. 

2.2.9 Saturation binding assay 

2.2.9.1 HUVEC membrane preparation 

HUVECs were seeded in 10 cm dishes and infected with adA2AAR or adGFP as described 

in Section 2.2.3.4.  Forty-eight hours post infection, dishes were placed on ice and washed 
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3 times with 5 ml ice-cold PBS.  Cells were scraped into 5 ml/dish lysis buffer (10 mM 

Hepes, pH 7.5 at RT, 5 mM EDTA) and lysed on ice by 20 up-and-down strokes of a 7 ml 

Dounce homogeniser.  The homogenate was transferred to a chilled centrifuge tube and 

membranes were pelleted by centrifugation (14 000g, 15 mins, 4 °C).  The membrane 

pellet was resuspended in 400 µl binding buffer (50 mM Hepes, pH 6.8 at RT, 10 mM 

MgCl2) and subjected to further homogenisation by 20 up-and-down strokes in a 1 ml 

Dounce homogeniser.  A 50 µl sample was removed and stored at – 20 °C for 

determination of protein concentration at a later date.  The membrane preparation was then 

diluted to a final volume of 4 ml with binding buffer supplemented with 1 U/ml adenosine 

deaminase to degrade endogenous adenosine.  The extract was homogenised once more 

before immediate use in binding assays. 

2.2.9.2 3H-ZM241385 saturation binding assay 

Binding assays were performed in duplicate in a total volume 250 µl containing 150 µl 

membrane preparation and 50 µl 3H-ZM241385 at final concentrations ranging from 

approximately 0.25 nM to 8 nM.  Non-specific binding was defined in parallel by inclusion 

of NECA at a final concentration of 50 µM.  Samples were incubated for 1 hour with 

shaking in a 37 °C water bath to allow binding to reach equilibrium.  Bound radioligand 

was isolated by rapid vacuum filtration over 0.3 % (v/v) polyethyleneimine solution-

soaked GF/C glass fibre filters using a Brandel cell harvester.  Filters were then washed 

three times with 3 ml ice-cold wash buffer (50 mM Tris, 10 mM MgCl2, 1 mM EDTA, pH 

7.4 at 4 °C) supplemented with 0.03 % (w/v) CHAPS detergent to minimise non-specific 

binding.  Filter discs for each sample were added to scintillation vials containing 5 ml 

scintillation fluid and incubated at 4 °C overnight to reduce chemiluminescence before 

scintillation counting.  Non-specific counts were subtracted from total counts to give 

values for specific binding in dpm which were then plotted against 3H-ZM241385 

concentration (nM) using GraphPad Prism software.  The data was fitted to a hyperbola 

using a non-linear regression equation in order to determine the total number of receptors 

expressed (Bmax) and the equilibrium dissociation constant (Kd).  Samples reserved during 

membrane preparation were assayed for protein content using a BCA protein assay and the 

results used to calculate Bmax in pmol/mg. 
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2.2.10 Statistical analysis 

All statistical analyses were carried out using a one-way ANOVA with a Bonferroni 

comparisons post test using GraphPad Prism software. 
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3 The role of the A2A adenosine receptor in 

suppressing vascular inflammation 

3.1 Introduction 

Inflammation of the vascular endothelium is central to the development of major diseases 

including atherosclerosis.  In the earliest stages of inflammation, endothelial cells are 

activated by various stimuli to express adhesion molecules such as VCAM-1, ICAM-1 and 

E-selectin which initiate the recruitment of inflammatory cells (Muller, 2002).  This is a 

critical step in the development of atherosclerosis, as macrophage infiltration of the vessel 

wall and subsequent foam-cell formation leads to the development of atherosclerotic 

plaques (Glass and Witztum, 2001).  Activated endothelial cells also elaborate numerous 

inflammatory mediators such as IL-6 and IL-1 which contribute to disease progression in 

many ways including by promoting macrophage differentiation, smooth muscle cell 

proliferation, and further cytokine expression (von der Thüsen et al., 2003).  It is important 

to study how these events are regulated as this could reveal new targets for therapeutic 

intervention and allow development of better strategies for the treatment of inflammatory 

disease. 

One way that the body naturally deals with the risk of excessive inflammation and tissue 

damage is through accumulation of extracellular adenosine.  Adenosine exerts its effects 

through stimulation of A1, A2A, A2B and A3 receptors, of which the A2AAR appears to be 

most important in mediating anti-inflammatory responses (Linden, 2001).   Endothelial 

cells are key targets for adenosine as they express both A2A and A2BARs.  The A2AAR has 

been reported to be the predominant form in large blood vessels which is significant in 

terms of disease as this is the site of atherosclerotic lesion formation (Feoktistov et al., 

2002).  Endothlelial cells are also significant producers of adenosine both directly and via 

the sequential dephosphorylation of adenine nucleotides released from damaged cells to 

adenosine by the ecto-apyrase CD39 and the ecto-nucleotidase CD73, which they express 

on their cell surface (Lennon et al., 1998).  Gene-targeting studies have shown that a lack 

of functional CD39 (Eltzschig et al., 2003) or CD73 (Thompson et al., 2004) results in 

excessive vascular leakage in response to hypoxia which points to the crucial nature of this 

pathway and suggests that its defective regulation may predispose toward disease.   A2AAR 

activation therefore potentially represents an important endogenous mechanism for 

limiting vascular inflammation. 
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Several in vitro studies have demonstrated the potential for adenosine and signalling 

through the A2AAR to modulate inflammatory responses in endothelial cells.  For example, 

activation of A2AARs with the A2AAR-selective agonist CGS21680 has been shown to 

inhibit phorbol ester-stimulated adhesion of neutrophils to porcine aortic endothelial cells 

(Felsch et al., 1995).  In HUVECs stimulated with LPS, TNFα or IL-1β, adenosine 

inhibited release of the pro-inflammatory cytokines IL-6 and IL-8 and also reduced 

expression of the adhesion molecules VCAM-1 and E-selectin which mediate monocyte 

adhesion (Bouma et al., 1996).  A specific role for the A2AAR in regulating leukocyte 

recruitment has been demonstrated in HUVECs through adenoviral-mediated gene transfer.  

In these cells, increased presence of the A2AAR was sufficient to inhibit TNFα-induced E-

selectin expression and monocyte adhesion to the endothelium (Sands et al., 2004). 

The beneficial effects of signalling through the A2AAR in vivo have been shown using 

animal models of inflammation and disease.  For example, in the murine carotid artery 

ligation model of arterial inflammation, mice treated with the A2AAR agonist ATL-146e 

displayed significantly reduced neutrophil and macrophage recruitment and expression of 

VCAM-1, ICAM-1 and P-selectin and this was associated with markedly reduced lesion 

formation (McPherson et al., 2001).  Furthermore, a physiological role for the A2A receptor 

in in vivo regulation of inflammation has been confirmed through creation of an A2A-

deficient mouse strain.  When these mice were subjected to experimentally induced models 

of hepatitis and septic shock, it was found that even low doses of inflammatory stimuli 

which had little effect on wild-type mice caused extensive inflammation and tissue damage 

(Ohta and Sitkovsky, 2001).  This was accompanied by elevated levels and a prolonged 

presence of pro-inflammatory cytokines such as TNFα and IFNγ and IL-6.   

Despite the wealth of evidence regarding the anti-inflammatory properties of the A2AAR, 

the molecular mechanisms behind these effects have not been well studied.  Signalling 

through the A2AAR produces diverse but consistently anti-inflammatory effects in a wide 

range of cell types and disease models suggesting that there could be a common 

mechanism.  Despite the complexity of responses to tissue damage and inflammation, the 

majority are mediated through activation of only a few major signalling pathways 

including the NFκB and JAK/STAT pathways.  If the A2AAR could influence signalling 

through these pathways, this would provide an explanation for its wide range of anti-

inflammatory actions.  This case is strengthened by the fact that all of the adhesion 

molecules and inflammatory mediators that have been shown to be affected by adenosine 

or A2AAR stimulation have their expression regulated by NFκB and STAT proteins.  In 
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addition, in vitro studies have shown that signalling through the A2AAR suppresses NFκB 

(Sands et al., 2004) and JAK/STAT (Sands et al., 2006) pathway activation in cultured 

endothelial cells.  Whether this is a relevant physiological mechanism for limiting 

inflammation in vivo is not known. 

A2AAR-deficient mice have been used to demonstrate the protective role of the A2AAR in 

several models of inflammatory disease (Naganuma et al., 2006; Day et al., 2004; Ohta 

and Sitkovsky, 2001).  If the A2AAR mediates this effect through suppression of NFκB and 

JAK/STAT signalling, then it can be hypothesised that these signalling pathways will be 

hyperactivated in A2AAR-deficient mice.  To determine whether this is the case, in this 

study, A2AAR-deficient mice were subjected to LPS-induced septic shock to induce 

vascular inflammation and then activation of NFκB and JAK/STAT pathways was 

compared with wild-type mice by detecting levels of activated signalling proteins in the 

aorta. 
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3.2 Results 

The lack of a functional A2AAR has been shown to exacerbate inflammation and tissue 

damage in several animal models of inflammatory disease (Naganuma et al., 2006; Day et 

al., 2004; Ohta and Sitovsky, 2001).  However, there is little information available 

regarding the molecular mechanisms which produce these effects in vivo.  Two major 

pathways involved in the inflammatory response are the NFκB and JAK/STAT pathways.  

Hyperactivation of the NFκB and JAK/STAT signalling pathways is found in several 

inflammatory diseases and so they present important potential targets for the anti-

inflammatory actions of the A2AAR (Miagkov et al., 1998; Hajra et al., 2000; Gharavi et 

al., 2007; Schreiber et al., 2002).  Specifically, the importance of NFκB in the 

development of atherosclerosis is indicated by studies using LDLR-/- mice in which the 

NFκB pathway was found to be primed for activation in endothelial cells in atherosclerotic 

lesion-prone regions of the aorta (Hajra et al., 2000).  Stimulation of A2AARs has been 

shown to reduce arterial inflammation and lesion formation in the murine carotid artery 

ligation model (McPherson et al., 2001) but whether this involves suppression of pro-

inflammatory signalling has not been addressed.  In this study, the physiological role of the 

A2AAR in regulating pro-inflammatory signalling in vivo was assessed by measuring 

activation of NFκB and JAK/STAT signalling in the aortae of A2AAR-/- mice. 

To examine whether the A2AAR has an effect on pro-inflammatory signalling in vivo, a 

colony of A2AAR-deficient mice was created as described previously (Ledent et al., 1997).  

Carriers of the wild-type and the non-functional mutant A2AAR were identified by PCR 

analysis of DNA extracted from tail-snips using specific primers.  As shown in figure 3.1, 

samples from wild-type mice generated a single 229 bp PCR product while samples from 

mice homozygous for the mutant allele generated a single 570 bp fragment.  These mice 

were selected for use in subsequent studies. 

In order to study inflammatory responses in the presence and absence of a functional 

A2AAR, mice were subjected to an LPS-induced model of sepsis which has been used 

previously to induce acute systemic activation of the aortic endothelium (Hajra et al., 

2000).  Mice were injected intraperitoneally with either 200 µg LPS or an equal volume of 

PBS and then euthanized 4 hours later.  Serum levels of the pro-inflammatory cytokines 

TNFα, IL-6, IL-1 and GM-CSF were measured (figure 3.2).  Levels of TNFα, IL-6 and 

GM-CSF were significantly elevated in wild-type mice treated with LPS compared to PBS- 
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Figure 3.1 Genotyping of wild-type and A2AAR-deficient mice 

CD-1 mice heterozygous for an inactive allele of the A2AAR gene were bred to produce a 

colony of A2AAR-deficient (A2AAR-/-) mice.  Genomic DNA extracted from tail-snips was 

screened for the presence of wild-type and mutant alleles of the A2AAR using PCR 

analysis with specific primers.  PCR products were separated on a 1.5 % (w/v) agarose 

gel.  Fragments representing the wild-type (229 bp) and the mutant A2AAR (570 bp) are 

indicated. 
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Figure 3.2 Serum levels of proinflammatory cytokines are enhanced in 

A2AAR-deficient mice treated with LPS 

Wild-type (WT) and A2AAR-/- mice were subjected to intraperitoneal injection of 200 µg 

LPS or PBS vehicle.  Animals were euthanised after 4 hours and blood was collected for 

preparation of serum samples. Levels of specific proinflammatory cytokines in serum 

were measured using a BioSource four-plex fluorescent immunoassay kit and detected 

using a Luminex instrument as described in Section 2.2.1.4.  Values were obtained for 

40 mice and are represented in the graphs as the mean ± S.E. 
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treated controls which confirmed the effectiveness of the LPS administration.  This 

response was potentiated in A2AAR-deficient mice which also displayed a large increase in 

IL-1 following LPS treatment which was not seen in wild-type mice.  There were no 

significant differences in cytokine levels between wild-type and A2AAR-deficient mice 

treated with PBS.  Thus, LPS-induced pro-inflammatory cytokine production is greatly 

enhanced in the absence of the A2AAR. 

In vitro studies have shown that one mechanism by which the A2AAR may exert its anti-

inflammatory effects is through suppression of pro-inflammatory signalling pathway 

activation.  For example, increasing expression of the A2AAR in C6 glioma cells and 

HUVECs has been shown to reduce NFκB binding to target DNA in response to LPS and 

TNFα via cell type-specific mechanisms (Sands et al., 2004).  In C6 cells, this was 

associated with almost complete inhibition of IκBα phosphorylation and degradation while 

in HUVECs, IκBα degradation was unaffected but NFκB translocation to the nucleus is 

severely impaired.  A role for the A2AAR in regulating NFκB has also been demonstrated 

using A2AAR-/- mice (Lukashev et al., 2004).  Following injection with CpG DNA, NFκB 

DNA-binding activity was found to be enhanced in macrophages derived from A2AAR-/- 

compared to those from wild-type mice.  This appeared to be due to a greater availability 

of active NFκB as levels of IκB phosphorylation and degradation were also increased. 

To see whether the absence of a functional A2AAR potentiates NFκB signalling in the 

aorta, protein samples were analysed by SDS-PAGE and immunoblotting using phospho-

specific and total IκBα antibodies (figure 3.3).  In its inactive state, NFκB is found in the 

cytoplasm in complex with an inhibitory protein such as IκBα.  In response to stimuli such 

as LPS, IκBα is phosphorylated by IKK on Ser32 and Ser36 which marks it for 

ubiquitination and degradation by the proteasome.  Active NFκB is thereby released from 

the inhibitory complex and translocates to the nucleus to modulate transcription (Mercurio 

and Manning, 1999).  Because phosphorylation of IκB and its subsequent degradation are 

critical regulatory steps in the NFκB pathway (Karin and Ben-Neriah, 2000), 

phosphorylated and total levels of IκB can be used to measure NFκB activation.  Low 

levels of phosphorylated IκBα were detected in both LPS and PBS treated wild-type mice 

while samples from A2AAR-/- mice had greatly elevated levels of IκBα regardless of LPS 

treatment.  Intriguingly, although phosphorylation of IκBα usually leads to its degradation, 

total levels of IκBα remained constant between different groups of mice. 
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Figure 3.3 IκκκκBαααα phosphorylation is increased in A2AAR-/- mice 

A. Wild-type (WT) and A2AAR-/- mice were subjected to intraperitoneal injection of 200 

µg LPS or PBS vehicle and then euthanised 4 hours later.  Protein extracts were prepared 

from aortic tissue and normalised for protein content before fractionation by SDS-PAGE 

on 10 % (w/v) polyacrylamide gels.  Proteins were transferred to nitrocellulose for 

immunoblotting using phospho-specific IκBα (pIκBα) and total IκBα antibodies.  B. 

Immunoreactive bands were quantitated by densitometry.  Levels of phosphorylated and 

total IκBα are shown on the graph as a mean percentage of the maximal response ± S.E. 

(n=12). 
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Figure 3.3 IκκκκBαααα phosphorylation is increased in A2AAR-/- mice 
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In addition to activation status, the relative abundance of NFκB subunits could potentially 

have an effect on NFκB signalling.  NFκB constitutes a family of structurally related 

proteins which form homo- or heterodimers.  The p50/p65 dimer is the predominant form 

found in endothelial cells (Read et al., 1994) and is of particular interest due to its role in 

regulating expression of VCAM-1 (Shu et al., 1993) and E-selectin (Read et al., 1994) 

which are involved in key steps of leukocyte recruitment during inflammatory responses in 

the vasculature (Muller, 2002).  Levels of p65 in aortic extracts were measured by 

immunoblotting.  However, no significant changes were observed in p65 levels in the 

aortae of wild-type or A2AAR-/- mice in response to LPS treatment (figure 3.4). 

A2AAR-/- mice displayed dramatically increased levels of phosphorylated IκBα compared 

wild-type mice even in the absence of LPS stimulation.  However, this did not appear to 

translate into increased degradation of IκBα.  To determine whether the increases in IκBα 

phosphorylation had an effect on downstream targets of NFκB, immunoblots were probed 

for VCAM-1 and ICAM-1, the expression of which is dependent upon NFκB (Schu et al., 

1993; Roebuck and Finnegan, 1999).  VCAM-1 was barely detectable in samples from 

PBS treated wild-type or A2AAR-/- mice but was strongly induced in response to LPS 

treatment (figure 3.5).  There was no notable difference in the LPS-induced response 

between wild-type and A2AAR-/- mice.  Similarly, low levels of ICAM-1 were detected in 

PBS treated wild-type and A2AAR-/- mice while it was strongly upregulated to a similar 

extent in both wild-type and A2AAR-/- mice treated with LPS (figure 3.6). 

In addition to its effects on activation of the NFκB pathway, the A2AAR has also been 

found to influence pro-inflammatory signalling through suppression of the JAK/STAT 

pathway.  In studies using HUVECs, stimulation of endogenous A2AARs resulted in 

reduced STAT3 phosphorylation in response to IL-6 treatment which was associated with 

induction of SOCS3 (Sands et al., 2006).  In addition, increasing expression of the A2AAR 

has been shown to inhibit IL-6 and IFNγ-induced JAK/STAT signalling via ubiquitination 

and proteasomal degradation of STAT proteins (Safhi et al., submitted for publication).  To 

determine whether inhibition of JAK/STAT signalling by the A2AAR is a significant 

mechanism in vivo, aortae dissected from wild-type and A2AAR-/- mice were used to make 

protein samples which were then analysed for the presence of active JAK-phosphorylated 

STAT proteins using SDS-PAGE and immunoblotting.  Levels of phosphorylated STATs 

were measured as STAT phosphorylation by JAKs represents the key hormone-regulated 

step in activation of the JAK/STAT pathway and because tyrosine phosphorylation of  
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Figure 3.4 Total levels of the NFκκκκB subunit p65 remain unchanged in A2AAR-/- 

mice subjected to LPS-induced septic shock 

A. Wild-type (WT) and A2AAR-/- mice were subjected to intraperitoneal injection of 200 µg 

LPS or PBS vehicle and then euthanised 4 hours later. Protein extracts were prepared from 

aortic tissue and normalised for protein content before fractionation by SDS-PAGE on 10 

% (w/v) polyacrylamide gels.  Proteins were transferred to nitrocellulose for 

immunoblotting using an antibody directed against p65.  B. Immunoreactive bands were 

quantitated by densitometry.  Values are represented on the graph as a mean percentage of 

the maximal response ± S.E. (n=12). 
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Figure 3.5 Induction of VCAM-1 is unaffected by A2AAR gene deletion 

A. Wild-type (WT) and A2AAR-/- mice were subjected to intraperitoneal injection of 200 µg 

LPS or PBS vehicle and then euthanised 4 hours later. Protein extracts were prepared from 

aortic tissue and bnormalised for protein content before fractionation by SDS-PAGE on 10 

% (w/v) polyacrylamide gels.  Proteins were transferred to nitrocellulose for 

immunoblotting using an antibody directed against VCAM-1.  B. Immunoreactive bands 

were quantitated by densitometry.  Values are represented on the graph as a mean 

percentage of the maximal response ± S.E. (n=12). 
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Figure 3.6 Induction of ICAM-1 is unaffected by A2AAR gene deletion 

A. Wild-type (WT) and A2AAR-/- mice were subjected to intraperitoneal injection of 200 

µg LPS or PBS vehicle and then euthanised 4 hours later. Protein extracts were prepared 

from aortic tissue and normalised for protein content before fractionation by SDS-PAGE 

on 10 % (w/v) polyacrylamide gels.  Proteins were transferred to nitrocellulose for 

immunoblotting using an antibody directed against ICAM-1.  B. Immunoreactive bands 

were quantitated by densitometry.  Values are represented on the graph as a mean 

percentage of the maximal response ± S.E. (n=12). 
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STATs is required for STAT dimerisation and translocation to the nucleus to allow 

transcriptional activity (Shuai et al., 1993, Kaptein et al., 1996). 

Tyr701-phosphorylated STAT1 was barely detectable in PBS-treated wild-type or A2AAR-/- 

mice but was increased in LPS-treated mice indicating activation of the JAK/STAT 

pathway (figure 3.7 A, top panel).  Interestingly, the observed increase in STAT1 

phosphorylation was significantly greater in A2AAR-/- mice compared to wild-type mice 

(p<0.001; figure 3.7 B).  This was not due to changes in the abundance of STAT1 protein 

in A2AAR-/- samples as total STAT1 levels did not vary significantly between groups of 

mice. 

Levels of Tyr705-phosphorylated STAT3 were also very low in PBS-treated mice but were 

elevated in mice injected with LPS (figure 3.8 A, top panel).  While the increase in STAT3 

phosphorylation did appear to be greater in A2AAR-/- mice, the difference was not judged to 

be statistically significant (p>0.05; figure 3.8 B).  Total levels of STAT3 remained 

unchanged between wild-type and A2AAR-/- samples. 

Since A2AAR-/- mice had increased levels of phosphorylated STAT1 compared to wild-type 

mice when treated with LPS, it was possible that these mice would express elevated levels 

of STAT1-dependent gene products such as transporter of antigenic peptides 1 (TAP-1).  

TAP-1 is part of the TAP complex which transports antigenic peptides generated by the 

proteasome into the endoplasmic reticulum and facilitates their loading on to class I MHC 

molecules (Owen and Pease, 1999; Neefjes et al., 1993).  TAP-1 expression is induced in 

response to LPS (Marqués et al., 2004) and pro-inflammatory cytokines such as interferons 

and TNFα (Epperson et al., 1992) and has been shown to be dependent on STAT1 

activation in several cell types including endothelial cells (Mahboubi and Pober, 2002; 

Cramer et al., 2000; Min et al., 1996). To determine whether increased STAT1 

phosphorylation in A2AAR-/- mice had effect on TAP-1 expression, aortic protein samples 

were subjected to SDS-PAGE and immunoblotting using an anti-TAP-1 antibody.  TAP-1 

was detected in PBS-treated wild-type and A2AAR-/- mice representing basal expression.  

However, no significant increases were observed in response to LPS treatment (figure 3.9). 
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Figure 3.7 Effect of LPS treatment on STAT1 activation in the aortae of 

A2AAR-deficient mice 

A. Wild-type (WT) and A2AAR-/- mice were subjected to intraperitoneal injection of 200 

µg LPS or PBS vehicle and then euthanised 4 hours later.  Protein extracts were prepared 

from aortic tissue and normalised for protein content before fractionation by SDS-PAGE 

on 10 % (w/v) polyacrylamide gels.  Proteins were transferred to nitrocellulose for 

immunoblotting using antibodies specific for phosphorylated STAT1 (pSTAT1), total 

STAT1 and GAPDH as indicated.  B. Immunoreactive bands were quantitated by 

densitometry.  Levels of phosphorylated and total STAT1 were normalised to GAPDH to 

account for variations in protein loading and are shown on the graph as a mean percentage 

of the maximal response ± S.E. (n=12). 
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Figure 3.7 Effect of LPS treatment on STAT1 activation in the aortae of 

A2AAR-deficient mice 
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Figure 3.8 Effect of LPS treatment on STAT3 activation in the aortae of 

A2AAR-deficient mice 

A. Wild-type (WT) and A2AAR-/- mice were subjected to intraperitoneal injection of 200 

µg LPS or PBS vehicle and then euthanised 4 hours later.  Protein extracts were prepared 

from aortic tissue and normalised for protein content before fractionation by SDS-PAGE 

on 10 % (w/v) polyacrylamide gels.  Proteins were transferred to nitrocellulose for 

immunoblotting using antibodies specific for phosphorylated STAT3 (pSTAT3), total 

STAT3 and GAPDH as indicated.  B. Immunoreactive bands were quantitated by 

densitometry.  Levels of phosphorylated and total STAT3 were normalised to GAPDH to 

account for variations in protein loading and are shown on the graph as a mean percentage 

of the maximal response ± S.E. (n=12). 
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Figure 3.8 Effect of LPS treatment on STAT3 activation in the aortae of 

A2AAR-deficient mice 
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Figure 3.9 Levels of the STAT1-dependent protein TAP-1 are unchanged in 

LPS-challenged A2AAR-/- mice 

A. Wild-type (WT) and A2AAR-/- mice were subjected to intraperitoneal injection of 200 

µg LPS or PBS vehicle and then euthanised 4 hours later.  Protein extracts were prepared 

from aortic tissue and normalised for protein content before fractionation by SDS-PAGE 

on 10 % (w/v) polyacrylamide gels.  Proteins were transferred to nitrocellulose for 

immunoblotting using an antibody directed against TAP-1 and GAPDH as indicated.  B. 

Immunoreactive bands were quantitated by densitometry.  Levels of TAP-1 were 

normalised to GAPDH to account for variations in protein loading and are shown on the 

graph as a mean percentage of the maximal response ± S.E. (n=12). 
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3.3 Discussion 

It is important to understand mechanisms by which the body regulates inflammatory 

responses as excessive and inappropriate inflammation contribute to the pathology of 

major diseases including atherosclerosis (Hansson, 2005; Libby, 2002).  Studies using 

A2AAR-deficient mice have shown that signalling through the A2AAR represents an 

endogenous means of limiting inflammatory responses and tissue damage (Ohta and 

Sitkovsky, 2001).  However, the mechanisms behind this effect are not well understood.  

Findings from in vitro studies indicate that the A2AAR could mediate some of its effects 

through suppression of the NFκB (Sands et al., 2004) and JAK/STAT (Sands et al., 2006) 

pro-inflammatory signalling pathways but whether this is a significant mechanism in vivo 

is not known.  The aim of this study was to investigate the molecular mechanisms behind 

the anti-inflammatory actions of the A2AAR in vivo using A2AAR-deficient mice.   This 

was achieved through examination of NFκB and JAK/STAT pathway activation in the 

aortae of A2AAR-deficient mice subjected to LPS-induced septic shock. 

Data presented here show that in mice lacking the A2AAR, LPS-induced pro-inflammatory 

cytokine production is markedly enhanced compared to wild-type mice.  Consistent with 

this observation, activation of the JAK/STAT pathway in response to LPS was potentiated 

in the aortae of these animals as shown by elevated levels of phosphorylated STAT1. 

However, STAT1-dependent gene expression as assessed by detecting levels of TAP-1 was 

unaffected.  NFκB signalling was also altered in A2AAR-deficient mice as shown by 

elevated levels of IκB phosphorylation even in the absence of LPS stimulation.  However, 

total levels of IκBα and RelA/P65 were unaffected as was expression of the NFκB-

dependent gene products VCAM-1 and ICAM-1. 

Interruption of the A2AAR gene in A2AAR-deficient mice was confirmed by PCR as shown 

by the increased size of the PCR product representing the gene with the neomycin cassette 

inserted compared to the wild-type gene.  Although expression of receptor protein was not 

measured in the current study, the lack of a functional A2AAR in A2AAR-deficient mice 

created in the same way has been confirmed previously (Ledent et al., 1997).  In the 

original study characterising A2AAR-deficient mice, binding of [3H]CGS21680 was 

detected in brain slices and membrane preparations from the striatum of wild-type mice but 

not those in which the A2AAR gene had been interrupted, demonstrating a lack of binding 

sites in A2AAR-deficient mice (Ledent et al., 1997). 
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Although it was found in this study that the presence of a functional A2AAR was important 

for regulation of the NFκB and JAK/STAT signalling pathways, it is possible that other 

adenosine receptor subtypes may have been upregulated in A2AAR-deficient mice and 

masked some of the effects of the loss of the A2AAR.  For example, the A2BAR is also 

coupled to Gs and so may be able to compensate for the loss of some of the A2AAR’s 

cAMP-mediated effects.  Levels of the different receptor subtypes were not examined in 

this study.  However, in previous studies comparing mRNA expression of A1, A2B or A3 

receptors in the lympoid organs of A2AAR-deficient mice and wild-type mice, no 

significant changes were observed (Lukashev et al., 2003).  This indicates that loss of the 

A2AAR does not affect expression of other adenosine receptor subtypes in normal 

conditions.  However, there is evidence that adenosine receptors expression is subject to 

regulation by cytokines produced during inflammatory conditions.  For example IL-1β and 

TNFα have been found to increase expression of the A2AAR in lung epithelial A549 cells, 

(Morello et al., 2006), human monocytic THP-1 cells (Khoa et al., 2001) and in rat PC12 

cells (Trincavelli et al., 2002).  Meanwhile, in studies using human microvascular 

endothelial cells, IL-1 and TNFα have been found to increase expression of the A2AAR 

and the A2BAR while IFNγ also increased expression of the A2BAR but decreased 

expression of the A2AAR (Khoa et al., 2003).  Expression of the A2BAR is also upregulated 

in macrophages in response to IFNγ treatment (Xaus et al., 1999).  These studies indicate 

that proinflammatory cytokines can alter the adenosine receptor profile of various different 

tissues, potentially with different effects in wild-type and adenosine receptor-deficient 

mice.  This is likely to have significance in the present study where levels of these 

cytokines were increased following LPS treatment. 

In this study, LPS-induced septic shock was used as a model of vascular inflammation.  

LPS activates toll-like receptor 4 (TLR4) on macrophages and neutrophils to induce an 

acute inflammatory response (Bosshart and Heinzelmann, 2007; Han and Ulevitch, 2005).  

Activation of pro-inflammatory signalling pathways in macrophages results in expression 

of cytokines and other inflammatory mediators including TNFα, IL-1, IL-6 and GM-CSF 

(Murphy et al., 2008).  In this study, administration of LPS effectively induced an 

inflammatory response as shown by the increased levels of these cytokines detected in 

serum from LPS-treated mice compared to PBS-treated mice.  In A2AAR-/- mice, the 

increase was significantly greater than in wild-type mice indicating that the A2AAR had a 

suppressive role in regulating pro-inflammatory cytokine production.  This is in agreement 

with data from previous studies which showed increased serum levels of IL-6 and TNFα in 
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LPS-treated A2AAR-/- mice compared to wild-type mice (Ohta and Sitkovsky, 2001).  In 

further in vivo studies, the increases in cytokine production observed in A2AAR-deficient 

mice were found to be due to positive transcriptional regulation as mRNA levels of pro-

inflammatory cytokines were increased in LPS-treated A2AAR-/- mice compared to wild-

type mice (Lukashev et al., 2004).  This effect could be simulated by pharmacological 

inactivation of the A2AAR in wild-type mice using the A2AAR-selective antagonist 

ZM241385.  In contrast, activation of the A2AAR by injection of the A2AAR-selective 

agonist CGS21680 resulted in reduced expression of pro-inflammatory cytokine mRNA, 

providing further evidence that signalling through the A2AAR regulates inflammation in 

vivo through suppression of pro-inflammatory cytokine expression (Lukashev et al., 2004). 

To begin to investigate mechanisms potentially responsible for the increased inflammatory 

responses seen in A2AAR-deficient mice, protein samples produced from the aortae of LPS 

and PBS-treated wild-type and A2AAR-deficient mice were examined for the presence of 

components of the NFκB and JAK/STAT signalling pathways. 

In this study, activation of the NFκB pathway as determined by IκB phosphorylation was 

strikingly upregulated in both PBS and LPS-treated A2AAR-/- mice compared to wild-type 

mice suggesting that the A2AAR plays a role in regulating activation of the pathway even 

in the absence of stimuli.  A negative regulatory effect of the A2AAR on NFκB signalling 

has been observed previously in macrophages from A2AAR-/- mice (Lukashev et al., 2004) 

and has also been demonstrated in vitro in C6 cells where increasing expression of the 

A2AAR resulted in a severe reduction in IκB phosphorylation in response to TNFα or LPS 

(Sands et al., 2004).  The reason for the lack of effect of LPS treatment on IκBα 

phosphorylation in A2AAR-/- mice is not clear.  It could be that the NFκB pathway is 

maximally activated even in basal conditions.  However, this cannot be concluded from 

data presented here as although levels of phosphorylated IκBα are clearly elevated in 

A2AAR mice, it is not possible to tell what percentage of total IκB levels this represents.  

This question could be addressed through the use of two-dimensional gel electrophoresis to 

fractionate protein samples on the basis of charge as well as size.  This would allow 

separation of phosphorylated IκBα from the unphosphorylated form, thereby allowing 

quantitation of their relative abundances. 

IKK-mediated phosphorylation of IκBα on Ser32 and Ser36 is generally thought to lead to 

its Lys48 polyubiquitination and degradation by the proteasome (Karin and Ben-Neriah, 
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2000).  Surprisingly, despite the dramatic increases in IκBα phosphorylation observed here 

in A2AA-/- mice, there were no differences in total levels of IκBα between different groups 

of mice.  A possible explanation for this is that in A2AAR-/- mice, negative feedback 

mechanisms are induced or upregulated to compensate for the increased activation of the 

NFκB pathway.  IκBα is itself a target for NFκB transcriptional activity (de Martin et al., 

1993) and its resynthesis and binding to activated NFκB proteins in the nucleus is a crucial 

step in the regulation of NFκB signalling (Karin and Ben-Neriah, 2000).  In an auto-

regulatory loop, newly synthesised IκBα enters the nucleus where it binds to NFκB and 

removes it from DNA, thereby terminating its transcriptional activity (Arenzana-Seisdedos 

et al., 1997).  The NFκB/IκB complex is then transported back into the cytoplasm by the 

nuclear protein CRM1 which recognises nuclear export sequences on IκB (Huang et al., 

2000; Johnson et al., 1999).  It is possible that in A2AAR-/- mice, the efficiency of this 

pathway is upregulated and that increased degradation of phosphorylated IκB does occur 

but is not detected because it is rapidly resynthesised resulting in no net change in 

abundance. 

Another possible explanation for the apparent lack of IκBα degradation is that there is a 

defect in the proteasome of A2AAR-/- mice.  Alternatively, there could be alterations in the 

activity of the enzymes which mediate ubiquitination of phosphorylated IκBα and target it 

for degradation by the proteasome.  The E3 ubiquitin ligase complex which recognises 

phosphorylated IκBα and promotes its polyubiquitination is regulated by post-translational 

modification by the ubiquitin-like protein Nedd8 (Read et al., 2000).  Neddylation of the 

cullin-1 subunit of the IκB-specific Skp1-cullin-F-Box (SCF) ubiquitin ligase is required 

for its activity while deneddylation represents a means of regulating NFκB activity by 

preventing degradation of IκB (Read et al., 2000).  This mechanism has been found to be 

activated by adenosine acting through A2BARs and to contribute to the protective effects of 

hypoxic preconditioning in mice (Khoury et al., 2007).  It is possible that in A2AAR-/- mice, 

this protective mechanism is upregulated and neddylation of cullin-1 is reduced.  This 

would result in IκBα levels remaining constant despite increased phosphorylation.   

Other NFκB-induced feedback inhibitors which could be at work to prevent inappropriate 

activation in A2AAR-competent mice include the deubiquitinating proteins CYLD and 

A20. CYLD inhibits NFκB by reversing the K63-linked ubiquitination of upstream 

signalling molecules such as TRAF2 and TRAF6 which is required for LPS-induced 

activation of the IKK complex (Courtois, 2008).  CYLD expression has been found to be 
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upregulated in atherosclerotic lesions and its overexpression in cultured endothelial cells 

resulted in inhibition of TNFα-induced NFκB activation through deubiquitination of 

TRAF2 (Takami et al., 2008).  These findings suggest it could play an important role in 

suppressing inflammation in the aorta.  A20 was originally identified as regulator of 

TNFα-induced NFκB activation with the ability to change the ubiquitination profile of RIP 

thereby targeting it for proteasomal degradation but it could also affect activation by LPS 

as it has effects on signalling from TLRs through deubiquitination of TRAF2 and IKKγ 

(Heyninck and Beyaert, 2005). 

Despite the observed dysregulation of IκBα phosphorylation in A2AAR-/- mice, no changes 

were seen in the induction of VCAM-1 and ICAM-1 expression in response to LPS, 

perhaps reflecting the efficiency of feedback mechanisms induced.  However, it is also 

possible that increases in VCAM-1 and ICAM-1 expression were not detected due to 

increased shedding of the extracellular domains of these proteins into the circulation of 

A2AAR-/- mice.  Increased levels of the soluble forms of VCAM-1 and ICAM-1 are found 

in a number of inflammatory diseases (Gearing and Newman, 1993).  In this study, 

VCAM-1 and ICAM-1 were detected in the aorta using an antibody directed against their 

N-terminal extracellular domains which would not take account of molecules which have 

shed their extracellular domains.  Total levels of VCAM-1 and ICAM-1 could be measured 

using an antibody directed against their intracellular domains or by detecting levels of shed 

molecules in serum. 

In addition to the NFκB pathway, the JAK/STAT pathway is also activated in response to 

LPS.  LPS signalling through TLR4 has not been reported to directly activate the 

JAK/STAT pathway but rather to rapidly induce expression of interferons in order to 

achieve optimal expression of LPS-inducible genes (Ohmori and Hamilton, 2001).  In this 

study, STAT1 phosphorylation in response to LPS treatment was elevated in A2AAR-/- 

mice compared to wild-type mice.  It is tempting to suggest that this might be due to 

suppression of STAT1 phosphorylation in wild-type mice by members of the SOCS family 

as stimulation of the A2AAR has been shown to reduce IL-6-induced STAT3 

phosphorylation in cultured endothelial cells through induction of SOCS3 (Sands et al., 

2006).  However, SOCS3 mediates this effect on STAT3 activation by binding to tyrosine-

phosphorylated IL-6 receptors and inhibiting the activity of associated JAKs (Sasaki et al., 

1999).  Since regulation by SOCS3 is at the level of JAK activity, it would be expected 

that if SOCS3 is involved then both STAT1 and STAT3 phosphorylation would be 

affected in A2AAR-/- mice.  SOCS1 also inhibits JAK activity (Yasukawa et al., 1999) and 
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so can influence phosphorylation of both STAT1 and STAT3.  Since only STAT1 

phosphorylation is significantly elevated in A2AAR-/- mice, it seems unlikely that decreased 

activity of SOCS1 or SOCS3 is responsible. 

Despite increased STAT1 phosphorylation in response to LPS, STAT1-regulated 

expression of TAP-1 was not altered in A2AAR-/- mice.  However, the significance of this is 

not clear as TAP-1 expression was not increased in LPS-treated mice.  High basal 

expression of this protein may have masked changes occurring in response to LPS or it is 

possible that although the dose of LPS used was sufficient to elicit STAT1 

phosphorylation, it may not have activated the JAK/STAT pathway strongly enough to 

produce detectable effects downstream.  Alternatively, it may be that A2AAR-mediated 

regulation of STAT1-dependent gene expression is target-specific and examining 

expression of other STAT1-regulated genes may still reveal functional effects of the 

absence of the A2AAR.  In order to investigate this possibility, attempts were made during 

this study to determine the effects of A2AAR gene deletion on expression of the inducible 

form of nitric oxide synthase (iNOS).  iNOS expression can be induced in endothelial cells 

in response to combinations of cytokines such as IFNγ and TNFα (Wagner et al., 2002) or 

by IFNs and LPS (Koide et al., 2007) through activation of both STAT1 and NFκB which 

act synergistically at the iNOS promoter (Ganster et al., 2001).  However, in this study, it 

was not possible to assess iNOS expression as immunoblotting using an anti-iNOS 

antibody produced multiple bands of approximately the correct size.  Attempts were made 

to obtain clearer results using a second iNOS antibody directed against a separate epitope 

and through use of different positive controls.  However, it was still not possible to 

confidently identify a single band as iNOS. 

Mice lacking the A2AAR have been shown previously to express elevated levels of pro-

inflammatory cytokines and to suffer enhanced tissue damage in response to inflammatory 

stimuli (Ohta and Sitkovsky, 2001).  The model of vascular inflammation used in this 

study revealed significant perturbations in both NFκB and JAK/STAT signalling in the 

aortae of A2AAR-/- mice which could perhaps account for these effects.  It was of particular 

interest to study pro-inflammatory signalling pathway activation in the aorta because in a 

previous study, the NFκB pathway was found to be primed for activation in atherosclerotic 

lesion-prone areas of the aorta in LPS-treated wild-type mice (Hajra et al., 2000).  If 

A2AAR expression in the aorta can regulate NFκB activation then it may play a role in 

preventing development of atherosclerosis.  However, further analysis of NFκB and 
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STAT-dependent expression of specific target genes including VCAM-1 and ICAM-1 

which mediate leukocyte recruitment during atherogenesis did not reveal any changes in 

protein levels in the absence of the A2AAR.  This does not however rule out a role for the 

A2AAR in regulating inflammatory events involved in atherosclerosis.  Several aspects of 

the model used in this study mean that it was not possible to fully evaluate the effects of 

the loss of the A2AAR on specific events occurring in the endothelium during 

atherogenesis.  For example, LPS induces an acute form of inflammation while 

atherosclerosis is a chronic inflammatory condition.  Although LPS does induce expression 

of inflammatory mediators and adhesion molecules believed to be important in 

development of atherosclerosis, the actual similarity to the disease is not known.  In 

addition, results presented here are based on samples produced from whole aortas which 

included endothelial cells but also the surrounding smooth muscle layer.  The A2AAR may 

have specific effects in the endothelium which are masked by responses occurring in 

smooth muscle cells.  Similarly, by examining the whole aorta, it was not possible to detect 

differences in inflammatory pathway activation and target protein expression specifically 

in lesion-prone areas of the aorta where regulation could be most crucial.  This problem 

could be addressed by using immunohistochemistry to examine NFκB and JAK/STAT 

pathway activation in particular lesion-prone areas of the intact endothelium. 

An additional concern in this study was that since mice were euthanized and organs 

harvested 4 hours following LPS-treatment it was only possible to examine protein 

expression in aortic tissue samples at a single time point.  The NFκB and JAK/STAT 

pathways are subject to regulation at many stages through feedback mechanisms and 

through interaction with other signalling pathways.  It is likely that many changes occurred 

before the 4 hour time point or may have occurred later if the study had been continued for 

longer.  However, in order to produce samples at different time points, it would have been 

necessary to use much larger numbers of mice which would have been prohibitively 

expensive. 

Regardless of the limitations mentioned above, data presented here clearly mark out a role 

for the A2AAR in modulating pro-inflammatory signalling through the NFκB and 

JAK/STAT pathways in the aorta.  This not only adds to the collective evidence for a 

physiological role for the A2AAR for limiting inflammation in vivo but more importantly 

provides new evidence regarding the mechanisms behind this effect.  Future studies in 

vitro should be aimed at further analysis of the role of the A2AAR in regulating NFκB and 
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JAK/STAT signalling and will hopefully allow identification of specific mechanisms 

involved.  
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4 Regulation of the A2A adenosine receptor by 

phosphorylation 

4.1 Introduction 

The anti-inflammatory and tissue protective effects of signalling through the A2AAR are 

well documented (Palmer and Trevethick, 2008; Sitkovsky et al., 2004; Sitkovsky, 2003).  

Elucidation of the mechanisms behind the beneficial effects of the A2AAR is a current topic 

of investigation and progress is being made in identifying means by which the A2AAR may 

modulate pro-inflammatory signalling pathways as exemplified by findings described in 

chapter 3.  In contrast, a subject that has not received much attention is how the A2AAR is 

regulated at a molecular level.  This is of particular interest since it has become apparent 

that in addition to heterotrimeric G proteins and proteins involved in desensitisation, 

numerous other proteins can interact with the intracellular portions of GPCRs.  These 

proteins have the potential to regulate the activity of GPCRs either by directly activating 

alternative signalling pathways or by acting as adaptors or scaffolds to recruit proteins with 

the potential to modulate G protein-dependent signalling or initiate G protein-independent 

signalling events (Kristiansen, 2004; Hall and Lefkowitz, 2002; Heuss and Gerber, 2000). 

The A2AAR has an unusually long C-terminal tail in comparison to many other GPCRs and 

particularly in contrast to other adenosine receptors (122 amino acids in man compared to 

only 34 in the C-terminal tail of the A1AR; Zezula and Freissmuth, 2008).  The presence of 

numerous serine and threonine residues in this region suggests potential for regulation of 

the A2AAR by phosphorylation.  Indeed, agonist-induced desensitisation of the canine 

A2AAR is associated with rapid phosphorylation of the receptor (Palmer et al., 1994).  

Furthermore, studies using the canine A2AAR expressed in C6 glioma cells have shown 

that stimulation of protein kinase C (PKC) by phorbol 12-myristate 13-acetate (PMA) or 

endothelin-1 (ET-1) which activates PKC through endogenous ETA receptors results in 

dramatically increased phosphorylation of the A2AAR over basal levels (Palmer and Stiles, 

1999).  Through the use of inhibitors, the involvement of PKC in mediating this effect has 

been confirmed and the PKCδ isoform in particular identified as being partly responsible. 

The role of the extended C-terminal tail of the A2AAR and the significance of 

phosphorylation events in this region has not been determined.  In fact, it has been 

demonstrated that deletion of 95 amino acids from the C-terminus of the canine A2AAR 
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which removes ten of the twelve potential phosphorylation sites has no effect on agonist-

induced phosphorylation or desensitisation of the receptor (Palmer and Stiles, 1997).  

Similarly, using truncated forms of the human A2AAR it has been shown that the last 95 

amino acids of the C-terminal tail are not required for agonist-stimulated G protein-

coupling and stimulation of adenylyl cyclase (Palmer and Stiles, 1997).  In addition, it has 

been found that the agonist-binding properties of a mutant canine A2AAR lacking the last 

102 residues are comparable to those of the wild-type receptor (Piersen et al., 1994).  Since 

truncation of the A2AAR appears to have no effect on the classical signalling or regulatory 

mechanisms associated with GPCRs, other potential roles for the C-terminal tail must be 

considered.  A number of proteins have been reported to interact with this region of the 

A2AAR indicating that it may act as a scaffold for recruitment of proteins involved in G 

protein-independent signalling pathways (Zezula and Freissmuth, 2008).  This theory is 

supported by the finding that G-protein independent activation of ERK by the A2AAR is 

dependent on an interaction between the C-terminal tail of the A2AAR and ARF nucleotide 

site opener (ARNO) which is a guanine nucleotide exchange factor for the ADP-

ribosylation factor (ARF) family of monomeric G proteins (Gsandtner et al., 2005).  The 

cytoskeletal protein α-actinin has also been identified as a C-terminal binding partner of 

the A2AAR.  This interaction has been found to be important for agonist-mediated 

clustering and internalisation of the receptor (Burgueño et al., 2003).  However, α-actinin 

can also interact with components of the ERK cascade, suggesting an additional role as a 

scaffold protein involved in organisation of ERK signalling (Christerson et al., 1999; 

Leinweber et al., 1999).  Translin-associated protein X (TRAX) is another protein which 

binds to the C-terminus of the A2AAR with effects on A2AAR-mediated signalling that 

appear to be both Gs and ERK-independent (Sun et al., 2006).  TRAX has been shown to 

be involved in the ability of the A2AAR to suppress proliferation of PC12 cells and restore 

nerve growth factor (NGF)-induced neuronal differentiation that is impaired by p53 

inactivation.  However, the mechanism by which this occurs is unclear (Sun et al., 2006).  

Yet another recently identified interaction partner of the A2AAR is the deubiquitinating 

enzyme ubiquitin-specific protease 4 (USP4).  Binding of USP4 to the C-terminus of the 

A2AAR results in deubiquitination of the receptor which is required for its export from the 

ER during synthesis (Milojević et al., 2006).  Ubiquitination status is, however, also an 

important determinant of the fate of endocytosed GPCRs (Wojcikiewicz, 2004) and so it is 

possible that binding of USP4 could have effects on the rate of receptor recycling 

following desensitisation. 
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The list of proteins reported to interact with the C-terminal tail of the A2AAR is growing 

rapidly.  Despite the exaggerated length of this region compared to other adenosine 

receptors, it is unlikely that it is long enough to accommodate binding of numerous 

interaction partners simultaneously.  Moreover, ARNO (Gsandtner et al., 2005) and α-

actinin (Burgueño et al., 2003) have been reported to bind in the same juxtamembrane 

portion of the receptor tail.  This highlights the need for regulation of binding events and 

indeed it has been suggested that phosphorylation of thr 298 which is present in the 

binding sites of both ARNO and α-actinin may be important for determining which 

interactions occur (Zezula and Freissmuth, 2006).  As mentioned above, there are twelve 

potential phosphorylation sites present within the C-terminal tail of the receptor and so it 

seems highly likely that phosphorylation events could have consequences for binding of 

particular accessory proteins.  This could provide a mechanism by which different 

pathways can interact with the A2AAR to regulate its activity. 

The aim of the present study was to identify stimuli that induce increased phosphorylation 

of the human A2AAR and to determine how this affects recruitment of C-terminal-

interacting molecules involved in regulating A2AAR activity and downstream signalling 

events.  Information currently available in this area is derived from work using the canine 

A2AAR expressed in C6 glioma, CHO and COS cells (Palmer and Stiles, 1999).  Although 

A2AARs have fairly high species homology (92% between human and canine), most 

differences occur within the C-terminal tail.  For this reason, findings from studies using 

canine receptors may not reflect mechanisms that regulate human A2AARs.  In addition, 

since C6, CHO and COS cells do not express A2AARs, they may not have the regulatory 

mechanisms in place that would be found in cells expressing endogenous receptors.  In 

order to properly understand how the human A2AAR is regulated, it is necessary to study 

human receptors in human cells that express endogenous receptors.  Therefore, in the 

following experiments receptor phosphorylation has been studied using a myc-tagged 

human A2AAR expressed in human umbilical vein endothelial cells (HUVECs). 
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4.2 Results 

The myc-tagged human A2AAR was introduced to HUVECs via adenoviral mediated gene 

transfer using an moi of 30 ifu/cell.  Successful expression of the A2AAR was confirmed by 

detection of the myc tag of the receptor by immunoblotting using the 9E10 antibody 

(figure 4.1, lower panel).  Immunoblotting produced two bands at approximately 50 and 40 

kDa in samples from adA2AAR-infected cells as has been observed previously using the 

9E10 antibody to detect the myc-tagged A2AAR expressed in HUVECs using adenovirus 

(Sands et al., 2004).  A third band was detected below the 37 kDa marker in both adA2AAR 

and adGFP-infected cells and so was determined to be non-specific.   The 50 kDa band 

corresponds to the size of the native A2AAR which has been detected as a 45-46 kDa band 

using photoaffinity labelling of the A2AAR in human striatal membranes (Ji et al., 1992) 

and cardiac tissues (Marala et al., 1998).  This is likely to represent the fully glycosylated, 

full-length form of the receptor.  This has been investigated by immunoprecipitating the 

A2AAR from cells treated with biotin hydrazide to label cell-surface carbohydrate groups 

(T.M. Palmer, unpublished observation).  Blotting with HRP-streptavidin produced a 

single band at approximately 50 kDa representing the glycosylated receptor.  The 40 kDa 

band is likely to represent a partially processed form of the A2AAR rather than a 

degradation product as degradation of the A2AAR typically involves loss of the C-terminal 

tail (Nanoff et al., 1990).  The myc tag is at the C-terminus of the receptor and thus the tail 

must be intact to be recognised by 9E10.  Furthermore, the 40 kDa band is consistent with 

the predicted molecular weight of the deglycosylated receptor and is of a similar size to the 

38 kDa bovine striatal A2AAR detected by photoaffinity labelling following 

deglycosylation (Barrington et al., 1990). 

Expression of the myc-tagged A2AAR was specific to adA2AAR-infected cells as 

recombinant receptor was not detected in adGFP-infected cells.  Stimulation of the 

receptor using the selective agonist CGS21680 produced a time-dependent increase in 

ERK phosphorylation indicating that the receptor was functional (figure 4.1, upper panel).  

ERK phosphorylation in response to CGS216080 was also detected in adGFP-infected 

cells but not to the extent seen in adA2AAR-infected cells indicating activation of 

endogenous receptors.  Saturation binding analysis using 3H-ZM241385 revealed that in 

adA2AAR-infected cells, the myc-tagged A2AAR had a Kd value of 1.4 ± 0.4 nM and was 

expressed at a level of 80 ± 7 pmol/mg protein (figure 4.2).  Despite detection of functional 

endogenous receptors via CGS21680 stimulation of ERK phosphorylation, no 3H- 
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Figure 4.1 Adenovirus-mediated expression of the human A2AAR in HUVECs 

HUVECs were infected with A2AAR-expressing adenovirus (A) or control adenovirus 

expressing GFP alone (G).  Cells were incubated with 10 µM CGS21680 for the times 

indicated before preparation of protein extracts.  Extracts were normalised for protein 

content prior to fractionation by SDS-PAGE on 10 % (w/v) polyacrylamide gels.  Proteins 

were transferred to nitrocellulose for immunoblotting using a phospho-specific ERK 

antibody (pERK) and the 9E10 antibody which recognises the myc tag of the A2AAR.  

This is an example of two such experiments.  The asterisk denotes a non-specific band. 
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Figure 4.2 Saturation analysis of 3H-ZM241385 binding to the myc-tagged 

human A2AAR 

HUVECs were infected with A2AAR-expressing adenovirus before preparation of 

membrane extracts for use in saturation binding assays using a range of concentrations of 

the radiolabelled A2AAR antagonist 3H-ZM241385.  This is a representative example of 

three such experiments. 
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ZM241385 binding was observed in adGFP-infected cells.  However, this lack of 

detectable binding has been found in previous studies in HUVECs (Sands et al., 2004) and 

T-cells (Armstrong et al., 2001) using 3I-ZM241385. 

To allow analysis of receptor phosphorylation in whole cells, it was necessary to be able to 

isolate the A2AAR from other proteins present in whole cell extracts.  This was achieved by 

immunoprecipitation using the 9E10 antibody which recognises the myc tag of the A2AAR.  

Immunoblotting using an A2AAR-specific antibody revealed that the A2AAR was 

successfully immunoprecipitated from adA2AAR-infected cells but not from control 

adGFP-infected cells and only in the presence of the 9E10 antibody showing that the 

procedure was specific for the myc-tagged A2AAR (figure 4.3).  In addition, recovery of 

the receptor was good as immunoprecipitated receptors were detected at levels 

proportionally comparable to total input levels of the A2AAR in whole cell lysates. 

For initial analysis of receptor phosphorylation, HUVECs infected with adA2AAR or 

adGFP were subjected to an intact cell phosphorylation assay in the presence or absence of 

1µM PMA which has been shown to induce phosphorylation of the canine A2AAR in C6 

cells (Palmer and Stiles, 1999).  The phosphorylated A2AAR was detected as two bands at 

approximately 45-50 kDa and 40 kDa corresponding to the bands detected in immunoblots.  

A third band above 50 kDa was also detected in some cases but appears to be non-specific 

as it is present in lanes when the other bands are not detected and is also faintly detectable 

in cells that have not been infected with adA2AAR. 

Stimulation with PMA resulted in an increase in receptor phosphorylation over basal levels 

in adA2AAR-infected cells but not adGFP-infected cells showing that it was the 

phosphorylated A2AAR that was being detected specifically (figure 4.4 A).  PMA 

activation of novel and conventional isoforms of PKC results in Raf- mediated activation 

of the ERK pathway (Schönwasser et al., 1998) in manner that can be either Ras-

dependent (Chiloeches et al., 1999) or -independent (Ueda et al., 1996).  Induction of ERK 

phosphorylation by PMA was therefore a useful measure to confirm PMA activity as 

shown in figure 4.4 B (upper panel).  The presence of the A2AAR in adA2AAR-infected 

cells but not adGFP-infected cells was confirmed by immunoblotting (figure 4.4B, lower 

panel). 

To begin to characterise phosphorylation of the A2AAR, HUVECs infected with adA2AAR 

were subjected to an intact cell phosphorylation assay in the presence of 10 µM  
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Figure 4.3 Immunoprecipitation of the A2AAR 

HUVECs were infected with adenovirus expressing the myc-tagged A2AAR (adA2AAR) or 

GFP alone (adGFP).  Cell extracts were prepared and equalised for protein content before 

subjection to an immunoprecipitation protocol in the presence or absence of the anti-myc 

9E10 antibody as indicated.  Immunoprecipitated receptors and total levels of receptors in 

cell lysates (Input) were detected using SDS-PAGE followed by immunoblotting using an 

A2AAR-specific antibody. 
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Figure 4.4 Specific immunoprecipitation and phosphorylation of the A2AAR 

HUVECs infected with adenovirus expressing the myc-tagged A2AAR (adA2AAR) or GFP 

alone (adGFP) were labelled with 32P orthophosphate for 90 minutes.  Cells were 

incubated in the presence or absence of 1 µM PMA for 30 minutes before preparation of 

protein extracts.  Extracts were equalised for protein content and used to 

immunoprecipitate the A2AAR using the anti-myc 9E10 antibody.  A. The 32P-labelled 

A2AAR was detected by autoradiography following SDS-PAGE.  B. Levels of 

phosphorylated ERK (pERK) and total A2AAR expression were detected by SDS-PAGE 

and immunoblotting of protein samples prepared from experiments carried out in parallel 

using unlabelled cells.  The 9E10 antibody was used to detect the A2AAR.  Shown are 

examples of results from two replicated experiments. 
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CGS21680, 1 µM PMA, 50 µM forskolin, 10 ng/ml TNFα, 1µg/ml LPS or 5 ng/ml IL-6.  

CGS21680 was included as GPCRs in general are phosphorylated in response to agonist 

stimulation as discussed in Section 1.5.4.1.  In addition, CGS21680 has previously been 

shown to induce phosphorylation of the canine A2AAR expressed in CHO cells (Palmer et 

al., 1994).  Forskolin stimulates AC resulting in elevation of cAMP, thereby mimicking 

one of the effects of A2AAR stimulation and so may have had the potential to activate 

feedback mechanisms to induce receptor phosphorylation.  The A2AAR has also been 

reported to regulate activation of the NFκB pathway by TNFα and LPS (Sands et al., 

2004) and the JAK/STAT pathway by IL-6 (Sands et al., 2006; Sahfi et al., submitted for 

publication).  It was therefore of interest to include these stimuli as an effect on receptor 

phosphorylation could indicate a means of reciprocal regulation by these pathways.  As 

shown in figure 4.5, only PMA had a significant effect on A2AAR phosphorylation, 

inducing a 2.5 to 5-fold increase over basal levels (p < 0.001, n = 3).  All stimuli were 

active as shown by their ability to induce ERK phosphorylation (figure 4.5 C, upper 

panel).  Moreover, differences in phosphorylation levels were not due to alterations in 

receptor expression as levels of the A2AAR detected by immunoblotting were not affected 

by any of the chosen stimuli (figure 4.5 C, lower panel).  Thus, the A2AAR is strongly 

phosphorylated in response to PMA treatment but not following stimulation with agonist or 

any other stimuli tested. 

The time-dependence of PMA-induced A2AAR phosphorylation was assessed by 

performing an intact cell phosphorylation assay with adA2AAR-infected HUVECs treated 

with 1µM PMA for different times.  As shown in figure 4.6, phosphorylation was rapid, 

being detectable at the first time point tested (15 seconds).  It reached a maximum at 10 

minutes and was sustained at high levels for at least 30 minutes.  These results closely 

match the values obtained in previous studies using the canine A2AAR (Palmer and Stiles, 

1999).  However, in contrast to the canine receptor, phosphorylation of the human A2AAR 

appeared to occur in two stages, reaching a first peak at 1 minute and levelling off slightly 

until the 5 minute time point before rising to a maximum after 10 minutes.  The response 

was concentration-dependent reaching a maximum of (3.6 ± 0.4)-fold above basal at 10 

nM (figure 4.7 B) which is lower than the value previously observed for the canine A2AAR 

((11.2 ± 2.5)-fold above basal levels at 1 µM PMA; Palmer and Stiles, 1999).  Curve-

fitting of data pooled from three experiments produced an EC50 value for PMA of 1.7 nM 

(figure 4.7 B) which is consistent with published values for the affinity of phorbol esters 

for PKC (Dimitrijević et al., 1995). 
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Figure 4.5 The human A2AAR is phosphorylated in response to PMA 

HUVECs infected with adenovirus expressing the A2AAR were labelled with 32P 

orthophosphate for 90 minutes prior to stimulation with 10 µM CGS21680 (CGS), 1 µM 

PMA, 50 µM forskolin (Fsk), 10 ng TNFα, 1 µg LPS or 5 ng IL-6/25 ng IL-6 sRα (IL-6) 

for 30 minutes.  Cell extracts were prepared and equalised for protein content before 

immunoprecipitation of the A2AAR.  A. The 32P-labelled A2AAR was detected by 

autoradiography following SDS-PAGE.  B.  Bands were quantitated by densitometry and 

values expressed as a mean fold increase ± SE as shown in the graph.  C.  Levels of 

phosphorylated ERK and total A2AAR expression were detected by SDS-PAGE and 

immunoblotting of protein samples prepared from experiments carried out in parallel using 

unlabelled cells (n = 2).  The 9E10 antibody was used to detect the A2AAR. 
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Figure 4.5 The human A2AAR is phosphorylated in response to PMA 
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Figure 4.6 PMA induces rapid phosphorylation of the human A2AAR 

HUVECs infected with adenovirus expressing the A2AAR were labelled with 32P 

orthophosphate for 90 minutes prior to stimulation with 1 µM PMA for the times indicated. 

Cell extracts were prepared and equalised for protein content before immunoprecipitation 

of the A2AAR.  A. The 32P-labelled A2AAR was detected by autoradiography following 

SDS-PAGE.  B.  Bands were quantitated by densitometry and values expressed as a mean 

percentage of the maximal response ± SE as shown in the graph.  C.  Identical experiments 

were carried out in parallel using unlabelled cells (n = 1).  Protein extracts were prepared 

for analysis by SDS-PAGE and immunoblotting using the 9E10 antibody to detect total 

levels of the A2AAR. 
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Figure 4.6 PMA induces rapid phosphorylation of the human A2AAR 
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Figure 4.7 PMA induces phosphorylation of the human A2AAR at low 

concentrations 

HUVECs infected with adenovirus expressing the A2AAR were labelled with 32P 

orthophosphate for 90 minutes prior to stimulation with PMA at the concentrations 

indicated for 20 minutes. Cell extracts were prepared and equalised for protein content 

before immunoprecipitation of the A2AAR.  A. The 32P-labelled A2AAR was detected by 

autoradiography following SDS-PAGE.  B.  Bands were quantitated by densitometry and 

values expressed as a mean percentage of the maximal response ± SE as shown in the 

graph.  C.  Identical experiments were carried out in parallel using unlabelled cells.  

Protein extracts were prepared for analysis by SDS-PAGE and immunoblotting using the 

9E10 antibody to detect total levels of the A2AAR (n = 1). 
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PMA is an activator of conventional and novel isoforms of PKC (Bell and Burns, 1991).  

To determine whether A2AAR phosphorylation could be induced by stimulation of 

endogenous receptors which activate PKC, adA2AAR-infected HUVECs were stimulated 

with histamine.  In HUVECs, histamine activates histamine H1 receptors (Li et al., 2003), 

which leads to stimulation of PLCβ and activation of PKC (Hill et al., 1997).  Treatment of 

HUVECs with 1 µM histamine stimulated a time-dependent increase in A2AAR 

phosphorylation (figure 4.8) which paralleled the agonist’s ability to induce ERK 

phosphorylation (figure 4.8 C, upper panel).  Histamine induced maximal phosphorylation 

at 2 minutes (70 ± 17 % above basal levels, p = 0.05, n = 4) but was not as effective as 

parallel PMA treatment which induced a 245 ± 38 % increase in stimulation (p < 0.01, n = 

4; figure 4.5).  Thus, phosphorylation of the A2AAR can be induced both through treatment 

with PMA and by stimulation of endogenous histamine H1 receptors which activate PKC 

in HUVECs. 

To begin to investigate the role of PKC in PMA-induced phosphorylation of the A2AAR, 

an intact cell phosphorylation assay was carried out using adA2AAR-infected HUVECs 

which had been treated with increasing concentrations of GF109203X, an inhibitor of 

classical and novel forms of PKC (Martiny-Baron et al., 1993; Toullec et al., 1991), before 

stimulation with 10 nM PMA.  As before, PMA induced receptor phosphorylation in the 

absence of GF109203X.  However, pre-treatment with GF109203X resulted in a dose-

dependent inhibition of receptor phosphorylation with an IC50 of 200 nM (figure 4.9 A,B), 

a value which is consistent with concentrations of GF10923X required to inhibit 

phosphorylation of other known substrates of novel and conventional isoforms of PKC 

(Überall et al., 1997).  PMA-stimulated ERK phosphorylation was similarly inhibited in 

GF109203X-treated cells (figure 4.9 C, upper panel).  The reduction in receptor 

phosphorylation could not be explained by changes in receptor expression as shown in 

figure 4.9 C, lower panel, indicating that PMA induced phosphorylation of the A2AAR is 

dependent on the involvement of  classical or novel isoforms of PKC. 

An alternative method for analysing the involvement of PKC is to deplete cellular levels by 

chronic treatment with PMA.  Prolonged exposure to phorbol esters triggers the down-

regulation of PMA-sensitive PKC isoforms by increasing the rate of proteolytic 

degradation (Liu and Heckman, 1998).  The effect of PKC depletion on PMA-induced 

receptor phosphorylation was investigated by incubating HUVECs with 100 nM PMA for 

36 hours before performing an intact cell phosphorylation assay.   In cells which had not 

received chronic treatment with PMA, a 20 minute treatment with 10 µM PMA induced  
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Figure 4.8 The human A2AAR is phosphorylated in response to stimulation of 

endogenous histamine H1 receptors which activate PKC 

HUVECs infected with adenovirus expressing the A2AAR were labelled with 32P 

orthophosphate for 90 minutes prior to stimulation with 1 µM histamine for the times 

indicated.  Cell extracts were prepared and equalised for protein content before 

immunoprecipitation of the A2AAR.  A. The 32P-labelled A2AAR was detected by 

autoradiography following SDS-PAGE.  B.  Bands were quantitated by densitometry and 

values expressed as a mean fold increase ± SE as shown in the graph.  C.  Levels of 

phosphorylated ERK and total A2AAR expression were detected by SDS-PAGE and 

immunoblotting of protein samples prepared from experiments carried out in parallel using 

unlabelled cells (n = 2).  The 9E10 antibody was used to detect the A2AAR. 
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Figure 4.9 PKC plays a role in PMA-induced phosphorylation of the human 

A2AAR 

HUVECs infected with adenovirus expressing the A2AAR were labelled with 32P 

orthophosphate for 90 minutes prior to addition of the PKC inhibitor GF109203X (GFX) at 

the concentrations indicated.  After 30 minutes, cells were stimulated with 10 nM PMA (+) 

or DMSO vehicle (−) for 20 minutes. Cell extracts were prepared and equalised for protein 

content before immunoprecipitation of the A2AAR.  A. The 32P-labelled A2AAR was 

detected by autoradiography following SDS-PAGE.  B.  Bands were quantitated by 

densitometry and values expressed as a mean percentage of the maximal response ± SE as 

shown in the graph. C.  Levels of phosphorylated ERK and total A2AAR expression were 

detected by SDS-PAGE and immunoblotting of protein samples prepared from 

experiments carried out in parallel using unlabelled cells (n = 2).  The 9E10 antibody was 

used to detect the A2AAR. 
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strong phosphorylation as observed in the experiments described above (figure 4.10).  

However, in cells which had been treated with 100 nM PMA for 36 hours, this response 

was reduced by an average of 59 ± 9 % (p = 0.05, n = 3).  This was not due to effects of 

PMA other than on PKC as in cells pre-incubated for 36 hours with an equivalent 

concentration of the control drug, 4α phorbol which does not activate PKC, receptor 

phosphorylation was detected at similar levels as that seen in cells which had not 

undergone chronic treatment.  Immnoblotting using a pan-PKC antibody showed that the 

PKC-depletion protocol was effective (figure 4.10 C, upper panel).  In accordance with a 

reduction in PKC activity, PMA-induced ERK phosphorylation was reduced or 

undetectable in cells subjected to chronic PMA treatment.  The changes in phosphorylation 

observed were not due to any effects of the drugs used on receptor expression as levels of 

the A2AAR did not vary significantly between conditions (figure 4.10 C, lower panel).  

Thus PKC depletion severely impairs the ability of PMA to induce phosphorylation of the 

A2AAR. 

Results obtained using the PKC inhibitor GF109203X and by depleting cellular levels of 

PKC indicate that PKC plays a role in mediating phosphorylation of the A2AAR.  HUVECs 

express 5 isoforms of PKC (α, δ, ε, θ and ζ; Haller et al., 1996) of which all apart from ζ 

are activated by DAG and can be down-regulated by chronic phorbol ester treatment (Liu 

and Heckman, 1998).  To begin to investigate which isoform may be responsible for 

phosphorylation of the A2AAR, intact cell phosphorylation assays were carried out with 

cells treated with rottlerin which is an inhibitor of PKCδ and has been shown previously to 

inhibit phosphorylation of the canine A2AAR expressed in C6 cells (Palmer and Stiles, 

1999).  Cells were treated with different concentrations of rottlerin for 30 minutes before 

stimulation with 10 nM PMA.  As shown in figure 4.11, phosphorylation of the A2AAR 

was unaffected by rottlerin except at the highest concentration used (10 µM).  At this 

concentration, rottlerin may inhibit kinases other than PKCδ (Davies et al., 2000) and so it 

is unclear whether or not PKCδ is responsible for phosphorylating the A2AAR. 

PKC isoforms can be differentiated on their requirement for calcium.  HUVECs express 

both calcium-dependent PKCα and calcium-independent PKCδ, PKCε and PKCθ (Haller 

et al., 1996).  In order to test whether a calcium-dependent isoform was involved, PMA-

induced receptor phosphorylation was assessed in cells which had been pre-incubated with 

the cell-permeable calcium chelator BAPTA/AM (10 µM) for 30 minutes.  As shown in 

figure 4.12, PMA induces receptor phosphorylation which is not affected by BAPTA/AM.  
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Figure 4.10 PKC depletion reduces PMA-stimulated phosphorylation of the 

human A2AAR 

HUVECs infected with adenovirus expressing the A2AAR were incubated with 10 nM 

PMA or DMSO vehicle (−) or with 10 nM 4α-phorbol for 36 hours before stimulation with 

10 nM PMA or vehicle for 20 minutes.  Cell extracts were prepared and equalised for 

protein content before immunoprecipitation of the A2AAR.  A. The 32P-labelled A2AAR 

was detected by autoradiography following SDS-PAGE.  B.  Bands were quantitated by 

densitometry and values expressed as a mean percentage of the response observed for cells 

treated with 4α-phorbol ± SE as shown in the graph. C.  Levels of phosphorylated ERK 

and total A2AAR expression were detected by SDS-PAGE and immunoblotting of protein 

samples prepared from experiments carried out in parallel using unlabelled cells (n = 2).  

The 9E10 antibody was used to detect the A2AAR. 
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Figure 4.11 PKCδδδδ does not appear to be involved in PMA-induced 

phosphorylation of the human A2AAR 

HUVECs infected with adenovirus expressing the A2AAR were labelled with 32P 

orthophosphate for 90 minutes prior to addition of the PKCδ inhibitor rottlerin at the 

concentrations indicated.  After 30 minutes, cells were stimulated with 10 nM PMA (+) or 

DMSO vehicle (−) for 20 minutes. Cell extracts were prepared and equalised for protein 

content before immunoprecipitation of the A2AAR.  A. The 32P-labelled A2AAR was 

detected by autoradiography following SDS-PAGE.  B.  Bands were quantitated by 

densitometry and values expressed as a mean percentage of the maximal response ± SE as 

shown in the graph. C.  Levels of phosphorylated ERK and total A2AAR expression were 

detected by SDS-PAGE and immunoblotting of protein samples prepared from 

experiments carried out in parallel using unlabelled cells (n = 2).  The 9E10 antibody was 

used to detect the A2AAR. 
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Figure 4.12 Effect of calcium chelation on PMA-induced phosphorylation of 

the human A2AAR 

HUVECs infected with adenovirus expressing the A2AAR were labelled with 32P 

orthophosphate for 90 minutes prior to addition of 10 µM BAPTA/AM.  After 30 minutes, 

cells were stimulated with 10 nM PMA, 1µM ionomycin or DMSO vehicle (−) as 

indicated. Cell extracts were prepared and equalised for protein content before 

immunoprecipitation of the A2AAR.  A. The 32P-labelled A2AAR was detected by 

autoradiography following SDS-PAGE.  B.  Bands were quantitated by densitometry and 

values expressed as a mean percentage of the maximal response ± SE as shown in the 

graph. C.  Levels of phosphorylated ERK and total A2AAR expression were detected by 

SDS-PAGE and immunoblotting of protein samples prepared from experiments carried out 

in parallel using unlabelled cells (n = 2).  The 9E10 antibody was used to detect the 

A2AAR. 
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To confirm that BAPTA/AM was effective, cells were treated with the ionophore 

ionomycin which mobilises intracellular calcium stores (Liu and Hermann, 1978).  This 

results in calcium-dependent ERK activation via activation of calmodulin and calmodulin 

binding proteins which can modulate Ras activity (Agell et al., 2002).  Calcium chelation 

was judged to be successful as calcium-dependent activation of ERK induced by treating 

cells with 1 µM ionomycin for 20 minutes was reduced in cells pre-incubated with 

BAPTA/AM (figure 4.12 C, upper panel).  It should be noted that in cells treated with 

ionomycin, receptor expression was reduced (figure 4.12 C, lower panel).  However, since 

the extent of the reduction was similar for both BAPTA/AM-treated and untreated cells, 

the effect of BAPTA/AM on ERK phosphorylation was still considered relevant.  Thus, 

A2AAR phosphorylation appears to be mediated by a calcium-independent isoform of PKC 

which rules out the involvement of PKCα.  Excluding PKCδ, the remaining calcium-

independent, PMA-sensitive isoforms expressed by HUVECs are PKC ε and θ. 

Although many PKC inhibitors exist, their selectivity for different isoforms is limited.  A 

more specific approach to achieve inhibition of individual PKC isoforms is to use siRNA 

gene silencing.  To assess the involvement of PKCε in A2AAR phosphorylation, siRNAs 

targeted against human PKCε, non-targeted control siRNA or PKCα were introduced into 

HUVECs prior to infection with adA2AAR.  PKCα siRNA was included as a relative 

kinase control to show that effects observed were specific to PKCε and that PKCα was not 

involved.  As before, PMA induced phosphorylation of the A2AAR (figure 4.13 A).  No 

decrease in this response was observed in cells transfected with siRNAs directed against 

PKCε, PKCα or control siRNA suggesting that PKCε is not required for PMA-mediated 

A2AAR phosphorylation.  This also corroborated findings presented above which indicated 

that calcium-dependent isoforms such as PKCα are not required for PMA-induced 

phosphorylation.  As shown in figure 4.13 B (top panel) PKCε was effectively depleted in 

cells transfected with PKCε-targeted siRNA while levels were constant in untransfected 

cells and those transfected with PKCα, confirming the effectiveness of the technique.  

PKCα expression was also significantly reduced specifically in cells transfected with 

PKCα-targeted siRNA (figure 4.13 B, centre panel).  Expression of the A2AAR remained 

constant between conditions (figure 4.13 B, bottom panel).  Thus, PKCε does not appear to 

be required for PMA-induced A2AAR phosphorylation. 

It was one of the aims of this study to determine which region of the A2AAR was 

phosphorylated in response to PMA.  To begin to address this question, cells were  
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Figure 4.13 Effect of PKCεεεε and PKCαααα siRNA gene silencing on PMA-induced 

A2AAR phosphorylation 

HUVECs were transfected with siRNA targeted against PKCε or PKCα and infected with 

adenovirus expressing the A2AAR.  Cells were labelled with 32P orthophosphate for 90 

minutes prior to stimulation with 1 µM PMA for 20 minutes.  Cell extracts were prepared 

and equalised for protein content before immunoprecipitation of the A2AAR.  A. The 32P-

labelled A2AAR was detected by autoradiography following SDS-PAGE (n = 2).  B. 

Identical experiments were carried out in parallel using unlabelled cells.  Protein extracts 

were prepared for use in SDS-PAGE and immunoblotting to confirm successful siRNA-

mediated knock-down of PKCε and PKCα using PKC isoform-specific antibodies and to 

show total levels of A2AAR expression using the 9E10 antibody (n = 2). 
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transfected with one of two A2AAR truncation mutants in order to assess which regions of 

the C-terminal tail were required for phosphorylation.  One construct (1-360) lacked five 

potential phosphorylation sites from the receptor tail and the other (1-311), the most 

severely truncated, lacked eleven sites (Klinger et al., 2002b, figure 4.14).   HUVECs do 

not respond well to transfection protocols and attempts to express the receptor constructs 

proved to be unsuccessful (data not shown).  For this reason, experiments were initially 

carried out using CHO cells which are a more tractable cell line. 

Transfection of CHO cells was successful as shown in figure 4.15 A, upper panel.  Wild-

type A2AAR was detected as two bands between 37 and 75 kDa, while the 1-360 and 1-311 

truncated forms are represented as bands of lower molecular mass owing to the absence of 

50 or 100 amino acids respectively.  However, in intact cell phosphorylation assays using 

transfected cells stimulated with 10 µM CGS21680 or 1 µM PMA, no phosphorylation of 

the wild-type or truncated receptors was detected (figure 4.15 B).  This was despite 

confirmation that the CGS21680 and PMA were active as shown by their ability to induce 

ERK phosphorylation (figure 4.15 A, lower panel).  The lack of detectable A2AAR 

phosphorylation was not due to a failure in the immunoprecipitation procedure as the 

A2AAR was detected by immunoblotting immunoprecipitated samples with an A2AaR-

specific antibody (figure 4.15 C).  Thus, it appears that the human A2AAR is not subject to 

PMA-induced phosphorylation in CHO cells, raising the possibility that this is a cell type-

specific phenomenon.  To further investigate this possibility, phosphorylation was assessed 

in HEK 293 and C6 cells transfected with the wild-type or truncated forms of the A2AAR.  

Immunoblotting revealed that the wild-type A2AAR was expressed in HEK 293 cells at 

easily detectable levels while the 1-311 and 1-360 truncated forms were present at lower 

levels (figure 4.16 A (i), upper panel).  Stimulation with CGS21680 and PMA induced 

ERK phosphorylation (figure 4.16 A (i), lower panel) but did not result in receptor 

phosphorylation (figure 4.16 A (ii)).  The wild-type and truncated A2AARs were also 

successfully expressed in C6 cells but detection by immunoblotting was hindered by a 

strong band at approximately 60 kDa possibly representing endogenous myc (figure 4.16 B 

(i), upper panel).  Again, PMA induced ERK phosphorylation (figure 4.16 B (i)) but did 

not result in detectable receptor phosphorylation (figure 4.16 B (ii)).  Therefore, it appears 

that phosphorylation of the human A2AAR in response to PMA only occurs in certain cell 

types including HUVECs but not CHO, HEK 293 or C6 cells. 

Previous studies have shown that a large part of the A2AAR tail is dispensable for agonist 

binding (Piersen et al., 1994), desensitisation (Palmer and Stiles, 1997) and G-protein  
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HUMAN A2A WT     QTFRKIIRSHVLRQQEPFKAAGTSARVLAAHGSDGEQVSLRLNGHPPGVW 347 
HUMAN A2A 1-360  QTFRKIIRSHVLRQQEPFKAAGTSARVLAAHGSDGEQVSLRLNGHPPGVW 347 
HUMAN A2A 1-311  QTFRKIIRSHVLRQ------------------------------------ 311 
                 ************************************************** 
 
HUMAN A2A WT     ANGSAPHPERRPNGYALGLVSGGSAQESQGNTGLPDVELLSHELKGVCPE 396 
HUMAN A2A 1-360  ANGSAPHPERRPN------------------------------------- 360 
HUMAN A2A 1-311  --------------------------------------------------  
                 *************                                     
 
HUMAN A2A WT     PPGLDDPLAQDGAGVS 412 
HUMAN A2A 1-360  ---------------- 
HUMAN A2A 1-311  ---------------- 

                                            

 
 Figure 4.14 Sequences of the C-terminal tail of DNA constructs 

representing the wild-type and truncated forms of the human A2AAR 

 



Gillian R Milne, 2008  Chapter 4, 155 

Figure 4.15 Expression of wild-type and truncated forms of the A2AAR in 

CHO cells 

CHO cells were transfected with plasmids encoding a myc-tagged WT human A2AAR 

(WT) or one of two myc-tagged carboxyl-terminus truncation mutants (1-311 and 1-360).  

A.  Cells were stimulated with 10 µM CGS21680, 1 µM PMA or DMSO vehicle for 20 

minutes before preparation of protein extracts.  Extracts were normalised for protein 

content prior to fractionation by SDS-PAGE and immunoblotting using a phospho-ERK 

(pERK)-specific antibody or the 9E10 antibody which recognises both WT and truncated 

forms of the A2AAR (n = 2).    B.  Transfected cells were labelled with 32P for 90 minutes 

prior to stimulation with 10 µM CGS21680, 1 µM PMA or DMSO vehicle for 20 minutes.  

Cell extracts were prepared and equalised for protein content before subjection to an 

immunoprecipitation protocol using the 9E10 antibody.  Samples were fractionated by 

SDS-PAGE and dried gels were exposed to film to allow detection of any 32P-labelled 

receptor (n = 3).  C.  CHO cells were left untransfected (control) or were transfected with 

the WT A2AAR.  Cell extracts were prepared and equalised for protein content before 

subjection to an immunoprecipitation protocol in the presence or absence of the 9E10 

antibody as indicated.  Immunoprecipitated receptors and total levels of receptors in cell 

lysates (Input) were detected using SDS-PAGE followed by immunoblotting using an 

A2AAR-specific antibody (n = 2). 
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Figure 4.16 Expression of wild-type and truncated forms of the A2AAR in HEK 

293 and C6 cells 

HEK 293 (A) or C6 cells (B) were transfected with plasmids encoding a myc-tagged WT 

human A2AAR (WT) or one of two myc-tagged carboxyl-terminus truncation mutants (1-

311 and 1-360).  (i) Cells were stimulated with 10 µM CGS21680, 1 µM PMA or DMSO 

vehicle for 20 minutes before preparation of protein extracts.  Extracts were normalised for 

protein content prior to fractionation by SDS-PAGE and immunoblotting using a phospho-

ERK (pERK)-specific antibody or the 9E10 antibody which recognises both WT and 

truncated forms of the A2AAR (n = 2).  (ii)  Transfected cells were labelled with 32P for 90 

minutes prior to stimulation with 10 µM CGS21680, 1 µM PMA or DMSO vehicle for 20 

minutes.  Cell extracts were prepared and equalised for protein content before subjection to 

an immunoprecipitation protocol using the 9E10 antibody.  Samples were fractionated by 

SDS-PAGE and dried gels were exposed to film to allow detection of any 32P-labelled 

receptor (n = 3).   
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coupling (Klinger et al., 2002b).  Therefore, the significance of phosphorylation events in 

this region is unclear.  However, the A2AAR has been reported to interact with a number of 

accessory proteins, including 14-3-3 proteins and TRAX (Gsandtner and Freissmuth, 

2006), prompting the question of whether phosphorylation of the A2AAR tail could be 

important for determining which proteins bind.  It was of interest to determine whether 

PMA-induced phosphorylation observed in this study had an effect on such interactions.  

This was investigated using pull-down assays to detect interactions in vitro between the 

A2AAR and 14-3-3τ or TRAX under conditions where the A2AAR would or would not be 

phosphorylated.  To perform these assays, it was necessary to obtain purified GST fusion 

proteins.  GST-14-3-3τ and GST-TRAX were expressed in E. coli and purified on 

glutathione Sepharose beads.  GST-14-3-3τ was successfully expressed and was detected 

by Coomassie staining as shown in figure 4.17 A by a clean band at approximately 55 kDa.  

TRAX was expressed at reasonable levels as shown by the strong band at approximately 

60 kDa present 4 hours after induction (figure 4.17 B) although the weaker bands detected 

at later points show that significant amounts of TRAX protein were lost during the 

purification process. 

Purified GST-tagged 14-3-3τ and TRAX were used in pull-down assays with cell lysates 

produced from adA2AAR-infected cells which had been incubated in the presence or 

absence of 1µM PMA for 20 minutes to induce optimal receptor phosphorylation (figure 

4.18).  As shown in figure 4.18 A, the A2AAR was detected in samples from pull-down 

assays using GST-14-3-3τ regardless of PMA treatment confirming that 14-3-3τ does 

interact with the A2AAR in this cell system.  However, since there was no change in levels 

detected when cells had been stimulated with PMA, it does not appear to be dependent on 

PMA-induced A2AAR phosphorylation.  No receptor was detected when parallel pull-

downs were performed with GST alone indicating that observations were not a result of 

non-specific interactions.  The A2AAR was also detected when pull-downs were performed 

with unstimulated cells in the presence of GST-TRAX.  Strikingly, levels of the A2AAR 

were drastically reduced in samples from PMA-stimulated cells (71 ± 17 % reduction 

compared to unstimulated, p < 0.0001, n = 3) indicating that the interaction of TRAX with 

the A2AAR may be dependent on phosphorylation status of the A2AAR tail. 

In summary, data presented here shows that phosphorylation of the human A2AAR can be 

induced in HUVECs by treatment with PMA or by stimulation of endogenous histamine 

H1 receptors.  A role for PKC was indicated by the ability of both a PKC inhibitor and 
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Figure 4.17 Expression and purification of GST-tagged 14-3-3ττττ and TRAX.   

E. coli were transformed with plasmids encoding either GST-14-3-3τ or GST-TRAX.  A. 

Expression of GST-14-3-3τ was induced by incubation of bacterial cultures with 1 mM 

IPTG for 4 hours at 37 °C and recombinant protein was purified by immobilisation on 

glutathione Sepharose beads.  Bound proteins were eluted from beads and protein analysed 

by SDS-PAGE and Coomassie staining.  B. GST-TRAX protein expression was induced 

by addition of 0.5 mM IPTG for 16 hours at 25 °C and recombinant protein was purified 

by immobilisation on glutathione Sepharose beads.  Eluted protein and samples taken from 

cultures at each hour following induction and from whole cell lysates (a), sonicated lysates 

(b) and cleared lysates (c) were analysed by SDS-PAGE and Coomassie staining. 
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Figure 4.18 14-3-3ττττ and TRAX interact with the human A2AAR 

HUVECs infected with adenovirus expressing the A2AAR were incubated with or without 

1 µM PMA for 20 minutes.  Cell extracts were prepared and used in a pull-down assay 

using GST-fusion protein glutathione Sepharose beads representing 20 µg of either GST, 

GST-14-3-3τ or GST-TRAX.  A. Protein complexes eluted from beads and samples of 

untreated and PMA-treated cell lysates (input) were subjected to SDS-PAGE and 

immunoblotting using the 9E10 antibody to detect the A2AAR.  B. Interactions of the 

receptor with (i) GST-14-3-3τ and (ii)  GST-TRAX were quantitated by densitometry of 

immunoreactive bands and values were expressed as a mean percentage of the maximum 

A2AAR detected ± SE. 
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chronic PMA-mediated PKC depletion to inhibit receptor phosphorylation.  Initial 

investigations showed that this effect is mediated by a calcium-insensitive isoform of PKC 

as chelation of intracellular calcium had no effect on levels of PMA-induced 

phosphorylation.  An siRNA gene silencing approach confirmed that PKCα is not required 

and also indicated that PKCε is not required for PMA-induced phosphorylation but it was 

not possible to identify the specific isoform responsible.  Notably, through the use of pull-

down assays, it was possible to detect in vitro interactions between 14-3-3τ and TRAX and 

the A2AAR.  Most interestingly, while the interaction between 14-3-3τ and the A2AAR was 

detected in both basal conditions and following PMA treatment when the receptor would 

be phosphorylated, the interaction of TRAX was drastically reduced when cells had been 

treated with PMA, indicating that the phosphorylation status of the receptor may 

negatively regulate TRAX binding. 
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4.3 Discussion 

Several proteins have been reported to interact with the long C-terminal tail of the A2AAR 

prompting the suggestion that it may act as a scaffold upon which signalling complexes 

can be assembled (Zezula and Freissmuth, 2008).  However, the question of how these 

interactions might be regulated has not been addressed.  A number of serine and threonine 

residues are present within this region of the A2AAR suggesting potential for regulation by 

phosphorylation.  The canine A2AAR has been shown to be phosphorylated in response to 

activation of PKC but unlike other GPCRs, this is not associated with heterologous 

desensitisation (Palmer and Stiles, 1999).  It was therefore of interest in this study to 

investigate whether phosphorylation of the C-terminal tail of the A2AAR could play a role 

in regulating the binding of interacting proteins.  Importantly, this question was addressed 

using human receptors expressed in HUVECs which express low levels of endogenous 

receptors as phosphorylation of the A2AAR has only been examined previously using the 

canine receptor heterologously expressed in rat C6 glioma cells. 

In the present study, it was found that phosphorylation of the human A2AAR is rapidly 

elevated over basal levels following activation of PKC either by treatment with PMA or 

through activation of endogenous histamine H1 receptors.  This effect was significantly 

reduced in the presence of the PKC inhibitor GF109203X or following depletion of 

cellular levels of PKC, thereby confirming the involvement of PKC.  The specific isoform 

of PKC responsible for PMA-induced phosphorylation of the A2AAR was determined to be 

calcium-insensitive and through the use of siRNA gene silencing a role for PKCε was 

eliminated, leaving PKCδ and PKCθ as potential candidates.  Previously reported 

interactions between the A2AAR and TRAX and 14-3-3τ were confirmed in vitro by GST 

pull-down assay.  Binding of 14-3-3τ to the A2AAR was detected at similar levels in 

samples from PMA-treated compared to untreated cells.  However, A2AAR complex 

formation with TRAX was significantly reduced in samples from PMA-stimulated cells 

indicating that receptor phosphorylation may regulate the interaction with TRAX. 

In order to study phosphorylation of the A2AAR, recombinant adenovirus was used to 

introduce the myc-tagged human receptor into HUVECs.  Data obtained from ligand-

binding studies showed that expression of the receptor was very high compared to 

endogenously expressed receptors (80 ± 7 pmol/mg compared to 0.95 pmol/mg previously 

reported for the A2AAR in porcine striatum; Klinger et al., 2002b).  However, in this study, 
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it was necessary to achieve high expression in order to detect receptor phosphorylation.   

This allowed identification of mechanisms which may potentially regulate the activity of 

the A2AAR.  Further studies can be carried out in future to assess the functional relevance 

of these events in cells expressing endogenous receptors. 

Phosphorylation of the human A2AAR was induced by low nanomolar concentrations of 

PMA and in a short time frame as previously described for the canine receptor (Palmer and 

Stiles, 1999).  However, the human receptor was not as strongly phosphorylated reaching 

only (3.6 ± 0.4)-fold above basal levels compared to the canine receptor which reached 

(11.2 ± 2.5)-fold above basal levels.  In addition, in contrast to the canine receptor, 

phosphorylation of the human A2AAR appeared to be bi-phasic, perhaps suggesting the 

existence of two separate phosphorylation events.  Activation of histamine receptors also 

resulted in increased phosphorylation of the A2AAR indicating that this is a physiologically 

relevant event.  However, in contrast to studies using the canine receptor expressed in C6, 

CHO and COS cells (Palmer and Stiles, 1997; Palmer et al., 1994), phosphorylation in 

response to agonist stimulation was not detected.  This is perhaps surprising as agonist-

induced phosphorylation by GRKs represents the major mechanism for homologous 

desensitisation of many GPCRs (Krupnick and Benovic, 1998).  It is possible that basal 

levels of phosphorylation are higher in HUVECs than in CHO cells, making small agonist-

induced changes difficult to detect compared to the strong response elicited by PMA.  An 

alternative explanation is that recruitment of GRKs to the A2AAR may require prior 

phosphorylation of the receptor by second messenger-dependent kinases.  A specific 

consensus sequence for phosphorylation by GRKs has not been defined.  However, in 

studies using synthetic peptides, GRK2 has been found to preferentially phosphorylate 

peptides with negatively charged amino acids to the N-terminal side of a serine or 

threonine residue (Onorato et al., 1991; Benovic et al., 1990).  Indeed, replacement of 

specific acidic residues with uncharged amino acids in a peptide representing a GRK2 

phosphorylation site in the α2-adrenergic receptor completely abolished phosphorylation 

(Onorato et al., 1991).  It is possible that in the A2AAR, serine and threonine residues are 

not present in regions sufficiently rich in negatively charged residues to allow recruitment 

of GRK2.  However, introducing negative charges through PMA-induced phosphorylation 

could potentially provide this requirement and increase the affinity of the receptor for 

GRK2, thereby allowing subsequent agonist-induced phosphorylation. 

Initial investigations into the role of PKC in mediating phosphorylation of the A2AAR were 

made using the PKC inhibitors GF109203X and rottlerin.  A potential problem with this 
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approach is that many PKC inhibitors are non-selective as they inhibit PKC via its ATP 

binding site, a domain which is highly homologous between different protein kinases.  

Despite this, GF109203X has been shown to be a potent and selective inhibitor of classical 

and novel isoforms of PKC (Toullec et al., 1991) and so its ability to inhibit 

phosphorylation of the A2AAR does indicate a role for PKC in this process.  Rottlerin, 

which has been reported to inhibit PKC with some selectivity for PKCδ (Gschwendt et al., 

1994), did not inhibit phosphorylation of the A2AAR except at the highest concentration 

tested.  However, the value of this finding is questionable as in more recent studies 

rottlerin was found to be a very poor inhibitor of PKCδ with the ability to inhibit other 

unrelated kinases with much greater potency (Davies et al., 2000).  Further studies using 

siRNA to specifically knock down expression of PKCδ will be important to more 

accurately assess the role of PKCδ. 

The ability of GF109203X to inhibit phosphorylation indicated the involvement of a novel 

or classical isoform of PKC.  These can be differentiated based upon their requirement for 

calcium for activation.  In this study, the calcium chelator BAPTA/AM failed to block 

PMA-induced phosphorylation indicating that one of the novel calcium-insensitive 

isoforms of PKC present in HUVECs (either PKCε, δ or θ) was responsible.  However, 

these results are difficult to interpret as cells treated with ionomycin in control experiments 

to confirm the activity of BAPTA/AM appeared to suffer toxic effects.  Without 

confirmation that BAPTA/AM was active, it is not possible to firmly conclude that the 

phosphorylation response is calcium-independent as similar results would have been 

obtained using an inactive drug.  To obtain more reliable results, this experiment could be 

repeated using an alternative ionophore such as A23187 which may be less toxic than 

ionomycin. 

In contrast to the use of PKC inhibitors, siRNA-mediated gene silencing provided a very 

specific method for examining the contribution of individual isoforms of PKC to PMA-

induced phosphorylation of the A2AAR.  Expression of PKCε and PKCα was efficiently 

downregulated as determined by immunoblotting but this had no effect on levels of 

phosphorylation achieved providing strong evidence that these isoforms are not involved.  

Attempts were made to assess the role of PKCθ in a similar fashion.  However, PKCθ 

proved extremely difficult to detect by immunoblotting which made it impossible to 

determine whether PKCθ expression had been successfully downregulated by RNA 

interference.  Optimisation of immunoblotting procedures perhaps through the use of 
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alterative anti-PKCθ antibodies will be required to allow the use of RNA interference to 

determine whether PKCθ is involved in regulating PMA-induced phosphorylation of the 

A2AAR. 

Although the above findings strongly suggest a role for PKC in regulating phosphorylation 

of the A2AAR, it is not clear whether PKC phosphorylates the receptor directly or whether 

an intermediate kinase is involved.  This is an important consideration as PMA has been 

shown to activate several other targets in addition to PKC including the PKD family of 

serine/threonine kinases (Brose and Rosenmund, 2002).  In common with PKCs, PKDs 

have a DAG-binding site termed the C1 site which can also bind phorbol esters (Valverde 

et al., 1994).  Following stimulation with PMA, PKD is translocated to the plasma 

membrane where it has the potential to interact with other signalling proteins (Matthews et 

al., 2000).  PKD is then activated through direct interaction with and phosphorylation by 

PKC (Waldron and Rozengurt, 2003; Zugaza et al., 1996).  Several isoforms of PKC have 

been implicated in the activation of PKD including all novel isoforms which is consistent 

with an effect that would be inhibited by GF109203X as observed in this study (Wang, 

2006).  PKD phosphorylates serine residues within the consensus motif 

(LXR(Q/K/E/M)(M/L/K/E/Q/A)S), the most critical residue being leucine at the -5 

position (Döppler et al., 2005; Nishikawa et al., 1997).  There are two serine residues 

(Ser329 and Ser370) in the C-terminal tail of the A2AAR with leucine at the -5 position.  

However, the intervening residues do not conform to the consensus sequence and so it is 

not clear whether the tail of the A2AAR could act as a substrate for phosphorylation by 

PKD.  Interestingly, another potential phosphorylation site (Ser213) bearing a stronger 

resemblance to the PKD substrate consensus sequence is present within the third 

intracellular loop of the receptor.  However, this is in the region implicated in G protein 

coupling and since phosphorylation has no effect on the ability of the receptor to stimulate 

AC (Palmer and Stiles, 1999), it seems unlikely that PMA-induced phosphorylation is 

occurring at this site. Unfortunately, there are no specific PKD inhibitors available at 

present which could be used to test the involvement of PKD in phosphorylation of the 

A2AAR and so further investigations would require the use of siRNA to suppress 

expression of each of the four isoforms of PKD. 

The failure to detect phosphorylation of the A2AAR in cell types other than HUVECs 

presented a major problem during this study and prevented evaluation of the effects of 

receptor truncation on the response.  Detection of phosphorylation in HUVECs required 

that the A2AAR be overexpressed at high levels (80 ± 7 pmol/mg) which was readily 
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achievable through the use of recombinant adenovirus.  DNA constructs encoding the 

wild-type and truncated forms of the A2AAR were introduced to C6, CHO or HEK 293 

cells by the less efficient process of transfection.  It must therefore be considered that 

receptor phosphorylation was not detected in these cells because the receptors were not 

expressed at sufficiently high levels.  Initial determination of receptor expression was in 

itself complicated by the presence of multiple non-specific bands in immunoblots.  This 

problem could have been avoided by including samples from mock-transfected cells for 

comparison as these would display only non-specific bands and not those representing the 

different forms of the receptor.  Despite the difficulties in identifying specific bands, it did 

appear that the 1-311 mutant in particular was expressed at lower levels than the WT 

receptor and the 1-360 mutant although this could perhaps be explained by the fact that the 

1-311 mutant lacks the binding site for USP4.  USP4 is thought to promote cell surface 

expression of the A2AAR following synthesis by deubiquitinating it and preventing its 

degradation by the proteasome (Milojević et al., 2006).  Therefore, it seems likely that a 

truncated form of the receptor that does not bind USP4 would be retained in the ER and 

degraded.  However, USP4 is reported to bind within the last 50 amino acids of the A2AAR 

(Milojević et al., 2006) which are missing from both the 1-311 and the 1-360 mutants and 

so it might be expected that both mutants would be expressed at similarly low levels.  

Thus, there may be additional reasons for the poor expression of the 1-311 mutant.  For 

example, the additional truncated residues may be important for proper folding of the 

receptor, meaning that 1-311 is more prone to misfolding and therefore more likely to be 

degraded before reaching the cell surface.  The requirement for high levels of expression of 

the A2AAR to allow detection of phosphorylation could be tested by using adenovirus to 

increase expression of the receptor in C6 or CHO cells.  It would also be useful to transfect 

cells with the canine receptor in parallel with cells transfected with the human A2AAR to 

assess phosphorylation in response to PMA treatment.  Since PMA-induced 

phosphorylation of the canine receptor has been observed previously in C6 and CHO cells, 

this would provide a positive control to highlight any failings in experimental procedures.  

An alternative explanation for the lack of response could be that the wild-type and mutant 

constructs encoded receptors which were not fully functional.  However, this is unlikely as 

the ability of these receptors to stimulate AC activation and ERK activation has been 

confirmed in a previous study using the same DNA constructs (Klinger et al., 2002b).  It is 

possible that PMA-induced phosphorylation of the human A2AAR was only observed in 

HUVECs because it requires the presence of a PKC isoform or other kinase which is not 

present in C6, CHO or HEK 293 cells.  For example, CHO cells do not appear to express 

PKCθ (Megson et al., 2001; Tippmer et al., 1994) which was one of the isoforms of PKC 
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identified as a potential candidate for mediating phosphorylation of the receptor in this 

study. 

During this study, previously identified interactions between 14-3-3τ and the A2AAR and 

TRAX and the A2AAR were observed in vitro using pull-down assays.  The A2AAR-TRAX 

interaction has been confirmed in intact cells by immunoprecipitating the A2AAR and 

immunoblotting using an antibody directed against TRAX and also by colocalisation of 

these two proteins in the brain using double-immunohistochemical staining (Sun et al., 

2006).  Similar studies should be carried out to confirm the interaction between A2AAR 

and 14-3-3τ in intact cells.   

The finding that 14-3-3τ interacted with the A2AAR independently of PMA-induced 

receptor phosphorylation was surprising as a major determinant for 14-3-3 binding to many 

ligands is the presence of a phosphorylated serine or threonine residue (Aitken, 2006).  14-

3-3 proteins exist as dimers, each monomer containing a binding pocket that can interact 

with proteins with either RSXpSXP and RXφXpSXP binding motifs (Yaffe et al., 1997; 

Muslin et al., 1996).  Data from crystal structures in complex with peptides indicates that a 

cluster of basic residues within an amphipathic groove of each 14-3-3 monomer mediates 

the interaction with phosphorylated residues in partner binding proteins (Aitken, 2006).  It 

is possible that in this study, 14-3-3τ bound to serine residues of the A2AAR that are 

phosphorylated in basal conditions and this is why no changes were detected in response to 

PMA treatment.  However, it is also possible that the interaction occurred independently of 

phosphorylation as occurs in the case of some other 14-3-3-binding proteins.  For example 

the inositol polyphosphate 5-phosphatase forms a complex with 14-3-3ζ that appears to be 

mediated by a non-phosphorylated RSESEE motif (Campbell et al., 1997).  It is thought 

that the presence of negatively charged Asp and Glu residues may compensate for the lack 

of phosphorylated serine residues, thereby allowing binding to the amphipathic groove of 

14-3-3ζ in a similar way to phosphorylated ligands.  In another example, 14-3-3 proteins 

have been found to interact with the Pseudomonas aeroginosa ADP-ribosyltransferase 

toxin exoenzyme S in a completely different fashion involving hydrophobic rather than 

electrostatic interactions (Ottmann et al., 2007).  In this case, binding requires the presence 

of four leucine residues.  Further studies will be required to ascertain whether any of these 

modes of binding are employed in the interaction between the A2AAR and 14-3-3τ.  There 

are no aspartic acid or leucine-rich motifs which stand out in the sequence of the C-

terminal tail of the A2AAR.  However, other amino acids with similar properties may allow 
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similar interactions to occur.  Identification of the region of the A2AAR involved in binding 

to 14-3-3τ will be important in determining whether this is the case.  Firstly, to determine 

whether a conventional phosphorylated binding site is used, it would be useful to 

immunoprecipitate the A2AAR and perform an immunoblot using a phospho-14-3-3 

substrate antibody.   If the antibody does not react with the A2AAR, indicating that a 

conventional binding site is not being used, then to begin to investigate which part of the 

receptor is involved in the interaction, pull-downs or co-immunoprecipitation studies with 

wild-type and truncated forms of the A2AAR could be used to see if the deleted parts of the 

truncated receptors are necessary for binding.  Similarly, the effect of truncation of the 

receptor on colocalisation of 14-3-3τ and the A2AAR could be assessed.  More detailed 

analysis of the binding site involved could be achieved by detecting binding of purified 14-

3-3τ to peptide arrays constituting the C-terminal tail region of the A2AAR. 

It is also not clear what functional role 14-3-3τ binding to the A2AAR may play.  14-3-3 

proteins have been ascribed diverse roles in many physiological processes including cell 

signalling, cell cycle progression, intracellular trafficking, cytoskeletal structure and 

transcription (Fu et al., 2000).  In the context of cell signalling, their ability to act as 

scaffolding proteins is of particular interest.  Since 14-3-3 proteins exist as dimers, they are 

able to bind two interaction partners simultaneously (Tzivion et al., 2001).  It is therefore 

possible that 14-3-3τ could recruit signalling molecules to the tail of the A2AAR and 

facilitate initiation of different signalling pathways.  14-3-3 proteins have been reported to 

bind several signalling molecules including Raf kinases, MEKKs, PKC and PI-3 kinase 

(Tzivion et al., 2001).  The interaction between 14-3-3 and Raf-1 has been particularly 

well studied and appears to play a critical regulatory role in Ras-mediated activation of 

Raf-1 during initiation of the ERK cascade (Fu et al., 2000).  There are conflicting reports 

regarding the precise role of 14-3-3 proteins in this process.  However, this may be due 

largely to the fact that Raf-1 contains two phosphoserine-dependent binding sites (pSer259 

and pSer621) and one phosphate-independent binding site for 14-3-3 proteins, each with 

different roles.  Interactions at the pSer259 site negatively regulate Raf-1 activity while 14-

3-3 proteins bound at the pSer621 site have been suggested to either act as cofactors for 

Raf-1 kinase activity or alternatively to stabilise Raf-1 in a confirmation that promotes its 

activation (Fu et al., 2000).  The ability of 14-3-3 proteins to regulate Raf-1 activity 

prompts the question of whether binding of 14-3-3τ to the A2AAR could influence 

initiation of ERK signalling from the receptor.  This has been suggested for the α2-

adrenergic receptors which bind 14-3-3ζ via their third intracellular loops (Prezeau et al., 
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1999).  Since α2-adrenergic receptors activate ERK via Ras and Raf, it was proposed that 

binding of Raf to inactive receptors via 14-3-3ζ could poise it for immediate activation 

following agonist stimulation.  It is possible that 14-3-3τ could play a similar role in ERK 

activation by the A2AAR in endothelial cells where G protein-independent activation of 

ERK is believed to occur through activation of Ras (Seidel et al., 1999). 

A major finding in this study was that interaction of the A2AAR with TRAX was severely 

inhibited under conditions when the A2AAR would be phosphorylated.  Future studies to 

determine the functional consequences of this effect can make use of the discovery that 

TRAX mediates the ability of the A2AAR to induce cell cycle arrest and differentiation of 

PC-12 cells that is impaired in the absence of functional p53 (Sun et al., 2006).  First it will 

be important to define the binding site for TRAX in the A2AAR C-terminal tail.  Initially, 

the truncated forms of the A2AAR could be used in pull-down experiments to determine 

which region of the receptor is involved.  More detailed analysis could be achieved by 

constructing peptide arrays based on the tail of the A2AAR and testing the ability of 

purified TRAX to bind to different stretches of amino acids.  If the residues required for 

binding of TRAX to the A2AAR can be identified, then peptides based on this sequence 

could be constructed and modified with lipids to allow introduction into PC-12 cells.  If the 

interaction of TRAX with the A2AAR is dependent on the receptor being 

unphosphorylated, then these peptides will displace TRAX from the A2AAR and this will 

result in a reduced ability of the A2AAR to induce neurite differentiation in the absence of 

functional p53.  Treating cells with PMA to induce receptor phosphorylation and 

dissociation from TRAX would be expected to have a similar effect.  Together, these 

experiments would show whether or not phosphorylation of the receptor is a significant 

factor in regulating downstream functional effects of A2AAR signalling. 

In summary, during this study, it was found that the human A2AAR is phosphorylated in 

response to activation of PKC either by treatment with PMA or through stimulation of 

endogenous histamine H1 receptors.  In HUVECs this effect appeared to be mediated by 

PKCδ and/or PKCθ although the involvement of an intermediate kinase could not be ruled 

out.  Importantly, a potential functional role for these phosphorylation events was indicated 

by the finding that in vitro binding of the C-terminal-interacting protein TRAX to the 

A2AAR was significantly reduced under conditions when the receptor would be 

phosphorylated while the interaction with 14-3-3τ was unaffected.  This suggests that 

phosphorylation of the A2AAR may be important in regulating binding of particular 

proteins to the C-terminal tail of the receptor.  This is significant in the light of the 
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increasing number of proteins that are being identified as able to interact with the C-

terminal tail of the A2AAR.  Regulation by phosphorylation may provide a mechanism by 

which different proteins can be recruited in order to initiate different signalling pathways 

in different cellular contexts. 
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5 Final discussion 

The production of adenosine in response to metabolic stress represents a critical 

endogenous mechanism for preventing excessive inflammation and limiting tissue injury 

(Haskó and Cronstein, 2004).  The central role of the A2AAR in mediating these responses 

has been demonstrated in numerous studies using adenosine and A2AAR selective agonists 

to inhibit the inflammatory responses in a variety of cell types in vitro as well as in in vivo 

models of inflammatory disease and in studies using A2A-deficient mice (Palmer and 

Trevethick, 2008; Haskó and Cronstein, 2004; Sitkovsky, 2003).  As an endogenous 

mediator of anti-inflammatory responses, the A2AAR represents a particularly attractive 

subject for study.  Increasing understanding of how the body naturally deals with excessive 

inflammation may reveal mechanisms of limiting inflammation and tissue damage that 

could be harnessed to create novel therapies for major inflammatory diseases such as 

atherosclerosis, sepsis and cancer. 

Despite the plethora of evidence regarding the anti-inflammatory effects of signalling 

through the A2AAR, the mechanisms behind these effects are only just beginning to be 

elucidated.  Findings from in vitro studies using endothelial cells have indicated that the 

ability of the A2AAR to exert such wide-ranging anti-inflammatory effects could be 

explained by its ability to regulate pro-inflammatory signalling pathways (Sands et al., 

2006; Sands et al., 2004).  The aim of the study described in Chapter 2 of this thesis was to 

investigate the physiological relevance of these findings by assessing the role of the 

A2AAR in regulating activation of the NFκB and JAK/STAT pro-inflammatory signalling 

pathways in the aortae of A2AAR-deficient mice.  Data presented here show that in mice 

lacking the A2AAR, LPS-induced pro-inflammatory cytokine production is markedly 

enhanced compared to wild-type mice.  Consistent with this observation, activation of the 

JAK/STAT pathway in response to LPS was potentiated in the aortae of these animals as 

shown by elevated levels of phosphorylated STAT1.  Similarly, heightened activation of 

the NFκB pathway was detected by the presence of increased levels of phosphorylated 

IκBα in A2AAR-/- mice regardless of LPS-treatment.  However, evaluation of the 

significance of this finding will require further study as no change was detected in the 

expression of the STAT1 and NFκB-regulated genes, VCAM-1, ICAM-1 and TAP-1. 

The lack of effect of increased NFκB and JAK/STAT pathway activation on downstream 

signalling and gene expression was unexpected but can perhaps be explained by the 
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upregualtion of negative regulatory mechanisms in A2AAR-deficient mice.  This may have 

been a result of using a mouse model in which the A2AAR gene had been disrupted in all 

tissues.  Many unknown compensatory genetic changes could have occurred that might 

mask the effects of expressing a non-functional A2AAR.  A more useful method to analyse 

specific effects of the A2AAR in the vascular endothelium would be to use tissue-specific 

gene deletion to target the A2AAR only in endothelial cells.  Another approach to assess the 

importance of adenosine receptor signalling in regulating pro-inflammatory signalling in 

the endothelium would be to examine NFκB and JAK/STAT pathway activation in mice 

lacking endothelial CD73 or CD39.  These enzymes enable the endothelium to produce a 

significant amount of adenosine that is critical for maintenance of endothelial barrier 

function during acute inflammatory responses (Lennon et al., 1998).  If adenosine 

signalling through the A2AAR is a significant mechanism for regulating pro-inflammatory 

signalling in the endothelium then it might be expected that CD73 or CD39-deficient mice 

would display similar perturbations in NFκB and JAK/STAT signalling to A2AAR-/- mice. 

In this study, pro-inflammatory signalling pathway activation was examined specifically in 

the aorta in an attempt to characterise mechanisms which may allow the A2AAR to 

suppress the development of vascular inflammation and atherosclerosis.  LPS-induced 

sepsis was used as a model of vascular inflammation.  However, LPS treatment produces 

acute inflammation while atherosclerosis is a chronic inflammatory disease with plaques 

developing over several years or decades (Hansson, 2005).  In order to understand changes 

in the endothelium during atherosclerosis, it would be useful to carry out studies using a 

model of chronic inflammation such as collagen-induced arthritis which develops over 

several weeks.  This may produce quite different effects on pro-inflammatory signalling 

owing to changes in the cytokines present during chronic inflammation and the 

involvement of different cell types, particularly T cells. 

A particularly striking difference between wild-type and A2AAR-/- mice observed in this 

study was the increased level of IκBα phosphorylation detected in A2AAR-/- mice even in 

the absence of LPS treatment.  It would be interesting to investigate the mechanisms which 

prevent IκBα phosphorylation and therefore inappropriate activation of the NFκB pathway 

in A2AAR-competent mice.  This could occur at several steps in the pathway leading to 

NFκB activation.  For example, through negative regulation of IKK phosphorylation or by 

inactivation of upstream components such as TAK1, RIP or TRAF proteins.  These 

signalling factors rely on Lys63 polyubiquitination for activation and are subject to 

negative regulation by DUBs such as A20 and CYLD (Sun et al., 2008).  Therefore 
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modulation of DUB activity represents a likely mechanism for regulation of their 

activation status.  A2BAR activation has already been shown to promote deneddylation of 

the Cul-1 subunit of the IκBα E3 ligase complex (Khoury et al., 2007).  Perhaps A2AAR 

activation in wild-type mice suppresses NFκB activation in the absence of stimuli by 

promoting the deubiquitination of signalling components upstream of IKK. 

The effects of the A2AAR on endothelial cells are of particular interest since vascular 

dysfunction is central to development of atherosclerosis.  In this study, it was hypothesised 

that the presence of the A2AAR might suppress pro-inflammatory pathway activation in the 

endothelium and therefore protect against development of vascular disease.  However, 

these effects may not be specific to endothelial cells and it would be interesting to see if 

signalling in other cell types is affected by A2AAR activation.  T cells and NKT cells, for 

example, represent interesting targets as they are both involved in the development of 

atherosclerosis (Hansson, 2005) and have their pro-inflammatory functions suppressed by 

A2AAR stimulation (Sevigny et al., 2007; Lappas et al., 2006). 

Another subject for future studies might be to investigate the effect of A2AAR gene-

deletion on signalling pathways other than the NFκB and JAK/STAT pathways.  Although 

these are generally considered to be the major pro-inflammatory signalling pathways, 

others such as the JNK and p38 pathways are also involved in activation of the 

endothelium and so may represent targets for regulation by the A2AAR (Sumara et al., 

2005; Hoefen and Berk, 2002). 

In summary, findings presented in Chapter 2 of this thesis indicate that signalling through 

the A2AAR represents a significant endogenous mechanism for suppressing activation of 

the NFκB and JAK/STAT pro-inflammatory signalling pathways in the aorta.  Further 

studies will be required to assess the consequences of this for downstream gene expression 

and development of vascular inflammation.  Future studies aimed at identifying 

mechanisms by which the A2AAR regulates pro-inflammatory signalling may reveal novel 

targets for therapeutic intervention.  This could allow specific modulation of inflammatory 

events occurring in the endothelium to limit the progression of diseases such as 

atherosclerosis, sepsis and cancer. 

While data presented in Chapter 2 of this thesis add to the large body of evidence regarding 

the physiological effects of signalling through the A2AAR, findings described in Chapter 3 

pertain to the lesser studied question of how the receptor is regulated at a molecular level.  
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This subject has become of particular interest recently since it has become apparent that in 

addition to heterotrimeric G proteins and proteins involved in desensitisation, several other 

proteins can interact with the long C-terminal tail of the A2AAR (Zezula and Freissmuth, 

2008).  However, the question of how these interactions might be regulated has not been 

addressed.  Previous studies have shown that the canine A2AAR is phosphorylated in 

response to activation of PKC.  However, unlike in the case of other GPCRs, this is not 

associated with heterologous desensitisation of receptor-G protein coupling (Palmer et al., 

1999), indicating that PKC-mediated phosphorylation may have a previously 

unappreciated role in regulating A2AAR activity.  The aim of this study was to determine 

whether the human A2AAR, like the canine receptor, is subject to regulation by 

phosphorylation and whether phosphorylation events in the C-terminal tail of the A2AAR 

could play a role in regulating the binding of interacting proteins.  Data presented here 

indicate that the human A2AAR is indeed phosphorylated in response to PKC activation.  

Interestingly this modification appears to have consequences for the binding of C-terminal 

interacting proteins as 14-3-3τ was found to bind to the A2AAR in the presence or absence 

of PKC-activating stimuli while TRAX bound only to the unphosphorylated receptor.  This 

suggests that PKC-mediated phosphorylation may represent a selective means of 

controlling binding of individual interacting proteins. 

In addition to 14-3-3τ and TRAX, several other proteins have been reported to interact 

with the C-terminal tail of the A2AAR including ARNO (Gsandtner et al., 2005), α-actinin 

(Burgueño et al., 2003) and USP4 (Milojević et al., 2006).  To determine whether PKC-

mediated phosphorylation represents a general mechanism of regulating interactions with 

the A2AAR, it would be interesting to repeat pull-down experiments carried out in this 

study with ARNO, α-actinin and USP4.  It would also be interesting to find out if any of 

these proteins can bind simultaneously and whether the phosphorylation status of the 

receptor dictates which combination of proteins can bind at one time.  For example, while 

phosphorylation of the A2AAR inhibits the interaction with TRAX, dissociation from 

TRAX may enable another protein to bind.  To properly characterise these interactions, it 

will be important to identify the binding sites of each of the interacting proteins.  This can 

be achieved by assessing binding of recombinant proteins to peptide arrays representing 

the C-terminal tail of the A2AAR.  Alanine scanning mutagenesis could then be used to 

identify the role of individual amino acids in dictating interactions in co-

immunoprecipitation and pull-down assays. 
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The finding that 14-3-3τ binds to the A2AAR indicates that other 14-3-3 proteins may also 

be A2AAR interactors as members of this family are highly homologous (Aitken, 2006).  It 

would be interesting to test whether this is the case as different isoforms of 14-3-3 proteins 

may be present in different cell types.  It would also be interesting to find out whether they 

share a common binding site as the A2AAR C-terminal tail does not contain any classical 

14-3-3 consensus binding motifs. 

Future studies should be directed at determining the functional significance of interactions 

occurring at the C-terminal tail of the A2AAR and the consequences of receptor 

phosphorylation.  USP4 has been assigned a role in promoting A2AAR cell-surface 

expression by regulating its ubiquitination status (Milojević et al., 2006) while α-actinin 

appears to be important for A2AAR internalisation (Burgueño et al., 2003) and ARNO is 

involved in G-protein-independent activation of the ERK pathway by the A2AAR 

(Gsandtner et al., 2005).  If receptor phosphorylation is found to regulate the interactions 

of any of these proteins with the tail of the A2AAR, it would be interesting to see if 

phosphorylation results in any changes in these functions.  This could be achieved by 

introducing cell-permeable peptides based on either the phosphorylated or 

unphosphorylated form of the receptor tail to displace the interacting proteins followed by 

assessment of downstream effects.  The role of 14-3-3τ binding to the A2AAR has not yet 

been identified but could be investigated using gene targeting to generate mice lacking 14-

3-3τ and then examining the resultant phenotypes for changes that might relate to aberrant 

A2AAR function.  The likelihood that other 14-3-3 proteins could compensate for the lack 

of 14-3-3τ might limit the usefulness of this approach. 

In summary, findings presented here show that the human A2AAR is subject to PKC-

mediated phosphorylation and this appears to play a role in controlling which proteins can 

bind to the C-terminal tail of the receptor.  The functional significance of this regulation 

remains to be examined but it could represent a means of selectively recruiting different 

proteins to the receptor to allow initiation of distinct signalling pathways, thereby enabling 

the A2AAR to induce the appropriate responses in particular cellular contexts. 
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