

Guidance and Search Algorithms for Mobile Robots:

Application and Analysis within the Context of

Urban Search and Rescue

Kevin James Worrall

Guidance and Search Algorithms for Mobile Robots:

Application and Analysis within the Context of

Urban Search and Rescue

A thesis submitted for the degree of

Doctor of Philosophy

to the Department of Electronics and Electrical Engineering

of the University of Glasgow

By

Kevin James Worrall

September 2008

© Kevin James Worrall, 2008

 i

Abstract

Urban Search and Rescue is a dangerous task for rescue workers and for this reason the use
of mobile robots to carry out the search of the environment is becoming common place.
These robots are remotely operated and the search is carried out by the robot operator. This
work proposes that common search algorithms can be used to guide a single autonomous
mobile robot in a search of an environment and locate survivors within the environment.
This work then goes on to propose that multiple robots, guided by the same search
algorithms, will carry out this task in a quicker time.

The work presented is split into three distinct parts. The first is the development of a non-
linear mathematical model for a mobile robot. The model developed is validated against a
physical system. A suitable navigation and control system is required to direct the robot to a
target point within an environment. This is the second part of this work. The final part of this
work presents the search algorithms used. The search algorithms generate the target points
which allow the robot to search the environment. These algorithms are based on traditional
and modern search algorithms that will enable a single mobile robot to search an area
autonomously. The best performing algorithms from the single robot case are then adapted to
a multi robot case.

The mathematical model presented in the thesis describes the dynamics and kinematics of a
four wheeled mobile ground based robot. The model is developed to allow the design and
testing of control algorithms offline. With the model and accompanying simulation the
search algorithms can be quickly and repeatedly tested without practical installation.

The mathematical model is used as the basis of design for the manoeuvring control algorithm
and the search algorithms. This design process is based on simulation studies. In the first
instance the control methods investigated are Proportional-Integral-Derivative, Pole

Placement and Sliding Mode. Each method is compared using the tracking error, the steady
state error, the rise time, the charge drawn from the battery and the ability to control the
robot through a simple motion. Obstacle avoidance is also covered as part of the
manoeuvring control algorithm.

The final aspect investigated is the search algorithms. The following search algorithms are
investigated, Lawnmower, Random, HillClimbing, Simulated Annealing and Genetic

Algorithms. Variations on these algorithms are also investigated. The variations are based on
Tabu Search. Each of the algorithms is investigated in a single robot case with the best
performing investigated within a multi robot case. A comparison between the different
methods is made based on the percentage of the area covered within the time available, the
number of targets located and the time taken to locate targets. It is shown that in the single
robot case the best performing algorithms have high random elements and some structure to
selecting points. Within the multi robot case it is shown that some algorithms work well and
others do not. It is also shown that the useable number of robots is dependent on the size of
the environment.

This thesis concludes with a discussion on the best control and search algorithms, as
indicated by the results, for guiding single and multiple autonomous mobile robots. The
advantages of the methods are presented, as are the issues with using the methods stated.
Suggestions for further work are also presented.

 ii

Acknowledgements

My appreciation and thanks goes to Dr Euan McGookin who has not only guided me, taught
me and helped me through these past four years but has also introduced me to the world of
control and simulation and aided my understanding on how these concepts can actually fit
into my own little world…

My thanks also go to Dr Martin Macauley whose advice and comments have been
appreciated throughout all my years at university.

I would also like to thank the EPSRC for providing funding which allowed me to carry out
the work presented in this thesis. I would also like to acknowledge and thank the University
of Glasgow’s Chancellor’s Fund for providing funds which have been essential to this work.
My appreciation also extends to the Department of Electronics and Electrical Engineering
and to the Department of Aerospace Engineering for allowing me to work within them and
for providing me with vital resources.

To my friends and colleagues, a special thanks for all the distractions and conversations
which have not only helped this work but, I hope, have also helped your own work. A special
mention should go to Dr Meghan McGookin, who helped me out while I was still a naive
first year PhD student, to Jon Trinder for the advice, help and tea breaks and last but not at
all least to Chris Watts whose support, advice and fondness of coffee has been invaluable.

Finally, this work would not have been completed without the love, patience and support of
my parents, my brother nor my wife Margaret, who has tolerated the mistress this research
became…

 iii

Table of Contents

Abstract.. i

Acknowledgements ... ii

Table of Contents .. iii

Table of Figures... xii

Table of Tables .. xvi

1. Introduction... 1

1.1. Preface ... 1

1.2. Robotic Systems and Urban Search and Rescue ... 2

1.3. Aims and Objectives of this work ... 3

1.4. Contribution of this work... 3

1.5. Outline of Thesis.. 4

2. Literature Review ... 6

2.1. Introduction.. 6

2.2. Mobile Robots within Urban Search and Rescue .. 6

2.3. Mathematical Models of Mobile Robots .. 8

2.4. Control Methodologies .. 9

2.4.1. Proportional-Integral-Derivative... 9

2.4.2. Pole Placement.. 10

2.4.3. Sliding Mode... 11

2.5. Search Algorithms ... 12

2.5.1. Exhaustive Search... 12

2.5.2. Random... 12

2.5.3. HillClimbing ... 12

2.5.4. Tabu .. 13

2.5.5. Simulated Annealing... 13

2.5.6. Genetic Algorithms... 14

2.6. Summary.. 14

3. Mathematical Model of a Suitable Mobile Robot .. 15

3.1. Introduction.. 15

3.2. Description of a Suitable Mobile Robot .. 16

 iv

3.3. Frames of Reference and Model Variables.. 18

3.4. Dynamics ... 19

3.4.1. Equations of Motion ... 19

3.4.2. Rigid Body Dynamics... 20

3.4.3. Dampening Forces .. 21

3.4.3.1. Friction... 22

3.4.3.2. Air Resistance .. 22

3.4.4. Propulsion Forces.. 23

3.4.4.1. Surge .. 23

3.4.4.2. Yaw .. 24

3.4.5. Unmatched Dynamics .. 24

3.4.6. Gravitational Forces and Moments ... 25

3.5. Kinematics ... 27

3.5.1. Principal Rotations.. 27

3.5.1.1. Rotation about the x-axis ... 27

3.5.1.2. Rotation about the y-axis ... 28

3.5.1.3. Rotation about the z-axis ... 28

3.5.2. Translational Kinematics .. 28

3.5.3. Angular Kinematics .. 29

3.5.4. Complete Kinematic Equation.. 30

3.6. Motor Model .. 30

3.6.1. Electrical Model.. 30

3.6.2. Mechanical Model .. 30

3.6.3. Output of Motor Model... 31

3.7. Validation of the Model ... 31

3.7.1. Validation Procedure .. 31

3.7.2. Methods of Comparison.. 32

3.7.2.1. Analogue Matching.. 32

3.7.2.2. Integral Least Squares.. 32

3.8. Summary .. 33

4. Navigation and Control Methodologies .. 34

4.1. Introduction.. 34

4.2. Navigation and Control Systems ... 35

4.3. Line of Sight based Navigation System... 35

 v

4.4. Control System .. 37

4.4.1. Experiments .. 37

4.4.2. Proportional-Integral-Derivative Control ... 38

4.4.2.1. Theory .. 38

4.4.2.2. Tuning PID Terms ... 39

4.4.2.3. Integral Antiwindup ... 39

4.4.2.4. Implementation .. 40

4.4.2.5. PID Results .. 41

4.4.3. Pole Placement.. 43

4.4.3.1. Theory .. 43

4.4.3.2. Implementation .. 44

4.4.3.3. Pole Placement Results .. 45

4.4.4. Sliding Mode... 47

4.4.4.1. Theory .. 47

4.4.4.2. Implementation .. 50

4.4.4.3. Sliding Mode Control Results.. 52

4.5. Comparison of Control Methodologies ... 54

4.5.1. Tracking Error... 54

4.5.2. Steady State Error ... 54

4.5.3. Rise Time .. 55

4.5.4. Charge ... 56

4.5.5. Motion Control.. 56

4.5.6. Controller Choice.. 57

4.6. Obstacle Avoidance ... 57

4.6.1. Obstacle Avoidance Method 1.. 57

4.6.2. Obstacle Avoidance Method 2.. 58

4.7. Summary.. 59

5. Search Algorithms .. 60

5.1. Introduction.. 60

5.2. Traditional Search Algorithms .. 62

5.2.1. Exhaustive... 62

5.2.1.1 Lawnmower .. 63

5.2.2. Random... 64

5.2.3. HillClimbing ... 66

 vi

5.3. Modern Search Algorithms.. 68

5.3.1. Tabu Search .. 68

5.3.1.1 Tabu List ... 68

5.3.1.2 Aspiration Criteria .. 70

5.3.2. Simulated Annealing... 70

5.3.2.1 Perturbation... 70

5.3.2.2 Metropolis Criterion.. 71

5.3.2.3 Annealing Schedule .. 72

5.3.3. Genetic Algorithm .. 73

5.3.3.1 Selection.. 74

5.3.3.2 Crossover .. 75

5.3.3.3 Mutation.. 76

5.4. Algorithms and Variants to be Implemented... 76

5.4.1. Lawnmower .. 76

5.4.2. Random... 76

5.4.3. HillClimbing ... 77

5.4.4. Simulated Annealing... 77

5.4.5. Genetic Algorithm .. 77

5.5. Implementation .. 77

5.5.1. Temperature Detection.. 78

5.5.2. Constant Search .. 78

5.5.3. Coverage ... 79

5.5.4. Target Tracking... 79

5.6. Summary.. 80

6. Simulation Results : Single Robot ... 81

6.1. Introduction.. 81

6.2. Test Environments ... 81

6.2.1. Simple Environment ... 81

6.2.2. Simple Environment with Obstacles... 82

6.2.3. Complex Environment with Obstacles ... 83

6.3. Simple Environment .. 83

6.3.1. Lawnmower .. 83

6.3.2. Random... 84

6.3.3. HillClimbing ... 85

 vii

6.3.4. Random Restart HillClimbing .. 85

6.3.5. Tabu Random.. 86

6.3.6. Tabu Random Restart HillClimbing ... 87

6.3.7. Random Restart Simulated Annealing.. 88

6.3.8. Genetic Algorithm 1 ... 89

6.3.9. Genetic Algorithm 2 ... 90

6.3.10. Genetic Algorithm 3 ... 91

6.3.11. Genetic Algorithm 4 ... 92

6.3.12. Discussion ... 93

6.4. Simple Environment with Obstacles ... 95

6.4.1. Lawnmower .. 95

6.4.2. Random... 96

6.4.3. Random Restart HillClimbing .. 97

6.4.4. Tabu Random.. 98

6.4.5. Tabu Random Restart HillClimbing ... 98

6.4.6. Random Restart Simulated Annealing.. 99

6.4.7. Genetic Algorithm 1 ... 100

6.4.8. Genetic Algorithm 2 ... 101

6.4.9. Genetic Algorithm 3 ... 101

6.4.10. Genetic Algorithm 4 ... 102

6.4.11. Discussion ... 103

6.5. Complex Environment... 104

6.5.1. Lawnmower .. 104

6.5.2. Random... 105

6.5.3. Random Restart HillClimbing .. 105

6.5.4. Tabu Random.. 106

6.5.5. Tabu Random Restart HillClimbing ... 106

6.5.6. Random Restart Simulated Annealing.. 107

6.5.7. Genetic Algorithm 1 ... 108

6.5.8. Genetic Algorithm 2 ... 109

6.5.9. Genetic Algorithm 3 ... 110

6.5.10. Genetic Algorithm 4 ... 111

6.5.11. Discussion ... 112

6.6. Summary.. 113

 viii

7. Simulation Results: Multi Robot ... 115

7.1. Introduction.. 115

7.2. Implementation .. 115

7.2.1. Simulation ... 116

7.2.2. Algorithms .. 116

7.2.2.1. Tabu Random... 116

7.2.2.2. Random Restart Simulated Annealing... 116

7.2.2.3. Genetic Algorithms.. 117

7.2.3. Environments .. 117

7.2.4. Additional Points .. 117

7.3. Simple Environment .. 117

7.3.1. Tabu Random.. 118

7.3.2. Random Restart Simulated Annealing.. 118

7.3.3. Genetic Algorithm 2 ... 119

7.3.4. Genetic Algorithm 3 ... 120

7.3.5. Genetic Algorithm 4 ... 121

7.3.6. Discussion ... 122

7.4. Simple Environment with Obstacles.. 124

7.4.1. Fan Out.. 124

7.4.2. Tabu Random.. 125

7.4.3. Random Restart Simulated Annealing.. 125

7.4.4. Genetic Algorithm 2 ... 127

7.4.5. Genetic Algorithm 3 ... 128

7.4.6. Genetic Algorithm 4 ... 129

7.4.7. Discussion ... 130

7.5. Complex Environment ... 131

7.5.1. Tabu Random.. 131

7.5.2. Random Restart Simulated Annealing.. 132

7.5.3. Genetic Algorithm 2 ... 133

7.5.4. Genetic Algorithm 3 ... 134

7.5.5. Genetic Algorithm 4 ... 135

7.5.6. Discussion ... 136

7.6. Review of Results .. 138

7.7. Summary .. 139

 ix

8. Conclusions and Further Work... 141

8.1. Conclusions.. 141

8.2. Further Work ... 143

8.2.1. Hybrid Algorithms .. 144

8.2.1.1. Global Tabu with additional algorithm.. 144

8.2.1.2. Tabu Random with HillClimbing .. 144

8.2.2. Improved Robotic Platform .. 145

8.2.3. Decentralised Control ... 145

8.2.4. Varying the Number of Robots... 145

References .. 146

Appendix A.. 155

 A1. Validation Procedure .. 155

A2. Validation Results ... 158

A3. Robot Specifications ... 165

A4. Nonlinear model of a Mobile Robot ... 166

Appendix B ... 167

 B1. Full Linear Model ... 167

 B2. Derivation of Torque-Voltage Relationship.. 167

 B3. Surge Velocity Linear Model.. 168

 B4. Heading Linear Model .. 168

Appendix C.. 169

 C1. Simple Environment Results... 169

C1.1. Lawnmower... 169

C1.2. Random .. 169

C1.3. HillClimbing.. 170

C1.4. Random Restart HillClimbing... 170

C1.5. Tabu Random .. 171

C1.6. Tabu Random Restart HillClimbing ... 171

C1.7. Random Restart Simulated Annealing .. 172

C1.8. Genetic Algorithm 1.. 172

C1.9. Genetic Algorithm 2.. 173

C1.10. Genetic Algorithm 3.. 173

C1.11. Genetic Algorithm 4.. 174

C2. Simple Environment with Obstacles Results ... 174

 x

C2.1. Lawnmower... 174

C2.2. Random .. 175

C2.3. Random Restart HillClimbing... 175

C2.4. Tabu Random .. 176

C2.5. Tabu Random Restart HillClimbing ... 176

C2.6. Random Restart Simulated Annealing .. 177

C2.7. Genetic Algorithm 1.. 177

C2.8. Genetic Algorithm 2.. 178

C2.9. Genetic Algorithm 3.. 178

C2.10. Genetic Algorithm 4.. 179

C3. Complex Environment Results... 179

C3.1. Lawnmower... 179

C3.2. Random .. 180

C3.3. Random Restart HillClimbing... 180

C3.4. Tabu Random .. 181

C3.5. Tabu Random Restart HillClimbing ... 181

C3.6. Random Restart Simulated Annealing .. 182

C3.7. Genetic Algorithm 1.. 182

C3.8. Genetic Algorithm 2.. 183

C3.9. Genetic Algorithm 3.. 183

C3.10. Genetic Algorithm 4.. 184

Appendix D.. 185

D1. Simple Environment Results.. 185

D1.1. Tabu Random.. 185

D1.2. Random Restart Simulated Annealing.. 186

D1.3. Genetic Algorithm 2.. 186

D1.4. Genetic Algorithm 3.. 187

D1.5. Genetic Algorithm 4.. 187

D2. Simple Environment with Obstacles Results ... 188

D1.1. Tabu Random.. 188

D1.2. Random Restart Simulated Annealing.. 188

D1.3. Genetic Algorithm 2.. 189

D1.4. Genetic Algorithm 3.. 189

D1.5. Genetic Algorithm 4.. 190

 xi

D3. Complex Environment Results .. 190

D1.1. Tabu Random.. 190

D1.2. Random Restart Simulated Annealing.. 191

D1.3. Genetic Algorithm 2.. 191

D1.4. Genetic Algorithm 3.. 192

D1.5. Genetic Algorithm 4.. 192

 xii

Table of Figures

Chapter 3

Figure 3.1: Photos of the Robot .. 17

Figure 3.2: Frames of Reference... 18

Figure 3.3: Force diagram of the dampening forces ... 21

Figure 3.4: Surge Generation.. 23

Figure 3.5: Yaw moment generation .. 24

Figure 3.6: How gravity affects the robot with respect to the pitch angle.............. 25

Figure 3.7: How gravity affects the robot with respect to the roll angle 26

Figure 3.8: A rotation of angle φ about the x-axis .. 27

Figure 3.9: Linear Displacements with regards to Experiment Three 32

Chapter 4

Figure 4.1: Block Diagram of the Navigation and Control System........................ 35

Figure 4.2: A robot navigating a series of Waypoints .. 36

Figure 4.3: Block Diagram of a PID controller .. 38

Figure 4.4: Complete control structure for the PID controllers 41

Figure 4.5: PID Control Experiment Results.. 42

Figure 4.6: Standard Implementation of the Pole Placement controller 43

Figure 4.7: Implementation of the Pole Placement controller 45

Figure 4.8: PP Control Experiment Results.. 46

Figure 4.9: Implementation of the Sliding Mode controller 52

Figure 4.10: SM Control Experiment Results... 53

Figure 4.11: Figure of 8 Motion Experiment Results ... 57

Figure 4.12: Obstacle Avoidance Method 1 Working .. 58

Figure 4.13: Obstacle Avoidance Comparison ... 59

Chapter 5

Figure 5.1: Block Diagram of Complete System.. 60

Figure 5.2: Cost Values over a Range of Temperatures ... 61

Figure 5.3: Example Paths from Exhaustive Searches ... 62

Figure 5.4: Lawnmower Search within a Search Space with High Resolution 63

Figure 5.5: Flowchart Representing the Lawnmower Algorithm........................... 64

 xiii

Figure 5.6: An Example of a Robots Path while Running the

Lawnmower Algorithm .. 64

Figure 5.7: Flowchart Representing the Random Algorithm.................................. 65

Figure 5.8: An Example of a Robots Path while Running the

Random Algorithm .. 66

Figure 5.9: HillClimbing flowchart ... 67

Figure 5.10: A Cutaway view of an Evaluation Landscape with the various

Conditions Shown... 68

Figure 5.11: Flowchart representing the operation of the Tabu List 69

Figure 5.12: Simulated Annealing Flowchart ... 71

Figure 5.13: Annealing Schedule.. 72

Figure 5.14: Genetic Algorithm Flowchart... 73

Figure 5.15: Encoding of a Chromosome ... 74

Figure 5.16: Two-point Crossover .. 75

Figure 5.17: Temperature Map of an Example Environment 78

Figure 5.18: Example Target .. 79

Chapter 6

Figure 6.1: Map of Environment 1 ... 82

Figure 6.2: Map of Environment 2 ... 82

Figure 6.3: Map of Environment 3 ... 83

Figure 6.4: Map from a Lawnmower algorithm run within Environment 1 84

Figure 6.5: Map from a Random algorithm run within Environment 1.................. 85

Figure 6.6: Map from a HillClimbing algorithm run within Environment 1.......... 86

Figure 6.7: Map from a RR HillClimbing algorithm run within Environment 1 ... 86

Figure 6.8: Map from a Tabu Random algorithm run within Environment 1 87

Figure 6.9: Map from a Tabu RR HillClimbing algorithm run

within Environment 1 ... 88

Figure 6.10: Map from a RR Simulated Annealing algorithm run within

Environment 1... 89

Figure 6.11: Map from a Genetic Algorithm 1 run within Environment 1............. 90

Figure 6.12: Map from a Genetic Algorithm 2 run within Environment 1............. 91

Figure 6.13: Map from a Genetic Algorithm 3 run within Environment 1............. 92

Figure 6.14: Map from a Genetic Algorithm 4 run within Environment 1............. 93

 xiv

Figure 6.15: Map from a Lawnmower run within Environment 2 95

Figure 6.16: Map from a Random algorithm run within Environment 2................ 96

Figure 6.17: Map from a RR HillClimbing algorithm run within Environment 2 . 97

Figure 6.18: Map from a Tabu Random algorithm run within Environment 2 98

Figure 6.19: Map from a Tabu RR HillClimbing algorithm run

Environment 2... 99

Figure 6.20: Map from a RR Simulated Annealing algorithm run within

Environment 2... 100

Figure 6.21: Path taken by a robot under direction from the GA1 within

Environment 2... 100

Figure 6.22: Map from a GA2 within run Environment 2...................................... 101

Figure 6.23: Map from a GA3 run within Environment 2 102

Figure 6.24: Map from a GA4 run within Environment 2...................................... 102

Figure 6.25: Map from a Lawnmower algorithm run within Environment 3......... 104

Figure 6.26: Map from a Random algorithm run within Environment 3................ 105

Figure 6.27: Map from a RR HillClimbing algorithm run within

Environment 3... 106

Figure 6.28: Map from a Tabu Random algorithm run within Environment 3 107

Figure 6.29: Map from a Tabu RR HillClimbing algorithm run within

Environment 3... 107

Figure 6.30: Map from a RR Simulated Annealing algorithm run within

Environment 3... 108

Figure 6.31: Map from a GA1 within run Environment 3...................................... 109

Figure 6.32: Map from a GA2 within run Environment 3...................................... 110

Figure 6.33: Map from a GA3 run within Environment 3...................................... 111

Figure 6.34: Map from a GA4 run within Environment 3...................................... 112

Chapter 7

Figure 7.1: Map from a Tabu Random algorithm run within

Environment 1... 118

Figure 7.2: Map from RR Simulated Annealing algorithm run within

Environment 1... 119

Figure 7.3: Map from a GA2 run in Environment 1 ... 120

Figure 7.4: Run ten from GA3.. 121

 xv

Figure 7.5: Map from a GA3 run in Environment 1 ... 121

Figure 7.6: Map from a GA4 run in Environment 1 ... 122

Figure 7.7: Fan Out Points ... 124

Figure 7.8: Map from a Tabu Random algorithm run in

Environment 2... 125

Figure 7.9: Map from a RR Simulated Annealing algorithm run in

Environment 2... 126

Figure 7.10: Run 9 from the RR Simulated Annealing Algorithm......................... 126

Figure 7.11: Map from a GA2 run in Environment 2 ... 128

Figure 7.12: Map from a GA3 run in Environment 2 ... 128

Figure 7.13: Map from a GA4 run in Environment 2 ... 129

Figure 7.14: Map from a Tabu Random algorithm within

 Environment 3.. 132

Figure 7.15: Map from a RR Simulated Annealing algorithm run within

Environment 3... 132

Figure 7.16: Map from a GA2 run within Environment 3...................................... 134

Figure 7.17: Map from a GA3 run within Environment 3...................................... 135

Figure 7.18: Map from a GA4 run within Environment 3...................................... 136

Appendix A

Figure A.1: Experiment 1 Validation Results... 158

Figure A.2: Experiment 2 Validation Results... 159

Figure A.3: Experiment 3 Validation Results... 160

Figure A.4: Experiment 4 Validation Results... 161

Figure A.5: Experiment 5 Validation Results... 162

Figure A.6: Experiment 6 Validation Results... 163

Figure A.7: Experiment 7 Validation Results... 164

Figure A.8: Specifications of Robot ... 165

 xvi

Table of Tables

Chapter 1

Table 1.1: Trapped Victim Survival Rate ... 1

Chapter 3

Table 3.1: Model Variables... 19

Chapter 4

Table 4.1: Gains for the surge velocity PID controller ... 41

Table 4.2: Gains for the heading PID controller... 41

Table 4.3: PP Controller Parameters... 45

Table 4.4: SM Controller Parameters ... 51

Table 4.5: Tracking Error ... 54

Table 4.6: Steady State Error .. 55

Table 4.7: Rise Time... 55

Table 4.8: Q, As-1 .. 56

Chapter 5

Table 5.1: GAs to be implemented ... 77

Chapter 6

Table 6.1: Experiment 1 – Single Robot Results .. 94

Table 6.2: Experiment 2 – Single Robot Results .. 103

Table 6.3: Experiment 3 – Single Robot Results .. 112

Chapter 7

Table 7.1: Experiment 1 – Multi Robot Results ... 123

Table 7.2: Experiment 1 – Single Robot Results .. 123

Table 7.3: Experiment 2 – Multi Robot Results ... 130

Table 7.4: Experiment 2 – Single Robot Results .. 130

Table 7.5: Experiment 3 – Multi Robot Results ... 136

Table 7.6: Experiment 3 – Single Robot Results .. 136

Table 7.7: Comparison of Tabu Random results .. 139

 xvii

Table 7.8: Comparison of Simulated Annealing results.. 139

Appendix A

Table A.1: ILS values for the Validation Experiments... 165

Appendix C

Table C1.1: Lawnmower Results.. 169

Table C1.2: Random Results .. 169

Table C1.3: HillClimbing Results... 170

Table C1.4: Random Restart HillClimbing Results.. 170

Table C1.5: Tabu Random Results ... 171

Table C1.6: Tabu Random Restart HillClimbing Results 171

Table C1.7: Random Restart Simulated Annealing Results 172

Table C1.8: Genetic Algorithm 1 Results... 172

Table C1.9: Genetic Algorithm 2 Results... 173

Table C1.10: Genetic Algorithm 3 Results... 173

Table C1.11: Genetic Algorithm 4 Results... 174

Table C2.1: Lawnmower Results.. 174

Table C2.2: Random Results .. 175

Table C2.3: Random Restart HillClimbing Results.. 175

Table C2.4: Tabu Random Results ... 176

Table C2.5: Tabu Random Restart HillClimbing Results 176

Table C2.6: Random Restart Simulated Annealing Results 177

Table C2.7: Genetic Algorithm 1 Results... 177

Table C2.8: Genetic Algorithm 2 Results... 178

Table C2.9: Genetic Algorithm 3 Results... 178

Table C2.10: Genetic Algorithm 4 Results... 179

Table C3.1: Lawnmower Results.. 179

Table C3.2: Random Results .. 180

Table C3.3: Random Restart HillClimbing Results.. 180

Table C3.4: Tabu Random Results ... 181

Table C3.5: Tabu Random Restart HillClimbing Results 181

Table C3.6: Random Restart Simulated Annealing Results 182

Table C3.7: Genetic Algorithm 1 Results... 182

Table C3.8: Genetic Algorithm 2 Results... 183

 xviii

Table C3.9: Genetic Algorithm 3 Results... 183

Table C3.10: Genetic Algorithm 4 Results... 184

Appendix D

Table D1.1: Tabu Random Results ... 185

Table D1.2: Random Restart Simulated Annealing Results 186

Table D1.3: Genetic Algorithm 2 Results... 186

Table D1.4: Genetic Algorithm 3 Results... 187

Table D1.5: Genetic Algorithm 4 Results... 187

Table D2.1: Tabu Random Result .. 188

Table D2.2: Random Restart Simulated Annealing Results 188

Table D2.3: Genetic Algorithm 2 Results... 189

Table D2.4: Genetic Algorithm 3 Results... 189

Table D2.5: Genetic Algorithm 4 Results... 190

Table D3.1: Tabu Random Results ... 190

Table D3.2: Random Restart Simulated Annealing Results 191

Table D3.3: Genetic Algorithm 2 Results... 191

Table D3.4: Genetic Algorithm 3 Results... 192

Table D3.5: Genetic Algorithm 4 Results... 192

 1

Chapter 1

Introduction

1.1 Preface

With the forces of nature and the unpredictability of humanity at work, the world is in
constant turmoil. The full power of nature can result in earthquakes, tsunamis and
devastating storms. Humanity adds to this through war, terrorist attacks and unfortunate
accidents, such as mines collapsing. Human life is at risk from any of these events: buildings
collapse, subways and mine shafts cave in, infrastructure in general can be destroyed
[Murphy, 2004]. These incidents require people to search for survivors and help remove
them from the site of the incident. This can put the rescuers at risk of injury or death, as it
involves them going into the area that has been affected. After an earthquake in Mexico City
in 1985, 135 rescuers died in the rescue operation [Casper, Micire & Murphy, 2000] and
after the World Trade Centre attack in 2001, 402 rescuers died [Micire, 2002]. These figures
show the risk there is to the rescue workers. The primary task of the rescue workers is to
rescue the survivors as quickly as possible without risking their own lives. With such a risk
to the rescue workers any support that can be given can aid in protecting and saving lives.

When an incident such as those mentioned above occurs in an urban or suburban
environment, Urban Search and Rescue (USAR) [Murphy, 2004] is the term used to
describe the search and rescue operation. The aim of USAR is to locate and rescue people
that are trapped as quickly as possible. The quicker the survivors can be located the higher
the chance of survival as shown by Table 1.1 from Casper et al, (2000).

Table 1.1: Trapped Victim Survival Rate

Time Passed Percentage Chance

30 minutes 91
1 day 81
2 days 36.7
3 days 33.7
4 days 19
5 days 7.4

It can be seen from the table that there is a rapid decrease in the chance of survival for people
who are trapped within an incident as time passes. This is why it is so important that rescue
workers are able to start the rescue operation as soon as possible and why the speed of the
rescue operation is vital.

To search and locate survivors rescuers use various pieces of equipment (sounds poles, infra
red cameras and sonars) as well as dogs [Blitch, 1996]. The rescue task is dangerous and
time consuming, with the risk of further problems arising on the site [Blitch, 1996]. To
reduce the risks to the rescuer, the search is carried out slowly and delicately but this has a
direct impact on the time to locate survivors.

 2

From the first time the word robot was used, in 1920 by Karel Čapek in Rossum’s Universal
Robots [Čapek, 1920], the idea of the robot has been to act for humans in a whole range of
tasks and environments. This concept of the use of a robot to act for humans naturally lends
itself to the area of searching hazardous or large environments in place of or supporting
human searchers. This is the underlying concept of this work: the use of a robot or a group of
robots to search a hazardous environment.

1.2 Robotic Systems and Urban Search and Rescue

Since robots are able to act for humans in many tasks this leads to the argument that while
robots are not yet advanced enough to recover survivors, they can be used as a tool to help
locate the survivors [Blitch, 1996; Murphy, 2004]. The most obvious benefit of replacing
rescue workers with robots is the decreased risk to the rescue workers, as they will then
spend less time within the affected area. However there is a range of other benefits that are
just as important [Blitch, 1996; Murphy, 2004]:

• Increased chance of locating survivors

Robots are able to enter smaller areas than humans and dogs [Blitch, 1996; Murphy,
2004; Birk & Carpin, 2006], and can operate without breaks. They do not suffer from
fatigue, other than power running low. This increases the chance of locating survivors
as the robots can operate for long periods in harsher conditions, but only if they are
designed to do so.

• Less damage to affected area

If light robots are used on the affected area there will be less movement of rubble or
other materials as there would be with humans and dogs [Murphy, 2004]. This
movement can cause further damage to the site and increase the risk to survivors and
rescue workers [Blitch, 1996].

• More information can be gained

While the robots are moving through the site, sensors on board can record a variety of
information. This information can range from environmental readings to readings
allowing the creation of maps of the site [Murphy, 2004; Murphy, Casper, Hyams,
Micire and Minten, 2000b; Birk & Carpin, 2006]. This is desirable as any
information can aid in the coordination of the rescue effort, decrease the risk to
rescue workers and increase the speed of the search.

• The robot can go on the affected area instantly

Before rescue workers can go on site, an overall evaluation of the site needs to take
place. Although this reduces slightly the chances of the survivors, it is designed to
protect the rescue workers and aid in the overall rescue effort [Blitch, 1996; Murphy,
2004; Birk & Carpin, 2006]. Because robots are expendable they are able to go on to
the site instantly, locating survivors from the start and hence guide the rescue
operation at an earlier stage.

Consequently rescue robots can play an important role in rescue operations and as robots
designs improve they are becoming a necessary tool for USAR [Murphy, 2004; Birk &
Carpin, 2006].

 3

1.3 Aims and Objectives of this work

The aim of this work is to establish if search algorithms can be used to generate points to
allow a robot to search an environment for desired targets in a controlled manner. This work
also aims to investigate whether using multiple robots, again under the direction of search
algorithms, will impact on the time taken to search an environment and locate targets. The
aim of this work can be summarised as:

• To establish if common search algorithms can be applied to generate points which
enable a single robot or multiple robots to search an environment

• To present the algorithms which carry out this task well with supporting evidence

• To investigate if a better performance is achieved when the search algorithms are

extended to guide a group of robots

To achieve the aim certain objectives need to be fulfilled. The first objective is the creation
of a mathematical model of a mobile robot that will be used in an appropriate simulation to
test the various search algorithms. This will provide the evidence needed to establish that the
aim has been achieved. The second objective is to establish a suitable method of navigating
and controlling the mobile robot. With suitable navigation and control the robot can respond
correctly to the direction of the search algorithm used. With these objectives achieved the
search algorithms that have been selected for study can be implemented in simulation in a
single robot case and a multi robot case. A further addition of this work is the desire that the
work is implemented on a real system. For this reason many design choices are constrained
to ensure that the design can be implemented on a simple real system.

1.4 Contribution of this work

The work presented in this thesis is designed to contribute to the area of robotic search. The
approach taken in this work is to establish if search algorithms can be used to generate
points, allowing a robot to search an environment in a structured and controlled way.
Currently there is no indication that this approach has been studied before and as such the
application of search algorithms as a method of searching environments in this way is
unique. However, this work takes this concept further by not only investigating if searches
can be carried out but by also investigating if a search can be carried out using a group of
robots and what benefits, if any, this brings to the search.

The contributions of this work can be summarised as:

• Determination of whether common search algorithms can be used to guide a robot in
a search of an environment

• The algorithms which perform this task efficiently and with the best results

• Whether the algorithms can be extended to provide guidance over multiple robots

An additional contribution of this work is the mathematical model that has been developed.
Though mathematical models of mobile robots have been developed before, none offer six
degrees of freedom, nor have any complete models been shown to have been validated.

 4

To date the publications that have resulted from this work are as follows:

Worrall, K.J. and McGookin, E.W., (2006), “A Mathematical Model of a Lego Differential
Drive Robot “, 6th

 UKACC Control Conference, Glasgow, UK

The following papers are currently in preparation:

Worrall, K.J., McGookin, E.W. and Macauley, M., “Mathematical model of a four wheeled
mobile robot with Validation“

Worrall, K.J., McGookin, E.W. and Macauley, M., “Comparison of Control Methodologies
on a small low speed four wheeled mobile robot“

Worrall, K.J., McGookin, E.W. and Macauley, M., “Using Tabu Random as a method of
guiding mobile robots with regards to a search task “

Worrall, K.J., McGookin, E.W. and Macauley, M., “Comparison of Tabu Random and
Simulated Annealing as a method of guiding a robot with regards to a search task“

Watts, C., Worrall, K.J., McGookin, E.W. and Macauley, M., “Low Cost IMU design “

These publications present the contributions of this work to the wider robotics community,
allowing the work carried out to assist and inspire those working in similar areas.

1.5 Outline of thesis

This work proposes the use of robots to search environments under the control of search
algorithms. The reasoning behind this approach is that that search algorithms are used in
multiple fields of research and in industry to locate optimal points within a search space. In
this application the optimal point will be the human survivors and the search space will be
the USAR environment. The research carried out during the process of investigating this
proposal is presented in this thesis using the structure described below.

Chapter 2 introduces the major fields that this work is involved in: mobile robots within
Urban Search and Rescue, mathematical models of mobile robots, control methodologies,
and search algorithms. An overview of the work that is currently being done in these areas
with respect to the work presented here is discussed.

The first step in this work is to develop a mathematical model of a mobile robot which will
allow a simulation to be created that can be used to test the search algorithms. The model is
presented in Chapter 3. The model presented is a six degree of freedom model which
includes the actuators. This model is also validated.

With a suitable model developed the next stage is to develop a means of making the robot
navigate and to select a suitable control methodology to allow the robot to be navigated
accurately. Chapter 4 introduces the Line of Sight Autopilot technique of navigation and
presents three control methodologies that could provide accurate control of the mobile robots
forward velocity and heading: Proportional-Integral-Derivative, Pole Placement and Sliding

Mode. The obstacle avoidance method implemented is also discussed in Chapter 4.

 5

The next step is to introduce the search algorithms that will be used to generate the
coordinate points that the robot will be required to travel to. Chapter 5 introduces the
Exhaustive, Random and HillCimbing searches, along with Simulated Annealing and Genetic

Algorithms. The use of Tabu search is also discussed and variations of the methods listed are
introduced based on the Tabu search. This chapter presents the advantages of each algorithm
and how each operates. Other matters concerning the way the robot searches an environment
are also discussed, namely the ability of the robot to scan the temperature of the
environment.

The start of the simulation results that will support the conclusions of this work is presented
in Chapter 6. This chapter discusses the simulation environments used in this work and how
each method is implemented. The results from single agent cases of the search algorithms
discussed in Chapter 5 are then presented and discussed.

Chapter 7 presents the simulation results from the multi robot searches of the environments.
The performances of the multi robot searches are discussed and the results from each search
algorithms are presented along with suitable analysis.

Chapter 8 concludes the thesis by stating the conclusions that can be drawn from the work
carried out and reviewing the aims and objectives to show if the aim has been achieved and
whether the objectives have been realised. Chapter 8 also discusses further work that can be
done as a result of the work presented in this thesis.

 6

Chapter 2

Literature Review

2.1 Introduction

The research carried out during the course of this work covered many different fields of
research. This is the nature of robotic research, as robotics is a truly multi disciplinary field.
One major research field that has been covered in this work is the application of robotic
systems within Urban Search and Rescue (USAR). This is a relatively young area of research
but in recent years this field has drawn more attention. The next area of research this work is
concerned with is the modelling and simulation of dynamic systems with an emphasis on the
development of models for mobile robots and the subsequent use of the modelled robot
within suitable simulations. As such, a review of the mathematical models of mobile robots
similar to that used in this work is presented in this chapter.

As mentioned, a means of controlling the robot is required to allow it to travel to a requested
point in a controlled manner. Control methodologies are another area of research this work
covers. A review of the control methodologies that are investigated in this work is presented
here, as this is the basis of how the robot is to move and hence achieve the task of locating
targets within a given environment. The last research area this work covers is the field of
optimisation. Though this has not yet been mentioned directly, the search algorithms studied
in this work would be considered as optimisation methods. A general review of the search
algorithms that are to be implemented is presented in this chapter.

The chapter continues as follows: Section 2.2 presents an overview of mobile robot research
with regards to USAR. Research literature which is concerned with mathematical models of
mobile robots is presented in Section 2.3. This is followed by an overview of the research of
control methodologies in Section 2.4. The chapter continues with Section 2.5 which presents
work on the search algorithms presented in this thesis. Section 2.6 provides a brief summary
of the chapter.

2.2 Mobile Robots within Urban Search and Rescue

The use of mobile robots within USAR would seem logical as robots can be used in areas
where humans would be at risk. However it was only after the September 11th attacks on the
World Trade Centre (WTC) in 2001 that research in this area started to gain momentum
[Murphy, 2004; Ichbiah, 2005; Micire, 2002]. The reason for this is that the first deployment
of robots within a USAR situation was at this event [Murphy, 2004; Ichbiah, 2005; Micire,
2002], though Blitch (1996) deployed robots at the Oklahoma City Bombing but this was
only in the latter victim recovery operations. Since the deployment of robots at the WTC was
deemed successful [Murphy, 2004; Micire, 2002] and the use of robots was accepted
[Murphy, 2004], interest has increased in this field. It has been recognised that the
development of robots for USAR poses many different challenges for research groups
working in this area [Birk & Carpin, 2006] such as perception [Birk & Carpin, 2006],
sensing [Murphy, 2004; Murphy et al, 2000b], world modelling [Birk & Carpin, 2006],
locomotion [Murphy, 2004; Murphy, 2000a; Voyles & Larson, 2005; Murphy et al, 2000b;

 7

Carlson & Murphy, 2005; Birk, Pathak, Schwertfeger and Chonnaparamutt, 2006], mapping
[Birk & Carpin, 2006] and cooperation [Birk & Carpin, 2006; Jennings, Whelan and Evans,
1997; Dollarhide & Agah, 2003; Murphy, Lisetti, Tardif, Irish and Gage, 2002] to name but
a few.

This increased research also led to the creation of RoboCup Rescue [Kitano, Tadokaro,
Noda, Matsubara, Takahashi, Shinjou and Shimada, 1999] as a sister competition to
Robocup [Kitano, Asada, Kuniyoshi, Noda, Osawa and Matsubara, 1997] with the aim to
help facilitate the application of laboratory research to the real world, to improve upon
aspects of the RoboCup competition and to test real time teamwork in multi agent systems
[Kitano et al, 1999]. The National Institute of Standards and Technology (NIST) also created
a test bed to aid research within USAR [Murphy, Casper, Micire and Hyams, 2000c;
Nourbakhsh, Sycara, Koes, Yong, Lewis and Burion, 2005]. This test bed offers three zones
to test mobile robots with varying degrees of difficulty [Murphy et al, 2000c] with the zones
simulating an office environment through to an area consisting of rubble. Further
information on the NIST test bed can be found in Nourbakhsh et al (2005) and Murphy et al
(2000).

To further aid research of robotics within the USAR domain two major groups, Center for
Robot Assisted Search and Rescue (CRASAR) at the University of South Florida [CRASAR,
2008] and the International Rescue System Institute in Japan [IRSI, 2008], have been set up
with the purpose of researching robotic systems for USAR alongside other relevant research,
such as Human-Robot Interaction [Murphy, 2004; Nourbakhsh et al, 2005]. Some believe
that although autonomy is the “Holy Grail” [Birk & Carpin, 2006] for mobile robots, the use
of fully autonomous systems is seen as “unrealistic…and undesirable” [Murphy, 2004]. This
is because the demands on the robot are too great and rescue workers do not fully trust
autonomous systems [Murphy, 2004]. Some believe that work within this field should
concentrate on providing better systems and sensors for current mobile robots [Micire, 2002;
Birk & Carpin, 2006]. It is generally accepted that a greater degree of autonomy with
improved sensors and operator training will greatly enhance the use of robotic systems
within USAR [Murphy, 2004; Birk & Carpin, 2006]. To overcome the issue of trust in using
mobile robots within USAR, further successful deployments and awareness training
[Murphy, 2004] will increase the desire for robots, as will describing the robots as tools that
are to be used to assist the rescue effort [Blitch, 1996; Birk & Carpin, 2006].

With regards to a suitable mobile robot for USAR there exists a consensus amongst the
available literature. A suitable robot should be:

• Small

The robot should be small in dimension and mass [Birk & Carpin, 2006; Murphy,
2004; Blitch, 1996]. A small robot will be able to enter areas of a search environment
which will be inaccessible to humans or dogs [Murphy, 2004; Blitch, 1996]. A small,
light robot can also be carried by a single person, making deployment easier [Birk &
Carpin, 2006; Murphy, 2004; Blitch, 1996]
.

• Expendable

As robots become more common within USAR the loss rate will increase due to the
various challenges facing the robots within the working environment [Birk & Carpin,
2006]. Since losses are expected the current specialised systems used will be costly to
replace, hence cheap expendable robots are required [Birk & Carpin, 2006].

 8

• Useable

During the WTC USAR effort it was found that some of the robots donated to aid in
the rescue could not be used due to either lack of training or lack of proper equipment
for operating the robots [Micire, 2002; Murphy, 2004]. The robots used at the WTC
USAR effort were all teleoperated and required operators that could use them
[Micire, 2002; Murphy, 2004].

• Protection against Hazards

Within the working environment the robots will encounter various hazards: water,
dust, fire, and blood are some examples [Murphy, 2004]. The robots are required to
be protected in some way from these hazards as the operation of the robot could be
adversely affected [Blitch, 1996; Murphy, 2004].

Many robots designed for the purpose of USAR are small light robots with either wheels or
tracks providing locomotion, though there are many biologically inspired robots in existence,
such as TerminatorBot [Voyles & Larson, 2005], which is able to crawl over obstacles,
snake and serpentine robots [Murphy, 2000a; Murphy, 2000b; Ichbiah, 2005; Granosik &
Borenstein, 2005; Tanev, Ray & Buller, 2005; Mori & Hirose, 2002]. This coincides with the
list of desirable features stated above. However a further area of work within the field of
mobile robots for USAR looks at the development of the mechanical aspects of the mobile
robot. This has led to a number of different concepts. Since the environment the robot will be
working in will be highly cluttered with a large number of different types of obstacles
[Blitch, 1996], marsupial (where a ‘mother’ robot carries a smaller ‘child’ robot for
deployment in areas where the mother can not go) and shape shifting robots [Murphy,
2000b] are being investigated for use within USAR.

The research field of mobile robots within USAR is large, with many different research areas
open for investigation. Even though so many different areas exist the conclusion reached in
the majority of the work in this area is that mobile robots are an essential tool within USAR
and their utilisation will increase considerably in the future [Birk & Carpin, 2006; Micire,
2002; Murphy, 2004; Blitch, 1996].

2.3 Mathematical Models of Mobile Robots

Mathematical modelling of systems has been commonplace since the first differential
equations of the governors were developed in the early 19th Century [Bennet, 1996]. Since
then mechanical, electrical and thermal systems, economics and biological systems have all
been modelled [Ogata, 2002; Murray-Smith, 1995]. Larger complete systems have also been
modelled, from marine vessels [Fossen, 1994; Alfaro-Cid, 2003; Perez, 2005] to aircraft
[Cook, 1997] and satellites [Franklin, Powell & Emami-Naeini; 1991]. With a model of a
system, tests and experiments can be carried out without any interaction with a real system.
This is beneficial when the system under consideration is to be used, for example, in an
aircraft. To test a system in a real aircraft would be expensive, time consuming and
dangerous. Whereas a system tested on a mathematical representation of an aircraft will give
similar results but without the cost, the length of time or the danger. This work will only
consider more recent research concerned with mathematical models of mobile robots.

Mathematical models of mobile robots can be divided into two major groups: Kinematic and
Dynamic [Ge & Lewis, 2006; Hong, Ge, Lewis & Lee, 2006; Wang, Su & Ge, 2006]. A
kinematic model is based only on the position and velocities of the robot, with the velocities

 9

of the wheels acting as inputs [Ge & Lewis, 2006; Hong et al, 2006], whereas dynamic
models describe the forces and moments acting on and generated by the robot. Kinematic
models are the most popular, as indicated by the extensive literature that exists with
kinematic models of mobile robots. Siegwart & Nourbakhsh (2004), Thurn, Burgard & Fox
(2005), Astolfi (2006), Bruke & Durrant-Whyte (1993) and Minor, Albiston & Schwensen
(2006) are some examples of work that develop kinematic based models of mobile robots.
Dynamic models of mobile robots are popular but are often confined to papers. The reason
for this could be the ease in which kinematic models can be created and manipulated and
have variables which are readily understood, such as velocities. Dynamic models describe
mobile robots with regards to the forces and moments acting on and being created by the
robot and, therefore can be more difficult to use and interpret. Examples of dynamic mobile
robot models can be found in Utkin, Guldner & Shi (1999), Hong et al (2006), Wang et al
(2006), Worrall & McGookin (2006), Williams, Carter, Gallina & Rosati (2002), Albagul &
Wahudi (2004) and Balakrishna & Ghosal (1995).

Texts of interest within the area of mobile modelling are Ge & Lewis (2006), Williams et al
(2002) and Balakrishma & Ghosal (1995). The advantages of developing mathematical
models for robots include the design of subsystems (e.g. controllers) [Nehmzow, 2003; Lune,
Spiess, & Röfer, 2005; Michel, 2004] and the ability to test repeatedly without the difficulty
of a practical installation [Worrall & McGookin, 2006]. A common use of mathematical
models is the design and evaluation of control systems for robot motion.

2.4 Control Methodologies

Control can be simply described as the process required to maintain a variable at a required
value in the presence of disturbances and uncertainties [Ogata, 2002]. From James Watt’s
steam engine governor, seen as the first step in control theory [Ogata, 2002; Bennet, 1996], a
wide range of work has been published with regards to control theory, with many different
control methodologies considered. For a historic overview of control consult Bennet (1996).
The work presented here is concerned with three established control methodologies:
Proportional-Integral-Derivative (PID) [Åström & Hägglund, 1995; Ogata, 2002; Cetinkunt,
2007; Franklin et al, 1991]; Pole Placement [Ogata, 2002; Philips & Harbor, 1996; Franklin
et al, 1991] and Sliding Mode [Utkin et al, 1999; Edwards & Spurgeon, 1998; Young, Utkin
& Özgüner, 1999; DeCarlo, Zak & Matthews 1988]. These methods were chosen due to the
popularity of each of them, as indicated by the extensive literature available on each method.

2.4.1 Proportional-Integral-Derivative

PID control, also known as Classical Control or Three Term Control Controller, [Åström &
Hägglund, 1995; Ogata, 2002; Cetinkunt, 2007; Franklin et al, 1991] is by far the best
known and popular of the control methods that have been developed to date, as shown by the
large number of publications associated with PID control. During the nineties Åström &
Hägglund (1995) stated that more than 95% of process controls were PID and Cetinkunt
(2007) states that 90% of controllers used are PID. These figures show that despite the
variety of control methodologies available, PID controllers are still popular [Cetinkunt,
2007]. The reason for this popularity is the ease in which a basic PID controller can be
implemented and the ability of the PID controller to generate an output which takes into
consideration the past, current and future error [Cetinkunt, 2007].

Although a large range of literature is available on PID control, there is little difference
between the basic PID presented in each. The literature is normally concerned with an
application of the PID controller or a method of extending the PID controller to improve the

 10

performance. A third topic that is covered in literature is methods of tuning PID controllers.
The tuning of a PID controller is concerned with finding suitable controller values for the
application that the controller is to be used in [Ogata, 2002]. PID controllers can be hand
tuned [Ogata, 2002; Alfaro-Cid, 2003; Åström & Hägglund, 1995] where the controller
values are achieved through a trial and error procedure. However there are tuning methods
which are available to manually tune these values, the most popular of which is the Ziegler-
Nichols method [Ziegler & Nichols, 1942; Åström & Hägglund, 1995; Ogata, 2002; Philips
& Harbor, 1996; Dutton, Thompson & Barraclough, 1997; Dorf & Bishop, 2005; Franklin et

al, 1991]. The popularity of this method is shown by the literature that presents this method
of tuning. It is acknowledged that though the Ziegler-Nichols method is effective, the values
that it returns often require fine tuning [Ogata, 2002]. It is for this reason that other tuning
methods are developed. An addition to this is the application of automatic tuning methods
[Åström & Hägglund, 1995] which allow on demand tuning of controller values [Åström &
Hägglund, 1995]. This has also led to adaptive PID controllers [Åström & Hägglund, 1995].

PID control is used in many different areas and a search for PID control on any of the major
journals reveals hundreds of papers proposing applications of the PID controller or
improvements to the PID controller.

Further information on PID controllers can be found in a wide variety of literature, along
with many examples of the use of PID controllers. One dedicated text is Åström & Hägglund
(1995). Other texts include Ogata (2002), Cetinkunt (2007), Dutton et al (1997) and Dorf &
Bishop (2005).

2.4.2 Pole Placement

Pole Placement [Ogata, 2002; Philips & Harbor, 1996; Dutton et al, 1997; Dorf & Bishop,
2005; White, 1995; Franklin et al, 1991] is the common name for State Variable Feedback

and Eigenstructure Assignment. The reason for this could be that State Variable

Feedback/Eigenstructure Assignment controllers are typically designed using the pole
placement method.

The use of Pole Placement creates a state feedback gain matrix [Ogata, 2002; Phillips &
Harbor, 1996; Dorf & Bishop, 2005] that is used to feedback desirable current system states
[Ogata, 2002; Dorf & Bishop, 2005]. By feeding back the states of the system through a gain
matrix and comparing these to the desired states control inputs are created [Ogata, 2002].
The popularity of Pole Placement has led to the creation of various algorithms which
calculate the state feedback gain matrix when given the system equations and desired poles.
Two such algorithms are Ackermanns Formula [Dorf & Bishop, 2005; Philips & Harbor,
1996; Ogata, 2002], which is designed for single input systems [Ogata, 2002], and an
algorithm developed by Kautsky, Nichols & Van Dooren (1985), both of which appear as
commands within the MATLAB package [Ogata, 2002]. The algorithm developed by
Kautsky et al (1985) can be used for both single input and multi input systems [Ogata, 2002].
The algorithm is designed to provide a robust solution to the pole placement problem,
[Kautsky et al, 1985] giving a solution which is insensitive to perturbations [Kautsky et al,
1985]. One disadvantage of using the Pole Placement method to design a controller for a
nonlinear system is that the algorithms presented above, which calculate the feedback matrix,
require a linear model of the system to operate on [Ogata, 2002; Dutton et al 1997]. This
involves the linearisation of the nonlinear model about a set point [Dutton et al, 1997].

As with PID control, Pole Placement is covered in a wide range of literature. Pole Placement
control also returns hundreds of results when a search is carried out on the multitude of

 11

journals available. The literature is wide ranging, from applications of a Pole Placement
controller, such as vibration control [Sethi & Song, 2006], marine vessel control [Alfaro-Cid,
McGookin & Murray-Smith, 2006; Alfaro-Cid, 2003], power circuit control [Kelly &
Rinnie, 2005; Chow & Sanchez-Gasca, 1989], to improvements that can be made to
controllers based on the Pole Placement principal.

An overview of the field can be found in White (1995). A number of textbooks also cover
simple controller design using Pole Placement: Dutton et al (1997), Ogata (2002), Philips &
Harbor (1996) and Dorf & Bishop (2005).

2.4.3 Sliding Mode

Sliding Mode control [Utkin et al, 1999; Edwards & Spurgeon, 1998; Young et al, 1999;
DeCarlo et al, 1988] is part of the Variable Structure Control work that came out from
Russia during the 1970s [Young et al, 1999; Edwards & Spurgeon, 1998]. Sliding Mode
controllers switch between two control laws [Young et al, 1999; Edwards & Spurgeon,
1998] during the operation of the controller. The main benefit of Sliding Mode control is its
ability to handle variations in parameters and reject disturbances that may be introduced
within the system from model uncertainties [DeCarlo et al, 1988; McGookin & Murray-
Smith, 2006; Young et al, 1999].

However, a much cited disadvantage is the Chattering phenomenon [Young et al, 1999].
Chattering is the high frequency switching of the switching term about the sliding manifold
[Young, et al 1999; Edwards & Spurgeon, 1998; Utkin et al, 1999]. The term chattering
originates from the audible noise that sliding mode controllers exhibited in early
implementations [Utkin et al, 1999]. Chattering is undesirable as it can cause unnecessary
wear on actuators and power converters [Edwards & Spurgeon, 1998; McGookin, 1997].
Utkin et al (1999) suggest that the two main causes for chattering are fast dynamics that are
unmodelled and the discretisation of signals within microcontrollers. Young et al (1999)
suggest that chattering remains a major obstacle for a wider take-up of Sliding Mode control.
Though acknowledged as an issue for Sliding Mode control, chattering can be reduced
dramatically if handed correctly. The most common method used to reduce chattering is to
smooth the switching that occurs within a boundary layer [Young et al, 1999] using soft

switching [Healey & Leinard, 1993; Alfaro-Cid, 2003; McGookin, 1997]. One method of
soft switching is to replace the hard switching signum function [Edwards & Spurgeon, 1998;
McGookin, 1997] with a hyperbolic tangent function [Alfaro-Cid 2003; Healey & Leinard,
1993; McGookin & Murray-Smith, 2006; McGookin, 1997]. In doing this the effect of
chattering is reduced.

Sliding Mode control can be found in a wide variety of fields: Marine Vessel control
[McGookin & Murray-Smith, 2006; Alfaro-Cid, 2003; McGookin, Murray-Smith, Li &
Fossen, 2000; McGookin, 1997], Electric drives [Utkin et al, 1999], Power Converters
[Utkin et al, 1999], Robotics [Utkin et al, 1999], the control of swarms of robots [Gazi,
2005], formation control [Fahimi, 2007] and pneumatic system control [Nguyen, Leavitt,
Jabbari & Bobrow, 2007].

As with the other controllers introduced within this section Sliding Mode has much literature
associated with it. Dedicated texts are Edwards & Spurgeon (1998) and Utkin et al (1999). A
tutorial for control engineers can be found in DeCarlo et al (1988).

 12

2.5 Search Algorithms

The algorithms described as search algorithms in this work are also referred to as optimising

techniques or heuristic methods. The reason for the name search algorithms is related to the
task that this work uses the algorithms for: that of locating a target within an environment
with relation to the real world. A brief overview of the literature associated with each of the
algorithms used in this work is given next.

2.5.1 Exhaustive Search

An Exhaustive Search, which can also be known as Brute Force [Johnson & Picton, 1995], is
a very simple concept where every possible solution to a given problem is evaluated. This
algorithm is seen as the most basic search algorithm and should only ever be used when only
a small number of solutions exist for a problem, as a search through all possibilities would
not be done in a reasonable time [Johnson & Picton, 1995]. Because of the impractical nature
of exhaustive search there exists little literature concerning it. However, as a starting point
for showing the advantages of other algorithms it is included here.

2.5.2 Random

As with the Exhaustive Search there exists little theoretical work on Random search
algorithms. Random search algorithms are just as simple as the Exhaustive algorithm. The
Random algorithm simply chooses solutions at random and tests those [Johnson & Picton,
1995]. This continues until such time as a stop condition is met.

A close relative of the Random Algorithm would be the popular Monte Carlo Methods
[Tarantola, 2005]. These methods are based on random numbers. However, the results of
multiple random numbers are used to calculate a result with regards to Monte Carlo

Methods, [Tarantola, 2005] whereas a basic random algorithm does not consider other
results.

Research with regards to Random algorithms, within the robotics domain, includes path
planning [Suzuki & Żyliński, 2008] and robot search [Cheng & Leng, 2004; Healey & Kim,
2000].

2.5.3 HillClimbing

The HillClimbing algorithm [Johnson & Picton, 1995; Russell & Norvig, 1995; Reeves,
1996] follows in a similar vein from the first two algorithms described. It is a very simple
algorithm, however one that has attracted attention. The HillClimbing algorithm is also
known as Gradient Ascent or Descent [Johnson & Picton, 1995; Russell & Norvig, 1995],
Steepest Ascent [Johnson & Picton, 1995] or Neighbourhood Search [Reeves, 1996]. The
problems associated with simple HillClimbing algorithms are widely reported with the most
serious problem being that of the algorithm returning a local optima [Johnson & Picton,
1995; Russell & Norvig, 1995; Reeves, 1996]. Russell & Norvig (1995) suggest that the
standard HillClimbing algorithm be altered to randomly select another solution when a near
optimal solution of any kind is detected. This method would increase the chance of finding
the global optimal region. Other work, for example Reeves (1996), suggests the use of other
algorithms to overcome the HillClimbing algorithms failings.

Some interesting application areas of the HillClimbing algorithm include search algorithms
for Unmanned Air Vehicles (UAVs) [Zengin & Dogan, 2005], in the organisation of sporting
tournaments [Lim, Rodrigues & Zhang, 2006] and image processing [Rambabu, Rathore &
Chakrabarti, 2005].

 13

2.5.4 Tabu

The Tabu algorithm [Glover, 1986; Glover, 1989; Reeves, 1996; Gendreau, 2003] was first
proposed by Glover (1986). The Tabu algorithm is described as a metaheuristic [Glover,
1986; Glover, 1989; Reeves, 1996; Gendreau, 2003] as it is designed to run in support of
another algorithm and direct its search. The main component of the Tabu algorithms is the
Tabu List which is designed to maintain a list of solutions that have already been evaluated,
hence stopping the primary algorithm from using those solutions again [Glover, 1986;
Glover, 1989; Reeves, 1996; Gendreau, 2003]. Though the use of the Tabu algorithm to
partner a primary algorithm takes up memory to allow the Tabu list, an advantage of its use
is an ability to overcome the local optima convergence problem [Glover, 1989]. Tabu search
also enables a more diverse search [Reeves, 1996] and enables better solutions to the
problem to be located [Glover, 1989; Gendreau, 2003].

Tabu Search has been used in a wide range of areas: Integer Programming, computer
scheduling, space planning, vehicle routing and traffic management systems [Glover, 1989;
Gendreau, 2003]. Another area is within robot motion planning [Masehian & Amni-Naseri,
2008].

The primary references with regards to Tabu search are Glover (1986) and Glover (1989).
Gendreau (2003) provides a good introduction of the Tabu Search.

2.5.5 Simulated Annealing

Simulated Annealing [Kirkpatrick, 1984; Bohachevsky, Johnson & Stein, 1986; Kirkpatrick,
Gelatt & Vecchi, 1983; Johnson & Picton, 1995; Russell & Norvig, 1995; Reeves, 1996] is
an algorithm which mimics the process of annealing [Bohachevsky et al, 1986; Kirkpatrick,
1984; Kirkpatrick et al, 1983; Johnson & Picton, 1995; Russell & Norvig, 1995; Reeves,
1996], a process in which a liquid is cooled until it becomes stable in a solid form
[Bohachevsky et al, 1986; Kirkpatrick, 1984; Kirkpatrick et al, 1983; Johnson & Picton,
1995; Russell & Norvig, 1995; Reeves, 1996]. The original concept of the Simulated
Annealing algorithm is credited to Metropolis, Rosenbluth, Rosenbluth and Teller (1953)
[Bohachevsky et al, 1986; Reeves, 1996; McGookin, 1997].

The Simulated Annealing algorithm is loosely related to the HillClimbing algorithm as it
carries out a local search [Bohachevsky et al, 1986; Russell & Norvig, 1995]. However,
there are two major differences: the Annealing Schedule, also known as the cooling schedule

[Reeves, 1996; Johnson & Picton, 1995; McGookin, 1997; Bohachevsky et al, 1986], which
varies the perturbations made by the algorithm [McGookin, 1997], and the Metropolis

Criterion [Metropolis et al, 1953; Bohachevsky et al, 1986; McGookin, 1997], which allows
the algorithm to escape from local minima [McGookin, 1997]. The Annealing Schedule
varies the perturbations made by the algorithm by reducing the size of the local
neighbourhood. The Metropolis Criterion allows the algorithm to escape local optima by
allowing poorer solutions to the current problem to be accepted [McGookin, 1997].

The Simulated Annealing algorithm has been used to optimise controllers for marine vessels
[McGookin & Murray-Smith, 2006; McGookin, Murray-Smith, Li & Fossen, 2000;
McGookin, 1997], to solve standard optimising problems such as the travelling salesman
problem [Kirkpatrick et al, 1983; Bohachevsky et al, 1986], to aid in minimising power
consumption in wireless communication [Montemanni, Gambardella & Das, 2005] and in
the organisation of sporting tournaments [Lim et al, 2006; Anagnostopoulos,
Van Hentenryck & Vergados, 2006]

 14

Major texts for Simulated Annealing are Bohachevsky et al (1986), Kirkpatrick (1984),
Kirkpatrick et al (1983) and Metropolis et al (1953).

2.5.6 Genetic Algorithms

Genetic Algorithms [Goldberg, 1989; Holland, 1992; Schmitt, 2004; Ellis, 1993; Mitchell,
1996; Reeves, 1996; Johnson & Picton, 1995] are based on Charles Darwin’s Theory of
Evolution [Ellis, 1993; McGookin, 1997]. The creation of Genetic Algorithms is attributed to
John Holland in the 1960’s [Mitchell, 1996]. The basic concept of Genetic Algorithms is that
they mimic natural evolution. To do this Genetic Algorithms have a range of natural inspired
operators (selection, crossover and mutation) [Holland, 1992; Schmitt, 2004; Ellis, 1993;
Mitchell, 1996; Reeves, 1996].

Since the introduction of Genetic Algorithms there has been much research into various
aspects of the Genetic Algorithm, as indicted by the vast number of papers, texts and
conferences regarding Genetic Algorithms [Alfaro-Cid, 2003]. The methods used by each
operator is one area were much research has been carried out. Some common operator
methods are, for selection: Roulette wheel [Goldberg, 1989; Mitchell, 1996; Ellis, 1993;
Reeves, 1996; Johnson & Picton, 1995; McGookin, 1997;], Tournament [Alfaro-Cid, 2003;
McGookin, 1997;], Ranking [Mitchell, 1996; Alfaro-Cid, 2003] and Elitist [Mitchell, 1996;
Alfaro-Cid, 2003; McGookin, 1997] and for crossover: uniform, one point, two point and
multi point [Schmitt, 2004; Ellis, 1993; Mitchell, 1996; Reeves, 1996; Johnson & Picton,
1995; Alfaro-Cid, 2003; McGookin, 1997]. The methods noted here, as mentioned, are the
more common methods but each year brings more diverse methods. Some examples are
McDonald (2003) who proposed a new selection method called Genetic Farming; Hong,
Wang & Chen (2000) studied applying multiple mutation rates; Hatta, Wakabayashi &
Koide (2001) and Mušnjak & Golub (2004) investigated the use of elite individuals within a
population. However the standard arrangement of the Genetic Algorithm remains common in
much of the literature. Another common theme in Genetic Algorithm literature is the
underlying theory. A good review of the theory behind Genetic Algorithms can be found in
Mitchell (1996) with Schmitt (2003) also providing some theoretical background.

Some texts which provide further details on Genetic Algorithms include Goldberg (1989),
Mitchell (1996) and Ellis (1993).

2.6 Summary

This chapter has reviewed some of the relevant literature concerned with the major topics
dealt with in this work. The major topics are defined as mobile robots within USAR, the
development of mathematical models of mobile robots, control methodologies, namely PID,
Pole Placement and Sliding Mode, and search algorithms. The search algorithms discussed
were Exhaustive, Random, HillClimbing, Tabu, SA and GAs.

This chapter directed the reader to literature that either originally created the concepts
discussed or that provide a standard text within the field which will allow an interested party
to become more familiar with the topic.

Some recent work being done in each of the fields was also presented, along with
applications of the topics discussed.

 15

Chapter 3

Mathematical Model of a Suitable Mobile Robot

3.1 Introduction

The use of simulations in both academia and industry is common place with much of the
research and initial experiments carried out first within simulation [Frankin et al, 1991;
Murray-Smith, 1995; Nehmzow, 2003; Ogata, 2002]. Simulations allow the testing of
theories, controllers and algorithms within controlled and repeatable circumstances [Murray-
Smith, 1995]. This occurs as users can control aspects of the simulation allowing the
simulation to remain constant between different runs or make changes to the simulation to
test different aspects of what is being tested.

Within robotics it is widely recognised that simulations of robots can be used to develop the
design of subsystems (e.g. controllers) [Nehmzow, 2003; Lune, et al., 2005; Michel, 2004]
quickly and test prototypes repeatedly without the difficulty of a practical installation
[Worrall & McGookin, 2006] e.g. avoiding the complexities of altering code within the
robotic platform at every iteration, or the time taken to develop a Hardware-in-the-Loop
simulator. In addition to the robot itself, environmental aspects also influence experiments,
e.g. ambient light and temperature levels. Sensors that are sensitive to light and temperature
will behave differently if ambient levels have changed. The test environment may have also
been altered with the addition or removal of obstacles. These aspects can all remain constant
within a simulated environment resulting in a managed environment for experimental use.
The robotic platform can also be guaranteed to remain constant within a simulation. The
physical robotic platform will be subject to changes in the battery level as it is being used.
Wear and tear may also be an issue and if a robotic platform is being used by a group of
people, alterations may be made to the platform that may be unknown to the current user
affecting the experiments. The constant nature of the simulation allows repeatable testing of
code and setup and will allow comparisons to be made between different runs with different
code or setup. This only allows a comparison with near ideal or ideal conditions. There are
circumstances, such as the testing of sensors, where only testing on a physical system will
provide true results. This shows that though simulation will allow extensive testing and
provide a degree of confidence in any code written, simulation testing should be carried out
in parallel with practical tests. Another advantage of the use of a simulation is that a group of
robots can be simulated. This is advantageous when the research involves multi robot
systems, as the robots need not exist, thus saving time and money.

A simulation requires a mathematical model of the robot, which is a set of equations that
describe the behaviour of the robot. Having the mathematical model is only the first step.
Confidence in the accuracy of the results generated by the model is required. To achieve this,
the model has to be validated against physical data from the actual vehicle being modelled.
The model presented here is validated with results presented in Appendix A2. Having a
validated model means that the user of the simulation can be confident that the results
obtained from the simulated experiment are similar to those obtained from the physical robot
[Murray-Smith, 1995].

The robotic system considered in this study is a four wheel mobile robot. The mathematical
model used to describe the motion of such a robot contains two distinct aspects: the

 16

dynamics and the kinematics. The dynamics describe the forces and moments that act upon
the robot and the kinematics describe the geometric aspects of motion, with regards to linear
and angular velocities of the robot relative to the Earth [Fossen, 1994; Cook, 1997; Perez,
2005]. Together the dynamics and kinematics make up the equations of motion for the robot.

A further addition to the mathematical model presented is the actuators for the mobile robot.
The inclusion of the actuators allows a level of abstraction between the user of the model and
the model of the robot because the user does not need to control the simulated robot via
forces and torques but by the required actuator voltages. Since this is the case when using
real robots this model better represents the real world.

As mentioned this model has been validated against a real system. A validation procedure
[Murray-Smith, 1995] was created along with a set of experiments which allowed the
required data to be gathered from the robot. The data gathered was then processed and
compared - using Analogue Matching [Gray, 1992] and Integral Least Squares (ILS)
[Murray-Smith, 1995] - to data retrieved from simulation runs of the developed model. The
constant values within the model were then altered until the data from simulation runs
closely matched that of the real system.

The development of the model of the mobile robot and its associated simulation is presented
in this chapter as follows: Section 3.2 provides a description of the robot that is being
modelled. Before the development of the mathematical model can begin two aspects of the
model require definition, the Frames of Reference and the Dynamic Variables. Both of these
aspects are introduced and discussed in Section 3.3. The dynamics of the model are
presented in Section 3.4 with the kinematics derived in Section 3.5. Next the actuator
dynamics are described in Section 3.6. A brief description of the validation carried out is
given in Section 3.7. The chapter summary follows in Section 3.8.

3.2 Description of a Suitable Mobile Robot

The mathematical model described in this chapter is based on a particular mobile robot. This
section presents the basic robot used and introduces the systems required to obtain the
validated model used in this study. In the field of mobile robotics there are numerous designs
that have been implemented based on their particular applications. These range in size from
large bomb disposal robots on tracks [Ichbiah, 2005] to small wheeled robots for domestic
chores e.g. vacuuming and lawn maintenance [Ichbiah, 2005]. In this particular case a simple
four wheel symmetrical vehicle is used. This vehicle was used as it meets two of the
requirements for a suitable mobile robot for USAR - small and expendable - as set down in
Chapter 2 Section 2.2. With regards to the other requirements these would be achieved by
improving the platform. Photos of the robot are shown in Figure 3.1.

The chassis for this robot is a Lynxmotion 4WD3. Further information can be found at
Lynxmotion (2008). This chassis provides the user with a flexible mobile platform to
develop onboard systems and algorithms. This is supplied in a kit form and comprises of the
complete chassis of the robot, four motors and four wheels.

 17

(a) Top (b) Side

(c) Front (d) Perspective

Figure 3.1: Photos of the robot

In order to make the robot move in the desired controlled manner, a number of basic systems
have been developed and added to the chassis. The robot used to carry out the validation has
the following systems onboard to allow the required manoeuvres to be undertaken and log
the relevant data.

• Power

The robot requires a battery to power it. The battery chosen was a 7.4V 3200mAh
Lithium-Polymer battery. This technology was chosen because of its high energy to
size ratio [Buchmann, 2001]. The voltage met the required voltage of the motors and
the capacity meant that a large number of runs could be undertaken on a single
charge.

• Motor Driver

Each motor requires to be driven safely and in a controlled manner. To do this each
motor is driven via a motor driver chip, the L293DD [ST-L293DD, 2008], that is
controlled by a microcontroller, the PIC16F88 [Microchip -PIC16F88, 2008]. This is
a standard arrangement for driving motors [Braga, 2002].

• Inertia Measurement Unit

The Inertia Measurement Unit, IMU, [Barshan & Durrant-Whyte, 1995] is of the
strapdown family of IMUs [Titterton & Weston, 1997]. It is made up from three
single axis gyroscopes and one triple axis accelerometer. The gyroscopes are used to
sense the rate of change of the angle of the robot about its three axes and the
accelerometers are used to sense the accelerations along the three axes of the robot.
The IMU used was developed in-house as part of this work.

• Simple Controller

The simple controller is designed to send signals to the motor controllers based on the
manoeuvre the robot is currently tasked to do. The simple controller is designed to

0.35m

0.127m

0.2488m

 18

carry out the manoeuvres described in Appendix A1. The controller is based on a
PIC16F88 [Microchip -PIC16F88, 2008].

• Data Logger

The data logger is designed to log the outputs from the IMU and then, once the
manoeuvre is complete, transmit this data to a PC. The data logger is a 16Mbit Flash
memory designed to store the relevant data.

This robot chassis and its associated system is the subject of the mathematical model
developed in the remainder of the chapter. Further details on the robot can be found in
Appendix A3.

3.3 Frames of Reference and Model Variables

The first step in the development of the mathematical model of the mobile robot is to
describe the frames of reference and describe the dynamic variables used in the model. Both
of these are key elements when describing the motion of a robotic vehicle, its onboard
systems and its interaction with its inertial fixed environment.

The frames of reference, sometimes referred to as coordinate frames, [Fossen, 1994] are
three orthogonal axes representing three dimensional space. These frames are points of
reference to which the motion of the robot can be related. This work uses two frames: an
Earth fixed frame, which has an inertially fixed origin, and a Body fixed frame, which is
fixed to longitudinal, lateral and heave axes of the robot. Figure 3.2 shows the frames of
reference.

Figure 3.2: Frames of Reference

The origin of the Body fixed frame is located at the centre of gravity of the robot, which is
the centre of the robot in this case. Having the origin at this point simplifies the equation of

Xb
Yb

Zb

XE

ZE

YE

u
v

w
p q

 r

x& y&

z&

φ&
 ψ&

θ&

Body Fixed Frame

Earth Fixed Frame

 19

motion, as shown in Fossen (1994). The reason why this simplifies the equation of motion is
that it removes terms associated with the offset of the centre of gravity and the origin of the
frames of reference [Fossen, 1994; Fossen, 2002]. The Body fixed frame should be
referenced relative to an inertial reference frame, in this case the Earth fixed frame, where,
due to the low speed of the robot, the accelerations of the Earth can be neglected [Fossen,
1994] and therefore can be treated as an inertial frame. The pose of the robot (position and
orientation) [Thurm et al, 2005] is described relative to the Earth fixed frame and the
velocities, linear and angular, are described with reference to the Body fixed frame.

The dynamic variables of the model are described in Table 3.1. These variables are used
throughout this chapter.

Table 3.1: Model Variables

DOF Axis Motion

Termed

Type of

Motion

Force/

Moment

Velocities Position/

Orientation

1 Xb/Xe Surge Linear X (N) u (m/s) x (m)
2 Yb/Ye Sway Linear Y (N) v (m/s) y (m)
3 Zb/Ze Heave Linear Z (N) w (m/s) z (m)
4 Xb/Xe Roll Rotation K (Nm) p (rad/s) φ (°)
5 Yb/Ye Pitch Rotation M (Nm) q (rad/s) θ (°)
6 Zb/Ze Yaw Rotation N (Nm) r (rad/s) ψ (°)

The variables described in Table 3.1 are more commonly described in vector form, [Fossen,
1994]:

[]TT
2

T
1 ,ηηη = []T

1 z,y,x=η []T
2 ,, ψθφ=η

[]TT
2

T
1 ,υυυ = []T

1 w,v,u=υ []T
2 r,q,p=υ

[]TT
2

T
1 ,τττ = []T

1 Z,Y,X=τ []T
2 N,M,K=τ

Here η describes the pose within the Earth fixed frame, υ describes the linear and angular
velocities within the Body fixed frame and τ represents the forces and moments acting on the
robot within the Body fixed frame, [Fossen, 1994]. All of these variables combine to
describe the dynamic behaviour of the robot and are the basis of the mathematical model.

3.4 Dynamics

The dynamics describe how the forces and moments acting on the robot contribute to and
affect its motion within the body fixed frame. These represent the influence of the dynamic
cross-coupling caused by each motion along or about the axes of the reference frame.

3.4.1 Equations of Motion

The foundation of this model is the six degree-of-freedom nonlinear dynamic equation of
motion, shown in Equation (3.1) [Fossen, 1994].

τηννDννCνM. =+++)(g).().(& (3.1)

 20

Here M is the mass and inertia matrix and C(υ) is the Coriolis matrix, which together
represent the rigid model dynamics. D(υ) is the damping matrix, g(η) represents the
gravitational forces and moments, and τ is a vector representing the control inputs [Fossen,
2002]. Each of these terms will be dealt with in the followings sections.

3.4.2 Rigid Body Dynamics

The robot is treated as a rigid body, which means it will be assumed that the robot’s mass
and shape does not alter, though this is an idealised concept [Young & Freedman, 2000] as
no fuel is used and there is no loss of mass as the robot moves. The rigid body dynamics
describe the equations that allow the rigid body to move when a force is applied. The
equations are based on the Newton-Euler formulation for rigid bodies [Fossen, 1994; Fossen,
2002]. The Newton-Euler formulation is based on Newton’s second law which states that
mass multiplied by the acceleration equals the unbalanced forces acting on the body,
represented by [Young & Freedman, 2000]:

∑= Fa
rr

.m (3.2)

Where m is the mass, kg, a

r
 is an acceleration, ms

-2, and ∑F
r

 is the sum of the forces acting
on the body, N.

To develop the equations of motion Euler’s first and second axioms are used [Fossen, 1994].
These represent Newton’s second law in terms of the conversation of momentum. Euler’s
first and second axioms are:

cc fp
rr

= cc .m vp
rr

= (3.3)

cc mh
rr

= ibcc .wh
rr

I= (3.4)

where cp
r

 is linear momentum, ch
v

 is angular momentum, cf
r

and cm
r

are the forces and

moments acting on the centre of gravity of the rigid body, m is mass, kg, cv
v

is the velocity at

the centre of gravity, ibw
r

 is the angular velocity of frame b relative to i and Ic is the inertia
dyadic, which is the inertia matrix about the centre of gravity [Fossen, 2002].

The proof of how Newton’s Second Law and Euler’s First and Second Axiom become the
rigid body equations of motion can be found in Fossen (1994) and Fossen (2002).

The rigid body equations of motion, with the origin of the body fixed frame at the centre of
gravity and coinciding with the principal axes of inertia, of the robot can be stated as
[Fossen, 1994; Fossen, 2002]:

Nq.p).II(r.I

Mp.r).II(q.I

Kr.q).II(p.I

Z)p.vq.uw.(m

Y)r.up.wv.(m

X)q.wr.vu.(m

xcyczc

zcxcyc

yczcxc

=−+

=−+

=−+

=+−

=+−

=+−

&

&

&

&

&

&

 (3.5)

 21

Here m is the mass of the robot, kg, Ix is the moment of inertia about the x axis, Iy is the
moment of inertia about the y axis and Iz is the moment of inertia about the z axis, where the
moment of inertia is measured in kg.m

2. The equations given in Equation (3.5) can be
represented as:

τννCνM =+).(.& (3.6)

Here M is the mass and inertia matrix and C(υ) are the Coriolis matrix. M can be expanded
to:



























=

zc

yc

xc

I00000

0I0000

00I000

000m00

0000m0

00000m

M (3.7)

The Coriolis and centripetal terms describe the Coriolis Effect and the centripetal force and
how these both affect the motion of the robot. The Coriolis and centripetal matrix provides
the correction that is required to model this additional movement. C(υ) expanded gives:



























−−

−−

−−

−

−

−

=

0p.Iq.I0u.mv.m

p.I0r.Iu.m0w.m

q.Ir.I0v.mw.m0

0u.mmv000

u.m0w.m000

v.mw.m0000

)(

xyyc

xzc

yczc

νC (3.8)

3.4.3 Dampening Forces

As stated above, D(υ) is the dampening matrix and describes the forces and moments that are
acting against the motion of the robot. This model describes a wheeled robot that has two
major dampening forces: friction and air resistance. Figure 3.3 shows the interaction of the
forces.

Figure 3.3: Force diagram of the dampening forces

Equation (3.9) shows how the matrix D(v) is created.

Air Resistance

Driving Force

 Friction

 22

)(F)(F)(arf vvvD += (3.9)

Here Ff is a vector representing the frictional forces and moments and Far is a vector
describing the forces and moments occurring due to air resistance.

3.4.3.1 Friction

The robot runs on wheels and as a result the frictional force is termed rolling friction [Jellet,
1872]. The coefficient of friction associated with rolling friction is lower than that of static or
kinetic friction. The standard equation for friction is [Young & Freedman, 2000]:

σ= .g.mFf (3.10)

where Ff is the frictional force, N, m is the mass of the robot, kg, g is the acceleration due to
gravity and σ is the coefficient of rolling friction.

Each axis has a component of friction acting against the motion along or about it. The
friction coefficients associated with the motions are different for each axis, as the motion
along or about each axis has to overcome different resistive forces or moments. During the
validation procedure it has been found that an additional variable is required in the standard
friction equation. The variable required is the appropriate velocity along or about the axis
that the friction exists on. Equation (3.11) shows the vector that describes Ff(ν).



























=

r

q

p

z

y

x

f

mr.r..W

mr.q..W

mr.p..W

w..W

v..W

u..W

)ν(F ψθφσ

σ

σ

σ

σ

σ

 (3.11)

In this case W is the weight of the robot, N, σ# is the friction coefficient along or about the
axis #, where # is either x, y, z, φ, θ or ψ, the velocities are as stated before and mrς is the
moment arm, m, that transforms the forces into torques, with ς representing p, q or r.

3.4.3.2 Air Resistance

As the robot moves through air it meets resistance that causes drag. The drag can be
calculated using the following [Hoerner, 1965]:

2
ardar v..A.C.5.0F ρ= (3.12)

here Far is the force produced, N, Cd is the drag coefficient, A is the surface area presented to
the direction of travel, m2, ρ is the density of air, 1.29 kg.m

-3 and var is the velocity acting in
the direction of travel, ms

-1.

The drag coefficient is a number that is based on the shape of the robot. Though a
simplification, the shape of the robot presented here is given as a cuboid, giving a drag
coefficient of 0.89 [Hoerner, 1965].

 23

Though all six degrees-of-freedom are in contact with air only the drag along the x-axis is
notable as this is the main axis of motion. The velocities along each of the other axis are
negligible when compared to the velocity along the main axis, hence the drag encountered on
each of these axes is deemed negligible. Hence Far(v) becomes:



























=

0

0

0

0

0

F

)(F

ar

ar v (3.13)

At low speeds the air resistance is negligible compared with the dampening caused by the
friction. However, at high speeds the drag caused by the air resistance becomes more
significant than the friction, hence its inclusion in the model.

3.4.4 Propulsion Forces

The propulsion forces generated by the robot are produced by the combination of the forces
generated by each independently controlled wheel. To produce a motion along the x-axis the
motors are instructed to all move with the same speed and in the same direction. Various
turns can be achieved by altering the speed and direction of the wheels on one side of the
robot as compared to the wheels on the other side. Since only the motion along the x-axis
and turning about the z-axis can be achieved with this control over the wheels, only two
elements of the input vector, τ, can be controlled directly, surge, X, and yaw, N.

3.4.4.1 Surge

Surge is the force that acts along the body fixed x-axis. Surge produces the forward or
reversed motion of the robot. The sum of the forces generated by each wheel gives the surge,
as shown in Figure 3.4.

Figure 3.4: Surge Generation

 Using Equation (3.14) the surge force, X, can be calculated.

() β+++= cos.FFFFX brblfrfl (3.14)

Here Ffl (front left wheel), Ffr (front right wheel), Fbl (back left wheel), and Fbr, (back right
wheel), are the forces, N, generated by each wheel and β is the slip angle.

Ffl Fbl

Ffr Fbr

X

 24

The slip angle, with regards to a model of a mobile robot, is the topic of many publications
with Shekhar (1997), Balakrishna & Ghosal (1995), Williams et al (2002) and Bisgaard et al
(2005), covering the subject in detail [Worrall & McGookin, 2006]. In this work the slip
angle is formed from the following relationship between the forward velocity and the sway
velocity [Worrall & McGookin, 2006]:















×
=β

)vu((

v
sin

22

1- (3.15)

Here v is the sway velocity and u is the surge velocity, both measured in ms

-1. When the
denominator is zero, β is assumed to be zero.

3.4.4.2 Yaw

The moment N, or yaw moment, is the moment that contributes to the robot turning. Turning
is achieved by either:

i. Reducing the speed of the motors on one side of the robot as compared to that of
the other side.

ii. Stopping the motors on one side of the robot, while the other side is still moving.
iii. Reversing the direction of the motors on one side of the robot as compared to the

other side. This allows the robot to turn on the spot.

Since reducing the speed of the motor also reduces the force generated, an unbalanced force
about the centre of the gravity is created and a turn begins. Using Equation (3.16) the
moment about the z-axis can be calculated.

mbrfrblfl r))FF()FF((N ×+−+= (3.16)

Where N is the moment about the z-axis, Nm, Ffl, Ffr, Fbl and Fbr are the wheel forces, N,
generated by each wheel and rm is the moment arm, m. The moment arm is the distance
between the centre of each wheel and the line of action that the centre of gravity lies on
[Young & Freedman, 2000; Worrall & McGookin, 2006]. This concept is shown in Figure
3.5.

Figure 3.5: Yaw moment generation

3.4.5 Unmatched Dynamics

Unmatched dynamics are the forces and moments that cannot be directly controlled. They
occur as a result of the interaction between surge and yaw, and as a result of interaction with

Ffl Fbl

Ffr Fbr

N

 Line of Action

rm

 25

the environment. The unmatched dynamics in this model are sway, heave, roll and pitch.
Heave is present when the robot falls or is travelling up or down a slope. Roll and pitch are
generated from the inclination of the terrain in which the robot is currently operating.

Sway is a result of the slip between the robot and the ground and is present when the robot is
turning. Sway, Y, is calculated using Equation (3.17).

() β+++= sin.FFFFY brblfrfl (3.17)

Where Ffl, Ffr, Fbl and Fbr are the forces, N, generated by each wheel and β is the slip angle.

3.4.6 Gravitational Forces and Moments

The gravitational forces and moments vector, g(η), contains the term relating to the effect of
gravity on the robot. Since the origin of the body fixed axes coincides with the centre of
gravity there are no weight components that affect the moments about each axis [Cook,
1997]. This reduces g(η) to:



























=

0

0

0

Z

Y

X

)(g g

g

g

η (3.18)

where Xg, Yg and Zg are forces, N, arising due to gravity.

The gravitational forces acting on the robot as it moves up or down an incline are shown in
Figure 3.6. These forces are calculated using basic trigonometry in the following way:

θ

θ

cos.g.mZ

0Y

sin.g.mX

g

g

g

=

=

−=θ θθ
 (3.19)

Here m is the mass of the robot, kg, and g is the acceleration due to gravity.

Figure 3.6: How gravity affects the robot with respect to the pitch angle

m.g

Zθg
Xθg

θ

θ

 26

When the robot moves across an incline the component of the weight is acting along the
sway axis, see Figure 3.7.

Figure 3.7: How gravity affects the robot with respect to the roll angle

This leads to the force relationships shown in Equation (3.20).

φ

φ

φ

φ

φ

cos.g.mZ

sin.g.mY

0X

g

g

g

=

−=

=

 (3.20)

A further variable needs to be included in the calculation of the gravitational matrix. This
variable is required as a result of coupling between the x- and y-axes when both a roll and a
pitch exist. The reason for this coupling is discussed in Section 3.5. However to complete the
derivation of the gravitational matrix here Equation (3.21) is used to calculate part of the
gravitational matrix.

















=

g.m

0

0

R.R)(g ,y,xF θφη (3.21)

Here gF(η) represents the gravitational terms associated with forces, Rx,φ is the rotation
matrix about the x-axis, discussed in Section 3.5 and Ry,θ is the rotation matrix about the y-
axis, also discussed in Section 3.5. When Equation (3.21) is multiplied out and the affects of
torque are included, Equation (3.22) is the result. It can be seen that Equation (3.22) matches
the equations given in Equation (3.19) and (3.20) with the addition of the cos θ term.



























−

−

=

0

0

0

cos.cos.g.m

cos.sin.g.m

sin.g.m

)(g
θφ

θφ

θ

η (3.22)

This expression provides the equations of motion with the necessary gravitational elements.
It can be seen that the equations in (3.19) and (3.20) are the same as those in (3.22) with the
addition of a cos θ term.

m.g

ZΦg

YΦg

φ

φ

 27

3.5 Kinematics

Kinematics represent the geometric transformations that map the body-fixed velocities on to
the Earth-fixed reference frame [Fossen, 1994]. In this case the kinematic relationships
describe the movement of the robot with respect to its linear and angular velocities. It
follows that the kinematics can be grouped into translational and rotational expressions.
These relationships are formed in terms of the principle rotations about each of the major
axes.

3.5.1 Principal Rotations

The first stage in developing the kinematics is to state the principal rotations. The principal
rotations are matrices that describe the geometric motion about each axis. Each axis has a
principal rotation matrix associated with it that incorporates the rotation angle about that
axis. The reason for deriving the principal matrices here is because the matrices depend on
the orientations of the axes with regards to the frames of reference. The principal rotation
matrices derived here are based on the frames of reference as shown in Figure 3.2.

3.5.1.1 Rotation about the x-axis

To calculate the first matrix Figure 3.8 is used [Niku, 2001]. This shows a rotation of angle φ
about the x-axis, of a point P. As point P is rotated, its position in relation to the Y- and Z-
axes changes. From the original point along the Y-axis, y, the position of P is reduced as it is
rotated. After the rotation the new position is y’. With regards to the Z-axis point P started at
z but after the rotation this new position is z’. Since the original positions are known and the
angle of rotation is known the new position for point P can be calculated using trigonometric
relationships. This forms the basis on how the rotation matrices are created.

Figure 3.8: A rotation of angle φ about the x-axis

With regards to the rotation shown in Figure 3.8, the equations relating to this change in
length are:

φφ

φφ

cos.Lsin.L''zz'z

sin.Lcos.L''yy'y

x'x

21

21

+=+=

−=−=

=

 (3.23)

Z Z’

Y’

Y φ

φ

P

z’

z”

z

y’ y”

y

L1

L2

 28

In matrix form this is represented as:

















−=

φφ

φφφ

cossin0

sincos0

001

R ,x (3.24)

where Rx,φ denotes a rotation of φ about the x-axis.

3.5.1.2 Rotation about the y-axis

The second principal rotation is a rotation of θ about the y-axis. Using the same principal as
above, the equations describing this rotation are:

θθ

θθ

sin.Lcos.L''zz'z

y'y

sin.Lcos.L''xx'x

12

21

+=+=

=

−=−=

 (3.25)

In matrix form:















 −

=

θθ

θθ

cos0sin

010

sin0cos

R ,y θ (3.26)

Where Ry,θ denotes a rotation of θ about the y-axis.

3.5.1.3 Rotation about the z-axis

To establish the third principal rotation matrix the same process is again used to the rotation
of ψ about the z-axis. Equation (3.27) shows the associated equations for this rotation:

z'z

sin.Lcos.L''yy'y

sin.Lcos.L''xx'x

12

21

=

+=+=

−=−=

ψψ

ψψ

 (3.27)

Equation (3.28) gives the corresponding matrix representation:















 −

=ψ

100

0cossin

0sincos

R ,z ψψ

ψψ

 (3.28)

where Rz,ψ denotes a rotation of ψ about the z-axis.

3.5.2 Translational Kinematics

With the principal rotation matrices the kinematic relationships between the Body-fixed
translational velocities and the Earth-fixed translational velocities can be established. This
kinematic relationship is used to transform the Body-fixed linear velocities to the Earth-fixed
frame.

 29

Using, ν1, to represent the translational velocities as a vector and 1η& to represent the Earth-
fixed translational velocities as a vector, the transformation matrix is given as:

1211).(J υηη =& (3.29)

where J1(η2) is a transformation matrix. To calculate J1(η2) the three principal rotation
matrices are multiplied together as shown in Equation (3.30).

φθψ ,x,y,z21 R.R.R)(J =η (3.30)

Expanding this gives:

















−−−

−−−

=

φθφθθ

φψθφψφψθφψθψ

φθψφψφθψφψθψ

c.cs.cs

c.s.ss.cs.s.sc.cc.s

c.s.cs.ss.s.cc.sc.c

)(J 21 η (3.31)

Here c represents cosine and s represents sine.

3.5.3 Angular Kinematics

The angular kinematic equations are based on the same principal rotation matrices and are
used to transform the Body-fixed angular velocities to Earth-fixed angular velocities.

To carry out the transformation Equation (3.32) is used.

2222).(J υηη =& (3.32)

Here J2(η2) is the transformation matrix.

J1(η2) is calculated from its inverse transformation J2

-1(η2) [Fossen, 1994]. The inverse is
calculated using the following:

















+

















+

















=−

ψ

θ

φ

θφφ

&

&

&

0

0

.R.R

0

0

.R

0

0).(J ,y,x,x22
1

2 υη (3.33)

Calculating the above results in:

















−

−

=−

φθφ

φθφ

θ

c.cs0

s.cc0

s01

)(J 2
1

2 η (3.34)

And taking the inverse of J2
-1(η2) gives:

 30



















−

−

=

θ
φ

θ
φ

φφ

θφθφ

c
c

c
s0

sc0

t.ct.s1

)(J 22 η (3.35)

Again c represents cosine, s represents sine and t represents tan. It should be noted that J2(η2)
is undefined for a pitch angle, θ, of ±90˚ [Fossen, 1994].

3.5.4 Complete Kinematic Equation

The complete kinematic equation is given by combining J1(η2) and J2(η2). This gives:

















=








⇔=

2

1

223x3

3x321

2

1
2 .

)(J0

0)(J
).(J

ν

ν

η

η

η

η
νηη

&

&
& (3.36)

3.6 Motor Model

The force and moment inputs into the derived model are a result of the outputs from the
actuators. The actuators, with respect to this robot, are standard DC motors. The motors used
require to be modelled as the motors provide the input to the robot model. A standard DC
motor model has two elements: the equations that describe the mechanical components of the
motor and the equations that describe the electrical side of the components [Franklin et al,
1991].

3.6.1 Electrical Model

The equation that describes the electrical side of a standard DC motor is [Franklin et al 1991;
Worrall & McGookin, 2006]:

L

.Ki.R
i e Va+ω−−

=& (3.37)

where i& is the change in the current with respect to time, A.s

-1, R is the motor resistance, Ω, i
is the current, A, through the motor, Ke is the motors EMF constant, V.rad

-1, ω is the
rotational velocity of the motors output shaft, rad.s

-1, Va is the input voltage applied between
the motors terminals, V, and L is the motors inductance, H.

3.6.2 Mechanical Model

The equation of the mechanical model, Equation (3.38), of the DC motor is adapted from the
standard mechanical model. The model used here contains a term that represents the friction
between the wheel connected to the motor and the ground. The term has been included as it
has been shown in Worrall & McGookin (2006) and through experimental results that the
terms inclusion better represents the motor. This model also assumes the motor shaft is rigid
[Santana, Naredo, Sandoval, Grout & Argueta, 2002].

m

t

J

ω.i.K
ω

ξ−−
=

bs
& (3.38)

Here ω& is the angular acceleration of the output shaft, rads

-2, Kt is the torque constant, Nm.A
-1,

i is the current, A, bs is the viscous torque constant of the shaft, Nm, ω is the rotational

 31

velocity of the motors output shaft, rad.s
-1, ξ is the friction term, Nm and Jm is the moment of

inertia of the motor, kg.m
-2. ξ represents the friction between the wheel and the ground. This

is calculated based on the coefficient of friction of the wheel/ground contact, the mass of the
robot and the radius of the wheel.

3.6.3 Output of Motor Model

The motor output is represented as a current, i, and an angular velocity, ω. However a torque
is required as input to the robot model. It should be noted that the torque is converted into a
force in the robot model using Equation (3.39) [Young & Freedman, 2000]:

w

m
m r

τF = (3.39)

Here Fm is the force generated by the motor, N, τm is the torque generated by the motor, Nm
and rw is the radius of the wheel, m.

The torque, τm, is calculated using Equation (3.40).

eff.i.Kτ tm = (3.40)

Here τm is the torque generated, Nm, i is the current, A, Kt is the torque constant, Nm.A
-1 and

eff represents a value for the efficiency of the motor which is dependent on the current. The
efficiency term was included into this equation after it was found, through experimental
results, that the output torque of the motor required further reduction. It has been established
that the reduction is connected to the efficiency of the motors. Since the efficiency of the
motor is connected to the current being drawn, a straight line relationship between the
efficiency and the current was established and used to alter the output torque accordingly.

3.7 Validation of the Model

The model requires validation to show that any results that are produced by the simulation
are a close representation of those that will be achieved on the physical system. The
validation should follow a set procedure, the Validation Procedure [Murray-Smith, 1995],
which is introduced below. Methods of comparing the data from the physical system and the
simulation are required. This work uses two comparison methods: Analogue Matching
[Gray, 1992] and Integral Least Squares (ILS) [Murray-Smith, 1995], which are presented
below. The full results of the validation are presented in Appendix A2.

3.7.1 Validation Procedure

The validation should follow a set procedure to allow the model and the physical system to
be tested in the same manner. To do this a Validation Procedure [Murray-Smith, 1995] is
produced that will ensure the same experiments are run on both systems and that will allow
independent users to replicate the procedure and confirm the validation results [Murray-
Smith, 1995]. The validation procedure should include a description of the environment that
the physical system is tested in, the equipment used and any associated setup that is required.
A description of the experiments run should also be included. The validation procedure used
in this work is provided as Appendix A1.

 32

3.7.2 Methods of Comparison

As mentioned two methods of comparing the data are used: Analogue Matching [Gray, 1992]
and Integral Least Squares (ILS) [Murray-Smith, 1995]. These methods are introduced next.
Two methods of comparison are used as this allows both a qualitative measure, Analogue
Matching, and a numerical measure, ILS, of the results. The Analogue Matching method
allows each result to be compared to the desired result whereas the ILS provides a measure
of the numerical accuracy of each result. The ILS also provides a means of determining the
best result between two similar Analogue Matching results.

3.7.2.1 Analogue Matching

Analogue Matching, also known as visual inspection, is an established method of model
validation [Gray, 1992]. This method of comparison is very simple to use. The output data
from the simulation is compared to experimental data graphically by superimposing the plots
[Gray, 1992]. As the model is altered the output data retrieved alters and this is compared to
the data from the physical system. The data that ‘best fits’ the simulation data indicates the
model and parameters that represent the physical system best. An example from this work of
Analogue Matching is shown in Figure 3.9. This figure shows the data from the physical
system (red line) and the simulation (dashed blue line). The figure shown represents the
linear displacements associated with Experiment 3. Experiment 3 is designed to move the
robot in a square. It can be seen that in both the x and y directions that the robot moves
incrementally then returns to the start position. This is the expected result.

Figure 3.9: Linear Displacements with regards to Experiment 3

The results from the final Analogue Matching experiments are presented in Appendix A2.

3.7.2.2 Integral Least Squares

A quantitative measure of the model’s accuracy should also be taken into consideration as it
provides further confidence in the results given by the simulation. The method used in this
work is the Integral Least Squares [Murray-Smith, 1995]. Equation (3.41) is used to calculate
the number used as a comparison between data sets.

 33

∑= 2)(Qm error
 (3.41)

Here error is the difference between the data from the physical system and the data from the
simulation. Each measured output can be quantitative measured in this way. The results from
the Integral Least Squares method from the final validation experiments are presented in
Appendix A2.

3.8 Summary

This chapter has presented a nonlinear mathematical model of a four wheeled mobile robot.
The first stage was to describe the model’s frame of reference and associated variables. The
rigid body dynamics of robot were then described and derived in terms of the Newton-Euler
formulation. Since dampening forces would oppose any movement made by the robot, as
described by the rigid body equations, these forces (friction and air resistance) were
explained and a means of representing them has been described. How the input forces from
the actuators interact with the robot was then described, which gave the surge and yaw input
forces. The unmatched dynamics were introduced. The effect of gravity on the robot is
explained and the supporting equations derived.

The kinematics of the model have been discussed. The principal rotation matrices were
derived from first principles. The translational and rotational kinematics were calculated
using the principal rotation matrices. Both were presented in matrix form.

Equations which represent the actuators are presented with the alteration of the mechanical
equation explained. The alterations to the mechanical equation were the inclusion of a
friction variable and the addition of a term to alter the efficiency of the motor.

One of the features of the model presented is that it has been validated against a real system.
The methods of validation used were discussed, along with some example results which
show how the developed model compares to the real system.

To summarise, this chapter has presented and explained a set of equations that describe a
four wheeled robot. With these equations, studies can be carried out in simulation without
the need of the robot.

 34

Chapter 4

Navigation and Control Methodologies

4.1 Introduction

As stated the aim of this work is to establish if search algorithms can be used to generate
coordinates that allow a robot to search an environment for desired targets in a controlled
manner. In order to make the robot travel to a desired location, a robust fusion of navigation
and motion control is required. Both these elements are essential for the guidance of any
vehicle but are particularly important for robots performing USAR tasks. The navigation
system provides overarching commands regarding localisation and the control system
governs the motion of the robot so that it acquires the desired pose.

As mentioned above, the navigation system determines the location of the robot and from
this information it calculates the motion required to acquire a desired position within the
operating environment. The particular navigation system used in this project is the Line of

Sight Autopilot [Healey & Lienard, 1993; Worrall & McGookin, 2006; McGookin et al,
2000], which calculates a desired heading trajectory of the robot based on the current and
desired positions.

The design of the control system is based on the control methodology used. Each
methodology has a unique algorithm that provides a suitable input signal to drive a device
towards a desired response [Ogata, 2002; Philips & Harbor, 1996; Franklin et al, 1991]. The
device, in the case of this work, is a mobile robot. The suitable input is the signal that drives
the motors and the desired response would be the surge velocity and heading required to
arrive at the location sought.

As suggested above, the desired response for the robot would be a suitable velocity and
heading that will allow the robot to manoeuvre towards the required location in the presence
of disturbances and uncertainties. This gives two parameters that require to be controlled: the
surge velocity and the heading. With the ability to control these two parameters the robot can
be instructed to move in any direction within the x-y plane. Three control methodologies are
discussed within this thesis. The methods selected for evaluation were chosen because each
is an established method with decades of research and each method is popular, as indicated
by the extensive literature available on each method. These methods can also be
implemented without difficultly in practice. The control methodologies are Proportional-

Integral-Derivative [Åström & Hägglund, 1995; Ogata, 2002; Cetinkunt, 2007; Franklin et

al, 1991], more commonly known as PID; Pole Placement [Ogata, 2002; Philips & Harbor,
1996; Franklin et al, 1991; Dutton et al, 1997; Dorf & Bishop, 2005; White, 1995] and
Sliding Mode [Utkin et al, 1999; Edwards & Spurgeon, 1998; Young et al, 1999; DeCarlo et

al,1988]. The theory behind each is introduced and how the method is implemented is
considered.

Within any environment robots operate in obstacles exist. For this reason two methods of
obstacle avoidance are presented and discussed. The methods discussed present two different
ways of achieving obstacle avoidance.

 35

The objective of this chapter is to evaluate the three control methodologies mentioned above
and select one for use within the developed navigation and control system.

The chapter continues as follows: Section 4.2 gives an overview of the navigation and
control system. Section 4.3 presents the Line of Sight Autopilot with Section 4.4 discussing
PID, Pole Placement and Sliding Mode control. Section 4.5 presents the comparison between
each of the methods. The Obstacle avoidance methods investigated are presented in Section
4.6 and the chapter is summarised in Section 4.7.

4.2 Navigation and Control Systems

The navigation and control systems are responsible for directing the robot to a target
location. This combination of systems is illustrated in Figure 4.1.

Figure 4.1: Block Diagram of the Navigation and Control System

The navigation system accepts, as input, the desired location and the robots current location.
Using this, the navigation system calculates the desired heading required to arrive at the
target location. The desired velocity of the robot remains at a suitable constant value for the
motion the robot is undertaking.

Obstacle Avoidance is the next stage of the Navigation and Control System. At this stage the
sensors are checked to see if the responses they return indicate an obstacle. If an obstacle
exists then a new desired heading and desired velocity are set and this is passed to the control
system. If no obstacle exists then the desired heading and desired velocity from the
navigation system is passed to the control system.

The control system is responsible for maintaining the desired velocity and the desired
heading. To do this the control system requires the desired velocity and the desired heading
as well as the current velocity and heading. This allows the control system to generate a
suitable input command signal for the motors.

Combining the navigation and control systems in this manner enables the pose and motion of
the robot to be accurately regulated. The performance of this combined guidance system
depends on the design and operation of the individual components, i.e. navigation and
control systems. These are discussed in more detail below.

4.3 Line of Sight based Navigation System

The Line of Sight (LOS) Autopilot is the method used to navigate the robot. This method
was chosen as it carried out the desired task simply with the minimal amount of calculation.

Control
System

Current Heading

Current Velocity

Desired
Velocity

Current Location

Navigation
System

Actuator
Voltages

Robot
Obstacle

Avoidance

Desired Heading
Desired Velocity

Desired
Heading

Desired
Velocity

Desired
Location

 36

A LOS Autopilot works on the principal of waypoints [Healey & Lienard, 1993; Worrall &
McGookin, 2006; McGookin et al, 2000]. A waypoint is the target location the robot is to
travel to. Once the robot has arrived at the waypoint the controlling algorithm is informed
and the next waypoint generated. By generating a series of waypoints the robot can be
navigated along a desired path. This concept is shown in Figure 4.2, where the waypoints are
shown as crosses with circles of a fixed radius around each. The circle represents the
acceptance radius [Worrall & McGookin, 2006; McGookin et al, 2000]. The acceptance
radius is the distance from the waypoint that the robot must be within to be accepted as
having arrived at the location. An acceptance radius is desirable as it allows the robot and the
controlling algorithms flexibility over the exact location of the waypoint. The acceptance
radius used here has a value equal to half the length of the robot [Worrall & McGookin,
2006].

Figure 4.2: A robot navigating a series of Waypoints

The LOS Autopilot accepts as input the coordinates of the target location and using the
current location the heading required for the target location can be calculated using Equation
(4.1).















−

−
= −

poswp

poswp1

xx

yy
tanψ (4.1)

Here ψ is the heading, radians, (xwp, ywp) are the coordinates of the waypoint and (xpos, ypos)
represents the current location of the robot. Since tan

-1 is undefined for ±(π/2) radians, the
following conditions are placed on Equation 4.1:

0yy

0xx

0yy

2/

2/

poswp

poswp

poswp

d

<−

≠−

>=−









−

=

π

ψ

π

ψ

where ψd is the desired heading.

1

2
3

4

5

6

Waypoint

ψ

ψ

ψ

 37

4.4 Control System

As discussed, the control system is concerned with maintaining the desired velocity and the
desired heading. In order to achieve this, a control methodology is implemented which is
designed to generate suitable input command signals for the motors. The three control
methodologies considered here are PID, Pole Placement and Sliding Mode. In this section
the theory and implementation of each control methodology is discussed. Each control
methodology was tested in a series of experiments which were designed to test various
aspects of the controllers developed. The results achieved by each controller is presented.

4.4.1 Experiments

A series of experiments have been designed to test each controller. The experiments set the
desired responses over a period of time, in this case 20 seconds. The experiments are
designed to show if the model responds accurately, under the control of one of the controllers
developed and how quickly the model responds to the input commands. Seven experiments
have been developed and are described below.

• Experiment 1

A desired velocity for the full length of the experiment is the first experiment. This
experiment shows if the controller is able to maintain a desired velocity.

• Experiment 2

The controller also needs to be able to maintain a desired heading. Experiment 2 sets
a desired heading for the full length of time.

• Experiment 3

The previous two experiments aim to show the controller handling a desired constant
value. The controller also needs to be able to handle changes in the desired value.
Experiment 3 sets a desired velocity for 10 seconds then changes to a second value
for the desired velocity for the next 10 seconds.

• Experiment 4

This experiment is designed to test the controller’s ability to handle a change in the
desired heading. Experiment 4 sets a desired heading for 10 seconds then changes the
desired heading to a second value for the next 10 seconds.

• Experiment 5

The next test is to see if the controller can handle repeated changes in the desired
velocity. Experiment 5 changes the desired velocity between two values every 4
seconds.

• Experiment 6

As with the velocity, repeated changes in the desired heading are used to test the
controller. Experiment 6 changes the desired heading between two values every 4
seconds.

• Experiment 7

The previous experiments have all tested the response from the controller when only
one of the desired values has been changed. Experiment 7 changes the desired
velocity between two values every 4 seconds and changes the desired heading,
between two values 2 seconds after each change in the desired velocity. This

 38

experiment shows how the controller handles multiple requests acting on the same
system.

Throughout all the experiments the desired velocity is 0.75ms-1, which is a safe and
achievable velocity, and the desired heading is ±45°, which represents a standard heading the
robot would change by. These experiments test every aspect of the control system and thus
enable the performance of the chosen techniques to be analysed. The results and
corresponding analysis indicate which of the three techniques is the most suitable for this
application.

4.4.2 Proportional-Integral-Derivative Control

This section describes the Proportional-Integral-Derivative (PID), also known as Classical

Control or Three Term Control Controller [Åström & Hägglund, 1995; Ogata, 2002;
Cetinkunt, 2007; Franklin et al, 1991] and discusses the implementation used in this work.
With regards to the experiments the results produced by the robot under the control of the
designed PID controller are also shown.

4.4.2.1 Theory

The theory behind a PID controller is simple as the controller operates on the error signal,
[Åström & Hägglund, 1995; Ogata, 2002; Cetinkunt, 2007; Franklin et al, 1991; Alfaro-Cid,
2003], which is the error between the desired value and the actual value. As the name
suggests, the PID controller consists of three parts: the proportional control, the integral
control and the derivative control. The output from each stage is summed and this gives the
PID controller output. Figure 4.3 shows a block diagram representation of the PID controller.

Figure 4.3: Block Diagram of a PID controller

In the figure xd is the desired response, e the error signal, ucs is the output of the controller
and x is the current response from the system being controlled. The blocks in the middle
represent the proportional term, P, the integral term, I, and the derivative term, D.

The proportional element of the controller acts on the current error [Celinkunt, 2007] and
simply amplifies the error signal to generate a suitable output signal. This can lead to an
oscillatory signal and may result in an overshoot of the desired signal.

The integral element acts on the past errors. It generates a response that follows the time
history of the output signal. Though it can slow the response of the controller down, [Alfaro-
Cid, 2003], the integral element eliminates the steady state error, meaning that the desired
final value can be achieved within limits.

The derivative element speeds up the overall response of the controller and can reduce the
oscillations of the response [Celinkunt, 2007]. The use of the derivative element can result in
a signal that is overdamped.

P

+

+

xd
+

-

e ucs x
I

D

System

+

 39

The standard continuous time equation for a PID is:

∫ ++=
t

0
dt

)t(de
dipcs .Kdt).t(e.K)t(e.K)t(u (4.2)

here ucs (t) is the output signal, e(t) is the error signal and Kp, Ki and Kd are the gains of the
Proportional, Integral and Derivative elements respectively.

Equation (4.2) can also be stated in a discrete time form, as shown in Equation (4.3)
[Celinkunt, 2007; Åström & Hägglund, 1995]. The equation in the discrete time form is the
method best used for implementing the PID controller on a computer or within a
microcontroller.

t

)ee(
.K)t(e.K)t(e.K)t(u 1tntn

dniinpncs
∆

−
++= − (4.3)

Where tn is the current time, tn-1 is the pervious time, ∆t is the time stepsize and ei(tn) is:

∑ ∆+= −

nt

o
n1nni t).t(e)t(e)t(e (4.4)

4.4.2.2 Tuning PID terms

The gains, Kp, Ki and Kd are constants that require to be tuned to an appropriate value.
Tuning is the process of selecting the gains of a PID controller to give the required
performance specifications [Ogata, 2002]. The tuning is designed to give the response that
the user wants from the application. Different gain settings and different combinations of
gain settings result in different responses. In the application considered here a fast response
with no steady state error would be the desired response. No overshoot would also be desired
as this will decrease the demands made on the actuators.

It is possible to manually tune the gains for a PID controller [Ogata, 2002; Alfaro-Cid,
2003]. However, this can be an exhaustive process and may not lead to the optimal gain
settings or even gains that give a near reasonable response. One method for tuning PID
controllers that is often described alongside the PID controller is the Ziegler-Nichols method
[Ziegler & Nichols, 1942; Åström & Hägglund, 1995; Ogata, 2002; Alfaro-Cid, 2003;
Franklin et al, 1991]. The Ziegler-Nichols method uses information, namely the delay time,
L, and the time constant, T, gained from the response of the model to a step input. These two
parameters are then used to calculate the gains in the following way, Kp = 1.2(T/L), Ki = 2L
and Kd = 0.5L [Ogata, 2002; Alfaro-Cid, 2003; Franklin et al, 1991]. Though this method
gives values that can be used, it is accepted that the Ziegler-Nichols method gives more of an
approximation of the values of the gains and that the gains calculated require fine tuning to
give a better desired response [Ogata, 2002; Alfaro-Cid, 2003; Franklin et al, 1991]. Using
the Ziegler-Nichols method achieved approximate values for the controller gains. The gains
achieved were then slightly altered by hand to give a better response.

4.4.2.3 Integral Antiwindup

There can come a point in any real system, or properly modelled simulation, where the
output from a controller is beyond the range of the actuator it is controlling. This results in
the actuator becoming saturated. An example of this would be when the control circuit for a

 40

small DC motor is given a control signal which indicates that a voltage beyond the maximum
available for the motor is to be used.

When using a PID controller, integrator windup may occur [Åström & Hägglund, 1995;
Franklin et al, 1991] if the actuator that is under control becomes saturated. Integrator
windup occurs when the actuator becomes saturated but the PID controller continues to
increase the control action to compensate for the inaction of the motor. Since the PID
controller is attempting to run the actuator at a point beyond its operation, the error between
the current actuator response and the desired actuator response will not decrease in size.
With the error static at a non-zero value the integrator output will increase. The integrator
output will continue to increase for the length of time the actuator remains in saturation. If
the saturation condition occurs for a long period of time, the integrator output will become
large [Franklin et al, 1991], and require a large reduction in error to enable it to return to its
proper value [Franklin et al, 1991]. With such a large increase in the integrator output when
a change in the desired actuator response is requested, it will take time for the PID controller
to respond as it will be eliminating the integrator output that has built up. This delay in
responding to the change could cause issues with the system. To overcome integrator windup
the integrator term of the PID controller can be switched off when the actuator becomes
saturated [Franklin et al, 1991]. This method retains the value of the integrator output before
the saturation occurs and maintains it at that level. Using this means the integrator output
does not increase and when the saturation stops the integrator is switched back on with a
value suitable to the current conditions. This method of switching the integrator on and off
when saturation occurs is used in the controller implementation described here.

4.4.2.4 Implementation

As previously mentioned, there are two variables that the controller is to have control over:
the surge velocity, u, and the heading, ψ. To achieve PID control over both of these variables
two PID controllers are required. Two controllers are required as the PID controller is a
single-input single-output (SISO) and as such can only handle one variable. Using Equation
(4.3) as the standard PID controller equation the error signals can be given by:

eu(tn) = ud − ua (4.5)

eψ(tn) = ψd − ψa (4.6)

Here eu and eψ are the velocity and heading errors, ud and ψd are the desired values and ua and
ψa the current values. This gives the output control signal for the surge velocity, ucsu, as:

t

)ee(
.K)t(e.K)t(e.K)t(u 1utnutn

duniuiunpuncsu
∆

−
++= − (4.7)

Where Kpu, Kiu and Kdu are the gains for the surge velocity, shown in Table 4.1. The heading
control signal, ucsψ , is calculated using:

t

)ee(
.K)t(e.K)t(e.K)t(u 1tntn

dniinpncs
∆

ψψ

ψψψψψ

−−
++= (4.8)

where Kpψ, Kiψ and Kdψ are the gains for the heading, shown in Table 4.2.

 41

Table 4.1: Gains for the surge velocity PID controller

Kpu Kiu Kdu
15 30 0.05

Table 4.2: Gains for the heading PID controller

Kpψ Kiψ Kdψ
20 0.1 0.01

In the standard form Equations (4.7) and (4.8) each give a single control signal, however
there are four actuators to be controlled. A method of combining these two control signals
and then converting them into four individual input signals for each motor is required. Using
Equation (4.9) the input to the motors on the left hand side of the robot can be calculated.
Equation (4.10) is used to calculate the motor voltages on the right hand side of the robot.
The use of the minus sign in combining the two control signals allows the robot to perform
turns.

Vl = (uu + uψ)/2 (4.9)

Vr = (uu − uψ)/2 (4.10)

In these equations Vl is the voltage applied to the motors on the left hand side of the robot
and Vr is the voltage applied to the right hand side motors.

Overall the PID control scheme can be represented in block diagram form as Figure 4.4.

Figure 4.4: Complete control structure for the PID controllers

4.4.2.5 PID Results

The results from the PID controller undertaking the experiments described above are shown
in Figure 4.5.

The result of Experiment 1 is shown in Figure 4.5a. It can be seen that the actual surge
velocity of the robot (the dashed line) tracks that of the desired value (the solid line) with a
minimal steady state error. The average steady state error is -0.0810×10-3 ms-1. Figure 4.5b
shows the result from Experiment 2. Again it can be seen that the robot acts in the desired
way, with minimal error, 0.6368×10-3°. The response gained from Experiment 3, Figure 4.5c
and Experiment 4, Figure 4.5d again showed that the PID controller controlled the robot
accurately to give the desired responses. Again the steady state error is small for both
experiments, with the steady state error of Experiment 3 being -0.0616 ×10-3 ms-1 and 0.6368

×10-3° for Experiment 4. The results for Experiment 5, Figure 4.5e are interesting because
the robot does not reach a steady state.

ud
0.5

0.5
ψd

Vl

Vr

PID u

PID ψ

ucsu

ucsψ

+

+
+

-

 42

(a) PID Results from Experiment 1 (b) PID Results from Experiment 2

(c) PID Results from Experiment 3 (d) PID Results from Experiment 4

(e) PID Results from Experiment 5 (f) PID Results from Experiment 6

(g) PID Results from Experiment 7 – Surge (h) PID Results from Experiment 7 –

Heading

Figure 4.5: PID Control Experiment Results

 43

This shows that the response of the PID controller may not be fast enough to deal with rapid
changes in the desired velocity. The same is seen with Experiment 6, Figure 4.5f. The robot
does not reach a steady state response. Experiment 7 has been designed to be demanding and
to change both the desired velocity and desired heading. The surge and heading response
from the robot while under control from a PID controller can be seen in Figures 4.5g and
Figure 4.5h respectively. It can be seen that the robot does attempt to follow both the desired
velocity and headings. However, it does not succeed at maintaining one as the other changes.
This leads to an unsatisfactory response for the velocity.

4.4.3 Pole Placement

The following section introduces the Pole Placement (PP) method of controller design. As
with the previous section on PID controllers this section discusses the theory of PP controller
design and the implementation used in this work. The section ends with the results from the
experiments discussed in Section 4.4.1.

4.4.3.1 Theory

Pole Placement (PP) [Ogata, 2002; Kautsky et al, 1985; Philips & Harbor, 1996; Dutton et

al, 1997; Dorf & Bishop, 2005; White, 1995; Franklin et al, 1991] is the common name for
State Variable Feedback and Eigenstructure Assignment. It is a control method based on
feedback [Alfaro-Cid, 2003], via a feedback gain matrix, of the current states of the system
under control.

In essence PP is a state variable feedback system, but the term PP is used as it describes the
method used to establish the feedback gain matrix. The feedback gain matrix is calculated
based on the location of the poles of the system under control. Since the poles of the system
are used the poles require to be placed in locations that give the desired closed-loop system
response [Dutton et al, 1997]. A block diagram of the standard implementation of a PP
controller is shown in Figure 4.6.

Figure 4.6: Standard Implementation of the Pole Placement controller

The control signal, ucs, is generated by the following control law [Alfaro-Cid, 2003; Dutton
et al, 1997; Franklin et al, 1991; Dorf & Bishop, 2005; Ogata, 2002; Philips & Harbor,
1996]:

ucs = Kr.xd − K.xa (4.11)

where Kr is the conditioning matrix, [Alfaro-Cid, 2003] for the desired states vector, xd, K is
the feedback gain matrix and xa is the vector of the current states.

This is the basic theory of the PP controller. Further theory is not covered here as the work
presented here is concerned with the implementation of the PP controller. Further theory
regarding PP controllers can be found in many sources including; Alfaro-Cid (2003), Dutton

+

-

xd ucs x
System

Kr

K

 44

et al (1997), Franklin et al (1991), Dorf & Bishop (2005), Ogata (2002) and Philips &
Harbor (1996).

4.4.3.2 Implementation

This work is concerned with the implementation of the PP controller. The reason for this is
that the implementation of the PP controller is more involved than that of the PID controller.
When implementing the PID controller the model developed in Chapter 3 can be used as is.
However to design the PP controller a linear model is required. This section discuses the
development of the linear model and how it is used to develop the PP controller. The
implementation is made easier with the use of the Matlab command place which calculates
the feedback gain matrix, K, according to the algorithm described in Kautsky et al (1985).
However before the place command is used certain steps need to be undertaken.

The first step is to take the non-linear model presented in Chapter 3 and linearise it around a
set operating point [Dutton et al, 1997]. This is required because the place command only
operates on linear models in standard state space form. Although the final PP controller is
used to control a non-linear system, the poles are placed with regards to a linear model. The
model developed is linearised using the method described in Dutton et al (1997). Since the
state space equations are known, the Jacobians of the matrices can be evaluated [Dutton et

al, 1997]. The next stage is to select an operating point. The operating point is where the
system is expected to be in normal operation [Dutton et al, 1997]. This point represents the
input and output values at this point. The nominal operating point, with regards to this work,
is chosen to be a constant surge velocity of 0.75ms-1 with no rotational velocity and 0°
heading. These values are used in the Jacobian matrices to give a linear model [Dutton et al,
1997]. The values are chosen as these indicate the preferred state of the robot.

There is a point to note about the linear model developed. The non-linear model represents
the robot and the actuators of the robot. However, the linear model is a three state
representation of the non-linear robot model without the actuators. The inputs to the linear
model are wheel torques. The linear model only has the states associated with the surge
velocity, u, and the heading, r and ψ. These states are used as only they can be controlled by
the actuators. The other states are associated with the environment in which the robot is
operating. The reason for the exclusion of the actuators from the linear model is due to the
feedback gain matrix that is generated when the actuators are part of the linear model. The
gains associated with the actuators result in implementation issues when the feedback gain
matrix is applied to the non-linear model, namely the gains became dominant over the surge
velocity and heading gains and the results are unacceptable.

The reduction in the number of states and the removal of the actuators resulted in the linear
model becoming:



















+

















=

















4

3

2

1

LinLin .Br

u

.Ar

u

τ

τ

τ

τ

ψψ&
&

&

 (4.12)

where Alin is the system matrix for the linear model and Blin is the input matrix for the linear
model. τ1, τ2, τ3 and τ4 are the torques generated by each of the wheels. Since the actuators are
removed a new input to the model is required. The new inputs are the torques generated by
each wheel. The full linear model can be found in Appendix B1.

 45

With the linear model the Matlab place command can now be used to calculate the feedback
gain matrix. The poles used to generate the K matrix were arrived at using a trial and error
approach. Various step inputs were applied to the model until the model output matched the
desired output. When this occurred a suitable K matrix had been generated. The poles for the
controller implemented are shown in Table 4.3.

Table 4.3: PP Controller Parameters

Pole 1 Pole 2 Pole 3

-5 -10 -5

The next stage is to set the conditioning matrix. It was found that with regards to the
variables associated with the desired heading that Kr = K, as used by Alfaro-Cid, (2003), was
suitable, but for the surge velocity the value had to be manually tuned.

The controller for the linear model in Equation (4.12) using the setup shown in Figure 4.6
has now been developed. However one more step is required to allow the controller, with the
gains calculated, to be used with the non-linear model. Since K was calculated without the
actuators included and as such returns a value associated with the wheel torques, a method of
converting this output to the required voltage input is required. A simple linear relationship
was derived that converted the torques generated by the PP controller to the required
voltages. The proof of this relationship can be found in Appendix B2.

With the PP controller developed and a relationship found between the control signal
generated by the controller and the required input to the non-linear model, the controller and
model can be represented in block diagram form by Figure 4.7.

Figure 4.7: Implementation of the Pole Placement controller

4.4.3.3 Pole Placement Results

Using the experiments described in Section 4.4.1 the PP controller has been tested. The
results of the tests can be seen in Figures 4.8(a-h). As with the PID controller results for
Experiments 1 to 4, the results for the PP controller show that it can track the desired
response accurately, Figures 4.15(a-d). The steady-state error is slightly worse than that of
the PID controller with regards to the first four experiments with the errors being,
0.4852×10-3ms-1, -0.0576×10-3°, 0.4301×10-3ms-1 and -0.1544×10-3° respectively. However,
it can be seen that the PP controller has the robot in steady-state, at the desired value, for a
longer period than that of the PID controller due to the quick rise time. With regards to
Experiments 5 and 6 and unlike the PID controller, the PP is able to drive the robot into a
steady state with a minimal error for both, 0.2104×103ms-1 and -0.0012°. Again this is
because of the high initial drive signal when the desired value is changed.

+

-

xd(u,r,ψ) ucs x
System

Kr

K

uVa = f(ucs)

uVa

x(u,r,ψ)

 46

(a) PP Results from Experiment 1 (b) PP Results from Experiment 2

(c) PP Results from Experiment 3 (d) PP Results from Experiment 4

(e) PP Results from Experiment 5 (f) PP Results from Experiment 6

(g) PP Results from Experiment 7– Surge (h) PP Results from Experiment 7 – Heading

Figure 4.8: PP Control Experiment Results

 47

The results of Experiment 7 gained from the PP controller can be seen to be better than that
of the PID controller. In comparison to the PID controller, the PP controller can drive the
robot to a steady state with regards to the desired velocity and has a quicker transient
response. However when comparing this controller to the PID controller, it can be seen that
when a change in heading occurs the response of the surge velocity is affected to a greater
extent, but the PP controller does recover faster.

4.4.4 Sliding Mode

The last controller to be introduced as part of this work is the Sliding Mode (SM) controller.
As with the two previous controllers the theory and the implementation of the SM controller
is discussed. Again the section ends with the results from the experiments described in
Section 4.4.1 when the SM controller is used.

4.4.4.1 Theory

The next controller method to be discussed is Sliding Mode (SM) control [Utkin et al, 1999;
Edwards & Spurgeon, 1998; Young et al, 1999; DeCarlo et al, 1988; Alfaro-Cid, 2003;
McGookin, 1997; McGookin & Murray-Smith, 2000]. SM control is based on the principal
of non-linear switching [McGookin & Murray-Smith, 2000] and as such SM controllers are
able to compensate for the effects of disturbances and are considered to be more robust than
other control methods [Alfaro-Cid, 2003; McGookin, 1997; McGookin & Murray-Smith,
2006]. The structure of the SM controller is shown in Equation (4.13).

usm = ueq + usw (4.13)

Here usm is the input to the system, ueq is the equivalent controller [Alfaro-Cid, 2003;
McGookin, 1997; McGookin & Murray-Smith, 2006] and usw is the switching term that
provides the nonlinear element of the controller. The equivalent term is usually a linear
controller [Alfaro-Cid, 2003] and provides the main control action. The switching term is the
nonlinear part of the controller and provides the control action to overcome the effects of any
disturbances and provides the robustness associated with SM control.

The switching term is based on the sliding surface, σ(x̂), [Alfaro-Cid, 2003; McGookin,
1997; McGookin & Murray-Smith, 2006] which is a function of the error between the
desired value and the actual value. As in Alfaro-Cid (2003), McGookin (1997) and
McGookin & Murray-Smith (2006), the function σ(x̂) is given as:

)xx.(hx̂.h)x̂(d
TT −==σ (4.14)

where hT is the right eigenvector of the desired closed-loop system matrix, x is the current
value and xd is the current desired value. The sliding surface is chosen to allow the value of
the surface tend to zero as the error tends to zero [Alfaro-Cid, 2003; McGookin, 1997].

Derivation of the Switching Term
With the sliding surface defined the next stage is to derive the switching term. The derivation
that follows is based on that described in McGookin (1997), Alfaro-Cid (2003), McGeoch
(2005) and McGookin & Murray-Smith (2006).

The first stage is to differentiate Equation (4.14) with regards to time:

x̂.h)x̂(T && =σ (4.15)

 48

Given the standard non-linear model in state space form is given as:

)x(fu.x.x cs ++= BA& (4.16)

Where x is the state vector, A is the system matrix, B is the input matrix, ucs is the input to
the system and f(x) represents the nonlinearities, unmodelled dynamics and other
disturbances [Alfaro-Cid, 2003].

Substituting Equation (4.16) into (4.15) gives:

)x)x(fu.x..(h)x̂(dcs
T

&& −++=σ BA (4.17)

Since ucs is the input to the system and ucs, with regards to SM control, is represented by
Equation (4.13), Equation (4.17) becomes:

)x)x(fu.u.x..(h)x̂(dsweq
T

&& −+++=σ BBA (4.18)

In the work presented here the equivalent controller is a PP controller giving:

ueq = -k.x (4.19)

When Equation (4.19) is substituted into Equation (4.18) the result is Equation (4.20).

)x)x(fu.x.k.x..(h)x̂(dsw
T

&& −++−= BBAσ

)x)x(fu.x..(h dswc
T

&−++= BA
(4.20)

Multiplying out Equation (4.20) gives:

d
TT

sw
T

c
T x.h)x(f.hu..hx..h)x̂(&& −++=σ BA (4.21)

Rearranging Equation (4.21) to give usw:

))x̂()x(f.hx..hx.h(
).h(

1
u T

c
T

d
T

Tsw σ+−−= && A
B

 (4.22)

Since hT represents the right eigenvectors of Ac, then hT.Ac becomes zero [Healey & Leinard,
1993; Alfaro-Cid, 2003; McGookin, 1997; McGookin and Murray-Smith, 2006] giving:

))x̂()x(f.hx.h(
).h(

1
u T

d
T

Tsw σ+−= &&
B

 (4.23)

From Alfaro-Cid (2003), McGookin and Murray-Smith (2006) and McGookin (1997))x̂(σ&
can be stated as:

))x̂((.η)x(f.h)x̂(T σ∆σ sgn−=& (4.24)

 49

where)x(f∆ is the difference between the system derivatives and the estimates of this
function, η is the switching gain, which requires tuning, and sgn is a function that represents:

0x

0x

0x

1

0

1

)x(

<

=

>









−

=sgn

Substituting Equation (4.24) into Equation (4.23) gives:

)))x̂(sgn(.η)x(f.h)x(f.hx.h(
)B.h(

1
u TT

d
T

Tsw σ∆ −+−= & (4.25)

This can be further reduced by removing the terms associated with f(x) because:

0)x(f.h)x(f.h TT ≈−∆ (4.26)

Giving:

)))x̂(sgn(.ηx.h(
)B.h(

1
u d

T
Tsw σ−= & (4.27)

Inserting Equation (4.27) into Equation (4.13) and using PP as the equivalent controller gives
the overall control equation for SM control as:

)))x̂(sgn(.x.h(
).h(

1
x.ku d

T
Tsm ση−+−= &

B
 (4.28)

Chattering
The inclusion of the switching term can lead to a phenomenon known as chattering [Alfaro-
Cid, 2003; Young, et al 1999; McGookin, 1997; McGookin and Murray-Smith, 2006].
Chattering is the high frequency switching of the switching term about the sliding manifold
[Young, et al 1999; Edwards & Spurgeon, 1998; Utkin et al, 1999]. The reason for this high
frequency switching is that the switching term is constantly switching between the positive
and negative extremes of the switching gain. This is called hard switching. The chattering
can cause damage to the actuators currently under control and could lead to the system
becoming unstable [Edwards & Spurgeon, 1998; McGookin, 1997].

To stop or reduce the chattering, a method of soft switching is introduced to allow the
controller to approach the zero error condition gradually. To achieve soft switching a
hyperbolic tangent function replaces the sgn function described [Healey & Leinard, 1993;
Alfaro-Cid, 2003; McGookin, 1997; McGookin & Murray-Smith, 2000]. This alters
Equation (4.24) to give:

)
)x̂(

tanh(.)x(f.h)x̂(
bl

T

φ

σ
η−∆=σ& (4.29)

 50

Here blφ is the boundary layer thickness. The Boundary layer is the area that is used to
provide the gradual transition around the zero error value [Alfaro-Cid, 2003].

This gives the final controller expression as:

))
)x̂(

tanh(.ηx.h(
)B.h(

1
x.ku

bl
d

T
Tsm

φ

σ
−+−= & (4.30)

4.4.4.2 Implementation

As with the implementation of the PP controller the process required to implement a SM
controller is longer and more involved than that of a PID controller. As with the PP
controller, a linear model is required to enable the design of the SM controller. The linear
model is required because the equivalent controller implemented is based on the PP
controller. Also within the switching term of the SM controller two values are based on the
linear model, hT and B. However the linear model developed for the PP controller is not
immediately useable for the SM controller as it describes a multi-input-multi-output system
(MIMO). The linear model developed requires alteration and simplification.

Surge Velocity
The linear model for the surge velocity can be partially extracted from the linear model that
has been derived. However the input to the linear model was four motor torques and the SM
controller requires one input. In this implementation the input is chosen to be sum of the
forces generated by each wheel. This gives a linear model for the surge velocity as:

[] []]F.[u.u uulinulin bA +=& (4.31)

here u is the surge velocity, ms
-1, Aulin is the system matrix representing the surge velocity

model, bulin is the input matrix for the surge velocity model and Fu, N, is the input force to
the surge velocity model. Equation (4.31) is a simple relationship as it only has one input,
one output and one variable. The surge velocity linear model for the SM controller can be
found in Appendix B3.

Heading
Using the same method as the surge velocity, the heading linear model can also be partial
extracted from the linear model that has been derived for the PP controller. Again the same
problem exists, that of the input to the model being a vector of four values. The input to the
heading linear model is the torque about the centre of gravity required to turn the robot.
When the wheels move a torque is generated by each of them. The torques are translated into
a force. When the wheels on either side of the robot are run at different speeds a torque about
the centre of gravity of the robot is generated. This torque turns the robot. Since the heading
is dependent on the rotational velocity about the z-axis and requires consideration, the linear
model developed is termed a single-input-multi-state system. The linear model for the
heading can be given as:

].[
r

.
r

linlin ψψψ τ
ψψ

bA +







=









&

&
 (4.32)

 51

where r is the rotational velocity, rads
-1, ψ is the heading, rad, Aψlin is the system matrix

representing the heading model, bψlin is the input matrix for the heading model and ψτ is the

input torque to the heading model. The heading linear model can be found in Appendix B4.

Overall Controller
With both linear models developed the overall control equation can be derived.

To calculate the equivalent controller the Matlab function place is used as described in
Section 4.5.2. This generates the k matrix required for both controllers. The poles, gains and
boundary level thickness for each controller in this implementation are given in Table 4.4.

Table 4.4: SM Controller Parameters

 Pole 1 Pole 2 η blφ

Surge Velocity -0.01 N/A 2 0.4

Heading -3 0 10 0.8

The control equations for the surge velocity and the heading can be stated as:

))
)uu(

tanh(.u.h(
)B.h(

1
u.kF

ubl

du
ud

T
u

ulin
T

u

T
uu

φ

σ
η

−
−+−= & (4.33)

))
)xx(

tanh(.x.h(
)B.h(

1
x.k

bl

d

d

T

lin
T

T ψ ψψψψψψψψψψψ
φ

σ
ητ

−
−+−= & (4.34)

Since the control signals generated by Equations (4.33) and (4.34) are not suitable as inputs
into the nonlinear model a method of converting them into voltages is required.

With regards to the surge velocity the control signal can be converted to the required
voltages using:

)va,(f.r_wheel.
4

F
Va u

u τ















= (4.35)

Where Vau is a voltage to one motor, V, wheel_r is the radius of the wheel, m, and f(τ,va) is
the function that converts the calculated torque to a voltage. This function can be found in
Appendix B2.

For the heading the following equations are used:

)va,(f.r_wheel.4Va l τ
τ

































=

mr

ψψ (4.36)

)va,(f.r_wheel.4Va r τ
τ

































−=

mr

ψψ (4.37)

 52

where Valψ represents the voltage for the motors on the left hand side of the robot, V, Varψ
represents the voltage for the motors on the right hand side of the robot, V, and mr is the
moment arm, m.

The final stage of the controller is to sum the results generated by the individual controllers
to give the final input to the nonlinear model.

The overall SM controller can be seen as a block diagram in Figure 4.9.

Figure 4.9: Implementation of the Sliding Mode controller

4.4.4.3 Sliding Mode Control Results

The SM controller was tested against the experiments described in Section 4.4.1 and the
results are shown. It can be seen in Figures 4.10(a-f) that, as with the previous controllers the
SM controller allows the robot to reach the desired values with minimal steady state errors
for Experiments 1 to 6. The steady state errors for Experiment 1, 3 and 5, with values of
0.3411×10-3ms-1, 0.2801×10-3ms-1 and -0.0782×10-3ms-1, are smaller than that achieved by
the PP controller but are still higher than those achieved by the PID controller, with the
exception of Experiment 5 where the PID controller did not achieve steady state. With
respect to Experiments 2 and 4, the SM controller again achieved the desired values with
minimal steady state error. Though the performance was slightly worse than that achieved by
the PP controller with the errors being -0.0682×10-3°and -0.1945×10-3°. However the SM
controller did not achieve the desired steady-state value in Experiment 6. The time to achieve
the steady state in all the experiments is noticeable quicker than that of the PID controller
and is comparable to the time achieved by the PP controller. However, the SM controller
initially overshoots the desired surge velocity value, with respect to Experiments 1, 3 and 5,
and has to settle back down. There is no overshoot issue associated with Experiments 2, 4
and 6.

x
System

uusw

ku

f(τ,va)

uVa

x(u,r,ψ)

kψ

 f(τ,va)

+

+ uψsw

ud

xψd

x(u)

x(r,ψ)

+

+

-

-

 53

(a) SM Results from Experiment 1 (b) SM Results from Experiment 2

(c) SM Results from Experiment 3 (d) SM Results from Experiment 4

(e) SM Results from Experiment 5 (f) SM Results from Experiment 6

(g) SM Results from Experiment 7 – Surge (h) SM Results from Experiment 7 –

Heading

Figure 4.10: SM Control Experiment Results

 54

The results from Experiment 7 show that the SM controller has a poorer steady-state
response than the PP controller. This is due to the overshoot and as with the previous
controllers a steady state response from the heading is not achieved. Comparing the ability of
the SM to maintain the current desired values while responding to a change in a second
desired value against the two previous controllers, the SM controller performs better, with
the smallest dip in the surge velocity.

4.5 Comparison of Control Methodologies

With the results from each controller obtained, a further analysis of the performance
achieved by each can be carried out. This section compares the values and concludes by
stating which controller is best to use with the model presented and based on the results
obtained from the experiments carried out.

There are five measures of performance that will be compared: average tracking error,
average steady state error, rise time, charge drawn from the battery and the movement of the
robot with regards to a simple manoeuvre. Each of these is discussed and the associated
results presented.

4.5.1 Tracking Error

The controllers are designed to respond to changes in the values that are to be controlled i.e.
surge velocity and heading. As the desired value changes, the controller responds by
generating an output to drive the system. When this happens the controller is said to track the
desired response. The first measure that is to be used is the average tracking error. This
indicates how quickly the controllers respond to a change in the desired value and gives an
indication of the tracking error. A small average tracking error is desirable as this indicates
that the controller can respond rapidly and that it can match the desired value with minimal
delay and error.

Table 4.5 shows the average tracking error for each experiment. The highlighted cells of the
table indicate the best average tracking errors. It can be seen that over the course of all the
experiments, the PP controller has the best average tracking error response. The values
associated with the SM controller are comparable to the values achieved by the PP
controller, however the values are slightly higher. The PID controller has a high average
tracking error, as compared to the other controllers, because of the gentle slope that
characterises its response when a step change occurs.

Table 4.5: Tracking Error

Exp PID – u PP – u SM – u PID – ψ PP – ψ SM – ψ

1 0.0156 0.0054 0.0065 0 0 0
2 0 0 0 0.024 0.0163 0.0203
3 0.0235 0.0093 0.0127 0 0 0
4 0 0 0 0.0764 0.0598 0.0689
5 0.0462 0.0133 0.0223 0 0 0
6 0 0 0 0.2319 0.1892 0.2123
7 0.0917 0.0788 0.0761 0.2906 0.2152 0.2434

4.5.2 Steady-State Error

The next measure to be used to compare the controllers is the average steady-state error. The
steady-state error is the difference between the desired value and the actual value obtained

 55

from the controller. With respect to this work the controller is said to be in steady-state when
ten values from the actual response are equal. The average steady-state errors are given in
Table 4.6.

Table 4.6: Steady State Error

Exp PID – u PP – u SM – u PID – ψ PP – ψ SM – ψ

1 -0.0810x10-3 0.4852 x10-3 0.3411 x10-3 0 0 0
2 0 0 0 0.6368 x10-3 -0.0576 x10-3 -0.0682 x10-3
3 -0.0616 x10-3 0.4301 x10-3 0.2801 x10-3 0 0 0
4 0 0 0 0.6368 x10-3 -0.1544 x10-3 -0.1945 x10-3
5 NA 0.2104 x10-3 -0.0782 x10-3 0 0 0
6 0 0 0 NA -0.0012 NA
7 NA -0.2922 x10-3 -0.7920 x10-3 NA NA NA

As with the tracking error the highlighted cells of the table indicate the best response for the
experiments. With regards to the heading it can be seen that that PP controller achieves the
best response. The surge velocity results indicate that the PID controller has the best steady-
state error, however the PID controller did not achieve steady state for two of the
experiments. Summing up the best responses shows that the PP achieved, overall, the best
steady state error response.

4.5.3 Rise Time

The third comparison to be used is the rise time of the actual response. The rise time in this
work is considered to be the time taken for the actual response to change between 10% and
90% of the desired value after a change in the desired response. For the experiments that
have multiple changes the average rise time is taken. The times acquired are given in Table
4.7. Again the best values are indicated by the highlighted cells.

Table 4.7: Rise Time

Exp PID – u PP – u SM – u PID – ψ PP – ψ SM – ψ

1 1.18 0.13 0.12 0 0 0
2 0 0 0 1.46 0.97 1.25
3 1.23 0.095 0.085 0 0 0
4 0 0 0 1.505 1.025 1.29
5 1.008 0.086 0.08 0 0 0
6 0 0 0 1.6220 1.114 1.39
7 1.1260 0.09 0.08 0.6350 1.0750 0.83

The PP controller achieved the best results with experiments associated with heading and the
SM controller had the quickest rise time associated with the surge velocity. These are the
results for the rise time, however the SM controller overshot the desired value for the surge
velocity and an additional settling time is required. The PP controller was, on average,
0.009s behind the SM controller with no overshoot. Using the same procedure as above for
choosing the controller that performed the best overall, the SM controller would be the
choice with regards to the rise time.

 56

4.5.4 Charge

The next measure that is to be used in comparing the controller is the charge, Q, As-1, drawn
during the experiment. The ideal robot for USAR would run off onboard batteries as tethered
robots can cause usage problems within an USAR environment [Micire, 2002]. Since
batteries have a finite charge it is important that the systems onboard achieve a good
performance but not at the expense of the run time. The charge drawn from the battery
indicates the potential lifetime of the battery. The smaller the charge drawn, the longer the
expected lifetime. Table 4.8 shows the results from each experiment with the highlighted
cells indicating the best result from each experiment.

From Table 4.8 it can be seen that with regards to the charge drawn that the PID controller
gives the best response. The reason for this is the gentle response that the PID controller in
this work has when it is responding to a step change.

Table 4.8: Q, As-1

Exp PID PP SM

1 22.6239 23.0820 23.2261
2 1.2117 1.364 1.1846
3 16.9385 17.5293 17.9570
4 3.3644 3.5610 3.3429
5 18.3236 19.4211 20.3477
6 9.7548 10.1404 9.7835
7 23.59 25.0763 25.959

4.5.5 Motion Control

The last method of comparison is how the robot moves when instructed to carry out a simple
manoeuvre. The manoeuvre chosen is a figure of eight as it will show the controllers ability
to control the robot through a series of waypoints. The results from this experiment show two
aspects. The first result is that the proposed structure of the navigation and control system
works, with the exception of the obstacles avoidance. The second result allows a comparison
between the three control methodologies under consideration.

Figure 4.11 shows the path taken by the robot for each control methodology. The blue path
shows the PID result, the red path shows the PP result and the green path shows the SM
result.

Though the simulation remained constant for each experiment, it can be seen that the robot
takes a slightly different path for each controller. Each path represents a figure of eight
indicating that each controller works. Comparing the paths, the path taken by the PP
controller is smoother than the other two paths. The change in heading, once at a waypoint,
is not as gentle as that of the PID but does occur in a quicker time as the path of the PID
gently moves towards the next waypoint. The path taken by the SM controller is not as
smooth as either of the other two, as indicated by the movement involved in the change of
direction at the two outer waypoints. An interesting point to note about the path of the PP is
the symmetry involved. This reason for the smoother path and the better heading acquisition
is related to the structure of the PP controller. The PP controller is a multivariable controller
as it generates an output signal which considers the interaction between the velocity and
heading. Summing of individual signals is not required. This is not the case with the PID or

 57

SM controllers implemented. Both off these controllers calculate output signals for the
velocity and heading separately. These signals are then summed together.

Figure 4.11: Figure of 8 Motion Experiment Results

4.5.6 Controller Choice

The overall choice in controller for the rest of the work presented in this thesis is to be made
based on the results presented in this section. Looking at the results given and the analysis of
the results it can be seen that the PP controller is the best choice. The PP controller had the
best results with regards to the average tracking time, the average steady state error and the
motion control. With regards to the rise time the PP did not perform as well as the SM
controller when looking at the numbers but the SM controller implemented in this work
overshoots the desired value and a settling time is involved. The PP does achieve steady state
in less time than the SM controller. The main disadvantage with the PP controller is the
charge drawn. It is higher than both the response from the PID and SM controllers, though it
is still comparable to them.

4.6 Obstacle Avoidance

The final aspect of the navigation and control system is the obstacle avoidance routine. As
discussed a suitable robot for USAR should be dispensable and be replaced cheaply. Keeping
to this ethos the robot has one forward facing sonar sensor to enable the detection of
obstacles. This sensor provides a range of 0.15-6 metres with a sensor cone of -30° to +30°.
Since only one sensor is in use, a very simple obstacle avoidance routine requires
implementation. Two methods of obstacle avoidance were developed. These are discussed
next.

4.6.1 Obstacle Avoidance Method 1

The first method of obstacle avoidance that is considered is designed to detect an obstacle
then guide the robot around the obstacle. To achieve this with only one sensor, a set pattern
is followed which allows the robot to navigate round an obstacle. When an obstacle is
detected the robot turns 90° clockwise and travels forward one robot length. At this point the
robot turns to the desired point. If no obstacle is detected the robot moves towards the

 58

desired point. If an obstacle still exists then the robot again turns 90° and travels forward one
robot length. The desired heading is checked as before. However if an obstacle is detected,
instead of turning 90° clockwise the robot turns 90° anticlockwise and travels along the path
that has just been traversed. The robot continues moving until it is one robot length from the
original obstacle detection point and at a heading of -90° from the desired heading. The robot
then checks to see if an obstacle lies on the path to the desired point. Again the robot moves
towards the point if no obstacle exists. If the robot detects obstacles it again moves one robot
length along the same heading. If an obstacle exists after this final movement the robot
selects a point at random and this becomes the new desired point. Figure 4.12 shows this
obstacle avoidance method working. The robot starts from the start point, blue star, and is to
travel to the target point, purple star. It can be seen that the robot is forced to move round the
obstacle and continue to the target point. Once at the target point the next point, green star, is
generated and the robot starts to move to it.

Figure 4.12: Obstacle Avoidance Method 1 Working

Though this method is shown to work a problem exists with its implementation. Too much
time is spent attempting to go round the obstacle. The time taken to do this takes away from
the main task. Since time is an important aspect within USAR, the time taken to avoid an
obstacle is undesirable.

4.6.2 Obstacle Avoidance Method 2

The second method developed is a reactive approach. When an obstacle is detected within
two lengths of the robot, the robot replaces the current desired point with a randomly
selected point that lies within a two metre radius of the robots current point. The two length
distance was chosen as it allowed the robot time to stop and turn. It has been found that this
method worked well when implemented. However this method of obstacle avoidance is not
without issues. Since the new point selection is done so randomly it is foreseeable that the
robot could become trapped within tight spaces.

Using this method to avoid obstacles does not have an obvious time impact on the
algorithms, hence solving the problems associated with the first method that was considered.
Figure 4.13 shows the difference between the two methods. Method one is represented by the
red line and method two is represented by the blue line. Both runs were given the same
starting point, blue star, target point, green star, and run time. It can be seen that though the

 59

second method does not locate the initial target, the robot has searched more of the
environment than the robot using the first method. This means that in the same time period a
robot using the second method of obstacle avoidance has the potential to search larger areas
than a robot using the first method.

Figure 4.13: Obstacle Avoidance Comparison

4.7 Summary

The objective of this chapter was to evaluate three control methodologies Proportional-

Integral-Derivative, Pole Placement and Sliding Mode and select one for use within the
developed navigation and control system. The navigation and control system was also
presented in this chapter. The navigation and control system was separated into its
constituent parts and each was discussed in turn.

The navigation system, based on the Line of Sight Autopilot, was designed to calculate the
required heading to enable the robot to travel to a desired point. This allows the navigation
and control system to move the robot in any direction and to any location within an x-y
plane.

The control methodologies that have been investigated, Proportional-Integral-Derivative
control, Pole Placement and Sliding Mode, have been introduced and the theory behind each
has been discussed. How each method is implemented with respect to this work has been
discussed. The results from each of the controllers have been presented and analysed with a
final comparison made between each of the controllers. The outcome of the comparison was
that the Pole Placement controller has given the best overall responses when working with
the model of the robot developed in this thesis.

The Pole Placement controller was integrated into the navigation and control system and this
was used to carry out an evaluation of two methods of obstacle avoidance. The first method
considered was designed to move the robot around obstacles while the second method
simply replaced the desired point. It was found that the second method was more suited to
the application considered here as no time was wasted attempting to navigate around
obstacles.

 60

Chapter 5

Search Algorithms

5.1 Introduction

The main focus of the work presented in this thesis is the study and performance analysis of
high level search algorithms for mobile robot search. In particular, the purpose of this
research is to determine the suitability of standard search algorithms for mobile robot
searches. In Chapters 6 and 7 these methods are applied to single and multiple robot search
scenarios. The modified operation and performance of each method is presented in those
chapters. In this chapter the basic theory of the particular search algorithms are presented
and discussed within the context of this work.

The search algorithms that are presented in this chapter, when implemented, select the points
the robots are to travel to, to allow the search to be undertaken. A desired point is generated
by the search algorithm, which is then used by the navigation system to generate a desired
heading. How the search algorithm fits into the navigation and control structure presented in
the previous chapter is shown in Figure 5.1.

Figure 5.1: Block Diagram of Complete System

The algorithms select the points based on either a structured pattern of search, Exhaustive
[Johnson & Picton, 1995] and Lawnmower [Johnson & Picton, 1995] or in using a random
approach, Random [Johnson & Picton, 1995]. The other methods presented rely on
knowledge gained from previous points and the search is narrowed down to a specific point.
The methods that use this approach are HillClimbing [Johnson & Picton, 1995; Russell &
Norvig, 1995; Reeves, 1996], Tabu [Glover, 1986; Glover, 1989; Reeves, 1996; Gendreau,
2003], Simulated Annealing [Kirkpatrick, 1984; Bohachevsky et al, 1986; Kirkpatrick et al,
1983; Johnson & Picton, 1995; Russell & Norvig, 1995; Reeves, 1996] and Genetic

Algorithms [Goldberg, 1989; Holland, 1992; Schmitt, 2004; Ellis, 1993; Mitchell, 1996;
Reeves, 1995; Johnson & Picton, 1995]. The algorithms that use knowledge come under the
heading of heuristic methods. Rich and Knight (1991) define a heuristic “as a technique that

improves the efficiency of a search process, possibly by sacrificing claims of completeness”.
Rayward-Smith, et al (1996) state that a heuristic “is a method which seeks good (i.e. near
optimal) solutions at a reasonable computational cost without being able to guarantee

optimally, and possibly not feasibility”. A heuristic is an algorithm that uses the search

Control
System

Current Heading
Current Velocity

Desired
Velocity

Current Location

Navigation
System

Actuator
Voltages

Robot
Obstacle

Avoidance

Desired Heading

Desired Velocity

Desired Heading

Desired Velocity

Search
Algorithm

Desired
Location

Current Location

 61

space, the set of all possible solutions [Johnson & Picton, 1995], and knowledge gained from
evaluation of solutions within the search space, to find a solution candidate that is within an
acceptable tolerance of the particular solution it is looking for. An example, from Johnson &
Picton (1996), of a heuristic search is when you are looking for something you have
misplaced in your home. Instead of starting at one point and working through every place in
your home - an exhaustive search [Johnson & Picton, 1995] - you instead look in the most
likely places where it could be.

As mentioned, the solutions are evaluated. This is done with an Evaluation Function. The
Evaluation Function is a function which returns the cost (a numerical value) of the current
solution compared with the expected cost of the target solution in the search space. The
better the value returned by the evaluation function, the better the current solution is. In the
context of this study the term better means that the current solution could lie within the
proximity of the target solution and indicate that the search is on the right path. The
evaluation function used in this work uses the temperature of the environment to evaluate a
point. When a temperature that matches the average human body temperature of 37°C is
found, the cost is zero. Equation (5.1) is used as the evaluation function.

22 37+74= λλε ×− (5.1)

In this equation ε is the cost value returned and λ is the temperature of the current solution.
This equation is designed to give a cost value, ε, of 0 when the temperature of the current
solution, λ, is 37°C. Figure 5.2 shows a graph with the cost values for various temperatures.
This function is a minimum function with a low cost value being better.

Figure 5.2: Cost Values over a range of Temperatures

A further aspect of search is the terminating condition. With the exception of the Exhaustive
and the Lawnmower search, the algorithms presented here do not have inherent termination
conditions and continue to search. With regards to the Exhaustive and Lawnmower
algotihms, when at the last solution of the search space both algorithms stop, no more
solutions exist to be evaluated. In comparison, the other algorithms continue to search the
search space continuously, unless a termination condition is defined. The termination
condition can be a number of different conditions: a predetermined time, after a set number

 62

of solutions have been evaluated or when an evaluation response is within an acceptable
range (such as 5% either side) of the solution for which the search is designed to seek. Since
some of the algorithms traverse to a solution and move within a limited radius about this
solution, a reset condition will be required if time still remains. This will allow the search to
continue.

The chapter proceeds as follows: some common traditional search algorithms, namely
Exhaustive, Lawnmower, Random and HillClimbing are introduced. How each of these
operates is explained in Section 5.2. Common modern search algorithms are then introduced:
Tabu, Simulated Annealing and Genetic Algorithms and discussed in Section 5.3. Section 5.4
presents the algorithms and the variants that are to be implemented in this work. The
implementation of various supporting functions is discussed in Section 5.5. The chapter
summary is presented in Section 5.6.

5.2 Traditional Search Algorithms

This next section discusses the most common traditional methods of search. The traditional
methods introduced here are easy to implement and provide an ideal comparison for more
complex modern methods of search.

5.2.1 Exhaustive Search

The Exhaustive search is the simplest form of search. The Exhaustive search searches every
single point within the search space [Johnson & Picton, 1995]. This initially seems an ideal
search algorithm as every point is visited, resulting in the ideal solution to the problem being
found. The use of the Exhaustive search is ideal if the search space contains a finite number
of solutions that are highly constrained, as shown in Figure 5.3(a). This shows the path an
Exhaustive search may take through the search space. As the search space becomes larger, as
shown in Figure 5.3(b), and less constrained, Exhaustive search takes more time to find the
ideal solution. Comparing the path taken by the Exhaustive search in each environment of
Figure 5.3, it can be seen that the Exhaustive search will take more time to search a search
space which has a higher resolution.

(a) Highly Constrained Search Space with
a path from an Exhaustive Search

(b) Highly Constrained Search Space with
High Resolution and a path from an

Exhaustive Search
Figure 5.3: Example Paths from Exhaustive Searches

 63

5.2.1.1 Lawnmower

A variation of the Exhaustive search is the Lawnmower search. The Lawnmower search is so
named because of the visual pattern the path of the search takes through the search space, an
example of which can be seen in Figure 5.4.

Figure 5.4: Lawnmower Search within a Search Space with High Resolution

The Lawnmower search behaves in a similar way to that of the Exhaustive (as can be seen in
Figures 5.3 and 5.4), with the exception of the resolution within the search space it works at.
A comparison between Figure 5.3(b) and Figure 5.4 shows the difference in the path taken
by the Exhaustive search and the Lawnmower search. Instead of visiting every solution
within the search space the Lawnmower works on the assumption that the current solution is
representative of the immediate grouping of points. The size of this grouping is determined
before runtime. A real example of this group size would be the range of the sensors used
onboard a mobile robot. The maximum range of the sensors would define the range of the
group size.

The immediate advantage of the Lawnmower over the Exhaustive search is that the time
taken to search the same area is greatly reduced, as the Lawnmower search only visits a
representational number of solutions within the search space. The disadvantages remain the
same: the time taken to search the search space can still be high, again dependent on the
search space, and the full search space has to be traversed before a result can be given. A
flowchart of the algorithm is given in Figure 5.5. The procedure followed by the robot is
simple; the robot moves forward to each point and continues until an obstacle is detected.
With an obstacle in the way the robot turns 90 degrees clockwise or anticlockwise. The
direction of the turn is chosen before runtime but it must remain constant throughout the
current run. If an obstacle is directly in the robot’s path after the turn the robot turns until an
obstacle is not in the way. The robot moves forward one point, dependent on the sensor
range, and turns 90 degrees in the same direction as the previous turn. The robot then
continues forward again. This procedure is shown in Figure 5.6. The direction chosen to turn
in this example is clockwise.

 64

Figure 5.5: Flowchart Representing the Lawnmower Algorithm

Figure 5.6: An example of a robots path while running the Lawnmower algorithm

5.2.2 Random

The Random search is based solely on random numbers. The algorithm generates a pair of
random numbers and using this selects the solution it travels to next. An example is the
easiest way to introduce the Random search. Using a two dimensional search space labelled
0 to 9 along each axis, with each solution lying on the intersection of the x and y axes. The
algorithm would generate a random number in the range 0-9 and assign this to the x-axis.
The same is done for the y-axis. The solution at this intersection point is then travelled to and
evaluated. The next point is then selected using the same method. Figure 5.7 shows a
flowchart that represents the algorithm for the Random search.

Sensor Range

Path of Robot

Done

Start

Move
Forward

Turn
90°

Check for
Obstacle

Check Stop
Condition

Yes

Yes

No

No

 65

Figure 5.7: Flowchart representing the Random algorithm

When started, the algorithm selects a random point based on sensor range of the robot. One
step along either the x-axis or y-axis is the equivalent of moving the robot forward one
sensor range. If the robot is instructed to move to a point located at (5, 6) the robot would
move to a point 5 sensor range along the x-axis and 6 sensor ranges along the y-axis. When
the point is selected the robot moves towards it. It should be noted that the robot is scanning
the environment as it is moving along. This increases the percentage of the area searched by
the robot. If an obstacle is detected in the path of the robot, the algorithm simply selects a
new point for the robot to move to. Once at the point, the algorithm assigns a new point and
the process starts again. A graphic representation of a path the robot may be guided along by
this algorithm is shown in Figure 5.8.

Over a number of runs, with the environment and other conditions remaining static, the
Random search will provide a different result every time. This is shown in Chapter 6: Section
6.3.1. This is both the Random search advantage and disadvantage. The Random Search by
its nature is able to find the target solution within an early time period, increasing its
performance as compared to the Lawnmower Search. However it is also possible that the
Random Search takes the full time period to find the target solution and it is conceivable that
the target solution is never located. The reason for the inclusion of the Random search is that
a random nature is present in the heuristic algorithms. A comparison between a purely
Random search and search algorithm with a random solution indicates the power of the
latter.

At
Point?

Done

Start

Select
Solution

Travel To
Solution

Check for
Obstacle

Check Stop
Condition

Yes

Yes

No

No

Yes

No

 66

Figure 5.8: An example of a robots path while running the Random algorithm

5.2.3 HillClimbing

The next search algorithm to be discussed is the HillClimbing algorithm. The HillClimbing
algorithm is the first of the algorithms presented here that uses knowledge gained from
searching the space. This knowledge is the current value from the evaluation function of the
current solution. Many varieties of the HillClimbing algorithm exist, as different users
attempt to solve its shortcomings or interpret the fundamental algorithm differently. This
algorithm is also known as a local-search algorithm [Rayward-Smith, et al 1996], as it
searches only the environment immediately around the point it is currently at.

HillClimbing works by examining the immediate solutions within the range of the current
solution. That is the solutions within the range of the sensor from the current solution. If one
of the solutions in range gives an evaluation value that differs from the current value, the
algorithm chooses that as the next point to move to. Since the evaluation function used in
this work is a minimum function, the solution that gives a smaller value than the current one
is moved to. This process continues until the current solution is surrounded by solutions that
result in evaluation values higher than the current value. This shows that the algorithm will
move towards the desired target solution. A flowchart of the HillClimbing algorithm is
shown in Figure 5.9.

The advantages of the HillClimbing algorithm are that the computational power required to
run it is minimal as compared to a Genetic Algorithm and the memory requirements are also
minimal as compared to Tabu, Simulated Annealing and Genetic Algorithms. HillClimbing
is also simple to understand and interpret. However disadvantages exist, all of which are
associated with the inability of the algorithm to consider solutions out with the local
environment of the current solution.

Sensor Range

Path of Robot

Target Point

Obstacle

 67

Figure 5.9: HillClimbing flowchart

There are three conditions where the algorithm can no longer proceed, excluding being at the
target point. The first of these is when the algorithm has located a local minima or maxima
[Russell & Norvig, 1995]. The local minimum is a solution whose associated value has a
minimum value compared to the surrounding environment but is not the global minimum,
which is the target solution. Here the algorithm does not move from this solution as it is
surrounded by solutions with larger evaluation function values. An example of this, with
regards to this project, would be a temperature spike, for example a puddle of warm water. A
Plateau [Russell & Norvig, 1995] is the second condition. This is where all the surrounding
solutions have the same value. The algorithm cannot move from this solution as it represents
just as good a solution as any of the other local solutions. An area of constant temperature
would give this result. Ridges [Russell & Norvig, 1995], are the third condition where the
HillClimbing algorithm is no longer able to proceed, as it may become stuck in a pattern of
moving from one side of the ridge to the other, as both are within range of each other but no

Is a local
Element
better?

Done

Start

Select
Element

Travel To
Element

Check Stop
Condition

Yes

No

No

Yes

Evaluate
Element

Evaluate Local
Elements

 68

other solution with a lower value is within range. These conditions are shown in Figure 5.10.
The global minimum, which is the target solution, is also shown.

Figure 5.10: A Cutaway view of an Evaluation Landscape with the various
Conditions Shown

This is the standard HillClimbing algorithm that can be used. However due to the
disadvantages the use of it is limited. A common approach to overcoming these
disadvantages is to use a Random Restart [Russell & Norvig, 1995]. Random Restart
HillClimbing, when no progress is made, selects a new solution at random and starts a
standard HillClimbing search around the new solution. This algorithm saves the location of
the solution with the best value thus far. This allows the Random Restart HillClimbing

algorithm a better chance of searching the full search space.

5.3 Modern Search Algorithms

This section introduces and discusses modern search algorithms that are to be implemented
in this work.

5.3.1 Tabu Search

The first modern search algorithm to be discussed is the Tabu Search (TS) [Glover, 1989;
Hertz et al, 1995; Gendreau, 2002; Rayward-Smith et al, 1996]. TS is described as a search
algorithm in its own right. However, it is referred to as a metaheuristic [Glover, 1989; Hertz
et al, 1995; Gendreau, 2002] as its most common use is to support another heuristic method
in a search. TS use as a support algorithm allows the primary algorithm to have better
avoidance of local minima or maxima [Mantawy et al, 1999; Hertz et al, 1995; Gendreau,
2002]. Also it prevents the algorithm cycling [Rayward-Smith et al, 1996; Hertz et al, 1992;
Gendreau, 2002]. Cycling is when the algorithm continually moves between a group of
solutions. An example of cycling is what may happen when the HillClimbing algorithm
encounters a ridge. In this study TS is treated as a metaheuristic and as such only the
important aspects, the Tabu list and the Aspiration Criteria, are introduced.

5.3.1.1 Tabu List

The Tabu List [Glover, 1989; Hertz et al, 1995; Gendreau, 2002; Mantawy et al, 1999;
Rayward-Smith et al, 1996] is the unique function of the TS [Gendreau, 2002]. The Tabu
List can be seen as a short term memory [Gendreau, 2002; Hertz et al, 1995; Glover, 1989]
where solutions that have been recently evaluated or have been moved from are stored until

Global Minimum

Plateau

Ridge
Local Minimum

Evaluation Value

Landscape

 69

either a new item replaces it on the list or a fixed length of time is passed, termed the Tabu

Tenure [Gendreau, 2002]. As more solutions are evaluated the location and the evaluation
value of the point are added to the list. If the list is full the earliest item on the list is removed
and is replaced by the current information. Solutions on the Tabu List are seen as taboo. If
the algorithm chooses a solution that appears on the Tabu List it is rejected for evaluation,
unless it meets the Aspiration Criteria, which is discussed next. This means that the
algorithm avoids recently visited solutions and avoids the cycling discussed above. The
operation of the Tabu List is shown in Figure 5.11.

Figure 5.11: Flowchart representing the operation of the Tabu List

Timeout?

Done

Tabu List

Add solution
 to list

Does solution
exist in list?

Yes

No

No

Yes

Check Tabu Tenure
for

current Solution

New
solution?

No

Yes

All solutions
on list

checked?

Check Tabu Tenure
for

current Solution

No

Yes

 70

5.3.1.2 Aspiration Criteria

On occasion an item on the Tabu list may have a better evaluation value than what is
currently available to the algorithm in the local neighbourhood. A method to revoke an item
on the Tabu List is included as the Aspiration Criteria [Gendreau, 2002]. If the current
solution being considered is on the Tabu list, the Aspiration Criteria is used to decide
whether the solution should be removed from the Tabu List and hence become available as a
solution that can be moved to. This works by taking the associated evaluation value and
comparing it to an Aspiration Level [Glover, 1989; Gendreau, 2002; Mantawy et al, 1999]. If
the evaluation function value of the solution is better than the Aspiration Level then the
solution’s inclusion on the Tabu list is revoked. The use of this criteria results in the
algorithm keeping near good solutions and fine tuning the current solution.

5.3.2 Simulated Annealing

The next algorithm to be discussed is Simulated Annealing, SA, [Kirkpatrick, 1984;
Bohachevsky et al, 1986; Kirkpatrick et al, 1983; Johnson & Picton, 1995; Russell &
Norvig, 1995; Reeves, 1996]. SA is a probabilistic hillclimbing technique, as like the
HillClimbing algorithms, it carries out a local search. The distinction between the SA and
HillClimbing algorithms is how this local search is carried out.

SA is an algorithm based on the natural process of annealing [Kirkpatrick, 1984;
Bohachevsky et al, 1986; Kirkpatrick et al, 1983; Johnson & Picton, 1995; Russell &
Norvig, 1995; Reeves, 1996]. Annealing is the process that involves the heating of a material
and then the systematic cooling of it by regulating the temperature [McGookin, 1997]. The
algorithm here represents the annealing process, mimicking it to find the target solution. A
flowchart representing SA is shown in Figure 5.12.

SA algorithm works as follows. A random solution is selected and evaluated. The next
solution is then chosen by perturbing the current solution, discussed in the next section, and
evaluating it. The evaluation function value of the solution is then subjected to the
Metropolis Criterion [Metroplis et al, 1953], discussed in Section 5.3.2.2, and from this the
solution is either rejected or becomes the next best solution from which the next solutions are
selected. The Annealing Schedule, presented in Section 5.3.2.2, is then reduced and the
algorithm continues until the stop condition is met.

5.3.2.1 Perturbation

The solution selection used in the algorithm presented here is based on Equation (5.2)
[McGookin, 1997].

r..k=)(pert ιTT (5.2)

Here pert(T) is the value the current best solution is to be perturbed by, k is a constant used
to scale the result, T is the current temperature and ιr is a random number between 0 and 1.
By selecting the next solution in this way keeps the algorithm within the range of a solution
with a good evaluation value but still letting it hunt around the immediate area for another
better solution. Since the solution selection is based on the current temperature, covered in
Section 5.3.2.3, as the algorithm runs the next solution will become closer to the current best
solution and enable fine tuning resulting in a greater chance of finding a target solution
accurately [McGookin, 1997].

 71

Figure 5.12: Simulated Annealing Flowchart

5.3.2.2 Metropolis Criterion

The Metropolis Criterion [Metropolis et al, 1953] is the stage of the SA algorithm that
distinguishes if from other HillClimbing based techniques. As in other algorithms presented
here if the current solution has a better evaluation value than the current best solution then it
is replaced. However in SA, if the current solution does not have a better evaluation value
then it is not instantly rejected [McGookin & Murray-Smith, 2006; McGookin, 1997].
Instead it is subjected to the Metropolis Criterion. The evaluation value of the current
solution and the evaluation value of the current best solution are used to calculate a
probability. Boltzmann’s Equation, Equation (5.3) [McGookin & Murray-Smith, 2006;
McGookin, 1997; Metropolis et al, 1953] is used to calculate the probability.

Start

Select 1st Solution
And Evaluate

Reduce Annealing

 Schedule

Metropolis
Criterion

Accept Solution

Perturb Best
Solution

Move To
Solution

Evaluate
Solution

Reject Solution

Yes

No Check Stop
Condition

Done

 72








 −

T

CC
exp=P newprev (5.3)

Here P is the probability, Cprev is the current best evaluation value, Cnew is the current
evaluation value and T is the current temperature, discussed later. This value is then used in
the Metropolis Criterion by comparing it to a random number, n, which has a range from 0 to
1 [McGookin & Murray-Smith, 2006]. The Metropolis Criterion simply states that if P is
greater than n then the current solution is selected as the new best solution and if P is less
than n then the solution is rejected as normal. Using the Metropolis Criterion means that
poorer results will, at some points, be chosen over better results. This results in the SA
avoiding local minima as the algorithm is able to move away from them. This process avoids
premature convergence towards a local minimum region [McGookin & Murray-Smith, 2006]
and increases the ability of the algorithm to find the global minimum.

5.3.2.3 Annealing Schedule

The Annealing Schedule [Kirkpatrick, 1984; Bohachevsky et al, 1986; Kirkpatrick et al,
1983; Russell & Norvig, 1995; Reeves, 1996] is used to reduce the distance from the current
solution to the next solution for each iteration of the algorithm. When implemented this gives
the algorithm a large search radius to begin with which covers a large section of the search
space. However as the algorithm runs the search radius is reduced allowing the algorithm to
slowly convergence towards the target solution. The Annealing Schedule is given by
Equation (5.4).

oγ=)AS(TT
n (5.4)

Here γ is the rate of decay of the Annealing Schedule, ranged from 0-1, n is the number of
iterations and To is the initial temperature and T is the current temperature. Figure 5.13 shows
a typical Annealing Schedule and the schedule used in this work. A minimum value is
chosen to enable the search algorithm to still make meaningful steps as it is approaching the
target. The minimum value in this work was chosen to be 30.

Figure 5.13: Annealing Schedule

 73

5.3.3 Genetic Algorithm

A Genetic Algorithm (GA) [Goldberg, 1989; Holland, 1992; Schmitt, 2004; Ellis, 1993;
Mitchell, 1996; Reeves, 1996; Johnson & Picton, 1995] is a search algorithm based on
natural evolution [Ellis, 1993; Alfaro-Cid, 2003] and was originally developed by Holland
(1975). In evolution the fittest organisms of a generation survive the challenges of life long
enough to reproduce, creating a new generation. The new generation is typically better
adapted to the environment. Environmental circumstances can also affect the new generation
by altering the gene or genes of members of the new population. This is known as mutation.
These concepts have been incorporated into the GA and its algorithm mimics this process of
selection, reproduction and mutation [Schmitt, 2004; Alfaro-Cid, 2003; Ellis, 1993]. Figure
5.14 shows a flowchart of a standard GA.

Figure 5.14: Genetic Algorithm Flowchart

Done

Start

Generate Initial
Population

Yes

No

Selection

Crossover

Check Stop
Condition

Evaluate Initial
Population

Mutation

Evaluate New
Population

 74

The initial stage of this algorithm is to randomly generate the population from which the
candidate solutions are obtained. Each member of the population has a chromosome in which
a possible solution to the problem is encoded [Ellis, 1993], the coordinates of a solution in
this case. The encoding occurs by taking each digit within the coordinate and assigning the
value to a gene within the chromosome as shown in Figure 5.15. The coordinates used in
this work have a range of ±9.99 giving a chromosome length of eight genes as the sign is
also encoded. The allele range, the range of values a gene can take on, is 0-9 with the allele
range for the sign gene being 0-1.

Figure 5.15: Encoding of a Chromosome

The next stage is to evaluate the performance of each candidate solution within the
population. From this selection the parents of the next generation are selected. Various
methods exist for selecting candidates for reproduction and Section 5.3.3.1 discusses the
methods used in this work. The next stage is crossover. Crossover is used to create a new
population from the parents selected from the last stage. Again various methods exist for
crossing over the parents. These are discussed in Section 5.3.3.2. When the Crossover stage
is complete a set of new chromosomes, called children [Ellis, 1993; Goldberg, 1989;
Holland, 1975; McGookin, 1997] exist. The children are then subjected to the mutation
function (see Section 5.3.3.3). Once completed these stages result in a new population. The
population is decoded into the coordinates of the solution each individual represents and is
evaluated. A GA is computational expensive and requires a number of generations before it
converges to an optimal answer [Ellis, 1993; Goldberg, 1989; Holland, 1975; McGookin,
1997]. However it can avoid local minima and could be an ideal method of guiding multiple
robots.

5.3.3.1 Selection

Selection is used to establish which chromosomes from the current generation should be
chosen to become parents for the new generation. There are two types of selection
procedures, rank based and probability based [Alfaro-Cid, 2003]. Rank based is where each
chromosome lies within a sorted list of the population based on the relative value of the
associated cost. Probability based relies on the chromosome’s absolute cost. There exist
many different selection methods with each one giving different advantages and
disadvantages to the problem under investigation. Since this work is concerned with
comparing the concept of GAs to other search algorithms, only two selection methods are
considered, Roulette Wheel and Elitist. These selection methods have been chosen as they
represent the most common selection methods used and are simple to implement.

Roulette Wheel

Roulette wheel selection [Goldberg, 1989] is a probalistic method of selecting the parents for
the crossover stage. It works by creating a biased roulette wheel with each chromosome
associated with a slot that is sized in proportion to its cost [Alfaro-Cid, 2003; Ellis, 1993]. To

1 2 3 5 0 6 7 8 Chromosome

(- 2.35, +6.78) Coordinate

− 2 3 5 + 6 7 8

 75

generate the parents to go forward to reproduce, the wheel is spun. The wheel is spun as
many times as there are chromosomes in the population [Alfaro-Cid, 2003]. The roulette
wheel method allows both good and bad individuals to progress into the mating pool
[McGookin, 1997]. As a result of this the convergence rate is slow [McGookin, 1997].

Elitist

The Elitist selection method [Alfaro-Cid, 2003; McGookin, 1997] ranks the entire population
according to the cost value [McGookin, 1997]. A fixed percentage of the top individuals
within the population are selected and chosen to be in the mating pool. This means that the
current best solution(s) are not lost from generation to generation. The remainder of the
population is filled with individuals generated by crossover of the top individuals. The
problem associated with this method is that premature convergence may occur [McGookin,
1997].

With a choice of selection methods, the decision for which selection method should be used
is based upon other factors within the GA, such as size of the population. For example
Tournament selection is better suited to large populations so the Tournament groups are of a
reasonable size. Khoo & Suganthan (2002) use both Elitist and Roulette wheel to select the
parents. This means that the current best candidate always survives to the next generation
and it is present for crossover [Khoo & Suganthan, 2002; McDonald, 2003].

5.3.3.2 Crossover

Crossover represents the biological process of reproduction. Two parents are chosen and
their chromosomes crossed over to produce two new children. These children replace the
adults in the next generation. Various methods of crossover exist: uniform,
single/two/multiple- point and gene-lottery crossover [Khoo & Suganthan, 2002; Schmitt,
2004]. The method to be used in this work is two-point crossover. The reason for the use of
two-point crossover is because of the size of the chromosome, which is eight genes long.
With two-point crossover a larger crossover is achieved leading to greater variety.

In two-point crossover a chromosome is cut in two randomly selected locations, creating
three parts of each parent. This means that each child is made up from three sections, two
from one parent and the central section from the other parent. An example of two-point
crossover is shown in Figure 5.16.

Figure 5.16: Two-point Crossover

Crossover Point

Parent 1

Child 1 Child 2

 Parent 2

 76

McDonald (2003) suggests that single point crossover is perceived to be the most appropriate
crossover method due to the popularity of it and says that crossover schemes that use more
than one point increase the chance of a fit individual being disrupted [McDonald, 2003]. This
increases the convergence time, a stance supported by Dejong’s (1975) work that concludes
that a GA’s overall performance degrades as the number of crossover points increases.
Alfaro-Cid (2003) suggests that with conservative selection methods, as used by Dejong
(1975), increased crossover points do degrade a GA’s performance. With strong selection
schemes using two-point or multiple-point crossover is shown to work [Alfaro-Cid, 2003].
This again shows that the operators and structure of the GAs can vary the performance. A
study of how uniform, single point and multi point crossover compare can be found in Khoo
and Suganthan (2002).

5.3.3.3 Mutation

Mutation slightly alters a child or children generated by the crossover [Ellis, 1993; Alfaro-
Cid, 2003; Holland, 1975; McGookin, 1997]. The most basic mutation operator chooses one
or more genes in a member of the population and the allele, the value of that gene, is
replaced with a randomly generated value [Alfaro-Cid, 2003]. A mutation happens with
reference to a mutation rate [Ellis, 1993; Alfaro-Cid, 2003; Holland, 1975; McGookin,
1997]. The mutation rate is a value representing the percentage of the population that is to be
mutated during a single iteration of the GA. There are various schools of thought on what
value should be given to the mutation rate. A high mutation rate could keep the algorithm
away from a target point by continually jumping away from it, but a low mutation rate may
not find the target as values that have been removed may not be reintroduced [Ellis, 1993].
The mutation rate, in simple GAs, is normally kept the same until the termination of the
algorithm. Other GA schemes have experimented with time varying mutation rates. Khoo &
Sugantham (2002) present a method where the mutation rate is reduced near the end of the
simulation run. The presented argument is that a high mutation rate at the beginning leads to
a diverse population and a low mutation rate at the end means that good solutions are not
destroyed [Khoo and Suganthan, 2002].

A large number of different GAs can be created, however the work here will only look at
four combinations. The combinations selected will be based on the selection methods
discussed: Roulette Wheel and Elitist, two-point crossover and two values for the mutation
rate, low (0.1%) and high (10%).

5.4 Algorithms and Variants to be Implemented

The theory of each algorithm selected for this work has been discussed. The next stage is to
define the variations of the algorithms that are to be used. This is included to clarify the
algorithms that are studied. Though it is not implicitly stated, each algorithm scans for
solutions of interest within a set range of the mobile robot while travelling to each solution
selected by the algorithm. This allows a more extensive search to be carried out. If a solution
of interest is noted along the path then a judgement is made whether or not the robot should
travel to it. The judgement is made based on the temperature being detected at the point from
a distance.

5.4.1 Lawnmower

The standard Lawnmower algorithm is used with no variations or adaptation.

 77

5.4.2 Random

A standard Random algorithm is used as described in Section 5.2.2. A variation that is used
includes a Tabu element. The Random Search operates as normal but it contains a Tabu list
of a set number of previous visited points. This results in the Random Search being
constrained to search for solutions that have not been evaluated or have not been evaluated
recently. Adapting the algorithm like this may result in a greater variation of the solutions
evaluated.

5.4.3 HillClimbing

The standard HillClimbing Algorithm is used along with two variants. The first variant is the
Random Restart HillClimbing algorithm. The second variation of the HillClimbing algorithm
is the Random Restart HillClimbing algorithm with Tabu.

5.4.4 Simulated Annealing

The standard Simulated Annealing algorithm as described in Section 5.4.2 is implemented.
However an addition is made to it. The nature of the Simulated Annealing algorithm is to
travel to a single point that in this case represents the target. Since it is possible that more
than one target exists in the environment that is being searched, once the annealing schedule
is at the minimum value, the Simulated Annealing algorithm is reset and the search begins
again with a random start point that is selected to be out with a set range from the current
target. This is similar to the Random Restart component of the Random Restart HillClimbing

algorithm.

5.4.5 Genetic Algorithm

With the large number of different variations that can be achieved only a selection of
possible GA types can be selected. Using the GA operators described in Section 5.3.3 the
GAs to be implemented are shown in Table 5.1. As with the Simulated Annealing algorithm
the GA locates a single target point. As in the HillClimbing and the Simulated Annealing
algorithms a Random Restart is implemented once all members of the population are within
a set range from one another. The new population is created at random from points that are
located out with a set distance from the current located target.

Table 5.1: GAs to be implemented

Selection Method Mutation Rate Crossover

Roulette Wheel 1% 2
Roulette Wheel 10% 2

Elitism 1% 2
Elitism 10% 2

5.5 Implementation

This section discusses the implementation of functions that are required to assist in the
search and in the evaluation of the algorithms. The search algorithms are designed to
evaluate the environment based on the temperature of the points. The detection of the
temperature was chosen, as the human body gives off heat and this can be detected by
suitable sensors. The method used to detect the temperature of the environment and how the
constant search mentioned above is achieved are both discussed in this section. Since the
coverage achieved by the algorithm is being used as a measure of how the algorithms
perform, a method of calculating the coverage achieved by each algorithm run is required.

 78

The implementation of this process is discussed here. The last topic in this section is a
description of the targets and how the targets are detected during a run.

5.5.1 Temperature Detection

The purpose of the search algorithms presented in this thesis is to provide the points that a
robot investigates within the environment. To achieve this, the algorithms require that the
temperature of each visited point is known. In order to measure the temperature at each point
a suitable sensor must be used. Such a sensor should be able to measure an acceptable range
of temperatures and to differentiate between ambient and higher temperatures. The TPA81
Thermopile Array [Technobots, 2008] is able to satisfy these sensor requirements and is used
in this study. This sensor can detect temperatures, specifically a human, with a range of two
metres and has a field of view of 41°. The sensor is modelled in the simulation as a cone with
a maximum range of two metres and a field of view from -20.5° to 20.5° [Technobots,
2008]. This sensor coupled with a temperature map of the environment provides the search
algorithms with the temperature of the points in the environment. The temperature map of
the environment is a matrix representation of the environment with a resolution of 0.01m.
Each element in the matrix represents a squared centimetre. The points in the environment
are mapped onto each element in the matrix giving a temperature map of the environment.
An example temperature map is shown in Figure 5.17. This figure shows two targets.

Figure 5.17: Temperature Map of an Example Environment

5.5.2 Constant Search

As mentioned above, each robot does not only travel to the point that is assigned by the
algorithms but it also carries out a constant search as it moves through the environment. The
constant search increases the chance of locating a target and provides a more thorough search
of the environment. If a temperature of greater than 35° is detected by the sensor along the
path of the robot then the current movement is interrupted and the robot moves towards this
location. This ensures that the robot does not pass a point that may result in a target being
located. Once at the location, with the exception of Lawnmower, the algorithms restart the
search from the current new location. The Lawnmower algorithm saves the current target
location, branches from its search path and travels to the location of the new target. Once

 79

there, and after evaluating the point, the Lawnmower resumes its search by retrieving the
saved point.

5.5.3 Coverage

While operating a search, the robot does not keep track of the percentage of the environment
covered as the size of the environment is unknown. Hence in practice coverage cannot be
calculated. However as an aid in comparing the algorithms, the coverage achieved by each is
a suitable measure of performance. Since the experimental environments are known, that is
the dimensions of the environment are known, and the coverage from a scan from the
temperature sensor is known, the coverage achieved of the environment can be calculated.
As the robot moves in the environment the area scanned by the temperature sensor is saved
and during the post processing stage this data is retrieved. The coverage is used as a measure
of the algorithm’s performance by comparing the coverage achieved by one algorithm with
the coverage achieved by others. Since the algorithms have similar terminating conditions
(time and number of evaluations) the coverage achieved by each algorithm can be compared.

Though out with the scope of this project, a base station could estimate the coverage
achieved by the robot by building a map from the sensor data of the robot. As the robot is
travelling, sensor data could be transmitted back and the base station could use this to
construct a map of the environment. Not only would this aid in any rescue situation, by
providing a basic map, it would also allow an estimate of the coverage achieved.

5.5.4 Target tracking

The aim of the robot is to locate survivors. Within the simulations a survivor is treated as a
point target with Gaussian distributed temperature map about it, as shown in Figure 5.18.
The temperature ranges from the chosen ambient temperature of 10° to a peak temperature of
37°.

Figure 5.18: Example Target

The targets are not treated as obstacles. This decision has been made in order to allow the
algorithms to be tested without the targets interrupting the search. Treating the target in this

 80

way indicates that the temperature sensor is given dominance over the obstacle avoidance
routine. This allows the agent to move close to the target and get a true temperature reading
or, if other sensors are available (such as a pulse monitor), allow those sensors to collect the
required data. A target is said to have been located if a temperature reading of between 36°
and 38° is detected. Using this range simplifies the simulation and allows the work carried
out to show that the concept applied works. In real situations this range would need to be
altered to allow the detection of survivors who may be either suffering from shock,
hyperthermia or a fever. This could involve the use of fuzzy logic system [Niku, 2001] that
could improve the detection of survivors.

The percentage of targets found is also used as a method of comparing the algorithms. Since
the number of targets within the simulated environments is known and the number of targets
located is known, the percentage of the targets located can be calculated. As with the
coverage, the percentage of targets found by each algorithm can be directly compared.

5.6 Summary

This chapter has presented the theory behind the search algorithms that have been
implemented as part of this work. How the search algorithm interacts with the rest of the
system has also been presented. Terms associated with search: Heuristic, Search Space,
Evaluation Function and Terminating Condition were also defined.

Traditional search algorithms, namely Exhaustive, Random and HillClimbing have been
introduced and the advantages and disadvantages of each were discussed. Modern search
algorithms were then presented. Tabu, Simulated Annealing and Genetic Algorithms have
been discussed and how the algorithms run has been shown. Each algorithm was described
with reference to this work and the basic operation of each was presented with flow diagrams
to assist in the explanations.

The chapter continued by presenting the algorithms and the variations on the standard
algorithms that will be implemented in this work. The algorithms and variants to be run are:
Lawnmower, Random, HillClimbing, Random Restart HillClimbing, Tabu Random, Tabu

Random Restart HillClimbing, Random Restart Simulated Annealing and four Genetic

Algorithms. These algorithms are run in the single robot case in Chapter 6 and in a multi
robot case in Chapter 7.

This chapter concluded by discussing a set of functions that are common to all the runs.
These functions allow the robot to carry out the search and provide a means of comparing
each search algorithm. How the temperature is tracked was presented along with the
implementation of the constant search. Since coverage is a method of comparison it was
discussed here with reference to this work. The robot is required to detect targets and how
this is achieved was discussed.

With the algorithms defined and various functions presented experimental data can now be
gathered. This data will be used to establish if the search algorithms described in this chapter
can be used to guide a robot or many robots to search environments.

 81

Chapter 6

Simulation Results: Single Robot

6.1 Introduction

As stated, the principal aim of this work is to establish if search algorithms can be used to
generate points to allow a robot to search an environment for desired targets in a controlled
manner. The objective of this chapter is to establish if the algorithms presented in Chapter 5
can be used to achieve this aim and which algorithm performs the best within the single
robot case considered in this chapter.

To establish if the algorithms can be used to generate points that will allow a robot to carry
out a search of an environment, a series of experiments are run. The results for using a single
robot are presented in this chapter. The experiments carried out are done so in three different
environments. As such, consideration of the environments the robots operate in is needed.
The environment dictates the walls, obstacles and the location of the targets for which the
robot is searching. The environments need to be varied enough to challenge the robots and
all the algorithms. Thus providing such environments enables suitable data to be collected
and the performance of the entire robot based system to be analysed.

This chapter has the following outline. Section 6.2 discusses the environments the robot and
search algorithms are to be run in. The first set of experiments is run in a simple
environment, which is discussed in Section 6.3. Section 6.4 provides the results for the
search algorithms when run in the second environment. Section 6.5 presents results and
analysis from the third and most complex environment. Finally, the findings from this
chapter are summarised in Section 6.6.

6.2 Test Environments

The environment is the area that is used to test the chosen search algorithms. The
environments should show the algorithms working as intended and should also show if the
algorithms carry out the task that is required, that of searching the environment and detecting
targets. The environments include both the temperature map of the environment, the walls
and any obstacles that exist in the environment. Three environments have been designed for
testing purposes. Each environment is designed to test the algorithm in a different way to
enable a better analysis of the performance of the search algorithms.

6.2.1 Simple Environment

The first environment, Environment 1, is an empty room with two targets in it. The map of
the room can be seen in Figure 6.1. The temperature map of the room is superimposed on the
map of the room. This environment is very simple and is designed to show the algorithms
working and to test if the algorithms can achieve the task of searching the environment. The
algorithms are implemented without any obstacle avoidance when run in this environment.
Instead, the points that can be selected by the algorithms are constrained within the confines
of the environment. By excluding the obstacle avoidance procedure it can be shown that the
algorithms work in highly constrained environments and provide the bench mark to which

 82

the other experiments run in the second and third environments can be measured against. the
insertion point is marked by the red star.

Figure 6.1: Map of Environment 1

6.2.2 Simple Environment with Obstacles

The simple environment presented in the previous section has been designed to show if the
algorithms can be used for the purpose of this work. In reality, environments are not this
simple and as such the algorithms should be tested in an environment with obstacles. Usually
the dimensions of the environment are not known, as in an USAR scenario where the
environment may have been altered in some way e.g. through structural collapse. This means
that with obstacles and unknown dimensions some method of obstacle avoidance will be
required. The next environment used in this investigation is shown in Figure 6.2 and is called
Environment 2. Again the insertion point is marked.

Figure 6.2: Map of Environment 2

 83

It can be clearly seen that there are two targets and that this environment contains obstacles
that require detection and avoidance. The insertion point for the robots is (0.5, 0.5), which is
located in the lower left corner. With the insertion point located here the robots need to pass
through the gap between the two obstacles that confine this starting position. This provides
the algorithms with a challenge and shows the benefits and disadvantages of the obstacle
avoidance technique that has been implemented. Also it illustrates how the search algorithm
accommodates the interruptions caused by the obstacle avoidance.

6.2.3 Complex Environment with Obstacles

The third environment, Environment 3, is larger and more complex than the previous two
environments. It represents an office with both small closed off areas and large open spaces.
There are seven targets in this environment and a map of it can be seen in Figure 6.3. The
insertion point is marked.

Figure 6.3: Map of Environment 3

This environment tests the ability of the algorithms to locate multiple targets and how they
operate in a large, irregularly shaped environment with numerous obstacles. The insertion
point in this environment is (14, 5).

6.3 Simple Environment Experiments

The first set of experiments will be carried out in the Environment 1. The results from each
algorithm are presented. A final comparison is made at the end of the section. To properly
gauge how each algorithm performs ten runs are carried out and the average of these runs is
calculated to provide the values stated throughout the rest of this chapter. Further data on
each of the runs carried out is provided in Appendix C1.

6.3.1 Lawnmower

The first algorithm to be run is the Lawnmower. The advantage of running the Lawnmower
first is that it gives a baseline result of what can be achieved in the environment. This is
achieved because it gives a structured approach to the search and in this simple environment
it can be guaranteed that both targets can be found and that full coverage can be achieved.

 84

Another outcome of the structured approach is that any additional functions, such as
temperature scan, can be tested to ensure they operate correctly. To allow the Lawnmower
search to search a greater area the detection threshold for the obstacle avoidance is reduced
to a single robot length.

Since the Lawnmower algorithm is a repetitive, incremental algorithm that contains no
random elements, one run is sufficient to gain the required data. The Lawnmower located a
first target in 11.15s and a second target in 95.21s. Since Environment 1 only has two targets,
100% of the targets were located. The coverage achieved by the Lawnmower algorithm is
97.11%. However the algorithm continues to operate until the stop criteria was met. This
resulted in the algorithm searching areas which had already been searched. The path of the
Lawnmower algorithm is shown in Figure 6.4. This shows the structured approach taken by
the algorithm and demonstrates that the robot branches off from the path whenever a higher
temperature is detected within sensor range. This illustrates that the temperature scanning
function works as intended. It can be seen that in a simple highly constrained environment
the Lawnmower is a powerful method of search, with the guarantee that any targets within
the environment can be located. This agrees with the theory behind the algorithm. However,
most environments are not as simple as the environment presented here. As stated, this
environment is only included to test the algorithms to see if they can be implemented in this
manner and to demonstrate the algorithms working. It can be concluded that the Lawnmower
algorithm is capable of carrying out the task defined in this work within this simple
environment.

Figure 6.4: Map from a Lawnmower algorithm run within Environment 1

6.3.2 Random

The Random algorithm does not produce identical runs like the Lawnmower and, as
mentioned, tens runs have been carried out to produce the values discussed. The individual
run data is presented in Appendix C1.2.

The average time taken for the location of a first target was 41.13s and for a second target
92.60s. The first conclusion that can be drawn from this is that the Random algorithm takes
longer to locate its first target when compared with the time taken by the Lawnmower.
However the time taken to locate a second target is much less than that of the Lawnmower.
Since the Random algorithm can travel to any point within a two metre radius of the current
location, the robot is able to search any part of the environment at any time, hence increasing
the chance of a target being located. Whereas the Lawnmower has to follow a set pattern
which, when large areas with no targets exist, wastes search time. Having stated this, it is

 85

possible that the Random Algorithm continually selects points which are not in the vicinity
of a target, hence no targets can be located. In this simple environment this has not occurred
and 100% of the targets have been found. The average coverage achieved is 99.12%, which
is slightly higher than that achieved by the Lawnmower. The reason for this is that since the
Lawnmower has a structured approach, parts of the environment are only scanned from one
direction. The Random algorithm allows areas within the environment to be scanned from
multiple directions, increasing the likelihood of an area getting a complete scan. Areas that
lie out with the reach of the Lawnmower’s path have a chance of been scanned also. It
should be noted that the difference between the coverage’s is small and that only a small part
of the environment is out with the reach of the Lawnmower’s scan. The Random algorithm
has been shown to work within Environment 1. A typical run of the Random algorithm is
shown in Figure 6.5.

Figure 6.5: Map from a Random algorithm run within Environment 1

6.3.3 HillClimbing

The next sets of results to be discussed are from the HillClimbing algorithm. This algorithm
has worked as expected. Since no targets have been detected within the range of the sensor
from the insertion point in the environment, the robot has not moved. No targets have been
located and the coverage achieved is 13.52%.The HillClimbing algorithm can only operate if
a target is within range. Figure 6.6 shows the map from the HillClimbing run. The map
shows no path because the robot did not do anything. This shows that the algorithm is
restricted by the range of the sensor and did not work in this application. Therefore, the
HillClimbing algorithm is not considered any further in this study.

6.3.4 Random Restart HillClimbing

As suggested in Chapter 5, one method of improving the HillClimbing algorithm is to
include a Random Restart (RR) element [Russell & Norvig, 1995]. The RR allows the
HillClimbing algorithm to select a point outwith the scan radius and rescan the 360° about
the new location. Individual run results are presented in Appendix C1.4.

The RR HillClimbing algorithm locates a first target in 40.77s on average, and a second
target in 560.25s, with only 55% of the targets being located. Only one of the runs found
both targets, hence the 55% target located value. The RR HillClimbing located the first
target, already an improvement over the HillClimbing algorithm, in a quicker time than the
Random algorithm.

 86

Figure 6.6: Map from a HillClimbing algorithm run within Environment 1

The reason for this is that when a slight temperature increase is detected, the algorithm
moves to this point and continues to ‘climb’ the temperature gradient until a target is
detected. A second target is not as easy for the RR HillClimbing to detect, as once a target is
located, unless the RR point is outwith a certain distance and at certain angle from the
current target point, then the robot is attracted to the current target point, keeping the robot
within its vicinity. The average coverage achieved is 51.16%. This shows that about half of
the environment has been searched and this fits with only one target being detected. Since
the robot is attracted to a target and remains in its vicinity, only a limited area of the
environment is searched resulting in low coverage. Further evidence is provided by looking
at the run (run 6) which located both targets. The coverage achieved in this run is 88%,
showing that the RR HillClimbing algorithm being attracted to only one target does affect
the coverage achieved. An example run of the RR HillClimbing is shown in Figure 6.7.

Figure 6.7: Map from a RR HillClimbing algorithm run within Environment 1

6.3.5 Tabu Random

The Tabu Random algorithm has been included to investigate if the Tabu element affects the
operation of the Random algorithm. The Tabu element consists of a Tabu list of ten elements
representing the ten last previous visited points. The elements on the list are removed from

 87

the list after the Tabu tenure is reached. The Tabu tenure used in this work is five seconds.
This allows the list to become populated when the robot makes small moves between points
forcing the robot to move to points further from the immediate vicinity. A circle with radius
0.3m about a point is termed a Tabu Zone. Points within this zone are also considered taboo.
The individual Tabu Random run results can be found in Appendix C1.5.

The average time for the algorithm to locate the first target is 29.73s. This is faster than the
standard Random algorithm, indicating that the Tabu Random algorithm may be an
improvement on the Random algorithm. The reason for the initial faster find is because the
robot is forced away from each point it travels to, increasing the initial search scope.

However, the second target time is very much higher than that of the Random algorithm,
159.04s. With the Tabu Random algorithm’s ability not to visit points previously visited
within a set time frame, this is an unexpected result. The expected result would have been
that both targets would be found in a quicker time than the Random Algorithm. The reason
for this increased time is the Tabu element of the algorithm. When a robot evaluates a point
it is added to the Tabu List. If this point is close to a target the Tabu Zone placed about that
point causes the robot to be repelled from the target point, hence increasing the time taken to
locate targets. Mathematically the Tabu Random algorithm achieved 99.32% coverage which
is greater than all the previously discussed algorithms. Since this algorithm maintains a list
of recently visited points the algorithm is not instructing the robot to make trips that are not
necessary, hence increasing the time spent going to unknown points, though due to the Tabu
tenure some previously visited points are visited. It should be noted that a small Tabu list is
desirable as it saves on memory and search time going through the list. An example run of
the Tabu Random algorithm is shown in Figure 6.8. Again it can be seen that this algorithm
can be used in the desired application.

Figure 6.8: Map from a Tabu Random algorithm run within Environment 1

6.3.6 Tabu Random Restart HillClimbing

As discussed in Section 6.3.5, one of the general problems associated with the RR
HillClimbing algorithm is its inability to escape from a target once the target has been
detected. One method of tackling this would be to introduce the Tabu element that has been
discussed in the previous section. The Tabu list enables the robot to search for points outside
of the target’s range, hence increasing the chance of the robot escaping from the target.

 88

The first point to note about the Tabu RR HillClimbing is that both targets are located in
every run. This shows that the addition of the Tabu element has a dramatic effect on the RR
HillClimbing algorithm, as can be seen in the results in Appendix C1.6. The algorithm
located a first target in 13.06s on average, and the second target in 113.37s. The first target
time is only higher than that achieved by the Lawnmower. The reason for this quick
acquisition time is because of the HillClimbing element of this algorithm. Once this
algorithm detects any point with a temperature higher than the current temperature at the
current point the robot moves to it. This combined with the Tabu element, which forces the
algorithm to search areas that have not been searched and helps the algorithm escape from
any detected targets, increases this algorithm’s chance of finding targets. The second target
time is reasonable but may indicate that the time that this algorithm spends in scanning the
area about a point impacts on the overall run of the algorithm. The coverage achieved,
97.43%, is also comparable to that of the other algorithms that have been deemed successful.
Figure 6.9 shows a typical run from the Tabu RR HillClimbing algorithm. This shows that
the algorithm works well within this environment.

Figure 6.9: Map from a Tabu RR HillClimbing algorithm run within Environment 1

6.3.7 Random Restart Simulated Annealing

The next algorithm to be implemented is the RR Simulated Annealing algorithm. The basic
Simulated Annealing Algorithm is not presented here, as it has been established, in Chapter
5, that the random restart condition is required to allow the search to proceed after a target
has been located. An example run from this algorithm is shown in Figure 6.10. The concept
of Environment 1 is to show that the algorithms discussed in Chapter 5 work. Figure 6.10
shows that the RR Simulated Annealing algorithm works. Further run data is available in
Appendix C1.7.

 89

Figure 6.10: Map from a RR Simulated Annealing algorithm run within Environment 1

With regards to the average values from this algorithm, in a time of 35.43s a first target has
been located. This is higher than the previous algorithms, with the exception of the Random
runs. One reason for this could be the small steps taken by the algorithm after each point is
evaluated. Since the RR Simulated Annealing algorithm fine tunes the point as it progresses,
relative to the Annealing Schedule, smaller moves are made by the robot, as the points that
can be evaluated are limited by a reducing radius about the current best point. Since smaller
moves are made, the time taken to fine tune the current best point increases, hence the
increased time to locate a target. The second target time is again slightly higher when
compared with the other algorithms discussed. The Tabu Random and the RR HillClimbing
are both higher. The reason for the slightly higher time is because of the method used by the
algorithm to locate a target point. Though the target acquisition times are higher when
compared to the other algorithms, the maximum coverage achieved is the highest. Though to
put this in context, all the algorithms did achieve similar coverage, with the exception of the
HillClimbing and the RR HillClimbing.

6.3.8 Genetic Algorithm 1

Genetic Algorithm 1 (GA1) is based on roulette wheel selection, with two point crossover
and 1% mutation. Results from GA1 runs can be found in Appendix C1.8. GA1 has achieved
100% target location and gained 90.22% coverage. The target location times achieved are
amongst the lowest for both the first and second target. The first target has an average time
of 23.17s. This time is one of the fastest for locating a target. The second target time is
90.66s. This is the fastest time achieved yet for the location of a second target.

The reason for the fast target location times can be attributed to the nature of this Genetic
Algorithm (GA). Once a population is evaluated, if a dominant point exists then the next
generation does not have individuals that represent points that exist at a distance from this
dominant point. The reason for this is the selection method which favours dominant points.
The lower the fitness value, the higher the percentage of the roulette wheel that the
individual occupies. A second reason is the low mutation rate. The mutation rate only
changes one gene in every two generations and as a result the individuals are not being
altered to any great extent.

 90

The crossover method does not make an impact if a dominant point exists. As each
individual in the population becomes similar, the crossover stage will only slightly alter each
point. Figure 6.11 shows a typical GA1 run.

Figure 6.11: Map from a Genetic Algorithm 1 run within Environment 1

It can be seen that the robot is attracted to the targets and simply moves between them. This
result seems initially good as this is what is desired from this work: an algorithm that can be
used to locate targets in the minimal amount of time.

However the coverage achieved, when compared to that of the other algorithms, is poor i.e.
90.22%. This indicates that although the targets can be located quickly, the overall search of
the environment is hampered by the lack of a high random element. The conclusion that can
be drawn from the presented results is that the algorithm does work but the coverage
achieved is poor in relation to the other algorithms. It can be argued that since GA1 is
attracted to targets, if other targets exist the algorithm would be capable of locating them.
Environment 3 contains more targets and this argument can be tested there.

6.3.9 Genetic Algorithm 2

Genetic Algorithm 2 (GA2) consists of roulette wheel selection, two point crossover and
10% mutation. The mutation rate means that five genes in every generation are mutated. The
average results, which are calculated using the individual run results in Appendix C1.9, from
the GA2 include target location times of 27.23s and 98.69s with all the targets being located
and an average coverage of 99.20%. Comparing GA2 to GA1 it can be seen that the
increased mutation rate has had an effect. The first notable difference is that GA2 takes
slightly longer to locate the targets, the first target by 4s and the second target by 8s. These
differences are small but it shows that the increased mutation rate has made a difference. The
second change is that the coverage achieved by GA2 is 99.20%, which is higher than the
coverage achieved by GA1. The increase in both the target location time and the coverage
can be attributed to the increase in the mutation rate. Since the mutation rate is higher, there
exists a higher degree of difference between the individuals in the population. This leads to a
wider variety of points being evaluated in each generation. Since a wider selection of points
is being visited the coverage is increased. The same occurs when attempting to locate targets.
With GA1 the population hovers about the same point as a result of the lack of variation
between the individuals until a random restart condition occurs. However, with the increased
mutation rate the variation is increased. This difference pushes the points away from targets

 91

points, increasing the time taken to locate a target. Comparing GA2 to the other algorithms
so far, the target times for both targets are average and the coverage is comparable. The
results from GA2 suggest this algorithm can achieve both good target location times and
coverage. An example of a GA2 run can be seen in Figure 6.12.

Figure 6.12: Map from a Genetic Algorithm 2 run within Environment 1

The pattern of the path of the robot is similar to that of the GA1 run, in that it has a
distinctive path between the both targets. It can also be seen that the path has more
interruptions, points at which the path between the two targets is broken and the robot moves
to a point out with the path or the two targets. This indicates the effect of the higher mutation
rate has on increasing the coverage achieved during the search. As with the other
Environment 1 experiments carried out, the results from the runs of the GA2 show that this
algorithm works.

6.3.10 Genetic Algorithm 3

To reiterate, Genetic Algorithm 3 (GA3) uses the section method Elitism with two point
crossover and 1% mutation rate. As with the majority of the other algorithms, GA3 has
found both targets over all the runs. This is shown in the results presented in Appendix
C1.10. The average time for a first target location is 24.72s; this is amongst the lowest time
for finding a target. The second average target location time is 48.09s, which is the quickest
time achieved for the location of a second target. The coverage achieved, 88.15%, is poor
when compared to that achieved by the other algorithms. These results can be associated
with the conclusions drawn from GA1. The Elitist selection method selects elite individuals
which are carried on to the next generation. These individuals become dominant within the
population and since the mutation rate is low there is minimal change in the population. This
has the same effects as discussed in GA1. Figure 6.13 shows a typical run from GA3.

 92

Figure 6.13: Map from a Genetic Algorithm 3 run within Environment 1

This shows the effect of a dominant point within the population, with the robot taking little
deviation from either target. This occurs because the dominant point appears in each
generation, whereas in GA1 the dominant point can be slightly altered by the combination of
the roulette wheel and two point crossover. The advantage of the elitist selection method
over the roulette wheel, from the results presented so far, is the time taken to locate the
targets. At this stage the elitist method, over both targets, finds the targets quickly but at the
expense of coverage.

6.3.11 Genetic Algorithm 4

Genetic Algorithm 4 (GA4) uses elitism as the selection method with two point crossover
and 10% mutation. The first statement that can be made about GA4 is that it can be used in
the scenario considered in this work. The data in Appendix C1.11 shows this. GA4 found
100% of the targets and located a first target in an average time of 30.95s and a second target
in 58.00s. Compared to the other algorithms, the first time is an average time that lies at the
lower end of the scale. The time taken to find the second target is the second fastest time
recorded from the data presented here. This provides additional evidence about the power of
the elitist method in locating targets quickly. The slightly higher time from GA4 over GA3 is
an indication of the higher mutation rate used. Since five genes in every generation are being
mutated, a higher chance exists that the population is being kept varied, until the point of
random restart, enabling a wider search of the environment. The nature of the algorithm
means that the robot is able to detect targets quickly. Another indication of the increased
mutation rate is the coverage achieved, which is 92.68%. Though lower than some of the
other GAs, it shows that the mutation rate has an impact on the coverage achieved, whereas
the selection method has an impact on the time taken to locate targets. A typical path from a
GA4 run is shown in Figure 6.14. The path of the robot shows the same behaviour that can
be seen in the previous GA runs. This shows that the GAs are very dependent on the targets
that exist within an environment.

 93

Figure 6.14: Map from a Genetic Algorithm 4 run within Environment 1

6.3.12 Discussion

As previously discussed, the aim of Environment 1 is to test whether the algorithms
described in Chapter 5 are suitable for use in searching environments, when using the
navigation and control methodologies described in Chapter 4, on a model derived in Chapter
3. The answer to this question is that in the vast majority of cases the algorithms described
are suitable, as can be seen from the data presented in Table 6.1. The two algorithms that
stand out are the HillClimbing algorithm and the RR HillClimbing. As discussed, the
HillClimbing operated as expected: with no target nearby, the robot did not move. As a result
of this the HillClimbing algorithm is no longer considered a viable option. The RR
HillClimbing algorithm located 55% of the targets. This shows that the RR HillClimbing
algorithm has potential as one run did locate both targets. Due to this the RR HillClimbing
remains an algorithm for testing. All the other algorithms located 100% of the targets and as
such this variable cannot be used at this stage to compare the performance of the algorithms.

As stated above, the Lawnmower algorithm can be used as a benchmark for the comparison
of the other algorithms in Environment 1. The reason for this is because it is guaranteed to
find both targets in this simple environment and achieve, as close as possible, complete
coverage. With the exception of the first target time, where the Lawnmower is able to
directly move to a target, the surprising conclusion about the Lawnmower algorithm is that
the results generated indicate average performance.

 94

Table 6.1: Experiment 1 – Single Robot Results

Algorithm
Time for target

1, seconds
Time for target

2, seconds
% Target

Found
% Coverage

Lawnmower 11.15 95.21 100 97.11
Random 41.13 92.60 100 99.12

HC N/A N/A N/A 13.52
RRHC 40.77 202.45 55 51.16

TR 29.73 159.04 100 99.32
TRRHC 13.06 113.37 100 97.43
RRSA 35.43 116.20 100 99.23
GA1 23.17 90.66 100 90.22
GA2 27.23 98.69 100 99.20
GA3 24.72 48.09 100 88.15
GA4 30.95 58.00 100 92.68

The Random algorithm, though very poor in locating the first target, is above average on
both the second target time and the coverage. This shows that a degree of randomness within
the selection of points may be a major factor in both the location of the targets in a
reasonable time and on achieving high coverage. This is certainly supported by the high
randomness algorithms, i.e. Tabu Random, RR Simulated Annealing, GA2 and GA4, which
all obtained high coverage values. What does let the Random algorithm down at this stage is
the poor value for the first target time. The interesting point to note here is that with the Tabu
element introduced the target time for the first target is reduced and the coverage is
increased. However the time taken to locate a second target is increased, which is shown to
be associated with the Tabu element of the algorithm. This shows that the Tabu element has
an effect on the Random algorithm as discussed in Section 6.3.6. The Tabu Random
algorithm in general is below average, with the exception of the coverage achieved which is
the highest.

The Tabu RR HillClimbing algorithm can be seen to be an improvement over the RR
HillClimbing algorithm. The target location time for a first target and the coverage achieved
are both higher than average and the time taken for locating a second target is just below
average. This indicates that, with regards to HillClimbing based algorithms, with more
supporting elements (RR and Tabu) more improvements are achieved in the results obtained.

The RR Simulated Annealing algorithm has performed below average with regards to the
time achieved for locating targets. However, the algorithm gained the second highest value
for the coverage achieved.

This brings the discussion onto the GAs. In general the GAs provided a mixed set of results.
The majority of the time values are above average but the majority of the coverage values are
below average. This shows that the GAs are powerful when it comes to locating targets in a
reasonable time but may not achieve the coverage achieved by some of the other algorithms.
From the results presented so far it can be seen that the higher the mutation rate of the GAs
the higher the coverage achieved. However, the smaller the mutation rate the quicker the
targets are found. The next two environments provide further evidence to either support or
derail these findings.

 95

The general conclusion that can be drawn from the data presented for Environment 1 is that
in a simple environment the algorithms, with the exceptions mentioned, perform well and are
shown to work. At this stage the algorithms that contain a high random element achieve
better coverage but the algorithms that allow dominant points are able to locate the targets in
a much quicker time, on average. These conclusions are based solely on the data presented in
this section. As to which algorithm performed best in this very simple environment, it would
be the Lawnmower. Since the environment is small and highly constrained the Lawnmower
is able to provide good coverage and locate the targets in a reasonable time. However the
next environments are not highly constrained and this may provide problems for some of the
algorithms.

6.4 Simple Environment with Obstacles

As with Section 6.3, the data presented in this section is the average data taken from ten runs
of each search algorithm investigated. The individual run data can be found in Appendix C2.

6.4.1 Lawnmower

As with the previous section, the first algorithm to be discussed is the Lawnmower. The path
achieved by the Lawnmower within Environment 2 can be seen in Figure 6.15. As can be
seen from the figure the Lawnmower is not as successful in this environment as compared to
the first environment. Only one target is located, in a time of 48.79s, and the algorithm
achieved 50.45% coverage. From the figure it can be seen that the Lawnmower algorithm
gets caught in a loop and constantly travels the same path. The reason for this is simply that
the Lawnmower, as described and implemented here, cannot handle highly complicated
environments. Since it has to operate in a set way, the algorithm cannot select another point
at random if it becomes caught in a loop. The Lawnmower is designed to constantly follow
the same path until the termination condition is met. It can be seen that once the constraints
are removed from the environment and the environment becomes more complex, through the
addition of obstacle, the Lawnmower begins to struggle. The Lawnmower did detect one
target and since no comparison can yet be made with the other algorithms, this could be a
reasonable result.

Figure 6.15: Map from a Lawnmower run within Environment 2

 96

6.4.2 Random

The Random Algorithm produced the following average values: a first target was located in
234.50s and a second in 440.52s. On average 75% of the targets were found and the
coverage achieved was 82.34%. This average data was calculated using the run data
presented in Appendix C2.2. This provides some interesting points to discuss.

When compared to the first environment it can be seen that there is a reduction in the
coverage and an increase in the target’s location times. This is a direct result of the obstacles.
The target location times are extremely high. The first time is high because of the time taken
by the robot to move out of the obstacles about the insertion point. The second time is high
because the robot is required to navigate the obstacles about the first target that is located.
The reason for the algorithm not locating the second target on some runs is a result of the
robot becoming stuck in an area in which it cannot escape. Either the robot remains within
the area about the insertion point or it remains within the vicinity of a target point while
avoiding obstacles. The coverage achieved was, as stated, 82.34%. Though not as high as the
coverage achieved in Environment 1, this is a high value for the coverage and would suggest
that the majority of the environment has been searched.

It is interesting to note that the Random runs which did not locate both targets did not search
or branch into the area about these targets not located. This is an interesting point in that it
shows that the algorithm must first branch into an area about the target before a target can be
located, however there exists a case in which this does not seem to occur. The first Random
run, at first glance, appears to have located both targets but on further inspection this is not
the case. The second target has not been marked as located. The reason for this could be in
the actual code implementation of the simulation and is associated with the rounding that
occurs to find the temperature of a point. In a real world situation an operator reviewing the
data would most likely note this point as a target point, as the robot is attracted to something
within this area. The robot, being purely deterministic, would not mark this point as a target
until the threshold value had been reached. The use of a fuzzy logic based system [Niku,
2001] in the determination of the targets could be used to improve the autonomy of target
location. An example run from the Random algorithm is shown in Figure 6.16.

Figure 6.16: Map from a Random algorithm run within Environment 2

 97

6.4.3 Random Restart HillClimbing

In the previous environment the Random Restart (RR) HillClimbing has been able to execute
the basic search but its overall performance has been poorer than other algorithms. The data
from the runs in Environment 2 show that performance of the RR HillClimbing is worse than
that of the Random algorithm. The data to show this can be found in Appendix C2.3. The
average target location time for a first target is 228.07s. This is just lower than that achieved
by the Random algorithm. As discussed in Section 6.3.5, if the RR HillClimbing algorithm is
able to detect a temperature that enables it to move closer to the target temperature, then the
algorithm converges to the target rapidly. However the average time for locating a second
target is 525.40s. The percentage targets found is 60.00%. Since the RR HillClimbing
algorithm is attracted to dominant points, when a target is within range robot is attracted to it.
The RR is designed to push the robot away from a target, but due to the obstacles this may
not happen and the robot is attracted by the same target. The coverage value of 78.82% is
higher than the Lawnmower but is lower than the Random algorithm. However, when the
target location times are considered, the RR HillClimbing algorithm would seem to be a poor
choice for searching an environment.

An interesting point to note about the RR HillClimbing experimental runs carried out in
Environment 2 and those runs carried out in the first environment is that the results from
Environment 2 are better than those obtained in Environment 1. One reason for this could be
the inclusion of the obstacles. In the first environment the RR HillClimbing algorithm had a
tendency to detect a point early then remain within its vicinity. This behaviour results in the
robot not exploring the full environment. Since obstacles have been introduced, the path that
can be taken by the robot is limited and this has had an impact on the algorithm. Whenever
an obstacle is detected the robot replaces the current desired point with a randomly selected
point. With regards to the RR HillClimbing this has the same effect as the RR. This means
that the robot avoids obstacles but it also results in the robot being constantly repulsed by the
targets, given the close proximity of the targets to obstacles. Since the random element
within the algorithm has been increased, the coverage is increased and as a result gives the
robot a higher chance of locating the targets. A typical run from the RR HillClimbing is
shown in Figure 6.17.

Figure 6.17: Map from a RR HillClimbing algorithm run within Environment 2

 98

6.4.4 Tabu Random

Looking at the results (presented in Appendix C2.4) achieved by the Tabu Random
algorithm, it has, on average, performed very well. A first target is located in a time of
158.29s. This is higher then the Lawnmower but lower than all the other algorithms
discussed so far. At 211.60s a second target is located, which is the lowest time so far. The
percentage target found is 70%, again higher than the previous algorithms with the exception
of the Random algorithm. The coverage achieved is 84.42% and this value is the highest so
far. As stated, these results are good and are a result of the Tabu element.

The Tabu element is designed to keep the robot away from previously visited points. In
doing this the coverage achieved by the algorithm is increased, as new points are
predominately selected. With an increase in coverage there is an increased chance of locating
targets. Also, as discussed in Section 6.3.6, the Tabu Random algorithm is able to escape
from the target once one is located. This increases the time spent looking for other targets as
opposed to being constantly drawn to the target within the immediate vicinity. This also
increases the likelihood of targets being located. A typical run from the Tabu Random
algorithm is shown in Figure 6.18. At this stage the Tabu Random algorithm is shown to be a
powerful method of search with regards to its application to the problem presented in this
work.

Figure 6.18: Map from a Tabu Random algorithm run within Environment 2

6.4.5 Tabu Random Restart HillClimbing

The first interesting point to come out from the Tabu RR HillClimbing algorithm is that, on
average, the results are poorer than the RR HillClimbing, as shown in the results presented in
Appendix C2.5. This is against the expected result which would have been that the Tabu RR
HillClimbing would have had better results. The average results achieved by the Tabu RR
HillClimbing are 291.72s for the location of a first target, 188.82s for a second target and
50% targets located. The second target time is low because only one run found this target
and it did so extremely quickly. The coverage is 74.81%. Comparing these to the previous
algorithms these results are poor. The RR HillClimbing element of this algorithm should be
increasing the speed in which targets are located and the Tabu element is designed to repulse
the robot away from a target once it has been located. Looking at the maps generated from
the runs the algorithm remains close to a target point. The reason for this is the proximity of
the obstacles. The method used for obstacle avoidance generates a point at random. The
robot then travels to this point. While the robot is travelling it is also scanning for an increase

 99

in the temperature. When an increase is detected the robot moves towards it. Since the
targets in the second environment are located within close proximity to obstacles, the Tabu
List entries will be discarded by the obstacle avoidance, hence the robot remains in the
vicinity of the targets. The one run in which the algorithm located both targets shows less
interaction with obstacles than the other runs, further supporting this conclusion. An example
run of the Tabu RR HillClimbing algorithm can be seen in Figure 6.19.

Figure 6.19: Map from a Tabu RR HillClimbing algorithm run within Environment 2

6.4.6 Random Restart Simulated Annealing

The RR Simulated Annealing algorithm, when compared with the other algorithms run so
far, is on average the best. Appendix C2.6 presents the individual run results. The time taken
to locate a first target is 168.63s. This is higher than the Lawnmower and the Tabu Random,
however it is lower than the others. The time taken for the location of a second target is
360.18s. This is the best result so far. The average percentage target found is 85% with the
average coverage being 84.68%, both of which are higher than any of the previous
algorithms. The inclusion of the obstacle avoidance has impacted on the RR Simulated
Annealing algorithm but to a lesser degree than the other algorithms. The ability of the RR
Simulated Annealing algorithm to slowly reduce the radius in which the next point is
selected may be assisting the obstacle avoidance routine. Since the robot is operating in close
quarters to the obstacles, the ability to travel in successively smaller steps may be allowing
the algorithm to continue looking for targets with minimal interference from the obstacles.
Since the algorithm has a continually reducing search radius, there exists more of a chance of
finding, admittedly at random, a way to avoid the obstacles. Figure 6.20 shows an example
run from the RR Simulated Annealing algorithm.

 100

Figure 6.20: Map from a RR Simulated Annealing algorithm run within Environment 2

6.4.7 Genetic Algorithm 1

In the first environment GA1 exhibited behaviour of moving between the two targets within
the environment. In this experiment there exists no clear path between the targets, hence this
pattern cannot be repeated. The results show that this is the case. The average results from
the GA1 runs in Environment 2 are a first target location time of 195.66s, 302.85s for a
second target location time, 60% of the targets are located and the coverage achieved is
84.68%. Comparing the first target location time to the others presented for Environment 2,
the time is average. The second time is average when compared to the times stated so far, as
is the percentage coverage achieved. In general GA1 had achieved an average solution to the
problem. There are algorithms that have achieved better results. The inclusion of the obstacle
avoidance has stopped this algorithm’s tendency to move between two targets. Since this is a
more realistic environment it shows that the performance of GA1 is average. An example run
from GA1 is shown in Figure 6.21 and the individual run results can be found in Appendix
C2.7.

Figure 6.21: Path taken by a robot under direction from the GA1 within Environment 2

 101

6.4.8 Genetic Algorithm 2

GA2 has achieved an average time of 257.58s for the location of a first target and 363.36s
for a second target. GA2 also achieved 70% target location and 86.63% coverage. The target
time for the first target is currently the second longest time. As discussed in Section 6.3.10
this is a result of the high mutation rate that is used in GA2. The second target time is an
average time when compared to the other times so far. This is again a result of the high
random nature of the algorithm but also indicates that as more coverage is gained the quicker
the second target is located as compared to the first target. GA2 has located an average
number of targets. The coverage of GA2 is the highest of the algorithms and is a result of the
high mutation rate adding a higher random element. This provides further evidence that high
coverage can be gained by using algorithms containing a high random element. Figure 6.22
shows a run from GA2. Further data for GA2 in Environment 2 can be found in Appendix
C2.8.

Figure 6.22: Map from a GA2 within run Environment 2

6.4.9 Genetic Algorithm 3

The average results gained for GA3 are above average when compared to the other
algorithms discussed. A first target is located in 171.03s, a second target in 375.95s. The
percentage of targets located is 75% and the coverage achieved is 83.87%. The above
average target times can be attributed to the selection method of GA3, as discussed in
Section 6.3.11. The reason for the algorithm not achieving better performance is the
inclusion of the obstacle avoidance, which has had an interesting effect on GA3. With the
inclusion of the obstacle avoidance, which as stated replaces individuals in the population
with randomly selected points, the population has had a more dominant random effect
introduced. This has resulted in GA3 achieving more coverage while still achieving good
times for the location of the targets. Even with a low mutation rate the population is being
constantly changed, but when in the vicinity of a target the algorithm can be seen to move
towards it. In theory the mutation rate has been increased to more than a whole individual in
each generation. This shows again that an increased random element in an algorithm can
achieve high coverage if the algorithm is able to move away from located targets. The results
obtained from a typical GA3 run are shown in Figure 6.23. Again further data can be found
in Appendix C2.9.

 102

Figure 6.23: Map from a GA3 run within Environment 2

6.4.10 Genetic Algorithm 4

The final algorithm to be run is GA4. Individual run results are presented in Appendix
C2.10. The average results from this algorithm are a first target location time of 215.66s and
a second time of 356.18s. The average target percentage is 70% and the coverage is 82.66%.
The first point to note about this algorithm is that the first target time is an average value
when compared to the other algorithms. Though the elitist method is used, the higher
mutation rate diversifies the population, hence increasing the time taken to locate the targets.
The second target time is above average. This shows that with an increased mutation rate and
with the increased random element included with the addition of the obstacle avoidance, the
algorithm seems able to locate the second target quicker. Since the coverage is increased due
to the random elements, this would indicate that as the coverage increases the chances of
locating targets increases. The percentage target found is average. This would also indicate
that a high random element may lead to increased performance. Having stated this, the
coverage is average. This algorithm does do better than algorithms that have a structure
designed around the HillClimbing and have a reduced random element. Figure 6.24 shows an
example run from GA4.

Figure 6.24: Map from a GA4 run within Environment 2

 103

6.4.11 Discussion

Environment 2 has been designed to examine how obstacles affect the performance of the
algorithms under investigation. To achieve this, a simple method of obstacle avoidance has
been implemented to enable the robot to locate obstacles. As with the experiments carried
out in Environment 1, the algorithms all ran, showing once again that this method of
searching environments has potential. Each of the algorithms had varying success and
conclusions can be drawn from the data presented. Table 6.2 shows the average run data
from the experiments carried out in environment two.

Table 6.2: Experiment 2 – Single Robot Results

Algorithm
Time for target 1,

seconds
Time for target 2,

seconds
% Target

Found
%

Coverage
Lawnmower 48.79 N/A 50 50.45

Random 234.50 440.52 75 82.34
RRHC 228.07 525.395 60 78.82

TR 158.29 211.60 70 84.42
TRRHC 291.72 188.82 50 74.81
RRSA 168.63 360.18 85 84.68
GA1 195.66 302.85 60 84.68
GA2 257.58 363.36 70 86.63
GA3 171.03 375.95 75 83.87
GA4 215.66 356.18 70 82.66

From the data it can be seen that those algorithms that contain high random elements, or
have been affected by the method of obstacle avoidance (GA3 for example) achieve higher
average coverage and as a result achieve a high percentage of targets located. This provides
evidence that gaining a higher coverage increases the chances of locating targets. The
exception to this rule is GA1. GA1 achieved a high coverage, however on average only
achieved 60% target location. Looking at the maps generated by the runs shows the same
issue as discussed in 6.4.3 with regards to the robot going to a targe,t but not marking it as
such. Since this behaviour is only evident in a small number of the runs presented, i.e.
7.85%, it can be said that it does not have a major impact on the overall results. One
interesting point about this issue is that it seems to have affected GA1 more than any other
algorithm. 42% of runs containing this issue are GA1 runs. This would suggest that another
reason exists for this anomaly. It could be contributed to the method in which the algorithm
converges on a target. The algorithms that have a high rate of convergence, HillClimbing
based and Elitist based algorithms have less occurrences of this anomaly than the other
algorithms. The reason for this could be that these algorithms are seeking the highest
temperature point. Once they have located it they maintain the point and do not accept a
lower value, unlike the other algorithms that replace the current point with any point above
the minimum temperature of interest. It should be noted that the RR Simulated Annealing
algorithm has no occurrences of this anomaly. The reason for this is that it also maintains the
best point found so far, though it can replace it with a lesser point.

Looking at the results together it can be seen that the overall best performance, with regards
to Environment 2, is provided by the RR Simulated Annealing algorithm. This algorithm
located both targets quickly and achieved the highest percentage of targets located over all
the runs. The coverage achieved is also amongst the highest. The Tabu Random algorithm
also performs well; both targets are located quickly with both a high percentage of targets

 104

located and a high coverage achieved. The next algorithms to perform well are the GAs.
GA3 has achieved the best average results than the other GAs. The other GAs all performed
approximately the same. The worst algorithms are Tabu RR HillClimbing, RR HillClimbing,
Lawnmower and Random. The HillClimbing based algorithms have struggled with the
inclusion of obstacles and since the robot is being repelled by obstacles there is a tendency
for these algorithms to remain in the vicinity of a target, hence reducing the chances of other
targets being located. The Lawnmower performed poorly because of the method in which it
carries out the search. The parameters remain constant, hence the robot becomes stuck in a
repeating pattern. It is possible to alter the step size the robot takes in either direction but a
decision on the step size is then required. Too small and the algorithm will take an age to
search a room; too big and the algorithm will bounce off obstacles. With limited information
about the environment this would be a difficult decision to make, though this does open up
the possibility for a hybrid based Lawnmower algorithm. The Random algorithm results
were average. This indicates, with the results obtained from the other algorithms, that
although having a high random element within an algorithm is desirable some method of
converging on a target or avoiding areas that have been searched is required to enable the
search to be carried out in the most efficient way.

6.5 Complex Environment

As with the previous sections the data presented in this section is the average data taken from
ten runs of each of the algorithms considered. The individual run data can be found in
Appendix C3.

6.5.1 Lawnmower

The first algorithm to be run in Environment 3 is the Lawnmower. The Lawnmower only
found one target, in a time of 28.81s, and the coverage achieved is 16.62%. The path taken
by the Lawnmower can be seen in Figure 6.25. This shows that the robot started out well and
continued to move as directed. The reason for the poor performance is that the robot
becomes stuck in the top right hand corner of the environment. As discussed in Section 6.4.2,
this is the major problem of the Lawnmower algorithm. Once stuck it cannot recover as it
repeatedly selects the same points to travel to.

Figure 6.25: Map from a Lawnmower algorithm run within Environment 3

 105

6.5.2 Random

The results from the Random algorithm, presented in Appendix C3.2, indicate that it is better
than the Lawnmower. The Random algorithm located 37.14% targets on average. The target
times are 91.77s, 238.19s, 326.47s and 436.22s for the four targets that have been located
across the ten runs. The coverage achieved is 41.58%. From these results it can be concluded
that Environment 3 is more difficult for the algorithm to run in. The highest number of
targets located in one run is four and seven targets are present. It should be noted that there
exists terminating conditions that stops the search after either 600s or 250 points have been
evaluated. In the case of this algorithm the 250 evaluations are achieved. This shows that in a
large environment the terminating conditions should be increased. The reason the
terminating conditions is in place at these values is to allow a comparison to be made
between all the environments, to enable the comparison between multi robot results and to
allow the simulations to run in a reasonable time. From the two algorithms run it is clear that
the Random algorithm is better. An example run of the Random algorithm in Environment 3
is shown in Figure 6.26.

Figure 6.26: Map from a Random algorithm run within Environment 3

6.5.3 Random Restart HillClimbing

The next algorithm to be run in Environment 3 is the RR HillClimbing algorithm. In the
previous environments this algorithm has not performed well when compared to other
algorithms. In this environment the algorithm has preformed better than the Lawnmower but
worse than the Random algorithm. The average results gained by the RR HillClimbing
algorithm are 35.71% for targets located and 32.82% for coverage, with the following time
for locating the targets, 46.83s, 144.85s, 295.91s and 260.06s. As is the pattern with the
HillClimbing based algorithms, the targets are located quicker than those in the Random
algorithm. This can be explained by the RR HillClimbing algorithm’s ability to go straight
for a target point once a higher temperature has been detected. Nevertheless the number of
targets located is poor. When compared to the coverage achieved it can be seen that a pattern
exists, as stated, between the coverage achieved and the number of targets located. The RR
HillClimbing algorithm has shown that the Random algorithm results are not poor when
considered in this environment, as the results from the RR HillClimbing algorithm are poor

 106

in comparison. Figure 6.27 shows an example run of the RR HillClimbing algorithm and the
individual run data can be found in Appendix C3.3.

Figure 6.27: Map from a RR HillClimbing algorithm run within Environment 3

6.5.4 Tabu Random

The Tabu Random algorithm has so far been shown to be a good candidate for use within an
USAR scenario. Its performance in Environment 3 has been the best from those algorithms
run so far. The percentage of targets located is 42.86% and the coverage achieved is 45.10%,
again showing a relationship between coverage and the number of targets located. The
reason for the high coverage is, again, the ability of the Tabu Random algorithm to move to
areas which have not been searched. This is, as discussed previously, a direct result of the
Tabu List that is maintained. The target located times achieved are, 43.23s, 194.84s, 338.88s
and 415.63s. When compared to the algorithms run so far, the first time is slow. However as
the times are compared sequentially, the times achieved by the Tabu Random algorithm
become faster but the RR HillClimbing algorithm still outperforms with regards to the target
location times. Though the Tabu Random algorithm has not located all the targets nor
achieved full coverage, it has once again shown to be a viable solution within the context of
this work. An example from a Tabu Random run is shown in Figure 6.28 with additional run
data presented in Appendix C3.4.

6.5.5 Tabu Random Restart HillClimbing

As with the RR HillClimbing algorithm, the Tabu RR HillClimbing algorithm has not
performed well in the environments considered previously. In this environment the Tabu RR
HillClimbing algorithm performed, overall, slightly better than the Lawnmower. The average
target located percentage is 27.14%, the coverage 34.20% and the target location times are
33.47s, 173.69s and 324.45s. The first target located time is the second best time thus far and
again shows the power of a HillClimbing based algorithm with regards to locating targets.
However the performance after the initial point begins to deteriorate. From the results
presented so far the Tabu RR HillClimbing algorithm is a below average result. A run from
the Tabu RR HillClimbing algorithm is shown in Figure 6.29. Appendix C3.5 contains
further Tabu RR HillClimbing results.

 107

Figure 6.28: Map from a Tabu Random algorithm run within Environment 3

Figure 6.29: Map from a Tabu RR HillClimbing algorithm run within Environment 3

6.5.6 Random Restart Simulated Annealing

The RR Simulated Annealing algorithm is the next algorithm to be run in Environment 3.
Further data on the individual runs can be found in Appendix C3.6. The average results
gained from the ten runs are as follows: percentage targets located 45.71%, coverage
achieved 44.62%, with target location times of 33.82s, 234.49s, 334.30s and 375.75s.
Compared with the results presented, the percentage targets located lie in the middle of the
results. Though this algorithm did detect four targets in one run, it did so solely in this one
run. When compared to the other results though, this value is one of the highest gained so
far. The coverage achieved is also one of the highest achieved. This has continued on from

 108

the first two environments where the RR Simulated Annealing algorithm performed well
with regards to coverage. As has been discussed, the coverage achieved can be related to the
random nature of this algorithm. The target located times achieved are interesting in that the
first target located by this algorithm is done so in a relatively quick time, as are all the first
targets in the other algorithms. However there is then a large gap between the location of the
first target and the second target. Initially, this has been put down to the operation of the
algorithms. After further consideration it can be seen that a pattern has now formed where
there exists a gap between the first target time and the second target time. This is evident in
all the algorithms and can be related to the proximity of a target to the insertion point and
then the dominance this target has over the algorithms. An example run form the RR
Simulated Annealing is shown in Figure 6.30.

Figure 6.30: Map from a RR Simulated Annealing algorithm run within Environment 3

6.5.7 Genetic Algorithm 1

GA1 has performed above average in Environments 1 and 2 and is expected to do well in
this environment based on the performances so far. The average results from the GA1 runs
are: 42.86% for targets located, 36.88% for coverage achieved and target location times of
70.32s, 177.18s, 334.30s and 362.82s. Compared to the runs done so far, GA1 has performed
at an average level. Due to the extended distances involved in travelling between points in
this larger environment, an impact on GA1 has occurred, namely the increased time to locate
targets. Since greater distances are being travelled between points it is thought that this
would increase coverage. However it does not seem to have had this effect. Instead the
coverage achieved is very poor. The reason for the poor coverage is a result of the lack of
mutation and the dominance of a target once it has been located. GA1 travels to each point
within the population until a higher temperature point is detected or a population is
evaluated. Since there is a low mutation rate the population tends towards a target point.
Though this is a desired effect it limits the points that can be travelled to, hence reducing the
coverage. The dominance of a target point is shown to affect GA1. Figure 6.31 shows an
example run of GA1 and individual run data can be found in Appendix C3.7.

 109

Figure 6.31: Map from a GA1 within run Environment 3

6.5.8 Genetic Algorithm 2

As with GA1, GA2 has performed well in the previous environments. In the third
environment the performance has been above average with the following results: percentage
of targets located 42.86%, percentage coverage 41.13%, with target location times of 38.40s,
158.63s, 250.29s and 374.02s. This shows that the performance of GA2 remains consistent
even in larger environments. The coverage achieved is less than some of the other
algorithms, though this is to be expected with GA runs as supported by previous data.
However the number of targets located is high compared to the previous Environment 3 data,
again an expected result for GA2. An interesting point about the GA2 runs is the time taken
to locate the targets. The first target time is above average when compared to the other
algorithms. Nevertheless, the target times that follow are all very low and are well above
average. GA2 has achieved average results for the target’s times in previous environments so
this is an unusual result. As mentioned in the previous section, to evaluate each individual in
the population within this environment means that the robot has to cover a greater distance.
Though this increases the coverage of the environment it also impacts on the target location
times, as more time is spent travelling to the individuals in the population. The times
indicated by the results show that GA2 has, in some way, compensated for this extra time
and has achieved very good times. The method used to compensate will be a result of the
mutation rate used. As discussed, the mutation rate for GA2 is 10% which equates to five
genes in every population. When the population is evaluated and reaches the mutation stage
the mutation can have a dramatic effect on the individual, by changing one of the most
significant genes in the individual or a small effect by changing one of the least significant
genes. There is an equal chance that either will occur. In changing one of the least significant
genes the individual is fined tuned, the point is slightly altered about the parent point. The
effect this has on the algorithm is what is being seen in these results. Since the algorithm is
operating in a larger environment, interaction with obstacles occurs less than it did in
Environment 2. To reiterate, during a GA run, when an obstacle is detected, the new point
generated replaces the previous point in the population. Since this happens less in
Environment 3, the algorithm is getting a chance to evaluate all the points in a population
and since some of these points will be fine tuned good points, the chances of finding a target

 110

quickly increases. This is what occurs in the data shown here. A method of checking if this
theory is sound would be if the target location time results from GA4 (which also has a 10%
mutation rate) are amongst the lowest of the algorithms. An example run from GA2 is shown
in Figure 6.32. Further data on the GA2 runs in Environment 3 can be found in Appendix
C3.8.

Figure 6.32: Map from a GA2 within run Environment 3

6.5.9 Genetic Algorithm 3

The results from GA3 are as follows: the percentage of targets located is 50%, the coverage
achieved is 40.90% and the target times achieved are 43.18s, 235.69s, 342.09s, 390.21s and
428.62s. Further data is available in Appendix C3.9. GA3 is the only algorithm which
located a fifth target. As shown in the previous environments, the strength of GA3 has been
the high percentage of targets located even when coverage is small. This is, as discussed, a
result of the elitist selection method with a small mutation rate. The target location times are
high. This is a result of the robot having to travel greater distances in the early stages of each
random restart to evaluate individuals. After a random restart the population contains
individuals which are randomly selected. This means that, in theory, each individual is
located away from any of the others, requiring the robot to travel between them. Though the
target location times are high, GA3 overall has given an average performance when
compared to the other algorithms. An example GA3 run is shown in Figure 6.33.

 111

Figure 6.33: Map from a GA3 run within Environment 3

6.5.10 Genetic Algorithm 4

The last algorithm to be discussed is GA4 and the relevant data is in Appendix C3.10. The
average results from this are as follows: the percentage of targets located is 35.71%, the
coverage achieved 40.50% and the target location times are 41.64s, 158.84s, 265.74s and
526.75s. The number of targets located is below average when compared to the other
algorithms and the value for the coverage is below average. When compared to the previous
results GA4 has given a typical performance. The interesting results are the target location
times. The first time is an average time and, when looking at the previous results, is
expected. The next two target location times are interesting in that they exhibit the same
behaviour as described in the overview of the GA2 results. Both the second and third results
are better than expected, providing further evidence to the conclusion drawn in the
discussion of GA2. This would suggest that when given a large open environment, a GA
with a high mutation rate is capable of locating targets quickly. Figure 6.34 shows a typical
GA4 run.

 112

Figure 6.34: Map from a GA4 run within Environment 3

6.5.11 Discussion

With all the algorithms run in Environment 3 an overall comparison can be made of the
algorithms and the performance in Environment 3. The aim of Environment 3 is to further
test the algorithm’s ability to search environment with the included challenges of the
environment being larger than the first two and more targets being present. The average
results achieved from each algorithm is presented in Table 6.3.

Table 6.3: Experiment 3 – Single Robot Results

Time for target found, seconds
Algorithm

1 2 3 4 5 6 7

%
Target
Found

%
Coverage

Lawnmower 28.81 N/A N/A N/A N/A N/A N/A 14.29 16.62
Random 91.77 238.19 326.47 436.22 N/A N/A N/A 37.14 41.58
RRHC 46.83 144.85 292.91 260.06 N/A N/A N/A 35.71 32.82

TR 43.23 194.84 338.88 415.63 N/A N/A N/A 42.86 45.10
TRRHC 33.47 173.69 324.45 N/A N/A N/A N/A 27.14 34.20
RRSA 33.83 234.49 334.30 375.76 N/A N/A N/A 45.71 44.62
GA1 70.32 177.18 334.33 362.82 N/A N/A N/A 42.86 36.88
GA2 38.40 158.63 250.29 374.02 N/A N/A N/A 42.86 41.13
GA3 43.18 235.69 342.09 390.21 428.62 N/A N/A 50.00 40.90
GA4 41.64 158.84 265.74 526.75 N/A N/A N/A 35.71 40.50

The first point to note from these results is that no one run, from any algorithms, located all
the targets. Since most of the algorithms stop after the total 250 evaluations have been made,
the apparent lack of performance is a result of the terminating condition being met. However
the data does provide a lot of information. Even in the limited runs GA3 performed well with
regards to target location, with one run locating five targets. The size and openness of the
environment and GA3’s random restart has enabled the algorithm to look further a field and

 113

this has increased the chances of locating targets. Nevertheless the coverage is not as high as
that achieved by other algorithms. This is the result of the dominance of a point which occurs
when a target is almost located.

The second point to note from the data presented is the difference between the time in the
location of a first target and the location of a second target. In all the algorithms the
difference is large. This indicates that when a dominant target exists, such as the target which
is located beside the insertion point, the robot has a tendency to repeatedly migrate towards
it. This dominant target has an effect on the algorithms running but the algorithms are still
able to search the rest of the environment.

Another point to note is the relationship between the coverage and the number of targets
located. As the coverage increases, the number of targets located increases. It has been
discussed that in order to achieve high coverage, an algorithm that contains a high random
element within it should be used. Again the results show that there is a relationship between
the random element in an algorithm, the coverage achieved by it and the number of targets
located. Though the GAs do slightly work against this trend, they still fundamentally follow
this relationship. The results also show, though not to as great an extent as found in the
previous environments, that the algorithms which maintain a dominant point locate a first
target quicker than other algorithms. However this seems to be the case only for the location
of a first point, as the other target location times seem to vary, with the exception of the GA2
and GA4 times that both achieve quick times as discussed.

Comparing the algorithms within Environment 3, the poorest performing is the Lawnmower.
The reason for this is the inability of the algorithm to alter its path. The best performing
algorithm, on average, is GA2. GA2 did not achieve the highest number of targets located or
the highest coverage but the target location times it achieved have been consistently the
highest, with the exception of the above average first target location time. The next algorithm
to perform best is the RR Simulated Annealing, followed by GA3, GA4 and Tabu Random.
GA3 is the average result of the group. Those algorithms that performed below average were
the Random, GA1, Tabu RR HillClimbing and RR HillClimbing. From these results it can be
seen that those algorithms that contain both a high random element and some structure to the
selection of points perform well.

6.6 Summary

The objective of this chapter has been to establish if the algorithms presented in Chapter 5
can be used in the manner described in this work and to indicate, with regards to the results
presented, which algorithm would be best suited to this use within a single robot case. It has
been established that the algorithms discussed can be implemented in the task described,
with the exception of the HillClimbing algorithm. This conclusion is backed up by the
evidence provided throughout this chapter. With regards to the best performing algorithms in
a single robot case, those algorithms that contain both a high random element and some
structure to the selection of points perform well. The algorithms that show this are the Tabu

Random and RR Simulated Annealing algorithms and GA2, GA3 and GA4. Out of these five
the best performing algorithm is hard to establish as there is not much of a performance
difference between them. However the Tabu Random algorithm is simple to implement when
compared to the other algorithms. Since it has similar results and is easier to implement, this
algorithm would be the best choice for use in a single robot case.

 114

The chapter started out by discussing the environments that each algorithm was to be tested
in. The first environment that the algorithms have been tested in is discussed and what the
aim of using this environment is, namely to test the algorithms to see if they can be used in
this application. The second environment was designed with obstacles to enable the study of
the impact obstacles have on the performance of the algorithms. Throughout all of the
Environment 2 runs, and subsequently Environment 3, the method of obstacle avoidance
implemented has been shown to work. The third environment has been designed to test if the
algorithms could operate in larger environments.

The results from the first environment were then presented. The majority of the algorithms
showed that they can be used for this application. The exception is the HillClimbing
algorithm which failed to make any impact. From the results presented it has been found that
the algorithms which contained a high random element achieved better coverage, but the
algorithms that allowed dominant points are able to locate the targets in a much quicker time.

The chapter then presents the results from Environment 2. With the obstacles introduced the
performance of the algorithms has been altered. However it is again seen that the algorithms
which contained a high random element are able to achieve both a high coverage and locate a
high number of targets.

The final environment was then used to run the algorithms in. It has been shown that the
algorithms do work in Environment 3 and that those algorithms which contained a high
random element are able to achieve both a high coverage and locate a high number of
targets.

From the results presented in this chapter it can be seen that all the algorithms discussed in
Chapter 5, with the exception of the basic HillClimbing algorithm, are suitable for the
searching environments via a single robot. The results also show that algorithms which
contain a high random element and have some control over how the next point is to be
selected, namely Tabu Random and RR Simulated Annealing, provide good results. The
results also show that Genetic Algorithms 2, 3 and 4, also provide good results. Though the
other algorithms each have strengths the algorithms named consistently preformed well over
all the environments and as such can be considered good candidates for the searching of
environments when using a single robot. These algorithms may provide better results if
adapted for use on a multi robot platform. The Tabu Random algorithm stood out throughout
all the environments and as such would be a suitable algorithm for implementation.

 115

Chapter 7

Simulation Results: Multi Robot

7.1 Introduction

The aim of the previous chapter was to establish if the algorithms presented in Chapter 5 can
be used in the application described and which algorithms perform the best within a single
robot case. It was established that the algorithms are suitable for use to achieve the aim of
this work. However this was for a single robot case. The aim of this chapter is to establish if
the best performing algorithms from the previous chapter can be used to control multiple
robots and to consider if an improvement in the performance is achieved when employing
such a multi robot approach.

To achieve this aim the simulation used in this study has to be altered to be able to handle
multiple robots and the interactions between them. After this stage the algorithms chosen to
be run in the multi robot case will need to be selected and how the algorithms are to be
implemented needs to be decided. The algorithms chosen are based on the results and
conclusions from Chapter 6.

To achieve the aim of this chapter the results will be studied and discussed. The first stage is
to present the results, from each algorithm chosen, in the same manner as carried out in
Chapter 6. From the results presented a discussion about how each algorithm has performed
and how each algorithm performed with respect to the other algorithms run is presented.
Since the ultimate aim of this chapter is to establish if the results presented here indicate a
better performance in the task than those presented in Chapter 6, the results gained from the
experiments carried out with regards to this chapter need to be compared to the results from
the previous chapter. This comparison happens after the completion of the last algorithms in
each environment.

This chapter is structured as follows. Section 7.2 discusses the implementation of the multi
robot simulation and which algorithms are to be used in this chapter. The results from the
first environment are presented and discussed in Section 7.3, with a comparison made to the
results in Chapter 6. Section 7.4 presents and discusses the results from runs carried out in
Environment 2, again with comparisons made to the Environment 2 results from Chapter 6.
The next section, Section 7.5, is concerned with the results gained from Environment 3. The
penultimate section, Section 7.6, provides a review of all the results from both Chapters 6
and 7 and Section 7.7 presents a summary of this chapter.

7.2 Implementation

A simulation which can handle multiple robots needs to be implemented. Also the search
algorithms to be run in the multi robot case need to be selected and suitably adapted to allow
operation in the multi robot case. The environments and how the robots interact with one
another also require consideration.

 116

7.2.1 Simulation

The simulation implemented in this chapter is exactly the same as that used in the previous
chapter, with the exception that the simulation runs the model five times as opposed to one.
The operation of the simulation is simple, once the variables have been calculated for one
model; the model is run again until the model has been run five times, with each run
representing a different robot.

At this stage the reason for five runs of the model should be explained. Five runs of the
model represent five individually controllable robots. Five robots have been deemed an
acceptable number of robots to be run within the three environments used. This number is
sufficient to illustrate the benefits for much larger numbers of robots.

In this particular case each of the five robots is inserted into the environment at the same
point with a gap of twenty seconds between each insertion. This better replicates the real
world situation were only a small number of spaces exist for the robots to enter. The time
gap of only twenty seconds is used to aid in the time taken to run the algorithms. However
this could be achieved in a real world situation where either the robots are following one
another and line up to start from the same point or the method of insertion used allowed the
robots to start twenty seconds after each other. Considering the distances that the robots
could achieve in twenty seconds, this would allow plenty of time to allow the robots to
escape one another.

7.2.2 Algorithms

The algorithms chosen to be run in the multi robot case are based on the results presented in
Chapter 6. The best performing algorithms over all the environments have been chosen and
are discussed next with a description of how the algorithm is to be implemented in a multi
robot setup. The reason for the selection of only some of the algorithms considered in the
previous chapter is that since deficiencies in some of the algorithms have been spotted, only
those algorithms that performed well in the single case should be considered in the multi
robot case.

7.2.2.1 Tabu Random

The Tabu Random algorithm performed well in Chapter 6 with a good balance between
target location times, targets located and coverage achieved.

The main aspect of the Tabu Random algorithm is the Tabu List. In the multi robot case
there exists a global Tabu List in which, once each robot has evaluated a point, the points
evaluated are added to it. All aspects of the algorithm remain the same as Chapter 6. Each
robot updates the global Tabu List and the selection of points is made against the Tabu List.
This is a centralised control method as the global Tabu List needs to be maintained at a
single station that each of the robots can access.

7.2.2.2 Random Restart Simulated Annealing

The next algorithm that is to be tested in the multi robot case is the RR Simulated Annealing.
Since no natural way of assigning multiple robots exist with the implementation of the RR
Simulated Annealing algorithm, the algorithm is implemented in a simple way. Each robot
runs a single case of the algorithm. The overall result achieved is a combination of the
individual results achieved. This is a decentralised approach as the performance of each
robot is not dependent on the performance of another, though the data from each robot is still
required to be transmitted to a base station.

 117

7.2.2.3 Genetic Algorithms

GA2, GA3 and GA4 were also amongst the best performers from the single robot runs. Over
all the environments each achieved above average results and should be considered for the
multi robot case.

Genetic Algorithms naturally provide a means of implementation in a multi robot case. Since
each GA has a population size of five, each robot can be assigned one individual in the
population for each generation. Once each robot evaluates the assigned individual, a
centralised station can evaluate the population and generate a new population allowing new
individuals to be assigned. In a sense five different points are being searched at any one time
and as the GA converges on a point, there exists five chances of the target being found
accurately which, in theory, decreases the time for target location. It is acknowledged that
the robots have to wait for each other some of the time and the impact of this requires
evaluation.

7.2.3 Environments

Since the aim of this chapter is to establish if there is an advantage in using multiple robots
over a single robot when using the same algorithms, the environments used will be the same
as those describe in Chapter 6.

7.2.4 Additional Points

There are some small additional points that require mention:

• The coverage achieved by each algorithm is a combination of the individual coverage
of each robot.

• Each robot treats the other robots as obstacles. The other robots are detected, and

handled, using the method described in Chapter 4. This method is used in
Environment 1, however the obstacle avoidance for the walls is not considered.

• All other functions of the robots are as described in Chapter 6.

7.3 Simple Environment

As in Chapter 6 the first set of results presented are those associated with runs carried out in
the simple environment, Figure 6.1. The aim of this environment is to show that the multiple
robot search of the environment works satisfactorily. The results from the individual runs
carried out by each algorithm, in this environment, can be found in Appendix D1. As
mentioned in the previous section, no changes are made to the environment the algorithms
are run in, nor have any changes been made to the robot model, controller or the fundamental
algorithms, other than changes required for the multi robot implementation. The one
additional feature added in for this first environment is the obstacle avoidance, which is used
solely for detecting other robots. The first environment still uses constraints on the selection
of the points to keep the robots away from the walls.

This section presents the average results with a discussion for each algorithm. The results
from all the runs made in the environment are then compared and discussed. Since the aim of
this chapter is to investigate the effect of a search of an area by multiple robots over a single
robot the results from both require comparison. The comparison between the single robot
case and the multi robot case for the first environment is made at the end of this section.

 118

7.3.1 Tabu Random

As discussed in Section 7.2.2 the first algorithm to be implemented in the multi robot case is
the Tabu Random Algorithm. This algorithm performed well in the single robot case. An
example run from the Tabu Random algorithm is shown in Figure 7.1. The individual run
results are presented in Appendix D1.1.

Figure 7.1: Map from a Tabu Random algorithm run within Environment 1

It can be seen in Figure 7.1 that the Tabu Random algorithm can be successful implemented
in the multi robot case. The average data from the runs shows that both targets are
successfully located in all runs, with location times of 43.33s and 71.26s. The coverage
achieved is 99.34%. Both targets are located in quick times and the search achieved full
coverage. Since both targets are located and complete coverage is achieved, this can be said
to be a near perfect run.

7.3.2 Random Restart Simulated Annealing

The next algorithm to be run is the RR Simulated Annealing algorithm. As with the Tabu
Random algorithm this algorithm has been shown to work in the multiple robot case. The
average results achieved are similar to those of the Tabu Random algorithm, with both
targets detected in every run and near complete coverage, 99.13%. The target location times
are 31.73s and 94.58s. The first time is quicker than the time achieved by the Tabu Random
algorithm. This can be contributed to the RR Simulated Annealing algorithm’s dominant
point method of searching the environment. As this algorithm searches the environment one
point is constantly maintained as the best and, as discussed in Chapter 6, this allows the
algorithm to locate a target point quickly, as the algorithm is designed to converge on the
point. The second target location time is higher than that achieved by the Tabu Random
algorithm. This can be explained by the decreasing radius in which the RR Simulated
Annealing algorithm can choose points in.. With each iteration of the RR Simulated
Annealing algorithm the radius in which the next point is selected is reduced. This has the
effect of limiting the search range of the algorithm. As the algorithm converges on one target
point this point becomes dominant and the algorithm can only escape this point once a
random restart occurs. A random restart can only occur within this algorithm once the
algorithm’s Annealing Schedule reaches the minimum value. If each robot in the run
converges to the same target then any other target can only be detected once each robot has
converged on a point. Since this takes time to complete, the other target will take time to

 119

locate. Figure 7.2 shows an example run from the RR Simulated Annealing algorithm.
Appendix D1.2 contains the individual run data for the Simulated Annealing algorithm.

Figure 7.2: Map from RR Simulated Annealing algorithm run within Environment 1

7.3.3 Genetic Algorithm 2

The first of the Genetic Algorithms to be run is GA2. As with the first two algorithms
presented, GA2 has shown to work in the multiple robot case. The average results gained
from GA2 are as follows: both targets were located in every run with an average of 97.92%
coverage. The target location times are 41.27s and 155.31s. Although GA2 did achieve near
full coverage, the coverage achieved is lower than that of both the Tabu Random and RR
Simulated Annealing algorithms. The reason for this slightly reduced coverage is that the
algorithm is attracted to either one of the targets and remains in the vicinity of the targets or
is at a point travelling between the targets. While doing this the algorithm is leaving a small
area at the bottom of the environment unsearched. This has occurred in each run and shows
the algorithm’s reliance on having a target within the environment. The first target time is
not as quick as that achieved by the RR Simulated Annealing. However it is slightly quicker
than that achieved by the Tabu Random algorithm. This shows that GA2 can quickly
converge on a point as previously discussed. On the other hand, the second target location
time is the poorest time yet. One reason for this is the interaction between the robots within
the algorithm. As the robots converge on a target point, the interaction between them
increases. Since the robots treat one another as obstacles, the robots stop and reassign the
points they are to evaluate. This continues to happen until no obstacles are present within the
range of the robot’s sensor. Since the robots are crowded into one area it takes time for each
robot to escape the sensor range of the other robots. Hence the search slows while the robots
try to travel away from each other. This slows the search as technically no robot is searching
the environment and when one robot does move away from the other robots, once it reaches
the point it is to evaluate, it remains there until the other robots have evaluated the points
assigned to them. This process takes time and as a result the location time, once one target
has been located, will be high. An example run from GA2 is shown in Figure 7.3 with the
individual run data presented in Appendix D1.3.

 120

Figure 7.3: Map from a GA2 run in Environment 1

7.3.4 Genetic Algorithm 3

The next algorithm to be discussed is GA3. The average results achieved by GA3 are target
location times of 52.30s and 207.57s. The percentage of targets located is 90% and the
coverage achieved is 96.67%. These results are interesting as not only are the target location
times high for GA3 but only 90% of the targets were located. This indicates that a problem
occurred in one of the runs, as the expected result in Environment 1 would be that both
targets are located in all runs. The map from GA3 run ten is shown in Figure 7.4. This figure
shows that neither target was located. Though the top left hand target looks as if it has been
located, this is an occurrence of the problem discussed in Chapter 6, that of a target
seemingly being detected but due to the threshold and rounding of the points used in the
temperature matrix targets are missed. Although the robots miss this first target, it has been
shown that with repeated visits to a target point, the target will become marked. However in
this run the algorithm does not make repeated visits to the point. It can be seen that the
robots remain at set points after a time and no further travelling is done. The reason for this
is that full population is not being evaluated. In Section 7.2.2.3 the method used by the GAs
in the multi robot case has been discussed. Once all individuals in a population have been
evaluated the full population is evaluated and the next generation is created. In Figure 7.4
only three robots can be seen traversing the environment.

This means that two robots are caught at the insertion point. Since the two robots are stuck
they are not able to evaluate the assigned individuals and as a result the full population
cannot be evaluated. Since the full population cannot be evaluated the other robots remain at
the current assigned points. Reviewing the data from the run indicates that when the fourth
robot is inserted into the search it remains at the insertion point. The reason for this is that
the fourth robot is not assigned a point, hence remains at the insertion point. This occurs due
to the way the algorithm works. When a robot has evaluated a selected point the algorithm
assigns the next available point to it. If there are no available points then the robot remains at
the current point. When the fourth robot enters the search no points are available for it to
evaluate so it remains at its current point waiting for the next generation. By the time the
next generation begins the fifth robot has been inserted into the search. This places the fourth
and fifth robots in exactly the same location. Since no communications exist between the
robots, neither is able to tell the other that they are both there. The obstacle avoidance from
both robots detect each other resulting in the robots not being able to escape from the

 121

insertion point. This is an interesting issue and one that requires further work. However this
is outside the scope of this work as this will either involve robots with the ability to
communicate or involve additions being made to the algorithms.

Figure 7.4: Run ten from GA3

Looking at the average results gained, GA3 is the worst algorithm to be run so far. Both
target location times are high and the coverage is low, when compared to the other results
achieved. The reason for the target times is the slow convergence on the target points caused
by the robots avoiding one another and the robots having to wait for one another to evaluate
individuals in the population. The coverage may be the lowest but it still is nearly full
coverage and considering that run ten stopped moving after a time this coverage can still be
reported as being good, as all the other coverage’s achieved are over 98%. An example run
from GA3 is shown in Figure 7.5. The results show that though GA3 did suffer from a
problem regarding the insertion of the robots, it only affected one run and, overall, GA3 has
been shown to work. Individual run data can be found in Appendix D1.4.

Figure 7.5: Map from a GA3 run in Environment 1

7.3.5 Genetic Algorithm 4

The last algorithm to be run in the first environment is GA4. The average results from the
runs give target location times of 59.64s and 143.50s. The percentage of targets located was

 122

75% and the coverage achieved is 95.81%. As with GA3 the first point to note from this data
is the value stated for the percentage of targets located. The individual results, presented in
Appendix D1.5, show that two runs suffered from a similar problem to that of GA3 run ten
and that a third run only detected one target. GA4 run three is affected by the same problem
as that of GA3 run ten, where robots have become stuck at the insertion point. However GA4
run two is affected by a similar problem but not the same problem. All the robots in run two
escaped the insertion point, however after converging on one of the target points two of the
robots collided and could not escape from each other. The reason for the collision is that both
robots were heading along paths which were angled from each other in such a way that the
paths intersected at a point, which meant that neither robot’s sensor cone could detect the
other robot. This has resulted in a collision. This would be a rare occurrence as both robots
need to be travelling paths at set speeds and with a set angle between them to allow this to
happen. One method of avoiding this would be to improve the robotic platform by adding
additional sensors. If the robots had side looking sensors they would have detected one
another and the collision would have been avoided. The ninth run simply did not detect a
second target. The plot would suggest that the robots were never assigned points that lead
them to the vicinity of the second target. Though the average coverage is the lowest this has
been affected by the two poor GA4 runs. The other coverage values remain high. The first
target time is the slowest as with the other GAs. This is a result of both the algorithm itself,
due to the high mutation rate, the robots interaction, which causes points to be lost, and the
waiting time involved between the populations. However GA4 did work within the multi
robot framework and Figure 7.6 shows a typical run from GA4.

Figure 7.6: Map from a GA4 run in Environment 1

7.3.6 Discussion

The first set of experiments have been presented and discussed on an individual basis. The
average results are presented in Table 7.1. The aim of this chapter is to establish if using
multiple robots gives an improvement in the search over using a single robot. A discussion of
the multi robot searches has taken place, however to achieve the aim a comparison of the
results presented in this chapter and those for Environment 1 in Chapter 6 is required. To do
this the average results achieved in Environment 1 for the single robot case for the five
algorithms are presented in Table 7.2.

 123

Table 7.1: Experiment 1 – Multi Robot Results

Algorithm
Time for target

1, seconds
Time for target

2, seconds
% Target

Found
% Coverage

TR 43.33 71.26 100.00 99.34
RRSA 31.73 94.58 100.00 99.13
GA2 41.27 155.31 100.00 97.92
GA3 52.30 207.57 90.00 96.67
GA4 59.64 143.50 75.00 95.81

Table 7.2: Experiment 1 – Single Robot Results

Algorithm
Time for target

1, seconds
Time for target

2, seconds
% Target

Found
% Coverage

TR 29.73 159.04 100 99.32
RRSA 35.43 116.20 100 99.23
GA2 27.23 98.69 100 99.20
GA3 24.72 48.09 100 88.15
GA4 30.95 58.00 100 92.68

The most obvious point to take from a comparison of the data in the tables is the difference
in the percentage of targets located. In the single robot case all targets have been found.
These results occurred due to the simplicity and small size of the environment. The
expectation would be that this result is repeated in the multi robot case. This has not occurred
as both GA3 and GA4 did not locate all the targets. The reason why this has happened is
because on certain runs the algorithms stopped running, due to robots becoming stuck
because of either a collision or a problem at the insertion point. Both of these incidents and
the perfect record of locating the targets in the single robot case indicate that the size of the
environment may play a part in the number of robots that can be run in it, meaning that in
some situations single robots may achieve better results than multiple robots. This
conclusion is drawn solely on the percentage targets achieved within environment one.

With regards to coverage, all the algorithms achieved high values in both cases with the only
real notable change being the increase of coverage in GA3 in the multi robot case. The
coverage achieved does vary but by no large degree.

The target location times are the final comparisons to be made. With regards to the first
target location time, with the exception of the RR Simulated Annealing, the single robot case
performed better and by a significant difference in some cases. This is an unexpected result
as the algorithms are fundamentally the same. One reason for this is the existence of other
robots within the environment. Once the robots start converging on a target point there exists
a higher chance of the robots having to avoid one another. This results in the robots being
pushed away from the target. This would suggest that in some cases the addition of further
robots to a search may be a hindrance. The exception to this is the RR Simulated Annealing
algorithms which posted a slightly better time in the multi robot case over the single robot
case. The second target location times show the advantage of having multiple robots with
regards to the Tabu Random and RR Simulated Annealing algorithms. Both have gained far
better times in the multi robot case than the single robot case. The reason for this is that
though some robots head towards one target, other robots search else where, leading to a
greater chance of other targets being located in quicker times. This shows that if the robots

 124

can be controlled in such a way to enable them to search areas away from one another that an
advantage may be gained. With regards to the times achieved by each of the GAs for
locating a second target the multi robot case is worse. The times are worse as a result of the
time taken to evaluate each generation.

The aim of Environment 1 in the multi robot case is to test if the algorithms work and to
provide basic comparison data. The algorithms have been shown to work in the multi robot
case with varying results. The comparison has given mixed results on the advantages gained
by the using multiple robots. In certain algorithms the use of multiple robots has given quick
second target location times but at the expense of increasing the time taken to locate a first
target. The GAs in general have not shown any advantage in the multi robot case. However it
has been acknowledged that the size of Environment 1 may be having an adverse affect on
the higher number of robots. Environments 2 and 3 will provide further evidence to whether
the use of multiple robots offers any improvements over the use of single robots.

7.4 Simple Environment with Obstacles

The next sets of results to be discussed are concerned with the second environment, as shown
in Figure 6.2. The results presented are average results calculated from the data presented in
Appendix D2. The obstacle avoidance is implemented as previously described and acts in the
same way for both the detection of robots and obstacles. With the exception of the Fan Out,
which is discussed next, no other changes are made to the algorithms, the environment or
any of the supporting functions.

7.4.1 Fan Out

During the multi robot GA3 and GA4 runs in Environment 1 it was found that on occasion a
problem occurred with robots escaping from the insertion point. The robots could not move
from the insertion point as they had no point to travel to, as the algorithm could not assign a
point, and became stuck when the next robot entered the environment. Within Environment 2
this problem occurred regularly and for this reason a simple solution was implemented to
avoid it. When each robot enters the environment they are assigned a point to travel to that
allows them to move away from the insertion point. The fan out points, shown in Figure 7.7,
are not included in the search and are simply points that allow the robots to move away from
the insertion point. The results presented in this section do contain elements of the problem
with the insertion point but the occurrences are fewer than without the fan out.

Figure 7.7: Fan Out Points

 125

7.4.2 Tabu Random

The Tabu Random algorithm has performed well so far in both the single robot cases and the
first of the multiple robot cases. The Tabu Random algorithm successfully ran using multiple
robots within the second environment. The following average results have been achieved:
81.94s for the first target location time, 237.95s for the second target location time, all the
targets are located across all the runs and 91.90% coverage has been achieved. From these
results it can be seen that the Tabu Random algorithm has performed well once again. The
first point to note from this data is the 100% target location. This is the first time an
algorithm has located all of the targets within Environment 2. This is a result of the
combination between the multiple robots and the Tabu element of the algorithm. When a
point has been evaluated the Tabu list is updated and all of the robots avoid that point. This
means that the robots have an increased chance of searching areas that have not been
searched. It has been noted that one problem that occurred in the searches of Environment 2
with a single robot is that on occasion the robot would get caught in a cycle moving between
a target and avoiding obstacles. This cannot be avoided for each individual robot but the
Tabu element of this algorithm allows other robots not to repeat the same pattern at the same
point and allowing them to continue the search of the environment. Consequently, this
increases the chance of the algorithm locating further targets. Figure 7.8 shows an example
run from the Tabu Random algorithm. The individual run data is presented in Appendix
D2.1.

Figure 7.8: Map from a Tabu Random algorithm run in Environment 2

7.4.3 Random Restart Simulated Annealing

Figure 7.9 shows a typical run from the RR Simulated Annealing algorithm. This shows that
the multiple robot version of this algorithm has worked well in Environment 2. The average
results from the runs are target location times of 103.59s and 211.19s with 85% of the targets
located and 87.71% coverage. Further data on the runs is provided in Appendix D2.3.

Overall the RR Simulated Annealing performed well. However, some runs did not locate all
the targets. In one run, which can be seen in Figure 7.10, the reason for this is that only one
robot is searching the environment.

 126

Figure 7.9: Map from a RR Simulated Annealing algorithm run in Environment 2

Although the fan out is implemented, it can be clearly seen that the second robot (red line)
travels back to the insertion point. Unfortunately, in doing so the robot has stopped the next
robot travelling to a fan out position as it has been inserted on top of the second robot,
resulting in neither of the robots being able to move. A method of stopping the robots
returning to the insertion point, such as a permanent Tabu zone about the insertion point,
could stop this event from occurring. The other runs which did not locate all the targets did
not so, simply because the robots could not escape the target that has been located in each
run.

Figure 7.10: Run 9 from the RR Simulated Annealing Algorithm

Compared to the Tabu Random algorithm the RR Simulated Annealing algorithm has
achieved a slower time for locating a first target. This can be attributed to the method used
by the RR Simulated Annealing algorithm to converge on a target point, as discussed
previously. Since the Tabu Random algorithm jumps about the search space excluding
points, for a set time, which can be travelled to, it has the ability to find an initial dominant
target quickly, whereas the RR Simulated Annealing algorithm needs to slowly move to a
target as a result of the method used to converge on a point. The time taken for a second
target to be located is faster than that achieved by the Tabu Random algorithm. This is again

 127

due to the method used by the RR Simulated Annealing algorithm to converge on a point.
The RR Simulated Annealing algorithm has the ability to converge on a point, whereas the
Tabu Random algorithm only finds a target if it happens to be in close proximity to a target.
Since the RR Simulated Annealing algorithm can converge on a point it can, as supported by
previous data, move to a target in reasonably quick time. A comparison between the
percentages of targets located shows that the Tabu Random algorithm located all the targets,
whereas the RR Simulated Annealing algorithm only found 85% of the targets. The reason
for this difference is because the Tabu Random is constantly being pushed to search areas
that have not been searched and, in general, has more freedom in searching an environment
as it does not maintain a best point. This contradicts the target location time theory, but since
the RR Simulated Annealing algorithm maintains a best point it is possible that a dominant
point constantly attracts the algorithm. Once the Annealing Schedule has reached the
minimum temperature a restart occurs, however within Environment 2 the targets are in close
proximity to the obstacles and unless the restart point allows the robot to avoid the obstacles
the previously detected target will draw the algorithm to it once again. A permanent Tabu
zone could be placed about targets that have already been located meaning that robots are not
able to locate them again. The coverage of the Tabu random algorithm is higher than that
achieved by the RR Simulated Annealing. This is a result of the method used by the Tabu
Random algorithm, as it generates points at random with no constraints other than those
imposed by the Tabu list. As has been shown, the more random an algorithm, the more
coverage is achieved.

The RR Simulated Annealing algorithm has been shown to work and is able to achieve a
reasonable performance but the Tabu Random algorithm out preformed it by simply locating
all of the targets.

7.4.4 Genetic Algorithm 2

The first of the GAs to be run is GA2. Though the performance of GA2 is among the best in
the single robot case, the multiple robot case has so far shown that problems exist with such
a simple implementation of the multi robot case. This is also shown in the results achieved
with the runs of GA2 in Environment 1. The average results are target location times of
235.04s and 407.54s. These are both very high times when compared to the Tabu Random
and RR Simulated Annealing algorithms and are a result of the time taken for the GA2 to
evaluate each generation. Each robot needs to have evaluated the current individual assigned
to it before a generation can be evaluated and because the robots need to wait for other
robots there is a loss of productive usage of time. This was shown to be the case in
Environment 1 and the pattern has continued. The percentage of the targets located was 65%.
This is far lower than that achieved by the multiple robot algorithms run thus far. The reason
for this is that in two of the runs GA2 has failed to locate any targets. This is because these
runs suffered from the problem associated with the insertion point and the proximity of the
obstacles in Environment 2. In both cases a robot moves away from the insertion point only
to encounter an obstacle forcing the robot to turn round and head for the insertion point.
Though the points are selected at random the tight space that exists about the insertion point
in Environment 2 does mean that there is a good chance that the robots obstruct the insertion
point. The coverage achieved is 70.91% which is lower than that achieved by the Tabu
Random and RR Simulated Annealing algorithms. This is a result of the runs which
contained robots which became immobile either due to a problem at the insertion point or
because they could not navigate away from a tight location. The coverage achieved when
these runs are excluded is 82.77%. This is a high value but is low when compared to the
other algorithms. The reason for this is simply because the other algorithms have higher

 128

random elements. A typical GA2 run is shown in Figure 7.11 with further data presented in
Appendix D2.4.

Figure 7.11: Map from a GA2 run in Environment 2

7.4.5 Genetic Algorithm 3

The average results from the GA3 runs are: target location times of 206.06s and 458.02s. The
percentage of targets located is 35% and the coverage achieved is 54.37%. The individual
run results can be found in Appendix D1.5. Again it can be seen that the performance of the
GA is poor. Though it does work, as can be seen in Figure 7.12, GA3 seems to have been
affected badly by the issue of individual robots becoming immobile due to problems at the
insertion point, with five runs suffering from the problem.

Figure 7.12: Map from a GA3 run in Environment 2

The results indicate that the robots never stray far from the vicinity of the insertion point in
the runs that fail. In each failed run a robot returns to a point close to the insertion point,
causing further robots that are inserted to become stuck which in turn stops the algorithm.
Since GA3 uses the elitist selection method one reason for this could be an initial population
containing individuals that represent points close to the insertion point. The reason why this
would cause the problem seen is because during the evaluation of the individuals in the
initial population there exists little chance of variation in the evaluation values returned by

 129

the individuals. If the first individual in the population represents a point that is close to the
insertion point and on evaluation no other individuals have a smaller evaluation cost then
that particular individual progresses forward to the next generation. When evaluating the
next generation the robot travels to this first individual again and, being close to the insertion
point, it interrupts any robots that are currently being inserted or have been just inserted.
Unless the robot escapes the confined area, this scenario may occur within a couple of
generations and when looking at the maps of the runs that failed, only a small number of
points have been visited supporting this theory. Since this issue is associated with the elitist
selection method it would be expected that the results from GA4 should also be affected.
This is the worst performance yet in Environment 2. The target times are high and the
percentage of target located and the coverage are both very low.

7.4.6 Genetic Algorithm 4

The final algorithm to be run in Environment 2 is GA4. The results from GA4 are target
location times of 218.82s and 425.17s. As with GA3 these times are very high, though an
improvement has been made in the second target time. The percentage of targets located is
40%, as with GA3 this is a low value. Five GA4 runs failed to locate any targets. Studying
the data presented, it can be seen that GA4 does suffer from the same problem as GA3. This
would suggest that the theory presented in the previous section is accurate and that the
choice of the initial population with regards to the elitist selection method in Environment 2
is important. The initial population should contain individuals which represent points that are
not within the vicinity of the insertion point. The concept of creating a permanent Tabu zone
about the insertion point would help this situation. It can be stated that the environment GA3
and GA4 are run in has a major influence on the performance of the algorithm. Since in most
USAR scenarios the environment is not known, nor can it be accurately guessed, GA3 and
GA4 may not be suitable methods for searching confined environments using multiple
robots. Environment 3 is larger and the results from the runs done in that environment may
indicate that the algorithms perform well in larger open plan areas.

Compared with the other algorithms GA4 is poor, though it is better than GA3. The reason
why it performs better than GA3 is a result of the increased mutation rate which will vary the
individuals to a greater extent, thus resulting in a greater variation of points for the robots to
search. An example run from GA4 is shown in Figure 7.13. Individual run data for GA4 can
be found in Appendix D2.5.

Figure 7.13: Map from a GA4 run in Environment 2

 130

7.4.7 Discussion

As stated, the main aim of this chapter is to establish if there is a benefit in the use of
multiple robots in searching an environment, when compared to the use of single robots. To
make this comparison the average results from the multiple robot runs carried out in
Environment 2 are presented in Table 7.3 with the results from the single robot runs in
Environment 2 presented in Table 7.4.

Table 7.3: Experiment 2 – Multi Robot Results

Algorithm
Time for target

1, seconds
Time for target

2, seconds
% Target

Found
% Coverage

TR 81.94 237.95 100 91.90
RRSA 103.59 211.19 85 87.71
GA2 235.04 407.54 65 70.91
GA3 206.06 458.02 35 54.37
GA4 218.82 425.17 40 59.03

Table 7.4: Experiment 2 – Single Robot Results

Algorithm
Time for target

1, seconds
Time for target

2, seconds
% Target

Found
% Coverage

TR 158.29 211.59 70 84.42
RRSA 168.63 360.18 85 84.68
GA2 257.58 363.35 70 86.63
GA3 171.03 375.95 75 83.87
GA4 215.66 356.18 70 82.66

Starting with a comparison of the Tabu Random results it can be seen that an improvement
has been achieved when using multiple robots. The first target time is lower, the percentage
of targets located is 100% and the coverage achieved is higher. The only issue is the higher
time taken for the location of a second target, but an overall improvement has been made.
The results achieved in the multi robot Tabu Random runs are a direct result of the multiple
robots used. The first target location time is lower because with more robots there is an
increased chance of locating a target. The second location time is higher as not only do the
robots have to avoid the obstacles, they are required to avoid each other. Once all the robots
are moving in the confined space of Environment 2, there will be times when the robots are
held up searching the environment because they are avoiding colliding with one another.
This leads to increased target location times. All the targets were located and this will be a
result of the increased number of robots searching the environment. This is also the reason
for the increase in the coverage achieved.

Though the RR Simulated Annealing algorithm did not perform as well as the Tabu Random
algorithm, the results produced are good. Comparing the results gained in the multi robot
case to those of the single robot case, the multi robot case located both targets in quicker
times. With more robots searching for the targets this would give this result. The percentage
of targets located is the same in both cases, indicating that to increase the number of targets
located an alteration needs to be made to the algorithm, such as the introduction of a Tabu
zone about located targets. This would mean that the algorithm would have to move away
from targets that have already been located and not be drawn towards them again. There is a
slight improvement in the coverage. The introduction of Tabu zones may also aid in
increasing this.

 131

The GAs all performed badly in Environment 2 with regards to the multi robot case. The
target location times all increased, with the exception of GA2’s first target time. The
percentage of targets located fell, as did the coverage achieved. The reason for this is because
of the implementation of the GAs. Each robot is required to evaluate an individual in the
current population and the current generation can only be evaluated once all the individuals
within it are evaluated. Since some of the robots have a tendency to become stuck at the
insertion point, the generation cannot be evaluated and the algorithms are stopping. This has
had an impact on the overall results achieved by the algorithms. The size of the environment
and the confined spaces are working against the GAs, but since it is likely that these are
conditions similar to those that will be met in a USAR environment, it is unlikely that
multiple robots would be deployed under the control of a GA.

An interesting point about the difference between the algorithms that have performed well so
far in the multiple robot case and those that have not is that the GAs require that each robot
is working whereas the Tabu Random and the RR Simulated Annealing algorithms can both
run with any number of robots operating. If a robot becomes stuck the rest can continue
working with limited degradation in the results achieved. This would be a benefit, as robots
could fail or become stuck and the overall search is not affected to any great degree.

7.5 Complex Environment

As mentioned in Chapter 6, the third environment is designed to test the performance of the
algorithms, with more targets and in a larger area. As with the other environments the
simulation remains the same. The results presented in the following section are the average
results calculated from the runs shown in Appendix D.3.

7.5.1 Tabu Random

Figure 7.14 shows a typical run from the Tabu Random algorithm. The average results
achieved are as follows: the target location times are 36.60s, 70.41s, 117.97s, 181.31s,
205.93s and 245.62s with 61.43% of the targets located and 56.38% coverage achieved. This
algorithm had one run that located six out of the seven targets. This is the first run to have
achieved this. It can be seen that the algorithm works in Environment 3. Individual run data
is presented in Appendix D3.1.

 132

Figure 7.14: Map from a Tabu Random algorithm run within Environment 3

7.5.2 Random Restart Simulated Annealing

The next algorithm to be run is the RR Simulated Annealing algorithm which achieved the
following results: 38.49s, 76.38s, 122.17s, 190.14s and 222.42s with the percentage of
targets located at 52.86% and coverage achieved at 50.91%. An example of a run from the
RR Simulated Annealing algorithm is shown in Figure 7.15. Individual run data is presented
in Appendix D3.2.

Figure 7.15: Map from a RR Simulated Annealing algorithm run within Environment 3

From the RR Simulated Annealing results presented, it can be seen that the results achieved
by the Tabu Random algorithm are very good in comparison. The Tabu Random algorithm
achieved better target location times, located more targets and achieved higher coverage than
the RR Simulated Annealing algorithm. The reason for this will be the nature of the

 133

environment and the method used by each algorithm to search the environment. Since this
environment is more open there is less interaction with obstacles, which allows the
algorithms to search the environment with minimal interruption. Since the Tabu Random
algorithm can select points at random, with the exception of those points on the Tabu list,
wider open spaces allow the robots to move without hindrance to the assigned points. This
free movement increases the coverage achieved which, in turn, increases the chance of
locating targets. As a result of the Tabu Random algorithms Tabu element, once a target has
been located in Environment 3, a temporary Tabu zone is put about the target, resulting in
the other robots keeping away from it. This can be seen in some of the runs presented. Since
the targets, once found and for a limited time, repel the robots, the robots are forced to search
other areas which, again, lead to increased coverage. The quick target location times can be
associated with the reasons of the increased coverage and increased target location. Since
more robots are looking for the targets there is an increased chance that a target is located.
With the robots always searching, as opposed to being caught within the vicinity of a
dominant point, this leads to targets being located in quicker times. On the other hand the RR
Simulated Annealing algorithm has no method of escaping targets once they have been
detected. The RR is designed to force the robot to move outside the vicinity of the target
located but when an obstacle is detected, this point is replaced and this can lead the robot
back to the target that has already been found. This affects the overall search, as some targets
may become dominant and the robots tend to be attracted to them. This is the reason why the
target location times for the RR Simulated Annealing algorithm are higher than that of the
Tabu Random algorithm.

7.5.3 Genetic Algorithm 2

It has been shown that the performance of the multi robot case GA2 is poor in small
environments, with the issue of robots becoming stuck and bringing the algorithm to a halt.
In Environment 3 GA2 has target location times of 51.33s, 109.20s, 275.38s and 470.57s.
The percentage of targets located is 48.57% and the coverage achieved is 46.27%. These
results are poorer than both the previous algorithms. Again this shows the issues associated
with this implementation of a multi robot GA2. Although all the runs escape any problems at
the insertion point, further along in the search the problem associated with a robot becoming
stuck does occur and, as discussed, this causes the algorithm to stop.

It should be noted that the target location times are high when compared to the previous two
algorithms and there is a consistency in the minimum number of targets located, which is
three. This shows that the GA2, when in a more open environment, can operate up to a
certain point, but once the robots start interacting with the obstacles and start searching the
smaller areas within the environment, problems start to occur. Figure 7.16 shows a typical
run from GA2. Data from individual runs is presented in Appendix D3.3.

 134

Figure 7.16: Map from a GA2 run within Environment 3

7.5.4 Genetic Algorithm 3

In the multiple robot case GA3 has had some operational problems, mainly as a result of the
robots interacting with the insertion point. Since the insertion point in Environment 3 is
located in a more open position, it is expected that the problems with the insertion point are
either eliminated or greatly reduced. The results from GA3 give target location times of
47.94s, 144.79s, 220.11 s, 323.35 s and 391.02s. GA3 located 50% of the targets and
achieved coverage of 45.57%. These results show that the algorithm has worked within
Environment 3 and that no problems have occurred within the first couple of generations of
the GA, with regards to the insertion point. The reason for this is the open space about the
insertion point which allows the robots to move away from the insertion point without
detecting any obstacles. Hence the robots are not being forced back to the insertion point.
However, as with all the other GA based runs, the algorithm does stop after a time because a
robot becomes stuck and is then not able to proceed with the search. Having said this, on two
runs GA3 did detect five of the seven targets, showing that the performance of GA3 is
mixed. Comparing GA3 with the other algorithms run, the results produced are better than
those of GA2; however Tabu Random and RR Simulated Annealing both perform much
better. An example run is shown in Figure 7.17. Individual run data is presented in Appendix
D3.4.

 135

Figure 7.17: Map from a GA3 run within Environment 3

7.5.5 Genetic Algorithm 4

The last algorithm to be run is GA4. As with the previous two GAs the performance of GA4
has been poor when compared to the non GA algorithms. With target location times of
78.90s, 123.84s, 250.54s and 312.66s the performance of GA4 can already be seen to be
poor. The percentage of targets located is 40% and the coverage achieved is 40.40%, both of
which also indicate the poor performance of GA4. In one run GA4 had a problem at the
insertion point where the first robot travelled back to the insertion point which then disrupted
the other robots. In all the other runs the insertion point error did not occur and this shows,
along with the data presented in the other GA runs, that when the insertion point is in a more
open area that this problem is reduced. It should be noted that in some cases the area about
the insertion point would not be known and as a result it would not be known if the algorithm
would have issues at the insertion point. However GA4 has poor results because of the same
failing as the other GAs, that of one robot becoming stuck and the algorithm not being able
to complete a generation. Figure 7.18 shows a run from GA4 with individual run data
presented in Appendix D3.5.

 136

Figure 7.18: Map from a GA4 run within Environment 3

7.5.6 Discussion

With all the algorithms run in Environment 3, a comparison between the single robot and
multi robot results within Environment 3 can be made with the view of establishing if using
multiple robots offers an improved performance. The average results from the multi robot
algorithms run in Environment 3 are presented in Table 7.5 with the single robot results
presented in Table 7.6.

Table 7.5: Experiment 3 – Multi Robot Results

Time for target found, seconds
Algorithm

1 2 3 4 5 6 7

%
Target
Found

%
Coverage

TR 36.60 70.41 117.97 181.31 205.93 245.62 N/A 61.43 56.38
RRSA 38.49 76.38 122.17 190.14 222.42 N/A N/A 52.86 50.91
GA2 51.33 109.20 275.38 470.57 N/A N/A N/A 48.57 46.27
GA3 47.94 144.79 220.11 323.35 391.02 N/A N/A 50.00 45.57
GA4 78.90 123.84 250.54 312.66 N/A N/A N/A 40.00 40.40

Table 7.6: Experiment 3 – Single Robot Results

Time for target found, seconds
Algorithm

1 2 3 4 5 6 7

%
Target
Found

%
Coverage

TR 43.23 194.84 338.88 415.63 N/A N/A N/A 42.86 45.10
RRSA 33.83 234.49 334.30 375.76 N/A N/A N/A 45.71 44.62
GA2 38.40 158.63 250.29 374.02 N/A N/A N/A 42.86 41.13
GA3 43.18 235.69 342.09 390.21 428.62 N/A N/A 50.00 40.90
GA4 41.64 158.84 265.74 526.75 N/A N/A N/A 35.71 40.50

 137

Taking each algorithm in turn, the Tabu Random algorithm in the multiple robot case can be
seen to offer a performance increase, as target times are dramatically lower. This is a direct
result from using multiple robots. As discussed in Section 7.4.7 the increased number of
robots means that the targets are being located quicker because the robots are searching
different areas of the environment. This means that different robots locate different targets,
whereas in the single robot case there is one robot travelling between all the targets. The
percentage of targets located is approximately the same in both cases. This is an interesting
point and could be the result of the terminating conditions that are in place, since these
terminate the search in both cases when each reaches the same condition. The coverage
achieved is higher in the multi robot case. This is also a result of the use of multiple robots as
each robot is searching its own area, increasing the coverage as a result. Overall the Tabu
Random algorithm has shown once again that it is a powerful algorithm with regards to this
task and that the use of multiple robots increases its performance as shown by the results in
this chapter.

The RR Simulated Annealing algorithm in the multiple robot case has also performed better
than in the single robot case. Once again the target location times in the multi robot case are
better, as is the percentage of targets located and the coverage achieved. This is also a result
of using multiple robots for the same reason as stated for the Tabu Random algorithm.

An interesting point about both of these algorithms, and how they differ from the GAs, is
that the algorithms can continue to run even if robots become stuck. Both algorithms
continue to run with only one robot still in operation and, in theory, both the Tabu Random
and RR Simulated Annealing algorithms can lose robots and only suffer a slight degradation
in performance. This is a desirable trait within an USAR environment as robots can be lost
but the algorithms carry on searching. This is a natural feature of the algorithms in the multi
robot case and no further steps are required to achieve it.

GA2 performed better in the single robot case with regards to the target location times, with
the exception of the location time for a second target. However both the coverage and the
percentage of targets located have increased. Due to the increased number of robots and
despite the problems that GA2 encountered, the multi robot case has performed better than
the single robot case.

With regards to GA3 the multi robot case performed better with regards to the target times
achieved and the coverage gained. The algorithm is able to quickly converge on points, due
to the robots being able to evaluate the assigned individuals with little disruption from the
obstacles. This results in quicker RRs and as a result the next target is located quicker.
Though GA3 performed better with multiple robots in the third environment it was still
affected by problems relating to the size of the environment. Since the size of the
environment may not be known, a judgement on the number of robots used for a GA would
be hard to make and as such the Tabu Random and RR Simulated Annealing algorithms
would be better choices as they performed better with no additional problems.

GA4 found the targets quicker in Environment 3 when using multiple robots and the
percentage of the targets located slightly increased. As with the other GAs, GA4 also
suffered from additional problems due to the implementation of the GA for use in multiple
robot situations. This shows that the method used for implementing the GAs in a multi robot
case is not suitable even though it is the most obvious way to implement it. Further code
would need to be added to cope when robots become immobile due to problems at the
insertion point or being unable to escape tight areas. This would lead to further

 138

complications with regards to code implementation and it is unknown if a performance
increase would be achieved.

With regards to the performance over all the environments, Tabu Random and RR Simulated
Annealing algorithms have performed consistently better in the multi robot case when
compared to the single robot case. The GAs have given a mixed set of results. In the smaller
more constrained environments the GAs have not performed well. However in the bigger
more open environment, the results produced indicate that multi robot GAs perform well.

7.6 Review of Results

Throughout this chapter the comparison between the multi robot results and the single robot
results has been carried out. This section provides a review of both sets of results and
suggests a suitable algorithm for use in the scenario described.

It was established in Chapter 6 that the algorithms discussed in Chapter 5 can be
implemented in the task described, with the exception of the HillClimbing algorithm. This
conclusion is backed up by the evidence provided in Chapter 6. With regards to the best
performing algorithms in a single robot case, the conclusion was that algorithms that contain
both a high random element and some structure to the selection of points perform well. The
algorithms in this work that show this are the Tabu Random and RR Simulated Annealing
algorithms and GA2, GA3 and GA4. From the evidence in Chapter 6 it was suggested that the
Tabu Random algorithm was the best choice for use in a single robot case. Over all the runs
the Tabu Random algorithm performed well. It is also simple to implement, allowing
implementation on a wide range of platforms.

The results in Chapter 7 have provided evidence of how the algorithms run when
implemented in a multi robot case. The conclusions that can be drawn from the data
presented give a mixed picture of what can be achieved in a multi robot case. The first point
to note is the failure of the Genetic Algorithms when implemented in the way described in
this chapter. The Genetic Algorithms performed well in the single robot case but, due to
problems associated with the individual robots becoming stuck within the environment, the
performance in the multi robot case was poor in comparison. However it was shown that in
an open environment, such as that of Environment 3, an improvement does exist. With
regards to the Tabu Random and Simulated Annealing algorithms the multi robot case did
provide improvements within Environments 2 and 3. The results from Environment 1 were
similar. The Tabu Random results are compared in Table 7.7 and the Simulated Annealing
results can be found in Table 7.8.

It can be seen in both of the tables that the improvements gained within Environment 1 are
similar. This would indicate that it would be better to run a single robot within this
environment, as the deployment of one robot would be simpler than the deployment of five.
An improvement is seen in both the multiple robot runs in Environments 2 and 3. This shows
that as the environment either becomes more complicated or becomes larger then multiple
robots should be deployed.

In both the single robot and multi robot cases the Tabu Random algorithm has performed
well. This would indicate that the Tabu Random algorithm would be a good choice for
implementation in a practical scenario.

 139

Table 7.7: Comparison of Tabu Random results

 Environment 1 Environment 2 Environment 3

Variable Single Multiple Single Multiple Single Multiple

Time for target 1,
s

29.73 43.33 158.29 81.94 43.23 36.60

Time for target 2,
s

159.04 71.26 211.59 237.95 194.84 70.41

Time for target 3,
s

N/A N/A N/A N/A 338.88 117.97

Time for target 4,
s

N/A N/A N/A N/A 415.63 181.31

Time for target 5,
s

N/A N/A N/A N/A N/A 205.93

Time for target 6,
s

N/A N/A N/A N/A N/A 245.62

Time for target 7,
s

N/A N/A N/A N/A N/A N/A

% Target Found 100.00 100.00 70.00 100.00 42.86 61.43
% Coverage 99.32 99.34 84.42 91.90 45.10 56.38

Table 7.8: Comparison of Simulated Annealing results

 Environment 1 Environment 2 Environment 3

Variable Single Multiple Single Multiple Single Multiple

Time for target 1,
s

35.43 31.73 168.63 103.59 33.83
38.49

Time for target 2,
s

116.20 94.58 360.18 211.19 234.49
76.38

Time for target 3,
s

N/A N/A N/A N/A 334.30 122.17

Time for target 4,
s

N/A N/A N/A N/A 375.76 190.14

Time for target 5,
s

N/A N/A N/A N/A N/A 222.42

Time for target 6,
s

N/A N/A N/A N/A N/A N/A

Time for target 7,
s

N/A N/A N/A N/A N/A N/A

% Target Found 100.00 100.00 85.00 85.00 45.71 52.86
% Coverage 99.23 99.13 84.68 87.71 44.62 50.91

7.7 Summary

The aim of this chapter was to establish if the best performing algorithms from the previous
chapter can be used to control multiple robots and to consider if an improvement in the
performance is achieved with multiple robots. The aim has been established through the
presentation and discussion of results obtained from running the best five algorithms from
Chapter 6 in multiple robot cases.

 140

The results, over all the runs, have shown that using multiple robots has increased the
performance of both the Tabu Random and RR Simulated Annealing algorithms and due to
the nature of the method used to implement the algorithms, both algorithms are able to cope
with the loss of individual robots. This is not the case with the implementation used for the
GAs. GA2, GA3 and GA4 all suffered from issues in each environment, mainly as a result of
the GA needing to rely on all of the robots operating successfully in the environment. The
results have shown that this does not happen and in all the GA runs it can be seen that a robot
becomes stuck and as a result the algorithm is forced to stop.

It was also established that the algorithm that has performed best overall is the Tabu Random
algorithm. This algorithm performed well in both the single and multi robot cases and
showed no degradation in performance when any individual robots became immobile within
the multiple robot case.

A further point that came from the results presented in this chapter is that the size of the
environment affects the useable number of robots. When the multi robot Tabu Random and
RR Simulated Annealing algorithms were run in Environment 1, the results achieved were
similar to those achieved by the single robot runs in the same environment. This shows that
the size of the environment has an impact on the number of robots that can be used to search
it.

 141

Chapter 8

Conclusions and Further Work

8.1 Conclusions

The task of locating survivors within environments during USAR can be dangerous and puts
the lives of both the survivors and rescue workers at risk. This work proposed the use of
robots to search environments under the control of search algorithms. The reasoning behind
this approach is that search algorithms are used in multiple fields of research and in industry
to locate optimal points within a search space. If a simple method of identifying a survivor
was achievable, such as the detection of body heat, and a unique point, or range of points,
existed within this identification, an optimal point can be declared. It can then be shown that,
in theory, the location of a survivor in an environment, which is the algorithm’s search space,
can be achieved by search algorithms. The aim of the work presented in this thesis was to
establish if search algorithms could be used to search for survivors within an environment.
This work was to also select algorithms which performed the task well and to establish if the
use of multiple robots resulted in a better performance over the single robot search.
Additional objectives included the development of both a mathematical model of a mobile

robot and a navigation and control system to enable the testing and operation of the search
algorithms.

The first part of this work was concerned with the development of a mathematical model of a
suitable mobile robot for use in USAR. Chapter 3 presented the development of the model
and introduced the validation of this model. The model developed is a six-degree-of-freedom
model with actuators. The dynamics and kinematics of the model were considered along with
the dynamics of the actuators. The inclusion of the actuators gave a complete model of a
mobile robot. A further stage of the model development was the validation of the model.
Two methods of validation were used: Analogue Matching and Least Mean Squares. The
validation shows that the model is a close representation of the real robot and as such the
results from the simulation are a good approximation to what the results from a real robot
would be.

The search algorithms are designed to generate points to which the robot will travel to.
However a method of ensuring the robot travels to the requested points accurately is
required. To accomplish this task a navigation and control system was developed in Chapter
4. The navigation and control system was made up of three parts: the navigation system, the
control system and an obstacle avoidance routine. The navigation system consisted of a Line

of Sight Autopilot which generated the heading the robot should take to reach the next
assigned point. A method of ensuring the robot travelled along the correct heading and at a
suitable speed was needed. This was done by the control system. The control system took, as
input, the heading generated by the navigation system and the desired speed and from these
generated suitable actuator voltages which enabled the robot to travel to the assigned points.
A suitable control methodology was required that would efficiently and accurately maintain
both the speed and heading. Chapter 4 presented three methods of control for consideration:
Proportional-Integral-Derivative, Pole Placement and Sliding Mode. Each controller was
tested in simulation on the modelled robot in a series of experiments and the results were

 142

compared using measurements taken from the data. The measurements taken allowed a
comparison of the controllers based on the average tracking error, average steady state

error, rise time, charge drawn from the battery and motion control. After this comparison
was carried out it was found, with regards to the modelled robot and the implementation of
the controllers in this work, that the Pole Placement controller was the most suitable control
method to be implemented for this task. The Pole Placement controller performed better than
both the Proportional-Integral-Derivative and Sliding Mode controllers within the
experiments designed in this work. A further aspect of the navigation and control system was
the obstacle avoidance routine. When operating in all but the simplest of environments
obstacles will exist and the controller needs to respond to the detection of obstacles. This
work considered two methods of obstacle avoidance. A method designed to navigate around

the obstacle and a reactive method. The first method mentioned is designed to navigate
round obstacles by following a set pattern. The second method simply replaces the desired
point with a randomly selected point. It was found that, taking into consideration that time is
an important variable in this work, the reactive approach was the best method. Though the
reactive method did not always get to the required point the time saved by not going round
an obstacle was found to be more desirable.

Chapter 5 presented and discussed the search algorithms chosen for implementation in this
work. The search algorithms were chosen as they are established and popular methods.
Traditional search algorithms that were chosen were Lawnmower, a form of the Exhaustive
search, Random, HillClimbing and Random Restart HillClimbing. Modern search algorithms
that were considered were based on Tabu search, with Tabu Random and Tabu Random

Restart HillClimbing being variants that were investigated, Random Restart Simulated

Annealing and four variations of the Genetic Algorithm. Each of these algorithms was
discussed and how they are implemented presented. As part of the discussion on the search
algorithms, various functions that are common to all the experimental runs was presented.
These functions allow the robot to carry out the search and provide a means of comparing
each search algorithm. How the temperature is tracked was presented along with the
implementation of the constant search. Since coverage is a method of comparison it was
discussed with reference to this work. The robot is required to detect targets. How this is
achieved was discussed.

The next stage in this work provided results and the analysis of the algorithms run. The first
set of results, presented in Chapter 6 and Appendix C, clearly indicated that the search
algorithms could be used to provide points which allow a single robot to search for targets
within a given environment. It was found that algorithms with a high random element and a
structure to the selection of points provided the best results. The high random element
enables the search to achieve a wide coverage within the environment. Having a structure to
select the next point is also important. Whether this structure allows the robot to converge on
a point (RR Simulated Annealing, GA2, GA3 and GA4) or is simply a list of points that are
not to be selected (Tabu Random) is not important, though it is acknowledged that the
algorithms which converge can, on occasion, find targets quicker. The algorithms which
performed best, with regards to the single robot results presented in this work, are the Tabu

Random and RR Simulated Annealing algorithms, and, GA2, GA3 and GA4. Each of these
algorithms achieved desirable performances over all the environments that they were tested
in and, through the results, showed to be suitable algorithms for selection with regards to the
implementation used in this work and in the task described. Over all the runs in a single
robot case the Tabu Random algorithm performed the best.

 143

Since it was established that the algorithms are suitable for the task described and five of the
algorithms were deemed to stand out from the others, based on the results presented in this
work, an investigation into the impact of having multiple robots searching can be done. The
algorithms were implemented to allow the five robots to be run. With regards to the RR

Simulated Annealing algorithm this implementation created a decentralised control
algorithm, as each robot ran an independent version of the algorithm. The Tabu Random
algorithm had a global Tabu List which each robot added to and referenced. This had a
centralised approach to the implementation of the algorithm. The GAs were also
implemented with a centralised approach. Within each GA each robot searched for an
individual in the population and once all the individuals were evaluated the current
generation was evaluated. The results presented in Chapter 7 offer a mixed answer to the
application of multiple robots. Results from Chapter 7 show that the Tabu Random and RR

Simulated Annealing algorithms both saw improvements when implemented with multiple
robots. It was also noted that the performance of these two algorithms did not degrade when
robots fail. This would be an important aspect within a practical application of the ideas in
this work, as the robots may fail or become stuck when used in the field. However the
multiple robot implementation of the GAs failed to show any improvement over all the runs.
GA2, GA3 and GA4 all suffered from issues relating to the implementation of the algorithm.
In each environment the robots became stuck. This was shown to affect the overall
performance of the algorithm. The reason for this is that the GA is reliant on all the robots
operating successfully in the environment. The results indicate that this cannot be taken for
granted and hence the GAs will be prone to failure with the current method of
implementation. It was also noted in Chapter 7 that the size of the environment may affect
the number of robots that can be used to carry out the search. A slight increase in
performance was seen for the Tabu Random and RR Simulated Annealing algorithms in the
smaller environments, but the performance increase was only slight. The Tabu Random
algorithm was shown to be the best algorithm within a multi robot case.

This work proposed the use of autonomous robots to search environments under the control
of search algorithms. Since lives are at risk within USAR scenarios, the robot or team of
robots would need to be able to search an environment as thoroughly and quickly as they
can. This work has found that, with regards to the results shown throughout this thesis, the
Tabu Random algorithm would be a suitable search algorithm, for both single robot and
multiple robot searches. The Tabu Random algorithm achieved good coverage and located a
large percentage of the targets within the environments. The targets were also located in a
reasonable time. This algorithm also showed the ability to continue working even when
individual robots in the team become immobile. This would be beneficial to the area of
USAR when using robots. The application of either a single robot or team of robots under
the control of the Tabu Random algorithm may prove to be a useful tool for any team or
emergency service that is required to search environments for people. Though some
technological challenges still exist, the concept explored in this work has the potential to
save lives.

8.2 Further Work

This work set out to establish if search algorithms could be implemented on a mobile robot
or group of mobile robots to carry out a search of an environment. The results indicate that
this is possible and that the Tabu Random algorithm is best suited to the task when
implemented in the way done in this work. However this work can be taken further. Further
work, which is based on the work presented here, is suggested next.

 144

8.2.1 Hybrid Algorithms

The first area of interest would be the implementation of hybrid algorithms. The Tabu

Random and the Tabu Random Restart HillClimbing algorithms were both hybrid algorithms
as they are created by the fusion of two different algorithms. This concept could be taken
further to enable the algorithms to be improved and, in turn, improve the results. There exist
many different algorithms that can be fused together, but based on the results gathered
throughout this work the following hybrid algorithms would be worth further investigation:
Global Tabu with additional algorithm and Tabu Random with HillClimbing.

8.2.1.1 Global Tabu with additional algorithm

The first hybrid algorithm is more a concept for implementation than a hybrid algorithm. The
Tabu element was found to be a powerful function when implemented and provided one of
the best algorithms. The operation of the Tabu element was based on maintaining a list of
points that could not be selected again until after a certain time. This concept could be
extended to provide a Global Tabu list.

One problem that is present in all the algorithms is that once a target is located the algorithm
is still attracted to it. Since the algorithm is still attracted to the target, the robot wastes time
revisiting it and some algorithms cannot escape the attraction of the target. One method of
dealing with this is to maintain a Global Tabu list that is only updated when a target is found.
In doing this the targets are tracked in one list and the algorithm can refer to this when
selecting the next point to go to. To further improve this, once a target is located a Tabu
radius can be introduced around it to stop the robot coming within a set range of a target,
aiding the algorithm’s ability to escape target points. This would aid all the algorithms, as it
would increase the coverage, as areas that have been searched which contain targets, would
be off limits. As stated previously, with increased coverage the chances of locating targets is
increased. It can be seen that this could have a dramatic affect on the ability of the robot to
search environments. An issue that would be created by implementing the Global Tabu is if
the robot became stuck within an area that it cannot be moved from as it is surrounded by
either obstacles or located targets. In this case a conditional Tabu would need to be created.
The algorithm cannot direct the robot to a located target unless no other path exists. In
essence the algorithms would be allowed to travel through a Global Tabu zone if necessary.
This hybrid algorithm could be added onto any of the algorithms that have been studied but it
should be first implemented on the best performing algorithms.

8.2.1.2 Tabu Random with HillClimbing

The second hybrid algorithm that should be investigated is a Tabu Random with

HillClimbing algorithm. It has been shown that the Tabu Random algorithm performs well
within both the single robot and multi robot cases, but with the addition of a HillClimbing
element the performance could be increased. The Tabu Random algorithm operates as
described in this work, however when an increase in temperature is detected the algorithm
would then switch to the HillClimbing algorithm which, as results in this work suggest,
would bring the robot to the target point quickly, if one exists in the immediate vicinity.
Once either a target point is detected or no higher temperature point is detected the algorithm
would then switch back to the Tabu Random element of the algorithm and continue the
search of the environment. This algorithm would, in theory, improve the target location
times, hence the overall performance of the algorithm would be improved. This algorithm
would incorporate both elements that the results suggested are needed to search an
environment and locate targets quickly: a high random element, implemented by the Tabu

Random and a structured approach to the location of targets, the HillClimbing algorithm.
This algorithm is similar to the way the RR Simulated Annealing works, which also

 145

performed very well, but is more direct when locating the targets points. With the inclusion
of a Global Tabu element this algorithm could perform exceptionally well.

8.2.2 Improved Robotic Platform

Another area of further work would be an improved robotic platform. To keep within the
ethos of this work a simple disposable robot was used to implement the algorithms on. In
doing this a number of problems were encountered. The obstacle avoidance had to be
implemented in a very simple way and only one temperature sensor was used giving a very
limited field of view. To include additional sensors would provide the means of improving
the obstacle avoidance, meaning that the robot will not become stuck in tight areas.
Mapmaking would become a realistic concept and more information from the environment
can be retrieved allowing better direction from the algorithms. With the addition of more
sensors, more processing will be required which will increase the size of the robot, which
will mean that the robot will require more power to run. However with the additional data
that more sensors could provide, an improved platform would be a good path of
investigation. With the addition of more obstacle detection sensors the robot would spend
less time avoiding obstacles. Also the chance of becoming stuck would be reduced as it
would be able to carry out path planning to avoid obstacles. When the robot becomes stuck, a
suite of obstacle sensors would enable the robot to detect a path out from its current location.
Both of these would give the robot more time to carry out the search. Also, with more
sensors the ability to create a map of the environment becomes viable. With a map the rescue
workers would have a better idea of what the environment was like and provide them a route
to any survivors located. A map would also provide the robot the ability to path plan routes
through the environment once an area had been mapped. The addition of more temperature
sensors would also greatly enhance the search of an environment. As it is the robot has a
limited cone it can search while it is travelling between points. With additional sensors the
robot could carry out a 360° scan of the area it passes through, increasing the chance of
locating survivors.

8.2.3 Decentralised Control

As this work stands the method used by each algorithm is, in essence, a centralised method,
though the RR Simulated Annealing multi robot algorithm can be viewed as a decentralised
method. As the robot moves it transmits information back to a base station and then awaits
instructions back from it. Many of the algorithms could be run on an improved robot. This
would mean that the robot could be instructed to search an environment and then the only
time it contacts a base station is when a target is located. This would help with regards to the
reality of the communication in the environments this work is designed for. Also with each
robot (in a multiple robot case) working independently, better results may be achieved by
algorithms as they do not have to wait for other robots to complete a task. This could
replicate a single robot performance but in a multiple robot case. The area of decentralised
control has the possibility of providing improvements to the search algorithms.

8.2.4 Varying the Number of Robots

It was shown in Chapter 7 that the number of robots used in an environment may affect the
performance of the algorithm run. The results indicated that in small environments a single
robot may provide results that are equal to or better than those achieved by a multiple robot
search. The reverse may also be true; as the environment gets bigger the number of robots
used to search the environment should be increased. With the simulation used in this work it
would be possible to research a range of different robot numbers easily and within different
environments.

 146

References

Åström, K., and Hägglund, T., (1995), PID Controllers: Theory, Design, and Tuning 2nd
edition, Instrument Society of America

Albagul, A., and Wahyudi, (2004), “Dynamic Modelling and Adaptive Traction Control for
Mobile Robots”, International Journal of Advanced Robotic Systems, Vol. 1, No 3, pp. 149-
154

Alfaro-Cid, M.E., (2003), Optimisation of Time Domain Controllers for Supply Ships Using

Genetic Algorithms and Genetic Programming, Phd Thesis, Department of Electronic and
Electrical Engineering, University of Glasgow

Alfaro-Cid, M.E., McGookin, E.W. and Murray-Smith, D.J., (2006) “GA-optimised PID and
pole placement real and simulated performance when controlling the dynamics of a supply
ship” IEE Proceedings Control Theory and Applications, Vol. 153, Issue 2

Anagnostopoulos, A., Van Hentenryck P. and Vergados, Y., (2006) “A simulated annealing
approach to the traveling tournament problem” Journal of Scheduling, Springer Netherlands,
Vol. 9, No. 2, pp 177-193

Astolfi, A. (2006), “Stabilization of Nonholonomic Systems”, Autonomous Mobile Robots:

Sensing, Control, Decision Making and Applications, Taylor and Francis Group

Balakrishna, R. and Ghosal, A., (1995), “Modeling of Slip for Wheeled Mobile Robots”,
IEEE Transactions on Robotics and Automation, Vol. 11, No 1, pp. 126-132

Barshan, B. and Durrant-Whyte, H.F., (1995), “Inertial Navigation Systems for Mobile
Robots”, IEEE Transactions on Robotics and Automation, Vol. 11, No. 3, June

Bennet, S., (1996), “A Brief History of Automatic Control”, IEEE Control Systems

Magazine, Vol. 16, No 3, pp 17-25

Birk, A., and Carpin, S., (2006), “Rescue Robotics – A Crucial Milestone on the Road to
Autonomous Systems”, Advanced Robotics Journal, 20 (5), VSP International Science
Publishers

Birk, A., Pathak, K., Schwertfeger, S. and Chonnaparamutt, W., (2006) “The IUB Rugbot:
an intelligent, rugged mobile robot for search and rescue operations”, IEEE International

Workshop on Safety, Security, and Rescue Robotics, IEEE Press

Bisgaard, M., Vinther, D., Ostergaard, K., Bendsten, J. and Izadi-Zamanabadi, R., (2005),
“Sensor Fusion and Model Verification for a Mobile Robot”, Proceedings of the 16

th

IASTED International Conference Modelling and Simulation, pp. 106-111

Blitch, J.G., (1996), “Artificial Intelligence Technologies for Robot Assisted Urban Search
and Rescue”, Expert Systems With Applications, Vol. 11, No 2, pp. 109-124

 147

Bohachevsky, I.O, Johnson, M.E. and Stein, M.L., (1986), “Generalised Simulated
Annealing for Function Optimisation”, Tehnometerics, Vol. 28, No. 3, pp 209-217

Braga, N.C., (2002), Robotics, Mechtronics, and Artificial Intelligence, Newnes

Buchmann, I., (2000), Batteries in a Portable World: A Handbook on Rechargeable

Batteries for Non-Engineers, Cadex Electronics Inc, 2nd Edition

Burke, T. and Durrant-Whye, H.F., (1993), “Kinematics for Modular Wheeled Mobile
Robots”, Proceedings of the 1993 IEEE/RSJ International Conference on Intelligent Robots

and Systems, pp. 1279-1286

Čapek, K., 1920, R.U.R, English Translation: Majer, P. and Porter, C., Čapek Four Plays,
Methuen Publishing, London, ISBN: 0413771903

Carlson, J., and Murphy, R.R., (2005) “How UGVs physically fail in the field”, IEEE
Transactions on Robotics, Vol. 21, No. 3, pp. 423-437

Casper J., Murphy R.R. and Micire M., (2000), "Issues in Intelligent Robots for Search and
Rescue", SPIE Ground Vehicle Technology II, Orlando, Florida

Cetinkunt, S., (2007), Mechatronics, John Wiley & Sons, Inc

Cheng, C.K., and Leng, G., (2004), “Cooperative Search Algorithm for Distributed
Autonomous Robots”, Proceedings of 2004 IEEE/RSJ International Conference on

Intelligent Robots and Systems, pp.394-399

Chow, J.H. and Sanchez-Gasca, J.J. (1989) “Pole-placement designs of power system
stabilizers” IEEE Transactions on Power Systems, Vol. 4, Issue 1, pp 271-277

Cook, M.V., (1997), Flight Dynamic Principles, Butterworth Heinemann

CRASAR, (2008), http://www.crasar.org/MainFiles/, Home Page for Center of Robotic

Assisted Search and Rescue, 24/09/2008

DeCarlo, R.A., Zak, S.H. and Matthews, G.P, (1988), “Variable Structure Control of
Nonlinear Multivariable Systems: A Tutorial”, Proceedings of the IEEE, Vol. 76, No 3, pp.
212-232

DeJong, K.A., (1975), An Analysis of the Behaviour of a Class of Genetic Adaptive Systems,
PhD thesis, University of Michigan

Dollarhide, R.L. and Agah, A., (2003), “Simulation and Control of Distributed Robot Search
Teams”, Computers and Electrical Engineering, 29, 625-642

Dorf, R.C. and Bishop, R.H., (2005), Modern Control Systems, Pearson Prentice Hall, 10th
edition, International edition

Dutton, K., Thompson, S. and Barraclough, B., (1997), The Art of Control Engineering,
Addison-Wesley

 148

Edwards, C. and Spurgeon, S.K., (1998), Sliding Mode Control: Theory and Applications,
Taylor and Francis

Ellis, C. (1993), “A Bluffers Guide to Genetic Algorithms”, Engineering Design Newsletter,
SERC, Summer

Fahimi, F., (2007), “Sliding-Mode Formation Control for Underactuated Surface Vessels”,
IEEE Transaction on Robotics, Vol. 23, No 3, pp. 617-622

Frankin, G.F., Powell, J.D. and Emami-Naeini, A., (1991). Feedback Control of Dynamic

Systems, 2
nd

 Edition, Addison Wesley

Fossen, T.I., (2002), Marine Control Systems: Guidance, Navigation, and Control of Ships,

Rigs and Underwater Vehicles, Marine Cybernetics

Fossen, T.I., (1994), Guidance and Control of Ocean Vehicles, Wiley & Sons Ltd

Gazi, V., (2005), “Swarm Aggregations Using Artificial Potentials and Sliding-Mode
Control”, IEEE Transactions on Robotics, Vol. 21, No 6, pp. 1208-1214

Ge, S.S., and Lewis, F.l., eds, (2006), Autonomous Mobile Robots: Sensing, Control,

Decision Making and Applications, Taylor and Francis Group

Gendreau, M., (2003), “Introduction to Tabu Search”, Handbook of Metaheuristic,
International Series in Operations Research & Management, eds. Glover, G., Kochenberger,
G.A., Springer, pp.37-54

Glover, F. (1989), “Tabu Search: Part 1”, ORSA J. of Computing, 2, No 1, pp190-206

Glover, F., (1986), “Future Paths for Integer Programming and Links to Artificial
Intelligence”, Comput’ & Ops’ Res., Vol. 13, No 5, pp. 533-549

Goldberg, D., (1989), Genetic Algorithms in Searching, Optimisation and Machine

Learning, Addison Wesley, Reading, MA

Granosik, G. and Borenstein, J., (2005) “Integrated Joint Actuator for Serpentine Robots”,
IEEE/ASME Transactions on Mechatronics, Vol. 10, No 5, October

Gray, G., (1992), Development and Validation of Nonlinear Models for Helicopter

Dynamics, PhD Thesis, Department of Electronic and Electrical Engineering, University of
Glasgow

Hatta, K., Wakabayashi, S. and Koide, T., (2001), “Adaptation of Genetic Operators and
Parameters of a Genetic Algorithm Based on the Elite Degree of an Individual”, Systems and

Computers in Japan, Vol. 31, No 1, pp. 29-37

Healey, A.J. and Kim, J., (2000), “Control and Random Searching with Multiple Robots”,
Proceedings of the 39

th
 IEEE Conference on Decision and Control, pp. 340-345

 149

Healey, A.J. and Leinard, D., (1993), “Multivariable Sliding Mode Control for Autonomous
Diving and Steering of Unmanned Underwater Vehicles”, IEEE Journal of Oceanic

Engineering, Vol. 18, No. 3, pp 327-339

Hertz, A., Taillard, E., De Werra, D., “A Tutorial on Tabu Search”, Proc. of Giornate di

Lavoro AIRO’95, Entreprise Systems: Management of Technological and Organizational

Changes, pp. 13-24

Hoerner, S.F., (1965), Fluid-dynamic drag: practical information on aerodynamic drag and

hydrodynamic resistance, Brick Town, New Jersey

Holland, J.H., (1992), “Genetic Algorithms”, Scientific American, July

Holland, J.H., (1975), Adaptation in Natural and Artificial Systems, University of Michigan
Press

Hong, F., Ge, S.S., Lewis, F.L. and Lee, T.H., (2006), “Adaptive Neural-Fuzzy Control of
Nonholonomic Mobile Robots”, Autonomous Mobile Robots: Sensing, Control, Decision

Making and Applications, Taylor and Francis Group

Hong, T., Wang, H. and Chen, W., (2000), “Simultaneously Applying Multiple Mutation
Operators in Genetic Algorithms”, Journal of Heuristics, 6, pp. 439-455

Ichbiah, D., (2005), Robots: From Science Fiction to Technological Revolution, Harry N.
Abrams, Inc, New York

IRSI, (2008), http://www.rescuesystem.org/, Homepage for the International Rescue System

Institute, 24/09/2008

Jellet, J., 1872, Theory of Friction, McMillian & Co

Jennings, J., Whelan, G. and Evans, W.F., (1997), “Cooperative Search and Rescue with a
Team of Mobile Robots”, ICAR, Monterey, CA, July 7-9

Johnson, J. and Picton, P., (1995), Mechatronics: Designing Intelligent Machines Volume 2:

Concepts in Artificial Intelligence, Butterworth Heinemann and The Open University

Kautsky, J., Nichols, N.K. and Van Doorens, P., (1985), “Robust Pole Assignment in Linear
State Feedback”, International Journal of Control, Vol. 41, No 5, pp1129-1155

Kelly, A. and Rinnie, K., (2005), “Control of dc-dc converters by direct pole placement and
adaptive feedforward gain adjustment” Applied Power Electronics Conference and
Exposition, Twentieth Annual IEEE, Vol. 3 pp.1970-1975

Khoo, K.G. and Suganthan, P.N., (2002), “Evaluation of Genetic Operators and Solution
Representations for Shape Recognition by Genetic Algorithms”, Pattern Recognition Letters,
23, pp. 1589-1597

Kirkpatrick, S., (1984), “Optimization by Simulated Annealing: Quantitative Studies”,
Journal of Statistical Physics, Vol. 34, Nos. 5/6, pp. 975-986

 150

Kirkpatrick, S., Gelatt, C.D.Jr and Vecchi, M.P., (1983), “Optimization by Simulated
Annealing”, Science, Vol. 220, No 4598, pp.671-680

Kitano, H., Tadokoro, S., Noda, I., Matsubara, H., Takahashi, T., Shinjou, A. and Shimada,
S., (1999), “RoboCup Rescue: Search and rescue in Large-Scale Disasters as a Domain for
Autonomous Agents Research”, Proceedings of IEEE Conference on Man, Systems, and

Cybernetics (SMC-99)

Kitano, H., Asada, M., Kuniyoshi, Y., Noda, I., Osawa, E. and Matsubara, H., (1997),
“Robocup A Challenge AI Problem,” AI Magazine, Vol. 18, No 1

Lim, A., Rodrigues, B. and X. Zhang, X., (2006) “A simulated annealing and hill-climbing
algorithm for the traveling tournament problem” European Journal of Operational Research,
Volume 174, Issue 3, pp 1459-1478

Lune, T., Spiess, K., and Röfer, T., (2005). “SimRobot – A General Physical Robot
Simulator and its Application in RoboCup”, Robocup 2005: Robot Soccer World Cup IX,

Lectures in Artificial Intelligence, Springer

Lynxmotion, (2008), http://www.lynxmotion.com/, Homepage for Lynxmotion, 24/09/08

McDonald, D. (2003), Genetic Algorithms and Particular Integral Equations arising from

Hot Stellar Winds and Solar Flares, PhD Thesis, Department of Physics and Astronomy,
University of Glasgow

McGeoch, D.J., (2005), Helicopter Flight Control System Design Using Sliding Mode

Theory: Application to Handling Qualities and Shipboard Landing, PhD Thesis, Department
of Electronic and Electrical Engineering, University of Glasgow

McGookin, E. and Murray-Smith, D.J., (2006), “Submarine Manoeuvring Controllers'
Optimisation Using Simulated Annealing and Genetic Algorithms”, Control Engineering

Practice 14, pp. 1-15

McGookin, E., Murray-Smith, D.J., Li, Y. and Fossen, T.I., 2000, “The Optimization of a
tanker autopilot control system using genetic algorithms”, Trans’ Institute of Measurement

and Control, 22-2, pp147-178

McGookin, E., (1997), Optimisation of Sliding Mode Controllers for Marine Applications: A

Study of Methods and Implementation Issues, PhD Thesis, Department of Electronic and
Electrical Engineering, University of Glasgow

Mantawy, A.H., Abdel-Magid, Y.L. and Selim, S.Z., (1999), “Integrating Genetic
Algorithms, Tabu Search, and Simulated Annealing for the Unit Commitment Problem”,
IEEE Transactions on Power Systems, Vol. 14, No 3, pp. 829-836

Masehian, E. and Amin-Naseri, M.R., (2008) “Sensor-Based Robot Motion Planning - A
Tabu Search Approach”, IEEE Robotics & Automation Magazine, Vol. 15, No. 2

 151

Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H. and Teller, E, (1953),
“Equation of state calculation using fast computing machines”, Journal of Chemical Physics,
21, pp 1087-1092

Michel, O., (2004), WebotsTM: Professional Mobile Robot Simulation, International

Journal of Advanced Robotic Systems, 1-1, pp. 39-42

Micire, M., (2002), Analysis of the Robotic-Assisted Search and Rescue Response to the

World Trade Center Disaster, Masters Thesis, University of South Florida, May

Microchip-PIC16F88, (2008),
http://ww1.microchip.com/downloads/en/DeviceDoc/30487c.pdf, PIC16F88 Datasheet,
24/09/2008

Minor, M.A., Albiston, B.W. and Schwensen, C.L., (2006), “Simplified Motion Control of a
Two-Axle Compliant Framed Wheeled Mobile Robot”, IEEE Transactions on Robotics, Vol
22, No 3, pp. 491-506

Mitchell, M., (1996), An Introduction to Genetic Algorithms, MIT Press

Mondada, F., Gambardella, L.M., Floreano, D., Nolfi, S., Deneubourg, J.L. and Dorigo, M.,
(2005) “The Cooperation of Swarm-Bots”, IEEE Robotics & Automation Magazine, Vol. 12,
No 2, June, pp 21-28

Mori, M and Hirose, S., (2002), “Three-dimensional serpentine motion and lateral rolling by
active cord mechanism ACM-R3”, IEEE/SJ int. Conf. Intelligent Robots and System, Vol. 1,
Oct, pp 829-834

Montemanni, R., Gambardella, L.M. and Das, A.K., (2005) “The minimum power
broadcast problem in wireless networks: a simulated annealing approach” IEEE Wireless
Communications and Networking Conference, Vol. 4, pp. 2057-2062

Murphy, R., (2004), “Activities of the Rescue Robots at the World Trade Center from 11-21
September 2001”, IEEE Robotic and Automation Magazine, Vol. 11, No 3

Murphy, R.R., Lisetti, C., Tardif, R., Irish, L. and Gage, A., (2002), “Emotion-Based Control
of Cooperating Heterogeneous Mobile Robots” IEEE Transactions on Robotics and

Automation Special Issue on Multi-Robot Systems, Vol. 18, No 5, pp. 744-757

Murphy, R., (2000a) “Biomimetic Search for Urban Search and Rescue”, Proc’ International

Conference on intelligent Robots and Systems

Murphy R.R., (2000b), "Marsupial and Shape-Shifting Robots for Urban Search and
Rescue", IEEE Intelligent Systems, Vol. 15, No. 2, pp. 14-19

Murphy R.R, Casper J., Micire M. and Hyams J., (2000a), "Assessment of the NIST
Standard Test Bed for Urban Search and Rescue", NIST Workshop on Performance Metrics

for Intelligent Systems

 152

Murphy R., Casper J., Hyams J., Micire M. and Minten B., (2000b), "Mobility and Sensing
Demands in USAR”, IEEE International Conference on Industrial Electronics, Control, and

Instrumentation, Nagoya, Japan

Murphy R., Casper J., Micire M. and Hyams J., (2000c) “Assessment of the NIST Standard
Test Bed for Urban Search and Rescue“, NIST Workshop on Performance Metrics for

Intelligent Systems, pp. 11-16

Murray-Smith, D.J., (1995), Continuous System Simulation, Chapman & Hall

Musnjak, M. and Golub, M., (2004), “Using a Set of Elite Individuals in a Genetic
Algorithm”, 26

th
 Int. Conf. Information Technology Interfaces

Nehmzow, U., (2003). Mobile Robotics: A Practical Introduction, 2nd Edition, Springer,
London

Nguyen, T., Leavitt, J., Jabbari, F. and Bobrow, J.E., (2007), “Accurate Sliding-Mode
Control of Pneumatic Systems Using Low-Cost Solenoid Valves”, IEEE/ASME Transactions

on Mechatronics, Vol12, No 2, pp. 216-219

Niku, S.B., (2001), Introduction to Robotics: Analysis, Systems, Applications, Prentice Hall,
New Jersey

Nourbakhsh, S. Sycara, M. Koes, M. Young, M. Lewis, and S. Burion, (2005), “Human-
Robot Teaming for Search and Rescue”, IEEE Pervasive Computing, January-March, pp. 72-
78

Ogata, K., (2002), Modern Control Engineering, 4th Edition, Prentice Hall, New Jersey

Perez, T., (2005), Ship Motion Control: Course Keeping and Roll Stabilisation Using Rudder

and Fins, Springer-Verlag London Limited

Phillips, C.L. and Harbor, R.D., (1996), Feedback Control Systems, 3

rd
 edition, International

edition, Prentice Hall International Inc

Rambabu, C., Rathore, T.S., and Chakrabarti, I., (2003), “A new Watershed Algorithm
based on Hillclimbing Technique for Image Segmentation” TENCON 2003, Conference on

Convergent Technologies for Asia-Pacific Region, Vol. 4, pp.1404- 1408

Rayward-Smith, V.J., Osman, I.H., Reeves, C.R. and Smith, G.D., (1996), Modern Heuristic

Search Methods, John Wiley & Sons Ltd

Reeves, C.R., (1996), “Modern Heuristic Techniques”, Modern Heuristic Search Methods,
Rayward-Smith, V.J., Osman, I.H., Reeves, C.R. and Smith, G.D., Eds, John Wiley & Sons
Ltd

Rich, E. and Knight, K., (1991), Artificial Intelligence, 2nd International Edition, McGraw-
Hill Inc

Russell, S. and Norvig, P., (1995), Artificial Intelligence: A Modern Approach, Prentice Hall,
New Jersey

 153

Santana, J., Naredo J.L., Sandoval F., Grout, I. and Argueta, O.J., (2002), “Simulation and
construction of a speed control for a DC series motor” Mechatronics, 12, Pergamon, pp.
1145–1156

Schmitt, L., (2004) “Theory of Genetic Algorithms II: models for genetic operators over the
string-tensor representation of populations and convergence to global optima for arbitrary
fitness function under scaling”, Theoretical Computer Science, 310, pp. 181-231, Elsevier
B.V.

Se, S., Lowe, D.G. and Little, J.J., (2005), “Vision-based Global Localization and Mapping
for Mobile Robots”, IEEE Transactions on Robotics, Vol. 21, No 3, June

Sethi, V. and Song, G., (2006) “Pole-Placement Vibration Control of a Flexible Composite I-
beam using Piezoceramic Sensors and Actuators “, Journal of Thermoplastic Composite

Materials, Vol. 19, No. 3, 293-307

Shekhar, S., (1997), “Wheel Rolling Constraints and Slip in Mobile Robots”, Proceedings of

the 1997 IEEE International Conference on Robotics and Automation, pp. 2601-2607

Siegwart, R. and Nourbakhsh, I., (2004), Introduction to Autonomous Mobile Robots, MIT
Press

ST-L293DD, (2008), http://www.st.com/stonline/products/literature/ds/1330/l293d.pdf,
L293DD Datasheet, 24/09/2008

Suzuki, I. and Żyliński, P., (2008), “Capturing an Evader in a Building - Randomized and
Deterministic Algorithms for Mobile Robots”, IEEE Robotics & Automation Magazine, Vol.
15, No. 2

Takeuchi, M., Ikeda, T. and Minami, M., (2002), “Modelling of a Mobile Robot Including
Slipping of Carrying Objects”, SICE, pp. 2412-2417

Tanev I., Ray T., and Buller A., (2005) “Automated Evolutionary Design, Robustness and
Adaptation of Sidewinding Locomotion of Simulated Snake-like Robot”, IEEE Transactions

on Robotics, Vol.21, No. 4, August, pp. 632-645

Tarantola, A., (2005), Inverse Problem Theory and Methods for Model Parameter

Estimation, SIAM

Technobots, (2008), http://www.technobots.co.uk/acatalog/Thermopile.html, data for the

TPA81 thermopile, 24/09/08

Thrun, S., Burgard, W. and Fox, D., (2005), Probabilistic Robotics, MIT Press

Titterton, D. and Weston, J., (1997), Strapdown Inertial Navigation Technology, IEE Radar,
Sonar, Navigation and Avionics, No 5, IEE

Utkin, V., Guldner, J. and Shi, J., (1999), Sliding Mode Control in Electromechanical

Systems, Taylor and Francis

 154

Volyes, R.M. and Larson, A.C., “TerminatorBot: A Novel Robot with Dual-Use Mechanism
for Locomotion and Manipulation”, IEEE/ASME Transactions on Mechatronics, Vol. 10, No
1, pp. 17-25

Wang, Z., Su, C., and Ge, S.S., (2006), “Adaptive Control of Mobile Robots Including
Actuator Dynamics”, Autonomous Mobile Robots: Sensing, Control, Decision Making and

Applications, Taylor and Francis Group

White, B.A., (1995), “Eigenstructure Assignment: A Survey”, Proceedings of the Institution

of Mechanical Engineers, Vol. 209, pp1-11

Williams, R.L., Carter, B., Gallina, P. and Rosati, G., (2002), “Dynamic Model with Slip for
Wheeled Omnidirectional Robots”, IEEE Transactions on Robotics and Automation, Vol.
18, No 3

Worrall, K.J. and McGookin, E.W., (2006), “A Mathematical Model of a Lego Differential
Drive Robot “, 6th

 UKACC Control Conference, Glasgow, UK, 30th August– 1st September

Young, H.D. and Freedman, R.A., (2000), University Physics, 10th Edition, Addison Wesley

Young, K.D., Utkin, V.I. and Ozguner, U., (1999), “A Control Engineer's Guide to Sliding
Mode Control”, IEEE Transactions on Control Systems Technology, Vol. 7, No 3, pp. 328-
342

Zengin, U. and Dogan, A., (2007), “Real-Time Target Tracking for Autonomous UAVs in
Adversarial Environments: A Gradient Search Algorithm”, IEEE Transactions on Robotics,
Vol. 23, No 2, pp.294-307

Ziegler, J.G., Nichols, N.B., Rochester, N.Y., (1942), “Optimum Settings for Automatic
Controllers”, Transactions of the ASME, pp. 759-765

 155

Appendix A

A1. Validation Procedure

Validation Procedure for a Mobile Robot Model

As suggested by Murray-Smith (1995), the validation procedure should be documented to
allow repeatability and independent researchers to verify the validation results. As part of
this document the equipment used and the conditions of the environment the experiments are
carried out in should also be included. This will allow full repeatability of the validation
procedure. The method, or methods, of validation used should also be included. This
document describes the validation procedure for a nonlinear mathematical model of a
differential drive four wheeled mobile robot.

Aim

The model is being developed to aid in the design of heuristics for multiple robots. The
model will allow the testing of algorithms prior to them being used on physical robots. If the
model is an accurate representation of the robots then the data retrieved from the simulations
can be used as an indication of how the physical robots will operate and respond allowing
better design decisions to be made.

Equipment Used

The following equipment is used to gather the data from the physical robot:

• Laptop running RealTerm

This will be used to collect the data transmitted by the data acquisition circuit.

• In-house Inertia Measurement Unit

The Inertia Measurement Unit (IMU) has six degrees of freedom. This IMU provides
an analogue output signal that is proportional to accelerations along the x, y and z
axis and rates of change about the same axes.

• In-house Microchip PIC data acquisition and logging circuit

Using an analogue to digital converter the output from the IMU is converted into the
required format for storage on EEPROM memory.

Conditions

The room selected for the validation procedure has a carpet tiled floor which will increase
the friction as compared to other surfaces. However the room is rarely used and as such little
disturbance will occur in the room.

Validation Procedure

The procedure for the validation of the model is stated below.

1. Setup the physical experiment
2. Carry out each experiment, in turn, on the robot. Each manoeuvre should be observed

and the distances travelled double checked.
3. The data should be logged with a data and a time. If multiple sets of data are required

this will enable the most recent to be identified.

 156

4. Simulation prepared
5. Each experiment should be carried out and the data logged with time and date. This is

important with the simulation data as each set of date will represent a particular set of
parameters. The parameter settings for the data logged should also be noted and
stored with the data sets.

6. Using Analogue matching and Least Mean Square the experimental and simulation
data sets should be compared and any major discrepancies should be highlighted.

7. If any major discrepancies exist the reason for these should be located in the code and
the code altered.

8. Stages 5-7 should be repeated until a set of values for the parameters are found which
show the differences between the data sets to be within an acceptable tolerance.

Experiments

The experiments to be carried out are described below. The experiments presented are based
on the recommendations made in the International Maritime Organization (IMO)
Explanatory Notes to the Standards for Ship Manoeuvrability, [IMO, 2002]. The manoeuvres
citied in this document are accepted for the validation of marine vessel models and without a
similar guide for mobile robots this was deemed a good foundation. Time is used as the base
measurement in all the experiment as this gives open loop results. The timings given are
approximate as experimental issues altered some of the times; however for the sake of
simplicity the times given below are accurate.

Experiment 1

The first experiment is to drive the robot forward in a straight line for three seconds. This
will allow the start up and stopping conditions to be tested as well as the forward velocity.
This will also allow the IMU being used to be tested for accuracy.

Experiment 2

This experiment involves the robot travelling forward for one second, turning to the left for a
second and then travelling forward for one second. This will provide data on the robots
turning motion and rotational velocity.

Experiment 3

The third experiment involves the robot travelling in an approximate square. This involves
the robot travelling forward for one second, turning to the right for one second, travelling
forward for another second, turning to the right again for a second, forward for one second,
turning right for one second and ending by travelling forward for one second. This
experiment provides data on repeated changes in direction and changes in velocity.

Experiment 4

The fourth experiment simply has the robot travelling forward for three seconds. However
the actually physical layout of the path it takes it altered. In this case the robot starts on an
angled slope which has a small up-down ramp, which has an incline of ±15°, in the middle of
it. The robot moves forward, one set of wheels drives up the ramp, then down the ramp then
continues to move forward. This provides data on the coupling between the roll and the pitch
as the robot is pitched up by the ramp but a roll is also created as the only half the robot goes
up the ramp.

Experiment 5

The fifth experiment simply has the robot travelling forward for three seconds. This time the
environment is a ramp that the full robot moves up. In this case the robot starts on a flat

 157

surface, moves forward then moves up a ramp, at an incline of ±15°. Once at the top of the
ramp the robot moves forward on a flat surface again. This provides data on the robot
travelling up a ramp.

Experiment 6

This experiment is similar to experiment four with the exception that the roll-pitch happens
on a flat surface and both sides of the robot are evaluated at different points. The robot
travels forward and the left side of it goes up a ramp and then down it. Once running level
again the right side of the robot goes up a ramp then down it. This experiment provides
additional data about the coupling between roll and pitch.

Experiment 7

The last experiment carried out drives the robot in a zig-zag pattern. The robot is driven
forward for 0.8 of a second the robot then turns to the right for half a second, drives forward
for 0.6 of a second, and turns to the left for one second. The robot then drives forward for
one second, turns to the right for one second then travels forward for 0.8 seconds. The robot
the turns to the left for 0.5 seconds and finishes by driving forward for one second.

References

IMO, (2002), Explanatory Notes to the Standards for Ship Manoeuvrability, Ref. T4/3.01,
MSC/Circ. 1053, International Maritime Organization

Murray-Smith, D.J., (1995), Continuous System Simulation, Chapman & Hall

 158

 A2. Validation Results

Experiment 1

(a) Linear Accelerations (b) Linear Velocities

(c) Angular Velocities (d) Linear Displacements

(e) Angular Displacements

Figure A.1: Experiment 1 Validation Results

 159

Experiment 2

(a) Linear Accelerations (b) Linear Velocities

(c) Angular Velocities (d) Linear Displacements

(e) Angular Displacements

Figure A.2: Experiment 2 Validation Results

 160

Experiment 3

(a) Linear Accelerations (b) Linear Velocities

(c) Angular Velocities (d) Linear Displacements

(e) Angular Displacements

Figure A.3: Experiment 3 Validation Results

 161

Experiment 4

(a) Linear Accelerations (b) Linear Velocities

(c) Angular Velocities (d) Linear Displacements

(e) Angular Displacements

Figure A.4: Experiment 4 Validation Results

 162

Experiment 5

(a) Linear Accelerations (b) Linear Velocities

NOTE: z measurement real data is wrong when compared to

actual measurement

(c) Angular Velocities (d) Linear Displacements

(e) Angular Displacements

Figure A.5: Experiment 5 Validation Results

 163

Experiment 6

(a) Linear Accelerations (b) Linear Velocities

(c) Angular Velocities (d) Linear Displacements

(e) Angular Displacements

Figure A.6: Experiment 6 Validation Results

 164

Experiment 7

(a) Linear Accelerations (b) Linear Velocities

(c) Angular Velocities (d) Linear Displacements

(e) Angular Displacements

Figure A.7: Experiment 7 Validation Results

 165

Table A.1: ILS values for the Validation Experiments

 Experiment

Variable 1 2 3 4 5 6 7
u& , m.s-2 166 420 730 540 328 1110 670
v& , m.s-2 33 80 220 200 116 350 140
w& , m.s-2 0 0 0 680 193 570 0
u, m.s-1 7 10 30 20 20 90 30
v, m.s-1 1 0 0 10 0 10 0
w, m.s-1 0 0 0 0 0 0 0
p, rad.s-1 0 0 0 206140 56172 987920 52300
q, rad.s-1 0 0 0 317350 52119 646630 11910
r, rad.s-1 23210 179960 220570 68990 48714 69670 4030110

x, m 7 70 10 0 19 160 90
y, m 57 40 120 10 7 110 10
z, m 0 0 0 0 62 0 0
φ, rad 0 0 0 1040 99 9430 10800
θ, rad 0 0 0 2860 610 27260 2970
ψ , rad 2987 22000 676220 90360 3198 107930 96540

 166

A3. Robot Specifications

(a) Top View (b) Side View

Figure A.8: Specifications of Robot

Robot Specifications:

Mass: 2.148 Kg
Moment of Inertia, x: 0.014 Kg.m2

Moment of Inertia, y: 0.0252 Kg.m2

Moment of Inertia, z: 0.0334 Kg.m2

x area: 0.0316 m2
y area: 0.0448 m2

Motor Specifications:

Resistance: 4Ω
Inductance: 0.1H
Torque Constant: 0.35 Nm.A-1

EMF Constant: 0.35 V.rad-1s-1
Viscous Torque: 0.008 Nm
Moment of Inertia, motor: 0.005 Kg.m2

Base Friction acting on wheel: 0.002 Nm

A4. Nonlinear Model of a Mobile Robot

The dynamic equations are presented here. The Kinematic equations are as presented in
Chapter 3 Section 5.

q.wr.v)sin.0719.21u).u(abs.0181.0u.6358.4surge.(4655.0u −+θ++−=&

r.up.w)cos.sin.0719.21v.0719.21sway.(4655.0v −+θφ+−=&

p.vq.u))0719.21cos.cos.0719.21(w.3216.6heave.(4655.0w −+−φθ+−=&

))r.q.3088.0())p.9182.0(roll.((43.72p −−=&

))p.r.0112.0())q.1543.1(pitch.((68.39q -−−=&

))q.p.0082.0())r.4722.0(yaw.((94.29r -−−=&

Where surge, sway and heave are forces and roll, pitch and yaw are moments, as described in
Chapter 3.

0.127m

0.2488m

0.35m

 167

Appendix B

B1. Full Linear Model

4321 .3307.7.3307.7.3307.7.3307.7u.1706.2u τ+τ+τ+τ+−=&

4321 .7008.58.7008.58.7008.58.7008.58r.1377.14r τ−τ−τ+τ+−=&

r=ψ&

B2. Derivation of Torque-Voltage Relationship

The Pole Placement and Sliding mode controllers both generate torques as outputs but the
model requires voltages as input. The relationship between the torque generated by the
controllers and the voltages that are required is derived below.

The power in and power out of a standard DC motor can be stated as:

outin P.P =eff (B2.1)

where eff represents the efficiency of the motor. Expanding Equation B2.1 gives:

ωτ= ..V.i eff (B2.2)

Rearranging B2.2 with respect to V gives:

ωτ= − .).i.(V 1eff (B2.3)

τ equals:

i.K t=τ (B2.4)

Substituting B2.4 into B2.3:

ω= − .K).(V t
1

eff (B2.5)

ω is equal to:

s

n

s
s

max

...
V

V

τ

ω
τ−

τ

ω
τ







=ω (B2.6)

Substituting B2.6 in B2.5 gives:












τ

ω
τ−

τ

ω
τ







= −

s

n

s
s

max
t

1 ...
V

V
.K).(V eff (B2.7)

Simplifying B2.7:

 168

s

n

s
s

maxt

...
V

V

K

V.

τ

ω
τ−

τ

ω
τ







=

eff
 (B2.8)

and rearranging with respect to V gives:

s

n

s
s

maxt

...
V

V

K

V.

τ

ω
τ−=











τ

ω
τ







−

eff
 (B2.9)

s

n

s
s

maxt

...
V

1

K
.V

τ

ω
τ−=


























τ

ω
τ







−

eff
 (B2.10)


























τ

ω
τ







−

τ

ω
τ−

=

s
s

maxt

s

n

..
V

1

K

.

V
eff

 (B2.11)

A range of values can be used for eff. The value used in this work is 0.73. This value has
been arrived at through experimental results. Substituting the variables with the motor
specifications gives:

()4113.2086.2

.1987.26
V

−

τ−
= (B2.12)

326.0
.1987.26

V
−

τ−
= (B2.13)

τ= .36.80V (B2.14)

Inserting this into the simulation does not give exactly the required output. This would be the
expected result as some of the variables used are approximate. Slightly altering B2.14, based
on experimental evidence, gives:

τ= .83V (B2.15)

B3. Surge Velocity Linear Model

uF.4655.0u.1706.2u +−=&

B4. Heading Linear Model

ψτ+−= .9401.29r.1377.14r&

r=ψ&

 169

Appendix C

This Appendix presents the individual run results achieved by each algorithm within each
environment within the single robot case. The results from each algorithm is presented in a
table showing the individual results achieved for each of the 10 runs carried out. The average
for each algorithm is stated in the bottom row of each table. Relevant algorithmic parameters
are also included here within C1 Simple Environment Results.

C1. Simple Environment Results

C1.1 Lawnmower

The table below shows the results for the Lawnmower runs carried out in a single robot case
within Environment 1. This result is discussed in Section 6.3.1. Since each run of the
Lawnmower is the same only the average is shown. The lawnmower algorithm has a 0.3m
detection range for obstacles.

Table C1.1: Lawnmower Results

Run
Time for target

1, seconds
Time for target

2, seconds
% Targets

Found
% Coverage

Average 11.15 95.21 100 97.11

C1.2 Random

Table C1.2 shows the results for the Random runs carried out in a single robot case within
Environment 1. The results are discussed in Section 6.3.2. The highlighted result is the result
shown in Figure 6.5. The Random algorithm has a search radius of 2m.

Table C1.2: Random Results

Run
Time for target

1, seconds
Time for target

2, seconds
% Targets

Found
% Coverage

1 28.28 125.21 100 99.35
2 14.82 47.62 100 97.06
3 70.42 107.85 100 99.35
4 66.02 109.22 100 99.28
5 21.21 39.21 100 99.35
6 32.81 62.42 100 99.35
7 89.67 111.61 100 99.35
8 35.43 99.21 100 99.35
9 9.62 68.42 100 99.35

10 43.03 155.19 100 99.35
Average 41.13 92.60 100 99.12

 170

C1.3 HillClimbing

Table C1.3 shows the results for the HillClimbing runs carried out in a single robot case
within Environment 1. The results are discussed in Section 6.3.3. Since each run of the
HillClimbing algorithm is the same only the average is shown.

Table C1.3: HillClimbing Results

Run Time for target

1, seconds
Time for target

2, seconds
% Targets

Found
% Coverage

Average N/A N/A N/A 13.52

C1.4 Random Restart HillClimbing

Table C1.4 shows the results for the Random Restart HillClimbing runs carried out in a
single robot case within Environment 1. The results are discussed in Section 6.3.4. The
highlighted result is the result shown in Figure 6.7. The Random Restart looks for a point out
with 2m of the current point.

Table C1.4: Random Restart HillClimbing Results

Run Time for target

1, seconds
Time for target

2, seconds
% Targets

Found
% Coverage

1 45.08 N/A 50.00 45.03
2 18.33 N/A 50.00 45.15
3 13.22 N/A 50.00 45.30
4 64.82 N/A 50.00 52.72
5 50.19 N/A 50.00 46.65
6 63.62 202.45 100.00 88.39
7 72.02 N/A 50.00 50.16
8 13.22 N/A 50.00 44.85
9 53.62 N/A 50.00 48.45

10 13.62 N/A 50.00 44.92
Average 40.77 202.45 55.00 51.16

 171

C1.5 Tabu Random

Table C1.5 shows the results for the Tabu Random runs carried out in a single robot case
within Environment 1. The results are discussed in Section 6.3.5. The highlighted result is
the result shown in Figure 6.8. The Tabu Random algorithm has a Tabu Tenure of 5s, a Tabu
list length of 10 elements and a Tabu Zone of 0.3m.

Table C1.5: Tabu Random Results

Run Time for target
1, seconds

Time for target
2, seconds

% Targets
Found

% Coverage

1 64.82 178.02 100.00 99.35
2 11.97 114.81 100.00 99.35
3 27.39 138.67 100.00 99.33
4 13.62 104.41 100.00 99.35
5 8.23 45.62 100.00 99.35
6 46.02 149.21 100.00 99.35
7 18.51 29.61 100.00 99.01
8 30.75 153.61 100.00 99.35
9 52.42 315.62 100.00 99.35

10 23.61 360.82 100.00 99.35
Average 29.73 159.04 100.00 99.32

C1.6 Tabu Random Restart HillClimbing

Table C1.6 shows the results for the Tabu Random Restart HillClimbing runs carried out in a
single robot case within Environment 1. The results are discussed in Section 6.3.6. The
highlighted result is the result shown in Figure 6.9. The Random Restart looks for a point out
with 2m of the current point. The Tabu element of the algorithm has the same parameters as
the Tabu Random algorithm.

Table C1.6: Tabu Random Restart HillClimbing Results

Run Time for target

1, seconds
Time for target

2, seconds
% Targets

Found
% Coverage

1 10.25 47.47 100.00 95.74
2 16.60 55.75 100.00 99.35
3 13.90 98.41 100.00 98.83
4 6.02 73.99 100.00 96.31
5 14.82 244.39 100.00 96.78
6 10.09 73.61 100.00 97.47
7 14.02 201.38 100.00 96.76
8 14.82 96.41 100.00 98.64
9 11.22 76.42 100.00 97.59

10 18.87 165.84 100.00 96.91
Average 13.06 113.37 100.00 97.44

 172

C1.7 Random Restart Simulated Annealing

Table C1.7 shows the results for the Random Restart Simulated Annealing runs carried out
in a single robot case within Environment 1. The results are discussed in Section 6.3.7. The
highlighted result is the result shown in Figure 6.10. The Annealing schedule has a initial
temperature of 100 and minimum value of 30 with a decay rate of 0.95. The Random Restart
looks for a point out with 2m of the current point.

Table C1.7: Random Restart Simulated Annealing Results

Run Time for target

1, seconds
Time for target

2, seconds
% Targets

Found
% Coverage

1 25.43 56.02 100.00 99.35
2 43.09 236.42 100.00 99.35
3 16.89 50.82 100.00 99.35
4 41.48 96.01 100.00 99.34
5 18.41 41.21 100.00 99.28
6 30.81 58.42 100.00 99.05
7 14.77 88.01 100.00 99.34
8 111.61 244.02 100.00 98.55
9 35.21 127.21 100.00 99.35

10 16.82 128.01 100.00 99.35
Average 35.45 112.62 100.00 99.23

C1.8 Genetic Algorithm 1

Table C1.8 shows the results for the Genetic Algorithm 1 runs carried out in a single robot
case within Environment 1. The results are discussed in Section 6.3.8. The highlighted result
is the result shown in Figure 6.11. GA1 has a population size of 5 with chromosome length
of 8. GA1 uses Roulette wheel selection with 2 point crossover and 1% mutation rate. The
Random Restart looks for a point out with 2m of the current point.

Table C1.8: Genetic Algorithm 1 Results

Run Time for target
1, seconds

Time for target
2, seconds

% Targets
Found

% Coverage

1 16.02 143.21 100.00 99.33
2 22.81 34.01 100.00 83.70
3 44.42 183.62 100.00 88.10
4 35.61 178.32 100.00 92.38
5 7.85 17.83 100.00 85.74
6 22.41 61.22 100.00 95.79
7 5.63 35.21 100.00 97.04
8 16.14 27.61 100.00 90.71
9 38.41 179.26 100.00 92.27

10 22.41 46.27 100.00 77.11
Average 23.17 90.66 100.00 90.22

 173

C1.9 Genetic Algorithm 2

Table C1.9 shows the results for the Genetic Algorithm 2 runs carried out in a single robot
case within Environment 1. The results are discussed in Section 6.3.9. The highlighted result
is the result shown in Figure 6.12. GA2 has a population size of 5 with chromosome length
of 8. GA2 uses Roulette wheel selection with 2 point crossover and 10% mutation rate. The
Random Restart looks for a point out with 2m of the current point.

Table C1.9: Genetic Algorithm 2 Results

Run Time for target

1, seconds
Time for target

2, seconds
% Targets

Found
% Coverage

1 19.21 27.61 100.00 99.19
2 48.42 82.41 100.00 98.94
3 32.41 493.22 100.00 99.29
4 18.82 27.21 100.00 99.29
5 28.39 75.22 100.00 99.35
6 23.21 32.41 100.00 99.35
7 6.71 62.66 100.00 99.35
8 15.93 86.41 100.00 99.27
9 54.82 63.09 100.00 98.73

10 24.41 36.63 100.00 99.21
Average 27.23 98.69 100.00 99.20

C1.10 Genetic Algorithm 3

Table C1.10 shows the results for the Genetic Algorithm 3 runs carried out in a single robot
case within Environment 1. The results are discussed in Section 6.3.10. The highlighted
result is the result shown in Figure 6.13. GA3 has a population size of 5 with chromosome
length of 8. GA3 uses Elitist selection with 2 point crossover and 1% mutation rate. The
Random Restart looks for a point out with 2m of the current point.

Table C1.10: Genetic Algorithm 3 Results

Run Time for target
1, seconds

Time for target
2, seconds

% Targets
Found

% Coverage

1 5.62 51.62 100.00 93.89
2 14.78 27.12 100.00 84.31
3 28.01 57.62 100.00 92.50
4 15.78 40.81 100.00 89.78
5 25.61 53.22 100.00 88.87
6 69.22 80.81 100.00 91.25
7 9.22 20.41 100.00 70.67
8 7.94 18.81 100.00 91.64
9 41.61 52.42 100.00 86.28

10 29.41 78.03 100.00 92.37
Average 24.72 48.09 100.00 88.15

 174

C1.11 Genetic Algorithm 4

Table C1.11 shows the results for the Genetic Algorithm 3 runs carried out in a single robot
case within Environment 1. The results are discussed in Section 6.3.11. The highlighted
result is the result shown in Figure 6.14. GA4 has a population size of 5 with chromosome
length of 8. GA4 uses Elitist selection with 2 point crossover and 10% mutation rate. The
Random Restart looks for a point out with 2m of the current point.

Table C1.11: Genetic Algorithm 4 Results

Run Time for target

1, seconds
Time for target

2, seconds
% Targets

Found
% Coverage

1 36.81 62.02 100.00 86.49
2 36.01 44.82 100.00 89.24
3 21.61 41.21 100.00 91.26
4 22.01 82.95 100.00 92.72
5 18.78 27.51 100.00 97.35
6 50.42 84.41 100.00 99.31
7 63.62 86.30 100.00 91.77
8 27.21 54.02 100.00 87.07
9 7.41 16.42 100.00 98.73

10 25.61 80.32 100.00 92.87
Average 30.95 58.00 100.00 92.68

C2. Simple Environment with Obstacles Results

C2.1 Lawnmower

Table C2.1 shows the results for the Lawnmower runs carried out in a single robot case
within Environment 2. This result is discussed in Section 6.4.1. Since each run of the
Lawnmower is the same only the average is shown.

Table C2.1: Lawnmower Results

Run
Time for target

1, seconds
Time for target

2, seconds
% Targets

Found % Coverage

Average 48.79 N/A 50.00 50.46

 175

C2.2 Random

Table C2.2 shows the results for the Random runs carried out in a single robot case within
Environment 2. The results are discussed in Section 6.4.2. The highlighted result is the result
shown in Figure 6.16.

Table C2.2: Random Results

Run Time for target

1, seconds
Time for target

2, seconds
% Targets

Found
% Coverage

1 116.01 278.43 100.00 90.64
2 208.38 289.41 100.00 90.46
3 123.21 563.74 100.00 91.57
4 330.42 N/A 50.00 75.76
5 298.25 N/A 50.00 57.27
6 169.22 N/A 50.00 80.27
7 143.61 N/A 50.00 75.24
8 394.42 569.00 100.00 87.12
9 205.89 502.02 100.00 85.67

10 355.62 N/A 50.00 89.46
Average 234.50 440.52 75.00 82.35

C2.3 Random Restart HillClimbing

Table C2.3 shows the results for the Random Restart HillClimbing runs carried out in a
single robot case within Environment 2. The results are discussed in Section 6.4.3. The
highlighted result is the result shown in Figure 6.17.

Table C2.3: Random Restart HillClimbing Results

Run Time for target
1, seconds

Time for target
2, seconds

% Targets
Found

% Coverage

1 189.87 N/A 50.00 63.62
2 109.63 524.82 100.00 91.85
3 266.84 N/A 50.00 77.35
4 195.38 N/A 50.00 60.15
5 311.27 525.97 100.00 90.79
6 484.05 N/A 50.00 80.45
7 139.56 N/A 50.00 74.38
8 168.70 N/A 50.00 80.25
9 166.54 N/A 50.00 90.17

10 248.83 N/A 50.00 79.14
Average 228.07 525.40 60.00 78.82

 176

C2.4 Tabu Random

Table C2.4 shows the results for the Tabu Random runs carried out in a single robot case
within Environment 2. The results are discussed in Section 6.4.4. The highlighted result is
the result shown in Figure 6.18.

Table C2.4: Tabu Random Results

Run Time for target
1, seconds

Time for target
2, seconds

% Targets
Found

% Coverage

1 40.01 76.42 100.00 91.46
2 96.81 310.02 100.00 89.96
3 434.03 N/A 50.00 90.76
4 314.82 N/A 50.00 66.91
5 118.01 N/A 50.00 83.40
6 29.48 N/A 50.00 87.35
7 27.02 N/A 50.00 80.88
8 121.48 314.02 100.00 89.53
9 286.82 N/A 50.00 73.96

10 114.41 145.91 100.00 90.02
Average 158.29 211.59 70.00 84.42

C2.5 Tabu Random Restart HillClimbing

Table C2.5 shows the results for the Tabu Random Restart HillClimbing runs carried out in a
single robot case within Environment 2. The results are discussed in Section 6.4.5. The
highlighted result is the result shown in Figure 6.19.

Table C2.5: Tabu Random Restart HillClimbing Results

Run Time for target

1, seconds
Time for target

2, seconds
% Targets

Found
% Coverage

1 166.99 N/A 50.00 80.47
2 383.47 N/A 50.00 78.18
3 133.10 N/A 50.00 82.92
4 448.24 N/A 50.00 77.80
5 105.91 N/A 50.00 79.90
6 412.01 N/A 50.00 71.89
7 443.17 N/A 50.00 76.02
8 N/A N/A 0.00 26.10
9 144.75 N/A 50.00 83.27

10 79.59 188.82 100.00 91.56
Average 291.72 188.82 50.00 74.81

 177

C2.6 Random Restart Simulated Annealing
Table C2.6 shows the results for the Random Restart Simulated Annealing runs carried out
in a single robot case within Environment 2. The results are discussed in Section 6.4.6. The
highlighted result is the result shown in Figure 6.20.

Table C2.6: Random Restart Simulated Annealing Results

Run Time for target

1, seconds
Time for target

2, seconds
% Targets

Found
% Coverage

1 154.01 232.02 100.00 90.75
2 98.01 445.31 100.00 91.47
3 117.33 382.82 100.00 91.22
4 155.61 593.60 100.00 91.36
5 142.29 N/A 50.00 74.62
6 89.08 310.42 100.00 90.53
7 462.03 N/A 50.00 59.58
8 210.02 248.02 100.00 91.05
9 125.17 309.10 100.00 91.15

10 132.81 N/A 50.00 75.04
Average 168.64 360.18 85.00 84.68

C2.7 Genetic Algorithm 1

Table C2.7 shows the results for the Genetic Algorithm 1 runs carried out in a single robot
case within Environment 2. The results are discussed in Section 6.4.7. The highlighted result
is the result shown in Figure 6.21.

Table C2.7: Genetic Algorithm 1 Results

Run Time for target

1, seconds
Time for target

2, seconds
% Targets

Found
% Coverage

1 132.80 N/A 50.00 91.28
2 164.02 N/A 50.00 89.46
3 341.45 N/A 50.00 77.68
4 150.26 175.25 100.00 90.92
5 195.22 N/A 50.00 81.51
6 229.28 N/A 50.00 78.20
7 33.29 430.45 100.00 90.32
8 305.70 N/A 50.00 84.36
9 28.14 N/A 50.00 91.69

10 376.42 N/A 50.00 90.90
Average 195.66 302.85 60.00 86.63

 178

C2.8 Genetic Algorithm 2

Table C2.8 shows the results for the Genetic Algorithm 2 runs carried out in a single robot
case within Environment 2. The results are discussed in Section 6.4.8. The highlighted result
is the result shown in Figure 6.22.

Table C2.8: Genetic Algorithm 2 Results

Run Time for target

1, seconds
Time for target

2, seconds
% Targets

Found
% Coverage

1 361.22 N/A 50.00 77.70
2 254.42 531.22 100.00 87.89
3 437.22 N/A 50.00 88.45
4 198.23 N/A 50.00 81.20
5 246.42 N/A 50.00 74.99
6 378.02 N/A 50.00 73.87
7 194.42 317.22 100.00 91.52
8 134.69 317.37 100.00 89.73
9 188.78 287.62 100.00 91.54

10 182.34 N/A 50.00 82.53
Average 257.58 363.36 70.00 83.94

C2.9 Genetic Algorithm 3

Table C2.9 shows the results for the Genetic Algorithm 3 runs carried out in a single robot
case within Environment 2. The results are discussed in Section 6.4.9. The highlighted result
is the result shown in Figure 6.23.

Table C2.9: Genetic Algorithm 3 Results

Run Time for target

1, seconds
Time for target

2, seconds
% Targets

Found
% Coverage

1 221.22 N/A 50.00 80.50
2 278.82 N/A 50.00 78.35
3 66.82 344.82 100.00 91.28
4 80.41 411.15 100.00 91.37
5 288.36 459.62 100.00 83.46
6 143.61 N/A 50.00 80.69
7 28.62 269.88 100.00 91.19
8 113.61 N/A 50.00 75.59
9 158.41 394.29 100.00 90.99

10 330.42 N/A 50.00 75.24
Average 171.03 375.95 75.00 83.87

 179

C2.10 Genetic Algorithm 4

Table C2.10 shows the results for the Genetic Algorithm 4 runs carried out in a single robot
case within Environment 2. The results are discussed in Section 6.4.10. The highlighted
result is the result shown in Figure 6.24.

Table C2.10: Genetic Algorithm 4 Results

Run Time for target

1, seconds
Time for target

2, seconds
% Targets

Found
% Coverage

1 127.21 N/A 50.00 83.92
2 253.01 N/A 50.00 90.25
3 248.42 N/A 50.00 76.38
4 239.22 342.02 100.00 91.13
5 127.21 414.42 100.00 84.54
6 42.01 208.23 100.00 88.80
7 16.42 460.06 100.00 91.43
8 253.42 N/A 50.00 78.73
9 565.60 N/A 50.00 63.37

10 284.03 N/A 50.00 78.12
Average 215.66 502.47 70.00 82.67

C3. Complex Environment Results

C3.1 Lawnmower

Table C3.1 shows the results for the Lawnmower runs carried out in a single robot case
within Environment 3. This result is discussed in Section 6.5.1. Since each run of the
Lawnmower is the same only the average is shown.

Table C3.1: Lawnmower Results

Time for target found, s
Algorithm

1 2 3 4 5 6 7

%
Targets
Found

%
Coverage

Average 28.81 N/A N/A N/A N/A N/A N/A 14.29 16.62

 180

C3.2 Random

Table C3.2 shows the results for the Random runs carried out in a single robot case within
Environment 3. The results are discussed in Section 6.5.2. The highlighted result is the result
shown in Figure 6.25.

Table C3.2: Random Results

Time for target found, s Algorithm

1 2 3 4 5 6 7

% Targets Found % Coverage

1 50.42 144.41 174.42 N/A N/A N/A N/A 42.86 27.37
2 32.81 57.62 N/A N/A N/A N/A N/A 28.57 40.00
3 37.61 91.54 421.63 503.22 N/A N/A N/A 57.14 58.19
4 234.82 368.42 N/A N/A N/A N/A N/A 28.57 37.94
5 56.82 248.42 291.06 369.21 N/A N/A N/A 57.14 45.80
6 32.01 182.02 N/A N/A N/A N/A N/A 28.57 50.17
7 89.61 242.77 292.02 N/A N/A N/A N/A 42.86 54.46
8 215.62 N/A N/A N/A N/A N/A N/A 14.29 24.95
9 38.41 378.79 453.22 N/A N/A N/A N/A 42.86 36.01

10 129.52 429.76 N/A N/A N/A N/A N/A 28.57 40.92
Average 91.77 238.19 326.47 436.22 N/A N/A N/A 37.14 41.58

C3.3 Random Restart HillClimbing

Table C3.3 shows the results for the Random Restart HillClimbing runs carried out in a
single robot case within Environment 3. The results are discussed in Section 6.5.3. The
highlighted result is the result shown in Figure 6.27.

Table C3.3: Random Restart HillClimbing Results

Time for target found, s
Algorithm

1 2 3 4 5 6 7

%
Targets
Found

%
Coverage

1 45.92 174.95 N/A N/A N/A N/A N/A 28.57 34.61
2 154.66 N/A N/A N/A N/A N/A N/A 14.29 20.85
3 17.25 N/A N/A N/A N/A N/A N/A 14.29 21.37
4 93.21 207.11 453.33 N/A N/A N/A N/A 42.86 39.54
5 14.40 54.07 260.06 N/A N/A N/A N/A 42.86 43.71
6 20.01 43.63 54.07 260.06 N/A N/A N/A 57.14 18.59
7 42.01 200.02 N/A N/A N/A N/A N/A 28.57 44.71
8 11.18 91.21 208.82 N/A N/A N/A N/A 42.86 24.25
9 58.42 208.82 223.92 N/A N/A N/A N/A 42.86 37.39

10 11.22 179.02 557.25 N/A N/A N/A N/A 42.86 43.24
Average 46.83 144.85 292.91 260.06 N/A N/A N/A 35.71 32.82

 181

C3.4 Tabu Random

Table C3.4 shows the results for the Tabu Random runs carried out in a single robot case
within Environment 3. The results are discussed in Section 6.5.4. The highlighted result is
the result shown in Figure 6.28.

Table C3.4: Tabu Random Results

Time for target found, s
Algorithm

1 2 3 4 5 6 7

%
Targets
Found

%
Coverage

1 38.01 124.81 180.42 444.42 N/A N/A N/A 57.14 55.24
2 7.22 152.19 229.22 N/A N/A N/A N/A 42.86 38.06
3 63.62 106.01 300.42 N/A N/A N/A N/A 42.86 40.61
4 17.81 176.11 N/A N/A N/A N/A N/A 28.57 48.88
5 61.84 319.22 N/A N/A N/A N/A N/A 28.57 32.20
6 28.78 128.81 169.62 336.02 N/A N/A N/A 57.14 47.95
7 9.22 321.22 437.22 466.44 N/A N/A N/A 57.14 46.31
8 140.81 286.82 N/A N/A N/A N/A N/A 28.57 63.69
9 23.75 228.82 593.22 N/A N/A N/A N/A 42.86 39.23

10 41.21 104.41 462.02 N/A N/A N/A N/A 42.86 38.78
Average 43.23 194.84 338.88 415.63 N/A N/A N/A 42.86 45.10

C3.5 Tabu Random Restart HillClimbing

Table C3.5 shows the results for the Tabu Random Restart HillClimbing runs carried out in a
single robot case within Environment 3. The results are discussed in Section 6.5.5. The
highlighted result is the result shown in Figure 6.29.

Table C3.5: Tabu Random Restart HillClimbing Results

Time for target found, s
Algorithm

1 2 3 4 5 6 7

%
Targets
Found

%
Coverage

1 50.8 N/A N/A N/A N/A N/A N/A 14.29 25.74
2 31.39 289.22 N/A N/A N/A N/A N/A 28.57 37.35
3 36.72 365.45 N/A N/A N/A N/A N/A 28.57 38.17
4 21.58 115.21 N/A N/A N/A N/A N/A 28.57 34.17
5 14.62 193.22 N/A N/A N/A N/A N/A 28.57 44.28
6 15.65 N/A N/A N/A N/A N/A N/A 14.29 25.24
7 75.87 N/A N/A N/A N/A N/A N/A 14.29 26.82
8 19.61 130.96 374.27 N/A N/A N/A N/A 42.86 48.91
9 55.22 83.03 274.63 N/A N/A N/A N/A 42.86 40.13

10 13.22 38.76 N/A N/A N/A N/A N/A 28.57 21.21
Average 33.47 173.69 324.45 N/A N/A N/A N/A 27.14 34.20

 182

C3.6 Random Restart Simulated Annealing

Table C3.6 shows the results for the Random Restart Simulated Annealing runs carried out
in a single robot case within Environment 3. The results are discussed in Section 6.5.6. The
highlighted result is the result shown in Figure 6.30.

Table C3.6: Random Restart Simulated Annealing Results

Time for target found, s
Algorithm

1 2 3 4 5 6 7

%
Targets
Found

%
Coverage

1 11.62 342.89 398.43 N/A N/A N/A N/A 42.86 52.24
2 17.38 416.02 448.02 N/A N/A N/A N/A 42.86 43.74
3 6.02 137.61 254.83 N/A N/A N/A N/A 42.86 41.58
4 36.44 115.18 313.22 N/A N/A N/A N/A 42.86 38.08
5 30.49 326.02 N/A N/A N/A N/A N/A 28.57 41.39
6 38.62 273.22 313.22 377.62 N/A N/A N/A 57.14 51.07
7 15.92 229.56 402.42 N/A N/A N/A N/A 42.86 45.59
8 15.82 222.90 279.62 N/A N/A N/A N/A 42.86 33.65
9 69.22 117.35 325.41 411.62 N/A N/A N/A 57.14 58.07

10 96.81 164.11 273.55 338.03 N/A N/A N/A 57.14 40.80
Average 33.83 234.49 334.30 375.76 N/A N/A N/A 45.71 44.62

C3.7 Genetic Algorithm 1

Table C3.7 shows the results for the Genetic Algorithm 1 runs carried out in a single robot
case within Environment 3. The results are discussed in Section 6.5.7. The highlighted result
is the result shown in Figure 6.31.

Table C3.7: Genetic Algorithm 1 Results

Time for target found, s
Algorithm

1 2 3 4 5 6 7

%
Targets
Found

%
Coverage

1 40.81 126.41 244.82 N/A N/A N/A N/A 42.86 32.52
2 69.22 244.82 N/A N/A N/A N/A N/A 28.57 29.08
3 46.42 56.02 N/A N/A N/A N/A N/A 28.57 28.79
4 43.62 135.61 200.02 N/A N/A N/A N/A 42.86 32.57
5 138.29 200.42 561.22 N/A N/A N/A N/A 42.86 39.14
6 77.21 220.02 409.15 N/A N/A N/A N/A 42.86 37.19
7 166.82 210.82 409.15 N/A N/A N/A N/A 42.86 37.92
8 28.81 73.61 137.40 350.02 N/A N/A N/A 57.14 50.95
9 74.01 350.02 362.85 N/A N/A N/A N/A 42.86 45.34

10 18.01 154.01 350.02 375.62 N/A N/A N/A 57.14 35.29
Average 70.32 177.18 334.33 362.82 N/A N/A N/A 42.86 36.88

 183

C3.8 Genetic Algorithm 2

Table C3.8 shows the results for the Genetic Algorithm 1 runs carried out in a single robot
case within Environment 3. The results are discussed in Section 6.5.8. The highlighted result
is the result shown in Figure 6.32.

Table C3.8: Genetic Algorithm 2 Results

Time for target found, s
Algorithm

1 2 3 4 5 6 7

%
Targets
Found

%
Coverage

1 8.42 39.21 N/A N/A N/A N/A N/A 28.57 18.71
2 30.09 N/A N/A N/A N/A N/A N/A 14.29 25.30
3 42.81 315.62 342.42 N/A N/A N/A N/A 42.86 47.06
4 63.62 99.21 145.61 N/A N/A N/A N/A 42.86 43.25
5 29.83 252.42 383.14 508.02 N/A N/A N/A 57.14 46.65
6 34.22 112.01 277.62 N/A N/A N/A N/A 42.86 40.79
7 20.57 153.85 233.62 364.42 N/A N/A N/A 57.14 44.46
8 43.62 207.17 237.22 N/A N/A N/A N/A 42.86 46.72
9 42.41 134.93 170.82 249.62 N/A N/A N/A 57.14 50.17

10 68.42 113.21 211.86 N/A N/A N/A N/A 42.86 48.19
Average 38.40 158.63 250.29 374.02 N/A N/A N/A 42.86 41.13

C3.9 Genetic Algorithm 3

Table C3.9 shows the results for the Genetic Algorithm 1 runs carried out in a single robot
case within Environment 3. The results are discussed in Section 6.5.9. The highlighted result
is the result shown in Figure 6.33.

Table C3.9: Genetic Algorithm 3 Results

Time for target found, s
Algorithm

1 2 3 4 5 6 7

%
Targets
Found

%
Coverage

1 6.82 236.42 415.22 N/A N/A N/A N/A 42.86 37.96
2 193.62 283.26 350.30 N/A N/A N/A N/A 42.86 29.56
3 23.61 332.82 N/A N/A N/A N/A N/A 28.57 30.54
4 72.02 198.42 415.22 425.62 475.62 N/A N/A 71.43 49.48
5 16.82 198.42 425.62 475.62 N/A N/A N/A 57.14 32.53
6 10.41 18.81 282.43 N/A N/A N/A N/A 42.86 54.80
7 18.41 462.02 N/A N/A N/A N/A N/A 28.57 36.85
8 5.62 160.43 220.42 245.87 381.62 N/A N/A 71.43 60.51
9 40.81 220.42 245.87 381.62 N/A N/A N/A 57.14 32.45

10 43.62 245.87 381.62 422.31 N/A N/A N/A 57.14 44.30
Average 43.18 235.69 342.09 390.21 428.62 N/A N/A 50.00 40.90

 184

C3.10 Genetic Algorithm 4

Table C3.10 shows the results for the Genetic Algorithm 1 runs carried out in a single robot
case within Environment 3. The results are discussed in Section 6.5.10. The highlighted
result is the result shown in Figure 6.34.

Table C3.10: Genetic Algorithm 4 Results

Time for target found, s
Algorithm

1 2 3 4 5 6 7

%
Targets
Found

%
Coverage

1 17.58 289.22 433.62 N/A N/A N/A N/A 42.86 40.18
2 34.81 N/A N/A N/A N/A N/A N/A 14.29 29.14
3 15.9 131.61 247.96 526.75 N/A N/A N/A 57.14 53.93
4 15.62 166.02 N/A N/A N/A N/A N/A 28.57 31.86
5 37.61 47.62 205.62 N/A N/A N/A N/A 42.86 36.16
6 138.3 202.61 242.42 N/A N/A N/A N/A 42.86 55.04
7 42.81 N/A N/A N/A N/A N/A N/A 14.29 21.86
8 43.32 116.41 N/A N/A N/A N/A N/A 28.57 38.92
9 48.43 183.22 250.02 N/A N/A N/A N/A 42.86 57.43

10 22.01 134.01 214.82 N/A N/A N/A N/A 42.86 40.55
Average 41.64 158.84 265.74 526.75 N/A N/A N/A 35.71 40.50

 185

Appendix D

This Appendix presents the individual run results achieved by each algorithm within each
environment within the multi robot case. The results from each algorithm is presented in a
table showing the individual results achieved for each of the 10 runs carried out. The average
for each algorithm is stated in the bottom row of each table.

D1. Simple Environment Results

D1.1 Tabu Random

Table D1.1 shows the results for the Tabu Random runs carried out in a multi robot case
within Environment 1. The results are discussed in Section 7.3.1. The highlighted result is
the result shown in Figure 7.1.

Table D1.1: Tabu Random Results

Run Time for target 1,
seconds

Time for target 2,
seconds

% Targets
Found

%
Coverage

1 56.20 109.61 100.00 99.35
2 39.21 54.02 100.00 99.34
3 40.01 45.62 100.00 99.35
4 56.20 54.82 100.00 99.35
5 30.90 75.21 100.00 99.35
6 52.32 97.21 100.00 99.35
7 51.62 54.82 100.00 99.35
8 40.81 58.55 100.00 99.35
9 40.81 72.01 100.00 99.35

10 25.25 90.69 100.00 99.26
Average 43.33 71.26 100.00 99.34

 186

D1.2 Random Restart Simulated Annealing

Table D1.2 shows the results for the Random Restart Simulated Annealing runs carried out
in a multi robot case within Environment 1. The results are discussed in Section 7.3.2. The
highlighted result is the result shown in Figure 7.2.

Table D1.2: Random Restart Simulated Annealing Results

Run Time for target
1, seconds

Time for target
2, seconds

% Targets
Found

% Coverage

1 29.58 88.12 100.00 99.34
2 34.01 96.81 100.00 97.41
3 16.02 50.02 100.00 99.35
4 31.11 76.41 100.00 99.35
5 15.93 109.61 100.00 99.35
6 8.82 170.42 100.00 99.35
7 28.01 46.02 100.00 99.26
8 47.58 123.21 100.00 99.35
9 10.02 118.39 100.00 99.18

10 96.20 66.82 100.00 99.35
Average 31.73 94.58 100.00 99.13

D1.3 Genetic Algorithm 2

Table D1.3 shows the results for the Genetic Algorithm 2 runs carried out in a multi robot
case within Environment 1. The results are discussed in Section 7.3.3. The highlighted result
is the result shown in Figure 7.3.

Table D1.3: Genetic Algorithm 2 Results

Run Time for target
1, seconds

Time for target
2, seconds

% Targets
Found

% Coverage

1 25.62 128.41 100.00 99.11
2 51.44 141.21 100.00 98.36
3 33.61 260.82 100.00 98.25
4 76.51 86.01 100.00 98.67
5 54.82 114.01 100.00 97.92
6 26.01 178.02 100.00 99.33
7 25.61 206.42 100.00 94.32
8 11.23 84.54 100.00 97.11
9 54.21 123.61 100.00 97.62

10 53.62 230.02 100.00 98.51
Average 41.27 155.31 100.00 97.92

 187

D1.4 Genetic Algorithm 3

Table D1.4 shows the results for the Genetic Algorithm 3 runs carried out in a multi robot
case within Environment 1. The results are discussed in Section 7.3.4. The highlighted result
is the result shown in Figure 7.5.

Table D1.4: Genetic Algorithm 3 Results

Run Time for target
1, seconds

Time for target
2, seconds

% Targets
Found

% Coverage

1 62.10 183.62 100.00 99.33
2 56.42 155.21 100.00 99.35
3 44.34 86.41 100.00 98.91
4 26.61 199.62 100.00 98.64
5 30.81 118.81 100.00 99.13
6 16.02 130.81 100.00 98.50
7 18.02 583.20 100.00 98.99
8 160.20 284.02 100.00 99.20
9 56.20 126.41 100.00 98.39

10 N/A N/A 0.00 76.29
Average 52.30 207.57 90.00 96.67

D1.5 Genetic Algorithm 4

Table D1.5 shows the results for the Genetic Algorithm 4 runs carried out in a multi robot
case within Environment 1. The results are discussed in Section 7.3.5. The highlighted result
is the result shown in Figure 7.6.

Table D1.5: Genetic Algorithm 4 Results

Run Time for target

1, seconds
Time for target

2, seconds
% Targets

Found
% Coverage

1 25.21 178.02 100.00 98.74
2 N/A N/A 0.00 81.00
3 N/A N/A 0.00 87.19
4 31.12 117.21 100.00 99.35
5 28.01 85.21 100.00 99.27
6 5.62 43.22 100.00 98.55
7 5.62 171.62 100.00 99.26
8 167.50 202.82 100.00 97.35
9 136.62 N/A 50.00 98.05

10 72.59 206.42 100.00 99.33
Average 59.04 143.50 75.00 95.81

 188

 D2. Simple Environment with Obstacles Results

D2.1 Tabu Random

Table D2.1 shows the results for the Tabu Random runs carried out in a multi robot case
within Environment 2. The results are discussed in Section 7.4.2. The highlighted result is
the result shown in Figure 7.8.

Table D2.1: Tabu Random Results

Run Time for target
1, seconds

Time for target
2, seconds

% Targets
Found

% Coverage

1 56.99 335.94 100.00 91.52
2 52.42 325.52 100.00 92.15
3 97.61 211.62 100.00 92.63
4 105.09 185.82 100.00 91.78
5 67.22 388.82 100.00 91.86
6 73.77 210.82 100.00 91.79
7 126.80 215.22 100.00 91.71
8 38.41 89.61 100.00 91.57
9 82.81 258.98 100.00 92.24

10 118.28 157.10 100.00 91.75
Average 81.94 237.95 100.00 91.90

D2.2 Random Restart Simulated Annealing

Table D2.2 shows the results for the Random Restart Simulated Annealing runs carried out
in a multi robot case within Environment 2. The results are discussed in Section 7.4.3. The
highlighted result is the result shown in Figure 7.9.

Table D2.2: Random Restart Simulated Annealing Results

Run Time for target
1, seconds

Time for target
2, seconds

% Targets
Found

% Coverage

1 39.55 317.82 100.00 92.62
2 113.21 N/A 50.00 77.52
3 80.81 189.61 100.00 92.09
4 113.92 146.40 100.00 92.06
5 110.58 250.02 100.00 92.60
6 68.95 N/A 50.00 81.76
7 90.01 98.90 100.00 92.22
8 94.01 137.22 100.00 92.37
9 68.02 N/A 50.00 75.19

10 256.82 338.36 100.00 88.66
Average 103.59 211.19 85.00 87.71

 189

D2.3 Genetic Algorithm 2

Table D2.3 shows the results for the Genetic Algorithm 2 runs carried out in a multi robot
case within Environment 2. The results are discussed in Section 7.4.4. The highlighted result
is the result shown in Figure 7.11.

Table D2.3: Genetic Algorithm 2 Results

Run Time for target
1, seconds

Time for target
2, seconds

% Targets
Found

% Coverage

1 228.82 N/A 50.00 69.34
2 N/A N/A 0.00 32.85
3 132.01 N/A 50.00 82.55
4 236.29 N/A 50.00 68.23
5 200.42 252.42 100.00 91.27
6 178.82 344.82 100.00 87.35
7 172.28 310.42 100.00 91.57
8 205.62 546.82 100.00 91.72
9 N/A N/A 0.00 14.06

10 526.02 583.23 100.00 80.18
Average 235.04 407.54 65.00 70.91

D2.4 Genetic Algorithm 3

Table D2.4 shows the results for the Genetic Algorithm 2 runs carried out in a multi robot
case within Environment 2. The results are discussed in Section 7.4.5. The highlighted result
is the result shown in Figure 7.12.

Table D2.4: Genetic Algorithm 3 Results

Run Time for target
1, seconds

Time for target
2, seconds

% Targets
Found

% Coverage

1 N/A N/A 0.00 21.45
2 N/A N/A 0.00 23.13
3 196.73 416.82 100.00 92.00
4 N/A N/A 0.00 23.27
5 221.52 499.22 100.00 90.60
6 N/A N/A 0.00 13.94
7 280.02 N/A 50.00 85.95
8 284.02 N/A 50.00 67.13
9 N/A N/A 0.00 48.16

10 48.02 N/A 50.00 78.06
Average 206.06 458.02 35.00 54.37

 190

D2.5 Genetic Algorithm 4

Table D2.5 shows the results for the Genetic Algorithm 2 runs carried out in a multi robot
case within Environment 2. The results are discussed in Section 7.4.6. The highlighted result
is the result shown in Figure 7.13.

Table D2.5: Genetic Algorithm 4 Results

Run Time for target
1, seconds

Time for target
2, seconds

% Targets
Found

% Coverage

1 314.82 N/A 50.00 90.96
2 N/A N/A 0.00 17.28
3 197.22 N/A 50.00 87.66
4 234.42 445.46 100.00 91.61
5 N/A N/A 0.00 26.52
6 N/A N/A 0.00 18.41
7 148.01 597.22 100.00 90.98
8 N/A N/A 0.00 49.90
9 199.62 232.82 100.00 86.89

10 N/A N/A 0.00 30.04
Average 218.82 425.17 40.00 59.03

D3. Complex Environment Results

D3.1 Tabu Random

Table D3.1 shows the results for the Tabu Random runs carried out in a multi robot case
within Environment 3. The results are discussed in Section 7.5.1. The highlighted result is
the result shown in Figure 7.14.

Table D3.1: Tabu Random Results

Time for target found, s
Algorithm

1 2 3 4 5 6 7

%
Targets
Found

%
Coverage

1 36.81 37.76 126.77 156.82 192.02 N/A N/A 71.43 66.67
2 41.12 53.16 145.88 176.82 220.71 N/A N/A 71.43 58.84
3 22.41 63.22 89.21 161.22 N/A N/A N/A 57.14 58.94
4 48.02 54.95 160.02 N/A N/A N/A N/A 42.86 40.99
5 18.41 140.41 153.87 209.54 N/A N/A N/A 57.14 51.64
6 22.41 69.22 76.27 80.01 176.02 245.62 N/A 85.71 66.48
7 37.55 55.33 97.61 N/A N/A N/A N/A 42.86 50.57
8 32.49 51.62 104.71 219.22 N/A N/A N/A 57.14 59.50
9 81.21 92.81 109.21 245.22 N/A N/A N/A 57.14 59.29

10 25.61 85.61 116.14 201.62 234.98 N/A N/A 71.43 50.90
Average 36.60 70.41 117.97 181.31 205.93 245.62 N/A 61.43 56.38

 191

D3.2 Random Restart Simulated Annealing
Table D3.2 shows the results for the Random Restart Simulated Annealing runs carried out
in a multi robot case within Environment 3. The results are discussed in Section 7.5.2. The
highlighted result is the result shown in Figure 7.15.

Table D3.2: Random Restart Simulated Annealing Results

Time for target found, s
Algorithm

1 2 3 4 5 6 7

%
Targets
Found

%
Coverage

1 30.01 109.21 111.21 153.82 222.42 N/A N/A 71.43 57.28
2 32.41 87.61 104.15 N/A N/A N/A N/A 42.86 42.34
3 82.02 95.57 122.59 201.62 N/A N/A N/A 57.14 56.66
4 56.20 74.01 241.22 N/A N/A N/A N/A 42.86 43.22
5 56.20 68.22 153.21 217.22 N/A N/A N/A 57.14 58.03
6 34.41 46.42 48.02 252.02 N/A N/A N/A 57.14 59.33
7 31.61 102.01 177.22 202.95 N/A N/A N/A 57.14 44.85
8 10.82 45.35 81.61 113.21 N/A N/A N/A 57.14 51.99
9 25.21 79.18 87.13 N/A N/A N/A N/A 42.86 43.61

10 26.01 56.25 95.31 N/A N/A N/A N/A 42.86 51.8
Average 38.49 76.38 122.17 190.14 222.42 N/A N/A 52.86 50.91

D3.3 Genetic Algorithm 2

Table D3.3 shows the results for the Genetic Algorithm 2 runs carried out in a multi robot
case within Environment 3. The results are discussed in Section 7.5.3. The highlighted result
is the result shown in Figure 7.16.

Table D3.3: Genetic Algorithm 2 Results

Time for target found, s
Algorithm

1 2 3 4 5 6 7

%
Targets
Found

%
Coverage

1 47.16 52.82 52.82 N/A N/A N/A N/A 42.86 38.34
2 75.61 135.21 322.42 N/A N/A N/A N/A 42.86 57.18
3 54.02 173.62 242.02 308.02 N/A N/A N/A 57.14 39.10
4 31.61 41.61 152.10 N/A N/A N/A N/A 42.86 34.79
5 92.01 105.19 367.62 N/A N/A N/A N/A 42.86 37.43
6 103.30 315.62 413.23 N/A N/A N/A N/A 42.86 54.17
7 37.06 37.21 253.22 588.61 N/A N/A N/A 57.14 51.59
8 22.01 46.77 482.82 N/A N/A N/A N/A 42.86 49.71
9 16.52 58.02 178.02 498.02 N/A N/A N/A 57.14 51.89

10 33.97 125.94 289.56 487.62 N/A N/A N/A 57.14 48.48
Average 51.33 109.20 275.38 470.57 N/A N/A N/A 48.57 46.27

 192

D3.4 Genetic Algorithm 3

Table D3.4 shows the results for the Genetic Algorithm 3 runs carried out in a multi robot
case within Environment 3. The results are discussed in Section 7.5.4. The highlighted result
is the result shown in Figure 7.17.

Table D3.4: Genetic Algorithm 3 Results

Time for target found, s
Algorithm

1 2 3 4 5 6 7

%
Targets
Found

%
Coverage

1 14.83 149.61 150.81 N/A N/A N/A N/A 42.86 49.72
2 27.98 112.01 180.02 180.36 220.42 N/A N/A 71.43 61.12
3 22.81 47.22 81.61 N/A N/A N/A N/A 71.43 38.20
4 86.01 86.01 309.78 470.02 561.62 N/A N/A 71.43 58.28
5 69.71 82.01 129.30 319.67 N/A N/A N/A 57.14 47.82
6 37.61 101.56 364.42 N/A N/A N/A N/A 42.86 32.89
7 77.21 205.62 324.82 N/A N/A N/A N/A 57.14 50.43
8 44.82 105.47 N/A N/A N/A N/A N/A 28.57 43.82
9 35.61 483.62 N/A N/A N/A N/A N/A 28.57 38.14

10 62.82 74.81 N/A N/A N/A N/A N/A 28.57 35.31
Average 47.94 144.79 220.11 323.35 391.02 N/A N/A 50.00 45.57

D3.5 Genetic Algorithm 4

Table D3.5 shows the results for the Genetic Algorithm 4 runs carried out in a multi robot
case within Environment 3. The results are discussed in Section 7.5.5. The highlighted result
is the result shown in Figure 7.18.

Table D3.5: Genetic Algorithm 4 Results

Time for target found, s
Algorithm

1 2 3 4 5 6 7

%
Targets
Found

%
Coverage

1 57.22 64.42 N/A N/A N/A N/A N/A 28.57 38.36
2 84.27 93.21 304.43 N/A N/A N/A N/A 42.86 49.39
3 52.30 144.20 356.10 107.61 N/A N/A N/A 57.14 41.51
4 88.01 108.81 113.45 420.82 N/A N/A N/A 57.14 47.99
5 28.81 49.62 177.62 246.82 N/A N/A N/A 57.14 48.05
6 50.02 244.02 346.82 360.02 N/A N/A N/A 57.14 44.95
7 N/A N/A N/A N/A N/A N/A N/A 0.00 14.23
8 256.10 N/A N/A N/A N/A N/A N/A 14.29 33.64
9 5.62 17.22 204.82 428.02 N/A N/A N/A 57.14 51.63

10 87.75 269.22 N/A N/A N/A N/A N/A 28.57 34.26
Average 78.90 123.84 250.54 312.66 N/A N/A N/A 40.00 40.40

