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Abstract 
 

 

Urban Search and Rescue is a dangerous task for rescue workers and for this reason the use 
of mobile robots to carry out the search of the environment is becoming common place. 
These robots are remotely operated and the search is carried out by the robot operator. This 
work proposes that common search algorithms can be used to guide a single autonomous 
mobile robot in a search of an environment and locate survivors within the environment. 
This work then goes on to propose that multiple robots, guided by the same search 
algorithms, will carry out this task in a quicker time. 
 
The work presented is split into three distinct parts. The first is the development of a non-
linear mathematical model for a mobile robot. The model developed is validated against a 
physical system. A suitable navigation and control system is required to direct the robot to a 
target point within an environment. This is the second part of this work. The final part of this 
work presents the search algorithms used. The search algorithms generate the target points 
which allow the robot to search the environment. These algorithms are based on traditional 
and modern search algorithms that will enable a single mobile robot to search an area 
autonomously. The best performing algorithms from the single robot case are then adapted to 
a multi robot case.  
 
The mathematical model presented in the thesis describes the dynamics and kinematics of a 
four wheeled mobile ground based robot. The model is developed to allow the design and 
testing of control algorithms offline. With the model and accompanying simulation the 
search algorithms can be quickly and repeatedly tested without practical installation. 
 
The mathematical model is used as the basis of design for the manoeuvring control algorithm 
and the search algorithms.  This design process is based on simulation studies. In the first 
instance the control methods investigated are Proportional-Integral-Derivative, Pole 

Placement and Sliding Mode. Each method is compared using the tracking error, the steady 
state error, the rise time, the charge drawn from the battery and the ability to control the 
robot through a simple motion. Obstacle avoidance is also covered as part of the 
manoeuvring control algorithm. 
 
The final aspect investigated is the search algorithms. The following search algorithms are 
investigated, Lawnmower, Random, HillClimbing, Simulated Annealing and Genetic 

Algorithms. Variations on these algorithms are also investigated. The variations are based on 
Tabu Search. Each of the algorithms is investigated in a single robot case with the best 
performing investigated within a multi robot case. A comparison between the different 
methods is made based on the percentage of the area covered within the time available, the 
number of targets located and the time taken to locate targets. It is shown that in the single 
robot case the best performing algorithms have high random elements and some structure to 
selecting points. Within the multi robot case it is shown that some algorithms work well and 
others do not. It is also shown that the useable number of robots is dependent on the size of 
the environment. 
 
This thesis concludes with a discussion on the best control and search algorithms, as 
indicated by the results, for guiding single and multiple autonomous mobile robots. The 
advantages of the methods are presented, as are the issues with using the methods stated. 
Suggestions for further work are also presented. 
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Chapter 1 
 

Introduction 
 

1.1 Preface 

With the forces of nature and the unpredictability of humanity at work, the world is in 
constant turmoil. The full power of nature can result in earthquakes, tsunamis and 
devastating storms. Humanity adds to this through war, terrorist attacks and unfortunate 
accidents, such as mines collapsing. Human life is at risk from any of these events: buildings 
collapse, subways and mine shafts cave in, infrastructure in general can be destroyed 
[Murphy, 2004]. These incidents require people to search for survivors and help remove 
them from the site of the incident. This can put the rescuers at risk of injury or death, as it 
involves them going into the area that has been affected. After an earthquake in Mexico City 
in 1985, 135 rescuers died in the rescue operation [Casper, Micire & Murphy, 2000] and 
after the World Trade Centre attack in 2001, 402 rescuers died [Micire, 2002]. These figures 
show the risk there is to the rescue workers. The primary task of the rescue workers is to 
rescue the survivors as quickly as possible without risking their own lives. With such a risk 
to the rescue workers any support that can be given can aid in protecting and saving lives.  
 
When an incident such as those mentioned above occurs in an urban or suburban 
environment, Urban Search and Rescue (USAR) [Murphy, 2004] is the term used to 
describe the search and rescue operation. The aim of USAR is to locate and rescue people 
that are trapped as quickly as possible. The quicker the survivors can be located the higher 
the chance of survival as shown by Table 1.1 from Casper et al, (2000).  
 

Table 1.1: Trapped Victim Survival Rate 
 

Time Passed Percentage Chance 

30 minutes 91 
1 day 81 
2 days 36.7 
3 days 33.7 
4 days 19 
5 days 7.4 

 
It can be seen from the table that there is a rapid decrease in the chance of survival for people 
who are trapped within an incident as time passes. This is why it is so important that rescue 
workers are able to start the rescue operation as soon as possible and why the speed of the 
rescue operation is vital. 
 
To search and locate survivors rescuers use various pieces of equipment (sounds poles, infra 
red cameras and sonars) as well as dogs [Blitch, 1996]. The rescue task is dangerous and 
time consuming, with the risk of further problems arising on the site [Blitch, 1996]. To 
reduce the risks to the rescuer, the search is carried out slowly and delicately but this has a 
direct impact on the time to locate survivors. 
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From the first time the word robot was used, in 1920 by Karel Čapek in Rossum’s Universal 
Robots [Čapek, 1920], the idea of the robot has been to act for humans in a whole range of 
tasks and environments. This concept of the use of a robot to act for humans naturally lends 
itself to the area of searching hazardous or large environments in place of or supporting 
human searchers. This is the underlying concept of this work: the use of a robot or a group of 
robots to search a hazardous environment. 
 

1.2 Robotic Systems and Urban Search and Rescue 

Since robots are able to act for humans in many tasks this leads to the argument that while 
robots are not yet advanced enough to recover survivors, they can be used as a tool to help 
locate the survivors [Blitch, 1996; Murphy, 2004]. The most obvious benefit of replacing 
rescue workers with robots is the decreased risk to the rescue workers, as they will then 
spend less time within the affected area. However there is a range of other benefits that are 
just as important [Blitch, 1996; Murphy, 2004]: 
 

• Increased chance of locating survivors 

Robots are able to enter smaller areas than humans and dogs [Blitch, 1996; Murphy, 
2004; Birk & Carpin, 2006], and can operate without breaks. They do not suffer from 
fatigue, other than power running low. This increases the chance of locating survivors 
as the robots can operate for long periods in harsher conditions, but only if they are 
designed to do so. 

 
• Less damage to affected area 

If light robots are used on the affected area there will be less movement of rubble or 
other materials as there would be with humans and dogs [Murphy, 2004]. This 
movement can cause further damage to the site and increase the risk to survivors and 
rescue workers [Blitch, 1996]. 

 
• More information can be gained 

While the robots are moving through the site, sensors on board can record a variety of 
information. This information can range from environmental readings to readings 
allowing the creation of maps of the site [Murphy, 2004; Murphy, Casper, Hyams, 
Micire and Minten, 2000b; Birk & Carpin, 2006]. This is desirable as any 
information can aid in the coordination of the rescue effort, decrease the risk to 
rescue workers and increase the speed of the search.  

 
• The robot can go on the affected area instantly 

Before rescue workers can go on site, an overall evaluation of the site needs to take 
place. Although this reduces slightly the chances of the survivors, it is designed to 
protect the rescue workers and aid in the overall rescue effort [Blitch, 1996; Murphy, 
2004; Birk & Carpin, 2006]. Because robots are expendable they are able to go on to 
the site instantly, locating survivors from the start and hence guide the rescue 
operation at an earlier stage.  

 
Consequently rescue robots can play an important role in rescue operations and as robots 
designs improve they are becoming a necessary tool for USAR [Murphy, 2004; Birk & 
Carpin, 2006]. 
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1.3 Aims and Objectives of this work 

The aim of this work is to establish if search algorithms can be used to generate points to 
allow a robot to search an environment for desired targets in a controlled manner. This work 
also aims to investigate whether using multiple robots, again under the direction of search 
algorithms, will impact on the time taken to search an environment and locate targets. The 
aim of this work can be summarised as: 
 

• To establish if common search algorithms can be applied to generate points which 
enable a single robot or multiple robots to search an environment  

 
• To present the algorithms which carry out this task well with supporting evidence 

 
• To investigate if a better performance is achieved when the search algorithms are 

extended to guide a group of robots 
 
To achieve the aim certain objectives need to be fulfilled. The first objective is the creation 
of a mathematical model of a mobile robot that will be used in an appropriate simulation to 
test the various search algorithms. This will provide the evidence needed to establish that the 
aim has been achieved. The second objective is to establish a suitable method of navigating 
and controlling the mobile robot. With suitable navigation and control the robot can respond 
correctly to the direction of the search algorithm used. With these objectives achieved the 
search algorithms that have been selected for study can be implemented in simulation in a 
single robot case and a multi robot case. A further addition of this work is the desire that the 
work is implemented on a real system. For this reason many design choices are constrained 
to ensure that the design can be implemented on a simple real system. 
 

1.4 Contribution of this work 

The work presented in this thesis is designed to contribute to the area of robotic search. The 
approach taken in this work is to establish if search algorithms can be used to generate 
points, allowing a robot to search an environment in a structured and controlled way. 
Currently there is no indication that this approach has been studied before and as such the 
application of search algorithms as a method of searching environments in this way is 
unique. However, this work takes this concept further by not only investigating if searches 
can be carried out but by also investigating if a search can be carried out using a group of 
robots and what benefits, if any, this brings to the search. 
 
The contributions of this work can be summarised as: 
 

• Determination of whether common search algorithms can be used to guide a robot in 
a search of an environment 

 
• The algorithms which perform this task efficiently and with the best results 

 
• Whether the algorithms can be extended to provide guidance over multiple robots 

 
An additional contribution of this work is the mathematical model that has been developed. 
Though mathematical models of mobile robots have been developed before, none offer six 
degrees of freedom, nor have any complete models been shown to have been validated. 
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To date the publications that have resulted from this work are as follows: 
 
Worrall, K.J. and McGookin, E.W., (2006), “A Mathematical Model of a Lego Differential 
Drive Robot “, 6th

 UKACC Control Conference, Glasgow, UK 
 
The following papers are currently in preparation: 
 
Worrall, K.J., McGookin, E.W. and Macauley, M., “Mathematical model of a four wheeled 
mobile robot with Validation“ 
 
Worrall, K.J., McGookin, E.W. and Macauley, M., “Comparison of Control Methodologies 
on a small low speed four wheeled mobile robot“ 
 
Worrall, K.J., McGookin, E.W. and Macauley, M., “Using Tabu Random as a method of 
guiding mobile robots with regards to a search task “ 
 
Worrall, K.J., McGookin, E.W. and Macauley, M., “Comparison of Tabu Random and 
Simulated Annealing as a method of guiding a robot with regards to a search task“ 
 
Watts, C., Worrall, K.J., McGookin, E.W. and Macauley, M., “Low Cost IMU design “ 
 
These publications present the contributions of this work to the wider robotics community, 
allowing the work carried out to assist and inspire those working in similar areas.  
 

1.5 Outline of thesis 

This work proposes the use of robots to search environments under the control of search 
algorithms. The reasoning behind this approach is that that search algorithms are used in 
multiple fields of research and in industry to locate optimal points within a search space. In 
this application the optimal point will be the human survivors and the search space will be 
the USAR environment. The research carried out during the process of investigating this 
proposal is presented in this thesis using the structure described below. 
 
Chapter 2 introduces the major fields that this work is involved in: mobile robots within 
Urban Search and Rescue, mathematical models of mobile robots, control methodologies, 
and search algorithms. An overview of the work that is currently being done in these areas 
with respect to the work presented here is discussed. 
 
The first step in this work is to develop a mathematical model of a mobile robot which will 
allow a simulation to be created that can be used to test the search algorithms. The model is 
presented in Chapter 3. The model presented is a six degree of freedom model which 
includes the actuators. This model is also validated. 
 
With a suitable model developed the next stage is to develop a means of making the robot 
navigate and to select a suitable control methodology to allow the robot to be navigated 
accurately. Chapter 4 introduces the Line of Sight Autopilot technique of navigation and 
presents three control methodologies that could provide accurate control of the mobile robots 
forward velocity and heading: Proportional-Integral-Derivative, Pole Placement and Sliding 

Mode. The obstacle avoidance method implemented is also discussed in Chapter 4. 
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The next step is to introduce the search algorithms that will be used to generate the 
coordinate points that the robot will be required to travel to. Chapter 5 introduces the 
Exhaustive, Random and HillCimbing searches, along with Simulated Annealing and Genetic 

Algorithms. The use of Tabu search is also discussed and variations of the methods listed are 
introduced based on the Tabu search. This chapter presents the advantages of each algorithm 
and how each operates. Other matters concerning the way the robot searches an environment 
are also discussed, namely the ability of the robot to scan the temperature of the 
environment. 
 
The start of the simulation results that will support the conclusions of this work is presented 
in Chapter 6. This chapter discusses the simulation environments used in this work and how 
each method is implemented. The results from single agent cases of the search algorithms 
discussed in Chapter 5 are then presented and discussed. 
 
Chapter 7 presents the simulation results from the multi robot searches of the environments. 
The performances of the multi robot searches are discussed and the results from each search 
algorithms are presented along with suitable analysis. 
 
Chapter 8 concludes the thesis by stating the conclusions that can be drawn from the work 
carried out and reviewing the aims and objectives to show if the aim has been achieved and 
whether the objectives have been realised. Chapter 8 also discusses further work that can be 
done as a result of the work presented in this thesis. 
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Chapter 2 
 

Literature Review 
 

2.1 Introduction 

The research carried out during the course of this work covered many different fields of 
research. This is the nature of robotic research, as robotics is a truly multi disciplinary field. 
One major research field that has been covered in this work is the application of robotic 
systems within Urban Search and Rescue (USAR). This is a relatively young area of research 
but in recent years this field has drawn more attention. The next area of research this work is 
concerned with is the modelling and simulation of dynamic systems with an emphasis on the 
development of models for mobile robots and the subsequent use of the modelled robot 
within suitable simulations. As such, a review of the mathematical models of mobile robots 
similar to that used in this work is presented in this chapter.  
 
As mentioned, a means of controlling the robot is required to allow it to travel to a requested 
point in a controlled manner. Control methodologies are another area of research this work 
covers. A review of the control methodologies that are investigated in this work is presented 
here, as this is the basis of how the robot is to move and hence achieve the task of locating 
targets within a given environment. The last research area this work covers is the field of 
optimisation. Though this has not yet been mentioned directly, the search algorithms studied 
in this work would be considered as optimisation methods. A general review of the search 
algorithms that are to be implemented is presented in this chapter.  
 
The chapter continues as follows: Section 2.2 presents an overview of mobile robot research 
with regards to USAR. Research literature which is concerned with mathematical models of 
mobile robots is presented in Section 2.3. This is followed by an overview of the research of 
control methodologies in Section 2.4. The chapter continues with Section 2.5 which presents 
work on the search algorithms presented in this thesis. Section 2.6 provides a brief summary 
of the chapter. 
 

2.2 Mobile Robots within Urban Search and Rescue 

The use of mobile robots within USAR would seem logical as robots can be used in areas 
where humans would be at risk. However it was only after the September 11th attacks on the 
World Trade Centre (WTC) in 2001 that research in this area started to gain momentum 
[Murphy, 2004; Ichbiah, 2005; Micire, 2002]. The reason for this is that the first deployment 
of robots within a USAR situation was at this event [Murphy, 2004; Ichbiah, 2005; Micire, 
2002], though Blitch (1996) deployed robots at the Oklahoma City Bombing but this was 
only in the latter victim recovery operations. Since the deployment of robots at the WTC was 
deemed successful [Murphy, 2004; Micire, 2002] and the use of robots was accepted 
[Murphy, 2004], interest has increased in this field. It has been recognised that the 
development of robots for USAR poses many different challenges for research groups 
working in this area [Birk & Carpin, 2006] such as perception [Birk & Carpin, 2006], 
sensing [Murphy, 2004; Murphy et al, 2000b], world modelling [Birk & Carpin, 2006], 
locomotion [Murphy, 2004; Murphy, 2000a; Voyles & Larson, 2005; Murphy et al, 2000b; 
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Carlson & Murphy, 2005; Birk, Pathak, Schwertfeger and Chonnaparamutt, 2006], mapping 
[Birk & Carpin, 2006] and cooperation [Birk & Carpin, 2006; Jennings, Whelan and Evans, 
1997; Dollarhide & Agah, 2003; Murphy, Lisetti, Tardif, Irish and Gage, 2002] to name but 
a few.  
 
This increased research also led to the creation of RoboCup Rescue [Kitano, Tadokaro, 
Noda, Matsubara, Takahashi, Shinjou and Shimada, 1999] as a sister competition to 
Robocup [Kitano, Asada, Kuniyoshi, Noda, Osawa and Matsubara, 1997] with the aim to 
help facilitate the application of laboratory research to the real world, to improve upon 
aspects of the RoboCup competition and to test real time teamwork in multi agent systems 
[Kitano et al, 1999]. The National Institute of Standards and Technology (NIST) also created 
a test bed to aid research within USAR [Murphy, Casper, Micire and Hyams, 2000c; 
Nourbakhsh, Sycara, Koes, Yong, Lewis and Burion, 2005]. This test bed offers three zones 
to test mobile robots with varying degrees of difficulty [Murphy et al, 2000c] with the zones 
simulating an office environment through to an area consisting of rubble. Further 
information on the NIST test bed can be found in Nourbakhsh et al (2005) and Murphy et al 
(2000).  
 
To further aid research of robotics within the USAR domain two major groups, Center for 
Robot Assisted Search and Rescue (CRASAR) at the University of South Florida [CRASAR, 
2008] and the International Rescue System Institute in Japan [IRSI, 2008], have been set up 
with the purpose of researching robotic systems for USAR alongside other relevant research, 
such as Human-Robot Interaction [Murphy, 2004; Nourbakhsh et al, 2005]. Some believe 
that although autonomy is the “Holy Grail” [Birk & Carpin, 2006] for mobile robots, the use 
of fully autonomous systems is seen as “unrealistic…and undesirable” [Murphy, 2004]. This 
is because the demands on the robot are too great and rescue workers do not fully trust 
autonomous systems [Murphy, 2004]. Some believe that work within this field should 
concentrate on providing better systems and sensors for current mobile robots [Micire, 2002; 
Birk & Carpin, 2006]. It is generally accepted that a greater degree of autonomy with 
improved sensors and operator training will greatly enhance the use of robotic systems 
within USAR [Murphy, 2004; Birk & Carpin, 2006]. To overcome the issue of trust in using 
mobile robots within USAR, further successful deployments and awareness training 
[Murphy, 2004] will increase the desire for robots, as will describing the robots as tools that 
are to be used to assist the rescue effort [Blitch, 1996; Birk & Carpin, 2006].  
 
With regards to a suitable mobile robot for USAR there exists a consensus amongst the 
available literature. A suitable robot should be: 
 

• Small 

The robot should be small in dimension and mass [Birk & Carpin, 2006; Murphy, 
2004; Blitch, 1996]. A small robot will be able to enter areas of a search environment 
which will be inaccessible to humans or dogs [Murphy, 2004; Blitch, 1996]. A small, 
light robot can also be carried by a single person, making deployment easier [Birk & 
Carpin, 2006; Murphy, 2004; Blitch, 1996] 
.  

• Expendable 

As robots become more common within USAR the loss rate will increase due to the 
various challenges facing the robots within the working environment [Birk & Carpin, 
2006]. Since losses are expected the current specialised systems used will be costly to 
replace, hence cheap expendable robots are required [Birk & Carpin, 2006]. 
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• Useable 

During the WTC USAR effort it was found that some of the robots donated to aid in 
the rescue could not be used due to either lack of training or lack of proper equipment 
for operating the robots [Micire, 2002; Murphy, 2004]. The robots used at the WTC 
USAR effort were all teleoperated and required operators that could use them 
[Micire, 2002; Murphy, 2004]. 

 
• Protection against Hazards 

Within the working environment the robots will encounter various hazards: water, 
dust, fire, and blood are some examples [Murphy, 2004]. The robots are required to 
be protected in some way from these hazards as the operation of the robot could be 
adversely affected [Blitch, 1996; Murphy, 2004]. 
 

Many robots designed for the purpose of USAR are small light robots with either wheels or 
tracks providing locomotion, though there are many biologically inspired robots in existence, 
such as TerminatorBot [Voyles & Larson, 2005], which is able to crawl over obstacles, 
snake and serpentine robots [Murphy, 2000a; Murphy, 2000b; Ichbiah, 2005; Granosik & 
Borenstein, 2005; Tanev, Ray & Buller, 2005; Mori & Hirose, 2002]. This coincides with the 
list of desirable features stated above. However a further area of work within the field of 
mobile robots for USAR looks at the development of the mechanical aspects of the mobile 
robot. This has led to a number of different concepts. Since the environment the robot will be 
working in will be highly cluttered with a large number of different types of obstacles 
[Blitch, 1996], marsupial (where a ‘mother’ robot carries a smaller ‘child’ robot for 
deployment in areas where the mother can not go) and shape shifting robots [Murphy, 
2000b] are being investigated for use within USAR.  
 
The research field of mobile robots within USAR is large, with many different research areas 
open for investigation. Even though so many different areas exist the conclusion reached in 
the majority of the work in this area is that mobile robots are an essential tool within USAR 
and their utilisation will increase considerably in the future [Birk & Carpin, 2006; Micire, 
2002; Murphy, 2004; Blitch, 1996]. 
 

2.3 Mathematical Models of Mobile Robots 

Mathematical modelling of systems has been commonplace since the first differential 
equations of the governors were developed in the early 19th Century [Bennet, 1996]. Since 
then mechanical, electrical and thermal systems, economics and biological systems have all 
been modelled [Ogata, 2002; Murray-Smith, 1995]. Larger complete systems have also been 
modelled, from marine vessels [Fossen, 1994; Alfaro-Cid, 2003; Perez, 2005] to aircraft 
[Cook, 1997] and satellites [Franklin, Powell & Emami-Naeini; 1991]. With a model of a 
system, tests and experiments can be carried out without any interaction with a real system. 
This is beneficial when the system under consideration is to be used, for example, in an 
aircraft. To test a system in a real aircraft would be expensive, time consuming and 
dangerous. Whereas a system tested on a mathematical representation of an aircraft will give 
similar results but without the cost, the length of time or the danger. This work will only 
consider more recent research concerned with mathematical models of mobile robots.  
 
Mathematical models of mobile robots can be divided into two major groups: Kinematic and 
Dynamic [Ge & Lewis, 2006; Hong, Ge, Lewis & Lee, 2006; Wang, Su & Ge, 2006]. A 
kinematic model is based only on the position and velocities of the robot, with the velocities 
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of the wheels acting as inputs [Ge & Lewis, 2006; Hong et al, 2006], whereas dynamic 
models describe the forces and moments acting on and generated by the robot. Kinematic 
models are the most popular, as indicated by the extensive literature that exists with 
kinematic models of mobile robots. Siegwart & Nourbakhsh (2004), Thurn, Burgard & Fox 
(2005), Astolfi (2006), Bruke & Durrant-Whyte (1993) and Minor, Albiston & Schwensen 
(2006) are some examples of work that develop kinematic based models of mobile robots. 
Dynamic models of mobile robots are popular but are often confined to papers. The reason 
for this could be the ease in which kinematic models can be created and manipulated and 
have variables which are readily understood, such as velocities. Dynamic models describe 
mobile robots with regards to the forces and moments acting on and being created by the 
robot and, therefore can be more difficult to use and interpret. Examples of dynamic mobile 
robot models can be found in Utkin, Guldner & Shi (1999), Hong et al (2006), Wang et al 
(2006), Worrall & McGookin (2006), Williams, Carter, Gallina & Rosati (2002), Albagul & 
Wahudi (2004) and Balakrishna & Ghosal (1995).  
 
Texts of interest within the area of mobile modelling are Ge & Lewis (2006), Williams et al 
(2002) and Balakrishma & Ghosal (1995). The advantages of developing mathematical 
models for robots include the design of subsystems (e.g. controllers) [Nehmzow, 2003; Lune, 
Spiess, & Röfer, 2005; Michel, 2004] and the ability to test repeatedly without the difficulty 
of a practical installation [Worrall & McGookin, 2006]. A common use of mathematical 
models is the design and evaluation of control systems for robot motion. 
 

2.4 Control Methodologies 

Control can be simply described as the process required to maintain a variable at a required 
value in the presence of disturbances and uncertainties [Ogata, 2002]. From James Watt’s 
steam engine governor, seen as the first step in control theory [Ogata, 2002; Bennet, 1996], a 
wide range of work has been published with regards to control theory, with many different 
control methodologies considered. For a historic overview of control consult Bennet (1996). 
The work presented here is concerned with three established control methodologies: 
Proportional-Integral-Derivative (PID) [Åström & Hägglund, 1995; Ogata, 2002; Cetinkunt, 
2007; Franklin et al, 1991]; Pole Placement [Ogata, 2002; Philips & Harbor, 1996; Franklin 
et al, 1991] and Sliding Mode [Utkin et al, 1999; Edwards & Spurgeon, 1998; Young, Utkin 
& Özgüner, 1999; DeCarlo, Zak & Matthews 1988]. These methods were chosen due to the 
popularity of each of them, as indicated by the extensive literature available on each method. 

2.4.1 Proportional-Integral-Derivative 

PID control, also known as Classical Control or Three Term Control Controller, [Åström & 
Hägglund, 1995; Ogata, 2002; Cetinkunt, 2007; Franklin et al, 1991] is by far the best 
known and popular of the control methods that have been developed to date, as shown by the 
large number of publications associated with PID control. During the nineties Åström & 
Hägglund (1995) stated that more than 95% of process controls were PID and Cetinkunt 
(2007) states that 90% of controllers used are PID. These figures show that despite the 
variety of control methodologies available, PID controllers are still popular [Cetinkunt, 
2007]. The reason for this popularity is the ease in which a basic PID controller can be 
implemented and the ability of the PID controller to generate an output which takes into 
consideration the past, current and future error [Cetinkunt, 2007].  
 
Although a large range of literature is available on PID control, there is little difference 
between the basic PID presented in each. The literature is normally concerned with an 
application of the PID controller or a method of extending the PID controller to improve the 
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performance. A third topic that is covered in literature is methods of tuning PID controllers. 
The tuning of a PID controller is concerned with finding suitable controller values for the 
application that the controller is to be used in [Ogata, 2002]. PID controllers can be hand 
tuned [Ogata, 2002; Alfaro-Cid, 2003; Åström & Hägglund, 1995] where the controller 
values are achieved through a trial and error procedure. However there are tuning methods 
which are available to manually tune these values, the most popular of which is the Ziegler-
Nichols method [Ziegler & Nichols, 1942; Åström & Hägglund, 1995; Ogata, 2002; Philips 
& Harbor, 1996; Dutton, Thompson & Barraclough, 1997; Dorf & Bishop, 2005; Franklin et 

al, 1991]. The popularity of this method is shown by the literature that presents this method 
of tuning. It is acknowledged that though the Ziegler-Nichols method is effective, the values 
that it returns often require fine tuning [Ogata, 2002]. It is for this reason that other tuning 
methods are developed. An addition to this is the application of automatic tuning methods 
[Åström & Hägglund, 1995] which allow on demand tuning of controller values [Åström & 
Hägglund, 1995]. This has also led to adaptive PID controllers [Åström & Hägglund, 1995]. 
 
PID control is used in many different areas and a search for PID control on any of the major 
journals reveals hundreds of papers proposing applications of the PID controller or 
improvements to the PID controller.  
 
Further information on PID controllers can be found in a wide variety of literature, along 
with many examples of the use of PID controllers. One dedicated text is Åström & Hägglund 
(1995). Other texts include Ogata (2002), Cetinkunt (2007), Dutton et al (1997) and Dorf & 
Bishop (2005). 

2.4.2 Pole Placement 

Pole Placement [Ogata, 2002; Philips & Harbor, 1996; Dutton et al, 1997; Dorf & Bishop, 
2005; White, 1995; Franklin et al, 1991] is the common name for State Variable Feedback 

and Eigenstructure Assignment. The reason for this could be that State Variable 

Feedback/Eigenstructure Assignment controllers are typically designed using the pole 
placement method.  
 
The use of Pole Placement creates a state feedback gain matrix [Ogata, 2002; Phillips & 
Harbor, 1996; Dorf & Bishop, 2005] that is used to feedback desirable current system states 
[Ogata, 2002; Dorf & Bishop, 2005]. By feeding back the states of the system through a gain 
matrix and comparing these to the desired states control inputs are created [Ogata, 2002]. 
The popularity of Pole Placement has led to the creation of various algorithms which 
calculate the state feedback gain matrix when given the system equations and desired poles. 
Two such algorithms are Ackermanns Formula [Dorf & Bishop, 2005; Philips & Harbor, 
1996; Ogata, 2002], which is designed for single input systems [Ogata, 2002], and an 
algorithm developed by Kautsky, Nichols & Van Dooren (1985), both of which appear as 
commands within the MATLAB package [Ogata, 2002]. The algorithm developed by 
Kautsky et al (1985) can be used for both single input and multi input systems [Ogata, 2002]. 
The algorithm is designed to provide a robust solution to the pole placement problem, 
[Kautsky et al, 1985] giving a solution which is insensitive to perturbations [Kautsky et al, 
1985]. One disadvantage of using the Pole Placement method to design a controller for a 
nonlinear system is that the algorithms presented above, which calculate the feedback matrix, 
require a linear model of the system to operate on [Ogata, 2002; Dutton et al 1997]. This 
involves the linearisation of the nonlinear model about a set point [Dutton et al, 1997].  
 
As with PID control, Pole Placement is covered in a wide range of literature. Pole Placement 
control also returns hundreds of results when a search is carried out on the multitude of 
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journals available. The literature is wide ranging, from applications of a Pole Placement 
controller, such as vibration control [Sethi & Song, 2006], marine vessel control [Alfaro-Cid, 
McGookin & Murray-Smith, 2006; Alfaro-Cid, 2003], power circuit control [Kelly & 
Rinnie, 2005; Chow & Sanchez-Gasca, 1989], to improvements that can be made to 
controllers based on the Pole Placement principal. 
 
An overview of the field can be found in White (1995). A number of textbooks also cover 
simple controller design using Pole Placement: Dutton et al (1997), Ogata (2002), Philips & 
Harbor (1996) and Dorf & Bishop (2005). 

2.4.3 Sliding Mode 

Sliding Mode control [Utkin et al, 1999; Edwards & Spurgeon, 1998; Young et al, 1999; 
DeCarlo et al, 1988] is part of the Variable Structure Control work that came out from 
Russia during the 1970s [Young et al, 1999; Edwards & Spurgeon, 1998]. Sliding Mode 
controllers switch between two control laws [Young et al, 1999; Edwards & Spurgeon, 
1998] during the operation of the controller. The main benefit of Sliding Mode control is its 
ability to handle variations in parameters and reject disturbances that may be introduced 
within the system from model uncertainties [DeCarlo et al, 1988; McGookin & Murray-
Smith, 2006; Young et al, 1999].  
 
However, a much cited disadvantage is the Chattering phenomenon [Young et al, 1999]. 
Chattering is the high frequency switching of the switching term about the sliding manifold 
[Young, et al 1999; Edwards & Spurgeon, 1998; Utkin et al, 1999]. The term chattering 
originates from the audible noise that sliding mode controllers exhibited in early 
implementations [Utkin et al, 1999]. Chattering is undesirable as it can cause unnecessary 
wear on actuators and power converters [Edwards & Spurgeon, 1998; McGookin, 1997]. 
Utkin et al (1999) suggest that the two main causes for chattering are fast dynamics that are 
unmodelled and the discretisation of signals within microcontrollers. Young et al (1999) 
suggest that chattering remains a major obstacle for a wider take-up of Sliding Mode control. 
Though acknowledged as an issue for Sliding Mode control, chattering can be reduced 
dramatically if handed correctly. The most common method used to reduce chattering is to 
smooth the switching that occurs within a boundary layer [Young et al, 1999] using soft 

switching [Healey & Leinard, 1993; Alfaro-Cid, 2003; McGookin, 1997]. One method of 
soft switching is to replace the hard switching signum function [Edwards & Spurgeon, 1998; 
McGookin, 1997] with a hyperbolic tangent function [Alfaro-Cid 2003; Healey & Leinard, 
1993; McGookin & Murray-Smith, 2006; McGookin, 1997]. In doing this the effect of 
chattering is reduced. 
 
Sliding Mode control can be found in a wide variety of fields: Marine Vessel control 
[McGookin & Murray-Smith, 2006; Alfaro-Cid, 2003; McGookin, Murray-Smith, Li & 
Fossen, 2000; McGookin, 1997], Electric drives [Utkin et al, 1999], Power Converters 
[Utkin et al, 1999], Robotics [Utkin et al, 1999], the control of swarms of robots [Gazi, 
2005], formation control [Fahimi, 2007] and pneumatic system control [Nguyen, Leavitt, 
Jabbari & Bobrow, 2007]. 
 
As with the other controllers introduced within this section Sliding Mode has much literature 
associated with it. Dedicated texts are Edwards & Spurgeon (1998) and Utkin et al (1999). A 
tutorial for control engineers can be found in DeCarlo et al (1988). 
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2.5 Search Algorithms 

The algorithms described as search algorithms in this work are also referred to as optimising 

techniques or heuristic methods. The reason for the name search algorithms is related to the 
task that this work uses the algorithms for: that of locating a target within an environment 
with relation to the real world. A brief overview of the literature associated with each of the 
algorithms used in this work is given next. 

2.5.1 Exhaustive Search 

An Exhaustive Search, which can also be known as Brute Force [Johnson & Picton, 1995], is 
a very simple concept where every possible solution to a given problem is evaluated. This 
algorithm is seen as the most basic search algorithm and should only ever be used when only 
a small number of solutions exist for a problem, as a search through all possibilities would 
not be done in a reasonable time [Johnson & Picton, 1995]. Because of the impractical nature 
of exhaustive search there exists little literature concerning it. However, as a starting point 
for showing the advantages of other algorithms it is included here.  

2.5.2 Random 

As with the Exhaustive Search there exists little theoretical work on Random search 
algorithms. Random search algorithms are just as simple as the Exhaustive algorithm. The 
Random algorithm simply chooses solutions at random and tests those [Johnson & Picton, 
1995]. This continues until such time as a stop condition is met. 
 
A close relative of the Random Algorithm would be the popular Monte Carlo Methods 
[Tarantola, 2005]. These methods are based on random numbers. However, the results of 
multiple random numbers are used to calculate a result with regards to Monte Carlo 

Methods, [Tarantola, 2005] whereas a basic random algorithm does not consider other 
results.  
 
Research with regards to Random algorithms, within the robotics domain, includes path 
planning [Suzuki & Żyliński, 2008] and robot search [Cheng & Leng, 2004; Healey & Kim, 
2000]. 

2.5.3 HillClimbing 

The HillClimbing algorithm [Johnson & Picton, 1995; Russell & Norvig, 1995; Reeves, 
1996] follows in a similar vein from the first two algorithms described. It is a very simple 
algorithm, however one that has attracted attention. The HillClimbing algorithm is also 
known as Gradient Ascent or Descent [Johnson & Picton, 1995; Russell & Norvig, 1995], 
Steepest Ascent [Johnson & Picton, 1995] or Neighbourhood Search [Reeves, 1996]. The 
problems associated with simple HillClimbing algorithms are widely reported with the most 
serious problem being that of the algorithm returning a local optima [Johnson & Picton, 
1995; Russell & Norvig, 1995; Reeves, 1996]. Russell & Norvig (1995) suggest that the 
standard HillClimbing algorithm be altered to randomly select another solution when a near 
optimal solution of any kind is detected. This method would increase the chance of finding 
the global optimal region. Other work, for example Reeves (1996), suggests the use of other 
algorithms to overcome the HillClimbing algorithms failings. 
 
Some interesting application areas of the HillClimbing algorithm include search algorithms 
for Unmanned Air Vehicles (UAVs) [Zengin & Dogan, 2005], in the organisation of sporting 
tournaments [Lim, Rodrigues & Zhang, 2006] and image processing [Rambabu, Rathore & 
Chakrabarti, 2005].  
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2.5.4 Tabu 

The Tabu algorithm [Glover, 1986; Glover, 1989; Reeves, 1996; Gendreau, 2003] was first 
proposed by Glover (1986). The Tabu algorithm is described as a metaheuristic [Glover, 
1986; Glover, 1989; Reeves, 1996; Gendreau, 2003] as it is designed to run in support of 
another algorithm and direct its search. The main component of the Tabu algorithms is the 
Tabu List which is designed to maintain a list of solutions that have already been evaluated, 
hence stopping the primary algorithm from using those solutions again [Glover, 1986; 
Glover, 1989; Reeves, 1996; Gendreau, 2003]. Though the use of the Tabu algorithm to 
partner a primary algorithm takes up memory to allow the Tabu list, an advantage of its use 
is an ability to overcome the local optima convergence problem [Glover, 1989]. Tabu search 
also enables a more diverse search [Reeves, 1996] and enables better solutions to the 
problem to be located [Glover, 1989; Gendreau, 2003]. 
 
Tabu Search has been used in a wide range of areas: Integer Programming, computer 
scheduling, space planning, vehicle routing and traffic management systems [Glover, 1989; 
Gendreau, 2003]. Another area is within robot motion planning [Masehian & Amni-Naseri, 
2008].  
 
The primary references with regards to Tabu search are Glover (1986) and Glover (1989). 
Gendreau (2003) provides a good introduction of the Tabu Search. 

2.5.5 Simulated Annealing 

Simulated Annealing [Kirkpatrick, 1984; Bohachevsky, Johnson & Stein, 1986; Kirkpatrick, 
Gelatt & Vecchi, 1983; Johnson & Picton, 1995; Russell & Norvig, 1995; Reeves, 1996] is 
an algorithm which mimics the process of annealing [Bohachevsky et al, 1986; Kirkpatrick, 
1984; Kirkpatrick et al, 1983; Johnson & Picton, 1995; Russell & Norvig, 1995; Reeves, 
1996], a process in which a liquid is cooled until it becomes stable in a solid form 
[Bohachevsky et al, 1986; Kirkpatrick, 1984; Kirkpatrick et al, 1983; Johnson & Picton, 
1995; Russell & Norvig, 1995; Reeves, 1996]. The original concept of the Simulated 
Annealing algorithm is credited to Metropolis, Rosenbluth, Rosenbluth and Teller (1953) 
[Bohachevsky et al, 1986; Reeves, 1996; McGookin, 1997].  
 
The Simulated Annealing algorithm is loosely related to the HillClimbing algorithm as it 
carries out a local search [Bohachevsky et al, 1986; Russell & Norvig, 1995]. However, 
there are two major differences: the Annealing Schedule, also known as the cooling schedule 

[Reeves, 1996; Johnson & Picton, 1995; McGookin, 1997; Bohachevsky et al, 1986], which 
varies the perturbations made by the algorithm [McGookin, 1997], and the Metropolis 

Criterion [Metropolis et al, 1953; Bohachevsky et al, 1986; McGookin, 1997], which allows 
the algorithm to escape from local minima [McGookin, 1997]. The Annealing Schedule 
varies the perturbations made by the algorithm by reducing the size of the local 
neighbourhood. The Metropolis Criterion allows the algorithm to escape local optima by 
allowing poorer solutions to the current problem to be accepted [McGookin, 1997]. 
 
The Simulated Annealing algorithm has been used to optimise controllers for marine vessels 
[McGookin & Murray-Smith, 2006; McGookin, Murray-Smith, Li & Fossen, 2000; 
McGookin, 1997], to solve standard optimising problems such as the travelling salesman 
problem [Kirkpatrick et al, 1983; Bohachevsky et al, 1986], to aid in minimising power 
consumption in wireless communication [Montemanni, Gambardella & Das, 2005] and in 
the organisation of sporting tournaments [Lim et al, 2006; Anagnostopoulos, 
Van Hentenryck & Vergados, 2006]  
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Major texts for Simulated Annealing are Bohachevsky et al (1986), Kirkpatrick (1984), 
Kirkpatrick et al (1983) and Metropolis et al (1953). 

2.5.6 Genetic Algorithms 

Genetic Algorithms [Goldberg, 1989; Holland, 1992; Schmitt, 2004; Ellis, 1993; Mitchell, 
1996; Reeves, 1996; Johnson & Picton, 1995] are based on Charles Darwin’s Theory of 
Evolution [Ellis, 1993; McGookin, 1997]. The creation of Genetic Algorithms is attributed to 
John Holland in the 1960’s [Mitchell, 1996]. The basic concept of Genetic Algorithms is that 
they mimic natural evolution. To do this Genetic Algorithms have a range of natural inspired 
operators (selection, crossover and mutation) [Holland, 1992; Schmitt, 2004; Ellis, 1993; 
Mitchell, 1996; Reeves, 1996].  
 
Since the introduction of Genetic Algorithms there has been much research into various 
aspects of the Genetic Algorithm, as indicted by the vast number of papers, texts and 
conferences regarding Genetic Algorithms [Alfaro-Cid, 2003]. The methods used by each 
operator is one area were much research has been carried out. Some common operator 
methods are, for selection: Roulette wheel [Goldberg, 1989; Mitchell, 1996; Ellis, 1993; 
Reeves, 1996; Johnson & Picton, 1995; McGookin, 1997;], Tournament [Alfaro-Cid, 2003; 
McGookin, 1997;], Ranking [Mitchell, 1996; Alfaro-Cid, 2003] and Elitist [Mitchell, 1996; 
Alfaro-Cid, 2003; McGookin, 1997] and for crossover: uniform, one point, two point and 
multi point [Schmitt, 2004; Ellis, 1993; Mitchell, 1996; Reeves, 1996; Johnson & Picton, 
1995; Alfaro-Cid, 2003; McGookin, 1997]. The methods noted here, as mentioned, are the 
more common methods but each year brings more diverse methods. Some examples are 
McDonald (2003) who proposed a new selection method called Genetic Farming; Hong, 
Wang & Chen (2000) studied applying multiple mutation rates; Hatta, Wakabayashi & 
Koide (2001) and Mušnjak & Golub (2004) investigated the use of elite individuals within a 
population. However the standard arrangement of the Genetic Algorithm remains common in 
much of the literature. Another common theme in Genetic Algorithm literature is the 
underlying theory. A good review of the theory behind Genetic Algorithms can be found in 
Mitchell (1996) with Schmitt (2003) also providing some theoretical background. 
 
Some texts which provide further details on Genetic Algorithms include Goldberg (1989), 
Mitchell (1996) and Ellis (1993). 
 

2.6 Summary 

This chapter has reviewed some of the relevant literature concerned with the major topics 
dealt with in this work. The major topics are defined as mobile robots within USAR, the 
development of mathematical models of mobile robots, control methodologies, namely PID, 
Pole Placement and Sliding Mode, and search algorithms. The search algorithms discussed 
were Exhaustive, Random, HillClimbing, Tabu, SA and GAs. 
 
This chapter directed the reader to literature that either originally created the concepts 
discussed or that provide a standard text within the field which will allow an interested party 
to become more familiar with the topic. 
 
Some recent work being done in each of the fields was also presented, along with 
applications of the topics discussed. 
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Chapter 3
 

Mathematical Model of a Suitable Mobile Robot 
 

3.1 Introduction 

The use of simulations in both academia and industry is common place with much of the 
research and initial experiments carried out first within simulation [Frankin et al, 1991; 
Murray-Smith, 1995; Nehmzow, 2003; Ogata, 2002]. Simulations allow the testing of 
theories, controllers and algorithms within controlled and repeatable circumstances [Murray-
Smith, 1995]. This occurs as users can control aspects of the simulation allowing the 
simulation to remain constant between different runs or make changes to the simulation to 
test different aspects of what is being tested.  
 
Within robotics it is widely recognised that simulations of robots can be used to develop the 
design of subsystems (e.g. controllers) [Nehmzow, 2003; Lune, et al., 2005; Michel, 2004] 
quickly and test prototypes repeatedly without the difficulty of a practical installation 
[Worrall & McGookin, 2006] e.g. avoiding the complexities of altering code within the 
robotic platform at every iteration, or the time taken to develop a Hardware-in-the-Loop 
simulator. In addition to the robot itself, environmental aspects also influence experiments, 
e.g. ambient light and temperature levels. Sensors that are sensitive to light and temperature 
will behave differently if ambient levels have changed. The test environment may have also 
been altered with the addition or removal of obstacles. These aspects can all remain constant 
within a simulated environment resulting in a managed environment for experimental use. 
The robotic platform can also be guaranteed to remain constant within a simulation. The 
physical robotic platform will be subject to changes in the battery level as it is being used. 
Wear and tear may also be an issue and if a robotic platform is being used by a group of 
people, alterations may be made to the platform that may be unknown to the current user 
affecting the experiments. The constant nature of the simulation allows repeatable testing of 
code and setup and will allow comparisons to be made between different runs with different 
code or setup. This only allows a comparison with near ideal or ideal conditions. There are 
circumstances, such as the testing of sensors, where only testing on a physical system will 
provide true results. This shows that though simulation will allow extensive testing and 
provide a degree of confidence in any code written, simulation testing should be carried out 
in parallel with practical tests. Another advantage of the use of a simulation is that a group of 
robots can be simulated. This is advantageous when the research involves multi robot 
systems, as the robots need not exist, thus saving time and money.   
 
A simulation requires a mathematical model of the robot, which is a set of equations that 
describe the behaviour of the robot. Having the mathematical model is only the first step. 
Confidence in the accuracy of the results generated by the model is required. To achieve this, 
the model has to be validated against physical data from the actual vehicle being modelled. 
The model presented here is validated with results presented in Appendix A2. Having a 
validated model means that the user of the simulation can be confident that the results 
obtained from the simulated experiment are similar to those obtained from the physical robot 
[Murray-Smith, 1995]. 
 
The robotic system considered in this study is a four wheel mobile robot. The mathematical 
model used to describe the motion of such a robot contains two distinct aspects: the 
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dynamics and the kinematics. The dynamics describe the forces and moments that act upon 
the robot and the kinematics describe the geometric aspects of motion, with regards to linear 
and angular velocities of the robot relative to the Earth [Fossen, 1994; Cook, 1997; Perez, 
2005]. Together the dynamics and kinematics make up the equations of motion for the robot. 
 
A further addition to the mathematical model presented is the actuators for the mobile robot. 
The inclusion of the actuators allows a level of abstraction between the user of the model and 
the model of the robot because the user does not need to control the simulated robot via 
forces and torques but by the required actuator voltages. Since this is the case when using 
real robots this model better represents the real world. 
 
As mentioned this model has been validated against a real system. A validation procedure 
[Murray-Smith, 1995] was created along with a set of experiments which allowed the 
required data to be gathered from the robot. The data gathered was then processed and 
compared - using Analogue Matching [Gray, 1992] and Integral Least Squares (ILS) 
[Murray-Smith, 1995] - to data retrieved from simulation runs of the developed model. The 
constant values within the model were then altered until the data from simulation runs 
closely matched that of the real system.  
 
The development of the model of the mobile robot and its associated simulation is presented 
in this chapter as follows: Section 3.2 provides a description of the robot that is being 
modelled. Before the development of the mathematical model can begin two aspects of the 
model require definition, the Frames of Reference and the Dynamic Variables. Both of these 
aspects are introduced and discussed in Section 3.3. The dynamics of the model are 
presented in Section 3.4 with the kinematics derived in Section 3.5. Next the actuator 
dynamics are described in Section 3.6. A brief description of the validation carried out is 
given in Section 3.7. The chapter summary follows in Section 3.8. 
 

3.2 Description of a Suitable Mobile Robot 

The mathematical model described in this chapter is based on a particular mobile robot. This 
section presents the basic robot used and introduces the systems required to obtain the 
validated model used in this study. In the field of mobile robotics there are numerous designs 
that have been implemented based on their particular applications.  These range in size from 
large bomb disposal robots on tracks [Ichbiah, 2005] to small wheeled robots for domestic 
chores e.g. vacuuming and lawn maintenance [Ichbiah, 2005]. In this particular case a simple 
four wheel symmetrical vehicle is used.  This vehicle was used as it meets two of the 
requirements for a suitable mobile robot for USAR - small and expendable - as set down in 
Chapter 2 Section 2.2. With regards to the other requirements these would be achieved by 
improving the platform. Photos of the robot are shown in Figure 3.1. 
 
The chassis for this robot is a Lynxmotion 4WD3. Further information can be found at 
Lynxmotion (2008). This chassis provides the user with a flexible mobile platform to 
develop onboard systems and algorithms. This is supplied in a kit form and comprises of the 
complete chassis of the robot, four motors and four wheels. 

 



 

  17 

 

 
 
 

 
 

(a) Top (b) Side 

 

 

 
(c) Front (d) Perspective 

 

Figure 3.1: Photos of the robot 
 
In order to make the robot move in the desired controlled manner, a number of basic systems 
have been developed and added to the chassis. The robot used to carry out the validation has 
the following systems onboard to allow the required manoeuvres to be undertaken and log 
the relevant data. 
 

• Power 

The robot requires a battery to power it. The battery chosen was a 7.4V 3200mAh 
Lithium-Polymer battery. This technology was chosen because of its high energy to 
size ratio [Buchmann, 2001]. The voltage met the required voltage of the motors and 
the capacity meant that a large number of runs could be undertaken on a single 
charge. 
 

• Motor Driver 

Each motor requires to be driven safely and in a controlled manner. To do this each 
motor is driven via a motor driver chip, the L293DD [ST-L293DD, 2008], that is 
controlled by a microcontroller, the PIC16F88 [Microchip -PIC16F88, 2008]. This is 
a standard arrangement for driving motors [Braga, 2002].  
 

• Inertia Measurement Unit 

The Inertia Measurement Unit, IMU, [Barshan & Durrant-Whyte, 1995] is of the 
strapdown family of IMUs [Titterton & Weston, 1997]. It is made up from three 
single axis gyroscopes and one triple axis accelerometer. The gyroscopes are used to 
sense the rate of change of the angle of the robot about its three axes and the 
accelerometers are used to sense the accelerations along the three axes of the robot. 
The IMU used was developed in-house as part of this work. 

 

• Simple Controller 

The simple controller is designed to send signals to the motor controllers based on the 
manoeuvre the robot is currently tasked to do. The simple controller is designed to 

0.35m 

0.127m 

0.2488m 
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carry out the manoeuvres described in Appendix A1. The controller is based on a 
PIC16F88 [Microchip -PIC16F88, 2008]. 
 

• Data Logger 

The data logger is designed to log the outputs from the IMU and then, once the 
manoeuvre is complete, transmit this data to a PC. The data logger is a 16Mbit Flash 
memory designed to store the relevant data. 
 

This robot chassis and its associated system is the subject of the mathematical model 
developed in the remainder of the chapter. Further details on the robot can be found in 
Appendix A3. 
 

3.3 Frames of Reference and Model Variables 

The first step in the development of the mathematical model of the mobile robot is to 
describe the frames of reference and describe the dynamic variables used in the model. Both 
of these are key elements when describing the motion of a robotic vehicle, its onboard 
systems and its interaction with its inertial fixed environment.  
 
The frames of reference, sometimes referred to as coordinate frames, [Fossen, 1994] are 
three orthogonal axes representing three dimensional space. These frames are points of 
reference to which the motion of the robot can be related. This work uses two frames: an 
Earth fixed frame, which has an inertially fixed origin, and a Body fixed frame, which is 
fixed to longitudinal, lateral and heave axes of the robot. Figure 3.2 shows the frames of 
reference. 
 

 
Figure 3.2: Frames of Reference 

 
The origin of the Body fixed frame is located at the centre of gravity of the robot, which is 
the centre of the robot in this case. Having the origin at this point simplifies the equation of 

Xb 
Yb 

Zb 

XE 

ZE 

YE 

u 
v 

w 
p  q 

 r 

x&  y&  

z&  

φ&  
 ψ&  

θ&  

Body Fixed Frame 

Earth Fixed Frame 



 

  19 

motion, as shown in Fossen (1994). The reason why this simplifies the equation of motion is 
that it removes terms associated with the offset of the centre of gravity and the origin of the 
frames of reference [Fossen, 1994; Fossen, 2002]. The Body fixed frame should be 
referenced relative to an inertial reference frame, in this case the Earth fixed frame, where, 
due to the low speed of the robot, the accelerations of the Earth can be neglected [Fossen, 
1994] and therefore can be treated as an inertial frame. The pose of the robot (position and 
orientation) [Thurm et al, 2005] is described relative to the Earth fixed frame and the 
velocities, linear and angular, are described with reference to the Body fixed frame. 
 
The dynamic variables of the model are described in Table 3.1. These variables are used 
throughout this chapter. 
 

Table 3.1: Model Variables 
 

DOF Axis Motion 

Termed 

Type of 

Motion 

Force/ 

Moment 

Velocities Position/ 

Orientation 

1 Xb/Xe Surge Linear X   (N) u  (m/s) x (m) 
2 Yb/Ye Sway Linear Y   (N) v  (m/s) y (m) 
3 Zb/Ze Heave Linear Z   (N) w  (m/s) z (m) 
4 Xb/Xe Roll Rotation K (Nm) p (rad/s) φ (°) 
5 Yb/Ye Pitch Rotation M (Nm) q (rad/s) θ (°) 
6 Zb/Ze Yaw Rotation N (Nm) r (rad/s) ψ (°) 

 
The variables described in Table 3.1 are more commonly described in vector form, [Fossen, 
1994]: 
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Here η describes the pose within the Earth fixed frame, υ describes the linear and angular 
velocities within the Body fixed frame and τ represents the forces and moments acting on the 
robot within the Body fixed frame, [Fossen, 1994]. All of these variables combine to 
describe the dynamic behaviour of the robot and are the basis of the mathematical model. 
 

3.4 Dynamics 

The dynamics describe how the forces and moments acting on the robot contribute to and 
affect its motion within the body fixed frame.  These represent the influence of the dynamic 
cross-coupling caused by each motion along or about the axes of the reference frame. 

3.4.1 Equations of Motion 

The foundation of this model is the six degree-of-freedom nonlinear dynamic equation of 
motion, shown in Equation (3.1) [Fossen, 1994]. 
 

τηννDννCνM. =+++ )(g).().(&  (3.1) 
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Here M is the mass and inertia matrix and C(υ) is the Coriolis matrix, which together 
represent the rigid model dynamics. D(υ) is the damping matrix, g(η) represents the 
gravitational forces and moments, and τ is a vector representing the control inputs [Fossen, 
2002]. Each of these terms will be dealt with in the followings sections. 
 

3.4.2 Rigid Body Dynamics 

The robot is treated as a rigid body, which means it will be assumed that the robot’s mass 
and shape does not alter, though this is an idealised concept [Young & Freedman, 2000] as 
no fuel is used and there is no loss of mass as the robot moves. The rigid body dynamics 
describe the equations that allow the rigid body to move when a force is applied. The 
equations are based on the Newton-Euler formulation for rigid bodies [Fossen, 1994; Fossen, 
2002]. The Newton-Euler formulation is based on Newton’s second law which states that 
mass multiplied by the acceleration equals the unbalanced forces acting on the body, 
represented by [Young & Freedman, 2000]: 
 

∑= Fa
rr

.m  (3.2) 
 
Where m is the mass, kg, a

r
 is an acceleration, ms

-2, and ∑F
r

 is the sum of the forces acting 
on the body, N.  
 
To develop the equations of motion Euler’s first and second axioms are used [Fossen, 1994]. 
These represent Newton’s second law in terms of the conversation of momentum. Euler’s 
first and second axioms are: 
 

cc fp
rr

=  cc .m vp
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=  (3.3) 
 

cc mh
rr

=  ibcc .wh
rr

I=  (3.4) 
 

where cp
r

 is linear momentum, ch
v

 is angular momentum, cf
r

and cm
r

are the forces and 

moments acting on the centre of gravity of the rigid body, m is mass, kg, cv
v

is the velocity at 

the centre of gravity, ibw
r

 is the angular velocity of frame b relative to i and Ic is the inertia 
dyadic, which is the inertia matrix about the centre of gravity [Fossen, 2002]. 
 
The proof of how Newton’s Second Law and Euler’s First and Second Axiom become the 
rigid body equations of motion can be found in Fossen (1994) and Fossen (2002). 
 
The rigid body equations of motion, with the origin of the body fixed frame at the centre of 
gravity and coinciding with the principal axes of inertia, of the robot can be stated as 
[Fossen, 1994; Fossen, 2002]: 
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Here m is the mass of the robot, kg, Ix is the moment of inertia about the x axis, Iy is the 
moment of inertia about the y axis and Iz is the moment of inertia about the z axis, where the 
moment of inertia is measured in kg.m

2. The equations given in Equation (3.5) can be 
represented as: 
 

τννCνM =+ ).(.&  (3.6) 

 
Here M is the mass and inertia matrix and C(υ) are the Coriolis matrix. M can be expanded 
to: 
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The Coriolis and centripetal terms describe the Coriolis Effect and the centripetal force and 
how these both affect the motion of the robot. The Coriolis and centripetal matrix provides 
the correction that is required to model this additional movement. C(υ) expanded gives: 
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3.4.3 Dampening Forces 

As stated above, D(υ) is the dampening matrix and describes the forces and moments that are 
acting against the motion of the robot. This model describes a wheeled robot that has two 
major dampening forces: friction and air resistance. Figure 3.3 shows the interaction of the 
forces. 
 

 
 

Figure 3.3: Force diagram of the dampening forces 
 

Equation (3.9) shows how the matrix D(v) is created. 
 

Air Resistance 

Driving Force 

  Friction 
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)(F)(F)( arf vvvD +=  (3.9) 
 
Here Ff is a vector representing the frictional forces and moments and Far is a vector 
describing the forces and moments occurring due to air resistance. 
 
3.4.3.1 Friction 

The robot runs on wheels and as a result the frictional force is termed rolling friction [Jellet, 
1872]. The coefficient of friction associated with rolling friction is lower than that of static or 
kinetic friction. The standard equation for friction is [Young & Freedman, 2000]: 
 

σ= .g.mFf  (3.10) 

 
where Ff is the frictional force, N, m is the mass of the robot, kg, g is the acceleration due to 
gravity and σ is the coefficient of rolling friction. 
 
Each axis has a component of friction acting against the motion along or about it. The 
friction coefficients associated with the motions are different for each axis, as the motion 
along or about each axis has to overcome different resistive forces or moments. During the 
validation procedure it has been found that an additional variable is required in the standard 
friction equation. The variable required is the appropriate velocity along or about the axis 
that the friction exists on. Equation (3.11) shows the vector that describes Ff(ν). 
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In this case W is the weight of the robot, N, σ# is the friction coefficient along or about the 
axis #, where # is either x, y, z, φ, θ or ψ, the velocities are as stated before and mrς is the 
moment arm, m, that transforms the forces into torques, with ς representing p, q or r. 
 

3.4.3.2 Air Resistance 

As the robot moves through air it meets resistance that causes drag. The drag can be 
calculated using the following [Hoerner, 1965]: 
 

2
ardar v..A.C.5.0F ρ=  (3.12) 

 
here Far is the force produced, N, Cd is the drag coefficient, A is the surface area presented to 
the direction of travel, m2,  ρ is the density of air, 1.29 kg.m

-3 and var is the velocity acting in 
the direction of travel, ms

-1. 
 
The drag coefficient is a number that is based on the shape of the robot. Though a 
simplification, the shape of the robot presented here is given as a cuboid, giving a drag 
coefficient of 0.89 [Hoerner, 1965]. 
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Though all six degrees-of-freedom are in contact with air only the drag along the x-axis is 
notable as this is the main axis of motion. The velocities along each of the other axis are 
negligible when compared to the velocity along the main axis, hence the drag encountered on 
each of these axes is deemed negligible. Hence Far(v) becomes: 
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At low speeds the air resistance is negligible compared with the dampening caused by the 
friction. However, at high speeds the drag caused by the air resistance becomes more 
significant than the friction, hence its inclusion in the model. 

3.4.4 Propulsion Forces 

The propulsion forces generated by the robot are produced by the combination of the forces 
generated by each independently controlled wheel. To produce a motion along the x-axis the 
motors are instructed to all move with the same speed and in the same direction. Various 
turns can be achieved by altering the speed and direction of the wheels on one side of the 
robot as compared to the wheels on the other side. Since only the motion along the x-axis 
and turning about the z-axis can be achieved with this control over the wheels, only two 
elements of the input vector, τ, can be controlled directly, surge, X, and yaw, N. 
 
3.4.4.1 Surge 

Surge is the force that acts along the body fixed x-axis. Surge produces the forward or 
reversed motion of the robot. The sum of the forces generated by each wheel gives the surge, 
as shown in Figure 3.4. 

 
Figure 3.4: Surge Generation 

 
 Using Equation (3.14) the surge force, X, can be calculated. 
 

( ) β+++= cos.FFFFX brblfrfl  (3.14) 
 
Here Ffl (front left wheel), Ffr (front right wheel), Fbl (back left wheel), and Fbr, (back right 
wheel), are the forces, N, generated by each wheel and β is the slip angle. 
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The slip angle, with regards to a model of a mobile robot, is the topic of many publications 
with Shekhar (1997), Balakrishna & Ghosal (1995), Williams et al (2002) and Bisgaard et al 
(2005), covering the subject in detail [Worrall & McGookin, 2006]. In this work the slip 
angle is formed from the following relationship between the forward velocity and the sway 
velocity [Worrall & McGookin, 2006]: 
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Here v is the sway velocity and u is the surge velocity, both measured in ms

-1. When the 
denominator is zero, β is assumed to be zero. 
 
3.4.4.2 Yaw 

The moment N, or yaw moment, is the moment that contributes to the robot turning. Turning 
is achieved by either: 
 

i. Reducing the speed of the motors on one side of the robot as compared to that of 
the other side. 

ii. Stopping the motors on one side of the robot, while the other side is still moving. 
iii. Reversing the direction of the motors on one side of the robot as compared to the 

other side. This allows the robot to turn on the spot. 
 
Since reducing the speed of the motor also reduces the force generated, an unbalanced force 
about the centre of the gravity is created and a turn begins. Using Equation (3.16) the 
moment about the z-axis can be calculated. 
 

mbrfrblfl r))FF()FF((N ×+−+=  (3.16) 
 
Where N is the moment about the z-axis, Nm, Ffl, Ffr, Fbl and Fbr are the wheel forces, N, 
generated by each wheel and rm is the moment arm, m. The moment arm is the distance 
between the centre of each wheel and the line of action that the centre of gravity lies on 
[Young & Freedman, 2000; Worrall & McGookin, 2006]. This concept is shown in Figure 
3.5. 
 

 
Figure 3.5: Yaw moment generation 

3.4.5 Unmatched Dynamics 

Unmatched dynamics are the forces and moments that cannot be directly controlled. They 
occur as a result of the interaction between surge and yaw, and as a result of interaction with 
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the environment. The unmatched dynamics in this model are sway, heave, roll and pitch. 
Heave is present when the robot falls or is travelling up or down a slope. Roll and pitch are 
generated from the inclination of the terrain in which the robot is currently operating. 
 
Sway is a result of the slip between the robot and the ground and is present when the robot is 
turning. Sway, Y, is calculated using Equation (3.17). 
 

( ) β+++= sin.FFFFY brblfrfl  (3.17) 
 
Where Ffl, Ffr, Fbl and Fbr are the forces, N, generated by each wheel and β is the slip angle. 

3.4.6 Gravitational Forces and Moments 

The gravitational forces and moments vector, g(η), contains the term relating to the effect of 
gravity on the robot. Since the origin of the body fixed axes coincides with the centre of 
gravity there are no weight components that affect the moments about each axis [Cook, 
1997]. This reduces g(η) to: 
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where Xg, Yg and Zg are forces, N, arising due to gravity. 
 
The gravitational forces acting on the robot as it moves up or down an incline are shown in 
Figure 3.6.  These forces are calculated using basic trigonometry in the following way: 
 

θ

θ

cos.g.mZ

0Y

sin.g.mX

g

g

g

=

=

−=θ θθ
 (3.19) 

 
Here m is the mass of the robot, kg, and g is the acceleration due to gravity. 

 
 

Figure 3.6: How gravity affects the robot with respect to the pitch angle 
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When the robot moves across an incline the component of the weight is acting along the 
sway axis, see Figure 3.7. 

 
 

Figure 3.7: How gravity affects the robot with respect to the roll angle 
 

This leads to the force relationships shown in Equation (3.20). 
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A further variable needs to be included in the calculation of the gravitational matrix. This 
variable is required as a result of coupling between the x- and y-axes when both a roll and a 
pitch exist. The reason for this coupling is discussed in Section 3.5. However to complete the 
derivation of the gravitational matrix here Equation (3.21) is used to calculate part of the 
gravitational matrix. 
 

















=

g.m

0

0

R.R)(g ,y,xF θφη  (3.21) 

 
Here gF(η) represents the gravitational terms associated with forces, Rx,φ is the rotation 
matrix about the x-axis, discussed in Section 3.5 and Ry,θ is the rotation matrix about the y-
axis, also discussed in Section 3.5. When Equation (3.21) is multiplied out and the affects of 
torque are included, Equation (3.22) is the result. It can be seen that Equation (3.22) matches 
the equations given in Equation (3.19) and (3.20) with the addition of the cos θ term. 
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This expression provides the equations of motion with the necessary gravitational elements. 
It can be seen that the equations in (3.19) and (3.20) are the same as those in (3.22) with the 
addition of a cos θ term. 
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3.5 Kinematics 

Kinematics represent the geometric transformations that map the body-fixed velocities on to 
the Earth-fixed reference frame [Fossen, 1994]. In this case the kinematic relationships 
describe the movement of the robot with respect to its linear and angular velocities.  It 
follows that the kinematics can be grouped into translational and rotational expressions. 
These relationships are formed in terms of the principle rotations about each of the major 
axes. 

3.5.1 Principal Rotations 

The first stage in developing the kinematics is to state the principal rotations. The principal 
rotations are matrices that describe the geometric motion about each axis. Each axis has a 
principal rotation matrix associated with it that incorporates the rotation angle about that 
axis. The reason for deriving the principal matrices here is because the matrices depend on 
the orientations of the axes with regards to the frames of reference. The principal rotation 
matrices derived here are based on the frames of reference as shown in Figure 3.2. 
 
3.5.1.1 Rotation about the x-axis 

To calculate the first matrix Figure 3.8 is used [Niku, 2001]. This shows a rotation of angle φ 
about the x-axis, of a point P. As point P is rotated, its position in relation to the Y- and Z-
axes changes. From the original point along the Y-axis, y, the position of P is reduced as it is 
rotated. After the rotation the new position is y’. With regards to the Z-axis point P started at 
z but after the rotation this new position is z’. Since the original positions are known and the 
angle of rotation is known the new position for point P can be calculated using trigonometric 
relationships. This forms the basis on how the rotation matrices are created. 
 

 
Figure 3.8: A rotation of angle φ about the x-axis 

 
With regards to the rotation shown in Figure 3.8, the equations relating to this change in 
length are: 
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In matrix form this is represented as: 
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where Rx,φ denotes a rotation of φ about the x-axis. 
 
3.5.1.2 Rotation about the y-axis 

The second principal rotation is a rotation of θ about the y-axis. Using the same principal as 
above, the equations describing this rotation are: 
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In matrix form: 
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Where Ry,θ denotes a rotation of θ about the y-axis. 
 
3.5.1.3 Rotation about the z-axis 

To establish the third principal rotation matrix the same process is again used to the rotation 
of ψ about the z-axis. Equation (3.27) shows the associated equations for this rotation:  
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Equation (3.28) gives the corresponding matrix representation: 
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where Rz,ψ denotes a rotation of ψ about the z-axis. 

3.5.2 Translational Kinematics 

With the principal rotation matrices the kinematic relationships between the Body-fixed 
translational velocities and the Earth-fixed translational velocities can be established. This 
kinematic relationship is used to transform the Body-fixed linear velocities to the Earth-fixed 
frame. 
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Using, ν1, to represent the translational velocities as a vector and 1η&  to represent the Earth-
fixed translational velocities as a vector, the transformation matrix is given as: 
 

1211 ).(J υηη =&  (3.29) 
 

where J1(η2) is a transformation matrix. To calculate J1(η2) the three principal rotation 
matrices are multiplied together as shown in Equation (3.30). 
 

φθψ ,x,y,z21 R.R.R)(J =η  (3.30) 
 
Expanding this gives: 
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Here c represents cosine and s represents sine. 

3.5.3 Angular Kinematics 

The angular kinematic equations are based on the same principal rotation matrices and are 
used to transform the Body-fixed angular velocities to Earth-fixed angular velocities. 
 
To carry out the transformation Equation (3.32) is used. 
 

2222 ).(J υηη =&  (3.32) 
 
Here J2(η2) is the transformation matrix. 
 
J1(η2) is calculated from its inverse transformation J2

-1(η2) [Fossen, 1994]. The inverse is 
calculated using the following:  
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Calculating the above results in: 
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And taking the inverse of J2
-1(η2) gives: 
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Again c represents cosine, s represents sine and t represents tan. It should be noted that J2(η2) 
is undefined for a pitch angle, θ, of ±90˚ [Fossen, 1994]. 

3.5.4 Complete Kinematic Equation 

The complete kinematic equation is given by combining J1(η2) and J2(η2). This gives: 
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3.6 Motor Model 

The force and moment inputs into the derived model are a result of the outputs from the 
actuators. The actuators, with respect to this robot, are standard DC motors. The motors used 
require to be modelled as the motors provide the input to the robot model. A standard DC 
motor model has two elements: the equations that describe the mechanical components of the 
motor and the equations that describe the electrical side of the components [Franklin et al, 
1991]. 

3.6.1 Electrical Model 

The equation that describes the electrical side of a standard DC motor is [Franklin et al 1991; 
Worrall & McGookin, 2006]: 
 

L
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where i&  is the change in the current with respect to time, A.s

-1, R is the motor resistance, Ω, i 
is the current, A, through the motor, Ke is the motors EMF constant, V.rad

-1, ω is the 
rotational velocity of the motors output shaft, rad.s

-1, Va is the input voltage applied between 
the motors terminals, V, and L is the motors inductance, H. 

3.6.2 Mechanical Model 

The equation of the mechanical model, Equation (3.38), of the DC motor is adapted from the 
standard mechanical model. The model used here contains a term that represents the friction 
between the wheel connected to the motor and the ground. The term has been included as it 
has been shown in Worrall & McGookin (2006) and through experimental results that the 
terms inclusion better represents the motor. This model also assumes the motor shaft is rigid 
[Santana, Naredo, Sandoval, Grout & Argueta, 2002]. 
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Here ω&  is the angular acceleration of the output shaft, rads

-2, Kt is the torque constant, Nm.A
-1, 

i is the current, A, bs is the viscous torque constant of the shaft, Nm, ω is the rotational 
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velocity of the motors output shaft, rad.s
-1, ξ is the friction term, Nm and Jm is the moment of 

inertia of the motor, kg.m
-2. ξ represents the friction between the wheel and the ground. This 

is calculated based on the coefficient of friction of the wheel/ground contact, the mass of the 
robot and the radius of the wheel. 

3.6.3 Output of Motor Model 

The motor output is represented as a current, i, and an angular velocity, ω. However a torque 
is required as input to the robot model. It should be noted that the torque is converted into a 
force in the robot model using Equation (3.39) [Young & Freedman, 2000]: 
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τF =  (3.39) 

 
Here Fm is the force generated by the motor, N, τm is the torque generated by the motor, Nm 
and rw is the radius of the wheel, m. 
 
The torque, τm, is calculated using Equation (3.40). 
 

eff.i.Kτ tm =  (3.40) 
 

Here τm is the torque generated, Nm, i is the current, A, Kt is the torque constant, Nm.A
-1 and 

eff represents a value for the efficiency of the motor which is dependent on the current. The 
efficiency term was included into this equation after it was found, through experimental 
results, that the output torque of the motor required further reduction. It has been established 
that the reduction is connected to the efficiency of the motors. Since the efficiency of the 
motor is connected to the current being drawn, a straight line relationship between the 
efficiency and the current was established and used to alter the output torque accordingly. 
 

3.7 Validation of the Model 

The model requires validation to show that any results that are produced by the simulation 
are a close representation of those that will be achieved on the physical system. The 
validation should follow a set procedure, the Validation Procedure [Murray-Smith, 1995], 
which is introduced below. Methods of comparing the data from the physical system and the 
simulation are required. This work uses two comparison methods: Analogue Matching 
[Gray, 1992] and Integral Least Squares (ILS) [Murray-Smith, 1995], which are presented 
below. The full results of the validation are presented in Appendix A2. 

3.7.1 Validation Procedure 

The validation should follow a set procedure to allow the model and the physical system to 
be tested in the same manner. To do this a Validation Procedure [Murray-Smith, 1995] is 
produced that will ensure the same experiments are run on both systems and that will allow 
independent users to replicate the procedure and confirm the validation results [Murray-
Smith, 1995]. The validation procedure should include a description of the environment that 
the physical system is tested in, the equipment used and any associated setup that is required. 
A description of the experiments run should also be included. The validation procedure used 
in this work is provided as Appendix A1. 
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3.7.2 Methods of Comparison 

As mentioned two methods of comparing the data are used: Analogue Matching [Gray, 1992] 
and Integral Least Squares (ILS) [Murray-Smith, 1995]. These methods are introduced next. 
Two methods of comparison are used as this allows both a qualitative measure, Analogue 
Matching, and a numerical measure, ILS, of the results. The Analogue Matching method 
allows each result to be compared to the desired result whereas the ILS provides a measure 
of the numerical accuracy of each result. The ILS also provides a means of determining the 
best result between two similar Analogue Matching results.  
 
3.7.2.1 Analogue Matching 

Analogue Matching, also known as visual inspection, is an established method of model 
validation [Gray, 1992]. This method of comparison is very simple to use. The output data 
from the simulation is compared to experimental data graphically by superimposing the plots 
[Gray, 1992]. As the model is altered the output data retrieved alters and this is compared to 
the data from the physical system. The data that ‘best fits’ the simulation data indicates the 
model and parameters that represent the physical system best. An example from this work of 
Analogue Matching is shown in Figure 3.9. This figure shows the data from the physical 
system (red line) and the simulation (dashed blue line). The figure shown represents the 
linear displacements associated with Experiment 3. Experiment 3 is designed to move the 
robot in a square. It can be seen that in both the x and y directions that the robot moves 
incrementally then returns to the start position. This is the expected result.  
 

 
Figure 3.9: Linear Displacements with regards to Experiment 3 

 
The results from the final Analogue Matching experiments are presented in Appendix A2. 
 
3.7.2.2 Integral Least Squares 

A quantitative measure of the model’s accuracy should also be taken into consideration as it 
provides further confidence in the results given by the simulation. The method used in this 
work is the Integral Least Squares [Murray-Smith, 1995]. Equation (3.41) is used to calculate 
the number used as a comparison between data sets.  
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∑= 2)(Qm error
 (3.41) 

 
Here error is the difference between the data from the physical system and the data from the 
simulation. Each measured output can be quantitative measured in this way. The results from 
the Integral Least Squares method from the final validation experiments are presented in 
Appendix A2. 
 

3.8 Summary 

This chapter has presented a nonlinear mathematical model of a four wheeled mobile robot. 
The first stage was to describe the model’s frame of reference and associated variables. The 
rigid body dynamics of robot were then described and derived in terms of the Newton-Euler 
formulation. Since dampening forces would oppose any movement made by the robot, as 
described by the rigid body equations, these forces (friction and air resistance) were 
explained and a means of representing them has been described. How the input forces from 
the actuators interact with the robot was then described, which gave the surge and yaw input 
forces. The unmatched dynamics were introduced. The effect of gravity on the robot is 
explained and the supporting equations derived. 
 
The kinematics of the model have been discussed. The principal rotation matrices were 
derived from first principles. The translational and rotational kinematics were calculated 
using the principal rotation matrices. Both were presented in matrix form. 
 
Equations which represent the actuators are presented with the alteration of the mechanical 
equation explained. The alterations to the mechanical equation were the inclusion of a 
friction variable and the addition of a term to alter the efficiency of the motor. 
 
One of the features of the model presented is that it has been validated against a real system. 
The methods of validation used were discussed, along with some example results which 
show how the developed model compares to the real system.  
 
To summarise, this chapter has presented and explained a set of equations that describe a 
four wheeled robot. With these equations, studies can be carried out in simulation without 
the need of the robot. 
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Chapter 4 
 

Navigation and Control Methodologies 
 

4.1 Introduction 

As stated the aim of this work is to establish if search algorithms can be used to generate 
coordinates that allow a robot to search an environment for desired targets in a controlled 
manner. In order to make the robot travel to a desired location, a robust fusion of navigation 
and motion control is required.  Both these elements are essential for the guidance of any 
vehicle but are particularly important for robots performing USAR tasks.  The navigation 
system provides overarching commands regarding localisation and the control system 
governs the motion of the robot so that it acquires the desired pose. 
 
As mentioned above, the navigation system determines the location of the robot and from 
this information it calculates the motion required to acquire a desired position within the 
operating environment. The particular navigation system used in this project is the Line of 

Sight Autopilot [Healey & Lienard, 1993; Worrall & McGookin, 2006; McGookin et al, 
2000], which calculates a desired heading trajectory of the robot based on the current and 
desired positions. 
 
The design of the control system is based on the control methodology used.  Each 
methodology has a unique algorithm that provides a suitable input signal to drive a device 
towards a desired response [Ogata, 2002; Philips & Harbor, 1996; Franklin et al, 1991]. The 
device, in the case of this work, is a mobile robot. The suitable input is the signal that drives 
the motors and the desired response would be the surge velocity and heading required to 
arrive at the location sought. 
 
As suggested above, the desired response for the robot would be a suitable velocity and 
heading that will allow the robot to manoeuvre towards the required location in the presence 
of disturbances and uncertainties. This gives two parameters that require to be controlled: the 
surge velocity and the heading. With the ability to control these two parameters the robot can 
be instructed to move in any direction within the x-y plane. Three control methodologies are 
discussed within this thesis. The methods selected for evaluation were chosen because each 
is an established method with decades of research and each method is popular, as indicated 
by the extensive literature available on each method. These methods can also be 
implemented without difficultly in practice. The control methodologies are Proportional-

Integral-Derivative [Åström & Hägglund, 1995; Ogata, 2002; Cetinkunt, 2007; Franklin et 

al, 1991], more commonly known as PID; Pole Placement [Ogata, 2002; Philips & Harbor, 
1996; Franklin et al, 1991; Dutton et al, 1997; Dorf & Bishop, 2005; White, 1995] and 
Sliding Mode [Utkin et al, 1999; Edwards & Spurgeon, 1998; Young et al, 1999; DeCarlo et 

al,1988]. The theory behind each is introduced and how the method is implemented is 
considered. 
 
Within any environment robots operate in obstacles exist. For this reason two methods of 
obstacle avoidance are presented and discussed. The methods discussed present two different 
ways of achieving obstacle avoidance. 
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The objective of this chapter is to evaluate the three control methodologies mentioned above 
and select one for use within the developed navigation and control system. 
 
The chapter continues as follows: Section 4.2 gives an overview of the navigation and 
control system. Section 4.3 presents the Line of Sight Autopilot with Section 4.4 discussing 
PID, Pole Placement and Sliding Mode control. Section 4.5 presents the comparison between 
each of the methods.  The Obstacle avoidance methods investigated are presented in Section 
4.6 and the chapter is summarised in Section 4.7.  
 

4.2 Navigation and Control Systems  

The navigation and control systems are responsible for directing the robot to a target 
location. This combination of systems is illustrated in Figure 4.1.  
 

 
Figure 4.1: Block Diagram of the Navigation and Control System 

 
The navigation system accepts, as input, the desired location and the robots current location. 
Using this, the navigation system calculates the desired heading required to arrive at the 
target location. The desired velocity of the robot remains at a suitable constant value for the 
motion the robot is undertaking. 
 
Obstacle Avoidance is the next stage of the Navigation and Control System. At this stage the 
sensors are checked to see if the responses they return indicate an obstacle. If an obstacle 
exists then a new desired heading and desired velocity are set and this is passed to the control 
system. If no obstacle exists then the desired heading and desired velocity from the 
navigation system is passed to the control system.  
 
The control system is responsible for maintaining the desired velocity and the desired 
heading. To do this the control system requires the desired velocity and the desired heading 
as well as the current velocity and heading. This allows the control system to generate a 
suitable input command signal for the motors.  
 
Combining the navigation and control systems in this manner enables the pose and motion of 
the robot to be accurately regulated.  The performance of this combined guidance system 
depends on the design and operation of the individual components, i.e. navigation and 
control systems.  These are discussed in more detail below. 

 

4.3 Line of Sight based Navigation System 

The Line of Sight (LOS) Autopilot is the method used to navigate the robot. This method 
was chosen as it carried out the desired task simply with the minimal amount of calculation. 
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A LOS Autopilot works on the principal of waypoints [Healey & Lienard, 1993; Worrall & 
McGookin, 2006; McGookin et al, 2000]. A waypoint is the target location the robot is to 
travel to. Once the robot has arrived at the waypoint the controlling algorithm is informed 
and the next waypoint generated. By generating a series of waypoints the robot can be 
navigated along a desired path. This concept is shown in Figure 4.2, where the waypoints are 
shown as crosses with circles of a fixed radius around each. The circle represents the 
acceptance radius [Worrall & McGookin, 2006; McGookin et al, 2000]. The acceptance 
radius is the distance from the waypoint that the robot must be within to be accepted as 
having arrived at the location. An acceptance radius is desirable as it allows the robot and the 
controlling algorithms flexibility over the exact location of the waypoint. The acceptance 
radius used here has a value equal to half the length of the robot [Worrall & McGookin, 
2006]. 

 
 

Figure 4.2: A robot navigating a series of Waypoints 
 

The LOS Autopilot accepts as input the coordinates of the target location and using the 
current location the heading required for the target location can be calculated using Equation 
(4.1). 
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Here ψ is the heading, radians, (xwp, ywp) are the coordinates of the waypoint and (xpos, ypos) 
represents the current location of the robot. Since tan

-1 is undefined for ±(π/2) radians, the 
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4.4 Control System 

As discussed, the control system is concerned with maintaining the desired velocity and the 
desired heading. In order to achieve this, a control methodology is implemented which is 
designed to generate suitable input command signals for the motors. The three control 
methodologies considered here are PID, Pole Placement and Sliding Mode. In this section 
the theory and implementation of each control methodology is discussed. Each control 
methodology was tested in a series of experiments which were designed to test various 
aspects of the controllers developed. The results achieved by each controller is presented.   

4.4.1 Experiments 

A series of experiments have been designed to test each controller. The experiments set the 
desired responses over a period of time, in this case 20 seconds. The experiments are 
designed to show if the model responds accurately, under the control of one of the controllers 
developed and how quickly the model responds to the input commands. Seven experiments 
have been developed and are described below. 
 

• Experiment 1 

A desired velocity for the full length of the experiment is the first experiment. This 
experiment shows if the controller is able to maintain a desired velocity. 
 

• Experiment 2 

The controller also needs to be able to maintain a desired heading. Experiment 2 sets 
a desired heading for the full length of time. 
 

• Experiment 3 

The previous two experiments aim to show the controller handling a desired constant 
value. The controller also needs to be able to handle changes in the desired value. 
Experiment 3 sets a desired velocity for 10 seconds then changes to a second value 
for the desired velocity for the next 10 seconds. 
 

• Experiment 4 

This experiment is designed to test the controller’s ability to handle a change in the 
desired heading. Experiment 4 sets a desired heading for 10 seconds then changes the 
desired heading to a second value for the next 10 seconds. 
 

• Experiment 5 

The next test is to see if the controller can handle repeated changes in the desired 
velocity. Experiment 5 changes the desired velocity between two values every 4 
seconds. 

 

• Experiment 6 

As with the velocity, repeated changes in the desired heading are used to test the 
controller. Experiment 6 changes the desired heading between two values every 4 
seconds. 

 

• Experiment 7 

The previous experiments have all tested the response from the controller when only 
one of the desired values has been changed. Experiment 7 changes the desired 
velocity between two values every 4 seconds and changes the desired heading, 
between two values 2 seconds after each change in the desired velocity. This 
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experiment shows how the controller handles multiple requests acting on the same 
system. 

 

Throughout all the experiments the desired velocity is 0.75ms-1, which is a safe and 
achievable velocity, and the desired heading is ±45°, which represents a standard heading the 
robot would change by. These experiments test every aspect of the control system and thus 
enable the performance of the chosen techniques to be analysed. The results and 
corresponding analysis indicate which of the three techniques is the most suitable for this 
application. 

4.4.2 Proportional-Integral-Derivative Control 

This section describes the Proportional-Integral-Derivative (PID), also known as Classical 

Control or Three Term Control Controller [Åström & Hägglund, 1995; Ogata, 2002; 
Cetinkunt, 2007; Franklin et al, 1991] and discusses the implementation used in this work. 
With regards to the experiments the results produced by the robot under the control of the 
designed PID controller are also shown. 
 

4.4.2.1 Theory 

The theory behind a PID controller is simple as the controller operates on the error signal, 
[Åström & Hägglund, 1995; Ogata, 2002; Cetinkunt, 2007; Franklin et al, 1991; Alfaro-Cid, 
2003], which is the error between the desired value and the actual value. As the name 
suggests, the PID controller consists of three parts: the proportional control, the integral 
control and the derivative control.  The output from each stage is summed and this gives the 
PID controller output. Figure 4.3 shows a block diagram representation of the PID controller.  
 

 
 

Figure 4.3: Block Diagram of a PID controller 
 

In the figure xd is the desired response, e the error signal, ucs is the output of the controller 
and x is the current response from the system being controlled. The blocks in the middle 
represent the proportional term, P, the integral term, I, and the derivative term, D. 
 

The proportional element of the controller acts on the current error [Celinkunt, 2007] and 
simply amplifies the error signal to generate a suitable output signal. This can lead to an 
oscillatory signal and may result in an overshoot of the desired signal. 
 

The integral element acts on the past errors. It generates a response that follows the time 
history of the output signal. Though it can slow the response of the controller down, [Alfaro-
Cid, 2003], the integral element eliminates the steady state error, meaning that the desired 
final value can be achieved within limits. 
 

The derivative element speeds up the overall response of the controller and can reduce the 
oscillations of the response [Celinkunt, 2007]. The use of the derivative element can result in 
a signal that is overdamped. 
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The standard continuous time equation for a PID is: 
 

∫ ++=
t

0
dt

)t(de
dipcs .Kdt).t(e.K)t(e.K)t(u  (4.2) 

 

here ucs (t) is the output signal, e(t) is the error signal and Kp, Ki and Kd are the gains of the 
Proportional, Integral and Derivative elements respectively. 
 
 
Equation (4.2) can also be stated in a discrete time form, as shown in Equation (4.3) 
[Celinkunt, 2007; Åström & Hägglund, 1995]. The equation in the discrete time form is the 
method best used for implementing the PID controller on a computer or within a 
microcontroller. 
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Where tn is the current time, tn-1 is the pervious time, ∆t is the time stepsize and ei(tn) is: 
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4.4.2.2 Tuning PID terms 

The gains, Kp, Ki and Kd are constants that require to be tuned to an appropriate value. 
Tuning is the process of selecting the gains of a PID controller to give the required 
performance specifications [Ogata, 2002]. The tuning is designed to give the response that 
the user wants from the application. Different gain settings and different combinations of 
gain settings result in different responses. In the application considered here a fast response 
with no steady state error would be the desired response. No overshoot would also be desired 
as this will decrease the demands made on the actuators. 
 
It is possible to manually tune the gains for a PID controller [Ogata, 2002; Alfaro-Cid, 
2003]. However, this can be an exhaustive process and may not lead to the optimal gain 
settings or even gains that give a near reasonable response. One method for tuning PID 
controllers that is often described alongside the PID controller is the Ziegler-Nichols method 
[Ziegler & Nichols, 1942; Åström & Hägglund, 1995; Ogata, 2002; Alfaro-Cid, 2003; 
Franklin et al, 1991]. The Ziegler-Nichols method uses information, namely the delay time, 
L, and the time constant, T, gained from the response of the model to a step input. These two 
parameters are then used to calculate the gains in the following way, Kp = 1.2(T/L), Ki = 2L 
and Kd = 0.5L [Ogata, 2002; Alfaro-Cid, 2003; Franklin et al, 1991]. Though this method 
gives values that can be used, it is accepted that the Ziegler-Nichols method gives more of an 
approximation of the values of the gains and that the gains calculated require fine tuning to 
give a better desired response [Ogata, 2002; Alfaro-Cid, 2003; Franklin et al, 1991]. Using 
the Ziegler-Nichols method achieved approximate values for the controller gains. The gains 
achieved were then slightly altered by hand to give a better response. 
 
4.4.2.3 Integral Antiwindup 

There can come a point in any real system, or properly modelled simulation, where the 
output from a controller is beyond the range of the actuator it is controlling. This results in 
the actuator becoming saturated. An example of this would be when the control circuit for a 
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small DC motor is given a control signal which indicates that a voltage beyond the maximum 
available for the motor is to be used. 
 
When using a PID controller, integrator windup may occur [Åström & Hägglund, 1995; 
Franklin et al, 1991] if the actuator that is under control becomes saturated. Integrator 
windup occurs when the actuator becomes saturated but the PID controller continues to 
increase the control action to compensate for the inaction of the motor. Since the PID 
controller is attempting to run the actuator at a point beyond its operation, the error between 
the current actuator response and the desired actuator response will not decrease in size. 
With the error static at a non-zero value the integrator output will increase. The integrator 
output will continue to increase for the length of time the actuator remains in saturation. If 
the saturation condition occurs for a long period of time, the integrator output will become 
large [Franklin et al, 1991], and require a large reduction in error to enable it to return to its 
proper value [Franklin et al, 1991]. With such a large increase in the integrator output when 
a change in the desired actuator response is requested, it will take time for the PID controller 
to respond as it will be eliminating the integrator output that has built up. This delay in 
responding to the change could cause issues with the system. To overcome integrator windup 
the integrator term of the PID controller can be switched off when the actuator becomes 
saturated [Franklin et al, 1991]. This method retains the value of the integrator output before 
the saturation occurs and maintains it at that level. Using this means the integrator output 
does not increase and when the saturation stops the integrator is switched back on with a 
value suitable to the current conditions. This method of switching the integrator on and off 
when saturation occurs is used in the controller implementation described here. 
 
4.4.2.4 Implementation 

As previously mentioned, there are two variables that the controller is to have control over: 
the surge velocity, u, and the heading, ψ. To achieve PID control over both of these variables 
two PID controllers are required. Two controllers are required as the PID controller is a 
single-input single-output (SISO) and as such can only handle one variable. Using Equation 
(4.3) as the standard PID controller equation the error signals can be given by: 
 

eu(tn) = ud − ua (4.5) 
 

eψ(tn) = ψd − ψa (4.6) 
 
Here eu and eψ are the velocity and heading errors, ud and ψd are the desired values and ua and 
ψa the current values. This gives the output control signal for the surge velocity, ucsu, as: 
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Where Kpu, Kiu and Kdu are the gains for the surge velocity, shown in Table 4.1. The heading 
control signal, ucsψ , is calculated using: 
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where Kpψ, Kiψ and Kdψ are the gains for the heading, shown in Table 4.2. 
 

 



 

  41 

Table 4.1: Gains for the surge velocity PID controller 
 

Kpu Kiu Kdu 
15 30 0.05 

 
Table 4.2: Gains for the heading PID controller 

 
Kpψ Kiψ Kdψ 
20 0.1 0.01 

 
In the standard form Equations (4.7) and (4.8) each give a single control signal, however 
there are four actuators to be controlled. A method of combining these two control signals 
and then converting them into four individual input signals for each motor is required. Using 
Equation (4.9) the input to the motors on the left hand side of the robot can be calculated. 
Equation (4.10) is used to calculate the motor voltages on the right hand side of the robot. 
The use of the minus sign in combining the two control signals allows the robot to perform 
turns. 
 

Vl = (uu + uψ)/2 (4.9) 
 

Vr = (uu − uψ)/2 (4.10) 
 

In these equations Vl is the voltage applied to the motors on the left hand side of the robot 
and Vr is the voltage applied to the right hand side motors. 
 
Overall the PID control scheme can be represented in block diagram form as Figure 4.4. 
 

 
 

Figure 4.4: Complete control structure for the PID controllers 
 

4.4.2.5 PID Results 

The results from the PID controller undertaking the experiments described above are shown 
in Figure 4.5. 
 
The result of Experiment 1 is shown in Figure 4.5a. It can be seen that the actual surge 
velocity of the robot (the dashed line) tracks that of the desired value (the solid line) with a 
minimal steady state error. The average steady state error is -0.0810×10-3 ms-1. Figure 4.5b 
shows the result from Experiment 2. Again it can be seen that the robot acts in the desired 
way, with minimal error, 0.6368×10-3°. The response gained from Experiment 3, Figure 4.5c 
and Experiment 4, Figure 4.5d again showed that the PID controller controlled the robot 
accurately to give the desired responses. Again the steady state error is small for both 
experiments, with the steady state error of Experiment 3 being -0.0616 ×10-3 ms-1 and 0.6368 

×10-3° for Experiment 4. The results for Experiment 5, Figure 4.5e are interesting because 
the robot does not reach a steady state. 
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(a) PID Results from Experiment 1 (b) PID Results from Experiment 2 

  
(c) PID Results from Experiment 3 (d) PID Results from Experiment 4 

 
(e) PID Results from Experiment 5 (f) PID Results from Experiment 6 

 
(g) PID Results from Experiment 7  – Surge (h) PID Results from Experiment 7 – 

Heading 

 

Figure 4.5: PID Control Experiment Results 
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This shows that the response of the PID controller may not be fast enough to deal with rapid 
changes in the desired velocity. The same is seen with Experiment 6, Figure 4.5f. The robot 
does not reach a steady state response. Experiment 7 has been designed to be demanding and 
to change both the desired velocity and desired heading. The surge and heading response 
from the robot while under control from a PID controller can be seen in Figures 4.5g and 
Figure 4.5h respectively. It can be seen that the robot does attempt to follow both the desired 
velocity and headings. However, it does not succeed at maintaining one as the other changes. 
This leads to an unsatisfactory response for the velocity.  

4.4.3 Pole Placement 

The following section introduces the Pole Placement (PP) method of controller design. As 
with the previous section on PID controllers this section discusses the theory of PP controller 
design and the implementation used in this work. The section ends with the results from the 
experiments discussed in Section 4.4.1.  
 
4.4.3.1 Theory 

Pole Placement (PP) [Ogata, 2002; Kautsky et al, 1985; Philips & Harbor, 1996; Dutton et 

al, 1997; Dorf & Bishop, 2005; White, 1995; Franklin et al, 1991] is the common name for 
State Variable Feedback and Eigenstructure Assignment. It is a control method based on 
feedback [Alfaro-Cid, 2003], via a feedback gain matrix, of the current states of the system 
under control. 
 
In essence PP is a state variable feedback system, but the term PP is used as it describes the 
method used to establish the feedback gain matrix. The feedback gain matrix is calculated 
based on the location of the poles of the system under control. Since the poles of the system 
are used the poles require to be placed in locations that give the desired closed-loop system 
response [Dutton et al, 1997]. A block diagram of the standard implementation of a PP 
controller is shown in Figure 4.6. 
 

 
 

Figure 4.6: Standard Implementation of the Pole Placement controller 
 

The control signal, ucs, is generated by the following control law [Alfaro-Cid, 2003; Dutton 
et al, 1997; Franklin et al, 1991; Dorf & Bishop, 2005; Ogata, 2002; Philips & Harbor, 
1996]: 
 

ucs = Kr.xd − K.xa (4.11) 
 
where Kr is the conditioning matrix, [Alfaro-Cid, 2003] for the desired states vector, xd, K is 
the feedback gain matrix and xa is the vector of the current states. 
 
This is the basic theory of the PP controller. Further theory is not covered here as the work 
presented here is concerned with the implementation of the PP controller. Further theory 
regarding PP controllers can be found in many sources including; Alfaro-Cid (2003), Dutton 
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et al (1997), Franklin et al (1991), Dorf & Bishop (2005), Ogata (2002) and Philips & 
Harbor (1996). 
 

4.4.3.2 Implementation 

This work is concerned with the implementation of the PP controller. The reason for this is 
that the implementation of the PP controller is more involved than that of the PID controller. 
When implementing the PID controller the model developed in Chapter 3 can be used as is. 
However to design the PP controller a linear model is required. This section discuses the 
development of the linear model and how it is used to develop the PP controller. The 
implementation is made easier with the use of the Matlab command place which calculates 
the feedback gain matrix, K, according to the algorithm described in Kautsky et al (1985). 
However before the place command is used certain steps need to be undertaken.  
 

The first step is to take the non-linear model presented in Chapter 3 and linearise it around a 
set operating point [Dutton et al, 1997]. This is required because the place command only 
operates on linear models in standard state space form. Although the final PP controller is 
used to control a non-linear system, the poles are placed with regards to a linear model. The 
model developed is linearised using the method described in Dutton et al (1997). Since the 
state space equations are known, the Jacobians of the matrices can be evaluated [Dutton et 

al, 1997]. The next stage is to select an operating point. The operating point is where the 
system is expected to be in normal operation [Dutton et al, 1997]. This point represents the 
input and output values at this point. The nominal operating point, with regards to this work, 
is chosen to be a constant surge velocity of 0.75ms-1 with no rotational velocity and 0° 
heading. These values are used in the Jacobian matrices to give a linear model [Dutton et al, 
1997]. The values are chosen as these indicate the preferred state of the robot. 
 

There is a point to note about the linear model developed. The non-linear model represents 
the robot and the actuators of the robot. However, the linear model is a three state 
representation of the non-linear robot model without the actuators. The inputs to the linear 
model are wheel torques. The linear model only has the states associated with the surge 
velocity, u, and the heading, r and ψ. These states are used as only they can be controlled by 
the actuators. The other states are associated with the environment in which the robot is 
operating. The reason for the exclusion of the actuators from the linear model is due to the 
feedback gain matrix that is generated when the actuators are part of the linear model. The 
gains associated with the actuators result in implementation issues when the feedback gain 
matrix is applied to the non-linear model, namely the gains became dominant over the surge 
velocity and heading gains and the results are unacceptable. 
 

The reduction in the number of states and the removal of the actuators resulted in the linear 
model becoming: 
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 (4.12) 

 

where Alin is the system matrix for the linear model and Blin is the input matrix for the linear 
model. τ1, τ2, τ3 and τ4 are the torques generated by each of the wheels. Since the actuators are 
removed a new input to the model is required. The new inputs are the torques generated by 
each wheel. The full linear model can be found in Appendix B1. 
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With the linear model the Matlab place command can now be used to calculate the feedback 
gain matrix. The poles used to generate the K matrix were arrived at using a trial and error 
approach. Various step inputs were applied to the model until the model output matched the 
desired output. When this occurred a suitable K matrix had been generated. The poles for the 
controller implemented are shown in Table 4.3.  

 
Table 4.3: PP Controller Parameters 

 
Pole 1 Pole 2 Pole 3 

-5 -10 -5 
 
The next stage is to set the conditioning matrix. It was found that with regards to the 
variables associated with the desired heading that Kr = K, as used by Alfaro-Cid, (2003), was 
suitable, but for the surge velocity the value had to be manually tuned. 
 
The controller for the linear model in Equation (4.12) using the setup shown in Figure 4.6 
has now been developed. However one more step is required to allow the controller, with the 
gains calculated, to be used with the non-linear model. Since K was calculated without the 
actuators included and as such returns a value associated with the wheel torques, a method of 
converting this output to the required voltage input is required. A simple linear relationship 
was derived that converted the torques generated by the PP controller to the required 
voltages. The proof of this relationship can be found in Appendix B2. 
 
With the PP controller developed and a relationship found between the control signal 
generated by the controller and the required input to the non-linear model, the controller and 
model can be represented in block diagram form by Figure 4.7. 
  

 
 

Figure 4.7: Implementation of the Pole Placement controller 
 
4.4.3.3 Pole Placement Results 

Using the experiments described in Section 4.4.1 the PP controller has been tested. The 
results of the tests can be seen in Figures 4.8(a-h). As with the PID controller results for 
Experiments 1 to 4, the results for the PP controller show that it can track the desired 
response accurately, Figures 4.15(a-d). The steady-state error is slightly worse than that of 
the PID controller with regards to the first four experiments with the errors being, 
0.4852×10-3ms-1, -0.0576×10-3°, 0.4301×10-3ms-1 and -0.1544×10-3° respectively. However, 
it can be seen that the PP controller has the robot in steady-state, at the desired value, for a 
longer period than that of the PID controller due to the quick rise time. With regards to 
Experiments 5 and 6 and unlike the PID controller, the PP is able to drive the robot into a 
steady state with a minimal error for both, 0.2104×103ms-1 and -0.0012°. Again this is 
because of the high initial drive signal when the desired value is changed. 
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(a) PP Results from Experiment 1 (b) PP Results from Experiment 2 

 
(c) PP Results from Experiment 3 (d) PP Results from Experiment 4 

 
(e) PP Results from Experiment 5 (f) PP Results from Experiment 6 

 
(g) PP Results from Experiment 7– Surge (h) PP Results from Experiment 7 – Heading 

 
Figure 4.8: PP Control Experiment Results 
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The results of Experiment 7 gained from the PP controller can be seen to be better than that 
of the PID controller. In comparison to the PID controller, the PP controller can drive the 
robot to a steady state with regards to the desired velocity and has a quicker transient 
response. However when comparing this controller to the PID controller, it can be seen that 
when a change in heading occurs the response of the surge velocity is affected to a greater 
extent, but the PP controller does recover faster. 

4.4.4 Sliding Mode 

The last controller to be introduced as part of this work is the Sliding Mode (SM) controller. 
As with the two previous controllers the theory and the implementation of the SM controller 
is discussed. Again the section ends with the results from the experiments described in 
Section 4.4.1 when the SM controller is used. 
 
4.4.4.1 Theory 

The next controller method to be discussed is Sliding Mode (SM) control [Utkin et al, 1999; 
Edwards & Spurgeon, 1998; Young et al, 1999; DeCarlo et al, 1988; Alfaro-Cid, 2003; 
McGookin, 1997; McGookin & Murray-Smith, 2000]. SM control is based on the principal 
of non-linear switching [McGookin & Murray-Smith, 2000] and as such SM controllers are 
able to compensate for the effects of disturbances and are considered to be more robust than 
other control methods [Alfaro-Cid, 2003; McGookin, 1997; McGookin & Murray-Smith, 
2006].  The structure of the SM controller is shown in Equation (4.13). 
 

usm = ueq + usw  (4.13) 
 
Here usm is the input to the system, ueq is the equivalent controller [Alfaro-Cid, 2003; 
McGookin, 1997; McGookin & Murray-Smith, 2006] and usw is the switching term that 
provides the nonlinear element of the controller. The equivalent term is usually a linear 
controller [Alfaro-Cid, 2003] and provides the main control action. The switching term is the 
nonlinear part of the controller and provides the control action to overcome the effects of any 
disturbances and provides the robustness associated with SM control. 
 
The switching term is based on the sliding surface, σ( x̂ ), [Alfaro-Cid, 2003; McGookin, 
1997; McGookin & Murray-Smith, 2006] which is a function of the error between the 
desired value and the actual value. As in Alfaro-Cid (2003), McGookin (1997) and 
McGookin & Murray-Smith (2006), the function σ( x̂ ) is given as: 
 

)xx.(hx̂.h)x̂( d
TT −==σ  (4.14) 

 
where hT is the right eigenvector of the desired closed-loop system matrix, x is the current 
value and xd is the current desired value. The sliding surface is chosen to allow the value of 
the surface tend to zero as the error tends to zero [Alfaro-Cid, 2003; McGookin, 1997]. 
 

Derivation of the Switching Term 
With the sliding surface defined the next stage is to derive the switching term. The derivation 
that follows is based on that described in McGookin (1997), Alfaro-Cid (2003), McGeoch 
(2005) and McGookin & Murray-Smith (2006). 
 
The first stage is to differentiate Equation (4.14) with regards to time: 
 

x̂.h)x̂( T && =σ  (4.15) 
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Given the standard non-linear model in state space form is given as: 
 

)x(fu.x.x cs ++= BA&  (4.16) 
 

Where x is the state vector, A is the system matrix, B is the input matrix, ucs is the input to 
the system and f(x) represents the nonlinearities, unmodelled dynamics and other 
disturbances [Alfaro-Cid, 2003]. 
 
Substituting Equation (4.16) into (4.15) gives: 
 

)x)x(fu.x..(h)x̂( dcs
T

&& −++=σ BA  (4.17) 
 

Since ucs is the input to the system and ucs, with regards to SM control, is represented by 
Equation (4.13), Equation (4.17) becomes: 
 

)x)x(fu.u.x..(h)x̂( dsweq
T

&& −+++=σ BBA  (4.18) 
 

In the work presented here the equivalent controller is a PP controller giving: 
 

ueq = -k.x (4.19) 
 
When Equation (4.19) is substituted into Equation (4.18) the result is Equation (4.20). 
 

)x)x(fu.x.k.x..(h)x̂( dsw
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Multiplying out Equation (4.20) gives: 
 

d
TT

sw
T

c
T x.h)x(f.hu..hx..h)x̂( && −++=σ BA  (4.21) 

 
Rearranging Equation (4.21) to give usw: 
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Since hT represents the right eigenvectors of Ac, then hT.Ac becomes zero [Healey & Leinard, 
1993; Alfaro-Cid, 2003; McGookin, 1997; McGookin and Murray-Smith, 2006] giving: 
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From Alfaro-Cid (2003), McGookin and Murray-Smith (2006) and McGookin (1997) )x̂(σ&  
can be stated as: 
 

))x̂((.η)x(f.h)x̂( T σ∆σ sgn−=&  (4.24) 
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where )x(f∆  is the difference between the system derivatives and the estimates of this 
function, η is the switching gain, which requires tuning, and sgn is a function that represents: 
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Substituting Equation (4.24) into Equation (4.23) gives: 
 

)))x̂(sgn(.η)x(f.h)x(f.hx.h(
)B.h(

1
u TT

d
T

Tsw σ∆ −+−= &  (4.25) 

 
This can be further reduced by removing the terms associated with f(x) because: 
 

0)x(f.h)x(f.h TT ≈−∆  (4.26) 
 

Giving: 
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Inserting Equation (4.27) into Equation (4.13) and using PP as the equivalent controller gives 
the overall control equation for SM control as: 
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Chattering 
The inclusion of the switching term can lead to a phenomenon known as chattering [Alfaro-
Cid, 2003; Young, et al 1999; McGookin, 1997; McGookin and Murray-Smith, 2006]. 
Chattering is the high frequency switching of the switching term about the sliding manifold 
[Young, et al 1999; Edwards & Spurgeon, 1998; Utkin et al, 1999]. The reason for this high 
frequency switching is that the switching term is constantly switching between the positive 
and negative extremes of the switching gain. This is called hard switching. The chattering 
can cause damage to the actuators currently under control and could lead to the system 
becoming unstable [Edwards & Spurgeon, 1998; McGookin, 1997]. 
 
To stop or reduce the chattering, a method of soft switching is introduced to allow the 
controller to approach the zero error condition gradually. To achieve soft switching a 
hyperbolic tangent function replaces the sgn function described [Healey & Leinard, 1993; 
Alfaro-Cid, 2003; McGookin, 1997; McGookin & Murray-Smith, 2000]. This alters 
Equation (4.24) to give: 
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Here blφ  is the boundary layer thickness. The Boundary layer is the area that is used to 
provide the gradual transition around the zero error value [Alfaro-Cid, 2003]. 
 
This gives the final controller expression as: 
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4.4.4.2 Implementation 

As with the implementation of the PP controller the process required to implement a SM 
controller is longer and more involved than that of a PID controller. As with the PP 
controller, a linear model is required to enable the design of the SM controller. The linear 
model is required because the equivalent controller implemented is based on the PP 
controller. Also within the switching term of the SM controller two values are based on the 
linear model, hT and B. However the linear model developed for the PP controller is not 
immediately useable for the SM controller as it describes a multi-input-multi-output system 
(MIMO). The linear model developed requires alteration and simplification. 
 
Surge Velocity 
The linear model for the surge velocity can be partially extracted from the linear model that 
has been derived. However the input to the linear model was four motor torques and the SM 
controller requires one input. In this implementation the input is chosen to be sum of the 
forces generated by each wheel. This gives a linear model for the surge velocity as: 
 

[ ] [ ] ]F.[u.u uulinulin bA +=&  (4.31) 
  

here u is the surge velocity, ms
-1, Aulin is the system matrix representing the surge velocity 

model, bulin is the input matrix for the surge velocity model and Fu, N, is the input force to 
the surge velocity model. Equation (4.31) is a simple relationship as it only has one input, 
one output and one variable. The surge velocity linear model for the SM controller can be 
found in Appendix B3. 
 
Heading 
Using the same method as the surge velocity, the heading linear model can also be partial 
extracted from the linear model that has been derived for the PP controller. Again the same 
problem exists, that of the input to the model being a vector of four values. The input to the 
heading linear model is the torque about the centre of gravity required to turn the robot. 
When the wheels move a torque is generated by each of them. The torques are translated into 
a force. When the wheels on either side of the robot are run at different speeds a torque about 
the centre of gravity of the robot is generated. This torque turns the robot. Since the heading 
is dependent on the rotational velocity about the z-axis and requires consideration, the linear 
model developed is termed a single-input-multi-state system. The linear model for the 
heading can be given as: 
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where r is the rotational velocity, rads
-1, ψ is the heading, rad, Aψlin is the system matrix 

representing the heading model, bψlin is the input matrix for the heading model and ψτ  is the 

input torque to the heading model. The heading linear model can be found in Appendix B4. 
 
Overall Controller 
With both linear models developed the overall control equation can be derived. 
 
To calculate the equivalent controller the Matlab function place is used as described in 
Section 4.5.2. This generates the k matrix required for both controllers. The poles, gains and 
boundary level thickness for each controller in this implementation are given in Table 4.4. 
 

Table 4.4: SM Controller Parameters 
 

 Pole 1 Pole 2 η blφ  

Surge Velocity -0.01 N/A 2 0.4 

Heading -3 0 10 0.8 
 
The control equations for the surge velocity and the heading can be stated as: 
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Since the control signals generated by Equations (4.33) and (4.34) are not suitable as inputs 
into the nonlinear model a method of converting them into voltages is required.  
 
With regards to the surge velocity the control signal can be converted to the required 
voltages using: 
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Where Vau is a voltage to one motor, V, wheel_r is the radius of the wheel, m, and f(τ,va) is 
the function that converts the calculated torque to a voltage. This function can be found in 
Appendix B2. 
 
For the heading the following equations are used: 
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where Valψ represents the voltage for the motors on the left hand side of the robot, V, Varψ 
represents the voltage for the motors on the right hand side of the robot, V, and mr is the 
moment arm, m. 
 
The final stage of the controller is to sum the results generated by the individual controllers 
to give the final input to the nonlinear model. 
 
The overall SM controller can be seen as a block diagram in Figure 4.9. 

 
Figure 4.9: Implementation of the Sliding Mode controller 

 
4.4.4.3 Sliding Mode Control Results 

The SM controller was tested against the experiments described in Section 4.4.1 and the 
results are shown. It can be seen in Figures 4.10(a-f) that, as with the previous controllers the 
SM controller allows the robot to reach the desired values with minimal steady state errors 
for Experiments 1 to 6. The steady state errors for Experiment 1, 3 and 5, with values of 
0.3411×10-3ms-1, 0.2801×10-3ms-1 and -0.0782×10-3ms-1, are smaller than that achieved by 
the PP controller but are still higher than those achieved by the PID controller, with the 
exception of Experiment 5 where the PID controller did not achieve steady state. With 
respect to Experiments 2 and 4, the SM controller again achieved the desired values with 
minimal steady state error. Though the performance was slightly worse than that achieved by 
the PP controller with the errors being -0.0682×10-3°and -0.1945×10-3°. However the SM 
controller did not achieve the desired steady-state value in Experiment 6. The time to achieve 
the steady state in all the experiments is noticeable quicker than that of the PID controller 
and is comparable to the time achieved by the PP controller. However, the SM controller 
initially overshoots the desired surge velocity value, with respect to Experiments 1, 3 and 5, 
and has to settle back down. There is no overshoot issue associated with Experiments 2, 4 
and 6. 
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(a) SM Results from Experiment 1 (b) SM Results from Experiment 2 

 
(c) SM Results from Experiment 3 (d) SM Results from Experiment 4 

 
(e) SM Results from Experiment 5 (f) SM Results from Experiment 6 

 
(g) SM Results from Experiment 7 – Surge (h) SM Results from Experiment 7 – 

Heading 

 
Figure 4.10: SM Control Experiment Results 
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The results from Experiment 7 show that the SM controller has a poorer steady-state 
response than the PP controller. This is due to the overshoot and as with the previous 
controllers a steady state response from the heading is not achieved. Comparing the ability of 
the SM to maintain the current desired values while responding to a change in a second 
desired value against the two previous controllers, the SM controller performs better, with 
the smallest dip in the surge velocity.  
 

4.5 Comparison of Control Methodologies 

With the results from each controller obtained, a further analysis of the performance 
achieved by each can be carried out. This section compares the values and concludes by 
stating which controller is best to use with the model presented and based on the results 
obtained from the experiments carried out. 
 
There are five measures of performance that will be compared: average tracking error, 
average steady state error, rise time, charge drawn from the battery and the movement of the 
robot with regards to a simple manoeuvre. Each of these is discussed and the associated 
results presented. 

4.5.1 Tracking Error 

The controllers are designed to respond to changes in the values that are to be controlled i.e. 
surge velocity and heading. As the desired value changes, the controller responds by 
generating an output to drive the system. When this happens the controller is said to track the 
desired response. The first measure that is to be used is the average tracking error. This 
indicates how quickly the controllers respond to a change in the desired value and gives an 
indication of the tracking error. A small average tracking error is desirable as this indicates 
that the controller can respond rapidly and that it can match the desired value with minimal 
delay and error.  
 
Table 4.5 shows the average tracking error for each experiment. The highlighted cells of the 
table indicate the best average tracking errors. It can be seen that over the course of all the 
experiments, the PP controller has the best average tracking error response. The values 
associated with the SM controller are comparable to the values achieved by the PP 
controller, however the values are slightly higher. The PID controller has a high average 
tracking error, as compared to the other controllers, because of the gentle slope that 
characterises its response when a step change occurs. 
 

Table 4.5: Tracking Error 
 

Exp PID – u PP – u SM – u PID – ψ PP – ψ SM – ψ 

1 0.0156 0.0054 0.0065 0 0 0 
2 0 0 0 0.024 0.0163 0.0203 
3 0.0235 0.0093 0.0127 0 0 0 
4 0 0 0 0.0764 0.0598 0.0689 
5 0.0462 0.0133 0.0223 0 0 0 
6 0 0 0 0.2319 0.1892 0.2123 
7 0.0917 0.0788 0.0761 0.2906 0.2152 0.2434 

4.5.2 Steady-State Error 

The next measure to be used to compare the controllers is the average steady-state error. The 
steady-state error is the difference between the desired value and the actual value obtained 
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from the controller. With respect to this work the controller is said to be in steady-state when 
ten values from the actual response are equal. The average steady-state errors are given in 
Table 4.6. 
 

Table 4.6: Steady State Error 
 

Exp PID – u PP – u SM – u PID – ψ PP – ψ SM – ψ 

1 -0.0810x10-3 0.4852 x10-3 0.3411 x10-3 0 0 0 
2 0 0 0 0.6368 x10-3 -0.0576 x10-3 -0.0682 x10-3 
3 -0.0616 x10-3 0.4301 x10-3 0.2801 x10-3 0 0 0 
4 0 0 0 0.6368 x10-3 -0.1544 x10-3 -0.1945 x10-3 
5 NA 0.2104 x10-3 -0.0782 x10-3 0 0 0 
6 0 0 0 NA -0.0012 NA 
7 NA -0.2922 x10-3 -0.7920 x10-3 NA NA NA 

 
As with the tracking error the highlighted cells of the table indicate the best response for the 
experiments. With regards to the heading it can be seen that that PP controller achieves the 
best response. The surge velocity results indicate that the PID controller has the best steady-
state error, however the PID controller did not achieve steady state for two of the 
experiments. Summing up the best responses shows that the PP achieved, overall, the best 
steady state error response. 

4.5.3 Rise Time 

The third comparison to be used is the rise time of the actual response. The rise time in this 
work is considered to be the time taken for the actual response to change between 10% and 
90% of the desired value after a change in the desired response. For the experiments that 
have multiple changes the average rise time is taken. The times acquired are given in Table 
4.7. Again the best values are indicated by the highlighted cells. 
 

Table 4.7: Rise Time 
 

Exp PID – u PP – u SM – u PID – ψ PP – ψ SM – ψ 

1 1.18 0.13 0.12 0 0 0 
2 0 0 0 1.46 0.97 1.25 
3 1.23 0.095 0.085 0 0 0 
4 0 0 0 1.505 1.025 1.29 
5 1.008 0.086 0.08 0 0 0 
6 0 0 0 1.6220 1.114 1.39 
7 1.1260 0.09 0.08 0.6350 1.0750 0.83 

 
The PP controller achieved the best results with experiments associated with heading and the 
SM controller had the quickest rise time associated with the surge velocity. These are the 
results for the rise time, however the SM controller overshot the desired value for the surge 
velocity and an additional settling time is required. The PP controller was, on average, 
0.009s behind the SM controller with no overshoot. Using the same procedure as above for 
choosing the controller that performed the best overall, the SM controller would be the 
choice with regards to the rise time. 
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4.5.4 Charge 

The next measure that is to be used in comparing the controller is the charge, Q, As-1, drawn 
during the experiment. The ideal robot for USAR would run off onboard batteries as tethered 
robots can cause usage problems within an USAR environment [Micire, 2002]. Since 
batteries have a finite charge it is important that the systems onboard achieve a good 
performance but not at the expense of the run time. The charge drawn from the battery 
indicates the potential lifetime of the battery. The smaller the charge drawn, the longer the 
expected lifetime. Table 4.8 shows the results from each experiment with the highlighted 
cells indicating the best result from each experiment. 
 
From Table 4.8 it can be seen that with regards to the charge drawn that the PID controller 
gives the best response. The reason for this is the gentle response that the PID controller in 
this work has when it is responding to a step change. 
 

Table 4.8: Q, As-1 
 

Exp PID PP SM 

1 22.6239 23.0820 23.2261 
2 1.2117 1.364 1.1846 
3 16.9385 17.5293 17.9570 
4 3.3644 3.5610 3.3429 
5 18.3236 19.4211 20.3477 
6 9.7548 10.1404 9.7835 
7 23.59 25.0763 25.959 

4.5.5 Motion Control 

The last method of comparison is how the robot moves when instructed to carry out a simple 
manoeuvre. The manoeuvre chosen is a figure of eight as it will show the controllers ability 
to control the robot through a series of waypoints. The results from this experiment show two 
aspects. The first result is that the proposed structure of the navigation and control system 
works, with the exception of the obstacles avoidance. The second result allows a comparison 
between the three control methodologies under consideration.  
 
Figure 4.11 shows the path taken by the robot for each control methodology. The blue path 
shows the PID result, the red path shows the PP result and the green path shows the SM 
result. 
 
Though the simulation remained constant for each experiment, it can be seen that the robot 
takes a slightly different path for each controller. Each path represents a figure of eight 
indicating that each controller works. Comparing the paths, the path taken by the PP 
controller is smoother than the other two paths. The change in heading, once at a waypoint, 
is not as gentle as that of the PID but does occur in a quicker time as the path of the PID 
gently moves towards the next waypoint. The path taken by the SM controller is not as 
smooth as either of the other two, as indicated by the movement involved in the change of 
direction at the two outer waypoints. An interesting point to note about the path of the PP is 
the symmetry involved. This reason for the smoother path and the better heading acquisition 
is related to the structure of the PP controller. The PP controller is a multivariable controller 
as it generates an output signal which considers the interaction between the velocity and 
heading. Summing of individual signals is not required. This is not the case with the PID or 
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SM controllers implemented. Both off these controllers calculate output signals for the 
velocity and heading separately. These signals are then summed together. 

 
Figure 4.11: Figure of 8 Motion Experiment Results 

4.5.6 Controller Choice 

The overall choice in controller for the rest of the work presented in this thesis is to be made 
based on the results presented in this section. Looking at the results given and the analysis of 
the results it can be seen that the PP controller is the best choice. The PP controller had the 
best results with regards to the average tracking time, the average steady state error and the 
motion control. With regards to the rise time the PP did not perform as well as the SM 
controller when looking at the numbers but the SM controller implemented in this work 
overshoots the desired value and a settling time is involved. The PP does achieve steady state 
in less time than the SM controller. The main disadvantage with the PP controller is the 
charge drawn. It is higher than both the response from the PID and SM controllers, though it 
is still comparable to them. 
 

4.6 Obstacle Avoidance 

The final aspect of the navigation and control system is the obstacle avoidance routine. As 
discussed a suitable robot for USAR should be dispensable and be replaced cheaply. Keeping 
to this ethos the robot has one forward facing sonar sensor to enable the detection of 
obstacles. This sensor provides a range of 0.15-6 metres with a sensor cone of -30° to +30°. 
Since only one sensor is in use, a very simple obstacle avoidance routine requires 
implementation. Two methods of obstacle avoidance were developed. These are discussed 
next. 

4.6.1 Obstacle Avoidance Method 1 

The first method of obstacle avoidance that is considered is designed to detect an obstacle 
then guide the robot around the obstacle. To achieve this with only one sensor, a set pattern 
is followed which allows the robot to navigate round an obstacle. When an obstacle is 
detected the robot turns 90° clockwise and travels forward one robot length. At this point the 
robot turns to the desired point. If no obstacle is detected the robot moves towards the 
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desired point. If an obstacle still exists then the robot again turns 90° and travels forward one 
robot length. The desired heading is checked as before. However if an obstacle is detected, 
instead of turning 90° clockwise the robot turns 90° anticlockwise and travels along the path 
that has just been traversed. The robot continues moving until it is one robot length from the 
original obstacle detection point and at a heading of -90° from the desired heading. The robot 
then checks to see if an obstacle lies on the path to the desired point. Again the robot moves 
towards the point if no obstacle exists. If the robot detects obstacles it again moves one robot 
length along the same heading. If an obstacle exists after this final movement the robot 
selects a point at random and this becomes the new desired point. Figure 4.12 shows this 
obstacle avoidance method working. The robot starts from the start point, blue star, and is to 
travel to the target point, purple star. It can be seen that the robot is forced to move round the 
obstacle and continue to the target point. Once at the target point the next point, green star, is 
generated and the robot starts to move to it. 

 
Figure 4.12: Obstacle Avoidance Method 1 Working 

 
Though this method is shown to work a problem exists with its implementation. Too much 
time is spent attempting to go round the obstacle. The time taken to do this takes away from 
the main task. Since time is an important aspect within USAR, the time taken to avoid an 
obstacle is undesirable. 

4.6.2 Obstacle Avoidance Method 2 

The second method developed is a reactive approach. When an obstacle is detected within 
two lengths of the robot, the robot replaces the current desired point with a randomly 
selected point that lies within a two metre radius of the robots current point. The two length 
distance was chosen as it allowed the robot time to stop and turn. It has been found that this 
method worked well when implemented. However this method of obstacle avoidance is not 
without issues. Since the new point selection is done so randomly it is foreseeable that the 
robot could become trapped within tight spaces.  
 
Using this method to avoid obstacles does not have an obvious time impact on the 
algorithms, hence solving the problems associated with the first method that was considered. 
Figure 4.13 shows the difference between the two methods. Method one is represented by the 
red line and method two is represented by the blue line. Both runs were given the same 
starting point, blue star, target point, green star, and run time. It can be seen that though the 
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second method does not locate the initial target, the robot has searched more of the 
environment than the robot using the first method. This means that in the same time period a 
robot using the second method of obstacle avoidance has the potential to search larger areas 
than a robot using the first method. 

 
Figure 4.13: Obstacle Avoidance Comparison 

 

4.7 Summary 

The objective of this chapter was to evaluate three control methodologies Proportional-

Integral-Derivative, Pole Placement and Sliding Mode and select one for use within the 
developed navigation and control system. The navigation and control system was also 
presented in this chapter. The navigation and control system was separated into its 
constituent parts and each was discussed in turn.  
 
The navigation system, based on the Line of Sight Autopilot, was designed to calculate the 
required heading to enable the robot to travel to a desired point. This allows the navigation 
and control system to move the robot in any direction and to any location within an x-y 
plane. 
 
The control methodologies that have been investigated, Proportional-Integral-Derivative 
control, Pole Placement and Sliding Mode, have been introduced and the theory behind each 
has been discussed. How each method is implemented with respect to this work has been 
discussed. The results from each of the controllers have been presented and analysed with a 
final comparison made between each of the controllers. The outcome of the comparison was 
that the Pole Placement controller has given the best overall responses when working with 
the model of the robot developed in this thesis. 
 
The Pole Placement controller was integrated into the navigation and control system and this 
was used to carry out an evaluation of two methods of obstacle avoidance. The first method 
considered was designed to move the robot around obstacles while the second method 
simply replaced the desired point. It was found that the second method was more suited to 
the application considered here as no time was wasted attempting to navigate around 
obstacles. 
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Chapter 5 
 

Search Algorithms 
 

5.1 Introduction 

The main focus of the work presented in this thesis is the study and performance analysis of 
high level search algorithms for mobile robot search. In particular, the purpose of this 
research is to determine the suitability of standard search algorithms for mobile robot 
searches.  In Chapters 6 and 7 these methods are applied to single and multiple robot search 
scenarios.  The modified operation and performance of each method is presented in those 
chapters.  In this chapter the basic theory of the particular search algorithms are presented 
and discussed within the context of this work. 
 
The search algorithms that are presented in this chapter, when implemented, select the points 
the robots are to travel to, to allow the search to be undertaken. A desired point is generated 
by the search algorithm, which is then used by the navigation system to generate a desired 
heading. How the search algorithm fits into the navigation and control structure presented in 
the previous chapter is shown in Figure 5.1. 
 

 
Figure 5.1: Block Diagram of Complete System 

 
The algorithms select the points based on either a structured pattern of search, Exhaustive 
[Johnson & Picton, 1995] and Lawnmower [Johnson & Picton, 1995] or in using a random 
approach, Random [Johnson & Picton, 1995]. The other methods presented rely on 
knowledge gained from previous points and the search is narrowed down to a specific point. 
The methods that use this approach are HillClimbing [Johnson & Picton, 1995; Russell & 
Norvig, 1995; Reeves, 1996], Tabu [Glover, 1986; Glover, 1989; Reeves, 1996; Gendreau, 
2003], Simulated Annealing [Kirkpatrick, 1984; Bohachevsky et al, 1986; Kirkpatrick et al, 
1983; Johnson & Picton, 1995; Russell & Norvig, 1995; Reeves, 1996] and Genetic 

Algorithms [Goldberg, 1989; Holland, 1992; Schmitt, 2004; Ellis, 1993; Mitchell, 1996; 
Reeves, 1995; Johnson & Picton, 1995]. The algorithms that use knowledge come under the 
heading of heuristic methods. Rich and Knight (1991) define a heuristic “as a technique that 

improves the efficiency of a search process, possibly by sacrificing claims of completeness”. 
Rayward-Smith, et al (1996) state that a heuristic “is a method which seeks good (i.e. near 
optimal) solutions at a reasonable computational cost without being able to guarantee 

optimally, and possibly not feasibility”. A heuristic is an algorithm that uses the search 
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space, the set of all possible solutions [Johnson & Picton, 1995], and knowledge gained from 
evaluation of solutions within the search space, to find a solution candidate that is within an 
acceptable tolerance of the particular solution it is looking for. An example, from Johnson & 
Picton (1996), of a heuristic search is when you are looking for something you have 
misplaced in your home. Instead of starting at one point and working through every place in 
your home - an exhaustive search [Johnson & Picton, 1995] - you instead look in the most 
likely places where it could be.  
 
As mentioned, the solutions are evaluated. This is done with an Evaluation Function. The 
Evaluation Function is a function which returns the cost (a numerical value) of the current 
solution compared with the expected cost of the target solution in the search space. The 
better the value returned by the evaluation function, the better the current solution is. In the 
context of this study the term better means that the current solution could lie within the 
proximity of the target solution and indicate that the search is on the right path. The 
evaluation function used in this work uses the temperature of the environment to evaluate a 
point. When a temperature that matches the average human body temperature of 37°C is 
found, the cost is zero. Equation (5.1) is used as the evaluation function. 
 

22 37+74= λλε ×−  (5.1) 
 
In this equation ε is the cost value returned and λ is the temperature of the current solution. 
This equation is designed to give a cost value, ε, of 0 when the temperature of the current 
solution, λ, is 37°C. Figure 5.2 shows a graph with the cost values for various temperatures. 
This function is a minimum function with a low cost value being better. 

 
Figure 5.2: Cost Values over a range of Temperatures 

 
A further aspect of search is the terminating condition. With the exception of the Exhaustive 
and the Lawnmower search, the algorithms presented here do not have inherent termination 
conditions and continue to search. With regards to the Exhaustive and Lawnmower 
algotihms, when at the last solution of the search space both algorithms stop, no more 
solutions exist to be evaluated. In comparison, the other algorithms continue to search the 
search space continuously, unless a termination condition is defined. The termination 
condition can be a number of different conditions: a predetermined time, after a set number 
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of solutions have been evaluated or when an evaluation response is within an acceptable 
range (such as 5% either side) of the solution for which the search is designed to seek. Since 
some of the algorithms traverse to a solution and move within a limited radius about this 
solution, a reset condition will be required if time still remains. This will allow the search to 
continue. 
 
The chapter proceeds as follows: some common traditional search algorithms, namely 
Exhaustive, Lawnmower, Random and HillClimbing are introduced. How each of these 
operates is explained in Section 5.2. Common modern search algorithms are then introduced: 
Tabu, Simulated Annealing and Genetic Algorithms and discussed in Section 5.3. Section 5.4 
presents the algorithms and the variants that are to be implemented in this work. The 
implementation of various supporting functions is discussed in Section 5.5. The chapter 
summary is presented in Section 5.6. 
 

5.2 Traditional Search Algorithms 

This next section discusses the most common traditional methods of search. The traditional 
methods introduced here are easy to implement and provide an ideal comparison for more 
complex modern methods of search. 

5.2.1 Exhaustive Search 

The Exhaustive search is the simplest form of search. The Exhaustive search searches every 
single point within the search space [Johnson & Picton, 1995]. This initially seems an ideal 
search algorithm as every point is visited, resulting in the ideal solution to the problem being 
found. The use of the Exhaustive search is ideal if the search space contains a finite number 
of solutions that are highly constrained, as shown in Figure 5.3(a). This shows the path an 
Exhaustive search may take through the search space. As the search space becomes larger, as 
shown in Figure 5.3(b), and less constrained, Exhaustive search takes more time to find the 
ideal solution. Comparing the path taken by the Exhaustive search in each environment of 
Figure 5.3, it can be seen that the Exhaustive search will take more time to search a search 
space which has a higher resolution.  

 

 
 

(a) Highly Constrained Search Space with  
a path from an Exhaustive Search 

 

(b) Highly Constrained Search Space with 
High Resolution and a path from an 

Exhaustive Search 
Figure 5.3: Example Paths from Exhaustive Searches 
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5.2.1.1 Lawnmower 

A variation of the Exhaustive search is the Lawnmower search. The Lawnmower search is so 
named because of the visual pattern the path of the search takes through the search space, an 
example of which can be seen in Figure 5.4.   

 

 
 

Figure 5.4: Lawnmower Search within a Search Space with High Resolution 
 
The Lawnmower search behaves in a similar way to that of the Exhaustive (as can be seen in 
Figures 5.3 and 5.4), with the exception of the resolution within the search space it works at. 
A comparison between Figure 5.3(b) and Figure 5.4 shows the difference in the path taken 
by the Exhaustive search and the Lawnmower search. Instead of visiting every solution 
within the search space the Lawnmower works on the assumption that the current solution is 
representative of the immediate grouping of points. The size of this grouping is determined 
before runtime. A real example of this group size would be the range of the sensors used 
onboard a mobile robot. The maximum range of the sensors would define the range of the 
group size.  
 
The immediate advantage of the Lawnmower over the Exhaustive search is that the time 
taken to search the same area is greatly reduced, as the Lawnmower search only visits a 
representational number of solutions within the search space. The disadvantages remain the 
same: the time taken to search the search space can still be high, again dependent on the 
search space, and the full search space has to be traversed before a result can be given. A 
flowchart of the algorithm is given in Figure 5.5. The procedure followed by the robot is 
simple; the robot moves forward to each point and continues until an obstacle is detected. 
With an obstacle in the way the robot turns 90 degrees clockwise or anticlockwise. The 
direction of the turn is chosen before runtime but it must remain constant throughout the 
current run. If an obstacle is directly in the robot’s path after the turn the robot turns until an 
obstacle is not in the way. The robot moves forward one point, dependent on the sensor 
range, and turns 90 degrees in the same direction as the previous turn. The robot then 
continues forward again. This procedure is shown in Figure 5.6. The direction chosen to turn 
in this example is clockwise. 
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Figure 5.5: Flowchart Representing the Lawnmower Algorithm 
 

 
 

Figure 5.6: An example of a robots path while running the Lawnmower algorithm  

5.2.2 Random 

The Random search is based solely on random numbers. The algorithm generates a pair of 
random numbers and using this selects the solution it travels to next. An example is the 
easiest way to introduce the Random search. Using a two dimensional search space labelled 
0 to 9 along each axis, with each solution lying on the intersection of the x and y axes. The 
algorithm would generate a random number in the range 0-9 and assign this to the x-axis. 
The same is done for the y-axis. The solution at this intersection point is then travelled to and 
evaluated. The next point is then selected using the same method. Figure 5.7 shows a 
flowchart that represents the algorithm for the Random search. 
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Figure 5.7: Flowchart representing the Random algorithm 
 

When started, the algorithm selects a random point based on sensor range of the robot. One 
step along either the x-axis or y-axis is the equivalent of moving the robot forward one 
sensor range. If the robot is instructed to move to a point located at (5, 6) the robot would 
move to a point 5 sensor range along the x-axis and 6 sensor ranges along the y-axis. When 
the point is selected the robot moves towards it. It should be noted that the robot is scanning 
the environment as it is moving along. This increases the percentage of the area searched by 
the robot. If an obstacle is detected in the path of the robot, the algorithm simply selects a 
new point for the robot to move to. Once at the point, the algorithm assigns a new point and 
the process starts again. A graphic representation of a path the robot may be guided along by 
this algorithm is shown in Figure 5.8. 
 
Over a number of runs, with the environment and other conditions remaining static, the 
Random search will provide a different result every time. This is shown in Chapter 6: Section 
6.3.1. This is both the Random search advantage and disadvantage. The Random Search by 
its nature is able to find the target solution within an early time period, increasing its 
performance as compared to the Lawnmower Search. However it is also possible that the 
Random Search takes the full time period to find the target solution and it is conceivable that 
the target solution is never located. The reason for the inclusion of the Random search is that 
a random nature is present in the heuristic algorithms. A comparison between a purely 
Random search and search algorithm with a random solution indicates the power of the 
latter. 
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Figure 5.8: An example of a robots path while running the Random algorithm 

5.2.3 HillClimbing 

The next search algorithm to be discussed is the HillClimbing algorithm. The HillClimbing 
algorithm is the first of the algorithms presented here that uses knowledge gained from 
searching the space. This knowledge is the current value from the evaluation function of the 
current solution. Many varieties of the HillClimbing algorithm exist, as different users 
attempt to solve its shortcomings or interpret the fundamental algorithm differently. This 
algorithm is also known as a local-search algorithm [Rayward-Smith, et al 1996], as it 
searches only the environment immediately around the point it is currently at.  
 
HillClimbing works by examining the immediate solutions within the range of the current 
solution. That is the solutions within the range of the sensor from the current solution. If one 
of the solutions in range gives an evaluation value that differs from the current value, the 
algorithm chooses that as the next point to move to. Since the evaluation function used in 
this work is a minimum function, the solution that gives a smaller value than the current one 
is moved to. This process continues until the current solution is surrounded by solutions that 
result in evaluation values higher than the current value. This shows that the algorithm will 
move towards the desired target solution. A flowchart of the HillClimbing algorithm is 
shown in Figure 5.9.  
 
The advantages of the HillClimbing algorithm are that the computational power required to 
run it is minimal as compared to a Genetic Algorithm and the memory requirements are also 
minimal as compared to Tabu, Simulated Annealing and Genetic Algorithms. HillClimbing 
is also simple to understand and interpret. However disadvantages exist, all of which are 
associated with the inability of the algorithm to consider solutions out with the local 
environment of the current solution. 
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Figure 5.9: HillClimbing flowchart 
 
There are three conditions where the algorithm can no longer proceed, excluding being at the 
target point. The first of these is when the algorithm has located a local minima or maxima 
[Russell & Norvig, 1995]. The local minimum is a solution whose associated value has a 
minimum value compared to the surrounding environment but is not the global minimum, 
which is the target solution. Here the algorithm does not move from this solution as it is 
surrounded by solutions with larger evaluation function values. An example of this, with 
regards to this project, would be a temperature spike, for example a puddle of warm water. A 
Plateau [Russell & Norvig, 1995] is the second condition. This is where all the surrounding 
solutions have the same value. The algorithm cannot move from this solution as it represents 
just as good a solution as any of the other local solutions. An area of constant temperature 
would give this result. Ridges [Russell & Norvig, 1995], are the third condition where the 
HillClimbing algorithm is no longer able to proceed, as it may become stuck in a pattern of 
moving from one side of the ridge to the other, as both are within range of each other but no 
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other solution with a lower value is within range. These conditions are shown in Figure 5.10. 
The global minimum, which is the target solution, is also shown. 
 
 

 
 

Figure 5.10: A Cutaway view of an Evaluation Landscape with the various 
Conditions Shown 

 
This is the standard HillClimbing algorithm that can be used. However due to the 
disadvantages the use of it is limited. A common approach to overcoming these 
disadvantages is to use a Random Restart [Russell & Norvig, 1995]. Random Restart 
HillClimbing, when no progress is made, selects a new solution at random and starts a 
standard HillClimbing search around the new solution. This algorithm saves the location of 
the solution with the best value thus far. This allows the Random Restart HillClimbing 

algorithm a better chance of searching the full search space. 
 

5.3 Modern Search Algorithms 

This section introduces and discusses modern search algorithms that are to be implemented 
in this work. 

5.3.1 Tabu Search 

The first modern search algorithm to be discussed is the Tabu Search (TS) [Glover, 1989; 
Hertz et al, 1995; Gendreau, 2002; Rayward-Smith et al, 1996]. TS is described as a search 
algorithm in its own right. However, it is referred to as a metaheuristic [Glover, 1989; Hertz 
et al, 1995; Gendreau, 2002] as its most common use is to support another heuristic method 
in a search. TS use as a support algorithm allows the primary algorithm to have better 
avoidance of local minima or maxima [Mantawy et al, 1999; Hertz et al, 1995; Gendreau, 
2002]. Also it prevents the algorithm cycling [Rayward-Smith et al, 1996; Hertz et al, 1992; 
Gendreau, 2002]. Cycling is when the algorithm continually moves between a group of 
solutions. An example of cycling is what may happen when the HillClimbing algorithm 
encounters a ridge. In this study TS is treated as a metaheuristic and as such only the 
important aspects, the Tabu list and the Aspiration Criteria, are introduced. 
 
5.3.1.1 Tabu List 

The Tabu List [Glover, 1989; Hertz et al, 1995; Gendreau, 2002; Mantawy et al, 1999; 
Rayward-Smith et al, 1996] is the unique function of the TS [Gendreau, 2002]. The Tabu 
List can be seen as a short term memory [Gendreau, 2002; Hertz et al, 1995; Glover, 1989] 
where solutions that have been recently evaluated or have been moved from are stored until 
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either a new item replaces it on the list or a fixed length of time is passed, termed the Tabu 

Tenure [Gendreau, 2002]. As more solutions are evaluated the location and the evaluation 
value of the point are added to the list. If the list is full the earliest item on the list is removed 
and is replaced by the current information. Solutions on the Tabu List are seen as taboo. If 
the algorithm chooses a solution that appears on the Tabu List it is rejected for evaluation, 
unless it meets the Aspiration Criteria, which is discussed next. This means that the 
algorithm avoids recently visited solutions and avoids the cycling discussed above. The 
operation of the Tabu List is shown in Figure 5.11. 
 
 

 
Figure 5.11: Flowchart representing the operation of the Tabu List 
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5.3.1.2 Aspiration Criteria 

On occasion an item on the Tabu list may have a better evaluation value than what is 
currently available to the algorithm in the local neighbourhood. A method to revoke an item 
on the Tabu List is included as the Aspiration Criteria [Gendreau, 2002]. If the current 
solution being considered is on the Tabu list, the Aspiration Criteria is used to decide 
whether the solution should be removed from the Tabu List and hence become available as a 
solution that can be moved to. This works by taking the associated evaluation value and 
comparing it to an Aspiration Level [Glover, 1989; Gendreau, 2002; Mantawy et al, 1999]. If 
the evaluation function value of the solution is better than the Aspiration Level then the 
solution’s inclusion on the Tabu list is revoked. The use of this criteria results in the 
algorithm keeping near good solutions and fine tuning the current solution. 

5.3.2 Simulated Annealing 

The next algorithm to be discussed is Simulated Annealing, SA, [Kirkpatrick, 1984; 
Bohachevsky et al, 1986; Kirkpatrick et al, 1983; Johnson & Picton, 1995; Russell & 
Norvig, 1995; Reeves, 1996]. SA is a probabilistic hillclimbing technique, as like the 
HillClimbing algorithms, it carries out a local search. The distinction between the SA and 
HillClimbing algorithms is how this local search is carried out.  
 
SA is an algorithm based on the natural process of annealing [Kirkpatrick, 1984; 
Bohachevsky et al, 1986; Kirkpatrick et al, 1983; Johnson & Picton, 1995; Russell & 
Norvig, 1995; Reeves, 1996]. Annealing is the process that involves the heating of a material 
and then the systematic cooling of it by regulating the temperature [McGookin, 1997]. The 
algorithm here represents the annealing process, mimicking it to find the target solution. A 
flowchart representing SA is shown in Figure 5.12. 
 
SA algorithm works as follows. A random solution is selected and evaluated. The next 
solution is then chosen by perturbing the current solution, discussed in the next section, and 
evaluating it. The evaluation function value of the solution is then subjected to the 
Metropolis Criterion [Metroplis et al, 1953], discussed in Section 5.3.2.2, and from this the 
solution is either rejected or becomes the next best solution from which the next solutions are 
selected. The Annealing Schedule, presented in Section 5.3.2.2, is then reduced and the 
algorithm continues until the stop condition is met. 
 
5.3.2.1 Perturbation 

The solution selection used in the algorithm presented here is based on Equation (5.2) 
[McGookin, 1997]. 
 

r..k=)(pert ιTT  (5.2) 
 

Here pert(T) is the value the current best solution is to be perturbed by, k is a constant used 
to scale the result, T is the current temperature and ιr is a random number between 0 and 1. 
By selecting the next solution in this way keeps the algorithm within the range of a solution 
with a good evaluation value but still letting it hunt around the immediate area for another 
better solution. Since the solution selection is based on the current temperature, covered in 
Section 5.3.2.3, as the algorithm runs the next solution will become closer to the current best 
solution and enable fine tuning resulting in a greater chance of finding a target solution 
accurately [McGookin, 1997]. 
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Figure 5.12: Simulated Annealing Flowchart 
 
5.3.2.2 Metropolis Criterion 

The Metropolis Criterion [Metropolis et al, 1953] is the stage of the SA algorithm that 
distinguishes if from other HillClimbing based techniques. As in other algorithms presented 
here if the current solution has a better evaluation value than the current best solution then it 
is replaced. However in SA, if the current solution does not have a better evaluation value 
then it is not instantly rejected [McGookin & Murray-Smith, 2006; McGookin, 1997]. 
Instead it is subjected to the Metropolis Criterion. The evaluation value of the current 
solution and the evaluation value of the current best solution are used to calculate a 
probability. Boltzmann’s Equation, Equation (5.3) [McGookin & Murray-Smith, 2006; 
McGookin, 1997; Metropolis et al, 1953] is used to calculate the probability.   
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Here P is the probability, Cprev is the current best evaluation value, Cnew is the current 
evaluation value and T is the current temperature, discussed later. This value is then used in 
the Metropolis Criterion by comparing it to a random number, n, which has a range from 0 to 
1 [McGookin & Murray-Smith, 2006]. The Metropolis Criterion simply states that if P is 
greater than n then the current solution is selected as the new best solution and if P is less 
than n then the solution is rejected as normal. Using the Metropolis Criterion means that 
poorer results will, at some points, be chosen over better results. This results in the SA 
avoiding local minima as the algorithm is able to move away from them. This process avoids 
premature convergence towards a local minimum region [McGookin & Murray-Smith, 2006] 
and increases the ability of the algorithm to find the global minimum. 
 
5.3.2.3 Annealing Schedule 

The Annealing Schedule [Kirkpatrick, 1984; Bohachevsky et al, 1986; Kirkpatrick et al, 
1983; Russell & Norvig, 1995; Reeves, 1996] is used to reduce the distance from the current 
solution to the next solution for each iteration of the algorithm. When implemented this gives 
the algorithm a large search radius to begin with which covers a large section of the search 
space. However as the algorithm runs the search radius is reduced allowing the algorithm to 
slowly convergence towards the target solution. The Annealing Schedule is given by 
Equation (5.4). 
 

oγ=)AS( TT
n  (5.4) 

 

Here γ is the rate of decay of the Annealing Schedule, ranged from 0-1, n is the number of 
iterations and To is the initial temperature and T is the current temperature. Figure 5.13 shows 
a typical Annealing Schedule and the schedule used in this work. A minimum value is 
chosen to enable the search algorithm to still make meaningful steps as it is approaching the 
target. The minimum value in this work was chosen to be 30. 

 
Figure 5.13: Annealing Schedule 
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5.3.3 Genetic Algorithm 

A Genetic Algorithm (GA) [Goldberg, 1989; Holland, 1992; Schmitt, 2004; Ellis, 1993; 
Mitchell, 1996; Reeves, 1996; Johnson & Picton, 1995] is a search algorithm based on 
natural evolution [Ellis, 1993; Alfaro-Cid, 2003] and was originally developed by Holland 
(1975). In evolution the fittest organisms of a generation survive the challenges of life long 
enough to reproduce, creating a new generation. The new generation is typically better 
adapted to the environment. Environmental circumstances can also affect the new generation 
by altering the gene or genes of members of the new population. This is known as mutation. 
These concepts have been incorporated into the GA and its algorithm mimics this process of 
selection, reproduction and mutation [Schmitt, 2004; Alfaro-Cid, 2003; Ellis, 1993]. Figure 
5.14 shows a flowchart of a standard GA. 
 

 
 

Figure 5.14: Genetic Algorithm Flowchart 
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The initial stage of this algorithm is to randomly generate the population from which the 
candidate solutions are obtained. Each member of the population has a chromosome in which 
a possible solution to the problem is encoded [Ellis, 1993], the coordinates of a solution in 
this case. The encoding occurs by taking each digit within the coordinate and assigning the 
value to a gene within the chromosome as shown in Figure 5.15.  The coordinates used in 
this work have a range of ±9.99 giving a chromosome length of eight genes as the sign is 
also encoded. The allele range, the range of values a gene can take on, is 0-9 with the allele 
range for the sign gene being 0-1.  
 

 
 

Figure 5.15: Encoding of a Chromosome 
 
The next stage is to evaluate the performance of each candidate solution within the 
population. From this selection the parents of the next generation are selected. Various 
methods exist for selecting candidates for reproduction and Section 5.3.3.1 discusses the 
methods used in this work. The next stage is crossover. Crossover is used to create a new 
population from the parents selected from the last stage. Again various methods exist for 
crossing over the parents. These are discussed in Section 5.3.3.2. When the Crossover stage 
is complete a set of new chromosomes, called children [Ellis, 1993; Goldberg, 1989; 
Holland, 1975; McGookin, 1997] exist. The children are then subjected to the mutation 
function (see Section 5.3.3.3). Once completed these stages result in a new population. The 
population is decoded into the coordinates of the solution each individual represents and is 
evaluated. A GA is computational expensive and requires a number of generations before it 
converges to an optimal answer [Ellis, 1993; Goldberg, 1989; Holland, 1975; McGookin, 
1997]. However it can avoid local minima and could be an ideal method of guiding multiple 
robots. 
 
5.3.3.1 Selection 

Selection is used to establish which chromosomes from the current generation should be 
chosen to become parents for the new generation. There are two types of selection 
procedures, rank based and probability based [Alfaro-Cid, 2003]. Rank based is where each 
chromosome lies within a sorted list of the population based on the relative value of the 
associated cost. Probability based relies on the chromosome’s absolute cost. There exist 
many different selection methods with each one giving different advantages and 
disadvantages to the problem under investigation. Since this work is concerned with 
comparing the concept of GAs to other search algorithms, only two selection methods are 
considered, Roulette Wheel and Elitist. These selection methods have been chosen as they 
represent the most common selection methods used and are simple to implement. 
 
Roulette Wheel 

Roulette wheel selection [Goldberg, 1989] is a probalistic method of selecting the parents for 
the crossover stage. It works by creating a biased roulette wheel with each chromosome 
associated with a slot that is sized in proportion to its cost [Alfaro-Cid, 2003; Ellis, 1993]. To 

1 2 3 5 0 6 7 8 Chromosome 

(- 2.35, +6.78) Coordinate 

− 2 3 5 + 6 7 8 
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generate the parents to go forward to reproduce, the wheel is spun. The wheel is spun as 
many times as there are chromosomes in the population [Alfaro-Cid, 2003]. The roulette 
wheel method allows both good and bad individuals to progress into the mating pool 
[McGookin, 1997]. As a result of this the convergence rate is slow [McGookin, 1997].  
 
Elitist 

The Elitist selection method [Alfaro-Cid, 2003; McGookin, 1997] ranks the entire population 
according to the cost value [McGookin, 1997]. A fixed percentage of the top individuals 
within the population are selected and chosen to be in the mating pool. This means that the 
current best solution(s) are not lost from generation to generation. The remainder of the 
population is filled with individuals generated by crossover of the top individuals. The 
problem associated with this method is that premature convergence may occur [McGookin, 
1997]. 
  
With a choice of selection methods, the decision for which selection method should be used 
is based upon other factors within the GA, such as size of the population. For example 
Tournament selection is better suited to large populations so the Tournament groups are of a 
reasonable size.  Khoo & Suganthan (2002) use both Elitist and Roulette wheel to select the 
parents. This means that the current best candidate always survives to the next generation 
and it is present for crossover [Khoo & Suganthan, 2002; McDonald, 2003]. 
 
5.3.3.2 Crossover 

Crossover represents the biological process of reproduction. Two parents are chosen and 
their chromosomes crossed over to produce two new children. These children replace the 
adults in the next generation. Various methods of crossover exist: uniform, 
single/two/multiple- point and gene-lottery crossover [Khoo & Suganthan, 2002; Schmitt, 
2004]. The method to be used in this work is two-point crossover. The reason for the use of 
two-point crossover is because of the size of the chromosome, which is eight genes long. 
With two-point crossover a larger crossover is achieved leading to greater variety. 
 
In two-point crossover a chromosome is cut in two randomly selected locations, creating 
three parts of each parent. This means that each child is made up from three sections, two 
from one parent and the central section from the other parent. An example of two-point 
crossover is shown in Figure 5.16. 
 

 
 

Figure 5.16: Two-point Crossover 
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McDonald (2003) suggests that single point crossover is perceived to be the most appropriate 
crossover method due to the popularity of it and says that crossover schemes that use more 
than one point increase the chance of a fit individual being disrupted [McDonald, 2003]. This 
increases the convergence time, a stance supported by Dejong’s (1975) work that concludes 
that a GA’s overall performance degrades as the number of crossover points increases. 
Alfaro-Cid (2003) suggests that with conservative selection methods, as used by Dejong 
(1975), increased crossover points do degrade a GA’s performance. With strong selection 
schemes using two-point or multiple-point crossover is shown to work [Alfaro-Cid, 2003]. 
This again shows that the operators and structure of the GAs can vary the performance. A 
study of how uniform, single point and multi point crossover compare can be found in Khoo 
and Suganthan (2002). 
 
5.3.3.3 Mutation 

Mutation slightly alters a child or children generated by the crossover [Ellis, 1993; Alfaro-
Cid, 2003; Holland, 1975; McGookin, 1997]. The most basic mutation operator chooses one 
or more genes in a member of the population and the allele, the value of that gene, is 
replaced with a randomly generated value [Alfaro-Cid, 2003].  A mutation happens with 
reference to a mutation rate [Ellis, 1993; Alfaro-Cid, 2003; Holland, 1975; McGookin, 
1997]. The mutation rate is a value representing the percentage of the population that is to be 
mutated during a single iteration of the GA. There are various schools of thought on what 
value should be given to the mutation rate. A high mutation rate could keep the algorithm 
away from a target point by continually jumping away from it, but a low mutation rate may 
not find the target as values that have been removed may not be reintroduced [Ellis, 1993]. 
The mutation rate, in simple GAs, is normally kept the same until the termination of the 
algorithm. Other GA schemes have experimented with time varying mutation rates. Khoo & 
Sugantham (2002) present a method where the mutation rate is reduced near the end of the 
simulation run. The presented argument is that a high mutation rate at the beginning leads to 
a diverse population and a low mutation rate at the end means that good solutions are not 
destroyed [Khoo and Suganthan, 2002]. 
 
A large number of different GAs can be created, however the work here will only look at 
four combinations. The combinations selected will be based on the selection methods 
discussed: Roulette Wheel and Elitist, two-point crossover and two values for the mutation 
rate, low (0.1%) and high (10%). 
 

5.4 Algorithms and Variants to be Implemented 

The theory of each algorithm selected for this work has been discussed. The next stage is to 
define the variations of the algorithms that are to be used. This is included to clarify the 
algorithms that are studied. Though it is not implicitly stated, each algorithm scans for 
solutions of interest within a set range of the mobile robot while travelling to each solution 
selected by the algorithm. This allows a more extensive search to be carried out. If a solution 
of interest is noted along the path then a judgement is made whether or not the robot should 
travel to it. The judgement is made based on the temperature being detected at the point from 
a distance.  

5.4.1 Lawnmower 

The standard Lawnmower algorithm is used with no variations or adaptation. 
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5.4.2 Random 

A standard Random algorithm is used as described in Section 5.2.2. A variation that is used 
includes a Tabu element. The Random Search operates as normal but it contains a Tabu list 
of a set number of previous visited points. This results in the Random Search being 
constrained to search for solutions that have not been evaluated or have not been evaluated 
recently. Adapting the algorithm like this may result in a greater variation of the solutions 
evaluated. 

5.4.3 HillClimbing 

The standard HillClimbing Algorithm is used along with two variants. The first variant is the 
Random Restart HillClimbing algorithm. The second variation of the HillClimbing algorithm 
is the Random Restart HillClimbing algorithm with Tabu. 

5.4.4 Simulated Annealing 

The standard Simulated Annealing algorithm as described in Section 5.4.2 is implemented. 
However an addition is made to it. The nature of the Simulated Annealing algorithm is to 
travel to a single point that in this case represents the target. Since it is possible that more 
than one target exists in the environment that is being searched, once the annealing schedule 
is at the minimum value, the Simulated Annealing algorithm is reset and the search begins 
again with a random start point that is selected to be out with a set range from the current 
target. This is similar to the Random Restart component of the Random Restart HillClimbing 

algorithm.  

5.4.5 Genetic Algorithm 

With the large number of different variations that can be achieved only a selection of 
possible GA types can be selected. Using the GA operators described in Section 5.3.3 the 
GAs to be implemented are shown in Table 5.1. As with the Simulated Annealing algorithm 
the GA locates a single target point. As in the HillClimbing and the Simulated Annealing 
algorithms a Random Restart is implemented once all members of the population are within 
a set range from one another. The new population is created at random from points that are 
located out with a set distance from the current located target. 
  

Table 5.1: GAs to be implemented 
 

Selection Method Mutation Rate Crossover 

Roulette Wheel 1% 2 
Roulette Wheel 10% 2 

Elitism 1% 2 
Elitism 10% 2 

 

5.5 Implementation 

This section discusses the implementation of functions that are required to assist in the 
search and in the evaluation of the algorithms. The search algorithms are designed to 
evaluate the environment based on the temperature of the points. The detection of the 
temperature was chosen, as the human body gives off heat and this can be detected by 
suitable sensors. The method used to detect the temperature of the environment and how the 
constant search mentioned above is achieved are both discussed in this section. Since the 
coverage achieved by the algorithm is being used as a measure of how the algorithms 
perform, a method of calculating the coverage achieved by each algorithm run is required.  
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The implementation of this process is discussed here. The last topic in this section is a 
description of the targets and how the targets are detected during a run. 

5.5.1 Temperature Detection 

The purpose of the search algorithms presented in this thesis is to provide the points that a 
robot investigates within the environment. To achieve this, the algorithms require that the 
temperature of each visited point is known. In order to measure the temperature at each point 
a suitable sensor must be used.  Such a sensor should be able to measure an acceptable range 
of temperatures and to differentiate between ambient and higher temperatures. The TPA81 
Thermopile Array [Technobots, 2008] is able to satisfy these sensor requirements and is used 
in this study. This sensor can detect temperatures, specifically a human, with a range of two 
metres and has a field of view of 41°. The sensor is modelled in the simulation as a cone with 
a maximum range of two metres and a field of view from -20.5° to 20.5° [Technobots, 
2008]. This sensor coupled with a temperature map of the environment provides the search 
algorithms with the temperature of the points in the environment. The temperature map of 
the environment is a matrix representation of the environment with a resolution of 0.01m. 
Each element in the matrix represents a squared centimetre. The points in the environment 
are mapped onto each element in the matrix giving a temperature map of the environment. 
An example temperature map is shown in Figure 5.17. This figure shows two targets. 

 
Figure 5.17: Temperature Map of an Example Environment 

5.5.2 Constant Search 

As mentioned above, each robot does not only travel to the point that is assigned by the 
algorithms but it also carries out a constant search as it moves through the environment. The 
constant search increases the chance of locating a target and provides a more thorough search 
of the environment. If a temperature of greater than 35° is detected by the sensor along the 
path of the robot then the current movement is interrupted and the robot moves towards this 
location. This ensures that the robot does not pass a point that may result in a target being 
located. Once at the location, with the exception of Lawnmower, the algorithms restart the 
search from the current new location. The Lawnmower algorithm saves the current target 
location, branches from its search path and travels to the location of the new target. Once 
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there, and after evaluating the point, the Lawnmower resumes its search by retrieving the 
saved point. 

5.5.3 Coverage 

While operating a search, the robot does not keep track of the percentage of the environment 
covered as the size of the environment is unknown. Hence in practice coverage cannot be 
calculated. However as an aid in comparing the algorithms, the coverage achieved by each is 
a suitable measure of performance. Since the experimental environments are known, that is 
the dimensions of the environment are known, and the coverage from a scan from the 
temperature sensor is known, the coverage achieved of the environment can be calculated. 
As the robot moves in the environment the area scanned by the temperature sensor is saved 
and during the post processing stage this data is retrieved. The coverage is used as a measure 
of the algorithm’s performance by comparing the coverage achieved by one algorithm with 
the coverage achieved by others. Since the algorithms have similar terminating conditions 
(time and number of evaluations) the coverage achieved by each algorithm can be compared. 
 
Though out with the scope of this project, a base station could estimate the coverage 
achieved by the robot by building a map from the sensor data of the robot. As the robot is 
travelling, sensor data could be transmitted back and the base station could use this to 
construct a map of the environment. Not only would this aid in any rescue situation, by 
providing a basic map, it would also allow an estimate of the coverage achieved. 

5.5.4 Target tracking 

The aim of the robot is to locate survivors. Within the simulations a survivor is treated as a 
point target with Gaussian distributed temperature map about it, as shown in Figure 5.18. 
The temperature ranges from the chosen ambient temperature of 10° to a peak temperature of 
37°. 

 
Figure 5.18: Example Target 

 
The targets are not treated as obstacles. This decision has been made in order to allow the 
algorithms to be tested without the targets interrupting the search. Treating the target in this 
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way indicates that the temperature sensor is given dominance over the obstacle avoidance 
routine. This allows the agent to move close to the target and get a true temperature reading 
or, if other sensors are available (such as a pulse monitor), allow those sensors to collect the 
required data. A target is said to have been located if a temperature reading of between 36° 
and 38° is detected. Using this range simplifies the simulation and allows the work carried 
out to show that the concept applied works. In real situations this range would need to be 
altered to allow the detection of survivors who may be either suffering from shock, 
hyperthermia or a fever. This could involve the use of fuzzy logic system [Niku, 2001] that 
could improve the detection of survivors.  
 
The percentage of targets found is also used as a method of comparing the algorithms. Since 
the number of targets within the simulated environments is known and the number of targets 
located is known, the percentage of the targets located can be calculated. As with the 
coverage, the percentage of targets found by each algorithm can be directly compared. 
 

5.6 Summary 

This chapter has presented the theory behind the search algorithms that have been 
implemented as part of this work. How the search algorithm interacts with the rest of the 
system has also been presented. Terms associated with search: Heuristic, Search Space, 
Evaluation Function and Terminating Condition were also defined. 
 
Traditional search algorithms, namely Exhaustive, Random and HillClimbing have been 
introduced and the advantages and disadvantages of each were discussed. Modern search 
algorithms were then presented. Tabu, Simulated Annealing and Genetic Algorithms have 
been discussed and how the algorithms run has been shown. Each algorithm was described 
with reference to this work and the basic operation of each was presented with flow diagrams 
to assist in the explanations. 
 
The chapter continued by presenting the algorithms and the variations on the standard 
algorithms that will be implemented in this work. The algorithms and variants to be run are: 
Lawnmower, Random, HillClimbing, Random Restart HillClimbing, Tabu Random, Tabu 

Random Restart HillClimbing, Random Restart Simulated Annealing and four Genetic 

Algorithms. These algorithms are run in the single robot case in Chapter 6 and in a multi 
robot case in Chapter 7. 
 
This chapter concluded by discussing a set of functions that are common to all the runs. 
These functions allow the robot to carry out the search and provide a means of comparing 
each search algorithm. How the temperature is tracked was presented along with the 
implementation of the constant search. Since coverage is a method of comparison it was 
discussed here with reference to this work. The robot is required to detect targets and how 
this is achieved was discussed.  
 
With the algorithms defined and various functions presented experimental data can now be 
gathered. This data will be used to establish if the search algorithms described in this chapter 
can be used to guide a robot or many robots to search environments. 
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Chapter 6

 

Simulation Results: Single Robot 
 

6.1 Introduction 

As stated, the principal aim of this work is to establish if search algorithms can be used to 
generate points to allow a robot to search an environment for desired targets in a controlled 
manner. The objective of this chapter is to establish if the algorithms presented in Chapter 5 
can be used to achieve this aim and which algorithm performs the best within the single 
robot case considered in this chapter. 
 
To establish if the algorithms can be used to generate points that will allow a robot to carry 
out a search of an environment, a series of experiments are run. The results for using a single 
robot are presented in this chapter. The experiments carried out are done so in three different 
environments. As such, consideration of the environments the robots operate in is needed. 
The environment dictates the walls, obstacles and the location of the targets for which the 
robot is searching. The environments need to be varied enough to challenge the robots and 
all the algorithms. Thus providing such environments enables suitable data to be collected 
and the performance of the entire robot based system to be analysed. 
 
This chapter has the following outline. Section 6.2 discusses the environments the robot and 
search algorithms are to be run in. The first set of experiments is run in a simple 
environment, which is discussed in Section 6.3. Section 6.4 provides the results for the 
search algorithms when run in the second environment. Section 6.5 presents results and 
analysis from the third and most complex environment. Finally, the findings from this 
chapter are summarised in Section 6.6. 
 

6.2 Test Environments 

The environment is the area that is used to test the chosen search algorithms. The 
environments should show the algorithms working as intended and should also show if the 
algorithms carry out the task that is required, that of searching the environment and detecting 
targets. The environments include both the temperature map of the environment, the walls 
and any obstacles that exist in the environment. Three environments have been designed for 
testing purposes. Each environment is designed to test the algorithm in a different way to 
enable a better analysis of the performance of the search algorithms. 

6.2.1 Simple Environment 

The first environment, Environment 1, is an empty room with two targets in it. The map of 
the room can be seen in Figure 6.1. The temperature map of the room is superimposed on the 
map of the room. This environment is very simple and is designed to show the algorithms 
working and to test if the algorithms can achieve the task of searching the environment. The 
algorithms are implemented without any obstacle avoidance when run in this environment. 
Instead, the points that can be selected by the algorithms are constrained within the confines 
of the environment. By excluding the obstacle avoidance procedure it can be shown that the 
algorithms work in highly constrained environments and provide the bench mark to which 
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the other experiments run in the second and third environments can be measured against. the 
insertion point is marked by the red star. 

 
Figure 6.1: Map of Environment 1 

6.2.2 Simple Environment with Obstacles 

The simple environment presented in the previous section has been designed to show if the 
algorithms can be used for the purpose of this work. In reality, environments are not this 
simple and as such the algorithms should be tested in an environment with obstacles. Usually 
the dimensions of the environment are not known, as in an USAR scenario where the 
environment may have been altered in some way e.g. through structural collapse. This means 
that with obstacles and unknown dimensions some method of obstacle avoidance will be 
required. The next environment used in this investigation is shown in Figure 6.2 and is called 
Environment 2. Again the insertion point is marked. 

 
Figure 6.2: Map of Environment 2 
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It can be clearly seen that there are two targets and that this environment contains obstacles 
that require detection and avoidance. The insertion point for the robots is (0.5, 0.5), which is 
located in the lower left corner. With the insertion point located here the robots need to pass 
through the gap between the two obstacles that confine this starting position. This provides 
the algorithms with a challenge and shows the benefits and disadvantages of the obstacle 
avoidance technique that has been implemented. Also it illustrates how the search algorithm 
accommodates the interruptions caused by the obstacle avoidance.  

6.2.3 Complex Environment with Obstacles 

The third environment, Environment 3, is larger and more complex than the previous two 
environments. It represents an office with both small closed off areas and large open spaces. 
There are seven targets in this environment and a map of it can be seen in Figure 6.3. The 
insertion point is marked. 

 
Figure 6.3: Map of Environment 3 

 
This environment tests the ability of the algorithms to locate multiple targets and how they 
operate in a large, irregularly shaped environment with numerous obstacles. The insertion 
point in this environment is (14, 5). 
 

6.3 Simple Environment Experiments 

The first set of experiments will be carried out in the Environment 1. The results from each 
algorithm are presented. A final comparison is made at the end of the section. To properly 
gauge how each algorithm performs ten runs are carried out and the average of these runs is 
calculated to provide the values stated throughout the rest of this chapter. Further data on 
each of the runs carried out is provided in Appendix C1. 

6.3.1 Lawnmower 

The first algorithm to be run is the Lawnmower. The advantage of running the Lawnmower 
first is that it gives a baseline result of what can be achieved in the environment. This is 
achieved because it gives a structured approach to the search and in this simple environment 
it can be guaranteed that both targets can be found and that full coverage can be achieved. 
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Another outcome of the structured approach is that any additional functions, such as 
temperature scan, can be tested to ensure they operate correctly. To allow the Lawnmower 
search to search a greater area the detection threshold for the obstacle avoidance is reduced 
to a single robot length. 
 

Since the Lawnmower algorithm is a repetitive, incremental algorithm that contains no 
random elements, one run is sufficient to gain the required data. The Lawnmower located a 
first target in 11.15s and a second target in 95.21s. Since Environment 1 only has two targets, 
100% of the targets were located. The coverage achieved by the Lawnmower algorithm is 
97.11%. However the algorithm continues to operate until the stop criteria was met. This 
resulted in the algorithm searching areas which had already been searched. The path of the 
Lawnmower algorithm is shown in Figure 6.4. This shows the structured approach taken by 
the algorithm and demonstrates that the robot branches off from the path whenever a higher 
temperature is detected within sensor range. This illustrates that the temperature scanning 
function works as intended. It can be seen that in a simple highly constrained environment 
the Lawnmower is a powerful method of search, with the guarantee that any targets within 
the environment can be located. This agrees with the theory behind the algorithm. However, 
most environments are not as simple as the environment presented here. As stated, this 
environment is only included to test the algorithms to see if they can be implemented in this 
manner and to demonstrate the algorithms working. It can be concluded that the Lawnmower 
algorithm is capable of carrying out the task defined in this work within this simple 
environment.  

 
Figure 6.4: Map from a Lawnmower algorithm run within Environment 1 

6.3.2 Random 

The Random algorithm does not produce identical runs like the Lawnmower and, as 
mentioned, tens runs have been carried out to produce the values discussed. The individual 
run data is presented in Appendix C1.2. 
 

The average time taken for the location of a first target was 41.13s and for a second target 
92.60s. The first conclusion that can be drawn from this is that the Random algorithm takes 
longer to locate its first target when compared with the time taken by the Lawnmower. 
However the time taken to locate a second target is much less than that of the Lawnmower. 
Since the Random algorithm can travel to any point within a two metre radius of the current 
location, the robot is able to search any part of the environment at any time, hence increasing 
the chance of a target being located. Whereas the Lawnmower has to follow a set pattern 
which, when large areas with no targets exist, wastes search time. Having stated this, it is 
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possible that the Random Algorithm continually selects points which are not in the vicinity 
of a target, hence no targets can be located. In this simple environment this has not occurred 
and 100% of the targets have been found. The average coverage achieved is 99.12%, which 
is slightly higher than that achieved by the Lawnmower. The reason for this is that since the 
Lawnmower has a structured approach, parts of the environment are only scanned from one 
direction. The Random algorithm allows areas within the environment to be scanned from 
multiple directions, increasing the likelihood of an area getting a complete scan. Areas that 
lie out with the reach of the Lawnmower’s path have a chance of been scanned also. It 
should be noted that the difference between the coverage’s is small and that only a small part 
of the environment is out with the reach of the Lawnmower’s scan. The Random algorithm 
has been shown to work within Environment 1. A typical run of the Random algorithm is 
shown in Figure 6.5. 

 
Figure 6.5: Map from a Random algorithm run within Environment 1 

6.3.3 HillClimbing 

The next sets of results to be discussed are from the HillClimbing algorithm. This algorithm 
has worked as expected. Since no targets have been detected within the range of the sensor 
from the insertion point in the environment, the robot has not moved. No targets have been 
located and the coverage achieved is 13.52%.The HillClimbing algorithm can only operate if 
a target is within range. Figure 6.6 shows the map from the HillClimbing run. The map 
shows no path because the robot did not do anything. This shows that the algorithm is 
restricted by the range of the sensor and did not work in this application. Therefore, the 
HillClimbing algorithm is not considered any further in this study.  
 

6.3.4 Random Restart HillClimbing 

As suggested in Chapter 5, one method of improving the HillClimbing algorithm is to 
include a Random Restart (RR) element [Russell & Norvig, 1995]. The RR allows the 
HillClimbing algorithm to select a point outwith the scan radius and rescan the 360° about 
the new location. Individual run results are presented in Appendix C1.4.  
 
The RR HillClimbing algorithm locates a first target in 40.77s on average, and a second 
target in 560.25s, with only 55% of the targets being located. Only one of the runs found 
both targets, hence the 55% target located value. The RR HillClimbing located the first 
target, already an improvement over the HillClimbing algorithm, in a quicker time than the 
Random algorithm. 
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Figure 6.6: Map from a HillClimbing algorithm run within Environment 1 

 
The reason for this is that when a slight temperature increase is detected, the algorithm 
moves to this point and continues to ‘climb’ the temperature gradient until a target is 
detected. A second target is not as easy for the RR HillClimbing to detect, as once a target is 
located, unless the RR point is outwith a certain distance and at certain angle from the 
current target point, then the robot is attracted to the current target point, keeping the robot 
within its vicinity. The average coverage achieved is 51.16%. This shows that about half of 
the environment has been searched and this fits with only one target being detected. Since 
the robot is attracted to a target and remains in its vicinity, only a limited area of the 
environment is searched resulting in low coverage. Further evidence is provided by looking 
at the run (run 6) which located both targets. The coverage achieved in this run is 88%, 
showing that the RR HillClimbing algorithm being attracted to only one target does affect 
the coverage achieved. An example run of the RR HillClimbing is shown in Figure 6.7. 

 
Figure 6.7: Map from a RR HillClimbing algorithm run within Environment 1 

6.3.5 Tabu Random 

The Tabu Random algorithm has been included to investigate if the Tabu element affects the 
operation of the Random algorithm. The Tabu element consists of a Tabu list of ten elements 
representing the ten last previous visited points.  The elements on the list are removed from 
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the list after the Tabu tenure is reached. The Tabu tenure used in this work is five seconds. 
This allows the list to become populated when the robot makes small moves between points 
forcing the robot to move to points further from the immediate vicinity. A circle with radius 
0.3m about a point is termed a Tabu Zone. Points within this zone are also considered taboo. 
The individual Tabu Random run results can be found in Appendix C1.5. 
 
The average time for the algorithm to locate the first target is 29.73s. This is faster than the 
standard Random algorithm, indicating that the Tabu Random algorithm may be an 
improvement on the Random algorithm. The reason for the initial faster find is because the 
robot is forced away from each point it travels to, increasing the initial search scope.  
 
However, the second target time is very much higher than that of the Random algorithm, 
159.04s. With the Tabu Random algorithm’s ability not to visit points previously visited 
within a set time frame, this is an unexpected result. The expected result would have been 
that both targets would be found in a quicker time than the Random Algorithm. The reason 
for this increased time is the Tabu element of the algorithm. When a robot evaluates a point 
it is added to the Tabu List. If this point is close to a target the Tabu Zone placed about that 
point causes the robot to be repelled from the target point, hence increasing the time taken to 
locate targets. Mathematically the Tabu Random algorithm achieved 99.32% coverage which 
is greater than all the previously discussed algorithms. Since this algorithm maintains a list 
of recently visited points the algorithm is not instructing the robot to make trips that are not 
necessary, hence increasing the time spent going to unknown points, though due to the Tabu 
tenure some previously visited points are visited. It should be noted that a small Tabu list is 
desirable as it saves on memory and search time going through the list. An example run of 
the Tabu Random algorithm is shown in Figure 6.8. Again it can be seen that this algorithm 
can be used in the desired application. 

 
Figure 6.8: Map from a Tabu Random algorithm run within Environment 1 

6.3.6 Tabu Random Restart HillClimbing 

As discussed in Section 6.3.5, one of the general problems associated with the RR 
HillClimbing algorithm is its inability to escape from a target once the target has been 
detected. One method of tackling this would be to introduce the Tabu element that has been 
discussed in the previous section. The Tabu list enables the robot to search for points outside 
of the target’s range, hence increasing the chance of the robot escaping from the target.  
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The first point to note about the Tabu RR HillClimbing is that both targets are located in 
every run. This shows that the addition of the Tabu element has a dramatic effect on the RR 
HillClimbing algorithm, as can be seen in the results in Appendix C1.6. The algorithm 
located a first target in 13.06s on average, and the second target in 113.37s. The first target 
time is only higher than that achieved by the Lawnmower. The reason for this quick 
acquisition time is because of the HillClimbing element of this algorithm. Once this 
algorithm detects any point with a temperature higher than the current temperature at the 
current point the robot moves to it. This combined with the Tabu element, which forces the 
algorithm to search areas that have not been searched and helps the algorithm escape from 
any detected targets, increases this algorithm’s chance of finding targets. The second target 
time is reasonable but may indicate that the time that this algorithm spends in scanning the 
area about a point impacts on the overall run of the algorithm. The coverage achieved, 
97.43%, is also comparable to that of the other algorithms that have been deemed successful. 
Figure 6.9 shows a typical run from the Tabu RR HillClimbing algorithm. This shows that 
the algorithm works well within this environment. 

 
Figure 6.9: Map from a Tabu RR HillClimbing algorithm run within Environment 1 

6.3.7 Random Restart Simulated Annealing 

The next algorithm to be implemented is the RR Simulated Annealing algorithm. The basic 
Simulated Annealing Algorithm is not presented here, as it has been established, in Chapter 
5, that the random restart condition is required to allow the search to proceed after a target 
has been located. An example run from this algorithm is shown in Figure 6.10. The concept 
of Environment 1 is to show that the algorithms discussed in Chapter 5 work. Figure 6.10 
shows that the RR Simulated Annealing algorithm works. Further run data is available in 
Appendix C1.7. 
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Figure 6.10: Map from a RR Simulated Annealing algorithm run within Environment 1 

 
With regards to the average values from this algorithm, in a time of 35.43s a first target has 
been located. This is higher than the previous algorithms, with the exception of the Random 
runs. One reason for this could be the small steps taken by the algorithm after each point is 
evaluated. Since the RR Simulated Annealing algorithm fine tunes the point as it progresses, 
relative to the Annealing Schedule, smaller moves are made by the robot, as the points that 
can be evaluated are limited by a reducing radius about the current best point. Since smaller 
moves are made, the time taken to fine tune the current best point increases, hence the 
increased time to locate a target. The second target time is again slightly higher when 
compared with the other algorithms discussed.  The Tabu Random and the RR HillClimbing 
are both higher. The reason for the slightly higher time is because of the method used by the 
algorithm to locate a target point.  Though the target acquisition times are higher when 
compared to the other algorithms, the maximum coverage achieved is the highest. Though to 
put this in context, all the algorithms did achieve similar coverage, with the exception of the 
HillClimbing and the RR HillClimbing.  

6.3.8 Genetic Algorithm 1 

Genetic Algorithm 1 (GA1) is based on roulette wheel selection, with two point crossover 
and 1% mutation. Results from GA1 runs can be found in Appendix C1.8. GA1 has achieved 
100% target location and gained 90.22% coverage. The target location times achieved are 
amongst the lowest for both the first and second target. The first target has an average time 
of 23.17s. This time is one of the fastest for locating a target. The second target time is 
90.66s. This is the fastest time achieved yet for the location of a second target.  
 
The reason for the fast target location times can be attributed to the nature of this Genetic 
Algorithm (GA). Once a population is evaluated, if a dominant point exists then the next 
generation does not have individuals that represent points that exist at a distance from this 
dominant point. The reason for this is the selection method which favours dominant points. 
The lower the fitness value, the higher the percentage of the roulette wheel that the 
individual occupies. A second reason is the low mutation rate. The mutation rate only 
changes one gene in every two generations and as a result the individuals are not being 
altered to any great extent.  
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The crossover method does not make an impact if a dominant point exists. As each 
individual in the population becomes similar, the crossover stage will only slightly alter each 
point. Figure 6.11 shows a typical GA1 run.  

 
Figure 6.11: Map from a Genetic Algorithm 1 run within Environment 1 

 
It can be seen that the robot is attracted to the targets and simply moves between them. This 
result seems initially good as this is what is desired from this work: an algorithm that can be 
used to locate targets in the minimal amount of time.  
 
However the coverage achieved, when compared to that of the other algorithms, is poor i.e. 
90.22%. This indicates that although the targets can be located quickly, the overall search of 
the environment is hampered by the lack of a high random element. The conclusion that can 
be drawn from the presented results is that the algorithm does work but the coverage 
achieved is poor in relation to the other algorithms. It can be argued that since GA1 is 
attracted to targets, if other targets exist the algorithm would be capable of locating them. 
Environment 3 contains more targets and this argument can be tested there. 

6.3.9 Genetic Algorithm 2 

Genetic Algorithm 2 (GA2) consists of roulette wheel selection, two point crossover and 
10% mutation. The mutation rate means that five genes in every generation are mutated. The 
average results, which are calculated using the individual run results in Appendix C1.9, from 
the GA2 include target location times of 27.23s and 98.69s with all the targets being located 
and an average coverage of 99.20%. Comparing GA2 to GA1 it can be seen that the 
increased mutation rate has had an effect. The first notable difference is that GA2 takes 
slightly longer to locate the targets, the first target by 4s and the second target by 8s. These 
differences are small but it shows that the increased mutation rate has made a difference. The 
second change is that the coverage achieved by GA2 is 99.20%, which is higher than the 
coverage achieved by GA1. The increase in both the target location time and the coverage 
can be attributed to the increase in the mutation rate. Since the mutation rate is higher, there 
exists a higher degree of difference between the individuals in the population. This leads to a 
wider variety of points being evaluated in each generation. Since a wider selection of points 
is being visited the coverage is increased. The same occurs when attempting to locate targets. 
With GA1 the population hovers about the same point as a result of the lack of variation 
between the individuals until a random restart condition occurs. However, with the increased 
mutation rate the variation is increased. This difference pushes the points away from targets 
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points, increasing the time taken to locate a target. Comparing GA2 to the other algorithms 
so far, the target times for both targets are average and the coverage is comparable. The 
results from GA2 suggest this algorithm can achieve both good target location times and 
coverage. An example of a GA2 run can be seen in Figure 6.12.  

 
Figure 6.12: Map from a Genetic Algorithm 2 run within Environment 1 

 
The pattern of the path of the robot is similar to that of the GA1 run, in that it has a 
distinctive path between the both targets. It can also be seen that the path has more 
interruptions, points at which the path between the two targets is broken and the robot moves 
to a point out with the path or the two targets. This indicates the effect of the higher mutation 
rate has on increasing the coverage achieved during the search. As with the other 
Environment 1 experiments carried out, the results from the runs of the GA2 show that this 
algorithm works. 

6.3.10 Genetic Algorithm 3 

To reiterate, Genetic Algorithm 3 (GA3) uses the section method Elitism with two point 
crossover and 1% mutation rate. As with the majority of the other algorithms, GA3 has 
found both targets over all the runs. This is shown in the results presented in Appendix 
C1.10. The average time for a first target location is 24.72s; this is amongst the lowest time 
for finding a target. The second average target location time is 48.09s, which is the quickest 
time achieved for the location of a second target. The coverage achieved, 88.15%, is poor 
when compared to that achieved by the other algorithms. These results can be associated 
with the conclusions drawn from GA1. The Elitist selection method selects elite individuals 
which are carried on to the next generation. These individuals become dominant within the 
population and since the mutation rate is low there is minimal change in the population. This 
has the same effects as discussed in GA1. Figure 6.13 shows a typical run from GA3.  
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Figure 6.13: Map from a Genetic Algorithm 3 run within Environment 1 

 
This shows the effect of a dominant point within the population, with the robot taking little 
deviation from either target. This occurs because the dominant point appears in each 
generation, whereas in GA1 the dominant point can be slightly altered by the combination of 
the roulette wheel and two point crossover. The advantage of the elitist selection method 
over the roulette wheel, from the results presented so far, is the time taken to locate the 
targets. At this stage the elitist method, over both targets, finds the targets quickly but at the 
expense of coverage. 

6.3.11 Genetic Algorithm 4 

Genetic Algorithm 4 (GA4) uses elitism as the selection method with two point crossover 
and 10% mutation. The first statement that can be made about GA4 is that it can be used in 
the scenario considered in this work. The data in Appendix C1.11 shows this. GA4 found 
100% of the targets and located a first target in an average time of 30.95s and a second target 
in 58.00s. Compared to the other algorithms, the first time is an average time that lies at the 
lower end of the scale. The time taken to find the second target is the second fastest time 
recorded from the data presented here. This provides additional evidence about the power of 
the elitist method in locating targets quickly. The slightly higher time from GA4 over GA3 is 
an indication of the higher mutation rate used. Since five genes in every generation are being 
mutated, a higher chance exists that the population is being kept varied, until the point of 
random restart, enabling a wider search of the environment. The nature of the algorithm 
means that the robot is able to detect targets quickly. Another indication of the increased 
mutation rate is the coverage achieved, which is 92.68%. Though lower than some of the 
other GAs, it shows that the mutation rate has an impact on the coverage achieved, whereas 
the selection method has an impact on the time taken to locate targets. A typical path from a 
GA4 run is shown in Figure 6.14. The path of the robot shows the same behaviour that can 
be seen in the previous GA runs. This shows that the GAs are very dependent on the targets 
that exist within an environment. 



 

  93 

 
Figure 6.14: Map from a Genetic Algorithm 4 run within Environment 1 

6.3.12 Discussion 

As previously discussed, the aim of Environment 1 is to test whether the algorithms 
described in Chapter 5 are suitable for use in searching environments, when using the 
navigation and control methodologies described in Chapter 4, on a model derived in Chapter 
3. The answer to this question is that in the vast majority of cases the algorithms described 
are suitable, as can be seen from the data presented in Table 6.1. The two algorithms that 
stand out are the HillClimbing algorithm and the RR HillClimbing. As discussed, the 
HillClimbing operated as expected: with no target nearby, the robot did not move. As a result 
of this the HillClimbing algorithm is no longer considered a viable option. The RR 
HillClimbing algorithm located 55% of the targets. This shows that the RR HillClimbing 
algorithm has potential as one run did locate both targets. Due to this the RR HillClimbing 
remains an algorithm for testing. All the other algorithms located 100% of the targets and as 
such this variable cannot be used at this stage to compare the performance of the algorithms.  
 
As stated above, the Lawnmower algorithm can be used as a benchmark for the comparison 
of the other algorithms in Environment 1. The reason for this is because it is guaranteed to 
find both targets in this simple environment and achieve, as close as possible, complete 
coverage. With the exception of the first target time, where the Lawnmower is able to 
directly move to a target, the surprising conclusion about the Lawnmower algorithm is that 
the results generated indicate average performance. 
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Table 6.1: Experiment 1 – Single Robot Results 
 

Algorithm 
Time for target 

1, seconds 
Time for target 

2, seconds 
% Target 

Found 
% Coverage 

Lawnmower 11.15 95.21 100 97.11 
Random 41.13 92.60 100 99.12 

HC N/A N/A N/A 13.52 
RRHC 40.77 202.45 55 51.16 

TR 29.73 159.04 100 99.32 
TRRHC 13.06 113.37 100 97.43 
RRSA 35.43 116.20 100 99.23 
GA1 23.17 90.66 100 90.22 
GA2 27.23 98.69 100 99.20 
GA3 24.72 48.09 100 88.15 
GA4 30.95 58.00 100 92.68 

 
The Random algorithm, though very poor in locating the first target, is above average on 
both the second target time and the coverage. This shows that a degree of randomness within 
the selection of points may be a major factor in both the location of the targets in a 
reasonable time and on achieving high coverage. This is certainly supported by the high 
randomness algorithms, i.e. Tabu Random, RR Simulated Annealing, GA2 and GA4, which 
all obtained high coverage values. What does let the Random algorithm down at this stage is 
the poor value for the first target time. The interesting point to note here is that with the Tabu 
element introduced the target time for the first target is reduced and the coverage is 
increased. However the time taken to locate a second target is increased, which is shown to 
be associated with the Tabu element of the algorithm. This shows that the Tabu element has 
an effect on the Random algorithm as discussed in Section 6.3.6. The Tabu Random 
algorithm in general is below average, with the exception of the coverage achieved which is 
the highest.  
 
The Tabu RR HillClimbing algorithm can be seen to be an improvement over the RR 
HillClimbing algorithm. The target location time for a first target and the coverage achieved 
are both higher than average and the time taken for locating a second target is just below 
average. This indicates that, with regards to HillClimbing based algorithms, with more 
supporting elements (RR and Tabu) more improvements are achieved in the results obtained.  
 
The RR Simulated Annealing algorithm has performed below average with regards to the 
time achieved for locating targets. However, the algorithm gained the second highest value 
for the coverage achieved.  
 
This brings the discussion onto the GAs. In general the GAs provided a mixed set of results. 
The majority of the time values are above average but the majority of the coverage values are 
below average. This shows that the GAs are powerful when it comes to locating targets in a 
reasonable time but may not achieve the coverage achieved by some of the other algorithms. 
From the results presented so far it can be seen that the higher the mutation rate of the GAs 
the higher the coverage achieved. However, the smaller the mutation rate the quicker the 
targets are found. The next two environments provide further evidence to either support or 
derail these findings. 
 



 

  95 

The general conclusion that can be drawn from the data presented for Environment 1 is that 
in a simple environment the algorithms, with the exceptions mentioned, perform well and are 
shown to work. At this stage the algorithms that contain a high random element achieve 
better coverage but the algorithms that allow dominant points are able to locate the targets in 
a much quicker time, on average. These conclusions are based solely on the data presented in 
this section. As to which algorithm performed best in this very simple environment, it would 
be the Lawnmower. Since the environment is small and highly constrained the Lawnmower 
is able to provide good coverage and locate the targets in a reasonable time. However the 
next environments are not highly constrained and this may provide problems for some of the 
algorithms. 
 

6.4 Simple Environment with Obstacles 

As with Section 6.3, the data presented in this section is the average data taken from ten runs 
of each search algorithm investigated. The individual run data can be found in Appendix C2. 

6.4.1 Lawnmower 

As with the previous section, the first algorithm to be discussed is the Lawnmower. The path 
achieved by the Lawnmower within Environment 2 can be seen in Figure 6.15. As can be 
seen from the figure the Lawnmower is not as successful in this environment as compared to 
the first environment. Only one target is located, in a time of 48.79s, and the algorithm 
achieved 50.45% coverage. From the figure it can be seen that the Lawnmower algorithm 
gets caught in a loop and constantly travels the same path. The reason for this is simply that 
the Lawnmower, as described and implemented here, cannot handle highly complicated 
environments. Since it has to operate in a set way, the algorithm cannot select another point 
at random if it becomes caught in a loop. The Lawnmower is designed to constantly follow 
the same path until the termination condition is met. It can be seen that once the constraints 
are removed from the environment and the environment becomes more complex, through the 
addition of obstacle, the Lawnmower begins to struggle. The Lawnmower did detect one 
target and since no comparison can yet be made with the other algorithms, this could be a 
reasonable result.  

 
Figure 6.15: Map from a Lawnmower run within Environment 2 
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6.4.2 Random 

The Random Algorithm produced the following average values: a first target was located in 
234.50s and a second in 440.52s. On average 75% of the targets were found and the 
coverage achieved was 82.34%. This average data was calculated using the run data 
presented in Appendix C2.2. This provides some interesting points to discuss.  
 
When compared to the first environment it can be seen that there is a reduction in the 
coverage and an increase in the target’s location times. This is a direct result of the obstacles. 
The target location times are extremely high. The first time is high because of the time taken 
by the robot to move out of the obstacles about the insertion point. The second time is high 
because the robot is required to navigate the obstacles about the first target that is located. 
The reason for the algorithm not locating the second target on some runs is a result of the 
robot becoming stuck in an area in which it cannot escape. Either the robot remains within 
the area about the insertion point or it remains within the vicinity of a target point while 
avoiding obstacles. The coverage achieved was, as stated, 82.34%. Though not as high as the 
coverage achieved in Environment 1, this is a high value for the coverage and would suggest 
that the majority of the environment has been searched.  
 
It is interesting to note that the Random runs which did not locate both targets did not search 
or branch into the area about these targets not located. This is an interesting point in that it 
shows that the algorithm must first branch into an area about the target before a target can be 
located, however there exists a case in which this does not seem to occur. The first Random 
run, at first glance, appears to have located both targets but on further inspection this is not 
the case. The second target has not been marked as located. The reason for this could be in 
the actual code implementation of the simulation and is associated with the rounding that 
occurs to find the temperature of a point. In a real world situation an operator reviewing the 
data would most likely note this point as a target point, as the robot is attracted to something 
within this area. The robot, being purely deterministic, would not mark this point as a target 
until the threshold value had been reached. The use of a fuzzy logic based system [Niku, 
2001] in the determination of the targets could be used to improve the autonomy of target 
location. An example run from the Random algorithm is shown in Figure 6.16. 

 
Figure 6.16: Map from a Random algorithm run within Environment 2 
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6.4.3 Random Restart HillClimbing 

In the previous environment the Random Restart (RR) HillClimbing has been able to execute 
the basic search but its overall performance has been poorer than other algorithms. The data 
from the runs in Environment 2 show that performance of the RR HillClimbing is worse than 
that of the Random algorithm. The data to show this can be found in Appendix C2.3. The 
average target location time for a first target is 228.07s. This is just lower than that achieved 
by the Random algorithm. As discussed in Section 6.3.5, if the RR HillClimbing algorithm is 
able to detect a temperature that enables it to move closer to the target temperature, then the 
algorithm converges to the target rapidly. However the average time for locating a second 
target is 525.40s. The percentage targets found is 60.00%. Since the RR HillClimbing 
algorithm is attracted to dominant points, when a target is within range robot is attracted to it. 
The RR is designed to push the robot away from a target, but due to the obstacles this may 
not happen and the robot is attracted by the same target.  The coverage value of 78.82% is 
higher than the Lawnmower but is lower than the Random algorithm. However, when the 
target location times are considered, the RR HillClimbing algorithm would seem to be a poor 
choice for searching an environment.  
 
An interesting point to note about the RR HillClimbing experimental runs carried out in 
Environment 2 and those runs carried out in the first environment is that the results from 
Environment 2 are better than those obtained in Environment 1. One reason for this could be 
the inclusion of the obstacles. In the first environment the RR HillClimbing algorithm had a 
tendency to detect a point early then remain within its vicinity. This behaviour results in the 
robot not exploring the full environment. Since obstacles have been introduced, the path that 
can be taken by the robot is limited and this has had an impact on the algorithm. Whenever 
an obstacle is detected the robot replaces the current desired point with a randomly selected 
point. With regards to the RR HillClimbing this has the same effect as the RR. This means 
that the robot avoids obstacles but it also results in the robot being constantly repulsed by the 
targets, given the close proximity of the targets to obstacles. Since the random element 
within the algorithm has been increased, the coverage is increased and as a result gives the 
robot a higher chance of locating the targets. A typical run from the RR HillClimbing is 
shown in Figure 6.17. 

 
Figure 6.17: Map from a RR HillClimbing algorithm run within Environment 2 
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6.4.4 Tabu Random 

Looking at the results (presented in Appendix C2.4) achieved by the Tabu Random 
algorithm, it has, on average, performed very well. A first target is located in a time of 
158.29s. This is higher then the Lawnmower but lower than all the other algorithms 
discussed so far. At 211.60s a second target is located, which is the lowest time so far. The 
percentage target found is 70%, again higher than the previous algorithms with the exception 
of the Random algorithm. The coverage achieved is 84.42% and this value is the highest so 
far. As stated, these results are good and are a result of the Tabu element.  
 
The Tabu element is designed to keep the robot away from previously visited points. In 
doing this the coverage achieved by the algorithm is increased, as new points are 
predominately selected. With an increase in coverage there is an increased chance of locating 
targets. Also, as discussed in Section 6.3.6, the Tabu Random algorithm is able to escape 
from the target once one is located. This increases the time spent looking for other targets as 
opposed to being constantly drawn to the target within the immediate vicinity. This also 
increases the likelihood of targets being located. A typical run from the Tabu Random 
algorithm is shown in Figure 6.18. At this stage the Tabu Random algorithm is shown to be a 
powerful method of search with regards to its application to the problem presented in this 
work. 

 
Figure 6.18: Map from a Tabu Random algorithm run within Environment 2 

6.4.5 Tabu Random Restart HillClimbing 

The first interesting point to come out from the Tabu RR HillClimbing algorithm is that, on 
average, the results are poorer than the RR HillClimbing, as shown in the results presented in 
Appendix C2.5. This is against the expected result which would have been that the Tabu RR 
HillClimbing would have had better results. The average results achieved by the Tabu RR 
HillClimbing are 291.72s for the location of a first target, 188.82s for a second target and 
50% targets located. The second target time is low because only one run found this target 
and it did so extremely quickly. The coverage is 74.81%. Comparing these to the previous 
algorithms these results are poor. The RR HillClimbing element of this algorithm should be 
increasing the speed in which targets are located and the Tabu element is designed to repulse 
the robot away from a target once it has been located. Looking at the maps generated from 
the runs the algorithm remains close to a target point. The reason for this is the proximity of 
the obstacles. The method used for obstacle avoidance generates a point at random. The 
robot then travels to this point. While the robot is travelling it is also scanning for an increase 
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in the temperature. When an increase is detected the robot moves towards it. Since the 
targets in the second environment are located within close proximity to obstacles, the Tabu 
List entries will be discarded by the obstacle avoidance, hence the robot remains in the 
vicinity of the targets. The one run in which the algorithm located both targets shows less 
interaction with obstacles than the other runs, further supporting this conclusion. An example 
run of the Tabu RR HillClimbing algorithm can be seen in Figure 6.19. 

 
Figure 6.19: Map from a Tabu RR HillClimbing algorithm run within Environment 2 

6.4.6 Random Restart Simulated Annealing 

The RR Simulated Annealing algorithm, when compared with the other algorithms run so 
far, is on average the best. Appendix C2.6 presents the individual run results. The time taken 
to locate a first target is 168.63s. This is higher than the Lawnmower and the Tabu Random, 
however it is lower than the others. The time taken for the location of a second target is 
360.18s. This is the best result so far. The average percentage target found is 85% with the 
average coverage being 84.68%, both of which are higher than any of the previous 
algorithms. The inclusion of the obstacle avoidance has impacted on the RR Simulated 
Annealing algorithm but to a lesser degree than the other algorithms. The ability of the RR 
Simulated Annealing algorithm to slowly reduce the radius in which the next point is 
selected may be assisting the obstacle avoidance routine. Since the robot is operating in close 
quarters to the obstacles, the ability to travel in successively smaller steps may be allowing 
the algorithm to continue looking for targets with minimal interference from the obstacles. 
Since the algorithm has a continually reducing search radius, there exists more of a chance of 
finding, admittedly at random, a way to avoid the obstacles. Figure 6.20 shows an example 
run from the RR Simulated Annealing algorithm.  
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Figure 6.20: Map from a RR Simulated Annealing algorithm run within Environment 2 

6.4.7 Genetic Algorithm 1 

In the first environment GA1 exhibited behaviour of moving between the two targets within 
the environment. In this experiment there exists no clear path between the targets, hence this 
pattern cannot be repeated. The results show that this is the case. The average results from 
the GA1 runs in Environment 2 are a first target location time of 195.66s, 302.85s for a 
second target location time, 60% of the targets are located and the coverage achieved is 
84.68%. Comparing the first target location time to the others presented for Environment 2, 
the time is average. The second time is average when compared to the times stated so far, as 
is the percentage coverage achieved. In general GA1 had achieved an average solution to the 
problem. There are algorithms that have achieved better results. The inclusion of the obstacle 
avoidance has stopped this algorithm’s tendency to move between two targets. Since this is a 
more realistic environment it shows that the performance of GA1 is average. An example run 
from GA1 is shown in Figure 6.21 and the individual run results can be found in Appendix 
C2.7. 

 
Figure 6.21: Path taken by a robot under direction from the GA1 within Environment 2 
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6.4.8 Genetic Algorithm 2 

GA2 has achieved an average time of 257.58s for the location of a first target and 363.36s 
for a second target. GA2 also achieved 70% target location and 86.63% coverage. The target 
time for the first target is currently the second longest time. As discussed in Section 6.3.10 
this is a result of the high mutation rate that is used in GA2. The second target time is an 
average time when compared to the other times so far. This is again a result of the high 
random nature of the algorithm but also indicates that as more coverage is gained the quicker 
the second target is located as compared to the first target. GA2 has located an average 
number of targets. The coverage of GA2 is the highest of the algorithms and is a result of the 
high mutation rate adding a higher random element. This provides further evidence that high 
coverage can be gained by using algorithms containing a high random element. Figure 6.22 
shows a run from GA2. Further data for GA2 in Environment 2 can be found in Appendix 
C2.8. 

 
Figure 6.22: Map from a GA2 within run Environment 2 

6.4.9 Genetic Algorithm 3 

The average results gained for GA3 are above average when compared to the other 
algorithms discussed. A first target is located in 171.03s, a second target in 375.95s. The 
percentage of targets located is 75% and the coverage achieved is 83.87%. The above 
average target times can be attributed to the selection method of GA3, as discussed in 
Section 6.3.11. The reason for the algorithm not achieving better performance is the 
inclusion of the obstacle avoidance, which has had an interesting effect on GA3. With the 
inclusion of the obstacle avoidance, which as stated replaces individuals in the population 
with randomly selected points, the population has had a more dominant random effect 
introduced. This has resulted in GA3 achieving more coverage while still achieving good 
times for the location of the targets. Even with a low mutation rate the population is being 
constantly changed, but when in the vicinity of a target the algorithm can be seen to move 
towards it. In theory the mutation rate has been increased to more than a whole individual in 
each generation. This shows again that an increased random element in an algorithm can 
achieve high coverage if the algorithm is able to move away from located targets. The results 
obtained from a typical GA3 run are shown in Figure 6.23. Again further data can be found 
in Appendix C2.9. 
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Figure 6.23: Map from a GA3 run within Environment 2 

6.4.10 Genetic Algorithm 4 

The final algorithm to be run is GA4. Individual run results are presented in Appendix 
C2.10. The average results from this algorithm are a first target location time of 215.66s and 
a second time of 356.18s. The average target percentage is 70% and the coverage is 82.66%. 
The first point to note about this algorithm is that the first target time is an average value 
when compared to the other algorithms. Though the elitist method is used, the higher 
mutation rate diversifies the population, hence increasing the time taken to locate the targets. 
The second target time is above average. This shows that with an increased mutation rate and 
with the increased random element included with the addition of the obstacle avoidance, the 
algorithm seems able to locate the second target quicker. Since the coverage is increased due 
to the random elements, this would indicate that as the coverage increases the chances of 
locating targets increases. The percentage target found is average. This would also indicate 
that a high random element may lead to increased performance. Having stated this, the 
coverage is average. This algorithm does do better than algorithms that have a structure 
designed around the HillClimbing and have a reduced random element. Figure 6.24 shows an 
example run from GA4. 

 
Figure 6.24: Map from a GA4 run within Environment 2 
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6.4.11 Discussion 

Environment 2 has been designed to examine how obstacles affect the performance of the 
algorithms under investigation. To achieve this, a simple method of obstacle avoidance has 
been implemented to enable the robot to locate obstacles. As with the experiments carried 
out in Environment 1, the algorithms all ran, showing once again that this method of 
searching environments has potential. Each of the algorithms had varying success and 
conclusions can be drawn from the data presented. Table 6.2 shows the average run data 
from the experiments carried out in environment two.  
 

Table 6.2: Experiment 2 – Single Robot Results 
 

Algorithm 
Time for target 1, 

seconds 
Time for target 2, 

seconds 
% Target 

Found 
% 

Coverage 
Lawnmower 48.79 N/A 50 50.45 

Random 234.50 440.52 75 82.34 
RRHC 228.07 525.395 60 78.82 

TR 158.29 211.60 70 84.42 
TRRHC 291.72 188.82 50 74.81 
RRSA 168.63 360.18 85 84.68 
GA1 195.66 302.85 60 84.68 
GA2 257.58 363.36 70 86.63 
GA3 171.03 375.95 75 83.87 
GA4 215.66 356.18 70 82.66 

 
From the data it can be seen that those algorithms that contain high random elements, or 
have been affected by the method of obstacle avoidance (GA3 for example) achieve higher 
average coverage and as a result achieve a high percentage of targets located. This provides 
evidence that gaining a higher coverage increases the chances of locating targets. The 
exception to this rule is GA1. GA1 achieved a high coverage, however on average only 
achieved 60% target location. Looking at the maps generated by the runs shows the same 
issue as discussed in 6.4.3 with regards to the robot going to a targe,t but not marking it as 
such. Since this behaviour is only evident in a small number of the runs presented, i.e. 
7.85%, it can be said that it does not have a major impact on the overall results. One 
interesting point about this issue is that it seems to have affected GA1 more than any other 
algorithm. 42% of runs containing this issue are GA1 runs. This would suggest that another 
reason exists for this anomaly. It could be contributed to the method in which the algorithm 
converges on a target. The algorithms that have a high rate of convergence, HillClimbing 
based and Elitist based algorithms have less occurrences of this anomaly than the other 
algorithms. The reason for this could be that these algorithms are seeking the highest 
temperature point. Once they have located it they maintain the point and do not accept a 
lower value, unlike the other algorithms that replace the current point with any point above 
the minimum temperature of interest. It should be noted that the RR Simulated Annealing 
algorithm has no occurrences of this anomaly. The reason for this is that it also maintains the 
best point found so far, though it can replace it with a lesser point.  
 
Looking at the results together it can be seen that the overall best performance, with regards 
to Environment 2, is provided by the RR Simulated Annealing algorithm. This algorithm 
located both targets quickly and achieved the highest percentage of targets located over all 
the runs. The coverage achieved is also amongst the highest. The Tabu Random algorithm 
also performs well; both targets are located quickly with both a high percentage of targets 
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located and a high coverage achieved. The next algorithms to perform well are the GAs. 
GA3 has achieved the best average results than the other GAs. The other GAs all performed 
approximately the same. The worst algorithms are Tabu RR HillClimbing, RR HillClimbing, 
Lawnmower and Random. The HillClimbing based algorithms have struggled with the 
inclusion of obstacles and since the robot is being repelled by obstacles there is a tendency 
for these algorithms to remain in the vicinity of a target, hence reducing the chances of other 
targets being located. The Lawnmower performed poorly because of the method in which it 
carries out the search. The parameters remain constant, hence the robot becomes stuck in a 
repeating pattern. It is possible to alter the step size the robot takes in either direction but a 
decision on the step size is then required. Too small and the algorithm will take an age to 
search a room; too big and the algorithm will bounce off obstacles. With limited information 
about the environment this would be a difficult decision to make, though this does open up 
the possibility for a hybrid based Lawnmower algorithm. The Random algorithm results 
were average. This indicates, with the results obtained from the other algorithms, that 
although having a high random element within an algorithm is desirable some method of 
converging on a target or avoiding areas that have been searched is required to enable the 
search to be carried out in the most efficient way. 
 

6.5 Complex Environment 

As with the previous sections the data presented in this section is the average data taken from 
ten runs of each of the algorithms considered. The individual run data can be found in 
Appendix C3. 

6.5.1 Lawnmower 

The first algorithm to be run in Environment 3 is the Lawnmower. The Lawnmower only 
found one target, in a time of 28.81s, and the coverage achieved is 16.62%. The path taken 
by the Lawnmower can be seen in Figure 6.25. This shows that the robot started out well and 
continued to move as directed. The reason for the poor performance is that the robot 
becomes stuck in the top right hand corner of the environment. As discussed in Section 6.4.2, 
this is the major problem of the Lawnmower algorithm. Once stuck it cannot recover as it 
repeatedly selects the same points to travel to. 

 
Figure 6.25: Map from a Lawnmower algorithm run within Environment 3 
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6.5.2 Random 

The results from the Random algorithm, presented in Appendix C3.2, indicate that it is better 
than the Lawnmower. The Random algorithm located 37.14% targets on average. The target 
times are 91.77s, 238.19s, 326.47s and 436.22s for the four targets that have been located 
across the ten runs. The coverage achieved is 41.58%. From these results it can be concluded 
that Environment 3 is more difficult for the algorithm to run in. The highest number of 
targets located in one run is four and seven targets are present. It should be noted that there 
exists terminating conditions that stops the search after either 600s or 250 points have been 
evaluated. In the case of this algorithm the 250 evaluations are achieved. This shows that in a 
large environment the terminating conditions should be increased. The reason the 
terminating conditions is in place at these values is to allow a comparison to be made 
between all the environments, to enable the comparison between multi robot results and to 
allow the simulations to run in a reasonable time. From the two algorithms run it is clear that 
the Random algorithm is better. An example run of the Random algorithm in Environment 3 
is shown in Figure 6.26. 

 
Figure 6.26: Map from a Random algorithm run within Environment 3 

6.5.3 Random Restart HillClimbing 

The next algorithm to be run in Environment 3 is the RR HillClimbing algorithm. In the 
previous environments this algorithm has not performed well when compared to other 
algorithms. In this environment the algorithm has preformed better than the Lawnmower but 
worse than the Random algorithm. The average results gained by the RR HillClimbing 
algorithm are 35.71% for targets located and 32.82% for coverage, with the following time 
for locating the targets, 46.83s, 144.85s, 295.91s and 260.06s. As is the pattern with the 
HillClimbing based algorithms, the targets are located quicker than those in the Random 
algorithm. This can be explained by the RR HillClimbing algorithm’s ability to go straight 
for a target point once a higher temperature has been detected. Nevertheless the number of 
targets located is poor. When compared to the coverage achieved it can be seen that a pattern 
exists, as stated, between the coverage achieved and the number of targets located. The RR 
HillClimbing algorithm has shown that the Random algorithm results are not poor when 
considered in this environment, as the results from the RR HillClimbing algorithm are poor 
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in comparison. Figure 6.27 shows an example run of the RR HillClimbing algorithm and the 
individual run data can be found in Appendix C3.3. 

 
Figure 6.27: Map from a RR HillClimbing algorithm run within Environment 3 

6.5.4 Tabu Random 

The Tabu Random algorithm has so far been shown to be a good candidate for use within an 
USAR scenario. Its performance in Environment 3 has been the best from those algorithms 
run so far. The percentage of targets located is 42.86% and the coverage achieved is 45.10%, 
again showing a relationship between coverage and the number of targets located. The 
reason for the high coverage is, again, the ability of the Tabu Random algorithm to move to 
areas which have not been searched. This is, as discussed previously, a direct result of the 
Tabu List that is maintained. The target located times achieved are, 43.23s, 194.84s, 338.88s 
and 415.63s. When compared to the algorithms run so far, the first time is slow. However as 
the times are compared sequentially, the times achieved by the Tabu Random algorithm 
become faster but the RR HillClimbing algorithm still outperforms with regards to the target 
location times. Though the Tabu Random algorithm has not located all the targets nor 
achieved full coverage, it has once again shown to be a viable solution within the context of 
this work. An example from a Tabu Random run is shown in Figure 6.28 with additional run 
data presented in Appendix C3.4. 
 

6.5.5 Tabu Random Restart HillClimbing 

As with the RR HillClimbing algorithm, the Tabu RR HillClimbing algorithm has not 
performed well in the environments considered previously. In this environment the Tabu RR 
HillClimbing algorithm performed, overall, slightly better than the Lawnmower. The average 
target located percentage is 27.14%, the coverage 34.20% and the target location times are 
33.47s, 173.69s and 324.45s. The first target located time is the second best time thus far and 
again shows the power of a HillClimbing based algorithm with regards to locating targets. 
However the performance after the initial point begins to deteriorate. From the results 
presented so far the Tabu RR HillClimbing algorithm is a below average result. A run from 
the Tabu RR HillClimbing algorithm is shown in Figure 6.29. Appendix C3.5 contains 
further Tabu RR HillClimbing results. 
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Figure 6.28: Map from a Tabu Random algorithm run within Environment 3 

 
Figure 6.29: Map from a Tabu RR HillClimbing algorithm run within Environment 3 

 

6.5.6 Random Restart Simulated Annealing 

The RR Simulated Annealing algorithm is the next algorithm to be run in Environment 3. 
Further data on the individual runs can be found in Appendix C3.6. The average results 
gained from the ten runs are as follows: percentage targets located 45.71%, coverage 
achieved 44.62%, with target location times of 33.82s, 234.49s, 334.30s and 375.75s. 
Compared with the results presented, the percentage targets located lie in the middle of the 
results. Though this algorithm did detect four targets in one run, it did so solely in this one 
run. When compared to the other results though, this value is one of the highest gained so 
far. The coverage achieved is also one of the highest achieved. This has continued on from 
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the first two environments where the RR Simulated Annealing algorithm performed well 
with regards to coverage. As has been discussed, the coverage achieved can be related to the 
random nature of this algorithm. The target located times achieved are interesting in that the 
first target located by this algorithm is done so in a relatively quick time, as are all the first 
targets in the other algorithms. However there is then a large gap between the location of the 
first target and the second target. Initially, this has been put down to the operation of the 
algorithms. After further consideration it can be seen that a pattern has now formed where 
there exists a gap between the first target time and the second target time. This is evident in 
all the algorithms and can be related to the proximity of a target to the insertion point and 
then the dominance this target has over the algorithms. An example run form the RR 
Simulated Annealing is shown in Figure 6.30. 

 
Figure 6.30: Map from a RR Simulated Annealing algorithm run within Environment 3 

6.5.7 Genetic Algorithm 1 

GA1 has performed above average in Environments 1 and 2 and is expected to do well in 
this environment based on the performances so far. The average results from the GA1 runs 
are: 42.86% for targets located, 36.88% for coverage achieved and target location times of 
70.32s, 177.18s, 334.30s and 362.82s. Compared to the runs done so far, GA1 has performed 
at an average level. Due to the extended distances involved in travelling between points in 
this larger environment, an impact on GA1 has occurred, namely the increased time to locate 
targets. Since greater distances are being travelled between points it is thought that this 
would increase coverage. However it does not seem to have had this effect. Instead the 
coverage achieved is very poor. The reason for the poor coverage is a result of the lack of 
mutation and the dominance of a target once it has been located. GA1 travels to each point 
within the population until a higher temperature point is detected or a population is 
evaluated. Since there is a low mutation rate the population tends towards a target point. 
Though this is a desired effect it limits the points that can be travelled to, hence reducing the 
coverage. The dominance of a target point is shown to affect GA1. Figure 6.31 shows an 
example run of GA1 and individual run data can be found in Appendix C3.7. 
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Figure 6.31: Map from a GA1 within run Environment 3 

6.5.8 Genetic Algorithm 2 

As with GA1, GA2 has performed well in the previous environments. In the third 
environment the performance has been above average with the following results: percentage 
of targets located 42.86%, percentage coverage 41.13%, with target location times of 38.40s, 
158.63s, 250.29s and 374.02s. This shows that the performance of GA2 remains consistent 
even in larger environments. The coverage achieved is less than some of the other 
algorithms, though this is to be expected with GA runs as supported by previous data. 
However the number of targets located is high compared to the previous Environment 3 data, 
again an expected result for GA2. An interesting point about the GA2 runs is the time taken 
to locate the targets. The first target time is above average when compared to the other 
algorithms. Nevertheless, the target times that follow are all very low and are well above 
average. GA2 has achieved average results for the target’s times in previous environments so 
this is an unusual result. As mentioned in the previous section, to evaluate each individual in 
the population within this environment means that the robot has to cover a greater distance. 
Though this increases the coverage of the environment it also impacts on the target location 
times, as more time is spent travelling to the individuals in the population. The times 
indicated by the results show that GA2 has, in some way, compensated for this extra time 
and has achieved very good times. The method used to compensate will be a result of the 
mutation rate used. As discussed, the mutation rate for GA2 is 10% which equates to five 
genes in every population. When the population is evaluated and reaches the mutation stage 
the mutation can have a dramatic effect on the individual, by changing one of the most 
significant genes in the individual or a small effect by changing one of the least significant 
genes. There is an equal chance that either will occur. In changing one of the least significant 
genes the individual is fined tuned, the point is slightly altered about the parent point. The 
effect this has on the algorithm is what is being seen in these results. Since the algorithm is 
operating in a larger environment, interaction with obstacles occurs less than it did in 
Environment 2. To reiterate, during a GA run, when an obstacle is detected, the new point 
generated replaces the previous point in the population. Since this happens less in 
Environment 3, the algorithm is getting a chance to evaluate all the points in a population 
and since some of these points will be fine tuned good points, the chances of finding a target 
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quickly increases. This is what occurs in the data shown here. A method of checking if this 
theory is sound would be if the target location time results from GA4 (which also has a 10% 
mutation rate) are amongst the lowest of the algorithms. An example run from GA2 is shown 
in Figure 6.32. Further data on the GA2 runs in Environment 3 can be found in Appendix 
C3.8. 

 
Figure 6.32: Map from a GA2 within run Environment 3 

6.5.9 Genetic Algorithm 3 

The results from GA3 are as follows: the percentage of targets located is 50%, the coverage 
achieved is 40.90% and the target times achieved are 43.18s, 235.69s, 342.09s, 390.21s and 
428.62s. Further data is available in Appendix C3.9. GA3 is the only algorithm which 
located a fifth target. As shown in the previous environments, the strength of GA3 has been 
the high percentage of targets located even when coverage is small. This is, as discussed, a 
result of the elitist selection method with a small mutation rate. The target location times are 
high. This is a result of the robot having to travel greater distances in the early stages of each 
random restart to evaluate individuals. After a random restart the population contains 
individuals which are randomly selected.  This means that, in theory, each individual is 
located away from any of the others, requiring the robot to travel between them. Though the 
target location times are high, GA3 overall has given an average performance when 
compared to the other algorithms. An example GA3 run is shown in Figure 6.33. 
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Figure 6.33: Map from a GA3 run within Environment 3 

6.5.10 Genetic Algorithm 4 

The last algorithm to be discussed is GA4 and the relevant data is in Appendix C3.10. The 
average results from this are as follows: the percentage of targets located is 35.71%, the 
coverage achieved 40.50% and the target location times are 41.64s, 158.84s, 265.74s and 
526.75s. The number of targets located is below average when compared to the other 
algorithms and the value for the coverage is below average. When compared to the previous 
results GA4 has given a typical performance. The interesting results are the target location 
times. The first time is an average time and, when looking at the previous results, is 
expected. The next two target location times are interesting in that they exhibit the same 
behaviour as described in the overview of the GA2 results. Both the second and third results 
are better than expected, providing further evidence to the conclusion drawn in the 
discussion of GA2. This would suggest that when given a large open environment, a GA 
with a high mutation rate is capable of locating targets quickly. Figure 6.34 shows a typical 
GA4 run. 
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Figure 6.34: Map from a GA4 run within Environment 3 

 

6.5.11 Discussion 

With all the algorithms run in Environment 3 an overall comparison can be made of the 
algorithms and the performance in Environment 3. The aim of Environment 3 is to further 
test the algorithm’s ability to search environment with the included challenges of the 
environment being larger than the first two and more targets being present. The average 
results achieved from each algorithm is presented in Table 6.3.  
 

Table 6.3: Experiment 3 – Single Robot Results 
 

Time for target found, seconds 
Algorithm 

1 2 3 4 5 6 7 

% 
Target 
Found 

% 
Coverage 

Lawnmower 28.81 N/A N/A N/A N/A N/A N/A 14.29 16.62 
Random 91.77 238.19 326.47 436.22 N/A N/A N/A 37.14 41.58 
RRHC 46.83 144.85 292.91 260.06 N/A N/A N/A 35.71 32.82 

TR 43.23 194.84 338.88 415.63 N/A N/A N/A 42.86 45.10 
TRRHC 33.47 173.69 324.45 N/A N/A N/A N/A 27.14 34.20 
RRSA 33.83 234.49 334.30 375.76 N/A N/A N/A 45.71 44.62 
GA1 70.32 177.18 334.33 362.82 N/A N/A N/A 42.86 36.88 
GA2 38.40 158.63 250.29 374.02 N/A N/A N/A 42.86 41.13 
GA3 43.18 235.69 342.09 390.21 428.62 N/A N/A 50.00 40.90 
GA4 41.64 158.84 265.74 526.75 N/A N/A N/A 35.71 40.50 

 
The first point to note from these results is that no one run, from any algorithms, located all 
the targets. Since most of the algorithms stop after the total 250 evaluations have been made, 
the apparent lack of performance is a result of the terminating condition being met. However 
the data does provide a lot of information. Even in the limited runs GA3 performed well with 
regards to target location, with one run locating five targets. The size and openness of the 
environment and GA3’s random restart has enabled the algorithm to look further a field and 
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this has increased the chances of locating targets. Nevertheless the coverage is not as high as 
that achieved by other algorithms. This is the result of the dominance of a point which occurs 
when a target is almost located.  
 
The second point to note from the data presented is the difference between the time in the 
location of a first target and the location of a second target. In all the algorithms the 
difference is large. This indicates that when a dominant target exists, such as the target which 
is located beside the insertion point, the robot has a tendency to repeatedly migrate towards 
it. This dominant target has an effect on the algorithms running but the algorithms are still 
able to search the rest of the environment. 
 
Another point to note is the relationship between the coverage and the number of targets 
located. As the coverage increases, the number of targets located increases. It has been 
discussed that in order to achieve high coverage, an algorithm that contains a high random 
element within it should be used. Again the results show that there is a relationship between 
the random element in an algorithm, the coverage achieved by it and the number of targets 
located. Though the GAs do slightly work against this trend, they still fundamentally follow 
this relationship. The results also show, though not to as great an extent as found in the 
previous environments, that the algorithms which maintain a dominant point locate a first 
target quicker than other algorithms. However this seems to be the case only for the location 
of a first point, as the other target location times seem to vary, with the exception of the GA2 
and GA4 times that both achieve quick times as discussed.  
 
Comparing the algorithms within Environment 3, the poorest performing is the Lawnmower. 
The reason for this is the inability of the algorithm to alter its path. The best performing 
algorithm, on average, is GA2. GA2 did not achieve the highest number of targets located or 
the highest coverage but the target location times it achieved have been consistently the 
highest, with the exception of the above average first target location time. The next algorithm 
to perform best is the RR Simulated Annealing, followed by GA3, GA4 and Tabu Random. 
GA3 is the average result of the group. Those algorithms that performed below average were 
the Random, GA1, Tabu RR HillClimbing and RR HillClimbing. From these results it can be 
seen that those algorithms that contain both a high random element and some structure to the 
selection of points perform well.   
 

6.6 Summary 

The objective of this chapter has been to establish if the algorithms presented in Chapter 5 
can be used in the manner described in this work and to indicate, with regards to the results 
presented, which algorithm would be best suited to this use within a single robot case. It has 
been established that the algorithms discussed can be implemented in the task described, 
with the exception of the HillClimbing algorithm. This conclusion is backed up by the 
evidence provided throughout this chapter. With regards to the best performing algorithms in 
a single robot case, those algorithms that contain both a high random element and some 
structure to the selection of points perform well. The algorithms that show this are the Tabu 

Random and RR Simulated Annealing algorithms and GA2, GA3 and GA4. Out of these five 
the best performing algorithm is hard to establish as there is not much of a performance 
difference between them. However the Tabu Random algorithm is simple to implement when 
compared to the other algorithms. Since it has similar results and is easier to implement, this 
algorithm would be the best choice for use in a single robot case. 
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The chapter started out by discussing the environments that each algorithm was to be tested 
in. The first environment that the algorithms have been tested in is discussed and what the 
aim of using this environment is, namely to test the algorithms to see if they can be used in 
this application. The second environment was designed with obstacles to enable the study of 
the impact obstacles have on the performance of the algorithms. Throughout all of the 
Environment 2 runs, and subsequently Environment 3, the method of obstacle avoidance 
implemented has been shown to work. The third environment has been designed to test if the 
algorithms could operate in larger environments. 
 
The results from the first environment were then presented. The majority of the algorithms 
showed that they can be used for this application. The exception is the HillClimbing 
algorithm which failed to make any impact. From the results presented it has been found that 
the algorithms which contained a high random element achieved better coverage, but the 
algorithms that allowed dominant points are able to locate the targets in a much quicker time.  
 
The chapter then presents the results from Environment 2. With the obstacles introduced the 
performance of the algorithms has been altered. However it is again seen that the algorithms 
which contained a high random element are able to achieve both a high coverage and locate a 
high number of targets.  
 
The final environment was then used to run the algorithms in. It has been shown that the 
algorithms do work in Environment 3 and that those algorithms which contained a high 
random element are able to achieve both a high coverage and locate a high number of 
targets. 
 
From the results presented in this chapter it can be seen that all the algorithms discussed in 
Chapter 5, with the exception of the basic HillClimbing algorithm, are suitable for the 
searching environments via a single robot. The results also show that algorithms which 
contain a high random element and have some control over how the next point is to be 
selected, namely Tabu Random and RR Simulated Annealing, provide good results. The 
results also show that Genetic Algorithms 2, 3 and 4, also provide good results. Though the 
other algorithms each have strengths the algorithms named consistently preformed well over 
all the environments and as such can be considered good candidates for the searching of 
environments when using a single robot. These algorithms may provide better results if 
adapted for use on a multi robot platform. The Tabu Random algorithm stood out throughout 
all the environments and as such would be a suitable algorithm for implementation. 
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Chapter 7 
 

Simulation Results: Multi Robot 
 

7.1 Introduction 

The aim of the previous chapter was to establish if the algorithms presented in Chapter 5 can 
be used in the application described and which algorithms perform the best within a single 
robot case. It was established that the algorithms are suitable for use to achieve the aim of 
this work. However this was for a single robot case. The aim of this chapter is to establish if 
the best performing algorithms from the previous chapter can be used to control multiple 
robots and to consider if an improvement in the performance is achieved when employing 
such a multi robot approach. 
 
To achieve this aim the simulation used in this study has to be altered to be able to handle 
multiple robots and the interactions between them. After this stage the algorithms chosen to 
be run in the multi robot case will need to be selected and how the algorithms are to be 
implemented needs to be decided. The algorithms chosen are based on the results and 
conclusions from Chapter 6.  
 
To achieve the aim of this chapter the results will be studied and discussed. The first stage is 
to present the results, from each algorithm chosen, in the same manner as carried out in 
Chapter 6. From the results presented a discussion about how each algorithm has performed 
and how each algorithm performed with respect to the other algorithms run is presented. 
Since the ultimate aim of this chapter is to establish if the results presented here indicate a 
better performance in the task than those presented in Chapter 6, the results gained from the 
experiments carried out with regards to this chapter need to be compared to the results from 
the previous chapter. This comparison happens after the completion of the last algorithms in 
each environment. 
 
This chapter is structured as follows. Section 7.2 discusses the implementation of the multi 
robot simulation and which algorithms are to be used in this chapter. The results from the 
first environment are presented and discussed in Section 7.3, with a comparison made to the 
results in Chapter 6. Section 7.4 presents and discusses the results from runs carried out in 
Environment 2, again with comparisons made to the Environment 2 results from Chapter 6. 
The next section, Section 7.5, is concerned with the results gained from Environment 3. The 
penultimate section, Section 7.6, provides a review of all the results from both Chapters 6 
and 7 and Section 7.7 presents a summary of this chapter.  
 

7.2 Implementation 

A simulation which can handle multiple robots needs to be implemented. Also the search 
algorithms to be run in the multi robot case need to be selected and suitably adapted to allow 
operation in the multi robot case. The environments and how the robots interact with one 
another also require consideration. 
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7.2.1 Simulation 

The simulation implemented in this chapter is exactly the same as that used in the previous 
chapter, with the exception that the simulation runs the model five times as opposed to one. 
The operation of the simulation is simple, once the variables have been calculated for one 
model; the model is run again until the model has been run five times, with each run 
representing a different robot. 

 
At this stage the reason for five runs of the model should be explained. Five runs of the 
model represent five individually controllable robots. Five robots have been deemed an 
acceptable number of robots to be run within the three environments used. This number is 
sufficient to illustrate the benefits for much larger numbers of robots.  
 
In this particular case each of the five robots is inserted into the environment at the same 
point with a gap of twenty seconds between each insertion. This better replicates the real 
world situation were only a small number of spaces exist for the robots to enter. The time 
gap of only twenty seconds is used to aid in the time taken to run the algorithms. However 
this could be achieved in a real world situation where either the robots are following one 
another and line up to start from the same point or the method of insertion used allowed the 
robots to start twenty seconds after each other. Considering the distances that the robots 
could achieve in twenty seconds, this would allow plenty of time to allow the robots to 
escape one another.  

7.2.2 Algorithms 

The algorithms chosen to be run in the multi robot case are based on the results presented in 
Chapter 6. The best performing algorithms over all the environments have been chosen and 
are discussed next with a description of how the algorithm is to be implemented in a multi 
robot setup. The reason for the selection of only some of the algorithms considered in the 
previous chapter is that since deficiencies in some of the algorithms have been spotted, only 
those algorithms that performed well in the single case should be considered in the multi 
robot case. 
 
7.2.2.1 Tabu Random 

The Tabu Random algorithm performed well in Chapter 6 with a good balance between 
target location times, targets located and coverage achieved.  
 
The main aspect of the Tabu Random algorithm is the Tabu List. In the multi robot case 
there exists a global Tabu List in which, once each robot has evaluated a point, the points 
evaluated are added to it. All aspects of the algorithm remain the same as Chapter 6. Each 
robot updates the global Tabu List and the selection of points is made against the Tabu List. 
This is a centralised control method as the global Tabu List needs to be maintained at a 
single station that each of the robots can access. 
  

7.2.2.2 Random Restart Simulated Annealing 

The next algorithm that is to be tested in the multi robot case is the RR Simulated Annealing. 
Since no natural way of assigning multiple robots exist with the implementation of the RR 
Simulated Annealing algorithm, the algorithm is implemented in a simple way. Each robot 
runs a single case of the algorithm. The overall result achieved is a combination of the 
individual results achieved. This is a decentralised approach as the performance of each 
robot is not dependent on the performance of another, though the data from each robot is still 
required to be transmitted to a base station. 
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7.2.2.3 Genetic Algorithms 

GA2, GA3 and GA4 were also amongst the best performers from the single robot runs. Over 
all the environments each achieved above average results and should be considered for the 
multi robot case. 
 
Genetic Algorithms naturally provide a means of implementation in a multi robot case. Since 
each GA has a population size of five, each robot can be assigned one individual in the 
population for each generation. Once each robot evaluates the assigned individual, a 
centralised station can evaluate the population and generate a new population allowing new 
individuals to be assigned. In a sense five different points are being searched at any one time 
and as the GA converges on a point, there exists five chances of the target being found 
accurately which, in theory, decreases the time for target location. It is acknowledged that 
the robots have to wait for each other some of the time and the impact of this requires 
evaluation. 

7.2.3 Environments  

Since the aim of this chapter is to establish if there is an advantage in using multiple robots 
over a single robot when using the same algorithms, the environments used will be the same 
as those describe in Chapter 6. 

7.2.4 Additional Points 

There are some small additional points that require mention: 
  

• The coverage achieved by each algorithm is a combination of the individual coverage 
of each robot. 

 
• Each robot treats the other robots as obstacles. The other robots are detected, and 

handled, using the method described in Chapter 4. This method is used in 
Environment 1, however the obstacle avoidance for the walls is not considered. 

 
• All other functions of the robots are as described in Chapter 6. 

 

7.3 Simple Environment 

As in Chapter 6 the first set of results presented are those associated with runs carried out in 
the simple environment, Figure 6.1. The aim of this environment is to show that the multiple 
robot search of the environment works satisfactorily. The results from the individual runs 
carried out by each algorithm, in this environment, can be found in Appendix D1. As 
mentioned in the previous section, no changes are made to the environment the algorithms 
are run in, nor have any changes been made to the robot model, controller or the fundamental 
algorithms, other than changes required for the multi robot implementation. The one 
additional feature added in for this first environment is the obstacle avoidance, which is used 
solely for detecting other robots. The first environment still uses constraints on the selection 
of the points to keep the robots away from the walls. 
 
This section presents the average results with a discussion for each algorithm. The results 
from all the runs made in the environment are then compared and discussed. Since the aim of 
this chapter is to investigate the effect of a search of an area by multiple robots over a single 
robot the results from both require comparison. The comparison between the single robot 
case and the multi robot case for the first environment is made at the end of this section. 
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7.3.1 Tabu Random 

As discussed in Section 7.2.2 the first algorithm to be implemented in the multi robot case is 
the Tabu Random Algorithm. This algorithm performed well in the single robot case. An 
example run from the Tabu Random algorithm is shown in Figure 7.1. The individual run 
results are presented in Appendix D1.1. 

 
Figure 7.1: Map from a Tabu Random algorithm run within Environment 1 

 
It can be seen in Figure 7.1 that the Tabu Random algorithm can be successful implemented 
in the multi robot case. The average data from the runs shows that both targets are 
successfully located in all runs, with location times of 43.33s and 71.26s. The coverage 
achieved is 99.34%. Both targets are located in quick times and the search achieved full 
coverage. Since both targets are located and complete coverage is achieved, this can be said 
to be a near perfect run. 

7.3.2 Random Restart Simulated Annealing 

The next algorithm to be run is the RR Simulated Annealing algorithm. As with the Tabu 
Random algorithm this algorithm has been shown to work in the multiple robot case. The 
average results achieved are similar to those of the Tabu Random algorithm, with both 
targets detected in every run and near complete coverage, 99.13%. The target location times 
are 31.73s and 94.58s. The first time is quicker than the time achieved by the Tabu Random 
algorithm. This can be contributed to the RR Simulated Annealing algorithm’s dominant 
point method of searching the environment. As this algorithm searches the environment one 
point is constantly maintained as the best and, as discussed in Chapter 6, this allows the 
algorithm to locate a target point quickly, as the algorithm is designed to converge on the 
point. The second target location time is higher than that achieved by the Tabu Random 
algorithm. This can be explained by the decreasing radius in which the RR Simulated 
Annealing algorithm can choose points in.. With each iteration of the RR Simulated 
Annealing algorithm the radius in which the next point is selected is reduced. This has the 
effect of limiting the search range of the algorithm. As the algorithm converges on one target 
point this point becomes dominant and the algorithm can only escape this point once a 
random restart occurs. A random restart can only occur within this algorithm once the 
algorithm’s Annealing Schedule reaches the minimum value. If each robot in the run 
converges to the same target then any other target can only be detected once each robot has 
converged on a point. Since this takes time to complete, the other target will take time to 
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locate. Figure 7.2 shows an example run from the RR Simulated Annealing algorithm. 
Appendix D1.2 contains the individual run data for the Simulated Annealing algorithm. 

 
Figure 7.2: Map from RR Simulated Annealing algorithm run within Environment 1 

7.3.3 Genetic Algorithm 2 

The first of the Genetic Algorithms to be run is GA2. As with the first two algorithms 
presented, GA2 has shown to work in the multiple robot case. The average results gained 
from GA2 are as follows: both targets were located in every run with an average of 97.92% 
coverage. The target location times are 41.27s and 155.31s. Although GA2 did achieve near 
full coverage, the coverage achieved is lower than that of both the Tabu Random and RR 
Simulated Annealing algorithms. The reason for this slightly reduced coverage is that the 
algorithm is attracted to either one of the targets and remains in the vicinity of the targets or 
is at a point travelling between the targets. While doing this the algorithm is leaving a small 
area at the bottom of the environment unsearched. This has occurred in each run and shows 
the algorithm’s reliance on having a target within the environment. The first target time is 
not as quick as that achieved by the RR Simulated Annealing. However it is slightly quicker 
than that achieved by the Tabu Random algorithm. This shows that GA2 can quickly 
converge on a point as previously discussed. On the other hand, the second target location 
time is the poorest time yet. One reason for this is the interaction between the robots within 
the algorithm. As the robots converge on a target point, the interaction between them 
increases. Since the robots treat one another as obstacles, the robots stop and reassign the 
points they are to evaluate. This continues to happen until no obstacles are present within the 
range of the robot’s sensor. Since the robots are crowded into one area it takes time for each 
robot to escape the sensor range of the other robots. Hence the search slows while the robots 
try to travel away from each other. This slows the search as technically no robot is searching 
the environment and when one robot does move away from the other robots, once it reaches 
the point it is to evaluate, it remains there until the other robots have evaluated the points 
assigned to them. This process takes time and as a result the location time, once one target 
has been located, will be high. An example run from GA2 is shown in Figure 7.3 with the 
individual run data presented in Appendix D1.3. 
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Figure 7.3: Map from a GA2 run in Environment 1 

7.3.4 Genetic Algorithm 3 

The next algorithm to be discussed is GA3. The average results achieved by GA3 are target 
location times of 52.30s and 207.57s. The percentage of targets located is 90% and the 
coverage achieved is 96.67%. These results are interesting as not only are the target location 
times high for GA3 but only 90% of the targets were located. This indicates that a problem 
occurred in one of the runs, as the expected result in Environment 1 would be that both 
targets are located in all runs. The map from GA3 run ten is shown in Figure 7.4. This figure 
shows that neither target was located. Though the top left hand target looks as if it has been 
located, this is an occurrence of the problem discussed in Chapter 6, that of a target 
seemingly being detected but due to the threshold and rounding of the points used in the 
temperature matrix targets are missed. Although the robots miss this first target, it has been 
shown that with repeated visits to a target point, the target will become marked. However in 
this run the algorithm does not make repeated visits to the point. It can be seen that the 
robots remain at set points after a time and no further travelling is done. The reason for this 
is that full population is not being evaluated. In Section 7.2.2.3 the method used by the GAs 
in the multi robot case has been discussed. Once all individuals in a population have been 
evaluated the full population is evaluated and the next generation is created. In Figure 7.4 
only three robots can be seen traversing the environment.  
 
This means that two robots are caught at the insertion point. Since the two robots are stuck 
they are not able to evaluate the assigned individuals and as a result the full population 
cannot be evaluated. Since the full population cannot be evaluated the other robots remain at 
the current assigned points. Reviewing the data from the run indicates that when the fourth 
robot is inserted into the search it remains at the insertion point. The reason for this is that 
the fourth robot is not assigned a point, hence remains at the insertion point. This occurs due 
to the way the algorithm works. When a robot has evaluated a selected point the algorithm 
assigns the next available point to it. If there are no available points then the robot remains at 
the current point. When the fourth robot enters the search no points are available for it to 
evaluate so it remains at its current point waiting for the next generation. By the time the 
next generation begins the fifth robot has been inserted into the search. This places the fourth 
and fifth robots in exactly the same location. Since no communications exist between the 
robots, neither is able to tell the other that they are both there. The obstacle avoidance from 
both robots detect each other resulting in the robots not being able to escape from the 
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insertion point. This is an interesting issue and one that requires further work. However this 
is outside the scope of this work as this will either involve robots with the ability to 
communicate or involve additions being made to the algorithms. 

 
Figure 7.4: Run ten from GA3 

 
Looking at the average results gained, GA3 is the worst algorithm to be run so far. Both 
target location times are high and the coverage is low, when compared to the other results 
achieved. The reason for the target times is the slow convergence on the target points caused 
by the robots avoiding one another and the robots having to wait for one another to evaluate 
individuals in the population. The coverage may be the lowest but it still is nearly full 
coverage and considering that run ten stopped moving after a time this coverage can still be 
reported as being good, as all the other coverage’s achieved are over 98%. An example run 
from GA3 is shown in Figure 7.5. The results show that though GA3 did suffer from a 
problem regarding the insertion of the robots, it only affected one run and, overall, GA3 has 
been shown to work. Individual run data can be found in Appendix D1.4. 

 
Figure 7.5: Map from a GA3 run in Environment 1 

7.3.5 Genetic Algorithm 4 

The last algorithm to be run in the first environment is GA4. The average results from the 
runs give target location times of 59.64s and 143.50s. The percentage of targets located was 
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75% and the coverage achieved is 95.81%. As with GA3 the first point to note from this data 
is the value stated for the percentage of targets located. The individual results, presented in 
Appendix D1.5, show that two runs suffered from a similar problem to that of GA3 run ten 
and that a third run only detected one target. GA4 run three is affected by the same problem 
as that of GA3 run ten, where robots have become stuck at the insertion point. However GA4 
run two is affected by a similar problem but not the same problem. All the robots in run two 
escaped the insertion point, however after converging on one of the target points two of the 
robots collided and could not escape from each other. The reason for the collision is that both 
robots were heading along paths which were angled from each other in such a way that the 
paths intersected at a point, which meant that neither robot’s sensor cone could detect the 
other robot. This has resulted in a collision. This would be a rare occurrence as both robots 
need to be travelling paths at set speeds and with a set angle between them to allow this to 
happen. One method of avoiding this would be to improve the robotic platform by adding 
additional sensors. If the robots had side looking sensors they would have detected one 
another and the collision would have been avoided. The ninth run simply did not detect a 
second target. The plot would suggest that the robots were never assigned points that lead 
them to the vicinity of the second target. Though the average coverage is the lowest this has 
been affected by the two poor GA4 runs. The other coverage values remain high. The first 
target time is the slowest as with the other GAs. This is a result of both the algorithm itself, 
due to the high mutation rate, the robots interaction, which causes points to be lost, and the 
waiting time involved between the populations. However GA4 did work within the multi 
robot framework and Figure 7.6 shows a typical run from GA4. 

 
Figure 7.6: Map from a GA4 run in Environment 1 

7.3.6 Discussion 

The first set of experiments have been presented and discussed on an individual basis. The 
average results are presented in Table 7.1. The aim of this chapter is to establish if using 
multiple robots gives an improvement in the search over using a single robot. A discussion of 
the multi robot searches has taken place, however to achieve the aim a comparison of the 
results presented in this chapter and those for Environment 1 in Chapter 6 is required. To do 
this the average results achieved in Environment 1 for the single robot case for the five 
algorithms are presented in Table 7.2. 
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Table 7.1: Experiment 1 – Multi Robot Results 
 

Algorithm 
Time for target 

1, seconds 
Time for target 

2, seconds 
% Target 

Found 
% Coverage 

TR 43.33 71.26 100.00 99.34 
RRSA 31.73 94.58 100.00 99.13 
GA2 41.27 155.31 100.00 97.92 
GA3 52.30 207.57 90.00 96.67 
GA4 59.64 143.50 75.00 95.81 

 
Table 7.2: Experiment 1 – Single Robot Results 

 

Algorithm 
Time for target 

1, seconds 
Time for target 

2, seconds 
% Target 

Found 
% Coverage 

TR 29.73 159.04 100 99.32 
RRSA 35.43 116.20 100 99.23 
GA2 27.23 98.69 100 99.20 
GA3 24.72 48.09 100 88.15 
GA4 30.95 58.00 100 92.68 

 
The most obvious point to take from a comparison of the data in the tables is the difference 
in the percentage of targets located. In the single robot case all targets have been found. 
These results occurred due to the simplicity and small size of the environment. The 
expectation would be that this result is repeated in the multi robot case. This has not occurred 
as both GA3 and GA4 did not locate all the targets. The reason why this has happened is 
because on certain runs the algorithms stopped running, due to robots becoming stuck 
because of either a collision or a problem at the insertion point. Both of these incidents and 
the perfect record of locating the targets in the single robot case indicate that the size of the 
environment may play a part in the number of robots that can be run in it, meaning that in 
some situations single robots may achieve better results than multiple robots. This 
conclusion is drawn solely on the percentage targets achieved within environment one.  
 
With regards to coverage, all the algorithms achieved high values in both cases with the only 
real notable change being the increase of coverage in GA3 in the multi robot case. The 
coverage achieved does vary but by no large degree. 
 
The target location times are the final comparisons to be made. With regards to the first 
target location time, with the exception of the RR Simulated Annealing, the single robot case 
performed better and by a significant difference in some cases. This is an unexpected result 
as the algorithms are fundamentally the same. One reason for this is the existence of other 
robots within the environment. Once the robots start converging on a target point there exists 
a higher chance of the robots having to avoid one another. This results in the robots being 
pushed away from the target. This would suggest that in some cases the addition of further 
robots to a search may be a hindrance. The exception to this is the RR Simulated Annealing 
algorithms which posted a slightly better time in the multi robot case over the single robot 
case. The second target location times show the advantage of having multiple robots with 
regards to the Tabu Random and RR Simulated Annealing algorithms. Both have gained far 
better times in the multi robot case than the single robot case. The reason for this is that 
though some robots head towards one target, other robots search else where, leading to a 
greater chance of other targets being located in quicker times. This shows that if the robots 
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can be controlled in such a way to enable them to search areas away from one another that an 
advantage may be gained. With regards to the times achieved by each of the GAs for 
locating a second target the multi robot case is worse. The times are worse as a result of the 
time taken to evaluate each generation. 
 
The aim of Environment 1 in the multi robot case is to test if the algorithms work and to 
provide basic comparison data. The algorithms have been shown to work in the multi robot 
case with varying results. The comparison has given mixed results on the advantages gained 
by the using multiple robots. In certain algorithms the use of multiple robots has given quick 
second target location times but at the expense of increasing the time taken to locate a first 
target. The GAs in general have not shown any advantage in the multi robot case. However it 
has been acknowledged that the size of Environment 1 may be having an adverse affect on 
the higher number of robots. Environments 2 and 3 will provide further evidence to whether 
the use of multiple robots offers any improvements over the use of single robots.   
 

7.4 Simple Environment with Obstacles 

The next sets of results to be discussed are concerned with the second environment, as shown 
in Figure 6.2. The results presented are average results calculated from the data presented in 
Appendix D2. The obstacle avoidance is implemented as previously described and acts in the 
same way for both the detection of robots and obstacles. With the exception of the Fan Out, 
which is discussed next, no other changes are made to the algorithms, the environment or 
any of the supporting functions. 

7.4.1 Fan Out 

During the multi robot GA3 and GA4 runs in Environment 1 it was found that on occasion a 
problem occurred with robots escaping from the insertion point. The robots could not move 
from the insertion point as they had no point to travel to, as the algorithm could not assign a 
point, and became stuck when the next robot entered the environment. Within Environment 2 
this problem occurred regularly and for this reason a simple solution was implemented to 
avoid it. When each robot enters the environment they are assigned a point to travel to that 
allows them to move away from the insertion point. The fan out points, shown in Figure 7.7, 
are not included in the search and are simply points that allow the robots to move away from 
the insertion point. The results presented in this section do contain elements of the problem 
with the insertion point but the occurrences are fewer than without the fan out. 

 
Figure 7.7: Fan Out Points 
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7.4.2 Tabu Random 

The Tabu Random algorithm has performed well so far in both the single robot cases and the 
first of the multiple robot cases. The Tabu Random algorithm successfully ran using multiple 
robots within the second environment. The following average results have been achieved: 
81.94s for the first target location time, 237.95s for the second target location time, all the 
targets are located across all the runs and 91.90% coverage has been achieved. From these 
results it can be seen that the Tabu Random algorithm has performed well once again. The 
first point to note from this data is the 100% target location. This is the first time an 
algorithm has located all of the targets within Environment 2. This is a result of the 
combination between the multiple robots and the Tabu element of the algorithm. When a 
point has been evaluated the Tabu list is updated and all of the robots avoid that point. This 
means that the robots have an increased chance of searching areas that have not been 
searched. It has been noted that one problem that occurred in the searches of Environment 2 
with a single robot is that on occasion the robot would get caught in a cycle moving between 
a target and avoiding obstacles. This cannot be avoided for each individual robot but the 
Tabu element of this algorithm allows other robots not to repeat the same pattern at the same 
point and allowing them to continue the search of the environment. Consequently, this 
increases the chance of the algorithm locating further targets. Figure 7.8 shows an example 
run from the Tabu Random algorithm. The individual run data is presented in Appendix 
D2.1. 

 
Figure 7.8: Map from a Tabu Random algorithm run in Environment 2 

7.4.3 Random Restart Simulated Annealing 

Figure 7.9 shows a typical run from the RR Simulated Annealing algorithm. This shows that 
the multiple robot version of this algorithm has worked well in Environment 2. The average 
results from the runs are target location times of 103.59s and 211.19s with 85% of the targets 
located and 87.71% coverage. Further data on the runs is provided in Appendix D2.3.  
 
Overall the RR Simulated Annealing performed well. However, some runs did not locate all 
the targets. In one run, which can be seen in Figure 7.10, the reason for this is that only one 
robot is searching the environment. 
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Figure 7.9: Map from a RR Simulated Annealing algorithm run in Environment 2 

 
Although the fan out is implemented, it can be clearly seen that the second robot (red line) 
travels back to the insertion point. Unfortunately, in doing so the robot has stopped the next 
robot travelling to a fan out position as it has been inserted on top of the second robot, 
resulting in neither of the robots being able to move. A method of stopping the robots 
returning to the insertion point, such as a permanent Tabu zone about the insertion point, 
could stop this event from occurring. The other runs which did not locate all the targets did 
not so, simply because the robots could not escape the target that has been located in each 
run.  

 
Figure 7.10: Run 9 from the RR Simulated Annealing Algorithm 

 
Compared to the Tabu Random algorithm the RR Simulated Annealing algorithm has 
achieved a slower time for locating a first target. This can be attributed to the method used 
by the RR Simulated Annealing algorithm to converge on a target point, as discussed 
previously. Since the Tabu Random algorithm jumps about the search space excluding 
points, for a set time, which can be travelled to, it has the ability to find an initial dominant 
target quickly, whereas the RR Simulated Annealing algorithm needs to slowly move to a 
target as a result of the method used to converge on a point. The time taken for a second 
target to be located is faster than that achieved by the Tabu Random algorithm. This is again 
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due to the method used by the RR Simulated Annealing algorithm to converge on a point. 
The RR Simulated Annealing algorithm has the ability to converge on a point, whereas the 
Tabu Random algorithm only finds a target if it happens to be in close proximity to a target. 
Since the RR Simulated Annealing algorithm can converge on a point it can, as supported by 
previous data, move to a target in reasonably quick time. A comparison between the 
percentages of targets located shows that the Tabu Random algorithm located all the targets, 
whereas the RR Simulated Annealing algorithm only found 85% of the targets. The reason 
for this difference is because the Tabu Random is constantly being pushed to search areas 
that have not been searched and, in general, has more freedom in searching an environment 
as it does not maintain a best point. This contradicts the target location time theory, but since 
the RR Simulated Annealing algorithm maintains a best point it is possible that a dominant 
point constantly attracts the algorithm. Once the Annealing Schedule has reached the 
minimum temperature a restart occurs, however within Environment 2 the targets are in close 
proximity to the obstacles and unless the restart point allows the robot to avoid the obstacles 
the previously detected target will draw the algorithm to it once again. A permanent Tabu 
zone could be placed about targets that have already been located meaning that robots are not 
able to locate them again. The coverage of the Tabu random algorithm is higher than that 
achieved by the RR Simulated Annealing. This is a result of the method used by the Tabu 
Random algorithm, as it generates points at random with no constraints other than those 
imposed by the Tabu list. As has been shown, the more random an algorithm, the more 
coverage is achieved. 
 
The RR Simulated Annealing algorithm has been shown to work and is able to achieve a 
reasonable performance but the Tabu Random algorithm out preformed it by simply locating 
all of the targets. 

7.4.4 Genetic Algorithm 2 

The first of the GAs to be run is GA2. Though the performance of GA2 is among the best in 
the single robot case, the multiple robot case has so far shown that problems exist with such 
a simple implementation of the multi robot case. This is also shown in the results achieved 
with the runs of GA2 in Environment 1. The average results are target location times of 
235.04s and 407.54s. These are both very high times when compared to the Tabu Random 
and RR Simulated Annealing algorithms and are a result of the time taken for the GA2 to 
evaluate each generation. Each robot needs to have evaluated the current individual assigned 
to it before a generation can be evaluated and because the robots need to wait for other 
robots there is a loss of productive usage of time. This was shown to be the case in 
Environment 1 and the pattern has continued. The percentage of the targets located was 65%. 
This is far lower than that achieved by the multiple robot algorithms run thus far. The reason 
for this is that in two of the runs GA2 has failed to locate any targets. This is because these 
runs suffered from the problem associated with the insertion point and the proximity of the 
obstacles in Environment 2. In both cases a robot moves away from the insertion point only 
to encounter an obstacle forcing the robot to turn round and head for the insertion point. 
Though the points are selected at random the tight space that exists about the insertion point 
in Environment 2 does mean that there is a good chance that the robots obstruct the insertion 
point. The coverage achieved is 70.91% which is lower than that achieved by the Tabu 
Random and RR Simulated Annealing algorithms. This is a result of the runs which 
contained robots which became immobile either due to a problem at the insertion point or 
because they could not navigate away from a tight location. The coverage achieved when 
these runs are excluded is 82.77%. This is a high value but is low when compared to the 
other algorithms. The reason for this is simply because the other algorithms have higher 
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random elements. A typical GA2 run is shown in Figure 7.11 with further data presented in 
Appendix D2.4. 

 
Figure 7.11: Map from a GA2 run in Environment 2 

7.4.5 Genetic Algorithm 3 

The average results from the GA3 runs are: target location times of 206.06s and 458.02s. The 
percentage of targets located is 35% and the coverage achieved is 54.37%. The individual 
run results can be found in Appendix D1.5. Again it can be seen that the performance of the 
GA is poor. Though it does work, as can be seen in Figure 7.12, GA3 seems to have been 
affected badly by the issue of individual robots becoming immobile due to problems at the 
insertion point, with five runs suffering from the problem.  

 
Figure 7.12: Map from a GA3 run in Environment 2 

 
The results indicate that the robots never stray far from the vicinity of the insertion point in 
the runs that fail. In each failed run a robot returns to a point close to the insertion point, 
causing further robots that are inserted to become stuck which in turn stops the algorithm. 
Since GA3 uses the elitist selection method one reason for this could be an initial population 
containing individuals that represent points close to the insertion point. The reason why this 
would cause the problem seen is because during the evaluation of the individuals in the 
initial population there exists little chance of variation in the evaluation values returned by 
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the individuals. If the first individual in the population represents a point that is close to the 
insertion point and on evaluation no other individuals have a smaller evaluation cost then 
that particular individual progresses forward to the next generation. When evaluating the 
next generation the robot travels to this first individual again and, being close to the insertion 
point, it interrupts any robots that are currently being inserted or have been just inserted. 
Unless the robot escapes the confined area, this scenario may occur within a couple of 
generations and when looking at the maps of the runs that failed, only a small number of 
points have been visited supporting this theory. Since this issue is associated with the elitist 
selection method it would be expected that the results from GA4 should also be affected. 
This is the worst performance yet in Environment 2. The target times are high and the 
percentage of target located and the coverage are both very low. 

7.4.6 Genetic Algorithm 4 

The final algorithm to be run in Environment 2 is GA4. The results from GA4 are target 
location times of 218.82s and 425.17s. As with GA3 these times are very high, though an 
improvement has been made in the second target time. The percentage of targets located is 
40%, as with GA3 this is a low value. Five GA4 runs failed to locate any targets. Studying 
the data presented, it can be seen that GA4 does suffer from the same problem as GA3. This 
would suggest that the theory presented in the previous section is accurate and that the 
choice of the initial population with regards to the elitist selection method in Environment 2 
is important. The initial population should contain individuals which represent points that are 
not within the vicinity of the insertion point. The concept of creating a permanent Tabu zone 
about the insertion point would help this situation. It can be stated that the environment GA3 
and GA4 are run in has a major influence on the performance of the algorithm. Since in most 
USAR scenarios the environment is not known, nor can it be accurately guessed, GA3 and 
GA4 may not be suitable methods for searching confined environments using multiple 
robots. Environment 3 is larger and the results from the runs done in that environment may 
indicate that the algorithms perform well in larger open plan areas. 
 
Compared with the other algorithms GA4 is poor, though it is better than GA3. The reason 
why it performs better than GA3 is a result of the increased mutation rate which will vary the 
individuals to a greater extent, thus resulting in a greater variation of points for the robots to 
search. An example run from GA4 is shown in Figure 7.13. Individual run data for GA4 can 
be found in Appendix D2.5. 

 
Figure 7.13: Map from a GA4 run in Environment 2 
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7.4.7 Discussion 

As stated, the main aim of this chapter is to establish if there is a benefit in the use of 
multiple robots in searching an environment, when compared to the use of single robots. To 
make this comparison the average results from the multiple robot runs carried out in 
Environment 2 are presented in Table 7.3 with the results from the single robot runs in 
Environment 2 presented in Table 7.4. 
 

Table 7.3: Experiment 2 – Multi Robot Results 
 

Algorithm 
Time for target 

1, seconds 
Time for target 

2, seconds 
% Target 

Found 
% Coverage 

TR 81.94 237.95 100 91.90 
RRSA 103.59 211.19 85 87.71 
GA2 235.04 407.54 65 70.91 
GA3 206.06 458.02 35 54.37 
GA4 218.82 425.17 40 59.03 

 
Table 7.4: Experiment 2 – Single Robot Results 

 

Algorithm 
Time for target 

1, seconds 
Time for target 

2, seconds 
% Target 

Found 
% Coverage 

TR 158.29 211.59 70 84.42 
RRSA 168.63 360.18 85 84.68 
GA2 257.58 363.35 70 86.63 
GA3 171.03 375.95 75 83.87 
GA4 215.66 356.18 70 82.66 

 
Starting with a comparison of the Tabu Random results it can be seen that an improvement 
has been achieved when using multiple robots. The first target time is lower, the percentage 
of targets located is 100% and the coverage achieved is higher. The only issue is the higher 
time taken for the location of a second target, but an overall improvement has been made. 
The results achieved in the multi robot Tabu Random runs are a direct result of the multiple 
robots used. The first target location time is lower because with more robots there is an 
increased chance of locating a target. The second location time is higher as not only do the 
robots have to avoid the obstacles, they are required to avoid each other. Once all the robots 
are moving in the confined space of Environment 2, there will be times when the robots are 
held up searching the environment because they are avoiding colliding with one another. 
This leads to increased target location times. All the targets were located and this will be a 
result of the increased number of robots searching the environment. This is also the reason 
for the increase in the coverage achieved.  
 
Though the RR Simulated Annealing algorithm did not perform as well as the Tabu Random 
algorithm, the results produced are good. Comparing the results gained in the multi robot 
case to those of the single robot case, the multi robot case located both targets in quicker 
times. With more robots searching for the targets this would give this result. The percentage 
of targets located is the same in both cases, indicating that to increase the number of targets 
located an alteration needs to be made to the algorithm, such as the introduction of a Tabu 
zone about located targets. This would mean that the algorithm would have to move away 
from targets that have already been located and not be drawn towards them again. There is a 
slight improvement in the coverage. The introduction of Tabu zones may also aid in 
increasing this. 
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The GAs all performed badly in Environment 2 with regards to the multi robot case. The 
target location times all increased, with the exception of GA2’s first target time. The 
percentage of targets located fell, as did the coverage achieved. The reason for this is because 
of the implementation of the GAs. Each robot is required to evaluate an individual in the 
current population and the current generation can only be evaluated once all the individuals 
within it are evaluated. Since some of the robots have a tendency to become stuck at the 
insertion point, the generation cannot be evaluated and the algorithms are stopping. This has 
had an impact on the overall results achieved by the algorithms. The size of the environment 
and the confined spaces are working against the GAs, but since it is likely that these are 
conditions similar to those that will be met in a USAR environment, it is unlikely that 
multiple robots would be deployed under the control of a GA.  
 
An interesting point about the difference between the algorithms that have performed well so 
far in the multiple robot case and those that have not is that the GAs require that each robot 
is working whereas the Tabu Random and the RR Simulated Annealing algorithms can both 
run with any number of robots operating. If a robot becomes stuck the rest can continue 
working with limited degradation in the results achieved. This would be a benefit, as robots 
could fail or become stuck and the overall search is not affected to any great degree. 
  

7.5 Complex Environment  

As mentioned in Chapter 6, the third environment is designed to test the performance of the 
algorithms, with more targets and in a larger area. As with the other environments the 
simulation remains the same. The results presented in the following section are the average 
results calculated from the runs shown in Appendix D.3. 

7.5.1 Tabu Random 

Figure 7.14 shows a typical run from the Tabu Random algorithm. The average results 
achieved are as follows: the target location times are 36.60s, 70.41s, 117.97s, 181.31s, 
205.93s and 245.62s with 61.43% of the targets located and 56.38% coverage achieved. This 
algorithm had one run that located six out of the seven targets. This is the first run to have 
achieved this. It can be seen that the algorithm works in Environment 3. Individual run data 
is presented in Appendix D3.1.  
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Figure 7.14: Map from a Tabu Random algorithm run within Environment 3 

7.5.2 Random Restart Simulated Annealing 

The next algorithm to be run is the RR Simulated Annealing algorithm which achieved the 
following results: 38.49s, 76.38s, 122.17s, 190.14s and 222.42s with the percentage of 
targets located at 52.86% and coverage achieved at 50.91%. An example of a run from the 
RR Simulated Annealing algorithm is shown in Figure 7.15. Individual run data is presented 
in Appendix D3.2. 

 
Figure 7.15: Map from a RR Simulated Annealing algorithm run within Environment 3 

 
From the RR Simulated Annealing results presented, it can be seen that the results achieved 
by the Tabu Random algorithm are very good in comparison. The Tabu Random algorithm 
achieved better target location times, located more targets and achieved higher coverage than 
the RR Simulated Annealing algorithm. The reason for this will be the nature of the 



 

  133 

environment and the method used by each algorithm to search the environment. Since this 
environment is more open there is less interaction with obstacles, which allows the 
algorithms to search the environment with minimal interruption. Since the Tabu Random 
algorithm can select points at random, with the exception of those points on the Tabu list, 
wider open spaces allow the robots to move without hindrance to the assigned points. This 
free movement increases the coverage achieved which, in turn, increases the chance of 
locating targets. As a result of the Tabu Random algorithms Tabu element, once a target has 
been located in Environment 3, a temporary Tabu zone is put about the target, resulting in 
the other robots keeping away from it. This can be seen in some of the runs presented. Since 
the targets, once found and for a limited time, repel the robots, the robots are forced to search 
other areas which, again, lead to increased coverage. The quick target location times can be 
associated with the reasons of the increased coverage and increased target location. Since 
more robots are looking for the targets there is an increased chance that a target is located. 
With the robots always searching, as opposed to being caught within the vicinity of a 
dominant point, this leads to targets being located in quicker times. On the other hand the RR 
Simulated Annealing algorithm has no method of escaping targets once they have been 
detected. The RR is designed to force the robot to move outside the vicinity of the target 
located but when an obstacle is detected, this point is replaced and this can lead the robot 
back to the target that has already been found. This affects the overall search, as some targets 
may become dominant and the robots tend to be attracted to them. This is the reason why the 
target location times for the RR Simulated Annealing algorithm are higher than that of the 
Tabu Random algorithm.  

7.5.3 Genetic Algorithm 2 

It has been shown that the performance of the multi robot case GA2 is poor in small 
environments, with the issue of robots becoming stuck and bringing the algorithm to a halt. 
In Environment 3 GA2 has target location times of 51.33s, 109.20s, 275.38s and 470.57s. 
The percentage of targets located is 48.57% and the coverage achieved is 46.27%. These 
results are poorer than both the previous algorithms. Again this shows the issues associated 
with this implementation of a multi robot GA2. Although all the runs escape any problems at 
the insertion point, further along in the search the problem associated with a robot becoming 
stuck does occur and, as discussed, this causes the algorithm to stop. 
 
It should be noted that the target location times are high when compared to the previous two 
algorithms and there is a consistency in the minimum number of targets located, which is 
three. This shows that the GA2, when in a more open environment, can operate up to a 
certain point, but once the robots start interacting with the obstacles and start searching the 
smaller areas within the environment, problems start to occur. Figure 7.16 shows a typical 
run from GA2. Data from individual runs is presented in Appendix D3.3. 
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Figure 7.16: Map from a GA2 run within Environment 3 

7.5.4 Genetic Algorithm 3 

In the multiple robot case GA3 has had some operational problems, mainly as a result of the 
robots interacting with the insertion point. Since the insertion point in Environment 3 is 
located in a more open position, it is expected that the problems with the insertion point are 
either eliminated or greatly reduced. The results from GA3 give target location times of 
47.94s, 144.79s, 220.11 s, 323.35 s and 391.02s. GA3 located 50% of the targets and 
achieved coverage of 45.57%. These results show that the algorithm has worked within 
Environment 3 and that no problems have occurred within the first couple of generations of 
the GA, with regards to the insertion point. The reason for this is the open space about the 
insertion point which allows the robots to move away from the insertion point without 
detecting any obstacles. Hence the robots are not being forced back to the insertion point. 
However, as with all the other GA based runs, the algorithm does stop after a time because a 
robot becomes stuck and is then not able to proceed with the search. Having said this, on two 
runs GA3 did detect five of the seven targets, showing that the performance of GA3 is 
mixed. Comparing GA3 with the other algorithms run, the results produced are better than 
those of GA2; however Tabu Random and RR Simulated Annealing both perform much 
better. An example run is shown in Figure 7.17. Individual run data is presented in Appendix 
D3.4. 
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Figure 7.17: Map from a GA3 run within Environment 3 

7.5.5 Genetic Algorithm 4 

The last algorithm to be run is GA4. As with the previous two GAs the performance of GA4 
has been poor when compared to the non GA algorithms. With target location times of 
78.90s, 123.84s, 250.54s and 312.66s the performance of GA4 can already be seen to be 
poor. The percentage of targets located is 40% and the coverage achieved is 40.40%, both of 
which also indicate the poor performance of GA4. In one run GA4 had a problem at the 
insertion point where the first robot travelled back to the insertion point which then disrupted 
the other robots. In all the other runs the insertion point error did not occur and this shows, 
along with the data presented in the other GA runs, that when the insertion point is in a more 
open area that this problem is reduced. It should be noted that in some cases the area about 
the insertion point would not be known and as a result it would not be known if the algorithm 
would have issues at the insertion point. However GA4 has poor results because of the same 
failing as the other GAs, that of one robot becoming stuck and the algorithm not being able 
to complete a generation. Figure 7.18 shows a run from GA4 with individual run data 
presented in Appendix D3.5. 
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Figure 7.18: Map from a GA4 run within Environment 3 

7.5.6 Discussion 

With all the algorithms run in Environment 3, a comparison between the single robot and 
multi robot results within Environment 3 can be made with the view of establishing if using 
multiple robots offers an improved performance. The average results from the multi robot 
algorithms run in Environment 3 are presented in Table 7.5 with the single robot results 
presented in Table 7.6. 
 

Table 7.5: Experiment 3 – Multi Robot Results 
 

Time for target found, seconds 
Algorithm 

1 2 3 4 5 6 7 

% 
Target 
Found 

% 
Coverage 

TR 36.60 70.41 117.97 181.31 205.93 245.62 N/A 61.43 56.38 
RRSA 38.49 76.38 122.17 190.14 222.42 N/A N/A 52.86 50.91 
GA2 51.33 109.20 275.38 470.57 N/A N/A N/A 48.57 46.27 
GA3 47.94 144.79 220.11 323.35 391.02 N/A N/A 50.00 45.57 
GA4 78.90 123.84 250.54 312.66 N/A N/A N/A 40.00 40.40 

 
Table 7.6: Experiment 3 – Single Robot Results 

 

Time for target found, seconds 
Algorithm 

1 2 3 4 5 6 7 

% 
Target 
Found 

% 
Coverage 

TR 43.23 194.84 338.88 415.63 N/A N/A N/A 42.86 45.10 
RRSA 33.83 234.49 334.30 375.76 N/A N/A N/A 45.71 44.62 
GA2 38.40 158.63 250.29 374.02 N/A N/A N/A 42.86 41.13 
GA3 43.18 235.69 342.09 390.21 428.62 N/A N/A 50.00 40.90 
GA4 41.64 158.84 265.74 526.75 N/A N/A N/A 35.71 40.50 
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Taking each algorithm in turn, the Tabu Random algorithm in the multiple robot case can be 
seen to offer a performance increase, as target times are dramatically lower. This is a direct 
result from using multiple robots. As discussed in Section 7.4.7 the increased number of 
robots means that the targets are being located quicker because the robots are searching 
different areas of the environment. This means that different robots locate different targets, 
whereas in the single robot case there is one robot travelling between all the targets.  The 
percentage of targets located is approximately the same in both cases. This is an interesting 
point and could be the result of the terminating conditions that are in place, since these 
terminate the search in both cases when each reaches the same condition. The coverage 
achieved is higher in the multi robot case. This is also a result of the use of multiple robots as 
each robot is searching its own area, increasing the coverage as a result. Overall the Tabu 
Random algorithm has shown once again that it is a powerful algorithm with regards to this 
task and that the use of multiple robots increases its performance as shown by the results in 
this chapter. 
 
The RR Simulated Annealing algorithm in the multiple robot case has also performed better 
than in the single robot case. Once again the target location times in the multi robot case are 
better, as is the percentage of targets located and the coverage achieved. This is also a result 
of using multiple robots for the same reason as stated for the Tabu Random algorithm. 
 
An interesting point about both of these algorithms, and how they differ from the GAs, is 
that the algorithms can continue to run even if robots become stuck. Both algorithms 
continue to run with only one robot still in operation and, in theory, both the Tabu Random 
and RR Simulated Annealing algorithms can lose robots and only suffer a slight degradation 
in performance. This is a desirable trait within an USAR environment as robots can be lost 
but the algorithms carry on searching. This is a natural feature of the algorithms in the multi 
robot case and no further steps are required to achieve it. 
 
GA2 performed better in the single robot case with regards to the target location times, with 
the exception of the location time for a second target. However both the coverage and the 
percentage of targets located have increased. Due to the increased number of robots and 
despite the problems that GA2 encountered, the multi robot case has performed better than 
the single robot case. 
 
With regards to GA3 the multi robot case performed better with regards to the target times 
achieved and the coverage gained. The algorithm is able to quickly converge on points, due 
to the robots being able to evaluate the assigned individuals with little disruption from the 
obstacles. This results in quicker RRs and as a result the next target is located quicker. 
Though GA3 performed better with multiple robots in the third environment it was still 
affected by problems relating to the size of the environment. Since the size of the 
environment may not be known, a judgement on the number of robots used for a GA would 
be hard to make and as such the Tabu Random and RR Simulated Annealing algorithms 
would be better choices as they performed better with no additional problems. 
 
GA4 found the targets quicker in Environment 3 when using multiple robots and the 
percentage of the targets located slightly increased. As with the other GAs, GA4 also 
suffered from additional problems due to the implementation of the GA for use in multiple 
robot situations. This shows that the method used for implementing the GAs in a multi robot 
case is not suitable even though it is the most obvious way to implement it. Further code 
would need to be added to cope when robots become immobile due to problems at the 
insertion point or being unable to escape tight areas. This would lead to further 
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complications with regards to code implementation and it is unknown if a performance 
increase would be achieved.   
 
With regards to the performance over all the environments, Tabu Random and RR Simulated 
Annealing algorithms have performed consistently better in the multi robot case when 
compared to the single robot case. The GAs have given a mixed set of results. In the smaller 
more constrained environments the GAs have not performed well. However in the bigger 
more open environment, the results produced indicate that multi robot GAs perform well. 
 

7.6 Review of Results 

Throughout this chapter the comparison between the multi robot results and the single robot 
results has been carried out. This section provides a review of both sets of results and 
suggests a suitable algorithm for use in the scenario described. 
 
It was established in Chapter 6 that the algorithms discussed in Chapter 5 can be 
implemented in the task described, with the exception of the HillClimbing algorithm. This 
conclusion is backed up by the evidence provided in Chapter 6. With regards to the best 
performing algorithms in a single robot case, the conclusion was that algorithms that contain 
both a high random element and some structure to the selection of points perform well. The 
algorithms in this work that show this are the Tabu Random and RR Simulated Annealing 
algorithms and GA2, GA3 and GA4. From the evidence in Chapter 6 it was suggested that the 
Tabu Random algorithm was the best choice for use in a single robot case. Over all the runs 
the Tabu Random algorithm performed well. It is also simple to implement, allowing 
implementation on a wide range of platforms. 
 
The results in Chapter 7 have provided evidence of how the algorithms run when 
implemented in a multi robot case. The conclusions that can be drawn from the data 
presented give a mixed picture of what can be achieved in a multi robot case. The first point 
to note is the failure of the Genetic Algorithms when implemented in the way described in 
this chapter. The Genetic Algorithms performed well in the single robot case but, due to 
problems associated with the individual robots becoming stuck within the environment, the 
performance in the multi robot case was poor in comparison. However it was shown that in 
an open environment, such as that of Environment 3, an improvement does exist. With 
regards to the Tabu Random and Simulated Annealing algorithms the multi robot case did 
provide improvements within Environments 2 and 3. The results from Environment 1 were 
similar. The Tabu Random results are compared in Table 7.7 and the Simulated Annealing 
results can be found in Table 7.8. 
 
It can be seen in both of the tables that the improvements gained within Environment 1 are 
similar. This would indicate that it would be better to run a single robot within this 
environment, as the deployment of one robot would be simpler than the deployment of five. 
An improvement is seen in both the multiple robot runs in Environments 2 and 3. This shows 
that as the environment either becomes more complicated or becomes larger then multiple 
robots should be deployed. 
 
In both the single robot and multi robot cases the Tabu Random algorithm has performed 
well. This would indicate that the Tabu Random algorithm would be a good choice for 
implementation in a practical scenario.  
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Table 7.7: Comparison of Tabu Random results 
 

 Environment 1 Environment 2 Environment 3 

Variable Single Multiple Single Multiple Single Multiple 

Time for target 1, 
s  

29.73 43.33 158.29 81.94 43.23 36.60 

Time for target 2, 
s   

159.04 71.26 211.59 237.95 194.84 70.41 

Time for target 3, 
s 

N/A N/A N/A N/A 338.88 117.97 

Time for target 4, 
s  

N/A N/A N/A N/A 415.63 181.31 

Time for target 5, 
s  

N/A N/A N/A N/A N/A 205.93 

Time for target 6, 
s  

N/A N/A N/A N/A N/A 245.62 

Time for target 7, 
s  

N/A N/A N/A N/A N/A N/A 

% Target Found 100.00 100.00 70.00 100.00 42.86 61.43 
% Coverage 99.32 99.34 84.42 91.90 45.10 56.38 

 
Table 7.8: Comparison of Simulated Annealing results 

 
 Environment 1 Environment 2 Environment 3 

Variable Single Multiple Single Multiple Single Multiple 

Time for target 1, 
s  

35.43 31.73 168.63 103.59 33.83 
38.49 

Time for target 2, 
s   

116.20 94.58 360.18 211.19 234.49 
76.38 

Time for target 3, 
s 

N/A N/A N/A N/A 334.30 122.17 

Time for target 4, 
s  

N/A N/A N/A N/A 375.76 190.14 

Time for target 5, 
s  

N/A N/A N/A N/A N/A 222.42 

Time for target 6, 
s  

N/A N/A N/A N/A N/A N/A 

Time for target 7, 
s  

N/A N/A N/A N/A N/A N/A 

% Target Found 100.00 100.00 85.00 85.00 45.71 52.86 
% Coverage 99.23 99.13 84.68 87.71 44.62 50.91 

 

7.7 Summary 

The aim of this chapter was to establish if the best performing algorithms from the previous 
chapter can be used to control multiple robots and to consider if an improvement in the 
performance is achieved with multiple robots. The aim has been established through the 
presentation and discussion of results obtained from running the best five algorithms from 
Chapter 6 in multiple robot cases.  
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The results, over all the runs, have shown that using multiple robots has increased the 
performance of both the Tabu Random and RR Simulated Annealing algorithms and due to 
the nature of the method used to implement the algorithms, both algorithms are able to cope 
with the loss of individual robots. This is not the case with the implementation used for the 
GAs. GA2, GA3 and GA4 all suffered from issues in each environment, mainly as a result of 
the GA needing to rely on all of the robots operating successfully in the environment. The 
results have shown that this does not happen and in all the GA runs it can be seen that a robot 
becomes stuck and as a result the algorithm is forced to stop. 
 
It was also established that the algorithm that has performed best overall is the Tabu Random 
algorithm. This algorithm performed well in both the single and multi robot cases and 
showed no degradation in performance when any individual robots became immobile within 
the multiple robot case.  
 
A further point that came from the results presented in this chapter is that the size of the 
environment affects the useable number of robots. When the multi robot Tabu Random and 
RR Simulated Annealing algorithms were run in Environment 1, the results achieved were 
similar to those achieved by the single robot runs in the same environment. This shows that 
the size of the environment has an impact on the number of robots that can be used to search 
it. 
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Chapter 8 
 

Conclusions and Further Work 
 

8.1 Conclusions 

The task of locating survivors within environments during USAR can be dangerous and puts 
the lives of both the survivors and rescue workers at risk. This work proposed the use of 
robots to search environments under the control of search algorithms. The reasoning behind 
this approach is that search algorithms are used in multiple fields of research and in industry 
to locate optimal points within a search space. If a simple method of identifying a survivor 
was achievable, such as the detection of body heat, and a unique point, or range of points, 
existed within this identification, an optimal point can be declared. It can then be shown that, 
in theory, the location of a survivor in an environment, which is the algorithm’s search space, 
can be achieved by search algorithms. The aim of the work presented in this thesis was to 
establish if search algorithms could be used to search for survivors within an environment. 
This work was to also select algorithms which performed the task well and to establish if the 
use of multiple robots resulted in a better performance over the single robot search. 
Additional objectives included the development of both a mathematical model of a mobile 

robot and a navigation and control system to enable the testing and operation of the search 
algorithms. 
 
The first part of this work was concerned with the development of a mathematical model of a 
suitable mobile robot for use in USAR. Chapter 3 presented the development of the model 
and introduced the validation of this model. The model developed is a six-degree-of-freedom 
model with actuators. The dynamics and kinematics of the model were considered along with 
the dynamics of the actuators. The inclusion of the actuators gave a complete model of a 
mobile robot. A further stage of the model development was the validation of the model. 
Two methods of validation were used: Analogue Matching and Least Mean Squares. The 
validation shows that the model is a close representation of the real robot and as such the 
results from the simulation are a good approximation to what the results from a real robot 
would be.   
 
The search algorithms are designed to generate points to which the robot will travel to. 
However a method of ensuring the robot travels to the requested points accurately is 
required. To accomplish this task a navigation and control system was developed in Chapter 
4. The navigation and control system was made up of three parts: the navigation system, the 
control system and an obstacle avoidance routine. The navigation system consisted of a Line 

of Sight Autopilot which generated the heading the robot should take to reach the next 
assigned point. A method of ensuring the robot travelled along the correct heading and at a 
suitable speed was needed. This was done by the control system. The control system took, as 
input, the heading generated by the navigation system and the desired speed and from these 
generated suitable actuator voltages which enabled the robot to travel to the assigned points. 
A suitable control methodology was required that would efficiently and accurately maintain 
both the speed and heading. Chapter 4 presented three methods of control for consideration: 
Proportional-Integral-Derivative, Pole Placement and Sliding Mode. Each controller was 
tested in simulation on the modelled robot in a series of experiments and the results were 



 

  142 

compared using measurements taken from the data. The measurements taken allowed a 
comparison of the controllers based on the average tracking error, average steady state 

error, rise time, charge drawn from the battery and motion control. After this comparison 
was carried out it was found, with regards to the modelled robot and the implementation of 
the controllers in this work, that the Pole Placement controller was the most suitable control 
method to be implemented for this task. The Pole Placement controller performed better than 
both the Proportional-Integral-Derivative and Sliding Mode controllers within the 
experiments designed in this work. A further aspect of the navigation and control system was 
the obstacle avoidance routine. When operating in all but the simplest of environments 
obstacles will exist and the controller needs to respond to the detection of obstacles. This 
work considered two methods of obstacle avoidance. A method designed to navigate around 

the obstacle and a reactive method. The first method mentioned is designed to navigate 
round obstacles by following a set pattern. The second method simply replaces the desired 
point with a randomly selected point. It was found that, taking into consideration that time is 
an important variable in this work, the reactive approach was the best method. Though the 
reactive method did not always get to the required point the time saved by not going round 
an obstacle was found to be more desirable. 
 
Chapter 5 presented and discussed the search algorithms chosen for implementation in this 
work. The search algorithms were chosen as they are established and popular methods. 
Traditional search algorithms that were chosen were Lawnmower, a form of the Exhaustive 
search, Random, HillClimbing and Random Restart HillClimbing. Modern search algorithms 
that were considered were based on Tabu search, with Tabu Random and Tabu Random 

Restart HillClimbing being variants that were investigated, Random Restart Simulated 

Annealing and four variations of the Genetic Algorithm. Each of these algorithms was 
discussed and how they are implemented presented. As part of the discussion on the search 
algorithms, various functions that are common to all the experimental runs was presented. 
These functions allow the robot to carry out the search and provide a means of comparing 
each search algorithm. How the temperature is tracked was presented along with the 
implementation of the constant search. Since coverage is a method of comparison it was 
discussed with reference to this work. The robot is required to detect targets. How this is 
achieved was discussed.  
 
The next stage in this work provided results and the analysis of the algorithms run. The first 
set of results, presented in Chapter 6 and Appendix C, clearly indicated that the search 
algorithms could be used to provide points which allow a single robot to search for targets 
within a given environment. It was found that algorithms with a high random element and a 
structure to the selection of points provided the best results. The high random element 
enables the search to achieve a wide coverage within the environment. Having a structure to 
select the next point is also important. Whether this structure allows the robot to converge on 
a point (RR Simulated Annealing, GA2, GA3 and GA4) or is simply a list of points that are 
not to be selected (Tabu Random) is not important, though it is acknowledged that the 
algorithms which converge can, on occasion, find targets quicker. The algorithms which 
performed best, with regards to the single robot results presented in this work, are the Tabu 

Random and RR Simulated Annealing algorithms, and, GA2, GA3 and GA4. Each of these 
algorithms achieved desirable performances over all the environments that they were tested 
in and, through the results, showed to be suitable algorithms for selection with regards to the 
implementation used in this work and in the task described. Over all the runs in a single 
robot case the Tabu Random algorithm performed the best. 
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Since it was established that the algorithms are suitable for the task described and five of the 
algorithms were deemed to stand out from the others, based on the results presented in this 
work, an investigation into the impact of having multiple robots searching can be done. The 
algorithms were implemented to allow the five robots to be run. With regards to the RR 

Simulated Annealing algorithm this implementation created a decentralised control 
algorithm, as each robot ran an independent version of the algorithm. The Tabu Random 
algorithm had a global Tabu List which each robot added to and referenced. This had a 
centralised approach to the implementation of the algorithm. The GAs were also 
implemented with a centralised approach. Within each GA each robot searched for an 
individual in the population and once all the individuals were evaluated the current 
generation was evaluated. The results presented in Chapter 7 offer a mixed answer to the 
application of multiple robots. Results from Chapter 7 show that the Tabu Random and RR 

Simulated Annealing algorithms both saw improvements when implemented with multiple 
robots. It was also noted that the performance of these two algorithms did not degrade when 
robots fail. This would be an important aspect within a practical application of the ideas in 
this work, as the robots may fail or become stuck when used in the field. However the 
multiple robot implementation of the GAs failed to show any improvement over all the runs. 
GA2, GA3 and GA4 all suffered from issues relating to the implementation of the algorithm. 
In each environment the robots became stuck. This was shown to affect the overall 
performance of the algorithm. The reason for this is that the GA is reliant on all the robots 
operating successfully in the environment. The results indicate that this cannot be taken for 
granted and hence the GAs will be prone to failure with the current method of 
implementation. It was also noted in Chapter 7 that the size of the environment may affect 
the number of robots that can be used to carry out the search. A slight increase in 
performance was seen for the Tabu Random and RR Simulated Annealing algorithms in the 
smaller environments, but the performance increase was only slight. The Tabu Random 
algorithm was shown to be the best algorithm within a multi robot case. 
 
This work proposed the use of autonomous robots to search environments under the control 
of search algorithms. Since lives are at risk within USAR scenarios, the robot or team of 
robots would need to be able to search an environment as thoroughly and quickly as they 
can. This work has found that, with regards to the results shown throughout this thesis, the 
Tabu Random algorithm would be a suitable search algorithm, for both single robot and 
multiple robot searches. The Tabu Random algorithm achieved good coverage and located a 
large percentage of the targets within the environments. The targets were also located in a 
reasonable time. This algorithm also showed the ability to continue working even when 
individual robots in the team become immobile. This would be beneficial to the area of 
USAR when using robots. The application of either a single robot or team of robots under 
the control of the Tabu Random algorithm may prove to be a useful tool for any team or 
emergency service that is required to search environments for people. Though some 
technological challenges still exist, the concept explored in this work has the potential to 
save lives.  
 

8.2 Further Work 

This work set out to establish if search algorithms could be implemented on a mobile robot 
or group of mobile robots to carry out a search of an environment. The results indicate that 
this is possible and that the Tabu Random algorithm is best suited to the task when 
implemented in the way done in this work. However this work can be taken further. Further 
work, which is based on the work presented here, is suggested next.  
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8.2.1 Hybrid Algorithms 

The first area of interest would be the implementation of hybrid algorithms. The Tabu 

Random and the Tabu Random Restart HillClimbing algorithms were both hybrid algorithms 
as they are created by the fusion of two different algorithms. This concept could be taken 
further to enable the algorithms to be improved and, in turn, improve the results. There exist 
many different algorithms that can be fused together, but based on the results gathered 
throughout this work the following hybrid algorithms would be worth further investigation: 
Global Tabu with additional algorithm and Tabu Random with HillClimbing. 
 
8.2.1.1 Global Tabu with additional algorithm  

The first hybrid algorithm is more a concept for implementation than a hybrid algorithm. The 
Tabu element was found to be a powerful function when implemented and provided one of 
the best algorithms. The operation of the Tabu element was based on maintaining a list of 
points that could not be selected again until after a certain time. This concept could be 
extended to provide a Global Tabu list.  
 
One problem that is present in all the algorithms is that once a target is located the algorithm 
is still attracted to it. Since the algorithm is still attracted to the target, the robot wastes time 
revisiting it and some algorithms cannot escape the attraction of the target. One method of 
dealing with this is to maintain a Global Tabu list that is only updated when a target is found. 
In doing this the targets are tracked in one list and the algorithm can refer to this when 
selecting the next point to go to. To further improve this, once a target is located a Tabu 
radius can be introduced around it to stop the robot coming within a set range of a target, 
aiding the algorithm’s ability to escape target points. This would aid all the algorithms, as it 
would increase the coverage, as areas that have been searched which contain targets, would 
be off limits. As stated previously, with increased coverage the chances of locating targets is 
increased. It can be seen that this could have a dramatic affect on the ability of the robot to 
search environments. An issue that would be created by implementing the Global Tabu is if 
the robot became stuck within an area that it cannot be moved from as it is surrounded by 
either obstacles or located targets. In this case a conditional Tabu would need to be created. 
The algorithm cannot direct the robot to a located target unless no other path exists. In 
essence the algorithms would be allowed to travel through a Global Tabu zone if necessary. 
This hybrid algorithm could be added onto any of the algorithms that have been studied but it 
should be first implemented on the best performing algorithms. 
 
8.2.1.2 Tabu Random with HillClimbing 

The second hybrid algorithm that should be investigated is a Tabu Random with 

HillClimbing algorithm. It has been shown that the Tabu Random algorithm performs well 
within both the single robot and multi robot cases, but with the addition of a HillClimbing 
element the performance could be increased. The Tabu Random algorithm operates as 
described in this work, however when an increase in temperature is detected the algorithm 
would then switch to the HillClimbing algorithm which, as results in this work suggest, 
would bring the robot to the target point quickly, if one exists in the immediate vicinity. 
Once either a target point is detected or no higher temperature point is detected the algorithm 
would then switch back to the Tabu Random element of the algorithm and continue the 
search of the environment. This algorithm would, in theory, improve the target location 
times, hence the overall performance of the algorithm would be improved. This algorithm 
would incorporate both elements that the results suggested are needed to search an 
environment and locate targets quickly: a high random element, implemented by the Tabu 

Random and a structured approach to the location of targets, the HillClimbing algorithm. 
This algorithm is similar to the way the RR Simulated Annealing works, which also 
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performed very well, but is more direct when locating the targets points. With the inclusion 
of a Global Tabu element this algorithm could perform exceptionally well. 

8.2.2 Improved Robotic Platform 

Another area of further work would be an improved robotic platform. To keep within the 
ethos of this work a simple disposable robot was used to implement the algorithms on. In 
doing this a number of problems were encountered. The obstacle avoidance had to be 
implemented in a very simple way and only one temperature sensor was used giving a very 
limited field of view. To include additional sensors would provide the means of improving 
the obstacle avoidance, meaning that the robot will not become stuck in tight areas. 
Mapmaking would become a realistic concept and more information from the environment 
can be retrieved allowing better direction from the algorithms. With the addition of more 
sensors, more processing will be required which will increase the size of the robot, which 
will mean that the robot will require more power to run. However with the additional data 
that more sensors could provide, an improved platform would be a good path of 
investigation. With the addition of more obstacle detection sensors the robot would spend 
less time avoiding obstacles. Also the chance of becoming stuck would be reduced as it 
would be able to carry out path planning to avoid obstacles. When the robot becomes stuck, a 
suite of obstacle sensors would enable the robot to detect a path out from its current location. 
Both of these would give the robot more time to carry out the search. Also, with more 
sensors the ability to create a map of the environment becomes viable. With a map the rescue 
workers would have a better idea of what the environment was like and provide them a route 
to any survivors located. A map would also provide the robot the ability to path plan routes 
through the environment once an area had been mapped. The addition of more temperature 
sensors would also greatly enhance the search of an environment. As it is the robot has a 
limited cone it can search while it is travelling between points. With additional sensors the 
robot could carry out a 360° scan of the area it passes through, increasing the chance of 
locating survivors. 

8.2.3 Decentralised Control 

As this work stands the method used by each algorithm is, in essence, a centralised method, 
though the RR Simulated Annealing multi robot algorithm can be viewed as a decentralised 
method. As the robot moves it transmits information back to a base station and then awaits 
instructions back from it. Many of the algorithms could be run on an improved robot. This 
would mean that the robot could be instructed to search an environment and then the only 
time it contacts a base station is when a target is located. This would help with regards to the 
reality of the communication in the environments this work is designed for. Also with each 
robot (in a multiple robot case) working independently, better results may be achieved by 
algorithms as they do not have to wait for other robots to complete a task. This could 
replicate a single robot performance but in a multiple robot case. The area of decentralised 
control has the possibility of providing improvements to the search algorithms.  

8.2.4 Varying the Number of Robots 

It was shown in Chapter 7 that the number of robots used in an environment may affect the 
performance of the algorithm run. The results indicated that in small environments a single 
robot may provide results that are equal to or better than those achieved by a multiple robot 
search. The reverse may also be true; as the environment gets bigger the number of robots 
used to search the environment should be increased. With the simulation used in this work it 
would be possible to research a range of different robot numbers easily and within different 
environments. 
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Appendix A 
 

A1. Validation Procedure 

Validation Procedure for a Mobile Robot Model 

As suggested by Murray-Smith (1995), the validation procedure should be documented to 
allow repeatability and independent researchers to verify the validation results. As part of 
this document the equipment used and the conditions of the environment the experiments are 
carried out in should also be included. This will allow full repeatability of the validation 
procedure. The method, or methods, of validation used should also be included. This 
document describes the validation procedure for a nonlinear mathematical model of a 
differential drive four wheeled mobile robot. 
 
Aim 

The model is being developed to aid in the design of heuristics for multiple robots. The 
model will allow the testing of algorithms prior to them being used on physical robots. If the 
model is an accurate representation of the robots then the data retrieved from the simulations 
can be used as an indication of how the physical robots will operate and respond allowing 
better design decisions to be made. 
 
Equipment Used 

The following equipment is used to gather the data from the physical robot: 
 

• Laptop running RealTerm 

This will be used to collect the data transmitted by the data acquisition circuit. 
 

• In-house Inertia Measurement Unit 

The Inertia Measurement Unit (IMU) has six degrees of freedom. This IMU provides 
an analogue output signal that is proportional to accelerations along the x, y and z 
axis and rates of change about the same axes. 

 
• In-house Microchip PIC data acquisition and logging circuit 

Using an analogue to digital converter the output from the IMU is converted into the 
required format for storage on EEPROM memory. 
 

Conditions 

The room selected for the validation procedure has a carpet tiled floor which will increase 
the friction as compared to other surfaces. However the room is rarely used and as such little 
disturbance will occur in the room. 
 
Validation Procedure 

The procedure for the validation of the model is stated below. 
 

1. Setup the physical experiment 
2. Carry out each experiment, in turn, on the robot. Each manoeuvre should be observed 

and the distances travelled double checked. 
3. The data should be logged with a data and a time. If multiple sets of data are required 

this will enable the most recent to be identified. 
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4. Simulation prepared  
5. Each experiment should be carried out and the data logged with time and date. This is 

important with the simulation data as each set of date will represent a particular set of 
parameters. The parameter settings for the data logged should also be noted and 
stored with the data sets. 

6. Using Analogue matching and Least Mean Square the experimental and simulation 
data sets should be compared and any major discrepancies should be highlighted. 

7. If any major discrepancies exist the reason for these should be located in the code and 
the code altered. 

8. Stages 5-7 should be repeated until a set of values for the parameters are found which 
show the differences between the data sets to be within an acceptable tolerance. 

 
Experiments 

The experiments to be carried out are described below. The experiments presented are based 
on the recommendations made in the International Maritime Organization (IMO) 
Explanatory Notes to the Standards for Ship Manoeuvrability, [IMO, 2002]. The manoeuvres 
citied in this document are accepted for the validation of marine vessel models and without a 
similar guide for mobile robots this was deemed a good foundation. Time is used as the base 
measurement in all the experiment as this gives open loop results. The timings given are 
approximate as experimental issues altered some of the times; however for the sake of 
simplicity the times given below are accurate. 
 
Experiment 1 

The first experiment is to drive the robot forward in a straight line for three seconds. This 
will allow the start up and stopping conditions to be tested as well as the forward velocity. 
This will also allow the IMU being used to be tested for accuracy. 
 
Experiment 2 

This experiment involves the robot travelling forward for one second, turning to the left for a 
second and then travelling forward for one second. This will provide data on the robots 
turning motion and rotational velocity. 
 
Experiment 3 

The third experiment involves the robot travelling in an approximate square. This involves 
the robot travelling forward for one second, turning to the right for one second, travelling 
forward for another second, turning to the right again for a second, forward for one second, 
turning right for one second and ending by travelling forward for one second. This 
experiment provides data on repeated changes in direction and changes in velocity. 
 
Experiment 4 

The fourth experiment simply has the robot travelling forward for three seconds. However 
the actually physical layout of the path it takes it altered. In this case the robot starts on an 
angled slope which has a small up-down ramp, which has an incline of ±15°, in the middle of 
it. The robot moves forward, one set of wheels drives up the ramp, then down the ramp then 
continues to move forward. This provides data on the coupling between the roll and the pitch 
as the robot is pitched up by the ramp but a roll is also created as the only half the robot goes 
up the ramp. 
 
Experiment 5 

The fifth experiment simply has the robot travelling forward for three seconds. This time the 
environment is a ramp that the full robot moves up. In this case the robot starts on a flat 
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surface, moves forward then moves up a ramp, at an incline of ±15°. Once at the top of the 
ramp the robot moves forward on a flat surface again. This provides data on the robot 
travelling up a ramp. 
 
Experiment 6 

This experiment is similar to experiment four with the exception that the roll-pitch happens 
on a flat surface and both sides of the robot are evaluated at different points. The robot 
travels forward and the left side of it goes up a ramp and then down it. Once running level 
again the right side of the robot goes up a ramp then down it. This experiment provides 
additional data about the coupling between roll and pitch. 
 
Experiment 7 

The last experiment carried out drives the robot in a zig-zag pattern. The robot is driven 
forward for 0.8 of a second the robot then turns to the right for half a second, drives forward 
for 0.6 of a second, and turns to the left for one second. The robot then drives forward for 
one second, turns to the right for one second then travels forward for 0.8 seconds. The robot 
the turns to the left for 0.5 seconds and finishes by driving forward for one second. 
 
References 
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MSC/Circ. 1053, International Maritime Organization 
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 A2. Validation Results 

Experiment 1 

 

  
(a) Linear Accelerations (b) Linear Velocities 

  
(c) Angular Velocities (d) Linear Displacements 

 
(e) Angular Displacements 

 
Figure A.1: Experiment 1 Validation Results 
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Experiment 2 

 

  
(a) Linear Accelerations (b) Linear Velocities 

  
(c) Angular Velocities (d) Linear Displacements 

 
(e) Angular Displacements 

 
Figure A.2: Experiment 2 Validation Results 

 

 

 

 

 

 
 



 

  160 

Experiment 3 

 

  
(a) Linear Accelerations (b) Linear Velocities 

  
(c) Angular Velocities (d) Linear Displacements 

 
(e) Angular Displacements 

 
Figure A.3: Experiment 3 Validation Results 
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Experiment 4 

 

  
(a) Linear Accelerations (b) Linear Velocities 

  
(c) Angular Velocities (d) Linear Displacements 

 
(e) Angular Displacements 

 
Figure A.4: Experiment 4 Validation Results 
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Experiment 5 

 
 

 
 

(a) Linear Accelerations (b) Linear Velocities 

 

 

 
NOTE: z measurement real data is wrong when compared to 

actual measurement 

(c) Angular Velocities (d) Linear Displacements 

 
(e) Angular Displacements 

 
Figure A.5: Experiment 5 Validation Results 
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Experiment 6 

 
 

 
 

(a) Linear Accelerations (b) Linear Velocities 

 

 
 

(c) Angular Velocities (d) Linear Displacements 

 
(e) Angular Displacements 

 
Figure A.6: Experiment 6 Validation Results 
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Experiment 7 

 
 

 
 

(a) Linear Accelerations (b) Linear Velocities 

 

 
 

(c) Angular Velocities (d) Linear Displacements 

 
(e) Angular Displacements 

 
Figure A.7: Experiment 7 Validation Results 
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Table A.1: ILS values for the Validation Experiments 
 

 Experiment 

Variable 1 2 3 4 5 6 7 
u& , m.s-2 166 420 730 540 328 1110 670 
v& , m.s-2 33 80 220 200 116 350 140 
w& , m.s-2 0 0 0 680 193 570 0 
u, m.s-1 7 10 30 20 20 90 30 
v, m.s-1 1 0 0 10 0 10 0 
w, m.s-1 0 0 0 0 0 0 0 
p, rad.s-1 0 0 0 206140 56172 987920 52300 
q, rad.s-1 0 0 0 317350 52119 646630 11910 
r, rad.s-1 23210 179960 220570 68990 48714 69670 4030110 

x, m 7 70 10 0 19 160 90 
y, m 57 40 120 10 7 110 10 
z, m 0 0 0 0 62 0 0 
φ, rad 0 0 0 1040 99 9430 10800 
θ, rad 0 0 0 2860 610 27260 2970 
ψ , rad 2987 22000 676220 90360 3198 107930 96540 
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A3. Robot Specifications 

 

 
 
 
 

 

(a) Top View (b) Side View 
 

Figure A.8: Specifications of Robot 
 
Robot Specifications: 

 
Mass: 2.148 Kg 
Moment of Inertia, x: 0.014 Kg.m2 

Moment of Inertia, y: 0.0252 Kg.m2 

Moment of Inertia, z: 0.0334 Kg.m2 

x area: 0.0316 m2 
y area: 0.0448 m2 

Motor Specifications: 

 
Resistance: 4Ω 
Inductance: 0.1H 
Torque Constant: 0.35 Nm.A-1 

EMF Constant: 0.35 V.rad-1s-1 
Viscous Torque: 0.008 Nm 
Moment of Inertia, motor: 0.005 Kg.m2 

Base Friction acting on wheel: 0.002 Nm 
 

A4. Nonlinear Model of a Mobile Robot 

The dynamic equations are presented here. The Kinematic equations are as presented in 
Chapter 3 Section 5. 
 

q.wr.v)sin.0719.21u).u(abs.0181.0u.6358.4surge.(4655.0u −+θ++−=&  
 

r.up.w)cos.sin.0719.21v.0719.21sway.(4655.0v −+θφ+−=&  
 

p.vq.u))0719.21cos.cos.0719.21(w.3216.6heave.(4655.0w −+−φθ+−=&  
 

))r.q.3088.0())p.9182.0(roll.((43.72p −−=&  
 

))p.r.0112.0())q.1543.1(pitch.((68.39q -−−=&  
 

))q.p.0082.0())r.4722.0(yaw.((94.29r -−−=&  
 

Where surge, sway and heave are forces and roll, pitch and yaw are moments, as described in 
Chapter 3. 

0.127m 

0.2488m 

0.35m 
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Appendix B 
 

B1. Full Linear Model 
 

4321 .3307.7.3307.7.3307.7.3307.7u.1706.2u τ+τ+τ+τ+−=&  

4321 .7008.58.7008.58.7008.58.7008.58r.1377.14r τ−τ−τ+τ+−=&  

r=ψ&  

B2. Derivation of Torque-Voltage Relationship 
 

The Pole Placement and Sliding mode controllers both generate torques as outputs but the 
model requires voltages as input. The relationship between the torque generated by the 
controllers and the voltages that are required is derived below. 
 
The power in and power out of a standard DC motor can be stated as: 
 

outin P.P =eff  (B2.1) 
 

where eff represents the efficiency of the motor. Expanding Equation B2.1 gives: 
 

ωτ= ..V.i  eff  (B2.2) 
 

Rearranging B2.2 with respect to V gives: 
 

ωτ= − .).i.(V 1eff  (B2.3) 
 

τ equals: 
 

i.K t=τ  (B2.4) 
 

Substituting B2.4 into B2.3: 
 

ω= − .K).(V t
1

eff  (B2.5) 
 

ω is equal to: 
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Substituting B2.6 in B2.5 gives: 
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Simplifying B2.7: 
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and rearranging with respect to V gives: 
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 (B2.11) 

 
A range of values can be used for eff. The value used in this work is 0.73. This value has 
been arrived at through experimental results. Substituting the variables with the motor 
specifications gives:  
 

( )4113.2086.2

.1987.26
V

−

τ−
=  (B2.12) 

 

326.0
.1987.26

V
−

τ−
=  (B2.13) 

  
τ= .36.80V  (B2.14) 

 

Inserting this into the simulation does not give exactly the required output. This would be the 
expected result as some of the variables used are approximate. Slightly altering B2.14, based 
on experimental evidence, gives: 
 

τ= .83V  (B2.15) 
 

B3. Surge Velocity Linear Model 
 

uF.4655.0u.1706.2u +−=&  

B4. Heading Linear Model 
 

ψτ+−= .9401.29r.1377.14r&  

r=ψ&  
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Appendix C 
 

 
This Appendix presents the individual run results achieved by each algorithm within each 
environment within the single robot case. The results from each algorithm is presented in a 
table showing the individual results achieved for each of the 10 runs carried out. The average 
for each algorithm is stated in the bottom row of each table. Relevant algorithmic parameters 
are also included here within C1 Simple Environment Results.  
 

C1. Simple Environment Results 

C1.1 Lawnmower 

The table below shows the results for the Lawnmower runs carried out in a single robot case 
within Environment 1. This result is discussed in Section 6.3.1. Since each run of the 
Lawnmower is the same only the average is shown. The lawnmower algorithm has a 0.3m 
detection range for obstacles. 
 

Table C1.1: Lawnmower Results 
 

Run 
Time for target 

1, seconds 
Time for target 

2, seconds 
% Targets 

Found 
% Coverage 

Average 11.15 95.21 100 97.11 

C1.2 Random 

Table C1.2 shows the results for the Random runs carried out in a single robot case within 
Environment 1. The results are discussed in Section 6.3.2. The highlighted result is the result 
shown in Figure 6.5. The Random algorithm has a search radius of 2m. 
 

Table C1.2: Random Results 
 

Run 
Time for target 

1, seconds 
Time for target 

2, seconds 
% Targets 

Found 
% Coverage 

1 28.28 125.21 100 99.35 
2 14.82 47.62 100 97.06 
3 70.42 107.85 100 99.35 
4 66.02 109.22 100 99.28 
5 21.21 39.21 100 99.35 
6 32.81 62.42 100 99.35 
7 89.67 111.61 100 99.35 
8 35.43 99.21 100 99.35 
9 9.62 68.42 100 99.35 

10 43.03 155.19 100 99.35 
Average 41.13 92.60 100 99.12 
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C1.3 HillClimbing 

Table C1.3 shows the results for the HillClimbing runs carried out in a single robot case 
within Environment 1. The results are discussed in Section 6.3.3. Since each run of the 
HillClimbing algorithm is the same only the average is shown. 

 
Table C1.3: HillClimbing Results 

 
Run Time for target 

1, seconds 
Time for target 

2, seconds 
% Targets 

Found 
% Coverage 

Average N/A N/A N/A 13.52 

C1.4 Random Restart HillClimbing 

Table C1.4 shows the results for the Random Restart HillClimbing runs carried out in a 
single robot case within Environment 1. The results are discussed in Section 6.3.4. The 
highlighted result is the result shown in Figure 6.7. The Random Restart looks for a point out 
with 2m of the current point. 

 
Table C1.4: Random Restart HillClimbing Results 

 
Run Time for target 

1, seconds 
Time for target 

2, seconds 
% Targets 

Found 
% Coverage 

1 45.08 N/A 50.00 45.03 
2 18.33 N/A 50.00 45.15 
3 13.22 N/A 50.00 45.30 
4 64.82 N/A 50.00 52.72 
5 50.19 N/A 50.00 46.65 
6 63.62 202.45 100.00 88.39 
7 72.02 N/A 50.00 50.16 
8 13.22 N/A 50.00 44.85 
9 53.62 N/A 50.00 48.45 

10 13.62 N/A 50.00 44.92 
Average 40.77 202.45 55.00 51.16 
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C1.5 Tabu Random 

Table C1.5 shows the results for the Tabu Random runs carried out in a single robot case 
within Environment 1. The results are discussed in Section 6.3.5. The highlighted result is 
the result shown in Figure 6.8. The Tabu Random algorithm has a Tabu Tenure of 5s, a Tabu 
list length of 10 elements and a Tabu Zone of 0.3m. 
 

Table C1.5: Tabu Random Results 
 

Run Time for target 
1, seconds 

Time for target 
2, seconds 

% Targets 
Found 

% Coverage 

1 64.82 178.02 100.00 99.35 
2 11.97 114.81 100.00 99.35 
3 27.39 138.67 100.00 99.33 
4 13.62 104.41 100.00 99.35 
5 8.23 45.62 100.00 99.35 
6 46.02 149.21 100.00 99.35 
7 18.51 29.61 100.00 99.01 
8 30.75 153.61 100.00 99.35 
9 52.42 315.62 100.00 99.35 

10 23.61 360.82 100.00 99.35 
Average 29.73 159.04 100.00 99.32 

C1.6 Tabu Random Restart HillClimbing 

Table C1.6 shows the results for the Tabu Random Restart HillClimbing runs carried out in a 
single robot case within Environment 1. The results are discussed in Section 6.3.6. The 
highlighted result is the result shown in Figure 6.9. The Random Restart looks for a point out 
with 2m of the current point. The Tabu element of the algorithm has the same parameters as 
the Tabu Random algorithm. 

 
Table C1.6: Tabu Random Restart HillClimbing Results 

 
Run Time for target 

1, seconds 
Time for target 

2, seconds 
% Targets 

Found 
% Coverage 

1 10.25 47.47 100.00 95.74 
2 16.60 55.75 100.00 99.35 
3 13.90 98.41 100.00 98.83 
4 6.02 73.99 100.00 96.31 
5 14.82 244.39 100.00 96.78 
6 10.09 73.61 100.00 97.47 
7 14.02 201.38 100.00 96.76 
8 14.82 96.41 100.00 98.64 
9 11.22 76.42 100.00 97.59 

10 18.87 165.84 100.00 96.91 
Average 13.06 113.37 100.00 97.44 
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C1.7 Random Restart Simulated Annealing 

Table C1.7 shows the results for the Random Restart Simulated Annealing runs carried out 
in a single robot case within Environment 1. The results are discussed in Section 6.3.7. The 
highlighted result is the result shown in Figure 6.10. The Annealing schedule has a initial 
temperature of 100 and minimum value of 30 with a decay rate of 0.95. The Random Restart 
looks for a point out with 2m of the current point. 

 
Table C1.7: Random Restart Simulated Annealing Results 

 
Run Time for target 

1, seconds 
Time for target 

2, seconds 
% Targets 

Found 
% Coverage 

1 25.43 56.02 100.00 99.35 
2 43.09 236.42 100.00 99.35 
3 16.89 50.82 100.00 99.35 
4 41.48 96.01 100.00 99.34 
5 18.41 41.21 100.00 99.28 
6 30.81 58.42 100.00 99.05 
7 14.77 88.01 100.00 99.34 
8 111.61 244.02 100.00 98.55 
9 35.21 127.21 100.00 99.35 

10 16.82 128.01 100.00 99.35 
Average 35.45 112.62 100.00 99.23 

C1.8 Genetic Algorithm 1 

Table C1.8 shows the results for the Genetic Algorithm 1 runs carried out in a single robot 
case within Environment 1. The results are discussed in Section 6.3.8. The highlighted result 
is the result shown in Figure 6.11. GA1 has a population size of 5 with chromosome length 
of 8. GA1 uses Roulette wheel selection with 2 point crossover and 1% mutation rate. The 
Random Restart looks for a point out with 2m of the current point. 

 
Table C1.8: Genetic Algorithm 1 Results 

 

Run Time for target 
1, seconds 

Time for target 
2, seconds 

% Targets 
Found 

% Coverage 

1 16.02 143.21 100.00 99.33 
2 22.81 34.01 100.00 83.70 
3 44.42 183.62 100.00 88.10 
4 35.61 178.32 100.00 92.38 
5 7.85 17.83 100.00 85.74 
6 22.41 61.22 100.00 95.79 
7 5.63 35.21 100.00 97.04 
8 16.14 27.61 100.00 90.71 
9 38.41 179.26 100.00 92.27 

10 22.41 46.27 100.00 77.11 
Average 23.17 90.66 100.00 90.22 
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C1.9 Genetic Algorithm 2 

Table C1.9 shows the results for the Genetic Algorithm 2 runs carried out in a single robot 
case within Environment 1. The results are discussed in Section 6.3.9. The highlighted result 
is the result shown in Figure 6.12. GA2 has a population size of 5 with chromosome length 
of 8. GA2 uses Roulette wheel selection with 2 point crossover and 10% mutation rate. The 
Random Restart looks for a point out with 2m of the current point. 

 
Table C1.9: Genetic Algorithm 2 Results 

 
Run Time for target 

1, seconds 
Time for target 

2, seconds 
% Targets 

Found 
% Coverage 

1 19.21 27.61 100.00 99.19 
2 48.42 82.41 100.00 98.94 
3 32.41 493.22 100.00 99.29 
4 18.82 27.21 100.00 99.29 
5 28.39 75.22 100.00 99.35 
6 23.21 32.41 100.00 99.35 
7 6.71 62.66 100.00 99.35 
8 15.93 86.41 100.00 99.27 
9 54.82 63.09 100.00 98.73 

10 24.41 36.63 100.00 99.21 
Average 27.23 98.69 100.00 99.20 

C1.10 Genetic Algorithm 3 

Table C1.10 shows the results for the Genetic Algorithm 3 runs carried out in a single robot 
case within Environment 1. The results are discussed in Section 6.3.10. The highlighted 
result is the result shown in Figure 6.13. GA3 has a population size of 5 with chromosome 
length of 8. GA3 uses Elitist selection with 2 point crossover and 1% mutation rate.  The 
Random Restart looks for a point out with 2m of the current point. 

 
Table C1.10: Genetic Algorithm 3 Results 

 

Run Time for target 
1, seconds 

Time for target 
2, seconds 

% Targets 
Found 

% Coverage 

1 5.62 51.62 100.00 93.89 
2 14.78 27.12 100.00 84.31 
3 28.01 57.62 100.00 92.50 
4 15.78 40.81 100.00 89.78 
5 25.61 53.22 100.00 88.87 
6 69.22 80.81 100.00 91.25 
7 9.22 20.41 100.00 70.67 
8 7.94 18.81 100.00 91.64 
9 41.61 52.42 100.00 86.28 

10 29.41 78.03 100.00 92.37 
Average 24.72 48.09 100.00 88.15 
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C1.11 Genetic Algorithm 4 

Table C1.11 shows the results for the Genetic Algorithm 3 runs carried out in a single robot 
case within Environment 1. The results are discussed in Section 6.3.11. The highlighted 
result is the result shown in Figure 6.14. GA4 has a population size of 5 with chromosome 
length of 8. GA4 uses Elitist selection with 2 point crossover and 10% mutation rate.  The 
Random Restart looks for a point out with 2m of the current point. 

 
Table C1.11: Genetic Algorithm 4 Results 

 
Run Time for target 

1, seconds 
Time for target 

2, seconds 
% Targets 

Found 
% Coverage 

1 36.81 62.02 100.00 86.49 
2 36.01 44.82 100.00 89.24 
3 21.61 41.21 100.00 91.26 
4 22.01 82.95 100.00 92.72 
5 18.78 27.51 100.00 97.35 
6 50.42 84.41 100.00 99.31 
7 63.62 86.30 100.00 91.77 
8 27.21 54.02 100.00 87.07 
9 7.41 16.42 100.00 98.73 

10 25.61 80.32 100.00 92.87 
Average 30.95 58.00 100.00 92.68 

 

C2. Simple Environment with Obstacles Results 

C2.1 Lawnmower 

Table C2.1 shows the results for the Lawnmower runs carried out in a single robot case 
within Environment 2. This result is discussed in Section 6.4.1. Since each run of the 
Lawnmower is the same only the average is shown. 
 

Table C2.1: Lawnmower Results 
 

Run 
Time for target 

1, seconds 
Time for target 

2, seconds 
% Targets 

Found % Coverage 

Average 48.79 N/A 50.00 50.46 
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C2.2 Random 

Table C2.2 shows the results for the Random runs carried out in a single robot case within 
Environment 2. The results are discussed in Section 6.4.2. The highlighted result is the result 
shown in Figure 6.16. 

 
Table C2.2: Random Results 

 
Run Time for target 

1, seconds 
Time for target 

2, seconds 
% Targets 

Found 
% Coverage 

1 116.01 278.43 100.00 90.64 
2 208.38 289.41 100.00 90.46 
3 123.21 563.74 100.00 91.57 
4 330.42 N/A 50.00 75.76 
5 298.25 N/A 50.00 57.27 
6 169.22 N/A 50.00 80.27 
7 143.61 N/A 50.00 75.24 
8 394.42 569.00 100.00 87.12 
9 205.89 502.02 100.00 85.67 

10 355.62 N/A 50.00 89.46 
Average 234.50 440.52 75.00 82.35 

 

C2.3 Random Restart HillClimbing 

Table C2.3 shows the results for the Random Restart HillClimbing runs carried out in a 
single robot case within Environment 2. The results are discussed in Section 6.4.3. The 
highlighted result is the result shown in Figure 6.17. 
 

Table C2.3: Random Restart HillClimbing Results 
 

Run Time for target 
1, seconds 

Time for target 
2, seconds 

% Targets 
Found 

% Coverage 

1 189.87 N/A 50.00 63.62 
2 109.63 524.82 100.00 91.85 
3 266.84 N/A 50.00 77.35 
4 195.38 N/A 50.00 60.15 
5 311.27 525.97 100.00 90.79 
6 484.05 N/A 50.00 80.45 
7 139.56 N/A 50.00 74.38 
8 168.70 N/A 50.00 80.25 
9 166.54 N/A 50.00 90.17 

10 248.83 N/A 50.00 79.14 
Average 228.07 525.40 60.00 78.82 
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C2.4 Tabu Random 

Table C2.4 shows the results for the Tabu Random runs carried out in a single robot case 
within Environment 2. The results are discussed in Section 6.4.4. The highlighted result is 
the result shown in Figure 6.18. 
 

Table C2.4: Tabu Random Results 
 

Run Time for target 
1, seconds 

Time for target 
2, seconds 

% Targets 
Found 

% Coverage 

1 40.01 76.42 100.00 91.46 
2 96.81 310.02 100.00 89.96 
3 434.03 N/A 50.00 90.76 
4 314.82 N/A 50.00 66.91 
5 118.01 N/A 50.00 83.40 
6 29.48 N/A 50.00 87.35 
7 27.02 N/A 50.00 80.88 
8 121.48 314.02 100.00 89.53 
9 286.82 N/A 50.00 73.96 

10 114.41 145.91 100.00 90.02 
Average 158.29 211.59 70.00 84.42 

C2.5 Tabu Random Restart HillClimbing 

Table C2.5 shows the results for the Tabu Random Restart HillClimbing runs carried out in a 
single robot case within Environment 2. The results are discussed in Section 6.4.5. The 
highlighted result is the result shown in Figure 6.19. 

 
Table C2.5: Tabu Random Restart HillClimbing Results 

 
Run Time for target 

1, seconds 
Time for target 

2, seconds 
% Targets 

Found 
% Coverage 

1 166.99 N/A 50.00 80.47 
2 383.47 N/A 50.00 78.18 
3 133.10 N/A 50.00 82.92 
4 448.24 N/A 50.00 77.80 
5 105.91 N/A 50.00 79.90 
6 412.01 N/A 50.00 71.89 
7 443.17 N/A 50.00 76.02 
8 N/A N/A 0.00 26.10 
9 144.75 N/A 50.00 83.27 

10 79.59 188.82 100.00 91.56 
Average 291.72 188.82 50.00 74.81 
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C2.6 Random Restart Simulated Annealing 
Table C2.6 shows the results for the Random Restart Simulated Annealing runs carried out 
in a single robot case within Environment 2. The results are discussed in Section 6.4.6. The 
highlighted result is the result shown in Figure 6.20. 

 
Table C2.6: Random Restart Simulated Annealing Results 

 
Run Time for target 

1, seconds 
Time for target 

2, seconds 
% Targets 

Found 
% Coverage 

1 154.01 232.02 100.00 90.75 
2 98.01 445.31 100.00 91.47 
3 117.33 382.82 100.00 91.22 
4 155.61 593.60 100.00 91.36 
5 142.29 N/A 50.00 74.62 
6 89.08 310.42 100.00 90.53 
7 462.03 N/A 50.00 59.58 
8 210.02 248.02 100.00 91.05 
9 125.17 309.10 100.00 91.15 

10 132.81 N/A 50.00 75.04 
Average 168.64 360.18 85.00 84.68 

C2.7 Genetic Algorithm 1 

Table C2.7 shows the results for the Genetic Algorithm 1 runs carried out in a single robot 
case within Environment 2. The results are discussed in Section 6.4.7. The highlighted result 
is the result shown in Figure 6.21. 

 
Table C2.7: Genetic Algorithm 1 Results 

 
Run Time for target 

1, seconds 
Time for target 

2, seconds 
% Targets 

Found 
% Coverage 

1 132.80 N/A 50.00 91.28 
2 164.02 N/A 50.00 89.46 
3 341.45 N/A 50.00 77.68 
4 150.26 175.25 100.00 90.92 
5 195.22 N/A 50.00 81.51 
6 229.28 N/A 50.00 78.20 
7 33.29 430.45 100.00 90.32 
8 305.70 N/A 50.00 84.36 
9 28.14 N/A 50.00 91.69 

10 376.42 N/A 50.00 90.90 
Average 195.66 302.85 60.00 86.63 
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C2.8 Genetic Algorithm 2 

Table C2.8 shows the results for the Genetic Algorithm 2 runs carried out in a single robot 
case within Environment 2. The results are discussed in Section 6.4.8. The highlighted result 
is the result shown in Figure 6.22. 

 
Table C2.8: Genetic Algorithm 2 Results 

 
Run Time for target 

1, seconds 
Time for target 

2, seconds 
% Targets 

Found 
% Coverage 

1 361.22 N/A 50.00 77.70 
2 254.42 531.22 100.00 87.89 
3 437.22 N/A 50.00 88.45 
4 198.23 N/A 50.00 81.20 
5 246.42 N/A 50.00 74.99 
6 378.02 N/A 50.00 73.87 
7 194.42 317.22 100.00 91.52 
8 134.69 317.37 100.00 89.73 
9 188.78 287.62 100.00 91.54 

10 182.34 N/A 50.00 82.53 
Average 257.58 363.36 70.00 83.94 

C2.9 Genetic Algorithm 3 

Table C2.9 shows the results for the Genetic Algorithm 3 runs carried out in a single robot 
case within Environment 2. The results are discussed in Section 6.4.9. The highlighted result 
is the result shown in Figure 6.23. 

 
Table C2.9: Genetic Algorithm 3 Results 

 
Run Time for target 

1, seconds 
Time for target 

2, seconds 
% Targets 

Found 
% Coverage 

1 221.22 N/A 50.00 80.50 
2 278.82 N/A 50.00 78.35 
3 66.82 344.82 100.00 91.28 
4 80.41 411.15 100.00 91.37 
5 288.36 459.62 100.00 83.46 
6 143.61 N/A 50.00 80.69 
7 28.62 269.88 100.00 91.19 
8 113.61 N/A 50.00 75.59 
9 158.41 394.29 100.00 90.99 

10 330.42 N/A 50.00 75.24 
Average 171.03 375.95 75.00 83.87 
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C2.10 Genetic Algorithm 4 

Table C2.10 shows the results for the Genetic Algorithm 4 runs carried out in a single robot 
case within Environment 2. The results are discussed in Section 6.4.10. The highlighted 
result is the result shown in Figure 6.24. 

 
Table C2.10: Genetic Algorithm 4 Results 

 
Run Time for target 

1, seconds 
Time for target 

2, seconds 
% Targets 

Found 
% Coverage 

1 127.21 N/A 50.00 83.92 
2 253.01 N/A 50.00 90.25 
3 248.42 N/A 50.00 76.38 
4 239.22 342.02 100.00 91.13 
5 127.21 414.42 100.00 84.54 
6 42.01 208.23 100.00 88.80 
7 16.42 460.06 100.00 91.43 
8 253.42 N/A 50.00 78.73 
9 565.60 N/A 50.00 63.37 

10 284.03 N/A 50.00 78.12 
Average 215.66 502.47 70.00 82.67 

 

C3. Complex Environment Results 

C3.1 Lawnmower 

Table C3.1 shows the results for the Lawnmower runs carried out in a single robot case 
within Environment 3. This result is discussed in Section 6.5.1. Since each run of the 
Lawnmower is the same only the average is shown. 

 
Table C3.1: Lawnmower Results 

 

Time for target found, s 
Algorithm 

1 2 3 4 5 6 7 

% 
Targets 
Found 

% 
Coverage 

Average 28.81 N/A N/A N/A N/A N/A N/A 14.29 16.62 
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C3.2 Random 

Table C3.2 shows the results for the Random runs carried out in a single robot case within 
Environment 3. The results are discussed in Section 6.5.2. The highlighted result is the result 
shown in Figure 6.25. 

 
Table C3.2: Random Results 

 

Time for target found, s Algorithm 

1 2 3 4 5 6 7 

% Targets Found % Coverage 

1 50.42 144.41 174.42 N/A N/A N/A N/A 42.86 27.37 
2 32.81 57.62 N/A N/A N/A N/A N/A 28.57 40.00 
3 37.61 91.54 421.63 503.22 N/A N/A N/A 57.14 58.19 
4 234.82 368.42 N/A N/A N/A N/A N/A 28.57 37.94 
5 56.82 248.42 291.06 369.21 N/A N/A N/A 57.14 45.80 
6 32.01 182.02 N/A N/A N/A N/A N/A 28.57 50.17 
7 89.61 242.77 292.02 N/A N/A N/A N/A 42.86 54.46 
8 215.62 N/A N/A N/A N/A N/A N/A 14.29 24.95 
9 38.41 378.79 453.22 N/A N/A N/A N/A 42.86 36.01 

10 129.52 429.76 N/A N/A N/A N/A N/A 28.57 40.92 
Average 91.77 238.19 326.47 436.22 N/A N/A N/A 37.14 41.58 

C3.3 Random Restart HillClimbing 

Table C3.3 shows the results for the Random Restart HillClimbing runs carried out in a 
single robot case within Environment 3. The results are discussed in Section 6.5.3. The 
highlighted result is the result shown in Figure 6.27. 

 
Table C3.3: Random Restart HillClimbing Results 

 

Time for target found, s 
Algorithm 

1 2 3 4 5 6 7 

% 
Targets 
Found 

% 
Coverage 

1 45.92 174.95 N/A N/A N/A N/A N/A 28.57 34.61 
2 154.66 N/A N/A N/A N/A N/A N/A 14.29 20.85 
3 17.25 N/A N/A N/A N/A N/A N/A 14.29 21.37 
4 93.21 207.11 453.33 N/A N/A N/A N/A 42.86 39.54 
5 14.40 54.07 260.06 N/A N/A N/A N/A 42.86 43.71 
6 20.01 43.63 54.07 260.06 N/A N/A N/A 57.14 18.59 
7 42.01 200.02 N/A N/A N/A N/A N/A 28.57 44.71 
8 11.18 91.21 208.82 N/A N/A N/A N/A 42.86 24.25 
9 58.42 208.82 223.92 N/A N/A N/A N/A 42.86 37.39 

10 11.22 179.02 557.25 N/A N/A N/A N/A 42.86 43.24 
Average 46.83 144.85 292.91 260.06 N/A N/A N/A 35.71 32.82 
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C3.4 Tabu Random 

Table C3.4 shows the results for the Tabu Random runs carried out in a single robot case 
within Environment 3. The results are discussed in Section 6.5.4. The highlighted result is 
the result shown in Figure 6.28. 

 
Table C3.4: Tabu Random Results 

 

Time for target found, s 
Algorithm 

1 2 3 4 5 6 7 

% 
Targets 
Found 

% 
Coverage 

1 38.01 124.81 180.42 444.42 N/A N/A N/A 57.14 55.24 
2 7.22 152.19 229.22 N/A N/A N/A N/A 42.86 38.06 
3 63.62 106.01 300.42 N/A N/A N/A N/A 42.86 40.61 
4 17.81 176.11 N/A N/A N/A N/A N/A 28.57 48.88 
5 61.84 319.22 N/A N/A N/A N/A N/A 28.57 32.20 
6 28.78 128.81 169.62 336.02 N/A N/A N/A 57.14 47.95 
7 9.22 321.22 437.22 466.44 N/A N/A N/A 57.14 46.31 
8 140.81 286.82 N/A N/A N/A N/A N/A 28.57 63.69 
9 23.75 228.82 593.22 N/A N/A N/A N/A 42.86 39.23 

10 41.21 104.41 462.02 N/A N/A N/A N/A 42.86 38.78 
Average 43.23 194.84 338.88 415.63 N/A N/A N/A 42.86 45.10 

C3.5 Tabu Random Restart HillClimbing 

Table C3.5 shows the results for the Tabu Random Restart HillClimbing runs carried out in a 
single robot case within Environment 3. The results are discussed in Section 6.5.5. The 
highlighted result is the result shown in Figure 6.29. 

 
Table C3.5: Tabu Random Restart HillClimbing Results 

 

Time for target found, s 
Algorithm 

1 2 3 4 5 6 7 

% 
Targets 
Found 

% 
Coverage 

1 50.8 N/A N/A N/A N/A N/A N/A 14.29 25.74 
2 31.39 289.22 N/A N/A N/A N/A N/A 28.57 37.35 
3 36.72 365.45 N/A N/A N/A N/A N/A 28.57 38.17 
4 21.58 115.21 N/A N/A N/A N/A N/A 28.57 34.17 
5 14.62 193.22 N/A N/A N/A N/A N/A 28.57 44.28 
6 15.65 N/A N/A N/A N/A N/A N/A 14.29 25.24 
7 75.87 N/A N/A N/A N/A N/A N/A 14.29 26.82 
8 19.61 130.96 374.27 N/A N/A N/A N/A 42.86 48.91 
9 55.22 83.03 274.63 N/A N/A N/A N/A 42.86 40.13 

10 13.22 38.76 N/A N/A N/A N/A N/A 28.57 21.21 
Average 33.47 173.69 324.45 N/A N/A N/A N/A 27.14 34.20 
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C3.6 Random Restart Simulated Annealing 

Table C3.6 shows the results for the Random Restart Simulated Annealing runs carried out 
in a single robot case within Environment 3. The results are discussed in Section 6.5.6. The 
highlighted result is the result shown in Figure 6.30. 

 
Table C3.6: Random Restart Simulated Annealing Results 

 

Time for target found, s 
Algorithm 

1 2 3 4 5 6 7 

% 
Targets 
Found 

% 
Coverage 

1 11.62 342.89 398.43 N/A N/A N/A N/A 42.86 52.24 
2 17.38 416.02 448.02 N/A N/A N/A N/A 42.86 43.74 
3 6.02 137.61 254.83 N/A N/A N/A N/A 42.86 41.58 
4 36.44 115.18 313.22 N/A N/A N/A N/A 42.86 38.08 
5 30.49 326.02 N/A N/A N/A N/A N/A 28.57 41.39 
6 38.62 273.22 313.22 377.62 N/A N/A N/A 57.14 51.07 
7 15.92 229.56 402.42 N/A N/A N/A N/A 42.86 45.59 
8 15.82 222.90 279.62 N/A N/A N/A N/A 42.86 33.65 
9 69.22 117.35 325.41 411.62 N/A N/A N/A 57.14 58.07 

10 96.81 164.11 273.55 338.03 N/A N/A N/A 57.14 40.80 
Average 33.83 234.49 334.30 375.76 N/A N/A N/A 45.71 44.62 

C3.7 Genetic Algorithm 1 

Table C3.7 shows the results for the Genetic Algorithm 1 runs carried out in a single robot 
case within Environment 3. The results are discussed in Section 6.5.7. The highlighted result 
is the result shown in Figure 6.31. 

 
Table C3.7: Genetic Algorithm 1 Results 

 

Time for target found, s 
Algorithm 

1 2 3 4 5 6 7 

% 
Targets 
Found 

% 
Coverage 

1 40.81 126.41 244.82 N/A N/A N/A N/A 42.86 32.52 
2 69.22 244.82 N/A N/A N/A N/A N/A 28.57 29.08 
3 46.42 56.02 N/A N/A N/A N/A N/A 28.57 28.79 
4 43.62 135.61 200.02 N/A N/A N/A N/A 42.86 32.57 
5 138.29 200.42 561.22 N/A N/A N/A N/A 42.86 39.14 
6 77.21 220.02 409.15 N/A N/A N/A N/A 42.86 37.19 
7 166.82 210.82 409.15 N/A N/A N/A N/A 42.86 37.92 
8 28.81 73.61 137.40 350.02 N/A N/A N/A 57.14 50.95 
9 74.01 350.02 362.85 N/A N/A N/A N/A 42.86 45.34 

10 18.01 154.01 350.02 375.62 N/A N/A N/A 57.14 35.29 
Average 70.32 177.18 334.33 362.82 N/A N/A N/A 42.86 36.88 
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C3.8 Genetic Algorithm 2 

Table C3.8 shows the results for the Genetic Algorithm 1 runs carried out in a single robot 
case within Environment 3. The results are discussed in Section 6.5.8. The highlighted result 
is the result shown in Figure 6.32. 

 
Table C3.8: Genetic Algorithm 2 Results 

 

Time for target found, s 
Algorithm 

1 2 3 4 5 6 7 

% 
Targets 
Found 

% 
Coverage 

1 8.42 39.21 N/A N/A N/A N/A N/A 28.57 18.71 
2 30.09 N/A N/A N/A N/A N/A N/A 14.29 25.30 
3 42.81 315.62 342.42 N/A N/A N/A N/A 42.86 47.06 
4 63.62 99.21 145.61 N/A N/A N/A N/A 42.86 43.25 
5 29.83 252.42 383.14 508.02 N/A N/A N/A 57.14 46.65 
6 34.22 112.01 277.62 N/A N/A N/A N/A 42.86 40.79 
7 20.57 153.85 233.62 364.42 N/A N/A N/A 57.14 44.46 
8 43.62 207.17 237.22 N/A N/A N/A N/A 42.86 46.72 
9 42.41 134.93 170.82 249.62 N/A N/A N/A 57.14 50.17 

10 68.42 113.21 211.86 N/A N/A N/A N/A 42.86 48.19 
Average 38.40 158.63 250.29 374.02 N/A N/A N/A 42.86 41.13 

C3.9 Genetic Algorithm 3 

Table C3.9 shows the results for the Genetic Algorithm 1 runs carried out in a single robot 
case within Environment 3. The results are discussed in Section 6.5.9. The highlighted result 
is the result shown in Figure 6.33. 

 
Table C3.9: Genetic Algorithm 3 Results 

 

Time for target found, s 
Algorithm 

1 2 3 4 5 6 7 

% 
Targets 
Found 

% 
Coverage 

1 6.82 236.42 415.22 N/A N/A N/A N/A 42.86 37.96 
2 193.62 283.26 350.30 N/A N/A N/A N/A 42.86 29.56 
3 23.61 332.82 N/A N/A N/A N/A N/A 28.57 30.54 
4 72.02 198.42 415.22 425.62 475.62 N/A N/A 71.43 49.48 
5 16.82 198.42 425.62 475.62 N/A N/A N/A 57.14 32.53 
6 10.41 18.81 282.43 N/A N/A N/A N/A 42.86 54.80 
7 18.41 462.02 N/A N/A N/A N/A N/A 28.57 36.85 
8 5.62 160.43 220.42 245.87 381.62 N/A N/A 71.43 60.51 
9 40.81 220.42 245.87 381.62 N/A N/A N/A 57.14 32.45 

10 43.62 245.87 381.62 422.31 N/A N/A N/A 57.14 44.30 
Average 43.18 235.69 342.09 390.21 428.62 N/A N/A 50.00 40.90 
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C3.10 Genetic Algorithm 4 

Table C3.10 shows the results for the Genetic Algorithm 1 runs carried out in a single robot 
case within Environment 3. The results are discussed in Section 6.5.10. The highlighted 
result is the result shown in Figure 6.34. 

 
Table C3.10: Genetic Algorithm 4 Results 

 

Time for target found, s 
Algorithm 

1 2 3 4 5 6 7 

% 
Targets 
Found 

% 
Coverage 

1 17.58 289.22 433.62 N/A N/A N/A N/A 42.86 40.18 
2 34.81 N/A N/A N/A N/A N/A N/A 14.29 29.14 
3 15.9 131.61 247.96 526.75 N/A N/A N/A 57.14 53.93 
4 15.62 166.02 N/A N/A N/A N/A N/A 28.57 31.86 
5 37.61 47.62 205.62 N/A N/A N/A N/A 42.86 36.16 
6 138.3 202.61 242.42 N/A N/A N/A N/A 42.86 55.04 
7 42.81 N/A N/A N/A N/A N/A N/A 14.29 21.86 
8 43.32 116.41 N/A N/A N/A N/A N/A 28.57 38.92 
9 48.43 183.22 250.02 N/A N/A N/A N/A 42.86 57.43 

10 22.01 134.01 214.82 N/A N/A N/A N/A 42.86 40.55 
Average 41.64 158.84 265.74 526.75 N/A N/A N/A 35.71 40.50 
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Appendix D 
 

 
This Appendix presents the individual run results achieved by each algorithm within each 
environment within the multi robot case. The results from each algorithm is presented in a 
table showing the individual results achieved for each of the 10 runs carried out. The average 
for each algorithm is stated in the bottom row of each table. 
 

D1. Simple Environment Results 

D1.1 Tabu Random 

Table D1.1 shows the results for the Tabu Random runs carried out in a multi robot case 
within Environment 1. The results are discussed in Section 7.3.1. The highlighted result is 
the result shown in Figure 7.1. 
 

Table D1.1: Tabu Random Results 
 

Run Time for target 1, 
seconds 

Time for target 2, 
seconds 

% Targets 
Found 

% 
Coverage 

1 56.20 109.61 100.00 99.35 
2 39.21 54.02 100.00 99.34 
3 40.01 45.62 100.00 99.35 
4 56.20 54.82 100.00 99.35 
5 30.90 75.21 100.00 99.35 
6 52.32 97.21 100.00 99.35 
7 51.62 54.82 100.00 99.35 
8 40.81 58.55 100.00 99.35 
9 40.81 72.01 100.00 99.35 

10 25.25 90.69 100.00 99.26 
Average 43.33 71.26 100.00 99.34 
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D1.2 Random Restart Simulated Annealing 

Table D1.2 shows the results for the Random Restart Simulated Annealing runs carried out 
in a multi robot case within Environment 1. The results are discussed in Section 7.3.2. The 
highlighted result is the result shown in Figure 7.2. 
 

Table D1.2: Random Restart Simulated Annealing Results 
 

Run Time for target 
1, seconds 

Time for target 
2, seconds 

% Targets 
Found 

% Coverage 

1 29.58 88.12 100.00 99.34 
2 34.01 96.81 100.00 97.41 
3 16.02 50.02 100.00 99.35 
4 31.11 76.41 100.00 99.35 
5 15.93 109.61 100.00 99.35 
6 8.82 170.42 100.00 99.35 
7 28.01 46.02 100.00 99.26 
8 47.58 123.21 100.00 99.35 
9 10.02 118.39 100.00 99.18 

10 96.20 66.82 100.00 99.35 
Average 31.73 94.58 100.00 99.13 

D1.3 Genetic Algorithm 2 

Table D1.3 shows the results for the Genetic Algorithm 2 runs carried out in a multi robot 
case within Environment 1. The results are discussed in Section 7.3.3. The highlighted result 
is the result shown in Figure 7.3. 
 

Table D1.3: Genetic Algorithm 2 Results 
 

Run Time for target 
1, seconds 

Time for target 
2, seconds 

% Targets 
Found 

% Coverage 

1 25.62 128.41 100.00 99.11 
2 51.44 141.21 100.00 98.36 
3 33.61 260.82 100.00 98.25 
4 76.51 86.01 100.00 98.67 
5 54.82 114.01 100.00 97.92 
6 26.01 178.02 100.00 99.33 
7 25.61 206.42 100.00 94.32 
8 11.23 84.54 100.00 97.11 
9 54.21 123.61 100.00 97.62 

10 53.62 230.02 100.00 98.51 
Average 41.27 155.31 100.00 97.92 
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D1.4 Genetic Algorithm 3 

Table D1.4 shows the results for the Genetic Algorithm 3 runs carried out in a multi robot 
case within Environment 1. The results are discussed in Section 7.3.4. The highlighted result 
is the result shown in Figure 7.5. 
 

Table D1.4: Genetic Algorithm 3 Results 
 

Run Time for target 
1, seconds 

Time for target 
2, seconds 

% Targets 
Found 

% Coverage 

1 62.10 183.62 100.00 99.33 
2 56.42 155.21 100.00 99.35 
3 44.34 86.41 100.00 98.91 
4 26.61 199.62 100.00 98.64 
5 30.81 118.81 100.00 99.13 
6 16.02 130.81 100.00 98.50 
7 18.02 583.20 100.00 98.99 
8 160.20 284.02 100.00 99.20 
9 56.20 126.41 100.00 98.39 

10 N/A N/A 0.00 76.29 
Average 52.30 207.57 90.00 96.67 

D1.5 Genetic Algorithm 4 

Table D1.5 shows the results for the Genetic Algorithm 4 runs carried out in a multi robot 
case within Environment 1. The results are discussed in Section 7.3.5. The highlighted result 
is the result shown in Figure 7.6. 

 
Table D1.5: Genetic Algorithm 4 Results 

 
Run Time for target 

1, seconds 
Time for target 

2, seconds 
% Targets 

Found 
% Coverage 

1 25.21 178.02 100.00 98.74 
2 N/A N/A 0.00 81.00 
3 N/A N/A 0.00 87.19 
4 31.12 117.21 100.00 99.35 
5 28.01 85.21 100.00 99.27 
6 5.62 43.22 100.00 98.55 
7 5.62 171.62 100.00 99.26 
8 167.50 202.82 100.00 97.35 
9 136.62 N/A 50.00 98.05 

10 72.59 206.42 100.00 99.33 
Average 59.04 143.50 75.00 95.81 
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 D2. Simple Environment with Obstacles Results 

D2.1 Tabu Random 

Table D2.1 shows the results for the Tabu Random runs carried out in a multi robot case 
within Environment 2. The results are discussed in Section 7.4.2. The highlighted result is 
the result shown in Figure 7.8. 
 

Table D2.1: Tabu Random Results 
 

Run Time for target 
1, seconds 

Time for target 
2, seconds 

% Targets 
Found 

% Coverage 

1 56.99 335.94 100.00 91.52 
2 52.42 325.52 100.00 92.15 
3 97.61 211.62 100.00 92.63 
4 105.09 185.82 100.00 91.78 
5 67.22 388.82 100.00 91.86 
6 73.77 210.82 100.00 91.79 
7 126.80 215.22 100.00 91.71 
8 38.41 89.61 100.00 91.57 
9 82.81 258.98 100.00 92.24 

10 118.28 157.10 100.00 91.75 
Average 81.94 237.95 100.00 91.90 

D2.2 Random Restart Simulated Annealing 

Table D2.2 shows the results for the Random Restart Simulated Annealing runs carried out 
in a multi robot case within Environment 2. The results are discussed in Section 7.4.3. The 
highlighted result is the result shown in Figure 7.9. 
 

Table D2.2: Random Restart Simulated Annealing Results 
 

Run Time for target 
1, seconds 

Time for target 
2, seconds 

% Targets 
Found 

% Coverage 

1 39.55 317.82 100.00 92.62 
2 113.21 N/A 50.00 77.52 
3 80.81 189.61 100.00 92.09 
4 113.92 146.40 100.00 92.06 
5 110.58 250.02 100.00 92.60 
6 68.95 N/A 50.00 81.76 
7 90.01 98.90 100.00 92.22 
8 94.01 137.22 100.00 92.37 
9 68.02 N/A 50.00 75.19 

10 256.82 338.36 100.00 88.66 
Average 103.59 211.19 85.00 87.71 
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D2.3 Genetic Algorithm 2 

Table D2.3 shows the results for the Genetic Algorithm 2 runs carried out in a multi robot 
case within Environment 2. The results are discussed in Section 7.4.4. The highlighted result 
is the result shown in Figure 7.11. 
 

Table D2.3: Genetic Algorithm 2 Results 
 

Run Time for target 
1, seconds 

Time for target 
2, seconds 

% Targets 
Found 

% Coverage 

1 228.82 N/A 50.00 69.34 
2 N/A N/A 0.00 32.85 
3 132.01 N/A 50.00 82.55 
4 236.29 N/A 50.00 68.23 
5 200.42 252.42 100.00 91.27 
6 178.82 344.82 100.00 87.35 
7 172.28 310.42 100.00 91.57 
8 205.62 546.82 100.00 91.72 
9 N/A N/A 0.00 14.06 

10 526.02 583.23 100.00 80.18 
Average 235.04 407.54 65.00 70.91 

D2.4 Genetic Algorithm 3 

Table D2.4 shows the results for the Genetic Algorithm 2 runs carried out in a multi robot 
case within Environment 2. The results are discussed in Section 7.4.5. The highlighted result 
is the result shown in Figure 7.12. 
 

Table D2.4: Genetic Algorithm 3 Results 
 

Run Time for target 
1, seconds 

Time for target 
2, seconds 

% Targets 
Found 

% Coverage 

1 N/A N/A 0.00 21.45 
2 N/A N/A 0.00 23.13 
3 196.73 416.82 100.00 92.00 
4 N/A N/A 0.00 23.27 
5 221.52 499.22 100.00 90.60 
6 N/A N/A 0.00 13.94 
7 280.02 N/A 50.00 85.95 
8 284.02 N/A 50.00 67.13 
9 N/A N/A 0.00 48.16 

10 48.02 N/A 50.00 78.06 
Average 206.06 458.02 35.00 54.37 

 



 

  190 

D2.5 Genetic Algorithm 4 

Table D2.5 shows the results for the Genetic Algorithm 2 runs carried out in a multi robot 
case within Environment 2. The results are discussed in Section 7.4.6. The highlighted result 
is the result shown in Figure 7.13. 
 

Table D2.5: Genetic Algorithm 4 Results 
 

Run Time for target 
1, seconds 

Time for target 
2, seconds 

% Targets 
Found 

% Coverage 

1 314.82 N/A 50.00 90.96 
2 N/A N/A 0.00 17.28 
3 197.22 N/A 50.00 87.66 
4 234.42 445.46 100.00 91.61 
5 N/A N/A 0.00 26.52 
6 N/A N/A 0.00 18.41 
7 148.01 597.22 100.00 90.98 
8 N/A N/A 0.00 49.90 
9 199.62 232.82 100.00 86.89 

10 N/A N/A 0.00 30.04 
Average 218.82 425.17 40.00 59.03 

 

D3. Complex Environment Results 

D3.1 Tabu Random 

Table D3.1 shows the results for the Tabu Random runs carried out in a multi robot case 
within Environment 3. The results are discussed in Section 7.5.1. The highlighted result is 
the result shown in Figure 7.14. 
 

Table D3.1: Tabu Random Results 
 

Time for target found, s 
Algorithm 

1 2 3 4 5 6 7 

% 
Targets 
Found 

% 
Coverage 

1 36.81 37.76 126.77 156.82 192.02 N/A N/A 71.43 66.67 
2 41.12 53.16 145.88 176.82 220.71 N/A N/A 71.43 58.84 
3 22.41 63.22 89.21 161.22 N/A N/A N/A 57.14 58.94 
4 48.02 54.95 160.02 N/A N/A N/A N/A 42.86 40.99 
5 18.41 140.41 153.87 209.54 N/A N/A N/A 57.14 51.64 
6 22.41 69.22 76.27 80.01 176.02 245.62 N/A 85.71 66.48 
7 37.55 55.33 97.61 N/A N/A N/A N/A 42.86 50.57 
8 32.49 51.62 104.71 219.22 N/A N/A N/A 57.14 59.50 
9 81.21 92.81 109.21 245.22 N/A N/A N/A 57.14 59.29 

10 25.61 85.61 116.14 201.62 234.98 N/A N/A 71.43 50.90 
Average 36.60 70.41 117.97 181.31 205.93 245.62 N/A 61.43 56.38 
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D3.2 Random Restart Simulated Annealing 
Table D3.2 shows the results for the Random Restart Simulated Annealing runs carried out 
in a multi robot case within Environment 3. The results are discussed in Section 7.5.2. The 
highlighted result is the result shown in Figure 7.15. 
 

Table D3.2: Random Restart Simulated Annealing Results 
 

Time for target found, s 
Algorithm 

1 2 3 4 5 6 7 

% 
Targets 
Found 

% 
Coverage 

1 30.01 109.21 111.21 153.82 222.42 N/A N/A 71.43 57.28 
2 32.41 87.61 104.15 N/A N/A N/A N/A 42.86 42.34 
3 82.02 95.57 122.59 201.62 N/A N/A N/A 57.14 56.66 
4 56.20 74.01 241.22 N/A N/A N/A N/A 42.86 43.22 
5 56.20 68.22 153.21 217.22 N/A N/A N/A 57.14 58.03 
6 34.41 46.42 48.02 252.02 N/A N/A N/A 57.14 59.33 
7 31.61 102.01 177.22 202.95 N/A N/A N/A 57.14 44.85 
8 10.82 45.35 81.61 113.21 N/A N/A N/A 57.14 51.99 
9 25.21 79.18 87.13 N/A N/A N/A N/A 42.86 43.61 

10 26.01 56.25 95.31 N/A N/A N/A N/A 42.86 51.8 
Average 38.49 76.38 122.17 190.14 222.42 N/A N/A 52.86 50.91 

D3.3 Genetic Algorithm 2 

Table D3.3 shows the results for the Genetic Algorithm 2 runs carried out in a multi robot 
case within Environment 3. The results are discussed in Section 7.5.3. The highlighted result 
is the result shown in Figure 7.16. 
 

Table D3.3: Genetic Algorithm 2 Results 
 

Time for target found, s 
Algorithm 

1 2 3 4 5 6 7 

% 
Targets 
Found 

% 
Coverage 

1 47.16 52.82 52.82 N/A N/A N/A N/A 42.86 38.34 
2 75.61 135.21 322.42 N/A N/A N/A N/A 42.86 57.18 
3 54.02 173.62 242.02 308.02 N/A N/A N/A 57.14 39.10 
4 31.61 41.61 152.10 N/A N/A N/A N/A 42.86 34.79 
5 92.01 105.19 367.62 N/A N/A N/A N/A 42.86 37.43 
6 103.30 315.62 413.23 N/A N/A N/A N/A 42.86 54.17 
7 37.06 37.21 253.22 588.61 N/A N/A N/A 57.14 51.59 
8 22.01 46.77 482.82 N/A N/A N/A N/A 42.86 49.71 
9 16.52 58.02 178.02 498.02 N/A N/A N/A 57.14 51.89 

10 33.97 125.94 289.56 487.62 N/A N/A N/A 57.14 48.48 
Average 51.33 109.20 275.38 470.57 N/A N/A N/A 48.57 46.27 
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D3.4 Genetic Algorithm 3 

Table D3.4 shows the results for the Genetic Algorithm 3 runs carried out in a multi robot 
case within Environment 3. The results are discussed in Section 7.5.4. The highlighted result 
is the result shown in Figure 7.17. 
 

Table D3.4: Genetic Algorithm 3 Results 
 

Time for target found, s 
Algorithm 

1 2 3 4 5 6 7 

% 
Targets 
Found 

% 
Coverage 

1 14.83 149.61 150.81 N/A N/A N/A N/A 42.86 49.72 
2 27.98 112.01 180.02 180.36 220.42 N/A N/A 71.43 61.12 
3 22.81 47.22 81.61 N/A N/A N/A N/A 71.43 38.20 
4 86.01 86.01 309.78 470.02 561.62 N/A N/A 71.43 58.28 
5 69.71 82.01 129.30 319.67 N/A N/A N/A 57.14 47.82 
6 37.61 101.56 364.42 N/A N/A N/A N/A 42.86 32.89 
7 77.21 205.62 324.82 N/A N/A N/A N/A 57.14 50.43 
8 44.82 105.47 N/A N/A N/A N/A N/A 28.57 43.82 
9 35.61 483.62 N/A N/A N/A N/A N/A 28.57 38.14 

10 62.82 74.81 N/A N/A N/A N/A N/A 28.57 35.31 
Average 47.94 144.79 220.11 323.35 391.02 N/A N/A 50.00 45.57 

D3.5 Genetic Algorithm 4 

Table D3.5 shows the results for the Genetic Algorithm 4 runs carried out in a multi robot 
case within Environment 3. The results are discussed in Section 7.5.5. The highlighted result 
is the result shown in Figure 7.18. 
 

Table D3.5: Genetic Algorithm 4 Results 
 

Time for target found, s 
Algorithm 

1 2 3 4 5 6 7 

% 
Targets 
Found 

% 
Coverage 

1 57.22 64.42 N/A N/A N/A N/A N/A 28.57 38.36 
2 84.27 93.21 304.43 N/A N/A N/A N/A 42.86 49.39 
3 52.30 144.20 356.10 107.61 N/A N/A N/A 57.14 41.51 
4 88.01 108.81 113.45 420.82 N/A N/A N/A 57.14 47.99 
5 28.81 49.62 177.62 246.82 N/A N/A N/A 57.14 48.05 
6 50.02 244.02 346.82 360.02 N/A N/A N/A 57.14 44.95 
7 N/A N/A N/A N/A N/A N/A N/A 0.00 14.23 
8 256.10 N/A N/A N/A N/A N/A N/A 14.29 33.64 
9 5.62 17.22 204.82 428.02 N/A N/A N/A 57.14 51.63 

10 87.75 269.22 N/A N/A N/A N/A N/A 28.57 34.26 
Average 78.90 123.84 250.54 312.66 N/A N/A N/A 40.00 40.40 

 
 


