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Abstract 

Malaria remains a devastating disease with respect to both mortality and the 

constraints it places on the economic development of the countries in which it is 

endemic.  Our laboratory is seeking new antimalarial targets, by characterising 

the protein kinases of the most lethal human malaria parasite, Plasmodium 

falciparum.  As central components of many diverse signalling pathways, protein 

kinases are crucial for the control of proliferation and differentiation in other 

eukaryotes; we hypothesise that they play similar roles in P. falciparum.  The 

life cycle of P. falciparum is complex, consisting of a series of tightly controlled 

stages of division and differentiation.  In the related apicomplexan parasite 

Toxoplasma gondii, stress stimuli have been implicated in an important 

differentiation step, from rapidly dividing tachyzoites, to quiescent bradyzoites 

(which enable immune evasion).  Evidence suggests that stress may also 

contribute to an essential differentiation stage, gametocytogenesis, in P. 

falciparum.  In yeast and metazoans, part of the stress response is mediated 

through phosphorylation of eukaryotic initiation factor 2α (eIF2α), which results 

in selective translation of mRNAs encoding stress response proteins.  Post-

transcriptional control of gene expression is suspected to play an important role 

in P. falciparum.  Importantly, the Goldberg laboratory recently demonstrated 

that similarly, in P. falciparum the eIF2α orthologue is phosphorylated in 

response to starvation. 

Here we identify the P. falciparum orthologue of the translation initiation factor 

eIF2α and provide bioinformatic evidence for the presence of three eIF2α 

kinases in P. falciparum; PfeIK1, PfeIK2 and PfPK4, only one of which (PfPK4) 

has been described previously (Mohrle et al., 1997).  We show that one of the 

novel eIF2α kinases, PfeIK1, is able to phosphorylate P. falciparum eIF2α in 

vitro.  In addition, initial experiments support previous observations that PfPK4 

is indeed an active protein kinase (Mohrle et al., 1997).  We present evidence 

that PfPK4 is essential for asexual growth, which precludes straightforward 

reverse genetics studies aiming to determine its possible role in 

gametocytogenesis.  In contrast, transgenic parasites allowed us to show that 

neither PfeIK1 nor PfeIK2 are required for asexual growth, or sexual 

development of the parasite in the mosquito vector.  However, preliminary 

evidence (requiring confirmation) may indicate that parasites lacking PfeIK1 
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over-express PfPK4, which would suggest that PfeIK1 may play an important 

function in the parasite.  This study strongly suggests that a mechanism for 

versatile regulation of translation by several kinases with a similar catalytic 

domain, but distinct regulatory domains, is conserved in P. falciparum. 



4 

Table of contents  

Abstract ....................................................................................... 2 

Table of contents ............................................................................ 4 

List of Figures ................................................................................ 9 

List of Tables ................................................................................11 

Acknowledgements .........................................................................12 

Author’s declaration .......................................................................13 

Definitions ...................................................................................14 

1 Introduction ............................................................................17 

1.1 Malaria.............................................................................17 

1.2 Plasmodium falciparum.........................................................18 

1.3 Life cycle of malaria parasites.................................................20 

1.3.1 Gametocytogenesis ........................................................21 

1.4 Available chemotherapies/global antimalarial strategy...................22 

1.5 Protein kinases ...................................................................23 

1.5.1 Kinases as drug targets ....................................................24 

1.6 Kinases in P. falciparum ........................................................25 

1.7 Gene regulation in P. falciparum .............................................27 

1.8 Stress responses..................................................................28 

1.8.1 Stress Activated Protein Kinases .........................................29 

1.8.2 eIF2α pathway ..............................................................29 

1.8.3 eIF2α kinases, mechanisms & activation ...............................32 

1.8.3.1 Domain structure .....................................................32 

1.8.3.2 Activation mechanism................................................33 

1.8.3.3 Substrate recognition and phosphorylation by eIF2α kinases..35 

1.8.4 Effects of phosphorylation of eIF2α .....................................35 

1.8.5 Feedback to regulate phosphorylation of eIF2α.......................36 

1.8.6 eIF2α kinases in protozoan parasites....................................36 

1.9 Rationale for investigation of eIF2α kinases in P. falciparum and aims of 

this project................................................................................37 

2 Materials and Methods................................................................39 

2.1 Biological and chemical reagents .............................................39 

2.2 Bioinformatics ....................................................................39 

2.2.1 PfeIF2α.......................................................................39 



5 

2.2.2 P. falciparum eIF2α kinases ..............................................39 

2.3 Methods in molecular biology..................................................40 

2.3.1 Polymerase chain reaction (PCR) ........................................40 

2.3.1.1 Takara ..................................................................40 

2.3.1.2 Phusion .................................................................41 

2.3.1.3 Expand High Fidelity PCR system...................................41 

2.3.2 Reverse transcriptase PCR (RT-PCR) ....................................42 

2.3.3 Gene cloning techniques ..................................................43 

2.3.3.1 pGEM-T easy cloning of PCR products .............................43 

2.3.3.2 Sub-cloning into destination vectors...............................44 

2.3.4 E. coli transformation .....................................................45 

2.3.5 Preparation of competent cells ..........................................45 

2.3.6 Isolation of plasmid DNA from E. coli ...................................45 

2.3.7 Restriction endonuclease digestion .....................................46 

2.3.8 Determining DNA and RNA concentration ..............................46 

2.3.9 DNA Sequencing ............................................................46 

2.3.10 Agarose gel electrophoresis ..............................................47 

2.3.11 Southern Blotting...........................................................47 

2.4 Methods in Biochemistry........................................................48 

2.4.1 Sodium dodecyl sulphate polyacrylamide gel electrophesis (SDS-

PAGE) 48 

2.4.2 Coomassie blue staining of polyacrylamide gels ......................49 

2.4.3 Western blotting............................................................49 

2.4.4 Determining protein concentration .....................................50 

2.4.5 Generation of polyclonal antibodies ....................................50 

2.4.6 Expression of recombinant proteins.....................................50 

2.4.7 Purification of tagged recombinant proteins ..........................51 

2.4.7.1 GST tag .................................................................51 

2.4.7.2 His tag ..................................................................51 

2.4.8 Immunoprecipitation ......................................................52 

2.4.9 Kinase assay .................................................................52 

2.5 P. falciparum culture ...........................................................53 

2.5.1 Asexual stage culture ......................................................53 

2.5.2 Synchronisation of parasite culture .....................................53 

2.5.3 Preparation of gametocytes ..............................................53 

2.5.4 Mosquito infection .........................................................54 



6 

2.5.5 Preparation of stabilates..................................................54 

2.5.6 Thawing of stabilates ......................................................54 

2.5.7 Isolation of parasites from infected erythrocytes.....................55 

2.5.8 Extraction of parasite genomic DNA.....................................55 

2.5.9 Extraction of parasite RNA................................................56 

2.5.10 Protein preparation from parasites......................................56 

2.5.11 Transfection.................................................................56 

2.5.12 Cloning of parasites by limiting dilution................................57 

2.5.12.1 Plasmodium lactate dehydrogenase assay ........................58 

2.5.13 Parasite growth rate analysis, by flow cytometry ....................58 

3 Eukaryotic initiation factor 2α kinases in P. falciparum: bioinformatic and 

biochemical characterisation .............................................................59 

3.1 Identification of P. falciparum eukaryotic initiation factor 2α ..........59 

3.2 Identification of eIF2α kinases in P. falciparum............................60 

3.2.1 In silico analysis ............................................................60 

3.2.1.1 PfeIK1 ...................................................................66 

3.2.1.2 PfeIK2 ...................................................................68 

3.2.1.3 PfPK4....................................................................69 

3.2.2 Life cycle stage specific expression of PfeIF2α kinases..............70 

3.3 Cloning and expression of P. falciparum eIF2α .............................73 

3.3.1 Cloning of PfeIF2α..........................................................73 

3.3.2 Expression of Recombinant PfeIF2α .....................................74 

3.4 Cloning, expression and characterisation of the P. falciparum eIF2α 

kinases. ....................................................................................76 

3.4.1 PfeIK1 ........................................................................76 

3.4.1.1 Cloning of the PfeIK1 catalytic domain ...........................76 

3.4.1.2 Expression of recombinant PfeIK1..................................77 

3.4.1.3 PfeIK1 is an active kinase able to phosphorylate PfeIF2α in 

vitro ...........................................................................79 

3.4.2 PfeIK2 ........................................................................81 

3.4.2.1 Verification of pfeik2 gene structure..............................81 

3.4.2.2 Cloning of the PfeIK2 catalytic domain ...........................83 

3.4.2.3 Expression of recombinant PfeIK2..................................84 

3.4.2.4 Initial activity assay of recombinant GST-PfeIK2 ................86 

3.4.3 PfPK4 .........................................................................86 

3.4.3.1 Cloning of PfPK4 catalytic domain .................................86 



7 

3.4.3.2 Expression of recombinant PfPK4 ..................................87 

3.4.3.3 PfPK4 activity..........................................................88 

3.5 Perspectives and Discussion....................................................90 

3.5.1 Identification of PfeIF2α and its kinases ...............................90 

3.5.2 Characterisation of PfeIF2α and its kinases............................92 

3.6 Summary ..........................................................................93 

4 Reverse genetics of eIF2α kinases in P. falciparum .............................95 

4.1 Construction of gene disruption and tagging plasmids.....................95 

4.2 PfeIK1............................................................................ 101 

4.2.1 PfeIK1 is not required for asexual growth............................ 101 

4.2.2 PfeIK1 is not required for gametocytogenesis ....................... 104 

4.2.3 PfeIK1 is not required for infection of mosquitoes or progression to 

sporozoites ........................................................................... 105 

4.2.4 Expression levels of remaining PfeIF2α kinases in pfeik1- parasites.

 108 

4.3 PfeIK2............................................................................ 109 

4.3.1 PfeIK2 is not required for asexual growth............................ 109 

4.3.2 PfeIK2 is not required for gametocytogenesis ....................... 111 

4.3.3 PfeIK2 is not required for infection of mosquitoes or progression to 

sporozoites ........................................................................... 112 

4.4 PfPK4............................................................................. 114 

4.4.1 PfPK4 is essential for asexual growth ................................. 114 

4.5 Discussion and Perspectives.................................................. 119 

4.5.1 PfeIK1 ...................................................................... 119 

4.5.2 PfeIK2 ...................................................................... 119 

4.5.3 PfPK4 ....................................................................... 120 

4.5.4 Expression levels of remaining PfeIF2α kinases, following disruption 

of one of the three genes. ......................................................... 121 

4.6 Summary ........................................................................ 121 

5 Discussion and conclusions......................................................... 123 

5.1 Identification of PfeIF2α and its kinases................................... 123 

5.2 Investigation of the role of PfeIF2α kinases ............................... 124 

5.2.1 Activation stimuli......................................................... 124 

5.2.1.1 Starvation ............................................................ 125 

5.2.1.2 Oxidative stress ..................................................... 125 

5.2.1.3 Heat shock ........................................................... 126 



8 

5.2.2 Complementation of yeast mutants ................................... 126 

5.2.3 Effect of phosphorylation of PfeIF2α on translation?............... 127 

5.3 Perspectives .................................................................... 128 

5.3.1 Phosphoregulation is a two way process.............................. 128 

5.3.2 Gametocytogenesis; a stress induced response? .................... 129 

5.3.3 Relative importance of translation control in P. falciparum...... 130 

5.3.4 Search for new therapeutic targets ................................... 131 

6 Appendix.............................................................................. 133 

6.1 Biological and chemical reagents ........................................... 133 

6.1.1 Oligonucleotide primers................................................. 134 

6.1.2 Bacterial strains .......................................................... 138 

6.1.3 P. falciparum strain...................................................... 138 

6.1.4 Mosquitoes................................................................. 139 

6.1.5 Antibodies ................................................................. 139 

6.2 Buffers, solutions and media................................................. 140 

6.2.1 General Buffers ........................................................... 140 

6.2.2 DNA analysis............................................................... 140 

6.2.3 Protein analysis ........................................................... 141 

6.2.4 Bacterial culture.......................................................... 142 

6.2.5 P. falciparum culture.................................................... 143 

6.2.6 Mosquito breeding........................................................ 144 

6.3 Submitted manuscript......................................................... 144 

References ................................................................................. 145 

 



9 

List of Figures 

Figure 1-1: Maps to illustrate the coincidence of the world malaria burden and 

poverty. ......................................................................................18 

Figure 1-2: Illustration of P. falciparum merozoites..................................19 

Figure 1-3: Illustration of the P. falciparum life cycle. ..............................21 

Figure 1-4: Schematic to show the conserved subdomains of protein kinases.  

(Adapted from Hanks 2003 (Hanks, 2003)). ............................................24 

Figure 1-5: Integration of stress responses by phosphorylation of eIF2α. .........30 

Figure 1-6: Schematic of the domain structures of the eIF2a kinases. ............33 

Figure 2-1: Map of the cloning vector, pGEM-T Easy..................................44 

Figure 3-1: Alignment of eIF2α sequences..............................................59 

Figure 3-2: Phylogenetic tree showing the clustering of eIF2α kinases............61 

Figure 3-3: Sequence alignment of eIF2α kinases. ....................................65 

Figure 3-4: Structure of PKR-eIF2α complex. ..........................................65 

Figure 3-5: Phylogenetic tree illustrating eIF2α kinases in diverse species.......67 

Figure 3-6: Schematic of protein domains of human, P. falciparum, and T. gondii 

eIF2α kinases. ...............................................................................68 

Figure 3-7: Expression data for the PfeIKs taken from PlasmoDB (Le Roch et al., 

2003). .........................................................................................71 

Figure 3-8: Expression of PfPK4. .........................................................72 

Figure 3-9: Map of the expression vector for PfeIF2α. ...............................74 

Figure 3-10: Purification of GST-PfeIF2α. ..............................................75 

Figure 3-11: Western blot analysis of purification of wild type GST-PfeIF2α. ....75 

Figure 3-12: Map of the expression vector for GST-PfeIK1...........................77 

Figure 3-13: Purification of GST-PfeIK1. ................................................78 

Figure 3-14: Purification of GST-PfeIK1. ................................................78 

Figure 3-15: PfeIK1 phosphorylates non-physiological substrates. .................80 

Figure 3-16: GST-PfeIK1 autophosphorylates and phosphorylates wild type 

PfeIF2α but not the mutant PfeIF2α S59A. .............................................81 

Figure 3-17: Verification of the gene structure of pfeik2............................82 

Figure 3-18: Western blot showing the size and stage specific expression of 

PfeIK2.........................................................................................83 

Figure 3-19: Map of the expression vector for GST-PfeIK2...........................84 

Figure 3-20: Expression of GST-PfeIK2 using E.coli BL21c+. .........................85 



10 

Figure 3-21: Expression of GST-PfeIK2 using E. coli BL21 codon plus. .............85 

Figure 3-22: Map of the His-PfPK4 expression vector. ................................87 

Figure 3-23: Expression of His-PfPK4. ...................................................88 

Figure 3-24: PfPK4-HA Kinase assay. ....................................................90 

Figure 4-1: Schematic showing the single cross-over homologous recombination 

strategy used for disruption of the PfeIK genes. ......................................96 

Figure 4-2: Map of the plasmid used for disruption of pfeik1. ......................96 

Figure 4-3: Map of the plasmid used for disruption of pfeik2. ......................97 

Figure 4-4: Map of the plasmid used to attempt disruption of pfpk4. .............98 

Figure 4-5: Schematic showing the single cross-over recombination strategy used 

to tag PfPK4. ................................................................................99 

Figure 4-6: Map of the plasmid used to add a C-terminal double HA tag to PfPK4.

............................................................................................... 100 

Figure 4-7: Map of the plasmid used to add a C-terminal GFP tag to PfPK4. ... 101 

Figure 4-8: PCR analysis of two pfeik1- clones....................................... 102 

Figure 4-9: Schematic for pfeik1- Southern blot..................................... 102 

Figure 4-10: Southern blot analysis of pfeik1- clones. .............................. 103 

Figure 4-11: Growth of pfeik1- parasites.............................................. 103 

Figure 4-12: Giemsa stained pfeik1- gametocytes................................... 105 

Figure 4-13: PCR analysis of pfeik1- infected mosquito midguts.................. 107 

Figure 4-14: Western blot showing expression of PfPK4 in pfeik1- parasites. .. 108 

Figure 4-15: PCR analysis of pfeik2- clones........................................... 109 

Figure 4-16: Schematic for pfeik2- Southern blot. .................................. 110 

Figure 4-17: Southern blot analysis of pfeik2- clones. .............................. 110 

Figure 4-18: Giemsa stained pfeik2- gametocytes................................... 111 

Figure 4-19: PCR analysis of attempted disruption of pfpk4. ..................... 115 

Figure 4-20: Schematic of expected fragments on Southern blot analysis of 

pfpk4........................................................................................ 116 

Figure 4-21: Southern blot analysis of attempted pfpk4 disruption. ............. 116 

Figure 4-22: PCR analysis of integration of pfpk4 3' tags........................... 117 

Figure 4-23: Schematic of expected sizes for Southern blot analysis of pfpk4 3' 

tags.......................................................................................... 118 

Figure 4-24: Southern blot analysis of pfpk4 3' tag populations. ................. 118 

 



11 

List of Tables 

Table 4-1: Mosquito infection with pfeik1- parasites. .............................. 106 

Table 4-2: Mosquito infection with pfeik2- parasites. .............................. 113 

Table 6-1: Supppliers of biological and chemical reagents. ....................... 134 

Table 6-2: Oligonucleotide primers.................................................... 138 

Table 6-3: Primary antibodies. ......................................................... 139 

Table 6-4: Secondary antibodies. ...................................................... 139 

Table 6-5: General buffer composition. .............................................. 140 

Table 6-6: Composition of buffers used for DNA analysis. ......................... 140 

Table 6-7: Composition of buffers used for protein analyses, including 

recombinant protein preparation. ..................................................... 142 

Table 6-8: Buffers, medium and antibiotics used for bacterial preparation and 

culture...................................................................................... 143 

Table 6-9: Composition of solutions used for P. falciparum culture. ............ 144 

Table 6-10: Solution for mosquitoes. .................................................. 144 

 



12 

Acknowledgements 

The relentless energy and enthusiasm of my supervisor Prof. Christian Doerig is 

an inspiration; his encouragement and conviction have been invaluable.  Dr Luc 

Reininger has also been a great support, for discussion, critical reading, and 

sharing his bench with a smile!  The Doerig team as a whole, including Dr Helen 

Taylor, has always been a friendly and supportive environment, which I have 

found very encouraging.   

I am grateful to Dr Lisa Ranford-Cartwright, without whom it would have been 

impossible to carry out mosquito experiments.  It was a pleasure to work with 

Lisa (informative and helpful on every aspect of mosquito work), Liz Peat (who 

spoke nicely to my parasites), and Georgie Humphreys (who caught mosquitoes 

and humoured me through dissection).   

Jonathan Wilkes has enabled me to complete the bioinformatic analysis in a 

more sophisticated manner than I would have done if working alone. 

In addition to providing interesting data, Prof. Dan Goldberg, Shalon Babbitt and 

Ilaria Russo have been extremely co-operative and pro-active to collaborate 

with, as has Dr Rita Tewari.  I hope these are examples of international science 

at its best, and look forward to more such interactions. 

I have leant on the unstinting support of Prof. Bill Cushley and Dr Olwyn Byron; 

kind, helpful and understanding in all circumstances.  Their belief in all of us on 

the Welcome Trust PhD programme has shaped that into another source of 

strength and support. 

Lastly, my boyfriend Sam; he didn’t mean to get broken after all, nor enjoyed 

the process that much, but has been remarkably sage about it all.  Now we can 

move on. 



13 

Author’s declaration 

I hereby declare that I am the sole author of this thesis and performed all of the 

work presented, with the following exceptions: 

Chapter 3 

• Multispecies alignments of eIF2α kinases and the phylogenetic tree of all 

kinase families were completed with Jonathan Wilkes. 

Chapter 4 

• Ilaria Russo produced the growth curve for pfeik1- parasites in the 

Goldberg lab. 

• Lisa Ranford-Cartwright, Georgina Humphries and Liz Peat cultured 

gametocytes and fed mosquitoes for infection studies. 

• Lisa Ranford-Cartwright dissected some mosquitoes for oocysts, and all 

for sporozoites in the salivary glands. 



14 

Definitions 

aaRS  Amino-acyl tRNA synthetase 
AB  Blood groups A or B 
APAD  3-Acetylpyridine adenine dinucleotide 
ApiAP2 Apicomplexan AP2 (Apetala2) 
Amp  Ampicillin 
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At  Arabidopsis thaliana 
ATF4  Activating transcription factor-4 
ATP  Adenosine triphosphate 
BHH  Benzamidine Hydrochloride Hydrate 
BLAST  Basic local alignment search tool 
bp  Base pair(s) 
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BSD  Blasticidin deaminase 
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cDNA  Complementary DNA 
CK2  Casein kinase-2 
CML  Chronic myelogenous leukaemia 
DB  Database 
Dd  Dictyostelium discoydium 
DEPC  Diethylpyrocarbonate 
DHFR  Dihydrofolate reductase 
DNA  Deoxyribonucleic acid 
dNTP  Deoxyribonucleotide triphosphate 
DOZI  Development of zygote inhibited 
DTT  Dithiothreitol 
EB  Elution buffer (for Qiagen DNA kits) 
EDTA  Ethylenediaminetetraacetic acid 
EGTA  Ethylene glycol-bis(2-aminoethylether)-N,N,N′,N′-tetraacetic acid 
eIF  Eukaryotic initiation factor 
eIF2α   Eukaryotic initiation factor 2α 
eIF2B  Eukaryotic initiation factor 2B 
ER  Endoplasmic reticulum 
ERD2  Endoplasmic reticulum defective (an ER membrane protein) 
ERK  Extracellularly regulated kinase 
Exp.  Experiment 
GADD34 Growth arrest and DNA damage gene-34 
GCN2  General control non-derepressible-2 
gDNA  Genomic DNA 
GDP  Guanosine diphosphate 
GEF  Guanine exchange factor 
GFP  Green fluorescent protein 
GNP  Gross national product 
GST  Glutathione-S-transferase 
GTP  Guanosine triphosphate 
HA  Hemagglutinin 
HEPES  N-(2-Hydroxyethyl)piperazine-N′-(2-ethanesulfonic acid) 
HisRS  Histidyl-tRNA-synthetase 
HMM  Hidden Markov model 
hr  Hour 



15 

HRI  Haem-regulated inhibitory kinase 
HRP  Horseradish peroxidase 
Hs  Homo sapiens 
Hsc  Heat shock cognate protein 
Hsp  Heat shock protein 
IgG  Immunoglobulin G 
IgY  Immunoglobulin Y 
IP  Immunoprecipitate 
IPTG  Isopropyl β-D-thiogalactopyranoside 
IRES  Internal ribosome entry site 
JNK  c-Jun N-terminal kinase 
Kan  Kanamycin 
kb  kilobase 
KD  Kinase domain 
kDa  Kilo Dalton 
KO  Knock-out 
LB  Luria-Bertani medium 
LDH  lactate dehydrogenase 
M  Molar 
Mm  Mus musculus 
MAPK  Mitogen activated protein kinase 
MAPKK Mitogen activated protein kinase kinase 
MBP  Myelin basic protein 
MEGA  Molecular evolutionary genetics analysis 
MEK  MAP/ERK kinase 
MOPS  2-morpholin-4-ylethanesulfonic acid 
N-terminus Amino-terminus 
NAD  Nicotinamide adenine dinucleotide 
NBT  Nitroblue tetrazolium 
ND  Not done 
OD  Optical density 
ORF  Open reading frame 
Os  Oryza sativa 
PABA  Para-amino benzoic acid 
PAGE  Polyacrylamide gel electrophoresis 
Pb  Plasmodium berghei 
PBS  Phosphate buffered saline 
PCR  Polymerase chain reaction 
PERK  PKR-like endoplasmic reticulum kinase 
Pf  Plasmodium falciparum 
pfmdr1 Plasmodium falciparum multi-drug resistance protein-1 
PfeIK1  P. falciparum eukaryotic initiation factor 2α kinase-1 
PfeIK2  P. falciparum eukaryotic initiation factor 2α kinase-2 
PfPK4   P. falciparum protein kinase-4 
PKG  Protein kinase G 
PKR  Protein kinase RNA 
PMSF  Phenylmethanesulfonyl fluoride 
PP1  Protein Phosphatase-1 
RB/DD  Ribosome binding and dimerization domain 
RBM  Roll back malaria 
RIPA  Radio immunopreciptation assay buffer 
RNA  Ribonucleic acid 
Rpm  Revolutions per minute 
RT  Room temperature 
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RT-PCR Reverse-transcriptase polymerase chain reaction 
SAPK  Stress activated protein kinase 
Sc  Saccharomyces cerevisiae 
SDS  Sodium dodecyl sulphate 
SDS-PAGE Sodium dodecyl sulphate-polyacrylamide gel electrophoresis 
SSC  Sodium chloride/sodium citrate 
STE  Sterile alpha mutant (kinase) 
TAE  Tris/Acetate/EDTA 
Tb  Trypanosoma brucei 
TbeIF2K2 Trypanosoma brucei eIF2α kinase-2 
TEMED  N,N,N′,N′-Tetramethylethylenediamine 
TFB1  Transforming buffer 1 
TFB2  Transforming buffer 2 
Tet  Tetracycline 
TgIF2K-A Toxoplasma gondii eIF2α kinase-A 
TgIF2K-B Toxoplasma gondii eIF2α kinase-B 
TGS  Tris/Glycine/SDS 
TM  Transmembrane 
tRNA  Transfer RNA 
uORF  Upstream open reading frame 
UPR  Unfolded protein response 
UTR  Untranslated region 
UV  Ultraviolet 
V  Volt 
WHO  World health organisation 
WT  Wild-type 
X  times  
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1 Introduction 

1.1 Malaria 

Malaria remains a devastating disease in most tropical and subtropical regions 

(Fig. 1-1) (Snow et al., 2005).  It is estimated that 40% of the world’s population 

is at risk from malaria, such that every year more than 500 million people 

become severely ill with the disease resulting in at least 1 million fatalities 

(WHO, 2007, Snow et al., 2005).  In humans, the disease is caused by infection 

with one of four species of the parasitic protozoan Plasmodium; P. falciparum, 

P. vivax, P. malariae, or P. ovale.  It has also recently been recognised that P. 

knowlesi, previously thought to infect only non-human primates, can infect and 

cause disease in humans (Cox-Singh et al., 2008, Luchavez et al., 2008).  

Infection with malaria parasites results in fever, headache, chills and vomiting, 

which if not treated promptly and effectively can progress to severe disease that 

may be fatal.  In addition to the threat to health, malaria also has a serious 

impact on socioeconomic development in endemic countries by impacting on 

long term demographics and the acquisition of human and physical capital (Sachs 

and Malaney, 2002).  To reduce this to a number, it has been calculated that in 

the long term, gross national product (GNP) per capita is reduced by more than 

half in malarious countries, compared to non malarious countries (Sachs and 

Malaney, 2002, http://www.rollbackmalaria.org/).  The emergence and spread 

of resistance to available antimalarial drugs in the parasite exacerbates the 

problem, adding urgency to the task of development of novel chemotherapeutic 

agents (Ridley, 2002b, Ridley, 2002a, Gelb, 2007). 



Clare Fennell, 2008   Chapter 1, 18 

 

Figure 1-1: Maps to illustrate the coincidence of the world malaria burden and poverty.   
A: Darker shades of blue indicate greater malaria burden.  B: Darker shades of red indicate greater 
poverty (adapted from Roll Back Malaria fact sheet 10 (http://www.rollbackmalaria.org/)). 

1.2 Plasmodium falciparum 

P. falciparum is responsible for the majority of lethal cases of malaria (Guerra 

et al., 2006), although there is increasing concern about the contribution of P. 

vivax to severe malaria (Joshi et al., 2008, Baird, 2007).  Fatalities from P. 

falciparum arise as the infection can progress to severe anaemia and central 

nervous system effects leading to coma and death.  P. falciparum is the major 

malaria parasite in sub-Saharan Africa, where greater than 90% of the world’s 

malaria is found (Snow et al., 2005).  As a consequence, P. falciparum is the 

most extensively studied of the human malaria parasites.  Completion of the P. 
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falciparum genome project in 2002 has transformed research into this parasite 

(Gardner et al., 2002, Waters, 2008).   

Plasmodium is a member of the apicomplexa, all of which are obligate 

intracellular parasites.  Other apicomplexan parasites of medical or agricultural 

importance include Toxoplasma gondii, an opportunistic parasite of 

immunocompromised individuals; Theileria spp, tick borne parasites of cattle in 

Africa; and Cryptosporidium, which is both an animal and opportunistic human 

parasite.  Genome sequences are available for species within each of these 

genera, which in conjunction with different in vitro culture and genetic 

manipulation possibilities is contributing to advances in our understanding of the 

apicomplexa as a whole (Abrahamsen et al., 2004, Gajria et al., 2008, Kim and 

Weiss, 2004).  Apicomplexan parasites are distinguished morphologically by the 

presence of an apical organelle complex for host cell invasion (Fig. 1-2).  

Apicomplexans have a complex life cycle with multiple developmental stages 

that occur in diverse tissues, often in more than one host; this probably reflects 

a series of evolutionary adaptations to optimise the exploitation of hosts 

(Aravind et al., 2003).   

 

Figure 1-2: Illustration of P. falciparum merozoites.   
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A: Ultrastructure of a merozoite showing the apical organelles (micronemes and rhoptries) used in 
invasion.  B: Shows the relative size of the merozoite and host erythrocyte during invasion.  
Clockwise, the merozoite orients, anchors and invades, until it is within the erythrocyte inside the 
parasitophorous vacuole (adapted with permission from Bannister et al. 2000 (Bannister et al., 
2000)). 

 

1.3 Life cycle of malaria parasites 

Humans are infected following injection of sporozoites into the skin, by the bite 

of an infected Anopheles mosquito (Fig. 1-3).  Sporozoites move away from the 

injection site to reach a capillary, allowing them to travel to the liver where 

they invade hepatocytes and undergo schizogony to release thousands of 

merozoites.  Merozoites enter the bloodstream where they invade erythrocytes, 

a cycle that proceeds in a synchronous manner and is responsible for malaria 

pathogenesis.  On entering erythrocytes, a proportion of malaria parasites do not 

enter schizogony but arrest their cell cycle and differentiate into male or female 

gametocytes (see 1.3.1).  Critically, gametocytes are the only form capable of 

infecting the mosquito vector, and are therefore required for transmission to the 

next human host.  Ingestion of gametocytes by a female mosquito triggers 

gametogenesis entailing the release of a single female macrogamete and eight 

male microgametes.  Release of the motile microgametes is termed 

exflagellation, because male gametes are flagellated.  Fusion of the male and 

female gametes forms the zygote, the only short-lived, diploid stage of the 

lifecycle.  Further development produces a motile ookinete, in which meiosis 

occurs and which migrates through the mosquito midgut wall to establish an 

oocyst on the hemocoel side of the midgut.  Successive rounds of division and 

differentiation within the oocysts produce mature sporozoites that spread 

throughout the mosquito.  On reaching the salivary glands the sporozoites are 

ready to commence the next cycle of infection on the mosquitoes next blood 

meal.  
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Figure 1-3: Illustration of the P. falciparum life cycle.   
A: Sporozoites from the bite of an infected Anopheles mosquito are carried to the liver where they 
invade hepatocytes.  After many rounds of division merozoites are released which invade 
erythrocytes starting the indefinite asexual cycle that gives rise to disease symptoms.  Some 
asexual parasites cease division and differentiate to gametocytes.  B: Injestion of gametocytes by a 
mosquito allows the parasite to complete the life cycle; gametogenesis and fertilization form an 
ookinete which is able to infect the mosquito mid gut wall.  Sporozoites form inside the oocysts, 
and on maturation reach the salivary glands in preparation for transmission to the next human host 
(adapted from with permission from Wirth, Nature 2002 (Wirth, 2002)). 

 

1.3.1 Gametocytogenesis 

As described above sexual differentiation or gametocytogenesis is essential for 

the transmission of P. falciparum, and other Plasmodia from one vertebrate host 

to the next.  The molecular mechanisms responsible for sexual differentiation 

(gametocytogenesis) are not understood (Silvestrini et al., 2005, Alano, 2007).  

However, various studies indicate that in P. falciparum the rate of switching 

from asexual replication to gametocytogenesis varies between parasite isolates, 

between cloned lines derived from a single isolate (Graves et al., 1984), and 

importantly is not constant within a cloned line but is sensitive to environmental 

conditions (Carter and Miller, 1979).  To this end, it has been observed that 

diverse manipulations of the in vitro culture environment, particularly those 
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that have an adverse effect on asexual replication, increase the rate of 

gametocytogenesis.  These include the presence of erythrocyte lysate 

(Schneweis et al., 1991), host immune sera and lymphocytes (Schneweis et al., 

1991, Smalley and Brown, 1981), the antimalarial, chloroquine (Buckling et al., 

1997), and a high asexual parasite density (Bruce et al., 1990).  The typically 

female biased sex ratio of gametocytes in Plasmodium is also variable (Alano, 

2007).   

Commitment to gametocytogenesis occurs at an unidentified time during the 

asexual cycle, such that a schizont contains either merozoites that will continue 

the asexual cycle, or that will develop into gametocytes (Bruce et al., 1990).  

Furthermore, the sex of the gametocytes arising from the same schizont is also 

previously determined (Silvestrini et al., 2005, Smith et al., 2000).  That rates of 

gametocytogenesis are responsive to environmental change suggests that a stress 

response mechanism may be involved.  Of interest is the observation that in T. 

gondii the switch from rapidly dividing tachyzoites to differentiation to 

quiescent bradyzoites is a stress-induced response (Weiss and Kim, 2000). 

1.4 Available chemotherapies/global antimalarial strategy 

The current increase in the world malaria burden is due to a number of factors; 

particularly the emergence and spread of drug resistance in the parasite, the 

resistance to insecticides in the mosquito vector , and the breakdown of health 

infrastructure in many endemic areas (Greenwood and Mutabingwa, 2002, 

Ridley, 2002b, Ridley, 2002a, Walther and Walther, 2007).  This has been 

recognised in naming malaria as one of the WHO’s high priority diseases and in 

public-private partnership initiatives such as the Medicines for Malaria Venture.  

Development of antimalarials is particularly challenging due to the 

circumstances in which they are primarily used, which demand compounds that 

are both very safe and very cheap.  Complexity is added by the benefit of using 

drugs in combination to minimise the development of resistance (Gelb, 2007).  

Antimalarials may target parasites during the asexual cycle, thereby reducing 

the disease burden.  Compounds could also be developed aimed at interfering 
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with gametocytogenesis, which would therefore act as transmission blocking 

agents.  Transmission blocking agents would represent a useful tool to limit the 

escape of drug-resistant genotypes selected during schizogony in the human 

host.  Strategies to limit the spread of resistance to available drugs are of 

paramount importance in the context of frequent sub-curative drug treatment, 

resulting in selection of drug resistant parasites and therefore increased 

probability of their transmission (Mackinnon and Read, 2004).  Considerable 

effort continues to be put into development of a vaccine, but to date nothing 

has progressed beyond mixed results in clinical trials (Matuschewski and Mueller, 

2007).  Insecticide treated nets and indoor residual spraying are also powerful 

tools with which limit contact between humans and mosquitoes that deserve 

further investigation and investment (reviewed (Walther and Walther, 2007)). 

1.5   Protein kinases 

Since the discovery of protein kinases (Edwin G Krebs & Edmond H Fisher, Nobel 

Prize 1992) reversible phosphorylation has been established as major mechanism 

of eukaryotic cellular regulation, with central roles in proliferation, 

differentiation and metabolism (Hanks, 2003).  Protein kinases have a conserved 

catalytic domain, possession of which forms them into one of the largest 

superfamiles of homologous genes and proteins (Hanks and Hunter, 1995).  The 

protein kinase superfamily divides into two major groups; the protein-

serine/threonine kinases and the protein-tyrosine kinases (Taylor et al., 1995, 

Johnson et al., 1998).  The kinase catalytic domain comprises twelve conserved 

subdomains that result in the proteins folding into a characteristic bi-lobed 

structure, as revealed by the now numerous solved 3-D structures (Dar et al., 

2005, Taylor et al., 1992, Merckx et al., 2008).  Conservation of the catalytic 

domain maintains three key aspects of the kinase reaction: i) binding and 

orientation of the phosphate donor, ATP (or GTP); ii) binding and orientation of 

the protein (or peptide) substrate; and iii) transfer of the terminal phosphate 

from ATP (or GTP) to the acceptor (Ser, Thr, or Tyr) of the protein substrate 

(Fig. 1-4) (Hanks and Hunter, 1995).  Of particular importance for catalytic 

function are the invariant lysine in subdomain II, which is involved in the 
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anchoring and orienting ATP, and the invariant aspartate in subdomain VIB that 

mediates phosphotransfer (Hanks, 2003, Niedner et al., 2006).  

 

Figure 1-4: Schematic to show the conserved subdomains of protein kinases.  (Adapted from 
Hanks 2003 (Hanks, 2003)). 

 

1.5.1   Kinases as drug targets 

The human genome encodes 518 kinase genes that are subdivided into 20 

families on the basis of structural relatedness.  Classical protein kinases account 

for 478 of these genes, of which 388 are serine/threonine kinases, 90 are 

tyrosine kinases and the remaining 50 lack a functional catalytic site and are 

therefore termed pseudokinases (Manning et al., 2002, Boudeau et al., 2006).  

The large number of kinases and their roles in cellular processes means that 

their disregulation is associated with diverse diseases, including rheumatoid 

arthritis, cardiovascular disorders, immunodeficiency and cancer (Cohen, 2002).  

In the case of cancer, approximately half of the 100 identified oncogenes encode 

kinases, while the other half either activate kinases, or are phosphorylated by 

kinases.  In the light of this, the development of kinases as drug targets is no 

surprise (Giamas et al., 2007). 

The first kinase inhibitor tested in clinical trials (imatinab mesylate/Gleevec®) 

has proved a highly successful anticancer drug for patients with chronic 

myelogenous leukaemia (CML).  Gleevec inhibits the Abelson cytoplasmic 

tyrosine kinase that is constitutively active in most patients with CML (Giamas et 
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al., 2007).  Gleevec has also been found to inhibit additional kinases and is also 

used in the treatment of gastrointestinal stromal tumours.  This raises an 

interesting point concerning the development of compounds that inhibit more 

than a single enzyme, which may help to overcome the fact that cells may use 

more than one overlapping signalling pathway to reach the same outcome.  

There are now more than 60 kinase-targeted drugs in clinical development, and 

many more in the pre-clinical stages.  Further, kinases are second only to G-

protein coupled receptors with respect to the number of screening targets in use 

by the pharmaceutical industry to identify new molecules (Weinmann and 

Metternich, 2005). 

The conservation of the structure of the kinase domain, where ATP is bound in 

the cleft between the two lobes of the catalytic domain might suggest that 

searching for selective competitive ATP-inhibitors would be an impossible task.  

Remarkably, the minor differences between kinases result in sufficient 

differences in the 3-D structure to result in changed hydrogen bonding capacities 

and hydrophobic interactions, causing differences in affinity (Giamas et al., 

2007, Fischer, 2004).  However, other inhibition paradigms are being developed 

such as allosteric inhibition to change the conformation, preventing substrate 

binding, or direct competition with the kinase substrate.  These new strategies 

may facilitate new therapeutic opportunities and also limit off-target side 

effects, where specific inhibition is desirable (Bogoyevitch and Fairlie, 2007).   

1.6   Kinases in P. falciparum 

Plasmodium and other parasitic protists such as Toxoplasma and the 

trypanosomatids including Trypanosoma and Leishmania, belong to taxonomic 

groups that are phylogenetically hugely distant from the Opisthokonta branch, 

which includes animals and fungi (Baldauf, 2003).  Completion of the P. 

falciparum genome project (Gardner et al., 2002) allowed two independent 

analyses of the complete complement of Plasmodium kinases, or kinome (Ward 

et al., 2004, Anamika et al., 2005).  The studies were essentially in agreement, 

and identified substantial differences between the plasmodium and mammalian 

kinomes, reflecting their evolutionary distance.  Divergence was identified at 



Clare Fennell, 2008   Chapter 1, 26 

the levels of i) the composition of the kinome, ii) the organisation of signalling 

pathways, and iii) the properties of individual enzyme orthologues, when they 

can be identified (Doerig, 2004b, Doerig et al., 2005, Doerig and Meijer, 2007).  

Concerning the composition of the kinome, members of most groups of 

eukaryotic kinases could be identified, with the exception of the tyrosine kinases 

and STEs (which are part of the mitogen activated protein (MAP) kinase 

pathway).  On the other hand, many ‘orphan’ kinases were identified that do not 

cluster with any of the identified mammalian or yeast kinase families.  

Intermediate to these extreme examples are a number of genes that clearly 

cluster with a defined kinase family, but branch off at the base of the cluster, 

such that assignment of orthology to a specific mammalian enzyme is impossible; 

these kinases are referred to as semi-orphans (Ward et al., 2004).  At the level 

of signalling cascades a notable example is the lack of a classical three-tier MAP 

kinase pathway (Dorin et al., 2005).  P. falciparum has two atypical MAPKs but 

the absence of MAPKKs indicates that their activation is through other as yet 

uncharacterised mechanisms.  Finally, with regard to divergence at the 

individual enzyme level, even clear orthologues display significant differences, 

such as the presence of large insertions/extensions, or variant regulatory sites 

(Doerig and Meijer, 2007).  Illustrations of such differences are a MAPK lacking 

the usual TxY motif (Dorin et al., 1999) and a PKG (protein kinase G) homologue 

with an atypical regulatory region (Deng et al., 2003).   

Data is accumulating that many members of the Plasmodium kinome are 

essential for schizogony, (Dorin-Semblat et al., 2007) (Doerig lab, in prep.) and 

therefore represent potential targets for curative drugs.  Kinases demonstrated 

to have an essential role in the sexual development of the parasite represent 

potential transmission-blocking targets (Reininger et al., 2005).  The emerging 

differences between parasite protein kinases and their host homologues is 

supportive of the idea of specific targeting of the former (Doerig, 2004a, Doerig, 

2004b, Doerig and Meijer, 2007, Leroy and Doerig, 2008). 
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1.7   Gene regulation in P. falciparum 

Completion of the P. falciparum genome sequence, in conjunction with that of  

the rodent malaria P. yoelli in 2002, and more recently P. berghei, and P. 

chabaudi has opened a new level of investigation into all aspects of Plasmodium 

biology, including gene regulation (Gardner et al., 2002, Carlton et al., 2002, 

Hall et al., 2005).  Initially, very few genes could be categorised as transcription 

factors, although it was acknowledged that this could have been due to 

difficulties in identification, due to their divergence from known examples, and 

exacerbated by the A-T richness of the genome (Gardner et al., 2002).  Two 

studies of the P. falciparum transcriptome followed shortly after (Le Roch et al., 

2003, Bozdech et al., 2003); the more comprehensive data set, composed of 1 

hour time points over the 48 hour intra-erythrocytic developmental cycle, 

demonstrates transcriptional regulation resulting in a continuous cascade of 

gene expression, unlike anything observed previously in eukaryotic biology 

(Bozdech et al., 2003).  Furthermore, contiguous genes on chromosomes were 

rarely found to be co-regulated (Bozdech et al., 2003).  This transcriptional 

pattern, which must underlie the complex developmental changes that occur 

during the parasite life cycle, the use of monocistronic mRNAs, and the 

conservation of basal eukaryotic transcription factors, inspired a continued 

search for a more sophisticated transcriptional network.  This has been 

rewarded with the identification of Apicomplexan AP2 (ApiAP2) DNA-binding 

proteins (Balaji et al., 2005, De Silva et al., 2008).  DNA binding specificities for 

two P. falciparum  ApiAP2 proteins have been defined and represent sequence 

motifs found in the 3’ region of sets of genes that show coregulation during the 

asexual cycle (De Silva et al., 2008).   

Despite this recent advance a body of evidence supports a significant role for 

post-transcriptional control in P. falciparum.  An analysis of the P. falciparum 

genome for transcription-associated proteins revealed only one third of the 

expected number, for the genome of a free living eukaryote; however, the 

CCCH-type zinc finger, commonly found in proteins involved in modulating mRNA 

decay and translation rates is over represented (Coulson et al., 2004).  

Sequences with homology to deadenylase enzymes that modify translation 
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initiation and mRNA decay were also identified (Coulson et al., 2004).  The 

pattern of mRNA decay rates across the P. falciparum genome contrasts with 

that observed in other organisms; the half-life of each mRNA is usually precisely 

related to its physiological role, whereas P. falciparum shows a genome-wide 

decrease in mRNA decay rate through the intra-erythrocytic developmental cycle 

(Shock et al., 2007).  Although sexual differentiation is a special case, several 

examples exist of transcripts produced in gametocytes, but translated only after 

gametogenesis has been initiated (Paton et al., 1993, Hall et al., 2005).  In P. 

berghei one mechanism of implementing this translational repression has been 

described; in female gametocytes DOZI (development of zygote inhibited), an 

RNA helicase, is found in complex with RNAs known to be translated only after 

fertilisation, including p25 and p28 (Mair et al., 2006).  PbDOZI was found to 

play a critical role in formation of ribonucleoprotein complexes, without which 

nearly 400 transcripts were degraded instead of stored (Mair et al., 2006). 

In spite of recent progress, much remains to be discovered about the regulation 

of protein levels in P. falciparum; much of this regulation may prove to be 

mediated at the level of translation. 

1.8 Stress responses 

The ability of a cell to sense and respond appropriately to stress is essential to 

maintain homeostasis.  Diverse factors may be stressful to a cell, including 

oxidative agents, chemical assault, nutrient deprivation, genetic damage and 

even the process of differentiation.  Response to stress involves induction of 

programmes of gene expression that enable damage repair, or alternatively 

induce apoptosis.  A significant element of the stress response is mediated by 

transcriptional change; however, since significant damage could result from mis-

translation or aberrant protein folding, stress responses are also mediated 

through regulation of translation. 
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1.8.1 Stress Activated Protein Kinases 

A large component of the stress response is mediated through a family of 

proteins termed stress-activated protein kinases (SAPKs).  The SAPKs, 

specifically JNKs and p38 kinases, are subfamilies of mitogen activated (MAP) 

kinases (see 1.6) that are expressed in essentially all tissues and respond to a 

variety of stress conditions (Engelberg, 2004).  As members of the MAPK family, 

the SAPKs are at the bottom of three-tier kinase cascades, the downstream 

targets of which are diverse, but include a range of transcription factors 

(Engelberg, 2004, Robinson and Cobb, 1997, Davis, 2000, Nebreda and Porras, 

2000).  This is of interest here for two reasons: firstly with regard to the dearth 

of P. falciparum proteins identified to play a role in transcriptional regulation, 

and of the conserved sequences on which they might act (for further discussion 

see 1.7) (Coulson et al., 2004); secondly, both bioinformatic and experimental 

approaches suggest that classical three-component MAPK signalling pathways do 

not operate in malaria parasites.  Furthermore, although the parasite kinome 

includes two MAPK homologues, none of these are members of the SAPK 

subfamily (Dorin et al., 2005). 

1.8.2   eIF2α pathway 

The SAPKs described above mediate change by regulation of transcription; gene 

function can also be regulated by modulation of protein synthesis.  Initiation, 

elongation and termination of translation can all be regulated although 

influencing the earliest stages of the pathway conserves resources most 

effectively.  Phosphorylation of eukaryotic initiation factor-2α (eIF2α) in 

response to stress is one mechanism of regulating translation initiation.  

Phosphorylation of eIF2α at residue Ser51 is a well-characterised and conserved 

mechanism of post-transcriptional control that regulates initiation of translation 

(Wek et al., 2006, Holcik and Sonenberg, 2005, Proud, 2005, Choi et al., 1992, 

Murtha-Riel et al., 1993, Colthurst et al., 1987).  This mechanism is conserved in 

the vast majority of eukaryotes.  One notable exception is the microsporidium 

Encephalitozoon cuniculi, whose kinome does not include eIF2α kinases (or other 

stress-response kinases), a probable adaptation to its parasitic lifestyle 



Clare Fennell, 2008   Chapter 1, 30 

(Miranda-Saavedra et al., 2007).  In mammalian cells this phosphorylation event 

is mediated by four distinct protein kinases; general control non-derepressible-2 

(GCN2), protein kinase RNA (PKR), haem-regulated inhibitor kinase (HRI), and 

PKR-like endoplasmic reticulum kinase (PERK), all four of which serve to 

integrate diverse stress signals into a common pathway (Wek et al., 2006, Holcik 

and Sonenberg, 2005, Proud, 2005, Chen and London, 1995). 

 

Figure 1-5: Integration of stress responses by phosphorylation of eIF2α.   
The eIF2α kinases (GCN2, PKR, HRI, PERK) are activated by diverse stress stimuli to 
phosphorylate eIF2α.  Phosphorylation of eIF2α inhibits the GDP-GTP exchange by reducing the 
dissociation rate of eIF2B.  This reduces the availability of the ternary complex resulting in a 
decrease in global protein synthesis, and selective translation that mediates the stress response 
(adapted with permission from Holcik & Sonenberg 2005 (Holcik and Sonenberg, 2005)). 
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Translation of eukaryotic mRNAs involves the recognition and recruitment of 

mRNAs by the translation initiation machinery, and the assembly of the 80S 

ribosome on the mRNA, which is mediated by proteins known as eukaryotic 

initiation factors (eIFs).  Formation of the 43S preinitiation complex depends on 

binding of the ternary complex that consists of the heterotrimeric G-protein 

eIF2, methionyl-initiator tRNA (met-tRNAi) and GTP (Fig. 1-5) (Holcik and 

Sonenberg, 2005, 2000).  Initiation of translation and release of the initiation 

factors involves hydrolysis of GTP to GDP, which leaves an inactive eIF2α-GDP 

complex.  Before further rounds of translation initiation can occur eIF2α must be 

reactivated by exchange of GDP for GTP by eIF2B (Holcik and Sonenberg, 2005).  

Presence of a phosphate group on the eIF2α subunit inhibits recycling of inactive 

eIF2-GDP to active eIF2-GTP by limiting the activity of the guanine nucleotide 

exchange factor activity of eIF2B (Sudhakar et al., 2000).  The consequence of 

activity of the eIF2α kinases therefore is global translation repression, since 

initiation complexes cannot form, thus preserving energy and nutrients.   

It is interesting to note however, that in spite of the mechanism described 

above, leading to translational repression, the translation of some mRNAs is 

enhanced when eIF2α is phosphorylated (Holcik and Sonenberg, 2005, Proud, 

2005).  The paradigm for such regulation is provided by the mRNA for the yeast 

protein Gcn4p that has four short upstream open reading frames (uORFs).  When 

the ternary complex (containing the initiator methionine) is plentiful these four 

uORFs are translated, but ribosomes are likely to fall off the mRNA before 

reaching the start codon of Gcn4.  When the ternary complex is in short supply 

due to eIF2α phosphorylation some ribosomes are able to move quickly along the 

mRNA reaching the Gcn4 start codon, some of which will bind a ternary 

complex, enabling translation initiation.  A similar mechanism is believed to 

operate for mammalian ATF4 (Proud, 2005).  An alternative mechanism that 

operates for other mRNAs and in some instances is regulated by eIF2α 

phosphorylation, is the use of internal ribosome entry sequences (IRESs), which 

allow translation initiation independently of the 5’cap and eIF4 complex utilised 

by most mRNAs (Fernandez et al., 2002).   
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Signal transduction through the eIF2α pathway is very rapid; phosphorylation and 

translational repression have been shown to be complete as soon as 30 minutes 

after exposure to stress (Novoa et al., 2003), whereas in responses by activation 

of gene expression programs the latency will be measured in hours (Harding et 

al., 2002).  The immediacy of this pathway is important under stress conditions 

where rapid deployment of appropriate response and use of resources is 

essential for cell survival. 

1.8.3   eIF2α kinases, mechanisms & activation 

1.8.3.1   Domain structure 

The eIF2α kinases have a homologous catalytic domain that enables them to 

phosphorylate the same substrate, eIF2α.  However, in order to respond to 

different stimuli they have different regulatory domains (Fig. 1-6) and are 

located in different subcellular compartments.  GCN2 is one of few proteins to 

possess both a functional and an inactive kinase domain (Boudeau et al., 2006).  

The degenerate kinase domain lies N-terminal to the functional kinase domain, 

which is followed by the major motif for activation: the histidyl-tRNA synthetase 

(HisRS)-like domain (Wek et al., 1989, Wek et al., 1995, Dong et al., 2000).  The 

HisRS domain functions by binding uncharged tRNAs that accumulate during 

amino acid limitation, leading to activation of the kinase domain (Wek et al., 

1995).  PKR has an N-terminal double-stranded RNA (dsRNA) binding domain 

composed of two copies of a dsRNA-binding motif, and a C-terminal kinase 

domain (Meurs et al., 1990, Dar et al., 2005).  HRI has an N-terminal region 

containing one heme-binding domain, and a second heme-binding domain within 

an insertion in the kinase domain (Rafie-Kolpin et al., 2000, 2000, Chefalo et al., 

1998).  Finally, PERK has a single trans-membrane domain and resides in the 

endoplasmic reticulum (ER); an amino-terminal luminal domain similar to that of 

the ER-stress-sensing kinase Ire1 monitors the protein folding environment, while 

the cytoplasmic portion contains the kinase domain where it can interact with 

the translation initiation machinery (Harding et al., 1999).  PERK is involved in 

the unfolded protein response (UPR); its position in the ER membrane allows this 
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kinase to have immediate impact on proteins destined for secretion by its 

proximity to the ribosomes on the rough ER.   

 
Figure 1-6: Schematic of the domain structures of the eIF2a kinases.   
Conserved kinase domains (KD) are depicted in green.  The two heme binding sites (H) in HRI are 
marked in red.  The double stranded RNA binding domains (dsRBD) in PKR are shown in blue.  
The N-terminal half of PERK resembles the corresponding domain of the ER stress-responsive 
IRE1 kinase.  The signal peptide (SP) and transmembrane domain (TM) of PERK are also shown.  
The regulatory histidyl-tRNA synthetase (hisRS) domain in GCN2 is shown in purple.  The 
locations of the GCN1 binding domain (blue), charged region (+/-) and pseudo-kinase domain 
(ψKD), as well as the C-terminal ribosome binding, and dimerisation domain (RB/DD) domain in 
GCN2 are also indicated (adapted from Dever 2002 (Dever, 2002)). 

 

A characteristic of the eIF2α kinases is the presence of insertions within the 

kinase domain between subdomains IV and V (Figs. 3-5 & 3-6).  The length and 

composition of these inserts is variable and no function has been ascribed to 

date, apart from HRI where one of the heme binding domains is in this region 

(Mathews, 2007).  The sequence between subdomains VII and VIII, comprising the 

activation loop may also be extended (Figs. 3-5 & 3-6) (Mathews, 2007). 

1.8.3.2   Activation mechanism 

Dimerisation and autophosphorylation appear to be an integral part of PERK, HRI 

and GCN2 kinase function (Bertolotti et al., 2000, Bauer et al., 2001, Qiu et al., 

2001, Liu et al., 2000).  For example ER stress induces ligand-independent 

lumenal-domain driven homodimerisation of PERK, following dissociation of the 

ER chaperone BiP (Bertolotti et al., 2000).  PERK subsequently 
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autophosphorylates, activating the kinase domain (Liu et al., 2000).  Evidence 

suggests HRI is active as an autokinase immediately following synthesis, however 

additional multiple autophosphorylation events facilitate formation of the stable 

homodimer capable of eIF2α phosphorylation, that is positively regulated by 

heme (Bauer et al., 2001, Rafie-Kolpin et al., 2003).  In PKR, binding dsRNA 

initiates dimerization and autophosphorylation on Thr466 within the activation 

segment of its catalytic domain.  This leads to the full catalytic activation of 

PKR and the selective ability to phosphorylate eIF2α (Ung et al., 2001, Zhang et 

al., 2001, Nanduri et al., 2000).  Dar et al. have shown that in PKR the N-

terminal lobe of the catalytic domain mediates dimerization (Dar et al., 2005).  

The mechanism of dimerization in PKR is found to differ critically from the 

classical in trans activation paradigm of receptor tyrosine kinases (TRK).  Such a 

mechanism is precluded in PKR by the back-to-back arrangement of the kinase 

domain dimer, so that PKR autophosphorylation must occur in cis or through the 

action of a PKR dimer on other PKR dimers or monomers (Dar et al., 2005).   

Conservation of the activation-segment phosphoregulatory site and basic 

phosphocoordinating residues underlines the importance of activation segment 

phosphorylation for regulation of the kinase activity of three of the four eIF2α 

kinases.  GCN2 exists as a constitutive dimer, and has therefore potentially lost 

this requirement (Dar et al., 2005).  Similarities between the catalytic domains 

of the eIF2α kinase family suggest that the mechanisms of catalytic regulation 

and substrate recognition discerned from the PKR/eIF2α complex are 

functionally relevant for the eIF2α protein kinase family as a whole. 

Mutational analysis of PKR identified residues that activate PKR in the absence 

of its regulatory domains, and that map to the dimerization surface on the 

kinase catalytic domain (Dar et al., 2005, Dey et al., 2005).  Distinct sites were 

identified that block autophosphorylation and eIF2α phosphorylation, whilst 

mutation of PKR Thr466, an autophosphorylation site within the catalytic domain 

activation segment, impairs eIF2α phosphorylation (Dey et al., 2005).  An 

ordered mechanism of PKR activation was proposed whereby catalytic domain 
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dimerization triggers Thr446 autophosphorylation and specific eIF2α substrate 

recognition (Dey et al., 2005).   

1.8.3.3   Substrate recognition and phosphorylation by eIF2α 

kinases  

To understand the basis for substrate recognition by PKR and its regulation, Dar 

et al. (Dar et al., 2005) determined X-ray crystal structures of the catalytic 

domain of PKR in complex with eIF2α, and were able to show that eIF2α binds to 

the C-terminal catalytic lobe (Dar et al., 2005).  As a result of the potent 

antiviral role played by PKR, most viruses have evolved mechanisms of 

circumventing its function, and the study of these mechanisms has been 

informative in elucidating the normal workings of PKR (Kawagishi-Kobayashi et 

al., 1997, Dar and Sicheri, 2002).  The eIF2α recognition mechanism is fully 

conserved across eIF2α kinases, with the primary determinants appearing to 

consist of the unique size and orientation of helix αG, rather than a strict 

conservation of residues comprising the eIF2α contact surface (Dar et al., 2005) 

(see below, section 3.2.1, for a full discussion of the structure).  The evidence 

presented suggests that the higher-order substrate recognition mechanism 

employed by PKR is restricted to eIF2α recognition, however the possibility of 

alternate substrate targeting mechanisms are not ruled out (Dar et al., 2005). 

1.8.4 Effects of phosphorylation of eIF2α 

eIF2 has a much higher affinity for GDP than GTP so the guanine-nucleotide 

exchange factor (GEF) eIF2B is required to return eIF2 to a GTP bound state.  

Phosphorylation of eIF2α on Ser51 converts eIF2 from a substrate to a 

competitive inhibitor of eIF2B, effectively sequestering eIF2 in an inactive state.  

This results in a reduction in the availability of the ternary complex and 

therefore decreases translation of most mRNAs, by reducing initiation.  

Paradoxically, as mentioned above, phosphorylation of eIF2α increases the 

translation of certain specific mRNAs, which encode proteins involved in the 

response to the stress, and recovery of translation (Dever, 2002). 
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1.8.5 Feedback to regulate phosphorylation of eIF2α. 

Since the consequence of eIF2α phosphorylation is repression of translation, a 

cell cannot function under these conditions indefinitely; furthermore, long-term 

adaptation to stress conditions requires synthesis of new proteins.  It must 

therefore be possible to terminate the activities of the eIF2α kinases and 

remove the phosphates they add when a cell is no longer under stress, whilst 

retaining the capacity to respond appropriately for the duration of exposure to 

stressful stimuli (Rutkowski and Kaufman, 2004).  Some mRNAs may have 

features that protect them from translational repression, such as the ATF4 

mRNA, the translation of which is actually induced by global translational 

repression due to its 5’ uORF structure (Proud, 2005).  However, translation of 

most mRNAs, including important ER chaperones (such as BiP) that are 

ultimately required for the stress response, requires relief from the repressed 

state.  It is established that translational repression in response to both ER stress 

and exposure to arsenite is transient, and that expression of stress-induced 

mRNAs and their encoded proteins coincides with a phase of translational 

recovery (Brostrom et al., 1989).  Protein phosphatase 1 (PP1) has been shown 

to dephosphorylate eIF2α in vitro and in vivo (Redpath and Proud, 1990, Novoa 

et al., 2001, He et al., 1997).  Evidence suggests growth arrest and DNA damage 

gene 34 (GADD34), a stress-inducible regulatory subunit of a holophosphatase 

complex that includes PP1 as a catalytic subunit, plays a key role in the recovery 

process (Novoa et al., 2003).  GADD34 requires activation of PERK for its 

upregulation, and its expression is probably controlled by ATF4 (Rutkowski and 

Kaufman, 2004).  There is also evidence to suggest that PP1 activity may be 

negatively regulated by the redox state in vivo, such that under conditions of 

oxidative stress, PP1 activity is inhibited, increasing the levels of phosphorylated 

eIF2α (O'Loghlen et al., 2003).   

1.8.6   eIF2α kinases in protozoan parasites 

T. gondii switches from the rapidly dividing tachyzoite form to differentiate to 

quiescent bradyzoites under stress conditions (Weiss and Kim, 2000); it was 
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therefore hypothesised that phosphorylation of eIF2α could play a role in this 

process.  An eIF2α kinase (TgIF2K-A) and orthologue of the initiation factor 

(TgIF2α) were identified (Sullivan et al., 2004).  It was shown that TgIF2K-A 

phosphorylates the regulatory serine of yeast eIF2α in vitro and in vivo, and can 

modulate translation when expressed in the yeast model system (Sullivan et al., 

2004).  Finally, treating tachyzoites with heat shock, or alkaline stress, 

conditions which are known to induce differentiation to bradyzoites, resulted in 

increased phosphorylation of TgeIF2α (Sullivan et al., 2004).  A family of three 

potential eIF2α kinases has also been identified in Trypanosoma brucei (Moraes 

et al., 2007).  TbeIF2K2 was found to be active in vitro and able to 

phosphorylate the unusual eIF2α found in T. brucei.  TbeIF2K2 is a 

transmembrane glycoprotein that localises mostly to the flagellar pocket, 

suggesting a role in sensing protein or nutrient transport which is likely to be 

critical to an organism that relies on post-transcriptional control of gene 

expression to respond to different environmental conditions.  An eIF2α kinase 

(PfPK4) was previously identified in P. falciparum, initial characterisation 

showed PfPK4 possesses kinase activity and is expressed throughout the asexual 

cycle (Mohrle et al., 1997). 

1.9 Rationale for investigation of eIF2α kinases in P. 

falciparum and aims of this project 

As has been described above, the molecular mechanisms of a stress response in 

P. falciparum, and in particular those regulating the switch from asexual 

multiplication to differentiation into gametocytes are not understood (Dyer and 

Day, 2000).  Notably, the related apicomplexan parasite T. gondii has been 

shown to phosphosphorylate TgeIF2α in response to various stress stimuli, 

concomitant with differentiation to bradyzoites (Sullivan et al., 2004, 

Narasimhan et al., 2008).  In contrast, the microsporidium E. cuniculi, does not 

encode any eIF2α kinases (or other stress-response kinases), which may be an 

adaptation to its parasitic lifestyle (Miranda-Saavedra et al., 2007).  It is 

therefore of interest to investigate the extent to which malaria parasites may 

rely on eIF2α phosphorylation for stress-response and/or life cycle progression.   
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The analysis of the P. falciparum kinome published by this laboratory (Ward et 

al., 2004), in conjunction with experimental approaches (Dorin et al., 2005, 

Dorin et al., 1999), shows that the parasite does not possess SAPK homologues.  

Additionally MEK1/2 and ERK/ERK2 orthologues, which mediate mating type 

differentiation in yeast are not present in the P. falciparum kinome (Barr et al., 

1996).  In contrast, the P. falciparum kinome contains three kinases that cluster 

with eIF2α kinases on phylogenetic trees (Ward et al., 2004).  This is consistent 

with the evidence supporting a significant role for post-transcriptional regulation 

of stress response in Plasmodium, compared to yeast or mammalian cells 

(Coulson et al., 2004, Wirth, 2002, Bozdech et al., 2003).  

 

The aims of this project are as follows: 

• To express the three eIF2α kinase-related enzymes and the P. 

falciparum eIF2α orthologue in bacteria, and determine if the latter is a 

substrate for the protein kinases. 

• To determine the function of the PfeIF2α kinase-related enzymes in 

parasite development. 
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2 Materials and Methods 

2.1 Biological and chemical reagents 

Details of biological and chemical reagents and their suppliers, including 

oligonucleotide primers and antibodies, are provided in the appendix (6.1), 

followed by details the composition of buffers, solutions and media (6.2). 

2.2   Bioinformatics 

2.2.1   PfeIF2α 

BLASTP searches of the Plasmodium genome database PlasmoDB (Bahl et al., 

2003) using metazoan eIF2α sequences were used to identify PF07_0117, which 

was then confirmed by reciprocal analysis.  Alignment of these sequences was 

performed using ClustalW (Thompson et al., 1994).  Microarray data for gene 

expression (Le Roch et al., 2003) were taken from PlasmoDB (Bahl et al., 2003). 

2.2.2   P. falciparum eIF2α kinases  

Catalytic domains of the putative PfeIF2α kinases, defined by the alignment of 

P. falciparum kinases (Ward et al., 2004) were used to identify their closest 

human and P. berghei orthologues by BLASTP analysis.  These sequences were 

aligned either against a profile generated from our previous P. falciparum 

kinome analysis (for the alignment of sequences from all families of kinases) 

(Ward et al., 2004), or against the PKinase profile from Pfam (for the multi-

species alignment of eIF2α kinase sequences) using the HMMER package (Finn et 

al., 2006).  To analyse the relationships between sequences in the alignments, 

gaps and positions with a low quality of alignment were removed.  For the 

analysis of sequences from all families of kinases alternate phylogenies 

generated with the neighbour joining method were visualised using 

NeighbourNet implemented on SplitsTree version 4 (Huson and Bryant, 2006).  To 

analyse the relationships between diverse eIF2α kinases, the MEGA analysis 
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package (Kumar et al., 2004) was used to generate a neighbour joining tree.  

Microarray data for gene expression (Le Roch et al., 2003) were taken from 

PlasmoDB (Bahl et al., 2003).  Information on additional domains to the protein 

kinase domains was also taken from PlasmoDB (Bahl et al., 2003). 

2.3   Methods in molecular biology 

2.3.1   Polymerase chain reaction (PCR) 

Plasmodium genes were amplified from either cDNA or gDNA using the following 

PCR systems. 

2.3.1.1   Takara 

Reactions using the Takara Ex Taq polymerase contain 0.6 units Ex Taq, 1X Ex 

Taq buffer (2mM MgCl2), dNTPs (200μM each), 10-100ng template, 1μM each 

oligonucleotide in a final volume of 25μl.  PCR conditions were as follows: 

Initial denaturation: 3 minutes, 94oC 

30 - 32 cycles of: 

Denaturation: 30 seconds, 94oC 

Annealing: 30-45 seconds, 45-55oC 

Elongation: 1minute per kb to be amplified, 60 or 68oC 

Final elongation: 60 or 68oC, 10 minutes 

For addition of adenine overhangs for pGEM-T cloning of PCR products obtained 

with a proof-reading polymerase (which does not add adenine overhangs), Ex 

Taq buffer, dNTPs and Ex Taq polymerase (concentrations as above) were added 

to a purified PCR product, and incubated at 68oC for 10 minutes. 
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2.3.1.2   Phusion 

Where a proof reading polymerase was required, the Phusion polymerase 

(Finnzymes) was used.  Reactions contained 1X Phusion High Fidelity buffer, 

200μM each dNTP, 0.5μM each oligonucleotide, 10-100ng template DNA, 0.5U 

Phusion polymerase in a final volume of 25μl.  PCR conditions were as follows: 

Initial denaturation: 3minutes, 98oC 

30 cycles of: 

Denaturation: 10 seconds 98oC 

Annealing: 30 seconds, 50 - 55oC 

Extension: 30 seconds per kb to be amplified, 68oC 

Final extension: 10 minutes, 68oC 

2.3.1.3   Expand High Fidelity PCR system 

The Expand High Fidelity PCR kit (Roche) provided an alternative proof-reading 

system; it was set up in two master mixes.  The first mix contained 200μM each, 

dNTPs, 300nM each oligonucleotide, 10 - 100ng gDNA template in 12.5μl.  The 

second mix contained 1X reaction buffer, MgCl2 1.5 - 4mM, Expand High Fidelity 

enzyme mix, 1.3 units in 12.5μl.  12.5μl of each mix were then combined to 

produce a complete reaction mix in 25μl.  The MgCl2 concentration was 

increased where necessary to increase the yield, although at the expense of 

some fidelity.  The enzyme mix contained a Taq DNA polymerase and a Tgo DNA 

polymerase with proofreading activity.  PCR was carried out as follows:  

Initial denaturation: 2 mins 94oC 

Followed by 10 cycles of: 
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Denaturation: 30 seconds, 94oC 

Annealing: 30 seconds, 55oC 

Elongation: 1minute/kb to be amplified, 68oC 

20 cycles of  

Denaturation: 30 seconds, 94oC 

Annealing: 30 seconds, 55oC 

Elongation: 1 minute/kb to be amplified + additional 5 seconds for elongation at 

each subsequent cycle, 68oC 

Final elongation: 10 minutes, 68oC 

2.3.2   Reverse transcriptase PCR (RT-PCR) 

cDNA was prepared immediately after isolation of parasite RNA (2.5.9), using the 

SuperScript First -Strand Synthesis System (Invitrogen) as follows.  cDNA was 

prepared from total RNA and primed using random hexamers.  RNA samples were 

treated with DNase I (Invitrogen), prior to RT-PCR by incubating 1μg RNA sample, 

1μl 10X DNase I reaction buffer, 1μl DNase I, Diethylpyrocarbonate (DEPC)-

treated H2O to 10μl at room temperature (RT), 15 minutes.  DNase I was 

inactivated by addition of 1μl 25mM EDTA, 65oC, 10 minutes.  RNA/primer mixes 

contained up to 5μg total RNA, 50 ng random hexamers, 1mM dNTP and DEPC 

treated water to 10μl and were denatured at 65oC, 10 minutes.  Reaction mixes 

contained 2μl 10X Reverse Transcriptase buffer, 4μl, 25mM MgCl2, 0.1M DTT, 1μl 

RNaseOUT Recombinant Ribonuclease Inhibitor per reaction.  Annealing was by 

addition of 9μl reaction mix to each RNA/primer mix, incubation 25oC, 2 

minutes, followed by 1μl (50 units) of SuperScript II Reverse Transcriptase 

(except the no Reverse Transcriptase control) and incubation 25oC, 10 minutes.  

Reactions were incubated at 42oC, 50 minutes for cDNA synthesis and terminated 
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at 70oC, 15 minutes.  To improve sensitivity of subsequent PCR reactions RNA 

was removed from the cDNA:RNA hybrid molecules by addition of 1μl RNase H to 

each reaction, 37oC, 20 minutes.  cDNA was either stored at -20oC, or used 

immediately for PCR (2.3.1). 

2.3.3   Gene cloning techniques 

PCR products were either cloned directly into pGEM-T easy, using the adenine 

overhangs produced by the Taq (Takara) and High Fidelity (Roche) polymerases, 

or were digested using restriction sites in the oligonucleotide primers for direct 

insertion into vectors that had been digested to produce complementary sticky 

ends. 

2.3.3.1   pGEM-T easy cloning of PCR products 

PCR products carrying adenine overhangs at their 3’ ends were cloned into the 

pGEM-T easy vector (Fig. 2-1) (Promega), following manufacturer’s instructions.   
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Figure 2-1: Map of the cloning vector, pGEM-T Easy. 
 

2.3.3.2   Sub-cloning into destination vectors 

Inserts of verified pGEM T-easy clones were subcloned into the appropriate 

destination vector.  The inserts were removed from pGEM-T by digestion with 

the appropriate restriction endonucleases (2.3.7).  The destination plasmid was 

linearised using either the same restriction enzymes, or with enzymes to 

generate complementary sticky ends.  Both digests were separated by agarose 

gel electrophoresis, the fragments of interest excised from the gel and purified 

using the Qiagen Gel Extraction kit, according to manufacturer’s instructions.  

DNA was eluted in 30μl EB buffer. 

The insert and destination vector were ligated using T4 DNA ligase (Invitrogen).  

Molar ratios of vector to insert ranged from 3:1 - 1:3 and ligated either at RT for 

1-3 hours, or overnight at 16oC.  5μl of the ligation reaction was transformed 
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into thermocompetant E. coli XL-10 gold and plated on LB plates containing the 

appropriate antibiotics.  Single colonies were analysed by PCR screening 

followed by DNA miniprep (2.3.6) and restriction endonuclease digestion (2.3.7).  

Plasmids containing an insert of the correct size were verified by DNA 

sequencing. 

2.3.4  E. coli transformation 

5μl of a ligation reaction or 1μg of plasmid miniprep were transformed into 

thermocompetant E. coli by incubating for 5 minutes on ice, 30-42 seconds at 

42oC, followed by 2 minutes on ice.  Cells were mixed with an equal volume of 

2YT medium and plated into LB agar plates containing the appropriate 

antibiotic. 

2.3.5   Preparation of competent cells 

Thermocompetant E. coli were prepared using the modified Rubidium Chloride 

method.  A single colony of the required strain was inoculated into 5ml LB 

medium and grown overnight at 37oC, shaking (200rpm).  Overnight cultures 

were diluted 1:100 and grown at 37oC, shaking, to OD600 0.4 - 0.6.  Cells were 

pelleted by centrifugation at 4500 g, 4oC, 5 minutes, resuspended in 0.4 original 

culture volume of ice cold TFB1 and incubated on ice for 5 minutes.  Cells were 

centrifuged as before, gently resuspended in 0.04X the original culture volume 

of ice cold TFB2 and incubated on ice for 15 - 60 minutes.  Aliquots of 100μl 

were prepared, frozen on dry ice and stored at -80oC.   

2.3.6   Isolation of plasmid DNA from E. coli 

Plasmid DNA was isolated from E. coli in two different ways, depending on the 

amount of DNA required. 

For small scale isolations the Qiaprep Spin Miniprep kit (Qiagen) was used.  A 

single colony was inoculated into 5ml LB medium containing the appropriate 

antibiotic and grown overnight, 37oC, shaking (200 rpm).  Cells were pelleted by 
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centrifugation at 2300g, 5 minutes and plasmid DNA extracted according to 

manufacturers instructions.  DNA was eluted in 30μl EB and stored for further 

analysis. 

Relatively large amounts of plasmid DNA were required for transfection of P. 

falciparum; In this case the PlasmidMaxi kit (Qiagen) was used.  A 5ml culture 

was grown for 8 hours by inoculation of a single colony to LB medium containing 

the appropriate antibiotic.  This culture was diluted 1:100 to 250ml LB medium, 

plus antibiotic and grown overnight at 37oC, shaking (200 rpm).  Cells were 

collected by centrifugation at 3800g, 4oC for 20 minutes and DNA isolated 

according to manufacturers’ instructions.  DNA was eluted in 150μl H2O under 

sterile conditions and concentration assessed by spectrophotometric analysis 

(2.3.8). 

2.3.7   Restriction endonuclease digestion 

Plasmid DNA was routinely analysed by digestion with restriction endonucleases.  

Typically, reactions contained 2μl plasmid DNA, 8 units of restriction enzyme 

and 2μl of the appropriate 10X buffer in a total volume of 20μl, and were 

incubated at 37oC for > 1 hour.  10μl of the reaction was mixed with DNA loading 

buffer and separated by agarose gel electrophoresis. 

2.3.8   Determining DNA and RNA concentration 

The concentration of nucleic acid solutions was assessed by measuring the A260 in 

a spectrophotometer.  An absorbance of 1 corresponded to 50μg/ml of DNA, or 

40 μg/ml of RNA.  The ratio of A260/A280 was used to assess the purity of the 

samples; for DNA the further the value from 1.8, the greater the level of 

impurities, likewise for RNA where a pure sample has a ratio of 2.0. 

2.3.9   DNA Sequencing 

DNA was sequenced by The Sequencing Service, University of Dundee 

(www.dnaseq.co.uk), using Applied Biosystems Big-Dye version 3.1 chemistry on 

http://www.dnaseq.co.uk/
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an Applied Biosystems model 3730 automated capillary DNA sequencer.  

Sequencing reactions required 200 - 300ng plasmid DNA and 3.2 pmoles 

sequencing primer per reaction. 

2.3.10   Agarose gel electrophoresis 

DNA was analysed on 0.8 - 1% agarose gels, prepared in 1X TAE at 110V for > 30 

minutes.  DNA was visualized by exposure to UV light following incorporation of 

Ethidium bromide into the gel.  When bands were to be excised for purification 

and cloning, SybrSafe was used instead of Ethidium bromide.   

2.3.11   Southern Blotting 

2μg P. falciparum gDNA were digested overnight with the appropriate restriction 

endonucleases.  Digested DNA was separated on 0.8% agarose gels, 80V 15 

minutes followed by 23 - 30V, 16 - 24 hours.  Gels were incubated in 

depurination solution for 10 minutes, rocking, room temperature (RT) and 

washed briefly in dH2O.  Next, gels were incubated in denaturation solution for 

25 minutes, rocking, RT, and washed as before.  Finally gels were incubated in 

neutralization solution for 30 minutes, rocking, RT and washed.  DNA was 

transferred to N+ Hybond membrane by capillarity, in 10X SSC overnight.  The 

blot was constructed by layering three pieces of filter paper (whose ends are 

immersed in 10X SSC), the gel, Hybond N+ membrane (cut to fit the gel), three 

further pieces of filter paper, a thick pad of absorbent paper towels, and finally 

a weight.  The filter paper and membrane were previously soaked in 10X SSC.  

After transfer membranes were washed in 2X SSC for 5 minutes, RT and air dried 

on Whatman paper.  DNA was crosslinked to the membrane using UV light.   

To analyse the Southern blot the Gene Images AlkPhos Direct Labelling and 

Detection System were used (GE Healthcare).  The probe was labelled with a 

thermostable alkaline phosphatase enzyme according to manufacturers’ 

instructions as follows.  10μl DNA (gel purified PCR product at 5 - 10ng/μl) was 

denatured at 100oC for 5 minutes, cooled immediately on ice and collected by a 

brief spin.  10μl reaction buffer, 2μl labelling reagent, and 10μl of the 
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crosslinker working solution were added sequentially, mixing gently after each 

addition.  The reaction was incubated at 37oC for 30 minutes; labelled probes 

were used immediately or stored at -20oC with 50% glycerol (v/v).   

The membrane was blocked in pre-warmed hybridization solution at 55oC for > 2 

hours, rotating.  The probe (prepared as above) was added to the hybridization 

solution and hybridized overnight at 55oC - 60oC (as determined for the probe 

used), rotating.  After hybridisation, the membrane was washed twice with 

primary wash at 55oC, >15 minutes each, and twice with secondary wash at RT, 

>5 minutes each.  Detection was with the CDP-Star chemiluminescent detection 

reagent, which uses the probe bound alkaline phosphatase to catalyze the 

decomposition of a substrate in a light-producing reaction.  Membranes were 

incubated with CDP-Star reagent RT for 5 minutes and exposed to 

autoradiography film ~1hour, RT. 

2.4   Methods in Biochemistry 

2.4.1   Sodium dodecyl sulphate polyacrylamide gel electrophesis 

(SDS-PAGE) 

Proteins were separated by polyacrylamide gel electrophoresis (PAGE) as 

described by Laemmli (1970).  Gels were prepared with between 6% and 15% 

acrylamide according to the molecular weight of the protein of interest (low 

percentage acrylamide for high molecular weight proteins and vice versa).  Gels 

were composed of a mixture of dH2O, 30% acrylamide mix (Biorad), 1.5M Tris 

(pH 8.8), 10% SDS, 10% ammonium persulphate and were polymerized by 

addition of TEMED; proportions for the appropriate percentage gel are as 

described by Sambrook & Russell (Sambrook).  Stacking gel consists of the same 

mixture, apart from the Tris, which is 1.0M (pH 6.8); proportions required for 5% 

gel are described by Sambrook & Russell (Sambrook). 

Protein samples were prepared by addition of 4X Laemmli buffer and denatured 

at 100oC for 5 minutes.  Samples were loaded and separated in TGS at 80V for 10 

minutes, followed by 180-200V until the required separation was achieved 
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(approximately 45 minutes).  Gels were then stained with Coomassie blue (2.4.2) 

or analysed by western blot. 

2.4.2   Coomassie blue staining of polyacrylamide gels 

Gels were removed from the casting plates and immersed in Coomassie stain for 

at least 15 minutes (rocking) at room temperature, after which the stain was 

replaced with destain solution for 2 or more hours, until the background staining 

was removed. 

2.4.3   Western blotting 

Proteins separated by SDS-PAGE were transferred to a nitrocellulose membrane 

using the Biorad Criterion wet transfer system.  Gels were assembled in a stack 

composed of sponge, two layers of filter paper, the gel, the membrane, two 

further layers of filter paper and lastly a sponge.  Before assembling, all 

components were immersed in the appropriate transfer buffer and care was 

taken to exclude air bubbles.  Transfer was carried out on ice, at 30V overnight 

for high molecular weight proteins, or 100V for one hour for low molecular 

weight proteins.  After transfer was complete, gels were stained with Coomassie 

(2.4.2) to assess transfer efficiency.  Membranes were blocked in 5% (w/v) non-

fat milk in PBS for at least 30 minutes, RT (or 4oC overnight).  Primary antibodies 

were diluted in 5% milk in PBS (according to Table 5-3, appendix) and incubated 

for at least 1 hour, RT (or 4oC overnight).  Membranes were then washed three 

times for at least 10 minutes with PBS containing 0.05% Tween20.  Secondary 

antibodies conjugated to HRP, (specific for the animal in which the primary 

antibody was raised) were diluted in 5% milk (according to Table 6-4, appendix) 

and incubated with the membrane for at least 45 minutes, RT.  Three further 

PBS/Tween20 washes were carried out (as before) before detection.  Equal 

volumes of the two detection reagents (enhanced luminol reagent and oxidizing 

reagent) were mixed and added to the membrane.  The reaction catalysed by 

the HRP produced light at 482nm, (by oxidative degradation of luminol) which 

was detected on autoradiography film (Kodak). 
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2.4.4   Determining protein concentration 

The concentration of protein solutions (parasite extract or recombinant protein) 

was determined by the Bradford assay.  The absorbance of a protein solution 

mixed with Bradford reagent (Biorad) was measured at 595 nm and the protein 

concentration determined by comparison to a reference curve of BSA of known 

concentration.   

2.4.5   Generation of polyclonal antibodies 

Specific peptides were selected in collaboration with Biogenes, to maximize 

immunogenicity whilst minimizing cross reactivity with other P. falciparum 

proteins.  The peptides were synthesized and used to immunise rabbits 

according to their standard protocol.  Resulting sera and immunopurified IgGs 

were tested on parasite extract and recombinant protein, (where available).   

2.4.6   Expression of recombinant proteins 

The appropriate E. coli strain was transformed with the expression vector for the 

protein in question.  A single colony was used to inoculate a 10ml overnight 

culture in LB medium containing the appropriate antibiotic.  For IPTG induction, 

the overnight culture was then diluted 1/100 into LB medium containing 

antibiotic and grown at 37oC, shaking (200 rpm) until OD600 0.5 - 0.6 when the 

temperature was reduced to the temperature to be used for expression (15 - 

30oC).  Expression was induced by addition of IPTG to the appropriate 

concentration once the bacteria reached an OD600 of 0.6 - 0.8.  Autoinduction 

has been reported to yield several fold more target protein than standard IPTG 

induction (Studier, 2005).  Overnight cultures were diluted 1/100 into 

autoinduction medium (Table 6-8, appendix), containing antibiotic and grown at 

15 or 30oC for 24 or 48 hours.  After the appropriate induction time had elapsed, 

cells were collected by centrifugation at 3800g, 4oC for 30 minutes, the 

supernatant discarded and the pellets stored at -20oC until use. 



Clare Fennell, 2008   Chapter 2 51 

2.4.7   Purification of tagged recombinant proteins 

2.4.7.1   GST tag 

Bacterial pellets were thawed on ice in lysis buffer 1 (Table 6-7, appendix) (1ml 

per 50ml bacterial culture) containing 1mg/ml lysozyme, and DNase (2 units per 

50ml bacterial culture), and resuspended by pipetting and vortexing 

intermittently over a 30 minute period.  Cells were disrupted by sonication at 

20% amplitude (Bioblock Scientific, Vibracell 72405), 15 seconds on, 15 seconds 

off, on ice, until the viscosity was reduced.  The disrupted bacteria were 

centrifuged at 11,000g, 4oC for 30 minutes, and the resulting supernatant used 

for purification of soluble proteins.  Prior to use, glutathione-agarose beads 

were hydrated in lysis buffer 1 for at least 1 hour, and washed 4 times in the 

same buffer, by centrifugation at 60g, 1 minute.  The cleared lysate was then 

incubated with the prepared beads (100μl of a 50% slurry, per 50 ml bacterial 

culture) and fresh PMSF to 1mM, 4oC, rotating, 1 ½ - 2 hours.  Beads were 

recovered by centrifugation as before, and washed four times with cold lysis 

buffer 1, containing fresh PMSF (1ml buffer per 50ml bacterial culture), and 

once with elution buffer without glutathione (Tris 50mM, pH 8, NaCl 75mM).  

Bound proteins were then eluted by rotation at 4oC, 20 minutes in elution buffer 

containing 15mM reduced glutathione (100μl per 50 ml culture)(Sigma), and the 

supernatant recovered by centrifugation as before.  Protein concentration was 

measured (2.4.4) for immediate use in kinase assays 

2.4.7.2   His tag 

Purification of His tag proteins followed the method described for GST-tagged 

proteins, section 2.4.7.1, except i) lysis buffer 2 (Table 6-7, appendix) replaced 

lysis buffer 1, ii) nickel-agarose beads replaced glutathione-agarose beads, (80μl 

of 50% bead slurry per 50ml bacterial culture), iii) after binding of proteins to 

the beads two washes were performed with lysis buffer 2, containing 10mM 

imidazole, followed by two washes containing 40mM imidazole, iv) finally, beads 

were washed once in elution buffer (50mM Tris-HCl, pH 8, 400mM NaCl) before 

elution in elution buffer containing 400mM imidazole. 
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2.4.8   Immunoprecipitation 

Parasites pellets prepared by saponin lysis (2.5.7) were lysed in ice cold RIPA 

buffer (Table 6-7, appendix) (150μl buffer per ~ 100μl parasite pellet), by 

sonicating for 3 seconds at 20% amplitude (Bioblock Scientific, Vibracell 72405).  

Lysates were cleared by centrifugation at 11,000g, 4oC for 30 minutes.  Protein 

concentration of the resulting supernatant was measured with the Bradford 

assay (2.4.4) and adjusted to 1mg/ml.  Parasite proteins were bound to the 

specific antibody by incubation with 1.5μg antibody per 100μg parasite protein, 

on ice for 2 hours.  During this time protein A -Sepharose beads (GE Healthcare) 

were washed four times in RIPA buffer.  The target protein-antibody complexes 

were then bound to the washed beads (10μl 50% bead slurry, per 100μg parasite 

protein) by rotation at 4oC for 1 ½ hours.  Beads were washed three times in ice 

cold RIPA buffer by centrifuging at 1000g for 15 seconds at 4oC, and then once 

with RIPA buffer containing 0.1% SDS.  At this stage, for western blot analysis the 

beads were resuspended in Laemmli buffer, or, for kinase assay, beads were 

washed once more in kinase buffer (Table 6-7, appendix), before resuspension in 

20μl kinase buffer for assay in the standard reaction mix (2.4.9).  

2.4.9   Kinase assay 

Kinase reactions (30μl) were carried out in a standard kinase buffer (Table 6-7, 

appendix) using <1μg recombinant kinase, or the immunoprecipitate from 100μg 

parasite proteins, and <10μg recombinant or artificial substrate (α-casein, β-

casein, myelin basic protein (MBP) or histone H1).  Reactions were allowed to 

proceed for 30 minutes at 30oC and were stopped by addition of reducing 

Laemmli buffer, 3 minutes at 100oC.  Phosphorylation of kinase substrates was 

assessed by autoradiography of dried SDS-PAGE gels. 
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2.5   P. falciparum culture 

2.5.1   Asexual stage culture 

P falciparum clone 3D7 was cultured as previously described (Trager and Jensen, 

1976), (Lin et al., 1996).  In brief, asexual cultures were maintained in complete 

RPMI 1640 at a haematocrit of 5%.  Cultures were maintained at 37oC, under an 

atmosphere of 5% CO2, 1% O2, 96% N2.  The parasitaemia (percentage of infected 

erythrocytes) was kept between 0.5% and 10%; medium was changed every other 

day at low parasitaemias (<4%) (Kim et al., 2007), or every day at higher 

parasitaemias.  Parasitaemia was determined by counting the infected 

erythrocytes in Giemsa stained blood smears.  Smears were fixed in ethanol for > 

30 seconds followed by staining with Giemsa diluted 1/10 in Giemsa buffer for 

10 -20 minutes.  Stained blood smears were analysed by light microscopy. 

2.5.2   Synchronisation of parasite culture 

Parasites were synchronized using sorbitol according to Lambros and Vanderberg 

(Lambros and Vanderberg, 1979).  Cultures containing a high proportion of ring 

stage parasites were used for synchronization.  The culture was centrifuged at 

680g for 2 minutes, RT and the supernatant discarded.  The pellet was 

resuspended in 10 pellet volumes of 5% sorbitol, incubated for 10 minutes at RT 

and centrifuged as before, and sorbitol discarded.  The pellet was washed by 

resuspending in 10 pellet volumes of warm complete medium and centrifuging.  

Finally the pellet was resuspended in the appropriate volume of warm RPMI 

complete medium and cultured as described above (2.5.1).  If necessary the 

process was repeated after 48 hours at the next ring stage of the cycle.   

2.5.3   Preparation of gametocytes 

Gametocyte cultures were set up at 0.5 - 0.7% parasitaemia in 6% haematocrit, 

in an initial volume of 15ml, to give 25ml final volume in 75cm2 flasks.  Cultures 

were maintained as normal for 4-5 days until 8-10% parasitaemia was reached 

and parasites appeared stressed, (judged by the presence of mis-shaped ring 
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stage parasites) after which the volume was increased to 25ml and medium 

changed daily until day 15 after set up, when mature gametocytes were present. 

2.5.4   Mosquito infection 

Feeding of gametocytes to mosquitoes was carried out by the Ranford-Cartwright 

lab, as described previously (Carter et al., 1993).  Briefly, a mixture of day 14 

and day 17 gametocytes was resuspended in fresh blood (and heat inactivated 

serum) to give a final packed cell volume of 40%.  The mixture was fed to 5-7 

day old mosquitoes that had not previously fed on blood, and had not been given 

glucose overnight to encourage a good blood meal to be taken.  After the feed, 

the mosquitoes were maintained at 26oC, and supplied with ample glucose/PABA 

solution (Table 6-10, appendix).  Mosquitoes were dissected and midguts 

examined for oocysts 10 days post feeding, and salivary glands for sporozoites 16 

days post feeding.  The significance of infection prevalence variation between 

comparable clones, or between oocyst and sporozoite positive mosquitoes was 

assessed using Fisher’s exact test.  

2.5.5   Preparation of stabilates 

Frozen parasite stabilates were prepared using 3-5ml cultures containing >2% 

ring stage parasites.  Erythrocytes were pelleted by centrifugation at 850g, RT, 5 

minutes and supernatant discarded.  The pellet was resuspended in an equal 

volume of deep-freeze solution, transferred to a cryovial (0.5ml maximum per 

tube) and stored in liquid nitrogen. 

2.5.6   Thawing of stabilates 

Stabilates were removed from liquid nitrogen and thawed at room temperature 

before transferring to a 15ml tube, measuring the volume of blood.  0.2 volumes 

of solution A (Table 6-9, appendix) were added dropwise, mixing constantly, 

then allowed to stand for 3 minutes.  10 volumes of solution B (Table 6-9, 

appendix) were added, dropwise and mixed well by pipetting.  Cells were 

pelleted by centrifugation at 850g, RT for 5 minutes and the supernatant 
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discarded.  Cells were resuspended by dropwise addition of the same volume of 

solution C (Table 6-9, appendix) as solution B, and mixed well.  Cells were 

centrifuged as before, supernatant discarded and resuspended in 3ml warm 

(37oC) RPMI 1640 complete medium, adding fresh erythrocytes to obtain a 

haematocrit of 5%.  Once cultures reached >2% parasitaemia they were diluted 

to 5ml, and the appropriate drug selection applied. 

2.5.7   Isolation of parasites from infected erythrocytes 

Parasite harvest was by saponin lysis (Umlas and Fallon, 1971); erythrocytes 

were pelleted by centrifugation at 1300g, RT for 2 minutes and washed once in 

one culture volume of cold PBS, centrifugation 1300g, 4oC for 2 minutes.  Cells 

were lysed on ice, by repeated pipetting in 1/3 culture volume cold saponin 

(0.15% (w/v) in PBS).  After lysis PBS was added to a total of 2 culture volumes 

and parasites recovered by centrifugation 5500g, 5 minutes, 4oC.  After two 

further PBS washes, discarding the final wash, pellets were stored at –80oC. 

2.5.8   Extraction of parasite genomic DNA 

After saponin lysis the parasite pellets were resuspended in approximately 5 

pellet volume proteinase K (150μg/ml)/SDS (2%) and incubated at 55oC for 2 - 12 

hours.  DNA was extracted by addition of an equal volume of Phenol: 

Chloroform: Isoamyl alcohol (25:24:1) saturated with 10mM Tris, pH 8, 1mM 

EDTA (Sigma).  Tubes were inverted repeatedly to mix gently and centrifuged at 

16,000g, RT for 5 minutes.  The top aqueous layer was transferred to a new tube 

leaving protein at interface; an equal volume of Phenol: Chloroform: Isoamyl 

alcohol was added, inverted to mix and centrifuged as before.  Phenol 

extraction was repeated twice more.  After the final aqueous layer was removed 

to a new tube 0.1 volume of 3M sodium acetate (pH 5.2) was added and DNA 

precipitated in 2 - 4 volumes of ethanol, -20oC, >30 minutes.  DNA was obtained 

by centrifugation at 16000g for 15 minutes, and discarding the supernatant.  

Pellets were dried briefly and resuspended in dH2O. 



Clare Fennell, 2008   Chapter 2 56 

2.5.9   Extraction of parasite RNA 

After saponin lysis parasite pellets were resuspended in 10 pellet volumes Trizol 

and stored at -80oC until use.  The Trizol/parasite suspension was thawed on ice, 

2 pellet volumes of RNase free Phenol:Chloroform: Isoamylalcohol (25:24:1) 

were added, shaken for 15 seconds and incubated, RT for 3minutes.  The 

mixture was centrifuged 9000g, 4oC, 30 minutes and the aqueous layer removed 

to a fresh tube.  Isopropanol was added at a ratio of 6:5 (supernatant: 

isopropanol) and incubated on ice for > 2 hours.  RNA was pelleted by 

centrifugation at 12000g, 4oC for 30 minutes and the supernatant discarded.  

Pellets were washed by adding 500μl cold 75% ethanol (in DEPC treated water) 

and centrifuging 12000g, 4oC for 5 minutes before drying with tubes inverted for 

5 minutes.  RNA was resuspended in 20μl dH20 and incubated at 60oC, 10 minutes 

and placed on ice.  Concentration was assessed by measuring the absorbance, as 

described (2.3.8). 

2.5.10   Protein preparation from parasites 

Where a total protein mixture was required parasite pellets were lysed directly 

by addition of Laemmli buffer and boiled, 100oC for 5 minutes.  In some 

instances, for western blot analysis, parasite pellets were resuspended in 

parasite solubilisation buffer (Table 6-7, appendix), before adding Laemmli 

buffer, and proceeding as before.  To prepare parasite protein extracts for 

immunoprecipitation, parasite pellets were resuspended in ice cold RIPA buffer 

(Table 6-7, appendix, 200μl per 25ml parasite culture at 6-10% parasitaemia) 

and sonicated at 20% amplitude (Bioblock Scientific, Vibracell 72405), for 3 

seconds.  The resulting lysate was cleared by centrifugation at 11,000g, 4oC for 

30 minutes, and protein content quantified as described (2.4.4). 

2.5.11   Transfection 

The method of transfecting erythrocytes infected with ring stage parasites, at a 

parasitemia of 4 - 6% was used (Crabb and Cowman, 1996).  For each 

transfection, a 3ml culture was pelleted by centrifugation at 1000g, RT for 4 
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minutes, and washed by resuspending in 3ml cytomix buffer (Table 6-9, 

appendix) and centrifuged as before.  100μg of plasmid DNA was suspended in 

100μl cytomix buffer and used to resuspend the washed parasite pellet, further 

cytomix buffer was added to a total volume of 400μl.  This mixture was 

electroporated in a cold 2mm cuvette, 310V, 950μF (time constant ~10ms for 

good transfection efficiency).  The mixture was transferred to a culture flask by 

mixing with 2ml RPMI 1640 complete medium; a further 3ml fresh uninfected 

erythrocytes, RPMI mix (4% haematocrit) was added.  Medium was changed 3-4 

hours after transfection, and the following day with complete medium.  From 

the second day post transfection media containing the selection drug (Blasticidin 

2.5μg/ml) was used.  0.1ml fresh erythrocytes were added once per week, until 

parasites were detectable on Giemsa stained slides, usually ~21 days post 

transfection, after which cultures were maintained as normal for asexual 

parasites (2.5.1). 

2.5.12   Cloning of parasites by limiting dilution 

Parasites were cloned as previously described (Kirkman et al., 1996).  Briefly, 

the erythrocyte number of a culture containing 3% parasitized erythrocytes was 

determined and diluted in RPMI 1640 complete medium so that 10ml contained 

106 cells.  Three tubes of 15ml medium were prepared at 1% haematocrit, to 

these, 6.25, 12.5 and 25μl of the 10ml containing 106 cells were added.  Each 

mixture was transferred to one third of a 96 well plate, 200μl per well, to give 

36 wells with a probability of 0.25, 0.5 or 1 parasite per well, respectively.  

After 5-6 days the medium was changed.  After another 5-6 days the medium 

was changed using medium containing 1% erythrocytes and the selection drug.  

Around day 15 the plates were monitored by both the lactate dehyrogenase 

assay (2.5.12.1), and careful blood smears to ascertain which wells contained 

parasites.  Positive wells were transferred to 12 well plates, (2ml culture, 5% 

haematocrit) and monitored by blood smear until appropriate to transfer to 5ml 

cultures and cultured for further analysis. 
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2.5.12.1   Plasmodium lactate dehydrogenase assay 

Plasmodium LDH (pLDH) can be distinguished from human LDH by its ability to 

use the 3-acetyl pyridine analog of NAD (APAD+) in the conversion of lactate to 

pyruvate.  pLDH activity can be measured in lysed blood samples of 0.2-10% 

parasitemia.  A mix was prepared of 100μl Malstat reagent, 10μl Diaphorase 

(1mg/ml) and 10μl NBT per well, to which 20μl culture suspension was added.  

Plates were incubated at RT for 20 minutes and monitored by eye for colour 

change; wells containing parasites change to purple (Makler and Hinrichs, 1993, 

Makler et al., 1993). 

2.5.13 Parasite growth rate analysis, by flow cytometry 

Parasite growth rate analysis was carried out in the Goldberg lab by flow 

cytometry (Liu et al., 2005), using a protocol adapted from Barkan Ginsburg et 

al. 2000 (Barkan et al., 2000).  In brief, samples of asynchronous parasite 

cultures were acquired every 30 minutes for ~4days and fixed in 0.05% 

glutaraldehyde in PBS and stored at 4°C.  The DNA content of the cells was 

measured by permeabilizing with 0.25% Triton X-100 in PBS for 5 minutes at 

room temperature followed by staining with 5μg/ml propidium iodide (Molecular 

Probes, Eugene, USA).  The cells were then diluted 10-fold in PBS and analyzed 

using an Epics XL-MCL flow cytometer (Beckman). 1x105 erythrocytes were 

counted in triplicate for each sample. Data were analyzed using FlowJo software 

(Treestar Inc., Ashland, USA). 
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3 Eukaryotic initiation factor 2α kinases in P. 

falciparum: bioinformatic and biochemical 
characterisation 

3.1   Identification of P. falciparum eukaryotic initiation 

factor 2α 

BLASTP searches of PlasmoDB using metazoan eIF2α sequences were used to 

identify PF07_0117 as the P. falciparum orthologue, which was confirmed by 

reciprocal analysis.  The alignment of P. falciparum eIF2α with sequences from 

T. gondii, human and rice is shown in Figure 3-1.  Overall, the P. falciparum 

sequence shares ~70%, ~ 50%, ~ 40% and ~28% identity with those of T. gondii, 

Homo sapiens  and Oryza sativa (rice) and E. cuniculi, respectively.  

Importantly, the serine residue (Ser 51 in the human orthologue) that is targeted 

for phosphorylation by eIF2a kinases is conserved in all species.  Furthermore, 

eIF2α contacts the kinase through a large number of residues that interact with 

the surface of the kinase domain.  These residues are also conserved in most 

species, as are the residues that protect the regulatory serine from the activity 

of other kinases (Dar et al., 2005); interestingly, several of these are not 

conserved in the E. cuniculi orthologue, which is consistent with the absence of 

eIF2α kinases in this organism (Miranda-Saavedra et al., 2007). 

Pf   MEGMILMSELSKRRFRSVNKLIRVGRHEVVLVLRVDSQKGYIDLSKRRVSPKDIIKCEEK   108 
Tg   MEGMILMSELSKRRFRSVNKLIRVGRHEVVMVLRVDPKKGYIDLSKRRVSPEDIVKCEEK   120 
Mm   IEGMILLSELSRRRIRSINKLIRIGRNECVVVIRVDKEKGYIDLSKRRVSPEEAIKCEDK   100 
Hs   IEGMILLSELSRRRIRSINKLIRIGRNECVVVIRVDKEKGYIDLSKRRVSPEEAIKCEDK   100 
Os   IEGMILYSELSRRRIRSIPSLIKVGRQEPAVVLRVDHDKGYIDLSKRRVSHHDRRTCEDR   102 
Ec   LEGLVLLGELSKRRVRSIQQVTKVGNIEICNVLKVDEGRGYIDLSMSKVTENEKSECRET   101 
     :**::*  ***:** **:  : ::*  *   *::**  :******  :*:  :   * :        

Figure 3-1: Alignment of eIF2α sequences. 
Sequences surrounding the conserved regulatory serine are shown (P. falciparum numbering: M49 
- K108).  The black highlighted residue marks the serine that when phosphorylated exerts the 
regulatory effect on translation.  Blue highlights indicate residues involved in contacting the kinase 
domain; pink highlights indicate conserved residues that protect the phosphorylation site from the 
activity of other kinases.  Asterisks (*) indicate the residue is identical in all sequences, colons (:) 
indicate conservation of residue properties.  Pf; P. falciparum, Tg; T. gondii; Mm; Mus musculus, 
Hs; Homo sapiens, Os; Oryza sativa, Ec; Encephalitozoon cuniculi. 
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3.2   Identification of eIF2α kinases in P. falciparum 

3.2.1   In silico analysis 

The phylogenetic analysis of the full complement of P. falciparum kinases 

published by this laboratory in 2004 (Ward et al., 2004) identified a distinct 

cluster of three sequences, PF14_0423, PFA0380w and PFF1370w, the latter of 

which (called PfPK4) had previously been characterised as encoding an eIF2α 

kinase (Mohrle et al., 1997).  Reciprocal BLASTP analysis using the putative 

catalytic domains as queries confirms the relatedness of these three genes with 

the eIF2α kinase family (not shown).  In order to identify kinase families in 

phylogenetic clusters, the Ward et al. analysis contained a number of human 

kinase sequences in addition to the P. falciparum sequences; however, these did 

not include any human eIF2α kinases.  With help from Jon Wilkes, the 

bioinformatician at the Wellcome Centre for Molecular Parasitology, I therefore 

sought to extend this analysis by using a Hidden Markov Model to align the three 

putative PfeIF2α kinases with the four human eIF2α kinases; sequences from 

other kinase families were included as outgroups.  The resulting alignment was 

used to generate a phylogenetic tree (Fig. 3-2), which clearly shows that the 

three P. falciparum genes do indeed cluster with sequences of the eIF2α kinase 

family, as opposed to other families. 
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Figure 3-2: Phylogenetic tree showing the clustering of eIF2α kinases. 
Sequences were selected from across the kinase superfamily to investigate whether the proposed 
P. falciparum eIF2α kinases cluster with other members of the eIF2α kinase family.  Sequences 
were aligned using the HMMER package against a profile generated from our previous kinome 
analysis (Ward et al., 2004).  After removal of gaps and positions with a low qualify of alignment, 
alternate phylogenies generated with the neighbour joining method were visualised using 
NeighbourNet implemented on SplitsTree version 4 (Huson and Bryant, 2006). The three P. 
falciparum sequences are boxed in red, brackets indicate kinase families. 

 

To more closely investigate the relationship between the three PfeIF2α kinases 

and other members of the family, I selected sequences of eIF2α kinase catalytic 

domains from diverse species, and aligned them against the Pfam protein kinase 

domain (Pfam entry PF00069) using the HMMER package; human aurora kinase 

and CDK2 were included as outgroups (Fig. 3-3).  The crystal structures of PKR in 

complex with eIF2α and of GCN2 have been solved, revealing that helix α-G is 

longer, and in an abnormal position in eIF2α kinases, when compared to other 

kinases (Dar et al., 2005) (Padyana et al., 2005, Mathews, 2007).  By comparison 

to the structure-based alignment produced by Dar et al. 2005, Figure 3-3 

suggests that the PfeIF2α kinases, and indeed all other eIF2α kinases considered 



Clare Fennell, 2008   Chapter 3 62 

here, share the non-canonical α-G helix that is critical for the binding of eIF2α, 

illustrated in Figure 3-4.  The conserved Thr and Glu at the N-terminus of helix 

α-G (Fig. 3-3) were found to interact with each other to stabilise the structure 

of this helix (Dar et al., 2005).  All eIF2α kinases are required to interact with 

eIF2α; conservation of the size and position of helix α-G in the eIF2α kinases is 

consistent with such an interaction as this helix is responsible for both 

positioning the phosphoacceptor Ser51 towards the catalytic cleft of the kinase, 

and allowing the interaction to proceed without distortion of other regions of 

either the kinase or eIF2α (Dar et al., 2005). 

 

                                           I                         II 
                       ∨∨∨   *      * ** * *      ∨∨       ∨    *∨             
PfeIK1   -------keiiemnsryyrdFFEEKILGCGGFGYVMKVKNKKFNI----TYAL--KIIRLS--   463 
PfeIK2   ---------dksipyqmlanLQNEYYLSKGNNNK----MNITTTY----LYMKirKILNKY--   161 
PfPK4    -------ladflengrflrtFENISLIGQGGFGSVYKVSHRLEPGs--pTYAV--KFIYLK--  2182 
PbeIK1   -------kelinkysryyrdFSEESVLGCGGFGYVMKVKNKKFNI----AYAV--KKITLS--   448 
PbeIK2   qrskkhyftkcgilntekvkPSKKRRIG-------WDGQRQRKRK-12-MFCK--NKEKKE--   459 
PbPK4    -------ladflengrftrtFQNISLIGQGGFGSVYKVSHRLEPGs--pTYAV--KFIYLKvs   357 
TgIFKA   -------lakllengrfertFAIQKLVGQGGFGVVYQVRHLLEPGh--pIYAV--KLILLR--  4043 
TgIFKB   -------snptlssqrlckdFTSVVVAGRGGCGRVLKATHVLDGQ----TYAI--KEIKFA-a   305 
hPKR     -------etkytvdkrfgmdFKEIELIGSGGFGQVFKAKHRIDGK----TYVI--KRVKYN--   301 
hHRI     -------valeaqtsrylneFEELVILGKGGYGRVYKVRNKLDGQ----YYAI--KKILIK--   201 
hPERK    -------iknsgyisryltdFEPIQCLGRGGFGVVFEAKNKVDDC----NYAI--KRIRLP--   626 
hGCN2    -------setqrqfsryfieFEELQLLGKGAFGAVIKVQNKLDGC----CYAV--KRIPIN--   624 
ScGCN2   -------sinpatrsryasdFEEIAVLGQGAFGQVVKARNALDSR----YYAI--KKIRHT--   633 
DdIFKA   -------ydmfryhsryrtdFEEIEMIGKGGFGVVVKSRNKLDCR----YYAI--KKIKTK--   928 
DdIFKB   -------------------m------IGKGGFGVVVKSRNKLDCR----YYAI--KKIKTK--    30 
DdIFKC   -------tinphqqsryhsdFEEIQLLGRGGFGQVVKVRNKLDGR----YYAI--KKIKLD--   528 
AtGCN2   -------pnaslpssrylndFEELKPLGQGGFGHVVLCKNKLDGR----QYAV--KKIRLK--   459 
TbeIFK1  -------tfrrvsagryrseFIEQCLLGSGGFAPVYVCRKKVDGR----LYAV--KKIAIR--   309 
TbeIFK2  ---------ttpmpqlfqqhFDVLKKIGRGGEGNVFCVKHQVTGA----MYAI--KAVRIR--   660 
TbeIFK3  -------nfmsgkqsffdenFDVLMILGSGASGVVLLTRHRVTGV----LYAV--KVLIVR--   575 
Aurora   -------gamgskrqwaledFEIGRPLGKGKFGNVYLAREKQSKF----ILAL--KVLFKA--    48 
CDK2     -----------------menFQKVEKIGEGTYGVVYKARNKLTGE----VVAL--KKIRLD--    38 
 
 
 

                              III               IV                      V 
                            *∨    ∨     ∨     ∨  ∨∨                  
PfeIK1   NSKYNTQTNNKHIn-7-iMEEAIMiAKL-Q-HENIVRYYDAWVEenvdffl…//82//…-nkd   600 
PfeIK2   SKRNEEKK-----------NILKG-KYCyN-NGNFALLSYINKK-------…//16//…--nk   211 
PfPK4    VSSL-DNVSSRRY----fREIAAN-RDI-Y-SKHVVRYYTWWCEepqflp…//536//…kktp  2764 
PbeIK1   INKYNNHIKKNSKh-26-EEVIMI-AKL-Q-HENIVRYYDAWVEnnidyyl…//39//…nken   561 
PbeIK2   ENYKKIDTN--------------I-SQF-S-EKNPVSNIDNEKNkqnfi-------------k   492 
PbPK4    SLDNVNSRRYFR-------EIAAN-RDI-Y-SKHVVRYYTWWCEepqflp…//342//…kknv   743 
TgIFKA   LTLS-EDISLRRD-----REVAAN-RDL-Y-SKHVVRYYTWWCEeprflp…//599//…ppak  4688 
TgIFKB   NREHLDAHMAVFL-----REVLCL-RRL-DaHPNIVRYFNSWVEvspppl…//977//…cern  1276 
hPKR     NEKAER-------------EVKAL-AKL-D-HVNIVHYNGCW-Dgfdydpe…//15//…-skn   353 
hHRI     GATKTVCMKVLR-------EVKVL-AGL-Q-HPNIVGYHTAWIEhvhviq…//127//…lgqt   372 
hPERK    NRELAREKVMR--------EVKAL-AKL-E-HPGIVRYFNAWLEappekw…//206//…eklq   875 
hGCN2    PASRQFRRIKG--------EVTLL-SRL-H-HENIVRYYNAWIErherpa…//123//…epsv   790 
ScGCN2   EEKLST----ILS------EVMLL-ASL-N-HQYVVRYYAAWLEedsmde…//102//…kpmt   776 
DdIFKA   GYTDSNQEPLTNKl---lREVTTL-SRL-H-HQFVVRYYQAWIEkscdsf…//280//…-rkk  1255 
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DdIFKB   GYTDSNQEPLTNKl---lREVTTL-SRL-H-HQFVVRYYQAWIEkscdsf…//277//…srkk   355 
DdIFKC   SNQSLNRRILR--------EVITL-SRL-H-HQHVVRYYQAWIEsaesls…//194//…knik   765 
AtGCN2   DKEIPVNSRIVR-------EVATL-SRL-Q-HQHVVRYYQAWFEtgvvdpa…//26//…-eqd   529 
TbeIFK1  KNEAEK---ALR-------EVQSL-AAL-S-HKHIVRYYDAWIEpgcddel…//82//…mhsh   433 
TbeIFK2  EEDKQRCVR----------EAILH-SSL-D-NPNVVRYFYSWIEniarsia…//29//…vssa   731 
TbeIFK3  DKFAETAVMQ---------EVRLH-AVL-H-NEHIVRYYTCWSEmitpar…//103//…erss   720 
Aurora   QLEKAGVEHQLRR------EVEIQ-SHL-R-HPNILRLYGYFHD-------------------    83 
CDK2     TETEGVPSTAIR-------EISLL-KEL-N-HPNIVKLLDVIHT-------------------    72 
 
 
 
                     hinge 
                        V 
                   ∨ *  ∨                                                
PfeIK1   pnvnDKYLY-ILMEYCPGK-----TLREAID-----------------------CGFIcR--N   633 
PfeIK2   etkyKFNLY-IRMEYCKS------TLENYIN---------------------TRENM-----N   241 
PfPK4    vpefSIVLL-LQMELCKGY-----TLRKWLDr--------stRsdkplhfTYSDKKM-----N  2808 
PbeIK1   ikinEKYLY-ILMEYCPGK-----TLREAID-----------------------CGFIyK--N   593 
PbeIK2   nkkyKFNLY-IRMEYCKD------TIENYIN---------------------RRTRI-----N   522 
PbPK4    gpefSIVLL-LQMEFCKGF-----TLRRWLD-----------R------sSRSDKPLY-F--T   780 
TgIFKA   etlyPVVLL-IQMEMCNGV-----TLREWLDrkdrstvamgfV------pSSKNRWH-----S  4734 
TgIFKB   qckvAVSLY-IQMEYCGM------SLDEYIA---------------------QTPEV-----D  1306 
hPKR     ssrsKTKCLfIQMEFCDKG-----TLEQWIE-------------------KRRGEKL-----D   387 
hHRI     eaqyHLMLH-IQMQLCEL------SLWDWIVern-----krgRe----yvDESACPY--V--M   415 
hPERK    psspKVYLY-IQMQLCRKE-----NLKDWMN---------------------GRCTI-----E   906 
hGCN2    tteaVHYLY-IQMEYCEKS-----TLRDTID---------------------QGLYR-----D   821 
ScGCN2   avkkKSTLF-IQMEYCENR-----TLYDLIH--------------------SENLNQ-----Q   808 
DdIFKA   ppkeTHTLY-IQMEYCSKK-----TLKTLID---------------------NVGGI-----A  1286 
DdIFKB   ppkeTHTLY-IQMEYCSKK-----TLKTLID---------------------NVGGI-----A   386 
DdIFKC   kstsIPYLY-IQMEYCQK------ILR---------------N------lTETGMNL-----E   795 
AtGCN2   nnleSTYLY-IQMEYCPRTLrQVFESY---------------------------NHF-----D   559 
TbeIFK1  keeeFSTLY-IQMELCSKH-----SLRHLID-----------Q------cDKEEGSLLtAgnG   473 
TbeIFK2  tgapLNVLF-IQMEYFKSG-----TLADHFR---------------------NRNAF-----S   762 
TbeIFK3  sileGRVVF-LQLEYYRT------TLAQRLG---------------------SRGSI-----D   750 
Aurora   ----ATRVY-LILEYAPLG-----TVY------------------------RELQKLSkF--D   110 
CDK2     ----ENKLY-LVFEFLHQDLkKFMDAS-------------------------ALTGI-----P   100 
 
 
 
                                        catalytic loop 
                          VIA                  VIB                 VII 
                          ∨ *        ∨     *****  * ∨                ∨ ∨ 
PfeIK1   EKL---I-------WELIKQILKGISYIHDMKIMHRDIKPSNIFLQiTDNIL------IAKIG   680 
PfeIK2   INR---N-------YEIIQMIILGLYSIHNNNIMHRDLKPSNIFIS-DNNIV--------KIG   285 
PfPK4    HPL---E-------FDLFKQLIKGLKDIHATCFIHRDLKPENIFVD-PDTYT-------LKIG  2853 
PbeIK1   EKL---I-------WELIKQILKGIYYIHDMKMMHRDIKPSNIFLQiNDDIL------SAKIG   640 
PbeIK2   IKR---N-------IEIINMIIMGLNYIHNNNIMHRDLKPSNIFIS-NNDIV--------KIG   566 
PbPK4    YGD---KntnhpleFDLFKQLIKGLKDIHSTCFIHRDLKPENIFVD-LDTYI-------LKIG   832 
TgIFKA   MEL------------ELFKQLMKGIRDIHERGIVHRDLKPENIFVD-PDTLV-------LKIV  4777 
TgIFKB   PER---N-------EEIVAMIISGLYQCHSAGVMHRDLKPSNIFIDkETGVV--------KIG  1351 
hPKR     KVL---A-------LELFEQITKGVDYIHSKKLIHRDLKPSNIFLV-DTKQV--------KIG   431 
hHRI     ANV---A-------TKIFQELVEGVFYIHNMGIVHRDLKPRNIFLHgPDQQV--------KIG   460 
hPERK    ERErsvC-------LHIFLQIAEAVEFLHSKGLMHRDLKPSNIFFT-MDDVV--------KVG   953 
hGCN2    TVR---L-------WRLFREILDGLAYIHEKGMIHRDLKPVNIFLD-SDDHV--------KIG   865 
ScGCN2   RDE---Y-------WRLFRQILEALSYIHSQGIIHRDLKPMNIFID-ESRNV--------KIG   852 
DdIFKA   EEE---A-------FRLLRQIVEGLNHIHSQQIIHRDLKPANIFID-NEQNV--------KIG  1330 
DdIFKB   EEE---A-------FRLLRQIVEGLNHIHSQQIIHRDLKPANIFID-NEQNV--------KIG   430 
DdIFKC   DDD---I-------WKLFRQIVEGMAYVHGQGIIHRDLKPSNIFFD-SCGDI--------KIG   839 
AtGCN2   KDF---A-------WHLIRQIVEGLAHIHGQGIIHRDFTPNNIFFD-ARNDI--------KIG   603 
TbeIFK1  DKV---A-------TKIFRQLLTVVSHFHRQGIVHRDLKPDNILFE-MQSSVSSddvgTIRVA   525 
TbeIFK2  RLE---N-------VEHLLQIVRGLRYIHQQDVIHRDLKPTNIFVS-DAGIM--------KIG   806 
TbeIFK3  RFE---N-------IIIALQLFAAVRYVHRSGFLHRDVKPPNIFID--YRQV--------RLG   904 
Aurora   EQR---T-------ATYITELANALSYCHSKRVIHRDIKPENLLLG-SAGEL--------KIA   154 
CDK2     LPL---I-------KSYLFQLLQGLAFCHSHRVLHRDLKPQNLLIN-TEGAI--------KLA   144 
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                       activation loop 

         VII                                 VIII                    IX 
         ***∨                             ∨   ∨ ***                *∨    
PfeIK1   DFGLTT----------------RiGDTqINPSAGTIHYISPEQ---LN--GEPFNEKADIFSL   722 
PfeIK2   DFGLAsydytyp--…//91//…-------TLGIGTKIYAAPEQ---LI--GNKYTKAVDMFSL   417 
PfPK4    DLGLVRFIeekk--…//31//…-------GQIIGTPGYTAPE-------GGALCDEKADIYSA  2923 
PbeIK1   DFGLTT----------------KiDNTqINPSAGTVNYMSPEQ---LN--GEHFDQKADIFSL   682 
PbeIK2   DFGLA-----------------SyDYLdDTLGIGTKLYSAPEQ---LE--GNKYTKSVDIFSL   966 
PbPK4    DLGLVRFIE-----…//27//…TsQISlKGQMIGTPGYTAPE-------GGALCDEKADIYSA   902 
TgIFKA   DFGLAKFIQrenps…//50//…--EMSyKGEVIGTPAYAAPE-------GGGLCDEKADIYSS  4873 
TgIFKB   DFGLAfsrdmkq-…//751//…-------TAGVGTRAYAPPEQ---LQ--GGRYDFSVDIWAL  2095 
hPKR     DFGLVTS---------------LkNDGkRTRSKGTLRYMSPEQ---IS--SQDYGKEVDLYAL   474 
hHRI     DFGLACT-Dilqkntdwtnrn-GkRTPtHTSRVGTCLYASPEQ---LE--GSEYDAKSDMYSL   516 
hPERK    DFGLVTAMDqdeee--qtvltpMpAYArHTGQVGTKLYMSPEQ---IH--GNSYSHKVDIFSL  1009 
hGCN2    DFGLATDHL-----…//17//…SdPSGhLTGMVGTALYVSPEV---QGsTKSAYNQKVDLFSL   929 
ScGCN2   DFGLAKNVHrsldilkldsqnlPgSSDnLTSAIGTAMYVATEV---LD-GTGHYNEKIDMYSL   911 
DdIFKA   DFGLATSGA-----…//37//…NdENLsMTGGVGTPFYCCPEI---LEkNTKHYGTKVDMYSL  1414 
DdIFKB   DFGLATSGA-----…//37//…NdENLsMTGGVGTPFYCCPEI---LEkNTKHYGTKVDMYSL   514 
DdIFKC   DFGLAINNKtts--…//70//…--QQQqHTARVGTLFYTSPEQeagTN-GDSAYDDKVDMYSL   959 
AtGCN2   DFGLAKFLK-----…//14//…AgSGVdSTGQAGTYFYTAPEI---EQ-DWPKIDEKADMYSL   663 
TbeIFK1  DFGLARTLH-----…//22//…LeVGPsPTGNLGSVVYCAPEQ---ER--GESYDFSVDEYSL   590 
TbeIFK2  DFGLAKRWQ-----…//19//…AlFDDeRSFAGGTPLYWSPEQ---QC--GGSATAASDVFSL   868 
TbeIFK3  DFSISKSFLaqhv----elasnFgRTAmNTTGIGSSLYSSPEQ---LD--GEHCTSSSDAYSC   958 
Aurora   DFGWSV----------------HaPSSrRTTLCGTLDYLPPEM---IE--GRMHDEKVDLWSL   196 
CDK2     DFGLARAF--------------GvPVRtYTHEVVTLWYRAPEI---LL-GCKYYSTAVDIWSL   189 
 
 
 
                                α-G 
 

                  IX                   X 
         *∨   ∨           ∨  ∨    ∨  ∨∨                                   
PfeIK1   GVVFFEMFH----EPFSTSMERSITLSNLLKGIYPEYMKAD------------------      759 
PfeIK2   GLIIVDLFT-----ITKTnMERMKILCNARHRILPDLLIKNH-----------------      454 
PfPK4    ALILLELLC----PRFTTIMERYKrLNDFRNYYTVPDYVKIHL----------------     2962 
PbeIK1   GVVFFEMFH----EPFSTSMERSIVLSNLLKCIYPESIRSD------------------      719 
PbeIK2   GLIIIDLFIK-----TETnMERTQILCNARERILPDLLIKKH-----------------     1003 
PbPK4    ALILLELLC----PRFNTIMERyKTLNDFRNYYTVPDYVKIHL----------------      941 
TgIFKA   ALILLELLC----PRFTTVMERVKTLEDFKTSYSVPQHIRLHL----------------     4912 
TgIFKB   GLIVLDLFT-----RCNTAMEQATNFRNARDGRFPPSVTSTY-----------------     2132 
hPKR     GLILAELLH-----VCdTAFETSKFFTDLRDGIISDIFDKKE-----------------      511 
hHRI     GVVLLELFQ-----PFGTEMERAEVLTGLRTGQLPESLRKRCPVQ--------------      556 
hPERK    GLILFELLY-----PFSTQMERVRTLTDVRNLKFPPLFTQK------------------     1045 
hGCN2    GIIFFEMSYH----PMVTASERIFVLNQLRDPTSPKFPEDFDDGEH-------------      971 
ScGCN2   GIIFFEMIY-----PFSTGMERVNILKKLRSVSIEFPPDFDDNKM--------------      951 
DdIFKA   GIIFFEMCFQ-----FQTQMERSNILRDLRDNLKFPPGFESTK----------------     1452 
DdIFKB   GIIFFEMCFQ-----FQTQMERSNILRDLRDNLKFPPGFESTK----------------      552 
DdIFKC   GIVFFEMWY-----VFSTGHERVIVLRNLREKFEFPSDFERN-----------------      996 
AtGCN2   GVVFFELWH-----PFGTAMERHVILTNLKLKGELPLKWVNEF----------------      760 
TbeIFK1  GMIALEMWLA---VAGQGfRERFNIMTDISRGKPIPQWF--------------------      626 
TbeIFK2  GLIAVEFYCE-----FTTQHERLRTLGDARHGELPSALEDDFP----------------      906 
TbeIFK3  GIVLAEMYV-----QPKTVSERLHVLKAVRNGVFPESSLLKRY----------------      996 
Aurora   GVLCYEFLVGKPPFEAN---TYQETYKRISRVEFTFPDFVT------------------      234 
CDK2     GCIFAEMVTRRALFPGD---SeIDQLFRIFRTLGTPDEVVWPGVTSMPDYKpSFpkwar      245 
 
 
 

                                  XI 
                                       * 
PfeIK1    -----------NKKFQFL-SSLLAINPQERCCAYNLLHESVLftfekdftdiynlidnkrnc   809 
PfeIK2    -----------PQVAKLC-QNLLSLDYHLRWTSEELYKK---kkniyiy-------------   488 
PfPK4     -----------NPWYILM-LQMSKPNPADRPSAADVYSK--Ikvlldphltdfafsfndih-  3009 
PbeIK1    -----------NKIFQFL-LSLLEIDPQNRLSAYSLLHENFFfsyeknfneiynlvekkrnc   769 
PbeIK2    -----------PNVASLC-KKMLSLDYKSRPTSAQLYNK--Iisagdiflpdkcp-------  1044 
PbPK4     -----------NPWYILM-LQMSKPNPADRPSAADLYNK--Ikvlldphltdftfsfndinn   989 
TgIFKA    -----------HPWYLLM-KEMARPEPQHRPSAYTVLKH--Vkmlltppgdtqpqrvmllyp  4960 
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TgIFKB    -----------PWVVPFC-RWCLQNDPSKRPTIRQLYQH---ycstgsvfgpktatsrcsas  2179 
hPKR      --------------KTLL-QKLLSKKPEDRPNTSEILRT--Ltvwkkspeknerhtc-----   551 
hHRI      --------------AKYI-QHLTRRNSSQRPSAIQLLQSELFqnsgnvnltlqmkiieqeke   603 
hPERK     -----------YPCEYVMvQDMLSPSPMERP---EAINI--Ienavfedldfpgktvlrqrs  1091 
hGCN2     -----------AKQKSVI-SWLLNHDPAKRPTATELLKSELLpppqmeeselhevlhhtltn  1021 
ScGCN2    -----------KVEKKII-RLLIDHDPNKRPGARTLLNSGWLpvkhqdevikealkslsnps  1001 
DdIFKA    -----------PDQTQII-RSLLSRDPTQRPSTKQLLESGLLpskmeddilkeaiktianpt  1502 
DdIFKB    -----------PDQTQII-RSLLSRDPTQRPSTKQLLESGLLpskmeddilkeaiktianpt   602 
DdIFKC    ----------HSRQATLI-RMLIDKDPAKRPSAQQLLQSELMppkmedeyiknsirvitnpt  1047 
AtGCN2    -----------PEQASLL-RRLMSPSPSDRPSATELLKHAFPprmeselldnilrimqtsed   751 
TbeIFK1   -------YAWNPRMAEVI-ASLLERDPGKRRTSEEILNK---adlpgdpadvvealetikrh   677 
TbeIFK2   -----------EEAEVF--RQMLGEQPDGRPSVDEVVQK--Lkhivveirsggngsaklgdn   953 
TbeIFK3   -----------PELC-VV-QYLTLKDPSHRMSLMDASRA--Lrrtvyrillsffsev-----  1038 
Aurora    -----------EGARDLI-SRLLKHNPSQRPMLREVLEH---p-------------------   262 
CDK2      qdfSkVvPPLDEDGRSLL-SQMLHYDPNKRISAKAALAHPFFqdvtkpvphlrl--------   298 
 

Figure 3-3: Sequence alignment of eIF2α kinases. 
The sequences of catalytic domains of eIF2α kinases were aligned against the Pfam kinase 
domain (PF00069) using the HMMER package (J. Wilkes), Aurora kinase and CDK2 were included 
as outgroups.  Residues identical in >90% of the sequences are highlighted in black, residues 
conserved in >75% of sequences are highlighted in grey, the threonine residue within the activation 
loop, phosphorylated for activation of PKR is highlighted in red.  Positions and lengths of inserts 
within the kinase domain are indicated by breaks in the sequence marked //-//.  Conserved kinase 
domains are indicated by horizontal black lines numbered with roman numerals.  Regions of 
important function are marked with labeled blue lines.  The probable position of helix a-G is 
indicated in horizontal red bars, the longer one represents eIF2α kinases, and the shorter one 
canonical Ser/Thr kinases (see text for details).  Key residues conserved in all types of kinase are 
indicated with asterisks (*) while important residues in eIF2α kinases are marked with arrowheads 
(∨).  The alignment was adjusted by hand in domain X, with reference to Dar et al 2005.  Pf; P. 
falciparum, Pb; P. berghei, Tg; T. gondii, h; Homo sapiens, Sc; Saccharomyces cerevisiae, Dd; 
Dictyostelium discoydium, At; Arabidopsis thaliana, Tb; Trypanosoma brucei.  PlasmoDB IDs: 
PfeIK1; PF14_0434, PfeIK2; PFA0280w, PfPK4; PFF1370w, PbeIK1; PB000582.03.0, PbeIK2; 
PB001255, PbPK4; PB000480.02.0.  TgIFKA; GI44889870, TgIFKB; GI: 169656460, hPKR; 
GI4506103, hHRI; GI: 6580979, hPERK; GI: 18203329, hGCN2; GI: 65287717, ScGCN2; 
GI6320489, AtGCN2; GI: 24940154, hAurora; GI: 37926805, hCDK2; GI1942427.  Dictybase IDs: 
DdIFKA; DDB0185218, DdIFKB; DDB0185219; DdIFKC; DDB0216407; GeneDB IDs:  TbeIFK1; 
Tb11.02.5050, TbeIFK2; Tb927.4.2500, TbeIFK3; Tb927.6.2980. 

 

 
Figure 3-4: Structure of PKR-eIF2α complex. 
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Ribbons representation of the PKR/eIF2α complex highlighting eIF2α recognition mediated by helix 
α-G in the C-terminal lobe of PKR and catalytic domain dimerization mediated by the N-terminal 
lobe of PKR.  The N-terminal and C-terminal lobes of PKR are coloured purple and green (left 
molecule) and red and blue (right molecule), respectively.  The activation segment is coloured 
orange and the phosphor-Thr for activation is shown as ball and stick representation.  The region 
shown with a dashed line in PKR has not been modelled due to disorder and/or deletion; this 
includes the characteristic kinase insert.  The dashed region of eIF2α has not been modeled due to 
disorder and encompasses the Ser51 acceptor site.  (Adapted with permission from Dar et al. (Dar 
et al., 2005)). 

 

3.2.1.1   PfeIK1 

The alignment in Figure 3-3 was used to generate the phylogenetic tree shown in 

Figure 3-5 which clearly shows a cluster of GCN2 related sequences, including 

PfeIK1 and its P. berghei orthologue.  Although these Plasmodium sequences 

diverge at the base of the branch, it nonetheless suggests a possible role for 

PfeIK1 in response to nutrient levels, a function fulfilled by GCN2 in yeast and 

mammalian cells.  The PF14_0423 (PfeIK1) gene model proposed in PlasmoDB 

(Bahl et al., 2003) predicts a single intron that falls close to the 5’ end of the 

sequence so that the kinase domain is encoded entirely within the second exon.  

All the residues that are required for catalytic activity (Hanks, 2003) are present 

in the PfeIK1 kinase domain (Fig. 1-4), suggesting the gene encodes an active 

enzyme.  The PfeIK1 sequence also shares the feature of insertions within the 

catalytic domain with other eIF2α kinases (Figs. 3-3 & 3-6) (Mathews, 2007).  As 

described above (1.8.3.1), GCN2 has extensions either side of the kinase domain; 

such that not only is PfeIK1 most similar to GCN2 in the sequence of its catalytic 

domain (BLASTP analysis shows 35% identity), but also in overall primary 

structure (Fig. 3-6).  Furthermore the C-terminal extension of PfeIK1 contains an 

anti-codon binding domain (Superfamily entry SSF52954) as found in amino acyl 

synthetases, that may mediate binding to uncharged tRNAs, a function that is 

performed in GCN2 by the HisRS domain present in the C-terminal extension 

(Fig. 3-6) (Wek et al., 1995).  Other functional domains present in the GCN2 

extensions (GCN1 binding domain, charged region, pseudo-kinase domain and C-

terminal ribosome binding, and dimerization domain (RB/DD), Fig. 3-6) are not 

recognizable in PfeIK1. 
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Figure 3-5: Phylogenetic tree illustrating eIF2α kinases in diverse species. 
Analysis of the sequence alignment presented in Figure 3-3; the tree was produced from the 
alignment prior to adjustments made by hand.  The three P. falciparum sequences investigated 
here are in red, apicomplexans are boxed in red, and the blue bracket indicates sequences 
clustering most closely with GCN2.  Pf; P. falciparum, Pb; P. berghei, Tg; T. gondii, Dd; 
Dictyostelium discoydium, Sc; Saccharomyces cerevisiae, Hs; Homo sapiens, At; Arabidopsis 
thaliana, Tb; Trypanosoma brucei. 
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Figure 3-6: Schematic of protein domains of human, P. falciparum, and T. gondii eIF2α 
kinases. 
Kinase domains are shown in blue, insertions within the kinase domains are shown in pink 
(characteristic for eIF2α kinases; sizes detailed in Figure3-3). Additional domains are as follows; 
GCN2: orange; GCN1 binding (G1), cream; charged region (+/-), blue marked (Ψ); pseudo kinase 
domain, pale green; histidyl tRNA synthetase domain (HisRS), dark green; ribosome binding and 
dimerization domain (RB/DD).  PERK: brown; signal sequence (SS), purple; regulatory domain 
similar to IRE1 (IRE1), yellow; transmembrane domain (TM).  HRI: brown; heme binding (H).  PKR: 
red; RNA binding domains.  PfeIK1 contains a putative amino acyl tRNA synthetase domain, green 
(aaRS), similar to the HisRS domain in GCN2.  PfPK4 has a putative transmembrane domain, 
yellow (TM), as does TgIFKA.  White is for regions of unidentified function.  The total length of the 
proteins is given by the number of amino acids, shown at right.  

 

3.2.1.2   PfeIK2 

The phylogenetic analysis of eIF2α kinases from diverse species shows PfeIK2 

(PFA0380w) clusters with its P. berghei orthologue as expected, however there is 

no clear association with any of the mammalian eIF2α kinases in particular (Fig. 

3-5).  BLASTP analysis using the kinase domain as a query shows it shares 38% 

identity with human PKR.  Interestingly PfeIK2 is also associated, albeit weakly, 

with the recently identified TgIFKB, which is suggested to respond to 

cytoplasmic stresses (Narasimhan et al., 2008).  The lack of transmembrane 

domain or other targeting sequence in PfeIK2 is consistent with a cytoplasmic 

location (Fig. 3-6).  The gene structure of pfeik2 is discussed in section 3.4.2.1; 

briefly, the kinase domain is encoded by a single exon.  Although the majority of 

residues required for catalytic activity (Hanks, 2003) are conserved in PfeIK2, 
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the glycine triad in domain I, required for orientation of the ATP molecule, is 

not complete (SKGNNN); whether the tertiary structure of PfeIK2 is able to 

compensate for this to facilitate kinase activity remains unknown.  In this 

context is it interesting to note that the PfPK7 crystal structure reveals that the 

divergent glycine triad (NQGKFN in PFPK7) forms the same structure as classical 

GxGxφG kinases (where x represents any other amino acid and φ a hydrophobic 

residue), and so allows kinase activity (Merckx et al., 2008).  As discussed in 

section 1.8.3.2 phosphorylation of a conserved threonine residue in domain VIII 

is part of the activation mechanism of eIF2α kinases.  PfeIK2 is the only P. 

falciparum eIF2α kinase in which this threonine residue, and therefore 

potentially the activation mechanism, is clearly conserved (Fig. 3-3); the 

functional significance of this remains to be tested. 

Although PfeIK2 shares the features of insertions within the catalytic domain 

with other eIF2α kinases, the sequence of these insertions is not recognizably 

similar either to other eIF2α kinase inserts, or to other protein motifs.  In 

contrast to human and some other eIF2α kinases that have lengthy extensions 

containing regulatory domains (1.8.3.1) the N-terminal extension in PfeIK2 is 

short, with only 118 residues (Fig. 3-6); to date no recognizable motifs have 

been identified within this region, although this does not exclude the possibility 

of a regulatory function. 

3.2.1.3   PfPK4 

The previously published sequence of PfPK4 encodes a predicted 1123 amino 

acid sequence that encompassed a protein kinase domain (Mohrle et al., 1997).  

However, the gene prediction algorithms in PlasmoDB propose a 9219 ORF 

encoding a 3072 amino acid protein that encompasses the previously published 

sequence.  The PfPK4 sequence contains all the residues required for kinase 

activity, suggesting that the gene encodes an active kinase, consistent with 

previously published data (Mohrle et al., 1997).  PfPK4 also contains inserts 

within the kinase domain in common with eIF2α kinases; notably, these are very 

large in comparison to all other eIF2α kinases, except for the P. berghei PbPK4 
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orthologue and the two T. gondii sequences TgIFKA and TgIFKB (Fig. 3-6), the 

former of which clearly clusters with PfPK4 and PbPK4 (Fig. 3-5).  However, 

despite the similarity in size between the inserts in PfPK4, PbPK4 and T. gondii, 

the sequences of the inserts are not conserved.   

The phylogenetic analysis presented here confirms previous observations that 

PfPK4 is most closely related to TgIFKA (Sullivan et al., 2004) (Fig. 3-5), and 

cannot be assigned orthology to a specific human eIF2α kinase.  In spite of this, 

BLASTP analysis (which is a less sophisticated tool than HMM alignments) using 

the catalytic domain as the query suggests that PfPK4 is most similar to human 

PERK, with 29% identical residues.  PfPK4 also appears to be more closely 

related to its P. berghei orthologue than PfeIK1 or PfeIK2 (Fig. 3-5), which may 

be indicative of a role in a conserved function such that greater divergence has 

not occurred.  Despite the lack of sequence similarity between TgIFKA and PERK, 

evidence has recently been provided that TgIFKA localizes to the ER and shares 

some regulatory mechanisms with this human ER-stress-responsive kinase 

(Narasimhan et al., 2008).  In TgIFKA, as in PERK the transmembrane domains lie 

centrally in the protein sequence (Sullivan et al., 2004) (Harding et al., 1999), 

such that in PERK a domain extends into the lumen of the ER (discussed section 

1.8.3.1).  Although in PfPK4 the putative transmembrane domain is relatively 

close to the N-terminus (Fig. 3-6), 108 residues lie to its N-terminus that could 

enable association with other proteins; it therefore remains an interesting 

possibility that PfPK4 could perform PERK-like functions in P. falciparum. 

3.2.2   Life cycle stage specific expression of PfeIF2α kinases  

Initial hypotheses about the roles of the PfeIF2α kinases were based on data 

from the P. falciparum genome database, PlasmoDB shown in Figure 3-7.  The 

data are from the Le Roch et al. 2003 microarray study (Le Roch et al., 2003), 

and suggest PfeIK1 is expressed in merozoites and ring stage parasites.  In 

contrast, PfeIK2 mRNA appears not to be expressed in asexual stages at all, but 

is found in gametocytes and sporozoites.  PfPK4 mRNA is present in all life cycle 

stages examined, in agreement with previously published data (Mohrle et al., 

1997).   
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Figure 3-7: Expression data for the PfeIKs taken from PlasmoDB (Le Roch et al., 2003). 
Y-axis: percentiled gene expression, relative to total gene expression.  X-axis: life cycle stage: S= 
sporozoites, ER = early rings, LR = late rings, ET = early trophozoites, LT = late trophozoites, ES = 
early schizonts, LS = late schizonts, M = merozoites and G = gametocytes.  Purple indicates 
parasites synchronised using temperature, Green represents parasites synchronised with sorbitol.  
Black is used for gametocytes and sporozoites where the synchronisation method does not apply, 
and grey represents data below the confidence level.  The red box encloses asexual stages. 

 

The PfeIK1 catalytic domain was amplified from an asexual-stage cDNA library 

(A. Craig), confirming that it is indeed expressed during asexual stages (data not 

shown).  Further, we raised an anti-peptide antibody, in order to analyse PfeIK1 

protein expression; unfortunately, the specific band identified was slightly 

smaller than expected, which would not have given undue cause for concern. 

However, critically, this band is unchanged in genotyped pfeik1- parasites 

(4.2.1), which demonstrates that it results from cross-reactivity of the antibody 

with another protein; PfeIK1 protein expression therefore remains untested.  We 
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have very recently received chicken IgYs directed against PfeIK1-derived 

peptides from our collaborator Prof. D. Goldring (Univ. of Kwazulu-Natal, South 

Africa), that will be tested in the near future.  RT-PCR and western blot analysis 

were completed for PfeIK2 and are discussed below (3.4.2.1).  We also raised an 

anti-peptide antibody to PfPK4 that specifically recognizes a band of 

approximately 80 kDa (Fig. 3-8).  Although the full length of PfPK4 is predicted 

to be a 365 kDa protein, and the kinase domain would also be a relatively large 

protein of 135 kDa, such that the precise identity of the 80 kDa band is 

unknown, the size observed here is consistent with previously published data 

that also report an 80kDa band for PfPK4 (Mohrle et al., 1997).  If this band does 

indeed represent a processed form of PfPK4 then western blot data indicates it 

is expressed throughout the life cycle but at a higher level in trophozoites and 

schizonts, than in rings or gametocytes (Fig. 3-8).   

 

 
Figure 3-8: Expression of PfPK4. 
Western blot analysis of PfPK4 expression in the parasite life cycle.  Upper panel, PfPK4; lower 
panel, PfCK2α as a loading control.  R; ring stage, T; trophozoites, S; schizonts, G; gametocyte 
enriched.  Sizes of co-migrating markers are indicated at left. 
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3.3   Cloning and expression of P. falciparum eIF2α 

3.3.1   Cloning of PfeIF2α  

The PlasmoDB accession number for the P. falciparum orthologue of eIF2α is 

PF07_0117.  Oligonucleotide primers were designed to amplify the complete 

coding sequence by PCR from a cDNA library of the P. falciparum clone 3D7, 

using the Phusion polymerase (Finnzymes).  The forward primer (No. 151, Table 

6-2, appendix) contained a BamHI restriction site the reverse primer (No.152 

Table 6-2, appendix) contained a SalI site.  Taq polymerase (Takara) was used to 

add adenine tails to enable cloning of the 990bp product into the pGEM-T Easy 

vector (Promega) for amplification and sequencing.  The correct sequence was 

removed by digestion with BamHI/SalI and inserted into the expression vector 

pGEX-4T3 (Pharmacia) (Fig. 3-9).  The pGEX-4T3 vector adds the glutathione-S-

transferase (GST) sequence to the N-terminus of PfeIF2α.  A mutant of PfeIF2α 

designed to be refractory to phosphorylation was obtained by site directed 

mutagenesis (Ser59→Ala) using the overlap extension PCR technique (primers 

no. 195 and 196) (Ho et al., 1989).   

pGEX-4T3-PfeIF2alpha
5946 bp

AMP resistance

lacIq

GST

PfeIF2alpha

bla

tac

Rep Origin 1

BamHI (931)

SalI (1927)
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Figure 3-9: Map of the expression vector for PfeIF2α. 
 

3.3.2 Expression of Recombinant PfeIF2α 

Different expression conditions were tested in order to optimize the yield of 

both PfeIF2α wild type and the S59A mutant.  E. coli BL21codon plus were used; 

protein expression was induced using 0.1 - 5mM IPTG, at 37oC, or 30oC for 2-4 

hours, or 16oC overnight.  Samples were taken before induction of protein 

expression and after induction.  Bacteria were harvested after the appropriate 

time and lysed in lysis buffer 1 (Table 6-7, appendix.  Samples were taken of the 

soluble and insoluble fractions before purification of the soluble fraction on 

glutathione-agarose beads.  Samples were also prepared from the eluted 

proteins and the beads after elution.  Figure 3-10 shows a representative 

Coomassie-blue stained gel of this series of samples after induction with 0.25mM 

IPTG, 16oC overnight, which was found to give the best balance of yield of full 

length protein, whilst minimizing the yield of truncated products, or degradation 

to GST only.  Figure 3-11 shows an anti-GST western blot of the purification 

stages after induction with 0.5mM IPTG for 2 hours at 30oC; this confirms the 

expected size of 64 kDa GST-PfeIF2α and illustrates the high proportion of 

degraded proteins that arose when expression was induced at higher 

temperatures.   

Purification on affinity chromatography columns was also attempted, but batch 

purification was found to be more reliable and convenient for subsequent 

experiments. 
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Figure 3-10: Purification of GST-PfeIF2α. 
Coomassie blue stained gel showing purification of recombinant GST-PfeIF2α wild type (WT) and 
Ser→Ala mutant (S59A) in E. coli.  1: before induction, 2: after induction (0.25mM IPTG, 16oC over 
night), 3: soluble fraction, 4: insoluble fraction, 5: eluted proteins, 6: beads, after one elution. 

 

 
Figure 3-11: Western blot analysis of purification of wild type GST-PfeIF2α. 
Samples from successive stages of expression and purification of wild type GST-PfeIF2a were 
separated by SDS-PAGE, transferred to nitrocellulose and probed with an anti-GST antibody.  1: 
before induction, 2: after induction (0.5mM IPTG, 2 hours, 30oC), 3: soluble fraction, 4: insoluble 
fraction, 5: eluate. 
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3.4   Cloning, expression and characterisation of the P. 

falciparum eIF2α kinases. 

3.4.1   PfeIK1 

3.4.1.1   Cloning of the PfeIK1 catalytic domain 

A 1278bp fragment encoding the catalytic domain of PfeIK1, was amplified from 

a P. falciparum asexual stage cDNA library (A. Craig) using the Phusion 

polymerase (Finnzymes), (forward including BamHI; no. 146, reverse including 

SalI; no. 148) followed by Taq for pGEM-T Easy cloning as described for PfeIF2α 

(3.3.1).  A catalytically inactive mutant was obtained by site directed 

mutagenesis of Lys458→Met using the overlap extension PCR method (nos. 197 & 

198, Table 6-2, appendix) (Ho et al., 1989).  The correct sequence was removed 

by digestion with BamHI/SalI and inserted into the expression vector pGEX-4T3, 

between the same sites.  The pGEX-4T3 vector was chosen to express the PfeIK1 

catalytic domain with an N-terminal GST tag following the success of this 

strategy for the expression and characterisation of several other P. falciparum 

kinase domains (for a few examples, see (Dorin et al., 2005, Reininger et al., 

2005)(Reininger et al. in prep)(Holland et al. in prep)).  Furthermore eIF2α 

kinases act as dimers (1.8.3.2); expression of the kinase domain of PKR fused to 

GST, which can form dimers, enabled purification of active kinase, where the 

kinase domain alone was inactive (Ung et al., 2001). 
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Figure 3-12: Map of the expression vector for GST-PfeIK1. 
 

3.4.1.2   Expression of recombinant PfeIK1 

The conditions required for optimal expression of GST-PfeIK1 were investigated; 

induction was with IPTG at 0.1 - 5.0 mM, or by autoinduction (2.4.6), the 

temperature was varied from 16oC overnight to 30oC or 37oC for 2-4 hours, and 

E. coli BL21 codon plus cells, or Rosetta2 or RIL cells were tested.  Samples were 

taken at successive stages during induction and purification, as described for 

PfeIF2α (3.3.2), and analysed by SDS-PAGE followed by Coomassie blue staining 

or anti-GST western blot (Figs. 3-13 & 3-14).  Induction with 0.25mM IPTG at 

16oC overnight gave the best yield of active full length GST-PfeIK1 (76 kDa); 

autoinduction gave less truncated proteins but the full length protein appeared 

to be inactive in kinase assays (not shown).   
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Figure 3-13: Purification of GST-PfeIK1. 
Coomassie blue stained gel of purification stages of GST-PfeIK1.  1: before induction, 2: after 
induction (0.25mM IPTG, 16oC over night), 3: soluble fraction, 4: insoluble fraction, 5: eluate, 6: 
beads after first elution. 

 

 
Figure 3-14: Purification of GST-PfeIK1. 
Western blot analysis of purification stages of GST-PfeIK1.  Samples were collected at successive 
stages of protein expression which was induced with 0.5mM IPTG, followed by growth at 30oC for 2 
hours.  Samples were separated by SDS-PAGE, transferred to nitrocellulose and probed with an 
anti-GST antibody.  1: before induction, 2: after induction, 3: soluble fraction, 4: insoluble fraction, 
5: eluted protein.  The arrow marks the expected size of full length GST-PfeIK1 at 76 kDa; the 
bracket marked with GST is likely to contain various truncated proteins including GST.   
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3.4.1.3   PfeIK1 is an active kinase able to phosphorylate PfeIF2α 

in vitro 

In order to test the hypothesis that the pfeik1 gene encodes a functional kinase I 

used the GST-PfeIK1 fusion protein in kinase assays.  Kinase assays were 

performed with the non-physiological substrates α- or β-casein, myelin basic 

protein (MBP) and histone H1, in the presence of wild type GST-PfeIK1, 

catalytically inactive GST-PfeIK1-K458M, or no kinase (Fig. 3-15).  The results 

demonstrate that PfeIK1 can autophosphorylate; due to the signal at the 76kDa 

band, which is also clearly observed in Figure 3-16, where the wild type kinase 

has not been provided with substrate.  Autophosphorylation has been shown to 

be part of the activation mechanism of the eIF2α kinases (reviewed (Mathews, 

2007)).  Figure 3-15 shows that GST-PfeIK1 can phosphorylate the two non-

physiological substrates, α- and β-casein, MBP and histone H1 were not 

phosphorylated (data not shown).  Weaker phosphorylation of β-casein is 

observed in the catalytically inactive mutant lane; since this activity is also 

present where there is no recombinant kinase at all, it must derive from a low 

level of contaminating kinase activity in the substrate itself, providing 

confidence that the K458M mutant is indeed inactive, and that GST-PfeIK1 is 

responsible for the kinase activity observed in the wild type lane.   
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Figure 3-15: PfeIK1 phosphorylates non-physiological substrates. 
Kinase assays were carried out using the recombinant catalytic domain of PfeIK1, GST-PfeIK1 
using the exogenous substrates α- and β-casein.  Assays contained 10μg α-casein (left three 
lanes), or 10μg β-casein (right three lanes), in the presence of 2μg wild type (WT), 2μg catalytically 
inactive (K458M), or no kinase (-).  Upper panel: autoradiogram, lower panel: Coomassie blue 
stained gel. 

 

In order to establish whether PfeIK1 is an eIF2α kinase as predicted, I used the 

recombinant GST-PfeIF2α as a substrate in kinase assays with GST-PfeIK1.  

Importantly, Figure 3-16 (left lane) shows that GST-PfeIK1 can phosphorylate 

wild type GST-PfeIF2α.  Furthermore, mutation of the predicted target for 

phosphorylation, Ser59, to alanine, which cannot be phosphorylated, prevents 

PfeIF2α phosphorylation.  This suggests that the mechanism of phosphorylation 

of eIF2α that, in other systems results in the regulation of translation initiation, 

may be conserved in P. falciparum.   

 



Clare Fennell, 2008   Chapter 3 81 

 
Figure 3-16: GST-PfeIK1 autophosphorylates and phosphorylates wild type PfeIF2α but not 
the mutant PfeIF2α S59A. 
Kinase assays were carried out using 10μg wild type GST-PfeIF2α (left three lanes), 10μg GST-
PfeIF2α S59A (centre three lanes), or no substrate (right two lanes), in the presence of 2μg wild 
type GST-PfeIK1 (WT), 2μg catalytically inactive mutant GST-PfeIK1 (K458M), or no kinase (-).  
Upper panel: autoradiogram, lower panel: Coomassie blue stained gel. 

 

3.4.2   PfeIK2 

3.4.2.1   Verification of pfeik2 gene structure 

The four gene prediction algorithms used by PlasmoDB (Bahl et al., 2003) were 

not consistent for the exon structure of pfeik2.  The possible gene structures are 

shown in Figure 3-17A; RT-PCR was used to investigate which of these is correct.  

To generate any of these PCR products, it was necessary to use gametocyte 

cDNA as the template since there was no amplification from asexual material 

(not shown); this is consistent with the microarray data suggesting PfeIK2 is not 

expressed during asexual stages.  It was possible to amplify the 404 bp fragment 

corresponding to the 5’ end of the single exon prediction (top, Fig. 3-17A), 

confirming that mRNAs including this region are present.  However, neither 

primer pair selected to amplify across the predicted intron boundaries resulted 

in any amplification, providing evidence (albeit negative) that the single exon 

gene structure is correct.   
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Figure 3-17: Verification of the gene structure of pfeik2. 
A: Schematic illustrating the three possible gene structures given by the different gene prediction 
algorithms used by PlasmoDB.  Single headed arrows (top) indicate the position of primers used 
for RT-PCR analysis.  Double headed arrows indicate the expected sizes to be amplified by RT-
PCR, by each primer combination; the rounded-ended line indicates the expected sizes to be 
amplified from genomic DNA.  B: RT-PCR with different primer pairs; left panel, primers 1+2; 
centre, 1+3; right, 1+4.  

 

To confirm the RT-PCR results with regard to both the stage of expression, and 

the length of the open reading frame, a western blot was carried out comparing 

expression of PfeIK2 in asexual parasites and gametocytes.  As shown in Figure3-

18, a band of 59 kDa; the expected size of the protein encoded by the single 

exon gene is recognised exclusively in gametocytes.  This supports the RT-PCR 

data that PfeIK2 is encoded by a single exon, resulting in expression of a 59 kDa 

protein in gametocytes.  The PlasmoDB microarray data (Fig. 3-7) indicates 

PfeIK2 is also expressed in sporozoites; it would be interesting to extend the 

analysis presented here to verify this.  
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Figure 3-18: Western blot showing the size and stage specific expression of PfeIK2. 
Upper panel: Anti-PfeIK2 western blot, the arrow indicates PfeIK2, lower panel; anti-ERD2 loading 
control.  A; mixed asexual parasites, G; gametocyte enriched population.   

 

3.4.2.2   Cloning of the PfeIK2 catalytic domain 

Having verified the pfeik2 gene structure, the 1134 base pair fragment encoding 

the catalytic domain of PfeIK2 was amplified using the High Fidelity polymerase 

(Roche) that enables cloning to pGEM-T (Nos. 150 and 185, Table 6-2, appendix).  

The high AT content of P. falciparum genes and the presence of highly repetitive 

sequence made it difficult to obtain the entire sequence without mutations by 

PCR; an integral BstBI restriction site was used to piece together correct 

sequence to produce a construct free from mutations.  The correct contiguous 

sequence was transferred using the BamHI/ SalI restriction sites in the primers, 

to the expression vector pGEX-4T3 (Fig. 3-19). 
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Figure 3-19: Map of the expression vector for GST-PfeIK2.  
 

3.4.2.3   Expression of recombinant PfeIK2 

Expression trials for PfeIK2 were carried out using E. coli BL21 gold, Rosetta2 

and BL21 codonplus, induction of protein expression was by treatment with 

0.1mM - 5mM IPTG at 16oC, or 25oC, or autoinduction at 15oC or 20oC for 24 or 48 

hours.  As indicated in the example of expression and purification in Figure 3-20, 

induction with 0.25mM IPTG allowed the purification of a low concentration of 

the expected 73 kDa protein.  The anti-GST western blot (Fig. 3-21) confirms 

that the full length protein was expressed and found in the soluble fraction; this 

blot suggested that the protein was lost during purification. 
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Figure 3-20: Expression of GST-PfeIK2 using E.coli BL21c+. 
Coomassie blue stained gel of purification of GST-PfeIK2 from three different conditions of 
expression; left, induced using 0.25mM IPTG; centre, by autoinduction for 24 hours; right, by 
autoinduction for 48 hours.  1: After induction, 2: soluble fraction, 3: insoluble fraction, 4: beads, 
without eluting proteins. 

 

 
Figure 3-21: Expression of GST-PfeIK2 using E. coli BL21 codon plus. 
Expression of GST-PfeIK2 was induced under three different conditions; 0.25mM IPTG 15oC 
overnight or autoinduction at 15oC for 24 or 48 hours.  Samples from successive stages of 
purification were separated by SDS-PAGE, transferred to nitrocellulose and probed with an anti-
GST antibody.  1: total extract after induction, 2: soluble fraction, 3: insoluble fraction, 4: beads, 
without eluting proteins. 
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3.4.2.4   Initial activity assay of recombinant GST-PfeIK2  

Kinase assays can be performed using un-eluted material still bound to the 

beads; an initial kinase assay was carried out in this way, using those GST-PfeIK2 

preparations that contained the 73kDa protein, visible on a Coomassie-blue 

stained gel.  The non-physiological substrates α- and β-casein, myelin basic 

protein and histone H1 were used, in addition to GST-PfeIF2α and a synthetic 

peptide comprising the 12 amino acids surrounding PfeIF2αSer59.  No activity 

was detected (data not shown).  However, only a small amount of full length 

recombinant protein was present in any of the preparations used.  Before 

conclusions can be drawn about whether PfeIK2 is indeed a bona fide protein 

kinase, the recombinant protein expression and purification conditions need 

further optimization.  Another approach to address this question would be to 

immunoprecipitate PfeIK2 from gametocytes, followed by kinase assay.  With 

either approach it remains possible that a lack of detectable activity is not due 

to the gene product not being a true kinase, but that it requires specific 

activation stimuli not present under the experimental conditions.   

3.4.3   PfPK4 

3.4.3.1   Cloning of PfPK4 catalytic domain 

According to the PlasmoDB gene prediction, the catalytic domain of PfPK4 is 

encoded by the 3’ 3498 nucleotides of the ORF; this was amplified using primer 

numbers 161 (forward) and 154 (reverse) (Table 6-2, appendix) and the high 

fidelity polymerase (Roche), which adds adenine tails allowing for cloning into 

pGEM-T.  The length of the sequence and characteristic high AT content of P. 

falciparum sequences prevented the obtention of a complete mutation-free 

sequence by PCR.  Restriction sites within the catalytic sites were used to piece 

together mutation free regions to obtain the complete sequence.  The BamHI 

and SalI restriction sites in the primers were used to transfer the complete 

sequence to the expression vectors pGEX-4T3 and pET-28a (Fig. 3-22).  As 

discussed above, pGEX-4T3 adds the 26 kDa GST sequence to the N-terminus of 

the protein; the pET-28a vector adds a 6-His tag to the N-terminus.   
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Figure 3-22: Map of the His-PfPK4 expression vector. 
 

3.4.3.2    Expression of recombinant PfPK4 

The 3498 nucleotide sequence of the PfPK4 catalytic domain encodes a 136 kDa 

protein.  Initial expression trials were carried out using the pGEX-4T3 construct. 

However, due to the already large size of the protein I considered that the extra 

size of the GST tag could exacerbate expression difficulties.  Since the catalytic 

domain of PfPK4 had previously been expressed with a His tag, I switched to 

using the pET-28a construct, which encodes an N-terminal His tag.  As with other 

recombinant proteins discussed above I used a range of conditions and bacterial 

strains to attempt to induce expression of His-PfPK4.  Examples of the most 

successful conditions are shown in Figure 1-23, illustrating that the most 

abundant protein product was approximately 70 kDa.  On one occasion an anti-

His western blot (not shown) did show a faint band at >100 kDa in the soluble 

fraction sample, after induction with 5 mM IPTG at 20oC for 1 hour.  However, 

no pure full-length His-PfPK4 was ever obtained. 
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Figure 3-23: Expression of His-PfPK4. 
Expression of His-PfPK4 was induced using 1or 5mM IPTG at 15oC overnight.  Samples were 
taken during expression and purification, separated by SDS-PAGE and stained with Coomassie 
blue.  The arrow marks the expected size of His-PfPK4.  1: total extract before induction, 2: after 
induction, 3: soluble fraction, 4: insoluble fraction, 5: eluate. 

 

3.4.3.3   PfPK4 activity 

In spite of poor expression and purification of recombinant PfPK4, kinase assays 

were nonetheless attempted with some of the recombinant protein preparations 

to investigate whether any of the truncated proteins had kinase activity, or if 

any small amount of full length protein had sufficiently high activity to warrant 

optimization of expression and purification.  No kinase activity was observed on 

a range of non-physiological substrates, recombinant GST-PfeIF2α or the PfeIF2α 

peptide (not shown).  This is in contrast with the activity observed by Mohrle et 

al, who reported that recombinant PfPK4 was able to phosphorylate an eIF2α-

derived peptide (Mohrle et al., 1997).  This discrepancy remains unexplained. 

Another approach to verify whether PfPK4 in indeed an active protein kinase is 

to immunoprecipitate the protein from parasite extract and subject this to 

kinase assays.  To improve the chance of specifically immunoprecipitating the 

kinase, I generated a parasite line expressing a PfPK4 with a double HA epitope 

at the C-terminus, by allelic replacement (4.1); an anti-HA antibody could then 
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be used for immunoprecipitation.  Results of an initial experiment carried out 

using these parasites are shown in Figure 3-24.  PfPK4 is clearly able to 

phosphorylate the non-physiological substrates α- and β-casein (lane 1), 

compared to wild type 3D7 parasites (lane 3).  Circumstantial evidence that this 

activity is indeed derived from PfPK4 and not from some non-specific co-

purifying activity is provided by use of the CK2α-HA clone (lane 5); this kinase is 

significantly more active than PfPK4-HA (only 1/6 of the sample volume used for 

PfPK4 was loaded).  On this occasion PfPK4-HA did not phosphorylate GST-

PfeIF2α (data not shown); this may be explained by the presence of the GST tag 

inhibiting the kinase-substrate interaction, or improper folding of the 

recombinant substrate.  The low level of activity observed in lane 4 where α- 

and β-casein have been subjected to kinase assay in the absence of additional 

kinase is often seen when using these substrates (see also Fig. 3-15 and section 

3.4.1.3).   

The parasites in which wild-type PfPK4 is replace by the HA-tagged enzyme will 

provide an excellent tool to investigate whether PfPK4 is indeed an eIF2α kinase 

in P. falciparum, and if it can be activated by stress to the parasites.   This will 

be performed, for example, in the amino-acid starvation system used by our 

collaborator D. Goldberg as described in our joint manuscript (Appendix 6.3).  
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Figure 3-24: PfPK4-HA Kinase assay. 
PfPK4-HA was immunoprecipitated from parasite extract and kinase activity assayed using the 
non-physiological substrates α- and β-casein.   

 

3.5   Perspectives and Discussion 

3.5.1   Identification of PfeIF2α and its kinases 

Bioinformatic analysis presented here clearly identifies the P. falciparum 

orthologue of eIF2α; conservation of the regulatory Ser and residues involved in 

formation of the structure that enables interaction with the eIF2α kinases is also 

observed (3.1).  Similarly, in silico approaches have identified three kinases of 

the eIF2α family (3.2).  Furthermore, I have shown that GST-PfeIK1 can 

phosphorylate GST-PfeIF2α at the conserved regulatory Ser (3.4.1.3), validating 

the bioinformatic observations.  Demonstration of the ability of PfeIK1 to 

phosphorylate PfeIF2α is consistent with (but does not demonstrate) the 

hypothesis that PfeIK1 may regulate translation through phosphorylation of 

PfeIF2α in vivo.   
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The amino acid sequence of PfeIK2 suggests it will be an active eIF2α kinase, 

with the possibility of the non-canonical glycine triad allowing formation of the 

typical kinase tertiary structure (1.2.2).  From the sequence of PfPK4 (1.2.3), 

and previously published work (Mohrle et al., 1997), PfPK4 is also expected to be 

an active eIF2α kinase, supported by the preliminary IP data presented here 

(3.4.3.3).  However, to date, I have not been able to confirm that PfeIK2 or 

PfPK4 can phosphorylate PfeIF2α, largely due to technical problems in 

recombinant protein production.  There are a number of factors to address 

before further attempts at expression in E.coli: i) the location and choice of the 

tag used for affinity purification; expression of active PfPK4 (see above) was 

previously reported with a C-terminal His tag (Mohrle et al., 1997) whereas here 

the tag was at the N-terminus.  There are also examples of other kinases in our 

lab that can be expressed as active enzymes using the His tag, but either cannot 

be expressed, or are inactive when fused to GST; ii) induction of expression, 

particularly for PfPK4 where I have evidence for very limited production of the 

full length protein (3.4.3.2); significantly greater scaling up could be all that is 

required to obtain useable protein; iii) protein purification; use of the His tag 

gives greater scope for varying conditions to obtain a more pure product.   

Bacterial expression is not the only, and may not be the best route to follow; in 

addition to further IP experiments (which may also be possible with the anti-

PfeIK2 antibody (validated for immunoblotting Fig. 3-18)), another promising 

strategy for the expression of P. falciparum AT rich genes is the wheat germ 

based cell free system (Sawasaki et al., 2005).  The wheat germ system has been 

used to express a number of previously very challenging P. falciparum proteins, 

in their correctly folded form such that functional analysis was possible 

(Mudeppa et al., 2007) (Mudeppa et al. Molecular Parasitology Meeting, Woods 

Hole 2007).  Likewise, the protein kinases PfPKA (Sudo et al., 2008) and PfPK2 

(Kato et al., 2008) were successfully produced in an active form using this 

approach.  Beyond its demonstrated practicality, one argument presented for 

use of this system is particularly persuasive for the expression of kinases; since 

the ‘host cells’ are propagated in the absence of the plasmodium genes and 

their products, potential anti-proliferative activity is avoided (Mudeppa et al., 

2007).  
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3.5.2   Characterisation of PfeIF2α and its kinases  

Confirmation of kinase activity and ability to phosphorylate PfeIF2α is only the 

first step in characterizing these proteins; to understand their role in the 

parasite requires elucidating their expression pattern (spatial and temporal), 

mechanisms of regulation, and the consequences thereof.  Microarray data, RT-

PCR and western blotting (3.2.2 & 3.4.2.1), show that the PfeIF2α kinases have 

distinct temporal expression patterns that suggest they have non-redundant 

functions.  As PfeIK1 is both most similar in overall structure to GCN2 and in the 

sequence of its catalytic domain (3.2.1.1), we suggest this enzyme is a good 

candidate for (or may be the orthologue of) GCN2.  Furthermore a putative aaRS 

domain is located in the C-terminal extension of PfeIK1 (3.2.1.1) that may 

mediate binding to uncharged tRNAs, a function that is performed by the HisRS 

domain in the C-terminal extension of GCN2 (Wek et al., 1995).  One approach 

to address the function of the putative aaRS domain in PfeIK1 would be to 

produce the C-terminus as a recombinant protein and analyse its RNA binding 

properties by northwestern blot, as has been done for GCN2 (Wek et al., 1995).   

Sequence analysis of PfeIK2 offers little clue to its regulation.  It can be noted 

that the absence of a transmembrane domain would be consistent with 

cytoplasmic location.  PfPK4 has a putative transmembrane domain at its N-

terminus and its catalytic domain is most similar to that of PERK (section 

3.2.1.3), suggesting it may play a role in ER stress responses.  For both PfeIK2 

and PfPK4, localization studies might inform an experimental approach to 

understanding their regulatory mechanisms, by indicating types of stress to 

which they might respond (if indeed they are stress responsive).  For example, if 

PfPK4 localises to the ER, then agents which induce ER stress in other eukaryotic 

cells could be applied, and their effects monitored on kinase activity using the 

parasite expressing the HA-tagged enzyme, as detailed above (3.4.3.3).  For 

example, tunicamycin is known to cause ER stress (Narasimhan et al., 2008).  If 

it does so in P. falciparum as well, and if and PfPK4 plays a PERK-like role, then I 

would expect to a greater kinase activity to be immunoprecipitated, and see 

increased phosphorylation of PfeIF2α in parasite extracts, in treated (versus 
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untreated) parasites.  This approach is reliant on hypothesizing appropriate 

stress stimuli to investigate.   

As P. falciparum is known to survive in a challenging redox environment (Muller, 

2004), oxidative stressors would be interesting to pursue in this respect.  In 

mammalian cells HRI has been shown to be involved in mediating the response to 

oxidative stress induced by arsenite (Lu et al., 2001).  Further, in T. gondii 

arsenite treatment induces TgeIF2α phosphorylation coincident with cyst 

development (Narasimhan et al., 2008).  It remains unknown how this effect is 

mediated, but it is thought-provoking in that HRI is inhibited by hemin (Fagard 

and London, 1981), and that recombinant PfPK4 may also be (Mohrle et al., 

1997).  Hemin has also been observed to inhibit a P. falciparum in vitro 

translation system (Surolia and Padmanaban, 1991).  These observations suggest 

there may be some similarity in the regulatory mechanisms of HRI and PfPK4 (or 

some unidentified component of the translation machinery), that may extend to 

activation by oxidative stress. 

3.6   Summary 

• Bioinformatic analysis reveals P. falciparum encodes orthologues of both 

the translation initiation factor eIF2α, and of three eIF2α kinase related 

sequences.  Furthermore, essential residues appear to be conserved such 

that the PfeIF2α kinases and PfeIF2α will fold to allow their interaction. 

• On the basis of the similarity of the kinase domain sequence, and 

presence of a putative aaRS domain in its C-terminus, PfeIK1 is proposed 

as the P. falciparum orthologue of GCN2; it may therefore play a role in 

response to nutrient levels. 

• Recombinant GST-PfeIK1 is an active kinase able to phosphorylate 

recombinant GST-PfeIF2α, confirming our hypothesis that P. falciparum 

has conserved the components of this mechanism for regulation of 

translation. 
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• PfeIK2 is encoded by a single exon that is expressed in gametocytes but 

not in asexual stages; sequence analysis does not provide clues to its 

regulation. 

• The sequence of PfeIK2 contains all residues required for kinase activity 

but experimental confirmation of this awaits further study. 

• PfPK4 protein expression is greatest in trophozoites and schizonts.  I was 

unable to confirm published observations of kinase activity by expression 

of recombinant protein.  However preliminary immunoprecipitation 

results indicate PfPK4 is indeed a bona fide active protein kinase.  

Sequence analysis suggests PfPK4 may be related to PERK, however other 

observations suggest it may be regulated in a similar manner to HRI; this 

also awaits further investigation. 
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4 Reverse genetics of eIF2α kinases in P. 

falciparum 

4.1   Construction of gene disruption and tagging 
plasmids 

To investigate the roles of the eIF2α kinases in P. falciparum we first attempted 

to disrupt the genes, in order to test whether they play an essential role in 

either asexual multiplication stages, or subsequent stages in mosquito infection.  

The strategy I used to attempt to disrupt expression of the kinases relied on 

single cross-over homologous recombination and has been used successfully for 

other P. falciparum protein kinases (Dorin-Semblat et al., 2007, Dorin-Semblat 

et al., 2008)(Fig. 4-1).  A plasmid based on the pCAM-BSD vector (Sidhu et al., 

2005) containing an insert comprising the central region of the PfeIK catalytic 

domain and a cassette conferring resistance to blasticidin was transferred by 

electroporation into asexual parasites of the 3D7 clone (Figs. 4-2, 4.3 & 4-4).  

Homologous recombination is predicted to generate a pseudo-diploid locus in 

which neither of the resulting truncated copies encodes a functional kinase.  

After recombination the 5’ copy is interrupted just prior to the glutamate 

residue in domain VIII (which provides essential structural stability to the C-

terminal lobe), and lacks all downstream coding sequence and the 3’UTR; the 3’ 

copy lacks both the promoter region and the glycine triad in domain I (which is 

responsible for orientation of the ATP) (Fig. 4-1). 
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Figure 4-1: Schematic showing the single cross-over homologous recombination strategy 
used for disruption of the PfeIK genes. 
‘ATP’ represents kinase domain I, a glycine-rich region essential for orientation of ATP by binding 
the non-transferable phosphates, ‘E’ is a glutamate residue in domain VIII required for structural 
stability of the C-terminal lobe of the enzyme; each copy in the resulting psuedo-diploid locus 
contains only one of these motifs.  Numbered arrows indicate the positions of oligonucleotide 
primers used for PCR analysis of the genotypes of parasite lines.  The use of 1 + 2 amplifies the 
wild-type locus, 3 + 4 the plasmid, 1 + 4 the 5’ integration event, 3 + 2 the 3’ integration event.  
Nested PCR was used when analysing the genotypes of infected mosquito midguts; in this case 
the wild-type locus was amplified by using primers 1 + 2 followed by 5 + 6, and the 3’ integration 
event by using primers 3 + 2 followed by 7 + 6. 

 

pCAM-BSD - PfeIK1 KO
5297 bp

BSD resistance

AMP resistance

cam 5'

HRP2 3'UTR

PfeIK1 knock out fragment
BamHI (2279)

HindIII (1701)

NotI (3075)

 
Figure 4-2: Map of the plasmid used for disruption of pfeik1. 
The transfection plasmid contains a 788bp PCR fragment spanning positions 1467-2255 of the 
entire 4.8kb pfeik1 coding sequence (as predicted on PlasmoDB), inserted between BamHI and 
NotI sites(PfeIK1 knock out fragment).  The HindIII site used in Southern blot analysis is also 
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shown.  cam 5’; P. falciparum calmodulin promoter, BSD resistance; gene encoding blasticidin 
deaminase, HRP2 3’ UTR; 3’ untranslated region of P. falciparum histidine rich protein 2.  AMP 
indicates the ampicillin resistance gene used in preparation of the construct. 

 

pCAM-BSD - PfeIK2 KO
5279 bp

BSD resistance

AMP resistance

cam 5'

HRP2 3'UTR

PfeIK2 knock out fragment
BamHI (2279)

HindIII (1701)

NcoI (660)

NotI (3057)

 
Figure 4-3: Map of the plasmid used for disruption of pfeik2. 
The transfection plasmid contains a 771bp PCR fragment encompassing positions 430 - 1200 of 
the verified 1.5kb coding sequence of pfeik2, inserted between BamHI and NotI sites (PfeIK2 knock 
out fragment).  The HindIII and NcoI sites used in Southern blot analysis are also shown.   cam 5’; 
P. falciparum calmodulin promoter, BSD resistance; gene encoding blasticidin deaminase, HRP2 3’ 
UTR; 3’ untranslated region of P. falciparum histidine rich protein 2.  AMP indicates the ampicillin 
resistance gene used in preparation of the construct. 
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Figure 4-4: Map of the plasmid used to attempt disruption of pfpk4. 
The transfection plasmid contains an 864bp fragment encompassing positions 7861 - 8724 of the 
entire coding sequence (as predicted on PlasmoDB), inserted between BamHI and NotI sites (PK4 
knock out fragment).  The EcoRI sites used for Southern blot analysis are also shown.  cam 5’; P. 
falciparum calmodulin promoter, BSD resistance; gene encoding blasticidin deaminase, HRP2 3’ 
UTR; 3’ untranslated region of P. falciparum histidine rich protein 2.  AMP indicates the ampicillin 
resistance gene used in preparation of the construct. 

 

If gene knock-out is unsuccessful, it is important to show that the locus is 

accessible to recombination if the insertion does not cause loss-of-function of 

the gene product.  To do this I used a modification of the single cross-over 

strategy used for gene disruption (Fig. 4-5).  The pCAM-BSD vector was modified 

to contain a cloning site followed by the 3’ untranslated region (UTR) of P. 

berghei DHFR (Jean Halbert, our lab).  In addition a tag (either two 

hemagglutinin [HA] epitopes, or the Green Fluorescent Protein [GFP] (Sylvain 

Eschenalauer, our lab)) was included, so that if the genes were successfully 

targeted their tagged products would represent  useful tools for molecular 

analyses.  By cloning the 3’ end of the gene of interest without its stop codon 

into this plasmid and transfecting parasites with the resulting construct, single 

cross over results in reconstitution of a functional gene that encodes a C-

terminal double HA, or GFP tag.  This strategy was used for PfPK4, since this is 

the only one of the three PfeIK genes that I was not able to knock-out (4.4.1); 

vector maps are as shown (Figs. 4-6 & 4-7).  
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Figure 4-5: Schematic showing the single cross-over recombination strategy used to tag 
PfPK4. 
The horizontally shaded bar represents the 3’ 664bp fragment of pfpk4, excluding the stop codon 
(STOP), cloned into the modified pCAM-BSD vector.  The vertically hatched bar represents the tag 
(either double HA or GFP) and the 3’UTR of P. berghei dhfr.  Numbered arrows indicate the 
positions of oligonucleotide primers used to analyse the genotypes of parasite lines by PCR. 

 



Clare Fennell, 2008   Chapter 4 100 
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Figure 4-6: Map of the plasmid used to add a C-terminal double HA tag to PfPK4. 
A 664bp fragment encompassing positions 8553 - 9216 (PK4 3’), of the pfpk4 9219 coding 
sequence was inserted between PstI and BamHI sites.  The EcoRI site used subsequently for 
Southern blot analysis is also shown.  BSD indicates the blasticidin deaminse coding sequence, 
allowing for selection of parasites.  3’UTR (PbDHFR) acts as a 3’ UTR for the reconstituted gene to 
allow expression.  AMP indicates the ampicillin resistance gene used in preparation of the 
construct. 
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Figure 4-7: Map of the plasmid used to add a C-terminal GFP tag to PfPK4. 
A 664bp fragment encompassing positions 8553 - 9216 (PK4 3’ end), of the pfpk4 9219 coding 
sequence was inserted between PstI and BamHI sites.  The EcoRI site used subsequently for 
Southern blot analysis is also shown. 

 

4.2   PfeIK1 

4.2.1   PfeIK1 is not required for asexual growth 

PfeIK1 is expressed in asexual parasites (3.2.2 & 3.4.1.1); to investigate whether 

it plays an essential role in the parasite I attempted to generate pfeik1- 

parasites using the pCAM-BSD-pfeik1 plasmid shown in Figure 4-2.  Blasticidin-

resistant parasite populations were obtained from two independent transfection 

experiments, and PCR analysis indicated that both resistant populations 

contained parasites whose pfeik1 locus was disrupted (data not shown).  Clonal 

lines were established by limiting dilution from both independent populations, 

and the genotypes of one representative clone derived from each transfection 

experiment (C1 & C8) analysed (Fig. 4-8).  The wild-type locus was not detected 

in clones C1 or C8 (lanes 1& 5), but is observed in the parental wild-type 3D7 
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parasites.  In contrast, fragments diagnostic of plasmid (lanes 2, 6, 10), and both 

the 5’ (lanes 3, 7, 11) and 3’ (lanes 4, 8, 12) boundaries of the integrated 

plasmid are amplified from C1 and C8, but not wild-type 3D7 parasites.   

 
Figure 4-8: PCR analysis of two pfeik1- clones. 
Lanes 1, 5, 9 are diagnostic of the wild-type locus: primers 1 + 2 (1278bp), lanes 2, 6, 10 are 
diagnostic of the episome: primers 3 + 4 (847bp), lanes 3, 7, 11 are diagnostic of the 5’ boundary 
of the integrated plasmid: primers 1 + 4 (1050bp), lanes 4, 8, 12 are diagnostic of the 3’ boundary 
of the integrated plasmid: primers 2 + 3 (1075bp). Primers are as follows: 1= 146, 2= 148, 3= 169, 
4= 170, see Table 6-2, appendix for details.  See Figure 4-1 for primer positions. 

 

Integration of the gene disruption construct was verified by Southern blot 

analysis; using HindIII digestion a 12 kb band containing the wild-type locus is 

replaced in the mutant clones by the expected two bands resulting from 

integration; the 10.4 kb fragment contains the 5’ boundary of the integrated 

plasmid and the 6.8 kb band contains the 3’ boundary of the integrated plasmid.  

The 5.3kb band is derived from linearised plasmid or from digestion of 

concatemers of plasmid (which may or may not be integrated into the 

chromosome) (Figs. 4-9 & 4-10).   

HindIII HindIII11945bp

HindIIIHindIIIHindIII
10430 6815

HindIII5297
Recombined pfeik1 locus

Wild type pfeik1 locus

pCAM-BSD-pfeik1

HindIII HindIII11945bp

HindIIIHindIIIHindIII
10430 6815

HindIII5297

HindIII HindIII11945bpHindIII HindIII11945bp

HindIIIHindIIIHindIII
10430 6815

HindIIIHindIIIHindIII
10430 681510430 6815

HindIII5297 HindIII5297
Recombined pfeik1 locus

Wild type pfeik1 locus

pCAM-BSD-pfeik1
 

Figure 4-9: Schematic for pfeik1- Southern blot. 
The fragments expected after HindIII digestion of the wild-type locus (top), disrupted peik1 locus 
(middle) and disruption plasmid (bottom), are shown.   
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Figure 4-10: Southern blot analysis of pfeik1- clones. 
Several clones derived from two independent populations (left and right) were analysed.  The 
expected sizes illustrated in Figure 4-9 are shown on the right of each gel: WT: 11945bp, 5’ 
integration: 10430bp, 3’ integration: 6815bp, and the pfeik1 disruption plasmid: 5297bp.  Sizes of 
co-migrating markers are indicated on the left.   

 

The results shown in Figures 4-8 and 4-10 confirm that the pfeik1 locus was 

indeed disrupted in clones C1 and C8, and demonstrate that PfeIK1 is not 

required for completion of the asexual cycle of P. falciparum under in vitro 

culture conditions.  Furthermore, the Goldberg lab has produced growth curves 

to compare cell cycle progression in pfeik1- and 3D7 parasites (Fig. 4-11).  

Cultured asexual parasites were synchronized and carefully monitored through 

several life cycles.  There was no significant difference in cell cycle progression 

of parental and knockout clones; cycle times of 49.0 hr +/- 0.5 and 49.2 hr +/- 

0.7, respectively, were measured (see also our joint manuscript, appendix 6.3). 

 

 
Figure 4-11: Growth of pfeik1- parasites. 
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Representative cycles of pfeik1-, clone E6 (solid line) and wild-type 3D7 (dashed line); samples 
were taken every 30 minutes, fixed and DNA content analysed by flow cytometry.  Red; mature 
schizonts, blue; S-phase, black; G phase (G1), hpi; hours post invasion. 

 

4.2.2 PfeIK1 is not required for gametocytogenesis  

It was hypothesised that PfeIK1 plays a role in the parasite’s stress response, and 

may therefore be involved in the regulation of gametocytogenesis.  To test this 

hypothesis, I used published methods (Carter et al., 1993) to determine whether 

the pfeik1- parasites could produce male gametocytes.  As shown in Figure 4-12, 

morphologically normal gametocytes at all stages of maturation were produced, 

suggesting that there is no defect in the ability of pfeik1- parasites to 

differentiate from asexual stages to sexual forms.  That both male and female 

gametocytes were produced by the pfeik1- clones was ascertained by their 

ability to productively infect mosquitoes (see next section). 

Although gametocytogenesis appeared to be qualitatively unimpaired, it is also 

possible that if PfeIK1 plays a role in regulation of differentiation, it could be 

involved at the stage of detecting the stimuli that result in the life cycle stage 

switch.  Since it remains unknown what these stimuli are in a natural infection 

of the human host, or indeed if there are one or many, gametocytogenesis could 

be quantitatively changed in pfeik1- parasites, or qualitatively changed but 

under different conditions than were tested here.  We can nevertheless conclude 

from our experiments that PfeIK1 is not required for gametocytogenesis in vitro. 
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Figure 4-12: Giemsa stained pfeik1- gametocytes. 
A range of gametocyte developmental stages are shown; A: stage IV, B: stage III, C: stage: II, D: 
stage V or mature gametocytes. 

 

4.2.3 PfeIK1 is not required for infection of mosquitoes or 

progression to sporozoites 

Since I had not detected a critical role of PfeIK1 in asexual stages or 

gametocytogenesis, I continued by investigating the viability of pfeik1- parasites 

in mosquito infection experiments.  First, I obtained qualitative evidence that 

male pfeik1- gametocytes were competent to continue development to produce 

gametes (in vitro exflagellation, data not shown).  Subsequently, pfeik1- 

gametocytes were fed to Anopheles gambiae, and their infectivity examined by 

dissecting the parasite fed mosquitoes for oocysts and sporozoites, after the 

appropriate development periods (10 and 16 days post feeding, respectively) had 

elapsed.  As shown in Table 4-1 both the pfeik1- clones tested were able to 

infect mosquitoes, and in the one instance I was able to investigate, the 

infection resulted in development of sporozoites that reached the salivary 
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glands.  The proportion of sporozoite-positive mosquitoes was not significantly 

different from the proportion of infected mosquitoes (p= 0.74). 

 

Clone Exp. 

No. 

Infection prevalence Median oocyst no. per 

infected mosquito (range) 

Sporozoite 

presence 

C1 1 15% (2/14) 1.5 (0-2) ND 

C8 1 44% (7/16) 10 (0-34) 37% (7/19) 

C1 2 not fed, insufficient 

gametocytes 

ND ND 

C8 2 20% (5/25) 2 (0-5) ND 

Table 4-1: Mosquito infection with pfeik1- parasites. 
The two independent clonal lines C1 and C8 were stimulated to produce gametocytes on two 
separate occasions (Experiments 1 & 2).  Experience has shown that a gametocytaemia lower than 
~0.4% is extremely unlikely to be infectious, such that clone C1, experiment 2 was not continued.  
When a feed took place, the mosquitoes were dissected 10 days later when midguts were 
examined and oocysts counted.  The infection prevalence is given, followed by the number of 
mosquitoes this observation derives from.  The median number of oocysts per infected mosquito is 
shown, followed by the range in number of oocysts found on individual midguts.  If examination of 
midguts established that the parasites were infectious, and sufficient mosquitoes had fed to be able 
to continue the experiment for a further 6 days, the remaining mosquitoes were then dissected and 
examined for presence of sporozoites in the salivary glands.  Mosquitoes were scored as positive 
or negative for sporozoites.  ND= not done. 

 

It is clear this experiment has limitations: the first is the lack of wild-type 3D7 

control.  Long term in vitro culture of P. falciparum tends to result in the loss of 

the parasites’ ability to produce gametocytes at all, or loss of their infectious 

capacity.  In this instance I maintained sham-transfected 3D7 in culture along 

side the pfeik1- parasites throughout the transfection and cloning process; 

consequently all these parasites had been in culture for ~7 months before 

mosquito experiments could commence.  It was therefore not unduly surprising 

to find that sham-transfected parasites were unable to produce gametocytes.  
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Without a wild-type control I cannot investigate whether the prevalence or 

intensity of infection is changed by pfeik1 disruption, however experience 

suggests that both levels observed here are within the expected range for such 

‘old’ parasites. It is possible that the fact that the pfeik1- could still produce 

gametocytes is specifically mediated by the knock out, however I suspect it is 

most likely a chance event. 

It was important to verify that the parasites had had not reverted to a wild-type 

pfeik1 locus, which remains a possibility when using the single cross-over 

strategy.  To this end I collected midguts from infected mosquitoes 10 days post 

feeding, extracted genomic DNA and carried out nested PCR (one round of PCR is 

not sufficient when starting from the small amount of DNA present in these 

samples).  The wild-type locus could be amplified as expected from mosquitoes 

infected with wild-type 3D7 parasites, but not from those infected with pfeIK1- 

C8 parasites (Fig. 4-13 lower panel, lanes 1, 3, 5).  Conversely, the amplicon 

diagnostic of the 3’ integration event could only be amplified from midguts of 

pfeIK1- C8-infected mosquitoes, but not from mosquitoes infected with wild-type 

parasites (Fig. 4-13 lanes 2, 4, 8).  The wild-type infected mosquitoes used here 

came from a separate experiment and were used only to control for PCR 

amplification of the wild-type amplicon from infected midguts (and did not serve 

as controls for infection prevalence; see above). 

 
Figure 4-13: PCR analysis of pfeik1- infected mosquito midguts. 
Nested PCR was used to analyse presence of the wild-type locus; lanes 1, 3, 5 using primers 1 + 
2, followed by 5 + 6; expected size =1012bp, and the 3’ integration event; lanes 2, 4, 6 using 
primers 3 + 2, followed by 7 + 6, expected size = 889bp.  The upper panel shows the 3’ integration 
amplicons (lanes 4 & 6); the lower panel is a longer exposure to reveal the wild-type amplicon (lane 
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1).  Primers used are as follows: 1= 146, 2= 148, 3= 169, 4= 170, 5= 979, 6= 980, 7= 179, see 
Table 6-2, appendix, for details.  Primer positions are shown in Figure 4-2. 

 

4.2.4 Expression levels of remaining PfeIF2α kinases in pfeik1- 

parasites. 

It is conceivable that the parasite can sustain disruption of one gene by 

modulating the expression of another gene that performs a related function.  To 

address this I aimed to examine protein levels of the remaining eIF2α kinases, 

after the pfeik1 gene had been disrupted.  At the time of writing these 

experiments were not completed.  However, Figure 4-14 suggests that 

expression of PfPK4 may be increased in asexual pfeik1- clones is in comparison 

to wild-type parasites, which will be an important consideration for further 

analysis of the pfeik1- parasites.  I am cautious in interpreting this result since I 

have shown that PfPK4 levels are higher in trophozoites and schizonts (3.2.2), so 

that the difference observed between wild type and pfeik1- parasites in Figure 

4-14 could be due to a different mix of life cycle stages at the time of parasite 

harvest; this must now be confirmed with synchronized parasites. 

 

 
Figure 4-14: Western blot showing expression of PfPK4 in pfeik1- parasites. 
Parasite pellets of wild-type parasites (3D7) and pfeik1- clone C8 were resuspended in parasite 
solubilising buffer before addition of reducing Laemlli buffer.  Equal amounts of protein were 
separated by SDS-PAGE and transferred to nitrocellulose.  The membrane was cut to probe the 
upper part with anti-PfPK4, while the lower part provided a loading control with anti PfCK2α. 
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Further experiments to complete this analysis would be to examine expression of 

PfeIK2 and PfPK4 in pfeik1- gametocytes, which could be purified from asexual 

stages using a Percoll gradient.  Furthermore, it is also possible that in the 

absence of PfeIK1, expression of PfeIK2 could be induced in asexual stages. 

4.3 PfeIK2 

4.3.1 PfeIK2 is not required for asexual growth 

As PfeIK2 is not expressed in asexual stages (3.4.2.1) we predicted that it would 

be possible to generate PfeIK2 knock-out parasites.  I proceeded to two 

independent transfection experiments using the pCAM-BSD-pfeik2 plasmid (Fig. 

1-3), from which two independent series of clones were obtained by limiting 

dilution.  PCR analysis of five clones (Fig. 4-15) shows that PfeIK2 is indeed 

dispensable for asexual growth; C3 and F12 are independent from F4 and H1 and 

D7.  In each case the wild type amplicon is only amplified from the wild-type 

3D7 parasites, but not from any of the peik2- clones.  Similarly, the amplicons 

diagnostic of the gene disruption plasmid, and the 5’ and 3’ boundaries of the 

integrated plasmid can only be amplified from peik2- clones, and not from wild-

type parasites.  The peik2 locus has not been disrupted in clone D7 hence 

amplicons for the wild-type and the gene disruption plasmid are seen in lanes 21 

and 22 respectively, but not for the integrated plasmid in lanes 23 or 24.   

 
Figure 4-15: PCR analysis of pfeik2- clones. 
Lanes 1, 5, 9, 13, 17 & 21 are diagnostic of the wild-type locus: primers 1 + 2 = 1134bp, lanes 2, 6, 
10, 14, 18 & 22 are diagnostic of the transfection plasmid: primers 3 + 4 = 829bp, lanes 3, 7, 11, 
15, 19 & 23 are diagnostic of 5’ integration:  1 + 4 = 923bp, lanes 4, 8, 12, 16, 20 & 24 are 
diagnostic of 3’ integration: 3 + 2 = 1066bp.  Primers are as follows: 1= 185, 2= 150, 3= 169, and 
for primer 4, two adjacent sequences were used; either 170 for amplification of the episome, or 168 
for amplification of the 5’ integration amplicon, see Table 6-2, appendix for details.  Primer 
positions are indicated in Figure 4-1. 
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The genotype of peik2- clones was verified by Southern blot; digestion with 

HindIII and NcoI yields a 6635bp fragment containing the wild-type locus, a 

5650bp fragment that contains the 5’ boundary of the integrated plasmid, and a 

5225bp fragment containing the 3’ boundary.  The 4239bp band derives from 

linearised plasmid or from digestion of concatemers of plasmid (which may or 

may not be integrated into the chromosome) (Figs. 4-16 & 4-17).  One of the 

clones shown here (D7) contains the gene disruption plasmid, but has not 

integrated it into the genomic locus so shows only the wild-type and plasmid 

bands.   
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Figure 4-16: Schematic for pfeik2- Southern blot. 
The fragments expected following HindIII/NcoI digestion of the wild-type pfeik2- locus (top), 
disrupted pfeik2 locus (middle) and pfeik2 gene disruption plasmid (bottom), are shown. 

 
Figure 4-17: Southern blot analysis of pfeik2- clones. 
Several clones from two independent populations were analysed.  Fragments illustrated in Figure 
4-16 are marked here: WT: 6635bp, 5’ integration: 5650bp, 3’ integration 5225 bp and the 
transfection plasmid 4239bp.  Positions of co-migrating markers are indicated on the left of each 
gel.  
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4.3.2   PfeIK2 is not required for gametocytogenesis 

Since PfeIK2 is expressed in gametocytes but not asexual stages, I was more 

interested to investigate whether gene disruption had any effect on the 

parasites during sexual development.  I used standard methods to produce 

pfeik2- gametocytes (Carter et al., 1993), which as shown in Figure 4-18 are 

morphologically normal and span all developmental stages.  Further, that both 

male and female gametocytes were produced by the pfeik2- clones was 

ascertained by their ability to productively infect mosquitoes (4.3.3).  PfeIK2 

therefore has no apparent essential role in gametocytogenesis.   

 
Figure 4-18: Giemsa stained pfeik2- gametocytes. 
A range of developmental stages is shown; A: stage III, B: stage IV, C: stage V, D: mature 
gametocyte. 
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4.3.3   PfeIK2 is not required for infection of mosquitoes or 

progression to sporozoites 

As with PfeIK1, I wanted to investigate whether disruption of PfeIK2 impaired 

the ability of the parasite to infect mosquitoes.  pfeik2- gametocytes were fed 

to Anopheles gambiae that were dissected in order to count oocysts on midguts 

10 days post feeding, or 16 days post feeding for sporozoites in the salivary 

glands.  As shown in Table 4-2 pfeik2- parasites are able to infect mosquitoes 

and parasite development can proceed, resulting in sporozoites invading the 

salivary glands.  In experiment 1 we compared the prevalence of infection 

between pfeik2- H1 and wild-type; in this instance there was no reduction in the 

ability of pfeik2- parasites to infect mosquitoes compared to wild-type parasites 

(p=0.05).  Indeed, infection with wild-type parasites yielded fewer 

oocysts/sporozoites than infection with pfeik2- parasites.  It seems unlikely that 

the loss of PfeIK2 has rendered the parasites more infectious; this experiment 

would need to be repeated several times to be able to demonstrate such an 

effect.  In the one experiment carried through to sporozoite stage, a 

significantly smaller proportion of mosquitoes contained sporozoites, than oocyts 

(p=0.003), suggesting sporozoite development might be impaired.  Clearly this is 

a single small scale experiment and would require verification.  However, it is 

conceivable that there could be an important role for PfeIK2 in the development 

of sporozoites inside oocysts, or in their ability to reach the salivary glands. 

It took only ~3 months from the transfection procedure to generate one set of 

pfeik2- ‘clones’ ready for mosquito infection; the results shown here are for 2 

‘clones’ (F4 & H1) derived from this population and compared with sham- 

transfected 3D7 parasites maintained in culture over the same period.  I 

recognize that F4 and H1 may not be truly independent, since they derive from 

the same transfection experiment; however, use of two parasite lines provided 

some control for experimental variation, and for the possibility that one line 

could have lost the ability to produce gametocytes (or subsequent functions) 

after dilution cloning.  It required ~ 7months of culture to generate the second, 

independent set of pfeik2- lines, along side pfeik1- parasites and the sham- 

transfected 3D7 parasites that had lost the ability to produce gametocytes 
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(discussed in 4.2.3); these pfeik2- parasites were also unable to produce 

gametocytes. 

Clone Exp. 

No. 

Infection 

prevalence 

Median oocyst no. per 

infected mosquito (range) 

Sporozoite 

presence 

F4 1 Insufficient 

gametocytes to 

feed 

ND ND 

H1 1 84% (21/25) 3 (1-30) 42% (10/24) 

3D7 1 57% (13/23) 2 (2-41) ND 

F4 2 22% (6/27) 2 (1-7) ND 

H1 2 0% (0/21) 0 (0) ND 

3D7 2 0% (0/24) 0 (0) ND 

Table 4-2: Mosquito infection with pfeik2- parasites. 
Two pfeik2- clonal lines, F4 and H1 were stimulated to produce gametocytes on two separate 
occasions (experiments 1 & 2).  Experience has shown that a gametocytaemia lower than ~0.4% is 
extremely unlikely to be infectious, such that clone F4, experiment 1 was not continued.  When a 
feed took place the mosquitoes were dissected 10 days later, midguts were examined and oocysts 
counted.  The infection prevalence is given, followed by the number of mosquitoes this observation 
derives from.  The median number of oocysts per infected mosquito is shown, followed by the 
range in number of oocysts found on individual midguts.  If examination of midguts established that 
the parasites were infectious, and sufficient mosquitoes had fed to be able to continue the 
experiment for a further 6 days, the remaining mosquitoes were dissected and examined for 
presence of sporozoites in the salivary glands.  Mosquitoes were scored as positive or negative for 
sporozoites.  Note that parasite lines F4 and H1 are not truly independent clones as they derive 
from the same population. 

Genomic DNA was extracted and nested PCR was performed to verify that pfeik2- 

infected mosquitoes had retained their disrupted genotype.  Using a set of well 

characterized sensitive primers designed to amplify the pfmdr gene (Duraisingh 

et al., 2000) I was able to confirm that parasite DNA was present in both the 

wild-type and pfeik2- infected midguts (data not shown).  Furthermore, in 

support of the maintainance of the disrupted locus, a single round of PCR was 

sufficient to amplify the wild-type locus from wild-type infected mosquitoes, 
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while no amplicon was detected in pfeik2- infected mosquitoes (data not 

shown).  Although I was unable to amplify the fragments containing either the 5’ 

or 3’ boundaries of the integrated plasmid by nested PCR (data not shown), I 

suspect this is due to differences in the sensitivity of the primers used to amplify 

the different loci.  

We consider that the probability of reversion to the wild-type locus occurring 

during development in the mosquito is sufficiently small to result in no more 

than one or two oocysts per midgut.  Therefore, since I observed greater 

numbers of oocysts than this in several midguts and as the wild-type locus was 

readily amplified from wild-type, but not from pfeik2- infected mosquitoes this 

suggests that the parasites had indeed retained the pfeik2- genotype. 

Taken together, these results strongly suggest that PfeIK2 does not play an 

essential role in the developmental stages required to establish mosquito 

infection, but raises the interesting possibility that it may perform a key 

function during oocyst maturation or subsequent sporozoite migration.   

 

4.4   PfPK4 

4.4.1   PfPK4 is essential for asexual growth 

PfPK4 is expressed in asexual stages (3.2.2); to address whether it performs an 

essential function in the life cycle I used the plasmid shown in Figure 4-4 to 

attempt to disrupt the gene by single cross-over.  Three separate transfections 

were performed on different occasions; in each case a blasticidin-resistant 

population was obtained.  However after at least six months in culture I never 

saw evidence of integration of the construct into the pfpk4 locus, (Figs. 4-19 & 

4-21).  PCR analysis of one representative population is shown in Figure 4-19; an 

amplicon diagnostic of the wild-type locus was amplified from both the 

transfected population and wild-type parasites (lanes 1& 5, Fig. 4-19), 

demonstrating that wild-type parasites were still present in both populations.  
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The amplicon diagnostic of the gene disruption plasmid was amplified, as 

expected from the transfected parasites, but not from wild-type parasites (lanes 

2 & 6, Fig. 4-19).  If integration occurred it would have been detected as a 3kb 

band in lane 3, and a 1.5kb band in lane 4; this was never seen, suggesting an 

essential role for PfPK4 in the asexual life cycle. 

 
Figure 4-19: PCR analysis of attempted disruption of pfpk4. 
Lanes 1 & 5, WT primers 1+ 2, expected size = 3508bp, lanes 2 & 6 episome: = 1054bp, lanes 3 & 
7 5’ integration = 3069bp, lanes 4 & 8 3’ integration = 1474bp.  Primers used were as follows: 1= 
161, 2= 154, 3= 167, 4= 168, see Table 6-2, appendix for details.  Primer positions are indicated in 
Figure 1-1. 

 

To verify the PCR data I also analysed the blasticidin-resistant populations 

transfected with the pfpk4 gene disruption plasmid by Southern blot.  EcoRI 

digestion yields the fragments illustrated in Figure 4-20; the wild type locus at 

3347bp is detected in both transfected (‘KO’) and wild-type (3D7) parasites, 

confirming that wild type parasites are still present in the transfected 

population.  The gene disruption plasmid gives rise to the expected 2480 bp 

fragment in the transfected parasite sample.  If integration had occurred two 

intermediate sized fragments would be present, at 2832 bp for the 5’ truncated 

copy, and 3015 bp for the 3’ truncated copy; these bands were never observed, 

confirming the PCR data.  Together these data suggest that PfPK4 performs an 

essential function in the asexual replication cycle. 
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Figure 4-20: Schematic of expected fragments on Southern blot analysis of pfpk4. 
EcoRI digestion results in a 3347bp fragment from the wild-type locus (top), a 2832bp fragment if 5’ 
integration occurs and a 3015bp fragment if 3’ integration occurs, and the locus is disrupted 
(middle), the 2480bp fragment derives from the digested gene disruption plasmid. 

 
Figure 4-21: Southern blot analysis of attempted pfpk4 disruption. 
The left hand lane contains wild-type parasites (3D7); the right hand lane contains parasites 
transfected with the pfpk4 disruption construct (‘KO’), sizes of co-migrating markers are shown on 
the left.  Fragments corresponding to the wild-type locus (WT) and gene disruption plasmid (as 
shown in Figure 4-20) are indicated. 

 

As discussed in section 4.1, it is important to verify that inability to disrupt the 

function of a gene is not due to an inability to target the locus.  I elected to use 

the circumstantial evidence provided by the 3’ tagging strategy (due to the 

9.2kb size of the coding region of pfpk4, it would have been very difficult to 

implement a complementation strategy as described for other, smaller protein 

kinases such as Pfmap-2 and PfPK7 (Dorin-Semblat et al., 2007, Dorin et al., 

2005)).   

Wild-type parasites were transfected with a plasmid containing the 3’ end of 

pfpk4 without the stop codon, and either a double HA epitope, or a GFP coding 

sequence (Figs. 4-6 & 4-7).  In contrast to the lack of integration of the gene 
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disruption plasmid, blasticidin-resistant populations were obtained that rapidly 

showed integration of the gene modification plasmids (Fig. 4-22).  Analysis of 

both HA and GFP-transfected populations by PCR (Fig. 4-5, for schematic) 

reveals presence of all the expected amplicons for integration (Fig. 4-22, lanes 

6-8 and 10-12).  This provides evidence that pfpk4 can be targeted for 

recombination if the locus modification does not cause loss-of-function, and 

therefore supports the conclusion that the pfpk4 gene cannot be disrupted due 

to an essential function in asexual replication. 

 
Figure 4-22: PCR analysis of integration of pfpk4 3' tags. 
Lanes 1, 5, 9: 3’ fragment of wild type gene used in plasmid, such that amplicons in lanes 5 and 9 
may derive from wild type, integrated, or free plasmid (1+ 2 = 898bp), lanes 2, 6, 10: 3’ integration 
(1+ 3, GFP = 1652bp, HA = 1000bp), lanes 3, 7, 11: 3’ integration (1 + 4, GFP = 2504, HA = 1853), 
lanes 4, 8, 12: 3’ integration (1+ 5, GFP = 2530, HA = 1879bp).  Primers used to analyse 
integration of the 3’ tags are as follows: 1= 177, 2= 154, 3=275, 4=170, 5= 168; see Table 6-2, 
appendix for details.  Primer positions are illustrated in Figure 4-5. 

 

Southern blot analysis was used to confirm the genotypes of the pfpk4 HA and 

GFP-transfected parasites.  As expected, the fragments obtained by EcoRI 

digestion of the integrated locus (Fig. 4-23) are seen in both HA and GFP 

transfected parasites, but not wild-type (Fig. 4-24).  The analysis was performed 

on uncloned populations, such that the wild-type locus is still present in the 

transfected populations (Fig. 4-24).  Provided the tags do not impair the function 

of PfPK4 it is expected that the integrated parasites will overgrow parasites that 

carry the drug resistance cassette on the episome, since unlike the genomic 

copy, this will not segregate equally to all daughter merozoites.  Figure 4-24 

shows that in the HA transfected parasites the wild-type band is dramatically 

reduced in intensity compared to the two bands diagnostic for integration in this 
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lane, or the wild-type band in the other two samples, suggesting that integrated 

parasites are indeed able to overgrow the wild-type parasites.   
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Figure 4-23: Schematic of expected sizes for Southern blot analysis of pfpk4 3' tags. 
EcoRI digestion will yield the following fragments: wild-type: 3347bp; 5’ integration: 7776bp for GFP 
transfected parasites, 7124bp for HA transfected parasites; 3’ integration: 2314bp for both HA and 
GFP transfectants; transfection plasmid: 6740bp for GFP and 6089bp for the HA construct.   

 
Figure 4-24: Southern blot analysis of pfpk4 3' tag populations. 
Left lane: wild-type 3D7 parasites, centre: pCAM-BSD-pfpk4GFP transfected parasites, right: 
pCAM-BSD-pfpk4HA transfected parasites.  The expected fragments diagnostic of the parasite 
genotypes illustrated in Figure 4-23 are indicated on the right.  Sizes of co-migrating markers are 
shown on the left. 

 

In addition to analysis of the locus by PCR and Southern blot, I was also 

interested to know whether functional PfPK4 is expressed with the double HA 

tag.  To date I have not been able to show this by western blot.  However as 

discussed in section 3.4.3.3, preliminary IP results suggest that the tagged 

protein is expressed and active.   
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4.5   Discussion and Perspectives 

4.5.1   PfeIK1 

It would be informative to compare the prevalence and intensity of pfeik1- 

mosquito infections with those of wild-type parasites, as it remains possible that 

their infectious capacity is reduced; this would require new transfections in the 

hope of integration occurring more rapidly in order to limit the effects of 

prolonged in vitro parasite culture on the experiment. 

As discussed in section 3.2.1, PfeIK1 is a putative GCN2 orthologue and may 

therefore play a role in the parasites’ response to nutrient deprivation.  This is 

particularly interesting in the context of a recent report that amino acid 

starvation of P. falciparum does result in increased phosphorylation of PfeIF2α 

(Dan Goldberg, Molecular Approaches to Malaria, Lorne 2008; see our joint 

manuscript in Appendix 6.3).  We are collaborating with the Goldberg lab to 

investigate this in pfeik1- clones.  Whether or not increased phosphorylation of 

PfeIF2α is observed in pfeik1- parasites (in which, as discussed in section 4.2.4, 

increased expression of PfPK4 could compensate for loss of PfeIK1) it would be 

ideal to be able to immunoprecipitate PfeIK1 from starved parasites for in vitro 

kinase assay in order to assess whether it is activated by starvation.  Chicken 

anti-PfeIK1 IgYs  have recently been produced by our collaborator Dean Goldring 

(Pietermaritzbutg),  which if specific will provide a useful tool; otherwise the C-

terminal tagging strategy deployed for PfPK4 should be used. 

4.5.2   PfeIK2 

As for PfeIK1, the mosquito infection experiments should be repeated before it 

can be concluded that PfeIK2 does not play an essential role during sexual 

development; in particular, PCR analysis of the disrupted pfeik2 locus from the 

minute amounts of DNA present in infected midguts must be optimized to enable 

comprehensive analysis of the genotypes of the oocysts.  Furthermore, since 

evidence suggests PfeIK2 is highly expressed in sporozoites (3.2.2) it would be 
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fascinating to see if pfeik2- sporozoites are competent to invade and proliferate 

in hepatocytes; this clearly poses considerable technical challenges, but we are 

setting up collaborations to try to address this question.   

4.5.3   PfPK4  

I have presented evidence that PfPK4 is essential for asexual multiplication of P. 

falciparum.  However, since I have been unable to generate pfpk4- parasites, I 

do not have a tool to investigate whether PfPK4 plays a specific role in 

gametocytogenesis, which we hypothesized as a possible role for the PfeIF2α 

kinases (1.3.1).  It would be interesting to investigate whether the essential 

functions of PfPK4 occur at particular life cycle stages; several possible 

strategies could be used to address this.  The first is to generate a ‘chemical 

genetics’ mutant (Bishop et al., 2001).  Briefly, mutation of a large-side chain 

residue known as the gate-keeper residue (Met2776 in PfPK4) to an amino acid 

with a small side chain such as glycine sensitizes the enzyme to a specific 

inhibitor that is too bulky to inhibit wild-type kinases.  The Met→Gly mutant 

enzyme is predicted to retain activity in the absence of compound.  It would be 

theoretically possible to produce such mutants using the single cross-over 

strategy employed for gene disruption and tagging; parasite populations could 

then be synchronized and the inhibitor added at different stages of the life cycle 

and effects on parasite survival observed.  Secondly, a tetracycline inducible 

system has also been described for P. falciparum that could be deployed to 

express proteins with dominant negative function, or to generate conditional 

knockouts as has been shown in T. gondii (Meissner et al., 2005) (Meissner et al., 

2002).  Thirdly, use of FKBP destabilization domain-fusion proteins has been 

described in P. falciparum (Armstrong and Goldberg, 2007).  Briefly, the FKBP 

domain promotes degradation of the protein to which it is fused, unless the 

ligand of the destabilization domain, Shld1, is present.  It is therefore possible 

that the FKBP domain could be integrated at the 3’ end of the gene of interest 

(as described here for HA or GFP, section 4.1) to produce a C-terminal fusion, 

transgenic parasites would have to be established in the presence of the Shld1, 

but its removal would activate the destabilisation domain thus creating a 

conditional knock out.  
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4.5.4 Expression levels of remaining PfeIF2α kinases, following 

disruption of one of the three genes. 

Section 1.2.4 described initial western blot experiments to investigate the 

expression of PfPK4 in pfeik1- parasites, PfeIK2 could also be investigated in this 

way.  It would also be possible to analyse asexual pfeik2- parasites for a change 

in PfPK4 or PfeIK1 expression.  However, since PfeIK2 is not expressed in asexual 

stages I consider it unlikely that there would be any change in expression of the 

other eIF2α kinases in these parasites during the asexual cycle.  As PfeIK2 is 

expressed in gametocytes it would be more important to investigate expression 

of PfPK4 in pfeik2- gametocytes.  Clearly the same principles apply to the 

investigation of PfeIK1 expression levels in the absence of PfeIK2; this may now 

be possible with the very recently acquired chicken IgYs.   

Alternative strategies exist to address the possible compensation of knock-out of 

one kinase by the function of another; one would be to tag the remaining 

kinase(s) in a knock-out clone, and use the tags to monitor protein expression by 

western blot as described, and their activity by immunoprecipitation followed by 

kinase assay.  Another, would be to look at localisation of the remaining 

kinase(s), either with the antibodies to the native proteins, or to tags.  Thirdly, 

attempts to generate double knock-outs of pfeik1 and pfeik2 would in principle 

answer the question of whether one compensates for another, although this 

would clearly be complicated in mosquito stage experiments due to the problem 

of lengthy in vitro culture that would be required.   

4.6   Summary 

• Using the single cross over strategy I have shown PfeIK1 and PfeIK2 are 

dispensable for asexual replication. 

• Further, disruption of neither PfeIK1 nor PfeIK2 affects the ability of the 

parasite to infect mosquitoes and produce sporozoites. 

• I provide evidence that PfPK4 is essential for asexual replication. 
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• Without pfpk4- parasites I was unable to determine if PfPK4 plays a 

specific role in gametocytogenesis. 
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5 Discussion and conclusions 

5.1   Identification of PfeIF2α and its kinases 

As discussed above (3.5.1), I have identified the P. falciparum orthologue of 

eIF2α and a phylogenetic cluster of PfeIF2α kinases.  Furthermore I have 

confirmed that PfeIK1 is able to phosphorylate PfeIF2α on Ser 59, providing 

support for the hypothesis that regulation of translation initiation may occur in 

P. falciparum by this mechanism.  However, crucially, I have not verified 

whether the other two putative PfeIF2α kinases, PfeIK2 and PfPK4, are able to 

phosphorylate PfeIF2α, because I was unable to produce these two enzymes in 

the form of active recombinant enzymes.  With regard to PfPK4, this is at odds 

with Mohrle et al. who published activity of PfPK4-His on an eIF2α-derived 

peptide (Mohrle et al., 1997); the most obvious way to reconcile our different 

findings is the location of the tag used in recombinant protein production (see 

below, 5.2.1 for further comment).  I have described factors which should be 

considered prior to any further attempts to express these two proteins in E. coli 

(3.5.1).  In addition, as the mammalian and yeast eIF2α kinases dimerize for 

activity through their accessory domains (reviewed (Mathews, 2007)), it is 

possible that production of recombinant proteins incorporating more than the 

kinase domain alone may allow expression of active enzymes.  I also described 

the possibility of using the wheat germ cell free system to produce recombinant 

PfeIF2α kinases (Sawasaki et al., 2005, Mudeppa et al., 2007).  Although the 

wheat germ system appears attractive, it may also not be practical; if (as seems 

likely), the wheat eIF2α sequence is as well conserved as rice (Fig. 3-1), it is 

probable that if the proposed PfeIF2α kinases are indeed active, they will 

phosphorylate the eIF2α in the cell free system and thus inhibit translation, and 

therefore their own synthesis.   

An alternative approach to identifying the kinase that is responsible for 

phosphorylation of a given residue has been described by Maly et al. (Maly et al., 

2004).  In this approach, the residue that is the target for phosphorylation is 

mutated to cysteine (i.e. Ser59→Cys in PfeIF2α), and a kinase reaction allowed 
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to proceed containing the Ser-Cys mutant substrate, potential upstream kinases 

(e.g. a whole cell extract) and a specific crosslinking compound.  The crosslinker 

utilizes on one hand the reactive cysteine that has been introduced into the 

substrate, and on the other hand a conserved lysine in the catalytic cleft of the 

kinase, which results in a covalent bond between the substrate and the kinase.  

The complex can then be purified via a tag in the substrate, and the trapped 

kinase identified by immunoblotting where there are known candidates, or mass 

spectrometry if there are not.   

5.2   Investigation of the role of PfeIF2α kinases 

5.2.1   Activation stimuli 

I have presented preliminary data showing that PfPK4-HA can be 

immunoprecipitated from parasite extracts and used in in vitro kinase assays 

(3.4.3.3), an approach that has been successfully used to show activity of two 

divergent eIF2α kinases in T. gondii (Narasimhan et al., 2008).  This approach 

may be effective to verify whether PfPK4-HA can phosphorylate PfeIF2α by 

using GST-PfeIF2α as the substrate in in vitro kinase assays, including the 

Ser59→Ala mutant as a control to confirm the target of phosphorylation.  These 

experiments are required to confirm and extend previously published results; 

Mohrle et al. (1997) described activity of PfPK4-His against an eleven-residue 

peptide representing the human eIF2α sequence containing the target serine 

(Ser51 in human) (Mohrle et al., 1997).  The data they presented suggests that 

the recombinant protein was quite active, since other eIF2α kinases have been 

found to have 1000-fold less activity on a short peptide, than on the whole 

eIF2α molecule (Mellor and Proud, 1991) (subsequently explained by the crystal 

structure of PKR and eIF2α, which shows the large surface area involved in the 

kinase-substrate interaction (3.1) (Dar et al., 2005)).  However, the Mohrle et 

al. study did not include a kinase-dead mutant, and was carried out by 

scintillation counting, as against SDS-PAGE followed by autoradiography, so that 

the identity of the phosphorylated substrate remains uncertain.   
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Similarly, immunoprecipitation from gametocyte extracts can be tried with our 

anti-PfeIK2 antibody, but the possibility remains that the kinases may be 

maintained in an inhibited condition, so that no activity would be detected. 

5.2.1.1   Starvation 

I suggest that such immunoprecipitation experiments should be carried out in 

conjunction with investigation of activation stimuli.  It is possible to detect 

phosphorylation of PfeIF2α by immunoblotting after amino acid deprivation of 

the parasites (Babbitt & Goldberg, MAM 2008; our joint manuscript, Appendix 

6.3).  We hypothesize that since PfeIK1 appears to be the orthologue of GCN2, 

then it will be the kinase responsible for mediating this starvation response.  The 

pfeik1- parasites are one useful tool with which to investigate this (in progress).  

It would clearly be advantageous to be able imunoprecipitate PfeIK1 from 

starved parasites for in vitro kinase assay; either a very recently available anti-

sera will facilitate this, or PfeIK1-HA parasites should be generated.  Both PfeIK2 

and PfPK4 could be investigated in this way. 

5.2.1.2   Oxidative stress 

Consideration of other candidate stress stimuli should take into account the 

conditions in which the parasite must survive.  For example, as discussed 

previously (3.5.2), P. falciparum is vulnerable to oxidative stress, and has 

limited capacity to neutralize damaging oxidative agents (Muller, 2004); it would 

not be surprising therefore, to find additional mechanisms that function to 

protect the parasite in the event of redox mechanisms being overwhelmed.  It 

has been shown in other eukaryotic systems that arsenite mediates oxidative 

stress (Patel et al., 2002, Novoa et al., 2003), and that HRI is activated under 

these conditions as part of the cellular stress response (Lu et al., 2001).  In view 

of speculated HRI-like activity in P. falciparum (3.5.2), (and unknown 

mechanism of HRI activation by arsenite (Lu et al., 2001)), but also the 

interesting finding that arsenite induces differentiation from tachyzoites to 

bradyzoites in conjunction with eIF2α phosphorylation in T. gondii (Narasimhan 

et al., 2008), this is certainly a candidate stressor to investigate.  
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5.2.1.3   Heat shock 

I am intrigued by the possibility that P. falciparum must regulate its functions in 

response to the greater than 10oC difference between its mosquito vector and 

human host, in addition to the repeated exposure to heat shock on account of 

the febrile episodes that are part of malaria pathology.  In view of this 

substantial exposure to heat shock, inherent in the parasite life cycle it is not 

surprising that the major classes of heat shock proteins are well represented in 

P. falciparum (reviewed (Acharya et al., 2007)).  In addition to the 

characterized activation stimuli of eIF2α kinases (1.8.3.2), other stress stimuli 

including heat shock are also known to induce phosphorylation of eIF2α 

(Brostrom and Brostrom, 1998).  It has been demonstrated that in erythroid cells 

HRI is the principle eIF2α kinase activated by heat shock.  Furthermore, 

evidence suggests that hsp90 and hsc70 are required for this effect (Uma et al., 

1997, Uma et al., 1999, Lu et al., 2001).  Heat shock is therefore also a 

candidate activator for the PfeIF2α kinases. 

5.2.2   Complementation of yeast mutants 

I have provided evidence that components of the mechanism for 

phosphorylation of eIF2α are conserved in P. falciparum, and that therefore 

translation may be regulated in response to stress; this remains to be shown 

experimentally.  Since S. cerevisiae has only a single eIF2α kinase (GCN2) that is 

not essential for growth under normal conditions, mutant strains have been 

established that enable analysis of other eIF2α kinases (Vattem et al., 2001), 

including the divergent eIF2α kinases of T. gondii (Sullivan et al., 2004) and T. 

brucei (Moraes et al., 2007).  There are two key isogenic strains in which GCN2 

has been deleted, one expresses wild type eIF2α (such as strain H1894), the 

other expresses the Ser51→Ala mutant of eIF2α that cannot be phosphorylated 

(strain J82, SUI2-S51A); a galactose-inducible promoter is used to express a GST 

fusion of the heterologous eIF2α kinase.  If the exogenous kinase is active, the 

resulting hyperphosphorylation of eIF2α results in a significant reduction in 

translation initiation and reduced growth.  The Ser51→Ala strain is used to 
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confirm that any growth defect observed in the GCN2Δ strain is mediated by 

phosphorylation at this position; growth of the Ser51→Ala strain is expected to 

be unaffected by the heterologous kinase.  We initiated a collaboration to carry 

out these experiments with the PfeIF2α kinases; initial trials were unsuccessful 

(R. Wek lab), likely due to poor expression of the P. falciparum proteins in 

yeast.  Just as it may be necessary to improve prokaryotic expression of AT-rich 

plasmodium genes, by use of cells with additional tRNA genes, so codon 

optimisation could be required for expression of the same genes in yeast.  

PfeIK1 and PfeIK2 have more modest sized catalytic domains (than PfPK4); gene 

synthesis could be a practical approach.  If expression in yeast is achieved then 

the Ser51→Ala strain can also provide a useful means of producing GST-tagged 

proteins for in vitro kinase assay. 

5.2.3   Effect of phosphorylation of PfeIF2α on translation? 

Three strategies are under consideration to address whether certain stress 

conditions influence translation rates in P. falciparum, and whether this is via 

phosphorylation of PfeIF2α.   

The first strategy is to use published methods to set up an in vitro translation 

system using P. falciparum components (Surolia and Padmanaban, 1991) 

(Ferreras et al., 2000).  Theoretically, the system described by Ferreras et al. 

2000 could be generated from parasites cultured under normal or stress 

conditions, or from wild type or pfeik- parasites.  Use of an in vitro system has 

the advantage of being more readily manipulated, for example by 

supplementing with a recombinant PfeIK, or potential inhibitor (Ferreras et al., 

2002).  In the second strategy, protein production can be examined by replacing 

the methionine and cysteine in the culture medium with [35S]Met/Cys and 

monitoring [35S] incorporation; it is expected that if a stress stimulus leads to 

phosphorylation of eIF2α and translation arrest, then in the same amount of 

total protein the stressed sample will only have incorporated a fraction of the 

[35S], compared to an unstressed sample (Narasimhan et al., 2008).  Finally, a 

third strategy might be to directly address whether phosphorylation of PfeIF2α 
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is accompanied by a reduction in translation initiation by examining 

polyribosome profiles.  It is expected that in stressed parasites if the eIF2α 

mechanism is operative a reduction in polysomes will be seen, and free 

ribosomes and monosomes correspondingly increased (Han et al., 2001, 

Narasimhan et al., 2008).  If this can be shown to be the case, then purifying 

the polysomes that are maintained in these conditions might allow the 

identification of the mRNAs that are translated under stress, which would yield 

interesting information with respect to the mediation of the stress response. 

5.3 Perspectives 

5.3.1   Phosphoregulation is a two way process. 

Phosphorylation is such a widely used post translational signaling mechanism 

largely because it can be readily reversed by the action of protein phosphatases, 

resulting in systems that can be tightly regulated.  In general, organisms have 

fewer Ser/Thr phosphatases than their corresponding complement of Ser/Thr 

kinases (Gallego and Virshup, 2005), and P. falciparum is no exception to this 

(Wilkes, 2008).  It is increasingly clear that phosphatases operate as hetero-

oligomeric complexes, where the diverse regulatory subunits with which a 

catalytic subunit associates, provide specificity of action by targeting specific 

substrates (Barford et al., 1998, Bollen, 2001).  Regulation of translation by the 

dephosphorylation of eIF2α is less well understood than the action of the eIF2α 

kinases, however it is clear that since the downstream consequences of eIF2α 

phosphorylation include changes in gene expression, translation must be allowed 

to continue, if a new complement of proteins is to be produced (Novoa et al., 

2003).  Interestingly, many viruses can block the activity of PKR and hence 

phosphorylation of eIF2α, (Mohr, 2007), others prevent translational arrest by 

modulating dephosphorylation of eIF2α (Mulvey et al., 2003); this contributed to 

the identification of protein phosphatase 1 (PP1) as the catalytic subunit 

responsible for eIF2α-P dephosphorylation (He et al., 1997, He et al., 1998).  In 

mammalian cells, growth arrest and DNA damage gene (GADD)34 has been 

identified as a regulatory subunit of a holophosphatase complex that includes 
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PP1 and specifically promotes the dephosphorylation of eIF2α in vitro (Novoa et 

al., 2001).  Furthermore GADD34 expression is induced by stress downstream of 

eIF2α kinase activity (the precise mechanism is not know, but it does depend on 

phosphorylation of eIF2α), thereby orchestrating a programmed shift from 

translational repression to stress-induced gene expression (Novoa et al., 2003).   

P. falciparum has been shown to encode a functional PP1 enzyme 

(Bhattacharyya et al., 2002), and one interaction and regulatory effect has been 

identified (Daher et al., 2006).  It is expected from the mechanisms of 

regulation of other eukaryotic phosphatases, and particularly in view of the 

small size of the P. falciparum Ser/Thr phosphatome (Wilkes, 2008), that many 

more regulatory interactions (that may include a GADD34-like protein) will be 

found.  Recently, the ubiquitously expressed adaptor protein Nck that is 

composed of Src homology domains, has been shown to reduce eIF2α 

phosphorylation in mammalian cells, in a stress specific manner (Cardin et al., 

2007).  Queries of PlasmoDB for Src-homology domains, does not return any 

matches (Interpro IDs: Src homology-3 domain; IPR001452, SH2 motif; 

IPR000980, SH3, type-5 bacterial; IPR013667, SH3, type 3; IPR013247, Variant 

SH3; IPR011511 and Bacterial SH3-like region; IPR003646).  As P. falciparum does 

not encode classical tyrosine kinases (Ward et al., 2004) it is not surprising that 

there are no apparent Src homology domains making it unlikely that this 

mechanism operates in P. falciparum. 

5.3.2   Gametocytogenesis; a stress induced response? 

As discussed in section 1.3.1, commitment to gametocytogenesis remains an 

enigmatic process; in particular, although environmental conditions modulate its 

induction, no single molecule or signalling pathway has been shown to act as an 

inducing factor (reviewed (Alano, 2007)).  T. gondii differentiates from rapidly 

dividing tachyzoites to quiescent bradyzoites on exposure to a number of 

cellular stresses that also induce phosphorylation of TgeIF2α (Sullivan et al., 

2004, Narasimhan et al., 2008).  These observations led us to hypothesise that 

the withdrawal from proliferation and switch to differentiation into gametocytes 

could represent an analogous series of events in P. falciparum, rendering 
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phosphorylation of PfeIF2α a candidate mediator of this process.  Although I 

have shown that neither PfeIK1or PfeIK2are required for production of 

gametocytes or subsequent completion of the sexual cycle, our reverse genetics 

data do not allow us to formally exclude that one of the eIF2α kinases is indeed 

a mediator of the switch to sexual development.  First, the PfPK4 gene cannot 

be inactivated; it is conceivable that superimposed to its essential function in 

asexual growth (which we demonstrated), PfPK4 also plays a role in 

gametocytogenesis (which we cannot demonstrate due to the lack of a pfpk4- 

clone).  Second, our preliminary data suggest that pfeik1- parasites appear to 

overexpress PfPK4.  This may complement for a function of the former gene in 

asexual growth or in sexual development.   

It remains an open question as to how the observed inducers of 

gametocytogenesis function.  Conditions shown to increase gametocytogenesis, 

such as sub-lethal concentrations of chloroquine (Buckling et al., 1997) are 

therefore candidates for inclusion in experiments seeking to identify conditions 

inducing PfeIF2α phosphorylation and activation of PfeIF2α kinases. 

5.3.3   Relative importance of translation control in P. falciparum 

When I began this project, the prevailing view was that translation might play a 

highly significant role in the regulation of P. falciparum gene expression 

(discussed in section 1.7).  This was largely based on the small number of 

identified transcription-associated proteins, and dearth of well conserved 

promoter elements (reviewed (Coleman and Duraisingh, 2008)).  However, these 

observations did not detract from the unusual, and clearly tightly regulated 

cascade of gene expression observed through the P. falciparum life cycle (Le 

Roch et al., 2003), or the interesting finding that distinct transcriptional states 

were observed in clinical isolates that did not correlate with anything previously 

observed in vitro (Daily et al., 2007).  Recent discoveries of cis-regulatory 

elements and the ApiAP2 plant-like transcription factors (Balaji et al., 2005) 

(Young et al., 2008) are calling into question the view that transcriptional 

control in P. falciparum is relatively uncomplicated (reviewed (Coleman and 

Duraisingh, 2008)).  While the evidence that post-transcriptional regulation plays 
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a key role in P. falciparum gene expression still stands, it is unlikely to be as 

significant as was previously thought. 

5.3.4   Search for new therapeutic targets 

As outlined in section 1.5.1, regulation of reversible phosphorylation, 

specifically by targeting kinases is a promising therapeutic approach; the eIF2α 

are no exception.  It has been proposed that inhibition of PERK may synergise 

with other cancer therapies (Blais and Bell, 2006), however a cautionary note 

was added recently in view of the heterogeneous nature of tumour cells.  PERK 

activity can promote cell survival, which provides the basis of rationale for its 

inhibition, however it may also be responsible for maintaining the slow dividing 

or dormant state of some regions of primary tumours or disseminated cells, such 

that inhibition would have a harmful effect  (Ranganathan et al., 2008).  In 

addition, proof of concept for selectively targeting dephosphorylation has been 

provided with the identification of salubrinal, a compound that inhibits 

dephosphorylation of eIF2α; this approach may be beneficial in diseases 

involving ER stress or viral infection (Boyce et al., 2005).  

The underlying aim of our laboratory is to identify new therapeutic targets for 

the treatment of malaria, via the absorbing route of seeking to decipher events 

that control proliferation and differentiation in P. falciparum; kinases are strong 

candidates.  In the context of this overall aim, I can conclude that PfeIK1 and 

PfeIK2 are not therapeutic targets, as I have shown they are not required for 

asexual multiplication, and notwithstanding as yet unidentified essential roles in 

sporozoites stages, do not have potential as transmission blocking targets either.  

A possible essential role in exo-erythrocytic (liver) stages would provide 

rationale for prophylaxis.  We are currently establishing a collaboration with a 

laboratory that has access to infection of hepatocytes with P. falciparum 

sporozoites, in order to assess the ability of the pfeik1- or pfeik2- sporozoites to 

establish a productive infection of hepatocytes.  On the contrary, due to its 

apparent essential role in the asexual cycle, PfPK4 is promising, but cannot be 

pursued until active recombinant protein, the basis of a high throughput screen, 

can be produced. 
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6 Appendix 

6.1   Biological and chemical reagents 

General chemicals were purchased from Sigma. 

Biogenes Custom antibody production 

Biorad Bradford reagent, 30% Acrylamide/Bis mix 

Blood transfusion service Human full blood 

Calbiochem Gentamycin, Blasticidin S hydrochloride 

Eurogentec Smartladder, DNA ladder 

Fermentas PageRuler™ prestained protein ladder 

Finnzymes  Phusion DNA polymerase 

GE Healthcare γ-32[P]ATP, Gene Images AlkPhos Direct Labelling and 

Detection system, Gene-Images CDP-Star detection 

kit, Amersham Hyperfilm, Hybond-N+  

Genscript PfeIF2α S59 peptide (ILMSELSKRRFR) 

GIBCO RPMI 1640 

Invitrogen DNase I, SuperScript II, T4 DNA ligase 

Kodak Medical X-Ray film 

Qiagen DNA miniprep kit, maxiprep kit, gel extraction kit 

New England Biolabs Restriction enzymes, BSA, Broad Range protein 

marker 
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Novagen pET-28a 

Perkin-Elmer Western Lightning Chemiluminescence reagent Plus 

Pharmacia pGEX-4T3 

Promega pGEM-T easy 

Roche High fidelity polymerase, complete protease inhibitor 

tablets +/- EDTA 

Takara Ex Taq DNA polymerase 

Table 6-1: Supppliers of biological and chemical reagents. 
 

6.1.1   Oligonucleotide primers 

Oligonucleotide primers were designed to amplify genes for recombinant protein 

expression, gene disruption, 3’ tagging and sequencing.  Where PCR products 

were to be subcloned into appropriate destination plasmids, the oligonucleotide 

primers included a 5’ extension containing the relevant restriction site.   

081 pGEX, GST forward GGG CTG GCA AGC CAG GTT TGG TGG 

082 pGEX, GST reverse GGG GGA GCT GCA TGT GTC AGC GC 

95 SP6 ATT TAG GTG ACA CTA TAG 

123 T7 TAA TAC GAC TCA CTA TAG GG 

145 PfeIK1 (PF14_0423) full 

length, forward (BamHI) 

GGG ATC CAT GAC AAG TGA GGA CAA 

GAC AGC 

146 PfeIK1 (PF14_0423) catalytic 

domain, forward (BamHI) 

GGG GGG ATC CAT GGG GAA AAA AAA 

ACA TGG 
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147 PfeIK1 (PF14_0423) full 

length, reverse (SalI) 

GGG GGT CGA CTT AAA AAT ATT TAA 

TTA GGT AG 

148 PfeIK1 (PF14_0423) catalytic 

domain, reverse (SalI) 

GGG GGT CGA CCG TAA AAA GTA CAC 

TTT CGT G 

149 PfeIK2 (PFA0380w) 5’ end of 

longest predictions (BamHI) 

GGG GGG ATC CAT GCT AAT AAA TAA 

AAG AAA AAG 

150 PfeIK2 (PFA0380w) catalytic 

domain, reverse (SalI) 

GGG GGT CGA CTC AAT ATA TAT ATA 

TAT TTT TTT TTT TC 

151 PfeIF2α (PF11_0117) forward 

(BamHI) 

GGG GGG ATC CAT GAC TGA AAT GCG 

AGT AAA AGC 

152 PfeIF2α  (PF11_0117) reverse 

(SalI) 

GGG GGT CGA CTT AAT CTT CCT CCT 

CCT CGT C 

153 PfPK4 entire gene, forward 

(BamHI) 

GGG GGG GAT CCA TGT GTA ATT TTA 

TAA AAA AAG GT 

154 PfPK4 catalytic domain, 

reverse (SalI) 

GGG GGT CGA CCT ATT TGT CTG CAC 

CAT TAT TCT C 

161 PfPK4 catalytic domain 

forward (BamHI) 

GGG GGG ATC CAT GAA AAA ACG GAT 

ACG TAG TAG T 

167 pCAM-BSD forward TAT TCC TAA TCA TGT AAA TCT TAA A 

168 pCAM-BSD reverse CAA TTA ACC CTC ACT AAA G 

169 pCAM-BSD forward, 2 ATT TAT TAA ACT GCA GCC C 

170 pCAM-BSD reverse, 2 AAG CTG GAG CTC CAC CGC 

171 PfeIF2α S59C, forward GTC CGA ACT ATG CAA AAG AAG 



136 

172 PfeIF2α S59C, reverse CTT CTT TTG CAT AGT TCG GAC 

173 PfPK4 F3, sequencing GTT CGA GTG CTA GGA ATT TGT C 

174 PfPK4 F4, sequencing GTA GTT GTT ATA GTG CTA GTA G 

175 PfPK4 F5, sequencing GTT TTC GCC GAT AAT GAA GAA TC 

176 PfPK4 F6, sequencing CCA AAT TCT CGA ACC GAA ACG 

177 PfPK4 F7, sequencing GCA GAT GGA ATT GTG TAA AGG 

178 PfPK4 F8, sequencing GGA CAA ATT ATA GGA ACC CCT GG 

179 PfeIK1 gene disruption F 

(BamHI) 

GGG GGG ATC CGT AAT GAA AGT AAA 

AAA TAA G 

180 PfeIK1 gene disruption R 

(NotI) 

GGG GCG CCG GCG AGG TGA AAT ATA 

ATG AAT TGT TCC 

183 PfeIK2 gene disruption, 

forward (BamHI) 

GGG GGG ATC CAT GAA TAT AAC AAC 

CAC TTA TTT A 

184 PfeIK2 gene disruption, 

reverse (NotI) 

GGG GCG CCG GCG TGG AGC TGC ATA 

TAT TTT TGT TCC 

185 PfeIK2 catalytic domain, 

forward (BamHI) 

GGG GGG ATC CAT GTT CAT AAA ATC 

ATG TAA TGA TAA AAG C 

186 PfPK4 gene disruption 

reverse (BamHI) 

GGG GGG ATC CCC AAA TTC TCG AAC 

CGA AAC G 

187 PfPK4 gene disruption 

reverse 

GGG GCG CCG GCG  TGG TGC TGT 

ATA ACC AGG GG 

195 PfeIF2α S59A forward GTC CGA ACT AGC CAA AAG AAG 
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196 PfeIF2α S59A reverse GTC CGA ACT AGC CAA AAG AAG 

197 PfeIK1 K458M forward CTT ATG CAT TAA TGA TTA TAA G 

198 PfeIK1 K458M reverse CTT ATA ATC ATT AAT GCA TAA G 

199 PfeIK2 K157M forward ATG AAA ATA AGG ATG ATA TTA AAT 

200 PfeIK2 K157M reverse ATT TAA TAT CAT CCT TAT TTT CAT 

201 PfPK4 K2177M forward CCA ACA TAT GCT GTG ATG TTT ATT 

202 PfPK4 K2177M reverse CCA ACA TAT GCT GTG ATG TTT ATT 

224 PfeIK2 gene structure long 

forward (BamHI) 

GGG GGG ATC CCC AAC AAA TAT ATT 

ATC ACC ACA AG 

225 PfeIK2 gene structure short, 

forward (BamHI) 

GGG GGG ATC CAT GTA TTA TTT CAC 

AAA AGT TGT ATC C 

226 PfeIK2 gene structure reverse 

(SalI) 

GGG GGT CGA CCG CAA GCA TTT GGT 

AGG GAA TGC 

275 pHGB reverse CGA ACA TTA AGC TGC CAT ATC C 

470 PfPK4 reverse, integral 

BstAPI 

GGA TTT CTT TTG GCA TCA GAT GCA 

TAG G 

486 PfeIK1 Kdead D660N reverse GAT ATT TGA AGG TTT AAT ATT TCT 

ATG C 

487 PfeIK1 K dead D660N forward GCA TAG AAA TAT TAA ACC TTC AAA 

TAT C 

589 PfeIK2 intron forward CTC GAA CCA TCC TAA ATA GCA GAG 

GAC 
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635 GFP reverse CAG GTA GTT TTC CAG TAG TGC 

616 PfPK4 3’ end forward (PstI) GGG GCT GCA GGA TTG GAG ATT TAG 

GAT TAG TAC G 

617 PfPK4 3’ end reverse (BamHI) GGG GGG ATC CTT TGT CTG CAC CAT 

TAT TCT C 

979 PfeIK1 nested forward CCT TTA ACT GTT CAG TTA GC 

980 PfeIK1 nested, reverse CCA TAG AAG TCG AAA ATG GTT C 

Table 6-2: Oligonucleotide primers. 
Sequences are given 5’ to 3’, restriction sites are in bold. 

 

6.1.2   Bacterial strains 

XL10-gold Tetr Δ(mcrA)183 Δ(mcrCB-hsdSMR-mrr)173 

endA1 supE44 thi-1 recA1 gyrA96 relA1 lac Hte 

[F′ proAB lacI qZΔM15 Tn10 (Tetr) Amy Camr] 

BL21-codon plus  

Rosetta 2 (DE3)pLysS (Novagen) F- ompT hsdSB(rB
- mB

-) gal dcm (DE3) 

pLysSRARE2 (CamR) 

BL21-CodonPlus-RIL 

(Stratagene) 

E. coli B F– ompT hsdS(rB– mB–) dcm+ Tetr gal 

endA Hte [argU ileY leuW Camr] 

 

6.1.3   P. falciparum strain 

3D7 
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6.1.4   Mosquitoes 

Anopheles gambiae 

6.1.5   Antibodies 

Target Animal Dilution Source 

PfeIK2 Rabbit Serum, 1/1500 Biogenes 

PfPK4  Rabbit Immunopurified, 

1/600 

Biogenes 

ERD2 Rat Serum, 1/500 Gift from Dr Helen 

Taylor 

GST Rabbit Immunopurified 

1/5000 

Sigma 

His Rabbit Immunopurified 

1/1000 

Santa Cruz 

HA (either HRP 

coupled, or not) 

Mouse 

monoclonal 

1/1000 Roche 

Table 6-3: Primary antibodies. 
 

Target Dilution Source 

Rabbit IgG  1/10,000 Sigma 

Rat IgG 1/15,000 Gift from Dr Helen 

Taylor 

Mouse IgG 1/10,000 Sigma 

Table 6-4: Secondary antibodies. 
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6.2   Buffers, solutions and media 

6.2.1   General Buffers 

1X PBS 137mM NaCl, 2,7mM KCl, 10mM Na2HPO4, 2mM KH2PO4 

Table 6-5: General buffer composition. 
 

6.2.2   DNA analysis 

1X TAE 40mM Tris-Acetate, 1mM EDTA 

6X DNA loading dye 0.25% (w/v) bromophenol blue, 0.25% (w/v) 

xylene cyanol FF, 30% (w/v) glycerol 

10X Ex Taq buffer Contains 20mM Mg2+ 

20X SSC  0.3M Na3Citrate, 3M NaCl 

Denaturation solution 1.5M NaCl, 0.5MNaOH 

Depurination solution 0.25mM HCl 

Southern hybridization 

buffer 

Gene Images Alk Phos Hybridization buffer, 

containing 0.5M NaCl and 4% (w/v) blocking 

reagent (from kit). 

Southern primary wash 1M Urea, 0.1% (w/v) SDS, 50mM Na phosphate (pH 

7.0), 150mM NaCl, 1mM MgCl2, 0.2% (w/v) 

blocking reagent. 

Southern secondary wash 50mM Tris base, 100mM NaCl, 2mM MgCl2. 

Table 6-6: Composition of buffers used for DNA analysis. 
 



141 

6.2.3   Protein analysis 

Coomassie Stain 0.25g Coomassie brilliant blue/ 100ml 

destain solution 

Destain solution 5% acetic acid, 22% methanol 

Kinase buffer 20mM Tris-HCl, pH 7.5, 20mM MgCl2, 2mM 

MnCl2, phosphatase inhibitors (10mM NaF, 

10mM β glycerophosphate), 10μM ATP and 

0.1MBq [γ-32P] ATP 

4X Laemmli loading buffer 40% Glycerol, 20% β-mercaptoethanol (14M 

stock), 2% SDS, 0.25M Tris, pH 6.9, plus 

bromophenol blue to a dense colour. 

Lysis Buffer 1, for GST-fusion 

protein preparation 

2mM EDTA, 1mM DTT, 1mM BHH, 0.5% (w/v) 

Triton X100, 1X complete protease inhibitor 

(Roche), 1mM PMSF 

Lysis buffer 2, for His-fusion 

protein preparation 

100mM Tris-HCl pH 7.5, 300mM NaCl, 1X 

EDTA-free protease inhibitor (Roche), 1mM 

PMSF. 

Parasite solubilisation buffer 0.1% SDS, 0.05% Sodium deoxycholate, 

complete protease inhibitor (1tablet per 

10ml), in PBS 

RIPA buffer 150mM NaCl, 20mM MgCl2, 1% NP-40, 0.5% 

Triton, 30mM Tris (pH 8.0), 10mM NaF, 1mM 

PMSF, 1X complete protease inhibitor 

cocktail (Roche). 

1X TGS, running buffer 25mM Tris, 192mM glycine, 0.1% (w/v) SDS, 

pH 8.3 
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Towbin buffer - standard 25mM Tris pH 8.3, 192mM glycine, 20% 

methanol,  

Towbin buffer - high molecular 

weight 

50mM Tris pH 8.3, 384mM glycine, 20% 

methanol, 0.1% SDS,  

Table 6-7: Composition of buffers used for protein analyses, including recombinant protein 
preparation. 
 

6.2.4   Bacterial culture 

Ampicillin 1000X stock: 50mg/ml in dH2O 

Autoinduction medium 400ml LB, 8 ml 50X ‘M’ (see below), 8 ml 50X 5052, 0.8 

ml 1M MgSO4  

Chloramphenicol 1000X stock, 34mg/ml in ethanol 

Kanamycin 1000X stock: 10mg/ml in dH2O 

Luria-Bertani medium 10g/L tryptone, 5g/L yeast extract, 10g/L NaCl, pH 7.5 

Luria-Bertani agar Luria-Bertani medium plus 15g/L Tayo Agar 

50X ‘M’ 1.25 M Na2HPO4, 1.25 M KH2PO4, 2.5 M NH4Cl, 0.25 M 

Na2SO4 

Tetracycline 100X stock: 5mg/ml in ethanol 

TFB1 30mM potassium acetate, 10mM CaCl2, 50mM MnCl2, 

100mM RbCl, 15% glycerol.  pH 5.8 (using 1M acetic 

acid), filter sterilized 

TFB2 100mM MOPS (pH6.5), 75mM CaCl2, 10mM RbCl, 15% 

glycerol.  pH 6.5 (using 1M KOH), filter sterilized 
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2YT 16g/L tryptone, 10g/L NaCl, 10g/L yeast extract, pH 

7.6 

50X 5052 25 % glycerol, 2.5 % glucose, 10 % lactose  

Table 6-8: Buffers, medium and antibiotics used for bacterial preparation and culture. 
 

6.2.5   P. falciparum culture 

Blasticidin 2.5μg/ml in complete RPMI 

Complete RPMI 1640 

medium 

For 5L: 79.45g RPMI 1640 powder (GIBCO), 0.25g 

hypoxanthine (Sigma), 10g NaHCO3, 0.25mg 

gentamycine sulphate (VWR International), 0.5% w/v 

of Albumax II-lipid rich bovine serum albumin 

(Invitrogen), pH 7.2. 

Note: for gametocyte cultures for mosquito infection 

Albumax was replaced with heat inactivated (1 hour, 

56oC) human AB serum, 10% v/v. 

Cytomix 120 mM KCl, 0.15 mM CaCl2, 2mM EGTA, 5 mM MgCl2, 

10 mM K2HPO4/KH2PO4, 25 mM HEPES 

Deep freeze solution 4.2 % (w/v) sorbitol, 0.9 % (w/v) NaCl, 28% (v/v) 

glycerol 

Giemsa buffer 21.1mM Na2HPO4, 4.4mM KH2PO4, pH 7.4 

Incomplete medium For 5L: 79.45g RPMI 1640 powder (GIBCO), 0.25g 

hypoxanthine (Sigma), pH 7.2. 

Malstat reagent 13mg/ml Tris/HCl pH 9.0, 20mg/ml Lithium-L-lactate, 

0.66mg/ml APAD, 0.2% Triton X100. 
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Solution A 12% (w/v) NaCl 

Solution B 1.6% (w/v) NaCl 

Solution C 0.9% (w/v) NaCl, 0.2% dextrose 

Sorbitol 50g/L 

Table 6-9: Composition of solutions used for P. falciparum culture. 
 

6.2.6   Mosquito breeding 

Glucose solution for adult 

mosquitoes 

5.0% (w/v) D-glucose, 0.05% (w/v) PABA 

Table 6-10: Solution for mosquitoes. 
 

6.3   Submitted manuscript 

PfeIK1, a eukaryotic initiation factor 2α kinase of the human malaria parasite 

Plasmodium falciparum. 

Prepared for submission to Malaria Journal, December 2008 (see over). 
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